Bug Summary

File:clang/include/clang/AST/ExprCXX.h
Warning:line 4693, column 18
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaCoroutine.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/tools/clang/lib/Sema -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D CLANG_ROUND_TRIP_CC1_ARGS=ON -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-08-28-193554-24367-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp

1//===-- SemaCoroutine.cpp - Semantic Analysis for Coroutines --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for C++ Coroutines.
10//
11// This file contains references to sections of the Coroutines TS, which
12// can be found at http://wg21.link/coroutines.
13//
14//===----------------------------------------------------------------------===//
15
16#include "CoroutineStmtBuilder.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/Decl.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/StmtCXX.h"
21#include "clang/Basic/Builtins.h"
22#include "clang/Lex/Preprocessor.h"
23#include "clang/Sema/Initialization.h"
24#include "clang/Sema/Overload.h"
25#include "clang/Sema/ScopeInfo.h"
26#include "clang/Sema/SemaInternal.h"
27#include "llvm/ADT/SmallSet.h"
28
29using namespace clang;
30using namespace sema;
31
32static LookupResult lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD,
33 SourceLocation Loc, bool &Res) {
34 DeclarationName DN = S.PP.getIdentifierInfo(Name);
35 LookupResult LR(S, DN, Loc, Sema::LookupMemberName);
36 // Suppress diagnostics when a private member is selected. The same warnings
37 // will be produced again when building the call.
38 LR.suppressDiagnostics();
39 Res = S.LookupQualifiedName(LR, RD);
40 return LR;
41}
42
43static bool lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD,
44 SourceLocation Loc) {
45 bool Res;
46 lookupMember(S, Name, RD, Loc, Res);
47 return Res;
48}
49
50/// Look up the std::coroutine_traits<...>::promise_type for the given
51/// function type.
52static QualType lookupPromiseType(Sema &S, const FunctionDecl *FD,
53 SourceLocation KwLoc) {
54 const FunctionProtoType *FnType = FD->getType()->castAs<FunctionProtoType>();
55 const SourceLocation FuncLoc = FD->getLocation();
56 // FIXME: Cache std::coroutine_traits once we've found it.
57 NamespaceDecl *StdExp = S.lookupStdExperimentalNamespace();
58 if (!StdExp) {
59 S.Diag(KwLoc, diag::err_implied_coroutine_type_not_found)
60 << "std::experimental::coroutine_traits";
61 return QualType();
62 }
63
64 ClassTemplateDecl *CoroTraits = S.lookupCoroutineTraits(KwLoc, FuncLoc);
65 if (!CoroTraits) {
66 return QualType();
67 }
68
69 // Form template argument list for coroutine_traits<R, P1, P2, ...> according
70 // to [dcl.fct.def.coroutine]3
71 TemplateArgumentListInfo Args(KwLoc, KwLoc);
72 auto AddArg = [&](QualType T) {
73 Args.addArgument(TemplateArgumentLoc(
74 TemplateArgument(T), S.Context.getTrivialTypeSourceInfo(T, KwLoc)));
75 };
76 AddArg(FnType->getReturnType());
77 // If the function is a non-static member function, add the type
78 // of the implicit object parameter before the formal parameters.
79 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
80 if (MD->isInstance()) {
81 // [over.match.funcs]4
82 // For non-static member functions, the type of the implicit object
83 // parameter is
84 // -- "lvalue reference to cv X" for functions declared without a
85 // ref-qualifier or with the & ref-qualifier
86 // -- "rvalue reference to cv X" for functions declared with the &&
87 // ref-qualifier
88 QualType T = MD->getThisType()->castAs<PointerType>()->getPointeeType();
89 T = FnType->getRefQualifier() == RQ_RValue
90 ? S.Context.getRValueReferenceType(T)
91 : S.Context.getLValueReferenceType(T, /*SpelledAsLValue*/ true);
92 AddArg(T);
93 }
94 }
95 for (QualType T : FnType->getParamTypes())
96 AddArg(T);
97
98 // Build the template-id.
99 QualType CoroTrait =
100 S.CheckTemplateIdType(TemplateName(CoroTraits), KwLoc, Args);
101 if (CoroTrait.isNull())
102 return QualType();
103 if (S.RequireCompleteType(KwLoc, CoroTrait,
104 diag::err_coroutine_type_missing_specialization))
105 return QualType();
106
107 auto *RD = CoroTrait->getAsCXXRecordDecl();
108 assert(RD && "specialization of class template is not a class?")(static_cast <bool> (RD && "specialization of class template is not a class?"
) ? void (0) : __assert_fail ("RD && \"specialization of class template is not a class?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 108, __extension__ __PRETTY_FUNCTION__))
;
109
110 // Look up the ::promise_type member.
111 LookupResult R(S, &S.PP.getIdentifierTable().get("promise_type"), KwLoc,
112 Sema::LookupOrdinaryName);
113 S.LookupQualifiedName(R, RD);
114 auto *Promise = R.getAsSingle<TypeDecl>();
115 if (!Promise) {
116 S.Diag(FuncLoc,
117 diag::err_implied_std_coroutine_traits_promise_type_not_found)
118 << RD;
119 return QualType();
120 }
121 // The promise type is required to be a class type.
122 QualType PromiseType = S.Context.getTypeDeclType(Promise);
123
124 auto buildElaboratedType = [&]() {
125 auto *NNS = NestedNameSpecifier::Create(S.Context, nullptr, StdExp);
126 NNS = NestedNameSpecifier::Create(S.Context, NNS, false,
127 CoroTrait.getTypePtr());
128 return S.Context.getElaboratedType(ETK_None, NNS, PromiseType);
129 };
130
131 if (!PromiseType->getAsCXXRecordDecl()) {
132 S.Diag(FuncLoc,
133 diag::err_implied_std_coroutine_traits_promise_type_not_class)
134 << buildElaboratedType();
135 return QualType();
136 }
137 if (S.RequireCompleteType(FuncLoc, buildElaboratedType(),
138 diag::err_coroutine_promise_type_incomplete))
139 return QualType();
140
141 return PromiseType;
142}
143
144/// Look up the std::experimental::coroutine_handle<PromiseType>.
145static QualType lookupCoroutineHandleType(Sema &S, QualType PromiseType,
146 SourceLocation Loc) {
147 if (PromiseType.isNull())
148 return QualType();
149
150 NamespaceDecl *StdExp = S.lookupStdExperimentalNamespace();
151 assert(StdExp && "Should already be diagnosed")(static_cast <bool> (StdExp && "Should already be diagnosed"
) ? void (0) : __assert_fail ("StdExp && \"Should already be diagnosed\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 151, __extension__ __PRETTY_FUNCTION__))
;
152
153 LookupResult Result(S, &S.PP.getIdentifierTable().get("coroutine_handle"),
154 Loc, Sema::LookupOrdinaryName);
155 if (!S.LookupQualifiedName(Result, StdExp)) {
156 S.Diag(Loc, diag::err_implied_coroutine_type_not_found)
157 << "std::experimental::coroutine_handle";
158 return QualType();
159 }
160
161 ClassTemplateDecl *CoroHandle = Result.getAsSingle<ClassTemplateDecl>();
162 if (!CoroHandle) {
163 Result.suppressDiagnostics();
164 // We found something weird. Complain about the first thing we found.
165 NamedDecl *Found = *Result.begin();
166 S.Diag(Found->getLocation(), diag::err_malformed_std_coroutine_handle);
167 return QualType();
168 }
169
170 // Form template argument list for coroutine_handle<Promise>.
171 TemplateArgumentListInfo Args(Loc, Loc);
172 Args.addArgument(TemplateArgumentLoc(
173 TemplateArgument(PromiseType),
174 S.Context.getTrivialTypeSourceInfo(PromiseType, Loc)));
175
176 // Build the template-id.
177 QualType CoroHandleType =
178 S.CheckTemplateIdType(TemplateName(CoroHandle), Loc, Args);
179 if (CoroHandleType.isNull())
180 return QualType();
181 if (S.RequireCompleteType(Loc, CoroHandleType,
182 diag::err_coroutine_type_missing_specialization))
183 return QualType();
184
185 return CoroHandleType;
186}
187
188static bool isValidCoroutineContext(Sema &S, SourceLocation Loc,
189 StringRef Keyword) {
190 // [expr.await]p2 dictates that 'co_await' and 'co_yield' must be used within
191 // a function body.
192 // FIXME: This also covers [expr.await]p2: "An await-expression shall not
193 // appear in a default argument." But the diagnostic QoI here could be
194 // improved to inform the user that default arguments specifically are not
195 // allowed.
196 auto *FD = dyn_cast<FunctionDecl>(S.CurContext);
9
Assuming field 'CurContext' is a 'FunctionDecl'
197 if (!FD
9.1
'FD' is non-null
9.1
'FD' is non-null
9.1
'FD' is non-null
9.1
'FD' is non-null
) {
10
Taking false branch
198 S.Diag(Loc, isa<ObjCMethodDecl>(S.CurContext)
199 ? diag::err_coroutine_objc_method
200 : diag::err_coroutine_outside_function) << Keyword;
201 return false;
202 }
203
204 // An enumeration for mapping the diagnostic type to the correct diagnostic
205 // selection index.
206 enum InvalidFuncDiag {
207 DiagCtor = 0,
208 DiagDtor,
209 DiagMain,
210 DiagConstexpr,
211 DiagAutoRet,
212 DiagVarargs,
213 DiagConsteval,
214 };
215 bool Diagnosed = false;
216 auto DiagInvalid = [&](InvalidFuncDiag ID) {
217 S.Diag(Loc, diag::err_coroutine_invalid_func_context) << ID << Keyword;
218 Diagnosed = true;
219 return false;
220 };
221
222 // Diagnose when a constructor, destructor
223 // or the function 'main' are declared as a coroutine.
224 auto *MD = dyn_cast<CXXMethodDecl>(FD);
11
Assuming 'FD' is not a 'CXXMethodDecl'
225 // [class.ctor]p11: "A constructor shall not be a coroutine."
226 if (MD
11.1
'MD' is null
11.1
'MD' is null
11.1
'MD' is null
11.1
'MD' is null
&& isa<CXXConstructorDecl>(MD))
227 return DiagInvalid(DiagCtor);
228 // [class.dtor]p17: "A destructor shall not be a coroutine."
229 else if (MD
11.2
'MD' is null
11.2
'MD' is null
11.2
'MD' is null
11.2
'MD' is null
&& isa<CXXDestructorDecl>(MD))
230 return DiagInvalid(DiagDtor);
231 // [basic.start.main]p3: "The function main shall not be a coroutine."
232 else if (FD->isMain())
12
Assuming the condition is false
13
Taking false branch
233 return DiagInvalid(DiagMain);
234
235 // Emit a diagnostics for each of the following conditions which is not met.
236 // [expr.const]p2: "An expression e is a core constant expression unless the
237 // evaluation of e [...] would evaluate one of the following expressions:
238 // [...] an await-expression [...] a yield-expression."
239 if (FD->isConstexpr())
14
Taking false branch
240 DiagInvalid(FD->isConsteval() ? DiagConsteval : DiagConstexpr);
241 // [dcl.spec.auto]p15: "A function declared with a return type that uses a
242 // placeholder type shall not be a coroutine."
243 if (FD->getReturnType()->isUndeducedType())
15
Taking false branch
244 DiagInvalid(DiagAutoRet);
245 // [dcl.fct.def.coroutine]p1: "The parameter-declaration-clause of the
246 // coroutine shall not terminate with an ellipsis that is not part of a
247 // parameter-declaration."
248 if (FD->isVariadic())
16
Assuming the condition is false
17
Taking false branch
249 DiagInvalid(DiagVarargs);
250
251 return !Diagnosed;
18
Returning the value 1, which participates in a condition later
252}
253
254static ExprResult buildOperatorCoawaitLookupExpr(Sema &SemaRef, Scope *S,
255 SourceLocation Loc) {
256 DeclarationName OpName =
257 SemaRef.Context.DeclarationNames.getCXXOperatorName(OO_Coawait);
258 LookupResult Operators(SemaRef, OpName, SourceLocation(),
259 Sema::LookupOperatorName);
260 SemaRef.LookupName(Operators, S);
261
262 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous")(static_cast <bool> (!Operators.isAmbiguous() &&
"Operator lookup cannot be ambiguous") ? void (0) : __assert_fail
("!Operators.isAmbiguous() && \"Operator lookup cannot be ambiguous\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 262, __extension__ __PRETTY_FUNCTION__))
;
263 const auto &Functions = Operators.asUnresolvedSet();
264 bool IsOverloaded =
265 Functions.size() > 1 ||
266 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
267 Expr *CoawaitOp = UnresolvedLookupExpr::Create(
268 SemaRef.Context, /*NamingClass*/ nullptr, NestedNameSpecifierLoc(),
269 DeclarationNameInfo(OpName, Loc), /*RequiresADL*/ true, IsOverloaded,
270 Functions.begin(), Functions.end());
271 assert(CoawaitOp)(static_cast <bool> (CoawaitOp) ? void (0) : __assert_fail
("CoawaitOp", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 271, __extension__ __PRETTY_FUNCTION__))
;
272 return CoawaitOp;
273}
274
275/// Build a call to 'operator co_await' if there is a suitable operator for
276/// the given expression.
277static ExprResult buildOperatorCoawaitCall(Sema &SemaRef, SourceLocation Loc,
278 Expr *E,
279 UnresolvedLookupExpr *Lookup) {
280 UnresolvedSet<16> Functions;
281 Functions.append(Lookup->decls_begin(), Lookup->decls_end());
282 return SemaRef.CreateOverloadedUnaryOp(Loc, UO_Coawait, Functions, E);
283}
284
285static ExprResult buildOperatorCoawaitCall(Sema &SemaRef, Scope *S,
286 SourceLocation Loc, Expr *E) {
287 ExprResult R = buildOperatorCoawaitLookupExpr(SemaRef, S, Loc);
288 if (R.isInvalid())
289 return ExprError();
290 return buildOperatorCoawaitCall(SemaRef, Loc, E,
291 cast<UnresolvedLookupExpr>(R.get()));
292}
293
294static ExprResult buildCoroutineHandle(Sema &S, QualType PromiseType,
295 SourceLocation Loc) {
296 QualType CoroHandleType = lookupCoroutineHandleType(S, PromiseType, Loc);
297 if (CoroHandleType.isNull())
298 return ExprError();
299
300 DeclContext *LookupCtx = S.computeDeclContext(CoroHandleType);
301 LookupResult Found(S, &S.PP.getIdentifierTable().get("from_address"), Loc,
302 Sema::LookupOrdinaryName);
303 if (!S.LookupQualifiedName(Found, LookupCtx)) {
304 S.Diag(Loc, diag::err_coroutine_handle_missing_member)
305 << "from_address";
306 return ExprError();
307 }
308
309 Expr *FramePtr =
310 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {});
311
312 CXXScopeSpec SS;
313 ExprResult FromAddr =
314 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false);
315 if (FromAddr.isInvalid())
316 return ExprError();
317
318 return S.BuildCallExpr(nullptr, FromAddr.get(), Loc, FramePtr, Loc);
319}
320
321struct ReadySuspendResumeResult {
322 enum AwaitCallType { ACT_Ready, ACT_Suspend, ACT_Resume };
323 Expr *Results[3];
324 OpaqueValueExpr *OpaqueValue;
325 bool IsInvalid;
326};
327
328static ExprResult buildMemberCall(Sema &S, Expr *Base, SourceLocation Loc,
329 StringRef Name, MultiExprArg Args) {
330 DeclarationNameInfo NameInfo(&S.PP.getIdentifierTable().get(Name), Loc);
331
332 // FIXME: Fix BuildMemberReferenceExpr to take a const CXXScopeSpec&.
333 CXXScopeSpec SS;
334 ExprResult Result = S.BuildMemberReferenceExpr(
335 Base, Base->getType(), Loc, /*IsPtr=*/false, SS,
336 SourceLocation(), nullptr, NameInfo, /*TemplateArgs=*/nullptr,
337 /*Scope=*/nullptr);
338 if (Result.isInvalid())
339 return ExprError();
340
341 // We meant exactly what we asked for. No need for typo correction.
342 if (auto *TE = dyn_cast<TypoExpr>(Result.get())) {
343 S.clearDelayedTypo(TE);
344 S.Diag(Loc, diag::err_no_member)
345 << NameInfo.getName() << Base->getType()->getAsCXXRecordDecl()
346 << Base->getSourceRange();
347 return ExprError();
348 }
349
350 return S.BuildCallExpr(nullptr, Result.get(), Loc, Args, Loc, nullptr);
351}
352
353// See if return type is coroutine-handle and if so, invoke builtin coro-resume
354// on its address. This is to enable experimental support for coroutine-handle
355// returning await_suspend that results in a guaranteed tail call to the target
356// coroutine.
357static Expr *maybeTailCall(Sema &S, QualType RetType, Expr *E,
358 SourceLocation Loc) {
359 if (RetType->isReferenceType())
360 return nullptr;
361 Type const *T = RetType.getTypePtr();
362 if (!T->isClassType() && !T->isStructureType())
363 return nullptr;
364
365 // FIXME: Add convertability check to coroutine_handle<>. Possibly via
366 // EvaluateBinaryTypeTrait(BTT_IsConvertible, ...) which is at the moment
367 // a private function in SemaExprCXX.cpp
368
369 ExprResult AddressExpr = buildMemberCall(S, E, Loc, "address", None);
370 if (AddressExpr.isInvalid())
371 return nullptr;
372
373 Expr *JustAddress = AddressExpr.get();
374
375 // Check that the type of AddressExpr is void*
376 if (!JustAddress->getType().getTypePtr()->isVoidPointerType())
377 S.Diag(cast<CallExpr>(JustAddress)->getCalleeDecl()->getLocation(),
378 diag::warn_coroutine_handle_address_invalid_return_type)
379 << JustAddress->getType();
380
381 // Clean up temporary objects so that they don't live across suspension points
382 // unnecessarily. We choose to clean up before the call to
383 // __builtin_coro_resume so that the cleanup code are not inserted in-between
384 // the resume call and return instruction, which would interfere with the
385 // musttail call contract.
386 JustAddress = S.MaybeCreateExprWithCleanups(JustAddress);
387 return S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_resume,
388 JustAddress);
389}
390
391/// Build calls to await_ready, await_suspend, and await_resume for a co_await
392/// expression.
393/// The generated AST tries to clean up temporary objects as early as
394/// possible so that they don't live across suspension points if possible.
395/// Having temporary objects living across suspension points unnecessarily can
396/// lead to large frame size, and also lead to memory corruptions if the
397/// coroutine frame is destroyed after coming back from suspension. This is done
398/// by wrapping both the await_ready call and the await_suspend call with
399/// ExprWithCleanups. In the end of this function, we also need to explicitly
400/// set cleanup state so that the CoawaitExpr is also wrapped with an
401/// ExprWithCleanups to clean up the awaiter associated with the co_await
402/// expression.
403static ReadySuspendResumeResult buildCoawaitCalls(Sema &S, VarDecl *CoroPromise,
404 SourceLocation Loc, Expr *E) {
405 OpaqueValueExpr *Operand = new (S.Context)
406 OpaqueValueExpr(Loc, E->getType(), VK_LValue, E->getObjectKind(), E);
407
408 // Assume valid until we see otherwise.
409 // Further operations are responsible for setting IsInalid to true.
410 ReadySuspendResumeResult Calls = {{}, Operand, /*IsInvalid=*/false};
411
412 using ACT = ReadySuspendResumeResult::AwaitCallType;
413
414 auto BuildSubExpr = [&](ACT CallType, StringRef Func,
415 MultiExprArg Arg) -> Expr * {
416 ExprResult Result = buildMemberCall(S, Operand, Loc, Func, Arg);
417 if (Result.isInvalid()) {
418 Calls.IsInvalid = true;
419 return nullptr;
420 }
421 Calls.Results[CallType] = Result.get();
422 return Result.get();
423 };
424
425 CallExpr *AwaitReady =
426 cast_or_null<CallExpr>(BuildSubExpr(ACT::ACT_Ready, "await_ready", None));
56
Assuming null pointer is passed into cast
427 if (!AwaitReady
56.1
'AwaitReady' is null
56.1
'AwaitReady' is null
56.1
'AwaitReady' is null
56.1
'AwaitReady' is null
)
57
Taking true branch
428 return Calls;
58
The value 0 is assigned to 'RSS.IsInvalid', which participates in a condition later
59
Storing null pointer value
429 if (!AwaitReady->getType()->isDependentType()) {
430 // [expr.await]p3 [...]
431 // — await-ready is the expression e.await_ready(), contextually converted
432 // to bool.
433 ExprResult Conv = S.PerformContextuallyConvertToBool(AwaitReady);
434 if (Conv.isInvalid()) {
435 S.Diag(AwaitReady->getDirectCallee()->getBeginLoc(),
436 diag::note_await_ready_no_bool_conversion);
437 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
438 << AwaitReady->getDirectCallee() << E->getSourceRange();
439 Calls.IsInvalid = true;
440 } else
441 Calls.Results[ACT::ACT_Ready] = S.MaybeCreateExprWithCleanups(Conv.get());
442 }
443
444 ExprResult CoroHandleRes =
445 buildCoroutineHandle(S, CoroPromise->getType(), Loc);
446 if (CoroHandleRes.isInvalid()) {
447 Calls.IsInvalid = true;
448 return Calls;
449 }
450 Expr *CoroHandle = CoroHandleRes.get();
451 CallExpr *AwaitSuspend = cast_or_null<CallExpr>(
452 BuildSubExpr(ACT::ACT_Suspend, "await_suspend", CoroHandle));
453 if (!AwaitSuspend)
454 return Calls;
455 if (!AwaitSuspend->getType()->isDependentType()) {
456 // [expr.await]p3 [...]
457 // - await-suspend is the expression e.await_suspend(h), which shall be
458 // a prvalue of type void, bool, or std::coroutine_handle<Z> for some
459 // type Z.
460 QualType RetType = AwaitSuspend->getCallReturnType(S.Context);
461
462 // Experimental support for coroutine_handle returning await_suspend.
463 if (Expr *TailCallSuspend =
464 maybeTailCall(S, RetType, AwaitSuspend, Loc))
465 // Note that we don't wrap the expression with ExprWithCleanups here
466 // because that might interfere with tailcall contract (e.g. inserting
467 // clean up instructions in-between tailcall and return). Instead
468 // ExprWithCleanups is wrapped within maybeTailCall() prior to the resume
469 // call.
470 Calls.Results[ACT::ACT_Suspend] = TailCallSuspend;
471 else {
472 // non-class prvalues always have cv-unqualified types
473 if (RetType->isReferenceType() ||
474 (!RetType->isBooleanType() && !RetType->isVoidType())) {
475 S.Diag(AwaitSuspend->getCalleeDecl()->getLocation(),
476 diag::err_await_suspend_invalid_return_type)
477 << RetType;
478 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
479 << AwaitSuspend->getDirectCallee();
480 Calls.IsInvalid = true;
481 } else
482 Calls.Results[ACT::ACT_Suspend] =
483 S.MaybeCreateExprWithCleanups(AwaitSuspend);
484 }
485 }
486
487 BuildSubExpr(ACT::ACT_Resume, "await_resume", None);
488
489 // Make sure the awaiter object gets a chance to be cleaned up.
490 S.Cleanup.setExprNeedsCleanups(true);
491
492 return Calls;
493}
494
495static ExprResult buildPromiseCall(Sema &S, VarDecl *Promise,
496 SourceLocation Loc, StringRef Name,
497 MultiExprArg Args) {
498
499 // Form a reference to the promise.
500 ExprResult PromiseRef = S.BuildDeclRefExpr(
501 Promise, Promise->getType().getNonReferenceType(), VK_LValue, Loc);
502 if (PromiseRef.isInvalid())
503 return ExprError();
504
505 return buildMemberCall(S, PromiseRef.get(), Loc, Name, Args);
506}
507
508VarDecl *Sema::buildCoroutinePromise(SourceLocation Loc) {
509 assert(isa<FunctionDecl>(CurContext) && "not in a function scope")(static_cast <bool> (isa<FunctionDecl>(CurContext
) && "not in a function scope") ? void (0) : __assert_fail
("isa<FunctionDecl>(CurContext) && \"not in a function scope\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 509, __extension__ __PRETTY_FUNCTION__))
;
510 auto *FD = cast<FunctionDecl>(CurContext);
511 bool IsThisDependentType = [&] {
512 if (auto *MD = dyn_cast_or_null<CXXMethodDecl>(FD))
513 return MD->isInstance() && MD->getThisType()->isDependentType();
514 else
515 return false;
516 }();
517
518 QualType T = FD->getType()->isDependentType() || IsThisDependentType
519 ? Context.DependentTy
520 : lookupPromiseType(*this, FD, Loc);
521 if (T.isNull())
522 return nullptr;
523
524 auto *VD = VarDecl::Create(Context, FD, FD->getLocation(), FD->getLocation(),
525 &PP.getIdentifierTable().get("__promise"), T,
526 Context.getTrivialTypeSourceInfo(T, Loc), SC_None);
527 VD->setImplicit();
528 CheckVariableDeclarationType(VD);
529 if (VD->isInvalidDecl())
530 return nullptr;
531
532 auto *ScopeInfo = getCurFunction();
533
534 // Build a list of arguments, based on the coroutine function's arguments,
535 // that if present will be passed to the promise type's constructor.
536 llvm::SmallVector<Expr *, 4> CtorArgExprs;
537
538 // Add implicit object parameter.
539 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
540 if (MD->isInstance() && !isLambdaCallOperator(MD)) {
541 ExprResult ThisExpr = ActOnCXXThis(Loc);
542 if (ThisExpr.isInvalid())
543 return nullptr;
544 ThisExpr = CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get());
545 if (ThisExpr.isInvalid())
546 return nullptr;
547 CtorArgExprs.push_back(ThisExpr.get());
548 }
549 }
550
551 // Add the coroutine function's parameters.
552 auto &Moves = ScopeInfo->CoroutineParameterMoves;
553 for (auto *PD : FD->parameters()) {
554 if (PD->getType()->isDependentType())
555 continue;
556
557 auto RefExpr = ExprEmpty();
558 auto Move = Moves.find(PD);
559 assert(Move != Moves.end() &&(static_cast <bool> (Move != Moves.end() && "Coroutine function parameter not inserted into move map"
) ? void (0) : __assert_fail ("Move != Moves.end() && \"Coroutine function parameter not inserted into move map\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 560, __extension__ __PRETTY_FUNCTION__))
560 "Coroutine function parameter not inserted into move map")(static_cast <bool> (Move != Moves.end() && "Coroutine function parameter not inserted into move map"
) ? void (0) : __assert_fail ("Move != Moves.end() && \"Coroutine function parameter not inserted into move map\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 560, __extension__ __PRETTY_FUNCTION__))
;
561 // If a reference to the function parameter exists in the coroutine
562 // frame, use that reference.
563 auto *MoveDecl =
564 cast<VarDecl>(cast<DeclStmt>(Move->second)->getSingleDecl());
565 RefExpr =
566 BuildDeclRefExpr(MoveDecl, MoveDecl->getType().getNonReferenceType(),
567 ExprValueKind::VK_LValue, FD->getLocation());
568 if (RefExpr.isInvalid())
569 return nullptr;
570 CtorArgExprs.push_back(RefExpr.get());
571 }
572
573 // If we have a non-zero number of constructor arguments, try to use them.
574 // Otherwise, fall back to the promise type's default constructor.
575 if (!CtorArgExprs.empty()) {
576 // Create an initialization sequence for the promise type using the
577 // constructor arguments, wrapped in a parenthesized list expression.
578 Expr *PLE = ParenListExpr::Create(Context, FD->getLocation(),
579 CtorArgExprs, FD->getLocation());
580 InitializedEntity Entity = InitializedEntity::InitializeVariable(VD);
581 InitializationKind Kind = InitializationKind::CreateForInit(
582 VD->getLocation(), /*DirectInit=*/true, PLE);
583 InitializationSequence InitSeq(*this, Entity, Kind, CtorArgExprs,
584 /*TopLevelOfInitList=*/false,
585 /*TreatUnavailableAsInvalid=*/false);
586
587 // Attempt to initialize the promise type with the arguments.
588 // If that fails, fall back to the promise type's default constructor.
589 if (InitSeq) {
590 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, CtorArgExprs);
591 if (Result.isInvalid()) {
592 VD->setInvalidDecl();
593 } else if (Result.get()) {
594 VD->setInit(MaybeCreateExprWithCleanups(Result.get()));
595 VD->setInitStyle(VarDecl::CallInit);
596 CheckCompleteVariableDeclaration(VD);
597 }
598 } else
599 ActOnUninitializedDecl(VD);
600 } else
601 ActOnUninitializedDecl(VD);
602
603 FD->addDecl(VD);
604 return VD;
605}
606
607/// Check that this is a context in which a coroutine suspension can appear.
608static FunctionScopeInfo *checkCoroutineContext(Sema &S, SourceLocation Loc,
609 StringRef Keyword,
610 bool IsImplicit = false) {
611 if (!isValidCoroutineContext(S, Loc, Keyword))
8
Calling 'isValidCoroutineContext'
19
Returning from 'isValidCoroutineContext'
612 return nullptr;
613
614 assert(isa<FunctionDecl>(S.CurContext) && "not in a function scope")(static_cast <bool> (isa<FunctionDecl>(S.CurContext
) && "not in a function scope") ? void (0) : __assert_fail
("isa<FunctionDecl>(S.CurContext) && \"not in a function scope\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 614, __extension__ __PRETTY_FUNCTION__))
;
20
Taking false branch
21
Field 'CurContext' is a 'FunctionDecl'
22
'?' condition is true
615
616 auto *ScopeInfo = S.getCurFunction();
23
Calling 'Sema::getCurFunction'
26
Returning from 'Sema::getCurFunction'
617 assert(ScopeInfo && "missing function scope for function")(static_cast <bool> (ScopeInfo && "missing function scope for function"
) ? void (0) : __assert_fail ("ScopeInfo && \"missing function scope for function\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 617, __extension__ __PRETTY_FUNCTION__))
;
27
Assuming 'ScopeInfo' is non-null
28
'?' condition is true
618
619 if (ScopeInfo->FirstCoroutineStmtLoc.isInvalid() && !IsImplicit)
620 ScopeInfo->setFirstCoroutineStmt(Loc, Keyword);
621
622 if (ScopeInfo->CoroutinePromise)
29
Assuming field 'CoroutinePromise' is null
30
Taking false branch
623 return ScopeInfo;
624
625 if (!S.buildCoroutineParameterMoves(Loc))
31
Calling 'Sema::buildCoroutineParameterMoves'
39
Returning from 'Sema::buildCoroutineParameterMoves'
40
Taking false branch
626 return nullptr;
627
628 ScopeInfo->CoroutinePromise = S.buildCoroutinePromise(Loc);
629 if (!ScopeInfo->CoroutinePromise)
41
Assuming field 'CoroutinePromise' is non-null
42
Taking false branch
630 return nullptr;
631
632 return ScopeInfo;
43
Returning pointer (loaded from 'ScopeInfo'), which participates in a condition later
633}
634
635/// Recursively check \p E and all its children to see if any call target
636/// (including constructor call) is declared noexcept. Also any value returned
637/// from the call has a noexcept destructor.
638static void checkNoThrow(Sema &S, const Stmt *E,
639 llvm::SmallPtrSetImpl<const Decl *> &ThrowingDecls) {
640 auto checkDeclNoexcept = [&](const Decl *D, bool IsDtor = false) {
641 // In the case of dtor, the call to dtor is implicit and hence we should
642 // pass nullptr to canCalleeThrow.
643 if (Sema::canCalleeThrow(S, IsDtor ? nullptr : cast<Expr>(E), D)) {
644 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
645 // co_await promise.final_suspend() could end up calling
646 // __builtin_coro_resume for symmetric transfer if await_suspend()
647 // returns a handle. In that case, even __builtin_coro_resume is not
648 // declared as noexcept and may throw, it does not throw _into_ the
649 // coroutine that just suspended, but rather throws back out from
650 // whoever called coroutine_handle::resume(), hence we claim that
651 // logically it does not throw.
652 if (FD->getBuiltinID() == Builtin::BI__builtin_coro_resume)
653 return;
654 }
655 if (ThrowingDecls.empty()) {
656 // First time seeing an error, emit the error message.
657 S.Diag(cast<FunctionDecl>(S.CurContext)->getLocation(),
658 diag::err_coroutine_promise_final_suspend_requires_nothrow);
659 }
660 ThrowingDecls.insert(D);
661 }
662 };
663 auto SC = E->getStmtClass();
664 if (SC == Expr::CXXConstructExprClass) {
665 auto const *Ctor = cast<CXXConstructExpr>(E)->getConstructor();
666 checkDeclNoexcept(Ctor);
667 // Check the corresponding destructor of the constructor.
668 checkDeclNoexcept(Ctor->getParent()->getDestructor(), true);
669 } else if (SC == Expr::CallExprClass || SC == Expr::CXXMemberCallExprClass ||
670 SC == Expr::CXXOperatorCallExprClass) {
671 if (!cast<CallExpr>(E)->isTypeDependent()) {
672 checkDeclNoexcept(cast<CallExpr>(E)->getCalleeDecl());
673 auto ReturnType = cast<CallExpr>(E)->getCallReturnType(S.getASTContext());
674 // Check the destructor of the call return type, if any.
675 if (ReturnType.isDestructedType() ==
676 QualType::DestructionKind::DK_cxx_destructor) {
677 const auto *T =
678 cast<RecordType>(ReturnType.getCanonicalType().getTypePtr());
679 checkDeclNoexcept(
680 dyn_cast<CXXRecordDecl>(T->getDecl())->getDestructor(), true);
681 }
682 }
683 }
684 for (const auto *Child : E->children()) {
685 if (!Child)
686 continue;
687 checkNoThrow(S, Child, ThrowingDecls);
688 }
689}
690
691bool Sema::checkFinalSuspendNoThrow(const Stmt *FinalSuspend) {
692 llvm::SmallPtrSet<const Decl *, 4> ThrowingDecls;
693 // We first collect all declarations that should not throw but not declared
694 // with noexcept. We then sort them based on the location before printing.
695 // This is to avoid emitting the same note multiple times on the same
696 // declaration, and also provide a deterministic order for the messages.
697 checkNoThrow(*this, FinalSuspend, ThrowingDecls);
698 auto SortedDecls = llvm::SmallVector<const Decl *, 4>{ThrowingDecls.begin(),
699 ThrowingDecls.end()};
700 sort(SortedDecls, [](const Decl *A, const Decl *B) {
701 return A->getEndLoc() < B->getEndLoc();
702 });
703 for (const auto *D : SortedDecls) {
704 Diag(D->getEndLoc(), diag::note_coroutine_function_declare_noexcept);
705 }
706 return ThrowingDecls.empty();
707}
708
709bool Sema::ActOnCoroutineBodyStart(Scope *SC, SourceLocation KWLoc,
710 StringRef Keyword) {
711 if (!checkCoroutineContext(*this, KWLoc, Keyword))
712 return false;
713 auto *ScopeInfo = getCurFunction();
714 assert(ScopeInfo->CoroutinePromise)(static_cast <bool> (ScopeInfo->CoroutinePromise) ? void
(0) : __assert_fail ("ScopeInfo->CoroutinePromise", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 714, __extension__ __PRETTY_FUNCTION__))
;
715
716 // If we have existing coroutine statements then we have already built
717 // the initial and final suspend points.
718 if (!ScopeInfo->NeedsCoroutineSuspends)
719 return true;
720
721 ScopeInfo->setNeedsCoroutineSuspends(false);
722
723 auto *Fn = cast<FunctionDecl>(CurContext);
724 SourceLocation Loc = Fn->getLocation();
725 // Build the initial suspend point
726 auto buildSuspends = [&](StringRef Name) mutable -> StmtResult {
727 ExprResult Suspend =
728 buildPromiseCall(*this, ScopeInfo->CoroutinePromise, Loc, Name, None);
729 if (Suspend.isInvalid())
730 return StmtError();
731 Suspend = buildOperatorCoawaitCall(*this, SC, Loc, Suspend.get());
732 if (Suspend.isInvalid())
733 return StmtError();
734 Suspend = BuildResolvedCoawaitExpr(Loc, Suspend.get(),
735 /*IsImplicit*/ true);
736 Suspend = ActOnFinishFullExpr(Suspend.get(), /*DiscardedValue*/ false);
737 if (Suspend.isInvalid()) {
738 Diag(Loc, diag::note_coroutine_promise_suspend_implicitly_required)
739 << ((Name == "initial_suspend") ? 0 : 1);
740 Diag(KWLoc, diag::note_declared_coroutine_here) << Keyword;
741 return StmtError();
742 }
743 return cast<Stmt>(Suspend.get());
744 };
745
746 StmtResult InitSuspend = buildSuspends("initial_suspend");
747 if (InitSuspend.isInvalid())
748 return true;
749
750 StmtResult FinalSuspend = buildSuspends("final_suspend");
751 if (FinalSuspend.isInvalid() || !checkFinalSuspendNoThrow(FinalSuspend.get()))
752 return true;
753
754 ScopeInfo->setCoroutineSuspends(InitSuspend.get(), FinalSuspend.get());
755
756 return true;
757}
758
759// Recursively walks up the scope hierarchy until either a 'catch' or a function
760// scope is found, whichever comes first.
761static bool isWithinCatchScope(Scope *S) {
762 // 'co_await' and 'co_yield' keywords are disallowed within catch blocks, but
763 // lambdas that use 'co_await' are allowed. The loop below ends when a
764 // function scope is found in order to ensure the following behavior:
765 //
766 // void foo() { // <- function scope
767 // try { //
768 // co_await x; // <- 'co_await' is OK within a function scope
769 // } catch { // <- catch scope
770 // co_await x; // <- 'co_await' is not OK within a catch scope
771 // []() { // <- function scope
772 // co_await x; // <- 'co_await' is OK within a function scope
773 // }();
774 // }
775 // }
776 while (S && !(S->getFlags() & Scope::FnScope)) {
777 if (S->getFlags() & Scope::CatchScope)
778 return true;
779 S = S->getParent();
780 }
781 return false;
782}
783
784// [expr.await]p2, emphasis added: "An await-expression shall appear only in
785// a *potentially evaluated* expression within the compound-statement of a
786// function-body *outside of a handler* [...] A context within a function
787// where an await-expression can appear is called a suspension context of the
788// function."
789static void checkSuspensionContext(Sema &S, SourceLocation Loc,
790 StringRef Keyword) {
791 // First emphasis of [expr.await]p2: must be a potentially evaluated context.
792 // That is, 'co_await' and 'co_yield' cannot appear in subexpressions of
793 // \c sizeof.
794 if (S.isUnevaluatedContext())
795 S.Diag(Loc, diag::err_coroutine_unevaluated_context) << Keyword;
796
797 // Second emphasis of [expr.await]p2: must be outside of an exception handler.
798 if (isWithinCatchScope(S.getCurScope()))
799 S.Diag(Loc, diag::err_coroutine_within_handler) << Keyword;
800}
801
802ExprResult Sema::ActOnCoawaitExpr(Scope *S, SourceLocation Loc, Expr *E) {
803 if (!ActOnCoroutineBodyStart(S, Loc, "co_await")) {
804 CorrectDelayedTyposInExpr(E);
805 return ExprError();
806 }
807
808 checkSuspensionContext(*this, Loc, "co_await");
809
810 if (E->getType()->isPlaceholderType()) {
811 ExprResult R = CheckPlaceholderExpr(E);
812 if (R.isInvalid()) return ExprError();
813 E = R.get();
814 }
815 ExprResult Lookup = buildOperatorCoawaitLookupExpr(*this, S, Loc);
816 if (Lookup.isInvalid())
817 return ExprError();
818 return BuildUnresolvedCoawaitExpr(Loc, E,
819 cast<UnresolvedLookupExpr>(Lookup.get()));
820}
821
822ExprResult Sema::BuildUnresolvedCoawaitExpr(SourceLocation Loc, Expr *E,
823 UnresolvedLookupExpr *Lookup) {
824 auto *FSI = checkCoroutineContext(*this, Loc, "co_await");
825 if (!FSI)
826 return ExprError();
827
828 if (E->getType()->isPlaceholderType()) {
829 ExprResult R = CheckPlaceholderExpr(E);
830 if (R.isInvalid())
831 return ExprError();
832 E = R.get();
833 }
834
835 auto *Promise = FSI->CoroutinePromise;
836 if (Promise->getType()->isDependentType()) {
837 Expr *Res =
838 new (Context) DependentCoawaitExpr(Loc, Context.DependentTy, E, Lookup);
839 return Res;
840 }
841
842 auto *RD = Promise->getType()->getAsCXXRecordDecl();
843 if (lookupMember(*this, "await_transform", RD, Loc)) {
844 ExprResult R = buildPromiseCall(*this, Promise, Loc, "await_transform", E);
845 if (R.isInvalid()) {
846 Diag(Loc,
847 diag::note_coroutine_promise_implicit_await_transform_required_here)
848 << E->getSourceRange();
849 return ExprError();
850 }
851 E = R.get();
852 }
853 ExprResult Awaitable = buildOperatorCoawaitCall(*this, Loc, E, Lookup);
854 if (Awaitable.isInvalid())
855 return ExprError();
856
857 return BuildResolvedCoawaitExpr(Loc, Awaitable.get());
858}
859
860ExprResult Sema::BuildResolvedCoawaitExpr(SourceLocation Loc, Expr *E,
861 bool IsImplicit) {
862 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_await", IsImplicit);
863 if (!Coroutine)
864 return ExprError();
865
866 if (E->getType()->isPlaceholderType()) {
867 ExprResult R = CheckPlaceholderExpr(E);
868 if (R.isInvalid()) return ExprError();
869 E = R.get();
870 }
871
872 if (E->getType()->isDependentType()) {
873 Expr *Res = new (Context)
874 CoawaitExpr(Loc, Context.DependentTy, E, IsImplicit);
875 return Res;
876 }
877
878 // If the expression is a temporary, materialize it as an lvalue so that we
879 // can use it multiple times.
880 if (E->isPRValue())
881 E = CreateMaterializeTemporaryExpr(E->getType(), E, true);
882
883 // The location of the `co_await` token cannot be used when constructing
884 // the member call expressions since it's before the location of `Expr`, which
885 // is used as the start of the member call expression.
886 SourceLocation CallLoc = E->getExprLoc();
887
888 // Build the await_ready, await_suspend, await_resume calls.
889 ReadySuspendResumeResult RSS = buildCoawaitCalls(
890 *this, Coroutine->CoroutinePromise, CallLoc, E);
891 if (RSS.IsInvalid)
892 return ExprError();
893
894 Expr *Res =
895 new (Context) CoawaitExpr(Loc, E, RSS.Results[0], RSS.Results[1],
896 RSS.Results[2], RSS.OpaqueValue, IsImplicit);
897
898 return Res;
899}
900
901ExprResult Sema::ActOnCoyieldExpr(Scope *S, SourceLocation Loc, Expr *E) {
902 if (!ActOnCoroutineBodyStart(S, Loc, "co_yield")) {
1
Taking false branch
903 CorrectDelayedTyposInExpr(E);
904 return ExprError();
905 }
906
907 checkSuspensionContext(*this, Loc, "co_yield");
908
909 // Build yield_value call.
910 ExprResult Awaitable = buildPromiseCall(
911 *this, getCurFunction()->CoroutinePromise, Loc, "yield_value", E);
912 if (Awaitable.isInvalid())
2
Assuming the condition is false
3
Taking false branch
913 return ExprError();
914
915 // Build 'operator co_await' call.
916 Awaitable = buildOperatorCoawaitCall(*this, S, Loc, Awaitable.get());
917 if (Awaitable.isInvalid())
4
Assuming the condition is false
5
Taking false branch
918 return ExprError();
919
920 return BuildCoyieldExpr(Loc, Awaitable.get());
6
Calling 'Sema::BuildCoyieldExpr'
921}
922ExprResult Sema::BuildCoyieldExpr(SourceLocation Loc, Expr *E) {
923 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_yield");
7
Calling 'checkCoroutineContext'
44
Returning from 'checkCoroutineContext'
924 if (!Coroutine
44.1
'Coroutine' is non-null
44.1
'Coroutine' is non-null
44.1
'Coroutine' is non-null
44.1
'Coroutine' is non-null
)
45
Taking false branch
925 return ExprError();
926
927 if (E->getType()->isPlaceholderType()) {
46
Calling 'Type::isPlaceholderType'
50
Returning from 'Type::isPlaceholderType'
51
Taking false branch
928 ExprResult R = CheckPlaceholderExpr(E);
929 if (R.isInvalid()) return ExprError();
930 E = R.get();
931 }
932
933 if (E->getType()->isDependentType()) {
52
Assuming the condition is false
53
Taking false branch
934 Expr *Res = new (Context) CoyieldExpr(Loc, Context.DependentTy, E);
935 return Res;
936 }
937
938 // If the expression is a temporary, materialize it as an lvalue so that we
939 // can use it multiple times.
940 if (E->isPRValue())
54
Taking false branch
941 E = CreateMaterializeTemporaryExpr(E->getType(), E, true);
942
943 // Build the await_ready, await_suspend, await_resume calls.
944 ReadySuspendResumeResult RSS = buildCoawaitCalls(
55
Calling 'buildCoawaitCalls'
60
Returning from 'buildCoawaitCalls'
945 *this, Coroutine->CoroutinePromise, Loc, E);
946 if (RSS.IsInvalid
60.1
Field 'IsInvalid' is false
60.1
Field 'IsInvalid' is false
60.1
Field 'IsInvalid' is false
60.1
Field 'IsInvalid' is false
)
61
Taking false branch
947 return ExprError();
948
949 Expr *Res =
950 new (Context) CoyieldExpr(Loc, E, RSS.Results[0], RSS.Results[1],
63
Calling constructor for 'CoyieldExpr'
951 RSS.Results[2], RSS.OpaqueValue);
62
Passing null pointer value via 5th parameter 'Resume'
952
953 return Res;
954}
955
956StmtResult Sema::ActOnCoreturnStmt(Scope *S, SourceLocation Loc, Expr *E) {
957 if (!ActOnCoroutineBodyStart(S, Loc, "co_return")) {
958 CorrectDelayedTyposInExpr(E);
959 return StmtError();
960 }
961 return BuildCoreturnStmt(Loc, E);
962}
963
964StmtResult Sema::BuildCoreturnStmt(SourceLocation Loc, Expr *E,
965 bool IsImplicit) {
966 auto *FSI = checkCoroutineContext(*this, Loc, "co_return", IsImplicit);
967 if (!FSI)
968 return StmtError();
969
970 if (E && E->getType()->isPlaceholderType() &&
971 !E->getType()->isSpecificPlaceholderType(BuiltinType::Overload)) {
972 ExprResult R = CheckPlaceholderExpr(E);
973 if (R.isInvalid()) return StmtError();
974 E = R.get();
975 }
976
977 VarDecl *Promise = FSI->CoroutinePromise;
978 ExprResult PC;
979 if (E && (isa<InitListExpr>(E) || !E->getType()->isVoidType())) {
980 getNamedReturnInfo(E, SimplerImplicitMoveMode::ForceOn);
981 PC = buildPromiseCall(*this, Promise, Loc, "return_value", E);
982 } else {
983 E = MakeFullDiscardedValueExpr(E).get();
984 PC = buildPromiseCall(*this, Promise, Loc, "return_void", None);
985 }
986 if (PC.isInvalid())
987 return StmtError();
988
989 Expr *PCE = ActOnFinishFullExpr(PC.get(), /*DiscardedValue*/ false).get();
990
991 Stmt *Res = new (Context) CoreturnStmt(Loc, E, PCE, IsImplicit);
992 return Res;
993}
994
995/// Look up the std::nothrow object.
996static Expr *buildStdNoThrowDeclRef(Sema &S, SourceLocation Loc) {
997 NamespaceDecl *Std = S.getStdNamespace();
998 assert(Std && "Should already be diagnosed")(static_cast <bool> (Std && "Should already be diagnosed"
) ? void (0) : __assert_fail ("Std && \"Should already be diagnosed\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 998, __extension__ __PRETTY_FUNCTION__))
;
999
1000 LookupResult Result(S, &S.PP.getIdentifierTable().get("nothrow"), Loc,
1001 Sema::LookupOrdinaryName);
1002 if (!S.LookupQualifiedName(Result, Std)) {
1003 // FIXME: <experimental/coroutine> should have been included already.
1004 // If we require it to include <new> then this diagnostic is no longer
1005 // needed.
1006 S.Diag(Loc, diag::err_implicit_coroutine_std_nothrow_type_not_found);
1007 return nullptr;
1008 }
1009
1010 auto *VD = Result.getAsSingle<VarDecl>();
1011 if (!VD) {
1012 Result.suppressDiagnostics();
1013 // We found something weird. Complain about the first thing we found.
1014 NamedDecl *Found = *Result.begin();
1015 S.Diag(Found->getLocation(), diag::err_malformed_std_nothrow);
1016 return nullptr;
1017 }
1018
1019 ExprResult DR = S.BuildDeclRefExpr(VD, VD->getType(), VK_LValue, Loc);
1020 if (DR.isInvalid())
1021 return nullptr;
1022
1023 return DR.get();
1024}
1025
1026// Find an appropriate delete for the promise.
1027static FunctionDecl *findDeleteForPromise(Sema &S, SourceLocation Loc,
1028 QualType PromiseType) {
1029 FunctionDecl *OperatorDelete = nullptr;
1030
1031 DeclarationName DeleteName =
1032 S.Context.DeclarationNames.getCXXOperatorName(OO_Delete);
1033
1034 auto *PointeeRD = PromiseType->getAsCXXRecordDecl();
1035 assert(PointeeRD && "PromiseType must be a CxxRecordDecl type")(static_cast <bool> (PointeeRD && "PromiseType must be a CxxRecordDecl type"
) ? void (0) : __assert_fail ("PointeeRD && \"PromiseType must be a CxxRecordDecl type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 1035, __extension__ __PRETTY_FUNCTION__))
;
1036
1037 if (S.FindDeallocationFunction(Loc, PointeeRD, DeleteName, OperatorDelete))
1038 return nullptr;
1039
1040 if (!OperatorDelete) {
1041 // Look for a global declaration.
1042 const bool CanProvideSize = S.isCompleteType(Loc, PromiseType);
1043 const bool Overaligned = false;
1044 OperatorDelete = S.FindUsualDeallocationFunction(Loc, CanProvideSize,
1045 Overaligned, DeleteName);
1046 }
1047 S.MarkFunctionReferenced(Loc, OperatorDelete);
1048 return OperatorDelete;
1049}
1050
1051
1052void Sema::CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body) {
1053 FunctionScopeInfo *Fn = getCurFunction();
1054 assert(Fn && Fn->isCoroutine() && "not a coroutine")(static_cast <bool> (Fn && Fn->isCoroutine()
&& "not a coroutine") ? void (0) : __assert_fail ("Fn && Fn->isCoroutine() && \"not a coroutine\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 1054, __extension__ __PRETTY_FUNCTION__))
;
1055 if (!Body) {
1056 assert(FD->isInvalidDecl() &&(static_cast <bool> (FD->isInvalidDecl() && "a null body is only allowed for invalid declarations"
) ? void (0) : __assert_fail ("FD->isInvalidDecl() && \"a null body is only allowed for invalid declarations\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 1057, __extension__ __PRETTY_FUNCTION__))
1057 "a null body is only allowed for invalid declarations")(static_cast <bool> (FD->isInvalidDecl() && "a null body is only allowed for invalid declarations"
) ? void (0) : __assert_fail ("FD->isInvalidDecl() && \"a null body is only allowed for invalid declarations\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 1057, __extension__ __PRETTY_FUNCTION__))
;
1058 return;
1059 }
1060 // We have a function that uses coroutine keywords, but we failed to build
1061 // the promise type.
1062 if (!Fn->CoroutinePromise)
1063 return FD->setInvalidDecl();
1064
1065 if (isa<CoroutineBodyStmt>(Body)) {
1066 // Nothing todo. the body is already a transformed coroutine body statement.
1067 return;
1068 }
1069
1070 // Coroutines [stmt.return]p1:
1071 // A return statement shall not appear in a coroutine.
1072 if (Fn->FirstReturnLoc.isValid()) {
1073 assert(Fn->FirstCoroutineStmtLoc.isValid() &&(static_cast <bool> (Fn->FirstCoroutineStmtLoc.isValid
() && "first coroutine location not set") ? void (0) :
__assert_fail ("Fn->FirstCoroutineStmtLoc.isValid() && \"first coroutine location not set\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 1074, __extension__ __PRETTY_FUNCTION__))
1074 "first coroutine location not set")(static_cast <bool> (Fn->FirstCoroutineStmtLoc.isValid
() && "first coroutine location not set") ? void (0) :
__assert_fail ("Fn->FirstCoroutineStmtLoc.isValid() && \"first coroutine location not set\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 1074, __extension__ __PRETTY_FUNCTION__))
;
1075 Diag(Fn->FirstReturnLoc, diag::err_return_in_coroutine);
1076 Diag(Fn->FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1077 << Fn->getFirstCoroutineStmtKeyword();
1078 }
1079 CoroutineStmtBuilder Builder(*this, *FD, *Fn, Body);
1080 if (Builder.isInvalid() || !Builder.buildStatements())
1081 return FD->setInvalidDecl();
1082
1083 // Build body for the coroutine wrapper statement.
1084 Body = CoroutineBodyStmt::Create(Context, Builder);
1085}
1086
1087CoroutineStmtBuilder::CoroutineStmtBuilder(Sema &S, FunctionDecl &FD,
1088 sema::FunctionScopeInfo &Fn,
1089 Stmt *Body)
1090 : S(S), FD(FD), Fn(Fn), Loc(FD.getLocation()),
1091 IsPromiseDependentType(
1092 !Fn.CoroutinePromise ||
1093 Fn.CoroutinePromise->getType()->isDependentType()) {
1094 this->Body = Body;
1095
1096 for (auto KV : Fn.CoroutineParameterMoves)
1097 this->ParamMovesVector.push_back(KV.second);
1098 this->ParamMoves = this->ParamMovesVector;
1099
1100 if (!IsPromiseDependentType) {
1101 PromiseRecordDecl = Fn.CoroutinePromise->getType()->getAsCXXRecordDecl();
1102 assert(PromiseRecordDecl && "Type should have already been checked")(static_cast <bool> (PromiseRecordDecl && "Type should have already been checked"
) ? void (0) : __assert_fail ("PromiseRecordDecl && \"Type should have already been checked\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 1102, __extension__ __PRETTY_FUNCTION__))
;
1103 }
1104 this->IsValid = makePromiseStmt() && makeInitialAndFinalSuspend();
1105}
1106
1107bool CoroutineStmtBuilder::buildStatements() {
1108 assert(this->IsValid && "coroutine already invalid")(static_cast <bool> (this->IsValid && "coroutine already invalid"
) ? void (0) : __assert_fail ("this->IsValid && \"coroutine already invalid\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 1108, __extension__ __PRETTY_FUNCTION__))
;
1109 this->IsValid = makeReturnObject();
1110 if (this->IsValid && !IsPromiseDependentType)
1111 buildDependentStatements();
1112 return this->IsValid;
1113}
1114
1115bool CoroutineStmtBuilder::buildDependentStatements() {
1116 assert(this->IsValid && "coroutine already invalid")(static_cast <bool> (this->IsValid && "coroutine already invalid"
) ? void (0) : __assert_fail ("this->IsValid && \"coroutine already invalid\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 1116, __extension__ __PRETTY_FUNCTION__))
;
1117 assert(!this->IsPromiseDependentType &&(static_cast <bool> (!this->IsPromiseDependentType &&
"coroutine cannot have a dependent promise type") ? void (0)
: __assert_fail ("!this->IsPromiseDependentType && \"coroutine cannot have a dependent promise type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 1118, __extension__ __PRETTY_FUNCTION__))
1118 "coroutine cannot have a dependent promise type")(static_cast <bool> (!this->IsPromiseDependentType &&
"coroutine cannot have a dependent promise type") ? void (0)
: __assert_fail ("!this->IsPromiseDependentType && \"coroutine cannot have a dependent promise type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 1118, __extension__ __PRETTY_FUNCTION__))
;
1119 this->IsValid = makeOnException() && makeOnFallthrough() &&
1120 makeGroDeclAndReturnStmt() && makeReturnOnAllocFailure() &&
1121 makeNewAndDeleteExpr();
1122 return this->IsValid;
1123}
1124
1125bool CoroutineStmtBuilder::makePromiseStmt() {
1126 // Form a declaration statement for the promise declaration, so that AST
1127 // visitors can more easily find it.
1128 StmtResult PromiseStmt =
1129 S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(Fn.CoroutinePromise), Loc, Loc);
1130 if (PromiseStmt.isInvalid())
1131 return false;
1132
1133 this->Promise = PromiseStmt.get();
1134 return true;
1135}
1136
1137bool CoroutineStmtBuilder::makeInitialAndFinalSuspend() {
1138 if (Fn.hasInvalidCoroutineSuspends())
1139 return false;
1140 this->InitialSuspend = cast<Expr>(Fn.CoroutineSuspends.first);
1141 this->FinalSuspend = cast<Expr>(Fn.CoroutineSuspends.second);
1142 return true;
1143}
1144
1145static bool diagReturnOnAllocFailure(Sema &S, Expr *E,
1146 CXXRecordDecl *PromiseRecordDecl,
1147 FunctionScopeInfo &Fn) {
1148 auto Loc = E->getExprLoc();
1149 if (auto *DeclRef = dyn_cast_or_null<DeclRefExpr>(E)) {
1150 auto *Decl = DeclRef->getDecl();
1151 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(Decl)) {
1152 if (Method->isStatic())
1153 return true;
1154 else
1155 Loc = Decl->getLocation();
1156 }
1157 }
1158
1159 S.Diag(
1160 Loc,
1161 diag::err_coroutine_promise_get_return_object_on_allocation_failure)
1162 << PromiseRecordDecl;
1163 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1164 << Fn.getFirstCoroutineStmtKeyword();
1165 return false;
1166}
1167
1168bool CoroutineStmtBuilder::makeReturnOnAllocFailure() {
1169 assert(!IsPromiseDependentType &&(static_cast <bool> (!IsPromiseDependentType &&
"cannot make statement while the promise type is dependent")
? void (0) : __assert_fail ("!IsPromiseDependentType && \"cannot make statement while the promise type is dependent\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 1170, __extension__ __PRETTY_FUNCTION__))
1170 "cannot make statement while the promise type is dependent")(static_cast <bool> (!IsPromiseDependentType &&
"cannot make statement while the promise type is dependent")
? void (0) : __assert_fail ("!IsPromiseDependentType && \"cannot make statement while the promise type is dependent\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 1170, __extension__ __PRETTY_FUNCTION__))
;
1171
1172 // [dcl.fct.def.coroutine]/8
1173 // The unqualified-id get_return_object_on_allocation_failure is looked up in
1174 // the scope of class P by class member access lookup (3.4.5). ...
1175 // If an allocation function returns nullptr, ... the coroutine return value
1176 // is obtained by a call to ... get_return_object_on_allocation_failure().
1177
1178 DeclarationName DN =
1179 S.PP.getIdentifierInfo("get_return_object_on_allocation_failure");
1180 LookupResult Found(S, DN, Loc, Sema::LookupMemberName);
1181 if (!S.LookupQualifiedName(Found, PromiseRecordDecl))
1182 return true;
1183
1184 CXXScopeSpec SS;
1185 ExprResult DeclNameExpr =
1186 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false);
1187 if (DeclNameExpr.isInvalid())
1188 return false;
1189
1190 if (!diagReturnOnAllocFailure(S, DeclNameExpr.get(), PromiseRecordDecl, Fn))
1191 return false;
1192
1193 ExprResult ReturnObjectOnAllocationFailure =
1194 S.BuildCallExpr(nullptr, DeclNameExpr.get(), Loc, {}, Loc);
1195 if (ReturnObjectOnAllocationFailure.isInvalid())
1196 return false;
1197
1198 StmtResult ReturnStmt =
1199 S.BuildReturnStmt(Loc, ReturnObjectOnAllocationFailure.get());
1200 if (ReturnStmt.isInvalid()) {
1201 S.Diag(Found.getFoundDecl()->getLocation(), diag::note_member_declared_here)
1202 << DN;
1203 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1204 << Fn.getFirstCoroutineStmtKeyword();
1205 return false;
1206 }
1207
1208 this->ReturnStmtOnAllocFailure = ReturnStmt.get();
1209 return true;
1210}
1211
1212bool CoroutineStmtBuilder::makeNewAndDeleteExpr() {
1213 // Form and check allocation and deallocation calls.
1214 assert(!IsPromiseDependentType &&(static_cast <bool> (!IsPromiseDependentType &&
"cannot make statement while the promise type is dependent")
? void (0) : __assert_fail ("!IsPromiseDependentType && \"cannot make statement while the promise type is dependent\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 1215, __extension__ __PRETTY_FUNCTION__))
1215 "cannot make statement while the promise type is dependent")(static_cast <bool> (!IsPromiseDependentType &&
"cannot make statement while the promise type is dependent")
? void (0) : __assert_fail ("!IsPromiseDependentType && \"cannot make statement while the promise type is dependent\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 1215, __extension__ __PRETTY_FUNCTION__))
;
1216 QualType PromiseType = Fn.CoroutinePromise->getType();
1217
1218 if (S.RequireCompleteType(Loc, PromiseType, diag::err_incomplete_type))
1219 return false;
1220
1221 const bool RequiresNoThrowAlloc = ReturnStmtOnAllocFailure != nullptr;
1222
1223 // [dcl.fct.def.coroutine]/7
1224 // Lookup allocation functions using a parameter list composed of the
1225 // requested size of the coroutine state being allocated, followed by
1226 // the coroutine function's arguments. If a matching allocation function
1227 // exists, use it. Otherwise, use an allocation function that just takes
1228 // the requested size.
1229
1230 FunctionDecl *OperatorNew = nullptr;
1231 FunctionDecl *OperatorDelete = nullptr;
1232 FunctionDecl *UnusedResult = nullptr;
1233 bool PassAlignment = false;
1234 SmallVector<Expr *, 1> PlacementArgs;
1235
1236 // [dcl.fct.def.coroutine]/7
1237 // "The allocation function’s name is looked up in the scope of P.
1238 // [...] If the lookup finds an allocation function in the scope of P,
1239 // overload resolution is performed on a function call created by assembling
1240 // an argument list. The first argument is the amount of space requested,
1241 // and has type std::size_t. The lvalues p1 ... pn are the succeeding
1242 // arguments."
1243 //
1244 // ...where "p1 ... pn" are defined earlier as:
1245 //
1246 // [dcl.fct.def.coroutine]/3
1247 // "For a coroutine f that is a non-static member function, let P1 denote the
1248 // type of the implicit object parameter (13.3.1) and P2 ... Pn be the types
1249 // of the function parameters; otherwise let P1 ... Pn be the types of the
1250 // function parameters. Let p1 ... pn be lvalues denoting those objects."
1251 if (auto *MD = dyn_cast<CXXMethodDecl>(&FD)) {
1252 if (MD->isInstance() && !isLambdaCallOperator(MD)) {
1253 ExprResult ThisExpr = S.ActOnCXXThis(Loc);
1254 if (ThisExpr.isInvalid())
1255 return false;
1256 ThisExpr = S.CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get());
1257 if (ThisExpr.isInvalid())
1258 return false;
1259 PlacementArgs.push_back(ThisExpr.get());
1260 }
1261 }
1262 for (auto *PD : FD.parameters()) {
1263 if (PD->getType()->isDependentType())
1264 continue;
1265
1266 // Build a reference to the parameter.
1267 auto PDLoc = PD->getLocation();
1268 ExprResult PDRefExpr =
1269 S.BuildDeclRefExpr(PD, PD->getOriginalType().getNonReferenceType(),
1270 ExprValueKind::VK_LValue, PDLoc);
1271 if (PDRefExpr.isInvalid())
1272 return false;
1273
1274 PlacementArgs.push_back(PDRefExpr.get());
1275 }
1276 S.FindAllocationFunctions(Loc, SourceRange(), /*NewScope*/ Sema::AFS_Class,
1277 /*DeleteScope*/ Sema::AFS_Both, PromiseType,
1278 /*isArray*/ false, PassAlignment, PlacementArgs,
1279 OperatorNew, UnusedResult, /*Diagnose*/ false);
1280
1281 // [dcl.fct.def.coroutine]/7
1282 // "If no matching function is found, overload resolution is performed again
1283 // on a function call created by passing just the amount of space required as
1284 // an argument of type std::size_t."
1285 if (!OperatorNew && !PlacementArgs.empty()) {
1286 PlacementArgs.clear();
1287 S.FindAllocationFunctions(Loc, SourceRange(), /*NewScope*/ Sema::AFS_Class,
1288 /*DeleteScope*/ Sema::AFS_Both, PromiseType,
1289 /*isArray*/ false, PassAlignment, PlacementArgs,
1290 OperatorNew, UnusedResult, /*Diagnose*/ false);
1291 }
1292
1293 // [dcl.fct.def.coroutine]/7
1294 // "The allocation function’s name is looked up in the scope of P. If this
1295 // lookup fails, the allocation function’s name is looked up in the global
1296 // scope."
1297 if (!OperatorNew) {
1298 S.FindAllocationFunctions(Loc, SourceRange(), /*NewScope*/ Sema::AFS_Global,
1299 /*DeleteScope*/ Sema::AFS_Both, PromiseType,
1300 /*isArray*/ false, PassAlignment, PlacementArgs,
1301 OperatorNew, UnusedResult);
1302 }
1303
1304 bool IsGlobalOverload =
1305 OperatorNew && !isa<CXXRecordDecl>(OperatorNew->getDeclContext());
1306 // If we didn't find a class-local new declaration and non-throwing new
1307 // was is required then we need to lookup the non-throwing global operator
1308 // instead.
1309 if (RequiresNoThrowAlloc && (!OperatorNew || IsGlobalOverload)) {
1310 auto *StdNoThrow = buildStdNoThrowDeclRef(S, Loc);
1311 if (!StdNoThrow)
1312 return false;
1313 PlacementArgs = {StdNoThrow};
1314 OperatorNew = nullptr;
1315 S.FindAllocationFunctions(Loc, SourceRange(), /*NewScope*/ Sema::AFS_Both,
1316 /*DeleteScope*/ Sema::AFS_Both, PromiseType,
1317 /*isArray*/ false, PassAlignment, PlacementArgs,
1318 OperatorNew, UnusedResult);
1319 }
1320
1321 if (!OperatorNew)
1322 return false;
1323
1324 if (RequiresNoThrowAlloc) {
1325 const auto *FT = OperatorNew->getType()->castAs<FunctionProtoType>();
1326 if (!FT->isNothrow(/*ResultIfDependent*/ false)) {
1327 S.Diag(OperatorNew->getLocation(),
1328 diag::err_coroutine_promise_new_requires_nothrow)
1329 << OperatorNew;
1330 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
1331 << OperatorNew;
1332 return false;
1333 }
1334 }
1335
1336 if ((OperatorDelete = findDeleteForPromise(S, Loc, PromiseType)) == nullptr)
1337 return false;
1338
1339 Expr *FramePtr =
1340 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {});
1341
1342 Expr *FrameSize =
1343 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_size, {});
1344
1345 // Make new call.
1346
1347 ExprResult NewRef =
1348 S.BuildDeclRefExpr(OperatorNew, OperatorNew->getType(), VK_LValue, Loc);
1349 if (NewRef.isInvalid())
1350 return false;
1351
1352 SmallVector<Expr *, 2> NewArgs(1, FrameSize);
1353 for (auto Arg : PlacementArgs)
1354 NewArgs.push_back(Arg);
1355
1356 ExprResult NewExpr =
1357 S.BuildCallExpr(S.getCurScope(), NewRef.get(), Loc, NewArgs, Loc);
1358 NewExpr = S.ActOnFinishFullExpr(NewExpr.get(), /*DiscardedValue*/ false);
1359 if (NewExpr.isInvalid())
1360 return false;
1361
1362 // Make delete call.
1363
1364 QualType OpDeleteQualType = OperatorDelete->getType();
1365
1366 ExprResult DeleteRef =
1367 S.BuildDeclRefExpr(OperatorDelete, OpDeleteQualType, VK_LValue, Loc);
1368 if (DeleteRef.isInvalid())
1369 return false;
1370
1371 Expr *CoroFree =
1372 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_free, {FramePtr});
1373
1374 SmallVector<Expr *, 2> DeleteArgs{CoroFree};
1375
1376 // Check if we need to pass the size.
1377 const auto *OpDeleteType =
1378 OpDeleteQualType.getTypePtr()->castAs<FunctionProtoType>();
1379 if (OpDeleteType->getNumParams() > 1)
1380 DeleteArgs.push_back(FrameSize);
1381
1382 ExprResult DeleteExpr =
1383 S.BuildCallExpr(S.getCurScope(), DeleteRef.get(), Loc, DeleteArgs, Loc);
1384 DeleteExpr =
1385 S.ActOnFinishFullExpr(DeleteExpr.get(), /*DiscardedValue*/ false);
1386 if (DeleteExpr.isInvalid())
1387 return false;
1388
1389 this->Allocate = NewExpr.get();
1390 this->Deallocate = DeleteExpr.get();
1391
1392 return true;
1393}
1394
1395bool CoroutineStmtBuilder::makeOnFallthrough() {
1396 assert(!IsPromiseDependentType &&(static_cast <bool> (!IsPromiseDependentType &&
"cannot make statement while the promise type is dependent")
? void (0) : __assert_fail ("!IsPromiseDependentType && \"cannot make statement while the promise type is dependent\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 1397, __extension__ __PRETTY_FUNCTION__))
1397 "cannot make statement while the promise type is dependent")(static_cast <bool> (!IsPromiseDependentType &&
"cannot make statement while the promise type is dependent")
? void (0) : __assert_fail ("!IsPromiseDependentType && \"cannot make statement while the promise type is dependent\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 1397, __extension__ __PRETTY_FUNCTION__))
;
1398
1399 // [dcl.fct.def.coroutine]/4
1400 // The unqualified-ids 'return_void' and 'return_value' are looked up in
1401 // the scope of class P. If both are found, the program is ill-formed.
1402 bool HasRVoid, HasRValue;
1403 LookupResult LRVoid =
1404 lookupMember(S, "return_void", PromiseRecordDecl, Loc, HasRVoid);
1405 LookupResult LRValue =
1406 lookupMember(S, "return_value", PromiseRecordDecl, Loc, HasRValue);
1407
1408 StmtResult Fallthrough;
1409 if (HasRVoid && HasRValue) {
1410 // FIXME Improve this diagnostic
1411 S.Diag(FD.getLocation(),
1412 diag::err_coroutine_promise_incompatible_return_functions)
1413 << PromiseRecordDecl;
1414 S.Diag(LRVoid.getRepresentativeDecl()->getLocation(),
1415 diag::note_member_first_declared_here)
1416 << LRVoid.getLookupName();
1417 S.Diag(LRValue.getRepresentativeDecl()->getLocation(),
1418 diag::note_member_first_declared_here)
1419 << LRValue.getLookupName();
1420 return false;
1421 } else if (!HasRVoid && !HasRValue) {
1422 // FIXME: The PDTS currently specifies this case as UB, not ill-formed.
1423 // However we still diagnose this as an error since until the PDTS is fixed.
1424 S.Diag(FD.getLocation(),
1425 diag::err_coroutine_promise_requires_return_function)
1426 << PromiseRecordDecl;
1427 S.Diag(PromiseRecordDecl->getLocation(), diag::note_defined_here)
1428 << PromiseRecordDecl;
1429 return false;
1430 } else if (HasRVoid) {
1431 // If the unqualified-id return_void is found, flowing off the end of a
1432 // coroutine is equivalent to a co_return with no operand. Otherwise,
1433 // flowing off the end of a coroutine results in undefined behavior.
1434 Fallthrough = S.BuildCoreturnStmt(FD.getLocation(), nullptr,
1435 /*IsImplicit*/false);
1436 Fallthrough = S.ActOnFinishFullStmt(Fallthrough.get());
1437 if (Fallthrough.isInvalid())
1438 return false;
1439 }
1440
1441 this->OnFallthrough = Fallthrough.get();
1442 return true;
1443}
1444
1445bool CoroutineStmtBuilder::makeOnException() {
1446 // Try to form 'p.unhandled_exception();'
1447 assert(!IsPromiseDependentType &&(static_cast <bool> (!IsPromiseDependentType &&
"cannot make statement while the promise type is dependent")
? void (0) : __assert_fail ("!IsPromiseDependentType && \"cannot make statement while the promise type is dependent\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 1448, __extension__ __PRETTY_FUNCTION__))
1448 "cannot make statement while the promise type is dependent")(static_cast <bool> (!IsPromiseDependentType &&
"cannot make statement while the promise type is dependent")
? void (0) : __assert_fail ("!IsPromiseDependentType && \"cannot make statement while the promise type is dependent\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 1448, __extension__ __PRETTY_FUNCTION__))
;
1449
1450 const bool RequireUnhandledException = S.getLangOpts().CXXExceptions;
1451
1452 if (!lookupMember(S, "unhandled_exception", PromiseRecordDecl, Loc)) {
1453 auto DiagID =
1454 RequireUnhandledException
1455 ? diag::err_coroutine_promise_unhandled_exception_required
1456 : diag::
1457 warn_coroutine_promise_unhandled_exception_required_with_exceptions;
1458 S.Diag(Loc, DiagID) << PromiseRecordDecl;
1459 S.Diag(PromiseRecordDecl->getLocation(), diag::note_defined_here)
1460 << PromiseRecordDecl;
1461 return !RequireUnhandledException;
1462 }
1463
1464 // If exceptions are disabled, don't try to build OnException.
1465 if (!S.getLangOpts().CXXExceptions)
1466 return true;
1467
1468 ExprResult UnhandledException = buildPromiseCall(S, Fn.CoroutinePromise, Loc,
1469 "unhandled_exception", None);
1470 UnhandledException = S.ActOnFinishFullExpr(UnhandledException.get(), Loc,
1471 /*DiscardedValue*/ false);
1472 if (UnhandledException.isInvalid())
1473 return false;
1474
1475 // Since the body of the coroutine will be wrapped in try-catch, it will
1476 // be incompatible with SEH __try if present in a function.
1477 if (!S.getLangOpts().Borland && Fn.FirstSEHTryLoc.isValid()) {
1478 S.Diag(Fn.FirstSEHTryLoc, diag::err_seh_in_a_coroutine_with_cxx_exceptions);
1479 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1480 << Fn.getFirstCoroutineStmtKeyword();
1481 return false;
1482 }
1483
1484 this->OnException = UnhandledException.get();
1485 return true;
1486}
1487
1488bool CoroutineStmtBuilder::makeReturnObject() {
1489 // Build implicit 'p.get_return_object()' expression and form initialization
1490 // of return type from it.
1491 ExprResult ReturnObject =
1492 buildPromiseCall(S, Fn.CoroutinePromise, Loc, "get_return_object", None);
1493 if (ReturnObject.isInvalid())
1494 return false;
1495
1496 this->ReturnValue = ReturnObject.get();
1497 return true;
1498}
1499
1500static void noteMemberDeclaredHere(Sema &S, Expr *E, FunctionScopeInfo &Fn) {
1501 if (auto *MbrRef = dyn_cast<CXXMemberCallExpr>(E)) {
1502 auto *MethodDecl = MbrRef->getMethodDecl();
1503 S.Diag(MethodDecl->getLocation(), diag::note_member_declared_here)
1504 << MethodDecl;
1505 }
1506 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1507 << Fn.getFirstCoroutineStmtKeyword();
1508}
1509
1510bool CoroutineStmtBuilder::makeGroDeclAndReturnStmt() {
1511 assert(!IsPromiseDependentType &&(static_cast <bool> (!IsPromiseDependentType &&
"cannot make statement while the promise type is dependent")
? void (0) : __assert_fail ("!IsPromiseDependentType && \"cannot make statement while the promise type is dependent\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 1512, __extension__ __PRETTY_FUNCTION__))
1512 "cannot make statement while the promise type is dependent")(static_cast <bool> (!IsPromiseDependentType &&
"cannot make statement while the promise type is dependent")
? void (0) : __assert_fail ("!IsPromiseDependentType && \"cannot make statement while the promise type is dependent\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 1512, __extension__ __PRETTY_FUNCTION__))
;
1513 assert(this->ReturnValue && "ReturnValue must be already formed")(static_cast <bool> (this->ReturnValue && "ReturnValue must be already formed"
) ? void (0) : __assert_fail ("this->ReturnValue && \"ReturnValue must be already formed\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 1513, __extension__ __PRETTY_FUNCTION__))
;
1514
1515 QualType const GroType = this->ReturnValue->getType();
1516 assert(!GroType->isDependentType() &&(static_cast <bool> (!GroType->isDependentType() &&
"get_return_object type must no longer be dependent") ? void
(0) : __assert_fail ("!GroType->isDependentType() && \"get_return_object type must no longer be dependent\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 1517, __extension__ __PRETTY_FUNCTION__))
1517 "get_return_object type must no longer be dependent")(static_cast <bool> (!GroType->isDependentType() &&
"get_return_object type must no longer be dependent") ? void
(0) : __assert_fail ("!GroType->isDependentType() && \"get_return_object type must no longer be dependent\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 1517, __extension__ __PRETTY_FUNCTION__))
;
1518
1519 QualType const FnRetType = FD.getReturnType();
1520 assert(!FnRetType->isDependentType() &&(static_cast <bool> (!FnRetType->isDependentType() &&
"get_return_object type must no longer be dependent") ? void
(0) : __assert_fail ("!FnRetType->isDependentType() && \"get_return_object type must no longer be dependent\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 1521, __extension__ __PRETTY_FUNCTION__))
1521 "get_return_object type must no longer be dependent")(static_cast <bool> (!FnRetType->isDependentType() &&
"get_return_object type must no longer be dependent") ? void
(0) : __assert_fail ("!FnRetType->isDependentType() && \"get_return_object type must no longer be dependent\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 1521, __extension__ __PRETTY_FUNCTION__))
;
1522
1523 if (FnRetType->isVoidType()) {
1524 ExprResult Res =
1525 S.ActOnFinishFullExpr(this->ReturnValue, Loc, /*DiscardedValue*/ false);
1526 if (Res.isInvalid())
1527 return false;
1528
1529 this->ResultDecl = Res.get();
1530 return true;
1531 }
1532
1533 if (GroType->isVoidType()) {
1534 // Trigger a nice error message.
1535 InitializedEntity Entity =
1536 InitializedEntity::InitializeResult(Loc, FnRetType, false);
1537 S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue);
1538 noteMemberDeclaredHere(S, ReturnValue, Fn);
1539 return false;
1540 }
1541
1542 auto *GroDecl = VarDecl::Create(
1543 S.Context, &FD, FD.getLocation(), FD.getLocation(),
1544 &S.PP.getIdentifierTable().get("__coro_gro"), GroType,
1545 S.Context.getTrivialTypeSourceInfo(GroType, Loc), SC_None);
1546 GroDecl->setImplicit();
1547
1548 S.CheckVariableDeclarationType(GroDecl);
1549 if (GroDecl->isInvalidDecl())
1550 return false;
1551
1552 InitializedEntity Entity = InitializedEntity::InitializeVariable(GroDecl);
1553 ExprResult Res =
1554 S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue);
1555 if (Res.isInvalid())
1556 return false;
1557
1558 Res = S.ActOnFinishFullExpr(Res.get(), /*DiscardedValue*/ false);
1559 if (Res.isInvalid())
1560 return false;
1561
1562 S.AddInitializerToDecl(GroDecl, Res.get(),
1563 /*DirectInit=*/false);
1564
1565 S.FinalizeDeclaration(GroDecl);
1566
1567 // Form a declaration statement for the return declaration, so that AST
1568 // visitors can more easily find it.
1569 StmtResult GroDeclStmt =
1570 S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(GroDecl), Loc, Loc);
1571 if (GroDeclStmt.isInvalid())
1572 return false;
1573
1574 this->ResultDecl = GroDeclStmt.get();
1575
1576 ExprResult declRef = S.BuildDeclRefExpr(GroDecl, GroType, VK_LValue, Loc);
1577 if (declRef.isInvalid())
1578 return false;
1579
1580 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, declRef.get());
1581 if (ReturnStmt.isInvalid()) {
1582 noteMemberDeclaredHere(S, ReturnValue, Fn);
1583 return false;
1584 }
1585 if (cast<clang::ReturnStmt>(ReturnStmt.get())->getNRVOCandidate() == GroDecl)
1586 GroDecl->setNRVOVariable(true);
1587
1588 this->ReturnStmt = ReturnStmt.get();
1589 return true;
1590}
1591
1592// Create a static_cast\<T&&>(expr).
1593static Expr *castForMoving(Sema &S, Expr *E, QualType T = QualType()) {
1594 if (T.isNull())
1595 T = E->getType();
1596 QualType TargetType = S.BuildReferenceType(
1597 T, /*SpelledAsLValue*/ false, SourceLocation(), DeclarationName());
1598 SourceLocation ExprLoc = E->getBeginLoc();
1599 TypeSourceInfo *TargetLoc =
1600 S.Context.getTrivialTypeSourceInfo(TargetType, ExprLoc);
1601
1602 return S
1603 .BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
1604 SourceRange(ExprLoc, ExprLoc), E->getSourceRange())
1605 .get();
1606}
1607
1608/// Build a variable declaration for move parameter.
1609static VarDecl *buildVarDecl(Sema &S, SourceLocation Loc, QualType Type,
1610 IdentifierInfo *II) {
1611 TypeSourceInfo *TInfo = S.Context.getTrivialTypeSourceInfo(Type, Loc);
1612 VarDecl *Decl = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, II, Type,
1613 TInfo, SC_None);
1614 Decl->setImplicit();
1615 return Decl;
1616}
1617
1618// Build statements that move coroutine function parameters to the coroutine
1619// frame, and store them on the function scope info.
1620bool Sema::buildCoroutineParameterMoves(SourceLocation Loc) {
1621 assert(isa<FunctionDecl>(CurContext) && "not in a function scope")(static_cast <bool> (isa<FunctionDecl>(CurContext
) && "not in a function scope") ? void (0) : __assert_fail
("isa<FunctionDecl>(CurContext) && \"not in a function scope\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaCoroutine.cpp"
, 1621, __extension__ __PRETTY_FUNCTION__))
;
32
Field 'CurContext' is a 'FunctionDecl'
33
'?' condition is true
1622 auto *FD = cast<FunctionDecl>(CurContext);
34
Field 'CurContext' is a 'FunctionDecl'
1623
1624 auto *ScopeInfo = getCurFunction();
1625 if (!ScopeInfo->CoroutineParameterMoves.empty())
35
Assuming the condition is false
36
Taking false branch
1626 return false;
1627
1628 for (auto *PD : FD->parameters()) {
37
Assuming '__begin1' is equal to '__end1'
1629 if (PD->getType()->isDependentType())
1630 continue;
1631
1632 ExprResult PDRefExpr =
1633 BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
1634 ExprValueKind::VK_LValue, Loc); // FIXME: scope?
1635 if (PDRefExpr.isInvalid())
1636 return false;
1637
1638 Expr *CExpr = nullptr;
1639 if (PD->getType()->getAsCXXRecordDecl() ||
1640 PD->getType()->isRValueReferenceType())
1641 CExpr = castForMoving(*this, PDRefExpr.get());
1642 else
1643 CExpr = PDRefExpr.get();
1644
1645 auto D = buildVarDecl(*this, Loc, PD->getType(), PD->getIdentifier());
1646 AddInitializerToDecl(D, CExpr, /*DirectInit=*/true);
1647
1648 // Convert decl to a statement.
1649 StmtResult Stmt = ActOnDeclStmt(ConvertDeclToDeclGroup(D), Loc, Loc);
1650 if (Stmt.isInvalid())
1651 return false;
1652
1653 ScopeInfo->CoroutineParameterMoves.insert(std::make_pair(PD, Stmt.get()));
1654 }
1655 return true;
38
Returning the value 1, which participates in a condition later
1656}
1657
1658StmtResult Sema::BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) {
1659 CoroutineBodyStmt *Res = CoroutineBodyStmt::Create(Context, Args);
1660 if (!Res)
1661 return StmtError();
1662 return Res;
1663}
1664
1665ClassTemplateDecl *Sema::lookupCoroutineTraits(SourceLocation KwLoc,
1666 SourceLocation FuncLoc) {
1667 if (!StdCoroutineTraitsCache) {
1668 if (auto StdExp = lookupStdExperimentalNamespace()) {
1669 LookupResult Result(*this,
1670 &PP.getIdentifierTable().get("coroutine_traits"),
1671 FuncLoc, LookupOrdinaryName);
1672 if (!LookupQualifiedName(Result, StdExp)) {
1673 Diag(KwLoc, diag::err_implied_coroutine_type_not_found)
1674 << "std::experimental::coroutine_traits";
1675 return nullptr;
1676 }
1677 if (!(StdCoroutineTraitsCache =
1678 Result.getAsSingle<ClassTemplateDecl>())) {
1679 Result.suppressDiagnostics();
1680 NamedDecl *Found = *Result.begin();
1681 Diag(Found->getLocation(), diag::err_malformed_std_coroutine_traits);
1682 return nullptr;
1683 }
1684 }
1685 }
1686 return StdCoroutineTraitsCache;
1687}

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h

1//===--- Sema.h - Semantic Analysis & AST Building --------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the Sema class, which performs semantic analysis and
10// builds ASTs.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_SEMA_SEMA_H
15#define LLVM_CLANG_SEMA_SEMA_H
16
17#include "clang/AST/ASTConcept.h"
18#include "clang/AST/ASTFwd.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Availability.h"
21#include "clang/AST/ComparisonCategories.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/DeclarationName.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprConcepts.h"
27#include "clang/AST/ExprObjC.h"
28#include "clang/AST/ExprOpenMP.h"
29#include "clang/AST/ExternalASTSource.h"
30#include "clang/AST/LocInfoType.h"
31#include "clang/AST/MangleNumberingContext.h"
32#include "clang/AST/NSAPI.h"
33#include "clang/AST/PrettyPrinter.h"
34#include "clang/AST/StmtCXX.h"
35#include "clang/AST/StmtOpenMP.h"
36#include "clang/AST/TypeLoc.h"
37#include "clang/AST/TypeOrdering.h"
38#include "clang/Basic/BitmaskEnum.h"
39#include "clang/Basic/Builtins.h"
40#include "clang/Basic/DarwinSDKInfo.h"
41#include "clang/Basic/ExpressionTraits.h"
42#include "clang/Basic/Module.h"
43#include "clang/Basic/OpenCLOptions.h"
44#include "clang/Basic/OpenMPKinds.h"
45#include "clang/Basic/PragmaKinds.h"
46#include "clang/Basic/Specifiers.h"
47#include "clang/Basic/TemplateKinds.h"
48#include "clang/Basic/TypeTraits.h"
49#include "clang/Sema/AnalysisBasedWarnings.h"
50#include "clang/Sema/CleanupInfo.h"
51#include "clang/Sema/DeclSpec.h"
52#include "clang/Sema/ExternalSemaSource.h"
53#include "clang/Sema/IdentifierResolver.h"
54#include "clang/Sema/ObjCMethodList.h"
55#include "clang/Sema/Ownership.h"
56#include "clang/Sema/Scope.h"
57#include "clang/Sema/SemaConcept.h"
58#include "clang/Sema/TypoCorrection.h"
59#include "clang/Sema/Weak.h"
60#include "llvm/ADT/ArrayRef.h"
61#include "llvm/ADT/Optional.h"
62#include "llvm/ADT/SetVector.h"
63#include "llvm/ADT/SmallBitVector.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/SmallSet.h"
66#include "llvm/ADT/SmallVector.h"
67#include "llvm/ADT/TinyPtrVector.h"
68#include "llvm/Frontend/OpenMP/OMPConstants.h"
69#include <deque>
70#include <memory>
71#include <string>
72#include <tuple>
73#include <vector>
74
75namespace llvm {
76 class APSInt;
77 template <typename ValueT> struct DenseMapInfo;
78 template <typename ValueT, typename ValueInfoT> class DenseSet;
79 class SmallBitVector;
80 struct InlineAsmIdentifierInfo;
81}
82
83namespace clang {
84 class ADLResult;
85 class ASTConsumer;
86 class ASTContext;
87 class ASTMutationListener;
88 class ASTReader;
89 class ASTWriter;
90 class ArrayType;
91 class ParsedAttr;
92 class BindingDecl;
93 class BlockDecl;
94 class CapturedDecl;
95 class CXXBasePath;
96 class CXXBasePaths;
97 class CXXBindTemporaryExpr;
98 typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
99 class CXXConstructorDecl;
100 class CXXConversionDecl;
101 class CXXDeleteExpr;
102 class CXXDestructorDecl;
103 class CXXFieldCollector;
104 class CXXMemberCallExpr;
105 class CXXMethodDecl;
106 class CXXScopeSpec;
107 class CXXTemporary;
108 class CXXTryStmt;
109 class CallExpr;
110 class ClassTemplateDecl;
111 class ClassTemplatePartialSpecializationDecl;
112 class ClassTemplateSpecializationDecl;
113 class VarTemplatePartialSpecializationDecl;
114 class CodeCompleteConsumer;
115 class CodeCompletionAllocator;
116 class CodeCompletionTUInfo;
117 class CodeCompletionResult;
118 class CoroutineBodyStmt;
119 class Decl;
120 class DeclAccessPair;
121 class DeclContext;
122 class DeclRefExpr;
123 class DeclaratorDecl;
124 class DeducedTemplateArgument;
125 class DependentDiagnostic;
126 class DesignatedInitExpr;
127 class Designation;
128 class EnableIfAttr;
129 class EnumConstantDecl;
130 class Expr;
131 class ExtVectorType;
132 class FormatAttr;
133 class FriendDecl;
134 class FunctionDecl;
135 class FunctionProtoType;
136 class FunctionTemplateDecl;
137 class ImplicitConversionSequence;
138 typedef MutableArrayRef<ImplicitConversionSequence> ConversionSequenceList;
139 class InitListExpr;
140 class InitializationKind;
141 class InitializationSequence;
142 class InitializedEntity;
143 class IntegerLiteral;
144 class LabelStmt;
145 class LambdaExpr;
146 class LangOptions;
147 class LocalInstantiationScope;
148 class LookupResult;
149 class MacroInfo;
150 typedef ArrayRef<std::pair<IdentifierInfo *, SourceLocation>> ModuleIdPath;
151 class ModuleLoader;
152 class MultiLevelTemplateArgumentList;
153 class NamedDecl;
154 class ObjCCategoryDecl;
155 class ObjCCategoryImplDecl;
156 class ObjCCompatibleAliasDecl;
157 class ObjCContainerDecl;
158 class ObjCImplDecl;
159 class ObjCImplementationDecl;
160 class ObjCInterfaceDecl;
161 class ObjCIvarDecl;
162 template <class T> class ObjCList;
163 class ObjCMessageExpr;
164 class ObjCMethodDecl;
165 class ObjCPropertyDecl;
166 class ObjCProtocolDecl;
167 class OMPThreadPrivateDecl;
168 class OMPRequiresDecl;
169 class OMPDeclareReductionDecl;
170 class OMPDeclareSimdDecl;
171 class OMPClause;
172 struct OMPVarListLocTy;
173 struct OverloadCandidate;
174 enum class OverloadCandidateParamOrder : char;
175 enum OverloadCandidateRewriteKind : unsigned;
176 class OverloadCandidateSet;
177 class OverloadExpr;
178 class ParenListExpr;
179 class ParmVarDecl;
180 class Preprocessor;
181 class PseudoDestructorTypeStorage;
182 class PseudoObjectExpr;
183 class QualType;
184 class StandardConversionSequence;
185 class Stmt;
186 class StringLiteral;
187 class SwitchStmt;
188 class TemplateArgument;
189 class TemplateArgumentList;
190 class TemplateArgumentLoc;
191 class TemplateDecl;
192 class TemplateInstantiationCallback;
193 class TemplateParameterList;
194 class TemplatePartialOrderingContext;
195 class TemplateTemplateParmDecl;
196 class Token;
197 class TypeAliasDecl;
198 class TypedefDecl;
199 class TypedefNameDecl;
200 class TypeLoc;
201 class TypoCorrectionConsumer;
202 class UnqualifiedId;
203 class UnresolvedLookupExpr;
204 class UnresolvedMemberExpr;
205 class UnresolvedSetImpl;
206 class UnresolvedSetIterator;
207 class UsingDecl;
208 class UsingShadowDecl;
209 class ValueDecl;
210 class VarDecl;
211 class VarTemplateSpecializationDecl;
212 class VisibilityAttr;
213 class VisibleDeclConsumer;
214 class IndirectFieldDecl;
215 struct DeductionFailureInfo;
216 class TemplateSpecCandidateSet;
217
218namespace sema {
219 class AccessedEntity;
220 class BlockScopeInfo;
221 class Capture;
222 class CapturedRegionScopeInfo;
223 class CapturingScopeInfo;
224 class CompoundScopeInfo;
225 class DelayedDiagnostic;
226 class DelayedDiagnosticPool;
227 class FunctionScopeInfo;
228 class LambdaScopeInfo;
229 class PossiblyUnreachableDiag;
230 class SemaPPCallbacks;
231 class TemplateDeductionInfo;
232}
233
234namespace threadSafety {
235 class BeforeSet;
236 void threadSafetyCleanup(BeforeSet* Cache);
237}
238
239// FIXME: No way to easily map from TemplateTypeParmTypes to
240// TemplateTypeParmDecls, so we have this horrible PointerUnion.
241typedef std::pair<llvm::PointerUnion<const TemplateTypeParmType*, NamedDecl*>,
242 SourceLocation> UnexpandedParameterPack;
243
244/// Describes whether we've seen any nullability information for the given
245/// file.
246struct FileNullability {
247 /// The first pointer declarator (of any pointer kind) in the file that does
248 /// not have a corresponding nullability annotation.
249 SourceLocation PointerLoc;
250
251 /// The end location for the first pointer declarator in the file. Used for
252 /// placing fix-its.
253 SourceLocation PointerEndLoc;
254
255 /// Which kind of pointer declarator we saw.
256 uint8_t PointerKind;
257
258 /// Whether we saw any type nullability annotations in the given file.
259 bool SawTypeNullability = false;
260};
261
262/// A mapping from file IDs to a record of whether we've seen nullability
263/// information in that file.
264class FileNullabilityMap {
265 /// A mapping from file IDs to the nullability information for each file ID.
266 llvm::DenseMap<FileID, FileNullability> Map;
267
268 /// A single-element cache based on the file ID.
269 struct {
270 FileID File;
271 FileNullability Nullability;
272 } Cache;
273
274public:
275 FileNullability &operator[](FileID file) {
276 // Check the single-element cache.
277 if (file == Cache.File)
278 return Cache.Nullability;
279
280 // It's not in the single-element cache; flush the cache if we have one.
281 if (!Cache.File.isInvalid()) {
282 Map[Cache.File] = Cache.Nullability;
283 }
284
285 // Pull this entry into the cache.
286 Cache.File = file;
287 Cache.Nullability = Map[file];
288 return Cache.Nullability;
289 }
290};
291
292/// Tracks expected type during expression parsing, for use in code completion.
293/// The type is tied to a particular token, all functions that update or consume
294/// the type take a start location of the token they are looking at as a
295/// parameter. This avoids updating the type on hot paths in the parser.
296class PreferredTypeBuilder {
297public:
298 PreferredTypeBuilder(bool Enabled) : Enabled(Enabled) {}
299
300 void enterCondition(Sema &S, SourceLocation Tok);
301 void enterReturn(Sema &S, SourceLocation Tok);
302 void enterVariableInit(SourceLocation Tok, Decl *D);
303 /// Handles e.g. BaseType{ .D = Tok...
304 void enterDesignatedInitializer(SourceLocation Tok, QualType BaseType,
305 const Designation &D);
306 /// Computing a type for the function argument may require running
307 /// overloading, so we postpone its computation until it is actually needed.
308 ///
309 /// Clients should be very careful when using this funciton, as it stores a
310 /// function_ref, clients should make sure all calls to get() with the same
311 /// location happen while function_ref is alive.
312 ///
313 /// The callback should also emit signature help as a side-effect, but only
314 /// if the completion point has been reached.
315 void enterFunctionArgument(SourceLocation Tok,
316 llvm::function_ref<QualType()> ComputeType);
317
318 void enterParenExpr(SourceLocation Tok, SourceLocation LParLoc);
319 void enterUnary(Sema &S, SourceLocation Tok, tok::TokenKind OpKind,
320 SourceLocation OpLoc);
321 void enterBinary(Sema &S, SourceLocation Tok, Expr *LHS, tok::TokenKind Op);
322 void enterMemAccess(Sema &S, SourceLocation Tok, Expr *Base);
323 void enterSubscript(Sema &S, SourceLocation Tok, Expr *LHS);
324 /// Handles all type casts, including C-style cast, C++ casts, etc.
325 void enterTypeCast(SourceLocation Tok, QualType CastType);
326
327 /// Get the expected type associated with this location, if any.
328 ///
329 /// If the location is a function argument, determining the expected type
330 /// involves considering all function overloads and the arguments so far.
331 /// In this case, signature help for these function overloads will be reported
332 /// as a side-effect (only if the completion point has been reached).
333 QualType get(SourceLocation Tok) const {
334 if (!Enabled || Tok != ExpectedLoc)
335 return QualType();
336 if (!Type.isNull())
337 return Type;
338 if (ComputeType)
339 return ComputeType();
340 return QualType();
341 }
342
343private:
344 bool Enabled;
345 /// Start position of a token for which we store expected type.
346 SourceLocation ExpectedLoc;
347 /// Expected type for a token starting at ExpectedLoc.
348 QualType Type;
349 /// A function to compute expected type at ExpectedLoc. It is only considered
350 /// if Type is null.
351 llvm::function_ref<QualType()> ComputeType;
352};
353
354/// Sema - This implements semantic analysis and AST building for C.
355class Sema final {
356 Sema(const Sema &) = delete;
357 void operator=(const Sema &) = delete;
358
359 ///Source of additional semantic information.
360 ExternalSemaSource *ExternalSource;
361
362 ///Whether Sema has generated a multiplexer and has to delete it.
363 bool isMultiplexExternalSource;
364
365 static bool mightHaveNonExternalLinkage(const DeclaratorDecl *FD);
366
367 bool isVisibleSlow(const NamedDecl *D);
368
369 /// Determine whether two declarations should be linked together, given that
370 /// the old declaration might not be visible and the new declaration might
371 /// not have external linkage.
372 bool shouldLinkPossiblyHiddenDecl(const NamedDecl *Old,
373 const NamedDecl *New) {
374 if (isVisible(Old))
375 return true;
376 // See comment in below overload for why it's safe to compute the linkage
377 // of the new declaration here.
378 if (New->isExternallyDeclarable()) {
379 assert(Old->isExternallyDeclarable() &&(static_cast <bool> (Old->isExternallyDeclarable() &&
"should not have found a non-externally-declarable previous decl"
) ? void (0) : __assert_fail ("Old->isExternallyDeclarable() && \"should not have found a non-externally-declarable previous decl\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 380, __extension__ __PRETTY_FUNCTION__))
380 "should not have found a non-externally-declarable previous decl")(static_cast <bool> (Old->isExternallyDeclarable() &&
"should not have found a non-externally-declarable previous decl"
) ? void (0) : __assert_fail ("Old->isExternallyDeclarable() && \"should not have found a non-externally-declarable previous decl\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 380, __extension__ __PRETTY_FUNCTION__))
;
381 return true;
382 }
383 return false;
384 }
385 bool shouldLinkPossiblyHiddenDecl(LookupResult &Old, const NamedDecl *New);
386
387 void setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem,
388 QualType ResultTy,
389 ArrayRef<QualType> Args);
390
391public:
392 /// The maximum alignment, same as in llvm::Value. We duplicate them here
393 /// because that allows us not to duplicate the constants in clang code,
394 /// which we must to since we can't directly use the llvm constants.
395 /// The value is verified against llvm here: lib/CodeGen/CGDecl.cpp
396 ///
397 /// This is the greatest alignment value supported by load, store, and alloca
398 /// instructions, and global values.
399 static const unsigned MaxAlignmentExponent = 30;
400 static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
401
402 typedef OpaquePtr<DeclGroupRef> DeclGroupPtrTy;
403 typedef OpaquePtr<TemplateName> TemplateTy;
404 typedef OpaquePtr<QualType> TypeTy;
405
406 OpenCLOptions OpenCLFeatures;
407 FPOptions CurFPFeatures;
408
409 const LangOptions &LangOpts;
410 Preprocessor &PP;
411 ASTContext &Context;
412 ASTConsumer &Consumer;
413 DiagnosticsEngine &Diags;
414 SourceManager &SourceMgr;
415
416 /// Flag indicating whether or not to collect detailed statistics.
417 bool CollectStats;
418
419 /// Code-completion consumer.
420 CodeCompleteConsumer *CodeCompleter;
421
422 /// CurContext - This is the current declaration context of parsing.
423 DeclContext *CurContext;
424
425 /// Generally null except when we temporarily switch decl contexts,
426 /// like in \see ActOnObjCTemporaryExitContainerContext.
427 DeclContext *OriginalLexicalContext;
428
429 /// VAListTagName - The declaration name corresponding to __va_list_tag.
430 /// This is used as part of a hack to omit that class from ADL results.
431 DeclarationName VAListTagName;
432
433 bool MSStructPragmaOn; // True when \#pragma ms_struct on
434
435 /// Controls member pointer representation format under the MS ABI.
436 LangOptions::PragmaMSPointersToMembersKind
437 MSPointerToMemberRepresentationMethod;
438
439 /// Stack of active SEH __finally scopes. Can be empty.
440 SmallVector<Scope*, 2> CurrentSEHFinally;
441
442 /// Source location for newly created implicit MSInheritanceAttrs
443 SourceLocation ImplicitMSInheritanceAttrLoc;
444
445 /// Holds TypoExprs that are created from `createDelayedTypo`. This is used by
446 /// `TransformTypos` in order to keep track of any TypoExprs that are created
447 /// recursively during typo correction and wipe them away if the correction
448 /// fails.
449 llvm::SmallVector<TypoExpr *, 2> TypoExprs;
450
451 /// pragma clang section kind
452 enum PragmaClangSectionKind {
453 PCSK_Invalid = 0,
454 PCSK_BSS = 1,
455 PCSK_Data = 2,
456 PCSK_Rodata = 3,
457 PCSK_Text = 4,
458 PCSK_Relro = 5
459 };
460
461 enum PragmaClangSectionAction {
462 PCSA_Set = 0,
463 PCSA_Clear = 1
464 };
465
466 struct PragmaClangSection {
467 std::string SectionName;
468 bool Valid = false;
469 SourceLocation PragmaLocation;
470 };
471
472 PragmaClangSection PragmaClangBSSSection;
473 PragmaClangSection PragmaClangDataSection;
474 PragmaClangSection PragmaClangRodataSection;
475 PragmaClangSection PragmaClangRelroSection;
476 PragmaClangSection PragmaClangTextSection;
477
478 enum PragmaMsStackAction {
479 PSK_Reset = 0x0, // #pragma ()
480 PSK_Set = 0x1, // #pragma (value)
481 PSK_Push = 0x2, // #pragma (push[, id])
482 PSK_Pop = 0x4, // #pragma (pop[, id])
483 PSK_Show = 0x8, // #pragma (show) -- only for "pack"!
484 PSK_Push_Set = PSK_Push | PSK_Set, // #pragma (push[, id], value)
485 PSK_Pop_Set = PSK_Pop | PSK_Set, // #pragma (pop[, id], value)
486 };
487
488 // #pragma pack and align.
489 class AlignPackInfo {
490 public:
491 // `Native` represents default align mode, which may vary based on the
492 // platform.
493 enum Mode : unsigned char { Native, Natural, Packed, Mac68k };
494
495 // #pragma pack info constructor
496 AlignPackInfo(AlignPackInfo::Mode M, unsigned Num, bool IsXL)
497 : PackAttr(true), AlignMode(M), PackNumber(Num), XLStack(IsXL) {
498 assert(Num == PackNumber && "The pack number has been truncated.")(static_cast <bool> (Num == PackNumber && "The pack number has been truncated."
) ? void (0) : __assert_fail ("Num == PackNumber && \"The pack number has been truncated.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 498, __extension__ __PRETTY_FUNCTION__))
;
499 }
500
501 // #pragma align info constructor
502 AlignPackInfo(AlignPackInfo::Mode M, bool IsXL)
503 : PackAttr(false), AlignMode(M),
504 PackNumber(M == Packed ? 1 : UninitPackVal), XLStack(IsXL) {}
505
506 explicit AlignPackInfo(bool IsXL) : AlignPackInfo(Native, IsXL) {}
507
508 AlignPackInfo() : AlignPackInfo(Native, false) {}
509
510 // When a AlignPackInfo itself cannot be used, this returns an 32-bit
511 // integer encoding for it. This should only be passed to
512 // AlignPackInfo::getFromRawEncoding, it should not be inspected directly.
513 static uint32_t getRawEncoding(const AlignPackInfo &Info) {
514 std::uint32_t Encoding{};
515 if (Info.IsXLStack())
516 Encoding |= IsXLMask;
517
518 Encoding |= static_cast<uint32_t>(Info.getAlignMode()) << 1;
519
520 if (Info.IsPackAttr())
521 Encoding |= PackAttrMask;
522
523 Encoding |= static_cast<uint32_t>(Info.getPackNumber()) << 4;
524
525 return Encoding;
526 }
527
528 static AlignPackInfo getFromRawEncoding(unsigned Encoding) {
529 bool IsXL = static_cast<bool>(Encoding & IsXLMask);
530 AlignPackInfo::Mode M =
531 static_cast<AlignPackInfo::Mode>((Encoding & AlignModeMask) >> 1);
532 int PackNumber = (Encoding & PackNumMask) >> 4;
533
534 if (Encoding & PackAttrMask)
535 return AlignPackInfo(M, PackNumber, IsXL);
536
537 return AlignPackInfo(M, IsXL);
538 }
539
540 bool IsPackAttr() const { return PackAttr; }
541
542 bool IsAlignAttr() const { return !PackAttr; }
543
544 Mode getAlignMode() const { return AlignMode; }
545
546 unsigned getPackNumber() const { return PackNumber; }
547
548 bool IsPackSet() const {
549 // #pragma align, #pragma pack(), and #pragma pack(0) do not set the pack
550 // attriute on a decl.
551 return PackNumber != UninitPackVal && PackNumber != 0;
552 }
553
554 bool IsXLStack() const { return XLStack; }
555
556 bool operator==(const AlignPackInfo &Info) const {
557 return std::tie(AlignMode, PackNumber, PackAttr, XLStack) ==
558 std::tie(Info.AlignMode, Info.PackNumber, Info.PackAttr,
559 Info.XLStack);
560 }
561
562 bool operator!=(const AlignPackInfo &Info) const {
563 return !(*this == Info);
564 }
565
566 private:
567 /// \brief True if this is a pragma pack attribute,
568 /// not a pragma align attribute.
569 bool PackAttr;
570
571 /// \brief The alignment mode that is in effect.
572 Mode AlignMode;
573
574 /// \brief The pack number of the stack.
575 unsigned char PackNumber;
576
577 /// \brief True if it is a XL #pragma align/pack stack.
578 bool XLStack;
579
580 /// \brief Uninitialized pack value.
581 static constexpr unsigned char UninitPackVal = -1;
582
583 // Masks to encode and decode an AlignPackInfo.
584 static constexpr uint32_t IsXLMask{0x0000'0001};
585 static constexpr uint32_t AlignModeMask{0x0000'0006};
586 static constexpr uint32_t PackAttrMask{0x00000'0008};
587 static constexpr uint32_t PackNumMask{0x0000'01F0};
588 };
589
590 template<typename ValueType>
591 struct PragmaStack {
592 struct Slot {
593 llvm::StringRef StackSlotLabel;
594 ValueType Value;
595 SourceLocation PragmaLocation;
596 SourceLocation PragmaPushLocation;
597 Slot(llvm::StringRef StackSlotLabel, ValueType Value,
598 SourceLocation PragmaLocation, SourceLocation PragmaPushLocation)
599 : StackSlotLabel(StackSlotLabel), Value(Value),
600 PragmaLocation(PragmaLocation),
601 PragmaPushLocation(PragmaPushLocation) {}
602 };
603
604 void Act(SourceLocation PragmaLocation, PragmaMsStackAction Action,
605 llvm::StringRef StackSlotLabel, ValueType Value) {
606 if (Action == PSK_Reset) {
607 CurrentValue = DefaultValue;
608 CurrentPragmaLocation = PragmaLocation;
609 return;
610 }
611 if (Action & PSK_Push)
612 Stack.emplace_back(StackSlotLabel, CurrentValue, CurrentPragmaLocation,
613 PragmaLocation);
614 else if (Action & PSK_Pop) {
615 if (!StackSlotLabel.empty()) {
616 // If we've got a label, try to find it and jump there.
617 auto I = llvm::find_if(llvm::reverse(Stack), [&](const Slot &x) {
618 return x.StackSlotLabel == StackSlotLabel;
619 });
620 // If we found the label so pop from there.
621 if (I != Stack.rend()) {
622 CurrentValue = I->Value;
623 CurrentPragmaLocation = I->PragmaLocation;
624 Stack.erase(std::prev(I.base()), Stack.end());
625 }
626 } else if (!Stack.empty()) {
627 // We do not have a label, just pop the last entry.
628 CurrentValue = Stack.back().Value;
629 CurrentPragmaLocation = Stack.back().PragmaLocation;
630 Stack.pop_back();
631 }
632 }
633 if (Action & PSK_Set) {
634 CurrentValue = Value;
635 CurrentPragmaLocation = PragmaLocation;
636 }
637 }
638
639 // MSVC seems to add artificial slots to #pragma stacks on entering a C++
640 // method body to restore the stacks on exit, so it works like this:
641 //
642 // struct S {
643 // #pragma <name>(push, InternalPragmaSlot, <current_pragma_value>)
644 // void Method {}
645 // #pragma <name>(pop, InternalPragmaSlot)
646 // };
647 //
648 // It works even with #pragma vtordisp, although MSVC doesn't support
649 // #pragma vtordisp(push [, id], n)
650 // syntax.
651 //
652 // Push / pop a named sentinel slot.
653 void SentinelAction(PragmaMsStackAction Action, StringRef Label) {
654 assert((Action == PSK_Push || Action == PSK_Pop) &&(static_cast <bool> ((Action == PSK_Push || Action == PSK_Pop
) && "Can only push / pop #pragma stack sentinels!") ?
void (0) : __assert_fail ("(Action == PSK_Push || Action == PSK_Pop) && \"Can only push / pop #pragma stack sentinels!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 655, __extension__ __PRETTY_FUNCTION__))
655 "Can only push / pop #pragma stack sentinels!")(static_cast <bool> ((Action == PSK_Push || Action == PSK_Pop
) && "Can only push / pop #pragma stack sentinels!") ?
void (0) : __assert_fail ("(Action == PSK_Push || Action == PSK_Pop) && \"Can only push / pop #pragma stack sentinels!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 655, __extension__ __PRETTY_FUNCTION__))
;
656 Act(CurrentPragmaLocation, Action, Label, CurrentValue);
657 }
658
659 // Constructors.
660 explicit PragmaStack(const ValueType &Default)
661 : DefaultValue(Default), CurrentValue(Default) {}
662
663 bool hasValue() const { return CurrentValue != DefaultValue; }
664
665 SmallVector<Slot, 2> Stack;
666 ValueType DefaultValue; // Value used for PSK_Reset action.
667 ValueType CurrentValue;
668 SourceLocation CurrentPragmaLocation;
669 };
670 // FIXME: We should serialize / deserialize these if they occur in a PCH (but
671 // we shouldn't do so if they're in a module).
672
673 /// Whether to insert vtordisps prior to virtual bases in the Microsoft
674 /// C++ ABI. Possible values are 0, 1, and 2, which mean:
675 ///
676 /// 0: Suppress all vtordisps
677 /// 1: Insert vtordisps in the presence of vbase overrides and non-trivial
678 /// structors
679 /// 2: Always insert vtordisps to support RTTI on partially constructed
680 /// objects
681 PragmaStack<MSVtorDispMode> VtorDispStack;
682 PragmaStack<AlignPackInfo> AlignPackStack;
683 // The current #pragma align/pack values and locations at each #include.
684 struct AlignPackIncludeState {
685 AlignPackInfo CurrentValue;
686 SourceLocation CurrentPragmaLocation;
687 bool HasNonDefaultValue, ShouldWarnOnInclude;
688 };
689 SmallVector<AlignPackIncludeState, 8> AlignPackIncludeStack;
690 // Segment #pragmas.
691 PragmaStack<StringLiteral *> DataSegStack;
692 PragmaStack<StringLiteral *> BSSSegStack;
693 PragmaStack<StringLiteral *> ConstSegStack;
694 PragmaStack<StringLiteral *> CodeSegStack;
695
696 // This stack tracks the current state of Sema.CurFPFeatures.
697 PragmaStack<FPOptionsOverride> FpPragmaStack;
698 FPOptionsOverride CurFPFeatureOverrides() {
699 FPOptionsOverride result;
700 if (!FpPragmaStack.hasValue()) {
701 result = FPOptionsOverride();
702 } else {
703 result = FpPragmaStack.CurrentValue;
704 }
705 return result;
706 }
707
708 // RAII object to push / pop sentinel slots for all MS #pragma stacks.
709 // Actions should be performed only if we enter / exit a C++ method body.
710 class PragmaStackSentinelRAII {
711 public:
712 PragmaStackSentinelRAII(Sema &S, StringRef SlotLabel, bool ShouldAct);
713 ~PragmaStackSentinelRAII();
714
715 private:
716 Sema &S;
717 StringRef SlotLabel;
718 bool ShouldAct;
719 };
720
721 /// A mapping that describes the nullability we've seen in each header file.
722 FileNullabilityMap NullabilityMap;
723
724 /// Last section used with #pragma init_seg.
725 StringLiteral *CurInitSeg;
726 SourceLocation CurInitSegLoc;
727
728 /// VisContext - Manages the stack for \#pragma GCC visibility.
729 void *VisContext; // Really a "PragmaVisStack*"
730
731 /// This an attribute introduced by \#pragma clang attribute.
732 struct PragmaAttributeEntry {
733 SourceLocation Loc;
734 ParsedAttr *Attribute;
735 SmallVector<attr::SubjectMatchRule, 4> MatchRules;
736 bool IsUsed;
737 };
738
739 /// A push'd group of PragmaAttributeEntries.
740 struct PragmaAttributeGroup {
741 /// The location of the push attribute.
742 SourceLocation Loc;
743 /// The namespace of this push group.
744 const IdentifierInfo *Namespace;
745 SmallVector<PragmaAttributeEntry, 2> Entries;
746 };
747
748 SmallVector<PragmaAttributeGroup, 2> PragmaAttributeStack;
749
750 /// The declaration that is currently receiving an attribute from the
751 /// #pragma attribute stack.
752 const Decl *PragmaAttributeCurrentTargetDecl;
753
754 /// This represents the last location of a "#pragma clang optimize off"
755 /// directive if such a directive has not been closed by an "on" yet. If
756 /// optimizations are currently "on", this is set to an invalid location.
757 SourceLocation OptimizeOffPragmaLocation;
758
759 /// Flag indicating if Sema is building a recovery call expression.
760 ///
761 /// This flag is used to avoid building recovery call expressions
762 /// if Sema is already doing so, which would cause infinite recursions.
763 bool IsBuildingRecoveryCallExpr;
764
765 /// Used to control the generation of ExprWithCleanups.
766 CleanupInfo Cleanup;
767
768 /// ExprCleanupObjects - This is the stack of objects requiring
769 /// cleanup that are created by the current full expression.
770 SmallVector<ExprWithCleanups::CleanupObject, 8> ExprCleanupObjects;
771
772 /// Store a set of either DeclRefExprs or MemberExprs that contain a reference
773 /// to a variable (constant) that may or may not be odr-used in this Expr, and
774 /// we won't know until all lvalue-to-rvalue and discarded value conversions
775 /// have been applied to all subexpressions of the enclosing full expression.
776 /// This is cleared at the end of each full expression.
777 using MaybeODRUseExprSet = llvm::SetVector<Expr *, SmallVector<Expr *, 4>,
778 llvm::SmallPtrSet<Expr *, 4>>;
779 MaybeODRUseExprSet MaybeODRUseExprs;
780
781 std::unique_ptr<sema::FunctionScopeInfo> CachedFunctionScope;
782
783 /// Stack containing information about each of the nested
784 /// function, block, and method scopes that are currently active.
785 SmallVector<sema::FunctionScopeInfo *, 4> FunctionScopes;
786
787 /// The index of the first FunctionScope that corresponds to the current
788 /// context.
789 unsigned FunctionScopesStart = 0;
790
791 ArrayRef<sema::FunctionScopeInfo*> getFunctionScopes() const {
792 return llvm::makeArrayRef(FunctionScopes.begin() + FunctionScopesStart,
793 FunctionScopes.end());
794 }
795
796 /// Stack containing information needed when in C++2a an 'auto' is encountered
797 /// in a function declaration parameter type specifier in order to invent a
798 /// corresponding template parameter in the enclosing abbreviated function
799 /// template. This information is also present in LambdaScopeInfo, stored in
800 /// the FunctionScopes stack.
801 SmallVector<InventedTemplateParameterInfo, 4> InventedParameterInfos;
802
803 /// The index of the first InventedParameterInfo that refers to the current
804 /// context.
805 unsigned InventedParameterInfosStart = 0;
806
807 ArrayRef<InventedTemplateParameterInfo> getInventedParameterInfos() const {
808 return llvm::makeArrayRef(InventedParameterInfos.begin() +
809 InventedParameterInfosStart,
810 InventedParameterInfos.end());
811 }
812
813 typedef LazyVector<TypedefNameDecl *, ExternalSemaSource,
814 &ExternalSemaSource::ReadExtVectorDecls, 2, 2>
815 ExtVectorDeclsType;
816
817 /// ExtVectorDecls - This is a list all the extended vector types. This allows
818 /// us to associate a raw vector type with one of the ext_vector type names.
819 /// This is only necessary for issuing pretty diagnostics.
820 ExtVectorDeclsType ExtVectorDecls;
821
822 /// FieldCollector - Collects CXXFieldDecls during parsing of C++ classes.
823 std::unique_ptr<CXXFieldCollector> FieldCollector;
824
825 typedef llvm::SmallSetVector<NamedDecl *, 16> NamedDeclSetType;
826
827 /// Set containing all declared private fields that are not used.
828 NamedDeclSetType UnusedPrivateFields;
829
830 /// Set containing all typedefs that are likely unused.
831 llvm::SmallSetVector<const TypedefNameDecl *, 4>
832 UnusedLocalTypedefNameCandidates;
833
834 /// Delete-expressions to be analyzed at the end of translation unit
835 ///
836 /// This list contains class members, and locations of delete-expressions
837 /// that could not be proven as to whether they mismatch with new-expression
838 /// used in initializer of the field.
839 typedef std::pair<SourceLocation, bool> DeleteExprLoc;
840 typedef llvm::SmallVector<DeleteExprLoc, 4> DeleteLocs;
841 llvm::MapVector<FieldDecl *, DeleteLocs> DeleteExprs;
842
843 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 8> RecordDeclSetTy;
844
845 /// PureVirtualClassDiagSet - a set of class declarations which we have
846 /// emitted a list of pure virtual functions. Used to prevent emitting the
847 /// same list more than once.
848 std::unique_ptr<RecordDeclSetTy> PureVirtualClassDiagSet;
849
850 /// ParsingInitForAutoVars - a set of declarations with auto types for which
851 /// we are currently parsing the initializer.
852 llvm::SmallPtrSet<const Decl*, 4> ParsingInitForAutoVars;
853
854 /// Look for a locally scoped extern "C" declaration by the given name.
855 NamedDecl *findLocallyScopedExternCDecl(DeclarationName Name);
856
857 typedef LazyVector<VarDecl *, ExternalSemaSource,
858 &ExternalSemaSource::ReadTentativeDefinitions, 2, 2>
859 TentativeDefinitionsType;
860
861 /// All the tentative definitions encountered in the TU.
862 TentativeDefinitionsType TentativeDefinitions;
863
864 /// All the external declarations encoutered and used in the TU.
865 SmallVector<VarDecl *, 4> ExternalDeclarations;
866
867 typedef LazyVector<const DeclaratorDecl *, ExternalSemaSource,
868 &ExternalSemaSource::ReadUnusedFileScopedDecls, 2, 2>
869 UnusedFileScopedDeclsType;
870
871 /// The set of file scoped decls seen so far that have not been used
872 /// and must warn if not used. Only contains the first declaration.
873 UnusedFileScopedDeclsType UnusedFileScopedDecls;
874
875 typedef LazyVector<CXXConstructorDecl *, ExternalSemaSource,
876 &ExternalSemaSource::ReadDelegatingConstructors, 2, 2>
877 DelegatingCtorDeclsType;
878
879 /// All the delegating constructors seen so far in the file, used for
880 /// cycle detection at the end of the TU.
881 DelegatingCtorDeclsType DelegatingCtorDecls;
882
883 /// All the overriding functions seen during a class definition
884 /// that had their exception spec checks delayed, plus the overridden
885 /// function.
886 SmallVector<std::pair<const CXXMethodDecl*, const CXXMethodDecl*>, 2>
887 DelayedOverridingExceptionSpecChecks;
888
889 /// All the function redeclarations seen during a class definition that had
890 /// their exception spec checks delayed, plus the prior declaration they
891 /// should be checked against. Except during error recovery, the new decl
892 /// should always be a friend declaration, as that's the only valid way to
893 /// redeclare a special member before its class is complete.
894 SmallVector<std::pair<FunctionDecl*, FunctionDecl*>, 2>
895 DelayedEquivalentExceptionSpecChecks;
896
897 typedef llvm::MapVector<const FunctionDecl *,
898 std::unique_ptr<LateParsedTemplate>>
899 LateParsedTemplateMapT;
900 LateParsedTemplateMapT LateParsedTemplateMap;
901
902 /// Callback to the parser to parse templated functions when needed.
903 typedef void LateTemplateParserCB(void *P, LateParsedTemplate &LPT);
904 typedef void LateTemplateParserCleanupCB(void *P);
905 LateTemplateParserCB *LateTemplateParser;
906 LateTemplateParserCleanupCB *LateTemplateParserCleanup;
907 void *OpaqueParser;
908
909 void SetLateTemplateParser(LateTemplateParserCB *LTP,
910 LateTemplateParserCleanupCB *LTPCleanup,
911 void *P) {
912 LateTemplateParser = LTP;
913 LateTemplateParserCleanup = LTPCleanup;
914 OpaqueParser = P;
915 }
916
917 // Does the work necessary to deal with a SYCL kernel lambda. At the moment,
918 // this just marks the list of lambdas required to name the kernel.
919 void AddSYCLKernelLambda(const FunctionDecl *FD);
920
921 class DelayedDiagnostics;
922
923 class DelayedDiagnosticsState {
924 sema::DelayedDiagnosticPool *SavedPool;
925 friend class Sema::DelayedDiagnostics;
926 };
927 typedef DelayedDiagnosticsState ParsingDeclState;
928 typedef DelayedDiagnosticsState ProcessingContextState;
929
930 /// A class which encapsulates the logic for delaying diagnostics
931 /// during parsing and other processing.
932 class DelayedDiagnostics {
933 /// The current pool of diagnostics into which delayed
934 /// diagnostics should go.
935 sema::DelayedDiagnosticPool *CurPool;
936
937 public:
938 DelayedDiagnostics() : CurPool(nullptr) {}
939
940 /// Adds a delayed diagnostic.
941 void add(const sema::DelayedDiagnostic &diag); // in DelayedDiagnostic.h
942
943 /// Determines whether diagnostics should be delayed.
944 bool shouldDelayDiagnostics() { return CurPool != nullptr; }
945
946 /// Returns the current delayed-diagnostics pool.
947 sema::DelayedDiagnosticPool *getCurrentPool() const {
948 return CurPool;
949 }
950
951 /// Enter a new scope. Access and deprecation diagnostics will be
952 /// collected in this pool.
953 DelayedDiagnosticsState push(sema::DelayedDiagnosticPool &pool) {
954 DelayedDiagnosticsState state;
955 state.SavedPool = CurPool;
956 CurPool = &pool;
957 return state;
958 }
959
960 /// Leave a delayed-diagnostic state that was previously pushed.
961 /// Do not emit any of the diagnostics. This is performed as part
962 /// of the bookkeeping of popping a pool "properly".
963 void popWithoutEmitting(DelayedDiagnosticsState state) {
964 CurPool = state.SavedPool;
965 }
966
967 /// Enter a new scope where access and deprecation diagnostics are
968 /// not delayed.
969 DelayedDiagnosticsState pushUndelayed() {
970 DelayedDiagnosticsState state;
971 state.SavedPool = CurPool;
972 CurPool = nullptr;
973 return state;
974 }
975
976 /// Undo a previous pushUndelayed().
977 void popUndelayed(DelayedDiagnosticsState state) {
978 assert(CurPool == nullptr)(static_cast <bool> (CurPool == nullptr) ? void (0) : __assert_fail
("CurPool == nullptr", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 978, __extension__ __PRETTY_FUNCTION__))
;
979 CurPool = state.SavedPool;
980 }
981 } DelayedDiagnostics;
982
983 /// A RAII object to temporarily push a declaration context.
984 class ContextRAII {
985 private:
986 Sema &S;
987 DeclContext *SavedContext;
988 ProcessingContextState SavedContextState;
989 QualType SavedCXXThisTypeOverride;
990 unsigned SavedFunctionScopesStart;
991 unsigned SavedInventedParameterInfosStart;
992
993 public:
994 ContextRAII(Sema &S, DeclContext *ContextToPush, bool NewThisContext = true)
995 : S(S), SavedContext(S.CurContext),
996 SavedContextState(S.DelayedDiagnostics.pushUndelayed()),
997 SavedCXXThisTypeOverride(S.CXXThisTypeOverride),
998 SavedFunctionScopesStart(S.FunctionScopesStart),
999 SavedInventedParameterInfosStart(S.InventedParameterInfosStart)
1000 {
1001 assert(ContextToPush && "pushing null context")(static_cast <bool> (ContextToPush && "pushing null context"
) ? void (0) : __assert_fail ("ContextToPush && \"pushing null context\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 1001, __extension__ __PRETTY_FUNCTION__))
;
1002 S.CurContext = ContextToPush;
1003 if (NewThisContext)
1004 S.CXXThisTypeOverride = QualType();
1005 // Any saved FunctionScopes do not refer to this context.
1006 S.FunctionScopesStart = S.FunctionScopes.size();
1007 S.InventedParameterInfosStart = S.InventedParameterInfos.size();
1008 }
1009
1010 void pop() {
1011 if (!SavedContext) return;
1012 S.CurContext = SavedContext;
1013 S.DelayedDiagnostics.popUndelayed(SavedContextState);
1014 S.CXXThisTypeOverride = SavedCXXThisTypeOverride;
1015 S.FunctionScopesStart = SavedFunctionScopesStart;
1016 S.InventedParameterInfosStart = SavedInventedParameterInfosStart;
1017 SavedContext = nullptr;
1018 }
1019
1020 ~ContextRAII() {
1021 pop();
1022 }
1023 };
1024
1025 /// Whether the AST is currently being rebuilt to correct immediate
1026 /// invocations. Immediate invocation candidates and references to consteval
1027 /// functions aren't tracked when this is set.
1028 bool RebuildingImmediateInvocation = false;
1029
1030 /// Used to change context to isConstantEvaluated without pushing a heavy
1031 /// ExpressionEvaluationContextRecord object.
1032 bool isConstantEvaluatedOverride;
1033
1034 bool isConstantEvaluated() {
1035 return ExprEvalContexts.back().isConstantEvaluated() ||
1036 isConstantEvaluatedOverride;
1037 }
1038
1039 /// RAII object to handle the state changes required to synthesize
1040 /// a function body.
1041 class SynthesizedFunctionScope {
1042 Sema &S;
1043 Sema::ContextRAII SavedContext;
1044 bool PushedCodeSynthesisContext = false;
1045
1046 public:
1047 SynthesizedFunctionScope(Sema &S, DeclContext *DC)
1048 : S(S), SavedContext(S, DC) {
1049 S.PushFunctionScope();
1050 S.PushExpressionEvaluationContext(
1051 Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
1052 if (auto *FD = dyn_cast<FunctionDecl>(DC))
1053 FD->setWillHaveBody(true);
1054 else
1055 assert(isa<ObjCMethodDecl>(DC))(static_cast <bool> (isa<ObjCMethodDecl>(DC)) ? void
(0) : __assert_fail ("isa<ObjCMethodDecl>(DC)", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 1055, __extension__ __PRETTY_FUNCTION__))
;
1056 }
1057
1058 void addContextNote(SourceLocation UseLoc) {
1059 assert(!PushedCodeSynthesisContext)(static_cast <bool> (!PushedCodeSynthesisContext) ? void
(0) : __assert_fail ("!PushedCodeSynthesisContext", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 1059, __extension__ __PRETTY_FUNCTION__))
;
1060
1061 Sema::CodeSynthesisContext Ctx;
1062 Ctx.Kind = Sema::CodeSynthesisContext::DefiningSynthesizedFunction;
1063 Ctx.PointOfInstantiation = UseLoc;
1064 Ctx.Entity = cast<Decl>(S.CurContext);
1065 S.pushCodeSynthesisContext(Ctx);
1066
1067 PushedCodeSynthesisContext = true;
1068 }
1069
1070 ~SynthesizedFunctionScope() {
1071 if (PushedCodeSynthesisContext)
1072 S.popCodeSynthesisContext();
1073 if (auto *FD = dyn_cast<FunctionDecl>(S.CurContext))
1074 FD->setWillHaveBody(false);
1075 S.PopExpressionEvaluationContext();
1076 S.PopFunctionScopeInfo();
1077 }
1078 };
1079
1080 /// WeakUndeclaredIdentifiers - Identifiers contained in
1081 /// \#pragma weak before declared. rare. may alias another
1082 /// identifier, declared or undeclared
1083 llvm::MapVector<IdentifierInfo *, WeakInfo> WeakUndeclaredIdentifiers;
1084
1085 /// ExtnameUndeclaredIdentifiers - Identifiers contained in
1086 /// \#pragma redefine_extname before declared. Used in Solaris system headers
1087 /// to define functions that occur in multiple standards to call the version
1088 /// in the currently selected standard.
1089 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*> ExtnameUndeclaredIdentifiers;
1090
1091
1092 /// Load weak undeclared identifiers from the external source.
1093 void LoadExternalWeakUndeclaredIdentifiers();
1094
1095 /// WeakTopLevelDecl - Translation-unit scoped declarations generated by
1096 /// \#pragma weak during processing of other Decls.
1097 /// I couldn't figure out a clean way to generate these in-line, so
1098 /// we store them here and handle separately -- which is a hack.
1099 /// It would be best to refactor this.
1100 SmallVector<Decl*,2> WeakTopLevelDecl;
1101
1102 IdentifierResolver IdResolver;
1103
1104 /// Translation Unit Scope - useful to Objective-C actions that need
1105 /// to lookup file scope declarations in the "ordinary" C decl namespace.
1106 /// For example, user-defined classes, built-in "id" type, etc.
1107 Scope *TUScope;
1108
1109 /// The C++ "std" namespace, where the standard library resides.
1110 LazyDeclPtr StdNamespace;
1111
1112 /// The C++ "std::bad_alloc" class, which is defined by the C++
1113 /// standard library.
1114 LazyDeclPtr StdBadAlloc;
1115
1116 /// The C++ "std::align_val_t" enum class, which is defined by the C++
1117 /// standard library.
1118 LazyDeclPtr StdAlignValT;
1119
1120 /// The C++ "std::experimental" namespace, where the experimental parts
1121 /// of the standard library resides.
1122 NamespaceDecl *StdExperimentalNamespaceCache;
1123
1124 /// The C++ "std::initializer_list" template, which is defined in
1125 /// \<initializer_list>.
1126 ClassTemplateDecl *StdInitializerList;
1127
1128 /// The C++ "std::coroutine_traits" template, which is defined in
1129 /// \<coroutine_traits>
1130 ClassTemplateDecl *StdCoroutineTraitsCache;
1131
1132 /// The C++ "type_info" declaration, which is defined in \<typeinfo>.
1133 RecordDecl *CXXTypeInfoDecl;
1134
1135 /// The MSVC "_GUID" struct, which is defined in MSVC header files.
1136 RecordDecl *MSVCGuidDecl;
1137
1138 /// Caches identifiers/selectors for NSFoundation APIs.
1139 std::unique_ptr<NSAPI> NSAPIObj;
1140
1141 /// The declaration of the Objective-C NSNumber class.
1142 ObjCInterfaceDecl *NSNumberDecl;
1143
1144 /// The declaration of the Objective-C NSValue class.
1145 ObjCInterfaceDecl *NSValueDecl;
1146
1147 /// Pointer to NSNumber type (NSNumber *).
1148 QualType NSNumberPointer;
1149
1150 /// Pointer to NSValue type (NSValue *).
1151 QualType NSValuePointer;
1152
1153 /// The Objective-C NSNumber methods used to create NSNumber literals.
1154 ObjCMethodDecl *NSNumberLiteralMethods[NSAPI::NumNSNumberLiteralMethods];
1155
1156 /// The declaration of the Objective-C NSString class.
1157 ObjCInterfaceDecl *NSStringDecl;
1158
1159 /// Pointer to NSString type (NSString *).
1160 QualType NSStringPointer;
1161
1162 /// The declaration of the stringWithUTF8String: method.
1163 ObjCMethodDecl *StringWithUTF8StringMethod;
1164
1165 /// The declaration of the valueWithBytes:objCType: method.
1166 ObjCMethodDecl *ValueWithBytesObjCTypeMethod;
1167
1168 /// The declaration of the Objective-C NSArray class.
1169 ObjCInterfaceDecl *NSArrayDecl;
1170
1171 /// The declaration of the arrayWithObjects:count: method.
1172 ObjCMethodDecl *ArrayWithObjectsMethod;
1173
1174 /// The declaration of the Objective-C NSDictionary class.
1175 ObjCInterfaceDecl *NSDictionaryDecl;
1176
1177 /// The declaration of the dictionaryWithObjects:forKeys:count: method.
1178 ObjCMethodDecl *DictionaryWithObjectsMethod;
1179
1180 /// id<NSCopying> type.
1181 QualType QIDNSCopying;
1182
1183 /// will hold 'respondsToSelector:'
1184 Selector RespondsToSelectorSel;
1185
1186 /// A flag to remember whether the implicit forms of operator new and delete
1187 /// have been declared.
1188 bool GlobalNewDeleteDeclared;
1189
1190 /// Describes how the expressions currently being parsed are
1191 /// evaluated at run-time, if at all.
1192 enum class ExpressionEvaluationContext {
1193 /// The current expression and its subexpressions occur within an
1194 /// unevaluated operand (C++11 [expr]p7), such as the subexpression of
1195 /// \c sizeof, where the type of the expression may be significant but
1196 /// no code will be generated to evaluate the value of the expression at
1197 /// run time.
1198 Unevaluated,
1199
1200 /// The current expression occurs within a braced-init-list within
1201 /// an unevaluated operand. This is mostly like a regular unevaluated
1202 /// context, except that we still instantiate constexpr functions that are
1203 /// referenced here so that we can perform narrowing checks correctly.
1204 UnevaluatedList,
1205
1206 /// The current expression occurs within a discarded statement.
1207 /// This behaves largely similarly to an unevaluated operand in preventing
1208 /// definitions from being required, but not in other ways.
1209 DiscardedStatement,
1210
1211 /// The current expression occurs within an unevaluated
1212 /// operand that unconditionally permits abstract references to
1213 /// fields, such as a SIZE operator in MS-style inline assembly.
1214 UnevaluatedAbstract,
1215
1216 /// The current context is "potentially evaluated" in C++11 terms,
1217 /// but the expression is evaluated at compile-time (like the values of
1218 /// cases in a switch statement).
1219 ConstantEvaluated,
1220
1221 /// The current expression is potentially evaluated at run time,
1222 /// which means that code may be generated to evaluate the value of the
1223 /// expression at run time.
1224 PotentiallyEvaluated,
1225
1226 /// The current expression is potentially evaluated, but any
1227 /// declarations referenced inside that expression are only used if
1228 /// in fact the current expression is used.
1229 ///
1230 /// This value is used when parsing default function arguments, for which
1231 /// we would like to provide diagnostics (e.g., passing non-POD arguments
1232 /// through varargs) but do not want to mark declarations as "referenced"
1233 /// until the default argument is used.
1234 PotentiallyEvaluatedIfUsed
1235 };
1236
1237 using ImmediateInvocationCandidate = llvm::PointerIntPair<ConstantExpr *, 1>;
1238
1239 /// Data structure used to record current or nested
1240 /// expression evaluation contexts.
1241 struct ExpressionEvaluationContextRecord {
1242 /// The expression evaluation context.
1243 ExpressionEvaluationContext Context;
1244
1245 /// Whether the enclosing context needed a cleanup.
1246 CleanupInfo ParentCleanup;
1247
1248 /// The number of active cleanup objects when we entered
1249 /// this expression evaluation context.
1250 unsigned NumCleanupObjects;
1251
1252 /// The number of typos encountered during this expression evaluation
1253 /// context (i.e. the number of TypoExprs created).
1254 unsigned NumTypos;
1255
1256 MaybeODRUseExprSet SavedMaybeODRUseExprs;
1257
1258 /// The lambdas that are present within this context, if it
1259 /// is indeed an unevaluated context.
1260 SmallVector<LambdaExpr *, 2> Lambdas;
1261
1262 /// The declaration that provides context for lambda expressions
1263 /// and block literals if the normal declaration context does not
1264 /// suffice, e.g., in a default function argument.
1265 Decl *ManglingContextDecl;
1266
1267 /// If we are processing a decltype type, a set of call expressions
1268 /// for which we have deferred checking the completeness of the return type.
1269 SmallVector<CallExpr *, 8> DelayedDecltypeCalls;
1270
1271 /// If we are processing a decltype type, a set of temporary binding
1272 /// expressions for which we have deferred checking the destructor.
1273 SmallVector<CXXBindTemporaryExpr *, 8> DelayedDecltypeBinds;
1274
1275 llvm::SmallPtrSet<const Expr *, 8> PossibleDerefs;
1276
1277 /// Expressions appearing as the LHS of a volatile assignment in this
1278 /// context. We produce a warning for these when popping the context if
1279 /// they are not discarded-value expressions nor unevaluated operands.
1280 SmallVector<Expr*, 2> VolatileAssignmentLHSs;
1281
1282 /// Set of candidates for starting an immediate invocation.
1283 llvm::SmallVector<ImmediateInvocationCandidate, 4> ImmediateInvocationCandidates;
1284
1285 /// Set of DeclRefExprs referencing a consteval function when used in a
1286 /// context not already known to be immediately invoked.
1287 llvm::SmallPtrSet<DeclRefExpr *, 4> ReferenceToConsteval;
1288
1289 /// \brief Describes whether we are in an expression constext which we have
1290 /// to handle differently.
1291 enum ExpressionKind {
1292 EK_Decltype, EK_TemplateArgument, EK_Other
1293 } ExprContext;
1294
1295 ExpressionEvaluationContextRecord(ExpressionEvaluationContext Context,
1296 unsigned NumCleanupObjects,
1297 CleanupInfo ParentCleanup,
1298 Decl *ManglingContextDecl,
1299 ExpressionKind ExprContext)
1300 : Context(Context), ParentCleanup(ParentCleanup),
1301 NumCleanupObjects(NumCleanupObjects), NumTypos(0),
1302 ManglingContextDecl(ManglingContextDecl), ExprContext(ExprContext) {}
1303
1304 bool isUnevaluated() const {
1305 return Context == ExpressionEvaluationContext::Unevaluated ||
1306 Context == ExpressionEvaluationContext::UnevaluatedAbstract ||
1307 Context == ExpressionEvaluationContext::UnevaluatedList;
1308 }
1309 bool isConstantEvaluated() const {
1310 return Context == ExpressionEvaluationContext::ConstantEvaluated;
1311 }
1312 };
1313
1314 /// A stack of expression evaluation contexts.
1315 SmallVector<ExpressionEvaluationContextRecord, 8> ExprEvalContexts;
1316
1317 /// Emit a warning for all pending noderef expressions that we recorded.
1318 void WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec);
1319
1320 /// Compute the mangling number context for a lambda expression or
1321 /// block literal. Also return the extra mangling decl if any.
1322 ///
1323 /// \param DC - The DeclContext containing the lambda expression or
1324 /// block literal.
1325 std::tuple<MangleNumberingContext *, Decl *>
1326 getCurrentMangleNumberContext(const DeclContext *DC);
1327
1328
1329 /// SpecialMemberOverloadResult - The overloading result for a special member
1330 /// function.
1331 ///
1332 /// This is basically a wrapper around PointerIntPair. The lowest bits of the
1333 /// integer are used to determine whether overload resolution succeeded.
1334 class SpecialMemberOverloadResult {
1335 public:
1336 enum Kind {
1337 NoMemberOrDeleted,
1338 Ambiguous,
1339 Success
1340 };
1341
1342 private:
1343 llvm::PointerIntPair<CXXMethodDecl*, 2> Pair;
1344
1345 public:
1346 SpecialMemberOverloadResult() : Pair() {}
1347 SpecialMemberOverloadResult(CXXMethodDecl *MD)
1348 : Pair(MD, MD->isDeleted() ? NoMemberOrDeleted : Success) {}
1349
1350 CXXMethodDecl *getMethod() const { return Pair.getPointer(); }
1351 void setMethod(CXXMethodDecl *MD) { Pair.setPointer(MD); }
1352
1353 Kind getKind() const { return static_cast<Kind>(Pair.getInt()); }
1354 void setKind(Kind K) { Pair.setInt(K); }
1355 };
1356
1357 class SpecialMemberOverloadResultEntry
1358 : public llvm::FastFoldingSetNode,
1359 public SpecialMemberOverloadResult {
1360 public:
1361 SpecialMemberOverloadResultEntry(const llvm::FoldingSetNodeID &ID)
1362 : FastFoldingSetNode(ID)
1363 {}
1364 };
1365
1366 /// A cache of special member function overload resolution results
1367 /// for C++ records.
1368 llvm::FoldingSet<SpecialMemberOverloadResultEntry> SpecialMemberCache;
1369
1370 /// A cache of the flags available in enumerations with the flag_bits
1371 /// attribute.
1372 mutable llvm::DenseMap<const EnumDecl*, llvm::APInt> FlagBitsCache;
1373
1374 /// The kind of translation unit we are processing.
1375 ///
1376 /// When we're processing a complete translation unit, Sema will perform
1377 /// end-of-translation-unit semantic tasks (such as creating
1378 /// initializers for tentative definitions in C) once parsing has
1379 /// completed. Modules and precompiled headers perform different kinds of
1380 /// checks.
1381 const TranslationUnitKind TUKind;
1382
1383 llvm::BumpPtrAllocator BumpAlloc;
1384
1385 /// The number of SFINAE diagnostics that have been trapped.
1386 unsigned NumSFINAEErrors;
1387
1388 typedef llvm::DenseMap<ParmVarDecl *, llvm::TinyPtrVector<ParmVarDecl *>>
1389 UnparsedDefaultArgInstantiationsMap;
1390
1391 /// A mapping from parameters with unparsed default arguments to the
1392 /// set of instantiations of each parameter.
1393 ///
1394 /// This mapping is a temporary data structure used when parsing
1395 /// nested class templates or nested classes of class templates,
1396 /// where we might end up instantiating an inner class before the
1397 /// default arguments of its methods have been parsed.
1398 UnparsedDefaultArgInstantiationsMap UnparsedDefaultArgInstantiations;
1399
1400 // Contains the locations of the beginning of unparsed default
1401 // argument locations.
1402 llvm::DenseMap<ParmVarDecl *, SourceLocation> UnparsedDefaultArgLocs;
1403
1404 /// UndefinedInternals - all the used, undefined objects which require a
1405 /// definition in this translation unit.
1406 llvm::MapVector<NamedDecl *, SourceLocation> UndefinedButUsed;
1407
1408 /// Determine if VD, which must be a variable or function, is an external
1409 /// symbol that nonetheless can't be referenced from outside this translation
1410 /// unit because its type has no linkage and it's not extern "C".
1411 bool isExternalWithNoLinkageType(ValueDecl *VD);
1412
1413 /// Obtain a sorted list of functions that are undefined but ODR-used.
1414 void getUndefinedButUsed(
1415 SmallVectorImpl<std::pair<NamedDecl *, SourceLocation> > &Undefined);
1416
1417 /// Retrieves list of suspicious delete-expressions that will be checked at
1418 /// the end of translation unit.
1419 const llvm::MapVector<FieldDecl *, DeleteLocs> &
1420 getMismatchingDeleteExpressions() const;
1421
1422 typedef std::pair<ObjCMethodList, ObjCMethodList> GlobalMethods;
1423 typedef llvm::DenseMap<Selector, GlobalMethods> GlobalMethodPool;
1424
1425 /// Method Pool - allows efficient lookup when typechecking messages to "id".
1426 /// We need to maintain a list, since selectors can have differing signatures
1427 /// across classes. In Cocoa, this happens to be extremely uncommon (only 1%
1428 /// of selectors are "overloaded").
1429 /// At the head of the list it is recorded whether there were 0, 1, or >= 2
1430 /// methods inside categories with a particular selector.
1431 GlobalMethodPool MethodPool;
1432
1433 /// Method selectors used in a \@selector expression. Used for implementation
1434 /// of -Wselector.
1435 llvm::MapVector<Selector, SourceLocation> ReferencedSelectors;
1436
1437 /// List of SourceLocations where 'self' is implicitly retained inside a
1438 /// block.
1439 llvm::SmallVector<std::pair<SourceLocation, const BlockDecl *>, 1>
1440 ImplicitlyRetainedSelfLocs;
1441
1442 /// Kinds of C++ special members.
1443 enum CXXSpecialMember {
1444 CXXDefaultConstructor,
1445 CXXCopyConstructor,
1446 CXXMoveConstructor,
1447 CXXCopyAssignment,
1448 CXXMoveAssignment,
1449 CXXDestructor,
1450 CXXInvalid
1451 };
1452
1453 typedef llvm::PointerIntPair<CXXRecordDecl *, 3, CXXSpecialMember>
1454 SpecialMemberDecl;
1455
1456 /// The C++ special members which we are currently in the process of
1457 /// declaring. If this process recursively triggers the declaration of the
1458 /// same special member, we should act as if it is not yet declared.
1459 llvm::SmallPtrSet<SpecialMemberDecl, 4> SpecialMembersBeingDeclared;
1460
1461 /// Kinds of defaulted comparison operator functions.
1462 enum class DefaultedComparisonKind : unsigned char {
1463 /// This is not a defaultable comparison operator.
1464 None,
1465 /// This is an operator== that should be implemented as a series of
1466 /// subobject comparisons.
1467 Equal,
1468 /// This is an operator<=> that should be implemented as a series of
1469 /// subobject comparisons.
1470 ThreeWay,
1471 /// This is an operator!= that should be implemented as a rewrite in terms
1472 /// of a == comparison.
1473 NotEqual,
1474 /// This is an <, <=, >, or >= that should be implemented as a rewrite in
1475 /// terms of a <=> comparison.
1476 Relational,
1477 };
1478
1479 /// The function definitions which were renamed as part of typo-correction
1480 /// to match their respective declarations. We want to keep track of them
1481 /// to ensure that we don't emit a "redefinition" error if we encounter a
1482 /// correctly named definition after the renamed definition.
1483 llvm::SmallPtrSet<const NamedDecl *, 4> TypoCorrectedFunctionDefinitions;
1484
1485 /// Stack of types that correspond to the parameter entities that are
1486 /// currently being copy-initialized. Can be empty.
1487 llvm::SmallVector<QualType, 4> CurrentParameterCopyTypes;
1488
1489 void ReadMethodPool(Selector Sel);
1490 void updateOutOfDateSelector(Selector Sel);
1491
1492 /// Private Helper predicate to check for 'self'.
1493 bool isSelfExpr(Expr *RExpr);
1494 bool isSelfExpr(Expr *RExpr, const ObjCMethodDecl *Method);
1495
1496 /// Cause the active diagnostic on the DiagosticsEngine to be
1497 /// emitted. This is closely coupled to the SemaDiagnosticBuilder class and
1498 /// should not be used elsewhere.
1499 void EmitCurrentDiagnostic(unsigned DiagID);
1500
1501 /// Records and restores the CurFPFeatures state on entry/exit of compound
1502 /// statements.
1503 class FPFeaturesStateRAII {
1504 public:
1505 FPFeaturesStateRAII(Sema &S);
1506 ~FPFeaturesStateRAII();
1507 FPOptionsOverride getOverrides() { return OldOverrides; }
1508
1509 private:
1510 Sema& S;
1511 FPOptions OldFPFeaturesState;
1512 FPOptionsOverride OldOverrides;
1513 int OldEvalMethod;
1514 };
1515
1516 void addImplicitTypedef(StringRef Name, QualType T);
1517
1518 bool WarnedStackExhausted = false;
1519
1520 /// Increment when we find a reference; decrement when we find an ignored
1521 /// assignment. Ultimately the value is 0 if every reference is an ignored
1522 /// assignment.
1523 llvm::DenseMap<const VarDecl *, int> RefsMinusAssignments;
1524
1525 Optional<std::unique_ptr<DarwinSDKInfo>> CachedDarwinSDKInfo;
1526
1527public:
1528 Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer,
1529 TranslationUnitKind TUKind = TU_Complete,
1530 CodeCompleteConsumer *CompletionConsumer = nullptr);
1531 ~Sema();
1532
1533 /// Perform initialization that occurs after the parser has been
1534 /// initialized but before it parses anything.
1535 void Initialize();
1536
1537 /// This virtual key function only exists to limit the emission of debug info
1538 /// describing the Sema class. GCC and Clang only emit debug info for a class
1539 /// with a vtable when the vtable is emitted. Sema is final and not
1540 /// polymorphic, but the debug info size savings are so significant that it is
1541 /// worth adding a vtable just to take advantage of this optimization.
1542 virtual void anchor();
1543
1544 const LangOptions &getLangOpts() const { return LangOpts; }
1545 OpenCLOptions &getOpenCLOptions() { return OpenCLFeatures; }
1546 FPOptions &getCurFPFeatures() { return CurFPFeatures; }
1547
1548 DiagnosticsEngine &getDiagnostics() const { return Diags; }
1549 SourceManager &getSourceManager() const { return SourceMgr; }
1550 Preprocessor &getPreprocessor() const { return PP; }
1551 ASTContext &getASTContext() const { return Context; }
1552 ASTConsumer &getASTConsumer() const { return Consumer; }
1553 ASTMutationListener *getASTMutationListener() const;
1554 ExternalSemaSource* getExternalSource() const { return ExternalSource; }
1555 DarwinSDKInfo *getDarwinSDKInfoForAvailabilityChecking(SourceLocation Loc,
1556 StringRef Platform);
1557
1558 ///Registers an external source. If an external source already exists,
1559 /// creates a multiplex external source and appends to it.
1560 ///
1561 ///\param[in] E - A non-null external sema source.
1562 ///
1563 void addExternalSource(ExternalSemaSource *E);
1564
1565 void PrintStats() const;
1566
1567 /// Warn that the stack is nearly exhausted.
1568 void warnStackExhausted(SourceLocation Loc);
1569
1570 /// Run some code with "sufficient" stack space. (Currently, at least 256K is
1571 /// guaranteed). Produces a warning if we're low on stack space and allocates
1572 /// more in that case. Use this in code that may recurse deeply (for example,
1573 /// in template instantiation) to avoid stack overflow.
1574 void runWithSufficientStackSpace(SourceLocation Loc,
1575 llvm::function_ref<void()> Fn);
1576
1577 /// Helper class that creates diagnostics with optional
1578 /// template instantiation stacks.
1579 ///
1580 /// This class provides a wrapper around the basic DiagnosticBuilder
1581 /// class that emits diagnostics. ImmediateDiagBuilder is
1582 /// responsible for emitting the diagnostic (as DiagnosticBuilder
1583 /// does) and, if the diagnostic comes from inside a template
1584 /// instantiation, printing the template instantiation stack as
1585 /// well.
1586 class ImmediateDiagBuilder : public DiagnosticBuilder {
1587 Sema &SemaRef;
1588 unsigned DiagID;
1589
1590 public:
1591 ImmediateDiagBuilder(DiagnosticBuilder &DB, Sema &SemaRef, unsigned DiagID)
1592 : DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) {}
1593 ImmediateDiagBuilder(DiagnosticBuilder &&DB, Sema &SemaRef, unsigned DiagID)
1594 : DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) {}
1595
1596 // This is a cunning lie. DiagnosticBuilder actually performs move
1597 // construction in its copy constructor (but due to varied uses, it's not
1598 // possible to conveniently express this as actual move construction). So
1599 // the default copy ctor here is fine, because the base class disables the
1600 // source anyway, so the user-defined ~ImmediateDiagBuilder is a safe no-op
1601 // in that case anwyay.
1602 ImmediateDiagBuilder(const ImmediateDiagBuilder &) = default;
1603
1604 ~ImmediateDiagBuilder() {
1605 // If we aren't active, there is nothing to do.
1606 if (!isActive()) return;
1607
1608 // Otherwise, we need to emit the diagnostic. First clear the diagnostic
1609 // builder itself so it won't emit the diagnostic in its own destructor.
1610 //
1611 // This seems wasteful, in that as written the DiagnosticBuilder dtor will
1612 // do its own needless checks to see if the diagnostic needs to be
1613 // emitted. However, because we take care to ensure that the builder
1614 // objects never escape, a sufficiently smart compiler will be able to
1615 // eliminate that code.
1616 Clear();
1617
1618 // Dispatch to Sema to emit the diagnostic.
1619 SemaRef.EmitCurrentDiagnostic(DiagID);
1620 }
1621
1622 /// Teach operator<< to produce an object of the correct type.
1623 template <typename T>
1624 friend const ImmediateDiagBuilder &
1625 operator<<(const ImmediateDiagBuilder &Diag, const T &Value) {
1626 const DiagnosticBuilder &BaseDiag = Diag;
1627 BaseDiag << Value;
1628 return Diag;
1629 }
1630
1631 // It is necessary to limit this to rvalue reference to avoid calling this
1632 // function with a bitfield lvalue argument since non-const reference to
1633 // bitfield is not allowed.
1634 template <typename T, typename = typename std::enable_if<
1635 !std::is_lvalue_reference<T>::value>::type>
1636 const ImmediateDiagBuilder &operator<<(T &&V) const {
1637 const DiagnosticBuilder &BaseDiag = *this;
1638 BaseDiag << std::move(V);
1639 return *this;
1640 }
1641 };
1642
1643 /// A generic diagnostic builder for errors which may or may not be deferred.
1644 ///
1645 /// In CUDA, there exist constructs (e.g. variable-length arrays, try/catch)
1646 /// which are not allowed to appear inside __device__ functions and are
1647 /// allowed to appear in __host__ __device__ functions only if the host+device
1648 /// function is never codegen'ed.
1649 ///
1650 /// To handle this, we use the notion of "deferred diagnostics", where we
1651 /// attach a diagnostic to a FunctionDecl that's emitted iff it's codegen'ed.
1652 ///
1653 /// This class lets you emit either a regular diagnostic, a deferred
1654 /// diagnostic, or no diagnostic at all, according to an argument you pass to
1655 /// its constructor, thus simplifying the process of creating these "maybe
1656 /// deferred" diagnostics.
1657 class SemaDiagnosticBuilder {
1658 public:
1659 enum Kind {
1660 /// Emit no diagnostics.
1661 K_Nop,
1662 /// Emit the diagnostic immediately (i.e., behave like Sema::Diag()).
1663 K_Immediate,
1664 /// Emit the diagnostic immediately, and, if it's a warning or error, also
1665 /// emit a call stack showing how this function can be reached by an a
1666 /// priori known-emitted function.
1667 K_ImmediateWithCallStack,
1668 /// Create a deferred diagnostic, which is emitted only if the function
1669 /// it's attached to is codegen'ed. Also emit a call stack as with
1670 /// K_ImmediateWithCallStack.
1671 K_Deferred
1672 };
1673
1674 SemaDiagnosticBuilder(Kind K, SourceLocation Loc, unsigned DiagID,
1675 FunctionDecl *Fn, Sema &S);
1676 SemaDiagnosticBuilder(SemaDiagnosticBuilder &&D);
1677 SemaDiagnosticBuilder(const SemaDiagnosticBuilder &) = default;
1678 ~SemaDiagnosticBuilder();
1679
1680 bool isImmediate() const { return ImmediateDiag.hasValue(); }
1681
1682 /// Convertible to bool: True if we immediately emitted an error, false if
1683 /// we didn't emit an error or we created a deferred error.
1684 ///
1685 /// Example usage:
1686 ///
1687 /// if (SemaDiagnosticBuilder(...) << foo << bar)
1688 /// return ExprError();
1689 ///
1690 /// But see CUDADiagIfDeviceCode() and CUDADiagIfHostCode() -- you probably
1691 /// want to use these instead of creating a SemaDiagnosticBuilder yourself.
1692 operator bool() const { return isImmediate(); }
1693
1694 template <typename T>
1695 friend const SemaDiagnosticBuilder &
1696 operator<<(const SemaDiagnosticBuilder &Diag, const T &Value) {
1697 if (Diag.ImmediateDiag.hasValue())
1698 *Diag.ImmediateDiag << Value;
1699 else if (Diag.PartialDiagId.hasValue())
1700 Diag.S.DeviceDeferredDiags[Diag.Fn][*Diag.PartialDiagId].second
1701 << Value;
1702 return Diag;
1703 }
1704
1705 // It is necessary to limit this to rvalue reference to avoid calling this
1706 // function with a bitfield lvalue argument since non-const reference to
1707 // bitfield is not allowed.
1708 template <typename T, typename = typename std::enable_if<
1709 !std::is_lvalue_reference<T>::value>::type>
1710 const SemaDiagnosticBuilder &operator<<(T &&V) const {
1711 if (ImmediateDiag.hasValue())
1712 *ImmediateDiag << std::move(V);
1713 else if (PartialDiagId.hasValue())
1714 S.DeviceDeferredDiags[Fn][*PartialDiagId].second << std::move(V);
1715 return *this;
1716 }
1717
1718 friend const SemaDiagnosticBuilder &
1719 operator<<(const SemaDiagnosticBuilder &Diag, const PartialDiagnostic &PD) {
1720 if (Diag.ImmediateDiag.hasValue())
1721 PD.Emit(*Diag.ImmediateDiag);
1722 else if (Diag.PartialDiagId.hasValue())
1723 Diag.S.DeviceDeferredDiags[Diag.Fn][*Diag.PartialDiagId].second = PD;
1724 return Diag;
1725 }
1726
1727 void AddFixItHint(const FixItHint &Hint) const {
1728 if (ImmediateDiag.hasValue())
1729 ImmediateDiag->AddFixItHint(Hint);
1730 else if (PartialDiagId.hasValue())
1731 S.DeviceDeferredDiags[Fn][*PartialDiagId].second.AddFixItHint(Hint);
1732 }
1733
1734 friend ExprResult ExprError(const SemaDiagnosticBuilder &) {
1735 return ExprError();
1736 }
1737 friend StmtResult StmtError(const SemaDiagnosticBuilder &) {
1738 return StmtError();
1739 }
1740 operator ExprResult() const { return ExprError(); }
1741 operator StmtResult() const { return StmtError(); }
1742 operator TypeResult() const { return TypeError(); }
1743 operator DeclResult() const { return DeclResult(true); }
1744 operator MemInitResult() const { return MemInitResult(true); }
1745
1746 private:
1747 Sema &S;
1748 SourceLocation Loc;
1749 unsigned DiagID;
1750 FunctionDecl *Fn;
1751 bool ShowCallStack;
1752
1753 // Invariant: At most one of these Optionals has a value.
1754 // FIXME: Switch these to a Variant once that exists.
1755 llvm::Optional<ImmediateDiagBuilder> ImmediateDiag;
1756 llvm::Optional<unsigned> PartialDiagId;
1757 };
1758
1759 /// Is the last error level diagnostic immediate. This is used to determined
1760 /// whether the next info diagnostic should be immediate.
1761 bool IsLastErrorImmediate = true;
1762
1763 /// Emit a diagnostic.
1764 SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID,
1765 bool DeferHint = false);
1766
1767 /// Emit a partial diagnostic.
1768 SemaDiagnosticBuilder Diag(SourceLocation Loc, const PartialDiagnostic &PD,
1769 bool DeferHint = false);
1770
1771 /// Build a partial diagnostic.
1772 PartialDiagnostic PDiag(unsigned DiagID = 0); // in SemaInternal.h
1773
1774 /// Whether deferrable diagnostics should be deferred.
1775 bool DeferDiags = false;
1776
1777 /// RAII class to control scope of DeferDiags.
1778 class DeferDiagsRAII {
1779 Sema &S;
1780 bool SavedDeferDiags = false;
1781
1782 public:
1783 DeferDiagsRAII(Sema &S, bool DeferDiags)
1784 : S(S), SavedDeferDiags(S.DeferDiags) {
1785 S.DeferDiags = DeferDiags;
1786 }
1787 ~DeferDiagsRAII() { S.DeferDiags = SavedDeferDiags; }
1788 };
1789
1790 /// Whether uncompilable error has occurred. This includes error happens
1791 /// in deferred diagnostics.
1792 bool hasUncompilableErrorOccurred() const;
1793
1794 bool findMacroSpelling(SourceLocation &loc, StringRef name);
1795
1796 /// Get a string to suggest for zero-initialization of a type.
1797 std::string
1798 getFixItZeroInitializerForType(QualType T, SourceLocation Loc) const;
1799 std::string getFixItZeroLiteralForType(QualType T, SourceLocation Loc) const;
1800
1801 /// Calls \c Lexer::getLocForEndOfToken()
1802 SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset = 0);
1803
1804 /// Retrieve the module loader associated with the preprocessor.
1805 ModuleLoader &getModuleLoader() const;
1806
1807 /// Invent a new identifier for parameters of abbreviated templates.
1808 IdentifierInfo *
1809 InventAbbreviatedTemplateParameterTypeName(IdentifierInfo *ParamName,
1810 unsigned Index);
1811
1812 void emitAndClearUnusedLocalTypedefWarnings();
1813
1814 private:
1815 /// Function or variable declarations to be checked for whether the deferred
1816 /// diagnostics should be emitted.
1817 llvm::SmallSetVector<Decl *, 4> DeclsToCheckForDeferredDiags;
1818
1819 public:
1820 // Emit all deferred diagnostics.
1821 void emitDeferredDiags();
1822
1823 enum TUFragmentKind {
1824 /// The global module fragment, between 'module;' and a module-declaration.
1825 Global,
1826 /// A normal translation unit fragment. For a non-module unit, this is the
1827 /// entire translation unit. Otherwise, it runs from the module-declaration
1828 /// to the private-module-fragment (if any) or the end of the TU (if not).
1829 Normal,
1830 /// The private module fragment, between 'module :private;' and the end of
1831 /// the translation unit.
1832 Private
1833 };
1834
1835 void ActOnStartOfTranslationUnit();
1836 void ActOnEndOfTranslationUnit();
1837 void ActOnEndOfTranslationUnitFragment(TUFragmentKind Kind);
1838
1839 void CheckDelegatingCtorCycles();
1840
1841 Scope *getScopeForContext(DeclContext *Ctx);
1842
1843 void PushFunctionScope();
1844 void PushBlockScope(Scope *BlockScope, BlockDecl *Block);
1845 sema::LambdaScopeInfo *PushLambdaScope();
1846
1847 /// This is used to inform Sema what the current TemplateParameterDepth
1848 /// is during Parsing. Currently it is used to pass on the depth
1849 /// when parsing generic lambda 'auto' parameters.
1850 void RecordParsingTemplateParameterDepth(unsigned Depth);
1851
1852 void PushCapturedRegionScope(Scope *RegionScope, CapturedDecl *CD,
1853 RecordDecl *RD, CapturedRegionKind K,
1854 unsigned OpenMPCaptureLevel = 0);
1855
1856 /// Custom deleter to allow FunctionScopeInfos to be kept alive for a short
1857 /// time after they've been popped.
1858 class PoppedFunctionScopeDeleter {
1859 Sema *Self;
1860
1861 public:
1862 explicit PoppedFunctionScopeDeleter(Sema *Self) : Self(Self) {}
1863 void operator()(sema::FunctionScopeInfo *Scope) const;
1864 };
1865
1866 using PoppedFunctionScopePtr =
1867 std::unique_ptr<sema::FunctionScopeInfo, PoppedFunctionScopeDeleter>;
1868
1869 PoppedFunctionScopePtr
1870 PopFunctionScopeInfo(const sema::AnalysisBasedWarnings::Policy *WP = nullptr,
1871 const Decl *D = nullptr,
1872 QualType BlockType = QualType());
1873
1874 sema::FunctionScopeInfo *getCurFunction() const {
1875 return FunctionScopes.empty() ? nullptr : FunctionScopes.back();
24
'?' condition is false
25
Returning pointer, which participates in a condition later
1876 }
1877
1878 sema::FunctionScopeInfo *getEnclosingFunction() const;
1879
1880 void setFunctionHasBranchIntoScope();
1881 void setFunctionHasBranchProtectedScope();
1882 void setFunctionHasIndirectGoto();
1883 void setFunctionHasMustTail();
1884
1885 void PushCompoundScope(bool IsStmtExpr);
1886 void PopCompoundScope();
1887
1888 sema::CompoundScopeInfo &getCurCompoundScope() const;
1889
1890 bool hasAnyUnrecoverableErrorsInThisFunction() const;
1891
1892 /// Retrieve the current block, if any.
1893 sema::BlockScopeInfo *getCurBlock();
1894
1895 /// Get the innermost lambda enclosing the current location, if any. This
1896 /// looks through intervening non-lambda scopes such as local functions and
1897 /// blocks.
1898 sema::LambdaScopeInfo *getEnclosingLambda() const;
1899
1900 /// Retrieve the current lambda scope info, if any.
1901 /// \param IgnoreNonLambdaCapturingScope true if should find the top-most
1902 /// lambda scope info ignoring all inner capturing scopes that are not
1903 /// lambda scopes.
1904 sema::LambdaScopeInfo *
1905 getCurLambda(bool IgnoreNonLambdaCapturingScope = false);
1906
1907 /// Retrieve the current generic lambda info, if any.
1908 sema::LambdaScopeInfo *getCurGenericLambda();
1909
1910 /// Retrieve the current captured region, if any.
1911 sema::CapturedRegionScopeInfo *getCurCapturedRegion();
1912
1913 /// Retrieve the current function, if any, that should be analyzed for
1914 /// potential availability violations.
1915 sema::FunctionScopeInfo *getCurFunctionAvailabilityContext();
1916
1917 /// WeakTopLevelDeclDecls - access to \#pragma weak-generated Decls
1918 SmallVectorImpl<Decl *> &WeakTopLevelDecls() { return WeakTopLevelDecl; }
1919
1920 /// Called before parsing a function declarator belonging to a function
1921 /// declaration.
1922 void ActOnStartFunctionDeclarationDeclarator(Declarator &D,
1923 unsigned TemplateParameterDepth);
1924
1925 /// Called after parsing a function declarator belonging to a function
1926 /// declaration.
1927 void ActOnFinishFunctionDeclarationDeclarator(Declarator &D);
1928
1929 void ActOnComment(SourceRange Comment);
1930
1931 //===--------------------------------------------------------------------===//
1932 // Type Analysis / Processing: SemaType.cpp.
1933 //
1934
1935 QualType BuildQualifiedType(QualType T, SourceLocation Loc, Qualifiers Qs,
1936 const DeclSpec *DS = nullptr);
1937 QualType BuildQualifiedType(QualType T, SourceLocation Loc, unsigned CVRA,
1938 const DeclSpec *DS = nullptr);
1939 QualType BuildPointerType(QualType T,
1940 SourceLocation Loc, DeclarationName Entity);
1941 QualType BuildReferenceType(QualType T, bool LValueRef,
1942 SourceLocation Loc, DeclarationName Entity);
1943 QualType BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1944 Expr *ArraySize, unsigned Quals,
1945 SourceRange Brackets, DeclarationName Entity);
1946 QualType BuildVectorType(QualType T, Expr *VecSize, SourceLocation AttrLoc);
1947 QualType BuildExtVectorType(QualType T, Expr *ArraySize,
1948 SourceLocation AttrLoc);
1949 QualType BuildMatrixType(QualType T, Expr *NumRows, Expr *NumColumns,
1950 SourceLocation AttrLoc);
1951
1952 QualType BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
1953 SourceLocation AttrLoc);
1954
1955 /// Same as above, but constructs the AddressSpace index if not provided.
1956 QualType BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
1957 SourceLocation AttrLoc);
1958
1959 bool CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc);
1960
1961 bool CheckFunctionReturnType(QualType T, SourceLocation Loc);
1962
1963 /// Build a function type.
1964 ///
1965 /// This routine checks the function type according to C++ rules and
1966 /// under the assumption that the result type and parameter types have
1967 /// just been instantiated from a template. It therefore duplicates
1968 /// some of the behavior of GetTypeForDeclarator, but in a much
1969 /// simpler form that is only suitable for this narrow use case.
1970 ///
1971 /// \param T The return type of the function.
1972 ///
1973 /// \param ParamTypes The parameter types of the function. This array
1974 /// will be modified to account for adjustments to the types of the
1975 /// function parameters.
1976 ///
1977 /// \param Loc The location of the entity whose type involves this
1978 /// function type or, if there is no such entity, the location of the
1979 /// type that will have function type.
1980 ///
1981 /// \param Entity The name of the entity that involves the function
1982 /// type, if known.
1983 ///
1984 /// \param EPI Extra information about the function type. Usually this will
1985 /// be taken from an existing function with the same prototype.
1986 ///
1987 /// \returns A suitable function type, if there are no errors. The
1988 /// unqualified type will always be a FunctionProtoType.
1989 /// Otherwise, returns a NULL type.
1990 QualType BuildFunctionType(QualType T,
1991 MutableArrayRef<QualType> ParamTypes,
1992 SourceLocation Loc, DeclarationName Entity,
1993 const FunctionProtoType::ExtProtoInfo &EPI);
1994
1995 QualType BuildMemberPointerType(QualType T, QualType Class,
1996 SourceLocation Loc,
1997 DeclarationName Entity);
1998 QualType BuildBlockPointerType(QualType T,
1999 SourceLocation Loc, DeclarationName Entity);
2000 QualType BuildParenType(QualType T);
2001 QualType BuildAtomicType(QualType T, SourceLocation Loc);
2002 QualType BuildReadPipeType(QualType T,
2003 SourceLocation Loc);
2004 QualType BuildWritePipeType(QualType T,
2005 SourceLocation Loc);
2006 QualType BuildExtIntType(bool IsUnsigned, Expr *BitWidth, SourceLocation Loc);
2007
2008 TypeSourceInfo *GetTypeForDeclarator(Declarator &D, Scope *S);
2009 TypeSourceInfo *GetTypeForDeclaratorCast(Declarator &D, QualType FromTy);
2010
2011 /// Package the given type and TSI into a ParsedType.
2012 ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo);
2013 DeclarationNameInfo GetNameForDeclarator(Declarator &D);
2014 DeclarationNameInfo GetNameFromUnqualifiedId(const UnqualifiedId &Name);
2015 static QualType GetTypeFromParser(ParsedType Ty,
2016 TypeSourceInfo **TInfo = nullptr);
2017 CanThrowResult canThrow(const Stmt *E);
2018 /// Determine whether the callee of a particular function call can throw.
2019 /// E, D and Loc are all optional.
2020 static CanThrowResult canCalleeThrow(Sema &S, const Expr *E, const Decl *D,
2021 SourceLocation Loc = SourceLocation());
2022 const FunctionProtoType *ResolveExceptionSpec(SourceLocation Loc,
2023 const FunctionProtoType *FPT);
2024 void UpdateExceptionSpec(FunctionDecl *FD,
2025 const FunctionProtoType::ExceptionSpecInfo &ESI);
2026 bool CheckSpecifiedExceptionType(QualType &T, SourceRange Range);
2027 bool CheckDistantExceptionSpec(QualType T);
2028 bool CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New);
2029 bool CheckEquivalentExceptionSpec(
2030 const FunctionProtoType *Old, SourceLocation OldLoc,
2031 const FunctionProtoType *New, SourceLocation NewLoc);
2032 bool CheckEquivalentExceptionSpec(
2033 const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
2034 const FunctionProtoType *Old, SourceLocation OldLoc,
2035 const FunctionProtoType *New, SourceLocation NewLoc);
2036 bool handlerCanCatch(QualType HandlerType, QualType ExceptionType);
2037 bool CheckExceptionSpecSubset(const PartialDiagnostic &DiagID,
2038 const PartialDiagnostic &NestedDiagID,
2039 const PartialDiagnostic &NoteID,
2040 const PartialDiagnostic &NoThrowDiagID,
2041 const FunctionProtoType *Superset,
2042 SourceLocation SuperLoc,
2043 const FunctionProtoType *Subset,
2044 SourceLocation SubLoc);
2045 bool CheckParamExceptionSpec(const PartialDiagnostic &NestedDiagID,
2046 const PartialDiagnostic &NoteID,
2047 const FunctionProtoType *Target,
2048 SourceLocation TargetLoc,
2049 const FunctionProtoType *Source,
2050 SourceLocation SourceLoc);
2051
2052 TypeResult ActOnTypeName(Scope *S, Declarator &D);
2053
2054 /// The parser has parsed the context-sensitive type 'instancetype'
2055 /// in an Objective-C message declaration. Return the appropriate type.
2056 ParsedType ActOnObjCInstanceType(SourceLocation Loc);
2057
2058 /// Abstract class used to diagnose incomplete types.
2059 struct TypeDiagnoser {
2060 TypeDiagnoser() {}
2061
2062 virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) = 0;
2063 virtual ~TypeDiagnoser() {}
2064 };
2065
2066 static int getPrintable(int I) { return I; }
2067 static unsigned getPrintable(unsigned I) { return I; }
2068 static bool getPrintable(bool B) { return B; }
2069 static const char * getPrintable(const char *S) { return S; }
2070 static StringRef getPrintable(StringRef S) { return S; }
2071 static const std::string &getPrintable(const std::string &S) { return S; }
2072 static const IdentifierInfo *getPrintable(const IdentifierInfo *II) {
2073 return II;
2074 }
2075 static DeclarationName getPrintable(DeclarationName N) { return N; }
2076 static QualType getPrintable(QualType T) { return T; }
2077 static SourceRange getPrintable(SourceRange R) { return R; }
2078 static SourceRange getPrintable(SourceLocation L) { return L; }
2079 static SourceRange getPrintable(const Expr *E) { return E->getSourceRange(); }
2080 static SourceRange getPrintable(TypeLoc TL) { return TL.getSourceRange();}
2081
2082 template <typename... Ts> class BoundTypeDiagnoser : public TypeDiagnoser {
2083 protected:
2084 unsigned DiagID;
2085 std::tuple<const Ts &...> Args;
2086
2087 template <std::size_t... Is>
2088 void emit(const SemaDiagnosticBuilder &DB,
2089 std::index_sequence<Is...>) const {
2090 // Apply all tuple elements to the builder in order.
2091 bool Dummy[] = {false, (DB << getPrintable(std::get<Is>(Args)))...};
2092 (void)Dummy;
2093 }
2094
2095 public:
2096 BoundTypeDiagnoser(unsigned DiagID, const Ts &...Args)
2097 : TypeDiagnoser(), DiagID(DiagID), Args(Args...) {
2098 assert(DiagID != 0 && "no diagnostic for type diagnoser")(static_cast <bool> (DiagID != 0 && "no diagnostic for type diagnoser"
) ? void (0) : __assert_fail ("DiagID != 0 && \"no diagnostic for type diagnoser\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 2098, __extension__ __PRETTY_FUNCTION__))
;
2099 }
2100
2101 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
2102 const SemaDiagnosticBuilder &DB = S.Diag(Loc, DiagID);
2103 emit(DB, std::index_sequence_for<Ts...>());
2104 DB << T;
2105 }
2106 };
2107
2108 /// Do a check to make sure \p Name looks like a legal argument for the
2109 /// swift_name attribute applied to decl \p D. Raise a diagnostic if the name
2110 /// is invalid for the given declaration.
2111 ///
2112 /// \p AL is used to provide caret diagnostics in case of a malformed name.
2113 ///
2114 /// \returns true if the name is a valid swift name for \p D, false otherwise.
2115 bool DiagnoseSwiftName(Decl *D, StringRef Name, SourceLocation Loc,
2116 const ParsedAttr &AL, bool IsAsync);
2117
2118 /// A derivative of BoundTypeDiagnoser for which the diagnostic's type
2119 /// parameter is preceded by a 0/1 enum that is 1 if the type is sizeless.
2120 /// For example, a diagnostic with no other parameters would generally have
2121 /// the form "...%select{incomplete|sizeless}0 type %1...".
2122 template <typename... Ts>
2123 class SizelessTypeDiagnoser : public BoundTypeDiagnoser<Ts...> {
2124 public:
2125 SizelessTypeDiagnoser(unsigned DiagID, const Ts &... Args)
2126 : BoundTypeDiagnoser<Ts...>(DiagID, Args...) {}
2127
2128 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
2129 const SemaDiagnosticBuilder &DB = S.Diag(Loc, this->DiagID);
2130 this->emit(DB, std::index_sequence_for<Ts...>());
2131 DB << T->isSizelessType() << T;
2132 }
2133 };
2134
2135 enum class CompleteTypeKind {
2136 /// Apply the normal rules for complete types. In particular,
2137 /// treat all sizeless types as incomplete.
2138 Normal,
2139
2140 /// Relax the normal rules for complete types so that they include
2141 /// sizeless built-in types.
2142 AcceptSizeless,
2143
2144 // FIXME: Eventually we should flip the default to Normal and opt in
2145 // to AcceptSizeless rather than opt out of it.
2146 Default = AcceptSizeless
2147 };
2148
2149private:
2150 /// Methods for marking which expressions involve dereferencing a pointer
2151 /// marked with the 'noderef' attribute. Expressions are checked bottom up as
2152 /// they are parsed, meaning that a noderef pointer may not be accessed. For
2153 /// example, in `&*p` where `p` is a noderef pointer, we will first parse the
2154 /// `*p`, but need to check that `address of` is called on it. This requires
2155 /// keeping a container of all pending expressions and checking if the address
2156 /// of them are eventually taken.
2157 void CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E);
2158 void CheckAddressOfNoDeref(const Expr *E);
2159 void CheckMemberAccessOfNoDeref(const MemberExpr *E);
2160
2161 bool RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
2162 CompleteTypeKind Kind, TypeDiagnoser *Diagnoser);
2163
2164 struct ModuleScope {
2165 SourceLocation BeginLoc;
2166 clang::Module *Module = nullptr;
2167 bool ModuleInterface = false;
2168 bool ImplicitGlobalModuleFragment = false;
2169 VisibleModuleSet OuterVisibleModules;
2170 };
2171 /// The modules we're currently parsing.
2172 llvm::SmallVector<ModuleScope, 16> ModuleScopes;
2173
2174 /// Namespace definitions that we will export when they finish.
2175 llvm::SmallPtrSet<const NamespaceDecl*, 8> DeferredExportedNamespaces;
2176
2177 /// Get the module whose scope we are currently within.
2178 Module *getCurrentModule() const {
2179 return ModuleScopes.empty() ? nullptr : ModuleScopes.back().Module;
2180 }
2181
2182 VisibleModuleSet VisibleModules;
2183
2184public:
2185 /// Get the module owning an entity.
2186 Module *getOwningModule(const Decl *Entity) {
2187 return Entity->getOwningModule();
2188 }
2189
2190 /// Make a merged definition of an existing hidden definition \p ND
2191 /// visible at the specified location.
2192 void makeMergedDefinitionVisible(NamedDecl *ND);
2193
2194 bool isModuleVisible(const Module *M, bool ModulePrivate = false);
2195
2196 // When loading a non-modular PCH files, this is used to restore module
2197 // visibility.
2198 void makeModuleVisible(Module *Mod, SourceLocation ImportLoc) {
2199 VisibleModules.setVisible(Mod, ImportLoc);
2200 }
2201
2202 /// Determine whether a declaration is visible to name lookup.
2203 bool isVisible(const NamedDecl *D) {
2204 return D->isUnconditionallyVisible() || isVisibleSlow(D);
2205 }
2206
2207 /// Determine whether any declaration of an entity is visible.
2208 bool
2209 hasVisibleDeclaration(const NamedDecl *D,
2210 llvm::SmallVectorImpl<Module *> *Modules = nullptr) {
2211 return isVisible(D) || hasVisibleDeclarationSlow(D, Modules);
2212 }
2213 bool hasVisibleDeclarationSlow(const NamedDecl *D,
2214 llvm::SmallVectorImpl<Module *> *Modules);
2215
2216 bool hasVisibleMergedDefinition(NamedDecl *Def);
2217 bool hasMergedDefinitionInCurrentModule(NamedDecl *Def);
2218
2219 /// Determine if \p D and \p Suggested have a structurally compatible
2220 /// layout as described in C11 6.2.7/1.
2221 bool hasStructuralCompatLayout(Decl *D, Decl *Suggested);
2222
2223 /// Determine if \p D has a visible definition. If not, suggest a declaration
2224 /// that should be made visible to expose the definition.
2225 bool hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
2226 bool OnlyNeedComplete = false);
2227 bool hasVisibleDefinition(const NamedDecl *D) {
2228 NamedDecl *Hidden;
2229 return hasVisibleDefinition(const_cast<NamedDecl*>(D), &Hidden);
2230 }
2231
2232 /// Determine if the template parameter \p D has a visible default argument.
2233 bool
2234 hasVisibleDefaultArgument(const NamedDecl *D,
2235 llvm::SmallVectorImpl<Module *> *Modules = nullptr);
2236
2237 /// Determine if there is a visible declaration of \p D that is an explicit
2238 /// specialization declaration for a specialization of a template. (For a
2239 /// member specialization, use hasVisibleMemberSpecialization.)
2240 bool hasVisibleExplicitSpecialization(
2241 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
2242
2243 /// Determine if there is a visible declaration of \p D that is a member
2244 /// specialization declaration (as opposed to an instantiated declaration).
2245 bool hasVisibleMemberSpecialization(
2246 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
2247
2248 /// Determine if \p A and \p B are equivalent internal linkage declarations
2249 /// from different modules, and thus an ambiguity error can be downgraded to
2250 /// an extension warning.
2251 bool isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
2252 const NamedDecl *B);
2253 void diagnoseEquivalentInternalLinkageDeclarations(
2254 SourceLocation Loc, const NamedDecl *D,
2255 ArrayRef<const NamedDecl *> Equiv);
2256
2257 bool isUsualDeallocationFunction(const CXXMethodDecl *FD);
2258
2259 bool isCompleteType(SourceLocation Loc, QualType T,
2260 CompleteTypeKind Kind = CompleteTypeKind::Default) {
2261 return !RequireCompleteTypeImpl(Loc, T, Kind, nullptr);
2262 }
2263 bool RequireCompleteType(SourceLocation Loc, QualType T,
2264 CompleteTypeKind Kind, TypeDiagnoser &Diagnoser);
2265 bool RequireCompleteType(SourceLocation Loc, QualType T,
2266 CompleteTypeKind Kind, unsigned DiagID);
2267
2268 bool RequireCompleteType(SourceLocation Loc, QualType T,
2269 TypeDiagnoser &Diagnoser) {
2270 return RequireCompleteType(Loc, T, CompleteTypeKind::Default, Diagnoser);
2271 }
2272 bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID) {
2273 return RequireCompleteType(Loc, T, CompleteTypeKind::Default, DiagID);
2274 }
2275
2276 template <typename... Ts>
2277 bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID,
2278 const Ts &...Args) {
2279 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2280 return RequireCompleteType(Loc, T, Diagnoser);
2281 }
2282
2283 template <typename... Ts>
2284 bool RequireCompleteSizedType(SourceLocation Loc, QualType T, unsigned DiagID,
2285 const Ts &... Args) {
2286 SizelessTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2287 return RequireCompleteType(Loc, T, CompleteTypeKind::Normal, Diagnoser);
2288 }
2289
2290 /// Get the type of expression E, triggering instantiation to complete the
2291 /// type if necessary -- that is, if the expression refers to a templated
2292 /// static data member of incomplete array type.
2293 ///
2294 /// May still return an incomplete type if instantiation was not possible or
2295 /// if the type is incomplete for a different reason. Use
2296 /// RequireCompleteExprType instead if a diagnostic is expected for an
2297 /// incomplete expression type.
2298 QualType getCompletedType(Expr *E);
2299
2300 void completeExprArrayBound(Expr *E);
2301 bool RequireCompleteExprType(Expr *E, CompleteTypeKind Kind,
2302 TypeDiagnoser &Diagnoser);
2303 bool RequireCompleteExprType(Expr *E, unsigned DiagID);
2304
2305 template <typename... Ts>
2306 bool RequireCompleteExprType(Expr *E, unsigned DiagID, const Ts &...Args) {
2307 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2308 return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser);
2309 }
2310
2311 template <typename... Ts>
2312 bool RequireCompleteSizedExprType(Expr *E, unsigned DiagID,
2313 const Ts &... Args) {
2314 SizelessTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2315 return RequireCompleteExprType(E, CompleteTypeKind::Normal, Diagnoser);
2316 }
2317
2318 bool RequireLiteralType(SourceLocation Loc, QualType T,
2319 TypeDiagnoser &Diagnoser);
2320 bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID);
2321
2322 template <typename... Ts>
2323 bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID,
2324 const Ts &...Args) {
2325 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2326 return RequireLiteralType(Loc, T, Diagnoser);
2327 }
2328
2329 QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
2330 const CXXScopeSpec &SS, QualType T,
2331 TagDecl *OwnedTagDecl = nullptr);
2332
2333 QualType BuildTypeofExprType(Expr *E, SourceLocation Loc);
2334 /// If AsUnevaluated is false, E is treated as though it were an evaluated
2335 /// context, such as when building a type for decltype(auto).
2336 QualType BuildDecltypeType(Expr *E, SourceLocation Loc,
2337 bool AsUnevaluated = true);
2338 QualType BuildUnaryTransformType(QualType BaseType,
2339 UnaryTransformType::UTTKind UKind,
2340 SourceLocation Loc);
2341
2342 //===--------------------------------------------------------------------===//
2343 // Symbol table / Decl tracking callbacks: SemaDecl.cpp.
2344 //
2345
2346 struct SkipBodyInfo {
2347 SkipBodyInfo()
2348 : ShouldSkip(false), CheckSameAsPrevious(false), Previous(nullptr),
2349 New(nullptr) {}
2350 bool ShouldSkip;
2351 bool CheckSameAsPrevious;
2352 NamedDecl *Previous;
2353 NamedDecl *New;
2354 };
2355
2356 DeclGroupPtrTy ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType = nullptr);
2357
2358 void DiagnoseUseOfUnimplementedSelectors();
2359
2360 bool isSimpleTypeSpecifier(tok::TokenKind Kind) const;
2361
2362 ParsedType getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
2363 Scope *S, CXXScopeSpec *SS = nullptr,
2364 bool isClassName = false, bool HasTrailingDot = false,
2365 ParsedType ObjectType = nullptr,
2366 bool IsCtorOrDtorName = false,
2367 bool WantNontrivialTypeSourceInfo = false,
2368 bool IsClassTemplateDeductionContext = true,
2369 IdentifierInfo **CorrectedII = nullptr);
2370 TypeSpecifierType isTagName(IdentifierInfo &II, Scope *S);
2371 bool isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S);
2372 void DiagnoseUnknownTypeName(IdentifierInfo *&II,
2373 SourceLocation IILoc,
2374 Scope *S,
2375 CXXScopeSpec *SS,
2376 ParsedType &SuggestedType,
2377 bool IsTemplateName = false);
2378
2379 /// Attempt to behave like MSVC in situations where lookup of an unqualified
2380 /// type name has failed in a dependent context. In these situations, we
2381 /// automatically form a DependentTypeName that will retry lookup in a related
2382 /// scope during instantiation.
2383 ParsedType ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
2384 SourceLocation NameLoc,
2385 bool IsTemplateTypeArg);
2386
2387 /// Describes the result of the name lookup and resolution performed
2388 /// by \c ClassifyName().
2389 enum NameClassificationKind {
2390 /// This name is not a type or template in this context, but might be
2391 /// something else.
2392 NC_Unknown,
2393 /// Classification failed; an error has been produced.
2394 NC_Error,
2395 /// The name has been typo-corrected to a keyword.
2396 NC_Keyword,
2397 /// The name was classified as a type.
2398 NC_Type,
2399 /// The name was classified as a specific non-type, non-template
2400 /// declaration. ActOnNameClassifiedAsNonType should be called to
2401 /// convert the declaration to an expression.
2402 NC_NonType,
2403 /// The name was classified as an ADL-only function name.
2404 /// ActOnNameClassifiedAsUndeclaredNonType should be called to convert the
2405 /// result to an expression.
2406 NC_UndeclaredNonType,
2407 /// The name denotes a member of a dependent type that could not be
2408 /// resolved. ActOnNameClassifiedAsDependentNonType should be called to
2409 /// convert the result to an expression.
2410 NC_DependentNonType,
2411 /// The name was classified as an overload set, and an expression
2412 /// representing that overload set has been formed.
2413 /// ActOnNameClassifiedAsOverloadSet should be called to form a suitable
2414 /// expression referencing the overload set.
2415 NC_OverloadSet,
2416 /// The name was classified as a template whose specializations are types.
2417 NC_TypeTemplate,
2418 /// The name was classified as a variable template name.
2419 NC_VarTemplate,
2420 /// The name was classified as a function template name.
2421 NC_FunctionTemplate,
2422 /// The name was classified as an ADL-only function template name.
2423 NC_UndeclaredTemplate,
2424 /// The name was classified as a concept name.
2425 NC_Concept,
2426 };
2427
2428 class NameClassification {
2429 NameClassificationKind Kind;
2430 union {
2431 ExprResult Expr;
2432 NamedDecl *NonTypeDecl;
2433 TemplateName Template;
2434 ParsedType Type;
2435 };
2436
2437 explicit NameClassification(NameClassificationKind Kind) : Kind(Kind) {}
2438
2439 public:
2440 NameClassification(ParsedType Type) : Kind(NC_Type), Type(Type) {}
2441
2442 NameClassification(const IdentifierInfo *Keyword) : Kind(NC_Keyword) {}
2443
2444 static NameClassification Error() {
2445 return NameClassification(NC_Error);
2446 }
2447
2448 static NameClassification Unknown() {
2449 return NameClassification(NC_Unknown);
2450 }
2451
2452 static NameClassification OverloadSet(ExprResult E) {
2453 NameClassification Result(NC_OverloadSet);
2454 Result.Expr = E;
2455 return Result;
2456 }
2457
2458 static NameClassification NonType(NamedDecl *D) {
2459 NameClassification Result(NC_NonType);
2460 Result.NonTypeDecl = D;
2461 return Result;
2462 }
2463
2464 static NameClassification UndeclaredNonType() {
2465 return NameClassification(NC_UndeclaredNonType);
2466 }
2467
2468 static NameClassification DependentNonType() {
2469 return NameClassification(NC_DependentNonType);
2470 }
2471
2472 static NameClassification TypeTemplate(TemplateName Name) {
2473 NameClassification Result(NC_TypeTemplate);
2474 Result.Template = Name;
2475 return Result;
2476 }
2477
2478 static NameClassification VarTemplate(TemplateName Name) {
2479 NameClassification Result(NC_VarTemplate);
2480 Result.Template = Name;
2481 return Result;
2482 }
2483
2484 static NameClassification FunctionTemplate(TemplateName Name) {
2485 NameClassification Result(NC_FunctionTemplate);
2486 Result.Template = Name;
2487 return Result;
2488 }
2489
2490 static NameClassification Concept(TemplateName Name) {
2491 NameClassification Result(NC_Concept);
2492 Result.Template = Name;
2493 return Result;
2494 }
2495
2496 static NameClassification UndeclaredTemplate(TemplateName Name) {
2497 NameClassification Result(NC_UndeclaredTemplate);
2498 Result.Template = Name;
2499 return Result;
2500 }
2501
2502 NameClassificationKind getKind() const { return Kind; }
2503
2504 ExprResult getExpression() const {
2505 assert(Kind == NC_OverloadSet)(static_cast <bool> (Kind == NC_OverloadSet) ? void (0)
: __assert_fail ("Kind == NC_OverloadSet", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 2505, __extension__ __PRETTY_FUNCTION__))
;
2506 return Expr;
2507 }
2508
2509 ParsedType getType() const {
2510 assert(Kind == NC_Type)(static_cast <bool> (Kind == NC_Type) ? void (0) : __assert_fail
("Kind == NC_Type", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 2510, __extension__ __PRETTY_FUNCTION__))
;
2511 return Type;
2512 }
2513
2514 NamedDecl *getNonTypeDecl() const {
2515 assert(Kind == NC_NonType)(static_cast <bool> (Kind == NC_NonType) ? void (0) : __assert_fail
("Kind == NC_NonType", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 2515, __extension__ __PRETTY_FUNCTION__))
;
2516 return NonTypeDecl;
2517 }
2518
2519 TemplateName getTemplateName() const {
2520 assert(Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate ||(static_cast <bool> (Kind == NC_TypeTemplate || Kind ==
NC_FunctionTemplate || Kind == NC_VarTemplate || Kind == NC_Concept
|| Kind == NC_UndeclaredTemplate) ? void (0) : __assert_fail
("Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate || Kind == NC_VarTemplate || Kind == NC_Concept || Kind == NC_UndeclaredTemplate"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 2522, __extension__ __PRETTY_FUNCTION__))
2521 Kind == NC_VarTemplate || Kind == NC_Concept ||(static_cast <bool> (Kind == NC_TypeTemplate || Kind ==
NC_FunctionTemplate || Kind == NC_VarTemplate || Kind == NC_Concept
|| Kind == NC_UndeclaredTemplate) ? void (0) : __assert_fail
("Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate || Kind == NC_VarTemplate || Kind == NC_Concept || Kind == NC_UndeclaredTemplate"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 2522, __extension__ __PRETTY_FUNCTION__))
2522 Kind == NC_UndeclaredTemplate)(static_cast <bool> (Kind == NC_TypeTemplate || Kind ==
NC_FunctionTemplate || Kind == NC_VarTemplate || Kind == NC_Concept
|| Kind == NC_UndeclaredTemplate) ? void (0) : __assert_fail
("Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate || Kind == NC_VarTemplate || Kind == NC_Concept || Kind == NC_UndeclaredTemplate"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 2522, __extension__ __PRETTY_FUNCTION__))
;
2523 return Template;
2524 }
2525
2526 TemplateNameKind getTemplateNameKind() const {
2527 switch (Kind) {
2528 case NC_TypeTemplate:
2529 return TNK_Type_template;
2530 case NC_FunctionTemplate:
2531 return TNK_Function_template;
2532 case NC_VarTemplate:
2533 return TNK_Var_template;
2534 case NC_Concept:
2535 return TNK_Concept_template;
2536 case NC_UndeclaredTemplate:
2537 return TNK_Undeclared_template;
2538 default:
2539 llvm_unreachable("unsupported name classification.")::llvm::llvm_unreachable_internal("unsupported name classification."
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 2539)
;
2540 }
2541 }
2542 };
2543
2544 /// Perform name lookup on the given name, classifying it based on
2545 /// the results of name lookup and the following token.
2546 ///
2547 /// This routine is used by the parser to resolve identifiers and help direct
2548 /// parsing. When the identifier cannot be found, this routine will attempt
2549 /// to correct the typo and classify based on the resulting name.
2550 ///
2551 /// \param S The scope in which we're performing name lookup.
2552 ///
2553 /// \param SS The nested-name-specifier that precedes the name.
2554 ///
2555 /// \param Name The identifier. If typo correction finds an alternative name,
2556 /// this pointer parameter will be updated accordingly.
2557 ///
2558 /// \param NameLoc The location of the identifier.
2559 ///
2560 /// \param NextToken The token following the identifier. Used to help
2561 /// disambiguate the name.
2562 ///
2563 /// \param CCC The correction callback, if typo correction is desired.
2564 NameClassification ClassifyName(Scope *S, CXXScopeSpec &SS,
2565 IdentifierInfo *&Name, SourceLocation NameLoc,
2566 const Token &NextToken,
2567 CorrectionCandidateCallback *CCC = nullptr);
2568
2569 /// Act on the result of classifying a name as an undeclared (ADL-only)
2570 /// non-type declaration.
2571 ExprResult ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
2572 SourceLocation NameLoc);
2573 /// Act on the result of classifying a name as an undeclared member of a
2574 /// dependent base class.
2575 ExprResult ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
2576 IdentifierInfo *Name,
2577 SourceLocation NameLoc,
2578 bool IsAddressOfOperand);
2579 /// Act on the result of classifying a name as a specific non-type
2580 /// declaration.
2581 ExprResult ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
2582 NamedDecl *Found,
2583 SourceLocation NameLoc,
2584 const Token &NextToken);
2585 /// Act on the result of classifying a name as an overload set.
2586 ExprResult ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *OverloadSet);
2587
2588 /// Describes the detailed kind of a template name. Used in diagnostics.
2589 enum class TemplateNameKindForDiagnostics {
2590 ClassTemplate,
2591 FunctionTemplate,
2592 VarTemplate,
2593 AliasTemplate,
2594 TemplateTemplateParam,
2595 Concept,
2596 DependentTemplate
2597 };
2598 TemplateNameKindForDiagnostics
2599 getTemplateNameKindForDiagnostics(TemplateName Name);
2600
2601 /// Determine whether it's plausible that E was intended to be a
2602 /// template-name.
2603 bool mightBeIntendedToBeTemplateName(ExprResult E, bool &Dependent) {
2604 if (!getLangOpts().CPlusPlus || E.isInvalid())
2605 return false;
2606 Dependent = false;
2607 if (auto *DRE = dyn_cast<DeclRefExpr>(E.get()))
2608 return !DRE->hasExplicitTemplateArgs();
2609 if (auto *ME = dyn_cast<MemberExpr>(E.get()))
2610 return !ME->hasExplicitTemplateArgs();
2611 Dependent = true;
2612 if (auto *DSDRE = dyn_cast<DependentScopeDeclRefExpr>(E.get()))
2613 return !DSDRE->hasExplicitTemplateArgs();
2614 if (auto *DSME = dyn_cast<CXXDependentScopeMemberExpr>(E.get()))
2615 return !DSME->hasExplicitTemplateArgs();
2616 // Any additional cases recognized here should also be handled by
2617 // diagnoseExprIntendedAsTemplateName.
2618 return false;
2619 }
2620 void diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
2621 SourceLocation Less,
2622 SourceLocation Greater);
2623
2624 void warnOnReservedIdentifier(const NamedDecl *D);
2625
2626 Decl *ActOnDeclarator(Scope *S, Declarator &D);
2627
2628 NamedDecl *HandleDeclarator(Scope *S, Declarator &D,
2629 MultiTemplateParamsArg TemplateParameterLists);
2630 bool tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo,
2631 QualType &T, SourceLocation Loc,
2632 unsigned FailedFoldDiagID);
2633 void RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S);
2634 bool DiagnoseClassNameShadow(DeclContext *DC, DeclarationNameInfo Info);
2635 bool diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
2636 DeclarationName Name, SourceLocation Loc,
2637 bool IsTemplateId);
2638 void
2639 diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
2640 SourceLocation FallbackLoc,
2641 SourceLocation ConstQualLoc = SourceLocation(),
2642 SourceLocation VolatileQualLoc = SourceLocation(),
2643 SourceLocation RestrictQualLoc = SourceLocation(),
2644 SourceLocation AtomicQualLoc = SourceLocation(),
2645 SourceLocation UnalignedQualLoc = SourceLocation());
2646
2647 static bool adjustContextForLocalExternDecl(DeclContext *&DC);
2648 void DiagnoseFunctionSpecifiers(const DeclSpec &DS);
2649 NamedDecl *getShadowedDeclaration(const TypedefNameDecl *D,
2650 const LookupResult &R);
2651 NamedDecl *getShadowedDeclaration(const VarDecl *D, const LookupResult &R);
2652 NamedDecl *getShadowedDeclaration(const BindingDecl *D,
2653 const LookupResult &R);
2654 void CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
2655 const LookupResult &R);
2656 void CheckShadow(Scope *S, VarDecl *D);
2657
2658 /// Warn if 'E', which is an expression that is about to be modified, refers
2659 /// to a shadowing declaration.
2660 void CheckShadowingDeclModification(Expr *E, SourceLocation Loc);
2661
2662 void DiagnoseShadowingLambdaDecls(const sema::LambdaScopeInfo *LSI);
2663
2664private:
2665 /// Map of current shadowing declarations to shadowed declarations. Warn if
2666 /// it looks like the user is trying to modify the shadowing declaration.
2667 llvm::DenseMap<const NamedDecl *, const NamedDecl *> ShadowingDecls;
2668
2669public:
2670 void CheckCastAlign(Expr *Op, QualType T, SourceRange TRange);
2671 void handleTagNumbering(const TagDecl *Tag, Scope *TagScope);
2672 void setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
2673 TypedefNameDecl *NewTD);
2674 void CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *D);
2675 NamedDecl* ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2676 TypeSourceInfo *TInfo,
2677 LookupResult &Previous);
2678 NamedDecl* ActOnTypedefNameDecl(Scope* S, DeclContext* DC, TypedefNameDecl *D,
2679 LookupResult &Previous, bool &Redeclaration);
2680 NamedDecl *ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
2681 TypeSourceInfo *TInfo,
2682 LookupResult &Previous,
2683 MultiTemplateParamsArg TemplateParamLists,
2684 bool &AddToScope,
2685 ArrayRef<BindingDecl *> Bindings = None);
2686 NamedDecl *
2687 ActOnDecompositionDeclarator(Scope *S, Declarator &D,
2688 MultiTemplateParamsArg TemplateParamLists);
2689 // Returns true if the variable declaration is a redeclaration
2690 bool CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous);
2691 void CheckVariableDeclarationType(VarDecl *NewVD);
2692 bool DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
2693 Expr *Init);
2694 void CheckCompleteVariableDeclaration(VarDecl *VD);
2695 void CheckCompleteDecompositionDeclaration(DecompositionDecl *DD);
2696 void MaybeSuggestAddingStaticToDecl(const FunctionDecl *D);
2697
2698 NamedDecl* ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2699 TypeSourceInfo *TInfo,
2700 LookupResult &Previous,
2701 MultiTemplateParamsArg TemplateParamLists,
2702 bool &AddToScope);
2703 bool AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD);
2704
2705 enum class CheckConstexprKind {
2706 /// Diagnose issues that are non-constant or that are extensions.
2707 Diagnose,
2708 /// Identify whether this function satisfies the formal rules for constexpr
2709 /// functions in the current lanugage mode (with no extensions).
2710 CheckValid
2711 };
2712
2713 bool CheckConstexprFunctionDefinition(const FunctionDecl *FD,
2714 CheckConstexprKind Kind);
2715
2716 void DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD);
2717 void FindHiddenVirtualMethods(CXXMethodDecl *MD,
2718 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods);
2719 void NoteHiddenVirtualMethods(CXXMethodDecl *MD,
2720 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods);
2721 // Returns true if the function declaration is a redeclaration
2722 bool CheckFunctionDeclaration(Scope *S,
2723 FunctionDecl *NewFD, LookupResult &Previous,
2724 bool IsMemberSpecialization);
2725 bool shouldLinkDependentDeclWithPrevious(Decl *D, Decl *OldDecl);
2726 bool canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
2727 QualType NewT, QualType OldT);
2728 void CheckMain(FunctionDecl *FD, const DeclSpec &D);
2729 void CheckMSVCRTEntryPoint(FunctionDecl *FD);
2730 Attr *getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
2731 bool IsDefinition);
2732 void CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D);
2733 Decl *ActOnParamDeclarator(Scope *S, Declarator &D);
2734 ParmVarDecl *BuildParmVarDeclForTypedef(DeclContext *DC,
2735 SourceLocation Loc,
2736 QualType T);
2737 ParmVarDecl *CheckParameter(DeclContext *DC, SourceLocation StartLoc,
2738 SourceLocation NameLoc, IdentifierInfo *Name,
2739 QualType T, TypeSourceInfo *TSInfo,
2740 StorageClass SC);
2741 void ActOnParamDefaultArgument(Decl *param,
2742 SourceLocation EqualLoc,
2743 Expr *defarg);
2744 void ActOnParamUnparsedDefaultArgument(Decl *param, SourceLocation EqualLoc,
2745 SourceLocation ArgLoc);
2746 void ActOnParamDefaultArgumentError(Decl *param, SourceLocation EqualLoc);
2747 ExprResult ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg,
2748 SourceLocation EqualLoc);
2749 void SetParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg,
2750 SourceLocation EqualLoc);
2751
2752 // Contexts where using non-trivial C union types can be disallowed. This is
2753 // passed to err_non_trivial_c_union_in_invalid_context.
2754 enum NonTrivialCUnionContext {
2755 // Function parameter.
2756 NTCUC_FunctionParam,
2757 // Function return.
2758 NTCUC_FunctionReturn,
2759 // Default-initialized object.
2760 NTCUC_DefaultInitializedObject,
2761 // Variable with automatic storage duration.
2762 NTCUC_AutoVar,
2763 // Initializer expression that might copy from another object.
2764 NTCUC_CopyInit,
2765 // Assignment.
2766 NTCUC_Assignment,
2767 // Compound literal.
2768 NTCUC_CompoundLiteral,
2769 // Block capture.
2770 NTCUC_BlockCapture,
2771 // lvalue-to-rvalue conversion of volatile type.
2772 NTCUC_LValueToRValueVolatile,
2773 };
2774
2775 /// Emit diagnostics if the initializer or any of its explicit or
2776 /// implicitly-generated subexpressions require copying or
2777 /// default-initializing a type that is or contains a C union type that is
2778 /// non-trivial to copy or default-initialize.
2779 void checkNonTrivialCUnionInInitializer(const Expr *Init, SourceLocation Loc);
2780
2781 // These flags are passed to checkNonTrivialCUnion.
2782 enum NonTrivialCUnionKind {
2783 NTCUK_Init = 0x1,
2784 NTCUK_Destruct = 0x2,
2785 NTCUK_Copy = 0x4,
2786 };
2787
2788 /// Emit diagnostics if a non-trivial C union type or a struct that contains
2789 /// a non-trivial C union is used in an invalid context.
2790 void checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
2791 NonTrivialCUnionContext UseContext,
2792 unsigned NonTrivialKind);
2793
2794 void AddInitializerToDecl(Decl *dcl, Expr *init, bool DirectInit);
2795 void ActOnUninitializedDecl(Decl *dcl);
2796 void ActOnInitializerError(Decl *Dcl);
2797
2798 void ActOnPureSpecifier(Decl *D, SourceLocation PureSpecLoc);
2799 void ActOnCXXForRangeDecl(Decl *D);
2800 StmtResult ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
2801 IdentifierInfo *Ident,
2802 ParsedAttributes &Attrs,
2803 SourceLocation AttrEnd);
2804 void SetDeclDeleted(Decl *dcl, SourceLocation DelLoc);
2805 void SetDeclDefaulted(Decl *dcl, SourceLocation DefaultLoc);
2806 void CheckStaticLocalForDllExport(VarDecl *VD);
2807 void FinalizeDeclaration(Decl *D);
2808 DeclGroupPtrTy FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
2809 ArrayRef<Decl *> Group);
2810 DeclGroupPtrTy BuildDeclaratorGroup(MutableArrayRef<Decl *> Group);
2811
2812 /// Should be called on all declarations that might have attached
2813 /// documentation comments.
2814 void ActOnDocumentableDecl(Decl *D);
2815 void ActOnDocumentableDecls(ArrayRef<Decl *> Group);
2816
2817 void ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2818 SourceLocation LocAfterDecls);
2819 void CheckForFunctionRedefinition(
2820 FunctionDecl *FD, const FunctionDecl *EffectiveDefinition = nullptr,
2821 SkipBodyInfo *SkipBody = nullptr);
2822 Decl *ActOnStartOfFunctionDef(Scope *S, Declarator &D,
2823 MultiTemplateParamsArg TemplateParamLists,
2824 SkipBodyInfo *SkipBody = nullptr);
2825 Decl *ActOnStartOfFunctionDef(Scope *S, Decl *D,
2826 SkipBodyInfo *SkipBody = nullptr);
2827 void ActOnStartTrailingRequiresClause(Scope *S, Declarator &D);
2828 ExprResult ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr);
2829 ExprResult ActOnRequiresClause(ExprResult ConstraintExpr);
2830 void ActOnStartOfObjCMethodDef(Scope *S, Decl *D);
2831 bool isObjCMethodDecl(Decl *D) {
2832 return D && isa<ObjCMethodDecl>(D);
2833 }
2834
2835 /// Determine whether we can delay parsing the body of a function or
2836 /// function template until it is used, assuming we don't care about emitting
2837 /// code for that function.
2838 ///
2839 /// This will be \c false if we may need the body of the function in the
2840 /// middle of parsing an expression (where it's impractical to switch to
2841 /// parsing a different function), for instance, if it's constexpr in C++11
2842 /// or has an 'auto' return type in C++14. These cases are essentially bugs.
2843 bool canDelayFunctionBody(const Declarator &D);
2844
2845 /// Determine whether we can skip parsing the body of a function
2846 /// definition, assuming we don't care about analyzing its body or emitting
2847 /// code for that function.
2848 ///
2849 /// This will be \c false only if we may need the body of the function in
2850 /// order to parse the rest of the program (for instance, if it is
2851 /// \c constexpr in C++11 or has an 'auto' return type in C++14).
2852 bool canSkipFunctionBody(Decl *D);
2853
2854 void computeNRVO(Stmt *Body, sema::FunctionScopeInfo *Scope);
2855 Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body);
2856 Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body, bool IsInstantiation);
2857 Decl *ActOnSkippedFunctionBody(Decl *Decl);
2858 void ActOnFinishInlineFunctionDef(FunctionDecl *D);
2859
2860 /// ActOnFinishDelayedAttribute - Invoked when we have finished parsing an
2861 /// attribute for which parsing is delayed.
2862 void ActOnFinishDelayedAttribute(Scope *S, Decl *D, ParsedAttributes &Attrs);
2863
2864 /// Diagnose any unused parameters in the given sequence of
2865 /// ParmVarDecl pointers.
2866 void DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters);
2867
2868 /// Diagnose whether the size of parameters or return value of a
2869 /// function or obj-c method definition is pass-by-value and larger than a
2870 /// specified threshold.
2871 void
2872 DiagnoseSizeOfParametersAndReturnValue(ArrayRef<ParmVarDecl *> Parameters,
2873 QualType ReturnTy, NamedDecl *D);
2874
2875 void DiagnoseInvalidJumps(Stmt *Body);
2876 Decl *ActOnFileScopeAsmDecl(Expr *expr,
2877 SourceLocation AsmLoc,
2878 SourceLocation RParenLoc);
2879
2880 /// Handle a C++11 empty-declaration and attribute-declaration.
2881 Decl *ActOnEmptyDeclaration(Scope *S, const ParsedAttributesView &AttrList,
2882 SourceLocation SemiLoc);
2883
2884 enum class ModuleDeclKind {
2885 Interface, ///< 'export module X;'
2886 Implementation, ///< 'module X;'
2887 };
2888
2889 /// The parser has processed a module-declaration that begins the definition
2890 /// of a module interface or implementation.
2891 DeclGroupPtrTy ActOnModuleDecl(SourceLocation StartLoc,
2892 SourceLocation ModuleLoc, ModuleDeclKind MDK,
2893 ModuleIdPath Path, bool IsFirstDecl);
2894
2895 /// The parser has processed a global-module-fragment declaration that begins
2896 /// the definition of the global module fragment of the current module unit.
2897 /// \param ModuleLoc The location of the 'module' keyword.
2898 DeclGroupPtrTy ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc);
2899
2900 /// The parser has processed a private-module-fragment declaration that begins
2901 /// the definition of the private module fragment of the current module unit.
2902 /// \param ModuleLoc The location of the 'module' keyword.
2903 /// \param PrivateLoc The location of the 'private' keyword.
2904 DeclGroupPtrTy ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc,
2905 SourceLocation PrivateLoc);
2906
2907 /// The parser has processed a module import declaration.
2908 ///
2909 /// \param StartLoc The location of the first token in the declaration. This
2910 /// could be the location of an '@', 'export', or 'import'.
2911 /// \param ExportLoc The location of the 'export' keyword, if any.
2912 /// \param ImportLoc The location of the 'import' keyword.
2913 /// \param Path The module access path.
2914 DeclResult ActOnModuleImport(SourceLocation StartLoc,
2915 SourceLocation ExportLoc,
2916 SourceLocation ImportLoc, ModuleIdPath Path);
2917 DeclResult ActOnModuleImport(SourceLocation StartLoc,
2918 SourceLocation ExportLoc,
2919 SourceLocation ImportLoc, Module *M,
2920 ModuleIdPath Path = {});
2921
2922 /// The parser has processed a module import translated from a
2923 /// #include or similar preprocessing directive.
2924 void ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod);
2925 void BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod);
2926
2927 /// The parsed has entered a submodule.
2928 void ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod);
2929 /// The parser has left a submodule.
2930 void ActOnModuleEnd(SourceLocation DirectiveLoc, Module *Mod);
2931
2932 /// Create an implicit import of the given module at the given
2933 /// source location, for error recovery, if possible.
2934 ///
2935 /// This routine is typically used when an entity found by name lookup
2936 /// is actually hidden within a module that we know about but the user
2937 /// has forgotten to import.
2938 void createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
2939 Module *Mod);
2940
2941 /// Kinds of missing import. Note, the values of these enumerators correspond
2942 /// to %select values in diagnostics.
2943 enum class MissingImportKind {
2944 Declaration,
2945 Definition,
2946 DefaultArgument,
2947 ExplicitSpecialization,
2948 PartialSpecialization
2949 };
2950
2951 /// Diagnose that the specified declaration needs to be visible but
2952 /// isn't, and suggest a module import that would resolve the problem.
2953 void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
2954 MissingImportKind MIK, bool Recover = true);
2955 void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
2956 SourceLocation DeclLoc, ArrayRef<Module *> Modules,
2957 MissingImportKind MIK, bool Recover);
2958
2959 Decl *ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc,
2960 SourceLocation LBraceLoc);
2961 Decl *ActOnFinishExportDecl(Scope *S, Decl *ExportDecl,
2962 SourceLocation RBraceLoc);
2963
2964 /// We've found a use of a templated declaration that would trigger an
2965 /// implicit instantiation. Check that any relevant explicit specializations
2966 /// and partial specializations are visible, and diagnose if not.
2967 void checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec);
2968
2969 /// Retrieve a suitable printing policy for diagnostics.
2970 PrintingPolicy getPrintingPolicy() const {
2971 return getPrintingPolicy(Context, PP);
2972 }
2973
2974 /// Retrieve a suitable printing policy for diagnostics.
2975 static PrintingPolicy getPrintingPolicy(const ASTContext &Ctx,
2976 const Preprocessor &PP);
2977
2978 /// Scope actions.
2979 void ActOnPopScope(SourceLocation Loc, Scope *S);
2980 void ActOnTranslationUnitScope(Scope *S);
2981
2982 Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
2983 RecordDecl *&AnonRecord);
2984 Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
2985 MultiTemplateParamsArg TemplateParams,
2986 bool IsExplicitInstantiation,
2987 RecordDecl *&AnonRecord);
2988
2989 Decl *BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2990 AccessSpecifier AS,
2991 RecordDecl *Record,
2992 const PrintingPolicy &Policy);
2993
2994 Decl *BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2995 RecordDecl *Record);
2996
2997 /// Common ways to introduce type names without a tag for use in diagnostics.
2998 /// Keep in sync with err_tag_reference_non_tag.
2999 enum NonTagKind {
3000 NTK_NonStruct,
3001 NTK_NonClass,
3002 NTK_NonUnion,
3003 NTK_NonEnum,
3004 NTK_Typedef,
3005 NTK_TypeAlias,
3006 NTK_Template,
3007 NTK_TypeAliasTemplate,
3008 NTK_TemplateTemplateArgument,
3009 };
3010
3011 /// Given a non-tag type declaration, returns an enum useful for indicating
3012 /// what kind of non-tag type this is.
3013 NonTagKind getNonTagTypeDeclKind(const Decl *D, TagTypeKind TTK);
3014
3015 bool isAcceptableTagRedeclaration(const TagDecl *Previous,
3016 TagTypeKind NewTag, bool isDefinition,
3017 SourceLocation NewTagLoc,
3018 const IdentifierInfo *Name);
3019
3020 enum TagUseKind {
3021 TUK_Reference, // Reference to a tag: 'struct foo *X;'
3022 TUK_Declaration, // Fwd decl of a tag: 'struct foo;'
3023 TUK_Definition, // Definition of a tag: 'struct foo { int X; } Y;'
3024 TUK_Friend // Friend declaration: 'friend struct foo;'
3025 };
3026
3027 Decl *ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
3028 SourceLocation KWLoc, CXXScopeSpec &SS, IdentifierInfo *Name,
3029 SourceLocation NameLoc, const ParsedAttributesView &Attr,
3030 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
3031 MultiTemplateParamsArg TemplateParameterLists, bool &OwnedDecl,
3032 bool &IsDependent, SourceLocation ScopedEnumKWLoc,
3033 bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
3034 bool IsTypeSpecifier, bool IsTemplateParamOrArg,
3035 SkipBodyInfo *SkipBody = nullptr);
3036
3037 Decl *ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
3038 unsigned TagSpec, SourceLocation TagLoc,
3039 CXXScopeSpec &SS, IdentifierInfo *Name,
3040 SourceLocation NameLoc,
3041 const ParsedAttributesView &Attr,
3042 MultiTemplateParamsArg TempParamLists);
3043
3044 TypeResult ActOnDependentTag(Scope *S,
3045 unsigned TagSpec,
3046 TagUseKind TUK,
3047 const CXXScopeSpec &SS,
3048 IdentifierInfo *Name,
3049 SourceLocation TagLoc,
3050 SourceLocation NameLoc);
3051
3052 void ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
3053 IdentifierInfo *ClassName,
3054 SmallVectorImpl<Decl *> &Decls);
3055 Decl *ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
3056 Declarator &D, Expr *BitfieldWidth);
3057
3058 FieldDecl *HandleField(Scope *S, RecordDecl *TagD, SourceLocation DeclStart,
3059 Declarator &D, Expr *BitfieldWidth,
3060 InClassInitStyle InitStyle,
3061 AccessSpecifier AS);
3062 MSPropertyDecl *HandleMSProperty(Scope *S, RecordDecl *TagD,
3063 SourceLocation DeclStart, Declarator &D,
3064 Expr *BitfieldWidth,
3065 InClassInitStyle InitStyle,
3066 AccessSpecifier AS,
3067 const ParsedAttr &MSPropertyAttr);
3068
3069 FieldDecl *CheckFieldDecl(DeclarationName Name, QualType T,
3070 TypeSourceInfo *TInfo,
3071 RecordDecl *Record, SourceLocation Loc,
3072 bool Mutable, Expr *BitfieldWidth,
3073 InClassInitStyle InitStyle,
3074 SourceLocation TSSL,
3075 AccessSpecifier AS, NamedDecl *PrevDecl,
3076 Declarator *D = nullptr);
3077
3078 bool CheckNontrivialField(FieldDecl *FD);
3079 void DiagnoseNontrivial(const CXXRecordDecl *Record, CXXSpecialMember CSM);
3080
3081 enum TrivialABIHandling {
3082 /// The triviality of a method unaffected by "trivial_abi".
3083 TAH_IgnoreTrivialABI,
3084
3085 /// The triviality of a method affected by "trivial_abi".
3086 TAH_ConsiderTrivialABI
3087 };
3088
3089 bool SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
3090 TrivialABIHandling TAH = TAH_IgnoreTrivialABI,
3091 bool Diagnose = false);
3092
3093 /// For a defaulted function, the kind of defaulted function that it is.
3094 class DefaultedFunctionKind {
3095 CXXSpecialMember SpecialMember : 8;
3096 DefaultedComparisonKind Comparison : 8;
3097
3098 public:
3099 DefaultedFunctionKind()
3100 : SpecialMember(CXXInvalid), Comparison(DefaultedComparisonKind::None) {
3101 }
3102 DefaultedFunctionKind(CXXSpecialMember CSM)
3103 : SpecialMember(CSM), Comparison(DefaultedComparisonKind::None) {}
3104 DefaultedFunctionKind(DefaultedComparisonKind Comp)
3105 : SpecialMember(CXXInvalid), Comparison(Comp) {}
3106
3107 bool isSpecialMember() const { return SpecialMember != CXXInvalid; }
3108 bool isComparison() const {
3109 return Comparison != DefaultedComparisonKind::None;
3110 }
3111
3112 explicit operator bool() const {
3113 return isSpecialMember() || isComparison();
3114 }
3115
3116 CXXSpecialMember asSpecialMember() const { return SpecialMember; }
3117 DefaultedComparisonKind asComparison() const { return Comparison; }
3118
3119 /// Get the index of this function kind for use in diagnostics.
3120 unsigned getDiagnosticIndex() const {
3121 static_assert(CXXInvalid > CXXDestructor,
3122 "invalid should have highest index");
3123 static_assert((unsigned)DefaultedComparisonKind::None == 0,
3124 "none should be equal to zero");
3125 return SpecialMember + (unsigned)Comparison;
3126 }
3127 };
3128
3129 DefaultedFunctionKind getDefaultedFunctionKind(const FunctionDecl *FD);
3130
3131 CXXSpecialMember getSpecialMember(const CXXMethodDecl *MD) {
3132 return getDefaultedFunctionKind(MD).asSpecialMember();
3133 }
3134 DefaultedComparisonKind getDefaultedComparisonKind(const FunctionDecl *FD) {
3135 return getDefaultedFunctionKind(FD).asComparison();
3136 }
3137
3138 void ActOnLastBitfield(SourceLocation DeclStart,
3139 SmallVectorImpl<Decl *> &AllIvarDecls);
3140 Decl *ActOnIvar(Scope *S, SourceLocation DeclStart,
3141 Declarator &D, Expr *BitfieldWidth,
3142 tok::ObjCKeywordKind visibility);
3143
3144 // This is used for both record definitions and ObjC interface declarations.
3145 void ActOnFields(Scope *S, SourceLocation RecLoc, Decl *TagDecl,
3146 ArrayRef<Decl *> Fields, SourceLocation LBrac,
3147 SourceLocation RBrac, const ParsedAttributesView &AttrList);
3148
3149 /// ActOnTagStartDefinition - Invoked when we have entered the
3150 /// scope of a tag's definition (e.g., for an enumeration, class,
3151 /// struct, or union).
3152 void ActOnTagStartDefinition(Scope *S, Decl *TagDecl);
3153
3154 /// Perform ODR-like check for C/ObjC when merging tag types from modules.
3155 /// Differently from C++, actually parse the body and reject / error out
3156 /// in case of a structural mismatch.
3157 bool ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
3158 SkipBodyInfo &SkipBody);
3159
3160 typedef void *SkippedDefinitionContext;
3161
3162 /// Invoked when we enter a tag definition that we're skipping.
3163 SkippedDefinitionContext ActOnTagStartSkippedDefinition(Scope *S, Decl *TD);
3164
3165 Decl *ActOnObjCContainerStartDefinition(Decl *IDecl);
3166
3167 /// ActOnStartCXXMemberDeclarations - Invoked when we have parsed a
3168 /// C++ record definition's base-specifiers clause and are starting its
3169 /// member declarations.
3170 void ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagDecl,
3171 SourceLocation FinalLoc,
3172 bool IsFinalSpelledSealed,
3173 bool IsAbstract,
3174 SourceLocation LBraceLoc);
3175
3176 /// ActOnTagFinishDefinition - Invoked once we have finished parsing
3177 /// the definition of a tag (enumeration, class, struct, or union).
3178 void ActOnTagFinishDefinition(Scope *S, Decl *TagDecl,
3179 SourceRange BraceRange);
3180
3181 void ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context);
3182
3183 void ActOnObjCContainerFinishDefinition();
3184
3185 /// Invoked when we must temporarily exit the objective-c container
3186 /// scope for parsing/looking-up C constructs.
3187 ///
3188 /// Must be followed by a call to \see ActOnObjCReenterContainerContext
3189 void ActOnObjCTemporaryExitContainerContext(DeclContext *DC);
3190 void ActOnObjCReenterContainerContext(DeclContext *DC);
3191
3192 /// ActOnTagDefinitionError - Invoked when there was an unrecoverable
3193 /// error parsing the definition of a tag.
3194 void ActOnTagDefinitionError(Scope *S, Decl *TagDecl);
3195
3196 EnumConstantDecl *CheckEnumConstant(EnumDecl *Enum,
3197 EnumConstantDecl *LastEnumConst,
3198 SourceLocation IdLoc,
3199 IdentifierInfo *Id,
3200 Expr *val);
3201 bool CheckEnumUnderlyingType(TypeSourceInfo *TI);
3202 bool CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
3203 QualType EnumUnderlyingTy, bool IsFixed,
3204 const EnumDecl *Prev);
3205
3206 /// Determine whether the body of an anonymous enumeration should be skipped.
3207 /// \param II The name of the first enumerator.
3208 SkipBodyInfo shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
3209 SourceLocation IILoc);
3210
3211 Decl *ActOnEnumConstant(Scope *S, Decl *EnumDecl, Decl *LastEnumConstant,
3212 SourceLocation IdLoc, IdentifierInfo *Id,
3213 const ParsedAttributesView &Attrs,
3214 SourceLocation EqualLoc, Expr *Val);
3215 void ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
3216 Decl *EnumDecl, ArrayRef<Decl *> Elements, Scope *S,
3217 const ParsedAttributesView &Attr);
3218
3219 /// Set the current declaration context until it gets popped.
3220 void PushDeclContext(Scope *S, DeclContext *DC);
3221 void PopDeclContext();
3222
3223 /// EnterDeclaratorContext - Used when we must lookup names in the context
3224 /// of a declarator's nested name specifier.
3225 void EnterDeclaratorContext(Scope *S, DeclContext *DC);
3226 void ExitDeclaratorContext(Scope *S);
3227
3228 /// Enter a template parameter scope, after it's been associated with a particular
3229 /// DeclContext. Causes lookup within the scope to chain through enclosing contexts
3230 /// in the correct order.
3231 void EnterTemplatedContext(Scope *S, DeclContext *DC);
3232
3233 /// Push the parameters of D, which must be a function, into scope.
3234 void ActOnReenterFunctionContext(Scope* S, Decl* D);
3235 void ActOnExitFunctionContext();
3236
3237 DeclContext *getFunctionLevelDeclContext();
3238
3239 /// getCurFunctionDecl - If inside of a function body, this returns a pointer
3240 /// to the function decl for the function being parsed. If we're currently
3241 /// in a 'block', this returns the containing context.
3242 FunctionDecl *getCurFunctionDecl();
3243
3244 /// getCurMethodDecl - If inside of a method body, this returns a pointer to
3245 /// the method decl for the method being parsed. If we're currently
3246 /// in a 'block', this returns the containing context.
3247 ObjCMethodDecl *getCurMethodDecl();
3248
3249 /// getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method
3250 /// or C function we're in, otherwise return null. If we're currently
3251 /// in a 'block', this returns the containing context.
3252 NamedDecl *getCurFunctionOrMethodDecl();
3253
3254 /// Add this decl to the scope shadowed decl chains.
3255 void PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext = true);
3256
3257 /// isDeclInScope - If 'Ctx' is a function/method, isDeclInScope returns true
3258 /// if 'D' is in Scope 'S', otherwise 'S' is ignored and isDeclInScope returns
3259 /// true if 'D' belongs to the given declaration context.
3260 ///
3261 /// \param AllowInlineNamespace If \c true, allow the declaration to be in the
3262 /// enclosing namespace set of the context, rather than contained
3263 /// directly within it.
3264 bool isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S = nullptr,
3265 bool AllowInlineNamespace = false);
3266
3267 /// Finds the scope corresponding to the given decl context, if it
3268 /// happens to be an enclosing scope. Otherwise return NULL.
3269 static Scope *getScopeForDeclContext(Scope *S, DeclContext *DC);
3270
3271 /// Subroutines of ActOnDeclarator().
3272 TypedefDecl *ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
3273 TypeSourceInfo *TInfo);
3274 bool isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New);
3275
3276 /// Describes the kind of merge to perform for availability
3277 /// attributes (including "deprecated", "unavailable", and "availability").
3278 enum AvailabilityMergeKind {
3279 /// Don't merge availability attributes at all.
3280 AMK_None,
3281 /// Merge availability attributes for a redeclaration, which requires
3282 /// an exact match.
3283 AMK_Redeclaration,
3284 /// Merge availability attributes for an override, which requires
3285 /// an exact match or a weakening of constraints.
3286 AMK_Override,
3287 /// Merge availability attributes for an implementation of
3288 /// a protocol requirement.
3289 AMK_ProtocolImplementation,
3290 /// Merge availability attributes for an implementation of
3291 /// an optional protocol requirement.
3292 AMK_OptionalProtocolImplementation
3293 };
3294
3295 /// Describes the kind of priority given to an availability attribute.
3296 ///
3297 /// The sum of priorities deteremines the final priority of the attribute.
3298 /// The final priority determines how the attribute will be merged.
3299 /// An attribute with a lower priority will always remove higher priority
3300 /// attributes for the specified platform when it is being applied. An
3301 /// attribute with a higher priority will not be applied if the declaration
3302 /// already has an availability attribute with a lower priority for the
3303 /// specified platform. The final prirority values are not expected to match
3304 /// the values in this enumeration, but instead should be treated as a plain
3305 /// integer value. This enumeration just names the priority weights that are
3306 /// used to calculate that final vaue.
3307 enum AvailabilityPriority : int {
3308 /// The availability attribute was specified explicitly next to the
3309 /// declaration.
3310 AP_Explicit = 0,
3311
3312 /// The availability attribute was applied using '#pragma clang attribute'.
3313 AP_PragmaClangAttribute = 1,
3314
3315 /// The availability attribute for a specific platform was inferred from
3316 /// an availability attribute for another platform.
3317 AP_InferredFromOtherPlatform = 2
3318 };
3319
3320 /// Attribute merging methods. Return true if a new attribute was added.
3321 AvailabilityAttr *
3322 mergeAvailabilityAttr(NamedDecl *D, const AttributeCommonInfo &CI,
3323 IdentifierInfo *Platform, bool Implicit,
3324 VersionTuple Introduced, VersionTuple Deprecated,
3325 VersionTuple Obsoleted, bool IsUnavailable,
3326 StringRef Message, bool IsStrict, StringRef Replacement,
3327 AvailabilityMergeKind AMK, int Priority);
3328 TypeVisibilityAttr *
3329 mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
3330 TypeVisibilityAttr::VisibilityType Vis);
3331 VisibilityAttr *mergeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
3332 VisibilityAttr::VisibilityType Vis);
3333 UuidAttr *mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI,
3334 StringRef UuidAsWritten, MSGuidDecl *GuidDecl);
3335 DLLImportAttr *mergeDLLImportAttr(Decl *D, const AttributeCommonInfo &CI);
3336 DLLExportAttr *mergeDLLExportAttr(Decl *D, const AttributeCommonInfo &CI);
3337 MSInheritanceAttr *mergeMSInheritanceAttr(Decl *D,
3338 const AttributeCommonInfo &CI,
3339 bool BestCase,
3340 MSInheritanceModel Model);
3341 ErrorAttr *mergeErrorAttr(Decl *D, const AttributeCommonInfo &CI,
3342 StringRef NewUserDiagnostic);
3343 FormatAttr *mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI,
3344 IdentifierInfo *Format, int FormatIdx,
3345 int FirstArg);
3346 SectionAttr *mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI,
3347 StringRef Name);
3348 CodeSegAttr *mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI,
3349 StringRef Name);
3350 AlwaysInlineAttr *mergeAlwaysInlineAttr(Decl *D,
3351 const AttributeCommonInfo &CI,
3352 const IdentifierInfo *Ident);
3353 MinSizeAttr *mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI);
3354 SwiftNameAttr *mergeSwiftNameAttr(Decl *D, const SwiftNameAttr &SNA,
3355 StringRef Name);
3356 OptimizeNoneAttr *mergeOptimizeNoneAttr(Decl *D,
3357 const AttributeCommonInfo &CI);
3358 InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D, const ParsedAttr &AL);
3359 InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D,
3360 const InternalLinkageAttr &AL);
3361 WebAssemblyImportNameAttr *mergeImportNameAttr(
3362 Decl *D, const WebAssemblyImportNameAttr &AL);
3363 WebAssemblyImportModuleAttr *mergeImportModuleAttr(
3364 Decl *D, const WebAssemblyImportModuleAttr &AL);
3365 EnforceTCBAttr *mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL);
3366 EnforceTCBLeafAttr *mergeEnforceTCBLeafAttr(Decl *D,
3367 const EnforceTCBLeafAttr &AL);
3368 BTFTagAttr *mergeBTFTagAttr(Decl *D, const BTFTagAttr &AL);
3369
3370 void mergeDeclAttributes(NamedDecl *New, Decl *Old,
3371 AvailabilityMergeKind AMK = AMK_Redeclaration);
3372 void MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
3373 LookupResult &OldDecls);
3374 bool MergeFunctionDecl(FunctionDecl *New, NamedDecl *&Old, Scope *S,
3375 bool MergeTypeWithOld);
3376 bool MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3377 Scope *S, bool MergeTypeWithOld);
3378 void mergeObjCMethodDecls(ObjCMethodDecl *New, ObjCMethodDecl *Old);
3379 void MergeVarDecl(VarDecl *New, LookupResult &Previous);
3380 void MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool MergeTypeWithOld);
3381 void MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old);
3382 bool checkVarDeclRedefinition(VarDecl *OldDefn, VarDecl *NewDefn);
3383 void notePreviousDefinition(const NamedDecl *Old, SourceLocation New);
3384 bool MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, Scope *S);
3385
3386 // AssignmentAction - This is used by all the assignment diagnostic functions
3387 // to represent what is actually causing the operation
3388 enum AssignmentAction {
3389 AA_Assigning,
3390 AA_Passing,
3391 AA_Returning,
3392 AA_Converting,
3393 AA_Initializing,
3394 AA_Sending,
3395 AA_Casting,
3396 AA_Passing_CFAudited
3397 };
3398
3399 /// C++ Overloading.
3400 enum OverloadKind {
3401 /// This is a legitimate overload: the existing declarations are
3402 /// functions or function templates with different signatures.
3403 Ovl_Overload,
3404
3405 /// This is not an overload because the signature exactly matches
3406 /// an existing declaration.
3407 Ovl_Match,
3408
3409 /// This is not an overload because the lookup results contain a
3410 /// non-function.
3411 Ovl_NonFunction
3412 };
3413 OverloadKind CheckOverload(Scope *S,
3414 FunctionDecl *New,
3415 const LookupResult &OldDecls,
3416 NamedDecl *&OldDecl,
3417 bool IsForUsingDecl);
3418 bool IsOverload(FunctionDecl *New, FunctionDecl *Old, bool IsForUsingDecl,
3419 bool ConsiderCudaAttrs = true,
3420 bool ConsiderRequiresClauses = true);
3421
3422 enum class AllowedExplicit {
3423 /// Allow no explicit functions to be used.
3424 None,
3425 /// Allow explicit conversion functions but not explicit constructors.
3426 Conversions,
3427 /// Allow both explicit conversion functions and explicit constructors.
3428 All
3429 };
3430
3431 ImplicitConversionSequence
3432 TryImplicitConversion(Expr *From, QualType ToType,
3433 bool SuppressUserConversions,
3434 AllowedExplicit AllowExplicit,
3435 bool InOverloadResolution,
3436 bool CStyle,
3437 bool AllowObjCWritebackConversion);
3438
3439 bool IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType);
3440 bool IsFloatingPointPromotion(QualType FromType, QualType ToType);
3441 bool IsComplexPromotion(QualType FromType, QualType ToType);
3442 bool IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
3443 bool InOverloadResolution,
3444 QualType& ConvertedType, bool &IncompatibleObjC);
3445 bool isObjCPointerConversion(QualType FromType, QualType ToType,
3446 QualType& ConvertedType, bool &IncompatibleObjC);
3447 bool isObjCWritebackConversion(QualType FromType, QualType ToType,
3448 QualType &ConvertedType);
3449 bool IsBlockPointerConversion(QualType FromType, QualType ToType,
3450 QualType& ConvertedType);
3451 bool FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
3452 const FunctionProtoType *NewType,
3453 unsigned *ArgPos = nullptr);
3454 void HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
3455 QualType FromType, QualType ToType);
3456
3457 void maybeExtendBlockObject(ExprResult &E);
3458 CastKind PrepareCastToObjCObjectPointer(ExprResult &E);
3459 bool CheckPointerConversion(Expr *From, QualType ToType,
3460 CastKind &Kind,
3461 CXXCastPath& BasePath,
3462 bool IgnoreBaseAccess,
3463 bool Diagnose = true);
3464 bool IsMemberPointerConversion(Expr *From, QualType FromType, QualType ToType,
3465 bool InOverloadResolution,
3466 QualType &ConvertedType);
3467 bool CheckMemberPointerConversion(Expr *From, QualType ToType,
3468 CastKind &Kind,
3469 CXXCastPath &BasePath,
3470 bool IgnoreBaseAccess);
3471 bool IsQualificationConversion(QualType FromType, QualType ToType,
3472 bool CStyle, bool &ObjCLifetimeConversion);
3473 bool IsFunctionConversion(QualType FromType, QualType ToType,
3474 QualType &ResultTy);
3475 bool DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType);
3476 bool isSameOrCompatibleFunctionType(CanQualType Param, CanQualType Arg);
3477
3478 bool CanPerformAggregateInitializationForOverloadResolution(
3479 const InitializedEntity &Entity, InitListExpr *From);
3480
3481 bool IsStringInit(Expr *Init, const ArrayType *AT);
3482
3483 bool CanPerformCopyInitialization(const InitializedEntity &Entity,
3484 ExprResult Init);
3485 ExprResult PerformCopyInitialization(const InitializedEntity &Entity,
3486 SourceLocation EqualLoc,
3487 ExprResult Init,
3488 bool TopLevelOfInitList = false,
3489 bool AllowExplicit = false);
3490 ExprResult PerformObjectArgumentInitialization(Expr *From,
3491 NestedNameSpecifier *Qualifier,
3492 NamedDecl *FoundDecl,
3493 CXXMethodDecl *Method);
3494
3495 /// Check that the lifetime of the initializer (and its subobjects) is
3496 /// sufficient for initializing the entity, and perform lifetime extension
3497 /// (when permitted) if not.
3498 void checkInitializerLifetime(const InitializedEntity &Entity, Expr *Init);
3499
3500 ExprResult PerformContextuallyConvertToBool(Expr *From);
3501 ExprResult PerformContextuallyConvertToObjCPointer(Expr *From);
3502
3503 /// Contexts in which a converted constant expression is required.
3504 enum CCEKind {
3505 CCEK_CaseValue, ///< Expression in a case label.
3506 CCEK_Enumerator, ///< Enumerator value with fixed underlying type.
3507 CCEK_TemplateArg, ///< Value of a non-type template parameter.
3508 CCEK_ArrayBound, ///< Array bound in array declarator or new-expression.
3509 CCEK_ExplicitBool, ///< Condition in an explicit(bool) specifier.
3510 CCEK_Noexcept ///< Condition in a noexcept(bool) specifier.
3511 };
3512 ExprResult CheckConvertedConstantExpression(Expr *From, QualType T,
3513 llvm::APSInt &Value, CCEKind CCE);
3514 ExprResult CheckConvertedConstantExpression(Expr *From, QualType T,
3515 APValue &Value, CCEKind CCE,
3516 NamedDecl *Dest = nullptr);
3517
3518 /// Abstract base class used to perform a contextual implicit
3519 /// conversion from an expression to any type passing a filter.
3520 class ContextualImplicitConverter {
3521 public:
3522 bool Suppress;
3523 bool SuppressConversion;
3524
3525 ContextualImplicitConverter(bool Suppress = false,
3526 bool SuppressConversion = false)
3527 : Suppress(Suppress), SuppressConversion(SuppressConversion) {}
3528
3529 /// Determine whether the specified type is a valid destination type
3530 /// for this conversion.
3531 virtual bool match(QualType T) = 0;
3532
3533 /// Emits a diagnostic complaining that the expression does not have
3534 /// integral or enumeration type.
3535 virtual SemaDiagnosticBuilder
3536 diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) = 0;
3537
3538 /// Emits a diagnostic when the expression has incomplete class type.
3539 virtual SemaDiagnosticBuilder
3540 diagnoseIncomplete(Sema &S, SourceLocation Loc, QualType T) = 0;
3541
3542 /// Emits a diagnostic when the only matching conversion function
3543 /// is explicit.
3544 virtual SemaDiagnosticBuilder diagnoseExplicitConv(
3545 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0;
3546
3547 /// Emits a note for the explicit conversion function.
3548 virtual SemaDiagnosticBuilder
3549 noteExplicitConv(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0;
3550
3551 /// Emits a diagnostic when there are multiple possible conversion
3552 /// functions.
3553 virtual SemaDiagnosticBuilder
3554 diagnoseAmbiguous(Sema &S, SourceLocation Loc, QualType T) = 0;
3555
3556 /// Emits a note for one of the candidate conversions.
3557 virtual SemaDiagnosticBuilder
3558 noteAmbiguous(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0;
3559
3560 /// Emits a diagnostic when we picked a conversion function
3561 /// (for cases when we are not allowed to pick a conversion function).
3562 virtual SemaDiagnosticBuilder diagnoseConversion(
3563 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0;
3564
3565 virtual ~ContextualImplicitConverter() {}
3566 };
3567
3568 class ICEConvertDiagnoser : public ContextualImplicitConverter {
3569 bool AllowScopedEnumerations;
3570
3571 public:
3572 ICEConvertDiagnoser(bool AllowScopedEnumerations,
3573 bool Suppress, bool SuppressConversion)
3574 : ContextualImplicitConverter(Suppress, SuppressConversion),
3575 AllowScopedEnumerations(AllowScopedEnumerations) {}
3576
3577 /// Match an integral or (possibly scoped) enumeration type.
3578 bool match(QualType T) override;
3579
3580 SemaDiagnosticBuilder
3581 diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) override {
3582 return diagnoseNotInt(S, Loc, T);
3583 }
3584
3585 /// Emits a diagnostic complaining that the expression does not have
3586 /// integral or enumeration type.
3587 virtual SemaDiagnosticBuilder
3588 diagnoseNotInt(Sema &S, SourceLocation Loc, QualType T) = 0;
3589 };
3590
3591 /// Perform a contextual implicit conversion.
3592 ExprResult PerformContextualImplicitConversion(
3593 SourceLocation Loc, Expr *FromE, ContextualImplicitConverter &Converter);
3594
3595
3596 enum ObjCSubscriptKind {
3597 OS_Array,
3598 OS_Dictionary,
3599 OS_Error
3600 };
3601 ObjCSubscriptKind CheckSubscriptingKind(Expr *FromE);
3602
3603 // Note that LK_String is intentionally after the other literals, as
3604 // this is used for diagnostics logic.
3605 enum ObjCLiteralKind {
3606 LK_Array,
3607 LK_Dictionary,
3608 LK_Numeric,
3609 LK_Boxed,
3610 LK_String,
3611 LK_Block,
3612 LK_None
3613 };
3614 ObjCLiteralKind CheckLiteralKind(Expr *FromE);
3615
3616 ExprResult PerformObjectMemberConversion(Expr *From,
3617 NestedNameSpecifier *Qualifier,
3618 NamedDecl *FoundDecl,
3619 NamedDecl *Member);
3620
3621 // Members have to be NamespaceDecl* or TranslationUnitDecl*.
3622 // TODO: make this is a typesafe union.
3623 typedef llvm::SmallSetVector<DeclContext *, 16> AssociatedNamespaceSet;
3624 typedef llvm::SmallSetVector<CXXRecordDecl *, 16> AssociatedClassSet;
3625
3626 using ADLCallKind = CallExpr::ADLCallKind;
3627
3628 void AddOverloadCandidate(FunctionDecl *Function, DeclAccessPair FoundDecl,
3629 ArrayRef<Expr *> Args,
3630 OverloadCandidateSet &CandidateSet,
3631 bool SuppressUserConversions = false,
3632 bool PartialOverloading = false,
3633 bool AllowExplicit = true,
3634 bool AllowExplicitConversion = false,
3635 ADLCallKind IsADLCandidate = ADLCallKind::NotADL,
3636 ConversionSequenceList EarlyConversions = None,
3637 OverloadCandidateParamOrder PO = {});
3638 void AddFunctionCandidates(const UnresolvedSetImpl &Functions,
3639 ArrayRef<Expr *> Args,
3640 OverloadCandidateSet &CandidateSet,
3641 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr,
3642 bool SuppressUserConversions = false,
3643 bool PartialOverloading = false,
3644 bool FirstArgumentIsBase = false);
3645 void AddMethodCandidate(DeclAccessPair FoundDecl,
3646 QualType ObjectType,
3647 Expr::Classification ObjectClassification,
3648 ArrayRef<Expr *> Args,
3649 OverloadCandidateSet& CandidateSet,
3650 bool SuppressUserConversion = false,
3651 OverloadCandidateParamOrder PO = {});
3652 void AddMethodCandidate(CXXMethodDecl *Method,
3653 DeclAccessPair FoundDecl,
3654 CXXRecordDecl *ActingContext, QualType ObjectType,
3655 Expr::Classification ObjectClassification,
3656 ArrayRef<Expr *> Args,
3657 OverloadCandidateSet& CandidateSet,
3658 bool SuppressUserConversions = false,
3659 bool PartialOverloading = false,
3660 ConversionSequenceList EarlyConversions = None,
3661 OverloadCandidateParamOrder PO = {});
3662 void AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
3663 DeclAccessPair FoundDecl,
3664 CXXRecordDecl *ActingContext,
3665 TemplateArgumentListInfo *ExplicitTemplateArgs,
3666 QualType ObjectType,
3667 Expr::Classification ObjectClassification,
3668 ArrayRef<Expr *> Args,
3669 OverloadCandidateSet& CandidateSet,
3670 bool SuppressUserConversions = false,
3671 bool PartialOverloading = false,
3672 OverloadCandidateParamOrder PO = {});
3673 void AddTemplateOverloadCandidate(
3674 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
3675 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
3676 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions = false,
3677 bool PartialOverloading = false, bool AllowExplicit = true,
3678 ADLCallKind IsADLCandidate = ADLCallKind::NotADL,
3679 OverloadCandidateParamOrder PO = {});
3680 bool CheckNonDependentConversions(
3681 FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
3682 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
3683 ConversionSequenceList &Conversions, bool SuppressUserConversions,
3684 CXXRecordDecl *ActingContext = nullptr, QualType ObjectType = QualType(),
3685 Expr::Classification ObjectClassification = {},
3686 OverloadCandidateParamOrder PO = {});
3687 void AddConversionCandidate(
3688 CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
3689 CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
3690 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
3691 bool AllowExplicit, bool AllowResultConversion = true);
3692 void AddTemplateConversionCandidate(
3693 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
3694 CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
3695 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
3696 bool AllowExplicit, bool AllowResultConversion = true);
3697 void AddSurrogateCandidate(CXXConversionDecl *Conversion,
3698 DeclAccessPair FoundDecl,
3699 CXXRecordDecl *ActingContext,
3700 const FunctionProtoType *Proto,
3701 Expr *Object, ArrayRef<Expr *> Args,
3702 OverloadCandidateSet& CandidateSet);
3703 void AddNonMemberOperatorCandidates(
3704 const UnresolvedSetImpl &Functions, ArrayRef<Expr *> Args,
3705 OverloadCandidateSet &CandidateSet,
3706 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr);
3707 void AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3708 SourceLocation OpLoc, ArrayRef<Expr *> Args,
3709 OverloadCandidateSet &CandidateSet,
3710 OverloadCandidateParamOrder PO = {});
3711 void AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
3712 OverloadCandidateSet& CandidateSet,
3713 bool IsAssignmentOperator = false,
3714 unsigned NumContextualBoolArguments = 0);
3715 void AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3716 SourceLocation OpLoc, ArrayRef<Expr *> Args,
3717 OverloadCandidateSet& CandidateSet);
3718 void AddArgumentDependentLookupCandidates(DeclarationName Name,
3719 SourceLocation Loc,
3720 ArrayRef<Expr *> Args,
3721 TemplateArgumentListInfo *ExplicitTemplateArgs,
3722 OverloadCandidateSet& CandidateSet,
3723 bool PartialOverloading = false);
3724
3725 // Emit as a 'note' the specific overload candidate
3726 void NoteOverloadCandidate(
3727 NamedDecl *Found, FunctionDecl *Fn,
3728 OverloadCandidateRewriteKind RewriteKind = OverloadCandidateRewriteKind(),
3729 QualType DestType = QualType(), bool TakingAddress = false);
3730
3731 // Emit as a series of 'note's all template and non-templates identified by
3732 // the expression Expr
3733 void NoteAllOverloadCandidates(Expr *E, QualType DestType = QualType(),
3734 bool TakingAddress = false);
3735
3736 /// Check the enable_if expressions on the given function. Returns the first
3737 /// failing attribute, or NULL if they were all successful.
3738 EnableIfAttr *CheckEnableIf(FunctionDecl *Function, SourceLocation CallLoc,
3739 ArrayRef<Expr *> Args,
3740 bool MissingImplicitThis = false);
3741
3742 /// Find the failed Boolean condition within a given Boolean
3743 /// constant expression, and describe it with a string.
3744 std::pair<Expr *, std::string> findFailedBooleanCondition(Expr *Cond);
3745
3746 /// Emit diagnostics for the diagnose_if attributes on Function, ignoring any
3747 /// non-ArgDependent DiagnoseIfAttrs.
3748 ///
3749 /// Argument-dependent diagnose_if attributes should be checked each time a
3750 /// function is used as a direct callee of a function call.
3751 ///
3752 /// Returns true if any errors were emitted.
3753 bool diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
3754 const Expr *ThisArg,
3755 ArrayRef<const Expr *> Args,
3756 SourceLocation Loc);
3757
3758 /// Emit diagnostics for the diagnose_if attributes on Function, ignoring any
3759 /// ArgDependent DiagnoseIfAttrs.
3760 ///
3761 /// Argument-independent diagnose_if attributes should be checked on every use
3762 /// of a function.
3763 ///
3764 /// Returns true if any errors were emitted.
3765 bool diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
3766 SourceLocation Loc);
3767
3768 /// Returns whether the given function's address can be taken or not,
3769 /// optionally emitting a diagnostic if the address can't be taken.
3770 ///
3771 /// Returns false if taking the address of the function is illegal.
3772 bool checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
3773 bool Complain = false,
3774 SourceLocation Loc = SourceLocation());
3775
3776 // [PossiblyAFunctionType] --> [Return]
3777 // NonFunctionType --> NonFunctionType
3778 // R (A) --> R(A)
3779 // R (*)(A) --> R (A)
3780 // R (&)(A) --> R (A)
3781 // R (S::*)(A) --> R (A)
3782 QualType ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType);
3783
3784 FunctionDecl *
3785 ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
3786 QualType TargetType,
3787 bool Complain,
3788 DeclAccessPair &Found,
3789 bool *pHadMultipleCandidates = nullptr);
3790
3791 FunctionDecl *
3792 resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &FoundResult);
3793
3794 bool resolveAndFixAddressOfSingleOverloadCandidate(
3795 ExprResult &SrcExpr, bool DoFunctionPointerConversion = false);
3796
3797 FunctionDecl *
3798 ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
3799 bool Complain = false,
3800 DeclAccessPair *Found = nullptr);
3801
3802 bool ResolveAndFixSingleFunctionTemplateSpecialization(
3803 ExprResult &SrcExpr,
3804 bool DoFunctionPointerConverion = false,
3805 bool Complain = false,
3806 SourceRange OpRangeForComplaining = SourceRange(),
3807 QualType DestTypeForComplaining = QualType(),
3808 unsigned DiagIDForComplaining = 0);
3809
3810
3811 Expr *FixOverloadedFunctionReference(Expr *E,
3812 DeclAccessPair FoundDecl,
3813 FunctionDecl *Fn);
3814 ExprResult FixOverloadedFunctionReference(ExprResult,
3815 DeclAccessPair FoundDecl,
3816 FunctionDecl *Fn);
3817
3818 void AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
3819 ArrayRef<Expr *> Args,
3820 OverloadCandidateSet &CandidateSet,
3821 bool PartialOverloading = false);
3822 void AddOverloadedCallCandidates(
3823 LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs,
3824 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet);
3825
3826 // An enum used to represent the different possible results of building a
3827 // range-based for loop.
3828 enum ForRangeStatus {
3829 FRS_Success,
3830 FRS_NoViableFunction,
3831 FRS_DiagnosticIssued
3832 };
3833
3834 ForRangeStatus BuildForRangeBeginEndCall(SourceLocation Loc,
3835 SourceLocation RangeLoc,
3836 const DeclarationNameInfo &NameInfo,
3837 LookupResult &MemberLookup,
3838 OverloadCandidateSet *CandidateSet,
3839 Expr *Range, ExprResult *CallExpr);
3840
3841 ExprResult BuildOverloadedCallExpr(Scope *S, Expr *Fn,
3842 UnresolvedLookupExpr *ULE,
3843 SourceLocation LParenLoc,
3844 MultiExprArg Args,
3845 SourceLocation RParenLoc,
3846 Expr *ExecConfig,
3847 bool AllowTypoCorrection=true,
3848 bool CalleesAddressIsTaken=false);
3849
3850 bool buildOverloadedCallSet(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
3851 MultiExprArg Args, SourceLocation RParenLoc,
3852 OverloadCandidateSet *CandidateSet,
3853 ExprResult *Result);
3854
3855 ExprResult CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass,
3856 NestedNameSpecifierLoc NNSLoc,
3857 DeclarationNameInfo DNI,
3858 const UnresolvedSetImpl &Fns,
3859 bool PerformADL = true);
3860
3861 ExprResult CreateOverloadedUnaryOp(SourceLocation OpLoc,
3862 UnaryOperatorKind Opc,
3863 const UnresolvedSetImpl &Fns,
3864 Expr *input, bool RequiresADL = true);
3865
3866 void LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet,
3867 OverloadedOperatorKind Op,
3868 const UnresolvedSetImpl &Fns,
3869 ArrayRef<Expr *> Args, bool RequiresADL = true);
3870 ExprResult CreateOverloadedBinOp(SourceLocation OpLoc,
3871 BinaryOperatorKind Opc,
3872 const UnresolvedSetImpl &Fns,
3873 Expr *LHS, Expr *RHS,
3874 bool RequiresADL = true,
3875 bool AllowRewrittenCandidates = true,
3876 FunctionDecl *DefaultedFn = nullptr);
3877 ExprResult BuildSynthesizedThreeWayComparison(SourceLocation OpLoc,
3878 const UnresolvedSetImpl &Fns,
3879 Expr *LHS, Expr *RHS,
3880 FunctionDecl *DefaultedFn);
3881
3882 ExprResult CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
3883 SourceLocation RLoc,
3884 Expr *Base,Expr *Idx);
3885
3886 ExprResult BuildCallToMemberFunction(Scope *S, Expr *MemExpr,
3887 SourceLocation LParenLoc,
3888 MultiExprArg Args,
3889 SourceLocation RParenLoc,
3890 bool AllowRecovery = false);
3891 ExprResult
3892 BuildCallToObjectOfClassType(Scope *S, Expr *Object, SourceLocation LParenLoc,
3893 MultiExprArg Args,
3894 SourceLocation RParenLoc);
3895
3896 ExprResult BuildOverloadedArrowExpr(Scope *S, Expr *Base,
3897 SourceLocation OpLoc,
3898 bool *NoArrowOperatorFound = nullptr);
3899
3900 /// CheckCallReturnType - Checks that a call expression's return type is
3901 /// complete. Returns true on failure. The location passed in is the location
3902 /// that best represents the call.
3903 bool CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
3904 CallExpr *CE, FunctionDecl *FD);
3905
3906 /// Helpers for dealing with blocks and functions.
3907 bool CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
3908 bool CheckParameterNames);
3909 void CheckCXXDefaultArguments(FunctionDecl *FD);
3910 void CheckExtraCXXDefaultArguments(Declarator &D);
3911 Scope *getNonFieldDeclScope(Scope *S);
3912
3913 /// \name Name lookup
3914 ///
3915 /// These routines provide name lookup that is used during semantic
3916 /// analysis to resolve the various kinds of names (identifiers,
3917 /// overloaded operator names, constructor names, etc.) into zero or
3918 /// more declarations within a particular scope. The major entry
3919 /// points are LookupName, which performs unqualified name lookup,
3920 /// and LookupQualifiedName, which performs qualified name lookup.
3921 ///
3922 /// All name lookup is performed based on some specific criteria,
3923 /// which specify what names will be visible to name lookup and how
3924 /// far name lookup should work. These criteria are important both
3925 /// for capturing language semantics (certain lookups will ignore
3926 /// certain names, for example) and for performance, since name
3927 /// lookup is often a bottleneck in the compilation of C++. Name
3928 /// lookup criteria is specified via the LookupCriteria enumeration.
3929 ///
3930 /// The results of name lookup can vary based on the kind of name
3931 /// lookup performed, the current language, and the translation
3932 /// unit. In C, for example, name lookup will either return nothing
3933 /// (no entity found) or a single declaration. In C++, name lookup
3934 /// can additionally refer to a set of overloaded functions or
3935 /// result in an ambiguity. All of the possible results of name
3936 /// lookup are captured by the LookupResult class, which provides
3937 /// the ability to distinguish among them.
3938 //@{
3939
3940 /// Describes the kind of name lookup to perform.
3941 enum LookupNameKind {
3942 /// Ordinary name lookup, which finds ordinary names (functions,
3943 /// variables, typedefs, etc.) in C and most kinds of names
3944 /// (functions, variables, members, types, etc.) in C++.
3945 LookupOrdinaryName = 0,
3946 /// Tag name lookup, which finds the names of enums, classes,
3947 /// structs, and unions.
3948 LookupTagName,
3949 /// Label name lookup.
3950 LookupLabel,
3951 /// Member name lookup, which finds the names of
3952 /// class/struct/union members.
3953 LookupMemberName,
3954 /// Look up of an operator name (e.g., operator+) for use with
3955 /// operator overloading. This lookup is similar to ordinary name
3956 /// lookup, but will ignore any declarations that are class members.
3957 LookupOperatorName,
3958 /// Look up a name following ~ in a destructor name. This is an ordinary
3959 /// lookup, but prefers tags to typedefs.
3960 LookupDestructorName,
3961 /// Look up of a name that precedes the '::' scope resolution
3962 /// operator in C++. This lookup completely ignores operator, object,
3963 /// function, and enumerator names (C++ [basic.lookup.qual]p1).
3964 LookupNestedNameSpecifierName,
3965 /// Look up a namespace name within a C++ using directive or
3966 /// namespace alias definition, ignoring non-namespace names (C++
3967 /// [basic.lookup.udir]p1).
3968 LookupNamespaceName,
3969 /// Look up all declarations in a scope with the given name,
3970 /// including resolved using declarations. This is appropriate
3971 /// for checking redeclarations for a using declaration.
3972 LookupUsingDeclName,
3973 /// Look up an ordinary name that is going to be redeclared as a
3974 /// name with linkage. This lookup ignores any declarations that
3975 /// are outside of the current scope unless they have linkage. See
3976 /// C99 6.2.2p4-5 and C++ [basic.link]p6.
3977 LookupRedeclarationWithLinkage,
3978 /// Look up a friend of a local class. This lookup does not look
3979 /// outside the innermost non-class scope. See C++11 [class.friend]p11.
3980 LookupLocalFriendName,
3981 /// Look up the name of an Objective-C protocol.
3982 LookupObjCProtocolName,
3983 /// Look up implicit 'self' parameter of an objective-c method.
3984 LookupObjCImplicitSelfParam,
3985 /// Look up the name of an OpenMP user-defined reduction operation.
3986 LookupOMPReductionName,
3987 /// Look up the name of an OpenMP user-defined mapper.
3988 LookupOMPMapperName,
3989 /// Look up any declaration with any name.
3990 LookupAnyName
3991 };
3992
3993 /// Specifies whether (or how) name lookup is being performed for a
3994 /// redeclaration (vs. a reference).
3995 enum RedeclarationKind {
3996 /// The lookup is a reference to this name that is not for the
3997 /// purpose of redeclaring the name.
3998 NotForRedeclaration = 0,
3999 /// The lookup results will be used for redeclaration of a name,
4000 /// if an entity by that name already exists and is visible.
4001 ForVisibleRedeclaration,
4002 /// The lookup results will be used for redeclaration of a name
4003 /// with external linkage; non-visible lookup results with external linkage
4004 /// may also be found.
4005 ForExternalRedeclaration
4006 };
4007
4008 RedeclarationKind forRedeclarationInCurContext() {
4009 // A declaration with an owning module for linkage can never link against
4010 // anything that is not visible. We don't need to check linkage here; if
4011 // the context has internal linkage, redeclaration lookup won't find things
4012 // from other TUs, and we can't safely compute linkage yet in general.
4013 if (cast<Decl>(CurContext)
4014 ->getOwningModuleForLinkage(/*IgnoreLinkage*/true))
4015 return ForVisibleRedeclaration;
4016 return ForExternalRedeclaration;
4017 }
4018
4019 /// The possible outcomes of name lookup for a literal operator.
4020 enum LiteralOperatorLookupResult {
4021 /// The lookup resulted in an error.
4022 LOLR_Error,
4023 /// The lookup found no match but no diagnostic was issued.
4024 LOLR_ErrorNoDiagnostic,
4025 /// The lookup found a single 'cooked' literal operator, which
4026 /// expects a normal literal to be built and passed to it.
4027 LOLR_Cooked,
4028 /// The lookup found a single 'raw' literal operator, which expects
4029 /// a string literal containing the spelling of the literal token.
4030 LOLR_Raw,
4031 /// The lookup found an overload set of literal operator templates,
4032 /// which expect the characters of the spelling of the literal token to be
4033 /// passed as a non-type template argument pack.
4034 LOLR_Template,
4035 /// The lookup found an overload set of literal operator templates,
4036 /// which expect the character type and characters of the spelling of the
4037 /// string literal token to be passed as template arguments.
4038 LOLR_StringTemplatePack,
4039 };
4040
4041 SpecialMemberOverloadResult LookupSpecialMember(CXXRecordDecl *D,
4042 CXXSpecialMember SM,
4043 bool ConstArg,
4044 bool VolatileArg,
4045 bool RValueThis,
4046 bool ConstThis,
4047 bool VolatileThis);
4048
4049 typedef std::function<void(const TypoCorrection &)> TypoDiagnosticGenerator;
4050 typedef std::function<ExprResult(Sema &, TypoExpr *, TypoCorrection)>
4051 TypoRecoveryCallback;
4052
4053private:
4054 bool CppLookupName(LookupResult &R, Scope *S);
4055
4056 struct TypoExprState {
4057 std::unique_ptr<TypoCorrectionConsumer> Consumer;
4058 TypoDiagnosticGenerator DiagHandler;
4059 TypoRecoveryCallback RecoveryHandler;
4060 TypoExprState();
4061 TypoExprState(TypoExprState &&other) noexcept;
4062 TypoExprState &operator=(TypoExprState &&other) noexcept;
4063 };
4064
4065 /// The set of unhandled TypoExprs and their associated state.
4066 llvm::MapVector<TypoExpr *, TypoExprState> DelayedTypos;
4067
4068 /// Creates a new TypoExpr AST node.
4069 TypoExpr *createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
4070 TypoDiagnosticGenerator TDG,
4071 TypoRecoveryCallback TRC, SourceLocation TypoLoc);
4072
4073 // The set of known/encountered (unique, canonicalized) NamespaceDecls.
4074 //
4075 // The boolean value will be true to indicate that the namespace was loaded
4076 // from an AST/PCH file, or false otherwise.
4077 llvm::MapVector<NamespaceDecl*, bool> KnownNamespaces;
4078
4079 /// Whether we have already loaded known namespaces from an extenal
4080 /// source.
4081 bool LoadedExternalKnownNamespaces;
4082
4083 /// Helper for CorrectTypo and CorrectTypoDelayed used to create and
4084 /// populate a new TypoCorrectionConsumer. Returns nullptr if typo correction
4085 /// should be skipped entirely.
4086 std::unique_ptr<TypoCorrectionConsumer>
4087 makeTypoCorrectionConsumer(const DeclarationNameInfo &Typo,
4088 Sema::LookupNameKind LookupKind, Scope *S,
4089 CXXScopeSpec *SS,
4090 CorrectionCandidateCallback &CCC,
4091 DeclContext *MemberContext, bool EnteringContext,
4092 const ObjCObjectPointerType *OPT,
4093 bool ErrorRecovery);
4094
4095public:
4096 const TypoExprState &getTypoExprState(TypoExpr *TE) const;
4097
4098 /// Clears the state of the given TypoExpr.
4099 void clearDelayedTypo(TypoExpr *TE);
4100
4101 /// Look up a name, looking for a single declaration. Return
4102 /// null if the results were absent, ambiguous, or overloaded.
4103 ///
4104 /// It is preferable to use the elaborated form and explicitly handle
4105 /// ambiguity and overloaded.
4106 NamedDecl *LookupSingleName(Scope *S, DeclarationName Name,
4107 SourceLocation Loc,
4108 LookupNameKind NameKind,
4109 RedeclarationKind Redecl
4110 = NotForRedeclaration);
4111 bool LookupBuiltin(LookupResult &R);
4112 void LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID);
4113 bool LookupName(LookupResult &R, Scope *S,
4114 bool AllowBuiltinCreation = false);
4115 bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
4116 bool InUnqualifiedLookup = false);
4117 bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
4118 CXXScopeSpec &SS);
4119 bool LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
4120 bool AllowBuiltinCreation = false,
4121 bool EnteringContext = false);
4122 ObjCProtocolDecl *LookupProtocol(IdentifierInfo *II, SourceLocation IdLoc,
4123 RedeclarationKind Redecl
4124 = NotForRedeclaration);
4125 bool LookupInSuper(LookupResult &R, CXXRecordDecl *Class);
4126
4127 void LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
4128 UnresolvedSetImpl &Functions);
4129
4130 LabelDecl *LookupOrCreateLabel(IdentifierInfo *II, SourceLocation IdentLoc,
4131 SourceLocation GnuLabelLoc = SourceLocation());
4132
4133 DeclContextLookupResult LookupConstructors(CXXRecordDecl *Class);
4134 CXXConstructorDecl *LookupDefaultConstructor(CXXRecordDecl *Class);
4135 CXXConstructorDecl *LookupCopyingConstructor(CXXRecordDecl *Class,
4136 unsigned Quals);
4137 CXXMethodDecl *LookupCopyingAssignment(CXXRecordDecl *Class, unsigned Quals,
4138 bool RValueThis, unsigned ThisQuals);
4139 CXXConstructorDecl *LookupMovingConstructor(CXXRecordDecl *Class,
4140 unsigned Quals);
4141 CXXMethodDecl *LookupMovingAssignment(CXXRecordDecl *Class, unsigned Quals,
4142 bool RValueThis, unsigned ThisQuals);
4143 CXXDestructorDecl *LookupDestructor(CXXRecordDecl *Class);
4144
4145 bool checkLiteralOperatorId(const CXXScopeSpec &SS, const UnqualifiedId &Id,
4146 bool IsUDSuffix);
4147 LiteralOperatorLookupResult
4148 LookupLiteralOperator(Scope *S, LookupResult &R, ArrayRef<QualType> ArgTys,
4149 bool AllowRaw, bool AllowTemplate,
4150 bool AllowStringTemplate, bool DiagnoseMissing,
4151 StringLiteral *StringLit = nullptr);
4152 bool isKnownName(StringRef name);
4153
4154 /// Status of the function emission on the CUDA/HIP/OpenMP host/device attrs.
4155 enum class FunctionEmissionStatus {
4156 Emitted,
4157 CUDADiscarded, // Discarded due to CUDA/HIP hostness
4158 OMPDiscarded, // Discarded due to OpenMP hostness
4159 TemplateDiscarded, // Discarded due to uninstantiated templates
4160 Unknown,
4161 };
4162 FunctionEmissionStatus getEmissionStatus(FunctionDecl *Decl,
4163 bool Final = false);
4164
4165 // Whether the callee should be ignored in CUDA/HIP/OpenMP host/device check.
4166 bool shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee);
4167
4168 void ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
4169 ArrayRef<Expr *> Args, ADLResult &Functions);
4170
4171 void LookupVisibleDecls(Scope *S, LookupNameKind Kind,
4172 VisibleDeclConsumer &Consumer,
4173 bool IncludeGlobalScope = true,
4174 bool LoadExternal = true);
4175 void LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
4176 VisibleDeclConsumer &Consumer,
4177 bool IncludeGlobalScope = true,
4178 bool IncludeDependentBases = false,
4179 bool LoadExternal = true);
4180
4181 enum CorrectTypoKind {
4182 CTK_NonError, // CorrectTypo used in a non error recovery situation.
4183 CTK_ErrorRecovery // CorrectTypo used in normal error recovery.
4184 };
4185
4186 TypoCorrection CorrectTypo(const DeclarationNameInfo &Typo,
4187 Sema::LookupNameKind LookupKind,
4188 Scope *S, CXXScopeSpec *SS,
4189 CorrectionCandidateCallback &CCC,
4190 CorrectTypoKind Mode,
4191 DeclContext *MemberContext = nullptr,
4192 bool EnteringContext = false,
4193 const ObjCObjectPointerType *OPT = nullptr,
4194 bool RecordFailure = true);
4195
4196 TypoExpr *CorrectTypoDelayed(const DeclarationNameInfo &Typo,
4197 Sema::LookupNameKind LookupKind, Scope *S,
4198 CXXScopeSpec *SS,
4199 CorrectionCandidateCallback &CCC,
4200 TypoDiagnosticGenerator TDG,
4201 TypoRecoveryCallback TRC, CorrectTypoKind Mode,
4202 DeclContext *MemberContext = nullptr,
4203 bool EnteringContext = false,
4204 const ObjCObjectPointerType *OPT = nullptr);
4205
4206 /// Process any TypoExprs in the given Expr and its children,
4207 /// generating diagnostics as appropriate and returning a new Expr if there
4208 /// were typos that were all successfully corrected and ExprError if one or
4209 /// more typos could not be corrected.
4210 ///
4211 /// \param E The Expr to check for TypoExprs.
4212 ///
4213 /// \param InitDecl A VarDecl to avoid because the Expr being corrected is its
4214 /// initializer.
4215 ///
4216 /// \param RecoverUncorrectedTypos If true, when typo correction fails, it
4217 /// will rebuild the given Expr with all TypoExprs degraded to RecoveryExprs.
4218 ///
4219 /// \param Filter A function applied to a newly rebuilt Expr to determine if
4220 /// it is an acceptable/usable result from a single combination of typo
4221 /// corrections. As long as the filter returns ExprError, different
4222 /// combinations of corrections will be tried until all are exhausted.
4223 ExprResult CorrectDelayedTyposInExpr(
4224 Expr *E, VarDecl *InitDecl = nullptr,
4225 bool RecoverUncorrectedTypos = false,
4226 llvm::function_ref<ExprResult(Expr *)> Filter =
4227 [](Expr *E) -> ExprResult { return E; });
4228
4229 ExprResult CorrectDelayedTyposInExpr(
4230 ExprResult ER, VarDecl *InitDecl = nullptr,
4231 bool RecoverUncorrectedTypos = false,
4232 llvm::function_ref<ExprResult(Expr *)> Filter =
4233 [](Expr *E) -> ExprResult { return E; }) {
4234 return ER.isInvalid()
4235 ? ER
4236 : CorrectDelayedTyposInExpr(ER.get(), InitDecl,
4237 RecoverUncorrectedTypos, Filter);
4238 }
4239
4240 void diagnoseTypo(const TypoCorrection &Correction,
4241 const PartialDiagnostic &TypoDiag,
4242 bool ErrorRecovery = true);
4243
4244 void diagnoseTypo(const TypoCorrection &Correction,
4245 const PartialDiagnostic &TypoDiag,
4246 const PartialDiagnostic &PrevNote,
4247 bool ErrorRecovery = true);
4248
4249 void MarkTypoCorrectedFunctionDefinition(const NamedDecl *F);
4250
4251 void FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc,
4252 ArrayRef<Expr *> Args,
4253 AssociatedNamespaceSet &AssociatedNamespaces,
4254 AssociatedClassSet &AssociatedClasses);
4255
4256 void FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
4257 bool ConsiderLinkage, bool AllowInlineNamespace);
4258
4259 bool CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old);
4260
4261 void DiagnoseAmbiguousLookup(LookupResult &Result);
4262 //@}
4263
4264 /// Attempts to produce a RecoveryExpr after some AST node cannot be created.
4265 ExprResult CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
4266 ArrayRef<Expr *> SubExprs,
4267 QualType T = QualType());
4268
4269 ObjCInterfaceDecl *getObjCInterfaceDecl(IdentifierInfo *&Id,
4270 SourceLocation IdLoc,
4271 bool TypoCorrection = false);
4272 FunctionDecl *CreateBuiltin(IdentifierInfo *II, QualType Type, unsigned ID,
4273 SourceLocation Loc);
4274 NamedDecl *LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
4275 Scope *S, bool ForRedeclaration,
4276 SourceLocation Loc);
4277 NamedDecl *ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II,
4278 Scope *S);
4279 void AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
4280 FunctionDecl *FD);
4281 void AddKnownFunctionAttributes(FunctionDecl *FD);
4282
4283 // More parsing and symbol table subroutines.
4284
4285 void ProcessPragmaWeak(Scope *S, Decl *D);
4286 // Decl attributes - this routine is the top level dispatcher.
4287 void ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD);
4288 // Helper for delayed processing of attributes.
4289 void ProcessDeclAttributeDelayed(Decl *D,
4290 const ParsedAttributesView &AttrList);
4291 void ProcessDeclAttributeList(Scope *S, Decl *D, const ParsedAttributesView &AL,
4292 bool IncludeCXX11Attributes = true);
4293 bool ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
4294 const ParsedAttributesView &AttrList);
4295
4296 void checkUnusedDeclAttributes(Declarator &D);
4297
4298 /// Handles semantic checking for features that are common to all attributes,
4299 /// such as checking whether a parameter was properly specified, or the
4300 /// correct number of arguments were passed, etc. Returns true if the
4301 /// attribute has been diagnosed.
4302 bool checkCommonAttributeFeatures(const Decl *D, const ParsedAttr &A);
4303 bool checkCommonAttributeFeatures(const Stmt *S, const ParsedAttr &A);
4304
4305 /// Determine if type T is a valid subject for a nonnull and similar
4306 /// attributes. By default, we look through references (the behavior used by
4307 /// nonnull), but if the second parameter is true, then we treat a reference
4308 /// type as valid.
4309 bool isValidPointerAttrType(QualType T, bool RefOkay = false);
4310
4311 bool CheckRegparmAttr(const ParsedAttr &attr, unsigned &value);
4312 bool CheckCallingConvAttr(const ParsedAttr &attr, CallingConv &CC,
4313 const FunctionDecl *FD = nullptr);
4314 bool CheckAttrTarget(const ParsedAttr &CurrAttr);
4315 bool CheckAttrNoArgs(const ParsedAttr &CurrAttr);
4316 bool checkStringLiteralArgumentAttr(const ParsedAttr &Attr, unsigned ArgNum,
4317 StringRef &Str,
4318 SourceLocation *ArgLocation = nullptr);
4319 llvm::Error isValidSectionSpecifier(StringRef Str);
4320 bool checkSectionName(SourceLocation LiteralLoc, StringRef Str);
4321 bool checkTargetAttr(SourceLocation LiteralLoc, StringRef Str);
4322 bool checkMSInheritanceAttrOnDefinition(
4323 CXXRecordDecl *RD, SourceRange Range, bool BestCase,
4324 MSInheritanceModel SemanticSpelling);
4325
4326 void CheckAlignasUnderalignment(Decl *D);
4327
4328 /// Adjust the calling convention of a method to be the ABI default if it
4329 /// wasn't specified explicitly. This handles method types formed from
4330 /// function type typedefs and typename template arguments.
4331 void adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
4332 SourceLocation Loc);
4333
4334 // Check if there is an explicit attribute, but only look through parens.
4335 // The intent is to look for an attribute on the current declarator, but not
4336 // one that came from a typedef.
4337 bool hasExplicitCallingConv(QualType T);
4338
4339 /// Get the outermost AttributedType node that sets a calling convention.
4340 /// Valid types should not have multiple attributes with different CCs.
4341 const AttributedType *getCallingConvAttributedType(QualType T) const;
4342
4343 /// Process the attributes before creating an attributed statement. Returns
4344 /// the semantic attributes that have been processed.
4345 void ProcessStmtAttributes(Stmt *Stmt,
4346 const ParsedAttributesWithRange &InAttrs,
4347 SmallVectorImpl<const Attr *> &OutAttrs);
4348
4349 void WarnConflictingTypedMethods(ObjCMethodDecl *Method,
4350 ObjCMethodDecl *MethodDecl,
4351 bool IsProtocolMethodDecl);
4352
4353 void CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
4354 ObjCMethodDecl *Overridden,
4355 bool IsProtocolMethodDecl);
4356
4357 /// WarnExactTypedMethods - This routine issues a warning if method
4358 /// implementation declaration matches exactly that of its declaration.
4359 void WarnExactTypedMethods(ObjCMethodDecl *Method,
4360 ObjCMethodDecl *MethodDecl,
4361 bool IsProtocolMethodDecl);
4362
4363 typedef llvm::SmallPtrSet<Selector, 8> SelectorSet;
4364
4365 /// CheckImplementationIvars - This routine checks if the instance variables
4366 /// listed in the implelementation match those listed in the interface.
4367 void CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
4368 ObjCIvarDecl **Fields, unsigned nIvars,
4369 SourceLocation Loc);
4370
4371 /// ImplMethodsVsClassMethods - This is main routine to warn if any method
4372 /// remains unimplemented in the class or category \@implementation.
4373 void ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
4374 ObjCContainerDecl* IDecl,
4375 bool IncompleteImpl = false);
4376
4377 /// DiagnoseUnimplementedProperties - This routine warns on those properties
4378 /// which must be implemented by this implementation.
4379 void DiagnoseUnimplementedProperties(Scope *S, ObjCImplDecl* IMPDecl,
4380 ObjCContainerDecl *CDecl,
4381 bool SynthesizeProperties);
4382
4383 /// Diagnose any null-resettable synthesized setters.
4384 void diagnoseNullResettableSynthesizedSetters(const ObjCImplDecl *impDecl);
4385
4386 /// DefaultSynthesizeProperties - This routine default synthesizes all
4387 /// properties which must be synthesized in the class's \@implementation.
4388 void DefaultSynthesizeProperties(Scope *S, ObjCImplDecl *IMPDecl,
4389 ObjCInterfaceDecl *IDecl,
4390 SourceLocation AtEnd);
4391 void DefaultSynthesizeProperties(Scope *S, Decl *D, SourceLocation AtEnd);
4392
4393 /// IvarBacksCurrentMethodAccessor - This routine returns 'true' if 'IV' is
4394 /// an ivar synthesized for 'Method' and 'Method' is a property accessor
4395 /// declared in class 'IFace'.
4396 bool IvarBacksCurrentMethodAccessor(ObjCInterfaceDecl *IFace,
4397 ObjCMethodDecl *Method, ObjCIvarDecl *IV);
4398
4399 /// DiagnoseUnusedBackingIvarInAccessor - Issue an 'unused' warning if ivar which
4400 /// backs the property is not used in the property's accessor.
4401 void DiagnoseUnusedBackingIvarInAccessor(Scope *S,
4402 const ObjCImplementationDecl *ImplD);
4403
4404 /// GetIvarBackingPropertyAccessor - If method is a property setter/getter and
4405 /// it property has a backing ivar, returns this ivar; otherwise, returns NULL.
4406 /// It also returns ivar's property on success.
4407 ObjCIvarDecl *GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
4408 const ObjCPropertyDecl *&PDecl) const;
4409
4410 /// Called by ActOnProperty to handle \@property declarations in
4411 /// class extensions.
4412 ObjCPropertyDecl *HandlePropertyInClassExtension(Scope *S,
4413 SourceLocation AtLoc,
4414 SourceLocation LParenLoc,
4415 FieldDeclarator &FD,
4416 Selector GetterSel,
4417 SourceLocation GetterNameLoc,
4418 Selector SetterSel,
4419 SourceLocation SetterNameLoc,
4420 const bool isReadWrite,
4421 unsigned &Attributes,
4422 const unsigned AttributesAsWritten,
4423 QualType T,
4424 TypeSourceInfo *TSI,
4425 tok::ObjCKeywordKind MethodImplKind);
4426
4427 /// Called by ActOnProperty and HandlePropertyInClassExtension to
4428 /// handle creating the ObjcPropertyDecl for a category or \@interface.
4429 ObjCPropertyDecl *CreatePropertyDecl(Scope *S,
4430 ObjCContainerDecl *CDecl,
4431 SourceLocation AtLoc,
4432 SourceLocation LParenLoc,
4433 FieldDeclarator &FD,
4434 Selector GetterSel,
4435 SourceLocation GetterNameLoc,
4436 Selector SetterSel,
4437 SourceLocation SetterNameLoc,
4438 const bool isReadWrite,
4439 const unsigned Attributes,
4440 const unsigned AttributesAsWritten,
4441 QualType T,
4442 TypeSourceInfo *TSI,
4443 tok::ObjCKeywordKind MethodImplKind,
4444 DeclContext *lexicalDC = nullptr);
4445
4446 /// AtomicPropertySetterGetterRules - This routine enforces the rule (via
4447 /// warning) when atomic property has one but not the other user-declared
4448 /// setter or getter.
4449 void AtomicPropertySetterGetterRules(ObjCImplDecl* IMPDecl,
4450 ObjCInterfaceDecl* IDecl);
4451
4452 void DiagnoseOwningPropertyGetterSynthesis(const ObjCImplementationDecl *D);
4453
4454 void DiagnoseMissingDesignatedInitOverrides(
4455 const ObjCImplementationDecl *ImplD,
4456 const ObjCInterfaceDecl *IFD);
4457
4458 void DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, ObjCInterfaceDecl *SID);
4459
4460 enum MethodMatchStrategy {
4461 MMS_loose,
4462 MMS_strict
4463 };
4464
4465 /// MatchTwoMethodDeclarations - Checks if two methods' type match and returns
4466 /// true, or false, accordingly.
4467 bool MatchTwoMethodDeclarations(const ObjCMethodDecl *Method,
4468 const ObjCMethodDecl *PrevMethod,
4469 MethodMatchStrategy strategy = MMS_strict);
4470
4471 /// MatchAllMethodDeclarations - Check methods declaraed in interface or
4472 /// or protocol against those declared in their implementations.
4473 void MatchAllMethodDeclarations(const SelectorSet &InsMap,
4474 const SelectorSet &ClsMap,
4475 SelectorSet &InsMapSeen,
4476 SelectorSet &ClsMapSeen,
4477 ObjCImplDecl* IMPDecl,
4478 ObjCContainerDecl* IDecl,
4479 bool &IncompleteImpl,
4480 bool ImmediateClass,
4481 bool WarnCategoryMethodImpl=false);
4482
4483 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
4484 /// category matches with those implemented in its primary class and
4485 /// warns each time an exact match is found.
4486 void CheckCategoryVsClassMethodMatches(ObjCCategoryImplDecl *CatIMP);
4487
4488 /// Add the given method to the list of globally-known methods.
4489 void addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method);
4490
4491 /// Returns default addr space for method qualifiers.
4492 LangAS getDefaultCXXMethodAddrSpace() const;
4493
4494private:
4495 /// AddMethodToGlobalPool - Add an instance or factory method to the global
4496 /// pool. See descriptoin of AddInstanceMethodToGlobalPool.
4497 void AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, bool instance);
4498
4499 /// LookupMethodInGlobalPool - Returns the instance or factory method and
4500 /// optionally warns if there are multiple signatures.
4501 ObjCMethodDecl *LookupMethodInGlobalPool(Selector Sel, SourceRange R,
4502 bool receiverIdOrClass,
4503 bool instance);
4504
4505public:
4506 /// - Returns instance or factory methods in global method pool for
4507 /// given selector. It checks the desired kind first, if none is found, and
4508 /// parameter checkTheOther is set, it then checks the other kind. If no such
4509 /// method or only one method is found, function returns false; otherwise, it
4510 /// returns true.
4511 bool
4512 CollectMultipleMethodsInGlobalPool(Selector Sel,
4513 SmallVectorImpl<ObjCMethodDecl*>& Methods,
4514 bool InstanceFirst, bool CheckTheOther,
4515 const ObjCObjectType *TypeBound = nullptr);
4516
4517 bool
4518 AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod,
4519 SourceRange R, bool receiverIdOrClass,
4520 SmallVectorImpl<ObjCMethodDecl*>& Methods);
4521
4522 void
4523 DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
4524 Selector Sel, SourceRange R,
4525 bool receiverIdOrClass);
4526
4527private:
4528 /// - Returns a selector which best matches given argument list or
4529 /// nullptr if none could be found
4530 ObjCMethodDecl *SelectBestMethod(Selector Sel, MultiExprArg Args,
4531 bool IsInstance,
4532 SmallVectorImpl<ObjCMethodDecl*>& Methods);
4533
4534
4535 /// Record the typo correction failure and return an empty correction.
4536 TypoCorrection FailedCorrection(IdentifierInfo *Typo, SourceLocation TypoLoc,
4537 bool RecordFailure = true) {
4538 if (RecordFailure)
4539 TypoCorrectionFailures[Typo].insert(TypoLoc);
4540 return TypoCorrection();
4541 }
4542
4543public:
4544 /// AddInstanceMethodToGlobalPool - All instance methods in a translation
4545 /// unit are added to a global pool. This allows us to efficiently associate
4546 /// a selector with a method declaraation for purposes of typechecking
4547 /// messages sent to "id" (where the class of the object is unknown).
4548 void AddInstanceMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) {
4549 AddMethodToGlobalPool(Method, impl, /*instance*/true);
4550 }
4551
4552 /// AddFactoryMethodToGlobalPool - Same as above, but for factory methods.
4553 void AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) {
4554 AddMethodToGlobalPool(Method, impl, /*instance*/false);
4555 }
4556
4557 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
4558 /// pool.
4559 void AddAnyMethodToGlobalPool(Decl *D);
4560
4561 /// LookupInstanceMethodInGlobalPool - Returns the method and warns if
4562 /// there are multiple signatures.
4563 ObjCMethodDecl *LookupInstanceMethodInGlobalPool(Selector Sel, SourceRange R,
4564 bool receiverIdOrClass=false) {
4565 return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass,
4566 /*instance*/true);
4567 }
4568
4569 /// LookupFactoryMethodInGlobalPool - Returns the method and warns if
4570 /// there are multiple signatures.
4571 ObjCMethodDecl *LookupFactoryMethodInGlobalPool(Selector Sel, SourceRange R,
4572 bool receiverIdOrClass=false) {
4573 return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass,
4574 /*instance*/false);
4575 }
4576
4577 const ObjCMethodDecl *SelectorsForTypoCorrection(Selector Sel,
4578 QualType ObjectType=QualType());
4579 /// LookupImplementedMethodInGlobalPool - Returns the method which has an
4580 /// implementation.
4581 ObjCMethodDecl *LookupImplementedMethodInGlobalPool(Selector Sel);
4582
4583 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
4584 /// initialization.
4585 void CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
4586 SmallVectorImpl<ObjCIvarDecl*> &Ivars);
4587
4588 //===--------------------------------------------------------------------===//
4589 // Statement Parsing Callbacks: SemaStmt.cpp.
4590public:
4591 class FullExprArg {
4592 public:
4593 FullExprArg() : E(nullptr) { }
4594 FullExprArg(Sema &actions) : E(nullptr) { }
4595
4596 ExprResult release() {
4597 return E;
4598 }
4599
4600 Expr *get() const { return E; }
4601
4602 Expr *operator->() {
4603 return E;
4604 }
4605
4606 private:
4607 // FIXME: No need to make the entire Sema class a friend when it's just
4608 // Sema::MakeFullExpr that needs access to the constructor below.
4609 friend class Sema;
4610
4611 explicit FullExprArg(Expr *expr) : E(expr) {}
4612
4613 Expr *E;
4614 };
4615
4616 FullExprArg MakeFullExpr(Expr *Arg) {
4617 return MakeFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation());
4618 }
4619 FullExprArg MakeFullExpr(Expr *Arg, SourceLocation CC) {
4620 return FullExprArg(
4621 ActOnFinishFullExpr(Arg, CC, /*DiscardedValue*/ false).get());
4622 }
4623 FullExprArg MakeFullDiscardedValueExpr(Expr *Arg) {
4624 ExprResult FE =
4625 ActOnFinishFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation(),
4626 /*DiscardedValue*/ true);
4627 return FullExprArg(FE.get());
4628 }
4629
4630 StmtResult ActOnExprStmt(ExprResult Arg, bool DiscardedValue = true);
4631 StmtResult ActOnExprStmtError();
4632
4633 StmtResult ActOnNullStmt(SourceLocation SemiLoc,
4634 bool HasLeadingEmptyMacro = false);
4635
4636 void ActOnStartOfCompoundStmt(bool IsStmtExpr);
4637 void ActOnAfterCompoundStatementLeadingPragmas();
4638 void ActOnFinishOfCompoundStmt();
4639 StmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R,
4640 ArrayRef<Stmt *> Elts, bool isStmtExpr);
4641
4642 /// A RAII object to enter scope of a compound statement.
4643 class CompoundScopeRAII {
4644 public:
4645 CompoundScopeRAII(Sema &S, bool IsStmtExpr = false) : S(S) {
4646 S.ActOnStartOfCompoundStmt(IsStmtExpr);
4647 }
4648
4649 ~CompoundScopeRAII() {
4650 S.ActOnFinishOfCompoundStmt();
4651 }
4652
4653 private:
4654 Sema &S;
4655 };
4656
4657 /// An RAII helper that pops function a function scope on exit.
4658 struct FunctionScopeRAII {
4659 Sema &S;
4660 bool Active;
4661 FunctionScopeRAII(Sema &S) : S(S), Active(true) {}
4662 ~FunctionScopeRAII() {
4663 if (Active)
4664 S.PopFunctionScopeInfo();
4665 }
4666 void disable() { Active = false; }
4667 };
4668
4669 StmtResult ActOnDeclStmt(DeclGroupPtrTy Decl,
4670 SourceLocation StartLoc,
4671 SourceLocation EndLoc);
4672 void ActOnForEachDeclStmt(DeclGroupPtrTy Decl);
4673 StmtResult ActOnForEachLValueExpr(Expr *E);
4674 ExprResult ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val);
4675 StmtResult ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHS,
4676 SourceLocation DotDotDotLoc, ExprResult RHS,
4677 SourceLocation ColonLoc);
4678 void ActOnCaseStmtBody(Stmt *CaseStmt, Stmt *SubStmt);
4679
4680 StmtResult ActOnDefaultStmt(SourceLocation DefaultLoc,
4681 SourceLocation ColonLoc,
4682 Stmt *SubStmt, Scope *CurScope);
4683 StmtResult ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
4684 SourceLocation ColonLoc, Stmt *SubStmt);
4685
4686 StmtResult BuildAttributedStmt(SourceLocation AttrsLoc,
4687 ArrayRef<const Attr *> Attrs, Stmt *SubStmt);
4688 StmtResult ActOnAttributedStmt(const ParsedAttributesWithRange &AttrList,
4689 Stmt *SubStmt);
4690
4691 class ConditionResult;
4692 StmtResult ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr,
4693 SourceLocation LParenLoc, Stmt *InitStmt,
4694 ConditionResult Cond, SourceLocation RParenLoc,
4695 Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal);
4696 StmtResult BuildIfStmt(SourceLocation IfLoc, bool IsConstexpr,
4697 SourceLocation LParenLoc, Stmt *InitStmt,
4698 ConditionResult Cond, SourceLocation RParenLoc,
4699 Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal);
4700 StmtResult ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
4701 SourceLocation LParenLoc, Stmt *InitStmt,
4702 ConditionResult Cond,
4703 SourceLocation RParenLoc);
4704 StmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc,
4705 Stmt *Switch, Stmt *Body);
4706 StmtResult ActOnWhileStmt(SourceLocation WhileLoc, SourceLocation LParenLoc,
4707 ConditionResult Cond, SourceLocation RParenLoc,
4708 Stmt *Body);
4709 StmtResult ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
4710 SourceLocation WhileLoc, SourceLocation CondLParen,
4711 Expr *Cond, SourceLocation CondRParen);
4712
4713 StmtResult ActOnForStmt(SourceLocation ForLoc,
4714 SourceLocation LParenLoc,
4715 Stmt *First,
4716 ConditionResult Second,
4717 FullExprArg Third,
4718 SourceLocation RParenLoc,
4719 Stmt *Body);
4720 ExprResult CheckObjCForCollectionOperand(SourceLocation forLoc,
4721 Expr *collection);
4722 StmtResult ActOnObjCForCollectionStmt(SourceLocation ForColLoc,
4723 Stmt *First, Expr *collection,
4724 SourceLocation RParenLoc);
4725 StmtResult FinishObjCForCollectionStmt(Stmt *ForCollection, Stmt *Body);
4726
4727 enum BuildForRangeKind {
4728 /// Initial building of a for-range statement.
4729 BFRK_Build,
4730 /// Instantiation or recovery rebuild of a for-range statement. Don't
4731 /// attempt any typo-correction.
4732 BFRK_Rebuild,
4733 /// Determining whether a for-range statement could be built. Avoid any
4734 /// unnecessary or irreversible actions.
4735 BFRK_Check
4736 };
4737
4738 StmtResult ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc,
4739 SourceLocation CoawaitLoc,
4740 Stmt *InitStmt,
4741 Stmt *LoopVar,
4742 SourceLocation ColonLoc, Expr *Collection,
4743 SourceLocation RParenLoc,
4744 BuildForRangeKind Kind);
4745 StmtResult BuildCXXForRangeStmt(SourceLocation ForLoc,
4746 SourceLocation CoawaitLoc,
4747 Stmt *InitStmt,
4748 SourceLocation ColonLoc,
4749 Stmt *RangeDecl, Stmt *Begin, Stmt *End,
4750 Expr *Cond, Expr *Inc,
4751 Stmt *LoopVarDecl,
4752 SourceLocation RParenLoc,
4753 BuildForRangeKind Kind);
4754 StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body);
4755
4756 StmtResult ActOnGotoStmt(SourceLocation GotoLoc,
4757 SourceLocation LabelLoc,
4758 LabelDecl *TheDecl);
4759 StmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc,
4760 SourceLocation StarLoc,
4761 Expr *DestExp);
4762 StmtResult ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope);
4763 StmtResult ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope);
4764
4765 void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4766 CapturedRegionKind Kind, unsigned NumParams);
4767 typedef std::pair<StringRef, QualType> CapturedParamNameType;
4768 void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4769 CapturedRegionKind Kind,
4770 ArrayRef<CapturedParamNameType> Params,
4771 unsigned OpenMPCaptureLevel = 0);
4772 StmtResult ActOnCapturedRegionEnd(Stmt *S);
4773 void ActOnCapturedRegionError();
4774 RecordDecl *CreateCapturedStmtRecordDecl(CapturedDecl *&CD,
4775 SourceLocation Loc,
4776 unsigned NumParams);
4777
4778 struct NamedReturnInfo {
4779 const VarDecl *Candidate;
4780
4781 enum Status : uint8_t { None, MoveEligible, MoveEligibleAndCopyElidable };
4782 Status S;
4783
4784 bool isMoveEligible() const { return S != None; };
4785 bool isCopyElidable() const { return S == MoveEligibleAndCopyElidable; }
4786 };
4787 enum class SimplerImplicitMoveMode { ForceOff, Normal, ForceOn };
4788 NamedReturnInfo getNamedReturnInfo(
4789 Expr *&E, SimplerImplicitMoveMode Mode = SimplerImplicitMoveMode::Normal);
4790 NamedReturnInfo getNamedReturnInfo(const VarDecl *VD);
4791 const VarDecl *getCopyElisionCandidate(NamedReturnInfo &Info,
4792 QualType ReturnType);
4793
4794 ExprResult
4795 PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
4796 const NamedReturnInfo &NRInfo, Expr *Value,
4797 bool SupressSimplerImplicitMoves = false);
4798
4799 StmtResult ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
4800 Scope *CurScope);
4801 StmtResult BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp);
4802 StmtResult ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
4803 NamedReturnInfo &NRInfo,
4804 bool SupressSimplerImplicitMoves);
4805
4806 StmtResult ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
4807 bool IsVolatile, unsigned NumOutputs,
4808 unsigned NumInputs, IdentifierInfo **Names,
4809 MultiExprArg Constraints, MultiExprArg Exprs,
4810 Expr *AsmString, MultiExprArg Clobbers,
4811 unsigned NumLabels,
4812 SourceLocation RParenLoc);
4813
4814 void FillInlineAsmIdentifierInfo(Expr *Res,
4815 llvm::InlineAsmIdentifierInfo &Info);
4816 ExprResult LookupInlineAsmIdentifier(CXXScopeSpec &SS,
4817 SourceLocation TemplateKWLoc,
4818 UnqualifiedId &Id,
4819 bool IsUnevaluatedContext);
4820 bool LookupInlineAsmField(StringRef Base, StringRef Member,
4821 unsigned &Offset, SourceLocation AsmLoc);
4822 ExprResult LookupInlineAsmVarDeclField(Expr *RefExpr, StringRef Member,
4823 SourceLocation AsmLoc);
4824 StmtResult ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
4825 ArrayRef<Token> AsmToks,
4826 StringRef AsmString,
4827 unsigned NumOutputs, unsigned NumInputs,
4828 ArrayRef<StringRef> Constraints,
4829 ArrayRef<StringRef> Clobbers,
4830 ArrayRef<Expr*> Exprs,
4831 SourceLocation EndLoc);
4832 LabelDecl *GetOrCreateMSAsmLabel(StringRef ExternalLabelName,
4833 SourceLocation Location,
4834 bool AlwaysCreate);
4835
4836 VarDecl *BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType ExceptionType,
4837 SourceLocation StartLoc,
4838 SourceLocation IdLoc, IdentifierInfo *Id,
4839 bool Invalid = false);
4840
4841 Decl *ActOnObjCExceptionDecl(Scope *S, Declarator &D);
4842
4843 StmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen,
4844 Decl *Parm, Stmt *Body);
4845
4846 StmtResult ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body);
4847
4848 StmtResult ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
4849 MultiStmtArg Catch, Stmt *Finally);
4850
4851 StmtResult BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw);
4852 StmtResult ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
4853 Scope *CurScope);
4854 ExprResult ActOnObjCAtSynchronizedOperand(SourceLocation atLoc,
4855 Expr *operand);
4856 StmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc,
4857 Expr *SynchExpr,
4858 Stmt *SynchBody);
4859
4860 StmtResult ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body);
4861
4862 VarDecl *BuildExceptionDeclaration(Scope *S, TypeSourceInfo *TInfo,
4863 SourceLocation StartLoc,
4864 SourceLocation IdLoc,
4865 IdentifierInfo *Id);
4866
4867 Decl *ActOnExceptionDeclarator(Scope *S, Declarator &D);
4868
4869 StmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc,
4870 Decl *ExDecl, Stmt *HandlerBlock);
4871 StmtResult ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
4872 ArrayRef<Stmt *> Handlers);
4873
4874 StmtResult ActOnSEHTryBlock(bool IsCXXTry, // try (true) or __try (false) ?
4875 SourceLocation TryLoc, Stmt *TryBlock,
4876 Stmt *Handler);
4877 StmtResult ActOnSEHExceptBlock(SourceLocation Loc,
4878 Expr *FilterExpr,
4879 Stmt *Block);
4880 void ActOnStartSEHFinallyBlock();
4881 void ActOnAbortSEHFinallyBlock();
4882 StmtResult ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block);
4883 StmtResult ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope);
4884
4885 void DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock);
4886
4887 bool ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const;
4888
4889 /// If it's a file scoped decl that must warn if not used, keep track
4890 /// of it.
4891 void MarkUnusedFileScopedDecl(const DeclaratorDecl *D);
4892
4893 /// DiagnoseUnusedExprResult - If the statement passed in is an expression
4894 /// whose result is unused, warn.
4895 void DiagnoseUnusedExprResult(const Stmt *S);
4896 void DiagnoseUnusedNestedTypedefs(const RecordDecl *D);
4897 void DiagnoseUnusedDecl(const NamedDecl *ND);
4898
4899 /// If VD is set but not otherwise used, diagnose, for a parameter or a
4900 /// variable.
4901 void DiagnoseUnusedButSetDecl(const VarDecl *VD);
4902
4903 /// Emit \p DiagID if statement located on \p StmtLoc has a suspicious null
4904 /// statement as a \p Body, and it is located on the same line.
4905 ///
4906 /// This helps prevent bugs due to typos, such as:
4907 /// if (condition);
4908 /// do_stuff();
4909 void DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
4910 const Stmt *Body,
4911 unsigned DiagID);
4912
4913 /// Warn if a for/while loop statement \p S, which is followed by
4914 /// \p PossibleBody, has a suspicious null statement as a body.
4915 void DiagnoseEmptyLoopBody(const Stmt *S,
4916 const Stmt *PossibleBody);
4917
4918 /// Warn if a value is moved to itself.
4919 void DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
4920 SourceLocation OpLoc);
4921
4922 /// Warn if we're implicitly casting from a _Nullable pointer type to a
4923 /// _Nonnull one.
4924 void diagnoseNullableToNonnullConversion(QualType DstType, QualType SrcType,
4925 SourceLocation Loc);
4926
4927 /// Warn when implicitly casting 0 to nullptr.
4928 void diagnoseZeroToNullptrConversion(CastKind Kind, const Expr *E);
4929
4930 ParsingDeclState PushParsingDeclaration(sema::DelayedDiagnosticPool &pool) {
4931 return DelayedDiagnostics.push(pool);
4932 }
4933 void PopParsingDeclaration(ParsingDeclState state, Decl *decl);
4934
4935 typedef ProcessingContextState ParsingClassState;
4936 ParsingClassState PushParsingClass() {
4937 ParsingClassDepth++;
4938 return DelayedDiagnostics.pushUndelayed();
4939 }
4940 void PopParsingClass(ParsingClassState state) {
4941 ParsingClassDepth--;
4942 DelayedDiagnostics.popUndelayed(state);
4943 }
4944
4945 void redelayDiagnostics(sema::DelayedDiagnosticPool &pool);
4946
4947 void DiagnoseAvailabilityOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
4948 const ObjCInterfaceDecl *UnknownObjCClass,
4949 bool ObjCPropertyAccess,
4950 bool AvoidPartialAvailabilityChecks = false,
4951 ObjCInterfaceDecl *ClassReceiver = nullptr);
4952
4953 bool makeUnavailableInSystemHeader(SourceLocation loc,
4954 UnavailableAttr::ImplicitReason reason);
4955
4956 /// Issue any -Wunguarded-availability warnings in \c FD
4957 void DiagnoseUnguardedAvailabilityViolations(Decl *FD);
4958
4959 void handleDelayedAvailabilityCheck(sema::DelayedDiagnostic &DD, Decl *Ctx);
4960
4961 //===--------------------------------------------------------------------===//
4962 // Expression Parsing Callbacks: SemaExpr.cpp.
4963
4964 bool CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid);
4965 bool DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
4966 const ObjCInterfaceDecl *UnknownObjCClass = nullptr,
4967 bool ObjCPropertyAccess = false,
4968 bool AvoidPartialAvailabilityChecks = false,
4969 ObjCInterfaceDecl *ClassReciever = nullptr);
4970 void NoteDeletedFunction(FunctionDecl *FD);
4971 void NoteDeletedInheritingConstructor(CXXConstructorDecl *CD);
4972 bool DiagnosePropertyAccessorMismatch(ObjCPropertyDecl *PD,
4973 ObjCMethodDecl *Getter,
4974 SourceLocation Loc);
4975 void DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
4976 ArrayRef<Expr *> Args);
4977
4978 void PushExpressionEvaluationContext(
4979 ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl = nullptr,
4980 ExpressionEvaluationContextRecord::ExpressionKind Type =
4981 ExpressionEvaluationContextRecord::EK_Other);
4982 enum ReuseLambdaContextDecl_t { ReuseLambdaContextDecl };
4983 void PushExpressionEvaluationContext(
4984 ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
4985 ExpressionEvaluationContextRecord::ExpressionKind Type =
4986 ExpressionEvaluationContextRecord::EK_Other);
4987 void PopExpressionEvaluationContext();
4988
4989 void DiscardCleanupsInEvaluationContext();
4990
4991 ExprResult TransformToPotentiallyEvaluated(Expr *E);
4992 ExprResult HandleExprEvaluationContextForTypeof(Expr *E);
4993
4994 ExprResult CheckUnevaluatedOperand(Expr *E);
4995 void CheckUnusedVolatileAssignment(Expr *E);
4996
4997 ExprResult ActOnConstantExpression(ExprResult Res);
4998
4999 // Functions for marking a declaration referenced. These functions also
5000 // contain the relevant logic for marking if a reference to a function or
5001 // variable is an odr-use (in the C++11 sense). There are separate variants
5002 // for expressions referring to a decl; these exist because odr-use marking
5003 // needs to be delayed for some constant variables when we build one of the
5004 // named expressions.
5005 //
5006 // MightBeOdrUse indicates whether the use could possibly be an odr-use, and
5007 // should usually be true. This only needs to be set to false if the lack of
5008 // odr-use cannot be determined from the current context (for instance,
5009 // because the name denotes a virtual function and was written without an
5010 // explicit nested-name-specifier).
5011 void MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool MightBeOdrUse);
5012 void MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
5013 bool MightBeOdrUse = true);
5014 void MarkVariableReferenced(SourceLocation Loc, VarDecl *Var);
5015 void MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base = nullptr);
5016 void MarkMemberReferenced(MemberExpr *E);
5017 void MarkFunctionParmPackReferenced(FunctionParmPackExpr *E);
5018 void MarkCaptureUsedInEnclosingContext(VarDecl *Capture, SourceLocation Loc,
5019 unsigned CapturingScopeIndex);
5020
5021 ExprResult CheckLValueToRValueConversionOperand(Expr *E);
5022 void CleanupVarDeclMarking();
5023
5024 enum TryCaptureKind {
5025 TryCapture_Implicit, TryCapture_ExplicitByVal, TryCapture_ExplicitByRef
5026 };
5027
5028 /// Try to capture the given variable.
5029 ///
5030 /// \param Var The variable to capture.
5031 ///
5032 /// \param Loc The location at which the capture occurs.
5033 ///
5034 /// \param Kind The kind of capture, which may be implicit (for either a
5035 /// block or a lambda), or explicit by-value or by-reference (for a lambda).
5036 ///
5037 /// \param EllipsisLoc The location of the ellipsis, if one is provided in
5038 /// an explicit lambda capture.
5039 ///
5040 /// \param BuildAndDiagnose Whether we are actually supposed to add the
5041 /// captures or diagnose errors. If false, this routine merely check whether
5042 /// the capture can occur without performing the capture itself or complaining
5043 /// if the variable cannot be captured.
5044 ///
5045 /// \param CaptureType Will be set to the type of the field used to capture
5046 /// this variable in the innermost block or lambda. Only valid when the
5047 /// variable can be captured.
5048 ///
5049 /// \param DeclRefType Will be set to the type of a reference to the capture
5050 /// from within the current scope. Only valid when the variable can be
5051 /// captured.
5052 ///
5053 /// \param FunctionScopeIndexToStopAt If non-null, it points to the index
5054 /// of the FunctionScopeInfo stack beyond which we do not attempt to capture.
5055 /// This is useful when enclosing lambdas must speculatively capture
5056 /// variables that may or may not be used in certain specializations of
5057 /// a nested generic lambda.
5058 ///
5059 /// \returns true if an error occurred (i.e., the variable cannot be
5060 /// captured) and false if the capture succeeded.
5061 bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc, TryCaptureKind Kind,
5062 SourceLocation EllipsisLoc, bool BuildAndDiagnose,
5063 QualType &CaptureType,
5064 QualType &DeclRefType,
5065 const unsigned *const FunctionScopeIndexToStopAt);
5066
5067 /// Try to capture the given variable.
5068 bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
5069 TryCaptureKind Kind = TryCapture_Implicit,
5070 SourceLocation EllipsisLoc = SourceLocation());
5071
5072 /// Checks if the variable must be captured.
5073 bool NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc);
5074
5075 /// Given a variable, determine the type that a reference to that
5076 /// variable will have in the given scope.
5077 QualType getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc);
5078
5079 /// Mark all of the declarations referenced within a particular AST node as
5080 /// referenced. Used when template instantiation instantiates a non-dependent
5081 /// type -- entities referenced by the type are now referenced.
5082 void MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T);
5083 void MarkDeclarationsReferencedInExpr(Expr *E,
5084 bool SkipLocalVariables = false);
5085
5086 /// Try to recover by turning the given expression into a
5087 /// call. Returns true if recovery was attempted or an error was
5088 /// emitted; this may also leave the ExprResult invalid.
5089 bool tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD,
5090 bool ForceComplain = false,
5091 bool (*IsPlausibleResult)(QualType) = nullptr);
5092
5093 /// Figure out if an expression could be turned into a call.
5094 bool tryExprAsCall(Expr &E, QualType &ZeroArgCallReturnTy,
5095 UnresolvedSetImpl &NonTemplateOverloads);
5096
5097 /// Try to convert an expression \p E to type \p Ty. Returns the result of the
5098 /// conversion.
5099 ExprResult tryConvertExprToType(Expr *E, QualType Ty);
5100
5101 /// Conditionally issue a diagnostic based on the current
5102 /// evaluation context.
5103 ///
5104 /// \param Statement If Statement is non-null, delay reporting the
5105 /// diagnostic until the function body is parsed, and then do a basic
5106 /// reachability analysis to determine if the statement is reachable.
5107 /// If it is unreachable, the diagnostic will not be emitted.
5108 bool DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
5109 const PartialDiagnostic &PD);
5110 /// Similar, but diagnostic is only produced if all the specified statements
5111 /// are reachable.
5112 bool DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
5113 const PartialDiagnostic &PD);
5114
5115 // Primary Expressions.
5116 SourceRange getExprRange(Expr *E) const;
5117
5118 ExprResult ActOnIdExpression(
5119 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
5120 UnqualifiedId &Id, bool HasTrailingLParen, bool IsAddressOfOperand,
5121 CorrectionCandidateCallback *CCC = nullptr,
5122 bool IsInlineAsmIdentifier = false, Token *KeywordReplacement = nullptr);
5123
5124 void DecomposeUnqualifiedId(const UnqualifiedId &Id,
5125 TemplateArgumentListInfo &Buffer,
5126 DeclarationNameInfo &NameInfo,
5127 const TemplateArgumentListInfo *&TemplateArgs);
5128
5129 bool DiagnoseDependentMemberLookup(LookupResult &R);
5130
5131 bool
5132 DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
5133 CorrectionCandidateCallback &CCC,
5134 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr,
5135 ArrayRef<Expr *> Args = None, TypoExpr **Out = nullptr);
5136
5137 DeclResult LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
5138 IdentifierInfo *II);
5139 ExprResult BuildIvarRefExpr(Scope *S, SourceLocation Loc, ObjCIvarDecl *IV);
5140
5141 ExprResult LookupInObjCMethod(LookupResult &LookUp, Scope *S,
5142 IdentifierInfo *II,
5143 bool AllowBuiltinCreation=false);
5144
5145 ExprResult ActOnDependentIdExpression(const CXXScopeSpec &SS,
5146 SourceLocation TemplateKWLoc,
5147 const DeclarationNameInfo &NameInfo,
5148 bool isAddressOfOperand,
5149 const TemplateArgumentListInfo *TemplateArgs);
5150
5151 /// If \p D cannot be odr-used in the current expression evaluation context,
5152 /// return a reason explaining why. Otherwise, return NOUR_None.
5153 NonOdrUseReason getNonOdrUseReasonInCurrentContext(ValueDecl *D);
5154
5155 DeclRefExpr *BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
5156 SourceLocation Loc,
5157 const CXXScopeSpec *SS = nullptr);
5158 DeclRefExpr *
5159 BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
5160 const DeclarationNameInfo &NameInfo,
5161 const CXXScopeSpec *SS = nullptr,
5162 NamedDecl *FoundD = nullptr,
5163 SourceLocation TemplateKWLoc = SourceLocation(),
5164 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5165 DeclRefExpr *
5166 BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
5167 const DeclarationNameInfo &NameInfo,
5168 NestedNameSpecifierLoc NNS,
5169 NamedDecl *FoundD = nullptr,
5170 SourceLocation TemplateKWLoc = SourceLocation(),
5171 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5172
5173 ExprResult
5174 BuildAnonymousStructUnionMemberReference(
5175 const CXXScopeSpec &SS,
5176 SourceLocation nameLoc,
5177 IndirectFieldDecl *indirectField,
5178 DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_none),
5179 Expr *baseObjectExpr = nullptr,
5180 SourceLocation opLoc = SourceLocation());
5181
5182 ExprResult BuildPossibleImplicitMemberExpr(
5183 const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R,
5184 const TemplateArgumentListInfo *TemplateArgs, const Scope *S,
5185 UnresolvedLookupExpr *AsULE = nullptr);
5186 ExprResult BuildImplicitMemberExpr(const CXXScopeSpec &SS,
5187 SourceLocation TemplateKWLoc,
5188 LookupResult &R,
5189 const TemplateArgumentListInfo *TemplateArgs,
5190 bool IsDefiniteInstance,
5191 const Scope *S);
5192 bool UseArgumentDependentLookup(const CXXScopeSpec &SS,
5193 const LookupResult &R,
5194 bool HasTrailingLParen);
5195
5196 ExprResult
5197 BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
5198 const DeclarationNameInfo &NameInfo,
5199 bool IsAddressOfOperand, const Scope *S,
5200 TypeSourceInfo **RecoveryTSI = nullptr);
5201
5202 ExprResult BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
5203 SourceLocation TemplateKWLoc,
5204 const DeclarationNameInfo &NameInfo,
5205 const TemplateArgumentListInfo *TemplateArgs);
5206
5207 ExprResult BuildDeclarationNameExpr(const CXXScopeSpec &SS,
5208 LookupResult &R,
5209 bool NeedsADL,
5210 bool AcceptInvalidDecl = false);
5211 ExprResult BuildDeclarationNameExpr(
5212 const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
5213 NamedDecl *FoundD = nullptr,
5214 const TemplateArgumentListInfo *TemplateArgs = nullptr,
5215 bool AcceptInvalidDecl = false);
5216
5217 ExprResult BuildLiteralOperatorCall(LookupResult &R,
5218 DeclarationNameInfo &SuffixInfo,
5219 ArrayRef<Expr *> Args,
5220 SourceLocation LitEndLoc,
5221 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr);
5222
5223 ExprResult BuildPredefinedExpr(SourceLocation Loc,
5224 PredefinedExpr::IdentKind IK);
5225 ExprResult ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind);
5226 ExprResult ActOnIntegerConstant(SourceLocation Loc, uint64_t Val);
5227
5228 ExprResult BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,
5229 SourceLocation LParen,
5230 SourceLocation RParen,
5231 TypeSourceInfo *TSI);
5232 ExprResult ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc,
5233 SourceLocation LParen,
5234 SourceLocation RParen,
5235 ParsedType ParsedTy);
5236
5237 bool CheckLoopHintExpr(Expr *E, SourceLocation Loc);
5238
5239 ExprResult ActOnNumericConstant(const Token &Tok, Scope *UDLScope = nullptr);
5240 ExprResult ActOnCharacterConstant(const Token &Tok,
5241 Scope *UDLScope = nullptr);
5242 ExprResult ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E);
5243 ExprResult ActOnParenListExpr(SourceLocation L,
5244 SourceLocation R,
5245 MultiExprArg Val);
5246
5247 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
5248 /// fragments (e.g. "foo" "bar" L"baz").
5249 ExprResult ActOnStringLiteral(ArrayRef<Token> StringToks,
5250 Scope *UDLScope = nullptr);
5251
5252 ExprResult ActOnGenericSelectionExpr(SourceLocation KeyLoc,
5253 SourceLocation DefaultLoc,
5254 SourceLocation RParenLoc,
5255 Expr *ControllingExpr,
5256 ArrayRef<ParsedType> ArgTypes,
5257 ArrayRef<Expr *> ArgExprs);
5258 ExprResult CreateGenericSelectionExpr(SourceLocation KeyLoc,
5259 SourceLocation DefaultLoc,
5260 SourceLocation RParenLoc,
5261 Expr *ControllingExpr,
5262 ArrayRef<TypeSourceInfo *> Types,
5263 ArrayRef<Expr *> Exprs);
5264
5265 // Binary/Unary Operators. 'Tok' is the token for the operator.
5266 ExprResult CreateBuiltinUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
5267 Expr *InputExpr);
5268 ExprResult BuildUnaryOp(Scope *S, SourceLocation OpLoc,
5269 UnaryOperatorKind Opc, Expr *Input);
5270 ExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
5271 tok::TokenKind Op, Expr *Input);
5272
5273 bool isQualifiedMemberAccess(Expr *E);
5274 QualType CheckAddressOfOperand(ExprResult &Operand, SourceLocation OpLoc);
5275
5276 ExprResult CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
5277 SourceLocation OpLoc,
5278 UnaryExprOrTypeTrait ExprKind,
5279 SourceRange R);
5280 ExprResult CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
5281 UnaryExprOrTypeTrait ExprKind);
5282 ExprResult
5283 ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
5284 UnaryExprOrTypeTrait ExprKind,
5285 bool IsType, void *TyOrEx,
5286 SourceRange ArgRange);
5287
5288 ExprResult CheckPlaceholderExpr(Expr *E);
5289 bool CheckVecStepExpr(Expr *E);
5290
5291 bool CheckUnaryExprOrTypeTraitOperand(Expr *E, UnaryExprOrTypeTrait ExprKind);
5292 bool CheckUnaryExprOrTypeTraitOperand(QualType ExprType, SourceLocation OpLoc,
5293 SourceRange ExprRange,
5294 UnaryExprOrTypeTrait ExprKind);
5295 ExprResult ActOnSizeofParameterPackExpr(Scope *S,
5296 SourceLocation OpLoc,
5297 IdentifierInfo &Name,
5298 SourceLocation NameLoc,
5299 SourceLocation RParenLoc);
5300 ExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
5301 tok::TokenKind Kind, Expr *Input);
5302
5303 ExprResult ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
5304 Expr *Idx, SourceLocation RLoc);
5305 ExprResult CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5306 Expr *Idx, SourceLocation RLoc);
5307
5308 ExprResult CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
5309 Expr *ColumnIdx,
5310 SourceLocation RBLoc);
5311
5312 ExprResult ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
5313 Expr *LowerBound,
5314 SourceLocation ColonLocFirst,
5315 SourceLocation ColonLocSecond,
5316 Expr *Length, Expr *Stride,
5317 SourceLocation RBLoc);
5318 ExprResult ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
5319 SourceLocation RParenLoc,
5320 ArrayRef<Expr *> Dims,
5321 ArrayRef<SourceRange> Brackets);
5322
5323 /// Data structure for iterator expression.
5324 struct OMPIteratorData {
5325 IdentifierInfo *DeclIdent = nullptr;
5326 SourceLocation DeclIdentLoc;
5327 ParsedType Type;
5328 OMPIteratorExpr::IteratorRange Range;
5329 SourceLocation AssignLoc;
5330 SourceLocation ColonLoc;
5331 SourceLocation SecColonLoc;
5332 };
5333
5334 ExprResult ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
5335 SourceLocation LLoc, SourceLocation RLoc,
5336 ArrayRef<OMPIteratorData> Data);
5337
5338 // This struct is for use by ActOnMemberAccess to allow
5339 // BuildMemberReferenceExpr to be able to reinvoke ActOnMemberAccess after
5340 // changing the access operator from a '.' to a '->' (to see if that is the
5341 // change needed to fix an error about an unknown member, e.g. when the class
5342 // defines a custom operator->).
5343 struct ActOnMemberAccessExtraArgs {
5344 Scope *S;
5345 UnqualifiedId &Id;
5346 Decl *ObjCImpDecl;
5347 };
5348
5349 ExprResult BuildMemberReferenceExpr(
5350 Expr *Base, QualType BaseType, SourceLocation OpLoc, bool IsArrow,
5351 CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
5352 NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo,
5353 const TemplateArgumentListInfo *TemplateArgs,
5354 const Scope *S,
5355 ActOnMemberAccessExtraArgs *ExtraArgs = nullptr);
5356
5357 ExprResult
5358 BuildMemberReferenceExpr(Expr *Base, QualType BaseType, SourceLocation OpLoc,
5359 bool IsArrow, const CXXScopeSpec &SS,
5360 SourceLocation TemplateKWLoc,
5361 NamedDecl *FirstQualifierInScope, LookupResult &R,
5362 const TemplateArgumentListInfo *TemplateArgs,
5363 const Scope *S,
5364 bool SuppressQualifierCheck = false,
5365 ActOnMemberAccessExtraArgs *ExtraArgs = nullptr);
5366
5367 ExprResult BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow,
5368 SourceLocation OpLoc,
5369 const CXXScopeSpec &SS, FieldDecl *Field,
5370 DeclAccessPair FoundDecl,
5371 const DeclarationNameInfo &MemberNameInfo);
5372
5373 ExprResult PerformMemberExprBaseConversion(Expr *Base, bool IsArrow);
5374
5375 bool CheckQualifiedMemberReference(Expr *BaseExpr, QualType BaseType,
5376 const CXXScopeSpec &SS,
5377 const LookupResult &R);
5378
5379 ExprResult ActOnDependentMemberExpr(Expr *Base, QualType BaseType,
5380 bool IsArrow, SourceLocation OpLoc,
5381 const CXXScopeSpec &SS,
5382 SourceLocation TemplateKWLoc,
5383 NamedDecl *FirstQualifierInScope,
5384 const DeclarationNameInfo &NameInfo,
5385 const TemplateArgumentListInfo *TemplateArgs);
5386
5387 ExprResult ActOnMemberAccessExpr(Scope *S, Expr *Base,
5388 SourceLocation OpLoc,
5389 tok::TokenKind OpKind,
5390 CXXScopeSpec &SS,
5391 SourceLocation TemplateKWLoc,
5392 UnqualifiedId &Member,
5393 Decl *ObjCImpDecl);
5394
5395 MemberExpr *
5396 BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc,
5397 const CXXScopeSpec *SS, SourceLocation TemplateKWLoc,
5398 ValueDecl *Member, DeclAccessPair FoundDecl,
5399 bool HadMultipleCandidates,
5400 const DeclarationNameInfo &MemberNameInfo, QualType Ty,
5401 ExprValueKind VK, ExprObjectKind OK,
5402 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5403 MemberExpr *
5404 BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc,
5405 NestedNameSpecifierLoc NNS, SourceLocation TemplateKWLoc,
5406 ValueDecl *Member, DeclAccessPair FoundDecl,
5407 bool HadMultipleCandidates,
5408 const DeclarationNameInfo &MemberNameInfo, QualType Ty,
5409 ExprValueKind VK, ExprObjectKind OK,
5410 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5411
5412 void ActOnDefaultCtorInitializers(Decl *CDtorDecl);
5413 bool ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
5414 FunctionDecl *FDecl,
5415 const FunctionProtoType *Proto,
5416 ArrayRef<Expr *> Args,
5417 SourceLocation RParenLoc,
5418 bool ExecConfig = false);
5419 void CheckStaticArrayArgument(SourceLocation CallLoc,
5420 ParmVarDecl *Param,
5421 const Expr *ArgExpr);
5422
5423 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
5424 /// This provides the location of the left/right parens and a list of comma
5425 /// locations.
5426 ExprResult ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
5427 MultiExprArg ArgExprs, SourceLocation RParenLoc,
5428 Expr *ExecConfig = nullptr);
5429 ExprResult BuildCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
5430 MultiExprArg ArgExprs, SourceLocation RParenLoc,
5431 Expr *ExecConfig = nullptr,
5432 bool IsExecConfig = false,
5433 bool AllowRecovery = false);
5434 Expr *BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
5435 MultiExprArg CallArgs);
5436 enum class AtomicArgumentOrder { API, AST };
5437 ExprResult
5438 BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
5439 SourceLocation RParenLoc, MultiExprArg Args,
5440 AtomicExpr::AtomicOp Op,
5441 AtomicArgumentOrder ArgOrder = AtomicArgumentOrder::API);
5442 ExprResult
5443 BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, SourceLocation LParenLoc,
5444 ArrayRef<Expr *> Arg, SourceLocation RParenLoc,
5445 Expr *Config = nullptr, bool IsExecConfig = false,
5446 ADLCallKind UsesADL = ADLCallKind::NotADL);
5447
5448 ExprResult ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
5449 MultiExprArg ExecConfig,
5450 SourceLocation GGGLoc);
5451
5452 ExprResult ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
5453 Declarator &D, ParsedType &Ty,
5454 SourceLocation RParenLoc, Expr *CastExpr);
5455 ExprResult BuildCStyleCastExpr(SourceLocation LParenLoc,
5456 TypeSourceInfo *Ty,
5457 SourceLocation RParenLoc,
5458 Expr *Op);
5459 CastKind PrepareScalarCast(ExprResult &src, QualType destType);
5460
5461 /// Build an altivec or OpenCL literal.
5462 ExprResult BuildVectorLiteral(SourceLocation LParenLoc,
5463 SourceLocation RParenLoc, Expr *E,
5464 TypeSourceInfo *TInfo);
5465
5466 ExprResult MaybeConvertParenListExprToParenExpr(Scope *S, Expr *ME);
5467
5468 ExprResult ActOnCompoundLiteral(SourceLocation LParenLoc,
5469 ParsedType Ty,
5470 SourceLocation RParenLoc,
5471 Expr *InitExpr);
5472
5473 ExprResult BuildCompoundLiteralExpr(SourceLocation LParenLoc,
5474 TypeSourceInfo *TInfo,
5475 SourceLocation RParenLoc,
5476 Expr *LiteralExpr);
5477
5478 ExprResult ActOnInitList(SourceLocation LBraceLoc,
5479 MultiExprArg InitArgList,
5480 SourceLocation RBraceLoc);
5481
5482 ExprResult BuildInitList(SourceLocation LBraceLoc,
5483 MultiExprArg InitArgList,
5484 SourceLocation RBraceLoc);
5485
5486 ExprResult ActOnDesignatedInitializer(Designation &Desig,
5487 SourceLocation EqualOrColonLoc,
5488 bool GNUSyntax,
5489 ExprResult Init);
5490
5491private:
5492 static BinaryOperatorKind ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind);
5493
5494public:
5495 ExprResult ActOnBinOp(Scope *S, SourceLocation TokLoc,
5496 tok::TokenKind Kind, Expr *LHSExpr, Expr *RHSExpr);
5497 ExprResult BuildBinOp(Scope *S, SourceLocation OpLoc,
5498 BinaryOperatorKind Opc, Expr *LHSExpr, Expr *RHSExpr);
5499 ExprResult CreateBuiltinBinOp(SourceLocation OpLoc, BinaryOperatorKind Opc,
5500 Expr *LHSExpr, Expr *RHSExpr);
5501 void LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
5502 UnresolvedSetImpl &Functions);
5503
5504 void DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc);
5505
5506 /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
5507 /// in the case of a the GNU conditional expr extension.
5508 ExprResult ActOnConditionalOp(SourceLocation QuestionLoc,
5509 SourceLocation ColonLoc,
5510 Expr *CondExpr, Expr *LHSExpr, Expr *RHSExpr);
5511
5512 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
5513 ExprResult ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
5514 LabelDecl *TheDecl);
5515
5516 void ActOnStartStmtExpr();
5517 ExprResult ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
5518 SourceLocation RPLoc);
5519 ExprResult BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
5520 SourceLocation RPLoc, unsigned TemplateDepth);
5521 // Handle the final expression in a statement expression.
5522 ExprResult ActOnStmtExprResult(ExprResult E);
5523 void ActOnStmtExprError();
5524
5525 // __builtin_offsetof(type, identifier(.identifier|[expr])*)
5526 struct OffsetOfComponent {
5527 SourceLocation LocStart, LocEnd;
5528 bool isBrackets; // true if [expr], false if .ident
5529 union {
5530 IdentifierInfo *IdentInfo;
5531 Expr *E;
5532 } U;
5533 };
5534
5535 /// __builtin_offsetof(type, a.b[123][456].c)
5536 ExprResult BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
5537 TypeSourceInfo *TInfo,
5538 ArrayRef<OffsetOfComponent> Components,
5539 SourceLocation RParenLoc);
5540 ExprResult ActOnBuiltinOffsetOf(Scope *S,
5541 SourceLocation BuiltinLoc,
5542 SourceLocation TypeLoc,
5543 ParsedType ParsedArgTy,
5544 ArrayRef<OffsetOfComponent> Components,
5545 SourceLocation RParenLoc);
5546
5547 // __builtin_choose_expr(constExpr, expr1, expr2)
5548 ExprResult ActOnChooseExpr(SourceLocation BuiltinLoc,
5549 Expr *CondExpr, Expr *LHSExpr,
5550 Expr *RHSExpr, SourceLocation RPLoc);
5551
5552 // __builtin_va_arg(expr, type)
5553 ExprResult ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
5554 SourceLocation RPLoc);
5555 ExprResult BuildVAArgExpr(SourceLocation BuiltinLoc, Expr *E,
5556 TypeSourceInfo *TInfo, SourceLocation RPLoc);
5557
5558 // __builtin_LINE(), __builtin_FUNCTION(), __builtin_FILE(),
5559 // __builtin_COLUMN()
5560 ExprResult ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
5561 SourceLocation BuiltinLoc,
5562 SourceLocation RPLoc);
5563
5564 // Build a potentially resolved SourceLocExpr.
5565 ExprResult BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
5566 SourceLocation BuiltinLoc, SourceLocation RPLoc,
5567 DeclContext *ParentContext);
5568
5569 // __null
5570 ExprResult ActOnGNUNullExpr(SourceLocation TokenLoc);
5571
5572 bool CheckCaseExpression(Expr *E);
5573
5574 /// Describes the result of an "if-exists" condition check.
5575 enum IfExistsResult {
5576 /// The symbol exists.
5577 IER_Exists,
5578
5579 /// The symbol does not exist.
5580 IER_DoesNotExist,
5581
5582 /// The name is a dependent name, so the results will differ
5583 /// from one instantiation to the next.
5584 IER_Dependent,
5585
5586 /// An error occurred.
5587 IER_Error
5588 };
5589
5590 IfExistsResult
5591 CheckMicrosoftIfExistsSymbol(Scope *S, CXXScopeSpec &SS,
5592 const DeclarationNameInfo &TargetNameInfo);
5593
5594 IfExistsResult
5595 CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
5596 bool IsIfExists, CXXScopeSpec &SS,
5597 UnqualifiedId &Name);
5598
5599 StmtResult BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
5600 bool IsIfExists,
5601 NestedNameSpecifierLoc QualifierLoc,
5602 DeclarationNameInfo NameInfo,
5603 Stmt *Nested);
5604 StmtResult ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
5605 bool IsIfExists,
5606 CXXScopeSpec &SS, UnqualifiedId &Name,
5607 Stmt *Nested);
5608
5609 //===------------------------- "Block" Extension ------------------------===//
5610
5611 /// ActOnBlockStart - This callback is invoked when a block literal is
5612 /// started.
5613 void ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope);
5614
5615 /// ActOnBlockArguments - This callback allows processing of block arguments.
5616 /// If there are no arguments, this is still invoked.
5617 void ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
5618 Scope *CurScope);
5619
5620 /// ActOnBlockError - If there is an error parsing a block, this callback
5621 /// is invoked to pop the information about the block from the action impl.
5622 void ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope);
5623
5624 /// ActOnBlockStmtExpr - This is called when the body of a block statement
5625 /// literal was successfully completed. ^(int x){...}
5626 ExprResult ActOnBlockStmtExpr(SourceLocation CaretLoc, Stmt *Body,
5627 Scope *CurScope);
5628
5629 //===---------------------------- Clang Extensions ----------------------===//
5630
5631 /// __builtin_convertvector(...)
5632 ExprResult ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
5633 SourceLocation BuiltinLoc,
5634 SourceLocation RParenLoc);
5635
5636 //===---------------------------- OpenCL Features -----------------------===//
5637
5638 /// __builtin_astype(...)
5639 ExprResult ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
5640 SourceLocation BuiltinLoc,
5641 SourceLocation RParenLoc);
5642 ExprResult BuildAsTypeExpr(Expr *E, QualType DestTy,
5643 SourceLocation BuiltinLoc,
5644 SourceLocation RParenLoc);
5645
5646 //===---------------------------- C++ Features --------------------------===//
5647
5648 // Act on C++ namespaces
5649 Decl *ActOnStartNamespaceDef(Scope *S, SourceLocation InlineLoc,
5650 SourceLocation NamespaceLoc,
5651 SourceLocation IdentLoc, IdentifierInfo *Ident,
5652 SourceLocation LBrace,
5653 const ParsedAttributesView &AttrList,
5654 UsingDirectiveDecl *&UsingDecl);
5655 void ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace);
5656
5657 NamespaceDecl *getStdNamespace() const;
5658 NamespaceDecl *getOrCreateStdNamespace();
5659
5660 NamespaceDecl *lookupStdExperimentalNamespace();
5661
5662 CXXRecordDecl *getStdBadAlloc() const;
5663 EnumDecl *getStdAlignValT() const;
5664
5665private:
5666 // A cache representing if we've fully checked the various comparison category
5667 // types stored in ASTContext. The bit-index corresponds to the integer value
5668 // of a ComparisonCategoryType enumerator.
5669 llvm::SmallBitVector FullyCheckedComparisonCategories;
5670
5671 ValueDecl *tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl,
5672 CXXScopeSpec &SS,
5673 ParsedType TemplateTypeTy,
5674 IdentifierInfo *MemberOrBase);
5675
5676public:
5677 enum class ComparisonCategoryUsage {
5678 /// The '<=>' operator was used in an expression and a builtin operator
5679 /// was selected.
5680 OperatorInExpression,
5681 /// A defaulted 'operator<=>' needed the comparison category. This
5682 /// typically only applies to 'std::strong_ordering', due to the implicit
5683 /// fallback return value.
5684 DefaultedOperator,
5685 };
5686
5687 /// Lookup the specified comparison category types in the standard
5688 /// library, an check the VarDecls possibly returned by the operator<=>
5689 /// builtins for that type.
5690 ///
5691 /// \return The type of the comparison category type corresponding to the
5692 /// specified Kind, or a null type if an error occurs
5693 QualType CheckComparisonCategoryType(ComparisonCategoryType Kind,
5694 SourceLocation Loc,
5695 ComparisonCategoryUsage Usage);
5696
5697 /// Tests whether Ty is an instance of std::initializer_list and, if
5698 /// it is and Element is not NULL, assigns the element type to Element.
5699 bool isStdInitializerList(QualType Ty, QualType *Element);
5700
5701 /// Looks for the std::initializer_list template and instantiates it
5702 /// with Element, or emits an error if it's not found.
5703 ///
5704 /// \returns The instantiated template, or null on error.
5705 QualType BuildStdInitializerList(QualType Element, SourceLocation Loc);
5706
5707 /// Determine whether Ctor is an initializer-list constructor, as
5708 /// defined in [dcl.init.list]p2.
5709 bool isInitListConstructor(const FunctionDecl *Ctor);
5710
5711 Decl *ActOnUsingDirective(Scope *CurScope, SourceLocation UsingLoc,
5712 SourceLocation NamespcLoc, CXXScopeSpec &SS,
5713 SourceLocation IdentLoc,
5714 IdentifierInfo *NamespcName,
5715 const ParsedAttributesView &AttrList);
5716
5717 void PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir);
5718
5719 Decl *ActOnNamespaceAliasDef(Scope *CurScope,
5720 SourceLocation NamespaceLoc,
5721 SourceLocation AliasLoc,
5722 IdentifierInfo *Alias,
5723 CXXScopeSpec &SS,
5724 SourceLocation IdentLoc,
5725 IdentifierInfo *Ident);
5726
5727 void FilterUsingLookup(Scope *S, LookupResult &lookup);
5728 void HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow);
5729 bool CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Target,
5730 const LookupResult &PreviousDecls,
5731 UsingShadowDecl *&PrevShadow);
5732 UsingShadowDecl *BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD,
5733 NamedDecl *Target,
5734 UsingShadowDecl *PrevDecl);
5735
5736 bool CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
5737 bool HasTypenameKeyword,
5738 const CXXScopeSpec &SS,
5739 SourceLocation NameLoc,
5740 const LookupResult &Previous);
5741 bool CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename,
5742 const CXXScopeSpec &SS,
5743 const DeclarationNameInfo &NameInfo,
5744 SourceLocation NameLoc,
5745 const LookupResult *R = nullptr,
5746 const UsingDecl *UD = nullptr);
5747
5748 NamedDecl *BuildUsingDeclaration(
5749 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc,
5750 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS,
5751 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc,
5752 const ParsedAttributesView &AttrList, bool IsInstantiation,
5753 bool IsUsingIfExists);
5754 NamedDecl *BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS,
5755 SourceLocation UsingLoc,
5756 SourceLocation EnumLoc,
5757 SourceLocation NameLoc, EnumDecl *ED);
5758 NamedDecl *BuildUsingPackDecl(NamedDecl *InstantiatedFrom,
5759 ArrayRef<NamedDecl *> Expansions);
5760
5761 bool CheckInheritingConstructorUsingDecl(UsingDecl *UD);
5762
5763 /// Given a derived-class using shadow declaration for a constructor and the
5764 /// correspnding base class constructor, find or create the implicit
5765 /// synthesized derived class constructor to use for this initialization.
5766 CXXConstructorDecl *
5767 findInheritingConstructor(SourceLocation Loc, CXXConstructorDecl *BaseCtor,
5768 ConstructorUsingShadowDecl *DerivedShadow);
5769
5770 Decl *ActOnUsingDeclaration(Scope *CurScope, AccessSpecifier AS,
5771 SourceLocation UsingLoc,
5772 SourceLocation TypenameLoc, CXXScopeSpec &SS,
5773 UnqualifiedId &Name, SourceLocation EllipsisLoc,
5774 const ParsedAttributesView &AttrList);
5775 Decl *ActOnUsingEnumDeclaration(Scope *CurScope, AccessSpecifier AS,
5776 SourceLocation UsingLoc,
5777 SourceLocation EnumLoc, const DeclSpec &);
5778 Decl *ActOnAliasDeclaration(Scope *CurScope, AccessSpecifier AS,
5779 MultiTemplateParamsArg TemplateParams,
5780 SourceLocation UsingLoc, UnqualifiedId &Name,
5781 const ParsedAttributesView &AttrList,
5782 TypeResult Type, Decl *DeclFromDeclSpec);
5783
5784 /// BuildCXXConstructExpr - Creates a complete call to a constructor,
5785 /// including handling of its default argument expressions.
5786 ///
5787 /// \param ConstructKind - a CXXConstructExpr::ConstructionKind
5788 ExprResult
5789 BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5790 NamedDecl *FoundDecl,
5791 CXXConstructorDecl *Constructor, MultiExprArg Exprs,
5792 bool HadMultipleCandidates, bool IsListInitialization,
5793 bool IsStdInitListInitialization,
5794 bool RequiresZeroInit, unsigned ConstructKind,
5795 SourceRange ParenRange);
5796
5797 /// Build a CXXConstructExpr whose constructor has already been resolved if
5798 /// it denotes an inherited constructor.
5799 ExprResult
5800 BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5801 CXXConstructorDecl *Constructor, bool Elidable,
5802 MultiExprArg Exprs,
5803 bool HadMultipleCandidates, bool IsListInitialization,
5804 bool IsStdInitListInitialization,
5805 bool RequiresZeroInit, unsigned ConstructKind,
5806 SourceRange ParenRange);
5807
5808 // FIXME: Can we remove this and have the above BuildCXXConstructExpr check if
5809 // the constructor can be elidable?
5810 ExprResult
5811 BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5812 NamedDecl *FoundDecl,
5813 CXXConstructorDecl *Constructor, bool Elidable,
5814 MultiExprArg Exprs, bool HadMultipleCandidates,
5815 bool IsListInitialization,
5816 bool IsStdInitListInitialization, bool RequiresZeroInit,
5817 unsigned ConstructKind, SourceRange ParenRange);
5818
5819 ExprResult BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field);
5820
5821
5822 /// Instantiate or parse a C++ default argument expression as necessary.
5823 /// Return true on error.
5824 bool CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
5825 ParmVarDecl *Param);
5826
5827 /// BuildCXXDefaultArgExpr - Creates a CXXDefaultArgExpr, instantiating
5828 /// the default expr if needed.
5829 ExprResult BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5830 FunctionDecl *FD,
5831 ParmVarDecl *Param);
5832
5833 /// FinalizeVarWithDestructor - Prepare for calling destructor on the
5834 /// constructed variable.
5835 void FinalizeVarWithDestructor(VarDecl *VD, const RecordType *DeclInitType);
5836
5837 /// Helper class that collects exception specifications for
5838 /// implicitly-declared special member functions.
5839 class ImplicitExceptionSpecification {
5840 // Pointer to allow copying
5841 Sema *Self;
5842 // We order exception specifications thus:
5843 // noexcept is the most restrictive, but is only used in C++11.
5844 // throw() comes next.
5845 // Then a throw(collected exceptions)
5846 // Finally no specification, which is expressed as noexcept(false).
5847 // throw(...) is used instead if any called function uses it.
5848 ExceptionSpecificationType ComputedEST;
5849 llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
5850 SmallVector<QualType, 4> Exceptions;
5851
5852 void ClearExceptions() {
5853 ExceptionsSeen.clear();
5854 Exceptions.clear();
5855 }
5856
5857 public:
5858 explicit ImplicitExceptionSpecification(Sema &Self)
5859 : Self(&Self), ComputedEST(EST_BasicNoexcept) {
5860 if (!Self.getLangOpts().CPlusPlus11)
5861 ComputedEST = EST_DynamicNone;
5862 }
5863
5864 /// Get the computed exception specification type.
5865 ExceptionSpecificationType getExceptionSpecType() const {
5866 assert(!isComputedNoexcept(ComputedEST) &&(static_cast <bool> (!isComputedNoexcept(ComputedEST) &&
"noexcept(expr) should not be a possible result") ? void (0)
: __assert_fail ("!isComputedNoexcept(ComputedEST) && \"noexcept(expr) should not be a possible result\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 5867, __extension__ __PRETTY_FUNCTION__))
5867 "noexcept(expr) should not be a possible result")(static_cast <bool> (!isComputedNoexcept(ComputedEST) &&
"noexcept(expr) should not be a possible result") ? void (0)
: __assert_fail ("!isComputedNoexcept(ComputedEST) && \"noexcept(expr) should not be a possible result\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 5867, __extension__ __PRETTY_FUNCTION__))
;
5868 return ComputedEST;
5869 }
5870
5871 /// The number of exceptions in the exception specification.
5872 unsigned size() const { return Exceptions.size(); }
5873
5874 /// The set of exceptions in the exception specification.
5875 const QualType *data() const { return Exceptions.data(); }
5876
5877 /// Integrate another called method into the collected data.
5878 void CalledDecl(SourceLocation CallLoc, const CXXMethodDecl *Method);
5879
5880 /// Integrate an invoked expression into the collected data.
5881 void CalledExpr(Expr *E) { CalledStmt(E); }
5882
5883 /// Integrate an invoked statement into the collected data.
5884 void CalledStmt(Stmt *S);
5885
5886 /// Overwrite an EPI's exception specification with this
5887 /// computed exception specification.
5888 FunctionProtoType::ExceptionSpecInfo getExceptionSpec() const {
5889 FunctionProtoType::ExceptionSpecInfo ESI;
5890 ESI.Type = getExceptionSpecType();
5891 if (ESI.Type == EST_Dynamic) {
5892 ESI.Exceptions = Exceptions;
5893 } else if (ESI.Type == EST_None) {
5894 /// C++11 [except.spec]p14:
5895 /// The exception-specification is noexcept(false) if the set of
5896 /// potential exceptions of the special member function contains "any"
5897 ESI.Type = EST_NoexceptFalse;
5898 ESI.NoexceptExpr = Self->ActOnCXXBoolLiteral(SourceLocation(),
5899 tok::kw_false).get();
5900 }
5901 return ESI;
5902 }
5903 };
5904
5905 /// Evaluate the implicit exception specification for a defaulted
5906 /// special member function.
5907 void EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD);
5908
5909 /// Check the given noexcept-specifier, convert its expression, and compute
5910 /// the appropriate ExceptionSpecificationType.
5911 ExprResult ActOnNoexceptSpec(Expr *NoexceptExpr,
5912 ExceptionSpecificationType &EST);
5913
5914 /// Check the given exception-specification and update the
5915 /// exception specification information with the results.
5916 void checkExceptionSpecification(bool IsTopLevel,
5917 ExceptionSpecificationType EST,
5918 ArrayRef<ParsedType> DynamicExceptions,
5919 ArrayRef<SourceRange> DynamicExceptionRanges,
5920 Expr *NoexceptExpr,
5921 SmallVectorImpl<QualType> &Exceptions,
5922 FunctionProtoType::ExceptionSpecInfo &ESI);
5923
5924 /// Determine if we're in a case where we need to (incorrectly) eagerly
5925 /// parse an exception specification to work around a libstdc++ bug.
5926 bool isLibstdcxxEagerExceptionSpecHack(const Declarator &D);
5927
5928 /// Add an exception-specification to the given member function
5929 /// (or member function template). The exception-specification was parsed
5930 /// after the method itself was declared.
5931 void actOnDelayedExceptionSpecification(Decl *Method,
5932 ExceptionSpecificationType EST,
5933 SourceRange SpecificationRange,
5934 ArrayRef<ParsedType> DynamicExceptions,
5935 ArrayRef<SourceRange> DynamicExceptionRanges,
5936 Expr *NoexceptExpr);
5937
5938 class InheritedConstructorInfo;
5939
5940 /// Determine if a special member function should have a deleted
5941 /// definition when it is defaulted.
5942 bool ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
5943 InheritedConstructorInfo *ICI = nullptr,
5944 bool Diagnose = false);
5945
5946 /// Produce notes explaining why a defaulted function was defined as deleted.
5947 void DiagnoseDeletedDefaultedFunction(FunctionDecl *FD);
5948
5949 /// Declare the implicit default constructor for the given class.
5950 ///
5951 /// \param ClassDecl The class declaration into which the implicit
5952 /// default constructor will be added.
5953 ///
5954 /// \returns The implicitly-declared default constructor.
5955 CXXConstructorDecl *DeclareImplicitDefaultConstructor(
5956 CXXRecordDecl *ClassDecl);
5957
5958 /// DefineImplicitDefaultConstructor - Checks for feasibility of
5959 /// defining this constructor as the default constructor.
5960 void DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
5961 CXXConstructorDecl *Constructor);
5962
5963 /// Declare the implicit destructor for the given class.
5964 ///
5965 /// \param ClassDecl The class declaration into which the implicit
5966 /// destructor will be added.
5967 ///
5968 /// \returns The implicitly-declared destructor.
5969 CXXDestructorDecl *DeclareImplicitDestructor(CXXRecordDecl *ClassDecl);
5970
5971 /// DefineImplicitDestructor - Checks for feasibility of
5972 /// defining this destructor as the default destructor.
5973 void DefineImplicitDestructor(SourceLocation CurrentLocation,
5974 CXXDestructorDecl *Destructor);
5975
5976 /// Build an exception spec for destructors that don't have one.
5977 ///
5978 /// C++11 says that user-defined destructors with no exception spec get one
5979 /// that looks as if the destructor was implicitly declared.
5980 void AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor);
5981
5982 /// Define the specified inheriting constructor.
5983 void DefineInheritingConstructor(SourceLocation UseLoc,
5984 CXXConstructorDecl *Constructor);
5985
5986 /// Declare the implicit copy constructor for the given class.
5987 ///
5988 /// \param ClassDecl The class declaration into which the implicit
5989 /// copy constructor will be added.
5990 ///
5991 /// \returns The implicitly-declared copy constructor.
5992 CXXConstructorDecl *DeclareImplicitCopyConstructor(CXXRecordDecl *ClassDecl);
5993
5994 /// DefineImplicitCopyConstructor - Checks for feasibility of
5995 /// defining this constructor as the copy constructor.
5996 void DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5997 CXXConstructorDecl *Constructor);
5998
5999 /// Declare the implicit move constructor for the given class.
6000 ///
6001 /// \param ClassDecl The Class declaration into which the implicit
6002 /// move constructor will be added.
6003 ///
6004 /// \returns The implicitly-declared move constructor, or NULL if it wasn't
6005 /// declared.
6006 CXXConstructorDecl *DeclareImplicitMoveConstructor(CXXRecordDecl *ClassDecl);
6007
6008 /// DefineImplicitMoveConstructor - Checks for feasibility of
6009 /// defining this constructor as the move constructor.
6010 void DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
6011 CXXConstructorDecl *Constructor);
6012
6013 /// Declare the implicit copy assignment operator for the given class.
6014 ///
6015 /// \param ClassDecl The class declaration into which the implicit
6016 /// copy assignment operator will be added.
6017 ///
6018 /// \returns The implicitly-declared copy assignment operator.
6019 CXXMethodDecl *DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl);
6020
6021 /// Defines an implicitly-declared copy assignment operator.
6022 void DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
6023 CXXMethodDecl *MethodDecl);
6024
6025 /// Declare the implicit move assignment operator for the given class.
6026 ///
6027 /// \param ClassDecl The Class declaration into which the implicit
6028 /// move assignment operator will be added.
6029 ///
6030 /// \returns The implicitly-declared move assignment operator, or NULL if it
6031 /// wasn't declared.
6032 CXXMethodDecl *DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl);
6033
6034 /// Defines an implicitly-declared move assignment operator.
6035 void DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
6036 CXXMethodDecl *MethodDecl);
6037
6038 /// Force the declaration of any implicitly-declared members of this
6039 /// class.
6040 void ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class);
6041
6042 /// Check a completed declaration of an implicit special member.
6043 void CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD);
6044
6045 /// Determine whether the given function is an implicitly-deleted
6046 /// special member function.
6047 bool isImplicitlyDeleted(FunctionDecl *FD);
6048
6049 /// Check whether 'this' shows up in the type of a static member
6050 /// function after the (naturally empty) cv-qualifier-seq would be.
6051 ///
6052 /// \returns true if an error occurred.
6053 bool checkThisInStaticMemberFunctionType(CXXMethodDecl *Method);
6054
6055 /// Whether this' shows up in the exception specification of a static
6056 /// member function.
6057 bool checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method);
6058
6059 /// Check whether 'this' shows up in the attributes of the given
6060 /// static member function.
6061 ///
6062 /// \returns true if an error occurred.
6063 bool checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method);
6064
6065 /// MaybeBindToTemporary - If the passed in expression has a record type with
6066 /// a non-trivial destructor, this will return CXXBindTemporaryExpr. Otherwise
6067 /// it simply returns the passed in expression.
6068 ExprResult MaybeBindToTemporary(Expr *E);
6069
6070 /// Wrap the expression in a ConstantExpr if it is a potential immediate
6071 /// invocation.
6072 ExprResult CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl);
6073
6074 bool CompleteConstructorCall(CXXConstructorDecl *Constructor,
6075 QualType DeclInitType, MultiExprArg ArgsPtr,
6076 SourceLocation Loc,
6077 SmallVectorImpl<Expr *> &ConvertedArgs,
6078 bool AllowExplicit = false,
6079 bool IsListInitialization = false);
6080
6081 ParsedType getInheritingConstructorName(CXXScopeSpec &SS,
6082 SourceLocation NameLoc,
6083 IdentifierInfo &Name);
6084
6085 ParsedType getConstructorName(IdentifierInfo &II, SourceLocation NameLoc,
6086 Scope *S, CXXScopeSpec &SS,
6087 bool EnteringContext);
6088 ParsedType getDestructorName(SourceLocation TildeLoc,
6089 IdentifierInfo &II, SourceLocation NameLoc,
6090 Scope *S, CXXScopeSpec &SS,
6091 ParsedType ObjectType,
6092 bool EnteringContext);
6093
6094 ParsedType getDestructorTypeForDecltype(const DeclSpec &DS,
6095 ParsedType ObjectType);
6096
6097 // Checks that reinterpret casts don't have undefined behavior.
6098 void CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType,
6099 bool IsDereference, SourceRange Range);
6100
6101 // Checks that the vector type should be initialized from a scalar
6102 // by splatting the value rather than populating a single element.
6103 // This is the case for AltiVecVector types as well as with
6104 // AltiVecPixel and AltiVecBool when -faltivec-src-compat=xl is specified.
6105 bool ShouldSplatAltivecScalarInCast(const VectorType *VecTy);
6106
6107 // Checks if the -faltivec-src-compat=gcc option is specified.
6108 // If so, AltiVecVector, AltiVecBool and AltiVecPixel types are
6109 // treated the same way as they are when trying to initialize
6110 // these vectors on gcc (an error is emitted).
6111 bool CheckAltivecInitFromScalar(SourceRange R, QualType VecTy,
6112 QualType SrcTy);
6113
6114 /// ActOnCXXNamedCast - Parse
6115 /// {dynamic,static,reinterpret,const,addrspace}_cast's.
6116 ExprResult ActOnCXXNamedCast(SourceLocation OpLoc,
6117 tok::TokenKind Kind,
6118 SourceLocation LAngleBracketLoc,
6119 Declarator &D,
6120 SourceLocation RAngleBracketLoc,
6121 SourceLocation LParenLoc,
6122 Expr *E,
6123 SourceLocation RParenLoc);
6124
6125 ExprResult BuildCXXNamedCast(SourceLocation OpLoc,
6126 tok::TokenKind Kind,
6127 TypeSourceInfo *Ty,
6128 Expr *E,
6129 SourceRange AngleBrackets,
6130 SourceRange Parens);
6131
6132 ExprResult ActOnBuiltinBitCastExpr(SourceLocation KWLoc, Declarator &Dcl,
6133 ExprResult Operand,
6134 SourceLocation RParenLoc);
6135
6136 ExprResult BuildBuiltinBitCastExpr(SourceLocation KWLoc, TypeSourceInfo *TSI,
6137 Expr *Operand, SourceLocation RParenLoc);
6138
6139 ExprResult BuildCXXTypeId(QualType TypeInfoType,
6140 SourceLocation TypeidLoc,
6141 TypeSourceInfo *Operand,
6142 SourceLocation RParenLoc);
6143 ExprResult BuildCXXTypeId(QualType TypeInfoType,
6144 SourceLocation TypeidLoc,
6145 Expr *Operand,
6146 SourceLocation RParenLoc);
6147
6148 /// ActOnCXXTypeid - Parse typeid( something ).
6149 ExprResult ActOnCXXTypeid(SourceLocation OpLoc,
6150 SourceLocation LParenLoc, bool isType,
6151 void *TyOrExpr,
6152 SourceLocation RParenLoc);
6153
6154 ExprResult BuildCXXUuidof(QualType TypeInfoType,
6155 SourceLocation TypeidLoc,
6156 TypeSourceInfo *Operand,
6157 SourceLocation RParenLoc);
6158 ExprResult BuildCXXUuidof(QualType TypeInfoType,
6159 SourceLocation TypeidLoc,
6160 Expr *Operand,
6161 SourceLocation RParenLoc);
6162
6163 /// ActOnCXXUuidof - Parse __uuidof( something ).
6164 ExprResult ActOnCXXUuidof(SourceLocation OpLoc,
6165 SourceLocation LParenLoc, bool isType,
6166 void *TyOrExpr,
6167 SourceLocation RParenLoc);
6168
6169 /// Handle a C++1z fold-expression: ( expr op ... op expr ).
6170 ExprResult ActOnCXXFoldExpr(Scope *S, SourceLocation LParenLoc, Expr *LHS,
6171 tok::TokenKind Operator,
6172 SourceLocation EllipsisLoc, Expr *RHS,
6173 SourceLocation RParenLoc);
6174 ExprResult BuildCXXFoldExpr(UnresolvedLookupExpr *Callee,
6175 SourceLocation LParenLoc, Expr *LHS,
6176 BinaryOperatorKind Operator,
6177 SourceLocation EllipsisLoc, Expr *RHS,
6178 SourceLocation RParenLoc,
6179 Optional<unsigned> NumExpansions);
6180 ExprResult BuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc,
6181 BinaryOperatorKind Operator);
6182
6183 //// ActOnCXXThis - Parse 'this' pointer.
6184 ExprResult ActOnCXXThis(SourceLocation loc);
6185
6186 /// Build a CXXThisExpr and mark it referenced in the current context.
6187 Expr *BuildCXXThisExpr(SourceLocation Loc, QualType Type, bool IsImplicit);
6188 void MarkThisReferenced(CXXThisExpr *This);
6189
6190 /// Try to retrieve the type of the 'this' pointer.
6191 ///
6192 /// \returns The type of 'this', if possible. Otherwise, returns a NULL type.
6193 QualType getCurrentThisType();
6194
6195 /// When non-NULL, the C++ 'this' expression is allowed despite the
6196 /// current context not being a non-static member function. In such cases,
6197 /// this provides the type used for 'this'.
6198 QualType CXXThisTypeOverride;
6199
6200 /// RAII object used to temporarily allow the C++ 'this' expression
6201 /// to be used, with the given qualifiers on the current class type.
6202 class CXXThisScopeRAII {
6203 Sema &S;
6204 QualType OldCXXThisTypeOverride;
6205 bool Enabled;
6206
6207 public:
6208 /// Introduce a new scope where 'this' may be allowed (when enabled),
6209 /// using the given declaration (which is either a class template or a
6210 /// class) along with the given qualifiers.
6211 /// along with the qualifiers placed on '*this'.
6212 CXXThisScopeRAII(Sema &S, Decl *ContextDecl, Qualifiers CXXThisTypeQuals,
6213 bool Enabled = true);
6214
6215 ~CXXThisScopeRAII();
6216 };
6217
6218 /// Make sure the value of 'this' is actually available in the current
6219 /// context, if it is a potentially evaluated context.
6220 ///
6221 /// \param Loc The location at which the capture of 'this' occurs.
6222 ///
6223 /// \param Explicit Whether 'this' is explicitly captured in a lambda
6224 /// capture list.
6225 ///
6226 /// \param FunctionScopeIndexToStopAt If non-null, it points to the index
6227 /// of the FunctionScopeInfo stack beyond which we do not attempt to capture.
6228 /// This is useful when enclosing lambdas must speculatively capture
6229 /// 'this' that may or may not be used in certain specializations of
6230 /// a nested generic lambda (depending on whether the name resolves to
6231 /// a non-static member function or a static function).
6232 /// \return returns 'true' if failed, 'false' if success.
6233 bool CheckCXXThisCapture(SourceLocation Loc, bool Explicit = false,
6234 bool BuildAndDiagnose = true,
6235 const unsigned *const FunctionScopeIndexToStopAt = nullptr,
6236 bool ByCopy = false);
6237
6238 /// Determine whether the given type is the type of *this that is used
6239 /// outside of the body of a member function for a type that is currently
6240 /// being defined.
6241 bool isThisOutsideMemberFunctionBody(QualType BaseType);
6242
6243 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
6244 ExprResult ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind);
6245
6246
6247 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
6248 ExprResult ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind);
6249
6250 ExprResult
6251 ActOnObjCAvailabilityCheckExpr(llvm::ArrayRef<AvailabilitySpec> AvailSpecs,
6252 SourceLocation AtLoc, SourceLocation RParen);
6253
6254 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
6255 ExprResult ActOnCXXNullPtrLiteral(SourceLocation Loc);
6256
6257 //// ActOnCXXThrow - Parse throw expressions.
6258 ExprResult ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *expr);
6259 ExprResult BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
6260 bool IsThrownVarInScope);
6261 bool CheckCXXThrowOperand(SourceLocation ThrowLoc, QualType ThrowTy, Expr *E);
6262
6263 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
6264 /// Can be interpreted either as function-style casting ("int(x)")
6265 /// or class type construction ("ClassType(x,y,z)")
6266 /// or creation of a value-initialized type ("int()").
6267 ExprResult ActOnCXXTypeConstructExpr(ParsedType TypeRep,
6268 SourceLocation LParenOrBraceLoc,
6269 MultiExprArg Exprs,
6270 SourceLocation RParenOrBraceLoc,
6271 bool ListInitialization);
6272
6273 ExprResult BuildCXXTypeConstructExpr(TypeSourceInfo *Type,
6274 SourceLocation LParenLoc,
6275 MultiExprArg Exprs,
6276 SourceLocation RParenLoc,
6277 bool ListInitialization);
6278
6279 /// ActOnCXXNew - Parsed a C++ 'new' expression.
6280 ExprResult ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
6281 SourceLocation PlacementLParen,
6282 MultiExprArg PlacementArgs,
6283 SourceLocation PlacementRParen,
6284 SourceRange TypeIdParens, Declarator &D,
6285 Expr *Initializer);
6286 ExprResult BuildCXXNew(SourceRange Range, bool UseGlobal,
6287 SourceLocation PlacementLParen,
6288 MultiExprArg PlacementArgs,
6289 SourceLocation PlacementRParen,
6290 SourceRange TypeIdParens,
6291 QualType AllocType,
6292 TypeSourceInfo *AllocTypeInfo,
6293 Optional<Expr *> ArraySize,
6294 SourceRange DirectInitRange,
6295 Expr *Initializer);
6296
6297 /// Determine whether \p FD is an aligned allocation or deallocation
6298 /// function that is unavailable.
6299 bool isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const;
6300
6301 /// Produce diagnostics if \p FD is an aligned allocation or deallocation
6302 /// function that is unavailable.
6303 void diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
6304 SourceLocation Loc);
6305
6306 bool CheckAllocatedType(QualType AllocType, SourceLocation Loc,
6307 SourceRange R);
6308
6309 /// The scope in which to find allocation functions.
6310 enum AllocationFunctionScope {
6311 /// Only look for allocation functions in the global scope.
6312 AFS_Global,
6313 /// Only look for allocation functions in the scope of the
6314 /// allocated class.
6315 AFS_Class,
6316 /// Look for allocation functions in both the global scope
6317 /// and in the scope of the allocated class.
6318 AFS_Both
6319 };
6320
6321 /// Finds the overloads of operator new and delete that are appropriate
6322 /// for the allocation.
6323 bool FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
6324 AllocationFunctionScope NewScope,
6325 AllocationFunctionScope DeleteScope,
6326 QualType AllocType, bool IsArray,
6327 bool &PassAlignment, MultiExprArg PlaceArgs,
6328 FunctionDecl *&OperatorNew,
6329 FunctionDecl *&OperatorDelete,
6330 bool Diagnose = true);
6331 void DeclareGlobalNewDelete();
6332 void DeclareGlobalAllocationFunction(DeclarationName Name, QualType Return,
6333 ArrayRef<QualType> Params);
6334
6335 bool FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
6336 DeclarationName Name, FunctionDecl* &Operator,
6337 bool Diagnose = true);
6338 FunctionDecl *FindUsualDeallocationFunction(SourceLocation StartLoc,
6339 bool CanProvideSize,
6340 bool Overaligned,
6341 DeclarationName Name);
6342 FunctionDecl *FindDeallocationFunctionForDestructor(SourceLocation StartLoc,
6343 CXXRecordDecl *RD);
6344
6345 /// ActOnCXXDelete - Parsed a C++ 'delete' expression
6346 ExprResult ActOnCXXDelete(SourceLocation StartLoc,
6347 bool UseGlobal, bool ArrayForm,
6348 Expr *Operand);
6349 void CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
6350 bool IsDelete, bool CallCanBeVirtual,
6351 bool WarnOnNonAbstractTypes,
6352 SourceLocation DtorLoc);
6353
6354 ExprResult ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation LParen,
6355 Expr *Operand, SourceLocation RParen);
6356 ExprResult BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
6357 SourceLocation RParen);
6358
6359 /// Parsed one of the type trait support pseudo-functions.
6360 ExprResult ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
6361 ArrayRef<ParsedType> Args,
6362 SourceLocation RParenLoc);
6363 ExprResult BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
6364 ArrayRef<TypeSourceInfo *> Args,
6365 SourceLocation RParenLoc);
6366
6367 /// ActOnArrayTypeTrait - Parsed one of the binary type trait support
6368 /// pseudo-functions.
6369 ExprResult ActOnArrayTypeTrait(ArrayTypeTrait ATT,
6370 SourceLocation KWLoc,
6371 ParsedType LhsTy,
6372 Expr *DimExpr,
6373 SourceLocation RParen);
6374
6375 ExprResult BuildArrayTypeTrait(ArrayTypeTrait ATT,
6376 SourceLocation KWLoc,
6377 TypeSourceInfo *TSInfo,
6378 Expr *DimExpr,
6379 SourceLocation RParen);
6380
6381 /// ActOnExpressionTrait - Parsed one of the unary type trait support
6382 /// pseudo-functions.
6383 ExprResult ActOnExpressionTrait(ExpressionTrait OET,
6384 SourceLocation KWLoc,
6385 Expr *Queried,
6386 SourceLocation RParen);
6387
6388 ExprResult BuildExpressionTrait(ExpressionTrait OET,
6389 SourceLocation KWLoc,
6390 Expr *Queried,
6391 SourceLocation RParen);
6392
6393 ExprResult ActOnStartCXXMemberReference(Scope *S,
6394 Expr *Base,
6395 SourceLocation OpLoc,
6396 tok::TokenKind OpKind,
6397 ParsedType &ObjectType,
6398 bool &MayBePseudoDestructor);
6399
6400 ExprResult BuildPseudoDestructorExpr(Expr *Base,
6401 SourceLocation OpLoc,
6402 tok::TokenKind OpKind,
6403 const CXXScopeSpec &SS,
6404 TypeSourceInfo *ScopeType,
6405 SourceLocation CCLoc,
6406 SourceLocation TildeLoc,
6407 PseudoDestructorTypeStorage DestroyedType);
6408
6409 ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
6410 SourceLocation OpLoc,
6411 tok::TokenKind OpKind,
6412 CXXScopeSpec &SS,
6413 UnqualifiedId &FirstTypeName,
6414 SourceLocation CCLoc,
6415 SourceLocation TildeLoc,
6416 UnqualifiedId &SecondTypeName);
6417
6418 ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
6419 SourceLocation OpLoc,
6420 tok::TokenKind OpKind,
6421 SourceLocation TildeLoc,
6422 const DeclSpec& DS);
6423
6424 /// MaybeCreateExprWithCleanups - If the current full-expression
6425 /// requires any cleanups, surround it with a ExprWithCleanups node.
6426 /// Otherwise, just returns the passed-in expression.
6427 Expr *MaybeCreateExprWithCleanups(Expr *SubExpr);
6428 Stmt *MaybeCreateStmtWithCleanups(Stmt *SubStmt);
6429 ExprResult MaybeCreateExprWithCleanups(ExprResult SubExpr);
6430
6431 MaterializeTemporaryExpr *
6432 CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
6433 bool BoundToLvalueReference);
6434
6435 ExprResult ActOnFinishFullExpr(Expr *Expr, bool DiscardedValue) {
6436 return ActOnFinishFullExpr(
6437 Expr, Expr ? Expr->getExprLoc() : SourceLocation(), DiscardedValue);
6438 }
6439 ExprResult ActOnFinishFullExpr(Expr *Expr, SourceLocation CC,
6440 bool DiscardedValue, bool IsConstexpr = false);
6441 StmtResult ActOnFinishFullStmt(Stmt *Stmt);
6442
6443 // Marks SS invalid if it represents an incomplete type.
6444 bool RequireCompleteDeclContext(CXXScopeSpec &SS, DeclContext *DC);
6445 // Complete an enum decl, maybe without a scope spec.
6446 bool RequireCompleteEnumDecl(EnumDecl *D, SourceLocation L,
6447 CXXScopeSpec *SS = nullptr);
6448
6449 DeclContext *computeDeclContext(QualType T);
6450 DeclContext *computeDeclContext(const CXXScopeSpec &SS,
6451 bool EnteringContext = false);
6452 bool isDependentScopeSpecifier(const CXXScopeSpec &SS);
6453 CXXRecordDecl *getCurrentInstantiationOf(NestedNameSpecifier *NNS);
6454
6455 /// The parser has parsed a global nested-name-specifier '::'.
6456 ///
6457 /// \param CCLoc The location of the '::'.
6458 ///
6459 /// \param SS The nested-name-specifier, which will be updated in-place
6460 /// to reflect the parsed nested-name-specifier.
6461 ///
6462 /// \returns true if an error occurred, false otherwise.
6463 bool ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc, CXXScopeSpec &SS);
6464
6465 /// The parser has parsed a '__super' nested-name-specifier.
6466 ///
6467 /// \param SuperLoc The location of the '__super' keyword.
6468 ///
6469 /// \param ColonColonLoc The location of the '::'.
6470 ///
6471 /// \param SS The nested-name-specifier, which will be updated in-place
6472 /// to reflect the parsed nested-name-specifier.
6473 ///
6474 /// \returns true if an error occurred, false otherwise.
6475 bool ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
6476 SourceLocation ColonColonLoc, CXXScopeSpec &SS);
6477
6478 bool isAcceptableNestedNameSpecifier(const NamedDecl *SD,
6479 bool *CanCorrect = nullptr);
6480 NamedDecl *FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS);
6481
6482 /// Keeps information about an identifier in a nested-name-spec.
6483 ///
6484 struct NestedNameSpecInfo {
6485 /// The type of the object, if we're parsing nested-name-specifier in
6486 /// a member access expression.
6487 ParsedType ObjectType;
6488
6489 /// The identifier preceding the '::'.
6490 IdentifierInfo *Identifier;
6491
6492 /// The location of the identifier.
6493 SourceLocation IdentifierLoc;
6494
6495 /// The location of the '::'.
6496 SourceLocation CCLoc;
6497
6498 /// Creates info object for the most typical case.
6499 NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc,
6500 SourceLocation ColonColonLoc, ParsedType ObjectType = ParsedType())
6501 : ObjectType(ObjectType), Identifier(II), IdentifierLoc(IdLoc),
6502 CCLoc(ColonColonLoc) {
6503 }
6504
6505 NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc,
6506 SourceLocation ColonColonLoc, QualType ObjectType)
6507 : ObjectType(ParsedType::make(ObjectType)), Identifier(II),
6508 IdentifierLoc(IdLoc), CCLoc(ColonColonLoc) {
6509 }
6510 };
6511
6512 bool isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
6513 NestedNameSpecInfo &IdInfo);
6514
6515 bool BuildCXXNestedNameSpecifier(Scope *S,
6516 NestedNameSpecInfo &IdInfo,
6517 bool EnteringContext,
6518 CXXScopeSpec &SS,
6519 NamedDecl *ScopeLookupResult,
6520 bool ErrorRecoveryLookup,
6521 bool *IsCorrectedToColon = nullptr,
6522 bool OnlyNamespace = false);
6523
6524 /// The parser has parsed a nested-name-specifier 'identifier::'.
6525 ///
6526 /// \param S The scope in which this nested-name-specifier occurs.
6527 ///
6528 /// \param IdInfo Parser information about an identifier in the
6529 /// nested-name-spec.
6530 ///
6531 /// \param EnteringContext Whether we're entering the context nominated by
6532 /// this nested-name-specifier.
6533 ///
6534 /// \param SS The nested-name-specifier, which is both an input
6535 /// parameter (the nested-name-specifier before this type) and an
6536 /// output parameter (containing the full nested-name-specifier,
6537 /// including this new type).
6538 ///
6539 /// \param ErrorRecoveryLookup If true, then this method is called to improve
6540 /// error recovery. In this case do not emit error message.
6541 ///
6542 /// \param IsCorrectedToColon If not null, suggestions to replace '::' -> ':'
6543 /// are allowed. The bool value pointed by this parameter is set to 'true'
6544 /// if the identifier is treated as if it was followed by ':', not '::'.
6545 ///
6546 /// \param OnlyNamespace If true, only considers namespaces in lookup.
6547 ///
6548 /// \returns true if an error occurred, false otherwise.
6549 bool ActOnCXXNestedNameSpecifier(Scope *S,
6550 NestedNameSpecInfo &IdInfo,
6551 bool EnteringContext,
6552 CXXScopeSpec &SS,
6553 bool ErrorRecoveryLookup = false,
6554 bool *IsCorrectedToColon = nullptr,
6555 bool OnlyNamespace = false);
6556
6557 ExprResult ActOnDecltypeExpression(Expr *E);
6558
6559 bool ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
6560 const DeclSpec &DS,
6561 SourceLocation ColonColonLoc);
6562
6563 bool IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
6564 NestedNameSpecInfo &IdInfo,
6565 bool EnteringContext);
6566
6567 /// The parser has parsed a nested-name-specifier
6568 /// 'template[opt] template-name < template-args >::'.
6569 ///
6570 /// \param S The scope in which this nested-name-specifier occurs.
6571 ///
6572 /// \param SS The nested-name-specifier, which is both an input
6573 /// parameter (the nested-name-specifier before this type) and an
6574 /// output parameter (containing the full nested-name-specifier,
6575 /// including this new type).
6576 ///
6577 /// \param TemplateKWLoc the location of the 'template' keyword, if any.
6578 /// \param TemplateName the template name.
6579 /// \param TemplateNameLoc The location of the template name.
6580 /// \param LAngleLoc The location of the opening angle bracket ('<').
6581 /// \param TemplateArgs The template arguments.
6582 /// \param RAngleLoc The location of the closing angle bracket ('>').
6583 /// \param CCLoc The location of the '::'.
6584 ///
6585 /// \param EnteringContext Whether we're entering the context of the
6586 /// nested-name-specifier.
6587 ///
6588 ///
6589 /// \returns true if an error occurred, false otherwise.
6590 bool ActOnCXXNestedNameSpecifier(Scope *S,
6591 CXXScopeSpec &SS,
6592 SourceLocation TemplateKWLoc,
6593 TemplateTy TemplateName,
6594 SourceLocation TemplateNameLoc,
6595 SourceLocation LAngleLoc,
6596 ASTTemplateArgsPtr TemplateArgs,
6597 SourceLocation RAngleLoc,
6598 SourceLocation CCLoc,
6599 bool EnteringContext);
6600
6601 /// Given a C++ nested-name-specifier, produce an annotation value
6602 /// that the parser can use later to reconstruct the given
6603 /// nested-name-specifier.
6604 ///
6605 /// \param SS A nested-name-specifier.
6606 ///
6607 /// \returns A pointer containing all of the information in the
6608 /// nested-name-specifier \p SS.
6609 void *SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS);
6610
6611 /// Given an annotation pointer for a nested-name-specifier, restore
6612 /// the nested-name-specifier structure.
6613 ///
6614 /// \param Annotation The annotation pointer, produced by
6615 /// \c SaveNestedNameSpecifierAnnotation().
6616 ///
6617 /// \param AnnotationRange The source range corresponding to the annotation.
6618 ///
6619 /// \param SS The nested-name-specifier that will be updated with the contents
6620 /// of the annotation pointer.
6621 void RestoreNestedNameSpecifierAnnotation(void *Annotation,
6622 SourceRange AnnotationRange,
6623 CXXScopeSpec &SS);
6624
6625 bool ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
6626
6627 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
6628 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
6629 /// After this method is called, according to [C++ 3.4.3p3], names should be
6630 /// looked up in the declarator-id's scope, until the declarator is parsed and
6631 /// ActOnCXXExitDeclaratorScope is called.
6632 /// The 'SS' should be a non-empty valid CXXScopeSpec.
6633 bool ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS);
6634
6635 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
6636 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
6637 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
6638 /// Used to indicate that names should revert to being looked up in the
6639 /// defining scope.
6640 void ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
6641
6642 /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
6643 /// initializer for the declaration 'Dcl'.
6644 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6645 /// static data member of class X, names should be looked up in the scope of
6646 /// class X.
6647 void ActOnCXXEnterDeclInitializer(Scope *S, Decl *Dcl);
6648
6649 /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6650 /// initializer for the declaration 'Dcl'.
6651 void ActOnCXXExitDeclInitializer(Scope *S, Decl *Dcl);
6652
6653 /// Create a new lambda closure type.
6654 CXXRecordDecl *createLambdaClosureType(SourceRange IntroducerRange,
6655 TypeSourceInfo *Info,
6656 bool KnownDependent,
6657 LambdaCaptureDefault CaptureDefault);
6658
6659 /// Start the definition of a lambda expression.
6660 CXXMethodDecl *startLambdaDefinition(CXXRecordDecl *Class,
6661 SourceRange IntroducerRange,
6662 TypeSourceInfo *MethodType,
6663 SourceLocation EndLoc,
6664 ArrayRef<ParmVarDecl *> Params,
6665 ConstexprSpecKind ConstexprKind,
6666 Expr *TrailingRequiresClause);
6667
6668 /// Number lambda for linkage purposes if necessary.
6669 void handleLambdaNumbering(
6670 CXXRecordDecl *Class, CXXMethodDecl *Method,
6671 Optional<std::tuple<bool, unsigned, unsigned, Decl *>> Mangling = None);
6672
6673 /// Endow the lambda scope info with the relevant properties.
6674 void buildLambdaScope(sema::LambdaScopeInfo *LSI,
6675 CXXMethodDecl *CallOperator,
6676 SourceRange IntroducerRange,
6677 LambdaCaptureDefault CaptureDefault,
6678 SourceLocation CaptureDefaultLoc,
6679 bool ExplicitParams,
6680 bool ExplicitResultType,
6681 bool Mutable);
6682
6683 /// Perform initialization analysis of the init-capture and perform
6684 /// any implicit conversions such as an lvalue-to-rvalue conversion if
6685 /// not being used to initialize a reference.
6686 ParsedType actOnLambdaInitCaptureInitialization(
6687 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
6688 IdentifierInfo *Id, LambdaCaptureInitKind InitKind, Expr *&Init) {
6689 return ParsedType::make(buildLambdaInitCaptureInitialization(
6690 Loc, ByRef, EllipsisLoc, None, Id,
6691 InitKind != LambdaCaptureInitKind::CopyInit, Init));
6692 }
6693 QualType buildLambdaInitCaptureInitialization(
6694 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
6695 Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool DirectInit,
6696 Expr *&Init);
6697
6698 /// Create a dummy variable within the declcontext of the lambda's
6699 /// call operator, for name lookup purposes for a lambda init capture.
6700 ///
6701 /// CodeGen handles emission of lambda captures, ignoring these dummy
6702 /// variables appropriately.
6703 VarDecl *createLambdaInitCaptureVarDecl(SourceLocation Loc,
6704 QualType InitCaptureType,
6705 SourceLocation EllipsisLoc,
6706 IdentifierInfo *Id,
6707 unsigned InitStyle, Expr *Init);
6708
6709 /// Add an init-capture to a lambda scope.
6710 void addInitCapture(sema::LambdaScopeInfo *LSI, VarDecl *Var);
6711
6712 /// Note that we have finished the explicit captures for the
6713 /// given lambda.
6714 void finishLambdaExplicitCaptures(sema::LambdaScopeInfo *LSI);
6715
6716 /// \brief This is called after parsing the explicit template parameter list
6717 /// on a lambda (if it exists) in C++2a.
6718 void ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc,
6719 ArrayRef<NamedDecl *> TParams,
6720 SourceLocation RAngleLoc,
6721 ExprResult RequiresClause);
6722
6723 /// Introduce the lambda parameters into scope.
6724 void addLambdaParameters(
6725 ArrayRef<LambdaIntroducer::LambdaCapture> Captures,
6726 CXXMethodDecl *CallOperator, Scope *CurScope);
6727
6728 /// Deduce a block or lambda's return type based on the return
6729 /// statements present in the body.
6730 void deduceClosureReturnType(sema::CapturingScopeInfo &CSI);
6731
6732 /// ActOnStartOfLambdaDefinition - This is called just before we start
6733 /// parsing the body of a lambda; it analyzes the explicit captures and
6734 /// arguments, and sets up various data-structures for the body of the
6735 /// lambda.
6736 void ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
6737 Declarator &ParamInfo, Scope *CurScope);
6738
6739 /// ActOnLambdaError - If there is an error parsing a lambda, this callback
6740 /// is invoked to pop the information about the lambda.
6741 void ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
6742 bool IsInstantiation = false);
6743
6744 /// ActOnLambdaExpr - This is called when the body of a lambda expression
6745 /// was successfully completed.
6746 ExprResult ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
6747 Scope *CurScope);
6748
6749 /// Does copying/destroying the captured variable have side effects?
6750 bool CaptureHasSideEffects(const sema::Capture &From);
6751
6752 /// Diagnose if an explicit lambda capture is unused. Returns true if a
6753 /// diagnostic is emitted.
6754 bool DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,
6755 const sema::Capture &From);
6756
6757 /// Build a FieldDecl suitable to hold the given capture.
6758 FieldDecl *BuildCaptureField(RecordDecl *RD, const sema::Capture &Capture);
6759
6760 /// Initialize the given capture with a suitable expression.
6761 ExprResult BuildCaptureInit(const sema::Capture &Capture,
6762 SourceLocation ImplicitCaptureLoc,
6763 bool IsOpenMPMapping = false);
6764
6765 /// Complete a lambda-expression having processed and attached the
6766 /// lambda body.
6767 ExprResult BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
6768 sema::LambdaScopeInfo *LSI);
6769
6770 /// Get the return type to use for a lambda's conversion function(s) to
6771 /// function pointer type, given the type of the call operator.
6772 QualType
6773 getLambdaConversionFunctionResultType(const FunctionProtoType *CallOpType,
6774 CallingConv CC);
6775
6776 /// Define the "body" of the conversion from a lambda object to a
6777 /// function pointer.
6778 ///
6779 /// This routine doesn't actually define a sensible body; rather, it fills
6780 /// in the initialization expression needed to copy the lambda object into
6781 /// the block, and IR generation actually generates the real body of the
6782 /// block pointer conversion.
6783 void DefineImplicitLambdaToFunctionPointerConversion(
6784 SourceLocation CurrentLoc, CXXConversionDecl *Conv);
6785
6786 /// Define the "body" of the conversion from a lambda object to a
6787 /// block pointer.
6788 ///
6789 /// This routine doesn't actually define a sensible body; rather, it fills
6790 /// in the initialization expression needed to copy the lambda object into
6791 /// the block, and IR generation actually generates the real body of the
6792 /// block pointer conversion.
6793 void DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLoc,
6794 CXXConversionDecl *Conv);
6795
6796 ExprResult BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
6797 SourceLocation ConvLocation,
6798 CXXConversionDecl *Conv,
6799 Expr *Src);
6800
6801 /// Check whether the given expression is a valid constraint expression.
6802 /// A diagnostic is emitted if it is not, false is returned, and
6803 /// PossibleNonPrimary will be set to true if the failure might be due to a
6804 /// non-primary expression being used as an atomic constraint.
6805 bool CheckConstraintExpression(const Expr *CE, Token NextToken = Token(),
6806 bool *PossibleNonPrimary = nullptr,
6807 bool IsTrailingRequiresClause = false);
6808
6809private:
6810 /// Caches pairs of template-like decls whose associated constraints were
6811 /// checked for subsumption and whether or not the first's constraints did in
6812 /// fact subsume the second's.
6813 llvm::DenseMap<std::pair<NamedDecl *, NamedDecl *>, bool> SubsumptionCache;
6814 /// Caches the normalized associated constraints of declarations (concepts or
6815 /// constrained declarations). If an error occurred while normalizing the
6816 /// associated constraints of the template or concept, nullptr will be cached
6817 /// here.
6818 llvm::DenseMap<NamedDecl *, NormalizedConstraint *>
6819 NormalizationCache;
6820
6821 llvm::ContextualFoldingSet<ConstraintSatisfaction, const ASTContext &>
6822 SatisfactionCache;
6823
6824public:
6825 const NormalizedConstraint *
6826 getNormalizedAssociatedConstraints(
6827 NamedDecl *ConstrainedDecl, ArrayRef<const Expr *> AssociatedConstraints);
6828
6829 /// \brief Check whether the given declaration's associated constraints are
6830 /// at least as constrained than another declaration's according to the
6831 /// partial ordering of constraints.
6832 ///
6833 /// \param Result If no error occurred, receives the result of true if D1 is
6834 /// at least constrained than D2, and false otherwise.
6835 ///
6836 /// \returns true if an error occurred, false otherwise.
6837 bool IsAtLeastAsConstrained(NamedDecl *D1, ArrayRef<const Expr *> AC1,
6838 NamedDecl *D2, ArrayRef<const Expr *> AC2,
6839 bool &Result);
6840
6841 /// If D1 was not at least as constrained as D2, but would've been if a pair
6842 /// of atomic constraints involved had been declared in a concept and not
6843 /// repeated in two separate places in code.
6844 /// \returns true if such a diagnostic was emitted, false otherwise.
6845 bool MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1,
6846 ArrayRef<const Expr *> AC1, NamedDecl *D2, ArrayRef<const Expr *> AC2);
6847
6848 /// \brief Check whether the given list of constraint expressions are
6849 /// satisfied (as if in a 'conjunction') given template arguments.
6850 /// \param Template the template-like entity that triggered the constraints
6851 /// check (either a concept or a constrained entity).
6852 /// \param ConstraintExprs a list of constraint expressions, treated as if
6853 /// they were 'AND'ed together.
6854 /// \param TemplateArgs the list of template arguments to substitute into the
6855 /// constraint expression.
6856 /// \param TemplateIDRange The source range of the template id that
6857 /// caused the constraints check.
6858 /// \param Satisfaction if true is returned, will contain details of the
6859 /// satisfaction, with enough information to diagnose an unsatisfied
6860 /// expression.
6861 /// \returns true if an error occurred and satisfaction could not be checked,
6862 /// false otherwise.
6863 bool CheckConstraintSatisfaction(
6864 const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
6865 ArrayRef<TemplateArgument> TemplateArgs,
6866 SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction);
6867
6868 /// \brief Check whether the given non-dependent constraint expression is
6869 /// satisfied. Returns false and updates Satisfaction with the satisfaction
6870 /// verdict if successful, emits a diagnostic and returns true if an error
6871 /// occured and satisfaction could not be determined.
6872 ///
6873 /// \returns true if an error occurred, false otherwise.
6874 bool CheckConstraintSatisfaction(const Expr *ConstraintExpr,
6875 ConstraintSatisfaction &Satisfaction);
6876
6877 /// Check whether the given function decl's trailing requires clause is
6878 /// satisfied, if any. Returns false and updates Satisfaction with the
6879 /// satisfaction verdict if successful, emits a diagnostic and returns true if
6880 /// an error occured and satisfaction could not be determined.
6881 ///
6882 /// \returns true if an error occurred, false otherwise.
6883 bool CheckFunctionConstraints(const FunctionDecl *FD,
6884 ConstraintSatisfaction &Satisfaction,
6885 SourceLocation UsageLoc = SourceLocation());
6886
6887
6888 /// \brief Ensure that the given template arguments satisfy the constraints
6889 /// associated with the given template, emitting a diagnostic if they do not.
6890 ///
6891 /// \param Template The template to which the template arguments are being
6892 /// provided.
6893 ///
6894 /// \param TemplateArgs The converted, canonicalized template arguments.
6895 ///
6896 /// \param TemplateIDRange The source range of the template id that
6897 /// caused the constraints check.
6898 ///
6899 /// \returns true if the constrains are not satisfied or could not be checked
6900 /// for satisfaction, false if the constraints are satisfied.
6901 bool EnsureTemplateArgumentListConstraints(TemplateDecl *Template,
6902 ArrayRef<TemplateArgument> TemplateArgs,
6903 SourceRange TemplateIDRange);
6904
6905 /// \brief Emit diagnostics explaining why a constraint expression was deemed
6906 /// unsatisfied.
6907 /// \param First whether this is the first time an unsatisfied constraint is
6908 /// diagnosed for this error.
6909 void
6910 DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction &Satisfaction,
6911 bool First = true);
6912
6913 /// \brief Emit diagnostics explaining why a constraint expression was deemed
6914 /// unsatisfied.
6915 void
6916 DiagnoseUnsatisfiedConstraint(const ASTConstraintSatisfaction &Satisfaction,
6917 bool First = true);
6918
6919 // ParseObjCStringLiteral - Parse Objective-C string literals.
6920 ExprResult ParseObjCStringLiteral(SourceLocation *AtLocs,
6921 ArrayRef<Expr *> Strings);
6922
6923 ExprResult BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S);
6924
6925 /// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the
6926 /// numeric literal expression. Type of the expression will be "NSNumber *"
6927 /// or "id" if NSNumber is unavailable.
6928 ExprResult BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number);
6929 ExprResult ActOnObjCBoolLiteral(SourceLocation AtLoc, SourceLocation ValueLoc,
6930 bool Value);
6931 ExprResult BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements);
6932
6933 /// BuildObjCBoxedExpr - builds an ObjCBoxedExpr AST node for the
6934 /// '@' prefixed parenthesized expression. The type of the expression will
6935 /// either be "NSNumber *", "NSString *" or "NSValue *" depending on the type
6936 /// of ValueType, which is allowed to be a built-in numeric type, "char *",
6937 /// "const char *" or C structure with attribute 'objc_boxable'.
6938 ExprResult BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr);
6939
6940 ExprResult BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr,
6941 Expr *IndexExpr,
6942 ObjCMethodDecl *getterMethod,
6943 ObjCMethodDecl *setterMethod);
6944
6945 ExprResult BuildObjCDictionaryLiteral(SourceRange SR,
6946 MutableArrayRef<ObjCDictionaryElement> Elements);
6947
6948 ExprResult BuildObjCEncodeExpression(SourceLocation AtLoc,
6949 TypeSourceInfo *EncodedTypeInfo,
6950 SourceLocation RParenLoc);
6951 ExprResult BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl,
6952 CXXConversionDecl *Method,
6953 bool HadMultipleCandidates);
6954
6955 ExprResult ParseObjCEncodeExpression(SourceLocation AtLoc,
6956 SourceLocation EncodeLoc,
6957 SourceLocation LParenLoc,
6958 ParsedType Ty,
6959 SourceLocation RParenLoc);
6960
6961 /// ParseObjCSelectorExpression - Build selector expression for \@selector
6962 ExprResult ParseObjCSelectorExpression(Selector Sel,
6963 SourceLocation AtLoc,
6964 SourceLocation SelLoc,
6965 SourceLocation LParenLoc,
6966 SourceLocation RParenLoc,
6967 bool WarnMultipleSelectors);
6968
6969 /// ParseObjCProtocolExpression - Build protocol expression for \@protocol
6970 ExprResult ParseObjCProtocolExpression(IdentifierInfo * ProtocolName,
6971 SourceLocation AtLoc,
6972 SourceLocation ProtoLoc,
6973 SourceLocation LParenLoc,
6974 SourceLocation ProtoIdLoc,
6975 SourceLocation RParenLoc);
6976
6977 //===--------------------------------------------------------------------===//
6978 // C++ Declarations
6979 //
6980 Decl *ActOnStartLinkageSpecification(Scope *S,
6981 SourceLocation ExternLoc,
6982 Expr *LangStr,
6983 SourceLocation LBraceLoc);
6984 Decl *ActOnFinishLinkageSpecification(Scope *S,
6985 Decl *LinkageSpec,
6986 SourceLocation RBraceLoc);
6987
6988
6989 //===--------------------------------------------------------------------===//
6990 // C++ Classes
6991 //
6992 CXXRecordDecl *getCurrentClass(Scope *S, const CXXScopeSpec *SS);
6993 bool isCurrentClassName(const IdentifierInfo &II, Scope *S,
6994 const CXXScopeSpec *SS = nullptr);
6995 bool isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS);
6996
6997 bool ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc,
6998 SourceLocation ColonLoc,
6999 const ParsedAttributesView &Attrs);
7000
7001 NamedDecl *ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS,
7002 Declarator &D,
7003 MultiTemplateParamsArg TemplateParameterLists,
7004 Expr *BitfieldWidth, const VirtSpecifiers &VS,
7005 InClassInitStyle InitStyle);
7006
7007 void ActOnStartCXXInClassMemberInitializer();
7008 void ActOnFinishCXXInClassMemberInitializer(Decl *VarDecl,
7009 SourceLocation EqualLoc,
7010 Expr *Init);
7011
7012 MemInitResult ActOnMemInitializer(Decl *ConstructorD,
7013 Scope *S,
7014 CXXScopeSpec &SS,
7015 IdentifierInfo *MemberOrBase,
7016 ParsedType TemplateTypeTy,
7017 const DeclSpec &DS,
7018 SourceLocation IdLoc,
7019 SourceLocation LParenLoc,
7020 ArrayRef<Expr *> Args,
7021 SourceLocation RParenLoc,
7022 SourceLocation EllipsisLoc);
7023
7024 MemInitResult ActOnMemInitializer(Decl *ConstructorD,
7025 Scope *S,
7026 CXXScopeSpec &SS,
7027 IdentifierInfo *MemberOrBase,
7028 ParsedType TemplateTypeTy,
7029 const DeclSpec &DS,
7030 SourceLocation IdLoc,
7031 Expr *InitList,
7032 SourceLocation EllipsisLoc);
7033
7034 MemInitResult BuildMemInitializer(Decl *ConstructorD,
7035 Scope *S,
7036 CXXScopeSpec &SS,
7037 IdentifierInfo *MemberOrBase,
7038 ParsedType TemplateTypeTy,
7039 const DeclSpec &DS,
7040 SourceLocation IdLoc,
7041 Expr *Init,
7042 SourceLocation EllipsisLoc);
7043
7044 MemInitResult BuildMemberInitializer(ValueDecl *Member,
7045 Expr *Init,
7046 SourceLocation IdLoc);
7047
7048 MemInitResult BuildBaseInitializer(QualType BaseType,
7049 TypeSourceInfo *BaseTInfo,
7050 Expr *Init,
7051 CXXRecordDecl *ClassDecl,
7052 SourceLocation EllipsisLoc);
7053
7054 MemInitResult BuildDelegatingInitializer(TypeSourceInfo *TInfo,
7055 Expr *Init,
7056 CXXRecordDecl *ClassDecl);
7057
7058 bool SetDelegatingInitializer(CXXConstructorDecl *Constructor,
7059 CXXCtorInitializer *Initializer);
7060
7061 bool SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
7062 ArrayRef<CXXCtorInitializer *> Initializers = None);
7063
7064 void SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation);
7065
7066
7067 /// MarkBaseAndMemberDestructorsReferenced - Given a record decl,
7068 /// mark all the non-trivial destructors of its members and bases as
7069 /// referenced.
7070 void MarkBaseAndMemberDestructorsReferenced(SourceLocation Loc,
7071 CXXRecordDecl *Record);
7072
7073 /// Mark destructors of virtual bases of this class referenced. In the Itanium
7074 /// C++ ABI, this is done when emitting a destructor for any non-abstract
7075 /// class. In the Microsoft C++ ABI, this is done any time a class's
7076 /// destructor is referenced.
7077 void MarkVirtualBaseDestructorsReferenced(
7078 SourceLocation Location, CXXRecordDecl *ClassDecl,
7079 llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases = nullptr);
7080
7081 /// Do semantic checks to allow the complete destructor variant to be emitted
7082 /// when the destructor is defined in another translation unit. In the Itanium
7083 /// C++ ABI, destructor variants are emitted together. In the MS C++ ABI, they
7084 /// can be emitted in separate TUs. To emit the complete variant, run a subset
7085 /// of the checks performed when emitting a regular destructor.
7086 void CheckCompleteDestructorVariant(SourceLocation CurrentLocation,
7087 CXXDestructorDecl *Dtor);
7088
7089 /// The list of classes whose vtables have been used within
7090 /// this translation unit, and the source locations at which the
7091 /// first use occurred.
7092 typedef std::pair<CXXRecordDecl*, SourceLocation> VTableUse;
7093
7094 /// The list of vtables that are required but have not yet been
7095 /// materialized.
7096 SmallVector<VTableUse, 16> VTableUses;
7097
7098 /// The set of classes whose vtables have been used within
7099 /// this translation unit, and a bit that will be true if the vtable is
7100 /// required to be emitted (otherwise, it should be emitted only if needed
7101 /// by code generation).
7102 llvm::DenseMap<CXXRecordDecl *, bool> VTablesUsed;
7103
7104 /// Load any externally-stored vtable uses.
7105 void LoadExternalVTableUses();
7106
7107 /// Note that the vtable for the given class was used at the
7108 /// given location.
7109 void MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
7110 bool DefinitionRequired = false);
7111
7112 /// Mark the exception specifications of all virtual member functions
7113 /// in the given class as needed.
7114 void MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
7115 const CXXRecordDecl *RD);
7116
7117 /// MarkVirtualMembersReferenced - Will mark all members of the given
7118 /// CXXRecordDecl referenced.
7119 void MarkVirtualMembersReferenced(SourceLocation Loc, const CXXRecordDecl *RD,
7120 bool ConstexprOnly = false);
7121
7122 /// Define all of the vtables that have been used in this
7123 /// translation unit and reference any virtual members used by those
7124 /// vtables.
7125 ///
7126 /// \returns true if any work was done, false otherwise.
7127 bool DefineUsedVTables();
7128
7129 void AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl);
7130
7131 void ActOnMemInitializers(Decl *ConstructorDecl,
7132 SourceLocation ColonLoc,
7133 ArrayRef<CXXCtorInitializer*> MemInits,
7134 bool AnyErrors);
7135
7136 /// Check class-level dllimport/dllexport attribute. The caller must
7137 /// ensure that referenceDLLExportedClassMethods is called some point later
7138 /// when all outer classes of Class are complete.
7139 void checkClassLevelDLLAttribute(CXXRecordDecl *Class);
7140 void checkClassLevelCodeSegAttribute(CXXRecordDecl *Class);
7141
7142 void referenceDLLExportedClassMethods();
7143
7144 void propagateDLLAttrToBaseClassTemplate(
7145 CXXRecordDecl *Class, Attr *ClassAttr,
7146 ClassTemplateSpecializationDecl *BaseTemplateSpec,
7147 SourceLocation BaseLoc);
7148
7149 /// Add gsl::Pointer attribute to std::container::iterator
7150 /// \param ND The declaration that introduces the name
7151 /// std::container::iterator. \param UnderlyingRecord The record named by ND.
7152 void inferGslPointerAttribute(NamedDecl *ND, CXXRecordDecl *UnderlyingRecord);
7153
7154 /// Add [[gsl::Owner]] and [[gsl::Pointer]] attributes for std:: types.
7155 void inferGslOwnerPointerAttribute(CXXRecordDecl *Record);
7156
7157 /// Add [[gsl::Pointer]] attributes for std:: types.
7158 void inferGslPointerAttribute(TypedefNameDecl *TD);
7159
7160 void CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record);
7161
7162 /// Check that the C++ class annoated with "trivial_abi" satisfies all the
7163 /// conditions that are needed for the attribute to have an effect.
7164 void checkIllFormedTrivialABIStruct(CXXRecordDecl &RD);
7165
7166 void ActOnFinishCXXMemberSpecification(Scope *S, SourceLocation RLoc,
7167 Decl *TagDecl, SourceLocation LBrac,
7168 SourceLocation RBrac,
7169 const ParsedAttributesView &AttrList);
7170 void ActOnFinishCXXMemberDecls();
7171 void ActOnFinishCXXNonNestedClass();
7172
7173 void ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param);
7174 unsigned ActOnReenterTemplateScope(Decl *Template,
7175 llvm::function_ref<Scope *()> EnterScope);
7176 void ActOnStartDelayedMemberDeclarations(Scope *S, Decl *Record);
7177 void ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *Method);
7178 void ActOnDelayedCXXMethodParameter(Scope *S, Decl *Param);
7179 void ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *Record);
7180 void ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *Method);
7181 void ActOnFinishDelayedMemberInitializers(Decl *Record);
7182 void MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
7183 CachedTokens &Toks);
7184 void UnmarkAsLateParsedTemplate(FunctionDecl *FD);
7185 bool IsInsideALocalClassWithinATemplateFunction();
7186
7187 Decl *ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
7188 Expr *AssertExpr,
7189 Expr *AssertMessageExpr,
7190 SourceLocation RParenLoc);
7191 Decl *BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
7192 Expr *AssertExpr,
7193 StringLiteral *AssertMessageExpr,
7194 SourceLocation RParenLoc,
7195 bool Failed);
7196
7197 FriendDecl *CheckFriendTypeDecl(SourceLocation LocStart,
7198 SourceLocation FriendLoc,
7199 TypeSourceInfo *TSInfo);
7200 Decl *ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
7201 MultiTemplateParamsArg TemplateParams);
7202 NamedDecl *ActOnFriendFunctionDecl(Scope *S, Declarator &D,
7203 MultiTemplateParamsArg TemplateParams);
7204
7205 QualType CheckConstructorDeclarator(Declarator &D, QualType R,
7206 StorageClass& SC);
7207 void CheckConstructor(CXXConstructorDecl *Constructor);
7208 QualType CheckDestructorDeclarator(Declarator &D, QualType R,
7209 StorageClass& SC);
7210 bool CheckDestructor(CXXDestructorDecl *Destructor);
7211 void CheckConversionDeclarator(Declarator &D, QualType &R,
7212 StorageClass& SC);
7213 Decl *ActOnConversionDeclarator(CXXConversionDecl *Conversion);
7214 void CheckDeductionGuideDeclarator(Declarator &D, QualType &R,
7215 StorageClass &SC);
7216 void CheckDeductionGuideTemplate(FunctionTemplateDecl *TD);
7217
7218 void CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *MD);
7219
7220 bool CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD,
7221 CXXSpecialMember CSM);
7222 void CheckDelayedMemberExceptionSpecs();
7223
7224 bool CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *MD,
7225 DefaultedComparisonKind DCK);
7226 void DeclareImplicitEqualityComparison(CXXRecordDecl *RD,
7227 FunctionDecl *Spaceship);
7228 void DefineDefaultedComparison(SourceLocation Loc, FunctionDecl *FD,
7229 DefaultedComparisonKind DCK);
7230
7231 //===--------------------------------------------------------------------===//
7232 // C++ Derived Classes
7233 //
7234
7235 /// ActOnBaseSpecifier - Parsed a base specifier
7236 CXXBaseSpecifier *CheckBaseSpecifier(CXXRecordDecl *Class,
7237 SourceRange SpecifierRange,
7238 bool Virtual, AccessSpecifier Access,
7239 TypeSourceInfo *TInfo,
7240 SourceLocation EllipsisLoc);
7241
7242 BaseResult ActOnBaseSpecifier(Decl *classdecl,
7243 SourceRange SpecifierRange,
7244 ParsedAttributes &Attrs,
7245 bool Virtual, AccessSpecifier Access,
7246 ParsedType basetype,
7247 SourceLocation BaseLoc,
7248 SourceLocation EllipsisLoc);
7249
7250 bool AttachBaseSpecifiers(CXXRecordDecl *Class,
7251 MutableArrayRef<CXXBaseSpecifier *> Bases);
7252 void ActOnBaseSpecifiers(Decl *ClassDecl,
7253 MutableArrayRef<CXXBaseSpecifier *> Bases);
7254
7255 bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base);
7256 bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
7257 CXXBasePaths &Paths);
7258
7259 // FIXME: I don't like this name.
7260 void BuildBasePathArray(const CXXBasePaths &Paths, CXXCastPath &BasePath);
7261
7262 bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
7263 SourceLocation Loc, SourceRange Range,
7264 CXXCastPath *BasePath = nullptr,
7265 bool IgnoreAccess = false);
7266 bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
7267 unsigned InaccessibleBaseID,
7268 unsigned AmbiguousBaseConvID,
7269 SourceLocation Loc, SourceRange Range,
7270 DeclarationName Name,
7271 CXXCastPath *BasePath,
7272 bool IgnoreAccess = false);
7273
7274 std::string getAmbiguousPathsDisplayString(CXXBasePaths &Paths);
7275
7276 bool CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
7277 const CXXMethodDecl *Old);
7278
7279 /// CheckOverridingFunctionReturnType - Checks whether the return types are
7280 /// covariant, according to C++ [class.virtual]p5.
7281 bool CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
7282 const CXXMethodDecl *Old);
7283
7284 /// CheckOverridingFunctionExceptionSpec - Checks whether the exception
7285 /// spec is a subset of base spec.
7286 bool CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
7287 const CXXMethodDecl *Old);
7288
7289 bool CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange);
7290
7291 /// CheckOverrideControl - Check C++11 override control semantics.
7292 void CheckOverrideControl(NamedDecl *D);
7293
7294 /// DiagnoseAbsenceOfOverrideControl - Diagnose if 'override' keyword was
7295 /// not used in the declaration of an overriding method.
7296 void DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent);
7297
7298 /// CheckForFunctionMarkedFinal - Checks whether a virtual member function
7299 /// overrides a virtual member function marked 'final', according to
7300 /// C++11 [class.virtual]p4.
7301 bool CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
7302 const CXXMethodDecl *Old);
7303
7304
7305 //===--------------------------------------------------------------------===//
7306 // C++ Access Control
7307 //
7308
7309 enum AccessResult {
7310 AR_accessible,
7311 AR_inaccessible,
7312 AR_dependent,
7313 AR_delayed
7314 };
7315
7316 bool SetMemberAccessSpecifier(NamedDecl *MemberDecl,
7317 NamedDecl *PrevMemberDecl,
7318 AccessSpecifier LexicalAS);
7319
7320 AccessResult CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
7321 DeclAccessPair FoundDecl);
7322 AccessResult CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
7323 DeclAccessPair FoundDecl);
7324 AccessResult CheckAllocationAccess(SourceLocation OperatorLoc,
7325 SourceRange PlacementRange,
7326 CXXRecordDecl *NamingClass,
7327 DeclAccessPair FoundDecl,
7328 bool Diagnose = true);
7329 AccessResult CheckConstructorAccess(SourceLocation Loc,
7330 CXXConstructorDecl *D,
7331 DeclAccessPair FoundDecl,
7332 const InitializedEntity &Entity,
7333 bool IsCopyBindingRefToTemp = false);
7334 AccessResult CheckConstructorAccess(SourceLocation Loc,
7335 CXXConstructorDecl *D,
7336 DeclAccessPair FoundDecl,
7337 const InitializedEntity &Entity,
7338 const PartialDiagnostic &PDiag);
7339 AccessResult CheckDestructorAccess(SourceLocation Loc,
7340 CXXDestructorDecl *Dtor,
7341 const PartialDiagnostic &PDiag,
7342 QualType objectType = QualType());
7343 AccessResult CheckFriendAccess(NamedDecl *D);
7344 AccessResult CheckMemberAccess(SourceLocation UseLoc,
7345 CXXRecordDecl *NamingClass,
7346 DeclAccessPair Found);
7347 AccessResult
7348 CheckStructuredBindingMemberAccess(SourceLocation UseLoc,
7349 CXXRecordDecl *DecomposedClass,
7350 DeclAccessPair Field);
7351 AccessResult CheckMemberOperatorAccess(SourceLocation Loc,
7352 Expr *ObjectExpr,
7353 Expr *ArgExpr,
7354 DeclAccessPair FoundDecl);
7355 AccessResult CheckAddressOfMemberAccess(Expr *OvlExpr,
7356 DeclAccessPair FoundDecl);
7357 AccessResult CheckBaseClassAccess(SourceLocation AccessLoc,
7358 QualType Base, QualType Derived,
7359 const CXXBasePath &Path,
7360 unsigned DiagID,
7361 bool ForceCheck = false,
7362 bool ForceUnprivileged = false);
7363 void CheckLookupAccess(const LookupResult &R);
7364 bool IsSimplyAccessible(NamedDecl *Decl, CXXRecordDecl *NamingClass,
7365 QualType BaseType);
7366 bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass,
7367 DeclAccessPair Found, QualType ObjectType,
7368 SourceLocation Loc,
7369 const PartialDiagnostic &Diag);
7370 bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass,
7371 DeclAccessPair Found,
7372 QualType ObjectType) {
7373 return isMemberAccessibleForDeletion(NamingClass, Found, ObjectType,
7374 SourceLocation(), PDiag());
7375 }
7376
7377 void HandleDependentAccessCheck(const DependentDiagnostic &DD,
7378 const MultiLevelTemplateArgumentList &TemplateArgs);
7379 void PerformDependentDiagnostics(const DeclContext *Pattern,
7380 const MultiLevelTemplateArgumentList &TemplateArgs);
7381
7382 void HandleDelayedAccessCheck(sema::DelayedDiagnostic &DD, Decl *Ctx);
7383
7384 /// When true, access checking violations are treated as SFINAE
7385 /// failures rather than hard errors.
7386 bool AccessCheckingSFINAE;
7387
7388 enum AbstractDiagSelID {
7389 AbstractNone = -1,
7390 AbstractReturnType,
7391 AbstractParamType,
7392 AbstractVariableType,
7393 AbstractFieldType,
7394 AbstractIvarType,
7395 AbstractSynthesizedIvarType,
7396 AbstractArrayType
7397 };
7398
7399 bool isAbstractType(SourceLocation Loc, QualType T);
7400 bool RequireNonAbstractType(SourceLocation Loc, QualType T,
7401 TypeDiagnoser &Diagnoser);
7402 template <typename... Ts>
7403 bool RequireNonAbstractType(SourceLocation Loc, QualType T, unsigned DiagID,
7404 const Ts &...Args) {
7405 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
7406 return RequireNonAbstractType(Loc, T, Diagnoser);
7407 }
7408
7409 void DiagnoseAbstractType(const CXXRecordDecl *RD);
7410
7411 //===--------------------------------------------------------------------===//
7412 // C++ Overloaded Operators [C++ 13.5]
7413 //
7414
7415 bool CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl);
7416
7417 bool CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl);
7418
7419 //===--------------------------------------------------------------------===//
7420 // C++ Templates [C++ 14]
7421 //
7422 void FilterAcceptableTemplateNames(LookupResult &R,
7423 bool AllowFunctionTemplates = true,
7424 bool AllowDependent = true);
7425 bool hasAnyAcceptableTemplateNames(LookupResult &R,
7426 bool AllowFunctionTemplates = true,
7427 bool AllowDependent = true,
7428 bool AllowNonTemplateFunctions = false);
7429 /// Try to interpret the lookup result D as a template-name.
7430 ///
7431 /// \param D A declaration found by name lookup.
7432 /// \param AllowFunctionTemplates Whether function templates should be
7433 /// considered valid results.
7434 /// \param AllowDependent Whether unresolved using declarations (that might
7435 /// name templates) should be considered valid results.
7436 static NamedDecl *getAsTemplateNameDecl(NamedDecl *D,
7437 bool AllowFunctionTemplates = true,
7438 bool AllowDependent = true);
7439
7440 enum TemplateNameIsRequiredTag { TemplateNameIsRequired };
7441 /// Whether and why a template name is required in this lookup.
7442 class RequiredTemplateKind {
7443 public:
7444 /// Template name is required if TemplateKWLoc is valid.
7445 RequiredTemplateKind(SourceLocation TemplateKWLoc = SourceLocation())
7446 : TemplateKW(TemplateKWLoc) {}
7447 /// Template name is unconditionally required.
7448 RequiredTemplateKind(TemplateNameIsRequiredTag) : TemplateKW() {}
7449
7450 SourceLocation getTemplateKeywordLoc() const {
7451 return TemplateKW.getValueOr(SourceLocation());
7452 }
7453 bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
7454 bool isRequired() const { return TemplateKW != SourceLocation(); }
7455 explicit operator bool() const { return isRequired(); }
7456
7457 private:
7458 llvm::Optional<SourceLocation> TemplateKW;
7459 };
7460
7461 enum class AssumedTemplateKind {
7462 /// This is not assumed to be a template name.
7463 None,
7464 /// This is assumed to be a template name because lookup found nothing.
7465 FoundNothing,
7466 /// This is assumed to be a template name because lookup found one or more
7467 /// functions (but no function templates).
7468 FoundFunctions,
7469 };
7470 bool LookupTemplateName(
7471 LookupResult &R, Scope *S, CXXScopeSpec &SS, QualType ObjectType,
7472 bool EnteringContext, bool &MemberOfUnknownSpecialization,
7473 RequiredTemplateKind RequiredTemplate = SourceLocation(),
7474 AssumedTemplateKind *ATK = nullptr, bool AllowTypoCorrection = true);
7475
7476 TemplateNameKind isTemplateName(Scope *S,
7477 CXXScopeSpec &SS,
7478 bool hasTemplateKeyword,
7479 const UnqualifiedId &Name,
7480 ParsedType ObjectType,
7481 bool EnteringContext,
7482 TemplateTy &Template,
7483 bool &MemberOfUnknownSpecialization,
7484 bool Disambiguation = false);
7485
7486 /// Try to resolve an undeclared template name as a type template.
7487 ///
7488 /// Sets II to the identifier corresponding to the template name, and updates
7489 /// Name to a corresponding (typo-corrected) type template name and TNK to
7490 /// the corresponding kind, if possible.
7491 void ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &Name,
7492 TemplateNameKind &TNK,
7493 SourceLocation NameLoc,
7494 IdentifierInfo *&II);
7495
7496 bool resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
7497 SourceLocation NameLoc,
7498 bool Diagnose = true);
7499
7500 /// Determine whether a particular identifier might be the name in a C++1z
7501 /// deduction-guide declaration.
7502 bool isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
7503 SourceLocation NameLoc,
7504 ParsedTemplateTy *Template = nullptr);
7505
7506 bool DiagnoseUnknownTemplateName(const IdentifierInfo &II,
7507 SourceLocation IILoc,
7508 Scope *S,
7509 const CXXScopeSpec *SS,
7510 TemplateTy &SuggestedTemplate,
7511 TemplateNameKind &SuggestedKind);
7512
7513 bool DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
7514 NamedDecl *Instantiation,
7515 bool InstantiatedFromMember,
7516 const NamedDecl *Pattern,
7517 const NamedDecl *PatternDef,
7518 TemplateSpecializationKind TSK,
7519 bool Complain = true);
7520
7521 void DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl);
7522 TemplateDecl *AdjustDeclIfTemplate(Decl *&Decl);
7523
7524 NamedDecl *ActOnTypeParameter(Scope *S, bool Typename,
7525 SourceLocation EllipsisLoc,
7526 SourceLocation KeyLoc,
7527 IdentifierInfo *ParamName,
7528 SourceLocation ParamNameLoc,
7529 unsigned Depth, unsigned Position,
7530 SourceLocation EqualLoc,
7531 ParsedType DefaultArg, bool HasTypeConstraint);
7532
7533 bool ActOnTypeConstraint(const CXXScopeSpec &SS,
7534 TemplateIdAnnotation *TypeConstraint,
7535 TemplateTypeParmDecl *ConstrainedParameter,
7536 SourceLocation EllipsisLoc);
7537 bool BuildTypeConstraint(const CXXScopeSpec &SS,
7538 TemplateIdAnnotation *TypeConstraint,
7539 TemplateTypeParmDecl *ConstrainedParameter,
7540 SourceLocation EllipsisLoc,
7541 bool AllowUnexpandedPack);
7542
7543 bool AttachTypeConstraint(NestedNameSpecifierLoc NS,
7544 DeclarationNameInfo NameInfo,
7545 ConceptDecl *NamedConcept,
7546 const TemplateArgumentListInfo *TemplateArgs,
7547 TemplateTypeParmDecl *ConstrainedParameter,
7548 SourceLocation EllipsisLoc);
7549
7550 bool AttachTypeConstraint(AutoTypeLoc TL,
7551 NonTypeTemplateParmDecl *ConstrainedParameter,
7552 SourceLocation EllipsisLoc);
7553
7554 bool RequireStructuralType(QualType T, SourceLocation Loc);
7555
7556 QualType CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
7557 SourceLocation Loc);
7558 QualType CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc);
7559
7560 NamedDecl *ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
7561 unsigned Depth,
7562 unsigned Position,
7563 SourceLocation EqualLoc,
7564 Expr *DefaultArg);
7565 NamedDecl *ActOnTemplateTemplateParameter(Scope *S,
7566 SourceLocation TmpLoc,
7567 TemplateParameterList *Params,
7568 SourceLocation EllipsisLoc,
7569 IdentifierInfo *ParamName,
7570 SourceLocation ParamNameLoc,
7571 unsigned Depth,
7572 unsigned Position,
7573 SourceLocation EqualLoc,
7574 ParsedTemplateArgument DefaultArg);
7575
7576 TemplateParameterList *
7577 ActOnTemplateParameterList(unsigned Depth,
7578 SourceLocation ExportLoc,
7579 SourceLocation TemplateLoc,
7580 SourceLocation LAngleLoc,
7581 ArrayRef<NamedDecl *> Params,
7582 SourceLocation RAngleLoc,
7583 Expr *RequiresClause);
7584
7585 /// The context in which we are checking a template parameter list.
7586 enum TemplateParamListContext {
7587 TPC_ClassTemplate,
7588 TPC_VarTemplate,
7589 TPC_FunctionTemplate,
7590 TPC_ClassTemplateMember,
7591 TPC_FriendClassTemplate,
7592 TPC_FriendFunctionTemplate,
7593 TPC_FriendFunctionTemplateDefinition,
7594 TPC_TypeAliasTemplate
7595 };
7596
7597 bool CheckTemplateParameterList(TemplateParameterList *NewParams,
7598 TemplateParameterList *OldParams,
7599 TemplateParamListContext TPC,
7600 SkipBodyInfo *SkipBody = nullptr);
7601 TemplateParameterList *MatchTemplateParametersToScopeSpecifier(
7602 SourceLocation DeclStartLoc, SourceLocation DeclLoc,
7603 const CXXScopeSpec &SS, TemplateIdAnnotation *TemplateId,
7604 ArrayRef<TemplateParameterList *> ParamLists,
7605 bool IsFriend, bool &IsMemberSpecialization, bool &Invalid,
7606 bool SuppressDiagnostic = false);
7607
7608 DeclResult CheckClassTemplate(
7609 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
7610 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
7611 const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
7612 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
7613 SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
7614 TemplateParameterList **OuterTemplateParamLists,
7615 SkipBodyInfo *SkipBody = nullptr);
7616
7617 TemplateArgumentLoc getTrivialTemplateArgumentLoc(const TemplateArgument &Arg,
7618 QualType NTTPType,
7619 SourceLocation Loc);
7620
7621 /// Get a template argument mapping the given template parameter to itself,
7622 /// e.g. for X in \c template<int X>, this would return an expression template
7623 /// argument referencing X.
7624 TemplateArgumentLoc getIdentityTemplateArgumentLoc(NamedDecl *Param,
7625 SourceLocation Location);
7626
7627 void translateTemplateArguments(const ASTTemplateArgsPtr &In,
7628 TemplateArgumentListInfo &Out);
7629
7630 ParsedTemplateArgument ActOnTemplateTypeArgument(TypeResult ParsedType);
7631
7632 void NoteAllFoundTemplates(TemplateName Name);
7633
7634 QualType CheckTemplateIdType(TemplateName Template,
7635 SourceLocation TemplateLoc,
7636 TemplateArgumentListInfo &TemplateArgs);
7637
7638 TypeResult
7639 ActOnTemplateIdType(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
7640 TemplateTy Template, IdentifierInfo *TemplateII,
7641 SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
7642 ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc,
7643 bool IsCtorOrDtorName = false, bool IsClassName = false);
7644
7645 /// Parsed an elaborated-type-specifier that refers to a template-id,
7646 /// such as \c class T::template apply<U>.
7647 TypeResult ActOnTagTemplateIdType(TagUseKind TUK,
7648 TypeSpecifierType TagSpec,
7649 SourceLocation TagLoc,
7650 CXXScopeSpec &SS,
7651 SourceLocation TemplateKWLoc,
7652 TemplateTy TemplateD,
7653 SourceLocation TemplateLoc,
7654 SourceLocation LAngleLoc,
7655 ASTTemplateArgsPtr TemplateArgsIn,
7656 SourceLocation RAngleLoc);
7657
7658 DeclResult ActOnVarTemplateSpecialization(
7659 Scope *S, Declarator &D, TypeSourceInfo *DI,
7660 SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams,
7661 StorageClass SC, bool IsPartialSpecialization);
7662
7663 /// Get the specialization of the given variable template corresponding to
7664 /// the specified argument list, or a null-but-valid result if the arguments
7665 /// are dependent.
7666 DeclResult CheckVarTemplateId(VarTemplateDecl *Template,
7667 SourceLocation TemplateLoc,
7668 SourceLocation TemplateNameLoc,
7669 const TemplateArgumentListInfo &TemplateArgs);
7670
7671 /// Form a reference to the specialization of the given variable template
7672 /// corresponding to the specified argument list, or a null-but-valid result
7673 /// if the arguments are dependent.
7674 ExprResult CheckVarTemplateId(const CXXScopeSpec &SS,
7675 const DeclarationNameInfo &NameInfo,
7676 VarTemplateDecl *Template,
7677 SourceLocation TemplateLoc,
7678 const TemplateArgumentListInfo *TemplateArgs);
7679
7680 ExprResult
7681 CheckConceptTemplateId(const CXXScopeSpec &SS,
7682 SourceLocation TemplateKWLoc,
7683 const DeclarationNameInfo &ConceptNameInfo,
7684 NamedDecl *FoundDecl, ConceptDecl *NamedConcept,
7685 const TemplateArgumentListInfo *TemplateArgs);
7686
7687 void diagnoseMissingTemplateArguments(TemplateName Name, SourceLocation Loc);
7688
7689 ExprResult BuildTemplateIdExpr(const CXXScopeSpec &SS,
7690 SourceLocation TemplateKWLoc,
7691 LookupResult &R,
7692 bool RequiresADL,
7693 const TemplateArgumentListInfo *TemplateArgs);
7694
7695 ExprResult BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
7696 SourceLocation TemplateKWLoc,
7697 const DeclarationNameInfo &NameInfo,
7698 const TemplateArgumentListInfo *TemplateArgs);
7699
7700 TemplateNameKind ActOnTemplateName(
7701 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
7702 const UnqualifiedId &Name, ParsedType ObjectType, bool EnteringContext,
7703 TemplateTy &Template, bool AllowInjectedClassName = false);
7704
7705 DeclResult ActOnClassTemplateSpecialization(
7706 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
7707 SourceLocation ModulePrivateLoc, CXXScopeSpec &SS,
7708 TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr,
7709 MultiTemplateParamsArg TemplateParameterLists,
7710 SkipBodyInfo *SkipBody = nullptr);
7711
7712 bool CheckTemplatePartialSpecializationArgs(SourceLocation Loc,
7713 TemplateDecl *PrimaryTemplate,
7714 unsigned NumExplicitArgs,
7715 ArrayRef<TemplateArgument> Args);
7716 void CheckTemplatePartialSpecialization(
7717 ClassTemplatePartialSpecializationDecl *Partial);
7718 void CheckTemplatePartialSpecialization(
7719 VarTemplatePartialSpecializationDecl *Partial);
7720
7721 Decl *ActOnTemplateDeclarator(Scope *S,
7722 MultiTemplateParamsArg TemplateParameterLists,
7723 Declarator &D);
7724
7725 bool
7726 CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
7727 TemplateSpecializationKind NewTSK,
7728 NamedDecl *PrevDecl,
7729 TemplateSpecializationKind PrevTSK,
7730 SourceLocation PrevPtOfInstantiation,
7731 bool &SuppressNew);
7732
7733 bool CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
7734 const TemplateArgumentListInfo &ExplicitTemplateArgs,
7735 LookupResult &Previous);
7736
7737 bool CheckFunctionTemplateSpecialization(
7738 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
7739 LookupResult &Previous, bool QualifiedFriend = false);
7740 bool CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous);
7741 void CompleteMemberSpecialization(NamedDecl *Member, LookupResult &Previous);
7742
7743 DeclResult ActOnExplicitInstantiation(
7744 Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
7745 unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
7746 TemplateTy Template, SourceLocation TemplateNameLoc,
7747 SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs,
7748 SourceLocation RAngleLoc, const ParsedAttributesView &Attr);
7749
7750 DeclResult ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
7751 SourceLocation TemplateLoc,
7752 unsigned TagSpec, SourceLocation KWLoc,
7753 CXXScopeSpec &SS, IdentifierInfo *Name,
7754 SourceLocation NameLoc,
7755 const ParsedAttributesView &Attr);
7756
7757 DeclResult ActOnExplicitInstantiation(Scope *S,
7758 SourceLocation ExternLoc,
7759 SourceLocation TemplateLoc,
7760 Declarator &D);
7761
7762 TemplateArgumentLoc
7763 SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
7764 SourceLocation TemplateLoc,
7765 SourceLocation RAngleLoc,
7766 Decl *Param,
7767 SmallVectorImpl<TemplateArgument>
7768 &Converted,
7769 bool &HasDefaultArg);
7770
7771 /// Specifies the context in which a particular template
7772 /// argument is being checked.
7773 enum CheckTemplateArgumentKind {
7774 /// The template argument was specified in the code or was
7775 /// instantiated with some deduced template arguments.
7776 CTAK_Specified,
7777
7778 /// The template argument was deduced via template argument
7779 /// deduction.
7780 CTAK_Deduced,
7781
7782 /// The template argument was deduced from an array bound
7783 /// via template argument deduction.
7784 CTAK_DeducedFromArrayBound
7785 };
7786
7787 bool CheckTemplateArgument(NamedDecl *Param,
7788 TemplateArgumentLoc &Arg,
7789 NamedDecl *Template,
7790 SourceLocation TemplateLoc,
7791 SourceLocation RAngleLoc,
7792 unsigned ArgumentPackIndex,
7793 SmallVectorImpl<TemplateArgument> &Converted,
7794 CheckTemplateArgumentKind CTAK = CTAK_Specified);
7795
7796 /// Check that the given template arguments can be be provided to
7797 /// the given template, converting the arguments along the way.
7798 ///
7799 /// \param Template The template to which the template arguments are being
7800 /// provided.
7801 ///
7802 /// \param TemplateLoc The location of the template name in the source.
7803 ///
7804 /// \param TemplateArgs The list of template arguments. If the template is
7805 /// a template template parameter, this function may extend the set of
7806 /// template arguments to also include substituted, defaulted template
7807 /// arguments.
7808 ///
7809 /// \param PartialTemplateArgs True if the list of template arguments is
7810 /// intentionally partial, e.g., because we're checking just the initial
7811 /// set of template arguments.
7812 ///
7813 /// \param Converted Will receive the converted, canonicalized template
7814 /// arguments.
7815 ///
7816 /// \param UpdateArgsWithConversions If \c true, update \p TemplateArgs to
7817 /// contain the converted forms of the template arguments as written.
7818 /// Otherwise, \p TemplateArgs will not be modified.
7819 ///
7820 /// \param ConstraintsNotSatisfied If provided, and an error occured, will
7821 /// receive true if the cause for the error is the associated constraints of
7822 /// the template not being satisfied by the template arguments.
7823 ///
7824 /// \returns true if an error occurred, false otherwise.
7825 bool CheckTemplateArgumentList(TemplateDecl *Template,
7826 SourceLocation TemplateLoc,
7827 TemplateArgumentListInfo &TemplateArgs,
7828 bool PartialTemplateArgs,
7829 SmallVectorImpl<TemplateArgument> &Converted,
7830 bool UpdateArgsWithConversions = true,
7831 bool *ConstraintsNotSatisfied = nullptr);
7832
7833 bool CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
7834 TemplateArgumentLoc &Arg,
7835 SmallVectorImpl<TemplateArgument> &Converted);
7836
7837 bool CheckTemplateArgument(TypeSourceInfo *Arg);
7838 ExprResult CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
7839 QualType InstantiatedParamType, Expr *Arg,
7840 TemplateArgument &Converted,
7841 CheckTemplateArgumentKind CTAK = CTAK_Specified);
7842 bool CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param,
7843 TemplateParameterList *Params,
7844 TemplateArgumentLoc &Arg);
7845
7846 ExprResult
7847 BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
7848 QualType ParamType,
7849 SourceLocation Loc);
7850 ExprResult
7851 BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
7852 SourceLocation Loc);
7853
7854 /// Enumeration describing how template parameter lists are compared
7855 /// for equality.
7856 enum TemplateParameterListEqualKind {
7857 /// We are matching the template parameter lists of two templates
7858 /// that might be redeclarations.
7859 ///
7860 /// \code
7861 /// template<typename T> struct X;
7862 /// template<typename T> struct X;
7863 /// \endcode
7864 TPL_TemplateMatch,
7865
7866 /// We are matching the template parameter lists of two template
7867 /// template parameters as part of matching the template parameter lists
7868 /// of two templates that might be redeclarations.
7869 ///
7870 /// \code
7871 /// template<template<int I> class TT> struct X;
7872 /// template<template<int Value> class Other> struct X;
7873 /// \endcode
7874 TPL_TemplateTemplateParmMatch,
7875
7876 /// We are matching the template parameter lists of a template
7877 /// template argument against the template parameter lists of a template
7878 /// template parameter.
7879 ///
7880 /// \code
7881 /// template<template<int Value> class Metafun> struct X;
7882 /// template<int Value> struct integer_c;
7883 /// X<integer_c> xic;
7884 /// \endcode
7885 TPL_TemplateTemplateArgumentMatch
7886 };
7887
7888 bool TemplateParameterListsAreEqual(TemplateParameterList *New,
7889 TemplateParameterList *Old,
7890 bool Complain,
7891 TemplateParameterListEqualKind Kind,
7892 SourceLocation TemplateArgLoc
7893 = SourceLocation());
7894
7895 bool CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams);
7896
7897 /// Called when the parser has parsed a C++ typename
7898 /// specifier, e.g., "typename T::type".
7899 ///
7900 /// \param S The scope in which this typename type occurs.
7901 /// \param TypenameLoc the location of the 'typename' keyword
7902 /// \param SS the nested-name-specifier following the typename (e.g., 'T::').
7903 /// \param II the identifier we're retrieving (e.g., 'type' in the example).
7904 /// \param IdLoc the location of the identifier.
7905 TypeResult
7906 ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
7907 const CXXScopeSpec &SS, const IdentifierInfo &II,
7908 SourceLocation IdLoc);
7909
7910 /// Called when the parser has parsed a C++ typename
7911 /// specifier that ends in a template-id, e.g.,
7912 /// "typename MetaFun::template apply<T1, T2>".
7913 ///
7914 /// \param S The scope in which this typename type occurs.
7915 /// \param TypenameLoc the location of the 'typename' keyword
7916 /// \param SS the nested-name-specifier following the typename (e.g., 'T::').
7917 /// \param TemplateLoc the location of the 'template' keyword, if any.
7918 /// \param TemplateName The template name.
7919 /// \param TemplateII The identifier used to name the template.
7920 /// \param TemplateIILoc The location of the template name.
7921 /// \param LAngleLoc The location of the opening angle bracket ('<').
7922 /// \param TemplateArgs The template arguments.
7923 /// \param RAngleLoc The location of the closing angle bracket ('>').
7924 TypeResult
7925 ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
7926 const CXXScopeSpec &SS,
7927 SourceLocation TemplateLoc,
7928 TemplateTy TemplateName,
7929 IdentifierInfo *TemplateII,
7930 SourceLocation TemplateIILoc,
7931 SourceLocation LAngleLoc,
7932 ASTTemplateArgsPtr TemplateArgs,
7933 SourceLocation RAngleLoc);
7934
7935 QualType CheckTypenameType(ElaboratedTypeKeyword Keyword,
7936 SourceLocation KeywordLoc,
7937 NestedNameSpecifierLoc QualifierLoc,
7938 const IdentifierInfo &II,
7939 SourceLocation IILoc,
7940 TypeSourceInfo **TSI,
7941 bool DeducedTSTContext);
7942
7943 QualType CheckTypenameType(ElaboratedTypeKeyword Keyword,
7944 SourceLocation KeywordLoc,
7945 NestedNameSpecifierLoc QualifierLoc,
7946 const IdentifierInfo &II,
7947 SourceLocation IILoc,
7948 bool DeducedTSTContext = true);
7949
7950
7951 TypeSourceInfo *RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
7952 SourceLocation Loc,
7953 DeclarationName Name);
7954 bool RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS);
7955
7956 ExprResult RebuildExprInCurrentInstantiation(Expr *E);
7957 bool RebuildTemplateParamsInCurrentInstantiation(
7958 TemplateParameterList *Params);
7959
7960 std::string
7961 getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7962 const TemplateArgumentList &Args);
7963
7964 std::string
7965 getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7966 const TemplateArgument *Args,
7967 unsigned NumArgs);
7968
7969 //===--------------------------------------------------------------------===//
7970 // C++ Concepts
7971 //===--------------------------------------------------------------------===//
7972 Decl *ActOnConceptDefinition(
7973 Scope *S, MultiTemplateParamsArg TemplateParameterLists,
7974 IdentifierInfo *Name, SourceLocation NameLoc, Expr *ConstraintExpr);
7975
7976 RequiresExprBodyDecl *
7977 ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
7978 ArrayRef<ParmVarDecl *> LocalParameters,
7979 Scope *BodyScope);
7980 void ActOnFinishRequiresExpr();
7981 concepts::Requirement *ActOnSimpleRequirement(Expr *E);
7982 concepts::Requirement *ActOnTypeRequirement(
7983 SourceLocation TypenameKWLoc, CXXScopeSpec &SS, SourceLocation NameLoc,
7984 IdentifierInfo *TypeName, TemplateIdAnnotation *TemplateId);
7985 concepts::Requirement *ActOnCompoundRequirement(Expr *E,
7986 SourceLocation NoexceptLoc);
7987 concepts::Requirement *
7988 ActOnCompoundRequirement(
7989 Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
7990 TemplateIdAnnotation *TypeConstraint, unsigned Depth);
7991 concepts::Requirement *ActOnNestedRequirement(Expr *Constraint);
7992 concepts::ExprRequirement *
7993 BuildExprRequirement(
7994 Expr *E, bool IsSatisfied, SourceLocation NoexceptLoc,
7995 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement);
7996 concepts::ExprRequirement *
7997 BuildExprRequirement(
7998 concepts::Requirement::SubstitutionDiagnostic *ExprSubstDiag,
7999 bool IsSatisfied, SourceLocation NoexceptLoc,
8000 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement);
8001 concepts::TypeRequirement *BuildTypeRequirement(TypeSourceInfo *Type);
8002 concepts::TypeRequirement *
8003 BuildTypeRequirement(
8004 concepts::Requirement::SubstitutionDiagnostic *SubstDiag);
8005 concepts::NestedRequirement *BuildNestedRequirement(Expr *E);
8006 concepts::NestedRequirement *
8007 BuildNestedRequirement(
8008 concepts::Requirement::SubstitutionDiagnostic *SubstDiag);
8009 ExprResult ActOnRequiresExpr(SourceLocation RequiresKWLoc,
8010 RequiresExprBodyDecl *Body,
8011 ArrayRef<ParmVarDecl *> LocalParameters,
8012 ArrayRef<concepts::Requirement *> Requirements,
8013 SourceLocation ClosingBraceLoc);
8014
8015 //===--------------------------------------------------------------------===//
8016 // C++ Variadic Templates (C++0x [temp.variadic])
8017 //===--------------------------------------------------------------------===//
8018
8019 /// Determine whether an unexpanded parameter pack might be permitted in this
8020 /// location. Useful for error recovery.
8021 bool isUnexpandedParameterPackPermitted();
8022
8023 /// The context in which an unexpanded parameter pack is
8024 /// being diagnosed.
8025 ///
8026 /// Note that the values of this enumeration line up with the first
8027 /// argument to the \c err_unexpanded_parameter_pack diagnostic.
8028 enum UnexpandedParameterPackContext {
8029 /// An arbitrary expression.
8030 UPPC_Expression = 0,
8031
8032 /// The base type of a class type.
8033 UPPC_BaseType,
8034
8035 /// The type of an arbitrary declaration.
8036 UPPC_DeclarationType,
8037
8038 /// The type of a data member.
8039 UPPC_DataMemberType,
8040
8041 /// The size of a bit-field.
8042 UPPC_BitFieldWidth,
8043
8044 /// The expression in a static assertion.
8045 UPPC_StaticAssertExpression,
8046
8047 /// The fixed underlying type of an enumeration.
8048 UPPC_FixedUnderlyingType,
8049
8050 /// The enumerator value.
8051 UPPC_EnumeratorValue,
8052
8053 /// A using declaration.
8054 UPPC_UsingDeclaration,
8055
8056 /// A friend declaration.
8057 UPPC_FriendDeclaration,
8058
8059 /// A declaration qualifier.
8060 UPPC_DeclarationQualifier,
8061
8062 /// An initializer.
8063 UPPC_Initializer,
8064
8065 /// A default argument.
8066 UPPC_DefaultArgument,
8067
8068 /// The type of a non-type template parameter.
8069 UPPC_NonTypeTemplateParameterType,
8070
8071 /// The type of an exception.
8072 UPPC_ExceptionType,
8073
8074 /// Partial specialization.
8075 UPPC_PartialSpecialization,
8076
8077 /// Microsoft __if_exists.
8078 UPPC_IfExists,
8079
8080 /// Microsoft __if_not_exists.
8081 UPPC_IfNotExists,
8082
8083 /// Lambda expression.
8084 UPPC_Lambda,
8085
8086 /// Block expression.
8087 UPPC_Block,
8088
8089 /// A type constraint.
8090 UPPC_TypeConstraint,
8091
8092 // A requirement in a requires-expression.
8093 UPPC_Requirement,
8094
8095 // A requires-clause.
8096 UPPC_RequiresClause,
8097 };
8098
8099 /// Diagnose unexpanded parameter packs.
8100 ///
8101 /// \param Loc The location at which we should emit the diagnostic.
8102 ///
8103 /// \param UPPC The context in which we are diagnosing unexpanded
8104 /// parameter packs.
8105 ///
8106 /// \param Unexpanded the set of unexpanded parameter packs.
8107 ///
8108 /// \returns true if an error occurred, false otherwise.
8109 bool DiagnoseUnexpandedParameterPacks(SourceLocation Loc,
8110 UnexpandedParameterPackContext UPPC,
8111 ArrayRef<UnexpandedParameterPack> Unexpanded);
8112
8113 /// If the given type contains an unexpanded parameter pack,
8114 /// diagnose the error.
8115 ///
8116 /// \param Loc The source location where a diagnostc should be emitted.
8117 ///
8118 /// \param T The type that is being checked for unexpanded parameter
8119 /// packs.
8120 ///
8121 /// \returns true if an error occurred, false otherwise.
8122 bool DiagnoseUnexpandedParameterPack(SourceLocation Loc, TypeSourceInfo *T,
8123 UnexpandedParameterPackContext UPPC);
8124
8125 /// If the given expression contains an unexpanded parameter
8126 /// pack, diagnose the error.
8127 ///
8128 /// \param E The expression that is being checked for unexpanded
8129 /// parameter packs.
8130 ///
8131 /// \returns true if an error occurred, false otherwise.
8132 bool DiagnoseUnexpandedParameterPack(Expr *E,
8133 UnexpandedParameterPackContext UPPC = UPPC_Expression);
8134
8135 /// If the given requirees-expression contains an unexpanded reference to one
8136 /// of its own parameter packs, diagnose the error.
8137 ///
8138 /// \param RE The requiress-expression that is being checked for unexpanded
8139 /// parameter packs.
8140 ///
8141 /// \returns true if an error occurred, false otherwise.
8142 bool DiagnoseUnexpandedParameterPackInRequiresExpr(RequiresExpr *RE);
8143
8144 /// If the given nested-name-specifier contains an unexpanded
8145 /// parameter pack, diagnose the error.
8146 ///
8147 /// \param SS The nested-name-specifier that is being checked for
8148 /// unexpanded parameter packs.
8149 ///
8150 /// \returns true if an error occurred, false otherwise.
8151 bool DiagnoseUnexpandedParameterPack(const CXXScopeSpec &SS,
8152 UnexpandedParameterPackContext UPPC);
8153
8154 /// If the given name contains an unexpanded parameter pack,
8155 /// diagnose the error.
8156 ///
8157 /// \param NameInfo The name (with source location information) that
8158 /// is being checked for unexpanded parameter packs.
8159 ///
8160 /// \returns true if an error occurred, false otherwise.
8161 bool DiagnoseUnexpandedParameterPack(const DeclarationNameInfo &NameInfo,
8162 UnexpandedParameterPackContext UPPC);
8163
8164 /// If the given template name contains an unexpanded parameter pack,
8165 /// diagnose the error.
8166 ///
8167 /// \param Loc The location of the template name.
8168 ///
8169 /// \param Template The template name that is being checked for unexpanded
8170 /// parameter packs.
8171 ///
8172 /// \returns true if an error occurred, false otherwise.
8173 bool DiagnoseUnexpandedParameterPack(SourceLocation Loc,
8174 TemplateName Template,
8175 UnexpandedParameterPackContext UPPC);
8176
8177 /// If the given template argument contains an unexpanded parameter
8178 /// pack, diagnose the error.
8179 ///
8180 /// \param Arg The template argument that is being checked for unexpanded
8181 /// parameter packs.
8182 ///
8183 /// \returns true if an error occurred, false otherwise.
8184 bool DiagnoseUnexpandedParameterPack(TemplateArgumentLoc Arg,
8185 UnexpandedParameterPackContext UPPC);
8186
8187 /// Collect the set of unexpanded parameter packs within the given
8188 /// template argument.
8189 ///
8190 /// \param Arg The template argument that will be traversed to find
8191 /// unexpanded parameter packs.
8192 void collectUnexpandedParameterPacks(TemplateArgument Arg,
8193 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8194
8195 /// Collect the set of unexpanded parameter packs within the given
8196 /// template argument.
8197 ///
8198 /// \param Arg The template argument that will be traversed to find
8199 /// unexpanded parameter packs.
8200 void collectUnexpandedParameterPacks(TemplateArgumentLoc Arg,
8201 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8202
8203 /// Collect the set of unexpanded parameter packs within the given
8204 /// type.
8205 ///
8206 /// \param T The type that will be traversed to find
8207 /// unexpanded parameter packs.
8208 void collectUnexpandedParameterPacks(QualType T,
8209 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8210
8211 /// Collect the set of unexpanded parameter packs within the given
8212 /// type.
8213 ///
8214 /// \param TL The type that will be traversed to find
8215 /// unexpanded parameter packs.
8216 void collectUnexpandedParameterPacks(TypeLoc TL,
8217 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8218
8219 /// Collect the set of unexpanded parameter packs within the given
8220 /// nested-name-specifier.
8221 ///
8222 /// \param NNS The nested-name-specifier that will be traversed to find
8223 /// unexpanded parameter packs.
8224 void collectUnexpandedParameterPacks(NestedNameSpecifierLoc NNS,
8225 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8226
8227 /// Collect the set of unexpanded parameter packs within the given
8228 /// name.
8229 ///
8230 /// \param NameInfo The name that will be traversed to find
8231 /// unexpanded parameter packs.
8232 void collectUnexpandedParameterPacks(const DeclarationNameInfo &NameInfo,
8233 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8234
8235 /// Invoked when parsing a template argument followed by an
8236 /// ellipsis, which creates a pack expansion.
8237 ///
8238 /// \param Arg The template argument preceding the ellipsis, which
8239 /// may already be invalid.
8240 ///
8241 /// \param EllipsisLoc The location of the ellipsis.
8242 ParsedTemplateArgument ActOnPackExpansion(const ParsedTemplateArgument &Arg,
8243 SourceLocation EllipsisLoc);
8244
8245 /// Invoked when parsing a type followed by an ellipsis, which
8246 /// creates a pack expansion.
8247 ///
8248 /// \param Type The type preceding the ellipsis, which will become
8249 /// the pattern of the pack expansion.
8250 ///
8251 /// \param EllipsisLoc The location of the ellipsis.
8252 TypeResult ActOnPackExpansion(ParsedType Type, SourceLocation EllipsisLoc);
8253
8254 /// Construct a pack expansion type from the pattern of the pack
8255 /// expansion.
8256 TypeSourceInfo *CheckPackExpansion(TypeSourceInfo *Pattern,
8257 SourceLocation EllipsisLoc,
8258 Optional<unsigned> NumExpansions);
8259
8260 /// Construct a pack expansion type from the pattern of the pack
8261 /// expansion.
8262 QualType CheckPackExpansion(QualType Pattern,
8263 SourceRange PatternRange,
8264 SourceLocation EllipsisLoc,
8265 Optional<unsigned> NumExpansions);
8266
8267 /// Invoked when parsing an expression followed by an ellipsis, which
8268 /// creates a pack expansion.
8269 ///
8270 /// \param Pattern The expression preceding the ellipsis, which will become
8271 /// the pattern of the pack expansion.
8272 ///
8273 /// \param EllipsisLoc The location of the ellipsis.
8274 ExprResult ActOnPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc);
8275
8276 /// Invoked when parsing an expression followed by an ellipsis, which
8277 /// creates a pack expansion.
8278 ///
8279 /// \param Pattern The expression preceding the ellipsis, which will become
8280 /// the pattern of the pack expansion.
8281 ///
8282 /// \param EllipsisLoc The location of the ellipsis.
8283 ExprResult CheckPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
8284 Optional<unsigned> NumExpansions);
8285
8286 /// Determine whether we could expand a pack expansion with the
8287 /// given set of parameter packs into separate arguments by repeatedly
8288 /// transforming the pattern.
8289 ///
8290 /// \param EllipsisLoc The location of the ellipsis that identifies the
8291 /// pack expansion.
8292 ///
8293 /// \param PatternRange The source range that covers the entire pattern of
8294 /// the pack expansion.
8295 ///
8296 /// \param Unexpanded The set of unexpanded parameter packs within the
8297 /// pattern.
8298 ///
8299 /// \param ShouldExpand Will be set to \c true if the transformer should
8300 /// expand the corresponding pack expansions into separate arguments. When
8301 /// set, \c NumExpansions must also be set.
8302 ///
8303 /// \param RetainExpansion Whether the caller should add an unexpanded
8304 /// pack expansion after all of the expanded arguments. This is used
8305 /// when extending explicitly-specified template argument packs per
8306 /// C++0x [temp.arg.explicit]p9.
8307 ///
8308 /// \param NumExpansions The number of separate arguments that will be in
8309 /// the expanded form of the corresponding pack expansion. This is both an
8310 /// input and an output parameter, which can be set by the caller if the
8311 /// number of expansions is known a priori (e.g., due to a prior substitution)
8312 /// and will be set by the callee when the number of expansions is known.
8313 /// The callee must set this value when \c ShouldExpand is \c true; it may
8314 /// set this value in other cases.
8315 ///
8316 /// \returns true if an error occurred (e.g., because the parameter packs
8317 /// are to be instantiated with arguments of different lengths), false
8318 /// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions)
8319 /// must be set.
8320 bool CheckParameterPacksForExpansion(SourceLocation EllipsisLoc,
8321 SourceRange PatternRange,
8322 ArrayRef<UnexpandedParameterPack> Unexpanded,
8323 const MultiLevelTemplateArgumentList &TemplateArgs,
8324 bool &ShouldExpand,
8325 bool &RetainExpansion,
8326 Optional<unsigned> &NumExpansions);
8327
8328 /// Determine the number of arguments in the given pack expansion
8329 /// type.
8330 ///
8331 /// This routine assumes that the number of arguments in the expansion is
8332 /// consistent across all of the unexpanded parameter packs in its pattern.
8333 ///
8334 /// Returns an empty Optional if the type can't be expanded.
8335 Optional<unsigned> getNumArgumentsInExpansion(QualType T,
8336 const MultiLevelTemplateArgumentList &TemplateArgs);
8337
8338 /// Determine whether the given declarator contains any unexpanded
8339 /// parameter packs.
8340 ///
8341 /// This routine is used by the parser to disambiguate function declarators
8342 /// with an ellipsis prior to the ')', e.g.,
8343 ///
8344 /// \code
8345 /// void f(T...);
8346 /// \endcode
8347 ///
8348 /// To determine whether we have an (unnamed) function parameter pack or
8349 /// a variadic function.
8350 ///
8351 /// \returns true if the declarator contains any unexpanded parameter packs,
8352 /// false otherwise.
8353 bool containsUnexpandedParameterPacks(Declarator &D);
8354
8355 /// Returns the pattern of the pack expansion for a template argument.
8356 ///
8357 /// \param OrigLoc The template argument to expand.
8358 ///
8359 /// \param Ellipsis Will be set to the location of the ellipsis.
8360 ///
8361 /// \param NumExpansions Will be set to the number of expansions that will
8362 /// be generated from this pack expansion, if known a priori.
8363 TemplateArgumentLoc getTemplateArgumentPackExpansionPattern(
8364 TemplateArgumentLoc OrigLoc,
8365 SourceLocation &Ellipsis,
8366 Optional<unsigned> &NumExpansions) const;
8367
8368 /// Given a template argument that contains an unexpanded parameter pack, but
8369 /// which has already been substituted, attempt to determine the number of
8370 /// elements that will be produced once this argument is fully-expanded.
8371 ///
8372 /// This is intended for use when transforming 'sizeof...(Arg)' in order to
8373 /// avoid actually expanding the pack where possible.
8374 Optional<unsigned> getFullyPackExpandedSize(TemplateArgument Arg);
8375
8376 //===--------------------------------------------------------------------===//
8377 // C++ Template Argument Deduction (C++ [temp.deduct])
8378 //===--------------------------------------------------------------------===//
8379
8380 /// Adjust the type \p ArgFunctionType to match the calling convention,
8381 /// noreturn, and optionally the exception specification of \p FunctionType.
8382 /// Deduction often wants to ignore these properties when matching function
8383 /// types.
8384 QualType adjustCCAndNoReturn(QualType ArgFunctionType, QualType FunctionType,
8385 bool AdjustExceptionSpec = false);
8386
8387 /// Describes the result of template argument deduction.
8388 ///
8389 /// The TemplateDeductionResult enumeration describes the result of
8390 /// template argument deduction, as returned from
8391 /// DeduceTemplateArguments(). The separate TemplateDeductionInfo
8392 /// structure provides additional information about the results of
8393 /// template argument deduction, e.g., the deduced template argument
8394 /// list (if successful) or the specific template parameters or
8395 /// deduced arguments that were involved in the failure.
8396 enum TemplateDeductionResult {
8397 /// Template argument deduction was successful.
8398 TDK_Success = 0,
8399 /// The declaration was invalid; do nothing.
8400 TDK_Invalid,
8401 /// Template argument deduction exceeded the maximum template
8402 /// instantiation depth (which has already been diagnosed).
8403 TDK_InstantiationDepth,
8404 /// Template argument deduction did not deduce a value
8405 /// for every template parameter.
8406 TDK_Incomplete,
8407 /// Template argument deduction did not deduce a value for every
8408 /// expansion of an expanded template parameter pack.
8409 TDK_IncompletePack,
8410 /// Template argument deduction produced inconsistent
8411 /// deduced values for the given template parameter.
8412 TDK_Inconsistent,
8413 /// Template argument deduction failed due to inconsistent
8414 /// cv-qualifiers on a template parameter type that would
8415 /// otherwise be deduced, e.g., we tried to deduce T in "const T"
8416 /// but were given a non-const "X".
8417 TDK_Underqualified,
8418 /// Substitution of the deduced template argument values
8419 /// resulted in an error.
8420 TDK_SubstitutionFailure,
8421 /// After substituting deduced template arguments, a dependent
8422 /// parameter type did not match the corresponding argument.
8423 TDK_DeducedMismatch,
8424 /// After substituting deduced template arguments, an element of
8425 /// a dependent parameter type did not match the corresponding element
8426 /// of the corresponding argument (when deducing from an initializer list).
8427 TDK_DeducedMismatchNested,
8428 /// A non-depnedent component of the parameter did not match the
8429 /// corresponding component of the argument.
8430 TDK_NonDeducedMismatch,
8431 /// When performing template argument deduction for a function
8432 /// template, there were too many call arguments.
8433 TDK_TooManyArguments,
8434 /// When performing template argument deduction for a function
8435 /// template, there were too few call arguments.
8436 TDK_TooFewArguments,
8437 /// The explicitly-specified template arguments were not valid
8438 /// template arguments for the given template.
8439 TDK_InvalidExplicitArguments,
8440 /// Checking non-dependent argument conversions failed.
8441 TDK_NonDependentConversionFailure,
8442 /// The deduced arguments did not satisfy the constraints associated
8443 /// with the template.
8444 TDK_ConstraintsNotSatisfied,
8445 /// Deduction failed; that's all we know.
8446 TDK_MiscellaneousDeductionFailure,
8447 /// CUDA Target attributes do not match.
8448 TDK_CUDATargetMismatch
8449 };
8450
8451 TemplateDeductionResult
8452 DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
8453 const TemplateArgumentList &TemplateArgs,
8454 sema::TemplateDeductionInfo &Info);
8455
8456 TemplateDeductionResult
8457 DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
8458 const TemplateArgumentList &TemplateArgs,
8459 sema::TemplateDeductionInfo &Info);
8460
8461 TemplateDeductionResult SubstituteExplicitTemplateArguments(
8462 FunctionTemplateDecl *FunctionTemplate,
8463 TemplateArgumentListInfo &ExplicitTemplateArgs,
8464 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
8465 SmallVectorImpl<QualType> &ParamTypes, QualType *FunctionType,
8466 sema::TemplateDeductionInfo &Info);
8467
8468 /// brief A function argument from which we performed template argument
8469 // deduction for a call.
8470 struct OriginalCallArg {
8471 OriginalCallArg(QualType OriginalParamType, bool DecomposedParam,
8472 unsigned ArgIdx, QualType OriginalArgType)
8473 : OriginalParamType(OriginalParamType),
8474 DecomposedParam(DecomposedParam), ArgIdx(ArgIdx),
8475 OriginalArgType(OriginalArgType) {}
8476
8477 QualType OriginalParamType;
8478 bool DecomposedParam;
8479 unsigned ArgIdx;
8480 QualType OriginalArgType;
8481 };
8482
8483 TemplateDeductionResult FinishTemplateArgumentDeduction(
8484 FunctionTemplateDecl *FunctionTemplate,
8485 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
8486 unsigned NumExplicitlySpecified, FunctionDecl *&Specialization,
8487 sema::TemplateDeductionInfo &Info,
8488 SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs = nullptr,
8489 bool PartialOverloading = false,
8490 llvm::function_ref<bool()> CheckNonDependent = []{ return false; });
8491
8492 TemplateDeductionResult DeduceTemplateArguments(
8493 FunctionTemplateDecl *FunctionTemplate,
8494 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
8495 FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info,
8496 bool PartialOverloading,
8497 llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent);
8498
8499 TemplateDeductionResult
8500 DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
8501 TemplateArgumentListInfo *ExplicitTemplateArgs,
8502 QualType ArgFunctionType,
8503 FunctionDecl *&Specialization,
8504 sema::TemplateDeductionInfo &Info,
8505 bool IsAddressOfFunction = false);
8506
8507 TemplateDeductionResult
8508 DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
8509 QualType ToType,
8510 CXXConversionDecl *&Specialization,
8511 sema::TemplateDeductionInfo &Info);
8512
8513 TemplateDeductionResult
8514 DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
8515 TemplateArgumentListInfo *ExplicitTemplateArgs,
8516 FunctionDecl *&Specialization,
8517 sema::TemplateDeductionInfo &Info,
8518 bool IsAddressOfFunction = false);
8519
8520 /// Substitute Replacement for \p auto in \p TypeWithAuto
8521 QualType SubstAutoType(QualType TypeWithAuto, QualType Replacement);
8522 /// Substitute Replacement for auto in TypeWithAuto
8523 TypeSourceInfo* SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
8524 QualType Replacement);
8525 /// Completely replace the \c auto in \p TypeWithAuto by
8526 /// \p Replacement. This does not retain any \c auto type sugar.
8527 QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement);
8528 TypeSourceInfo *ReplaceAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
8529 QualType Replacement);
8530
8531 /// Result type of DeduceAutoType.
8532 enum DeduceAutoResult {
8533 DAR_Succeeded,
8534 DAR_Failed,
8535 DAR_FailedAlreadyDiagnosed
8536 };
8537
8538 DeduceAutoResult
8539 DeduceAutoType(TypeSourceInfo *AutoType, Expr *&Initializer, QualType &Result,
8540 Optional<unsigned> DependentDeductionDepth = None,
8541 bool IgnoreConstraints = false);
8542 DeduceAutoResult
8543 DeduceAutoType(TypeLoc AutoTypeLoc, Expr *&Initializer, QualType &Result,
8544 Optional<unsigned> DependentDeductionDepth = None,
8545 bool IgnoreConstraints = false);
8546 void DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init);
8547 bool DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
8548 bool Diagnose = true);
8549
8550 /// Declare implicit deduction guides for a class template if we've
8551 /// not already done so.
8552 void DeclareImplicitDeductionGuides(TemplateDecl *Template,
8553 SourceLocation Loc);
8554
8555 QualType DeduceTemplateSpecializationFromInitializer(
8556 TypeSourceInfo *TInfo, const InitializedEntity &Entity,
8557 const InitializationKind &Kind, MultiExprArg Init);
8558
8559 QualType deduceVarTypeFromInitializer(VarDecl *VDecl, DeclarationName Name,
8560 QualType Type, TypeSourceInfo *TSI,
8561 SourceRange Range, bool DirectInit,
8562 Expr *Init);
8563
8564 TypeLoc getReturnTypeLoc(FunctionDecl *FD) const;
8565
8566 bool DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
8567 SourceLocation ReturnLoc,
8568 Expr *&RetExpr, AutoType *AT);
8569
8570 FunctionTemplateDecl *getMoreSpecializedTemplate(
8571 FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, SourceLocation Loc,
8572 TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1,
8573 unsigned NumCallArguments2, bool Reversed = false);
8574 UnresolvedSetIterator
8575 getMostSpecialized(UnresolvedSetIterator SBegin, UnresolvedSetIterator SEnd,
8576 TemplateSpecCandidateSet &FailedCandidates,
8577 SourceLocation Loc,
8578 const PartialDiagnostic &NoneDiag,
8579 const PartialDiagnostic &AmbigDiag,
8580 const PartialDiagnostic &CandidateDiag,
8581 bool Complain = true, QualType TargetType = QualType());
8582
8583 ClassTemplatePartialSpecializationDecl *
8584 getMoreSpecializedPartialSpecialization(
8585 ClassTemplatePartialSpecializationDecl *PS1,
8586 ClassTemplatePartialSpecializationDecl *PS2,
8587 SourceLocation Loc);
8588
8589 bool isMoreSpecializedThanPrimary(ClassTemplatePartialSpecializationDecl *T,
8590 sema::TemplateDeductionInfo &Info);
8591
8592 VarTemplatePartialSpecializationDecl *getMoreSpecializedPartialSpecialization(
8593 VarTemplatePartialSpecializationDecl *PS1,
8594 VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc);
8595
8596 bool isMoreSpecializedThanPrimary(VarTemplatePartialSpecializationDecl *T,
8597 sema::TemplateDeductionInfo &Info);
8598
8599 bool isTemplateTemplateParameterAtLeastAsSpecializedAs(
8600 TemplateParameterList *PParam, TemplateDecl *AArg, SourceLocation Loc);
8601
8602 void MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced,
8603 unsigned Depth, llvm::SmallBitVector &Used);
8604
8605 void MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
8606 bool OnlyDeduced,
8607 unsigned Depth,
8608 llvm::SmallBitVector &Used);
8609 void MarkDeducedTemplateParameters(
8610 const FunctionTemplateDecl *FunctionTemplate,
8611 llvm::SmallBitVector &Deduced) {
8612 return MarkDeducedTemplateParameters(Context, FunctionTemplate, Deduced);
8613 }
8614 static void MarkDeducedTemplateParameters(ASTContext &Ctx,
8615 const FunctionTemplateDecl *FunctionTemplate,
8616 llvm::SmallBitVector &Deduced);
8617
8618 //===--------------------------------------------------------------------===//
8619 // C++ Template Instantiation
8620 //
8621
8622 MultiLevelTemplateArgumentList
8623 getTemplateInstantiationArgs(NamedDecl *D,
8624 const TemplateArgumentList *Innermost = nullptr,
8625 bool RelativeToPrimary = false,
8626 const FunctionDecl *Pattern = nullptr);
8627
8628 /// A context in which code is being synthesized (where a source location
8629 /// alone is not sufficient to identify the context). This covers template
8630 /// instantiation and various forms of implicitly-generated functions.
8631 struct CodeSynthesisContext {
8632 /// The kind of template instantiation we are performing
8633 enum SynthesisKind {
8634 /// We are instantiating a template declaration. The entity is
8635 /// the declaration we're instantiating (e.g., a CXXRecordDecl).
8636 TemplateInstantiation,
8637
8638 /// We are instantiating a default argument for a template
8639 /// parameter. The Entity is the template parameter whose argument is
8640 /// being instantiated, the Template is the template, and the
8641 /// TemplateArgs/NumTemplateArguments provide the template arguments as
8642 /// specified.
8643 DefaultTemplateArgumentInstantiation,
8644
8645 /// We are instantiating a default argument for a function.
8646 /// The Entity is the ParmVarDecl, and TemplateArgs/NumTemplateArgs
8647 /// provides the template arguments as specified.
8648 DefaultFunctionArgumentInstantiation,
8649
8650 /// We are substituting explicit template arguments provided for
8651 /// a function template. The entity is a FunctionTemplateDecl.
8652 ExplicitTemplateArgumentSubstitution,
8653
8654 /// We are substituting template argument determined as part of
8655 /// template argument deduction for either a class template
8656 /// partial specialization or a function template. The
8657 /// Entity is either a {Class|Var}TemplatePartialSpecializationDecl or
8658 /// a TemplateDecl.
8659 DeducedTemplateArgumentSubstitution,
8660
8661 /// We are substituting prior template arguments into a new
8662 /// template parameter. The template parameter itself is either a
8663 /// NonTypeTemplateParmDecl or a TemplateTemplateParmDecl.
8664 PriorTemplateArgumentSubstitution,
8665
8666 /// We are checking the validity of a default template argument that
8667 /// has been used when naming a template-id.
8668 DefaultTemplateArgumentChecking,
8669
8670 /// We are computing the exception specification for a defaulted special
8671 /// member function.
8672 ExceptionSpecEvaluation,
8673
8674 /// We are instantiating the exception specification for a function
8675 /// template which was deferred until it was needed.
8676 ExceptionSpecInstantiation,
8677
8678 /// We are instantiating a requirement of a requires expression.
8679 RequirementInstantiation,
8680
8681 /// We are checking the satisfaction of a nested requirement of a requires
8682 /// expression.
8683 NestedRequirementConstraintsCheck,
8684
8685 /// We are declaring an implicit special member function.
8686 DeclaringSpecialMember,
8687
8688 /// We are declaring an implicit 'operator==' for a defaulted
8689 /// 'operator<=>'.
8690 DeclaringImplicitEqualityComparison,
8691
8692 /// We are defining a synthesized function (such as a defaulted special
8693 /// member).
8694 DefiningSynthesizedFunction,
8695
8696 // We are checking the constraints associated with a constrained entity or
8697 // the constraint expression of a concept. This includes the checks that
8698 // atomic constraints have the type 'bool' and that they can be constant
8699 // evaluated.
8700 ConstraintsCheck,
8701
8702 // We are substituting template arguments into a constraint expression.
8703 ConstraintSubstitution,
8704
8705 // We are normalizing a constraint expression.
8706 ConstraintNormalization,
8707
8708 // We are substituting into the parameter mapping of an atomic constraint
8709 // during normalization.
8710 ParameterMappingSubstitution,
8711
8712 /// We are rewriting a comparison operator in terms of an operator<=>.
8713 RewritingOperatorAsSpaceship,
8714
8715 /// We are initializing a structured binding.
8716 InitializingStructuredBinding,
8717
8718 /// We are marking a class as __dllexport.
8719 MarkingClassDllexported,
8720
8721 /// Added for Template instantiation observation.
8722 /// Memoization means we are _not_ instantiating a template because
8723 /// it is already instantiated (but we entered a context where we
8724 /// would have had to if it was not already instantiated).
8725 Memoization
8726 } Kind;
8727
8728 /// Was the enclosing context a non-instantiation SFINAE context?
8729 bool SavedInNonInstantiationSFINAEContext;
8730
8731 /// The point of instantiation or synthesis within the source code.
8732 SourceLocation PointOfInstantiation;
8733
8734 /// The entity that is being synthesized.
8735 Decl *Entity;
8736
8737 /// The template (or partial specialization) in which we are
8738 /// performing the instantiation, for substitutions of prior template
8739 /// arguments.
8740 NamedDecl *Template;
8741
8742 /// The list of template arguments we are substituting, if they
8743 /// are not part of the entity.
8744 const TemplateArgument *TemplateArgs;
8745
8746 // FIXME: Wrap this union around more members, or perhaps store the
8747 // kind-specific members in the RAII object owning the context.
8748 union {
8749 /// The number of template arguments in TemplateArgs.
8750 unsigned NumTemplateArgs;
8751
8752 /// The special member being declared or defined.
8753 CXXSpecialMember SpecialMember;
8754 };
8755
8756 ArrayRef<TemplateArgument> template_arguments() const {
8757 assert(Kind != DeclaringSpecialMember)(static_cast <bool> (Kind != DeclaringSpecialMember) ? void
(0) : __assert_fail ("Kind != DeclaringSpecialMember", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 8757, __extension__ __PRETTY_FUNCTION__))
;
8758 return {TemplateArgs, NumTemplateArgs};
8759 }
8760
8761 /// The template deduction info object associated with the
8762 /// substitution or checking of explicit or deduced template arguments.
8763 sema::TemplateDeductionInfo *DeductionInfo;
8764
8765 /// The source range that covers the construct that cause
8766 /// the instantiation, e.g., the template-id that causes a class
8767 /// template instantiation.
8768 SourceRange InstantiationRange;
8769
8770 CodeSynthesisContext()
8771 : Kind(TemplateInstantiation),
8772 SavedInNonInstantiationSFINAEContext(false), Entity(nullptr),
8773 Template(nullptr), TemplateArgs(nullptr), NumTemplateArgs(0),
8774 DeductionInfo(nullptr) {}
8775
8776 /// Determines whether this template is an actual instantiation
8777 /// that should be counted toward the maximum instantiation depth.
8778 bool isInstantiationRecord() const;
8779 };
8780
8781 /// List of active code synthesis contexts.
8782 ///
8783 /// This vector is treated as a stack. As synthesis of one entity requires
8784 /// synthesis of another, additional contexts are pushed onto the stack.
8785 SmallVector<CodeSynthesisContext, 16> CodeSynthesisContexts;
8786
8787 /// Specializations whose definitions are currently being instantiated.
8788 llvm::DenseSet<std::pair<Decl *, unsigned>> InstantiatingSpecializations;
8789
8790 /// Non-dependent types used in templates that have already been instantiated
8791 /// by some template instantiation.
8792 llvm::DenseSet<QualType> InstantiatedNonDependentTypes;
8793
8794 /// Extra modules inspected when performing a lookup during a template
8795 /// instantiation. Computed lazily.
8796 SmallVector<Module*, 16> CodeSynthesisContextLookupModules;
8797
8798 /// Cache of additional modules that should be used for name lookup
8799 /// within the current template instantiation. Computed lazily; use
8800 /// getLookupModules() to get a complete set.
8801 llvm::DenseSet<Module*> LookupModulesCache;
8802
8803 /// Get the set of additional modules that should be checked during
8804 /// name lookup. A module and its imports become visible when instanting a
8805 /// template defined within it.
8806 llvm::DenseSet<Module*> &getLookupModules();
8807
8808 /// Map from the most recent declaration of a namespace to the most
8809 /// recent visible declaration of that namespace.
8810 llvm::DenseMap<NamedDecl*, NamedDecl*> VisibleNamespaceCache;
8811
8812 /// Whether we are in a SFINAE context that is not associated with
8813 /// template instantiation.
8814 ///
8815 /// This is used when setting up a SFINAE trap (\c see SFINAETrap) outside
8816 /// of a template instantiation or template argument deduction.
8817 bool InNonInstantiationSFINAEContext;
8818
8819 /// The number of \p CodeSynthesisContexts that are not template
8820 /// instantiations and, therefore, should not be counted as part of the
8821 /// instantiation depth.
8822 ///
8823 /// When the instantiation depth reaches the user-configurable limit
8824 /// \p LangOptions::InstantiationDepth we will abort instantiation.
8825 // FIXME: Should we have a similar limit for other forms of synthesis?
8826 unsigned NonInstantiationEntries;
8827
8828 /// The depth of the context stack at the point when the most recent
8829 /// error or warning was produced.
8830 ///
8831 /// This value is used to suppress printing of redundant context stacks
8832 /// when there are multiple errors or warnings in the same instantiation.
8833 // FIXME: Does this belong in Sema? It's tough to implement it anywhere else.
8834 unsigned LastEmittedCodeSynthesisContextDepth = 0;
8835
8836 /// The template instantiation callbacks to trace or track
8837 /// instantiations (objects can be chained).
8838 ///
8839 /// This callbacks is used to print, trace or track template
8840 /// instantiations as they are being constructed.
8841 std::vector<std::unique_ptr<TemplateInstantiationCallback>>
8842 TemplateInstCallbacks;
8843
8844 /// The current index into pack expansion arguments that will be
8845 /// used for substitution of parameter packs.
8846 ///
8847 /// The pack expansion index will be -1 to indicate that parameter packs
8848 /// should be instantiated as themselves. Otherwise, the index specifies
8849 /// which argument within the parameter pack will be used for substitution.
8850 int ArgumentPackSubstitutionIndex;
8851
8852 /// RAII object used to change the argument pack substitution index
8853 /// within a \c Sema object.
8854 ///
8855 /// See \c ArgumentPackSubstitutionIndex for more information.
8856 class ArgumentPackSubstitutionIndexRAII {
8857 Sema &Self;
8858 int OldSubstitutionIndex;
8859
8860 public:
8861 ArgumentPackSubstitutionIndexRAII(Sema &Self, int NewSubstitutionIndex)
8862 : Self(Self), OldSubstitutionIndex(Self.ArgumentPackSubstitutionIndex) {
8863 Self.ArgumentPackSubstitutionIndex = NewSubstitutionIndex;
8864 }
8865
8866 ~ArgumentPackSubstitutionIndexRAII() {
8867 Self.ArgumentPackSubstitutionIndex = OldSubstitutionIndex;
8868 }
8869 };
8870
8871 friend class ArgumentPackSubstitutionRAII;
8872
8873 /// For each declaration that involved template argument deduction, the
8874 /// set of diagnostics that were suppressed during that template argument
8875 /// deduction.
8876 ///
8877 /// FIXME: Serialize this structure to the AST file.
8878 typedef llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >
8879 SuppressedDiagnosticsMap;
8880 SuppressedDiagnosticsMap SuppressedDiagnostics;
8881
8882 /// A stack object to be created when performing template
8883 /// instantiation.
8884 ///
8885 /// Construction of an object of type \c InstantiatingTemplate
8886 /// pushes the current instantiation onto the stack of active
8887 /// instantiations. If the size of this stack exceeds the maximum
8888 /// number of recursive template instantiations, construction
8889 /// produces an error and evaluates true.
8890 ///
8891 /// Destruction of this object will pop the named instantiation off
8892 /// the stack.
8893 struct InstantiatingTemplate {
8894 /// Note that we are instantiating a class template,
8895 /// function template, variable template, alias template,
8896 /// or a member thereof.
8897 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8898 Decl *Entity,
8899 SourceRange InstantiationRange = SourceRange());
8900
8901 struct ExceptionSpecification {};
8902 /// Note that we are instantiating an exception specification
8903 /// of a function template.
8904 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8905 FunctionDecl *Entity, ExceptionSpecification,
8906 SourceRange InstantiationRange = SourceRange());
8907
8908 /// Note that we are instantiating a default argument in a
8909 /// template-id.
8910 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8911 TemplateParameter Param, TemplateDecl *Template,
8912 ArrayRef<TemplateArgument> TemplateArgs,
8913 SourceRange InstantiationRange = SourceRange());
8914
8915 /// Note that we are substituting either explicitly-specified or
8916 /// deduced template arguments during function template argument deduction.
8917 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8918 FunctionTemplateDecl *FunctionTemplate,
8919 ArrayRef<TemplateArgument> TemplateArgs,
8920 CodeSynthesisContext::SynthesisKind Kind,
8921 sema::TemplateDeductionInfo &DeductionInfo,
8922 SourceRange InstantiationRange = SourceRange());
8923
8924 /// Note that we are instantiating as part of template
8925 /// argument deduction for a class template declaration.
8926 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8927 TemplateDecl *Template,
8928 ArrayRef<TemplateArgument> TemplateArgs,
8929 sema::TemplateDeductionInfo &DeductionInfo,
8930 SourceRange InstantiationRange = SourceRange());
8931
8932 /// Note that we are instantiating as part of template
8933 /// argument deduction for a class template partial
8934 /// specialization.
8935 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8936 ClassTemplatePartialSpecializationDecl *PartialSpec,
8937 ArrayRef<TemplateArgument> TemplateArgs,
8938 sema::TemplateDeductionInfo &DeductionInfo,
8939 SourceRange InstantiationRange = SourceRange());
8940
8941 /// Note that we are instantiating as part of template
8942 /// argument deduction for a variable template partial
8943 /// specialization.
8944 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8945 VarTemplatePartialSpecializationDecl *PartialSpec,
8946 ArrayRef<TemplateArgument> TemplateArgs,
8947 sema::TemplateDeductionInfo &DeductionInfo,
8948 SourceRange InstantiationRange = SourceRange());
8949
8950 /// Note that we are instantiating a default argument for a function
8951 /// parameter.
8952 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8953 ParmVarDecl *Param,
8954 ArrayRef<TemplateArgument> TemplateArgs,
8955 SourceRange InstantiationRange = SourceRange());
8956
8957 /// Note that we are substituting prior template arguments into a
8958 /// non-type parameter.
8959 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8960 NamedDecl *Template,
8961 NonTypeTemplateParmDecl *Param,
8962 ArrayRef<TemplateArgument> TemplateArgs,
8963 SourceRange InstantiationRange);
8964
8965 /// Note that we are substituting prior template arguments into a
8966 /// template template parameter.
8967 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8968 NamedDecl *Template,
8969 TemplateTemplateParmDecl *Param,
8970 ArrayRef<TemplateArgument> TemplateArgs,
8971 SourceRange InstantiationRange);
8972
8973 /// Note that we are checking the default template argument
8974 /// against the template parameter for a given template-id.
8975 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8976 TemplateDecl *Template,
8977 NamedDecl *Param,
8978 ArrayRef<TemplateArgument> TemplateArgs,
8979 SourceRange InstantiationRange);
8980
8981 struct ConstraintsCheck {};
8982 /// \brief Note that we are checking the constraints associated with some
8983 /// constrained entity (a concept declaration or a template with associated
8984 /// constraints).
8985 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8986 ConstraintsCheck, NamedDecl *Template,
8987 ArrayRef<TemplateArgument> TemplateArgs,
8988 SourceRange InstantiationRange);
8989
8990 struct ConstraintSubstitution {};
8991 /// \brief Note that we are checking a constraint expression associated
8992 /// with a template declaration or as part of the satisfaction check of a
8993 /// concept.
8994 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8995 ConstraintSubstitution, NamedDecl *Template,
8996 sema::TemplateDeductionInfo &DeductionInfo,
8997 SourceRange InstantiationRange);
8998
8999 struct ConstraintNormalization {};
9000 /// \brief Note that we are normalizing a constraint expression.
9001 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
9002 ConstraintNormalization, NamedDecl *Template,
9003 SourceRange InstantiationRange);
9004
9005 struct ParameterMappingSubstitution {};
9006 /// \brief Note that we are subtituting into the parameter mapping of an
9007 /// atomic constraint during constraint normalization.
9008 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
9009 ParameterMappingSubstitution, NamedDecl *Template,
9010 SourceRange InstantiationRange);
9011
9012 /// \brief Note that we are substituting template arguments into a part of
9013 /// a requirement of a requires expression.
9014 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
9015 concepts::Requirement *Req,
9016 sema::TemplateDeductionInfo &DeductionInfo,
9017 SourceRange InstantiationRange = SourceRange());
9018
9019 /// \brief Note that we are checking the satisfaction of the constraint
9020 /// expression inside of a nested requirement.
9021 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
9022 concepts::NestedRequirement *Req, ConstraintsCheck,
9023 SourceRange InstantiationRange = SourceRange());
9024
9025 /// Note that we have finished instantiating this template.
9026 void Clear();
9027
9028 ~InstantiatingTemplate() { Clear(); }
9029
9030 /// Determines whether we have exceeded the maximum
9031 /// recursive template instantiations.
9032 bool isInvalid() const { return Invalid; }
9033
9034 /// Determine whether we are already instantiating this
9035 /// specialization in some surrounding active instantiation.
9036 bool isAlreadyInstantiating() const { return AlreadyInstantiating; }
9037
9038 private:
9039 Sema &SemaRef;
9040 bool Invalid;
9041 bool AlreadyInstantiating;
9042 bool CheckInstantiationDepth(SourceLocation PointOfInstantiation,
9043 SourceRange InstantiationRange);
9044
9045 InstantiatingTemplate(
9046 Sema &SemaRef, CodeSynthesisContext::SynthesisKind Kind,
9047 SourceLocation PointOfInstantiation, SourceRange InstantiationRange,
9048 Decl *Entity, NamedDecl *Template = nullptr,
9049 ArrayRef<TemplateArgument> TemplateArgs = None,
9050 sema::TemplateDeductionInfo *DeductionInfo = nullptr);
9051
9052 InstantiatingTemplate(const InstantiatingTemplate&) = delete;
9053
9054 InstantiatingTemplate&
9055 operator=(const InstantiatingTemplate&) = delete;
9056 };
9057
9058 void pushCodeSynthesisContext(CodeSynthesisContext Ctx);
9059 void popCodeSynthesisContext();
9060
9061 /// Determine whether we are currently performing template instantiation.
9062 bool inTemplateInstantiation() const {
9063 return CodeSynthesisContexts.size() > NonInstantiationEntries;
9064 }
9065
9066 void PrintContextStack() {
9067 if (!CodeSynthesisContexts.empty() &&
9068 CodeSynthesisContexts.size() != LastEmittedCodeSynthesisContextDepth) {
9069 PrintInstantiationStack();
9070 LastEmittedCodeSynthesisContextDepth = CodeSynthesisContexts.size();
9071 }
9072 if (PragmaAttributeCurrentTargetDecl)
9073 PrintPragmaAttributeInstantiationPoint();
9074 }
9075 void PrintInstantiationStack();
9076
9077 void PrintPragmaAttributeInstantiationPoint();
9078
9079 /// Determines whether we are currently in a context where
9080 /// template argument substitution failures are not considered
9081 /// errors.
9082 ///
9083 /// \returns An empty \c Optional if we're not in a SFINAE context.
9084 /// Otherwise, contains a pointer that, if non-NULL, contains the nearest
9085 /// template-deduction context object, which can be used to capture
9086 /// diagnostics that will be suppressed.
9087 Optional<sema::TemplateDeductionInfo *> isSFINAEContext() const;
9088
9089 /// Determines whether we are currently in a context that
9090 /// is not evaluated as per C++ [expr] p5.
9091 bool isUnevaluatedContext() const {
9092 assert(!ExprEvalContexts.empty() &&(static_cast <bool> (!ExprEvalContexts.empty() &&
"Must be in an expression evaluation context") ? void (0) : __assert_fail
("!ExprEvalContexts.empty() && \"Must be in an expression evaluation context\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 9093, __extension__ __PRETTY_FUNCTION__))
9093 "Must be in an expression evaluation context")(static_cast <bool> (!ExprEvalContexts.empty() &&
"Must be in an expression evaluation context") ? void (0) : __assert_fail
("!ExprEvalContexts.empty() && \"Must be in an expression evaluation context\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 9093, __extension__ __PRETTY_FUNCTION__))
;
9094 return ExprEvalContexts.back().isUnevaluated();
9095 }
9096
9097 /// RAII class used to determine whether SFINAE has
9098 /// trapped any errors that occur during template argument
9099 /// deduction.
9100 class SFINAETrap {
9101 Sema &SemaRef;
9102 unsigned PrevSFINAEErrors;
9103 bool PrevInNonInstantiationSFINAEContext;
9104 bool PrevAccessCheckingSFINAE;
9105 bool PrevLastDiagnosticIgnored;
9106
9107 public:
9108 explicit SFINAETrap(Sema &SemaRef, bool AccessCheckingSFINAE = false)
9109 : SemaRef(SemaRef), PrevSFINAEErrors(SemaRef.NumSFINAEErrors),
9110 PrevInNonInstantiationSFINAEContext(
9111 SemaRef.InNonInstantiationSFINAEContext),
9112 PrevAccessCheckingSFINAE(SemaRef.AccessCheckingSFINAE),
9113 PrevLastDiagnosticIgnored(
9114 SemaRef.getDiagnostics().isLastDiagnosticIgnored())
9115 {
9116 if (!SemaRef.isSFINAEContext())
9117 SemaRef.InNonInstantiationSFINAEContext = true;
9118 SemaRef.AccessCheckingSFINAE = AccessCheckingSFINAE;
9119 }
9120
9121 ~SFINAETrap() {
9122 SemaRef.NumSFINAEErrors = PrevSFINAEErrors;
9123 SemaRef.InNonInstantiationSFINAEContext
9124 = PrevInNonInstantiationSFINAEContext;
9125 SemaRef.AccessCheckingSFINAE = PrevAccessCheckingSFINAE;
9126 SemaRef.getDiagnostics().setLastDiagnosticIgnored(
9127 PrevLastDiagnosticIgnored);
9128 }
9129
9130 /// Determine whether any SFINAE errors have been trapped.
9131 bool hasErrorOccurred() const {
9132 return SemaRef.NumSFINAEErrors > PrevSFINAEErrors;
9133 }
9134 };
9135
9136 /// RAII class used to indicate that we are performing provisional
9137 /// semantic analysis to determine the validity of a construct, so
9138 /// typo-correction and diagnostics in the immediate context (not within
9139 /// implicitly-instantiated templates) should be suppressed.
9140 class TentativeAnalysisScope {
9141 Sema &SemaRef;
9142 // FIXME: Using a SFINAETrap for this is a hack.
9143 SFINAETrap Trap;
9144 bool PrevDisableTypoCorrection;
9145 public:
9146 explicit TentativeAnalysisScope(Sema &SemaRef)
9147 : SemaRef(SemaRef), Trap(SemaRef, true),
9148 PrevDisableTypoCorrection(SemaRef.DisableTypoCorrection) {
9149 SemaRef.DisableTypoCorrection = true;
9150 }
9151 ~TentativeAnalysisScope() {
9152 SemaRef.DisableTypoCorrection = PrevDisableTypoCorrection;
9153 }
9154 };
9155
9156 /// The current instantiation scope used to store local
9157 /// variables.
9158 LocalInstantiationScope *CurrentInstantiationScope;
9159
9160 /// Tracks whether we are in a context where typo correction is
9161 /// disabled.
9162 bool DisableTypoCorrection;
9163
9164 /// The number of typos corrected by CorrectTypo.
9165 unsigned TyposCorrected;
9166
9167 typedef llvm::SmallSet<SourceLocation, 2> SrcLocSet;
9168 typedef llvm::DenseMap<IdentifierInfo *, SrcLocSet> IdentifierSourceLocations;
9169
9170 /// A cache containing identifiers for which typo correction failed and
9171 /// their locations, so that repeated attempts to correct an identifier in a
9172 /// given location are ignored if typo correction already failed for it.
9173 IdentifierSourceLocations TypoCorrectionFailures;
9174
9175 /// Worker object for performing CFG-based warnings.
9176 sema::AnalysisBasedWarnings AnalysisWarnings;
9177 threadSafety::BeforeSet *ThreadSafetyDeclCache;
9178
9179 /// An entity for which implicit template instantiation is required.
9180 ///
9181 /// The source location associated with the declaration is the first place in
9182 /// the source code where the declaration was "used". It is not necessarily
9183 /// the point of instantiation (which will be either before or after the
9184 /// namespace-scope declaration that triggered this implicit instantiation),
9185 /// However, it is the location that diagnostics should generally refer to,
9186 /// because users will need to know what code triggered the instantiation.
9187 typedef std::pair<ValueDecl *, SourceLocation> PendingImplicitInstantiation;
9188
9189 /// The queue of implicit template instantiations that are required
9190 /// but have not yet been performed.
9191 std::deque<PendingImplicitInstantiation> PendingInstantiations;
9192
9193 /// Queue of implicit template instantiations that cannot be performed
9194 /// eagerly.
9195 SmallVector<PendingImplicitInstantiation, 1> LateParsedInstantiations;
9196
9197 class GlobalEagerInstantiationScope {
9198 public:
9199 GlobalEagerInstantiationScope(Sema &S, bool Enabled)
9200 : S(S), Enabled(Enabled) {
9201 if (!Enabled) return;
9202
9203 SavedPendingInstantiations.swap(S.PendingInstantiations);
9204 SavedVTableUses.swap(S.VTableUses);
9205 }
9206
9207 void perform() {
9208 if (Enabled) {
9209 S.DefineUsedVTables();
9210 S.PerformPendingInstantiations();
9211 }
9212 }
9213
9214 ~GlobalEagerInstantiationScope() {
9215 if (!Enabled) return;
9216
9217 // Restore the set of pending vtables.
9218 assert(S.VTableUses.empty() &&(static_cast <bool> (S.VTableUses.empty() && "VTableUses should be empty before it is discarded."
) ? void (0) : __assert_fail ("S.VTableUses.empty() && \"VTableUses should be empty before it is discarded.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 9219, __extension__ __PRETTY_FUNCTION__))
9219 "VTableUses should be empty before it is discarded.")(static_cast <bool> (S.VTableUses.empty() && "VTableUses should be empty before it is discarded."
) ? void (0) : __assert_fail ("S.VTableUses.empty() && \"VTableUses should be empty before it is discarded.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 9219, __extension__ __PRETTY_FUNCTION__))
;
9220 S.VTableUses.swap(SavedVTableUses);
9221
9222 // Restore the set of pending implicit instantiations.
9223 if (S.TUKind != TU_Prefix || !S.LangOpts.PCHInstantiateTemplates) {
9224 assert(S.PendingInstantiations.empty() &&(static_cast <bool> (S.PendingInstantiations.empty() &&
"PendingInstantiations should be empty before it is discarded."
) ? void (0) : __assert_fail ("S.PendingInstantiations.empty() && \"PendingInstantiations should be empty before it is discarded.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 9225, __extension__ __PRETTY_FUNCTION__))
9225 "PendingInstantiations should be empty before it is discarded.")(static_cast <bool> (S.PendingInstantiations.empty() &&
"PendingInstantiations should be empty before it is discarded."
) ? void (0) : __assert_fail ("S.PendingInstantiations.empty() && \"PendingInstantiations should be empty before it is discarded.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 9225, __extension__ __PRETTY_FUNCTION__))
;
9226 S.PendingInstantiations.swap(SavedPendingInstantiations);
9227 } else {
9228 // Template instantiations in the PCH may be delayed until the TU.
9229 S.PendingInstantiations.swap(SavedPendingInstantiations);
9230 S.PendingInstantiations.insert(S.PendingInstantiations.end(),
9231 SavedPendingInstantiations.begin(),
9232 SavedPendingInstantiations.end());
9233 }
9234 }
9235
9236 private:
9237 Sema &S;
9238 SmallVector<VTableUse, 16> SavedVTableUses;
9239 std::deque<PendingImplicitInstantiation> SavedPendingInstantiations;
9240 bool Enabled;
9241 };
9242
9243 /// The queue of implicit template instantiations that are required
9244 /// and must be performed within the current local scope.
9245 ///
9246 /// This queue is only used for member functions of local classes in
9247 /// templates, which must be instantiated in the same scope as their
9248 /// enclosing function, so that they can reference function-local
9249 /// types, static variables, enumerators, etc.
9250 std::deque<PendingImplicitInstantiation> PendingLocalImplicitInstantiations;
9251
9252 class LocalEagerInstantiationScope {
9253 public:
9254 LocalEagerInstantiationScope(Sema &S) : S(S) {
9255 SavedPendingLocalImplicitInstantiations.swap(
9256 S.PendingLocalImplicitInstantiations);
9257 }
9258
9259 void perform() { S.PerformPendingInstantiations(/*LocalOnly=*/true); }
9260
9261 ~LocalEagerInstantiationScope() {
9262 assert(S.PendingLocalImplicitInstantiations.empty() &&(static_cast <bool> (S.PendingLocalImplicitInstantiations
.empty() && "there shouldn't be any pending local implicit instantiations"
) ? void (0) : __assert_fail ("S.PendingLocalImplicitInstantiations.empty() && \"there shouldn't be any pending local implicit instantiations\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 9263, __extension__ __PRETTY_FUNCTION__))
9263 "there shouldn't be any pending local implicit instantiations")(static_cast <bool> (S.PendingLocalImplicitInstantiations
.empty() && "there shouldn't be any pending local implicit instantiations"
) ? void (0) : __assert_fail ("S.PendingLocalImplicitInstantiations.empty() && \"there shouldn't be any pending local implicit instantiations\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 9263, __extension__ __PRETTY_FUNCTION__))
;
9264 SavedPendingLocalImplicitInstantiations.swap(
9265 S.PendingLocalImplicitInstantiations);
9266 }
9267
9268 private:
9269 Sema &S;
9270 std::deque<PendingImplicitInstantiation>
9271 SavedPendingLocalImplicitInstantiations;
9272 };
9273
9274 /// A helper class for building up ExtParameterInfos.
9275 class ExtParameterInfoBuilder {
9276 SmallVector<FunctionProtoType::ExtParameterInfo, 16> Infos;
9277 bool HasInteresting = false;
9278
9279 public:
9280 /// Set the ExtParameterInfo for the parameter at the given index,
9281 ///
9282 void set(unsigned index, FunctionProtoType::ExtParameterInfo info) {
9283 assert(Infos.size() <= index)(static_cast <bool> (Infos.size() <= index) ? void (
0) : __assert_fail ("Infos.size() <= index", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 9283, __extension__ __PRETTY_FUNCTION__))
;
9284 Infos.resize(index);
9285 Infos.push_back(info);
9286
9287 if (!HasInteresting)
9288 HasInteresting = (info != FunctionProtoType::ExtParameterInfo());
9289 }
9290
9291 /// Return a pointer (suitable for setting in an ExtProtoInfo) to the
9292 /// ExtParameterInfo array we've built up.
9293 const FunctionProtoType::ExtParameterInfo *
9294 getPointerOrNull(unsigned numParams) {
9295 if (!HasInteresting) return nullptr;
9296 Infos.resize(numParams);
9297 return Infos.data();
9298 }
9299 };
9300
9301 void PerformPendingInstantiations(bool LocalOnly = false);
9302
9303 TypeSourceInfo *SubstType(TypeSourceInfo *T,
9304 const MultiLevelTemplateArgumentList &TemplateArgs,
9305 SourceLocation Loc, DeclarationName Entity,
9306 bool AllowDeducedTST = false);
9307
9308 QualType SubstType(QualType T,
9309 const MultiLevelTemplateArgumentList &TemplateArgs,
9310 SourceLocation Loc, DeclarationName Entity);
9311
9312 TypeSourceInfo *SubstType(TypeLoc TL,
9313 const MultiLevelTemplateArgumentList &TemplateArgs,
9314 SourceLocation Loc, DeclarationName Entity);
9315
9316 TypeSourceInfo *SubstFunctionDeclType(TypeSourceInfo *T,
9317 const MultiLevelTemplateArgumentList &TemplateArgs,
9318 SourceLocation Loc,
9319 DeclarationName Entity,
9320 CXXRecordDecl *ThisContext,
9321 Qualifiers ThisTypeQuals);
9322 void SubstExceptionSpec(FunctionDecl *New, const FunctionProtoType *Proto,
9323 const MultiLevelTemplateArgumentList &Args);
9324 bool SubstExceptionSpec(SourceLocation Loc,
9325 FunctionProtoType::ExceptionSpecInfo &ESI,
9326 SmallVectorImpl<QualType> &ExceptionStorage,
9327 const MultiLevelTemplateArgumentList &Args);
9328 ParmVarDecl *SubstParmVarDecl(ParmVarDecl *D,
9329 const MultiLevelTemplateArgumentList &TemplateArgs,
9330 int indexAdjustment,
9331 Optional<unsigned> NumExpansions,
9332 bool ExpectParameterPack);
9333 bool SubstParmTypes(SourceLocation Loc, ArrayRef<ParmVarDecl *> Params,
9334 const FunctionProtoType::ExtParameterInfo *ExtParamInfos,
9335 const MultiLevelTemplateArgumentList &TemplateArgs,
9336 SmallVectorImpl<QualType> &ParamTypes,
9337 SmallVectorImpl<ParmVarDecl *> *OutParams,
9338 ExtParameterInfoBuilder &ParamInfos);
9339 ExprResult SubstExpr(Expr *E,
9340 const MultiLevelTemplateArgumentList &TemplateArgs);
9341
9342 /// Substitute the given template arguments into a list of
9343 /// expressions, expanding pack expansions if required.
9344 ///
9345 /// \param Exprs The list of expressions to substitute into.
9346 ///
9347 /// \param IsCall Whether this is some form of call, in which case
9348 /// default arguments will be dropped.
9349 ///
9350 /// \param TemplateArgs The set of template arguments to substitute.
9351 ///
9352 /// \param Outputs Will receive all of the substituted arguments.
9353 ///
9354 /// \returns true if an error occurred, false otherwise.
9355 bool SubstExprs(ArrayRef<Expr *> Exprs, bool IsCall,
9356 const MultiLevelTemplateArgumentList &TemplateArgs,
9357 SmallVectorImpl<Expr *> &Outputs);
9358
9359 StmtResult SubstStmt(Stmt *S,
9360 const MultiLevelTemplateArgumentList &TemplateArgs);
9361
9362 TemplateParameterList *
9363 SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner,
9364 const MultiLevelTemplateArgumentList &TemplateArgs);
9365
9366 bool
9367 SubstTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
9368 const MultiLevelTemplateArgumentList &TemplateArgs,
9369 TemplateArgumentListInfo &Outputs);
9370
9371
9372 Decl *SubstDecl(Decl *D, DeclContext *Owner,
9373 const MultiLevelTemplateArgumentList &TemplateArgs);
9374
9375 /// Substitute the name and return type of a defaulted 'operator<=>' to form
9376 /// an implicit 'operator=='.
9377 FunctionDecl *SubstSpaceshipAsEqualEqual(CXXRecordDecl *RD,
9378 FunctionDecl *Spaceship);
9379
9380 ExprResult SubstInitializer(Expr *E,
9381 const MultiLevelTemplateArgumentList &TemplateArgs,
9382 bool CXXDirectInit);
9383
9384 bool
9385 SubstBaseSpecifiers(CXXRecordDecl *Instantiation,
9386 CXXRecordDecl *Pattern,
9387 const MultiLevelTemplateArgumentList &TemplateArgs);
9388
9389 bool
9390 InstantiateClass(SourceLocation PointOfInstantiation,
9391 CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern,
9392 const MultiLevelTemplateArgumentList &TemplateArgs,
9393 TemplateSpecializationKind TSK,
9394 bool Complain = true);
9395
9396 bool InstantiateEnum(SourceLocation PointOfInstantiation,
9397 EnumDecl *Instantiation, EnumDecl *Pattern,
9398 const MultiLevelTemplateArgumentList &TemplateArgs,
9399 TemplateSpecializationKind TSK);
9400
9401 bool InstantiateInClassInitializer(
9402 SourceLocation PointOfInstantiation, FieldDecl *Instantiation,
9403 FieldDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs);
9404
9405 struct LateInstantiatedAttribute {
9406 const Attr *TmplAttr;
9407 LocalInstantiationScope *Scope;
9408 Decl *NewDecl;
9409
9410 LateInstantiatedAttribute(const Attr *A, LocalInstantiationScope *S,
9411 Decl *D)
9412 : TmplAttr(A), Scope(S), NewDecl(D)
9413 { }
9414 };
9415 typedef SmallVector<LateInstantiatedAttribute, 16> LateInstantiatedAttrVec;
9416
9417 void InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs,
9418 const Decl *Pattern, Decl *Inst,
9419 LateInstantiatedAttrVec *LateAttrs = nullptr,
9420 LocalInstantiationScope *OuterMostScope = nullptr);
9421
9422 void
9423 InstantiateAttrsForDecl(const MultiLevelTemplateArgumentList &TemplateArgs,
9424 const Decl *Pattern, Decl *Inst,
9425 LateInstantiatedAttrVec *LateAttrs = nullptr,
9426 LocalInstantiationScope *OuterMostScope = nullptr);
9427
9428 void InstantiateDefaultCtorDefaultArgs(CXXConstructorDecl *Ctor);
9429
9430 bool usesPartialOrExplicitSpecialization(
9431 SourceLocation Loc, ClassTemplateSpecializationDecl *ClassTemplateSpec);
9432
9433 bool
9434 InstantiateClassTemplateSpecialization(SourceLocation PointOfInstantiation,
9435 ClassTemplateSpecializationDecl *ClassTemplateSpec,
9436 TemplateSpecializationKind TSK,
9437 bool Complain = true);
9438
9439 void InstantiateClassMembers(SourceLocation PointOfInstantiation,
9440 CXXRecordDecl *Instantiation,
9441 const MultiLevelTemplateArgumentList &TemplateArgs,
9442 TemplateSpecializationKind TSK);
9443
9444 void InstantiateClassTemplateSpecializationMembers(
9445 SourceLocation PointOfInstantiation,
9446 ClassTemplateSpecializationDecl *ClassTemplateSpec,
9447 TemplateSpecializationKind TSK);
9448
9449 NestedNameSpecifierLoc
9450 SubstNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS,
9451 const MultiLevelTemplateArgumentList &TemplateArgs);
9452
9453 DeclarationNameInfo
9454 SubstDeclarationNameInfo(const DeclarationNameInfo &NameInfo,
9455 const MultiLevelTemplateArgumentList &TemplateArgs);
9456 TemplateName
9457 SubstTemplateName(NestedNameSpecifierLoc QualifierLoc, TemplateName Name,
9458 SourceLocation Loc,
9459 const MultiLevelTemplateArgumentList &TemplateArgs);
9460 bool Subst(const TemplateArgumentLoc *Args, unsigned NumArgs,
9461 TemplateArgumentListInfo &Result,
9462 const MultiLevelTemplateArgumentList &TemplateArgs);
9463
9464 bool InstantiateDefaultArgument(SourceLocation CallLoc, FunctionDecl *FD,
9465 ParmVarDecl *Param);
9466 void InstantiateExceptionSpec(SourceLocation PointOfInstantiation,
9467 FunctionDecl *Function);
9468 bool CheckInstantiatedFunctionTemplateConstraints(
9469 SourceLocation PointOfInstantiation, FunctionDecl *Decl,
9470 ArrayRef<TemplateArgument> TemplateArgs,
9471 ConstraintSatisfaction &Satisfaction);
9472 FunctionDecl *InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD,
9473 const TemplateArgumentList *Args,
9474 SourceLocation Loc);
9475 void InstantiateFunctionDefinition(SourceLocation PointOfInstantiation,
9476 FunctionDecl *Function,
9477 bool Recursive = false,
9478 bool DefinitionRequired = false,
9479 bool AtEndOfTU = false);
9480 VarTemplateSpecializationDecl *BuildVarTemplateInstantiation(
9481 VarTemplateDecl *VarTemplate, VarDecl *FromVar,
9482 const TemplateArgumentList &TemplateArgList,
9483 const TemplateArgumentListInfo &TemplateArgsInfo,
9484 SmallVectorImpl<TemplateArgument> &Converted,
9485 SourceLocation PointOfInstantiation,
9486 LateInstantiatedAttrVec *LateAttrs = nullptr,
9487 LocalInstantiationScope *StartingScope = nullptr);
9488 VarTemplateSpecializationDecl *CompleteVarTemplateSpecializationDecl(
9489 VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl,
9490 const MultiLevelTemplateArgumentList &TemplateArgs);
9491 void
9492 BuildVariableInstantiation(VarDecl *NewVar, VarDecl *OldVar,
9493 const MultiLevelTemplateArgumentList &TemplateArgs,
9494 LateInstantiatedAttrVec *LateAttrs,
9495 DeclContext *Owner,
9496 LocalInstantiationScope *StartingScope,
9497 bool InstantiatingVarTemplate = false,
9498 VarTemplateSpecializationDecl *PrevVTSD = nullptr);
9499
9500 void InstantiateVariableInitializer(
9501 VarDecl *Var, VarDecl *OldVar,
9502 const MultiLevelTemplateArgumentList &TemplateArgs);
9503 void InstantiateVariableDefinition(SourceLocation PointOfInstantiation,
9504 VarDecl *Var, bool Recursive = false,
9505 bool DefinitionRequired = false,
9506 bool AtEndOfTU = false);
9507
9508 void InstantiateMemInitializers(CXXConstructorDecl *New,
9509 const CXXConstructorDecl *Tmpl,
9510 const MultiLevelTemplateArgumentList &TemplateArgs);
9511
9512 NamedDecl *FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D,
9513 const MultiLevelTemplateArgumentList &TemplateArgs,
9514 bool FindingInstantiatedContext = false);
9515 DeclContext *FindInstantiatedContext(SourceLocation Loc, DeclContext *DC,
9516 const MultiLevelTemplateArgumentList &TemplateArgs);
9517
9518 // Objective-C declarations.
9519 enum ObjCContainerKind {
9520 OCK_None = -1,
9521 OCK_Interface = 0,
9522 OCK_Protocol,
9523 OCK_Category,
9524 OCK_ClassExtension,
9525 OCK_Implementation,
9526 OCK_CategoryImplementation
9527 };
9528 ObjCContainerKind getObjCContainerKind() const;
9529
9530 DeclResult actOnObjCTypeParam(Scope *S,
9531 ObjCTypeParamVariance variance,
9532 SourceLocation varianceLoc,
9533 unsigned index,
9534 IdentifierInfo *paramName,
9535 SourceLocation paramLoc,
9536 SourceLocation colonLoc,
9537 ParsedType typeBound);
9538
9539 ObjCTypeParamList *actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc,
9540 ArrayRef<Decl *> typeParams,
9541 SourceLocation rAngleLoc);
9542 void popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList);
9543
9544 Decl *ActOnStartClassInterface(
9545 Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
9546 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
9547 IdentifierInfo *SuperName, SourceLocation SuperLoc,
9548 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
9549 Decl *const *ProtoRefs, unsigned NumProtoRefs,
9550 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
9551 const ParsedAttributesView &AttrList);
9552
9553 void ActOnSuperClassOfClassInterface(Scope *S,
9554 SourceLocation AtInterfaceLoc,
9555 ObjCInterfaceDecl *IDecl,
9556 IdentifierInfo *ClassName,
9557 SourceLocation ClassLoc,
9558 IdentifierInfo *SuperName,
9559 SourceLocation SuperLoc,
9560 ArrayRef<ParsedType> SuperTypeArgs,
9561 SourceRange SuperTypeArgsRange);
9562
9563 void ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
9564 SmallVectorImpl<SourceLocation> &ProtocolLocs,
9565 IdentifierInfo *SuperName,
9566 SourceLocation SuperLoc);
9567
9568 Decl *ActOnCompatibilityAlias(
9569 SourceLocation AtCompatibilityAliasLoc,
9570 IdentifierInfo *AliasName, SourceLocation AliasLocation,
9571 IdentifierInfo *ClassName, SourceLocation ClassLocation);
9572
9573 bool CheckForwardProtocolDeclarationForCircularDependency(
9574 IdentifierInfo *PName,
9575 SourceLocation &PLoc, SourceLocation PrevLoc,
9576 const ObjCList<ObjCProtocolDecl> &PList);
9577
9578 Decl *ActOnStartProtocolInterface(
9579 SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
9580 SourceLocation ProtocolLoc, Decl *const *ProtoRefNames,
9581 unsigned NumProtoRefs, const SourceLocation *ProtoLocs,
9582 SourceLocation EndProtoLoc, const ParsedAttributesView &AttrList);
9583
9584 Decl *ActOnStartCategoryInterface(
9585 SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
9586 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
9587 IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
9588 Decl *const *ProtoRefs, unsigned NumProtoRefs,
9589 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
9590 const ParsedAttributesView &AttrList);
9591
9592 Decl *ActOnStartClassImplementation(SourceLocation AtClassImplLoc,
9593 IdentifierInfo *ClassName,
9594 SourceLocation ClassLoc,
9595 IdentifierInfo *SuperClassname,
9596 SourceLocation SuperClassLoc,
9597 const ParsedAttributesView &AttrList);
9598
9599 Decl *ActOnStartCategoryImplementation(SourceLocation AtCatImplLoc,
9600 IdentifierInfo *ClassName,
9601 SourceLocation ClassLoc,
9602 IdentifierInfo *CatName,
9603 SourceLocation CatLoc,
9604 const ParsedAttributesView &AttrList);
9605
9606 DeclGroupPtrTy ActOnFinishObjCImplementation(Decl *ObjCImpDecl,
9607 ArrayRef<Decl *> Decls);
9608
9609 DeclGroupPtrTy ActOnForwardClassDeclaration(SourceLocation Loc,
9610 IdentifierInfo **IdentList,
9611 SourceLocation *IdentLocs,
9612 ArrayRef<ObjCTypeParamList *> TypeParamLists,
9613 unsigned NumElts);
9614
9615 DeclGroupPtrTy
9616 ActOnForwardProtocolDeclaration(SourceLocation AtProtoclLoc,
9617 ArrayRef<IdentifierLocPair> IdentList,
9618 const ParsedAttributesView &attrList);
9619
9620 void FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
9621 ArrayRef<IdentifierLocPair> ProtocolId,
9622 SmallVectorImpl<Decl *> &Protocols);
9623
9624 void DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
9625 SourceLocation ProtocolLoc,
9626 IdentifierInfo *TypeArgId,
9627 SourceLocation TypeArgLoc,
9628 bool SelectProtocolFirst = false);
9629
9630 /// Given a list of identifiers (and their locations), resolve the
9631 /// names to either Objective-C protocol qualifiers or type
9632 /// arguments, as appropriate.
9633 void actOnObjCTypeArgsOrProtocolQualifiers(
9634 Scope *S,
9635 ParsedType baseType,
9636 SourceLocation lAngleLoc,
9637 ArrayRef<IdentifierInfo *> identifiers,
9638 ArrayRef<SourceLocation> identifierLocs,
9639 SourceLocation rAngleLoc,
9640 SourceLocation &typeArgsLAngleLoc,
9641 SmallVectorImpl<ParsedType> &typeArgs,
9642 SourceLocation &typeArgsRAngleLoc,
9643 SourceLocation &protocolLAngleLoc,
9644 SmallVectorImpl<Decl *> &protocols,
9645 SourceLocation &protocolRAngleLoc,
9646 bool warnOnIncompleteProtocols);
9647
9648 /// Build a an Objective-C protocol-qualified 'id' type where no
9649 /// base type was specified.
9650 TypeResult actOnObjCProtocolQualifierType(
9651 SourceLocation lAngleLoc,
9652 ArrayRef<Decl *> protocols,
9653 ArrayRef<SourceLocation> protocolLocs,
9654 SourceLocation rAngleLoc);
9655
9656 /// Build a specialized and/or protocol-qualified Objective-C type.
9657 TypeResult actOnObjCTypeArgsAndProtocolQualifiers(
9658 Scope *S,
9659 SourceLocation Loc,
9660 ParsedType BaseType,
9661 SourceLocation TypeArgsLAngleLoc,
9662 ArrayRef<ParsedType> TypeArgs,
9663 SourceLocation TypeArgsRAngleLoc,
9664 SourceLocation ProtocolLAngleLoc,
9665 ArrayRef<Decl *> Protocols,
9666 ArrayRef<SourceLocation> ProtocolLocs,
9667 SourceLocation ProtocolRAngleLoc);
9668
9669 /// Build an Objective-C type parameter type.
9670 QualType BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
9671 SourceLocation ProtocolLAngleLoc,
9672 ArrayRef<ObjCProtocolDecl *> Protocols,
9673 ArrayRef<SourceLocation> ProtocolLocs,
9674 SourceLocation ProtocolRAngleLoc,
9675 bool FailOnError = false);
9676
9677 /// Build an Objective-C object pointer type.
9678 QualType BuildObjCObjectType(QualType BaseType,
9679 SourceLocation Loc,
9680 SourceLocation TypeArgsLAngleLoc,
9681 ArrayRef<TypeSourceInfo *> TypeArgs,
9682 SourceLocation TypeArgsRAngleLoc,
9683 SourceLocation ProtocolLAngleLoc,
9684 ArrayRef<ObjCProtocolDecl *> Protocols,
9685 ArrayRef<SourceLocation> ProtocolLocs,
9686 SourceLocation ProtocolRAngleLoc,
9687 bool FailOnError = false);
9688
9689 /// Ensure attributes are consistent with type.
9690 /// \param [in, out] Attributes The attributes to check; they will
9691 /// be modified to be consistent with \p PropertyTy.
9692 void CheckObjCPropertyAttributes(Decl *PropertyPtrTy,
9693 SourceLocation Loc,
9694 unsigned &Attributes,
9695 bool propertyInPrimaryClass);
9696
9697 /// Process the specified property declaration and create decls for the
9698 /// setters and getters as needed.
9699 /// \param property The property declaration being processed
9700 void ProcessPropertyDecl(ObjCPropertyDecl *property);
9701
9702
9703 void DiagnosePropertyMismatch(ObjCPropertyDecl *Property,
9704 ObjCPropertyDecl *SuperProperty,
9705 const IdentifierInfo *Name,
9706 bool OverridingProtocolProperty);
9707
9708 void DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
9709 ObjCInterfaceDecl *ID);
9710
9711 Decl *ActOnAtEnd(Scope *S, SourceRange AtEnd,
9712 ArrayRef<Decl *> allMethods = None,
9713 ArrayRef<DeclGroupPtrTy> allTUVars = None);
9714
9715 Decl *ActOnProperty(Scope *S, SourceLocation AtLoc,
9716 SourceLocation LParenLoc,
9717 FieldDeclarator &FD, ObjCDeclSpec &ODS,
9718 Selector GetterSel, Selector SetterSel,
9719 tok::ObjCKeywordKind MethodImplKind,
9720 DeclContext *lexicalDC = nullptr);
9721
9722 Decl *ActOnPropertyImplDecl(Scope *S,
9723 SourceLocation AtLoc,
9724 SourceLocation PropertyLoc,
9725 bool ImplKind,
9726 IdentifierInfo *PropertyId,
9727 IdentifierInfo *PropertyIvar,
9728 SourceLocation PropertyIvarLoc,
9729 ObjCPropertyQueryKind QueryKind);
9730
9731 enum ObjCSpecialMethodKind {
9732 OSMK_None,
9733 OSMK_Alloc,
9734 OSMK_New,
9735 OSMK_Copy,
9736 OSMK_RetainingInit,
9737 OSMK_NonRetainingInit
9738 };
9739
9740 struct ObjCArgInfo {
9741 IdentifierInfo *Name;
9742 SourceLocation NameLoc;
9743 // The Type is null if no type was specified, and the DeclSpec is invalid
9744 // in this case.
9745 ParsedType Type;
9746 ObjCDeclSpec DeclSpec;
9747
9748 /// ArgAttrs - Attribute list for this argument.
9749 ParsedAttributesView ArgAttrs;
9750 };
9751
9752 Decl *ActOnMethodDeclaration(
9753 Scope *S,
9754 SourceLocation BeginLoc, // location of the + or -.
9755 SourceLocation EndLoc, // location of the ; or {.
9756 tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
9757 ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
9758 // optional arguments. The number of types/arguments is obtained
9759 // from the Sel.getNumArgs().
9760 ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
9761 unsigned CNumArgs, // c-style args
9762 const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodImplKind,
9763 bool isVariadic, bool MethodDefinition);
9764
9765 ObjCMethodDecl *LookupMethodInQualifiedType(Selector Sel,
9766 const ObjCObjectPointerType *OPT,
9767 bool IsInstance);
9768 ObjCMethodDecl *LookupMethodInObjectType(Selector Sel, QualType Ty,
9769 bool IsInstance);
9770
9771 bool CheckARCMethodDecl(ObjCMethodDecl *method);
9772 bool inferObjCARCLifetime(ValueDecl *decl);
9773
9774 void deduceOpenCLAddressSpace(ValueDecl *decl);
9775
9776 ExprResult
9777 HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT,
9778 Expr *BaseExpr,
9779 SourceLocation OpLoc,
9780 DeclarationName MemberName,
9781 SourceLocation MemberLoc,
9782 SourceLocation SuperLoc, QualType SuperType,
9783 bool Super);
9784
9785 ExprResult
9786 ActOnClassPropertyRefExpr(IdentifierInfo &receiverName,
9787 IdentifierInfo &propertyName,
9788 SourceLocation receiverNameLoc,
9789 SourceLocation propertyNameLoc);
9790
9791 ObjCMethodDecl *tryCaptureObjCSelf(SourceLocation Loc);
9792
9793 /// Describes the kind of message expression indicated by a message
9794 /// send that starts with an identifier.
9795 enum ObjCMessageKind {
9796 /// The message is sent to 'super'.
9797 ObjCSuperMessage,
9798 /// The message is an instance message.
9799 ObjCInstanceMessage,
9800 /// The message is a class message, and the identifier is a type
9801 /// name.
9802 ObjCClassMessage
9803 };
9804
9805 ObjCMessageKind getObjCMessageKind(Scope *S,
9806 IdentifierInfo *Name,
9807 SourceLocation NameLoc,
9808 bool IsSuper,
9809 bool HasTrailingDot,
9810 ParsedType &ReceiverType);
9811
9812 ExprResult ActOnSuperMessage(Scope *S, SourceLocation SuperLoc,
9813 Selector Sel,
9814 SourceLocation LBracLoc,
9815 ArrayRef<SourceLocation> SelectorLocs,
9816 SourceLocation RBracLoc,
9817 MultiExprArg Args);
9818
9819 ExprResult BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo,
9820 QualType ReceiverType,
9821 SourceLocation SuperLoc,
9822 Selector Sel,
9823 ObjCMethodDecl *Method,
9824 SourceLocation LBracLoc,
9825 ArrayRef<SourceLocation> SelectorLocs,
9826 SourceLocation RBracLoc,
9827 MultiExprArg Args,
9828 bool isImplicit = false);
9829
9830 ExprResult BuildClassMessageImplicit(QualType ReceiverType,
9831 bool isSuperReceiver,
9832 SourceLocation Loc,
9833 Selector Sel,
9834 ObjCMethodDecl *Method,
9835 MultiExprArg Args);
9836
9837 ExprResult ActOnClassMessage(Scope *S,
9838 ParsedType Receiver,
9839 Selector Sel,
9840 SourceLocation LBracLoc,
9841 ArrayRef<SourceLocation> SelectorLocs,
9842 SourceLocation RBracLoc,
9843 MultiExprArg Args);
9844
9845 ExprResult BuildInstanceMessage(Expr *Receiver,
9846 QualType ReceiverType,
9847 SourceLocation SuperLoc,
9848 Selector Sel,
9849 ObjCMethodDecl *Method,
9850 SourceLocation LBracLoc,
9851 ArrayRef<SourceLocation> SelectorLocs,
9852 SourceLocation RBracLoc,
9853 MultiExprArg Args,
9854 bool isImplicit = false);
9855
9856 ExprResult BuildInstanceMessageImplicit(Expr *Receiver,
9857 QualType ReceiverType,
9858 SourceLocation Loc,
9859 Selector Sel,
9860 ObjCMethodDecl *Method,
9861 MultiExprArg Args);
9862
9863 ExprResult ActOnInstanceMessage(Scope *S,
9864 Expr *Receiver,
9865 Selector Sel,
9866 SourceLocation LBracLoc,
9867 ArrayRef<SourceLocation> SelectorLocs,
9868 SourceLocation RBracLoc,
9869 MultiExprArg Args);
9870
9871 ExprResult BuildObjCBridgedCast(SourceLocation LParenLoc,
9872 ObjCBridgeCastKind Kind,
9873 SourceLocation BridgeKeywordLoc,
9874 TypeSourceInfo *TSInfo,
9875 Expr *SubExpr);
9876
9877 ExprResult ActOnObjCBridgedCast(Scope *S,
9878 SourceLocation LParenLoc,
9879 ObjCBridgeCastKind Kind,
9880 SourceLocation BridgeKeywordLoc,
9881 ParsedType Type,
9882 SourceLocation RParenLoc,
9883 Expr *SubExpr);
9884
9885 void CheckTollFreeBridgeCast(QualType castType, Expr *castExpr);
9886
9887 void CheckObjCBridgeRelatedCast(QualType castType, Expr *castExpr);
9888
9889 bool CheckTollFreeBridgeStaticCast(QualType castType, Expr *castExpr,
9890 CastKind &Kind);
9891
9892 bool checkObjCBridgeRelatedComponents(SourceLocation Loc,
9893 QualType DestType, QualType SrcType,
9894 ObjCInterfaceDecl *&RelatedClass,
9895 ObjCMethodDecl *&ClassMethod,
9896 ObjCMethodDecl *&InstanceMethod,
9897 TypedefNameDecl *&TDNDecl,
9898 bool CfToNs, bool Diagnose = true);
9899
9900 bool CheckObjCBridgeRelatedConversions(SourceLocation Loc,
9901 QualType DestType, QualType SrcType,
9902 Expr *&SrcExpr, bool Diagnose = true);
9903
9904 bool CheckConversionToObjCLiteral(QualType DstType, Expr *&SrcExpr,
9905 bool Diagnose = true);
9906
9907 bool checkInitMethod(ObjCMethodDecl *method, QualType receiverTypeIfCall);
9908
9909 /// Check whether the given new method is a valid override of the
9910 /// given overridden method, and set any properties that should be inherited.
9911 void CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
9912 const ObjCMethodDecl *Overridden);
9913
9914 /// Describes the compatibility of a result type with its method.
9915 enum ResultTypeCompatibilityKind {
9916 RTC_Compatible,
9917 RTC_Incompatible,
9918 RTC_Unknown
9919 };
9920
9921 void CheckObjCMethodDirectOverrides(ObjCMethodDecl *method,
9922 ObjCMethodDecl *overridden);
9923
9924 void CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
9925 ObjCInterfaceDecl *CurrentClass,
9926 ResultTypeCompatibilityKind RTC);
9927
9928 enum PragmaOptionsAlignKind {
9929 POAK_Native, // #pragma options align=native
9930 POAK_Natural, // #pragma options align=natural
9931 POAK_Packed, // #pragma options align=packed
9932 POAK_Power, // #pragma options align=power
9933 POAK_Mac68k, // #pragma options align=mac68k
9934 POAK_Reset // #pragma options align=reset
9935 };
9936
9937 /// ActOnPragmaClangSection - Called on well formed \#pragma clang section
9938 void ActOnPragmaClangSection(SourceLocation PragmaLoc,
9939 PragmaClangSectionAction Action,
9940 PragmaClangSectionKind SecKind, StringRef SecName);
9941
9942 /// ActOnPragmaOptionsAlign - Called on well formed \#pragma options align.
9943 void ActOnPragmaOptionsAlign(PragmaOptionsAlignKind Kind,
9944 SourceLocation PragmaLoc);
9945
9946 /// ActOnPragmaPack - Called on well formed \#pragma pack(...).
9947 void ActOnPragmaPack(SourceLocation PragmaLoc, PragmaMsStackAction Action,
9948 StringRef SlotLabel, Expr *Alignment);
9949
9950 enum class PragmaAlignPackDiagnoseKind {
9951 NonDefaultStateAtInclude,
9952 ChangedStateAtExit
9953 };
9954
9955 void DiagnoseNonDefaultPragmaAlignPack(PragmaAlignPackDiagnoseKind Kind,
9956 SourceLocation IncludeLoc);
9957 void DiagnoseUnterminatedPragmaAlignPack();
9958
9959 /// ActOnPragmaMSStruct - Called on well formed \#pragma ms_struct [on|off].
9960 void ActOnPragmaMSStruct(PragmaMSStructKind Kind);
9961
9962 /// ActOnPragmaMSComment - Called on well formed
9963 /// \#pragma comment(kind, "arg").
9964 void ActOnPragmaMSComment(SourceLocation CommentLoc, PragmaMSCommentKind Kind,
9965 StringRef Arg);
9966
9967 /// ActOnPragmaMSPointersToMembers - called on well formed \#pragma
9968 /// pointers_to_members(representation method[, general purpose
9969 /// representation]).
9970 void ActOnPragmaMSPointersToMembers(
9971 LangOptions::PragmaMSPointersToMembersKind Kind,
9972 SourceLocation PragmaLoc);
9973
9974 /// Called on well formed \#pragma vtordisp().
9975 void ActOnPragmaMSVtorDisp(PragmaMsStackAction Action,
9976 SourceLocation PragmaLoc,
9977 MSVtorDispMode Value);
9978
9979 enum PragmaSectionKind {
9980 PSK_DataSeg,
9981 PSK_BSSSeg,
9982 PSK_ConstSeg,
9983 PSK_CodeSeg,
9984 };
9985
9986 bool UnifySection(StringRef SectionName, int SectionFlags,
9987 NamedDecl *TheDecl);
9988 bool UnifySection(StringRef SectionName,
9989 int SectionFlags,
9990 SourceLocation PragmaSectionLocation);
9991
9992 /// Called on well formed \#pragma bss_seg/data_seg/const_seg/code_seg.
9993 void ActOnPragmaMSSeg(SourceLocation PragmaLocation,
9994 PragmaMsStackAction Action,
9995 llvm::StringRef StackSlotLabel,
9996 StringLiteral *SegmentName,
9997 llvm::StringRef PragmaName);
9998
9999 /// Called on well formed \#pragma section().
10000 void ActOnPragmaMSSection(SourceLocation PragmaLocation,
10001 int SectionFlags, StringLiteral *SegmentName);
10002
10003 /// Called on well-formed \#pragma init_seg().
10004 void ActOnPragmaMSInitSeg(SourceLocation PragmaLocation,
10005 StringLiteral *SegmentName);
10006
10007 /// Called on #pragma clang __debug dump II
10008 void ActOnPragmaDump(Scope *S, SourceLocation Loc, IdentifierInfo *II);
10009
10010 /// ActOnPragmaDetectMismatch - Call on well-formed \#pragma detect_mismatch
10011 void ActOnPragmaDetectMismatch(SourceLocation Loc, StringRef Name,
10012 StringRef Value);
10013
10014 /// Are precise floating point semantics currently enabled?
10015 bool isPreciseFPEnabled() {
10016 return !CurFPFeatures.getAllowFPReassociate() &&
10017 !CurFPFeatures.getNoSignedZero() &&
10018 !CurFPFeatures.getAllowReciprocal() &&
10019 !CurFPFeatures.getAllowApproxFunc();
10020 }
10021
10022 /// ActOnPragmaFloatControl - Call on well-formed \#pragma float_control
10023 void ActOnPragmaFloatControl(SourceLocation Loc, PragmaMsStackAction Action,
10024 PragmaFloatControlKind Value);
10025
10026 /// ActOnPragmaUnused - Called on well-formed '\#pragma unused'.
10027 void ActOnPragmaUnused(const Token &Identifier,
10028 Scope *curScope,
10029 SourceLocation PragmaLoc);
10030
10031 /// ActOnPragmaVisibility - Called on well formed \#pragma GCC visibility... .
10032 void ActOnPragmaVisibility(const IdentifierInfo* VisType,
10033 SourceLocation PragmaLoc);
10034
10035 NamedDecl *DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
10036 SourceLocation Loc);
10037 void DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W);
10038
10039 /// ActOnPragmaWeakID - Called on well formed \#pragma weak ident.
10040 void ActOnPragmaWeakID(IdentifierInfo* WeakName,
10041 SourceLocation PragmaLoc,
10042 SourceLocation WeakNameLoc);
10043
10044 /// ActOnPragmaRedefineExtname - Called on well formed
10045 /// \#pragma redefine_extname oldname newname.
10046 void ActOnPragmaRedefineExtname(IdentifierInfo* WeakName,
10047 IdentifierInfo* AliasName,
10048 SourceLocation PragmaLoc,
10049 SourceLocation WeakNameLoc,
10050 SourceLocation AliasNameLoc);
10051
10052 /// ActOnPragmaWeakAlias - Called on well formed \#pragma weak ident = ident.
10053 void ActOnPragmaWeakAlias(IdentifierInfo* WeakName,
10054 IdentifierInfo* AliasName,
10055 SourceLocation PragmaLoc,
10056 SourceLocation WeakNameLoc,
10057 SourceLocation AliasNameLoc);
10058
10059 /// ActOnPragmaFPContract - Called on well formed
10060 /// \#pragma {STDC,OPENCL} FP_CONTRACT and
10061 /// \#pragma clang fp contract
10062 void ActOnPragmaFPContract(SourceLocation Loc, LangOptions::FPModeKind FPC);
10063
10064 /// Called on well formed
10065 /// \#pragma clang fp reassociate
10066 void ActOnPragmaFPReassociate(SourceLocation Loc, bool IsEnabled);
10067
10068 /// ActOnPragmaFenvAccess - Called on well formed
10069 /// \#pragma STDC FENV_ACCESS
10070 void ActOnPragmaFEnvAccess(SourceLocation Loc, bool IsEnabled);
10071
10072 /// Called on well formed '\#pragma clang fp' that has option 'exceptions'.
10073 void ActOnPragmaFPExceptions(SourceLocation Loc,
10074 LangOptions::FPExceptionModeKind);
10075
10076 /// Called to set constant rounding mode for floating point operations.
10077 void setRoundingMode(SourceLocation Loc, llvm::RoundingMode);
10078
10079 /// Called to set exception behavior for floating point operations.
10080 void setExceptionMode(SourceLocation Loc, LangOptions::FPExceptionModeKind);
10081
10082 /// AddAlignmentAttributesForRecord - Adds any needed alignment attributes to
10083 /// a the record decl, to handle '\#pragma pack' and '\#pragma options align'.
10084 void AddAlignmentAttributesForRecord(RecordDecl *RD);
10085
10086 /// AddMsStructLayoutForRecord - Adds ms_struct layout attribute to record.
10087 void AddMsStructLayoutForRecord(RecordDecl *RD);
10088
10089 /// PushNamespaceVisibilityAttr - Note that we've entered a
10090 /// namespace with a visibility attribute.
10091 void PushNamespaceVisibilityAttr(const VisibilityAttr *Attr,
10092 SourceLocation Loc);
10093
10094 /// AddPushedVisibilityAttribute - If '\#pragma GCC visibility' was used,
10095 /// add an appropriate visibility attribute.
10096 void AddPushedVisibilityAttribute(Decl *RD);
10097
10098 /// PopPragmaVisibility - Pop the top element of the visibility stack; used
10099 /// for '\#pragma GCC visibility' and visibility attributes on namespaces.
10100 void PopPragmaVisibility(bool IsNamespaceEnd, SourceLocation EndLoc);
10101
10102 /// FreeVisContext - Deallocate and null out VisContext.
10103 void FreeVisContext();
10104
10105 /// AddCFAuditedAttribute - Check whether we're currently within
10106 /// '\#pragma clang arc_cf_code_audited' and, if so, consider adding
10107 /// the appropriate attribute.
10108 void AddCFAuditedAttribute(Decl *D);
10109
10110 void ActOnPragmaAttributeAttribute(ParsedAttr &Attribute,
10111 SourceLocation PragmaLoc,
10112 attr::ParsedSubjectMatchRuleSet Rules);
10113 void ActOnPragmaAttributeEmptyPush(SourceLocation PragmaLoc,
10114 const IdentifierInfo *Namespace);
10115
10116 /// Called on well-formed '\#pragma clang attribute pop'.
10117 void ActOnPragmaAttributePop(SourceLocation PragmaLoc,
10118 const IdentifierInfo *Namespace);
10119
10120 /// Adds the attributes that have been specified using the
10121 /// '\#pragma clang attribute push' directives to the given declaration.
10122 void AddPragmaAttributes(Scope *S, Decl *D);
10123
10124 void DiagnoseUnterminatedPragmaAttribute();
10125
10126 /// Called on well formed \#pragma clang optimize.
10127 void ActOnPragmaOptimize(bool On, SourceLocation PragmaLoc);
10128
10129 /// Get the location for the currently active "\#pragma clang optimize
10130 /// off". If this location is invalid, then the state of the pragma is "on".
10131 SourceLocation getOptimizeOffPragmaLocation() const {
10132 return OptimizeOffPragmaLocation;
10133 }
10134
10135 /// Only called on function definitions; if there is a pragma in scope
10136 /// with the effect of a range-based optnone, consider marking the function
10137 /// with attribute optnone.
10138 void AddRangeBasedOptnone(FunctionDecl *FD);
10139
10140 /// Adds the 'optnone' attribute to the function declaration if there
10141 /// are no conflicts; Loc represents the location causing the 'optnone'
10142 /// attribute to be added (usually because of a pragma).
10143 void AddOptnoneAttributeIfNoConflicts(FunctionDecl *FD, SourceLocation Loc);
10144
10145 /// AddAlignedAttr - Adds an aligned attribute to a particular declaration.
10146 void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
10147 bool IsPackExpansion);
10148 void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, TypeSourceInfo *T,
10149 bool IsPackExpansion);
10150
10151 /// AddAssumeAlignedAttr - Adds an assume_aligned attribute to a particular
10152 /// declaration.
10153 void AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
10154 Expr *OE);
10155
10156 /// AddAllocAlignAttr - Adds an alloc_align attribute to a particular
10157 /// declaration.
10158 void AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI,
10159 Expr *ParamExpr);
10160
10161 /// AddAlignValueAttr - Adds an align_value attribute to a particular
10162 /// declaration.
10163 void AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E);
10164
10165 /// AddAnnotationAttr - Adds an annotation Annot with Args arguments to D.
10166 void AddAnnotationAttr(Decl *D, const AttributeCommonInfo &CI,
10167 StringRef Annot, MutableArrayRef<Expr *> Args);
10168
10169 /// AddLaunchBoundsAttr - Adds a launch_bounds attribute to a particular
10170 /// declaration.
10171 void AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI,
10172 Expr *MaxThreads, Expr *MinBlocks);
10173
10174 /// AddModeAttr - Adds a mode attribute to a particular declaration.
10175 void AddModeAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Name,
10176 bool InInstantiation = false);
10177
10178 void AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI,
10179 ParameterABI ABI);
10180
10181 enum class RetainOwnershipKind {NS, CF, OS};
10182 void AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI,
10183 RetainOwnershipKind K, bool IsTemplateInstantiation);
10184
10185 /// addAMDGPUFlatWorkGroupSizeAttr - Adds an amdgpu_flat_work_group_size
10186 /// attribute to a particular declaration.
10187 void addAMDGPUFlatWorkGroupSizeAttr(Decl *D, const AttributeCommonInfo &CI,
10188 Expr *Min, Expr *Max);
10189
10190 /// addAMDGPUWavePersEUAttr - Adds an amdgpu_waves_per_eu attribute to a
10191 /// particular declaration.
10192 void addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI,
10193 Expr *Min, Expr *Max);
10194
10195 bool checkNSReturnsRetainedReturnType(SourceLocation loc, QualType type);
10196
10197 //===--------------------------------------------------------------------===//
10198 // C++ Coroutines TS
10199 //
10200 bool ActOnCoroutineBodyStart(Scope *S, SourceLocation KwLoc,
10201 StringRef Keyword);
10202 ExprResult ActOnCoawaitExpr(Scope *S, SourceLocation KwLoc, Expr *E);
10203 ExprResult ActOnCoyieldExpr(Scope *S, SourceLocation KwLoc, Expr *E);
10204 StmtResult ActOnCoreturnStmt(Scope *S, SourceLocation KwLoc, Expr *E);
10205
10206 ExprResult BuildResolvedCoawaitExpr(SourceLocation KwLoc, Expr *E,
10207 bool IsImplicit = false);
10208 ExprResult BuildUnresolvedCoawaitExpr(SourceLocation KwLoc, Expr *E,
10209 UnresolvedLookupExpr* Lookup);
10210 ExprResult BuildCoyieldExpr(SourceLocation KwLoc, Expr *E);
10211 StmtResult BuildCoreturnStmt(SourceLocation KwLoc, Expr *E,
10212 bool IsImplicit = false);
10213 StmtResult BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs);
10214 bool buildCoroutineParameterMoves(SourceLocation Loc);
10215 VarDecl *buildCoroutinePromise(SourceLocation Loc);
10216 void CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body);
10217 ClassTemplateDecl *lookupCoroutineTraits(SourceLocation KwLoc,
10218 SourceLocation FuncLoc);
10219 /// Check that the expression co_await promise.final_suspend() shall not be
10220 /// potentially-throwing.
10221 bool checkFinalSuspendNoThrow(const Stmt *FinalSuspend);
10222
10223 //===--------------------------------------------------------------------===//
10224 // OpenMP directives and clauses.
10225 //
10226private:
10227 void *VarDataSharingAttributesStack;
10228
10229 struct DeclareTargetContextInfo {
10230 struct MapInfo {
10231 OMPDeclareTargetDeclAttr::MapTypeTy MT;
10232 SourceLocation Loc;
10233 };
10234 /// Explicitly listed variables and functions in a 'to' or 'link' clause.
10235 llvm::DenseMap<NamedDecl *, MapInfo> ExplicitlyMapped;
10236
10237 /// The 'device_type' as parsed from the clause.
10238 OMPDeclareTargetDeclAttr::DevTypeTy DT = OMPDeclareTargetDeclAttr::DT_Any;
10239
10240 /// The directive kind, `begin declare target` or `declare target`.
10241 OpenMPDirectiveKind Kind;
10242
10243 /// The directive location.
10244 SourceLocation Loc;
10245
10246 DeclareTargetContextInfo(OpenMPDirectiveKind Kind, SourceLocation Loc)
10247 : Kind(Kind), Loc(Loc) {}
10248 };
10249
10250 /// Number of nested '#pragma omp declare target' directives.
10251 SmallVector<DeclareTargetContextInfo, 4> DeclareTargetNesting;
10252
10253 /// Initialization of data-sharing attributes stack.
10254 void InitDataSharingAttributesStack();
10255 void DestroyDataSharingAttributesStack();
10256 ExprResult
10257 VerifyPositiveIntegerConstantInClause(Expr *Op, OpenMPClauseKind CKind,
10258 bool StrictlyPositive = true,
10259 bool SuppressExprDiags = false);
10260 /// Returns OpenMP nesting level for current directive.
10261 unsigned getOpenMPNestingLevel() const;
10262
10263 /// Adjusts the function scopes index for the target-based regions.
10264 void adjustOpenMPTargetScopeIndex(unsigned &FunctionScopesIndex,
10265 unsigned Level) const;
10266
10267 /// Returns the number of scopes associated with the construct on the given
10268 /// OpenMP level.
10269 int getNumberOfConstructScopes(unsigned Level) const;
10270
10271 /// Push new OpenMP function region for non-capturing function.
10272 void pushOpenMPFunctionRegion();
10273
10274 /// Pop OpenMP function region for non-capturing function.
10275 void popOpenMPFunctionRegion(const sema::FunctionScopeInfo *OldFSI);
10276
10277 /// Analyzes and checks a loop nest for use by a loop transformation.
10278 ///
10279 /// \param Kind The loop transformation directive kind.
10280 /// \param NumLoops How many nested loops the directive is expecting.
10281 /// \param AStmt Associated statement of the transformation directive.
10282 /// \param LoopHelpers [out] The loop analysis result.
10283 /// \param Body [out] The body code nested in \p NumLoops loop.
10284 /// \param OriginalInits [out] Collection of statements and declarations that
10285 /// must have been executed/declared before entering the
10286 /// loop.
10287 ///
10288 /// \return Whether there was any error.
10289 bool checkTransformableLoopNest(
10290 OpenMPDirectiveKind Kind, Stmt *AStmt, int NumLoops,
10291 SmallVectorImpl<OMPLoopBasedDirective::HelperExprs> &LoopHelpers,
10292 Stmt *&Body,
10293 SmallVectorImpl<SmallVector<llvm::PointerUnion<Stmt *, Decl *>, 0>>
10294 &OriginalInits);
10295
10296 /// Helper to keep information about the current `omp begin/end declare
10297 /// variant` nesting.
10298 struct OMPDeclareVariantScope {
10299 /// The associated OpenMP context selector.
10300 OMPTraitInfo *TI;
10301
10302 /// The associated OpenMP context selector mangling.
10303 std::string NameSuffix;
10304
10305 OMPDeclareVariantScope(OMPTraitInfo &TI);
10306 };
10307
10308 /// Return the OMPTraitInfo for the surrounding scope, if any.
10309 OMPTraitInfo *getOMPTraitInfoForSurroundingScope() {
10310 return OMPDeclareVariantScopes.empty() ? nullptr
10311 : OMPDeclareVariantScopes.back().TI;
10312 }
10313
10314 /// The current `omp begin/end declare variant` scopes.
10315 SmallVector<OMPDeclareVariantScope, 4> OMPDeclareVariantScopes;
10316
10317 /// The current `omp begin/end assumes` scopes.
10318 SmallVector<AssumptionAttr *, 4> OMPAssumeScoped;
10319
10320 /// All `omp assumes` we encountered so far.
10321 SmallVector<AssumptionAttr *, 4> OMPAssumeGlobal;
10322
10323public:
10324 /// The declarator \p D defines a function in the scope \p S which is nested
10325 /// in an `omp begin/end declare variant` scope. In this method we create a
10326 /// declaration for \p D and rename \p D according to the OpenMP context
10327 /// selector of the surrounding scope. Return all base functions in \p Bases.
10328 void ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
10329 Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParameterLists,
10330 SmallVectorImpl<FunctionDecl *> &Bases);
10331
10332 /// Register \p D as specialization of all base functions in \p Bases in the
10333 /// current `omp begin/end declare variant` scope.
10334 void ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(
10335 Decl *D, SmallVectorImpl<FunctionDecl *> &Bases);
10336
10337 /// Act on \p D, a function definition inside of an `omp [begin/end] assumes`.
10338 void ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Decl *D);
10339
10340 /// Can we exit an OpenMP declare variant scope at the moment.
10341 bool isInOpenMPDeclareVariantScope() const {
10342 return !OMPDeclareVariantScopes.empty();
10343 }
10344
10345 /// Given the potential call expression \p Call, determine if there is a
10346 /// specialization via the OpenMP declare variant mechanism available. If
10347 /// there is, return the specialized call expression, otherwise return the
10348 /// original \p Call.
10349 ExprResult ActOnOpenMPCall(ExprResult Call, Scope *Scope,
10350 SourceLocation LParenLoc, MultiExprArg ArgExprs,
10351 SourceLocation RParenLoc, Expr *ExecConfig);
10352
10353 /// Handle a `omp begin declare variant`.
10354 void ActOnOpenMPBeginDeclareVariant(SourceLocation Loc, OMPTraitInfo &TI);
10355
10356 /// Handle a `omp end declare variant`.
10357 void ActOnOpenMPEndDeclareVariant();
10358
10359 /// Checks if the variant/multiversion functions are compatible.
10360 bool areMultiversionVariantFunctionsCompatible(
10361 const FunctionDecl *OldFD, const FunctionDecl *NewFD,
10362 const PartialDiagnostic &NoProtoDiagID,
10363 const PartialDiagnosticAt &NoteCausedDiagIDAt,
10364 const PartialDiagnosticAt &NoSupportDiagIDAt,
10365 const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
10366 bool ConstexprSupported, bool CLinkageMayDiffer);
10367
10368 /// Function tries to capture lambda's captured variables in the OpenMP region
10369 /// before the original lambda is captured.
10370 void tryCaptureOpenMPLambdas(ValueDecl *V);
10371
10372 /// Return true if the provided declaration \a VD should be captured by
10373 /// reference.
10374 /// \param Level Relative level of nested OpenMP construct for that the check
10375 /// is performed.
10376 /// \param OpenMPCaptureLevel Capture level within an OpenMP construct.
10377 bool isOpenMPCapturedByRef(const ValueDecl *D, unsigned Level,
10378 unsigned OpenMPCaptureLevel) const;
10379
10380 /// Check if the specified variable is used in one of the private
10381 /// clauses (private, firstprivate, lastprivate, reduction etc.) in OpenMP
10382 /// constructs.
10383 VarDecl *isOpenMPCapturedDecl(ValueDecl *D, bool CheckScopeInfo = false,
10384 unsigned StopAt = 0);
10385 ExprResult getOpenMPCapturedExpr(VarDecl *Capture, ExprValueKind VK,
10386 ExprObjectKind OK, SourceLocation Loc);
10387
10388 /// If the current region is a loop-based region, mark the start of the loop
10389 /// construct.
10390 void startOpenMPLoop();
10391
10392 /// If the current region is a range loop-based region, mark the start of the
10393 /// loop construct.
10394 void startOpenMPCXXRangeFor();
10395
10396 /// Check if the specified variable is used in 'private' clause.
10397 /// \param Level Relative level of nested OpenMP construct for that the check
10398 /// is performed.
10399 OpenMPClauseKind isOpenMPPrivateDecl(ValueDecl *D, unsigned Level,
10400 unsigned CapLevel) const;
10401
10402 /// Sets OpenMP capture kind (OMPC_private, OMPC_firstprivate, OMPC_map etc.)
10403 /// for \p FD based on DSA for the provided corresponding captured declaration
10404 /// \p D.
10405 void setOpenMPCaptureKind(FieldDecl *FD, const ValueDecl *D, unsigned Level);
10406
10407 /// Check if the specified variable is captured by 'target' directive.
10408 /// \param Level Relative level of nested OpenMP construct for that the check
10409 /// is performed.
10410 bool isOpenMPTargetCapturedDecl(const ValueDecl *D, unsigned Level,
10411 unsigned CaptureLevel) const;
10412
10413 /// Check if the specified global variable must be captured by outer capture
10414 /// regions.
10415 /// \param Level Relative level of nested OpenMP construct for that
10416 /// the check is performed.
10417 bool isOpenMPGlobalCapturedDecl(ValueDecl *D, unsigned Level,
10418 unsigned CaptureLevel) const;
10419
10420 ExprResult PerformOpenMPImplicitIntegerConversion(SourceLocation OpLoc,
10421 Expr *Op);
10422 /// Called on start of new data sharing attribute block.
10423 void StartOpenMPDSABlock(OpenMPDirectiveKind K,
10424 const DeclarationNameInfo &DirName, Scope *CurScope,
10425 SourceLocation Loc);
10426 /// Start analysis of clauses.
10427 void StartOpenMPClause(OpenMPClauseKind K);
10428 /// End analysis of clauses.
10429 void EndOpenMPClause();
10430 /// Called on end of data sharing attribute block.
10431 void EndOpenMPDSABlock(Stmt *CurDirective);
10432
10433 /// Check if the current region is an OpenMP loop region and if it is,
10434 /// mark loop control variable, used in \p Init for loop initialization, as
10435 /// private by default.
10436 /// \param Init First part of the for loop.
10437 void ActOnOpenMPLoopInitialization(SourceLocation ForLoc, Stmt *Init);
10438
10439 // OpenMP directives and clauses.
10440 /// Called on correct id-expression from the '#pragma omp
10441 /// threadprivate'.
10442 ExprResult ActOnOpenMPIdExpression(Scope *CurScope, CXXScopeSpec &ScopeSpec,
10443 const DeclarationNameInfo &Id,
10444 OpenMPDirectiveKind Kind);
10445 /// Called on well-formed '#pragma omp threadprivate'.
10446 DeclGroupPtrTy ActOnOpenMPThreadprivateDirective(
10447 SourceLocation Loc,
10448 ArrayRef<Expr *> VarList);
10449 /// Builds a new OpenMPThreadPrivateDecl and checks its correctness.
10450 OMPThreadPrivateDecl *CheckOMPThreadPrivateDecl(SourceLocation Loc,
10451 ArrayRef<Expr *> VarList);
10452 /// Called on well-formed '#pragma omp allocate'.
10453 DeclGroupPtrTy ActOnOpenMPAllocateDirective(SourceLocation Loc,
10454 ArrayRef<Expr *> VarList,
10455 ArrayRef<OMPClause *> Clauses,
10456 DeclContext *Owner = nullptr);
10457
10458 /// Called on well-formed '#pragma omp [begin] assume[s]'.
10459 void ActOnOpenMPAssumesDirective(SourceLocation Loc,
10460 OpenMPDirectiveKind DKind,
10461 ArrayRef<StringRef> Assumptions,
10462 bool SkippedClauses);
10463
10464 /// Check if there is an active global `omp begin assumes` directive.
10465 bool isInOpenMPAssumeScope() const { return !OMPAssumeScoped.empty(); }
10466
10467 /// Check if there is an active global `omp assumes` directive.
10468 bool hasGlobalOpenMPAssumes() const { return !OMPAssumeGlobal.empty(); }
10469
10470 /// Called on well-formed '#pragma omp end assumes'.
10471 void ActOnOpenMPEndAssumesDirective();
10472
10473 /// Called on well-formed '#pragma omp requires'.
10474 DeclGroupPtrTy ActOnOpenMPRequiresDirective(SourceLocation Loc,
10475 ArrayRef<OMPClause *> ClauseList);
10476 /// Check restrictions on Requires directive
10477 OMPRequiresDecl *CheckOMPRequiresDecl(SourceLocation Loc,
10478 ArrayRef<OMPClause *> Clauses);
10479 /// Check if the specified type is allowed to be used in 'omp declare
10480 /// reduction' construct.
10481 QualType ActOnOpenMPDeclareReductionType(SourceLocation TyLoc,
10482 TypeResult ParsedType);
10483 /// Called on start of '#pragma omp declare reduction'.
10484 DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveStart(
10485 Scope *S, DeclContext *DC, DeclarationName Name,
10486 ArrayRef<std::pair<QualType, SourceLocation>> ReductionTypes,
10487 AccessSpecifier AS, Decl *PrevDeclInScope = nullptr);
10488 /// Initialize declare reduction construct initializer.
10489 void ActOnOpenMPDeclareReductionCombinerStart(Scope *S, Decl *D);
10490 /// Finish current declare reduction construct initializer.
10491 void ActOnOpenMPDeclareReductionCombinerEnd(Decl *D, Expr *Combiner);
10492 /// Initialize declare reduction construct initializer.
10493 /// \return omp_priv variable.
10494 VarDecl *ActOnOpenMPDeclareReductionInitializerStart(Scope *S, Decl *D);
10495 /// Finish current declare reduction construct initializer.
10496 void ActOnOpenMPDeclareReductionInitializerEnd(Decl *D, Expr *Initializer,
10497 VarDecl *OmpPrivParm);
10498 /// Called at the end of '#pragma omp declare reduction'.
10499 DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveEnd(
10500 Scope *S, DeclGroupPtrTy DeclReductions, bool IsValid);
10501
10502 /// Check variable declaration in 'omp declare mapper' construct.
10503 TypeResult ActOnOpenMPDeclareMapperVarDecl(Scope *S, Declarator &D);
10504 /// Check if the specified type is allowed to be used in 'omp declare
10505 /// mapper' construct.
10506 QualType ActOnOpenMPDeclareMapperType(SourceLocation TyLoc,
10507 TypeResult ParsedType);
10508 /// Called on start of '#pragma omp declare mapper'.
10509 DeclGroupPtrTy ActOnOpenMPDeclareMapperDirective(
10510 Scope *S, DeclContext *DC, DeclarationName Name, QualType MapperType,
10511 SourceLocation StartLoc, DeclarationName VN, AccessSpecifier AS,
10512 Expr *MapperVarRef, ArrayRef<OMPClause *> Clauses,
10513 Decl *PrevDeclInScope = nullptr);
10514 /// Build the mapper variable of '#pragma omp declare mapper'.
10515 ExprResult ActOnOpenMPDeclareMapperDirectiveVarDecl(Scope *S,
10516 QualType MapperType,
10517 SourceLocation StartLoc,
10518 DeclarationName VN);
10519 bool isOpenMPDeclareMapperVarDeclAllowed(const VarDecl *VD) const;
10520 const ValueDecl *getOpenMPDeclareMapperVarName() const;
10521
10522 /// Called on the start of target region i.e. '#pragma omp declare target'.
10523 bool ActOnStartOpenMPDeclareTargetContext(DeclareTargetContextInfo &DTCI);
10524
10525 /// Called at the end of target region i.e. '#pragma omp end declare target'.
10526 const DeclareTargetContextInfo ActOnOpenMPEndDeclareTargetDirective();
10527
10528 /// Called once a target context is completed, that can be when a
10529 /// '#pragma omp end declare target' was encountered or when a
10530 /// '#pragma omp declare target' without declaration-definition-seq was
10531 /// encountered.
10532 void ActOnFinishedOpenMPDeclareTargetContext(DeclareTargetContextInfo &DTCI);
10533
10534 /// Searches for the provided declaration name for OpenMP declare target
10535 /// directive.
10536 NamedDecl *lookupOpenMPDeclareTargetName(Scope *CurScope,
10537 CXXScopeSpec &ScopeSpec,
10538 const DeclarationNameInfo &Id);
10539
10540 /// Called on correct id-expression from the '#pragma omp declare target'.
10541 void ActOnOpenMPDeclareTargetName(NamedDecl *ND, SourceLocation Loc,
10542 OMPDeclareTargetDeclAttr::MapTypeTy MT,
10543 OMPDeclareTargetDeclAttr::DevTypeTy DT);
10544
10545 /// Check declaration inside target region.
10546 void
10547 checkDeclIsAllowedInOpenMPTarget(Expr *E, Decl *D,
10548 SourceLocation IdLoc = SourceLocation());
10549 /// Finishes analysis of the deferred functions calls that may be declared as
10550 /// host/nohost during device/host compilation.
10551 void finalizeOpenMPDelayedAnalysis(const FunctionDecl *Caller,
10552 const FunctionDecl *Callee,
10553 SourceLocation Loc);
10554 /// Return true inside OpenMP declare target region.
10555 bool isInOpenMPDeclareTargetContext() const {
10556 return !DeclareTargetNesting.empty();
10557 }
10558 /// Return true inside OpenMP target region.
10559 bool isInOpenMPTargetExecutionDirective() const;
10560
10561 /// Return the number of captured regions created for an OpenMP directive.
10562 static int getOpenMPCaptureLevels(OpenMPDirectiveKind Kind);
10563
10564 /// Initialization of captured region for OpenMP region.
10565 void ActOnOpenMPRegionStart(OpenMPDirectiveKind DKind, Scope *CurScope);
10566
10567 /// Called for syntactical loops (ForStmt or CXXForRangeStmt) associated to
10568 /// an OpenMP loop directive.
10569 StmtResult ActOnOpenMPCanonicalLoop(Stmt *AStmt);
10570
10571 /// End of OpenMP region.
10572 ///
10573 /// \param S Statement associated with the current OpenMP region.
10574 /// \param Clauses List of clauses for the current OpenMP region.
10575 ///
10576 /// \returns Statement for finished OpenMP region.
10577 StmtResult ActOnOpenMPRegionEnd(StmtResult S, ArrayRef<OMPClause *> Clauses);
10578 StmtResult ActOnOpenMPExecutableDirective(
10579 OpenMPDirectiveKind Kind, const DeclarationNameInfo &DirName,
10580 OpenMPDirectiveKind CancelRegion, ArrayRef<OMPClause *> Clauses,
10581 Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc);
10582 /// Called on well-formed '\#pragma omp parallel' after parsing
10583 /// of the associated statement.
10584 StmtResult ActOnOpenMPParallelDirective(ArrayRef<OMPClause *> Clauses,
10585 Stmt *AStmt,
10586 SourceLocation StartLoc,
10587 SourceLocation EndLoc);
10588 using VarsWithInheritedDSAType =
10589 llvm::SmallDenseMap<const ValueDecl *, const Expr *, 4>;
10590 /// Called on well-formed '\#pragma omp simd' after parsing
10591 /// of the associated statement.
10592 StmtResult
10593 ActOnOpenMPSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10594 SourceLocation StartLoc, SourceLocation EndLoc,
10595 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10596 /// Called on well-formed '#pragma omp tile' after parsing of its clauses and
10597 /// the associated statement.
10598 StmtResult ActOnOpenMPTileDirective(ArrayRef<OMPClause *> Clauses,
10599 Stmt *AStmt, SourceLocation StartLoc,
10600 SourceLocation EndLoc);
10601 /// Called on well-formed '#pragma omp unroll' after parsing of its clauses
10602 /// and the associated statement.
10603 StmtResult ActOnOpenMPUnrollDirective(ArrayRef<OMPClause *> Clauses,
10604 Stmt *AStmt, SourceLocation StartLoc,
10605 SourceLocation EndLoc);
10606 /// Called on well-formed '\#pragma omp for' after parsing
10607 /// of the associated statement.
10608 StmtResult
10609 ActOnOpenMPForDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10610 SourceLocation StartLoc, SourceLocation EndLoc,
10611 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10612 /// Called on well-formed '\#pragma omp for simd' after parsing
10613 /// of the associated statement.
10614 StmtResult
10615 ActOnOpenMPForSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10616 SourceLocation StartLoc, SourceLocation EndLoc,
10617 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10618 /// Called on well-formed '\#pragma omp sections' after parsing
10619 /// of the associated statement.
10620 StmtResult ActOnOpenMPSectionsDirective(ArrayRef<OMPClause *> Clauses,
10621 Stmt *AStmt, SourceLocation StartLoc,
10622 SourceLocation EndLoc);
10623 /// Called on well-formed '\#pragma omp section' after parsing of the
10624 /// associated statement.
10625 StmtResult ActOnOpenMPSectionDirective(Stmt *AStmt, SourceLocation StartLoc,
10626 SourceLocation EndLoc);
10627 /// Called on well-formed '\#pragma omp single' after parsing of the
10628 /// associated statement.
10629 StmtResult ActOnOpenMPSingleDirective(ArrayRef<OMPClause *> Clauses,
10630 Stmt *AStmt, SourceLocation StartLoc,
10631 SourceLocation EndLoc);
10632 /// Called on well-formed '\#pragma omp master' after parsing of the
10633 /// associated statement.
10634 StmtResult ActOnOpenMPMasterDirective(Stmt *AStmt, SourceLocation StartLoc,
10635 SourceLocation EndLoc);
10636 /// Called on well-formed '\#pragma omp critical' after parsing of the
10637 /// associated statement.
10638 StmtResult ActOnOpenMPCriticalDirective(const DeclarationNameInfo &DirName,
10639 ArrayRef<OMPClause *> Clauses,
10640 Stmt *AStmt, SourceLocation StartLoc,
10641 SourceLocation EndLoc);
10642 /// Called on well-formed '\#pragma omp parallel for' after parsing
10643 /// of the associated statement.
10644 StmtResult ActOnOpenMPParallelForDirective(
10645 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10646 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10647 /// Called on well-formed '\#pragma omp parallel for simd' after
10648 /// parsing of the associated statement.
10649 StmtResult ActOnOpenMPParallelForSimdDirective(
10650 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10651 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10652 /// Called on well-formed '\#pragma omp parallel master' after
10653 /// parsing of the associated statement.
10654 StmtResult ActOnOpenMPParallelMasterDirective(ArrayRef<OMPClause *> Clauses,
10655 Stmt *AStmt,
10656 SourceLocation StartLoc,
10657 SourceLocation EndLoc);
10658 /// Called on well-formed '\#pragma omp parallel sections' after
10659 /// parsing of the associated statement.
10660 StmtResult ActOnOpenMPParallelSectionsDirective(ArrayRef<OMPClause *> Clauses,
10661 Stmt *AStmt,
10662 SourceLocation StartLoc,
10663 SourceLocation EndLoc);
10664 /// Called on well-formed '\#pragma omp task' after parsing of the
10665 /// associated statement.
10666 StmtResult ActOnOpenMPTaskDirective(ArrayRef<OMPClause *> Clauses,
10667 Stmt *AStmt, SourceLocation StartLoc,
10668 SourceLocation EndLoc);
10669 /// Called on well-formed '\#pragma omp taskyield'.
10670 StmtResult ActOnOpenMPTaskyieldDirective(SourceLocation StartLoc,
10671 SourceLocation EndLoc);
10672 /// Called on well-formed '\#pragma omp barrier'.
10673 StmtResult ActOnOpenMPBarrierDirective(SourceLocation StartLoc,
10674 SourceLocation EndLoc);
10675 /// Called on well-formed '\#pragma omp taskwait'.
10676 StmtResult ActOnOpenMPTaskwaitDirective(SourceLocation StartLoc,
10677 SourceLocation EndLoc);
10678 /// Called on well-formed '\#pragma omp taskgroup'.
10679 StmtResult ActOnOpenMPTaskgroupDirective(ArrayRef<OMPClause *> Clauses,
10680 Stmt *AStmt, SourceLocation StartLoc,
10681 SourceLocation EndLoc);
10682 /// Called on well-formed '\#pragma omp flush'.
10683 StmtResult ActOnOpenMPFlushDirective(ArrayRef<OMPClause *> Clauses,
10684 SourceLocation StartLoc,
10685 SourceLocation EndLoc);
10686 /// Called on well-formed '\#pragma omp depobj'.
10687 StmtResult ActOnOpenMPDepobjDirective(ArrayRef<OMPClause *> Clauses,
10688 SourceLocation StartLoc,
10689 SourceLocation EndLoc);
10690 /// Called on well-formed '\#pragma omp scan'.
10691 StmtResult ActOnOpenMPScanDirective(ArrayRef<OMPClause *> Clauses,
10692 SourceLocation StartLoc,
10693 SourceLocation EndLoc);
10694 /// Called on well-formed '\#pragma omp ordered' after parsing of the
10695 /// associated statement.
10696 StmtResult ActOnOpenMPOrderedDirective(ArrayRef<OMPClause *> Clauses,
10697 Stmt *AStmt, SourceLocation StartLoc,
10698 SourceLocation EndLoc);
10699 /// Called on well-formed '\#pragma omp atomic' after parsing of the
10700 /// associated statement.
10701 StmtResult ActOnOpenMPAtomicDirective(ArrayRef<OMPClause *> Clauses,
10702 Stmt *AStmt, SourceLocation StartLoc,
10703 SourceLocation EndLoc);
10704 /// Called on well-formed '\#pragma omp target' after parsing of the
10705 /// associated statement.
10706 StmtResult ActOnOpenMPTargetDirective(ArrayRef<OMPClause *> Clauses,
10707 Stmt *AStmt, SourceLocation StartLoc,
10708 SourceLocation EndLoc);
10709 /// Called on well-formed '\#pragma omp target data' after parsing of
10710 /// the associated statement.
10711 StmtResult ActOnOpenMPTargetDataDirective(ArrayRef<OMPClause *> Clauses,
10712 Stmt *AStmt, SourceLocation StartLoc,
10713 SourceLocation EndLoc);
10714 /// Called on well-formed '\#pragma omp target enter data' after
10715 /// parsing of the associated statement.
10716 StmtResult ActOnOpenMPTargetEnterDataDirective(ArrayRef<OMPClause *> Clauses,
10717 SourceLocation StartLoc,
10718 SourceLocation EndLoc,
10719 Stmt *AStmt);
10720 /// Called on well-formed '\#pragma omp target exit data' after
10721 /// parsing of the associated statement.
10722 StmtResult ActOnOpenMPTargetExitDataDirective(ArrayRef<OMPClause *> Clauses,
10723 SourceLocation StartLoc,
10724 SourceLocation EndLoc,
10725 Stmt *AStmt);
10726 /// Called on well-formed '\#pragma omp target parallel' after
10727 /// parsing of the associated statement.
10728 StmtResult ActOnOpenMPTargetParallelDirective(ArrayRef<OMPClause *> Clauses,
10729 Stmt *AStmt,
10730 SourceLocation StartLoc,
10731 SourceLocation EndLoc);
10732 /// Called on well-formed '\#pragma omp target parallel for' after
10733 /// parsing of the associated statement.
10734 StmtResult ActOnOpenMPTargetParallelForDirective(
10735 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10736 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10737 /// Called on well-formed '\#pragma omp teams' after parsing of the
10738 /// associated statement.
10739 StmtResult ActOnOpenMPTeamsDirective(ArrayRef<OMPClause *> Clauses,
10740 Stmt *AStmt, SourceLocation StartLoc,
10741 SourceLocation EndLoc);
10742 /// Called on well-formed '\#pragma omp cancellation point'.
10743 StmtResult
10744 ActOnOpenMPCancellationPointDirective(SourceLocation StartLoc,
10745 SourceLocation EndLoc,
10746 OpenMPDirectiveKind CancelRegion);
10747 /// Called on well-formed '\#pragma omp cancel'.
10748 StmtResult ActOnOpenMPCancelDirective(ArrayRef<OMPClause *> Clauses,
10749 SourceLocation StartLoc,
10750 SourceLocation EndLoc,
10751 OpenMPDirectiveKind CancelRegion);
10752 /// Called on well-formed '\#pragma omp taskloop' after parsing of the
10753 /// associated statement.
10754 StmtResult
10755 ActOnOpenMPTaskLoopDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10756 SourceLocation StartLoc, SourceLocation EndLoc,
10757 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10758 /// Called on well-formed '\#pragma omp taskloop simd' after parsing of
10759 /// the associated statement.
10760 StmtResult ActOnOpenMPTaskLoopSimdDirective(
10761 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10762 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10763 /// Called on well-formed '\#pragma omp master taskloop' after parsing of the
10764 /// associated statement.
10765 StmtResult ActOnOpenMPMasterTaskLoopDirective(
10766 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10767 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10768 /// Called on well-formed '\#pragma omp master taskloop simd' after parsing of
10769 /// the associated statement.
10770 StmtResult ActOnOpenMPMasterTaskLoopSimdDirective(
10771 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10772 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10773 /// Called on well-formed '\#pragma omp parallel master taskloop' after
10774 /// parsing of the associated statement.
10775 StmtResult ActOnOpenMPParallelMasterTaskLoopDirective(
10776 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10777 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10778 /// Called on well-formed '\#pragma omp parallel master taskloop simd' after
10779 /// parsing of the associated statement.
10780 StmtResult ActOnOpenMPParallelMasterTaskLoopSimdDirective(
10781 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10782 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10783 /// Called on well-formed '\#pragma omp distribute' after parsing
10784 /// of the associated statement.
10785 StmtResult
10786 ActOnOpenMPDistributeDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10787 SourceLocation StartLoc, SourceLocation EndLoc,
10788 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10789 /// Called on well-formed '\#pragma omp target update'.
10790 StmtResult ActOnOpenMPTargetUpdateDirective(ArrayRef<OMPClause *> Clauses,
10791 SourceLocation StartLoc,
10792 SourceLocation EndLoc,
10793 Stmt *AStmt);
10794 /// Called on well-formed '\#pragma omp distribute parallel for' after
10795 /// parsing of the associated statement.
10796 StmtResult ActOnOpenMPDistributeParallelForDirective(
10797 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10798 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10799 /// Called on well-formed '\#pragma omp distribute parallel for simd'
10800 /// after parsing of the associated statement.
10801 StmtResult ActOnOpenMPDistributeParallelForSimdDirective(
10802 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10803 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10804 /// Called on well-formed '\#pragma omp distribute simd' after
10805 /// parsing of the associated statement.
10806 StmtResult ActOnOpenMPDistributeSimdDirective(
10807 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10808 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10809 /// Called on well-formed '\#pragma omp target parallel for simd' after
10810 /// parsing of the associated statement.
10811 StmtResult ActOnOpenMPTargetParallelForSimdDirective(
10812 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10813 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10814 /// Called on well-formed '\#pragma omp target simd' after parsing of
10815 /// the associated statement.
10816 StmtResult
10817 ActOnOpenMPTargetSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10818 SourceLocation StartLoc, SourceLocation EndLoc,
10819 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10820 /// Called on well-formed '\#pragma omp teams distribute' after parsing of
10821 /// the associated statement.
10822 StmtResult ActOnOpenMPTeamsDistributeDirective(
10823 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10824 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10825 /// Called on well-formed '\#pragma omp teams distribute simd' after parsing
10826 /// of the associated statement.
10827 StmtResult ActOnOpenMPTeamsDistributeSimdDirective(
10828 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10829 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10830 /// Called on well-formed '\#pragma omp teams distribute parallel for simd'
10831 /// after parsing of the associated statement.
10832 StmtResult ActOnOpenMPTeamsDistributeParallelForSimdDirective(
10833 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10834 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10835 /// Called on well-formed '\#pragma omp teams distribute parallel for'
10836 /// after parsing of the associated statement.
10837 StmtResult ActOnOpenMPTeamsDistributeParallelForDirective(
10838 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10839 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10840 /// Called on well-formed '\#pragma omp target teams' after parsing of the
10841 /// associated statement.
10842 StmtResult ActOnOpenMPTargetTeamsDirective(ArrayRef<OMPClause *> Clauses,
10843 Stmt *AStmt,
10844 SourceLocation StartLoc,
10845 SourceLocation EndLoc);
10846 /// Called on well-formed '\#pragma omp target teams distribute' after parsing
10847 /// of the associated statement.
10848 StmtResult ActOnOpenMPTargetTeamsDistributeDirective(
10849 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10850 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10851 /// Called on well-formed '\#pragma omp target teams distribute parallel for'
10852 /// after parsing of the associated statement.
10853 StmtResult ActOnOpenMPTargetTeamsDistributeParallelForDirective(
10854 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10855 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10856 /// Called on well-formed '\#pragma omp target teams distribute parallel for
10857 /// simd' after parsing of the associated statement.
10858 StmtResult ActOnOpenMPTargetTeamsDistributeParallelForSimdDirective(
10859 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10860 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10861 /// Called on well-formed '\#pragma omp target teams distribute simd' after
10862 /// parsing of the associated statement.
10863 StmtResult ActOnOpenMPTargetTeamsDistributeSimdDirective(
10864 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10865 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10866 /// Called on well-formed '\#pragma omp interop'.
10867 StmtResult ActOnOpenMPInteropDirective(ArrayRef<OMPClause *> Clauses,
10868 SourceLocation StartLoc,
10869 SourceLocation EndLoc);
10870 /// Called on well-formed '\#pragma omp dispatch' after parsing of the
10871 // /associated statement.
10872 StmtResult ActOnOpenMPDispatchDirective(ArrayRef<OMPClause *> Clauses,
10873 Stmt *AStmt, SourceLocation StartLoc,
10874 SourceLocation EndLoc);
10875 /// Called on well-formed '\#pragma omp masked' after parsing of the
10876 // /associated statement.
10877 StmtResult ActOnOpenMPMaskedDirective(ArrayRef<OMPClause *> Clauses,
10878 Stmt *AStmt, SourceLocation StartLoc,
10879 SourceLocation EndLoc);
10880
10881 /// Checks correctness of linear modifiers.
10882 bool CheckOpenMPLinearModifier(OpenMPLinearClauseKind LinKind,
10883 SourceLocation LinLoc);
10884 /// Checks that the specified declaration matches requirements for the linear
10885 /// decls.
10886 bool CheckOpenMPLinearDecl(const ValueDecl *D, SourceLocation ELoc,
10887 OpenMPLinearClauseKind LinKind, QualType Type,
10888 bool IsDeclareSimd = false);
10889
10890 /// Called on well-formed '\#pragma omp declare simd' after parsing of
10891 /// the associated method/function.
10892 DeclGroupPtrTy ActOnOpenMPDeclareSimdDirective(
10893 DeclGroupPtrTy DG, OMPDeclareSimdDeclAttr::BranchStateTy BS,
10894 Expr *Simdlen, ArrayRef<Expr *> Uniforms, ArrayRef<Expr *> Aligneds,
10895 ArrayRef<Expr *> Alignments, ArrayRef<Expr *> Linears,
10896 ArrayRef<unsigned> LinModifiers, ArrayRef<Expr *> Steps, SourceRange SR);
10897
10898 /// Checks '\#pragma omp declare variant' variant function and original
10899 /// functions after parsing of the associated method/function.
10900 /// \param DG Function declaration to which declare variant directive is
10901 /// applied to.
10902 /// \param VariantRef Expression that references the variant function, which
10903 /// must be used instead of the original one, specified in \p DG.
10904 /// \param TI The trait info object representing the match clause.
10905 /// \returns None, if the function/variant function are not compatible with
10906 /// the pragma, pair of original function/variant ref expression otherwise.
10907 Optional<std::pair<FunctionDecl *, Expr *>>
10908 checkOpenMPDeclareVariantFunction(DeclGroupPtrTy DG, Expr *VariantRef,
10909 OMPTraitInfo &TI, SourceRange SR);
10910
10911 /// Called on well-formed '\#pragma omp declare variant' after parsing of
10912 /// the associated method/function.
10913 /// \param FD Function declaration to which declare variant directive is
10914 /// applied to.
10915 /// \param VariantRef Expression that references the variant function, which
10916 /// must be used instead of the original one, specified in \p DG.
10917 /// \param TI The context traits associated with the function variant.
10918 void ActOnOpenMPDeclareVariantDirective(FunctionDecl *FD, Expr *VariantRef,
10919 OMPTraitInfo &TI, SourceRange SR);
10920
10921 OMPClause *ActOnOpenMPSingleExprClause(OpenMPClauseKind Kind,
10922 Expr *Expr,
10923 SourceLocation StartLoc,
10924 SourceLocation LParenLoc,
10925 SourceLocation EndLoc);
10926 /// Called on well-formed 'allocator' clause.
10927 OMPClause *ActOnOpenMPAllocatorClause(Expr *Allocator,
10928 SourceLocation StartLoc,
10929 SourceLocation LParenLoc,
10930 SourceLocation EndLoc);
10931 /// Called on well-formed 'if' clause.
10932 OMPClause *ActOnOpenMPIfClause(OpenMPDirectiveKind NameModifier,
10933 Expr *Condition, SourceLocation StartLoc,
10934 SourceLocation LParenLoc,
10935 SourceLocation NameModifierLoc,
10936 SourceLocation ColonLoc,
10937 SourceLocation EndLoc);
10938 /// Called on well-formed 'final' clause.
10939 OMPClause *ActOnOpenMPFinalClause(Expr *Condition, SourceLocation StartLoc,
10940 SourceLocation LParenLoc,
10941 SourceLocation EndLoc);
10942 /// Called on well-formed 'num_threads' clause.
10943 OMPClause *ActOnOpenMPNumThreadsClause(Expr *NumThreads,
10944 SourceLocation StartLoc,
10945 SourceLocation LParenLoc,
10946 SourceLocation EndLoc);
10947 /// Called on well-formed 'safelen' clause.
10948 OMPClause *ActOnOpenMPSafelenClause(Expr *Length,
10949 SourceLocation StartLoc,
10950 SourceLocation LParenLoc,
10951 SourceLocation EndLoc);
10952 /// Called on well-formed 'simdlen' clause.
10953 OMPClause *ActOnOpenMPSimdlenClause(Expr *Length, SourceLocation StartLoc,
10954 SourceLocation LParenLoc,
10955 SourceLocation EndLoc);
10956 /// Called on well-form 'sizes' clause.
10957 OMPClause *ActOnOpenMPSizesClause(ArrayRef<Expr *> SizeExprs,
10958 SourceLocation StartLoc,
10959 SourceLocation LParenLoc,
10960 SourceLocation EndLoc);
10961 /// Called on well-form 'full' clauses.
10962 OMPClause *ActOnOpenMPFullClause(SourceLocation StartLoc,
10963 SourceLocation EndLoc);
10964 /// Called on well-form 'partial' clauses.
10965 OMPClause *ActOnOpenMPPartialClause(Expr *FactorExpr, SourceLocation StartLoc,
10966 SourceLocation LParenLoc,
10967 SourceLocation EndLoc);
10968 /// Called on well-formed 'collapse' clause.
10969 OMPClause *ActOnOpenMPCollapseClause(Expr *NumForLoops,
10970 SourceLocation StartLoc,
10971 SourceLocation LParenLoc,
10972 SourceLocation EndLoc);
10973 /// Called on well-formed 'ordered' clause.
10974 OMPClause *
10975 ActOnOpenMPOrderedClause(SourceLocation StartLoc, SourceLocation EndLoc,
10976 SourceLocation LParenLoc = SourceLocation(),
10977 Expr *NumForLoops = nullptr);
10978 /// Called on well-formed 'grainsize' clause.
10979 OMPClause *ActOnOpenMPGrainsizeClause(Expr *Size, SourceLocation StartLoc,
10980 SourceLocation LParenLoc,
10981 SourceLocation EndLoc);
10982 /// Called on well-formed 'num_tasks' clause.
10983 OMPClause *ActOnOpenMPNumTasksClause(Expr *NumTasks, SourceLocation StartLoc,
10984 SourceLocation LParenLoc,
10985 SourceLocation EndLoc);
10986 /// Called on well-formed 'hint' clause.
10987 OMPClause *ActOnOpenMPHintClause(Expr *Hint, SourceLocation StartLoc,
10988 SourceLocation LParenLoc,
10989 SourceLocation EndLoc);
10990 /// Called on well-formed 'detach' clause.
10991 OMPClause *ActOnOpenMPDetachClause(Expr *Evt, SourceLocation StartLoc,
10992 SourceLocation LParenLoc,
10993 SourceLocation EndLoc);
10994
10995 OMPClause *ActOnOpenMPSimpleClause(OpenMPClauseKind Kind,
10996 unsigned Argument,
10997 SourceLocation ArgumentLoc,
10998 SourceLocation StartLoc,
10999 SourceLocation LParenLoc,
11000 SourceLocation EndLoc);
11001 /// Called on well-formed 'default' clause.
11002 OMPClause *ActOnOpenMPDefaultClause(llvm::omp::DefaultKind Kind,
11003 SourceLocation KindLoc,
11004 SourceLocation StartLoc,
11005 SourceLocation LParenLoc,
11006 SourceLocation EndLoc);
11007 /// Called on well-formed 'proc_bind' clause.
11008 OMPClause *ActOnOpenMPProcBindClause(llvm::omp::ProcBindKind Kind,
11009 SourceLocation KindLoc,
11010 SourceLocation StartLoc,
11011 SourceLocation LParenLoc,
11012 SourceLocation EndLoc);
11013 /// Called on well-formed 'order' clause.
11014 OMPClause *ActOnOpenMPOrderClause(OpenMPOrderClauseKind Kind,
11015 SourceLocation KindLoc,
11016 SourceLocation StartLoc,
11017 SourceLocation LParenLoc,
11018 SourceLocation EndLoc);
11019 /// Called on well-formed 'update' clause.
11020 OMPClause *ActOnOpenMPUpdateClause(OpenMPDependClauseKind Kind,
11021 SourceLocation KindLoc,
11022 SourceLocation StartLoc,
11023 SourceLocation LParenLoc,
11024 SourceLocation EndLoc);
11025
11026 OMPClause *ActOnOpenMPSingleExprWithArgClause(
11027 OpenMPClauseKind Kind, ArrayRef<unsigned> Arguments, Expr *Expr,
11028 SourceLocation StartLoc, SourceLocation LParenLoc,
11029 ArrayRef<SourceLocation> ArgumentsLoc, SourceLocation DelimLoc,
11030 SourceLocation EndLoc);
11031 /// Called on well-formed 'schedule' clause.
11032 OMPClause *ActOnOpenMPScheduleClause(
11033 OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
11034 OpenMPScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc,
11035 SourceLocation LParenLoc, SourceLocation M1Loc, SourceLocation M2Loc,
11036 SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc);
11037
11038 OMPClause *ActOnOpenMPClause(OpenMPClauseKind Kind, SourceLocation StartLoc,
11039 SourceLocation EndLoc);
11040 /// Called on well-formed 'nowait' clause.
11041 OMPClause *ActOnOpenMPNowaitClause(SourceLocation StartLoc,
11042 SourceLocation EndLoc);
11043 /// Called on well-formed 'untied' clause.
11044 OMPClause *ActOnOpenMPUntiedClause(SourceLocation StartLoc,
11045 SourceLocation EndLoc);
11046 /// Called on well-formed 'mergeable' clause.
11047 OMPClause *ActOnOpenMPMergeableClause(SourceLocation StartLoc,
11048 SourceLocation EndLoc);
11049 /// Called on well-formed 'read' clause.
11050 OMPClause *ActOnOpenMPReadClause(SourceLocation StartLoc,
11051 SourceLocation EndLoc);
11052 /// Called on well-formed 'write' clause.
11053 OMPClause *ActOnOpenMPWriteClause(SourceLocation StartLoc,
11054 SourceLocation EndLoc);
11055 /// Called on well-formed 'update' clause.
11056 OMPClause *ActOnOpenMPUpdateClause(SourceLocation StartLoc,
11057 SourceLocation EndLoc);
11058 /// Called on well-formed 'capture' clause.
11059 OMPClause *ActOnOpenMPCaptureClause(SourceLocation StartLoc,
11060 SourceLocation EndLoc);
11061 /// Called on well-formed 'seq_cst' clause.
11062 OMPClause *ActOnOpenMPSeqCstClause(SourceLocation StartLoc,
11063 SourceLocation EndLoc);
11064 /// Called on well-formed 'acq_rel' clause.
11065 OMPClause *ActOnOpenMPAcqRelClause(SourceLocation StartLoc,
11066 SourceLocation EndLoc);
11067 /// Called on well-formed 'acquire' clause.
11068 OMPClause *ActOnOpenMPAcquireClause(SourceLocation StartLoc,
11069 SourceLocation EndLoc);
11070 /// Called on well-formed 'release' clause.
11071 OMPClause *ActOnOpenMPReleaseClause(SourceLocation StartLoc,
11072 SourceLocation EndLoc);
11073 /// Called on well-formed 'relaxed' clause.
11074 OMPClause *ActOnOpenMPRelaxedClause(SourceLocation StartLoc,
11075 SourceLocation EndLoc);
11076
11077 /// Called on well-formed 'init' clause.
11078 OMPClause *ActOnOpenMPInitClause(Expr *InteropVar, ArrayRef<Expr *> PrefExprs,
11079 bool IsTarget, bool IsTargetSync,
11080 SourceLocation StartLoc,
11081 SourceLocation LParenLoc,
11082 SourceLocation VarLoc,
11083 SourceLocation EndLoc);
11084
11085 /// Called on well-formed 'use' clause.
11086 OMPClause *ActOnOpenMPUseClause(Expr *InteropVar, SourceLocation StartLoc,
11087 SourceLocation LParenLoc,
11088 SourceLocation VarLoc, SourceLocation EndLoc);
11089
11090 /// Called on well-formed 'destroy' clause.
11091 OMPClause *ActOnOpenMPDestroyClause(Expr *InteropVar, SourceLocation StartLoc,
11092 SourceLocation LParenLoc,
11093 SourceLocation VarLoc,
11094 SourceLocation EndLoc);
11095 /// Called on well-formed 'novariants' clause.
11096 OMPClause *ActOnOpenMPNovariantsClause(Expr *Condition,
11097 SourceLocation StartLoc,
11098 SourceLocation LParenLoc,
11099 SourceLocation EndLoc);
11100 /// Called on well-formed 'nocontext' clause.
11101 OMPClause *ActOnOpenMPNocontextClause(Expr *Condition,
11102 SourceLocation StartLoc,
11103 SourceLocation LParenLoc,
11104 SourceLocation EndLoc);
11105 /// Called on well-formed 'filter' clause.
11106 OMPClause *ActOnOpenMPFilterClause(Expr *ThreadID, SourceLocation StartLoc,
11107 SourceLocation LParenLoc,
11108 SourceLocation EndLoc);
11109 /// Called on well-formed 'threads' clause.
11110 OMPClause *ActOnOpenMPThreadsClause(SourceLocation StartLoc,
11111 SourceLocation EndLoc);
11112 /// Called on well-formed 'simd' clause.
11113 OMPClause *ActOnOpenMPSIMDClause(SourceLocation StartLoc,
11114 SourceLocation EndLoc);
11115 /// Called on well-formed 'nogroup' clause.
11116 OMPClause *ActOnOpenMPNogroupClause(SourceLocation StartLoc,
11117 SourceLocation EndLoc);
11118 /// Called on well-formed 'unified_address' clause.
11119 OMPClause *ActOnOpenMPUnifiedAddressClause(SourceLocation StartLoc,
11120 SourceLocation EndLoc);
11121
11122 /// Called on well-formed 'unified_address' clause.
11123 OMPClause *ActOnOpenMPUnifiedSharedMemoryClause(SourceLocation StartLoc,
11124 SourceLocation EndLoc);
11125
11126 /// Called on well-formed 'reverse_offload' clause.
11127 OMPClause *ActOnOpenMPReverseOffloadClause(SourceLocation StartLoc,
11128 SourceLocation EndLoc);
11129
11130 /// Called on well-formed 'dynamic_allocators' clause.
11131 OMPClause *ActOnOpenMPDynamicAllocatorsClause(SourceLocation StartLoc,
11132 SourceLocation EndLoc);
11133
11134 /// Called on well-formed 'atomic_default_mem_order' clause.
11135 OMPClause *ActOnOpenMPAtomicDefaultMemOrderClause(
11136 OpenMPAtomicDefaultMemOrderClauseKind Kind, SourceLocation KindLoc,
11137 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc);
11138
11139 OMPClause *ActOnOpenMPVarListClause(
11140 OpenMPClauseKind Kind, ArrayRef<Expr *> Vars, Expr *DepModOrTailExpr,
11141 const OMPVarListLocTy &Locs, SourceLocation ColonLoc,
11142 CXXScopeSpec &ReductionOrMapperIdScopeSpec,
11143 DeclarationNameInfo &ReductionOrMapperId, int ExtraModifier,
11144 ArrayRef<OpenMPMapModifierKind> MapTypeModifiers,
11145 ArrayRef<SourceLocation> MapTypeModifiersLoc, bool IsMapTypeImplicit,
11146 SourceLocation ExtraModifierLoc,
11147 ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
11148 ArrayRef<SourceLocation> MotionModifiersLoc);
11149 /// Called on well-formed 'inclusive' clause.
11150 OMPClause *ActOnOpenMPInclusiveClause(ArrayRef<Expr *> VarList,
11151 SourceLocation StartLoc,
11152 SourceLocation LParenLoc,
11153 SourceLocation EndLoc);
11154 /// Called on well-formed 'exclusive' clause.
11155 OMPClause *ActOnOpenMPExclusiveClause(ArrayRef<Expr *> VarList,
11156 SourceLocation StartLoc,
11157 SourceLocation LParenLoc,
11158 SourceLocation EndLoc);
11159 /// Called on well-formed 'allocate' clause.
11160 OMPClause *
11161 ActOnOpenMPAllocateClause(Expr *Allocator, ArrayRef<Expr *> VarList,
11162 SourceLocation StartLoc, SourceLocation ColonLoc,
11163 SourceLocation LParenLoc, SourceLocation EndLoc);
11164 /// Called on well-formed 'private' clause.
11165 OMPClause *ActOnOpenMPPrivateClause(ArrayRef<Expr *> VarList,
11166 SourceLocation StartLoc,
11167 SourceLocation LParenLoc,
11168 SourceLocation EndLoc);
11169 /// Called on well-formed 'firstprivate' clause.
11170 OMPClause *ActOnOpenMPFirstprivateClause(ArrayRef<Expr *> VarList,
11171 SourceLocation StartLoc,
11172 SourceLocation LParenLoc,
11173 SourceLocation EndLoc);
11174 /// Called on well-formed 'lastprivate' clause.
11175 OMPClause *ActOnOpenMPLastprivateClause(
11176 ArrayRef<Expr *> VarList, OpenMPLastprivateModifier LPKind,
11177 SourceLocation LPKindLoc, SourceLocation ColonLoc,
11178 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc);
11179 /// Called on well-formed 'shared' clause.
11180 OMPClause *ActOnOpenMPSharedClause(ArrayRef<Expr *> VarList,
11181 SourceLocation StartLoc,
11182 SourceLocation LParenLoc,
11183 SourceLocation EndLoc);
11184 /// Called on well-formed 'reduction' clause.
11185 OMPClause *ActOnOpenMPReductionClause(
11186 ArrayRef<Expr *> VarList, OpenMPReductionClauseModifier Modifier,
11187 SourceLocation StartLoc, SourceLocation LParenLoc,
11188 SourceLocation ModifierLoc, SourceLocation ColonLoc,
11189 SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec,
11190 const DeclarationNameInfo &ReductionId,
11191 ArrayRef<Expr *> UnresolvedReductions = llvm::None);
11192 /// Called on well-formed 'task_reduction' clause.
11193 OMPClause *ActOnOpenMPTaskReductionClause(
11194 ArrayRef<Expr *> VarList, SourceLocation StartLoc,
11195 SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc,
11196 CXXScopeSpec &ReductionIdScopeSpec,
11197 const DeclarationNameInfo &ReductionId,
11198 ArrayRef<Expr *> UnresolvedReductions = llvm::None);
11199 /// Called on well-formed 'in_reduction' clause.
11200 OMPClause *ActOnOpenMPInReductionClause(
11201 ArrayRef<Expr *> VarList, SourceLocation StartLoc,
11202 SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc,
11203 CXXScopeSpec &ReductionIdScopeSpec,
11204 const DeclarationNameInfo &ReductionId,
11205 ArrayRef<Expr *> UnresolvedReductions = llvm::None);
11206 /// Called on well-formed 'linear' clause.
11207 OMPClause *
11208 ActOnOpenMPLinearClause(ArrayRef<Expr *> VarList, Expr *Step,
11209 SourceLocation StartLoc, SourceLocation LParenLoc,
11210 OpenMPLinearClauseKind LinKind, SourceLocation LinLoc,
11211 SourceLocation ColonLoc, SourceLocation EndLoc);
11212 /// Called on well-formed 'aligned' clause.
11213 OMPClause *ActOnOpenMPAlignedClause(ArrayRef<Expr *> VarList,
11214 Expr *Alignment,
11215 SourceLocation StartLoc,
11216 SourceLocation LParenLoc,
11217 SourceLocation ColonLoc,
11218 SourceLocation EndLoc);
11219 /// Called on well-formed 'copyin' clause.
11220 OMPClause *ActOnOpenMPCopyinClause(ArrayRef<Expr *> VarList,
11221 SourceLocation StartLoc,
11222 SourceLocation LParenLoc,
11223 SourceLocation EndLoc);
11224 /// Called on well-formed 'copyprivate' clause.
11225 OMPClause *ActOnOpenMPCopyprivateClause(ArrayRef<Expr *> VarList,
11226 SourceLocation StartLoc,
11227 SourceLocation LParenLoc,
11228 SourceLocation EndLoc);
11229 /// Called on well-formed 'flush' pseudo clause.
11230 OMPClause *ActOnOpenMPFlushClause(ArrayRef<Expr *> VarList,
11231 SourceLocation StartLoc,
11232 SourceLocation LParenLoc,
11233 SourceLocation EndLoc);
11234 /// Called on well-formed 'depobj' pseudo clause.
11235 OMPClause *ActOnOpenMPDepobjClause(Expr *Depobj, SourceLocation StartLoc,
11236 SourceLocation LParenLoc,
11237 SourceLocation EndLoc);
11238 /// Called on well-formed 'depend' clause.
11239 OMPClause *
11240 ActOnOpenMPDependClause(Expr *DepModifier, OpenMPDependClauseKind DepKind,
11241 SourceLocation DepLoc, SourceLocation ColonLoc,
11242 ArrayRef<Expr *> VarList, SourceLocation StartLoc,
11243 SourceLocation LParenLoc, SourceLocation EndLoc);
11244 /// Called on well-formed 'device' clause.
11245 OMPClause *ActOnOpenMPDeviceClause(OpenMPDeviceClauseModifier Modifier,
11246 Expr *Device, SourceLocation StartLoc,
11247 SourceLocation LParenLoc,
11248 SourceLocation ModifierLoc,
11249 SourceLocation EndLoc);
11250 /// Called on well-formed 'map' clause.
11251 OMPClause *ActOnOpenMPMapClause(
11252 ArrayRef<OpenMPMapModifierKind> MapTypeModifiers,
11253 ArrayRef<SourceLocation> MapTypeModifiersLoc,
11254 CXXScopeSpec &MapperIdScopeSpec, DeclarationNameInfo &MapperId,
11255 OpenMPMapClauseKind MapType, bool IsMapTypeImplicit,
11256 SourceLocation MapLoc, SourceLocation ColonLoc, ArrayRef<Expr *> VarList,
11257 const OMPVarListLocTy &Locs, bool NoDiagnose = false,
11258 ArrayRef<Expr *> UnresolvedMappers = llvm::None);
11259 /// Called on well-formed 'num_teams' clause.
11260 OMPClause *ActOnOpenMPNumTeamsClause(Expr *NumTeams, SourceLocation StartLoc,
11261 SourceLocation LParenLoc,
11262 SourceLocation EndLoc);
11263 /// Called on well-formed 'thread_limit' clause.
11264 OMPClause *ActOnOpenMPThreadLimitClause(Expr *ThreadLimit,
11265 SourceLocation StartLoc,
11266 SourceLocation LParenLoc,
11267 SourceLocation EndLoc);
11268 /// Called on well-formed 'priority' clause.
11269 OMPClause *ActOnOpenMPPriorityClause(Expr *Priority, SourceLocation StartLoc,
11270 SourceLocation LParenLoc,
11271 SourceLocation EndLoc);
11272 /// Called on well-formed 'dist_schedule' clause.
11273 OMPClause *ActOnOpenMPDistScheduleClause(
11274 OpenMPDistScheduleClauseKind Kind, Expr *ChunkSize,
11275 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation KindLoc,
11276 SourceLocation CommaLoc, SourceLocation EndLoc);
11277 /// Called on well-formed 'defaultmap' clause.
11278 OMPClause *ActOnOpenMPDefaultmapClause(
11279 OpenMPDefaultmapClauseModifier M, OpenMPDefaultmapClauseKind Kind,
11280 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation MLoc,
11281 SourceLocation KindLoc, SourceLocation EndLoc);
11282 /// Called on well-formed 'to' clause.
11283 OMPClause *
11284 ActOnOpenMPToClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
11285 ArrayRef<SourceLocation> MotionModifiersLoc,
11286 CXXScopeSpec &MapperIdScopeSpec,
11287 DeclarationNameInfo &MapperId, SourceLocation ColonLoc,
11288 ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
11289 ArrayRef<Expr *> UnresolvedMappers = llvm::None);
11290 /// Called on well-formed 'from' clause.
11291 OMPClause *
11292 ActOnOpenMPFromClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
11293 ArrayRef<SourceLocation> MotionModifiersLoc,
11294 CXXScopeSpec &MapperIdScopeSpec,
11295 DeclarationNameInfo &MapperId, SourceLocation ColonLoc,
11296 ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
11297 ArrayRef<Expr *> UnresolvedMappers = llvm::None);
11298 /// Called on well-formed 'use_device_ptr' clause.
11299 OMPClause *ActOnOpenMPUseDevicePtrClause(ArrayRef<Expr *> VarList,
11300 const OMPVarListLocTy &Locs);
11301 /// Called on well-formed 'use_device_addr' clause.
11302 OMPClause *ActOnOpenMPUseDeviceAddrClause(ArrayRef<Expr *> VarList,
11303 const OMPVarListLocTy &Locs);
11304 /// Called on well-formed 'is_device_ptr' clause.
11305 OMPClause *ActOnOpenMPIsDevicePtrClause(ArrayRef<Expr *> VarList,
11306 const OMPVarListLocTy &Locs);
11307 /// Called on well-formed 'nontemporal' clause.
11308 OMPClause *ActOnOpenMPNontemporalClause(ArrayRef<Expr *> VarList,
11309 SourceLocation StartLoc,
11310 SourceLocation LParenLoc,
11311 SourceLocation EndLoc);
11312
11313 /// Data for list of allocators.
11314 struct UsesAllocatorsData {
11315 /// Allocator.
11316 Expr *Allocator = nullptr;
11317 /// Allocator traits.
11318 Expr *AllocatorTraits = nullptr;
11319 /// Locations of '(' and ')' symbols.
11320 SourceLocation LParenLoc, RParenLoc;
11321 };
11322 /// Called on well-formed 'uses_allocators' clause.
11323 OMPClause *ActOnOpenMPUsesAllocatorClause(SourceLocation StartLoc,
11324 SourceLocation LParenLoc,
11325 SourceLocation EndLoc,
11326 ArrayRef<UsesAllocatorsData> Data);
11327 /// Called on well-formed 'affinity' clause.
11328 OMPClause *ActOnOpenMPAffinityClause(SourceLocation StartLoc,
11329 SourceLocation LParenLoc,
11330 SourceLocation ColonLoc,
11331 SourceLocation EndLoc, Expr *Modifier,
11332 ArrayRef<Expr *> Locators);
11333
11334 /// The kind of conversion being performed.
11335 enum CheckedConversionKind {
11336 /// An implicit conversion.
11337 CCK_ImplicitConversion,
11338 /// A C-style cast.
11339 CCK_CStyleCast,
11340 /// A functional-style cast.
11341 CCK_FunctionalCast,
11342 /// A cast other than a C-style cast.
11343 CCK_OtherCast,
11344 /// A conversion for an operand of a builtin overloaded operator.
11345 CCK_ForBuiltinOverloadedOp
11346 };
11347
11348 static bool isCast(CheckedConversionKind CCK) {
11349 return CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast ||
11350 CCK == CCK_OtherCast;
11351 }
11352
11353 /// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit
11354 /// cast. If there is already an implicit cast, merge into the existing one.
11355 /// If isLvalue, the result of the cast is an lvalue.
11356 ExprResult
11357 ImpCastExprToType(Expr *E, QualType Type, CastKind CK,
11358 ExprValueKind VK = VK_PRValue,
11359 const CXXCastPath *BasePath = nullptr,
11360 CheckedConversionKind CCK = CCK_ImplicitConversion);
11361
11362 /// ScalarTypeToBooleanCastKind - Returns the cast kind corresponding
11363 /// to the conversion from scalar type ScalarTy to the Boolean type.
11364 static CastKind ScalarTypeToBooleanCastKind(QualType ScalarTy);
11365
11366 /// IgnoredValueConversions - Given that an expression's result is
11367 /// syntactically ignored, perform any conversions that are
11368 /// required.
11369 ExprResult IgnoredValueConversions(Expr *E);
11370
11371 // UsualUnaryConversions - promotes integers (C99 6.3.1.1p2) and converts
11372 // functions and arrays to their respective pointers (C99 6.3.2.1).
11373 ExprResult UsualUnaryConversions(Expr *E);
11374
11375 /// CallExprUnaryConversions - a special case of an unary conversion
11376 /// performed on a function designator of a call expression.
11377 ExprResult CallExprUnaryConversions(Expr *E);
11378
11379 // DefaultFunctionArrayConversion - converts functions and arrays
11380 // to their respective pointers (C99 6.3.2.1).
11381 ExprResult DefaultFunctionArrayConversion(Expr *E, bool Diagnose = true);
11382
11383 // DefaultFunctionArrayLvalueConversion - converts functions and
11384 // arrays to their respective pointers and performs the
11385 // lvalue-to-rvalue conversion.
11386 ExprResult DefaultFunctionArrayLvalueConversion(Expr *E,
11387 bool Diagnose = true);
11388
11389 // DefaultLvalueConversion - performs lvalue-to-rvalue conversion on
11390 // the operand. This function is a no-op if the operand has a function type
11391 // or an array type.
11392 ExprResult DefaultLvalueConversion(Expr *E);
11393
11394 // DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
11395 // do not have a prototype. Integer promotions are performed on each
11396 // argument, and arguments that have type float are promoted to double.
11397 ExprResult DefaultArgumentPromotion(Expr *E);
11398
11399 /// If \p E is a prvalue denoting an unmaterialized temporary, materialize
11400 /// it as an xvalue. In C++98, the result will still be a prvalue, because
11401 /// we don't have xvalues there.
11402 ExprResult TemporaryMaterializationConversion(Expr *E);
11403
11404 // Used for emitting the right warning by DefaultVariadicArgumentPromotion
11405 enum VariadicCallType {
11406 VariadicFunction,
11407 VariadicBlock,
11408 VariadicMethod,
11409 VariadicConstructor,
11410 VariadicDoesNotApply
11411 };
11412
11413 VariadicCallType getVariadicCallType(FunctionDecl *FDecl,
11414 const FunctionProtoType *Proto,
11415 Expr *Fn);
11416
11417 // Used for determining in which context a type is allowed to be passed to a
11418 // vararg function.
11419 enum VarArgKind {
11420 VAK_Valid,
11421 VAK_ValidInCXX11,
11422 VAK_Undefined,
11423 VAK_MSVCUndefined,
11424 VAK_Invalid
11425 };
11426
11427 // Determines which VarArgKind fits an expression.
11428 VarArgKind isValidVarArgType(const QualType &Ty);
11429
11430 /// Check to see if the given expression is a valid argument to a variadic
11431 /// function, issuing a diagnostic if not.
11432 void checkVariadicArgument(const Expr *E, VariadicCallType CT);
11433
11434 /// Check whether the given statement can have musttail applied to it,
11435 /// issuing a diagnostic and returning false if not. In the success case,
11436 /// the statement is rewritten to remove implicit nodes from the return
11437 /// value.
11438 bool checkAndRewriteMustTailAttr(Stmt *St, const Attr &MTA);
11439
11440private:
11441 /// Check whether the given statement can have musttail applied to it,
11442 /// issuing a diagnostic and returning false if not.
11443 bool checkMustTailAttr(const Stmt *St, const Attr &MTA);
11444
11445public:
11446 /// Check to see if a given expression could have '.c_str()' called on it.
11447 bool hasCStrMethod(const Expr *E);
11448
11449 /// GatherArgumentsForCall - Collector argument expressions for various
11450 /// form of call prototypes.
11451 bool GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
11452 const FunctionProtoType *Proto,
11453 unsigned FirstParam, ArrayRef<Expr *> Args,
11454 SmallVectorImpl<Expr *> &AllArgs,
11455 VariadicCallType CallType = VariadicDoesNotApply,
11456 bool AllowExplicit = false,
11457 bool IsListInitialization = false);
11458
11459 // DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
11460 // will create a runtime trap if the resulting type is not a POD type.
11461 ExprResult DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
11462 FunctionDecl *FDecl);
11463
11464 /// Context in which we're performing a usual arithmetic conversion.
11465 enum ArithConvKind {
11466 /// An arithmetic operation.
11467 ACK_Arithmetic,
11468 /// A bitwise operation.
11469 ACK_BitwiseOp,
11470 /// A comparison.
11471 ACK_Comparison,
11472 /// A conditional (?:) operator.
11473 ACK_Conditional,
11474 /// A compound assignment expression.
11475 ACK_CompAssign,
11476 };
11477
11478 // UsualArithmeticConversions - performs the UsualUnaryConversions on it's
11479 // operands and then handles various conversions that are common to binary
11480 // operators (C99 6.3.1.8). If both operands aren't arithmetic, this
11481 // routine returns the first non-arithmetic type found. The client is
11482 // responsible for emitting appropriate error diagnostics.
11483 QualType UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
11484 SourceLocation Loc, ArithConvKind ACK);
11485
11486 /// AssignConvertType - All of the 'assignment' semantic checks return this
11487 /// enum to indicate whether the assignment was allowed. These checks are
11488 /// done for simple assignments, as well as initialization, return from
11489 /// function, argument passing, etc. The query is phrased in terms of a
11490 /// source and destination type.
11491 enum AssignConvertType {
11492 /// Compatible - the types are compatible according to the standard.
11493 Compatible,
11494
11495 /// PointerToInt - The assignment converts a pointer to an int, which we
11496 /// accept as an extension.
11497 PointerToInt,
11498
11499 /// IntToPointer - The assignment converts an int to a pointer, which we
11500 /// accept as an extension.
11501 IntToPointer,
11502
11503 /// FunctionVoidPointer - The assignment is between a function pointer and
11504 /// void*, which the standard doesn't allow, but we accept as an extension.
11505 FunctionVoidPointer,
11506
11507 /// IncompatiblePointer - The assignment is between two pointers types that
11508 /// are not compatible, but we accept them as an extension.
11509 IncompatiblePointer,
11510
11511 /// IncompatibleFunctionPointer - The assignment is between two function
11512 /// pointers types that are not compatible, but we accept them as an
11513 /// extension.
11514 IncompatibleFunctionPointer,
11515
11516 /// IncompatiblePointerSign - The assignment is between two pointers types
11517 /// which point to integers which have a different sign, but are otherwise
11518 /// identical. This is a subset of the above, but broken out because it's by
11519 /// far the most common case of incompatible pointers.
11520 IncompatiblePointerSign,
11521
11522 /// CompatiblePointerDiscardsQualifiers - The assignment discards
11523 /// c/v/r qualifiers, which we accept as an extension.
11524 CompatiblePointerDiscardsQualifiers,
11525
11526 /// IncompatiblePointerDiscardsQualifiers - The assignment
11527 /// discards qualifiers that we don't permit to be discarded,
11528 /// like address spaces.
11529 IncompatiblePointerDiscardsQualifiers,
11530
11531 /// IncompatibleNestedPointerAddressSpaceMismatch - The assignment
11532 /// changes address spaces in nested pointer types which is not allowed.
11533 /// For instance, converting __private int ** to __generic int ** is
11534 /// illegal even though __private could be converted to __generic.
11535 IncompatibleNestedPointerAddressSpaceMismatch,
11536
11537 /// IncompatibleNestedPointerQualifiers - The assignment is between two
11538 /// nested pointer types, and the qualifiers other than the first two
11539 /// levels differ e.g. char ** -> const char **, but we accept them as an
11540 /// extension.
11541 IncompatibleNestedPointerQualifiers,
11542
11543 /// IncompatibleVectors - The assignment is between two vector types that
11544 /// have the same size, which we accept as an extension.
11545 IncompatibleVectors,
11546
11547 /// IntToBlockPointer - The assignment converts an int to a block
11548 /// pointer. We disallow this.
11549 IntToBlockPointer,
11550
11551 /// IncompatibleBlockPointer - The assignment is between two block
11552 /// pointers types that are not compatible.
11553 IncompatibleBlockPointer,
11554
11555 /// IncompatibleObjCQualifiedId - The assignment is between a qualified
11556 /// id type and something else (that is incompatible with it). For example,
11557 /// "id <XXX>" = "Foo *", where "Foo *" doesn't implement the XXX protocol.
11558 IncompatibleObjCQualifiedId,
11559
11560 /// IncompatibleObjCWeakRef - Assigning a weak-unavailable object to an
11561 /// object with __weak qualifier.
11562 IncompatibleObjCWeakRef,
11563
11564 /// Incompatible - We reject this conversion outright, it is invalid to
11565 /// represent it in the AST.
11566 Incompatible
11567 };
11568
11569 /// DiagnoseAssignmentResult - Emit a diagnostic, if required, for the
11570 /// assignment conversion type specified by ConvTy. This returns true if the
11571 /// conversion was invalid or false if the conversion was accepted.
11572 bool DiagnoseAssignmentResult(AssignConvertType ConvTy,
11573 SourceLocation Loc,
11574 QualType DstType, QualType SrcType,
11575 Expr *SrcExpr, AssignmentAction Action,
11576 bool *Complained = nullptr);
11577
11578 /// IsValueInFlagEnum - Determine if a value is allowed as part of a flag
11579 /// enum. If AllowMask is true, then we also allow the complement of a valid
11580 /// value, to be used as a mask.
11581 bool IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
11582 bool AllowMask) const;
11583
11584 /// DiagnoseAssignmentEnum - Warn if assignment to enum is a constant
11585 /// integer not in the range of enum values.
11586 void DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
11587 Expr *SrcExpr);
11588
11589 /// CheckAssignmentConstraints - Perform type checking for assignment,
11590 /// argument passing, variable initialization, and function return values.
11591 /// C99 6.5.16.
11592 AssignConvertType CheckAssignmentConstraints(SourceLocation Loc,
11593 QualType LHSType,
11594 QualType RHSType);
11595
11596 /// Check assignment constraints and optionally prepare for a conversion of
11597 /// the RHS to the LHS type. The conversion is prepared for if ConvertRHS
11598 /// is true.
11599 AssignConvertType CheckAssignmentConstraints(QualType LHSType,
11600 ExprResult &RHS,
11601 CastKind &Kind,
11602 bool ConvertRHS = true);
11603
11604 /// Check assignment constraints for an assignment of RHS to LHSType.
11605 ///
11606 /// \param LHSType The destination type for the assignment.
11607 /// \param RHS The source expression for the assignment.
11608 /// \param Diagnose If \c true, diagnostics may be produced when checking
11609 /// for assignability. If a diagnostic is produced, \p RHS will be
11610 /// set to ExprError(). Note that this function may still return
11611 /// without producing a diagnostic, even for an invalid assignment.
11612 /// \param DiagnoseCFAudited If \c true, the target is a function parameter
11613 /// in an audited Core Foundation API and does not need to be checked
11614 /// for ARC retain issues.
11615 /// \param ConvertRHS If \c true, \p RHS will be updated to model the
11616 /// conversions necessary to perform the assignment. If \c false,
11617 /// \p Diagnose must also be \c false.
11618 AssignConvertType CheckSingleAssignmentConstraints(
11619 QualType LHSType, ExprResult &RHS, bool Diagnose = true,
11620 bool DiagnoseCFAudited = false, bool ConvertRHS = true);
11621
11622 // If the lhs type is a transparent union, check whether we
11623 // can initialize the transparent union with the given expression.
11624 AssignConvertType CheckTransparentUnionArgumentConstraints(QualType ArgType,
11625 ExprResult &RHS);
11626
11627 bool IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType);
11628
11629 bool CheckExceptionSpecCompatibility(Expr *From, QualType ToType);
11630
11631 ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
11632 AssignmentAction Action,
11633 bool AllowExplicit = false);
11634 ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
11635 const ImplicitConversionSequence& ICS,
11636 AssignmentAction Action,
11637 CheckedConversionKind CCK
11638 = CCK_ImplicitConversion);
11639 ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
11640 const StandardConversionSequence& SCS,
11641 AssignmentAction Action,
11642 CheckedConversionKind CCK);
11643
11644 ExprResult PerformQualificationConversion(
11645 Expr *E, QualType Ty, ExprValueKind VK = VK_PRValue,
11646 CheckedConversionKind CCK = CCK_ImplicitConversion);
11647
11648 /// the following "Check" methods will return a valid/converted QualType
11649 /// or a null QualType (indicating an error diagnostic was issued).
11650
11651 /// type checking binary operators (subroutines of CreateBuiltinBinOp).
11652 QualType InvalidOperands(SourceLocation Loc, ExprResult &LHS,
11653 ExprResult &RHS);
11654 QualType InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
11655 ExprResult &RHS);
11656 QualType CheckPointerToMemberOperands( // C++ 5.5
11657 ExprResult &LHS, ExprResult &RHS, ExprValueKind &VK,
11658 SourceLocation OpLoc, bool isIndirect);
11659 QualType CheckMultiplyDivideOperands( // C99 6.5.5
11660 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign,
11661 bool IsDivide);
11662 QualType CheckRemainderOperands( // C99 6.5.5
11663 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11664 bool IsCompAssign = false);
11665 QualType CheckAdditionOperands( // C99 6.5.6
11666 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11667 BinaryOperatorKind Opc, QualType* CompLHSTy = nullptr);
11668 QualType CheckSubtractionOperands( // C99 6.5.6
11669 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11670 QualType* CompLHSTy = nullptr);
11671 QualType CheckShiftOperands( // C99 6.5.7
11672 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11673 BinaryOperatorKind Opc, bool IsCompAssign = false);
11674 void CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE);
11675 QualType CheckCompareOperands( // C99 6.5.8/9
11676 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11677 BinaryOperatorKind Opc);
11678 QualType CheckBitwiseOperands( // C99 6.5.[10...12]
11679 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11680 BinaryOperatorKind Opc);
11681 QualType CheckLogicalOperands( // C99 6.5.[13,14]
11682 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11683 BinaryOperatorKind Opc);
11684 // CheckAssignmentOperands is used for both simple and compound assignment.
11685 // For simple assignment, pass both expressions and a null converted type.
11686 // For compound assignment, pass both expressions and the converted type.
11687 QualType CheckAssignmentOperands( // C99 6.5.16.[1,2]
11688 Expr *LHSExpr, ExprResult &RHS, SourceLocation Loc, QualType CompoundType);
11689
11690 ExprResult checkPseudoObjectIncDec(Scope *S, SourceLocation OpLoc,
11691 UnaryOperatorKind Opcode, Expr *Op);
11692 ExprResult checkPseudoObjectAssignment(Scope *S, SourceLocation OpLoc,
11693 BinaryOperatorKind Opcode,
11694 Expr *LHS, Expr *RHS);
11695 ExprResult checkPseudoObjectRValue(Expr *E);
11696 Expr *recreateSyntacticForm(PseudoObjectExpr *E);
11697
11698 QualType CheckConditionalOperands( // C99 6.5.15
11699 ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
11700 ExprValueKind &VK, ExprObjectKind &OK, SourceLocation QuestionLoc);
11701 QualType CXXCheckConditionalOperands( // C++ 5.16
11702 ExprResult &cond, ExprResult &lhs, ExprResult &rhs,
11703 ExprValueKind &VK, ExprObjectKind &OK, SourceLocation questionLoc);
11704 QualType CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
11705 ExprResult &RHS,
11706 SourceLocation QuestionLoc);
11707 QualType FindCompositePointerType(SourceLocation Loc, Expr *&E1, Expr *&E2,
11708 bool ConvertArgs = true);
11709 QualType FindCompositePointerType(SourceLocation Loc,
11710 ExprResult &E1, ExprResult &E2,
11711 bool ConvertArgs = true) {
11712 Expr *E1Tmp = E1.get(), *E2Tmp = E2.get();
11713 QualType Composite =
11714 FindCompositePointerType(Loc, E1Tmp, E2Tmp, ConvertArgs);
11715 E1 = E1Tmp;
11716 E2 = E2Tmp;
11717 return Composite;
11718 }
11719
11720 QualType FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
11721 SourceLocation QuestionLoc);
11722
11723 bool DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
11724 SourceLocation QuestionLoc);
11725
11726 void DiagnoseAlwaysNonNullPointer(Expr *E,
11727 Expr::NullPointerConstantKind NullType,
11728 bool IsEqual, SourceRange Range);
11729
11730 /// type checking for vector binary operators.
11731 QualType CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
11732 SourceLocation Loc, bool IsCompAssign,
11733 bool AllowBothBool, bool AllowBoolConversion);
11734 QualType GetSignedVectorType(QualType V);
11735 QualType CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
11736 SourceLocation Loc,
11737 BinaryOperatorKind Opc);
11738 QualType CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
11739 SourceLocation Loc);
11740
11741 /// Type checking for matrix binary operators.
11742 QualType CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
11743 SourceLocation Loc,
11744 bool IsCompAssign);
11745 QualType CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
11746 SourceLocation Loc, bool IsCompAssign);
11747
11748 bool isValidSveBitcast(QualType srcType, QualType destType);
11749
11750 bool areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy);
11751
11752 bool areVectorTypesSameSize(QualType srcType, QualType destType);
11753 bool areLaxCompatibleVectorTypes(QualType srcType, QualType destType);
11754 bool isLaxVectorConversion(QualType srcType, QualType destType);
11755
11756 /// type checking declaration initializers (C99 6.7.8)
11757 bool CheckForConstantInitializer(Expr *e, QualType t);
11758
11759 // type checking C++ declaration initializers (C++ [dcl.init]).
11760
11761 /// ReferenceCompareResult - Expresses the result of comparing two
11762 /// types (cv1 T1 and cv2 T2) to determine their compatibility for the
11763 /// purposes of initialization by reference (C++ [dcl.init.ref]p4).
11764 enum ReferenceCompareResult {
11765 /// Ref_Incompatible - The two types are incompatible, so direct
11766 /// reference binding is not possible.
11767 Ref_Incompatible = 0,
11768 /// Ref_Related - The two types are reference-related, which means
11769 /// that their unqualified forms (T1 and T2) are either the same
11770 /// or T1 is a base class of T2.
11771 Ref_Related,
11772 /// Ref_Compatible - The two types are reference-compatible.
11773 Ref_Compatible
11774 };
11775
11776 // Fake up a scoped enumeration that still contextually converts to bool.
11777 struct ReferenceConversionsScope {
11778 /// The conversions that would be performed on an lvalue of type T2 when
11779 /// binding a reference of type T1 to it, as determined when evaluating
11780 /// whether T1 is reference-compatible with T2.
11781 enum ReferenceConversions {
11782 Qualification = 0x1,
11783 NestedQualification = 0x2,
11784 Function = 0x4,
11785 DerivedToBase = 0x8,
11786 ObjC = 0x10,
11787 ObjCLifetime = 0x20,
11788
11789 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/ObjCLifetime)LLVM_BITMASK_LARGEST_ENUMERATOR = ObjCLifetime
11790 };
11791 };
11792 using ReferenceConversions = ReferenceConversionsScope::ReferenceConversions;
11793
11794 ReferenceCompareResult
11795 CompareReferenceRelationship(SourceLocation Loc, QualType T1, QualType T2,
11796 ReferenceConversions *Conv = nullptr);
11797
11798 ExprResult checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
11799 Expr *CastExpr, CastKind &CastKind,
11800 ExprValueKind &VK, CXXCastPath &Path);
11801
11802 /// Force an expression with unknown-type to an expression of the
11803 /// given type.
11804 ExprResult forceUnknownAnyToType(Expr *E, QualType ToType);
11805
11806 /// Type-check an expression that's being passed to an
11807 /// __unknown_anytype parameter.
11808 ExprResult checkUnknownAnyArg(SourceLocation callLoc,
11809 Expr *result, QualType &paramType);
11810
11811 // CheckMatrixCast - Check type constraints for matrix casts.
11812 // We allow casting between matrixes of the same dimensions i.e. when they
11813 // have the same number of rows and column. Returns true if the cast is
11814 // invalid.
11815 bool CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
11816 CastKind &Kind);
11817
11818 // CheckVectorCast - check type constraints for vectors.
11819 // Since vectors are an extension, there are no C standard reference for this.
11820 // We allow casting between vectors and integer datatypes of the same size.
11821 // returns true if the cast is invalid
11822 bool CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
11823 CastKind &Kind);
11824
11825 /// Prepare `SplattedExpr` for a vector splat operation, adding
11826 /// implicit casts if necessary.
11827 ExprResult prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr);
11828
11829 // CheckExtVectorCast - check type constraints for extended vectors.
11830 // Since vectors are an extension, there are no C standard reference for this.
11831 // We allow casting between vectors and integer datatypes of the same size,
11832 // or vectors and the element type of that vector.
11833 // returns the cast expr
11834 ExprResult CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *CastExpr,
11835 CastKind &Kind);
11836
11837 ExprResult BuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo, QualType Type,
11838 SourceLocation LParenLoc,
11839 Expr *CastExpr,
11840 SourceLocation RParenLoc);
11841
11842 enum ARCConversionResult { ACR_okay, ACR_unbridged, ACR_error };
11843
11844 /// Checks for invalid conversions and casts between
11845 /// retainable pointers and other pointer kinds for ARC and Weak.
11846 ARCConversionResult CheckObjCConversion(SourceRange castRange,
11847 QualType castType, Expr *&op,
11848 CheckedConversionKind CCK,
11849 bool Diagnose = true,
11850 bool DiagnoseCFAudited = false,
11851 BinaryOperatorKind Opc = BO_PtrMemD
11852 );
11853
11854 Expr *stripARCUnbridgedCast(Expr *e);
11855 void diagnoseARCUnbridgedCast(Expr *e);
11856
11857 bool CheckObjCARCUnavailableWeakConversion(QualType castType,
11858 QualType ExprType);
11859
11860 /// checkRetainCycles - Check whether an Objective-C message send
11861 /// might create an obvious retain cycle.
11862 void checkRetainCycles(ObjCMessageExpr *msg);
11863 void checkRetainCycles(Expr *receiver, Expr *argument);
11864 void checkRetainCycles(VarDecl *Var, Expr *Init);
11865
11866 /// checkUnsafeAssigns - Check whether +1 expr is being assigned
11867 /// to weak/__unsafe_unretained type.
11868 bool checkUnsafeAssigns(SourceLocation Loc, QualType LHS, Expr *RHS);
11869
11870 /// checkUnsafeExprAssigns - Check whether +1 expr is being assigned
11871 /// to weak/__unsafe_unretained expression.
11872 void checkUnsafeExprAssigns(SourceLocation Loc, Expr *LHS, Expr *RHS);
11873
11874 /// CheckMessageArgumentTypes - Check types in an Obj-C message send.
11875 /// \param Method - May be null.
11876 /// \param [out] ReturnType - The return type of the send.
11877 /// \return true iff there were any incompatible types.
11878 bool CheckMessageArgumentTypes(const Expr *Receiver, QualType ReceiverType,
11879 MultiExprArg Args, Selector Sel,
11880 ArrayRef<SourceLocation> SelectorLocs,
11881 ObjCMethodDecl *Method, bool isClassMessage,
11882 bool isSuperMessage, SourceLocation lbrac,
11883 SourceLocation rbrac, SourceRange RecRange,
11884 QualType &ReturnType, ExprValueKind &VK);
11885
11886 /// Determine the result of a message send expression based on
11887 /// the type of the receiver, the method expected to receive the message,
11888 /// and the form of the message send.
11889 QualType getMessageSendResultType(const Expr *Receiver, QualType ReceiverType,
11890 ObjCMethodDecl *Method, bool isClassMessage,
11891 bool isSuperMessage);
11892
11893 /// If the given expression involves a message send to a method
11894 /// with a related result type, emit a note describing what happened.
11895 void EmitRelatedResultTypeNote(const Expr *E);
11896
11897 /// Given that we had incompatible pointer types in a return
11898 /// statement, check whether we're in a method with a related result
11899 /// type, and if so, emit a note describing what happened.
11900 void EmitRelatedResultTypeNoteForReturn(QualType destType);
11901
11902 class ConditionResult {
11903 Decl *ConditionVar;
11904 FullExprArg Condition;
11905 bool Invalid;
11906 bool HasKnownValue;
11907 bool KnownValue;
11908
11909 friend class Sema;
11910 ConditionResult(Sema &S, Decl *ConditionVar, FullExprArg Condition,
11911 bool IsConstexpr)
11912 : ConditionVar(ConditionVar), Condition(Condition), Invalid(false),
11913 HasKnownValue(IsConstexpr && Condition.get() &&
11914 !Condition.get()->isValueDependent()),
11915 KnownValue(HasKnownValue &&
11916 !!Condition.get()->EvaluateKnownConstInt(S.Context)) {}
11917 explicit ConditionResult(bool Invalid)
11918 : ConditionVar(nullptr), Condition(nullptr), Invalid(Invalid),
11919 HasKnownValue(false), KnownValue(false) {}
11920
11921 public:
11922 ConditionResult() : ConditionResult(false) {}
11923 bool isInvalid() const { return Invalid; }
11924 std::pair<VarDecl *, Expr *> get() const {
11925 return std::make_pair(cast_or_null<VarDecl>(ConditionVar),
11926 Condition.get());
11927 }
11928 llvm::Optional<bool> getKnownValue() const {
11929 if (!HasKnownValue)
11930 return None;
11931 return KnownValue;
11932 }
11933 };
11934 static ConditionResult ConditionError() { return ConditionResult(true); }
11935
11936 enum class ConditionKind {
11937 Boolean, ///< A boolean condition, from 'if', 'while', 'for', or 'do'.
11938 ConstexprIf, ///< A constant boolean condition from 'if constexpr'.
11939 Switch ///< An integral condition for a 'switch' statement.
11940 };
11941
11942 ConditionResult ActOnCondition(Scope *S, SourceLocation Loc,
11943 Expr *SubExpr, ConditionKind CK);
11944
11945 ConditionResult ActOnConditionVariable(Decl *ConditionVar,
11946 SourceLocation StmtLoc,
11947 ConditionKind CK);
11948
11949 DeclResult ActOnCXXConditionDeclaration(Scope *S, Declarator &D);
11950
11951 ExprResult CheckConditionVariable(VarDecl *ConditionVar,
11952 SourceLocation StmtLoc,
11953 ConditionKind CK);
11954 ExprResult CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond);
11955
11956 /// CheckBooleanCondition - Diagnose problems involving the use of
11957 /// the given expression as a boolean condition (e.g. in an if
11958 /// statement). Also performs the standard function and array
11959 /// decays, possibly changing the input variable.
11960 ///
11961 /// \param Loc - A location associated with the condition, e.g. the
11962 /// 'if' keyword.
11963 /// \return true iff there were any errors
11964 ExprResult CheckBooleanCondition(SourceLocation Loc, Expr *E,
11965 bool IsConstexpr = false);
11966
11967 /// ActOnExplicitBoolSpecifier - Build an ExplicitSpecifier from an expression
11968 /// found in an explicit(bool) specifier.
11969 ExplicitSpecifier ActOnExplicitBoolSpecifier(Expr *E);
11970
11971 /// tryResolveExplicitSpecifier - Attempt to resolve the explict specifier.
11972 /// Returns true if the explicit specifier is now resolved.
11973 bool tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec);
11974
11975 /// DiagnoseAssignmentAsCondition - Given that an expression is
11976 /// being used as a boolean condition, warn if it's an assignment.
11977 void DiagnoseAssignmentAsCondition(Expr *E);
11978
11979 /// Redundant parentheses over an equality comparison can indicate
11980 /// that the user intended an assignment used as condition.
11981 void DiagnoseEqualityWithExtraParens(ParenExpr *ParenE);
11982
11983 /// CheckCXXBooleanCondition - Returns true if conversion to bool is invalid.
11984 ExprResult CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr = false);
11985
11986 /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
11987 /// the specified width and sign. If an overflow occurs, detect it and emit
11988 /// the specified diagnostic.
11989 void ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &OldVal,
11990 unsigned NewWidth, bool NewSign,
11991 SourceLocation Loc, unsigned DiagID);
11992
11993 /// Checks that the Objective-C declaration is declared in the global scope.
11994 /// Emits an error and marks the declaration as invalid if it's not declared
11995 /// in the global scope.
11996 bool CheckObjCDeclScope(Decl *D);
11997
11998 /// Abstract base class used for diagnosing integer constant
11999 /// expression violations.
12000 class VerifyICEDiagnoser {
12001 public:
12002 bool Suppress;
12003
12004 VerifyICEDiagnoser(bool Suppress = false) : Suppress(Suppress) { }
12005
12006 virtual SemaDiagnosticBuilder
12007 diagnoseNotICEType(Sema &S, SourceLocation Loc, QualType T);
12008 virtual SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
12009 SourceLocation Loc) = 0;
12010 virtual SemaDiagnosticBuilder diagnoseFold(Sema &S, SourceLocation Loc);
12011 virtual ~VerifyICEDiagnoser() {}
12012 };
12013
12014 enum AllowFoldKind {
12015 NoFold,
12016 AllowFold,
12017 };
12018
12019 /// VerifyIntegerConstantExpression - Verifies that an expression is an ICE,
12020 /// and reports the appropriate diagnostics. Returns false on success.
12021 /// Can optionally return the value of the expression.
12022 ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
12023 VerifyICEDiagnoser &Diagnoser,
12024 AllowFoldKind CanFold = NoFold);
12025 ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
12026 unsigned DiagID,
12027 AllowFoldKind CanFold = NoFold);
12028 ExprResult VerifyIntegerConstantExpression(Expr *E,
12029 llvm::APSInt *Result = nullptr,
12030 AllowFoldKind CanFold = NoFold);
12031 ExprResult VerifyIntegerConstantExpression(Expr *E,
12032 AllowFoldKind CanFold = NoFold) {
12033 return VerifyIntegerConstantExpression(E, nullptr, CanFold);
12034 }
12035
12036 /// VerifyBitField - verifies that a bit field expression is an ICE and has
12037 /// the correct width, and that the field type is valid.
12038 /// Returns false on success.
12039 /// Can optionally return whether the bit-field is of width 0
12040 ExprResult VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
12041 QualType FieldTy, bool IsMsStruct,
12042 Expr *BitWidth, bool *ZeroWidth = nullptr);
12043
12044private:
12045 unsigned ForceCUDAHostDeviceDepth = 0;
12046
12047public:
12048 /// Increments our count of the number of times we've seen a pragma forcing
12049 /// functions to be __host__ __device__. So long as this count is greater
12050 /// than zero, all functions encountered will be __host__ __device__.
12051 void PushForceCUDAHostDevice();
12052
12053 /// Decrements our count of the number of times we've seen a pragma forcing
12054 /// functions to be __host__ __device__. Returns false if the count is 0
12055 /// before incrementing, so you can emit an error.
12056 bool PopForceCUDAHostDevice();
12057
12058 /// Diagnostics that are emitted only if we discover that the given function
12059 /// must be codegen'ed. Because handling these correctly adds overhead to
12060 /// compilation, this is currently only enabled for CUDA compilations.
12061 llvm::DenseMap<CanonicalDeclPtr<FunctionDecl>,
12062 std::vector<PartialDiagnosticAt>>
12063 DeviceDeferredDiags;
12064
12065 /// A pair of a canonical FunctionDecl and a SourceLocation. When used as the
12066 /// key in a hashtable, both the FD and location are hashed.
12067 struct FunctionDeclAndLoc {
12068 CanonicalDeclPtr<FunctionDecl> FD;
12069 SourceLocation Loc;
12070 };
12071
12072 /// FunctionDecls and SourceLocations for which CheckCUDACall has emitted a
12073 /// (maybe deferred) "bad call" diagnostic. We use this to avoid emitting the
12074 /// same deferred diag twice.
12075 llvm::DenseSet<FunctionDeclAndLoc> LocsWithCUDACallDiags;
12076
12077 /// An inverse call graph, mapping known-emitted functions to one of their
12078 /// known-emitted callers (plus the location of the call).
12079 ///
12080 /// Functions that we can tell a priori must be emitted aren't added to this
12081 /// map.
12082 llvm::DenseMap</* Callee = */ CanonicalDeclPtr<FunctionDecl>,
12083 /* Caller = */ FunctionDeclAndLoc>
12084 DeviceKnownEmittedFns;
12085
12086 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12087 /// context is "used as device code".
12088 ///
12089 /// - If CurContext is a __host__ function, does not emit any diagnostics
12090 /// unless \p EmitOnBothSides is true.
12091 /// - If CurContext is a __device__ or __global__ function, emits the
12092 /// diagnostics immediately.
12093 /// - If CurContext is a __host__ __device__ function and we are compiling for
12094 /// the device, creates a diagnostic which is emitted if and when we realize
12095 /// that the function will be codegen'ed.
12096 ///
12097 /// Example usage:
12098 ///
12099 /// // Variable-length arrays are not allowed in CUDA device code.
12100 /// if (CUDADiagIfDeviceCode(Loc, diag::err_cuda_vla) << CurrentCUDATarget())
12101 /// return ExprError();
12102 /// // Otherwise, continue parsing as normal.
12103 SemaDiagnosticBuilder CUDADiagIfDeviceCode(SourceLocation Loc,
12104 unsigned DiagID);
12105
12106 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12107 /// context is "used as host code".
12108 ///
12109 /// Same as CUDADiagIfDeviceCode, with "host" and "device" switched.
12110 SemaDiagnosticBuilder CUDADiagIfHostCode(SourceLocation Loc, unsigned DiagID);
12111
12112 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12113 /// context is "used as device code".
12114 ///
12115 /// - If CurContext is a `declare target` function or it is known that the
12116 /// function is emitted for the device, emits the diagnostics immediately.
12117 /// - If CurContext is a non-`declare target` function and we are compiling
12118 /// for the device, creates a diagnostic which is emitted if and when we
12119 /// realize that the function will be codegen'ed.
12120 ///
12121 /// Example usage:
12122 ///
12123 /// // Variable-length arrays are not allowed in NVPTX device code.
12124 /// if (diagIfOpenMPDeviceCode(Loc, diag::err_vla_unsupported))
12125 /// return ExprError();
12126 /// // Otherwise, continue parsing as normal.
12127 SemaDiagnosticBuilder
12128 diagIfOpenMPDeviceCode(SourceLocation Loc, unsigned DiagID, FunctionDecl *FD);
12129
12130 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12131 /// context is "used as host code".
12132 ///
12133 /// - If CurContext is a `declare target` function or it is known that the
12134 /// function is emitted for the host, emits the diagnostics immediately.
12135 /// - If CurContext is a non-host function, just ignore it.
12136 ///
12137 /// Example usage:
12138 ///
12139 /// // Variable-length arrays are not allowed in NVPTX device code.
12140 /// if (diagIfOpenMPHostode(Loc, diag::err_vla_unsupported))
12141 /// return ExprError();
12142 /// // Otherwise, continue parsing as normal.
12143 SemaDiagnosticBuilder diagIfOpenMPHostCode(SourceLocation Loc,
12144 unsigned DiagID, FunctionDecl *FD);
12145
12146 SemaDiagnosticBuilder targetDiag(SourceLocation Loc, unsigned DiagID,
12147 FunctionDecl *FD = nullptr);
12148 SemaDiagnosticBuilder targetDiag(SourceLocation Loc,
12149 const PartialDiagnostic &PD,
12150 FunctionDecl *FD = nullptr) {
12151 return targetDiag(Loc, PD.getDiagID(), FD) << PD;
12152 }
12153
12154 /// Check if the expression is allowed to be used in expressions for the
12155 /// offloading devices.
12156 void checkDeviceDecl(ValueDecl *D, SourceLocation Loc);
12157
12158 enum CUDAFunctionTarget {
12159 CFT_Device,
12160 CFT_Global,
12161 CFT_Host,
12162 CFT_HostDevice,
12163 CFT_InvalidTarget
12164 };
12165
12166 /// Determines whether the given function is a CUDA device/host/kernel/etc.
12167 /// function.
12168 ///
12169 /// Use this rather than examining the function's attributes yourself -- you
12170 /// will get it wrong. Returns CFT_Host if D is null.
12171 CUDAFunctionTarget IdentifyCUDATarget(const FunctionDecl *D,
12172 bool IgnoreImplicitHDAttr = false);
12173 CUDAFunctionTarget IdentifyCUDATarget(const ParsedAttributesView &Attrs);
12174
12175 enum CUDAVariableTarget {
12176 CVT_Device, /// Emitted on device side with a shadow variable on host side
12177 CVT_Host, /// Emitted on host side only
12178 CVT_Both, /// Emitted on both sides with different addresses
12179 CVT_Unified, /// Emitted as a unified address, e.g. managed variables
12180 };
12181 /// Determines whether the given variable is emitted on host or device side.
12182 CUDAVariableTarget IdentifyCUDATarget(const VarDecl *D);
12183
12184 /// Gets the CUDA target for the current context.
12185 CUDAFunctionTarget CurrentCUDATarget() {
12186 return IdentifyCUDATarget(dyn_cast<FunctionDecl>(CurContext));
12187 }
12188
12189 static bool isCUDAImplicitHostDeviceFunction(const FunctionDecl *D);
12190
12191 // CUDA function call preference. Must be ordered numerically from
12192 // worst to best.
12193 enum CUDAFunctionPreference {
12194 CFP_Never, // Invalid caller/callee combination.
12195 CFP_WrongSide, // Calls from host-device to host or device
12196 // function that do not match current compilation
12197 // mode.
12198 CFP_HostDevice, // Any calls to host/device functions.
12199 CFP_SameSide, // Calls from host-device to host or device
12200 // function matching current compilation mode.
12201 CFP_Native, // host-to-host or device-to-device calls.
12202 };
12203
12204 /// Identifies relative preference of a given Caller/Callee
12205 /// combination, based on their host/device attributes.
12206 /// \param Caller function which needs address of \p Callee.
12207 /// nullptr in case of global context.
12208 /// \param Callee target function
12209 ///
12210 /// \returns preference value for particular Caller/Callee combination.
12211 CUDAFunctionPreference IdentifyCUDAPreference(const FunctionDecl *Caller,
12212 const FunctionDecl *Callee);
12213
12214 /// Determines whether Caller may invoke Callee, based on their CUDA
12215 /// host/device attributes. Returns false if the call is not allowed.
12216 ///
12217 /// Note: Will return true for CFP_WrongSide calls. These may appear in
12218 /// semantically correct CUDA programs, but only if they're never codegen'ed.
12219 bool IsAllowedCUDACall(const FunctionDecl *Caller,
12220 const FunctionDecl *Callee) {
12221 return IdentifyCUDAPreference(Caller, Callee) != CFP_Never;
12222 }
12223
12224 /// May add implicit CUDAHostAttr and CUDADeviceAttr attributes to FD,
12225 /// depending on FD and the current compilation settings.
12226 void maybeAddCUDAHostDeviceAttrs(FunctionDecl *FD,
12227 const LookupResult &Previous);
12228
12229 /// May add implicit CUDAConstantAttr attribute to VD, depending on VD
12230 /// and current compilation settings.
12231 void MaybeAddCUDAConstantAttr(VarDecl *VD);
12232
12233public:
12234 /// Check whether we're allowed to call Callee from the current context.
12235 ///
12236 /// - If the call is never allowed in a semantically-correct program
12237 /// (CFP_Never), emits an error and returns false.
12238 ///
12239 /// - If the call is allowed in semantically-correct programs, but only if
12240 /// it's never codegen'ed (CFP_WrongSide), creates a deferred diagnostic to
12241 /// be emitted if and when the caller is codegen'ed, and returns true.
12242 ///
12243 /// Will only create deferred diagnostics for a given SourceLocation once,
12244 /// so you can safely call this multiple times without generating duplicate
12245 /// deferred errors.
12246 ///
12247 /// - Otherwise, returns true without emitting any diagnostics.
12248 bool CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee);
12249
12250 void CUDACheckLambdaCapture(CXXMethodDecl *D, const sema::Capture &Capture);
12251
12252 /// Set __device__ or __host__ __device__ attributes on the given lambda
12253 /// operator() method.
12254 ///
12255 /// CUDA lambdas by default is host device function unless it has explicit
12256 /// host or device attribute.
12257 void CUDASetLambdaAttrs(CXXMethodDecl *Method);
12258
12259 /// Finds a function in \p Matches with highest calling priority
12260 /// from \p Caller context and erases all functions with lower
12261 /// calling priority.
12262 void EraseUnwantedCUDAMatches(
12263 const FunctionDecl *Caller,
12264 SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches);
12265
12266 /// Given a implicit special member, infer its CUDA target from the
12267 /// calls it needs to make to underlying base/field special members.
12268 /// \param ClassDecl the class for which the member is being created.
12269 /// \param CSM the kind of special member.
12270 /// \param MemberDecl the special member itself.
12271 /// \param ConstRHS true if this is a copy operation with a const object on
12272 /// its RHS.
12273 /// \param Diagnose true if this call should emit diagnostics.
12274 /// \return true if there was an error inferring.
12275 /// The result of this call is implicit CUDA target attribute(s) attached to
12276 /// the member declaration.
12277 bool inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
12278 CXXSpecialMember CSM,
12279 CXXMethodDecl *MemberDecl,
12280 bool ConstRHS,
12281 bool Diagnose);
12282
12283 /// \return true if \p CD can be considered empty according to CUDA
12284 /// (E.2.3.1 in CUDA 7.5 Programming guide).
12285 bool isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD);
12286 bool isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *CD);
12287
12288 // \brief Checks that initializers of \p Var satisfy CUDA restrictions. In
12289 // case of error emits appropriate diagnostic and invalidates \p Var.
12290 //
12291 // \details CUDA allows only empty constructors as initializers for global
12292 // variables (see E.2.3.1, CUDA 7.5). The same restriction also applies to all
12293 // __shared__ variables whether they are local or not (they all are implicitly
12294 // static in CUDA). One exception is that CUDA allows constant initializers
12295 // for __constant__ and __device__ variables.
12296 void checkAllowedCUDAInitializer(VarDecl *VD);
12297
12298 /// Check whether NewFD is a valid overload for CUDA. Emits
12299 /// diagnostics and invalidates NewFD if not.
12300 void checkCUDATargetOverload(FunctionDecl *NewFD,
12301 const LookupResult &Previous);
12302 /// Copies target attributes from the template TD to the function FD.
12303 void inheritCUDATargetAttrs(FunctionDecl *FD, const FunctionTemplateDecl &TD);
12304
12305 /// Returns the name of the launch configuration function. This is the name
12306 /// of the function that will be called to configure kernel call, with the
12307 /// parameters specified via <<<>>>.
12308 std::string getCudaConfigureFuncName() const;
12309
12310 /// \name Code completion
12311 //@{
12312 /// Describes the context in which code completion occurs.
12313 enum ParserCompletionContext {
12314 /// Code completion occurs at top-level or namespace context.
12315 PCC_Namespace,
12316 /// Code completion occurs within a class, struct, or union.
12317 PCC_Class,
12318 /// Code completion occurs within an Objective-C interface, protocol,
12319 /// or category.
12320 PCC_ObjCInterface,
12321 /// Code completion occurs within an Objective-C implementation or
12322 /// category implementation
12323 PCC_ObjCImplementation,
12324 /// Code completion occurs within the list of instance variables
12325 /// in an Objective-C interface, protocol, category, or implementation.
12326 PCC_ObjCInstanceVariableList,
12327 /// Code completion occurs following one or more template
12328 /// headers.
12329 PCC_Template,
12330 /// Code completion occurs following one or more template
12331 /// headers within a class.
12332 PCC_MemberTemplate,
12333 /// Code completion occurs within an expression.
12334 PCC_Expression,
12335 /// Code completion occurs within a statement, which may
12336 /// also be an expression or a declaration.
12337 PCC_Statement,
12338 /// Code completion occurs at the beginning of the
12339 /// initialization statement (or expression) in a for loop.
12340 PCC_ForInit,
12341 /// Code completion occurs within the condition of an if,
12342 /// while, switch, or for statement.
12343 PCC_Condition,
12344 /// Code completion occurs within the body of a function on a
12345 /// recovery path, where we do not have a specific handle on our position
12346 /// in the grammar.
12347 PCC_RecoveryInFunction,
12348 /// Code completion occurs where only a type is permitted.
12349 PCC_Type,
12350 /// Code completion occurs in a parenthesized expression, which
12351 /// might also be a type cast.
12352 PCC_ParenthesizedExpression,
12353 /// Code completion occurs within a sequence of declaration
12354 /// specifiers within a function, method, or block.
12355 PCC_LocalDeclarationSpecifiers
12356 };
12357
12358 void CodeCompleteModuleImport(SourceLocation ImportLoc, ModuleIdPath Path);
12359 void CodeCompleteOrdinaryName(Scope *S,
12360 ParserCompletionContext CompletionContext);
12361 void CodeCompleteDeclSpec(Scope *S, DeclSpec &DS,
12362 bool AllowNonIdentifiers,
12363 bool AllowNestedNameSpecifiers);
12364
12365 struct CodeCompleteExpressionData;
12366 void CodeCompleteExpression(Scope *S,
12367 const CodeCompleteExpressionData &Data);
12368 void CodeCompleteExpression(Scope *S, QualType PreferredType,
12369 bool IsParenthesized = false);
12370 void CodeCompleteMemberReferenceExpr(Scope *S, Expr *Base, Expr *OtherOpBase,
12371 SourceLocation OpLoc, bool IsArrow,
12372 bool IsBaseExprStatement,
12373 QualType PreferredType);
12374 void CodeCompletePostfixExpression(Scope *S, ExprResult LHS,
12375 QualType PreferredType);
12376 void CodeCompleteTag(Scope *S, unsigned TagSpec);
12377 void CodeCompleteTypeQualifiers(DeclSpec &DS);
12378 void CodeCompleteFunctionQualifiers(DeclSpec &DS, Declarator &D,
12379 const VirtSpecifiers *VS = nullptr);
12380 void CodeCompleteBracketDeclarator(Scope *S);
12381 void CodeCompleteCase(Scope *S);
12382 enum class AttributeCompletion {
12383 Attribute,
12384 Scope,
12385 None,
12386 };
12387 void CodeCompleteAttribute(
12388 AttributeCommonInfo::Syntax Syntax,
12389 AttributeCompletion Completion = AttributeCompletion::Attribute,
12390 const IdentifierInfo *Scope = nullptr);
12391 /// Determines the preferred type of the current function argument, by
12392 /// examining the signatures of all possible overloads.
12393 /// Returns null if unknown or ambiguous, or if code completion is off.
12394 ///
12395 /// If the code completion point has been reached, also reports the function
12396 /// signatures that were considered.
12397 ///
12398 /// FIXME: rename to GuessCallArgumentType to reduce confusion.
12399 QualType ProduceCallSignatureHelp(Scope *S, Expr *Fn, ArrayRef<Expr *> Args,
12400 SourceLocation OpenParLoc);
12401 QualType ProduceConstructorSignatureHelp(Scope *S, QualType Type,
12402 SourceLocation Loc,
12403 ArrayRef<Expr *> Args,
12404 SourceLocation OpenParLoc);
12405 QualType ProduceCtorInitMemberSignatureHelp(Scope *S, Decl *ConstructorDecl,
12406 CXXScopeSpec SS,
12407 ParsedType TemplateTypeTy,
12408 ArrayRef<Expr *> ArgExprs,
12409 IdentifierInfo *II,
12410 SourceLocation OpenParLoc);
12411 void CodeCompleteInitializer(Scope *S, Decl *D);
12412 /// Trigger code completion for a record of \p BaseType. \p InitExprs are
12413 /// expressions in the initializer list seen so far and \p D is the current
12414 /// Designation being parsed.
12415 void CodeCompleteDesignator(const QualType BaseType,
12416 llvm::ArrayRef<Expr *> InitExprs,
12417 const Designation &D);
12418 void CodeCompleteAfterIf(Scope *S, bool IsBracedThen);
12419
12420 void CodeCompleteQualifiedId(Scope *S, CXXScopeSpec &SS, bool EnteringContext,
12421 bool IsUsingDeclaration, QualType BaseType,
12422 QualType PreferredType);
12423 void CodeCompleteUsing(Scope *S);
12424 void CodeCompleteUsingDirective(Scope *S);
12425 void CodeCompleteNamespaceDecl(Scope *S);
12426 void CodeCompleteNamespaceAliasDecl(Scope *S);
12427 void CodeCompleteOperatorName(Scope *S);
12428 void CodeCompleteConstructorInitializer(
12429 Decl *Constructor,
12430 ArrayRef<CXXCtorInitializer *> Initializers);
12431
12432 void CodeCompleteLambdaIntroducer(Scope *S, LambdaIntroducer &Intro,
12433 bool AfterAmpersand);
12434 void CodeCompleteAfterFunctionEquals(Declarator &D);
12435
12436 void CodeCompleteObjCAtDirective(Scope *S);
12437 void CodeCompleteObjCAtVisibility(Scope *S);
12438 void CodeCompleteObjCAtStatement(Scope *S);
12439 void CodeCompleteObjCAtExpression(Scope *S);
12440 void CodeCompleteObjCPropertyFlags(Scope *S, ObjCDeclSpec &ODS);
12441 void CodeCompleteObjCPropertyGetter(Scope *S);
12442 void CodeCompleteObjCPropertySetter(Scope *S);
12443 void CodeCompleteObjCPassingType(Scope *S, ObjCDeclSpec &DS,
12444 bool IsParameter);
12445 void CodeCompleteObjCMessageReceiver(Scope *S);
12446 void CodeCompleteObjCSuperMessage(Scope *S, SourceLocation SuperLoc,
12447 ArrayRef<IdentifierInfo *> SelIdents,
12448 bool AtArgumentExpression);
12449 void CodeCompleteObjCClassMessage(Scope *S, ParsedType Receiver,
12450 ArrayRef<IdentifierInfo *> SelIdents,
12451 bool AtArgumentExpression,
12452 bool IsSuper = false);
12453 void CodeCompleteObjCInstanceMessage(Scope *S, Expr *Receiver,
12454 ArrayRef<IdentifierInfo *> SelIdents,
12455 bool AtArgumentExpression,
12456 ObjCInterfaceDecl *Super = nullptr);
12457 void CodeCompleteObjCForCollection(Scope *S,
12458 DeclGroupPtrTy IterationVar);
12459 void CodeCompleteObjCSelector(Scope *S,
12460 ArrayRef<IdentifierInfo *> SelIdents);
12461 void CodeCompleteObjCProtocolReferences(
12462 ArrayRef<IdentifierLocPair> Protocols);
12463 void CodeCompleteObjCProtocolDecl(Scope *S);
12464 void CodeCompleteObjCInterfaceDecl(Scope *S);
12465 void CodeCompleteObjCSuperclass(Scope *S,
12466 IdentifierInfo *ClassName,
12467 SourceLocation ClassNameLoc);
12468 void CodeCompleteObjCImplementationDecl(Scope *S);
12469 void CodeCompleteObjCInterfaceCategory(Scope *S,
12470 IdentifierInfo *ClassName,
12471 SourceLocation ClassNameLoc);
12472 void CodeCompleteObjCImplementationCategory(Scope *S,
12473 IdentifierInfo *ClassName,
12474 SourceLocation ClassNameLoc);
12475 void CodeCompleteObjCPropertyDefinition(Scope *S);
12476 void CodeCompleteObjCPropertySynthesizeIvar(Scope *S,
12477 IdentifierInfo *PropertyName);
12478 void CodeCompleteObjCMethodDecl(Scope *S, Optional<bool> IsInstanceMethod,
12479 ParsedType ReturnType);
12480 void CodeCompleteObjCMethodDeclSelector(Scope *S,
12481 bool IsInstanceMethod,
12482 bool AtParameterName,
12483 ParsedType ReturnType,
12484 ArrayRef<IdentifierInfo *> SelIdents);
12485 void CodeCompleteObjCClassPropertyRefExpr(Scope *S, IdentifierInfo &ClassName,
12486 SourceLocation ClassNameLoc,
12487 bool IsBaseExprStatement);
12488 void CodeCompletePreprocessorDirective(bool InConditional);
12489 void CodeCompleteInPreprocessorConditionalExclusion(Scope *S);
12490 void CodeCompletePreprocessorMacroName(bool IsDefinition);
12491 void CodeCompletePreprocessorExpression();
12492 void CodeCompletePreprocessorMacroArgument(Scope *S,
12493 IdentifierInfo *Macro,
12494 MacroInfo *MacroInfo,
12495 unsigned Argument);
12496 void CodeCompleteIncludedFile(llvm::StringRef Dir, bool IsAngled);
12497 void CodeCompleteNaturalLanguage();
12498 void CodeCompleteAvailabilityPlatformName();
12499 void GatherGlobalCodeCompletions(CodeCompletionAllocator &Allocator,
12500 CodeCompletionTUInfo &CCTUInfo,
12501 SmallVectorImpl<CodeCompletionResult> &Results);
12502 //@}
12503
12504 //===--------------------------------------------------------------------===//
12505 // Extra semantic analysis beyond the C type system
12506
12507public:
12508 SourceLocation getLocationOfStringLiteralByte(const StringLiteral *SL,
12509 unsigned ByteNo) const;
12510
12511private:
12512 void CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
12513 const ArraySubscriptExpr *ASE=nullptr,
12514 bool AllowOnePastEnd=true, bool IndexNegated=false);
12515 void CheckArrayAccess(const Expr *E);
12516 // Used to grab the relevant information from a FormatAttr and a
12517 // FunctionDeclaration.
12518 struct FormatStringInfo {
12519 unsigned FormatIdx;
12520 unsigned FirstDataArg;
12521 bool HasVAListArg;
12522 };
12523
12524 static bool getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
12525 FormatStringInfo *FSI);
12526 bool CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
12527 const FunctionProtoType *Proto);
12528 bool CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation loc,
12529 ArrayRef<const Expr *> Args);
12530 bool CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
12531 const FunctionProtoType *Proto);
12532 bool CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto);
12533 void CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType,
12534 ArrayRef<const Expr *> Args,
12535 const FunctionProtoType *Proto, SourceLocation Loc);
12536
12537 void CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl,
12538 StringRef ParamName, QualType ArgTy, QualType ParamTy);
12539
12540 void checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
12541 const Expr *ThisArg, ArrayRef<const Expr *> Args,
12542 bool IsMemberFunction, SourceLocation Loc, SourceRange Range,
12543 VariadicCallType CallType);
12544
12545 bool CheckObjCString(Expr *Arg);
12546 ExprResult CheckOSLogFormatStringArg(Expr *Arg);
12547
12548 ExprResult CheckBuiltinFunctionCall(FunctionDecl *FDecl,
12549 unsigned BuiltinID, CallExpr *TheCall);
12550
12551 bool CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12552 CallExpr *TheCall);
12553
12554 void checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, CallExpr *TheCall);
12555
12556 bool CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
12557 unsigned MaxWidth);
12558 bool CheckNeonBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12559 CallExpr *TheCall);
12560 bool CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12561 bool CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12562 bool CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12563 CallExpr *TheCall);
12564 bool CheckARMCoprocessorImmediate(const TargetInfo &TI, const Expr *CoprocArg,
12565 bool WantCDE);
12566 bool CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12567 CallExpr *TheCall);
12568
12569 bool CheckAArch64BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12570 CallExpr *TheCall);
12571 bool CheckBPFBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12572 bool CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12573 bool CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall);
12574 bool CheckMipsBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12575 CallExpr *TheCall);
12576 bool CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID,
12577 CallExpr *TheCall);
12578 bool CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall);
12579 bool CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12580 bool CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall);
12581 bool CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, CallExpr *TheCall);
12582 bool CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall);
12583 bool CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall,
12584 ArrayRef<int> ArgNums);
12585 bool CheckX86BuiltinTileDuplicate(CallExpr *TheCall, ArrayRef<int> ArgNums);
12586 bool CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall,
12587 ArrayRef<int> ArgNums);
12588 bool CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12589 CallExpr *TheCall);
12590 bool CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12591 CallExpr *TheCall);
12592 bool CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12593 bool CheckRISCVLMUL(CallExpr *TheCall, unsigned ArgNum);
12594 bool CheckRISCVBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12595 CallExpr *TheCall);
12596
12597 bool SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall);
12598 bool SemaBuiltinVAStartARMMicrosoft(CallExpr *Call);
12599 bool SemaBuiltinUnorderedCompare(CallExpr *TheCall);
12600 bool SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs);
12601 bool SemaBuiltinComplex(CallExpr *TheCall);
12602 bool SemaBuiltinVSX(CallExpr *TheCall);
12603 bool SemaBuiltinOSLogFormat(CallExpr *TheCall);
12604 bool SemaValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum);
12605
12606public:
12607 // Used by C++ template instantiation.
12608 ExprResult SemaBuiltinShuffleVector(CallExpr *TheCall);
12609 ExprResult SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
12610 SourceLocation BuiltinLoc,
12611 SourceLocation RParenLoc);
12612
12613private:
12614 bool SemaBuiltinPrefetch(CallExpr *TheCall);
12615 bool SemaBuiltinAllocaWithAlign(CallExpr *TheCall);
12616 bool SemaBuiltinArithmeticFence(CallExpr *TheCall);
12617 bool SemaBuiltinAssume(CallExpr *TheCall);
12618 bool SemaBuiltinAssumeAligned(CallExpr *TheCall);
12619 bool SemaBuiltinLongjmp(CallExpr *TheCall);
12620 bool SemaBuiltinSetjmp(CallExpr *TheCall);
12621 ExprResult SemaBuiltinAtomicOverloaded(ExprResult TheCallResult);
12622 ExprResult SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult);
12623 ExprResult SemaAtomicOpsOverloaded(ExprResult TheCallResult,
12624 AtomicExpr::AtomicOp Op);
12625 ExprResult SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
12626 bool IsDelete);
12627 bool SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
12628 llvm::APSInt &Result);
12629 bool SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, int Low,
12630 int High, bool RangeIsError = true);
12631 bool SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
12632 unsigned Multiple);
12633 bool SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum);
12634 bool SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
12635 unsigned ArgBits);
12636 bool SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, int ArgNum,
12637 unsigned ArgBits);
12638 bool SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
12639 int ArgNum, unsigned ExpectedFieldNum,
12640 bool AllowName);
12641 bool SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall);
12642 bool SemaBuiltinPPCMMACall(CallExpr *TheCall, const char *TypeDesc);
12643
12644 bool CheckPPCMMAType(QualType Type, SourceLocation TypeLoc);
12645
12646 // Matrix builtin handling.
12647 ExprResult SemaBuiltinMatrixTranspose(CallExpr *TheCall,
12648 ExprResult CallResult);
12649 ExprResult SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
12650 ExprResult CallResult);
12651 ExprResult SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall,
12652 ExprResult CallResult);
12653
12654public:
12655 enum FormatStringType {
12656 FST_Scanf,
12657 FST_Printf,
12658 FST_NSString,
12659 FST_Strftime,
12660 FST_Strfmon,
12661 FST_Kprintf,
12662 FST_FreeBSDKPrintf,
12663 FST_OSTrace,
12664 FST_OSLog,
12665 FST_Unknown
12666 };
12667 static FormatStringType GetFormatStringType(const FormatAttr *Format);
12668
12669 bool FormatStringHasSArg(const StringLiteral *FExpr);
12670
12671 static bool GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx);
12672
12673private:
12674 bool CheckFormatArguments(const FormatAttr *Format,
12675 ArrayRef<const Expr *> Args,
12676 bool IsCXXMember,
12677 VariadicCallType CallType,
12678 SourceLocation Loc, SourceRange Range,
12679 llvm::SmallBitVector &CheckedVarArgs);
12680 bool CheckFormatArguments(ArrayRef<const Expr *> Args,
12681 bool HasVAListArg, unsigned format_idx,
12682 unsigned firstDataArg, FormatStringType Type,
12683 VariadicCallType CallType,
12684 SourceLocation Loc, SourceRange range,
12685 llvm::SmallBitVector &CheckedVarArgs);
12686
12687 void CheckAbsoluteValueFunction(const CallExpr *Call,
12688 const FunctionDecl *FDecl);
12689
12690 void CheckMaxUnsignedZero(const CallExpr *Call, const FunctionDecl *FDecl);
12691
12692 void CheckMemaccessArguments(const CallExpr *Call,
12693 unsigned BId,
12694 IdentifierInfo *FnName);
12695
12696 void CheckStrlcpycatArguments(const CallExpr *Call,
12697 IdentifierInfo *FnName);
12698
12699 void CheckStrncatArguments(const CallExpr *Call,
12700 IdentifierInfo *FnName);
12701
12702 void CheckFreeArguments(const CallExpr *E);
12703
12704 void CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
12705 SourceLocation ReturnLoc,
12706 bool isObjCMethod = false,
12707 const AttrVec *Attrs = nullptr,
12708 const FunctionDecl *FD = nullptr);
12709
12710public:
12711 void CheckFloatComparison(SourceLocation Loc, Expr *LHS, Expr *RHS);
12712
12713private:
12714 void CheckImplicitConversions(Expr *E, SourceLocation CC = SourceLocation());
12715 void CheckBoolLikeConversion(Expr *E, SourceLocation CC);
12716 void CheckForIntOverflow(Expr *E);
12717 void CheckUnsequencedOperations(const Expr *E);
12718
12719 /// Perform semantic checks on a completed expression. This will either
12720 /// be a full-expression or a default argument expression.
12721 void CheckCompletedExpr(Expr *E, SourceLocation CheckLoc = SourceLocation(),
12722 bool IsConstexpr = false);
12723
12724 void CheckBitFieldInitialization(SourceLocation InitLoc, FieldDecl *Field,
12725 Expr *Init);
12726
12727 /// Check if there is a field shadowing.
12728 void CheckShadowInheritedFields(const SourceLocation &Loc,
12729 DeclarationName FieldName,
12730 const CXXRecordDecl *RD,
12731 bool DeclIsField = true);
12732
12733 /// Check if the given expression contains 'break' or 'continue'
12734 /// statement that produces control flow different from GCC.
12735 void CheckBreakContinueBinding(Expr *E);
12736
12737 /// Check whether receiver is mutable ObjC container which
12738 /// attempts to add itself into the container
12739 void CheckObjCCircularContainer(ObjCMessageExpr *Message);
12740
12741 void CheckTCBEnforcement(const CallExpr *TheCall, const FunctionDecl *Callee);
12742
12743 void AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE);
12744 void AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
12745 bool DeleteWasArrayForm);
12746public:
12747 /// Register a magic integral constant to be used as a type tag.
12748 void RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
12749 uint64_t MagicValue, QualType Type,
12750 bool LayoutCompatible, bool MustBeNull);
12751
12752 struct TypeTagData {
12753 TypeTagData() {}
12754
12755 TypeTagData(QualType Type, bool LayoutCompatible, bool MustBeNull) :
12756 Type(Type), LayoutCompatible(LayoutCompatible),
12757 MustBeNull(MustBeNull)
12758 {}
12759
12760 QualType Type;
12761
12762 /// If true, \c Type should be compared with other expression's types for
12763 /// layout-compatibility.
12764 unsigned LayoutCompatible : 1;
12765 unsigned MustBeNull : 1;
12766 };
12767
12768 /// A pair of ArgumentKind identifier and magic value. This uniquely
12769 /// identifies the magic value.
12770 typedef std::pair<const IdentifierInfo *, uint64_t> TypeTagMagicValue;
12771
12772private:
12773 /// A map from magic value to type information.
12774 std::unique_ptr<llvm::DenseMap<TypeTagMagicValue, TypeTagData>>
12775 TypeTagForDatatypeMagicValues;
12776
12777 /// Peform checks on a call of a function with argument_with_type_tag
12778 /// or pointer_with_type_tag attributes.
12779 void CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
12780 const ArrayRef<const Expr *> ExprArgs,
12781 SourceLocation CallSiteLoc);
12782
12783 /// Check if we are taking the address of a packed field
12784 /// as this may be a problem if the pointer value is dereferenced.
12785 void CheckAddressOfPackedMember(Expr *rhs);
12786
12787 /// The parser's current scope.
12788 ///
12789 /// The parser maintains this state here.
12790 Scope *CurScope;
12791
12792 mutable IdentifierInfo *Ident_super;
12793 mutable IdentifierInfo *Ident___float128;
12794
12795 /// Nullability type specifiers.
12796 IdentifierInfo *Ident__Nonnull = nullptr;
12797 IdentifierInfo *Ident__Nullable = nullptr;
12798 IdentifierInfo *Ident__Nullable_result = nullptr;
12799 IdentifierInfo *Ident__Null_unspecified = nullptr;
12800
12801 IdentifierInfo *Ident_NSError = nullptr;
12802
12803 /// The handler for the FileChanged preprocessor events.
12804 ///
12805 /// Used for diagnostics that implement custom semantic analysis for #include
12806 /// directives, like -Wpragma-pack.
12807 sema::SemaPPCallbacks *SemaPPCallbackHandler;
12808
12809protected:
12810 friend class Parser;
12811 friend class InitializationSequence;
12812 friend class ASTReader;
12813 friend class ASTDeclReader;
12814 friend class ASTWriter;
12815
12816public:
12817 /// Retrieve the keyword associated
12818 IdentifierInfo *getNullabilityKeyword(NullabilityKind nullability);
12819
12820 /// The struct behind the CFErrorRef pointer.
12821 RecordDecl *CFError = nullptr;
12822 bool isCFError(RecordDecl *D);
12823
12824 /// Retrieve the identifier "NSError".
12825 IdentifierInfo *getNSErrorIdent();
12826
12827 /// Retrieve the parser's current scope.
12828 ///
12829 /// This routine must only be used when it is certain that semantic analysis
12830 /// and the parser are in precisely the same context, which is not the case
12831 /// when, e.g., we are performing any kind of template instantiation.
12832 /// Therefore, the only safe places to use this scope are in the parser
12833 /// itself and in routines directly invoked from the parser and *never* from
12834 /// template substitution or instantiation.
12835 Scope *getCurScope() const { return CurScope; }
12836
12837 void incrementMSManglingNumber() const {
12838 return CurScope->incrementMSManglingNumber();
12839 }
12840
12841 IdentifierInfo *getSuperIdentifier() const;
12842 IdentifierInfo *getFloat128Identifier() const;
12843
12844 Decl *getObjCDeclContext() const;
12845
12846 DeclContext *getCurLexicalContext() const {
12847 return OriginalLexicalContext ? OriginalLexicalContext : CurContext;
12848 }
12849
12850 const DeclContext *getCurObjCLexicalContext() const {
12851 const DeclContext *DC = getCurLexicalContext();
12852 // A category implicitly has the attribute of the interface.
12853 if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(DC))
12854 DC = CatD->getClassInterface();
12855 return DC;
12856 }
12857
12858 /// Determine the number of levels of enclosing template parameters. This is
12859 /// only usable while parsing. Note that this does not include dependent
12860 /// contexts in which no template parameters have yet been declared, such as
12861 /// in a terse function template or generic lambda before the first 'auto' is
12862 /// encountered.
12863 unsigned getTemplateDepth(Scope *S) const;
12864
12865 /// To be used for checking whether the arguments being passed to
12866 /// function exceeds the number of parameters expected for it.
12867 static bool TooManyArguments(size_t NumParams, size_t NumArgs,
12868 bool PartialOverloading = false) {
12869 // We check whether we're just after a comma in code-completion.
12870 if (NumArgs > 0 && PartialOverloading)
12871 return NumArgs + 1 > NumParams; // If so, we view as an extra argument.
12872 return NumArgs > NumParams;
12873 }
12874
12875 // Emitting members of dllexported classes is delayed until the class
12876 // (including field initializers) is fully parsed.
12877 SmallVector<CXXRecordDecl*, 4> DelayedDllExportClasses;
12878 SmallVector<CXXMethodDecl*, 4> DelayedDllExportMemberFunctions;
12879
12880private:
12881 int ParsingClassDepth = 0;
12882
12883 class SavePendingParsedClassStateRAII {
12884 public:
12885 SavePendingParsedClassStateRAII(Sema &S) : S(S) { swapSavedState(); }
12886
12887 ~SavePendingParsedClassStateRAII() {
12888 assert(S.DelayedOverridingExceptionSpecChecks.empty() &&(static_cast <bool> (S.DelayedOverridingExceptionSpecChecks
.empty() && "there shouldn't be any pending delayed exception spec checks"
) ? void (0) : __assert_fail ("S.DelayedOverridingExceptionSpecChecks.empty() && \"there shouldn't be any pending delayed exception spec checks\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 12889, __extension__ __PRETTY_FUNCTION__))
12889 "there shouldn't be any pending delayed exception spec checks")(static_cast <bool> (S.DelayedOverridingExceptionSpecChecks
.empty() && "there shouldn't be any pending delayed exception spec checks"
) ? void (0) : __assert_fail ("S.DelayedOverridingExceptionSpecChecks.empty() && \"there shouldn't be any pending delayed exception spec checks\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 12889, __extension__ __PRETTY_FUNCTION__))
;
12890 assert(S.DelayedEquivalentExceptionSpecChecks.empty() &&(static_cast <bool> (S.DelayedEquivalentExceptionSpecChecks
.empty() && "there shouldn't be any pending delayed exception spec checks"
) ? void (0) : __assert_fail ("S.DelayedEquivalentExceptionSpecChecks.empty() && \"there shouldn't be any pending delayed exception spec checks\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 12891, __extension__ __PRETTY_FUNCTION__))
12891 "there shouldn't be any pending delayed exception spec checks")(static_cast <bool> (S.DelayedEquivalentExceptionSpecChecks
.empty() && "there shouldn't be any pending delayed exception spec checks"
) ? void (0) : __assert_fail ("S.DelayedEquivalentExceptionSpecChecks.empty() && \"there shouldn't be any pending delayed exception spec checks\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 12891, __extension__ __PRETTY_FUNCTION__))
;
12892 swapSavedState();
12893 }
12894
12895 private:
12896 Sema &S;
12897 decltype(DelayedOverridingExceptionSpecChecks)
12898 SavedOverridingExceptionSpecChecks;
12899 decltype(DelayedEquivalentExceptionSpecChecks)
12900 SavedEquivalentExceptionSpecChecks;
12901
12902 void swapSavedState() {
12903 SavedOverridingExceptionSpecChecks.swap(
12904 S.DelayedOverridingExceptionSpecChecks);
12905 SavedEquivalentExceptionSpecChecks.swap(
12906 S.DelayedEquivalentExceptionSpecChecks);
12907 }
12908 };
12909
12910 /// Helper class that collects misaligned member designations and
12911 /// their location info for delayed diagnostics.
12912 struct MisalignedMember {
12913 Expr *E;
12914 RecordDecl *RD;
12915 ValueDecl *MD;
12916 CharUnits Alignment;
12917
12918 MisalignedMember() : E(), RD(), MD(), Alignment() {}
12919 MisalignedMember(Expr *E, RecordDecl *RD, ValueDecl *MD,
12920 CharUnits Alignment)
12921 : E(E), RD(RD), MD(MD), Alignment(Alignment) {}
12922 explicit MisalignedMember(Expr *E)
12923 : MisalignedMember(E, nullptr, nullptr, CharUnits()) {}
12924
12925 bool operator==(const MisalignedMember &m) { return this->E == m.E; }
12926 };
12927 /// Small set of gathered accesses to potentially misaligned members
12928 /// due to the packed attribute.
12929 SmallVector<MisalignedMember, 4> MisalignedMembers;
12930
12931 /// Adds an expression to the set of gathered misaligned members.
12932 void AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
12933 CharUnits Alignment);
12934
12935public:
12936 /// Diagnoses the current set of gathered accesses. This typically
12937 /// happens at full expression level. The set is cleared after emitting the
12938 /// diagnostics.
12939 void DiagnoseMisalignedMembers();
12940
12941 /// This function checks if the expression is in the sef of potentially
12942 /// misaligned members and it is converted to some pointer type T with lower
12943 /// or equal alignment requirements. If so it removes it. This is used when
12944 /// we do not want to diagnose such misaligned access (e.g. in conversions to
12945 /// void*).
12946 void DiscardMisalignedMemberAddress(const Type *T, Expr *E);
12947
12948 /// This function calls Action when it determines that E designates a
12949 /// misaligned member due to the packed attribute. This is used to emit
12950 /// local diagnostics like in reference binding.
12951 void RefersToMemberWithReducedAlignment(
12952 Expr *E,
12953 llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
12954 Action);
12955
12956 /// Describes the reason a calling convention specification was ignored, used
12957 /// for diagnostics.
12958 enum class CallingConventionIgnoredReason {
12959 ForThisTarget = 0,
12960 VariadicFunction,
12961 ConstructorDestructor,
12962 BuiltinFunction
12963 };
12964 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12965 /// context is "used as device code".
12966 ///
12967 /// - If CurLexicalContext is a kernel function or it is known that the
12968 /// function will be emitted for the device, emits the diagnostics
12969 /// immediately.
12970 /// - If CurLexicalContext is a function and we are compiling
12971 /// for the device, but we don't know that this function will be codegen'ed
12972 /// for devive yet, creates a diagnostic which is emitted if and when we
12973 /// realize that the function will be codegen'ed.
12974 ///
12975 /// Example usage:
12976 ///
12977 /// Diagnose __float128 type usage only from SYCL device code if the current
12978 /// target doesn't support it
12979 /// if (!S.Context.getTargetInfo().hasFloat128Type() &&
12980 /// S.getLangOpts().SYCLIsDevice)
12981 /// SYCLDiagIfDeviceCode(Loc, diag::err_type_unsupported) << "__float128";
12982 SemaDiagnosticBuilder SYCLDiagIfDeviceCode(SourceLocation Loc,
12983 unsigned DiagID);
12984
12985 /// Check whether we're allowed to call Callee from the current context.
12986 ///
12987 /// - If the call is never allowed in a semantically-correct program
12988 /// emits an error and returns false.
12989 ///
12990 /// - If the call is allowed in semantically-correct programs, but only if
12991 /// it's never codegen'ed, creates a deferred diagnostic to be emitted if
12992 /// and when the caller is codegen'ed, and returns true.
12993 ///
12994 /// - Otherwise, returns true without emitting any diagnostics.
12995 ///
12996 /// Adds Callee to DeviceCallGraph if we don't know if its caller will be
12997 /// codegen'ed yet.
12998 bool checkSYCLDeviceFunction(SourceLocation Loc, FunctionDecl *Callee);
12999};
13000
13001/// RAII object that enters a new expression evaluation context.
13002class EnterExpressionEvaluationContext {
13003 Sema &Actions;
13004 bool Entered = true;
13005
13006public:
13007 EnterExpressionEvaluationContext(
13008 Sema &Actions, Sema::ExpressionEvaluationContext NewContext,
13009 Decl *LambdaContextDecl = nullptr,
13010 Sema::ExpressionEvaluationContextRecord::ExpressionKind ExprContext =
13011 Sema::ExpressionEvaluationContextRecord::EK_Other,
13012 bool ShouldEnter = true)
13013 : Actions(Actions), Entered(ShouldEnter) {
13014 if (Entered)
13015 Actions.PushExpressionEvaluationContext(NewContext, LambdaContextDecl,
13016 ExprContext);
13017 }
13018 EnterExpressionEvaluationContext(
13019 Sema &Actions, Sema::ExpressionEvaluationContext NewContext,
13020 Sema::ReuseLambdaContextDecl_t,
13021 Sema::ExpressionEvaluationContextRecord::ExpressionKind ExprContext =
13022 Sema::ExpressionEvaluationContextRecord::EK_Other)
13023 : Actions(Actions) {
13024 Actions.PushExpressionEvaluationContext(
13025 NewContext, Sema::ReuseLambdaContextDecl, ExprContext);
13026 }
13027
13028 enum InitListTag { InitList };
13029 EnterExpressionEvaluationContext(Sema &Actions, InitListTag,
13030 bool ShouldEnter = true)
13031 : Actions(Actions), Entered(false) {
13032 // In C++11 onwards, narrowing checks are performed on the contents of
13033 // braced-init-lists, even when they occur within unevaluated operands.
13034 // Therefore we still need to instantiate constexpr functions used in such
13035 // a context.
13036 if (ShouldEnter && Actions.isUnevaluatedContext() &&
13037 Actions.getLangOpts().CPlusPlus11) {
13038 Actions.PushExpressionEvaluationContext(
13039 Sema::ExpressionEvaluationContext::UnevaluatedList);
13040 Entered = true;
13041 }
13042 }
13043
13044 ~EnterExpressionEvaluationContext() {
13045 if (Entered)
13046 Actions.PopExpressionEvaluationContext();
13047 }
13048};
13049
13050DeductionFailureInfo
13051MakeDeductionFailureInfo(ASTContext &Context, Sema::TemplateDeductionResult TDK,
13052 sema::TemplateDeductionInfo &Info);
13053
13054/// Contains a late templated function.
13055/// Will be parsed at the end of the translation unit, used by Sema & Parser.
13056struct LateParsedTemplate {
13057 CachedTokens Toks;
13058 /// The template function declaration to be late parsed.
13059 Decl *D;
13060};
13061
13062template <>
13063void Sema::PragmaStack<Sema::AlignPackInfo>::Act(SourceLocation PragmaLocation,
13064 PragmaMsStackAction Action,
13065 llvm::StringRef StackSlotLabel,
13066 AlignPackInfo Value);
13067
13068} // end namespace clang
13069
13070namespace llvm {
13071// Hash a FunctionDeclAndLoc by looking at both its FunctionDecl and its
13072// SourceLocation.
13073template <> struct DenseMapInfo<clang::Sema::FunctionDeclAndLoc> {
13074 using FunctionDeclAndLoc = clang::Sema::FunctionDeclAndLoc;
13075 using FDBaseInfo = DenseMapInfo<clang::CanonicalDeclPtr<clang::FunctionDecl>>;
13076
13077 static FunctionDeclAndLoc getEmptyKey() {
13078 return {FDBaseInfo::getEmptyKey(), clang::SourceLocation()};
13079 }
13080
13081 static FunctionDeclAndLoc getTombstoneKey() {
13082 return {FDBaseInfo::getTombstoneKey(), clang::SourceLocation()};
13083 }
13084
13085 static unsigned getHashValue(const FunctionDeclAndLoc &FDL) {
13086 return hash_combine(FDBaseInfo::getHashValue(FDL.FD),
13087 FDL.Loc.getHashValue());
13088 }
13089
13090 static bool isEqual(const FunctionDeclAndLoc &LHS,
13091 const FunctionDeclAndLoc &RHS) {
13092 return LHS.FD == RHS.FD && LHS.Loc == RHS.Loc;
13093 }
13094};
13095} // namespace llvm
13096
13097#endif

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h

1//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// C Language Family Type Representation
11///
12/// This file defines the clang::Type interface and subclasses, used to
13/// represent types for languages in the C family.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CLANG_AST_TYPE_H
18#define LLVM_CLANG_AST_TYPE_H
19
20#include "clang/AST/DependenceFlags.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/TemplateName.h"
23#include "clang/Basic/AddressSpaces.h"
24#include "clang/Basic/AttrKinds.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/ExceptionSpecificationType.h"
27#include "clang/Basic/LLVM.h"
28#include "clang/Basic/Linkage.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceLocation.h"
31#include "clang/Basic/Specifiers.h"
32#include "clang/Basic/Visibility.h"
33#include "llvm/ADT/APInt.h"
34#include "llvm/ADT/APSInt.h"
35#include "llvm/ADT/ArrayRef.h"
36#include "llvm/ADT/FoldingSet.h"
37#include "llvm/ADT/None.h"
38#include "llvm/ADT/Optional.h"
39#include "llvm/ADT/PointerIntPair.h"
40#include "llvm/ADT/PointerUnion.h"
41#include "llvm/ADT/StringRef.h"
42#include "llvm/ADT/Twine.h"
43#include "llvm/ADT/iterator_range.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/PointerLikeTypeTraits.h"
48#include "llvm/Support/TrailingObjects.h"
49#include "llvm/Support/type_traits.h"
50#include <cassert>
51#include <cstddef>
52#include <cstdint>
53#include <cstring>
54#include <string>
55#include <type_traits>
56#include <utility>
57
58namespace clang {
59
60class ExtQuals;
61class QualType;
62class ConceptDecl;
63class TagDecl;
64class TemplateParameterList;
65class Type;
66
67enum {
68 TypeAlignmentInBits = 4,
69 TypeAlignment = 1 << TypeAlignmentInBits
70};
71
72namespace serialization {
73 template <class T> class AbstractTypeReader;
74 template <class T> class AbstractTypeWriter;
75}
76
77} // namespace clang
78
79namespace llvm {
80
81 template <typename T>
82 struct PointerLikeTypeTraits;
83 template<>
84 struct PointerLikeTypeTraits< ::clang::Type*> {
85 static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
86
87 static inline ::clang::Type *getFromVoidPointer(void *P) {
88 return static_cast< ::clang::Type*>(P);
89 }
90
91 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
92 };
93
94 template<>
95 struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
96 static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
97
98 static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
99 return static_cast< ::clang::ExtQuals*>(P);
100 }
101
102 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
103 };
104
105} // namespace llvm
106
107namespace clang {
108
109class ASTContext;
110template <typename> class CanQual;
111class CXXRecordDecl;
112class DeclContext;
113class EnumDecl;
114class Expr;
115class ExtQualsTypeCommonBase;
116class FunctionDecl;
117class IdentifierInfo;
118class NamedDecl;
119class ObjCInterfaceDecl;
120class ObjCProtocolDecl;
121class ObjCTypeParamDecl;
122struct PrintingPolicy;
123class RecordDecl;
124class Stmt;
125class TagDecl;
126class TemplateArgument;
127class TemplateArgumentListInfo;
128class TemplateArgumentLoc;
129class TemplateTypeParmDecl;
130class TypedefNameDecl;
131class UnresolvedUsingTypenameDecl;
132
133using CanQualType = CanQual<Type>;
134
135// Provide forward declarations for all of the *Type classes.
136#define TYPE(Class, Base) class Class##Type;
137#include "clang/AST/TypeNodes.inc"
138
139/// The collection of all-type qualifiers we support.
140/// Clang supports five independent qualifiers:
141/// * C99: const, volatile, and restrict
142/// * MS: __unaligned
143/// * Embedded C (TR18037): address spaces
144/// * Objective C: the GC attributes (none, weak, or strong)
145class Qualifiers {
146public:
147 enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
148 Const = 0x1,
149 Restrict = 0x2,
150 Volatile = 0x4,
151 CVRMask = Const | Volatile | Restrict
152 };
153
154 enum GC {
155 GCNone = 0,
156 Weak,
157 Strong
158 };
159
160 enum ObjCLifetime {
161 /// There is no lifetime qualification on this type.
162 OCL_None,
163
164 /// This object can be modified without requiring retains or
165 /// releases.
166 OCL_ExplicitNone,
167
168 /// Assigning into this object requires the old value to be
169 /// released and the new value to be retained. The timing of the
170 /// release of the old value is inexact: it may be moved to
171 /// immediately after the last known point where the value is
172 /// live.
173 OCL_Strong,
174
175 /// Reading or writing from this object requires a barrier call.
176 OCL_Weak,
177
178 /// Assigning into this object requires a lifetime extension.
179 OCL_Autoreleasing
180 };
181
182 enum {
183 /// The maximum supported address space number.
184 /// 23 bits should be enough for anyone.
185 MaxAddressSpace = 0x7fffffu,
186
187 /// The width of the "fast" qualifier mask.
188 FastWidth = 3,
189
190 /// The fast qualifier mask.
191 FastMask = (1 << FastWidth) - 1
192 };
193
194 /// Returns the common set of qualifiers while removing them from
195 /// the given sets.
196 static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
197 // If both are only CVR-qualified, bit operations are sufficient.
198 if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
199 Qualifiers Q;
200 Q.Mask = L.Mask & R.Mask;
201 L.Mask &= ~Q.Mask;
202 R.Mask &= ~Q.Mask;
203 return Q;
204 }
205
206 Qualifiers Q;
207 unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
208 Q.addCVRQualifiers(CommonCRV);
209 L.removeCVRQualifiers(CommonCRV);
210 R.removeCVRQualifiers(CommonCRV);
211
212 if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
213 Q.setObjCGCAttr(L.getObjCGCAttr());
214 L.removeObjCGCAttr();
215 R.removeObjCGCAttr();
216 }
217
218 if (L.getObjCLifetime() == R.getObjCLifetime()) {
219 Q.setObjCLifetime(L.getObjCLifetime());
220 L.removeObjCLifetime();
221 R.removeObjCLifetime();
222 }
223
224 if (L.getAddressSpace() == R.getAddressSpace()) {
225 Q.setAddressSpace(L.getAddressSpace());
226 L.removeAddressSpace();
227 R.removeAddressSpace();
228 }
229 return Q;
230 }
231
232 static Qualifiers fromFastMask(unsigned Mask) {
233 Qualifiers Qs;
234 Qs.addFastQualifiers(Mask);
235 return Qs;
236 }
237
238 static Qualifiers fromCVRMask(unsigned CVR) {
239 Qualifiers Qs;
240 Qs.addCVRQualifiers(CVR);
241 return Qs;
242 }
243
244 static Qualifiers fromCVRUMask(unsigned CVRU) {
245 Qualifiers Qs;
246 Qs.addCVRUQualifiers(CVRU);
247 return Qs;
248 }
249
250 // Deserialize qualifiers from an opaque representation.
251 static Qualifiers fromOpaqueValue(unsigned opaque) {
252 Qualifiers Qs;
253 Qs.Mask = opaque;
254 return Qs;
255 }
256
257 // Serialize these qualifiers into an opaque representation.
258 unsigned getAsOpaqueValue() const {
259 return Mask;
260 }
261
262 bool hasConst() const { return Mask & Const; }
263 bool hasOnlyConst() const { return Mask == Const; }
264 void removeConst() { Mask &= ~Const; }
265 void addConst() { Mask |= Const; }
266
267 bool hasVolatile() const { return Mask & Volatile; }
268 bool hasOnlyVolatile() const { return Mask == Volatile; }
269 void removeVolatile() { Mask &= ~Volatile; }
270 void addVolatile() { Mask |= Volatile; }
271
272 bool hasRestrict() const { return Mask & Restrict; }
273 bool hasOnlyRestrict() const { return Mask == Restrict; }
274 void removeRestrict() { Mask &= ~Restrict; }
275 void addRestrict() { Mask |= Restrict; }
276
277 bool hasCVRQualifiers() const { return getCVRQualifiers(); }
278 unsigned getCVRQualifiers() const { return Mask & CVRMask; }
279 unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }
280
281 void setCVRQualifiers(unsigned mask) {
282 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast <bool> (!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? void (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 282, __extension__ __PRETTY_FUNCTION__))
;
283 Mask = (Mask & ~CVRMask) | mask;
284 }
285 void removeCVRQualifiers(unsigned mask) {
286 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast <bool> (!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? void (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 286, __extension__ __PRETTY_FUNCTION__))
;
287 Mask &= ~mask;
288 }
289 void removeCVRQualifiers() {
290 removeCVRQualifiers(CVRMask);
291 }
292 void addCVRQualifiers(unsigned mask) {
293 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast <bool> (!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? void (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 293, __extension__ __PRETTY_FUNCTION__))
;
294 Mask |= mask;
295 }
296 void addCVRUQualifiers(unsigned mask) {
297 assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")(static_cast <bool> (!(mask & ~CVRMask & ~UMask
) && "bitmask contains non-CVRU bits") ? void (0) : __assert_fail
("!(mask & ~CVRMask & ~UMask) && \"bitmask contains non-CVRU bits\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 297, __extension__ __PRETTY_FUNCTION__))
;
298 Mask |= mask;
299 }
300
301 bool hasUnaligned() const { return Mask & UMask; }
302 void setUnaligned(bool flag) {
303 Mask = (Mask & ~UMask) | (flag ? UMask : 0);
304 }
305 void removeUnaligned() { Mask &= ~UMask; }
306 void addUnaligned() { Mask |= UMask; }
307
308 bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
309 GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
310 void setObjCGCAttr(GC type) {
311 Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
312 }
313 void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
314 void addObjCGCAttr(GC type) {
315 assert(type)(static_cast <bool> (type) ? void (0) : __assert_fail (
"type", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 315, __extension__ __PRETTY_FUNCTION__))
;
316 setObjCGCAttr(type);
317 }
318 Qualifiers withoutObjCGCAttr() const {
319 Qualifiers qs = *this;
320 qs.removeObjCGCAttr();
321 return qs;
322 }
323 Qualifiers withoutObjCLifetime() const {
324 Qualifiers qs = *this;
325 qs.removeObjCLifetime();
326 return qs;
327 }
328 Qualifiers withoutAddressSpace() const {
329 Qualifiers qs = *this;
330 qs.removeAddressSpace();
331 return qs;
332 }
333
334 bool hasObjCLifetime() const { return Mask & LifetimeMask; }
335 ObjCLifetime getObjCLifetime() const {
336 return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
337 }
338 void setObjCLifetime(ObjCLifetime type) {
339 Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
340 }
341 void removeObjCLifetime() { setObjCLifetime(OCL_None); }
342 void addObjCLifetime(ObjCLifetime type) {
343 assert(type)(static_cast <bool> (type) ? void (0) : __assert_fail (
"type", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 343, __extension__ __PRETTY_FUNCTION__))
;
344 assert(!hasObjCLifetime())(static_cast <bool> (!hasObjCLifetime()) ? void (0) : __assert_fail
("!hasObjCLifetime()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 344, __extension__ __PRETTY_FUNCTION__))
;
345 Mask |= (type << LifetimeShift);
346 }
347
348 /// True if the lifetime is neither None or ExplicitNone.
349 bool hasNonTrivialObjCLifetime() const {
350 ObjCLifetime lifetime = getObjCLifetime();
351 return (lifetime > OCL_ExplicitNone);
352 }
353
354 /// True if the lifetime is either strong or weak.
355 bool hasStrongOrWeakObjCLifetime() const {
356 ObjCLifetime lifetime = getObjCLifetime();
357 return (lifetime == OCL_Strong || lifetime == OCL_Weak);
358 }
359
360 bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
361 LangAS getAddressSpace() const {
362 return static_cast<LangAS>(Mask >> AddressSpaceShift);
363 }
364 bool hasTargetSpecificAddressSpace() const {
365 return isTargetAddressSpace(getAddressSpace());
366 }
367 /// Get the address space attribute value to be printed by diagnostics.
368 unsigned getAddressSpaceAttributePrintValue() const {
369 auto Addr = getAddressSpace();
370 // This function is not supposed to be used with language specific
371 // address spaces. If that happens, the diagnostic message should consider
372 // printing the QualType instead of the address space value.
373 assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())(static_cast <bool> (Addr == LangAS::Default || hasTargetSpecificAddressSpace
()) ? void (0) : __assert_fail ("Addr == LangAS::Default || hasTargetSpecificAddressSpace()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 373, __extension__ __PRETTY_FUNCTION__))
;
374 if (Addr != LangAS::Default)
375 return toTargetAddressSpace(Addr);
376 // TODO: The diagnostic messages where Addr may be 0 should be fixed
377 // since it cannot differentiate the situation where 0 denotes the default
378 // address space or user specified __attribute__((address_space(0))).
379 return 0;
380 }
381 void setAddressSpace(LangAS space) {
382 assert((unsigned)space <= MaxAddressSpace)(static_cast <bool> ((unsigned)space <= MaxAddressSpace
) ? void (0) : __assert_fail ("(unsigned)space <= MaxAddressSpace"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 382, __extension__ __PRETTY_FUNCTION__))
;
383 Mask = (Mask & ~AddressSpaceMask)
384 | (((uint32_t) space) << AddressSpaceShift);
385 }
386 void removeAddressSpace() { setAddressSpace(LangAS::Default); }
387 void addAddressSpace(LangAS space) {
388 assert(space != LangAS::Default)(static_cast <bool> (space != LangAS::Default) ? void (
0) : __assert_fail ("space != LangAS::Default", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 388, __extension__ __PRETTY_FUNCTION__))
;
389 setAddressSpace(space);
390 }
391
392 // Fast qualifiers are those that can be allocated directly
393 // on a QualType object.
394 bool hasFastQualifiers() const { return getFastQualifiers(); }
395 unsigned getFastQualifiers() const { return Mask & FastMask; }
396 void setFastQualifiers(unsigned mask) {
397 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast <bool> (!(mask & ~FastMask) &&
"bitmask contains non-fast qualifier bits") ? void (0) : __assert_fail
("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 397, __extension__ __PRETTY_FUNCTION__))
;
398 Mask = (Mask & ~FastMask) | mask;
399 }
400 void removeFastQualifiers(unsigned mask) {
401 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast <bool> (!(mask & ~FastMask) &&
"bitmask contains non-fast qualifier bits") ? void (0) : __assert_fail
("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 401, __extension__ __PRETTY_FUNCTION__))
;
402 Mask &= ~mask;
403 }
404 void removeFastQualifiers() {
405 removeFastQualifiers(FastMask);
406 }
407 void addFastQualifiers(unsigned mask) {
408 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast <bool> (!(mask & ~FastMask) &&
"bitmask contains non-fast qualifier bits") ? void (0) : __assert_fail
("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 408, __extension__ __PRETTY_FUNCTION__))
;
409 Mask |= mask;
410 }
411
412 /// Return true if the set contains any qualifiers which require an ExtQuals
413 /// node to be allocated.
414 bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
415 Qualifiers getNonFastQualifiers() const {
416 Qualifiers Quals = *this;
417 Quals.setFastQualifiers(0);
418 return Quals;
419 }
420
421 /// Return true if the set contains any qualifiers.
422 bool hasQualifiers() const { return Mask; }
423 bool empty() const { return !Mask; }
424
425 /// Add the qualifiers from the given set to this set.
426 void addQualifiers(Qualifiers Q) {
427 // If the other set doesn't have any non-boolean qualifiers, just
428 // bit-or it in.
429 if (!(Q.Mask & ~CVRMask))
430 Mask |= Q.Mask;
431 else {
432 Mask |= (Q.Mask & CVRMask);
433 if (Q.hasAddressSpace())
434 addAddressSpace(Q.getAddressSpace());
435 if (Q.hasObjCGCAttr())
436 addObjCGCAttr(Q.getObjCGCAttr());
437 if (Q.hasObjCLifetime())
438 addObjCLifetime(Q.getObjCLifetime());
439 }
440 }
441
442 /// Remove the qualifiers from the given set from this set.
443 void removeQualifiers(Qualifiers Q) {
444 // If the other set doesn't have any non-boolean qualifiers, just
445 // bit-and the inverse in.
446 if (!(Q.Mask & ~CVRMask))
447 Mask &= ~Q.Mask;
448 else {
449 Mask &= ~(Q.Mask & CVRMask);
450 if (getObjCGCAttr() == Q.getObjCGCAttr())
451 removeObjCGCAttr();
452 if (getObjCLifetime() == Q.getObjCLifetime())
453 removeObjCLifetime();
454 if (getAddressSpace() == Q.getAddressSpace())
455 removeAddressSpace();
456 }
457 }
458
459 /// Add the qualifiers from the given set to this set, given that
460 /// they don't conflict.
461 void addConsistentQualifiers(Qualifiers qs) {
462 assert(getAddressSpace() == qs.getAddressSpace() ||(static_cast <bool> (getAddressSpace() == qs.getAddressSpace
() || !hasAddressSpace() || !qs.hasAddressSpace()) ? void (0)
: __assert_fail ("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 463, __extension__ __PRETTY_FUNCTION__))
463 !hasAddressSpace() || !qs.hasAddressSpace())(static_cast <bool> (getAddressSpace() == qs.getAddressSpace
() || !hasAddressSpace() || !qs.hasAddressSpace()) ? void (0)
: __assert_fail ("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 463, __extension__ __PRETTY_FUNCTION__))
;
464 assert(getObjCGCAttr() == qs.getObjCGCAttr() ||(static_cast <bool> (getObjCGCAttr() == qs.getObjCGCAttr
() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()) ? void (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 465, __extension__ __PRETTY_FUNCTION__))
465 !hasObjCGCAttr() || !qs.hasObjCGCAttr())(static_cast <bool> (getObjCGCAttr() == qs.getObjCGCAttr
() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()) ? void (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 465, __extension__ __PRETTY_FUNCTION__))
;
466 assert(getObjCLifetime() == qs.getObjCLifetime() ||(static_cast <bool> (getObjCLifetime() == qs.getObjCLifetime
() || !hasObjCLifetime() || !qs.hasObjCLifetime()) ? void (0)
: __assert_fail ("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 467, __extension__ __PRETTY_FUNCTION__))
467 !hasObjCLifetime() || !qs.hasObjCLifetime())(static_cast <bool> (getObjCLifetime() == qs.getObjCLifetime
() || !hasObjCLifetime() || !qs.hasObjCLifetime()) ? void (0)
: __assert_fail ("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 467, __extension__ __PRETTY_FUNCTION__))
;
468 Mask |= qs.Mask;
469 }
470
471 /// Returns true if address space A is equal to or a superset of B.
472 /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
473 /// overlapping address spaces.
474 /// CL1.1 or CL1.2:
475 /// every address space is a superset of itself.
476 /// CL2.0 adds:
477 /// __generic is a superset of any address space except for __constant.
478 static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) {
479 // Address spaces must match exactly.
480 return A == B ||
481 // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
482 // for __constant can be used as __generic.
483 (A == LangAS::opencl_generic && B != LangAS::opencl_constant) ||
484 // We also define global_device and global_host address spaces,
485 // to distinguish global pointers allocated on host from pointers
486 // allocated on device, which are a subset of __global.
487 (A == LangAS::opencl_global && (B == LangAS::opencl_global_device ||
488 B == LangAS::opencl_global_host)) ||
489 (A == LangAS::sycl_global && (B == LangAS::sycl_global_device ||
490 B == LangAS::sycl_global_host)) ||
491 // Consider pointer size address spaces to be equivalent to default.
492 ((isPtrSizeAddressSpace(A) || A == LangAS::Default) &&
493 (isPtrSizeAddressSpace(B) || B == LangAS::Default)) ||
494 // Default is a superset of SYCL address spaces.
495 (A == LangAS::Default &&
496 (B == LangAS::sycl_private || B == LangAS::sycl_local ||
497 B == LangAS::sycl_global || B == LangAS::sycl_global_device ||
498 B == LangAS::sycl_global_host)) ||
499 // In HIP device compilation, any cuda address space is allowed
500 // to implicitly cast into the default address space.
501 (A == LangAS::Default &&
502 (B == LangAS::cuda_constant || B == LangAS::cuda_device ||
503 B == LangAS::cuda_shared));
504 }
505
506 /// Returns true if the address space in these qualifiers is equal to or
507 /// a superset of the address space in the argument qualifiers.
508 bool isAddressSpaceSupersetOf(Qualifiers other) const {
509 return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace());
510 }
511
512 /// Determines if these qualifiers compatibly include another set.
513 /// Generally this answers the question of whether an object with the other
514 /// qualifiers can be safely used as an object with these qualifiers.
515 bool compatiblyIncludes(Qualifiers other) const {
516 return isAddressSpaceSupersetOf(other) &&
517 // ObjC GC qualifiers can match, be added, or be removed, but can't
518 // be changed.
519 (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
520 !other.hasObjCGCAttr()) &&
521 // ObjC lifetime qualifiers must match exactly.
522 getObjCLifetime() == other.getObjCLifetime() &&
523 // CVR qualifiers may subset.
524 (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
525 // U qualifier may superset.
526 (!other.hasUnaligned() || hasUnaligned());
527 }
528
529 /// Determines if these qualifiers compatibly include another set of
530 /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
531 ///
532 /// One set of Objective-C lifetime qualifiers compatibly includes the other
533 /// if the lifetime qualifiers match, or if both are non-__weak and the
534 /// including set also contains the 'const' qualifier, or both are non-__weak
535 /// and one is None (which can only happen in non-ARC modes).
536 bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
537 if (getObjCLifetime() == other.getObjCLifetime())
538 return true;
539
540 if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
541 return false;
542
543 if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
544 return true;
545
546 return hasConst();
547 }
548
549 /// Determine whether this set of qualifiers is a strict superset of
550 /// another set of qualifiers, not considering qualifier compatibility.
551 bool isStrictSupersetOf(Qualifiers Other) const;
552
553 bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
554 bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
555
556 explicit operator bool() const { return hasQualifiers(); }
557
558 Qualifiers &operator+=(Qualifiers R) {
559 addQualifiers(R);
560 return *this;
561 }
562
563 // Union two qualifier sets. If an enumerated qualifier appears
564 // in both sets, use the one from the right.
565 friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
566 L += R;
567 return L;
568 }
569
570 Qualifiers &operator-=(Qualifiers R) {
571 removeQualifiers(R);
572 return *this;
573 }
574
575 /// Compute the difference between two qualifier sets.
576 friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
577 L -= R;
578 return L;
579 }
580
581 std::string getAsString() const;
582 std::string getAsString(const PrintingPolicy &Policy) const;
583
584 static std::string getAddrSpaceAsString(LangAS AS);
585
586 bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
587 void print(raw_ostream &OS, const PrintingPolicy &Policy,
588 bool appendSpaceIfNonEmpty = false) const;
589
590 void Profile(llvm::FoldingSetNodeID &ID) const {
591 ID.AddInteger(Mask);
592 }
593
594private:
595 // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
596 // |C R V|U|GCAttr|Lifetime|AddressSpace|
597 uint32_t Mask = 0;
598
599 static const uint32_t UMask = 0x8;
600 static const uint32_t UShift = 3;
601 static const uint32_t GCAttrMask = 0x30;
602 static const uint32_t GCAttrShift = 4;
603 static const uint32_t LifetimeMask = 0x1C0;
604 static const uint32_t LifetimeShift = 6;
605 static const uint32_t AddressSpaceMask =
606 ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
607 static const uint32_t AddressSpaceShift = 9;
608};
609
610/// A std::pair-like structure for storing a qualified type split
611/// into its local qualifiers and its locally-unqualified type.
612struct SplitQualType {
613 /// The locally-unqualified type.
614 const Type *Ty = nullptr;
615
616 /// The local qualifiers.
617 Qualifiers Quals;
618
619 SplitQualType() = default;
620 SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
621
622 SplitQualType getSingleStepDesugaredType() const; // end of this file
623
624 // Make std::tie work.
625 std::pair<const Type *,Qualifiers> asPair() const {
626 return std::pair<const Type *, Qualifiers>(Ty, Quals);
627 }
628
629 friend bool operator==(SplitQualType a, SplitQualType b) {
630 return a.Ty == b.Ty && a.Quals == b.Quals;
631 }
632 friend bool operator!=(SplitQualType a, SplitQualType b) {
633 return a.Ty != b.Ty || a.Quals != b.Quals;
634 }
635};
636
637/// The kind of type we are substituting Objective-C type arguments into.
638///
639/// The kind of substitution affects the replacement of type parameters when
640/// no concrete type information is provided, e.g., when dealing with an
641/// unspecialized type.
642enum class ObjCSubstitutionContext {
643 /// An ordinary type.
644 Ordinary,
645
646 /// The result type of a method or function.
647 Result,
648
649 /// The parameter type of a method or function.
650 Parameter,
651
652 /// The type of a property.
653 Property,
654
655 /// The superclass of a type.
656 Superclass,
657};
658
659/// A (possibly-)qualified type.
660///
661/// For efficiency, we don't store CV-qualified types as nodes on their
662/// own: instead each reference to a type stores the qualifiers. This
663/// greatly reduces the number of nodes we need to allocate for types (for
664/// example we only need one for 'int', 'const int', 'volatile int',
665/// 'const volatile int', etc).
666///
667/// As an added efficiency bonus, instead of making this a pair, we
668/// just store the two bits we care about in the low bits of the
669/// pointer. To handle the packing/unpacking, we make QualType be a
670/// simple wrapper class that acts like a smart pointer. A third bit
671/// indicates whether there are extended qualifiers present, in which
672/// case the pointer points to a special structure.
673class QualType {
674 friend class QualifierCollector;
675
676 // Thankfully, these are efficiently composable.
677 llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
678 Qualifiers::FastWidth> Value;
679
680 const ExtQuals *getExtQualsUnsafe() const {
681 return Value.getPointer().get<const ExtQuals*>();
682 }
683
684 const Type *getTypePtrUnsafe() const {
685 return Value.getPointer().get<const Type*>();
686 }
687
688 const ExtQualsTypeCommonBase *getCommonPtr() const {
689 assert(!isNull() && "Cannot retrieve a NULL type pointer")(static_cast <bool> (!isNull() && "Cannot retrieve a NULL type pointer"
) ? void (0) : __assert_fail ("!isNull() && \"Cannot retrieve a NULL type pointer\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 689, __extension__ __PRETTY_FUNCTION__))
;
690 auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
691 CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
692 return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
693 }
694
695public:
696 QualType() = default;
697 QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
698 QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
699
700 unsigned getLocalFastQualifiers() const { return Value.getInt(); }
701 void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
702
703 /// Retrieves a pointer to the underlying (unqualified) type.
704 ///
705 /// This function requires that the type not be NULL. If the type might be
706 /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
707 const Type *getTypePtr() const;
708
709 const Type *getTypePtrOrNull() const;
710
711 /// Retrieves a pointer to the name of the base type.
712 const IdentifierInfo *getBaseTypeIdentifier() const;
713
714 /// Divides a QualType into its unqualified type and a set of local
715 /// qualifiers.
716 SplitQualType split() const;
717
718 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
719
720 static QualType getFromOpaquePtr(const void *Ptr) {
721 QualType T;
722 T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
723 return T;
724 }
725
726 const Type &operator*() const {
727 return *getTypePtr();
728 }
729
730 const Type *operator->() const {
731 return getTypePtr();
732 }
733
734 bool isCanonical() const;
735 bool isCanonicalAsParam() const;
736
737 /// Return true if this QualType doesn't point to a type yet.
738 bool isNull() const {
739 return Value.getPointer().isNull();
740 }
741
742 /// Determine whether this particular QualType instance has the
743 /// "const" qualifier set, without looking through typedefs that may have
744 /// added "const" at a different level.
745 bool isLocalConstQualified() const {
746 return (getLocalFastQualifiers() & Qualifiers::Const);
747 }
748
749 /// Determine whether this type is const-qualified.
750 bool isConstQualified() const;
751
752 /// Determine whether this particular QualType instance has the
753 /// "restrict" qualifier set, without looking through typedefs that may have
754 /// added "restrict" at a different level.
755 bool isLocalRestrictQualified() const {
756 return (getLocalFastQualifiers() & Qualifiers::Restrict);
757 }
758
759 /// Determine whether this type is restrict-qualified.
760 bool isRestrictQualified() const;
761
762 /// Determine whether this particular QualType instance has the
763 /// "volatile" qualifier set, without looking through typedefs that may have
764 /// added "volatile" at a different level.
765 bool isLocalVolatileQualified() const {
766 return (getLocalFastQualifiers() & Qualifiers::Volatile);
767 }
768
769 /// Determine whether this type is volatile-qualified.
770 bool isVolatileQualified() const;
771
772 /// Determine whether this particular QualType instance has any
773 /// qualifiers, without looking through any typedefs that might add
774 /// qualifiers at a different level.
775 bool hasLocalQualifiers() const {
776 return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
777 }
778
779 /// Determine whether this type has any qualifiers.
780 bool hasQualifiers() const;
781
782 /// Determine whether this particular QualType instance has any
783 /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
784 /// instance.
785 bool hasLocalNonFastQualifiers() const {
786 return Value.getPointer().is<const ExtQuals*>();
787 }
788
789 /// Retrieve the set of qualifiers local to this particular QualType
790 /// instance, not including any qualifiers acquired through typedefs or
791 /// other sugar.
792 Qualifiers getLocalQualifiers() const;
793
794 /// Retrieve the set of qualifiers applied to this type.
795 Qualifiers getQualifiers() const;
796
797 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
798 /// local to this particular QualType instance, not including any qualifiers
799 /// acquired through typedefs or other sugar.
800 unsigned getLocalCVRQualifiers() const {
801 return getLocalFastQualifiers();
802 }
803
804 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
805 /// applied to this type.
806 unsigned getCVRQualifiers() const;
807
808 bool isConstant(const ASTContext& Ctx) const {
809 return QualType::isConstant(*this, Ctx);
810 }
811
812 /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
813 bool isPODType(const ASTContext &Context) const;
814
815 /// Return true if this is a POD type according to the rules of the C++98
816 /// standard, regardless of the current compilation's language.
817 bool isCXX98PODType(const ASTContext &Context) const;
818
819 /// Return true if this is a POD type according to the more relaxed rules
820 /// of the C++11 standard, regardless of the current compilation's language.
821 /// (C++0x [basic.types]p9). Note that, unlike
822 /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
823 bool isCXX11PODType(const ASTContext &Context) const;
824
825 /// Return true if this is a trivial type per (C++0x [basic.types]p9)
826 bool isTrivialType(const ASTContext &Context) const;
827
828 /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
829 bool isTriviallyCopyableType(const ASTContext &Context) const;
830
831
832 /// Returns true if it is a class and it might be dynamic.
833 bool mayBeDynamicClass() const;
834
835 /// Returns true if it is not a class or if the class might not be dynamic.
836 bool mayBeNotDynamicClass() const;
837
838 // Don't promise in the API that anything besides 'const' can be
839 // easily added.
840
841 /// Add the `const` type qualifier to this QualType.
842 void addConst() {
843 addFastQualifiers(Qualifiers::Const);
844 }
845 QualType withConst() const {
846 return withFastQualifiers(Qualifiers::Const);
847 }
848
849 /// Add the `volatile` type qualifier to this QualType.
850 void addVolatile() {
851 addFastQualifiers(Qualifiers::Volatile);
852 }
853 QualType withVolatile() const {
854 return withFastQualifiers(Qualifiers::Volatile);
855 }
856
857 /// Add the `restrict` qualifier to this QualType.
858 void addRestrict() {
859 addFastQualifiers(Qualifiers::Restrict);
860 }
861 QualType withRestrict() const {
862 return withFastQualifiers(Qualifiers::Restrict);
863 }
864
865 QualType withCVRQualifiers(unsigned CVR) const {
866 return withFastQualifiers(CVR);
867 }
868
869 void addFastQualifiers(unsigned TQs) {
870 assert(!(TQs & ~Qualifiers::FastMask)(static_cast <bool> (!(TQs & ~Qualifiers::FastMask)
&& "non-fast qualifier bits set in mask!") ? void (0
) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 871, __extension__ __PRETTY_FUNCTION__))
871 && "non-fast qualifier bits set in mask!")(static_cast <bool> (!(TQs & ~Qualifiers::FastMask)
&& "non-fast qualifier bits set in mask!") ? void (0
) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 871, __extension__ __PRETTY_FUNCTION__))
;
872 Value.setInt(Value.getInt() | TQs);
873 }
874
875 void removeLocalConst();
876 void removeLocalVolatile();
877 void removeLocalRestrict();
878 void removeLocalCVRQualifiers(unsigned Mask);
879
880 void removeLocalFastQualifiers() { Value.setInt(0); }
881 void removeLocalFastQualifiers(unsigned Mask) {
882 assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")(static_cast <bool> (!(Mask & ~Qualifiers::FastMask
) && "mask has non-fast qualifiers") ? void (0) : __assert_fail
("!(Mask & ~Qualifiers::FastMask) && \"mask has non-fast qualifiers\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 882, __extension__ __PRETTY_FUNCTION__))
;
883 Value.setInt(Value.getInt() & ~Mask);
884 }
885
886 // Creates a type with the given qualifiers in addition to any
887 // qualifiers already on this type.
888 QualType withFastQualifiers(unsigned TQs) const {
889 QualType T = *this;
890 T.addFastQualifiers(TQs);
891 return T;
892 }
893
894 // Creates a type with exactly the given fast qualifiers, removing
895 // any existing fast qualifiers.
896 QualType withExactLocalFastQualifiers(unsigned TQs) const {
897 return withoutLocalFastQualifiers().withFastQualifiers(TQs);
898 }
899
900 // Removes fast qualifiers, but leaves any extended qualifiers in place.
901 QualType withoutLocalFastQualifiers() const {
902 QualType T = *this;
903 T.removeLocalFastQualifiers();
904 return T;
905 }
906
907 QualType getCanonicalType() const;
908
909 /// Return this type with all of the instance-specific qualifiers
910 /// removed, but without removing any qualifiers that may have been applied
911 /// through typedefs.
912 QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
913
914 /// Retrieve the unqualified variant of the given type,
915 /// removing as little sugar as possible.
916 ///
917 /// This routine looks through various kinds of sugar to find the
918 /// least-desugared type that is unqualified. For example, given:
919 ///
920 /// \code
921 /// typedef int Integer;
922 /// typedef const Integer CInteger;
923 /// typedef CInteger DifferenceType;
924 /// \endcode
925 ///
926 /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
927 /// desugar until we hit the type \c Integer, which has no qualifiers on it.
928 ///
929 /// The resulting type might still be qualified if it's sugar for an array
930 /// type. To strip qualifiers even from within a sugared array type, use
931 /// ASTContext::getUnqualifiedArrayType.
932 inline QualType getUnqualifiedType() const;
933
934 /// Retrieve the unqualified variant of the given type, removing as little
935 /// sugar as possible.
936 ///
937 /// Like getUnqualifiedType(), but also returns the set of
938 /// qualifiers that were built up.
939 ///
940 /// The resulting type might still be qualified if it's sugar for an array
941 /// type. To strip qualifiers even from within a sugared array type, use
942 /// ASTContext::getUnqualifiedArrayType.
943 inline SplitQualType getSplitUnqualifiedType() const;
944
945 /// Determine whether this type is more qualified than the other
946 /// given type, requiring exact equality for non-CVR qualifiers.
947 bool isMoreQualifiedThan(QualType Other) const;
948
949 /// Determine whether this type is at least as qualified as the other
950 /// given type, requiring exact equality for non-CVR qualifiers.
951 bool isAtLeastAsQualifiedAs(QualType Other) const;
952
953 QualType getNonReferenceType() const;
954
955 /// Determine the type of a (typically non-lvalue) expression with the
956 /// specified result type.
957 ///
958 /// This routine should be used for expressions for which the return type is
959 /// explicitly specified (e.g., in a cast or call) and isn't necessarily
960 /// an lvalue. It removes a top-level reference (since there are no
961 /// expressions of reference type) and deletes top-level cvr-qualifiers
962 /// from non-class types (in C++) or all types (in C).
963 QualType getNonLValueExprType(const ASTContext &Context) const;
964
965 /// Remove an outer pack expansion type (if any) from this type. Used as part
966 /// of converting the type of a declaration to the type of an expression that
967 /// references that expression. It's meaningless for an expression to have a
968 /// pack expansion type.
969 QualType getNonPackExpansionType() const;
970
971 /// Return the specified type with any "sugar" removed from
972 /// the type. This takes off typedefs, typeof's etc. If the outer level of
973 /// the type is already concrete, it returns it unmodified. This is similar
974 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
975 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
976 /// concrete.
977 ///
978 /// Qualifiers are left in place.
979 QualType getDesugaredType(const ASTContext &Context) const {
980 return getDesugaredType(*this, Context);
981 }
982
983 SplitQualType getSplitDesugaredType() const {
984 return getSplitDesugaredType(*this);
985 }
986
987 /// Return the specified type with one level of "sugar" removed from
988 /// the type.
989 ///
990 /// This routine takes off the first typedef, typeof, etc. If the outer level
991 /// of the type is already concrete, it returns it unmodified.
992 QualType getSingleStepDesugaredType(const ASTContext &Context) const {
993 return getSingleStepDesugaredTypeImpl(*this, Context);
994 }
995
996 /// Returns the specified type after dropping any
997 /// outer-level parentheses.
998 QualType IgnoreParens() const {
999 if (isa<ParenType>(*this))
1000 return QualType::IgnoreParens(*this);
1001 return *this;
1002 }
1003
1004 /// Indicate whether the specified types and qualifiers are identical.
1005 friend bool operator==(const QualType &LHS, const QualType &RHS) {
1006 return LHS.Value == RHS.Value;
1007 }
1008 friend bool operator!=(const QualType &LHS, const QualType &RHS) {
1009 return LHS.Value != RHS.Value;
1010 }
1011 friend bool operator<(const QualType &LHS, const QualType &RHS) {
1012 return LHS.Value < RHS.Value;
1013 }
1014
1015 static std::string getAsString(SplitQualType split,
1016 const PrintingPolicy &Policy) {
1017 return getAsString(split.Ty, split.Quals, Policy);
1018 }
1019 static std::string getAsString(const Type *ty, Qualifiers qs,
1020 const PrintingPolicy &Policy);
1021
1022 std::string getAsString() const;
1023 std::string getAsString(const PrintingPolicy &Policy) const;
1024
1025 void print(raw_ostream &OS, const PrintingPolicy &Policy,
1026 const Twine &PlaceHolder = Twine(),
1027 unsigned Indentation = 0) const;
1028
1029 static void print(SplitQualType split, raw_ostream &OS,
1030 const PrintingPolicy &policy, const Twine &PlaceHolder,
1031 unsigned Indentation = 0) {
1032 return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
1033 }
1034
1035 static void print(const Type *ty, Qualifiers qs,
1036 raw_ostream &OS, const PrintingPolicy &policy,
1037 const Twine &PlaceHolder,
1038 unsigned Indentation = 0);
1039
1040 void getAsStringInternal(std::string &Str,
1041 const PrintingPolicy &Policy) const;
1042
1043 static void getAsStringInternal(SplitQualType split, std::string &out,
1044 const PrintingPolicy &policy) {
1045 return getAsStringInternal(split.Ty, split.Quals, out, policy);
1046 }
1047
1048 static void getAsStringInternal(const Type *ty, Qualifiers qs,
1049 std::string &out,
1050 const PrintingPolicy &policy);
1051
1052 class StreamedQualTypeHelper {
1053 const QualType &T;
1054 const PrintingPolicy &Policy;
1055 const Twine &PlaceHolder;
1056 unsigned Indentation;
1057
1058 public:
1059 StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
1060 const Twine &PlaceHolder, unsigned Indentation)
1061 : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
1062 Indentation(Indentation) {}
1063
1064 friend raw_ostream &operator<<(raw_ostream &OS,
1065 const StreamedQualTypeHelper &SQT) {
1066 SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
1067 return OS;
1068 }
1069 };
1070
1071 StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
1072 const Twine &PlaceHolder = Twine(),
1073 unsigned Indentation = 0) const {
1074 return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
1075 }
1076
1077 void dump(const char *s) const;
1078 void dump() const;
1079 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
1080
1081 void Profile(llvm::FoldingSetNodeID &ID) const {
1082 ID.AddPointer(getAsOpaquePtr());
1083 }
1084
1085 /// Check if this type has any address space qualifier.
1086 inline bool hasAddressSpace() const;
1087
1088 /// Return the address space of this type.
1089 inline LangAS getAddressSpace() const;
1090
1091 /// Returns true if address space qualifiers overlap with T address space
1092 /// qualifiers.
1093 /// OpenCL C defines conversion rules for pointers to different address spaces
1094 /// and notion of overlapping address spaces.
1095 /// CL1.1 or CL1.2:
1096 /// address spaces overlap iff they are they same.
1097 /// OpenCL C v2.0 s6.5.5 adds:
1098 /// __generic overlaps with any address space except for __constant.
1099 bool isAddressSpaceOverlapping(QualType T) const {
1100 Qualifiers Q = getQualifiers();
1101 Qualifiers TQ = T.getQualifiers();
1102 // Address spaces overlap if at least one of them is a superset of another
1103 return Q.isAddressSpaceSupersetOf(TQ) || TQ.isAddressSpaceSupersetOf(Q);
1104 }
1105
1106 /// Returns gc attribute of this type.
1107 inline Qualifiers::GC getObjCGCAttr() const;
1108
1109 /// true when Type is objc's weak.
1110 bool isObjCGCWeak() const {
1111 return getObjCGCAttr() == Qualifiers::Weak;
1112 }
1113
1114 /// true when Type is objc's strong.
1115 bool isObjCGCStrong() const {
1116 return getObjCGCAttr() == Qualifiers::Strong;
1117 }
1118
1119 /// Returns lifetime attribute of this type.
1120 Qualifiers::ObjCLifetime getObjCLifetime() const {
1121 return getQualifiers().getObjCLifetime();
1122 }
1123
1124 bool hasNonTrivialObjCLifetime() const {
1125 return getQualifiers().hasNonTrivialObjCLifetime();
1126 }
1127
1128 bool hasStrongOrWeakObjCLifetime() const {
1129 return getQualifiers().hasStrongOrWeakObjCLifetime();
1130 }
1131
1132 // true when Type is objc's weak and weak is enabled but ARC isn't.
1133 bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
1134
1135 enum PrimitiveDefaultInitializeKind {
1136 /// The type does not fall into any of the following categories. Note that
1137 /// this case is zero-valued so that values of this enum can be used as a
1138 /// boolean condition for non-triviality.
1139 PDIK_Trivial,
1140
1141 /// The type is an Objective-C retainable pointer type that is qualified
1142 /// with the ARC __strong qualifier.
1143 PDIK_ARCStrong,
1144
1145 /// The type is an Objective-C retainable pointer type that is qualified
1146 /// with the ARC __weak qualifier.
1147 PDIK_ARCWeak,
1148
1149 /// The type is a struct containing a field whose type is not PCK_Trivial.
1150 PDIK_Struct
1151 };
1152
1153 /// Functions to query basic properties of non-trivial C struct types.
1154
1155 /// Check if this is a non-trivial type that would cause a C struct
1156 /// transitively containing this type to be non-trivial to default initialize
1157 /// and return the kind.
1158 PrimitiveDefaultInitializeKind
1159 isNonTrivialToPrimitiveDefaultInitialize() const;
1160
1161 enum PrimitiveCopyKind {
1162 /// The type does not fall into any of the following categories. Note that
1163 /// this case is zero-valued so that values of this enum can be used as a
1164 /// boolean condition for non-triviality.
1165 PCK_Trivial,
1166
1167 /// The type would be trivial except that it is volatile-qualified. Types
1168 /// that fall into one of the other non-trivial cases may additionally be
1169 /// volatile-qualified.
1170 PCK_VolatileTrivial,
1171
1172 /// The type is an Objective-C retainable pointer type that is qualified
1173 /// with the ARC __strong qualifier.
1174 PCK_ARCStrong,
1175
1176 /// The type is an Objective-C retainable pointer type that is qualified
1177 /// with the ARC __weak qualifier.
1178 PCK_ARCWeak,
1179
1180 /// The type is a struct containing a field whose type is neither
1181 /// PCK_Trivial nor PCK_VolatileTrivial.
1182 /// Note that a C++ struct type does not necessarily match this; C++ copying
1183 /// semantics are too complex to express here, in part because they depend
1184 /// on the exact constructor or assignment operator that is chosen by
1185 /// overload resolution to do the copy.
1186 PCK_Struct
1187 };
1188
1189 /// Check if this is a non-trivial type that would cause a C struct
1190 /// transitively containing this type to be non-trivial to copy and return the
1191 /// kind.
1192 PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
1193
1194 /// Check if this is a non-trivial type that would cause a C struct
1195 /// transitively containing this type to be non-trivial to destructively
1196 /// move and return the kind. Destructive move in this context is a C++-style
1197 /// move in which the source object is placed in a valid but unspecified state
1198 /// after it is moved, as opposed to a truly destructive move in which the
1199 /// source object is placed in an uninitialized state.
1200 PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
1201
1202 enum DestructionKind {
1203 DK_none,
1204 DK_cxx_destructor,
1205 DK_objc_strong_lifetime,
1206 DK_objc_weak_lifetime,
1207 DK_nontrivial_c_struct
1208 };
1209
1210 /// Returns a nonzero value if objects of this type require
1211 /// non-trivial work to clean up after. Non-zero because it's
1212 /// conceivable that qualifiers (objc_gc(weak)?) could make
1213 /// something require destruction.
1214 DestructionKind isDestructedType() const {
1215 return isDestructedTypeImpl(*this);
1216 }
1217
1218 /// Check if this is or contains a C union that is non-trivial to
1219 /// default-initialize, which is a union that has a member that is non-trivial
1220 /// to default-initialize. If this returns true,
1221 /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct.
1222 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const;
1223
1224 /// Check if this is or contains a C union that is non-trivial to destruct,
1225 /// which is a union that has a member that is non-trivial to destruct. If
1226 /// this returns true, isDestructedType returns DK_nontrivial_c_struct.
1227 bool hasNonTrivialToPrimitiveDestructCUnion() const;
1228
1229 /// Check if this is or contains a C union that is non-trivial to copy, which
1230 /// is a union that has a member that is non-trivial to copy. If this returns
1231 /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct.
1232 bool hasNonTrivialToPrimitiveCopyCUnion() const;
1233
1234 /// Determine whether expressions of the given type are forbidden
1235 /// from being lvalues in C.
1236 ///
1237 /// The expression types that are forbidden to be lvalues are:
1238 /// - 'void', but not qualified void
1239 /// - function types
1240 ///
1241 /// The exact rule here is C99 6.3.2.1:
1242 /// An lvalue is an expression with an object type or an incomplete
1243 /// type other than void.
1244 bool isCForbiddenLValueType() const;
1245
1246 /// Substitute type arguments for the Objective-C type parameters used in the
1247 /// subject type.
1248 ///
1249 /// \param ctx ASTContext in which the type exists.
1250 ///
1251 /// \param typeArgs The type arguments that will be substituted for the
1252 /// Objective-C type parameters in the subject type, which are generally
1253 /// computed via \c Type::getObjCSubstitutions. If empty, the type
1254 /// parameters will be replaced with their bounds or id/Class, as appropriate
1255 /// for the context.
1256 ///
1257 /// \param context The context in which the subject type was written.
1258 ///
1259 /// \returns the resulting type.
1260 QualType substObjCTypeArgs(ASTContext &ctx,
1261 ArrayRef<QualType> typeArgs,
1262 ObjCSubstitutionContext context) const;
1263
1264 /// Substitute type arguments from an object type for the Objective-C type
1265 /// parameters used in the subject type.
1266 ///
1267 /// This operation combines the computation of type arguments for
1268 /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1269 /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1270 /// callers that need to perform a single substitution in isolation.
1271 ///
1272 /// \param objectType The type of the object whose member type we're
1273 /// substituting into. For example, this might be the receiver of a message
1274 /// or the base of a property access.
1275 ///
1276 /// \param dc The declaration context from which the subject type was
1277 /// retrieved, which indicates (for example) which type parameters should
1278 /// be substituted.
1279 ///
1280 /// \param context The context in which the subject type was written.
1281 ///
1282 /// \returns the subject type after replacing all of the Objective-C type
1283 /// parameters with their corresponding arguments.
1284 QualType substObjCMemberType(QualType objectType,
1285 const DeclContext *dc,
1286 ObjCSubstitutionContext context) const;
1287
1288 /// Strip Objective-C "__kindof" types from the given type.
1289 QualType stripObjCKindOfType(const ASTContext &ctx) const;
1290
1291 /// Remove all qualifiers including _Atomic.
1292 QualType getAtomicUnqualifiedType() const;
1293
1294private:
1295 // These methods are implemented in a separate translation unit;
1296 // "static"-ize them to avoid creating temporary QualTypes in the
1297 // caller.
1298 static bool isConstant(QualType T, const ASTContext& Ctx);
1299 static QualType getDesugaredType(QualType T, const ASTContext &Context);
1300 static SplitQualType getSplitDesugaredType(QualType T);
1301 static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1302 static QualType getSingleStepDesugaredTypeImpl(QualType type,
1303 const ASTContext &C);
1304 static QualType IgnoreParens(QualType T);
1305 static DestructionKind isDestructedTypeImpl(QualType type);
1306
1307 /// Check if \param RD is or contains a non-trivial C union.
1308 static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD);
1309 static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD);
1310 static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD);
1311};
1312
1313} // namespace clang
1314
1315namespace llvm {
1316
1317/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1318/// to a specific Type class.
1319template<> struct simplify_type< ::clang::QualType> {
1320 using SimpleType = const ::clang::Type *;
1321
1322 static SimpleType getSimplifiedValue(::clang::QualType Val) {
1323 return Val.getTypePtr();
1324 }
1325};
1326
1327// Teach SmallPtrSet that QualType is "basically a pointer".
1328template<>
1329struct PointerLikeTypeTraits<clang::QualType> {
1330 static inline void *getAsVoidPointer(clang::QualType P) {
1331 return P.getAsOpaquePtr();
1332 }
1333
1334 static inline clang::QualType getFromVoidPointer(void *P) {
1335 return clang::QualType::getFromOpaquePtr(P);
1336 }
1337
1338 // Various qualifiers go in low bits.
1339 static constexpr int NumLowBitsAvailable = 0;
1340};
1341
1342} // namespace llvm
1343
1344namespace clang {
1345
1346/// Base class that is common to both the \c ExtQuals and \c Type
1347/// classes, which allows \c QualType to access the common fields between the
1348/// two.
1349class ExtQualsTypeCommonBase {
1350 friend class ExtQuals;
1351 friend class QualType;
1352 friend class Type;
1353
1354 /// The "base" type of an extended qualifiers type (\c ExtQuals) or
1355 /// a self-referential pointer (for \c Type).
1356 ///
1357 /// This pointer allows an efficient mapping from a QualType to its
1358 /// underlying type pointer.
1359 const Type *const BaseType;
1360
1361 /// The canonical type of this type. A QualType.
1362 QualType CanonicalType;
1363
1364 ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1365 : BaseType(baseType), CanonicalType(canon) {}
1366};
1367
1368/// We can encode up to four bits in the low bits of a
1369/// type pointer, but there are many more type qualifiers that we want
1370/// to be able to apply to an arbitrary type. Therefore we have this
1371/// struct, intended to be heap-allocated and used by QualType to
1372/// store qualifiers.
1373///
1374/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1375/// in three low bits on the QualType pointer; a fourth bit records whether
1376/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1377/// Objective-C GC attributes) are much more rare.
1378class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1379 // NOTE: changing the fast qualifiers should be straightforward as
1380 // long as you don't make 'const' non-fast.
1381 // 1. Qualifiers:
1382 // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1383 // Fast qualifiers must occupy the low-order bits.
1384 // b) Update Qualifiers::FastWidth and FastMask.
1385 // 2. QualType:
1386 // a) Update is{Volatile,Restrict}Qualified(), defined inline.
1387 // b) Update remove{Volatile,Restrict}, defined near the end of
1388 // this header.
1389 // 3. ASTContext:
1390 // a) Update get{Volatile,Restrict}Type.
1391
1392 /// The immutable set of qualifiers applied by this node. Always contains
1393 /// extended qualifiers.
1394 Qualifiers Quals;
1395
1396 ExtQuals *this_() { return this; }
1397
1398public:
1399 ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1400 : ExtQualsTypeCommonBase(baseType,
1401 canon.isNull() ? QualType(this_(), 0) : canon),
1402 Quals(quals) {
1403 assert(Quals.hasNonFastQualifiers()(static_cast <bool> (Quals.hasNonFastQualifiers() &&
"ExtQuals created with no fast qualifiers") ? void (0) : __assert_fail
("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 1404, __extension__ __PRETTY_FUNCTION__))
1404 && "ExtQuals created with no fast qualifiers")(static_cast <bool> (Quals.hasNonFastQualifiers() &&
"ExtQuals created with no fast qualifiers") ? void (0) : __assert_fail
("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 1404, __extension__ __PRETTY_FUNCTION__))
;
1405 assert(!Quals.hasFastQualifiers()(static_cast <bool> (!Quals.hasFastQualifiers() &&
"ExtQuals created with fast qualifiers") ? void (0) : __assert_fail
("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 1406, __extension__ __PRETTY_FUNCTION__))
1406 && "ExtQuals created with fast qualifiers")(static_cast <bool> (!Quals.hasFastQualifiers() &&
"ExtQuals created with fast qualifiers") ? void (0) : __assert_fail
("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 1406, __extension__ __PRETTY_FUNCTION__))
;
1407 }
1408
1409 Qualifiers getQualifiers() const { return Quals; }
1410
1411 bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1412 Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1413
1414 bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1415 Qualifiers::ObjCLifetime getObjCLifetime() const {
1416 return Quals.getObjCLifetime();
1417 }
1418
1419 bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1420 LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
1421
1422 const Type *getBaseType() const { return BaseType; }
1423
1424public:
1425 void Profile(llvm::FoldingSetNodeID &ID) const {
1426 Profile(ID, getBaseType(), Quals);
1427 }
1428
1429 static void Profile(llvm::FoldingSetNodeID &ID,
1430 const Type *BaseType,
1431 Qualifiers Quals) {
1432 assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!")(static_cast <bool> (!Quals.hasFastQualifiers() &&
"fast qualifiers in ExtQuals hash!") ? void (0) : __assert_fail
("!Quals.hasFastQualifiers() && \"fast qualifiers in ExtQuals hash!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 1432, __extension__ __PRETTY_FUNCTION__))
;
1433 ID.AddPointer(BaseType);
1434 Quals.Profile(ID);
1435 }
1436};
1437
1438/// The kind of C++11 ref-qualifier associated with a function type.
1439/// This determines whether a member function's "this" object can be an
1440/// lvalue, rvalue, or neither.
1441enum RefQualifierKind {
1442 /// No ref-qualifier was provided.
1443 RQ_None = 0,
1444
1445 /// An lvalue ref-qualifier was provided (\c &).
1446 RQ_LValue,
1447
1448 /// An rvalue ref-qualifier was provided (\c &&).
1449 RQ_RValue
1450};
1451
1452/// Which keyword(s) were used to create an AutoType.
1453enum class AutoTypeKeyword {
1454 /// auto
1455 Auto,
1456
1457 /// decltype(auto)
1458 DecltypeAuto,
1459
1460 /// __auto_type (GNU extension)
1461 GNUAutoType
1462};
1463
1464/// The base class of the type hierarchy.
1465///
1466/// A central concept with types is that each type always has a canonical
1467/// type. A canonical type is the type with any typedef names stripped out
1468/// of it or the types it references. For example, consider:
1469///
1470/// typedef int foo;
1471/// typedef foo* bar;
1472/// 'int *' 'foo *' 'bar'
1473///
1474/// There will be a Type object created for 'int'. Since int is canonical, its
1475/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
1476/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
1477/// there is a PointerType that represents 'int*', which, like 'int', is
1478/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
1479/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1480/// is also 'int*'.
1481///
1482/// Non-canonical types are useful for emitting diagnostics, without losing
1483/// information about typedefs being used. Canonical types are useful for type
1484/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1485/// about whether something has a particular form (e.g. is a function type),
1486/// because they implicitly, recursively, strip all typedefs out of a type.
1487///
1488/// Types, once created, are immutable.
1489///
1490class alignas(8) Type : public ExtQualsTypeCommonBase {
1491public:
1492 enum TypeClass {
1493#define TYPE(Class, Base) Class,
1494#define LAST_TYPE(Class) TypeLast = Class
1495#define ABSTRACT_TYPE(Class, Base)
1496#include "clang/AST/TypeNodes.inc"
1497 };
1498
1499private:
1500 /// Bitfields required by the Type class.
1501 class TypeBitfields {
1502 friend class Type;
1503 template <class T> friend class TypePropertyCache;
1504
1505 /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1506 unsigned TC : 8;
1507
1508 /// Store information on the type dependency.
1509 unsigned Dependence : llvm::BitWidth<TypeDependence>;
1510
1511 /// True if the cache (i.e. the bitfields here starting with
1512 /// 'Cache') is valid.
1513 mutable unsigned CacheValid : 1;
1514
1515 /// Linkage of this type.
1516 mutable unsigned CachedLinkage : 3;
1517
1518 /// Whether this type involves and local or unnamed types.
1519 mutable unsigned CachedLocalOrUnnamed : 1;
1520
1521 /// Whether this type comes from an AST file.
1522 mutable unsigned FromAST : 1;
1523
1524 bool isCacheValid() const {
1525 return CacheValid;
1526 }
1527
1528 Linkage getLinkage() const {
1529 assert(isCacheValid() && "getting linkage from invalid cache")(static_cast <bool> (isCacheValid() && "getting linkage from invalid cache"
) ? void (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 1529, __extension__ __PRETTY_FUNCTION__))
;
1530 return static_cast<Linkage>(CachedLinkage);
1531 }
1532
1533 bool hasLocalOrUnnamedType() const {
1534 assert(isCacheValid() && "getting linkage from invalid cache")(static_cast <bool> (isCacheValid() && "getting linkage from invalid cache"
) ? void (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 1534, __extension__ __PRETTY_FUNCTION__))
;
1535 return CachedLocalOrUnnamed;
1536 }
1537 };
1538 enum { NumTypeBits = 8 + llvm::BitWidth<TypeDependence> + 6 };
1539
1540protected:
1541 // These classes allow subclasses to somewhat cleanly pack bitfields
1542 // into Type.
1543
1544 class ArrayTypeBitfields {
1545 friend class ArrayType;
1546
1547 unsigned : NumTypeBits;
1548
1549 /// CVR qualifiers from declarations like
1550 /// 'int X[static restrict 4]'. For function parameters only.
1551 unsigned IndexTypeQuals : 3;
1552
1553 /// Storage class qualifiers from declarations like
1554 /// 'int X[static restrict 4]'. For function parameters only.
1555 /// Actually an ArrayType::ArraySizeModifier.
1556 unsigned SizeModifier : 3;
1557 };
1558
1559 class ConstantArrayTypeBitfields {
1560 friend class ConstantArrayType;
1561
1562 unsigned : NumTypeBits + 3 + 3;
1563
1564 /// Whether we have a stored size expression.
1565 unsigned HasStoredSizeExpr : 1;
1566 };
1567
1568 class BuiltinTypeBitfields {
1569 friend class BuiltinType;
1570
1571 unsigned : NumTypeBits;
1572
1573 /// The kind (BuiltinType::Kind) of builtin type this is.
1574 unsigned Kind : 8;
1575 };
1576
1577 /// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
1578 /// Only common bits are stored here. Additional uncommon bits are stored
1579 /// in a trailing object after FunctionProtoType.
1580 class FunctionTypeBitfields {
1581 friend class FunctionProtoType;
1582 friend class FunctionType;
1583
1584 unsigned : NumTypeBits;
1585
1586 /// Extra information which affects how the function is called, like
1587 /// regparm and the calling convention.
1588 unsigned ExtInfo : 13;
1589
1590 /// The ref-qualifier associated with a \c FunctionProtoType.
1591 ///
1592 /// This is a value of type \c RefQualifierKind.
1593 unsigned RefQualifier : 2;
1594
1595 /// Used only by FunctionProtoType, put here to pack with the
1596 /// other bitfields.
1597 /// The qualifiers are part of FunctionProtoType because...
1598 ///
1599 /// C++ 8.3.5p4: The return type, the parameter type list and the
1600 /// cv-qualifier-seq, [...], are part of the function type.
1601 unsigned FastTypeQuals : Qualifiers::FastWidth;
1602 /// Whether this function has extended Qualifiers.
1603 unsigned HasExtQuals : 1;
1604
1605 /// The number of parameters this function has, not counting '...'.
1606 /// According to [implimits] 8 bits should be enough here but this is
1607 /// somewhat easy to exceed with metaprogramming and so we would like to
1608 /// keep NumParams as wide as reasonably possible.
1609 unsigned NumParams : 16;
1610
1611 /// The type of exception specification this function has.
1612 unsigned ExceptionSpecType : 4;
1613
1614 /// Whether this function has extended parameter information.
1615 unsigned HasExtParameterInfos : 1;
1616
1617 /// Whether the function is variadic.
1618 unsigned Variadic : 1;
1619
1620 /// Whether this function has a trailing return type.
1621 unsigned HasTrailingReturn : 1;
1622 };
1623
1624 class ObjCObjectTypeBitfields {
1625 friend class ObjCObjectType;
1626
1627 unsigned : NumTypeBits;
1628
1629 /// The number of type arguments stored directly on this object type.
1630 unsigned NumTypeArgs : 7;
1631
1632 /// The number of protocols stored directly on this object type.
1633 unsigned NumProtocols : 6;
1634
1635 /// Whether this is a "kindof" type.
1636 unsigned IsKindOf : 1;
1637 };
1638
1639 class ReferenceTypeBitfields {
1640 friend class ReferenceType;
1641
1642 unsigned : NumTypeBits;
1643
1644 /// True if the type was originally spelled with an lvalue sigil.
1645 /// This is never true of rvalue references but can also be false
1646 /// on lvalue references because of C++0x [dcl.typedef]p9,
1647 /// as follows:
1648 ///
1649 /// typedef int &ref; // lvalue, spelled lvalue
1650 /// typedef int &&rvref; // rvalue
1651 /// ref &a; // lvalue, inner ref, spelled lvalue
1652 /// ref &&a; // lvalue, inner ref
1653 /// rvref &a; // lvalue, inner ref, spelled lvalue
1654 /// rvref &&a; // rvalue, inner ref
1655 unsigned SpelledAsLValue : 1;
1656
1657 /// True if the inner type is a reference type. This only happens
1658 /// in non-canonical forms.
1659 unsigned InnerRef : 1;
1660 };
1661
1662 class TypeWithKeywordBitfields {
1663 friend class TypeWithKeyword;
1664
1665 unsigned : NumTypeBits;
1666
1667 /// An ElaboratedTypeKeyword. 8 bits for efficient access.
1668 unsigned Keyword : 8;
1669 };
1670
1671 enum { NumTypeWithKeywordBits = 8 };
1672
1673 class ElaboratedTypeBitfields {
1674 friend class ElaboratedType;
1675
1676 unsigned : NumTypeBits;
1677 unsigned : NumTypeWithKeywordBits;
1678
1679 /// Whether the ElaboratedType has a trailing OwnedTagDecl.
1680 unsigned HasOwnedTagDecl : 1;
1681 };
1682
1683 class VectorTypeBitfields {
1684 friend class VectorType;
1685 friend class DependentVectorType;
1686
1687 unsigned : NumTypeBits;
1688
1689 /// The kind of vector, either a generic vector type or some
1690 /// target-specific vector type such as for AltiVec or Neon.
1691 unsigned VecKind : 3;
1692 /// The number of elements in the vector.
1693 uint32_t NumElements;
1694 };
1695
1696 class AttributedTypeBitfields {
1697 friend class AttributedType;
1698
1699 unsigned : NumTypeBits;
1700
1701 /// An AttributedType::Kind
1702 unsigned AttrKind : 32 - NumTypeBits;
1703 };
1704
1705 class AutoTypeBitfields {
1706 friend class AutoType;
1707
1708 unsigned : NumTypeBits;
1709
1710 /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
1711 /// or '__auto_type'? AutoTypeKeyword value.
1712 unsigned Keyword : 2;
1713
1714 /// The number of template arguments in the type-constraints, which is
1715 /// expected to be able to hold at least 1024 according to [implimits].
1716 /// However as this limit is somewhat easy to hit with template
1717 /// metaprogramming we'd prefer to keep it as large as possible.
1718 /// At the moment it has been left as a non-bitfield since this type
1719 /// safely fits in 64 bits as an unsigned, so there is no reason to
1720 /// introduce the performance impact of a bitfield.
1721 unsigned NumArgs;
1722 };
1723
1724 class SubstTemplateTypeParmPackTypeBitfields {
1725 friend class SubstTemplateTypeParmPackType;
1726
1727 unsigned : NumTypeBits;
1728
1729 /// The number of template arguments in \c Arguments, which is
1730 /// expected to be able to hold at least 1024 according to [implimits].
1731 /// However as this limit is somewhat easy to hit with template
1732 /// metaprogramming we'd prefer to keep it as large as possible.
1733 /// At the moment it has been left as a non-bitfield since this type
1734 /// safely fits in 64 bits as an unsigned, so there is no reason to
1735 /// introduce the performance impact of a bitfield.
1736 unsigned NumArgs;
1737 };
1738
1739 class TemplateSpecializationTypeBitfields {
1740 friend class TemplateSpecializationType;
1741
1742 unsigned : NumTypeBits;
1743
1744 /// Whether this template specialization type is a substituted type alias.
1745 unsigned TypeAlias : 1;
1746
1747 /// The number of template arguments named in this class template
1748 /// specialization, which is expected to be able to hold at least 1024
1749 /// according to [implimits]. However, as this limit is somewhat easy to
1750 /// hit with template metaprogramming we'd prefer to keep it as large
1751 /// as possible. At the moment it has been left as a non-bitfield since
1752 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1753 /// to introduce the performance impact of a bitfield.
1754 unsigned NumArgs;
1755 };
1756
1757 class DependentTemplateSpecializationTypeBitfields {
1758 friend class DependentTemplateSpecializationType;
1759
1760 unsigned : NumTypeBits;
1761 unsigned : NumTypeWithKeywordBits;
1762
1763 /// The number of template arguments named in this class template
1764 /// specialization, which is expected to be able to hold at least 1024
1765 /// according to [implimits]. However, as this limit is somewhat easy to
1766 /// hit with template metaprogramming we'd prefer to keep it as large
1767 /// as possible. At the moment it has been left as a non-bitfield since
1768 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1769 /// to introduce the performance impact of a bitfield.
1770 unsigned NumArgs;
1771 };
1772
1773 class PackExpansionTypeBitfields {
1774 friend class PackExpansionType;
1775
1776 unsigned : NumTypeBits;
1777
1778 /// The number of expansions that this pack expansion will
1779 /// generate when substituted (+1), which is expected to be able to
1780 /// hold at least 1024 according to [implimits]. However, as this limit
1781 /// is somewhat easy to hit with template metaprogramming we'd prefer to
1782 /// keep it as large as possible. At the moment it has been left as a
1783 /// non-bitfield since this type safely fits in 64 bits as an unsigned, so
1784 /// there is no reason to introduce the performance impact of a bitfield.
1785 ///
1786 /// This field will only have a non-zero value when some of the parameter
1787 /// packs that occur within the pattern have been substituted but others
1788 /// have not.
1789 unsigned NumExpansions;
1790 };
1791
1792 union {
1793 TypeBitfields TypeBits;
1794 ArrayTypeBitfields ArrayTypeBits;
1795 ConstantArrayTypeBitfields ConstantArrayTypeBits;
1796 AttributedTypeBitfields AttributedTypeBits;
1797 AutoTypeBitfields AutoTypeBits;
1798 BuiltinTypeBitfields BuiltinTypeBits;
1799 FunctionTypeBitfields FunctionTypeBits;
1800 ObjCObjectTypeBitfields ObjCObjectTypeBits;
1801 ReferenceTypeBitfields ReferenceTypeBits;
1802 TypeWithKeywordBitfields TypeWithKeywordBits;
1803 ElaboratedTypeBitfields ElaboratedTypeBits;
1804 VectorTypeBitfields VectorTypeBits;
1805 SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
1806 TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
1807 DependentTemplateSpecializationTypeBitfields
1808 DependentTemplateSpecializationTypeBits;
1809 PackExpansionTypeBitfields PackExpansionTypeBits;
1810 };
1811
1812private:
1813 template <class T> friend class TypePropertyCache;
1814
1815 /// Set whether this type comes from an AST file.
1816 void setFromAST(bool V = true) const {
1817 TypeBits.FromAST = V;
1818 }
1819
1820protected:
1821 friend class ASTContext;
1822
1823 Type(TypeClass tc, QualType canon, TypeDependence Dependence)
1824 : ExtQualsTypeCommonBase(this,
1825 canon.isNull() ? QualType(this_(), 0) : canon) {
1826 static_assert(sizeof(*this) <= 8 + sizeof(ExtQualsTypeCommonBase),
1827 "changing bitfields changed sizeof(Type)!");
1828 static_assert(alignof(decltype(*this)) % sizeof(void *) == 0,
1829 "Insufficient alignment!");
1830 TypeBits.TC = tc;
1831 TypeBits.Dependence = static_cast<unsigned>(Dependence);
1832 TypeBits.CacheValid = false;
1833 TypeBits.CachedLocalOrUnnamed = false;
1834 TypeBits.CachedLinkage = NoLinkage;
1835 TypeBits.FromAST = false;
1836 }
1837
1838 // silence VC++ warning C4355: 'this' : used in base member initializer list
1839 Type *this_() { return this; }
1840
1841 void setDependence(TypeDependence D) {
1842 TypeBits.Dependence = static_cast<unsigned>(D);
1843 }
1844
1845 void addDependence(TypeDependence D) { setDependence(getDependence() | D); }
1846
1847public:
1848 friend class ASTReader;
1849 friend class ASTWriter;
1850 template <class T> friend class serialization::AbstractTypeReader;
1851 template <class T> friend class serialization::AbstractTypeWriter;
1852
1853 Type(const Type &) = delete;
1854 Type(Type &&) = delete;
1855 Type &operator=(const Type &) = delete;
1856 Type &operator=(Type &&) = delete;
1857
1858 TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1859
1860 /// Whether this type comes from an AST file.
1861 bool isFromAST() const { return TypeBits.FromAST; }
1862
1863 /// Whether this type is or contains an unexpanded parameter
1864 /// pack, used to support C++0x variadic templates.
1865 ///
1866 /// A type that contains a parameter pack shall be expanded by the
1867 /// ellipsis operator at some point. For example, the typedef in the
1868 /// following example contains an unexpanded parameter pack 'T':
1869 ///
1870 /// \code
1871 /// template<typename ...T>
1872 /// struct X {
1873 /// typedef T* pointer_types; // ill-formed; T is a parameter pack.
1874 /// };
1875 /// \endcode
1876 ///
1877 /// Note that this routine does not specify which
1878 bool containsUnexpandedParameterPack() const {
1879 return getDependence() & TypeDependence::UnexpandedPack;
1880 }
1881
1882 /// Determines if this type would be canonical if it had no further
1883 /// qualification.
1884 bool isCanonicalUnqualified() const {
1885 return CanonicalType == QualType(this, 0);
1886 }
1887
1888 /// Pull a single level of sugar off of this locally-unqualified type.
1889 /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1890 /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1891 QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1892
1893 /// As an extension, we classify types as one of "sized" or "sizeless";
1894 /// every type is one or the other. Standard types are all sized;
1895 /// sizeless types are purely an extension.
1896 ///
1897 /// Sizeless types contain data with no specified size, alignment,
1898 /// or layout.
1899 bool isSizelessType() const;
1900 bool isSizelessBuiltinType() const;
1901
1902 /// Determines if this is a sizeless type supported by the
1903 /// 'arm_sve_vector_bits' type attribute, which can be applied to a single
1904 /// SVE vector or predicate, excluding tuple types such as svint32x4_t.
1905 bool isVLSTBuiltinType() const;
1906
1907 /// Returns the representative type for the element of an SVE builtin type.
1908 /// This is used to represent fixed-length SVE vectors created with the
1909 /// 'arm_sve_vector_bits' type attribute as VectorType.
1910 QualType getSveEltType(const ASTContext &Ctx) const;
1911
1912 /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1913 /// object types, function types, and incomplete types.
1914
1915 /// Return true if this is an incomplete type.
1916 /// A type that can describe objects, but which lacks information needed to
1917 /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1918 /// routine will need to determine if the size is actually required.
1919 ///
1920 /// Def If non-null, and the type refers to some kind of declaration
1921 /// that can be completed (such as a C struct, C++ class, or Objective-C
1922 /// class), will be set to the declaration.
1923 bool isIncompleteType(NamedDecl **Def = nullptr) const;
1924
1925 /// Return true if this is an incomplete or object
1926 /// type, in other words, not a function type.
1927 bool isIncompleteOrObjectType() const {
1928 return !isFunctionType();
1929 }
1930
1931 /// Determine whether this type is an object type.
1932 bool isObjectType() const {
1933 // C++ [basic.types]p8:
1934 // An object type is a (possibly cv-qualified) type that is not a
1935 // function type, not a reference type, and not a void type.
1936 return !isReferenceType() && !isFunctionType() && !isVoidType();
1937 }
1938
1939 /// Return true if this is a literal type
1940 /// (C++11 [basic.types]p10)
1941 bool isLiteralType(const ASTContext &Ctx) const;
1942
1943 /// Determine if this type is a structural type, per C++20 [temp.param]p7.
1944 bool isStructuralType() const;
1945
1946 /// Test if this type is a standard-layout type.
1947 /// (C++0x [basic.type]p9)
1948 bool isStandardLayoutType() const;
1949
1950 /// Helper methods to distinguish type categories. All type predicates
1951 /// operate on the canonical type, ignoring typedefs and qualifiers.
1952
1953 /// Returns true if the type is a builtin type.
1954 bool isBuiltinType() const;
1955
1956 /// Test for a particular builtin type.
1957 bool isSpecificBuiltinType(unsigned K) const;
1958
1959 /// Test for a type which does not represent an actual type-system type but
1960 /// is instead used as a placeholder for various convenient purposes within
1961 /// Clang. All such types are BuiltinTypes.
1962 bool isPlaceholderType() const;
1963 const BuiltinType *getAsPlaceholderType() const;
1964
1965 /// Test for a specific placeholder type.
1966 bool isSpecificPlaceholderType(unsigned K) const;
1967
1968 /// Test for a placeholder type other than Overload; see
1969 /// BuiltinType::isNonOverloadPlaceholderType.
1970 bool isNonOverloadPlaceholderType() const;
1971
1972 /// isIntegerType() does *not* include complex integers (a GCC extension).
1973 /// isComplexIntegerType() can be used to test for complex integers.
1974 bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
1975 bool isEnumeralType() const;
1976
1977 /// Determine whether this type is a scoped enumeration type.
1978 bool isScopedEnumeralType() const;
1979 bool isBooleanType() const;
1980 bool isCharType() const;
1981 bool isWideCharType() const;
1982 bool isChar8Type() const;
1983 bool isChar16Type() const;
1984 bool isChar32Type() const;
1985 bool isAnyCharacterType() const;
1986 bool isIntegralType(const ASTContext &Ctx) const;
1987
1988 /// Determine whether this type is an integral or enumeration type.
1989 bool isIntegralOrEnumerationType() const;
1990
1991 /// Determine whether this type is an integral or unscoped enumeration type.
1992 bool isIntegralOrUnscopedEnumerationType() const;
1993 bool isUnscopedEnumerationType() const;
1994
1995 /// Floating point categories.
1996 bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1997 /// isComplexType() does *not* include complex integers (a GCC extension).
1998 /// isComplexIntegerType() can be used to test for complex integers.
1999 bool isComplexType() const; // C99 6.2.5p11 (complex)
2000 bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
2001 bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
2002 bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
2003 bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661
2004 bool isBFloat16Type() const;
2005 bool isFloat128Type() const;
2006 bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
2007 bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
2008 bool isVoidType() const; // C99 6.2.5p19
2009 bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
2010 bool isAggregateType() const;
2011 bool isFundamentalType() const;
2012 bool isCompoundType() const;
2013
2014 // Type Predicates: Check to see if this type is structurally the specified
2015 // type, ignoring typedefs and qualifiers.
2016 bool isFunctionType() const;
2017 bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
2018 bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
2019 bool isPointerType() const;
2020 bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
2021 bool isBlockPointerType() const;
2022 bool isVoidPointerType() const;
2023 bool isReferenceType() const;
2024 bool isLValueReferenceType() const;
2025 bool isRValueReferenceType() const;
2026 bool isObjectPointerType() const;
2027 bool isFunctionPointerType() const;
2028 bool isFunctionReferenceType() const;
2029 bool isMemberPointerType() const;
2030 bool isMemberFunctionPointerType() const;
2031 bool isMemberDataPointerType() const;
2032 bool isArrayType() const;
2033 bool isConstantArrayType() const;
2034 bool isIncompleteArrayType() const;
2035 bool isVariableArrayType() const;
2036 bool isDependentSizedArrayType() const;
2037 bool isRecordType() const;
2038 bool isClassType() const;
2039 bool isStructureType() const;
2040 bool isObjCBoxableRecordType() const;
2041 bool isInterfaceType() const;
2042 bool isStructureOrClassType() const;
2043 bool isUnionType() const;
2044 bool isComplexIntegerType() const; // GCC _Complex integer type.
2045 bool isVectorType() const; // GCC vector type.
2046 bool isExtVectorType() const; // Extended vector type.
2047 bool isMatrixType() const; // Matrix type.
2048 bool isConstantMatrixType() const; // Constant matrix type.
2049 bool isDependentAddressSpaceType() const; // value-dependent address space qualifier
2050 bool isObjCObjectPointerType() const; // pointer to ObjC object
2051 bool isObjCRetainableType() const; // ObjC object or block pointer
2052 bool isObjCLifetimeType() const; // (array of)* retainable type
2053 bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
2054 bool isObjCNSObjectType() const; // __attribute__((NSObject))
2055 bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
2056 // FIXME: change this to 'raw' interface type, so we can used 'interface' type
2057 // for the common case.
2058 bool isObjCObjectType() const; // NSString or typeof(*(id)0)
2059 bool isObjCQualifiedInterfaceType() const; // NSString<foo>
2060 bool isObjCQualifiedIdType() const; // id<foo>
2061 bool isObjCQualifiedClassType() const; // Class<foo>
2062 bool isObjCObjectOrInterfaceType() const;
2063 bool isObjCIdType() const; // id
2064 bool isDecltypeType() const;
2065 /// Was this type written with the special inert-in-ARC __unsafe_unretained
2066 /// qualifier?
2067 ///
2068 /// This approximates the answer to the following question: if this
2069 /// translation unit were compiled in ARC, would this type be qualified
2070 /// with __unsafe_unretained?
2071 bool isObjCInertUnsafeUnretainedType() const {
2072 return hasAttr(attr::ObjCInertUnsafeUnretained);
2073 }
2074
2075 /// Whether the type is Objective-C 'id' or a __kindof type of an
2076 /// object type, e.g., __kindof NSView * or __kindof id
2077 /// <NSCopying>.
2078 ///
2079 /// \param bound Will be set to the bound on non-id subtype types,
2080 /// which will be (possibly specialized) Objective-C class type, or
2081 /// null for 'id.
2082 bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
2083 const ObjCObjectType *&bound) const;
2084
2085 bool isObjCClassType() const; // Class
2086
2087 /// Whether the type is Objective-C 'Class' or a __kindof type of an
2088 /// Class type, e.g., __kindof Class <NSCopying>.
2089 ///
2090 /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
2091 /// here because Objective-C's type system cannot express "a class
2092 /// object for a subclass of NSFoo".
2093 bool isObjCClassOrClassKindOfType() const;
2094
2095 bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
2096 bool isObjCSelType() const; // Class
2097 bool isObjCBuiltinType() const; // 'id' or 'Class'
2098 bool isObjCARCBridgableType() const;
2099 bool isCARCBridgableType() const;
2100 bool isTemplateTypeParmType() const; // C++ template type parameter
2101 bool isNullPtrType() const; // C++11 std::nullptr_t
2102 bool isNothrowT() const; // C++ std::nothrow_t
2103 bool isAlignValT() const; // C++17 std::align_val_t
2104 bool isStdByteType() const; // C++17 std::byte
2105 bool isAtomicType() const; // C11 _Atomic()
2106 bool isUndeducedAutoType() const; // C++11 auto or
2107 // C++14 decltype(auto)
2108 bool isTypedefNameType() const; // typedef or alias template
2109
2110#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2111 bool is##Id##Type() const;
2112#include "clang/Basic/OpenCLImageTypes.def"
2113
2114 bool isImageType() const; // Any OpenCL image type
2115
2116 bool isSamplerT() const; // OpenCL sampler_t
2117 bool isEventT() const; // OpenCL event_t
2118 bool isClkEventT() const; // OpenCL clk_event_t
2119 bool isQueueT() const; // OpenCL queue_t
2120 bool isReserveIDT() const; // OpenCL reserve_id_t
2121
2122#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2123 bool is##Id##Type() const;
2124#include "clang/Basic/OpenCLExtensionTypes.def"
2125 // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension
2126 bool isOCLIntelSubgroupAVCType() const;
2127 bool isOCLExtOpaqueType() const; // Any OpenCL extension type
2128
2129 bool isPipeType() const; // OpenCL pipe type
2130 bool isExtIntType() const; // Extended Int Type
2131 bool isOpenCLSpecificType() const; // Any OpenCL specific type
2132
2133 /// Determines if this type, which must satisfy
2134 /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
2135 /// than implicitly __strong.
2136 bool isObjCARCImplicitlyUnretainedType() const;
2137
2138 /// Check if the type is the CUDA device builtin surface type.
2139 bool isCUDADeviceBuiltinSurfaceType() const;
2140 /// Check if the type is the CUDA device builtin texture type.
2141 bool isCUDADeviceBuiltinTextureType() const;
2142
2143 /// Return the implicit lifetime for this type, which must not be dependent.
2144 Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
2145
2146 enum ScalarTypeKind {
2147 STK_CPointer,
2148 STK_BlockPointer,
2149 STK_ObjCObjectPointer,
2150 STK_MemberPointer,
2151 STK_Bool,
2152 STK_Integral,
2153 STK_Floating,
2154 STK_IntegralComplex,
2155 STK_FloatingComplex,
2156 STK_FixedPoint
2157 };
2158
2159 /// Given that this is a scalar type, classify it.
2160 ScalarTypeKind getScalarTypeKind() const;
2161
2162 TypeDependence getDependence() const {
2163 return static_cast<TypeDependence>(TypeBits.Dependence);
2164 }
2165
2166 /// Whether this type is an error type.
2167 bool containsErrors() const {
2168 return getDependence() & TypeDependence::Error;
2169 }
2170
2171 /// Whether this type is a dependent type, meaning that its definition
2172 /// somehow depends on a template parameter (C++ [temp.dep.type]).
2173 bool isDependentType() const {
2174 return getDependence() & TypeDependence::Dependent;
2175 }
2176
2177 /// Determine whether this type is an instantiation-dependent type,
2178 /// meaning that the type involves a template parameter (even if the
2179 /// definition does not actually depend on the type substituted for that
2180 /// template parameter).
2181 bool isInstantiationDependentType() const {
2182 return getDependence() & TypeDependence::Instantiation;
2183 }
2184
2185 /// Determine whether this type is an undeduced type, meaning that
2186 /// it somehow involves a C++11 'auto' type or similar which has not yet been
2187 /// deduced.
2188 bool isUndeducedType() const;
2189
2190 /// Whether this type is a variably-modified type (C99 6.7.5).
2191 bool isVariablyModifiedType() const {
2192 return getDependence() & TypeDependence::VariablyModified;
2193 }
2194
2195 /// Whether this type involves a variable-length array type
2196 /// with a definite size.
2197 bool hasSizedVLAType() const;
2198
2199 /// Whether this type is or contains a local or unnamed type.
2200 bool hasUnnamedOrLocalType() const;
2201
2202 bool isOverloadableType() const;
2203
2204 /// Determine wither this type is a C++ elaborated-type-specifier.
2205 bool isElaboratedTypeSpecifier() const;
2206
2207 bool canDecayToPointerType() const;
2208
2209 /// Whether this type is represented natively as a pointer. This includes
2210 /// pointers, references, block pointers, and Objective-C interface,
2211 /// qualified id, and qualified interface types, as well as nullptr_t.
2212 bool hasPointerRepresentation() const;
2213
2214 /// Whether this type can represent an objective pointer type for the
2215 /// purpose of GC'ability
2216 bool hasObjCPointerRepresentation() const;
2217
2218 /// Determine whether this type has an integer representation
2219 /// of some sort, e.g., it is an integer type or a vector.
2220 bool hasIntegerRepresentation() const;
2221
2222 /// Determine whether this type has an signed integer representation
2223 /// of some sort, e.g., it is an signed integer type or a vector.
2224 bool hasSignedIntegerRepresentation() const;
2225
2226 /// Determine whether this type has an unsigned integer representation
2227 /// of some sort, e.g., it is an unsigned integer type or a vector.
2228 bool hasUnsignedIntegerRepresentation() const;
2229
2230 /// Determine whether this type has a floating-point representation
2231 /// of some sort, e.g., it is a floating-point type or a vector thereof.
2232 bool hasFloatingRepresentation() const;
2233
2234 // Type Checking Functions: Check to see if this type is structurally the
2235 // specified type, ignoring typedefs and qualifiers, and return a pointer to
2236 // the best type we can.
2237 const RecordType *getAsStructureType() const;
2238 /// NOTE: getAs*ArrayType are methods on ASTContext.
2239 const RecordType *getAsUnionType() const;
2240 const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
2241 const ObjCObjectType *getAsObjCInterfaceType() const;
2242
2243 // The following is a convenience method that returns an ObjCObjectPointerType
2244 // for object declared using an interface.
2245 const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
2246 const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
2247 const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
2248 const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
2249
2250 /// Retrieves the CXXRecordDecl that this type refers to, either
2251 /// because the type is a RecordType or because it is the injected-class-name
2252 /// type of a class template or class template partial specialization.
2253 CXXRecordDecl *getAsCXXRecordDecl() const;
2254
2255 /// Retrieves the RecordDecl this type refers to.
2256 RecordDecl *getAsRecordDecl() const;
2257
2258 /// Retrieves the TagDecl that this type refers to, either
2259 /// because the type is a TagType or because it is the injected-class-name
2260 /// type of a class template or class template partial specialization.
2261 TagDecl *getAsTagDecl() const;
2262
2263 /// If this is a pointer or reference to a RecordType, return the
2264 /// CXXRecordDecl that the type refers to.
2265 ///
2266 /// If this is not a pointer or reference, or the type being pointed to does
2267 /// not refer to a CXXRecordDecl, returns NULL.
2268 const CXXRecordDecl *getPointeeCXXRecordDecl() const;
2269
2270 /// Get the DeducedType whose type will be deduced for a variable with
2271 /// an initializer of this type. This looks through declarators like pointer
2272 /// types, but not through decltype or typedefs.
2273 DeducedType *getContainedDeducedType() const;
2274
2275 /// Get the AutoType whose type will be deduced for a variable with
2276 /// an initializer of this type. This looks through declarators like pointer
2277 /// types, but not through decltype or typedefs.
2278 AutoType *getContainedAutoType() const {
2279 return dyn_cast_or_null<AutoType>(getContainedDeducedType());
2280 }
2281
2282 /// Determine whether this type was written with a leading 'auto'
2283 /// corresponding to a trailing return type (possibly for a nested
2284 /// function type within a pointer to function type or similar).
2285 bool hasAutoForTrailingReturnType() const;
2286
2287 /// Member-template getAs<specific type>'. Look through sugar for
2288 /// an instance of \<specific type>. This scheme will eventually
2289 /// replace the specific getAsXXXX methods above.
2290 ///
2291 /// There are some specializations of this member template listed
2292 /// immediately following this class.
2293 template <typename T> const T *getAs() const;
2294
2295 /// Member-template getAsAdjusted<specific type>. Look through specific kinds
2296 /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
2297 /// This is used when you need to walk over sugar nodes that represent some
2298 /// kind of type adjustment from a type that was written as a \<specific type>
2299 /// to another type that is still canonically a \<specific type>.
2300 template <typename T> const T *getAsAdjusted() const;
2301
2302 /// A variant of getAs<> for array types which silently discards
2303 /// qualifiers from the outermost type.
2304 const ArrayType *getAsArrayTypeUnsafe() const;
2305
2306 /// Member-template castAs<specific type>. Look through sugar for
2307 /// the underlying instance of \<specific type>.
2308 ///
2309 /// This method has the same relationship to getAs<T> as cast<T> has
2310 /// to dyn_cast<T>; which is to say, the underlying type *must*
2311 /// have the intended type, and this method will never return null.
2312 template <typename T> const T *castAs() const;
2313
2314 /// A variant of castAs<> for array type which silently discards
2315 /// qualifiers from the outermost type.
2316 const ArrayType *castAsArrayTypeUnsafe() const;
2317
2318 /// Determine whether this type had the specified attribute applied to it
2319 /// (looking through top-level type sugar).
2320 bool hasAttr(attr::Kind AK) const;
2321
2322 /// Get the base element type of this type, potentially discarding type
2323 /// qualifiers. This should never be used when type qualifiers
2324 /// are meaningful.
2325 const Type *getBaseElementTypeUnsafe() const;
2326
2327 /// If this is an array type, return the element type of the array,
2328 /// potentially with type qualifiers missing.
2329 /// This should never be used when type qualifiers are meaningful.
2330 const Type *getArrayElementTypeNoTypeQual() const;
2331
2332 /// If this is a pointer type, return the pointee type.
2333 /// If this is an array type, return the array element type.
2334 /// This should never be used when type qualifiers are meaningful.
2335 const Type *getPointeeOrArrayElementType() const;
2336
2337 /// If this is a pointer, ObjC object pointer, or block
2338 /// pointer, this returns the respective pointee.
2339 QualType getPointeeType() const;
2340
2341 /// Return the specified type with any "sugar" removed from the type,
2342 /// removing any typedefs, typeofs, etc., as well as any qualifiers.
2343 const Type *getUnqualifiedDesugaredType() const;
2344
2345 /// More type predicates useful for type checking/promotion
2346 bool isPromotableIntegerType() const; // C99 6.3.1.1p2
2347
2348 /// Return true if this is an integer type that is
2349 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2350 /// or an enum decl which has a signed representation.
2351 bool isSignedIntegerType() const;
2352
2353 /// Return true if this is an integer type that is
2354 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
2355 /// or an enum decl which has an unsigned representation.
2356 bool isUnsignedIntegerType() const;
2357
2358 /// Determines whether this is an integer type that is signed or an
2359 /// enumeration types whose underlying type is a signed integer type.
2360 bool isSignedIntegerOrEnumerationType() const;
2361
2362 /// Determines whether this is an integer type that is unsigned or an
2363 /// enumeration types whose underlying type is a unsigned integer type.
2364 bool isUnsignedIntegerOrEnumerationType() const;
2365
2366 /// Return true if this is a fixed point type according to
2367 /// ISO/IEC JTC1 SC22 WG14 N1169.
2368 bool isFixedPointType() const;
2369
2370 /// Return true if this is a fixed point or integer type.
2371 bool isFixedPointOrIntegerType() const;
2372
2373 /// Return true if this is a saturated fixed point type according to
2374 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2375 bool isSaturatedFixedPointType() const;
2376
2377 /// Return true if this is a saturated fixed point type according to
2378 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2379 bool isUnsaturatedFixedPointType() const;
2380
2381 /// Return true if this is a fixed point type that is signed according
2382 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2383 bool isSignedFixedPointType() const;
2384
2385 /// Return true if this is a fixed point type that is unsigned according
2386 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2387 bool isUnsignedFixedPointType() const;
2388
2389 /// Return true if this is not a variable sized type,
2390 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
2391 /// incomplete types.
2392 bool isConstantSizeType() const;
2393
2394 /// Returns true if this type can be represented by some
2395 /// set of type specifiers.
2396 bool isSpecifierType() const;
2397
2398 /// Determine the linkage of this type.
2399 Linkage getLinkage() const;
2400
2401 /// Determine the visibility of this type.
2402 Visibility getVisibility() const {
2403 return getLinkageAndVisibility().getVisibility();
2404 }
2405
2406 /// Return true if the visibility was explicitly set is the code.
2407 bool isVisibilityExplicit() const {
2408 return getLinkageAndVisibility().isVisibilityExplicit();
2409 }
2410
2411 /// Determine the linkage and visibility of this type.
2412 LinkageInfo getLinkageAndVisibility() const;
2413
2414 /// True if the computed linkage is valid. Used for consistency
2415 /// checking. Should always return true.
2416 bool isLinkageValid() const;
2417
2418 /// Determine the nullability of the given type.
2419 ///
2420 /// Note that nullability is only captured as sugar within the type
2421 /// system, not as part of the canonical type, so nullability will
2422 /// be lost by canonicalization and desugaring.
2423 Optional<NullabilityKind> getNullability(const ASTContext &context) const;
2424
2425 /// Determine whether the given type can have a nullability
2426 /// specifier applied to it, i.e., if it is any kind of pointer type.
2427 ///
2428 /// \param ResultIfUnknown The value to return if we don't yet know whether
2429 /// this type can have nullability because it is dependent.
2430 bool canHaveNullability(bool ResultIfUnknown = true) const;
2431
2432 /// Retrieve the set of substitutions required when accessing a member
2433 /// of the Objective-C receiver type that is declared in the given context.
2434 ///
2435 /// \c *this is the type of the object we're operating on, e.g., the
2436 /// receiver for a message send or the base of a property access, and is
2437 /// expected to be of some object or object pointer type.
2438 ///
2439 /// \param dc The declaration context for which we are building up a
2440 /// substitution mapping, which should be an Objective-C class, extension,
2441 /// category, or method within.
2442 ///
2443 /// \returns an array of type arguments that can be substituted for
2444 /// the type parameters of the given declaration context in any type described
2445 /// within that context, or an empty optional to indicate that no
2446 /// substitution is required.
2447 Optional<ArrayRef<QualType>>
2448 getObjCSubstitutions(const DeclContext *dc) const;
2449
2450 /// Determines if this is an ObjC interface type that may accept type
2451 /// parameters.
2452 bool acceptsObjCTypeParams() const;
2453
2454 const char *getTypeClassName() const;
2455
2456 QualType getCanonicalTypeInternal() const {
2457 return CanonicalType;
2458 }
2459
2460 CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
2461 void dump() const;
2462 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
2463};
2464
2465/// This will check for a TypedefType by removing any existing sugar
2466/// until it reaches a TypedefType or a non-sugared type.
2467template <> const TypedefType *Type::getAs() const;
2468
2469/// This will check for a TemplateSpecializationType by removing any
2470/// existing sugar until it reaches a TemplateSpecializationType or a
2471/// non-sugared type.
2472template <> const TemplateSpecializationType *Type::getAs() const;
2473
2474/// This will check for an AttributedType by removing any existing sugar
2475/// until it reaches an AttributedType or a non-sugared type.
2476template <> const AttributedType *Type::getAs() const;
2477
2478// We can do canonical leaf types faster, because we don't have to
2479// worry about preserving child type decoration.
2480#define TYPE(Class, Base)
2481#define LEAF_TYPE(Class) \
2482template <> inline const Class##Type *Type::getAs() const { \
2483 return dyn_cast<Class##Type>(CanonicalType); \
2484} \
2485template <> inline const Class##Type *Type::castAs() const { \
2486 return cast<Class##Type>(CanonicalType); \
2487}
2488#include "clang/AST/TypeNodes.inc"
2489
2490/// This class is used for builtin types like 'int'. Builtin
2491/// types are always canonical and have a literal name field.
2492class BuiltinType : public Type {
2493public:
2494 enum Kind {
2495// OpenCL image types
2496#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
2497#include "clang/Basic/OpenCLImageTypes.def"
2498// OpenCL extension types
2499#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id,
2500#include "clang/Basic/OpenCLExtensionTypes.def"
2501// SVE Types
2502#define SVE_TYPE(Name, Id, SingletonId) Id,
2503#include "clang/Basic/AArch64SVEACLETypes.def"
2504// PPC MMA Types
2505#define PPC_VECTOR_TYPE(Name, Id, Size) Id,
2506#include "clang/Basic/PPCTypes.def"
2507// RVV Types
2508#define RVV_TYPE(Name, Id, SingletonId) Id,
2509#include "clang/Basic/RISCVVTypes.def"
2510// All other builtin types
2511#define BUILTIN_TYPE(Id, SingletonId) Id,
2512#define LAST_BUILTIN_TYPE(Id) LastKind = Id
2513#include "clang/AST/BuiltinTypes.def"
2514 };
2515
2516private:
2517 friend class ASTContext; // ASTContext creates these.
2518
2519 BuiltinType(Kind K)
2520 : Type(Builtin, QualType(),
2521 K == Dependent ? TypeDependence::DependentInstantiation
2522 : TypeDependence::None) {
2523 BuiltinTypeBits.Kind = K;
2524 }
2525
2526public:
2527 Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
2528 StringRef getName(const PrintingPolicy &Policy) const;
2529
2530 const char *getNameAsCString(const PrintingPolicy &Policy) const {
2531 // The StringRef is null-terminated.
2532 StringRef str = getName(Policy);
2533 assert(!str.empty() && str.data()[str.size()] == '\0')(static_cast <bool> (!str.empty() && str.data()
[str.size()] == '\0') ? void (0) : __assert_fail ("!str.empty() && str.data()[str.size()] == '\\0'"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 2533, __extension__ __PRETTY_FUNCTION__))
;
2534 return str.data();
2535 }
2536
2537 bool isSugared() const { return false; }
2538 QualType desugar() const { return QualType(this, 0); }
2539
2540 bool isInteger() const {
2541 return getKind() >= Bool && getKind() <= Int128;
2542 }
2543
2544 bool isSignedInteger() const {
2545 return getKind() >= Char_S && getKind() <= Int128;
2546 }
2547
2548 bool isUnsignedInteger() const {
2549 return getKind() >= Bool && getKind() <= UInt128;
2550 }
2551
2552 bool isFloatingPoint() const {
2553 return getKind() >= Half && getKind() <= Float128;
2554 }
2555
2556 /// Determines whether the given kind corresponds to a placeholder type.
2557 static bool isPlaceholderTypeKind(Kind K) {
2558 return K >= Overload;
2559 }
2560
2561 /// Determines whether this type is a placeholder type, i.e. a type
2562 /// which cannot appear in arbitrary positions in a fully-formed
2563 /// expression.
2564 bool isPlaceholderType() const {
2565 return isPlaceholderTypeKind(getKind());
2566 }
2567
2568 /// Determines whether this type is a placeholder type other than
2569 /// Overload. Most placeholder types require only syntactic
2570 /// information about their context in order to be resolved (e.g.
2571 /// whether it is a call expression), which means they can (and
2572 /// should) be resolved in an earlier "phase" of analysis.
2573 /// Overload expressions sometimes pick up further information
2574 /// from their context, like whether the context expects a
2575 /// specific function-pointer type, and so frequently need
2576 /// special treatment.
2577 bool isNonOverloadPlaceholderType() const {
2578 return getKind() > Overload;
2579 }
2580
2581 static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
2582};
2583
2584/// Complex values, per C99 6.2.5p11. This supports the C99 complex
2585/// types (_Complex float etc) as well as the GCC integer complex extensions.
2586class ComplexType : public Type, public llvm::FoldingSetNode {
2587 friend class ASTContext; // ASTContext creates these.
2588
2589 QualType ElementType;
2590
2591 ComplexType(QualType Element, QualType CanonicalPtr)
2592 : Type(Complex, CanonicalPtr, Element->getDependence()),
2593 ElementType(Element) {}
2594
2595public:
2596 QualType getElementType() const { return ElementType; }
2597
2598 bool isSugared() const { return false; }
2599 QualType desugar() const { return QualType(this, 0); }
2600
2601 void Profile(llvm::FoldingSetNodeID &ID) {
2602 Profile(ID, getElementType());
2603 }
2604
2605 static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
2606 ID.AddPointer(Element.getAsOpaquePtr());
2607 }
2608
2609 static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
2610};
2611
2612/// Sugar for parentheses used when specifying types.
2613class ParenType : public Type, public llvm::FoldingSetNode {
2614 friend class ASTContext; // ASTContext creates these.
2615
2616 QualType Inner;
2617
2618 ParenType(QualType InnerType, QualType CanonType)
2619 : Type(Paren, CanonType, InnerType->getDependence()), Inner(InnerType) {}
2620
2621public:
2622 QualType getInnerType() const { return Inner; }
2623
2624 bool isSugared() const { return true; }
2625 QualType desugar() const { return getInnerType(); }
2626
2627 void Profile(llvm::FoldingSetNodeID &ID) {
2628 Profile(ID, getInnerType());
2629 }
2630
2631 static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
2632 Inner.Profile(ID);
2633 }
2634
2635 static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
2636};
2637
2638/// PointerType - C99 6.7.5.1 - Pointer Declarators.
2639class PointerType : public Type, public llvm::FoldingSetNode {
2640 friend class ASTContext; // ASTContext creates these.
2641
2642 QualType PointeeType;
2643
2644 PointerType(QualType Pointee, QualType CanonicalPtr)
2645 : Type(Pointer, CanonicalPtr, Pointee->getDependence()),
2646 PointeeType(Pointee) {}
2647
2648public:
2649 QualType getPointeeType() const { return PointeeType; }
2650
2651 bool isSugared() const { return false; }
2652 QualType desugar() const { return QualType(this, 0); }
2653
2654 void Profile(llvm::FoldingSetNodeID &ID) {
2655 Profile(ID, getPointeeType());
2656 }
2657
2658 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2659 ID.AddPointer(Pointee.getAsOpaquePtr());
2660 }
2661
2662 static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2663};
2664
2665/// Represents a type which was implicitly adjusted by the semantic
2666/// engine for arbitrary reasons. For example, array and function types can
2667/// decay, and function types can have their calling conventions adjusted.
2668class AdjustedType : public Type, public llvm::FoldingSetNode {
2669 QualType OriginalTy;
2670 QualType AdjustedTy;
2671
2672protected:
2673 friend class ASTContext; // ASTContext creates these.
2674
2675 AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2676 QualType CanonicalPtr)
2677 : Type(TC, CanonicalPtr, OriginalTy->getDependence()),
2678 OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2679
2680public:
2681 QualType getOriginalType() const { return OriginalTy; }
2682 QualType getAdjustedType() const { return AdjustedTy; }
2683
2684 bool isSugared() const { return true; }
2685 QualType desugar() const { return AdjustedTy; }
2686
2687 void Profile(llvm::FoldingSetNodeID &ID) {
2688 Profile(ID, OriginalTy, AdjustedTy);
2689 }
2690
2691 static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2692 ID.AddPointer(Orig.getAsOpaquePtr());
2693 ID.AddPointer(New.getAsOpaquePtr());
2694 }
2695
2696 static bool classof(const Type *T) {
2697 return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
2698 }
2699};
2700
2701/// Represents a pointer type decayed from an array or function type.
2702class DecayedType : public AdjustedType {
2703 friend class ASTContext; // ASTContext creates these.
2704
2705 inline
2706 DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
2707
2708public:
2709 QualType getDecayedType() const { return getAdjustedType(); }
2710
2711 inline QualType getPointeeType() const;
2712
2713 static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2714};
2715
2716/// Pointer to a block type.
2717/// This type is to represent types syntactically represented as
2718/// "void (^)(int)", etc. Pointee is required to always be a function type.
2719class BlockPointerType : public Type, public llvm::FoldingSetNode {
2720 friend class ASTContext; // ASTContext creates these.
2721
2722 // Block is some kind of pointer type
2723 QualType PointeeType;
2724
2725 BlockPointerType(QualType Pointee, QualType CanonicalCls)
2726 : Type(BlockPointer, CanonicalCls, Pointee->getDependence()),
2727 PointeeType(Pointee) {}
2728
2729public:
2730 // Get the pointee type. Pointee is required to always be a function type.
2731 QualType getPointeeType() const { return PointeeType; }
2732
2733 bool isSugared() const { return false; }
2734 QualType desugar() const { return QualType(this, 0); }
2735
2736 void Profile(llvm::FoldingSetNodeID &ID) {
2737 Profile(ID, getPointeeType());
2738 }
2739
2740 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2741 ID.AddPointer(Pointee.getAsOpaquePtr());
2742 }
2743
2744 static bool classof(const Type *T) {
2745 return T->getTypeClass() == BlockPointer;
2746 }
2747};
2748
2749/// Base for LValueReferenceType and RValueReferenceType
2750class ReferenceType : public Type, public llvm::FoldingSetNode {
2751 QualType PointeeType;
2752
2753protected:
2754 ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2755 bool SpelledAsLValue)
2756 : Type(tc, CanonicalRef, Referencee->getDependence()),
2757 PointeeType(Referencee) {
2758 ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2759 ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2760 }
2761
2762public:
2763 bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2764 bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2765
2766 QualType getPointeeTypeAsWritten() const { return PointeeType; }
2767
2768 QualType getPointeeType() const {
2769 // FIXME: this might strip inner qualifiers; okay?
2770 const ReferenceType *T = this;
2771 while (T->isInnerRef())
2772 T = T->PointeeType->castAs<ReferenceType>();
2773 return T->PointeeType;
2774 }
2775
2776 void Profile(llvm::FoldingSetNodeID &ID) {
2777 Profile(ID, PointeeType, isSpelledAsLValue());
2778 }
2779
2780 static void Profile(llvm::FoldingSetNodeID &ID,
2781 QualType Referencee,
2782 bool SpelledAsLValue) {
2783 ID.AddPointer(Referencee.getAsOpaquePtr());
2784 ID.AddBoolean(SpelledAsLValue);
2785 }
2786
2787 static bool classof(const Type *T) {
2788 return T->getTypeClass() == LValueReference ||
2789 T->getTypeClass() == RValueReference;
2790 }
2791};
2792
2793/// An lvalue reference type, per C++11 [dcl.ref].
2794class LValueReferenceType : public ReferenceType {
2795 friend class ASTContext; // ASTContext creates these
2796
2797 LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2798 bool SpelledAsLValue)
2799 : ReferenceType(LValueReference, Referencee, CanonicalRef,
2800 SpelledAsLValue) {}
2801
2802public:
2803 bool isSugared() const { return false; }
2804 QualType desugar() const { return QualType(this, 0); }
2805
2806 static bool classof(const Type *T) {
2807 return T->getTypeClass() == LValueReference;
2808 }
2809};
2810
2811/// An rvalue reference type, per C++11 [dcl.ref].
2812class RValueReferenceType : public ReferenceType {
2813 friend class ASTContext; // ASTContext creates these
2814
2815 RValueReferenceType(QualType Referencee, QualType CanonicalRef)
2816 : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {}
2817
2818public:
2819 bool isSugared() const { return false; }
2820 QualType desugar() const { return QualType(this, 0); }
2821
2822 static bool classof(const Type *T) {
2823 return T->getTypeClass() == RValueReference;
2824 }
2825};
2826
2827/// A pointer to member type per C++ 8.3.3 - Pointers to members.
2828///
2829/// This includes both pointers to data members and pointer to member functions.
2830class MemberPointerType : public Type, public llvm::FoldingSetNode {
2831 friend class ASTContext; // ASTContext creates these.
2832
2833 QualType PointeeType;
2834
2835 /// The class of which the pointee is a member. Must ultimately be a
2836 /// RecordType, but could be a typedef or a template parameter too.
2837 const Type *Class;
2838
2839 MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr)
2840 : Type(MemberPointer, CanonicalPtr,
2841 (Cls->getDependence() & ~TypeDependence::VariablyModified) |
2842 Pointee->getDependence()),
2843 PointeeType(Pointee), Class(Cls) {}
2844
2845public:
2846 QualType getPointeeType() const { return PointeeType; }
2847
2848 /// Returns true if the member type (i.e. the pointee type) is a
2849 /// function type rather than a data-member type.
2850 bool isMemberFunctionPointer() const {
2851 return PointeeType->isFunctionProtoType();
2852 }
2853
2854 /// Returns true if the member type (i.e. the pointee type) is a
2855 /// data type rather than a function type.
2856 bool isMemberDataPointer() const {
2857 return !PointeeType->isFunctionProtoType();
2858 }
2859
2860 const Type *getClass() const { return Class; }
2861 CXXRecordDecl *getMostRecentCXXRecordDecl() const;
2862
2863 bool isSugared() const { return false; }
2864 QualType desugar() const { return QualType(this, 0); }
2865
2866 void Profile(llvm::FoldingSetNodeID &ID) {
2867 Profile(ID, getPointeeType(), getClass());
2868 }
2869
2870 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2871 const Type *Class) {
2872 ID.AddPointer(Pointee.getAsOpaquePtr());
2873 ID.AddPointer(Class);
2874 }
2875
2876 static bool classof(const Type *T) {
2877 return T->getTypeClass() == MemberPointer;
2878 }
2879};
2880
2881/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
2882class ArrayType : public Type, public llvm::FoldingSetNode {
2883public:
2884 /// Capture whether this is a normal array (e.g. int X[4])
2885 /// an array with a static size (e.g. int X[static 4]), or an array
2886 /// with a star size (e.g. int X[*]).
2887 /// 'static' is only allowed on function parameters.
2888 enum ArraySizeModifier {
2889 Normal, Static, Star
2890 };
2891
2892private:
2893 /// The element type of the array.
2894 QualType ElementType;
2895
2896protected:
2897 friend class ASTContext; // ASTContext creates these.
2898
2899 ArrayType(TypeClass tc, QualType et, QualType can, ArraySizeModifier sm,
2900 unsigned tq, const Expr *sz = nullptr);
2901
2902public:
2903 QualType getElementType() const { return ElementType; }
2904
2905 ArraySizeModifier getSizeModifier() const {
2906 return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2907 }
2908
2909 Qualifiers getIndexTypeQualifiers() const {
2910 return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2911 }
2912
2913 unsigned getIndexTypeCVRQualifiers() const {
2914 return ArrayTypeBits.IndexTypeQuals;
2915 }
2916
2917 static bool classof(const Type *T) {
2918 return T->getTypeClass() == ConstantArray ||
2919 T->getTypeClass() == VariableArray ||
2920 T->getTypeClass() == IncompleteArray ||
2921 T->getTypeClass() == DependentSizedArray;
2922 }
2923};
2924
2925/// Represents the canonical version of C arrays with a specified constant size.
2926/// For example, the canonical type for 'int A[4 + 4*100]' is a
2927/// ConstantArrayType where the element type is 'int' and the size is 404.
2928class ConstantArrayType final
2929 : public ArrayType,
2930 private llvm::TrailingObjects<ConstantArrayType, const Expr *> {
2931 friend class ASTContext; // ASTContext creates these.
2932 friend TrailingObjects;
2933
2934 llvm::APInt Size; // Allows us to unique the type.
2935
2936 ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2937 const Expr *sz, ArraySizeModifier sm, unsigned tq)
2938 : ArrayType(ConstantArray, et, can, sm, tq, sz), Size(size) {
2939 ConstantArrayTypeBits.HasStoredSizeExpr = sz != nullptr;
2940 if (ConstantArrayTypeBits.HasStoredSizeExpr) {
2941 assert(!can.isNull() && "canonical constant array should not have size")(static_cast <bool> (!can.isNull() && "canonical constant array should not have size"
) ? void (0) : __assert_fail ("!can.isNull() && \"canonical constant array should not have size\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 2941, __extension__ __PRETTY_FUNCTION__))
;
2942 *getTrailingObjects<const Expr*>() = sz;
2943 }
2944 }
2945
2946 unsigned numTrailingObjects(OverloadToken<const Expr*>) const {
2947 return ConstantArrayTypeBits.HasStoredSizeExpr;
2948 }
2949
2950public:
2951 const llvm::APInt &getSize() const { return Size; }
2952 const Expr *getSizeExpr() const {
2953 return ConstantArrayTypeBits.HasStoredSizeExpr
2954 ? *getTrailingObjects<const Expr *>()
2955 : nullptr;
2956 }
2957 bool isSugared() const { return false; }
2958 QualType desugar() const { return QualType(this, 0); }
2959
2960 /// Determine the number of bits required to address a member of
2961 // an array with the given element type and number of elements.
2962 static unsigned getNumAddressingBits(const ASTContext &Context,
2963 QualType ElementType,
2964 const llvm::APInt &NumElements);
2965
2966 /// Determine the maximum number of active bits that an array's size
2967 /// can require, which limits the maximum size of the array.
2968 static unsigned getMaxSizeBits(const ASTContext &Context);
2969
2970 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
2971 Profile(ID, Ctx, getElementType(), getSize(), getSizeExpr(),
2972 getSizeModifier(), getIndexTypeCVRQualifiers());
2973 }
2974
2975 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx,
2976 QualType ET, const llvm::APInt &ArraySize,
2977 const Expr *SizeExpr, ArraySizeModifier SizeMod,
2978 unsigned TypeQuals);
2979
2980 static bool classof(const Type *T) {
2981 return T->getTypeClass() == ConstantArray;
2982 }
2983};
2984
2985/// Represents a C array with an unspecified size. For example 'int A[]' has
2986/// an IncompleteArrayType where the element type is 'int' and the size is
2987/// unspecified.
2988class IncompleteArrayType : public ArrayType {
2989 friend class ASTContext; // ASTContext creates these.
2990
2991 IncompleteArrayType(QualType et, QualType can,
2992 ArraySizeModifier sm, unsigned tq)
2993 : ArrayType(IncompleteArray, et, can, sm, tq) {}
2994
2995public:
2996 friend class StmtIteratorBase;
2997
2998 bool isSugared() const { return false; }
2999 QualType desugar() const { return QualType(this, 0); }
3000
3001 static bool classof(const Type *T) {
3002 return T->getTypeClass() == IncompleteArray;
3003 }
3004
3005 void Profile(llvm::FoldingSetNodeID &ID) {
3006 Profile(ID, getElementType(), getSizeModifier(),
3007 getIndexTypeCVRQualifiers());
3008 }
3009
3010 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
3011 ArraySizeModifier SizeMod, unsigned TypeQuals) {
3012 ID.AddPointer(ET.getAsOpaquePtr());
3013 ID.AddInteger(SizeMod);
3014 ID.AddInteger(TypeQuals);
3015 }
3016};
3017
3018/// Represents a C array with a specified size that is not an
3019/// integer-constant-expression. For example, 'int s[x+foo()]'.
3020/// Since the size expression is an arbitrary expression, we store it as such.
3021///
3022/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
3023/// should not be: two lexically equivalent variable array types could mean
3024/// different things, for example, these variables do not have the same type
3025/// dynamically:
3026///
3027/// void foo(int x) {
3028/// int Y[x];
3029/// ++x;
3030/// int Z[x];
3031/// }
3032class VariableArrayType : public ArrayType {
3033 friend class ASTContext; // ASTContext creates these.
3034
3035 /// An assignment-expression. VLA's are only permitted within
3036 /// a function block.
3037 Stmt *SizeExpr;
3038
3039 /// The range spanned by the left and right array brackets.
3040 SourceRange Brackets;
3041
3042 VariableArrayType(QualType et, QualType can, Expr *e,
3043 ArraySizeModifier sm, unsigned tq,
3044 SourceRange brackets)
3045 : ArrayType(VariableArray, et, can, sm, tq, e),
3046 SizeExpr((Stmt*) e), Brackets(brackets) {}
3047
3048public:
3049 friend class StmtIteratorBase;
3050
3051 Expr *getSizeExpr() const {
3052 // We use C-style casts instead of cast<> here because we do not wish
3053 // to have a dependency of Type.h on Stmt.h/Expr.h.
3054 return (Expr*) SizeExpr;
3055 }
3056
3057 SourceRange getBracketsRange() const { return Brackets; }
3058 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3059 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3060
3061 bool isSugared() const { return false; }
3062 QualType desugar() const { return QualType(this, 0); }
3063
3064 static bool classof(const Type *T) {
3065 return T->getTypeClass() == VariableArray;
3066 }
3067
3068 void Profile(llvm::FoldingSetNodeID &ID) {
3069 llvm_unreachable("Cannot unique VariableArrayTypes.")::llvm::llvm_unreachable_internal("Cannot unique VariableArrayTypes."
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 3069)
;
3070 }
3071};
3072
3073/// Represents an array type in C++ whose size is a value-dependent expression.
3074///
3075/// For example:
3076/// \code
3077/// template<typename T, int Size>
3078/// class array {
3079/// T data[Size];
3080/// };
3081/// \endcode
3082///
3083/// For these types, we won't actually know what the array bound is
3084/// until template instantiation occurs, at which point this will
3085/// become either a ConstantArrayType or a VariableArrayType.
3086class DependentSizedArrayType : public ArrayType {
3087 friend class ASTContext; // ASTContext creates these.
3088
3089 const ASTContext &Context;
3090
3091 /// An assignment expression that will instantiate to the
3092 /// size of the array.
3093 ///
3094 /// The expression itself might be null, in which case the array
3095 /// type will have its size deduced from an initializer.
3096 Stmt *SizeExpr;
3097
3098 /// The range spanned by the left and right array brackets.
3099 SourceRange Brackets;
3100
3101 DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
3102 Expr *e, ArraySizeModifier sm, unsigned tq,
3103 SourceRange brackets);
3104
3105public:
3106 friend class StmtIteratorBase;
3107
3108 Expr *getSizeExpr() const {
3109 // We use C-style casts instead of cast<> here because we do not wish
3110 // to have a dependency of Type.h on Stmt.h/Expr.h.
3111 return (Expr*) SizeExpr;
3112 }
3113
3114 SourceRange getBracketsRange() const { return Brackets; }
3115 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3116 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3117
3118 bool isSugared() const { return false; }
3119 QualType desugar() const { return QualType(this, 0); }
3120
3121 static bool classof(const Type *T) {
3122 return T->getTypeClass() == DependentSizedArray;
3123 }
3124
3125 void Profile(llvm::FoldingSetNodeID &ID) {
3126 Profile(ID, Context, getElementType(),
3127 getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
3128 }
3129
3130 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3131 QualType ET, ArraySizeModifier SizeMod,
3132 unsigned TypeQuals, Expr *E);
3133};
3134
3135/// Represents an extended address space qualifier where the input address space
3136/// value is dependent. Non-dependent address spaces are not represented with a
3137/// special Type subclass; they are stored on an ExtQuals node as part of a QualType.
3138///
3139/// For example:
3140/// \code
3141/// template<typename T, int AddrSpace>
3142/// class AddressSpace {
3143/// typedef T __attribute__((address_space(AddrSpace))) type;
3144/// }
3145/// \endcode
3146class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode {
3147 friend class ASTContext;
3148
3149 const ASTContext &Context;
3150 Expr *AddrSpaceExpr;
3151 QualType PointeeType;
3152 SourceLocation loc;
3153
3154 DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType,
3155 QualType can, Expr *AddrSpaceExpr,
3156 SourceLocation loc);
3157
3158public:
3159 Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; }
3160 QualType getPointeeType() const { return PointeeType; }
3161 SourceLocation getAttributeLoc() const { return loc; }
3162
3163 bool isSugared() const { return false; }
3164 QualType desugar() const { return QualType(this, 0); }
3165
3166 static bool classof(const Type *T) {
3167 return T->getTypeClass() == DependentAddressSpace;
3168 }
3169
3170 void Profile(llvm::FoldingSetNodeID &ID) {
3171 Profile(ID, Context, getPointeeType(), getAddrSpaceExpr());
3172 }
3173
3174 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3175 QualType PointeeType, Expr *AddrSpaceExpr);
3176};
3177
3178/// Represents an extended vector type where either the type or size is
3179/// dependent.
3180///
3181/// For example:
3182/// \code
3183/// template<typename T, int Size>
3184/// class vector {
3185/// typedef T __attribute__((ext_vector_type(Size))) type;
3186/// }
3187/// \endcode
3188class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
3189 friend class ASTContext;
3190
3191 const ASTContext &Context;
3192 Expr *SizeExpr;
3193
3194 /// The element type of the array.
3195 QualType ElementType;
3196
3197 SourceLocation loc;
3198
3199 DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
3200 QualType can, Expr *SizeExpr, SourceLocation loc);
3201
3202public:
3203 Expr *getSizeExpr() const { return SizeExpr; }
3204 QualType getElementType() const { return ElementType; }
3205 SourceLocation getAttributeLoc() const { return loc; }
3206
3207 bool isSugared() const { return false; }
3208 QualType desugar() const { return QualType(this, 0); }
3209
3210 static bool classof(const Type *T) {
3211 return T->getTypeClass() == DependentSizedExtVector;
3212 }
3213
3214 void Profile(llvm::FoldingSetNodeID &ID) {
3215 Profile(ID, Context, getElementType(), getSizeExpr());
3216 }
3217
3218 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3219 QualType ElementType, Expr *SizeExpr);
3220};
3221
3222
3223/// Represents a GCC generic vector type. This type is created using
3224/// __attribute__((vector_size(n)), where "n" specifies the vector size in
3225/// bytes; or from an Altivec __vector or vector declaration.
3226/// Since the constructor takes the number of vector elements, the
3227/// client is responsible for converting the size into the number of elements.
3228class VectorType : public Type, public llvm::FoldingSetNode {
3229public:
3230 enum VectorKind {
3231 /// not a target-specific vector type
3232 GenericVector,
3233
3234 /// is AltiVec vector
3235 AltiVecVector,
3236
3237 /// is AltiVec 'vector Pixel'
3238 AltiVecPixel,
3239
3240 /// is AltiVec 'vector bool ...'
3241 AltiVecBool,
3242
3243 /// is ARM Neon vector
3244 NeonVector,
3245
3246 /// is ARM Neon polynomial vector
3247 NeonPolyVector,
3248
3249 /// is AArch64 SVE fixed-length data vector
3250 SveFixedLengthDataVector,
3251
3252 /// is AArch64 SVE fixed-length predicate vector
3253 SveFixedLengthPredicateVector
3254 };
3255
3256protected:
3257 friend class ASTContext; // ASTContext creates these.
3258
3259 /// The element type of the vector.
3260 QualType ElementType;
3261
3262 VectorType(QualType vecType, unsigned nElements, QualType canonType,
3263 VectorKind vecKind);
3264
3265 VectorType(TypeClass tc, QualType vecType, unsigned nElements,
3266 QualType canonType, VectorKind vecKind);
3267
3268public:
3269 QualType getElementType() const { return ElementType; }
3270 unsigned getNumElements() const { return VectorTypeBits.NumElements; }
3271
3272 bool isSugared() const { return false; }
3273 QualType desugar() const { return QualType(this, 0); }
3274
3275 VectorKind getVectorKind() const {
3276 return VectorKind(VectorTypeBits.VecKind);
3277 }
3278
3279 void Profile(llvm::FoldingSetNodeID &ID) {
3280 Profile(ID, getElementType(), getNumElements(),
3281 getTypeClass(), getVectorKind());
3282 }
3283
3284 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3285 unsigned NumElements, TypeClass TypeClass,
3286 VectorKind VecKind) {
3287 ID.AddPointer(ElementType.getAsOpaquePtr());
3288 ID.AddInteger(NumElements);
3289 ID.AddInteger(TypeClass);
3290 ID.AddInteger(VecKind);
3291 }
3292
3293 static bool classof(const Type *T) {
3294 return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
3295 }
3296};
3297
3298/// Represents a vector type where either the type or size is dependent.
3299////
3300/// For example:
3301/// \code
3302/// template<typename T, int Size>
3303/// class vector {
3304/// typedef T __attribute__((vector_size(Size))) type;
3305/// }
3306/// \endcode
3307class DependentVectorType : public Type, public llvm::FoldingSetNode {
3308 friend class ASTContext;
3309
3310 const ASTContext &Context;
3311 QualType ElementType;
3312 Expr *SizeExpr;
3313 SourceLocation Loc;
3314
3315 DependentVectorType(const ASTContext &Context, QualType ElementType,
3316 QualType CanonType, Expr *SizeExpr,
3317 SourceLocation Loc, VectorType::VectorKind vecKind);
3318
3319public:
3320 Expr *getSizeExpr() const { return SizeExpr; }
3321 QualType getElementType() const { return ElementType; }
3322 SourceLocation getAttributeLoc() const { return Loc; }
3323 VectorType::VectorKind getVectorKind() const {
3324 return VectorType::VectorKind(VectorTypeBits.VecKind);
3325 }
3326
3327 bool isSugared() const { return false; }
3328 QualType desugar() const { return QualType(this, 0); }
3329
3330 static bool classof(const Type *T) {
3331 return T->getTypeClass() == DependentVector;
3332 }
3333
3334 void Profile(llvm::FoldingSetNodeID &ID) {
3335 Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind());
3336 }
3337
3338 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3339 QualType ElementType, const Expr *SizeExpr,
3340 VectorType::VectorKind VecKind);
3341};
3342
3343/// ExtVectorType - Extended vector type. This type is created using
3344/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
3345/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
3346/// class enables syntactic extensions, like Vector Components for accessing
3347/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
3348/// Shading Language).
3349class ExtVectorType : public VectorType {
3350 friend class ASTContext; // ASTContext creates these.
3351
3352 ExtVectorType(QualType vecType, unsigned nElements, QualType canonType)
3353 : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
3354
3355public:
3356 static int getPointAccessorIdx(char c) {
3357 switch (c) {
3358 default: return -1;
3359 case 'x': case 'r': return 0;
3360 case 'y': case 'g': return 1;
3361 case 'z': case 'b': return 2;
3362 case 'w': case 'a': return 3;
3363 }
3364 }
3365
3366 static int getNumericAccessorIdx(char c) {
3367 switch (c) {
3368 default: return -1;
3369 case '0': return 0;
3370 case '1': return 1;
3371 case '2': return 2;
3372 case '3': return 3;
3373 case '4': return 4;
3374 case '5': return 5;
3375 case '6': return 6;
3376 case '7': return 7;
3377 case '8': return 8;
3378 case '9': return 9;
3379 case 'A':
3380 case 'a': return 10;
3381 case 'B':
3382 case 'b': return 11;
3383 case 'C':
3384 case 'c': return 12;
3385 case 'D':
3386 case 'd': return 13;
3387 case 'E':
3388 case 'e': return 14;
3389 case 'F':
3390 case 'f': return 15;
3391 }
3392 }
3393
3394 static int getAccessorIdx(char c, bool isNumericAccessor) {
3395 if (isNumericAccessor)
3396 return getNumericAccessorIdx(c);
3397 else
3398 return getPointAccessorIdx(c);
3399 }
3400
3401 bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
3402 if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
3403 return unsigned(idx-1) < getNumElements();
3404 return false;
3405 }
3406
3407 bool isSugared() const { return false; }
3408 QualType desugar() const { return QualType(this, 0); }
3409
3410 static bool classof(const Type *T) {
3411 return T->getTypeClass() == ExtVector;
3412 }
3413};
3414
3415/// Represents a matrix type, as defined in the Matrix Types clang extensions.
3416/// __attribute__((matrix_type(rows, columns))), where "rows" specifies
3417/// number of rows and "columns" specifies the number of columns.
3418class MatrixType : public Type, public llvm::FoldingSetNode {
3419protected:
3420 friend class ASTContext;
3421
3422 /// The element type of the matrix.
3423 QualType ElementType;
3424
3425 MatrixType(QualType ElementTy, QualType CanonElementTy);
3426
3427 MatrixType(TypeClass TypeClass, QualType ElementTy, QualType CanonElementTy,
3428 const Expr *RowExpr = nullptr, const Expr *ColumnExpr = nullptr);
3429
3430public:
3431 /// Returns type of the elements being stored in the matrix
3432 QualType getElementType() const { return ElementType; }
3433
3434 /// Valid elements types are the following:
3435 /// * an integer type (as in C2x 6.2.5p19), but excluding enumerated types
3436 /// and _Bool
3437 /// * the standard floating types float or double
3438 /// * a half-precision floating point type, if one is supported on the target
3439 static bool isValidElementType(QualType T) {
3440 return T->isDependentType() ||
3441 (T->isRealType() && !T->isBooleanType() && !T->isEnumeralType());
3442 }
3443
3444 bool isSugared() const { return false; }
3445 QualType desugar() const { return QualType(this, 0); }
3446
3447 static bool classof(const Type *T) {
3448 return T->getTypeClass() == ConstantMatrix ||
3449 T->getTypeClass() == DependentSizedMatrix;
3450 }
3451};
3452
3453/// Represents a concrete matrix type with constant number of rows and columns
3454class ConstantMatrixType final : public MatrixType {
3455protected:
3456 friend class ASTContext;
3457
3458 /// Number of rows and columns.
3459 unsigned NumRows;
3460 unsigned NumColumns;
3461
3462 static constexpr unsigned MaxElementsPerDimension = (1 << 20) - 1;
3463
3464 ConstantMatrixType(QualType MatrixElementType, unsigned NRows,
3465 unsigned NColumns, QualType CanonElementType);
3466
3467 ConstantMatrixType(TypeClass typeClass, QualType MatrixType, unsigned NRows,
3468 unsigned NColumns, QualType CanonElementType);
3469
3470public:
3471 /// Returns the number of rows in the matrix.
3472 unsigned getNumRows() const { return NumRows; }
3473
3474 /// Returns the number of columns in the matrix.
3475 unsigned getNumColumns() const { return NumColumns; }
3476
3477 /// Returns the number of elements required to embed the matrix into a vector.
3478 unsigned getNumElementsFlattened() const {
3479 return getNumRows() * getNumColumns();
3480 }
3481
3482 /// Returns true if \p NumElements is a valid matrix dimension.
3483 static constexpr bool isDimensionValid(size_t NumElements) {
3484 return NumElements > 0 && NumElements <= MaxElementsPerDimension;
3485 }
3486
3487 /// Returns the maximum number of elements per dimension.
3488 static constexpr unsigned getMaxElementsPerDimension() {
3489 return MaxElementsPerDimension;
3490 }
3491
3492 void Profile(llvm::FoldingSetNodeID &ID) {
3493 Profile(ID, getElementType(), getNumRows(), getNumColumns(),
3494 getTypeClass());
3495 }
3496
3497 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3498 unsigned NumRows, unsigned NumColumns,
3499 TypeClass TypeClass) {
3500 ID.AddPointer(ElementType.getAsOpaquePtr());
3501 ID.AddInteger(NumRows);
3502 ID.AddInteger(NumColumns);
3503 ID.AddInteger(TypeClass);
3504 }
3505
3506 static bool classof(const Type *T) {
3507 return T->getTypeClass() == ConstantMatrix;
3508 }
3509};
3510
3511/// Represents a matrix type where the type and the number of rows and columns
3512/// is dependent on a template.
3513class DependentSizedMatrixType final : public MatrixType {
3514 friend class ASTContext;
3515
3516 const ASTContext &Context;
3517 Expr *RowExpr;
3518 Expr *ColumnExpr;
3519
3520 SourceLocation loc;
3521
3522 DependentSizedMatrixType(const ASTContext &Context, QualType ElementType,
3523 QualType CanonicalType, Expr *RowExpr,
3524 Expr *ColumnExpr, SourceLocation loc);
3525
3526public:
3527 QualType getElementType() const { return ElementType; }
3528 Expr *getRowExpr() const { return RowExpr; }
3529 Expr *getColumnExpr() const { return ColumnExpr; }
3530 SourceLocation getAttributeLoc() const { return loc; }
3531
3532 bool isSugared() const { return false; }
3533 QualType desugar() const { return QualType(this, 0); }
3534
3535 static bool classof(const Type *T) {
3536 return T->getTypeClass() == DependentSizedMatrix;
3537 }
3538
3539 void Profile(llvm::FoldingSetNodeID &ID) {
3540 Profile(ID, Context, getElementType(), getRowExpr(), getColumnExpr());
3541 }
3542
3543 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3544 QualType ElementType, Expr *RowExpr, Expr *ColumnExpr);
3545};
3546
3547/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
3548/// class of FunctionNoProtoType and FunctionProtoType.
3549class FunctionType : public Type {
3550 // The type returned by the function.
3551 QualType ResultType;
3552
3553public:
3554 /// Interesting information about a specific parameter that can't simply
3555 /// be reflected in parameter's type. This is only used by FunctionProtoType
3556 /// but is in FunctionType to make this class available during the
3557 /// specification of the bases of FunctionProtoType.
3558 ///
3559 /// It makes sense to model language features this way when there's some
3560 /// sort of parameter-specific override (such as an attribute) that
3561 /// affects how the function is called. For example, the ARC ns_consumed
3562 /// attribute changes whether a parameter is passed at +0 (the default)
3563 /// or +1 (ns_consumed). This must be reflected in the function type,
3564 /// but isn't really a change to the parameter type.
3565 ///
3566 /// One serious disadvantage of modelling language features this way is
3567 /// that they generally do not work with language features that attempt
3568 /// to destructure types. For example, template argument deduction will
3569 /// not be able to match a parameter declared as
3570 /// T (*)(U)
3571 /// against an argument of type
3572 /// void (*)(__attribute__((ns_consumed)) id)
3573 /// because the substitution of T=void, U=id into the former will
3574 /// not produce the latter.
3575 class ExtParameterInfo {
3576 enum {
3577 ABIMask = 0x0F,
3578 IsConsumed = 0x10,
3579 HasPassObjSize = 0x20,
3580 IsNoEscape = 0x40,
3581 };
3582 unsigned char Data = 0;
3583
3584 public:
3585 ExtParameterInfo() = default;
3586
3587 /// Return the ABI treatment of this parameter.
3588 ParameterABI getABI() const { return ParameterABI(Data & ABIMask); }
3589 ExtParameterInfo withABI(ParameterABI kind) const {
3590 ExtParameterInfo copy = *this;
3591 copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
3592 return copy;
3593 }
3594
3595 /// Is this parameter considered "consumed" by Objective-C ARC?
3596 /// Consumed parameters must have retainable object type.
3597 bool isConsumed() const { return (Data & IsConsumed); }
3598 ExtParameterInfo withIsConsumed(bool consumed) const {
3599 ExtParameterInfo copy = *this;
3600 if (consumed)
3601 copy.Data |= IsConsumed;
3602 else
3603 copy.Data &= ~IsConsumed;
3604 return copy;
3605 }
3606
3607 bool hasPassObjectSize() const { return Data & HasPassObjSize; }
3608 ExtParameterInfo withHasPassObjectSize() const {
3609 ExtParameterInfo Copy = *this;
3610 Copy.Data |= HasPassObjSize;
3611 return Copy;
3612 }
3613
3614 bool isNoEscape() const { return Data & IsNoEscape; }
3615 ExtParameterInfo withIsNoEscape(bool NoEscape) const {
3616 ExtParameterInfo Copy = *this;
3617 if (NoEscape)
3618 Copy.Data |= IsNoEscape;
3619 else
3620 Copy.Data &= ~IsNoEscape;
3621 return Copy;
3622 }
3623
3624 unsigned char getOpaqueValue() const { return Data; }
3625 static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
3626 ExtParameterInfo result;
3627 result.Data = data;
3628 return result;
3629 }
3630
3631 friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3632 return lhs.Data == rhs.Data;
3633 }
3634
3635 friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3636 return lhs.Data != rhs.Data;
3637 }
3638 };
3639
3640 /// A class which abstracts out some details necessary for
3641 /// making a call.
3642 ///
3643 /// It is not actually used directly for storing this information in
3644 /// a FunctionType, although FunctionType does currently use the
3645 /// same bit-pattern.
3646 ///
3647 // If you add a field (say Foo), other than the obvious places (both,
3648 // constructors, compile failures), what you need to update is
3649 // * Operator==
3650 // * getFoo
3651 // * withFoo
3652 // * functionType. Add Foo, getFoo.
3653 // * ASTContext::getFooType
3654 // * ASTContext::mergeFunctionTypes
3655 // * FunctionNoProtoType::Profile
3656 // * FunctionProtoType::Profile
3657 // * TypePrinter::PrintFunctionProto
3658 // * AST read and write
3659 // * Codegen
3660 class ExtInfo {
3661 friend class FunctionType;
3662
3663 // Feel free to rearrange or add bits, but if you go over 16, you'll need to
3664 // adjust the Bits field below, and if you add bits, you'll need to adjust
3665 // Type::FunctionTypeBitfields::ExtInfo as well.
3666
3667 // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|cmsenscall|
3668 // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 | 12 |
3669 //
3670 // regparm is either 0 (no regparm attribute) or the regparm value+1.
3671 enum { CallConvMask = 0x1F };
3672 enum { NoReturnMask = 0x20 };
3673 enum { ProducesResultMask = 0x40 };
3674 enum { NoCallerSavedRegsMask = 0x80 };
3675 enum {
3676 RegParmMask = 0x700,
3677 RegParmOffset = 8
3678 };
3679 enum { NoCfCheckMask = 0x800 };
3680 enum { CmseNSCallMask = 0x1000 };
3681 uint16_t Bits = CC_C;
3682
3683 ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
3684
3685 public:
3686 // Constructor with no defaults. Use this when you know that you
3687 // have all the elements (when reading an AST file for example).
3688 ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
3689 bool producesResult, bool noCallerSavedRegs, bool NoCfCheck,
3690 bool cmseNSCall) {
3691 assert((!hasRegParm || regParm < 7) && "Invalid regparm value")(static_cast <bool> ((!hasRegParm || regParm < 7) &&
"Invalid regparm value") ? void (0) : __assert_fail ("(!hasRegParm || regParm < 7) && \"Invalid regparm value\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 3691, __extension__ __PRETTY_FUNCTION__))
;
3692 Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
3693 (producesResult ? ProducesResultMask : 0) |
3694 (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
3695 (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) |
3696 (NoCfCheck ? NoCfCheckMask : 0) |
3697 (cmseNSCall ? CmseNSCallMask : 0);
3698 }
3699
3700 // Constructor with all defaults. Use when for example creating a
3701 // function known to use defaults.
3702 ExtInfo() = default;
3703
3704 // Constructor with just the calling convention, which is an important part
3705 // of the canonical type.
3706 ExtInfo(CallingConv CC) : Bits(CC) {}
3707
3708 bool getNoReturn() const { return Bits & NoReturnMask; }
3709 bool getProducesResult() const { return Bits & ProducesResultMask; }
3710 bool getCmseNSCall() const { return Bits & CmseNSCallMask; }
3711 bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
3712 bool getNoCfCheck() const { return Bits & NoCfCheckMask; }
3713 bool getHasRegParm() const { return ((Bits & RegParmMask) >> RegParmOffset) != 0; }
3714
3715 unsigned getRegParm() const {
3716 unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset;
3717 if (RegParm > 0)
3718 --RegParm;
3719 return RegParm;
3720 }
3721
3722 CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
3723
3724 bool operator==(ExtInfo Other) const {
3725 return Bits == Other.Bits;
3726 }
3727 bool operator!=(ExtInfo Other) const {
3728 return Bits != Other.Bits;
3729 }
3730
3731 // Note that we don't have setters. That is by design, use
3732 // the following with methods instead of mutating these objects.
3733
3734 ExtInfo withNoReturn(bool noReturn) const {
3735 if (noReturn)
3736 return ExtInfo(Bits | NoReturnMask);
3737 else
3738 return ExtInfo(Bits & ~NoReturnMask);
3739 }
3740
3741 ExtInfo withProducesResult(bool producesResult) const {
3742 if (producesResult)
3743 return ExtInfo(Bits | ProducesResultMask);
3744 else
3745 return ExtInfo(Bits & ~ProducesResultMask);
3746 }
3747
3748 ExtInfo withCmseNSCall(bool cmseNSCall) const {
3749 if (cmseNSCall)
3750 return ExtInfo(Bits | CmseNSCallMask);
3751 else
3752 return ExtInfo(Bits & ~CmseNSCallMask);
3753 }
3754
3755 ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
3756 if (noCallerSavedRegs)
3757 return ExtInfo(Bits | NoCallerSavedRegsMask);
3758 else
3759 return ExtInfo(Bits & ~NoCallerSavedRegsMask);
3760 }
3761
3762 ExtInfo withNoCfCheck(bool noCfCheck) const {
3763 if (noCfCheck)
3764 return ExtInfo(Bits | NoCfCheckMask);
3765 else
3766 return ExtInfo(Bits & ~NoCfCheckMask);
3767 }
3768
3769 ExtInfo withRegParm(unsigned RegParm) const {
3770 assert(RegParm < 7 && "Invalid regparm value")(static_cast <bool> (RegParm < 7 && "Invalid regparm value"
) ? void (0) : __assert_fail ("RegParm < 7 && \"Invalid regparm value\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 3770, __extension__ __PRETTY_FUNCTION__))
;
3771 return ExtInfo((Bits & ~RegParmMask) |
3772 ((RegParm + 1) << RegParmOffset));
3773 }
3774
3775 ExtInfo withCallingConv(CallingConv cc) const {
3776 return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
3777 }
3778
3779 void Profile(llvm::FoldingSetNodeID &ID) const {
3780 ID.AddInteger(Bits);
3781 }
3782 };
3783
3784 /// A simple holder for a QualType representing a type in an
3785 /// exception specification. Unfortunately needed by FunctionProtoType
3786 /// because TrailingObjects cannot handle repeated types.
3787 struct ExceptionType { QualType Type; };
3788
3789 /// A simple holder for various uncommon bits which do not fit in
3790 /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the
3791 /// alignment of subsequent objects in TrailingObjects. You must update
3792 /// hasExtraBitfields in FunctionProtoType after adding extra data here.
3793 struct alignas(void *) FunctionTypeExtraBitfields {
3794 /// The number of types in the exception specification.
3795 /// A whole unsigned is not needed here and according to
3796 /// [implimits] 8 bits would be enough here.
3797 unsigned NumExceptionType;
3798 };
3799
3800protected:
3801 FunctionType(TypeClass tc, QualType res, QualType Canonical,
3802 TypeDependence Dependence, ExtInfo Info)
3803 : Type(tc, Canonical, Dependence), ResultType(res) {
3804 FunctionTypeBits.ExtInfo = Info.Bits;
3805 }
3806
3807 Qualifiers getFastTypeQuals() const {
3808 return Qualifiers::fromFastMask(FunctionTypeBits.FastTypeQuals);
3809 }
3810
3811public:
3812 QualType getReturnType() const { return ResultType; }
3813
3814 bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
3815 unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
3816
3817 /// Determine whether this function type includes the GNU noreturn
3818 /// attribute. The C++11 [[noreturn]] attribute does not affect the function
3819 /// type.
3820 bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
3821
3822 bool getCmseNSCallAttr() const { return getExtInfo().getCmseNSCall(); }
3823 CallingConv getCallConv() const { return getExtInfo().getCC(); }
3824 ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
3825
3826 static_assert((~Qualifiers::FastMask & Qualifiers::CVRMask) == 0,
3827 "Const, volatile and restrict are assumed to be a subset of "
3828 "the fast qualifiers.");
3829
3830 bool isConst() const { return getFastTypeQuals().hasConst(); }
3831 bool isVolatile() const { return getFastTypeQuals().hasVolatile(); }
3832 bool isRestrict() const { return getFastTypeQuals().hasRestrict(); }
3833
3834 /// Determine the type of an expression that calls a function of
3835 /// this type.
3836 QualType getCallResultType(const ASTContext &Context) const {
3837 return getReturnType().getNonLValueExprType(Context);
3838 }
3839
3840 static StringRef getNameForCallConv(CallingConv CC);
3841
3842 static bool classof(const Type *T) {
3843 return T->getTypeClass() == FunctionNoProto ||
3844 T->getTypeClass() == FunctionProto;
3845 }
3846};
3847
3848/// Represents a K&R-style 'int foo()' function, which has
3849/// no information available about its arguments.
3850class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
3851 friend class ASTContext; // ASTContext creates these.
3852
3853 FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
3854 : FunctionType(FunctionNoProto, Result, Canonical,
3855 Result->getDependence() &
3856 ~(TypeDependence::DependentInstantiation |
3857 TypeDependence::UnexpandedPack),
3858 Info) {}
3859
3860public:
3861 // No additional state past what FunctionType provides.
3862
3863 bool isSugared() const { return false; }
3864 QualType desugar() const { return QualType(this, 0); }
3865
3866 void Profile(llvm::FoldingSetNodeID &ID) {
3867 Profile(ID, getReturnType(), getExtInfo());
3868 }
3869
3870 static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
3871 ExtInfo Info) {
3872 Info.Profile(ID);
3873 ID.AddPointer(ResultType.getAsOpaquePtr());
3874 }
3875
3876 static bool classof(const Type *T) {
3877 return T->getTypeClass() == FunctionNoProto;
3878 }
3879};
3880
3881/// Represents a prototype with parameter type info, e.g.
3882/// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no
3883/// parameters, not as having a single void parameter. Such a type can have
3884/// an exception specification, but this specification is not part of the
3885/// canonical type. FunctionProtoType has several trailing objects, some of
3886/// which optional. For more information about the trailing objects see
3887/// the first comment inside FunctionProtoType.
3888class FunctionProtoType final
3889 : public FunctionType,
3890 public llvm::FoldingSetNode,
3891 private llvm::TrailingObjects<
3892 FunctionProtoType, QualType, SourceLocation,
3893 FunctionType::FunctionTypeExtraBitfields, FunctionType::ExceptionType,
3894 Expr *, FunctionDecl *, FunctionType::ExtParameterInfo, Qualifiers> {
3895 friend class ASTContext; // ASTContext creates these.
3896 friend TrailingObjects;
3897
3898 // FunctionProtoType is followed by several trailing objects, some of
3899 // which optional. They are in order:
3900 //
3901 // * An array of getNumParams() QualType holding the parameter types.
3902 // Always present. Note that for the vast majority of FunctionProtoType,
3903 // these will be the only trailing objects.
3904 //
3905 // * Optionally if the function is variadic, the SourceLocation of the
3906 // ellipsis.
3907 //
3908 // * Optionally if some extra data is stored in FunctionTypeExtraBitfields
3909 // (see FunctionTypeExtraBitfields and FunctionTypeBitfields):
3910 // a single FunctionTypeExtraBitfields. Present if and only if
3911 // hasExtraBitfields() is true.
3912 //
3913 // * Optionally exactly one of:
3914 // * an array of getNumExceptions() ExceptionType,
3915 // * a single Expr *,
3916 // * a pair of FunctionDecl *,
3917 // * a single FunctionDecl *
3918 // used to store information about the various types of exception
3919 // specification. See getExceptionSpecSize for the details.
3920 //
3921 // * Optionally an array of getNumParams() ExtParameterInfo holding
3922 // an ExtParameterInfo for each of the parameters. Present if and
3923 // only if hasExtParameterInfos() is true.
3924 //
3925 // * Optionally a Qualifiers object to represent extra qualifiers that can't
3926 // be represented by FunctionTypeBitfields.FastTypeQuals. Present if and only
3927 // if hasExtQualifiers() is true.
3928 //
3929 // The optional FunctionTypeExtraBitfields has to be before the data
3930 // related to the exception specification since it contains the number
3931 // of exception types.
3932 //
3933 // We put the ExtParameterInfos last. If all were equal, it would make
3934 // more sense to put these before the exception specification, because
3935 // it's much easier to skip past them compared to the elaborate switch
3936 // required to skip the exception specification. However, all is not
3937 // equal; ExtParameterInfos are used to model very uncommon features,
3938 // and it's better not to burden the more common paths.
3939
3940public:
3941 /// Holds information about the various types of exception specification.
3942 /// ExceptionSpecInfo is not stored as such in FunctionProtoType but is
3943 /// used to group together the various bits of information about the
3944 /// exception specification.
3945 struct ExceptionSpecInfo {
3946 /// The kind of exception specification this is.
3947 ExceptionSpecificationType Type = EST_None;
3948
3949 /// Explicitly-specified list of exception types.
3950 ArrayRef<QualType> Exceptions;
3951
3952 /// Noexcept expression, if this is a computed noexcept specification.
3953 Expr *NoexceptExpr = nullptr;
3954
3955 /// The function whose exception specification this is, for
3956 /// EST_Unevaluated and EST_Uninstantiated.
3957 FunctionDecl *SourceDecl = nullptr;
3958
3959 /// The function template whose exception specification this is instantiated
3960 /// from, for EST_Uninstantiated.
3961 FunctionDecl *SourceTemplate = nullptr;
3962
3963 ExceptionSpecInfo() = default;
3964
3965 ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {}
3966 };
3967
3968 /// Extra information about a function prototype. ExtProtoInfo is not
3969 /// stored as such in FunctionProtoType but is used to group together
3970 /// the various bits of extra information about a function prototype.
3971 struct ExtProtoInfo {
3972 FunctionType::ExtInfo ExtInfo;
3973 bool Variadic : 1;
3974 bool HasTrailingReturn : 1;
3975 Qualifiers TypeQuals;
3976 RefQualifierKind RefQualifier = RQ_None;
3977 ExceptionSpecInfo ExceptionSpec;
3978 const ExtParameterInfo *ExtParameterInfos = nullptr;
3979 SourceLocation EllipsisLoc;
3980
3981 ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {}
3982
3983 ExtProtoInfo(CallingConv CC)
3984 : ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {}
3985
3986 ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) {
3987 ExtProtoInfo Result(*this);
3988 Result.ExceptionSpec = ESI;
3989 return Result;
3990 }
3991 };
3992
3993private:
3994 unsigned numTrailingObjects(OverloadToken<QualType>) const {
3995 return getNumParams();
3996 }
3997
3998 unsigned numTrailingObjects(OverloadToken<SourceLocation>) const {
3999 return isVariadic();
4000 }
4001
4002 unsigned numTrailingObjects(OverloadToken<FunctionTypeExtraBitfields>) const {
4003 return hasExtraBitfields();
4004 }
4005
4006 unsigned numTrailingObjects(OverloadToken<ExceptionType>) const {
4007 return getExceptionSpecSize().NumExceptionType;
4008 }
4009
4010 unsigned numTrailingObjects(OverloadToken<Expr *>) const {
4011 return getExceptionSpecSize().NumExprPtr;
4012 }
4013
4014 unsigned numTrailingObjects(OverloadToken<FunctionDecl *>) const {
4015 return getExceptionSpecSize().NumFunctionDeclPtr;
4016 }
4017
4018 unsigned numTrailingObjects(OverloadToken<ExtParameterInfo>) const {
4019 return hasExtParameterInfos() ? getNumParams() : 0;
4020 }
4021
4022 /// Determine whether there are any argument types that
4023 /// contain an unexpanded parameter pack.
4024 static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
4025 unsigned numArgs) {
4026 for (unsigned Idx = 0; Idx < numArgs; ++Idx)
4027 if (ArgArray[Idx]->containsUnexpandedParameterPack())
4028 return true;
4029
4030 return false;
4031 }
4032
4033 FunctionProtoType(QualType result, ArrayRef<QualType> params,
4034 QualType canonical, const ExtProtoInfo &epi);
4035
4036 /// This struct is returned by getExceptionSpecSize and is used to
4037 /// translate an ExceptionSpecificationType to the number and kind
4038 /// of trailing objects related to the exception specification.
4039 struct ExceptionSpecSizeHolder {
4040 unsigned NumExceptionType;
4041 unsigned NumExprPtr;
4042 unsigned NumFunctionDeclPtr;
4043 };
4044
4045 /// Return the number and kind of trailing objects
4046 /// related to the exception specification.
4047 static ExceptionSpecSizeHolder
4048 getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) {
4049 switch (EST) {
4050 case EST_None:
4051 case EST_DynamicNone:
4052 case EST_MSAny:
4053 case EST_BasicNoexcept:
4054 case EST_Unparsed:
4055 case EST_NoThrow:
4056 return {0, 0, 0};
4057
4058 case EST_Dynamic:
4059 return {NumExceptions, 0, 0};
4060
4061 case EST_DependentNoexcept:
4062 case EST_NoexceptFalse:
4063 case EST_NoexceptTrue:
4064 return {0, 1, 0};
4065
4066 case EST_Uninstantiated:
4067 return {0, 0, 2};
4068
4069 case EST_Unevaluated:
4070 return {0, 0, 1};
4071 }
4072 llvm_unreachable("bad exception specification kind")::llvm::llvm_unreachable_internal("bad exception specification kind"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 4072)
;
4073 }
4074
4075 /// Return the number and kind of trailing objects
4076 /// related to the exception specification.
4077 ExceptionSpecSizeHolder getExceptionSpecSize() const {
4078 return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions());
4079 }
4080
4081 /// Whether the trailing FunctionTypeExtraBitfields is present.
4082 static bool hasExtraBitfields(ExceptionSpecificationType EST) {
4083 // If the exception spec type is EST_Dynamic then we have > 0 exception
4084 // types and the exact number is stored in FunctionTypeExtraBitfields.
4085 return EST == EST_Dynamic;
4086 }
4087
4088 /// Whether the trailing FunctionTypeExtraBitfields is present.
4089 bool hasExtraBitfields() const {
4090 return hasExtraBitfields(getExceptionSpecType());
4091 }
4092
4093 bool hasExtQualifiers() const {
4094 return FunctionTypeBits.HasExtQuals;
4095 }
4096
4097public:
4098 unsigned getNumParams() const { return FunctionTypeBits.NumParams; }
4099
4100 QualType getParamType(unsigned i) const {
4101 assert(i < getNumParams() && "invalid parameter index")(static_cast <bool> (i < getNumParams() && "invalid parameter index"
) ? void (0) : __assert_fail ("i < getNumParams() && \"invalid parameter index\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 4101, __extension__ __PRETTY_FUNCTION__))
;
4102 return param_type_begin()[i];
4103 }
4104
4105 ArrayRef<QualType> getParamTypes() const {
4106 return llvm::makeArrayRef(param_type_begin(), param_type_end());
4107 }
4108
4109 ExtProtoInfo getExtProtoInfo() const {
4110 ExtProtoInfo EPI;
4111 EPI.ExtInfo = getExtInfo();
4112 EPI.Variadic = isVariadic();
4113 EPI.EllipsisLoc = getEllipsisLoc();
4114 EPI.HasTrailingReturn = hasTrailingReturn();
4115 EPI.ExceptionSpec = getExceptionSpecInfo();
4116 EPI.TypeQuals = getMethodQuals();
4117 EPI.RefQualifier = getRefQualifier();
4118 EPI.ExtParameterInfos = getExtParameterInfosOrNull();
4119 return EPI;
4120 }
4121
4122 /// Get the kind of exception specification on this function.
4123 ExceptionSpecificationType getExceptionSpecType() const {
4124 return static_cast<ExceptionSpecificationType>(
4125 FunctionTypeBits.ExceptionSpecType);
4126 }
4127
4128 /// Return whether this function has any kind of exception spec.
4129 bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; }
4130
4131 /// Return whether this function has a dynamic (throw) exception spec.
4132 bool hasDynamicExceptionSpec() const {
4133 return isDynamicExceptionSpec(getExceptionSpecType());
4134 }
4135
4136 /// Return whether this function has a noexcept exception spec.
4137 bool hasNoexceptExceptionSpec() const {
4138 return isNoexceptExceptionSpec(getExceptionSpecType());
4139 }
4140
4141 /// Return whether this function has a dependent exception spec.
4142 bool hasDependentExceptionSpec() const;
4143
4144 /// Return whether this function has an instantiation-dependent exception
4145 /// spec.
4146 bool hasInstantiationDependentExceptionSpec() const;
4147
4148 /// Return all the available information about this type's exception spec.
4149 ExceptionSpecInfo getExceptionSpecInfo() const {
4150 ExceptionSpecInfo Result;
4151 Result.Type = getExceptionSpecType();
4152 if (Result.Type == EST_Dynamic) {
4153 Result.Exceptions = exceptions();
4154 } else if (isComputedNoexcept(Result.Type)) {
4155 Result.NoexceptExpr = getNoexceptExpr();
4156 } else if (Result.Type == EST_Uninstantiated) {
4157 Result.SourceDecl = getExceptionSpecDecl();
4158 Result.SourceTemplate = getExceptionSpecTemplate();
4159 } else if (Result.Type == EST_Unevaluated) {
4160 Result.SourceDecl = getExceptionSpecDecl();
4161 }
4162 return Result;
4163 }
4164
4165 /// Return the number of types in the exception specification.
4166 unsigned getNumExceptions() const {
4167 return getExceptionSpecType() == EST_Dynamic
4168 ? getTrailingObjects<FunctionTypeExtraBitfields>()
4169 ->NumExceptionType
4170 : 0;
4171 }
4172
4173 /// Return the ith exception type, where 0 <= i < getNumExceptions().
4174 QualType getExceptionType(unsigned i) const {
4175 assert(i < getNumExceptions() && "Invalid exception number!")(static_cast <bool> (i < getNumExceptions() &&
"Invalid exception number!") ? void (0) : __assert_fail ("i < getNumExceptions() && \"Invalid exception number!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 4175, __extension__ __PRETTY_FUNCTION__))
;
4176 return exception_begin()[i];
4177 }
4178
4179 /// Return the expression inside noexcept(expression), or a null pointer
4180 /// if there is none (because the exception spec is not of this form).
4181 Expr *getNoexceptExpr() const {
4182 if (!isComputedNoexcept(getExceptionSpecType()))
4183 return nullptr;
4184 return *getTrailingObjects<Expr *>();
4185 }
4186
4187 /// If this function type has an exception specification which hasn't
4188 /// been determined yet (either because it has not been evaluated or because
4189 /// it has not been instantiated), this is the function whose exception
4190 /// specification is represented by this type.
4191 FunctionDecl *getExceptionSpecDecl() const {
4192 if (getExceptionSpecType() != EST_Uninstantiated &&
4193 getExceptionSpecType() != EST_Unevaluated)
4194 return nullptr;
4195 return getTrailingObjects<FunctionDecl *>()[0];
4196 }
4197
4198 /// If this function type has an uninstantiated exception
4199 /// specification, this is the function whose exception specification
4200 /// should be instantiated to find the exception specification for
4201 /// this type.
4202 FunctionDecl *getExceptionSpecTemplate() const {
4203 if (getExceptionSpecType() != EST_Uninstantiated)
4204 return nullptr;
4205 return getTrailingObjects<FunctionDecl *>()[1];
4206 }
4207
4208 /// Determine whether this function type has a non-throwing exception
4209 /// specification.
4210 CanThrowResult canThrow() const;
4211
4212 /// Determine whether this function type has a non-throwing exception
4213 /// specification. If this depends on template arguments, returns
4214 /// \c ResultIfDependent.
4215 bool isNothrow(bool ResultIfDependent = false) const {
4216 return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot;
4217 }
4218
4219 /// Whether this function prototype is variadic.
4220 bool isVariadic() const { return FunctionTypeBits.Variadic; }
4221
4222 SourceLocation getEllipsisLoc() const {
4223 return isVariadic() ? *getTrailingObjects<SourceLocation>()
4224 : SourceLocation();
4225 }
4226
4227 /// Determines whether this function prototype contains a
4228 /// parameter pack at the end.
4229 ///
4230 /// A function template whose last parameter is a parameter pack can be
4231 /// called with an arbitrary number of arguments, much like a variadic
4232 /// function.
4233 bool isTemplateVariadic() const;
4234
4235 /// Whether this function prototype has a trailing return type.
4236 bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; }
4237
4238 Qualifiers getMethodQuals() const {
4239 if (hasExtQualifiers())
4240 return *getTrailingObjects<Qualifiers>();
4241 else
4242 return getFastTypeQuals();
4243 }
4244
4245 /// Retrieve the ref-qualifier associated with this function type.
4246 RefQualifierKind getRefQualifier() const {
4247 return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
4248 }
4249
4250 using param_type_iterator = const QualType *;
4251 using param_type_range = llvm::iterator_range<param_type_iterator>;
4252
4253 param_type_range param_types() const {
4254 return param_type_range(param_type_begin(), param_type_end());
4255 }
4256
4257 param_type_iterator param_type_begin() const {
4258 return getTrailingObjects<QualType>();
4259 }
4260
4261 param_type_iterator param_type_end() const {
4262 return param_type_begin() + getNumParams();
4263 }
4264
4265 using exception_iterator = const QualType *;
4266
4267 ArrayRef<QualType> exceptions() const {
4268 return llvm::makeArrayRef(exception_begin(), exception_end());
4269 }
4270
4271 exception_iterator exception_begin() const {
4272 return reinterpret_cast<exception_iterator>(
4273 getTrailingObjects<ExceptionType>());
4274 }
4275
4276 exception_iterator exception_end() const {
4277 return exception_begin() + getNumExceptions();
4278 }
4279
4280 /// Is there any interesting extra information for any of the parameters
4281 /// of this function type?
4282 bool hasExtParameterInfos() const {
4283 return FunctionTypeBits.HasExtParameterInfos;
4284 }
4285
4286 ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
4287 assert(hasExtParameterInfos())(static_cast <bool> (hasExtParameterInfos()) ? void (0)
: __assert_fail ("hasExtParameterInfos()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 4287, __extension__ __PRETTY_FUNCTION__))
;
4288 return ArrayRef<ExtParameterInfo>(getTrailingObjects<ExtParameterInfo>(),
4289 getNumParams());
4290 }
4291
4292 /// Return a pointer to the beginning of the array of extra parameter
4293 /// information, if present, or else null if none of the parameters
4294 /// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos.
4295 const ExtParameterInfo *getExtParameterInfosOrNull() const {
4296 if (!hasExtParameterInfos())
4297 return nullptr;
4298 return getTrailingObjects<ExtParameterInfo>();
4299 }
4300
4301 ExtParameterInfo getExtParameterInfo(unsigned I) const {
4302 assert(I < getNumParams() && "parameter index out of range")(static_cast <bool> (I < getNumParams() && "parameter index out of range"
) ? void (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 4302, __extension__ __PRETTY_FUNCTION__))
;
4303 if (hasExtParameterInfos())
4304 return getTrailingObjects<ExtParameterInfo>()[I];
4305 return ExtParameterInfo();
4306 }
4307
4308 ParameterABI getParameterABI(unsigned I) const {
4309 assert(I < getNumParams() && "parameter index out of range")(static_cast <bool> (I < getNumParams() && "parameter index out of range"
) ? void (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 4309, __extension__ __PRETTY_FUNCTION__))
;
4310 if (hasExtParameterInfos())
4311 return getTrailingObjects<ExtParameterInfo>()[I].getABI();
4312 return ParameterABI::Ordinary;
4313 }
4314
4315 bool isParamConsumed(unsigned I) const {
4316 assert(I < getNumParams() && "parameter index out of range")(static_cast <bool> (I < getNumParams() && "parameter index out of range"
) ? void (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 4316, __extension__ __PRETTY_FUNCTION__))
;
4317 if (hasExtParameterInfos())
4318 return getTrailingObjects<ExtParameterInfo>()[I].isConsumed();
4319 return false;
4320 }
4321
4322 bool isSugared() const { return false; }
4323 QualType desugar() const { return QualType(this, 0); }
4324
4325 void printExceptionSpecification(raw_ostream &OS,
4326 const PrintingPolicy &Policy) const;
4327
4328 static bool classof(const Type *T) {
4329 return T->getTypeClass() == FunctionProto;
4330 }
4331
4332 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
4333 static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
4334 param_type_iterator ArgTys, unsigned NumArgs,
4335 const ExtProtoInfo &EPI, const ASTContext &Context,
4336 bool Canonical);
4337};
4338
4339/// Represents the dependent type named by a dependently-scoped
4340/// typename using declaration, e.g.
4341/// using typename Base<T>::foo;
4342///
4343/// Template instantiation turns these into the underlying type.
4344class UnresolvedUsingType : public Type {
4345 friend class ASTContext; // ASTContext creates these.
4346
4347 UnresolvedUsingTypenameDecl *Decl;
4348
4349 UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
4350 : Type(UnresolvedUsing, QualType(),
4351 TypeDependence::DependentInstantiation),
4352 Decl(const_cast<UnresolvedUsingTypenameDecl *>(D)) {}
4353
4354public:
4355 UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
4356
4357 bool isSugared() const { return false; }
4358 QualType desugar() const { return QualType(this, 0); }
4359
4360 static bool classof(const Type *T) {
4361 return T->getTypeClass() == UnresolvedUsing;
4362 }
4363
4364 void Profile(llvm::FoldingSetNodeID &ID) {
4365 return Profile(ID, Decl);
4366 }
4367
4368 static void Profile(llvm::FoldingSetNodeID &ID,
4369 UnresolvedUsingTypenameDecl *D) {
4370 ID.AddPointer(D);
4371 }
4372};
4373
4374class TypedefType : public Type {
4375 TypedefNameDecl *Decl;
4376
4377private:
4378 friend class ASTContext; // ASTContext creates these.
4379
4380 TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType underlying,
4381 QualType can);
4382
4383public:
4384 TypedefNameDecl *getDecl() const { return Decl; }
4385
4386 bool isSugared() const { return true; }
4387 QualType desugar() const;
4388
4389 static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
4390};
4391
4392/// Sugar type that represents a type that was qualified by a qualifier written
4393/// as a macro invocation.
4394class MacroQualifiedType : public Type {
4395 friend class ASTContext; // ASTContext creates these.
4396
4397 QualType UnderlyingTy;
4398 const IdentifierInfo *MacroII;
4399
4400 MacroQualifiedType(QualType UnderlyingTy, QualType CanonTy,
4401 const IdentifierInfo *MacroII)
4402 : Type(MacroQualified, CanonTy, UnderlyingTy->getDependence()),
4403 UnderlyingTy(UnderlyingTy), MacroII(MacroII) {
4404 assert(isa<AttributedType>(UnderlyingTy) &&(static_cast <bool> (isa<AttributedType>(UnderlyingTy
) && "Expected a macro qualified type to only wrap attributed types."
) ? void (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 4405, __extension__ __PRETTY_FUNCTION__))
4405 "Expected a macro qualified type to only wrap attributed types.")(static_cast <bool> (isa<AttributedType>(UnderlyingTy
) && "Expected a macro qualified type to only wrap attributed types."
) ? void (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 4405, __extension__ __PRETTY_FUNCTION__))
;
4406 }
4407
4408public:
4409 const IdentifierInfo *getMacroIdentifier() const { return MacroII; }
4410 QualType getUnderlyingType() const { return UnderlyingTy; }
4411
4412 /// Return this attributed type's modified type with no qualifiers attached to
4413 /// it.
4414 QualType getModifiedType() const;
4415
4416 bool isSugared() const { return true; }
4417 QualType desugar() const;
4418
4419 static bool classof(const Type *T) {
4420 return T->getTypeClass() == MacroQualified;
4421 }
4422};
4423
4424/// Represents a `typeof` (or __typeof__) expression (a GCC extension).
4425class TypeOfExprType : public Type {
4426 Expr *TOExpr;
4427
4428protected:
4429 friend class ASTContext; // ASTContext creates these.
4430
4431 TypeOfExprType(Expr *E, QualType can = QualType());
4432
4433public:
4434 Expr *getUnderlyingExpr() const { return TOExpr; }
4435
4436 /// Remove a single level of sugar.
4437 QualType desugar() const;
4438
4439 /// Returns whether this type directly provides sugar.
4440 bool isSugared() const;
4441
4442 static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
4443};
4444
4445/// Internal representation of canonical, dependent
4446/// `typeof(expr)` types.
4447///
4448/// This class is used internally by the ASTContext to manage
4449/// canonical, dependent types, only. Clients will only see instances
4450/// of this class via TypeOfExprType nodes.
4451class DependentTypeOfExprType
4452 : public TypeOfExprType, public llvm::FoldingSetNode {
4453 const ASTContext &Context;
4454
4455public:
4456 DependentTypeOfExprType(const ASTContext &Context, Expr *E)
4457 : TypeOfExprType(E), Context(Context) {}
4458
4459 void Profile(llvm::FoldingSetNodeID &ID) {
4460 Profile(ID, Context, getUnderlyingExpr());
4461 }
4462
4463 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4464 Expr *E);
4465};
4466
4467/// Represents `typeof(type)`, a GCC extension.
4468class TypeOfType : public Type {
4469 friend class ASTContext; // ASTContext creates these.
4470
4471 QualType TOType;
4472
4473 TypeOfType(QualType T, QualType can)
4474 : Type(TypeOf, can, T->getDependence()), TOType(T) {
4475 assert(!isa<TypedefType>(can) && "Invalid canonical type")(static_cast <bool> (!isa<TypedefType>(can) &&
"Invalid canonical type") ? void (0) : __assert_fail ("!isa<TypedefType>(can) && \"Invalid canonical type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 4475, __extension__ __PRETTY_FUNCTION__))
;
4476 }
4477
4478public:
4479 QualType getUnderlyingType() const { return TOType; }
4480
4481 /// Remove a single level of sugar.
4482 QualType desugar() const { return getUnderlyingType(); }
4483
4484 /// Returns whether this type directly provides sugar.
4485 bool isSugared() const { return true; }
4486
4487 static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
4488};
4489
4490/// Represents the type `decltype(expr)` (C++11).
4491class DecltypeType : public Type {
4492 Expr *E;
4493 QualType UnderlyingType;
4494
4495protected:
4496 friend class ASTContext; // ASTContext creates these.
4497
4498 DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
4499
4500public:
4501 Expr *getUnderlyingExpr() const { return E; }
4502 QualType getUnderlyingType() const { return UnderlyingType; }
4503
4504 /// Remove a single level of sugar.
4505 QualType desugar() const;
4506
4507 /// Returns whether this type directly provides sugar.
4508 bool isSugared() const;
4509
4510 static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
4511};
4512
4513/// Internal representation of canonical, dependent
4514/// decltype(expr) types.
4515///
4516/// This class is used internally by the ASTContext to manage
4517/// canonical, dependent types, only. Clients will only see instances
4518/// of this class via DecltypeType nodes.
4519class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
4520 const ASTContext &Context;
4521
4522public:
4523 DependentDecltypeType(const ASTContext &Context, Expr *E);
4524
4525 void Profile(llvm::FoldingSetNodeID &ID) {
4526 Profile(ID, Context, getUnderlyingExpr());
4527 }
4528
4529 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4530 Expr *E);
4531};
4532
4533/// A unary type transform, which is a type constructed from another.
4534class UnaryTransformType : public Type {
4535public:
4536 enum UTTKind {
4537 EnumUnderlyingType
4538 };
4539
4540private:
4541 /// The untransformed type.
4542 QualType BaseType;
4543
4544 /// The transformed type if not dependent, otherwise the same as BaseType.
4545 QualType UnderlyingType;
4546
4547 UTTKind UKind;
4548
4549protected:
4550 friend class ASTContext;
4551
4552 UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
4553 QualType CanonicalTy);
4554
4555public:
4556 bool isSugared() const { return !isDependentType(); }
4557 QualType desugar() const { return UnderlyingType; }
4558
4559 QualType getUnderlyingType() const { return UnderlyingType; }
4560 QualType getBaseType() const { return BaseType; }
4561
4562 UTTKind getUTTKind() const { return UKind; }
4563
4564 static bool classof(const Type *T) {
4565 return T->getTypeClass() == UnaryTransform;
4566 }
4567};
4568
4569/// Internal representation of canonical, dependent
4570/// __underlying_type(type) types.
4571///
4572/// This class is used internally by the ASTContext to manage
4573/// canonical, dependent types, only. Clients will only see instances
4574/// of this class via UnaryTransformType nodes.
4575class DependentUnaryTransformType : public UnaryTransformType,
4576 public llvm::FoldingSetNode {
4577public:
4578 DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
4579 UTTKind UKind);
4580
4581 void Profile(llvm::FoldingSetNodeID &ID) {
4582 Profile(ID, getBaseType(), getUTTKind());
4583 }
4584
4585 static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
4586 UTTKind UKind) {
4587 ID.AddPointer(BaseType.getAsOpaquePtr());
4588 ID.AddInteger((unsigned)UKind);
4589 }
4590};
4591
4592class TagType : public Type {
4593 friend class ASTReader;
4594 template <class T> friend class serialization::AbstractTypeReader;
4595
4596 /// Stores the TagDecl associated with this type. The decl may point to any
4597 /// TagDecl that declares the entity.
4598 TagDecl *decl;
4599
4600protected:
4601 TagType(TypeClass TC, const TagDecl *D, QualType can);
4602
4603public:
4604 TagDecl *getDecl() const;
4605
4606 /// Determines whether this type is in the process of being defined.
4607 bool isBeingDefined() const;
4608
4609 static bool classof(const Type *T) {
4610 return T->getTypeClass() == Enum || T->getTypeClass() == Record;
4611 }
4612};
4613
4614/// A helper class that allows the use of isa/cast/dyncast
4615/// to detect TagType objects of structs/unions/classes.
4616class RecordType : public TagType {
4617protected:
4618 friend class ASTContext; // ASTContext creates these.
4619
4620 explicit RecordType(const RecordDecl *D)
4621 : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4622 explicit RecordType(TypeClass TC, RecordDecl *D)
4623 : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4624
4625public:
4626 RecordDecl *getDecl() const {
4627 return reinterpret_cast<RecordDecl*>(TagType::getDecl());
4628 }
4629
4630 /// Recursively check all fields in the record for const-ness. If any field
4631 /// is declared const, return true. Otherwise, return false.
4632 bool hasConstFields() const;
4633
4634 bool isSugared() const { return false; }
4635 QualType desugar() const { return QualType(this, 0); }
4636
4637 static bool classof(const Type *T) { return T->getTypeClass() == Record; }
4638};
4639
4640/// A helper class that allows the use of isa/cast/dyncast
4641/// to detect TagType objects of enums.
4642class EnumType : public TagType {
4643 friend class ASTContext; // ASTContext creates these.
4644
4645 explicit EnumType(const EnumDecl *D)
4646 : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4647
4648public:
4649 EnumDecl *getDecl() const {
4650 return reinterpret_cast<EnumDecl*>(TagType::getDecl());
4651 }
4652
4653 bool isSugared() const { return false; }
4654 QualType desugar() const { return QualType(this, 0); }
4655
4656 static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
4657};
4658
4659/// An attributed type is a type to which a type attribute has been applied.
4660///
4661/// The "modified type" is the fully-sugared type to which the attributed
4662/// type was applied; generally it is not canonically equivalent to the
4663/// attributed type. The "equivalent type" is the minimally-desugared type
4664/// which the type is canonically equivalent to.
4665///
4666/// For example, in the following attributed type:
4667/// int32_t __attribute__((vector_size(16)))
4668/// - the modified type is the TypedefType for int32_t
4669/// - the equivalent type is VectorType(16, int32_t)
4670/// - the canonical type is VectorType(16, int)
4671class AttributedType : public Type, public llvm::FoldingSetNode {
4672public:
4673 using Kind = attr::Kind;
4674
4675private:
4676 friend class ASTContext; // ASTContext creates these
4677
4678 QualType ModifiedType;
4679 QualType EquivalentType;
4680
4681 AttributedType(QualType canon, attr::Kind attrKind, QualType modified,
4682 QualType equivalent)
4683 : Type(Attributed, canon, equivalent->getDependence()),
4684 ModifiedType(modified), EquivalentType(equivalent) {
4685 AttributedTypeBits.AttrKind = attrKind;
4686 }
4687
4688public:
4689 Kind getAttrKind() const {
4690 return static_cast<Kind>(AttributedTypeBits.AttrKind);
4691 }
4692
4693 QualType getModifiedType() const { return ModifiedType; }
4694 QualType getEquivalentType() const { return EquivalentType; }
4695
4696 bool isSugared() const { return true; }
4697 QualType desugar() const { return getEquivalentType(); }
4698
4699 /// Does this attribute behave like a type qualifier?
4700 ///
4701 /// A type qualifier adjusts a type to provide specialized rules for
4702 /// a specific object, like the standard const and volatile qualifiers.
4703 /// This includes attributes controlling things like nullability,
4704 /// address spaces, and ARC ownership. The value of the object is still
4705 /// largely described by the modified type.
4706 ///
4707 /// In contrast, many type attributes "rewrite" their modified type to
4708 /// produce a fundamentally different type, not necessarily related in any
4709 /// formalizable way to the original type. For example, calling convention
4710 /// and vector attributes are not simple type qualifiers.
4711 ///
4712 /// Type qualifiers are often, but not always, reflected in the canonical
4713 /// type.
4714 bool isQualifier() const;
4715
4716 bool isMSTypeSpec() const;
4717
4718 bool isCallingConv() const;
4719
4720 llvm::Optional<NullabilityKind> getImmediateNullability() const;
4721
4722 /// Retrieve the attribute kind corresponding to the given
4723 /// nullability kind.
4724 static Kind getNullabilityAttrKind(NullabilityKind kind) {
4725 switch (kind) {
4726 case NullabilityKind::NonNull:
4727 return attr::TypeNonNull;
4728
4729 case NullabilityKind::Nullable:
4730 return attr::TypeNullable;
4731
4732 case NullabilityKind::NullableResult:
4733 return attr::TypeNullableResult;
4734
4735 case NullabilityKind::Unspecified:
4736 return attr::TypeNullUnspecified;
4737 }
4738 llvm_unreachable("Unknown nullability kind.")::llvm::llvm_unreachable_internal("Unknown nullability kind."
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 4738)
;
4739 }
4740
4741 /// Strip off the top-level nullability annotation on the given
4742 /// type, if it's there.
4743 ///
4744 /// \param T The type to strip. If the type is exactly an
4745 /// AttributedType specifying nullability (without looking through
4746 /// type sugar), the nullability is returned and this type changed
4747 /// to the underlying modified type.
4748 ///
4749 /// \returns the top-level nullability, if present.
4750 static Optional<NullabilityKind> stripOuterNullability(QualType &T);
4751
4752 void Profile(llvm::FoldingSetNodeID &ID) {
4753 Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
4754 }
4755
4756 static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
4757 QualType modified, QualType equivalent) {
4758 ID.AddInteger(attrKind);
4759 ID.AddPointer(modified.getAsOpaquePtr());
4760 ID.AddPointer(equivalent.getAsOpaquePtr());
4761 }
4762
4763 static bool classof(const Type *T) {
4764 return T->getTypeClass() == Attributed;
4765 }
4766};
4767
4768class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4769 friend class ASTContext; // ASTContext creates these
4770
4771 // Helper data collector for canonical types.
4772 struct CanonicalTTPTInfo {
4773 unsigned Depth : 15;
4774 unsigned ParameterPack : 1;
4775 unsigned Index : 16;
4776 };
4777
4778 union {
4779 // Info for the canonical type.
4780 CanonicalTTPTInfo CanTTPTInfo;
4781
4782 // Info for the non-canonical type.
4783 TemplateTypeParmDecl *TTPDecl;
4784 };
4785
4786 /// Build a non-canonical type.
4787 TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
4788 : Type(TemplateTypeParm, Canon,
4789 TypeDependence::DependentInstantiation |
4790 (Canon->getDependence() & TypeDependence::UnexpandedPack)),
4791 TTPDecl(TTPDecl) {}
4792
4793 /// Build the canonical type.
4794 TemplateTypeParmType(unsigned D, unsigned I, bool PP)
4795 : Type(TemplateTypeParm, QualType(this, 0),
4796 TypeDependence::DependentInstantiation |
4797 (PP ? TypeDependence::UnexpandedPack : TypeDependence::None)) {
4798 CanTTPTInfo.Depth = D;
4799 CanTTPTInfo.Index = I;
4800 CanTTPTInfo.ParameterPack = PP;
4801 }
4802
4803 const CanonicalTTPTInfo& getCanTTPTInfo() const {
4804 QualType Can = getCanonicalTypeInternal();
4805 return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
4806 }
4807
4808public:
4809 unsigned getDepth() const { return getCanTTPTInfo().Depth; }
4810 unsigned getIndex() const { return getCanTTPTInfo().Index; }
4811 bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
4812
4813 TemplateTypeParmDecl *getDecl() const {
4814 return isCanonicalUnqualified() ? nullptr : TTPDecl;
4815 }
4816
4817 IdentifierInfo *getIdentifier() const;
4818
4819 bool isSugared() const { return false; }
4820 QualType desugar() const { return QualType(this, 0); }
4821
4822 void Profile(llvm::FoldingSetNodeID &ID) {
4823 Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
4824 }
4825
4826 static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
4827 unsigned Index, bool ParameterPack,
4828 TemplateTypeParmDecl *TTPDecl) {
4829 ID.AddInteger(Depth);
4830 ID.AddInteger(Index);
4831 ID.AddBoolean(ParameterPack);
4832 ID.AddPointer(TTPDecl);
4833 }
4834
4835 static bool classof(const Type *T) {
4836 return T->getTypeClass() == TemplateTypeParm;
4837 }
4838};
4839
4840/// Represents the result of substituting a type for a template
4841/// type parameter.
4842///
4843/// Within an instantiated template, all template type parameters have
4844/// been replaced with these. They are used solely to record that a
4845/// type was originally written as a template type parameter;
4846/// therefore they are never canonical.
4847class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4848 friend class ASTContext;
4849
4850 // The original type parameter.
4851 const TemplateTypeParmType *Replaced;
4852
4853 SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
4854 : Type(SubstTemplateTypeParm, Canon, Canon->getDependence()),
4855 Replaced(Param) {}
4856
4857public:
4858 /// Gets the template parameter that was substituted for.
4859 const TemplateTypeParmType *getReplacedParameter() const {
4860 return Replaced;
4861 }
4862
4863 /// Gets the type that was substituted for the template
4864 /// parameter.
4865 QualType getReplacementType() const {
4866 return getCanonicalTypeInternal();
4867 }
4868
4869 bool isSugared() const { return true; }
4870 QualType desugar() const { return getReplacementType(); }
4871
4872 void Profile(llvm::FoldingSetNodeID &ID) {
4873 Profile(ID, getReplacedParameter(), getReplacementType());
4874 }
4875
4876 static void Profile(llvm::FoldingSetNodeID &ID,
4877 const TemplateTypeParmType *Replaced,
4878 QualType Replacement) {
4879 ID.AddPointer(Replaced);
4880 ID.AddPointer(Replacement.getAsOpaquePtr());
4881 }
4882
4883 static bool classof(const Type *T) {
4884 return T->getTypeClass() == SubstTemplateTypeParm;
4885 }
4886};
4887
4888/// Represents the result of substituting a set of types for a template
4889/// type parameter pack.
4890///
4891/// When a pack expansion in the source code contains multiple parameter packs
4892/// and those parameter packs correspond to different levels of template
4893/// parameter lists, this type node is used to represent a template type
4894/// parameter pack from an outer level, which has already had its argument pack
4895/// substituted but that still lives within a pack expansion that itself
4896/// could not be instantiated. When actually performing a substitution into
4897/// that pack expansion (e.g., when all template parameters have corresponding
4898/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
4899/// at the current pack substitution index.
4900class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
4901 friend class ASTContext;
4902
4903 /// The original type parameter.
4904 const TemplateTypeParmType *Replaced;
4905
4906 /// A pointer to the set of template arguments that this
4907 /// parameter pack is instantiated with.
4908 const TemplateArgument *Arguments;
4909
4910 SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
4911 QualType Canon,
4912 const TemplateArgument &ArgPack);
4913
4914public:
4915 IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
4916
4917 /// Gets the template parameter that was substituted for.
4918 const TemplateTypeParmType *getReplacedParameter() const {
4919 return Replaced;
4920 }
4921
4922 unsigned getNumArgs() const {
4923 return SubstTemplateTypeParmPackTypeBits.NumArgs;
4924 }
4925
4926 bool isSugared() const { return false; }
4927 QualType desugar() const { return QualType(this, 0); }
4928
4929 TemplateArgument getArgumentPack() const;
4930
4931 void Profile(llvm::FoldingSetNodeID &ID);
4932 static void Profile(llvm::FoldingSetNodeID &ID,
4933 const TemplateTypeParmType *Replaced,
4934 const TemplateArgument &ArgPack);
4935
4936 static bool classof(const Type *T) {
4937 return T->getTypeClass() == SubstTemplateTypeParmPack;
4938 }
4939};
4940
4941/// Common base class for placeholders for types that get replaced by
4942/// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced
4943/// class template types, and constrained type names.
4944///
4945/// These types are usually a placeholder for a deduced type. However, before
4946/// the initializer is attached, or (usually) if the initializer is
4947/// type-dependent, there is no deduced type and the type is canonical. In
4948/// the latter case, it is also a dependent type.
4949class DeducedType : public Type {
4950protected:
4951 DeducedType(TypeClass TC, QualType DeducedAsType,
4952 TypeDependence ExtraDependence)
4953 : Type(TC,
4954 // FIXME: Retain the sugared deduced type?
4955 DeducedAsType.isNull() ? QualType(this, 0)
4956 : DeducedAsType.getCanonicalType(),
4957 ExtraDependence | (DeducedAsType.isNull()
4958 ? TypeDependence::None
4959 : DeducedAsType->getDependence() &
4960 ~TypeDependence::VariablyModified)) {}
4961
4962public:
4963 bool isSugared() const { return !isCanonicalUnqualified(); }
4964 QualType desugar() const { return getCanonicalTypeInternal(); }
4965
4966 /// Get the type deduced for this placeholder type, or null if it's
4967 /// either not been deduced or was deduced to a dependent type.
4968 QualType getDeducedType() const {
4969 return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
4970 }
4971 bool isDeduced() const {
4972 return !isCanonicalUnqualified() || isDependentType();
4973 }
4974
4975 static bool classof(const Type *T) {
4976 return T->getTypeClass() == Auto ||
4977 T->getTypeClass() == DeducedTemplateSpecialization;
4978 }
4979};
4980
4981/// Represents a C++11 auto or C++14 decltype(auto) type, possibly constrained
4982/// by a type-constraint.
4983class alignas(8) AutoType : public DeducedType, public llvm::FoldingSetNode {
4984 friend class ASTContext; // ASTContext creates these
4985
4986 ConceptDecl *TypeConstraintConcept;
4987
4988 AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
4989 TypeDependence ExtraDependence, ConceptDecl *CD,
4990 ArrayRef<TemplateArgument> TypeConstraintArgs);
4991
4992 const TemplateArgument *getArgBuffer() const {
4993 return reinterpret_cast<const TemplateArgument*>(this+1);
4994 }
4995
4996 TemplateArgument *getArgBuffer() {
4997 return reinterpret_cast<TemplateArgument*>(this+1);
4998 }
4999
5000public:
5001 /// Retrieve the template arguments.
5002 const TemplateArgument *getArgs() const {
5003 return getArgBuffer();
5004 }
5005
5006 /// Retrieve the number of template arguments.
5007 unsigned getNumArgs() const {
5008 return AutoTypeBits.NumArgs;
5009 }
5010
5011 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5012
5013 ArrayRef<TemplateArgument> getTypeConstraintArguments() const {
5014 return {getArgs(), getNumArgs()};
5015 }
5016
5017 ConceptDecl *getTypeConstraintConcept() const {
5018 return TypeConstraintConcept;
5019 }
5020
5021 bool isConstrained() const {
5022 return TypeConstraintConcept != nullptr;
5023 }
5024
5025 bool isDecltypeAuto() const {
5026 return getKeyword() == AutoTypeKeyword::DecltypeAuto;
5027 }
5028
5029 AutoTypeKeyword getKeyword() const {
5030 return (AutoTypeKeyword)AutoTypeBits.Keyword;
5031 }
5032
5033 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5034 Profile(ID, Context, getDeducedType(), getKeyword(), isDependentType(),
5035 getTypeConstraintConcept(), getTypeConstraintArguments());
5036 }
5037
5038 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
5039 QualType Deduced, AutoTypeKeyword Keyword,
5040 bool IsDependent, ConceptDecl *CD,
5041 ArrayRef<TemplateArgument> Arguments);
5042
5043 static bool classof(const Type *T) {
5044 return T->getTypeClass() == Auto;
5045 }
5046};
5047
5048/// Represents a C++17 deduced template specialization type.
5049class DeducedTemplateSpecializationType : public DeducedType,
5050 public llvm::FoldingSetNode {
5051 friend class ASTContext; // ASTContext creates these
5052
5053 /// The name of the template whose arguments will be deduced.
5054 TemplateName Template;
5055
5056 DeducedTemplateSpecializationType(TemplateName Template,
5057 QualType DeducedAsType,
5058 bool IsDeducedAsDependent)
5059 : DeducedType(DeducedTemplateSpecialization, DeducedAsType,
5060 toTypeDependence(Template.getDependence()) |
5061 (IsDeducedAsDependent
5062 ? TypeDependence::DependentInstantiation
5063 : TypeDependence::None)),
5064 Template(Template) {}
5065
5066public:
5067 /// Retrieve the name of the template that we are deducing.
5068 TemplateName getTemplateName() const { return Template;}
5069
5070 void Profile(llvm::FoldingSetNodeID &ID) {
5071 Profile(ID, getTemplateName(), getDeducedType(), isDependentType());
5072 }
5073
5074 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template,
5075 QualType Deduced, bool IsDependent) {
5076 Template.Profile(ID);
5077 ID.AddPointer(Deduced.getAsOpaquePtr());
5078 ID.AddBoolean(IsDependent);
5079 }
5080
5081 static bool classof(const Type *T) {
5082 return T->getTypeClass() == DeducedTemplateSpecialization;
5083 }
5084};
5085
5086/// Represents a type template specialization; the template
5087/// must be a class template, a type alias template, or a template
5088/// template parameter. A template which cannot be resolved to one of
5089/// these, e.g. because it is written with a dependent scope
5090/// specifier, is instead represented as a
5091/// @c DependentTemplateSpecializationType.
5092///
5093/// A non-dependent template specialization type is always "sugar",
5094/// typically for a \c RecordType. For example, a class template
5095/// specialization type of \c vector<int> will refer to a tag type for
5096/// the instantiation \c std::vector<int, std::allocator<int>>
5097///
5098/// Template specializations are dependent if either the template or
5099/// any of the template arguments are dependent, in which case the
5100/// type may also be canonical.
5101///
5102/// Instances of this type are allocated with a trailing array of
5103/// TemplateArguments, followed by a QualType representing the
5104/// non-canonical aliased type when the template is a type alias
5105/// template.
5106class alignas(8) TemplateSpecializationType
5107 : public Type,
5108 public llvm::FoldingSetNode {
5109 friend class ASTContext; // ASTContext creates these
5110
5111 /// The name of the template being specialized. This is
5112 /// either a TemplateName::Template (in which case it is a
5113 /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
5114 /// TypeAliasTemplateDecl*), a
5115 /// TemplateName::SubstTemplateTemplateParmPack, or a
5116 /// TemplateName::SubstTemplateTemplateParm (in which case the
5117 /// replacement must, recursively, be one of these).
5118 TemplateName Template;
5119
5120 TemplateSpecializationType(TemplateName T,
5121 ArrayRef<TemplateArgument> Args,
5122 QualType Canon,
5123 QualType Aliased);
5124
5125public:
5126 /// Determine whether any of the given template arguments are dependent.
5127 ///
5128 /// The converted arguments should be supplied when known; whether an
5129 /// argument is dependent can depend on the conversions performed on it
5130 /// (for example, a 'const int' passed as a template argument might be
5131 /// dependent if the parameter is a reference but non-dependent if the
5132 /// parameter is an int).
5133 ///
5134 /// Note that the \p Args parameter is unused: this is intentional, to remind
5135 /// the caller that they need to pass in the converted arguments, not the
5136 /// specified arguments.
5137 static bool
5138 anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
5139 ArrayRef<TemplateArgument> Converted);
5140 static bool
5141 anyDependentTemplateArguments(const TemplateArgumentListInfo &,
5142 ArrayRef<TemplateArgument> Converted);
5143 static bool anyInstantiationDependentTemplateArguments(
5144 ArrayRef<TemplateArgumentLoc> Args);
5145
5146 /// True if this template specialization type matches a current
5147 /// instantiation in the context in which it is found.
5148 bool isCurrentInstantiation() const {
5149 return isa<InjectedClassNameType>(getCanonicalTypeInternal());
5150 }
5151
5152 /// Determine if this template specialization type is for a type alias
5153 /// template that has been substituted.
5154 ///
5155 /// Nearly every template specialization type whose template is an alias
5156 /// template will be substituted. However, this is not the case when
5157 /// the specialization contains a pack expansion but the template alias
5158 /// does not have a corresponding parameter pack, e.g.,
5159 ///
5160 /// \code
5161 /// template<typename T, typename U, typename V> struct S;
5162 /// template<typename T, typename U> using A = S<T, int, U>;
5163 /// template<typename... Ts> struct X {
5164 /// typedef A<Ts...> type; // not a type alias
5165 /// };
5166 /// \endcode
5167 bool isTypeAlias() const { return TemplateSpecializationTypeBits.TypeAlias; }
5168
5169 /// Get the aliased type, if this is a specialization of a type alias
5170 /// template.
5171 QualType getAliasedType() const {
5172 assert(isTypeAlias() && "not a type alias template specialization")(static_cast <bool> (isTypeAlias() && "not a type alias template specialization"
) ? void (0) : __assert_fail ("isTypeAlias() && \"not a type alias template specialization\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 5172, __extension__ __PRETTY_FUNCTION__))
;
5173 return *reinterpret_cast<const QualType*>(end());
5174 }
5175
5176 using iterator = const TemplateArgument *;
5177
5178 iterator begin() const { return getArgs(); }
5179 iterator end() const; // defined inline in TemplateBase.h
5180
5181 /// Retrieve the name of the template that we are specializing.
5182 TemplateName getTemplateName() const { return Template; }
5183
5184 /// Retrieve the template arguments.
5185 const TemplateArgument *getArgs() const {
5186 return reinterpret_cast<const TemplateArgument *>(this + 1);
5187 }
5188
5189 /// Retrieve the number of template arguments.
5190 unsigned getNumArgs() const {
5191 return TemplateSpecializationTypeBits.NumArgs;
5192 }
5193
5194 /// Retrieve a specific template argument as a type.
5195 /// \pre \c isArgType(Arg)
5196 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5197
5198 ArrayRef<TemplateArgument> template_arguments() const {
5199 return {getArgs(), getNumArgs()};
5200 }
5201
5202 bool isSugared() const {
5203 return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
5204 }
5205
5206 QualType desugar() const {
5207 return isTypeAlias() ? getAliasedType() : getCanonicalTypeInternal();
5208 }
5209
5210 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
5211 Profile(ID, Template, template_arguments(), Ctx);
5212 if (isTypeAlias())
5213 getAliasedType().Profile(ID);
5214 }
5215
5216 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
5217 ArrayRef<TemplateArgument> Args,
5218 const ASTContext &Context);
5219
5220 static bool classof(const Type *T) {
5221 return T->getTypeClass() == TemplateSpecialization;
5222 }
5223};
5224
5225/// Print a template argument list, including the '<' and '>'
5226/// enclosing the template arguments.
5227void printTemplateArgumentList(raw_ostream &OS,
5228 ArrayRef<TemplateArgument> Args,
5229 const PrintingPolicy &Policy,
5230 const TemplateParameterList *TPL = nullptr);
5231
5232void printTemplateArgumentList(raw_ostream &OS,
5233 ArrayRef<TemplateArgumentLoc> Args,
5234 const PrintingPolicy &Policy,
5235 const TemplateParameterList *TPL = nullptr);
5236
5237void printTemplateArgumentList(raw_ostream &OS,
5238 const TemplateArgumentListInfo &Args,
5239 const PrintingPolicy &Policy,
5240 const TemplateParameterList *TPL = nullptr);
5241
5242/// The injected class name of a C++ class template or class
5243/// template partial specialization. Used to record that a type was
5244/// spelled with a bare identifier rather than as a template-id; the
5245/// equivalent for non-templated classes is just RecordType.
5246///
5247/// Injected class name types are always dependent. Template
5248/// instantiation turns these into RecordTypes.
5249///
5250/// Injected class name types are always canonical. This works
5251/// because it is impossible to compare an injected class name type
5252/// with the corresponding non-injected template type, for the same
5253/// reason that it is impossible to directly compare template
5254/// parameters from different dependent contexts: injected class name
5255/// types can only occur within the scope of a particular templated
5256/// declaration, and within that scope every template specialization
5257/// will canonicalize to the injected class name (when appropriate
5258/// according to the rules of the language).
5259class InjectedClassNameType : public Type {
5260 friend class ASTContext; // ASTContext creates these.
5261 friend class ASTNodeImporter;
5262 friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
5263 // currently suitable for AST reading, too much
5264 // interdependencies.
5265 template <class T> friend class serialization::AbstractTypeReader;
5266
5267 CXXRecordDecl *Decl;
5268
5269 /// The template specialization which this type represents.
5270 /// For example, in
5271 /// template <class T> class A { ... };
5272 /// this is A<T>, whereas in
5273 /// template <class X, class Y> class A<B<X,Y> > { ... };
5274 /// this is A<B<X,Y> >.
5275 ///
5276 /// It is always unqualified, always a template specialization type,
5277 /// and always dependent.
5278 QualType InjectedType;
5279
5280 InjectedClassNameType(CXXRecordDecl *D, QualType TST)
5281 : Type(InjectedClassName, QualType(),
5282 TypeDependence::DependentInstantiation),
5283 Decl(D), InjectedType(TST) {
5284 assert(isa<TemplateSpecializationType>(TST))(static_cast <bool> (isa<TemplateSpecializationType>
(TST)) ? void (0) : __assert_fail ("isa<TemplateSpecializationType>(TST)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 5284, __extension__ __PRETTY_FUNCTION__))
;
5285 assert(!TST.hasQualifiers())(static_cast <bool> (!TST.hasQualifiers()) ? void (0) :
__assert_fail ("!TST.hasQualifiers()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 5285, __extension__ __PRETTY_FUNCTION__))
;
5286 assert(TST->isDependentType())(static_cast <bool> (TST->isDependentType()) ? void (
0) : __assert_fail ("TST->isDependentType()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 5286, __extension__ __PRETTY_FUNCTION__))
;
5287 }
5288
5289public:
5290 QualType getInjectedSpecializationType() const { return InjectedType; }
5291
5292 const TemplateSpecializationType *getInjectedTST() const {
5293 return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
5294 }
5295
5296 TemplateName getTemplateName() const {
5297 return getInjectedTST()->getTemplateName();
5298 }
5299
5300 CXXRecordDecl *getDecl() const;
5301
5302 bool isSugared() const { return false; }
5303 QualType desugar() const { return QualType(this, 0); }
5304
5305 static bool classof(const Type *T) {
5306 return T->getTypeClass() == InjectedClassName;
5307 }
5308};
5309
5310/// The kind of a tag type.
5311enum TagTypeKind {
5312 /// The "struct" keyword.
5313 TTK_Struct,
5314
5315 /// The "__interface" keyword.
5316 TTK_Interface,
5317
5318 /// The "union" keyword.
5319 TTK_Union,
5320
5321 /// The "class" keyword.
5322 TTK_Class,
5323
5324 /// The "enum" keyword.
5325 TTK_Enum
5326};
5327
5328/// The elaboration keyword that precedes a qualified type name or
5329/// introduces an elaborated-type-specifier.
5330enum ElaboratedTypeKeyword {
5331 /// The "struct" keyword introduces the elaborated-type-specifier.
5332 ETK_Struct,
5333
5334 /// The "__interface" keyword introduces the elaborated-type-specifier.
5335 ETK_Interface,
5336
5337 /// The "union" keyword introduces the elaborated-type-specifier.
5338 ETK_Union,
5339
5340 /// The "class" keyword introduces the elaborated-type-specifier.
5341 ETK_Class,
5342
5343 /// The "enum" keyword introduces the elaborated-type-specifier.
5344 ETK_Enum,
5345
5346 /// The "typename" keyword precedes the qualified type name, e.g.,
5347 /// \c typename T::type.
5348 ETK_Typename,
5349
5350 /// No keyword precedes the qualified type name.
5351 ETK_None
5352};
5353
5354/// A helper class for Type nodes having an ElaboratedTypeKeyword.
5355/// The keyword in stored in the free bits of the base class.
5356/// Also provides a few static helpers for converting and printing
5357/// elaborated type keyword and tag type kind enumerations.
5358class TypeWithKeyword : public Type {
5359protected:
5360 TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
5361 QualType Canonical, TypeDependence Dependence)
5362 : Type(tc, Canonical, Dependence) {
5363 TypeWithKeywordBits.Keyword = Keyword;
5364 }
5365
5366public:
5367 ElaboratedTypeKeyword getKeyword() const {
5368 return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
5369 }
5370
5371 /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
5372 static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
5373
5374 /// Converts a type specifier (DeclSpec::TST) into a tag type kind.
5375 /// It is an error to provide a type specifier which *isn't* a tag kind here.
5376 static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
5377
5378 /// Converts a TagTypeKind into an elaborated type keyword.
5379 static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
5380
5381 /// Converts an elaborated type keyword into a TagTypeKind.
5382 /// It is an error to provide an elaborated type keyword
5383 /// which *isn't* a tag kind here.
5384 static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
5385
5386 static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
5387
5388 static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
5389
5390 static StringRef getTagTypeKindName(TagTypeKind Kind) {
5391 return getKeywordName(getKeywordForTagTypeKind(Kind));
5392 }
5393
5394 class CannotCastToThisType {};
5395 static CannotCastToThisType classof(const Type *);
5396};
5397
5398/// Represents a type that was referred to using an elaborated type
5399/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
5400/// or both.
5401///
5402/// This type is used to keep track of a type name as written in the
5403/// source code, including tag keywords and any nested-name-specifiers.
5404/// The type itself is always "sugar", used to express what was written
5405/// in the source code but containing no additional semantic information.
5406class ElaboratedType final
5407 : public TypeWithKeyword,
5408 public llvm::FoldingSetNode,
5409 private llvm::TrailingObjects<ElaboratedType, TagDecl *> {
5410 friend class ASTContext; // ASTContext creates these
5411 friend TrailingObjects;
5412
5413 /// The nested name specifier containing the qualifier.
5414 NestedNameSpecifier *NNS;
5415
5416 /// The type that this qualified name refers to.
5417 QualType NamedType;
5418
5419 /// The (re)declaration of this tag type owned by this occurrence is stored
5420 /// as a trailing object if there is one. Use getOwnedTagDecl to obtain
5421 /// it, or obtain a null pointer if there is none.
5422
5423 ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5424 QualType NamedType, QualType CanonType, TagDecl *OwnedTagDecl)
5425 : TypeWithKeyword(Keyword, Elaborated, CanonType,
5426 // Any semantic dependence on the qualifier will have
5427 // been incorporated into NamedType. We still need to
5428 // track syntactic (instantiation / error / pack)
5429 // dependence on the qualifier.
5430 NamedType->getDependence() |
5431 (NNS ? toSyntacticDependence(
5432 toTypeDependence(NNS->getDependence()))
5433 : TypeDependence::None)),
5434 NNS(NNS), NamedType(NamedType) {
5435 ElaboratedTypeBits.HasOwnedTagDecl = false;
5436 if (OwnedTagDecl) {
5437 ElaboratedTypeBits.HasOwnedTagDecl = true;
5438 *getTrailingObjects<TagDecl *>() = OwnedTagDecl;
5439 }
5440 assert(!(Keyword == ETK_None && NNS == nullptr) &&(static_cast <bool> (!(Keyword == ETK_None && NNS
== nullptr) && "ElaboratedType cannot have elaborated type keyword "
"and name qualifier both null.") ? void (0) : __assert_fail (
"!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 5442, __extension__ __PRETTY_FUNCTION__))
5441 "ElaboratedType cannot have elaborated type keyword "(static_cast <bool> (!(Keyword == ETK_None && NNS
== nullptr) && "ElaboratedType cannot have elaborated type keyword "
"and name qualifier both null.") ? void (0) : __assert_fail (
"!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 5442, __extension__ __PRETTY_FUNCTION__))
5442 "and name qualifier both null.")(static_cast <bool> (!(Keyword == ETK_None && NNS
== nullptr) && "ElaboratedType cannot have elaborated type keyword "
"and name qualifier both null.") ? void (0) : __assert_fail (
"!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 5442, __extension__ __PRETTY_FUNCTION__))
;
5443 }
5444
5445public:
5446 /// Retrieve the qualification on this type.
5447 NestedNameSpecifier *getQualifier() const { return NNS; }
5448
5449 /// Retrieve the type named by the qualified-id.
5450 QualType getNamedType() const { return NamedType; }
5451
5452 /// Remove a single level of sugar.
5453 QualType desugar() const { return getNamedType(); }
5454
5455 /// Returns whether this type directly provides sugar.
5456 bool isSugared() const { return true; }
5457
5458 /// Return the (re)declaration of this type owned by this occurrence of this
5459 /// type, or nullptr if there is none.
5460 TagDecl *getOwnedTagDecl() const {
5461 return ElaboratedTypeBits.HasOwnedTagDecl ? *getTrailingObjects<TagDecl *>()
5462 : nullptr;
5463 }
5464
5465 void Profile(llvm::FoldingSetNodeID &ID) {
5466 Profile(ID, getKeyword(), NNS, NamedType, getOwnedTagDecl());
5467 }
5468
5469 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5470 NestedNameSpecifier *NNS, QualType NamedType,
5471 TagDecl *OwnedTagDecl) {
5472 ID.AddInteger(Keyword);
5473 ID.AddPointer(NNS);
5474 NamedType.Profile(ID);
5475 ID.AddPointer(OwnedTagDecl);
5476 }
5477
5478 static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
5479};
5480
5481/// Represents a qualified type name for which the type name is
5482/// dependent.
5483///
5484/// DependentNameType represents a class of dependent types that involve a
5485/// possibly dependent nested-name-specifier (e.g., "T::") followed by a
5486/// name of a type. The DependentNameType may start with a "typename" (for a
5487/// typename-specifier), "class", "struct", "union", or "enum" (for a
5488/// dependent elaborated-type-specifier), or nothing (in contexts where we
5489/// know that we must be referring to a type, e.g., in a base class specifier).
5490/// Typically the nested-name-specifier is dependent, but in MSVC compatibility
5491/// mode, this type is used with non-dependent names to delay name lookup until
5492/// instantiation.
5493class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
5494 friend class ASTContext; // ASTContext creates these
5495
5496 /// The nested name specifier containing the qualifier.
5497 NestedNameSpecifier *NNS;
5498
5499 /// The type that this typename specifier refers to.
5500 const IdentifierInfo *Name;
5501
5502 DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5503 const IdentifierInfo *Name, QualType CanonType)
5504 : TypeWithKeyword(Keyword, DependentName, CanonType,
5505 TypeDependence::DependentInstantiation |
5506 toTypeDependence(NNS->getDependence())),
5507 NNS(NNS), Name(Name) {}
5508
5509public:
5510 /// Retrieve the qualification on this type.
5511 NestedNameSpecifier *getQualifier() const { return NNS; }
5512
5513 /// Retrieve the type named by the typename specifier as an identifier.
5514 ///
5515 /// This routine will return a non-NULL identifier pointer when the
5516 /// form of the original typename was terminated by an identifier,
5517 /// e.g., "typename T::type".
5518 const IdentifierInfo *getIdentifier() const {
5519 return Name;
5520 }
5521
5522 bool isSugared() const { return false; }
5523 QualType desugar() const { return QualType(this, 0); }
5524
5525 void Profile(llvm::FoldingSetNodeID &ID) {
5526 Profile(ID, getKeyword(), NNS, Name);
5527 }
5528
5529 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5530 NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
5531 ID.AddInteger(Keyword);
5532 ID.AddPointer(NNS);
5533 ID.AddPointer(Name);
5534 }
5535
5536 static bool classof(const Type *T) {
5537 return T->getTypeClass() == DependentName;
5538 }
5539};
5540
5541/// Represents a template specialization type whose template cannot be
5542/// resolved, e.g.
5543/// A<T>::template B<T>
5544class alignas(8) DependentTemplateSpecializationType
5545 : public TypeWithKeyword,
5546 public llvm::FoldingSetNode {
5547 friend class ASTContext; // ASTContext creates these
5548
5549 /// The nested name specifier containing the qualifier.
5550 NestedNameSpecifier *NNS;
5551
5552 /// The identifier of the template.
5553 const IdentifierInfo *Name;
5554
5555 DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
5556 NestedNameSpecifier *NNS,
5557 const IdentifierInfo *Name,
5558 ArrayRef<TemplateArgument> Args,
5559 QualType Canon);
5560
5561 const TemplateArgument *getArgBuffer() const {
5562 return reinterpret_cast<const TemplateArgument*>(this+1);
5563 }
5564
5565 TemplateArgument *getArgBuffer() {
5566 return reinterpret_cast<TemplateArgument*>(this+1);
5567 }
5568
5569public:
5570 NestedNameSpecifier *getQualifier() const { return NNS; }
5571 const IdentifierInfo *getIdentifier() const { return Name; }
5572
5573 /// Retrieve the template arguments.
5574 const TemplateArgument *getArgs() const {
5575 return getArgBuffer();
5576 }
5577
5578 /// Retrieve the number of template arguments.
5579 unsigned getNumArgs() const {
5580 return DependentTemplateSpecializationTypeBits.NumArgs;
5581 }
5582
5583 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5584
5585 ArrayRef<TemplateArgument> template_arguments() const {
5586 return {getArgs(), getNumArgs()};
5587 }
5588
5589 using iterator = const TemplateArgument *;
5590
5591 iterator begin() const { return getArgs(); }
5592 iterator end() const; // inline in TemplateBase.h
5593
5594 bool isSugared() const { return false; }
5595 QualType desugar() const { return QualType(this, 0); }
5596
5597 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5598 Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), getNumArgs()});
5599 }
5600
5601 static void Profile(llvm::FoldingSetNodeID &ID,
5602 const ASTContext &Context,
5603 ElaboratedTypeKeyword Keyword,
5604 NestedNameSpecifier *Qualifier,
5605 const IdentifierInfo *Name,
5606 ArrayRef<TemplateArgument> Args);
5607
5608 static bool classof(const Type *T) {
5609 return T->getTypeClass() == DependentTemplateSpecialization;
5610 }
5611};
5612
5613/// Represents a pack expansion of types.
5614///
5615/// Pack expansions are part of C++11 variadic templates. A pack
5616/// expansion contains a pattern, which itself contains one or more
5617/// "unexpanded" parameter packs. When instantiated, a pack expansion
5618/// produces a series of types, each instantiated from the pattern of
5619/// the expansion, where the Ith instantiation of the pattern uses the
5620/// Ith arguments bound to each of the unexpanded parameter packs. The
5621/// pack expansion is considered to "expand" these unexpanded
5622/// parameter packs.
5623///
5624/// \code
5625/// template<typename ...Types> struct tuple;
5626///
5627/// template<typename ...Types>
5628/// struct tuple_of_references {
5629/// typedef tuple<Types&...> type;
5630/// };
5631/// \endcode
5632///
5633/// Here, the pack expansion \c Types&... is represented via a
5634/// PackExpansionType whose pattern is Types&.
5635class PackExpansionType : public Type, public llvm::FoldingSetNode {
5636 friend class ASTContext; // ASTContext creates these
5637
5638 /// The pattern of the pack expansion.
5639 QualType Pattern;
5640
5641 PackExpansionType(QualType Pattern, QualType Canon,
5642 Optional<unsigned> NumExpansions)
5643 : Type(PackExpansion, Canon,
5644 (Pattern->getDependence() | TypeDependence::Dependent |
5645 TypeDependence::Instantiation) &
5646 ~TypeDependence::UnexpandedPack),
5647 Pattern(Pattern) {
5648 PackExpansionTypeBits.NumExpansions =
5649 NumExpansions ? *NumExpansions + 1 : 0;
5650 }
5651
5652public:
5653 /// Retrieve the pattern of this pack expansion, which is the
5654 /// type that will be repeatedly instantiated when instantiating the
5655 /// pack expansion itself.
5656 QualType getPattern() const { return Pattern; }
5657
5658 /// Retrieve the number of expansions that this pack expansion will
5659 /// generate, if known.
5660 Optional<unsigned> getNumExpansions() const {
5661 if (PackExpansionTypeBits.NumExpansions)
5662 return PackExpansionTypeBits.NumExpansions - 1;
5663 return None;
5664 }
5665
5666 bool isSugared() const { return false; }
5667 QualType desugar() const { return QualType(this, 0); }
5668
5669 void Profile(llvm::FoldingSetNodeID &ID) {
5670 Profile(ID, getPattern(), getNumExpansions());
5671 }
5672
5673 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
5674 Optional<unsigned> NumExpansions) {
5675 ID.AddPointer(Pattern.getAsOpaquePtr());
5676 ID.AddBoolean(NumExpansions.hasValue());
5677 if (NumExpansions)
5678 ID.AddInteger(*NumExpansions);
5679 }
5680
5681 static bool classof(const Type *T) {
5682 return T->getTypeClass() == PackExpansion;
5683 }
5684};
5685
5686/// This class wraps the list of protocol qualifiers. For types that can
5687/// take ObjC protocol qualifers, they can subclass this class.
5688template <class T>
5689class ObjCProtocolQualifiers {
5690protected:
5691 ObjCProtocolQualifiers() = default;
5692
5693 ObjCProtocolDecl * const *getProtocolStorage() const {
5694 return const_cast<ObjCProtocolQualifiers*>(this)->getProtocolStorage();
5695 }
5696
5697 ObjCProtocolDecl **getProtocolStorage() {
5698 return static_cast<T*>(this)->getProtocolStorageImpl();
5699 }
5700
5701 void setNumProtocols(unsigned N) {
5702 static_cast<T*>(this)->setNumProtocolsImpl(N);
5703 }
5704
5705 void initialize(ArrayRef<ObjCProtocolDecl *> protocols) {
5706 setNumProtocols(protocols.size());
5707 assert(getNumProtocols() == protocols.size() &&(static_cast <bool> (getNumProtocols() == protocols.size
() && "bitfield overflow in protocol count") ? void (
0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 5708, __extension__ __PRETTY_FUNCTION__))
5708 "bitfield overflow in protocol count")(static_cast <bool> (getNumProtocols() == protocols.size
() && "bitfield overflow in protocol count") ? void (
0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 5708, __extension__ __PRETTY_FUNCTION__))
;
5709 if (!protocols.empty())
5710 memcpy(getProtocolStorage(), protocols.data(),
5711 protocols.size() * sizeof(ObjCProtocolDecl*));
5712 }
5713
5714public:
5715 using qual_iterator = ObjCProtocolDecl * const *;
5716 using qual_range = llvm::iterator_range<qual_iterator>;
5717
5718 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
5719 qual_iterator qual_begin() const { return getProtocolStorage(); }
5720 qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
5721
5722 bool qual_empty() const { return getNumProtocols() == 0; }
5723
5724 /// Return the number of qualifying protocols in this type, or 0 if
5725 /// there are none.
5726 unsigned getNumProtocols() const {
5727 return static_cast<const T*>(this)->getNumProtocolsImpl();
5728 }
5729
5730 /// Fetch a protocol by index.
5731 ObjCProtocolDecl *getProtocol(unsigned I) const {
5732 assert(I < getNumProtocols() && "Out-of-range protocol access")(static_cast <bool> (I < getNumProtocols() &&
"Out-of-range protocol access") ? void (0) : __assert_fail (
"I < getNumProtocols() && \"Out-of-range protocol access\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 5732, __extension__ __PRETTY_FUNCTION__))
;
5733 return qual_begin()[I];
5734 }
5735
5736 /// Retrieve all of the protocol qualifiers.
5737 ArrayRef<ObjCProtocolDecl *> getProtocols() const {
5738 return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
5739 }
5740};
5741
5742/// Represents a type parameter type in Objective C. It can take
5743/// a list of protocols.
5744class ObjCTypeParamType : public Type,
5745 public ObjCProtocolQualifiers<ObjCTypeParamType>,
5746 public llvm::FoldingSetNode {
5747 friend class ASTContext;
5748 friend class ObjCProtocolQualifiers<ObjCTypeParamType>;
5749
5750 /// The number of protocols stored on this type.
5751 unsigned NumProtocols : 6;
5752
5753 ObjCTypeParamDecl *OTPDecl;
5754
5755 /// The protocols are stored after the ObjCTypeParamType node. In the
5756 /// canonical type, the list of protocols are sorted alphabetically
5757 /// and uniqued.
5758 ObjCProtocolDecl **getProtocolStorageImpl();
5759
5760 /// Return the number of qualifying protocols in this interface type,
5761 /// or 0 if there are none.
5762 unsigned getNumProtocolsImpl() const {
5763 return NumProtocols;
5764 }
5765
5766 void setNumProtocolsImpl(unsigned N) {
5767 NumProtocols = N;
5768 }
5769
5770 ObjCTypeParamType(const ObjCTypeParamDecl *D,
5771 QualType can,
5772 ArrayRef<ObjCProtocolDecl *> protocols);
5773
5774public:
5775 bool isSugared() const { return true; }
5776 QualType desugar() const { return getCanonicalTypeInternal(); }
5777
5778 static bool classof(const Type *T) {
5779 return T->getTypeClass() == ObjCTypeParam;
5780 }
5781
5782 void Profile(llvm::FoldingSetNodeID &ID);
5783 static void Profile(llvm::FoldingSetNodeID &ID,
5784 const ObjCTypeParamDecl *OTPDecl,
5785 QualType CanonicalType,
5786 ArrayRef<ObjCProtocolDecl *> protocols);
5787
5788 ObjCTypeParamDecl *getDecl() const { return OTPDecl; }
5789};
5790
5791/// Represents a class type in Objective C.
5792///
5793/// Every Objective C type is a combination of a base type, a set of
5794/// type arguments (optional, for parameterized classes) and a list of
5795/// protocols.
5796///
5797/// Given the following declarations:
5798/// \code
5799/// \@class C<T>;
5800/// \@protocol P;
5801/// \endcode
5802///
5803/// 'C' is an ObjCInterfaceType C. It is sugar for an ObjCObjectType
5804/// with base C and no protocols.
5805///
5806/// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
5807/// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
5808/// protocol list.
5809/// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
5810/// and protocol list [P].
5811///
5812/// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
5813/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
5814/// and no protocols.
5815///
5816/// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
5817/// with base BuiltinType::ObjCIdType and protocol list [P]. Eventually
5818/// this should get its own sugar class to better represent the source.
5819class ObjCObjectType : public Type,
5820 public ObjCProtocolQualifiers<ObjCObjectType> {
5821 friend class ObjCProtocolQualifiers<ObjCObjectType>;
5822
5823 // ObjCObjectType.NumTypeArgs - the number of type arguments stored
5824 // after the ObjCObjectPointerType node.
5825 // ObjCObjectType.NumProtocols - the number of protocols stored
5826 // after the type arguments of ObjCObjectPointerType node.
5827 //
5828 // These protocols are those written directly on the type. If
5829 // protocol qualifiers ever become additive, the iterators will need
5830 // to get kindof complicated.
5831 //
5832 // In the canonical object type, these are sorted alphabetically
5833 // and uniqued.
5834
5835 /// Either a BuiltinType or an InterfaceType or sugar for either.
5836 QualType BaseType;
5837
5838 /// Cached superclass type.
5839 mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
5840 CachedSuperClassType;
5841
5842 QualType *getTypeArgStorage();
5843 const QualType *getTypeArgStorage() const {
5844 return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
5845 }
5846
5847 ObjCProtocolDecl **getProtocolStorageImpl();
5848 /// Return the number of qualifying protocols in this interface type,
5849 /// or 0 if there are none.
5850 unsigned getNumProtocolsImpl() const {
5851 return ObjCObjectTypeBits.NumProtocols;
5852 }
5853 void setNumProtocolsImpl(unsigned N) {
5854 ObjCObjectTypeBits.NumProtocols = N;
5855 }
5856
5857protected:
5858 enum Nonce_ObjCInterface { Nonce_ObjCInterface };
5859
5860 ObjCObjectType(QualType Canonical, QualType Base,
5861 ArrayRef<QualType> typeArgs,
5862 ArrayRef<ObjCProtocolDecl *> protocols,
5863 bool isKindOf);
5864
5865 ObjCObjectType(enum Nonce_ObjCInterface)
5866 : Type(ObjCInterface, QualType(), TypeDependence::None),
5867 BaseType(QualType(this_(), 0)) {
5868 ObjCObjectTypeBits.NumProtocols = 0;
5869 ObjCObjectTypeBits.NumTypeArgs = 0;
5870 ObjCObjectTypeBits.IsKindOf = 0;
5871 }
5872
5873 void computeSuperClassTypeSlow() const;
5874
5875public:
5876 /// Gets the base type of this object type. This is always (possibly
5877 /// sugar for) one of:
5878 /// - the 'id' builtin type (as opposed to the 'id' type visible to the
5879 /// user, which is a typedef for an ObjCObjectPointerType)
5880 /// - the 'Class' builtin type (same caveat)
5881 /// - an ObjCObjectType (currently always an ObjCInterfaceType)
5882 QualType getBaseType() const { return BaseType; }
5883
5884 bool isObjCId() const {
5885 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
5886 }
5887
5888 bool isObjCClass() const {
5889 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
5890 }
5891
5892 bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
5893 bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
5894 bool isObjCUnqualifiedIdOrClass() const {
5895 if (!qual_empty()) return false;
5896 if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
5897 return T->getKind() == BuiltinType::ObjCId ||
5898 T->getKind() == BuiltinType::ObjCClass;
5899 return false;
5900 }
5901 bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
5902 bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
5903
5904 /// Gets the interface declaration for this object type, if the base type
5905 /// really is an interface.
5906 ObjCInterfaceDecl *getInterface() const;
5907
5908 /// Determine whether this object type is "specialized", meaning
5909 /// that it has type arguments.
5910 bool isSpecialized() const;
5911
5912 /// Determine whether this object type was written with type arguments.
5913 bool isSpecializedAsWritten() const {
5914 return ObjCObjectTypeBits.NumTypeArgs > 0;
5915 }
5916
5917 /// Determine whether this object type is "unspecialized", meaning
5918 /// that it has no type arguments.
5919 bool isUnspecialized() const { return !isSpecialized(); }
5920
5921 /// Determine whether this object type is "unspecialized" as
5922 /// written, meaning that it has no type arguments.
5923 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
5924
5925 /// Retrieve the type arguments of this object type (semantically).
5926 ArrayRef<QualType> getTypeArgs() const;
5927
5928 /// Retrieve the type arguments of this object type as they were
5929 /// written.
5930 ArrayRef<QualType> getTypeArgsAsWritten() const {
5931 return llvm::makeArrayRef(getTypeArgStorage(),
5932 ObjCObjectTypeBits.NumTypeArgs);
5933 }
5934
5935 /// Whether this is a "__kindof" type as written.
5936 bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }
5937
5938 /// Whether this ia a "__kindof" type (semantically).
5939 bool isKindOfType() const;
5940
5941 /// Retrieve the type of the superclass of this object type.
5942 ///
5943 /// This operation substitutes any type arguments into the
5944 /// superclass of the current class type, potentially producing a
5945 /// specialization of the superclass type. Produces a null type if
5946 /// there is no superclass.
5947 QualType getSuperClassType() const {
5948 if (!CachedSuperClassType.getInt())
5949 computeSuperClassTypeSlow();
5950
5951 assert(CachedSuperClassType.getInt() && "Superclass not set?")(static_cast <bool> (CachedSuperClassType.getInt() &&
"Superclass not set?") ? void (0) : __assert_fail ("CachedSuperClassType.getInt() && \"Superclass not set?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 5951, __extension__ __PRETTY_FUNCTION__))
;
5952 return QualType(CachedSuperClassType.getPointer(), 0);
5953 }
5954
5955 /// Strip off the Objective-C "kindof" type and (with it) any
5956 /// protocol qualifiers.
5957 QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;
5958
5959 bool isSugared() const { return false; }
5960 QualType desugar() const { return QualType(this, 0); }
5961
5962 static bool classof(const Type *T) {
5963 return T->getTypeClass() == ObjCObject ||
5964 T->getTypeClass() == ObjCInterface;
5965 }
5966};
5967
5968/// A class providing a concrete implementation
5969/// of ObjCObjectType, so as to not increase the footprint of
5970/// ObjCInterfaceType. Code outside of ASTContext and the core type
5971/// system should not reference this type.
5972class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
5973 friend class ASTContext;
5974
5975 // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
5976 // will need to be modified.
5977
5978 ObjCObjectTypeImpl(QualType Canonical, QualType Base,
5979 ArrayRef<QualType> typeArgs,
5980 ArrayRef<ObjCProtocolDecl *> protocols,
5981 bool isKindOf)
5982 : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}
5983
5984public:
5985 void Profile(llvm::FoldingSetNodeID &ID);
5986 static void Profile(llvm::FoldingSetNodeID &ID,
5987 QualType Base,
5988 ArrayRef<QualType> typeArgs,
5989 ArrayRef<ObjCProtocolDecl *> protocols,
5990 bool isKindOf);
5991};
5992
5993inline QualType *ObjCObjectType::getTypeArgStorage() {
5994 return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
5995}
5996
5997inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() {
5998 return reinterpret_cast<ObjCProtocolDecl**>(
5999 getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
6000}
6001
6002inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() {
6003 return reinterpret_cast<ObjCProtocolDecl**>(
6004 static_cast<ObjCTypeParamType*>(this)+1);
6005}
6006
6007/// Interfaces are the core concept in Objective-C for object oriented design.
6008/// They basically correspond to C++ classes. There are two kinds of interface
6009/// types: normal interfaces like `NSString`, and qualified interfaces, which
6010/// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`.
6011///
6012/// ObjCInterfaceType guarantees the following properties when considered
6013/// as a subtype of its superclass, ObjCObjectType:
6014/// - There are no protocol qualifiers. To reinforce this, code which
6015/// tries to invoke the protocol methods via an ObjCInterfaceType will
6016/// fail to compile.
6017/// - It is its own base type. That is, if T is an ObjCInterfaceType*,
6018/// T->getBaseType() == QualType(T, 0).
6019class ObjCInterfaceType : public ObjCObjectType {
6020 friend class ASTContext; // ASTContext creates these.
6021 friend class ASTReader;
6022 friend class ObjCInterfaceDecl;
6023 template <class T> friend class serialization::AbstractTypeReader;
6024
6025 mutable ObjCInterfaceDecl *Decl;
6026
6027 ObjCInterfaceType(const ObjCInterfaceDecl *D)
6028 : ObjCObjectType(Nonce_ObjCInterface),
6029 Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
6030
6031public:
6032 /// Get the declaration of this interface.
6033 ObjCInterfaceDecl *getDecl() const { return Decl; }
6034
6035 bool isSugared() const { return false; }
6036 QualType desugar() const { return QualType(this, 0); }
6037
6038 static bool classof(const Type *T) {
6039 return T->getTypeClass() == ObjCInterface;
6040 }
6041
6042 // Nonsense to "hide" certain members of ObjCObjectType within this
6043 // class. People asking for protocols on an ObjCInterfaceType are
6044 // not going to get what they want: ObjCInterfaceTypes are
6045 // guaranteed to have no protocols.
6046 enum {
6047 qual_iterator,
6048 qual_begin,
6049 qual_end,
6050 getNumProtocols,
6051 getProtocol
6052 };
6053};
6054
6055inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
6056 QualType baseType = getBaseType();
6057 while (const auto *ObjT = baseType->getAs<ObjCObjectType>()) {
6058 if (const auto *T = dyn_cast<ObjCInterfaceType>(ObjT))
6059 return T->getDecl();
6060
6061 baseType = ObjT->getBaseType();
6062 }
6063
6064 return nullptr;
6065}
6066
6067/// Represents a pointer to an Objective C object.
6068///
6069/// These are constructed from pointer declarators when the pointee type is
6070/// an ObjCObjectType (or sugar for one). In addition, the 'id' and 'Class'
6071/// types are typedefs for these, and the protocol-qualified types 'id<P>'
6072/// and 'Class<P>' are translated into these.
6073///
6074/// Pointers to pointers to Objective C objects are still PointerTypes;
6075/// only the first level of pointer gets it own type implementation.
6076class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
6077 friend class ASTContext; // ASTContext creates these.
6078
6079 QualType PointeeType;
6080
6081 ObjCObjectPointerType(QualType Canonical, QualType Pointee)
6082 : Type(ObjCObjectPointer, Canonical, Pointee->getDependence()),
6083 PointeeType(Pointee) {}
6084
6085public:
6086 /// Gets the type pointed to by this ObjC pointer.
6087 /// The result will always be an ObjCObjectType or sugar thereof.
6088 QualType getPointeeType() const { return PointeeType; }
6089
6090 /// Gets the type pointed to by this ObjC pointer. Always returns non-null.
6091 ///
6092 /// This method is equivalent to getPointeeType() except that
6093 /// it discards any typedefs (or other sugar) between this
6094 /// type and the "outermost" object type. So for:
6095 /// \code
6096 /// \@class A; \@protocol P; \@protocol Q;
6097 /// typedef A<P> AP;
6098 /// typedef A A1;
6099 /// typedef A1<P> A1P;
6100 /// typedef A1P<Q> A1PQ;
6101 /// \endcode
6102 /// For 'A*', getObjectType() will return 'A'.
6103 /// For 'A<P>*', getObjectType() will return 'A<P>'.
6104 /// For 'AP*', getObjectType() will return 'A<P>'.
6105 /// For 'A1*', getObjectType() will return 'A'.
6106 /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
6107 /// For 'A1P*', getObjectType() will return 'A1<P>'.
6108 /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
6109 /// adding protocols to a protocol-qualified base discards the
6110 /// old qualifiers (for now). But if it didn't, getObjectType()
6111 /// would return 'A1P<Q>' (and we'd have to make iterating over
6112 /// qualifiers more complicated).
6113 const ObjCObjectType *getObjectType() const {
6114 return PointeeType->castAs<ObjCObjectType>();
6115 }
6116
6117 /// If this pointer points to an Objective C
6118 /// \@interface type, gets the type for that interface. Any protocol
6119 /// qualifiers on the interface are ignored.
6120 ///
6121 /// \return null if the base type for this pointer is 'id' or 'Class'
6122 const ObjCInterfaceType *getInterfaceType() const;
6123
6124 /// If this pointer points to an Objective \@interface
6125 /// type, gets the declaration for that interface.
6126 ///
6127 /// \return null if the base type for this pointer is 'id' or 'Class'
6128 ObjCInterfaceDecl *getInterfaceDecl() const {
6129 return getObjectType()->getInterface();
6130 }
6131
6132 /// True if this is equivalent to the 'id' type, i.e. if
6133 /// its object type is the primitive 'id' type with no protocols.
6134 bool isObjCIdType() const {
6135 return getObjectType()->isObjCUnqualifiedId();
6136 }
6137
6138 /// True if this is equivalent to the 'Class' type,
6139 /// i.e. if its object tive is the primitive 'Class' type with no protocols.
6140 bool isObjCClassType() const {
6141 return getObjectType()->isObjCUnqualifiedClass();
6142 }
6143
6144 /// True if this is equivalent to the 'id' or 'Class' type,
6145 bool isObjCIdOrClassType() const {
6146 return getObjectType()->isObjCUnqualifiedIdOrClass();
6147 }
6148
6149 /// True if this is equivalent to 'id<P>' for some non-empty set of
6150 /// protocols.
6151 bool isObjCQualifiedIdType() const {
6152 return getObjectType()->isObjCQualifiedId();
6153 }
6154
6155 /// True if this is equivalent to 'Class<P>' for some non-empty set of
6156 /// protocols.
6157 bool isObjCQualifiedClassType() const {
6158 return getObjectType()->isObjCQualifiedClass();
6159 }
6160
6161 /// Whether this is a "__kindof" type.
6162 bool isKindOfType() const { return getObjectType()->isKindOfType(); }
6163
6164 /// Whether this type is specialized, meaning that it has type arguments.
6165 bool isSpecialized() const { return getObjectType()->isSpecialized(); }
6166
6167 /// Whether this type is specialized, meaning that it has type arguments.
6168 bool isSpecializedAsWritten() const {
6169 return getObjectType()->isSpecializedAsWritten();
6170 }
6171
6172 /// Whether this type is unspecialized, meaning that is has no type arguments.
6173 bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }
6174
6175 /// Determine whether this object type is "unspecialized" as
6176 /// written, meaning that it has no type arguments.
6177 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
6178
6179 /// Retrieve the type arguments for this type.
6180 ArrayRef<QualType> getTypeArgs() const {
6181 return getObjectType()->getTypeArgs();
6182 }
6183
6184 /// Retrieve the type arguments for this type.
6185 ArrayRef<QualType> getTypeArgsAsWritten() const {
6186 return getObjectType()->getTypeArgsAsWritten();
6187 }
6188
6189 /// An iterator over the qualifiers on the object type. Provided
6190 /// for convenience. This will always iterate over the full set of
6191 /// protocols on a type, not just those provided directly.
6192 using qual_iterator = ObjCObjectType::qual_iterator;
6193 using qual_range = llvm::iterator_range<qual_iterator>;
6194
6195 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
6196
6197 qual_iterator qual_begin() const {
6198 return getObjectType()->qual_begin();
6199 }
6200
6201 qual_iterator qual_end() const {
6202 return getObjectType()->qual_end();
6203 }
6204
6205 bool qual_empty() const { return getObjectType()->qual_empty(); }
6206
6207 /// Return the number of qualifying protocols on the object type.
6208 unsigned getNumProtocols() const {
6209 return getObjectType()->getNumProtocols();
6210 }
6211
6212 /// Retrieve a qualifying protocol by index on the object type.
6213 ObjCProtocolDecl *getProtocol(unsigned I) const {
6214 return getObjectType()->getProtocol(I);
6215 }
6216
6217 bool isSugared() const { return false; }
6218 QualType desugar() const { return QualType(this, 0); }
6219
6220 /// Retrieve the type of the superclass of this object pointer type.
6221 ///
6222 /// This operation substitutes any type arguments into the
6223 /// superclass of the current class type, potentially producing a
6224 /// pointer to a specialization of the superclass type. Produces a
6225 /// null type if there is no superclass.
6226 QualType getSuperClassType() const;
6227
6228 /// Strip off the Objective-C "kindof" type and (with it) any
6229 /// protocol qualifiers.
6230 const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
6231 const ASTContext &ctx) const;
6232
6233 void Profile(llvm::FoldingSetNodeID &ID) {
6234 Profile(ID, getPointeeType());
6235 }
6236
6237 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6238 ID.AddPointer(T.getAsOpaquePtr());
6239 }
6240
6241 static bool classof(const Type *T) {
6242 return T->getTypeClass() == ObjCObjectPointer;
6243 }
6244};
6245
6246class AtomicType : public Type, public llvm::FoldingSetNode {
6247 friend class ASTContext; // ASTContext creates these.
6248
6249 QualType ValueType;
6250
6251 AtomicType(QualType ValTy, QualType Canonical)
6252 : Type(Atomic, Canonical, ValTy->getDependence()), ValueType(ValTy) {}
6253
6254public:
6255 /// Gets the type contained by this atomic type, i.e.
6256 /// the type returned by performing an atomic load of this atomic type.
6257 QualType getValueType() const { return ValueType; }
6258
6259 bool isSugared() const { return false; }
6260 QualType desugar() const { return QualType(this, 0); }
6261
6262 void Profile(llvm::FoldingSetNodeID &ID) {
6263 Profile(ID, getValueType());
6264 }
6265
6266 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6267 ID.AddPointer(T.getAsOpaquePtr());
6268 }
6269
6270 static bool classof(const Type *T) {
6271 return T->getTypeClass() == Atomic;
6272 }
6273};
6274
6275/// PipeType - OpenCL20.
6276class PipeType : public Type, public llvm::FoldingSetNode {
6277 friend class ASTContext; // ASTContext creates these.
6278
6279 QualType ElementType;
6280 bool isRead;
6281
6282 PipeType(QualType elemType, QualType CanonicalPtr, bool isRead)
6283 : Type(Pipe, CanonicalPtr, elemType->getDependence()),
6284 ElementType(elemType), isRead(isRead) {}
6285
6286public:
6287 QualType getElementType() const { return ElementType; }
6288
6289 bool isSugared() const { return false; }
6290
6291 QualType desugar() const { return QualType(this, 0); }
6292
6293 void Profile(llvm::FoldingSetNodeID &ID) {
6294 Profile(ID, getElementType(), isReadOnly());
6295 }
6296
6297 static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) {
6298 ID.AddPointer(T.getAsOpaquePtr());
6299 ID.AddBoolean(isRead);
6300 }
6301
6302 static bool classof(const Type *T) {
6303 return T->getTypeClass() == Pipe;
6304 }
6305
6306 bool isReadOnly() const { return isRead; }
6307};
6308
6309/// A fixed int type of a specified bitwidth.
6310class ExtIntType final : public Type, public llvm::FoldingSetNode {
6311 friend class ASTContext;
6312 unsigned IsUnsigned : 1;
6313 unsigned NumBits : 24;
6314
6315protected:
6316 ExtIntType(bool isUnsigned, unsigned NumBits);
6317
6318public:
6319 bool isUnsigned() const { return IsUnsigned; }
6320 bool isSigned() const { return !IsUnsigned; }
6321 unsigned getNumBits() const { return NumBits; }
6322
6323 bool isSugared() const { return false; }
6324 QualType desugar() const { return QualType(this, 0); }
6325
6326 void Profile(llvm::FoldingSetNodeID &ID) {
6327 Profile(ID, isUnsigned(), getNumBits());
6328 }
6329
6330 static void Profile(llvm::FoldingSetNodeID &ID, bool IsUnsigned,
6331 unsigned NumBits) {
6332 ID.AddBoolean(IsUnsigned);
6333 ID.AddInteger(NumBits);
6334 }
6335
6336 static bool classof(const Type *T) { return T->getTypeClass() == ExtInt; }
6337};
6338
6339class DependentExtIntType final : public Type, public llvm::FoldingSetNode {
6340 friend class ASTContext;
6341 const ASTContext &Context;
6342 llvm::PointerIntPair<Expr*, 1, bool> ExprAndUnsigned;
6343
6344protected:
6345 DependentExtIntType(const ASTContext &Context, bool IsUnsigned,
6346 Expr *NumBits);
6347
6348public:
6349 bool isUnsigned() const;
6350 bool isSigned() const { return !isUnsigned(); }
6351 Expr *getNumBitsExpr() const;
6352
6353 bool isSugared() const { return false; }
6354 QualType desugar() const { return QualType(this, 0); }
6355
6356 void Profile(llvm::FoldingSetNodeID &ID) {
6357 Profile(ID, Context, isUnsigned(), getNumBitsExpr());
6358 }
6359 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
6360 bool IsUnsigned, Expr *NumBitsExpr);
6361
6362 static bool classof(const Type *T) {
6363 return T->getTypeClass() == DependentExtInt;
6364 }
6365};
6366
6367/// A qualifier set is used to build a set of qualifiers.
6368class QualifierCollector : public Qualifiers {
6369public:
6370 QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
6371
6372 /// Collect any qualifiers on the given type and return an
6373 /// unqualified type. The qualifiers are assumed to be consistent
6374 /// with those already in the type.
6375 const Type *strip(QualType type) {
6376 addFastQualifiers(type.getLocalFastQualifiers());
6377 if (!type.hasLocalNonFastQualifiers())
6378 return type.getTypePtrUnsafe();
6379
6380 const ExtQuals *extQuals = type.getExtQualsUnsafe();
6381 addConsistentQualifiers(extQuals->getQualifiers());
6382 return extQuals->getBaseType();
6383 }
6384
6385 /// Apply the collected qualifiers to the given type.
6386 QualType apply(const ASTContext &Context, QualType QT) const;
6387
6388 /// Apply the collected qualifiers to the given type.
6389 QualType apply(const ASTContext &Context, const Type* T) const;
6390};
6391
6392/// A container of type source information.
6393///
6394/// A client can read the relevant info using TypeLoc wrappers, e.g:
6395/// @code
6396/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
6397/// TL.getBeginLoc().print(OS, SrcMgr);
6398/// @endcode
6399class alignas(8) TypeSourceInfo {
6400 // Contains a memory block after the class, used for type source information,
6401 // allocated by ASTContext.
6402 friend class ASTContext;
6403
6404 QualType Ty;
6405
6406 TypeSourceInfo(QualType ty) : Ty(ty) {}
6407
6408public:
6409 /// Return the type wrapped by this type source info.
6410 QualType getType() const { return Ty; }
6411
6412 /// Return the TypeLoc wrapper for the type source info.
6413 TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
6414
6415 /// Override the type stored in this TypeSourceInfo. Use with caution!
6416 void overrideType(QualType T) { Ty = T; }
6417};
6418
6419// Inline function definitions.
6420
6421inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
6422 SplitQualType desugar =
6423 Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
6424 desugar.Quals.addConsistentQualifiers(Quals);
6425 return desugar;
6426}
6427
6428inline const Type *QualType::getTypePtr() const {
6429 return getCommonPtr()->BaseType;
6430}
6431
6432inline const Type *QualType::getTypePtrOrNull() const {
6433 return (isNull() ? nullptr : getCommonPtr()->BaseType);
6434}
6435
6436inline SplitQualType QualType::split() const {
6437 if (!hasLocalNonFastQualifiers())
6438 return SplitQualType(getTypePtrUnsafe(),
6439 Qualifiers::fromFastMask(getLocalFastQualifiers()));
6440
6441 const ExtQuals *eq = getExtQualsUnsafe();
6442 Qualifiers qs = eq->getQualifiers();
6443 qs.addFastQualifiers(getLocalFastQualifiers());
6444 return SplitQualType(eq->getBaseType(), qs);
6445}
6446
6447inline Qualifiers QualType::getLocalQualifiers() const {
6448 Qualifiers Quals;
6449 if (hasLocalNonFastQualifiers())
6450 Quals = getExtQualsUnsafe()->getQualifiers();
6451 Quals.addFastQualifiers(getLocalFastQualifiers());
6452 return Quals;
6453}
6454
6455inline Qualifiers QualType::getQualifiers() const {
6456 Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
6457 quals.addFastQualifiers(getLocalFastQualifiers());
6458 return quals;
6459}
6460
6461inline unsigned QualType::getCVRQualifiers() const {
6462 unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
6463 cvr |= getLocalCVRQualifiers();
6464 return cvr;
6465}
6466
6467inline QualType QualType::getCanonicalType() const {
6468 QualType canon = getCommonPtr()->CanonicalType;
6469 return canon.withFastQualifiers(getLocalFastQualifiers());
6470}
6471
6472inline bool QualType::isCanonical() const {
6473 return getTypePtr()->isCanonicalUnqualified();
6474}
6475
6476inline bool QualType::isCanonicalAsParam() const {
6477 if (!isCanonical()) return false;
6478 if (hasLocalQualifiers()) return false;
6479
6480 const Type *T = getTypePtr();
6481 if (T->isVariablyModifiedType() && T->hasSizedVLAType())
6482 return false;
6483
6484 return !isa<FunctionType>(T) && !isa<ArrayType>(T);
6485}
6486
6487inline bool QualType::isConstQualified() const {
6488 return isLocalConstQualified() ||
6489 getCommonPtr()->CanonicalType.isLocalConstQualified();
6490}
6491
6492inline bool QualType::isRestrictQualified() const {
6493 return isLocalRestrictQualified() ||
6494 getCommonPtr()->CanonicalType.isLocalRestrictQualified();
6495}
6496
6497
6498inline bool QualType::isVolatileQualified() const {
6499 return isLocalVolatileQualified() ||
6500 getCommonPtr()->CanonicalType.isLocalVolatileQualified();
6501}
6502
6503inline bool QualType::hasQualifiers() const {
6504 return hasLocalQualifiers() ||
6505 getCommonPtr()->CanonicalType.hasLocalQualifiers();
6506}
6507
6508inline QualType QualType::getUnqualifiedType() const {
6509 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6510 return QualType(getTypePtr(), 0);
6511
6512 return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
6513}
6514
6515inline SplitQualType QualType::getSplitUnqualifiedType() const {
6516 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6517 return split();
6518
6519 return getSplitUnqualifiedTypeImpl(*this);
6520}
6521
6522inline void QualType::removeLocalConst() {
6523 removeLocalFastQualifiers(Qualifiers::Const);
6524}
6525
6526inline void QualType::removeLocalRestrict() {
6527 removeLocalFastQualifiers(Qualifiers::Restrict);
6528}
6529
6530inline void QualType::removeLocalVolatile() {
6531 removeLocalFastQualifiers(Qualifiers::Volatile);
6532}
6533
6534inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
6535 assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits")(static_cast <bool> (!(Mask & ~Qualifiers::CVRMask)
&& "mask has non-CVR bits") ? void (0) : __assert_fail
("!(Mask & ~Qualifiers::CVRMask) && \"mask has non-CVR bits\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 6535, __extension__ __PRETTY_FUNCTION__))
;
6536 static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask,
6537 "Fast bits differ from CVR bits!");
6538
6539 // Fast path: we don't need to touch the slow qualifiers.
6540 removeLocalFastQualifiers(Mask);
6541}
6542
6543/// Check if this type has any address space qualifier.
6544inline bool QualType::hasAddressSpace() const {
6545 return getQualifiers().hasAddressSpace();
6546}
6547
6548/// Return the address space of this type.
6549inline LangAS QualType::getAddressSpace() const {
6550 return getQualifiers().getAddressSpace();
6551}
6552
6553/// Return the gc attribute of this type.
6554inline Qualifiers::GC QualType::getObjCGCAttr() const {
6555 return getQualifiers().getObjCGCAttr();
6556}
6557
6558inline bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
6559 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6560 return hasNonTrivialToPrimitiveDefaultInitializeCUnion(RD);
6561 return false;
6562}
6563
6564inline bool QualType::hasNonTrivialToPrimitiveDestructCUnion() const {
6565 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6566 return hasNonTrivialToPrimitiveDestructCUnion(RD);
6567 return false;
6568}
6569
6570inline bool QualType::hasNonTrivialToPrimitiveCopyCUnion() const {
6571 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6572 return hasNonTrivialToPrimitiveCopyCUnion(RD);
6573 return false;
6574}
6575
6576inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
6577 if (const auto *PT = t.getAs<PointerType>()) {
6578 if (const auto *FT = PT->getPointeeType()->getAs<FunctionType>())
6579 return FT->getExtInfo();
6580 } else if (const auto *FT = t.getAs<FunctionType>())
6581 return FT->getExtInfo();
6582
6583 return FunctionType::ExtInfo();
6584}
6585
6586inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
6587 return getFunctionExtInfo(*t);
6588}
6589
6590/// Determine whether this type is more
6591/// qualified than the Other type. For example, "const volatile int"
6592/// is more qualified than "const int", "volatile int", and
6593/// "int". However, it is not more qualified than "const volatile
6594/// int".
6595inline bool QualType::isMoreQualifiedThan(QualType other) const {
6596 Qualifiers MyQuals = getQualifiers();
6597 Qualifiers OtherQuals = other.getQualifiers();
6598 return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals));
6599}
6600
6601/// Determine whether this type is at last
6602/// as qualified as the Other type. For example, "const volatile
6603/// int" is at least as qualified as "const int", "volatile int",
6604/// "int", and "const volatile int".
6605inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
6606 Qualifiers OtherQuals = other.getQualifiers();
6607
6608 // Ignore __unaligned qualifier if this type is a void.
6609 if (getUnqualifiedType()->isVoidType())
6610 OtherQuals.removeUnaligned();
6611
6612 return getQualifiers().compatiblyIncludes(OtherQuals);
6613}
6614
6615/// If Type is a reference type (e.g., const
6616/// int&), returns the type that the reference refers to ("const
6617/// int"). Otherwise, returns the type itself. This routine is used
6618/// throughout Sema to implement C++ 5p6:
6619///
6620/// If an expression initially has the type "reference to T" (8.3.2,
6621/// 8.5.3), the type is adjusted to "T" prior to any further
6622/// analysis, the expression designates the object or function
6623/// denoted by the reference, and the expression is an lvalue.
6624inline QualType QualType::getNonReferenceType() const {
6625 if (const auto *RefType = (*this)->getAs<ReferenceType>())
6626 return RefType->getPointeeType();
6627 else
6628 return *this;
6629}
6630
6631inline bool QualType::isCForbiddenLValueType() const {
6632 return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
6633 getTypePtr()->isFunctionType());
6634}
6635
6636/// Tests whether the type is categorized as a fundamental type.
6637///
6638/// \returns True for types specified in C++0x [basic.fundamental].
6639inline bool Type::isFundamentalType() const {
6640 return isVoidType() ||
6641 isNullPtrType() ||
6642 // FIXME: It's really annoying that we don't have an
6643 // 'isArithmeticType()' which agrees with the standard definition.
6644 (isArithmeticType() && !isEnumeralType());
6645}
6646
6647/// Tests whether the type is categorized as a compound type.
6648///
6649/// \returns True for types specified in C++0x [basic.compound].
6650inline bool Type::isCompoundType() const {
6651 // C++0x [basic.compound]p1:
6652 // Compound types can be constructed in the following ways:
6653 // -- arrays of objects of a given type [...];
6654 return isArrayType() ||
6655 // -- functions, which have parameters of given types [...];
6656 isFunctionType() ||
6657 // -- pointers to void or objects or functions [...];
6658 isPointerType() ||
6659 // -- references to objects or functions of a given type. [...]
6660 isReferenceType() ||
6661 // -- classes containing a sequence of objects of various types, [...];
6662 isRecordType() ||
6663 // -- unions, which are classes capable of containing objects of different
6664 // types at different times;
6665 isUnionType() ||
6666 // -- enumerations, which comprise a set of named constant values. [...];
6667 isEnumeralType() ||
6668 // -- pointers to non-static class members, [...].
6669 isMemberPointerType();
6670}
6671
6672inline bool Type::isFunctionType() const {
6673 return isa<FunctionType>(CanonicalType);
6674}
6675
6676inline bool Type::isPointerType() const {
6677 return isa<PointerType>(CanonicalType);
6678}
6679
6680inline bool Type::isAnyPointerType() const {
6681 return isPointerType() || isObjCObjectPointerType();
6682}
6683
6684inline bool Type::isBlockPointerType() const {
6685 return isa<BlockPointerType>(CanonicalType);
6686}
6687
6688inline bool Type::isReferenceType() const {
6689 return isa<ReferenceType>(CanonicalType);
6690}
6691
6692inline bool Type::isLValueReferenceType() const {
6693 return isa<LValueReferenceType>(CanonicalType);
6694}
6695
6696inline bool Type::isRValueReferenceType() const {
6697 return isa<RValueReferenceType>(CanonicalType);
6698}
6699
6700inline bool Type::isObjectPointerType() const {
6701 // Note: an "object pointer type" is not the same thing as a pointer to an
6702 // object type; rather, it is a pointer to an object type or a pointer to cv
6703 // void.
6704 if (const auto *T = getAs<PointerType>())
6705 return !T->getPointeeType()->isFunctionType();
6706 else
6707 return false;
6708}
6709
6710inline bool Type::isFunctionPointerType() const {
6711 if (const auto *T = getAs<PointerType>())
6712 return T->getPointeeType()->isFunctionType();
6713 else
6714 return false;
6715}
6716
6717inline bool Type::isFunctionReferenceType() const {
6718 if (const auto *T = getAs<ReferenceType>())
6719 return T->getPointeeType()->isFunctionType();
6720 else
6721 return false;
6722}
6723
6724inline bool Type::isMemberPointerType() const {
6725 return isa<MemberPointerType>(CanonicalType);
6726}
6727
6728inline bool Type::isMemberFunctionPointerType() const {
6729 if (const auto *T = getAs<MemberPointerType>())
6730 return T->isMemberFunctionPointer();
6731 else
6732 return false;
6733}
6734
6735inline bool Type::isMemberDataPointerType() const {
6736 if (const auto *T = getAs<MemberPointerType>())
6737 return T->isMemberDataPointer();
6738 else
6739 return false;
6740}
6741
6742inline bool Type::isArrayType() const {
6743 return isa<ArrayType>(CanonicalType);
6744}
6745
6746inline bool Type::isConstantArrayType() const {
6747 return isa<ConstantArrayType>(CanonicalType);
6748}
6749
6750inline bool Type::isIncompleteArrayType() const {
6751 return isa<IncompleteArrayType>(CanonicalType);
6752}
6753
6754inline bool Type::isVariableArrayType() const {
6755 return isa<VariableArrayType>(CanonicalType);
6756}
6757
6758inline bool Type::isDependentSizedArrayType() const {
6759 return isa<DependentSizedArrayType>(CanonicalType);
6760}
6761
6762inline bool Type::isBuiltinType() const {
6763 return isa<BuiltinType>(CanonicalType);
6764}
6765
6766inline bool Type::isRecordType() const {
6767 return isa<RecordType>(CanonicalType);
6768}
6769
6770inline bool Type::isEnumeralType() const {
6771 return isa<EnumType>(CanonicalType);
6772}
6773
6774inline bool Type::isAnyComplexType() const {
6775 return isa<ComplexType>(CanonicalType);
6776}
6777
6778inline bool Type::isVectorType() const {
6779 return isa<VectorType>(CanonicalType);
6780}
6781
6782inline bool Type::isExtVectorType() const {
6783 return isa<ExtVectorType>(CanonicalType);
6784}
6785
6786inline bool Type::isMatrixType() const {
6787 return isa<MatrixType>(CanonicalType);
6788}
6789
6790inline bool Type::isConstantMatrixType() const {
6791 return isa<ConstantMatrixType>(CanonicalType);
6792}
6793
6794inline bool Type::isDependentAddressSpaceType() const {
6795 return isa<DependentAddressSpaceType>(CanonicalType);
6796}
6797
6798inline bool Type::isObjCObjectPointerType() const {
6799 return isa<ObjCObjectPointerType>(CanonicalType);
6800}
6801
6802inline bool Type::isObjCObjectType() const {
6803 return isa<ObjCObjectType>(CanonicalType);
6804}
6805
6806inline bool Type::isObjCObjectOrInterfaceType() const {
6807 return isa<ObjCInterfaceType>(CanonicalType) ||
6808 isa<ObjCObjectType>(CanonicalType);
6809}
6810
6811inline bool Type::isAtomicType() const {
6812 return isa<AtomicType>(CanonicalType);
6813}
6814
6815inline bool Type::isUndeducedAutoType() const {
6816 return isa<AutoType>(CanonicalType);
6817}
6818
6819inline bool Type::isObjCQualifiedIdType() const {
6820 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6821 return OPT->isObjCQualifiedIdType();
6822 return false;
6823}
6824
6825inline bool Type::isObjCQualifiedClassType() const {
6826 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6827 return OPT->isObjCQualifiedClassType();
6828 return false;
6829}
6830
6831inline bool Type::isObjCIdType() const {
6832 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6833 return OPT->isObjCIdType();
6834 return false;
6835}
6836
6837inline bool Type::isObjCClassType() const {
6838 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6839 return OPT->isObjCClassType();
6840 return false;
6841}
6842
6843inline bool Type::isObjCSelType() const {
6844 if (const auto *OPT = getAs<PointerType>())
6845 return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
6846 return false;
6847}
6848
6849inline bool Type::isObjCBuiltinType() const {
6850 return isObjCIdType() || isObjCClassType() || isObjCSelType();
6851}
6852
6853inline bool Type::isDecltypeType() const {
6854 return isa<DecltypeType>(this);
6855}
6856
6857#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6858 inline bool Type::is##Id##Type() const { \
6859 return isSpecificBuiltinType(BuiltinType::Id); \
6860 }
6861#include "clang/Basic/OpenCLImageTypes.def"
6862
6863inline bool Type::isSamplerT() const {
6864 return isSpecificBuiltinType(BuiltinType::OCLSampler);
6865}
6866
6867inline bool Type::isEventT() const {
6868 return isSpecificBuiltinType(BuiltinType::OCLEvent);
6869}
6870
6871inline bool Type::isClkEventT() const {
6872 return isSpecificBuiltinType(BuiltinType::OCLClkEvent);
6873}
6874
6875inline bool Type::isQueueT() const {
6876 return isSpecificBuiltinType(BuiltinType::OCLQueue);
6877}
6878
6879inline bool Type::isReserveIDT() const {
6880 return isSpecificBuiltinType(BuiltinType::OCLReserveID);
6881}
6882
6883inline bool Type::isImageType() const {
6884#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() ||
6885 return
6886#include "clang/Basic/OpenCLImageTypes.def"
6887 false; // end boolean or operation
6888}
6889
6890inline bool Type::isPipeType() const {
6891 return isa<PipeType>(CanonicalType);
6892}
6893
6894inline bool Type::isExtIntType() const {
6895 return isa<ExtIntType>(CanonicalType);
6896}
6897
6898#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6899 inline bool Type::is##Id##Type() const { \
6900 return isSpecificBuiltinType(BuiltinType::Id); \
6901 }
6902#include "clang/Basic/OpenCLExtensionTypes.def"
6903
6904inline bool Type::isOCLIntelSubgroupAVCType() const {
6905#define INTEL_SUBGROUP_AVC_TYPE(ExtType, Id) \
6906 isOCLIntelSubgroupAVC##Id##Type() ||
6907 return
6908#include "clang/Basic/OpenCLExtensionTypes.def"
6909 false; // end of boolean or operation
6910}
6911
6912inline bool Type::isOCLExtOpaqueType() const {
6913#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) is##Id##Type() ||
6914 return
6915#include "clang/Basic/OpenCLExtensionTypes.def"
6916 false; // end of boolean or operation
6917}
6918
6919inline bool Type::isOpenCLSpecificType() const {
6920 return isSamplerT() || isEventT() || isImageType() || isClkEventT() ||
6921 isQueueT() || isReserveIDT() || isPipeType() || isOCLExtOpaqueType();
6922}
6923
6924inline bool Type::isTemplateTypeParmType() const {
6925 return isa<TemplateTypeParmType>(CanonicalType);
6926}
6927
6928inline bool Type::isSpecificBuiltinType(unsigned K) const {
6929 if (const BuiltinType *BT = getAs<BuiltinType>()) {
6930 return BT->getKind() == static_cast<BuiltinType::Kind>(K);
6931 }
6932 return false;
6933}
6934
6935inline bool Type::isPlaceholderType() const {
6936 if (const auto *BT
47.1
'BT' is null
47.1
'BT' is null
47.1
'BT' is null
47.1
'BT' is null
= dyn_cast<BuiltinType>(this))
47
Assuming the object is not a 'BuiltinType'
48
Taking false branch
6937 return BT->isPlaceholderType();
6938 return false;
49
Returning zero, which participates in a condition later
6939}
6940
6941inline const BuiltinType *Type::getAsPlaceholderType() const {
6942 if (const auto *BT = dyn_cast<BuiltinType>(this))
6943 if (BT->isPlaceholderType())
6944 return BT;
6945 return nullptr;
6946}
6947
6948inline bool Type::isSpecificPlaceholderType(unsigned K) const {
6949 assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K))(static_cast <bool> (BuiltinType::isPlaceholderTypeKind
((BuiltinType::Kind) K)) ? void (0) : __assert_fail ("BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 6949, __extension__ __PRETTY_FUNCTION__))
;
6950 return isSpecificBuiltinType(K);
6951}
6952
6953inline bool Type::isNonOverloadPlaceholderType() const {
6954 if (const auto *BT = dyn_cast<BuiltinType>(this))
6955 return BT->isNonOverloadPlaceholderType();
6956 return false;
6957}
6958
6959inline bool Type::isVoidType() const {
6960 return isSpecificBuiltinType(BuiltinType::Void);
6961}
6962
6963inline bool Type::isHalfType() const {
6964 // FIXME: Should we allow complex __fp16? Probably not.
6965 return isSpecificBuiltinType(BuiltinType::Half);
6966}
6967
6968inline bool Type::isFloat16Type() const {
6969 return isSpecificBuiltinType(BuiltinType::Float16);
6970}
6971
6972inline bool Type::isBFloat16Type() const {
6973 return isSpecificBuiltinType(BuiltinType::BFloat16);
6974}
6975
6976inline bool Type::isFloat128Type() const {
6977 return isSpecificBuiltinType(BuiltinType::Float128);
6978}
6979
6980inline bool Type::isNullPtrType() const {
6981 return isSpecificBuiltinType(BuiltinType::NullPtr);
6982}
6983
6984bool IsEnumDeclComplete(EnumDecl *);
6985bool IsEnumDeclScoped(EnumDecl *);
6986
6987inline bool Type::isIntegerType() const {
6988 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6989 return BT->getKind() >= BuiltinType::Bool &&
6990 BT->getKind() <= BuiltinType::Int128;
6991 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
6992 // Incomplete enum types are not treated as integer types.
6993 // FIXME: In C++, enum types are never integer types.
6994 return IsEnumDeclComplete(ET->getDecl()) &&
6995 !IsEnumDeclScoped(ET->getDecl());
6996 }
6997 return isExtIntType();
6998}
6999
7000inline bool Type::isFixedPointType() const {
7001 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7002 return BT->getKind() >= BuiltinType::ShortAccum &&
7003 BT->getKind() <= BuiltinType::SatULongFract;
7004 }
7005 return false;
7006}
7007
7008inline bool Type::isFixedPointOrIntegerType() const {
7009 return isFixedPointType() || isIntegerType();
7010}
7011
7012inline bool Type::isSaturatedFixedPointType() const {
7013 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7014 return BT->getKind() >= BuiltinType::SatShortAccum &&
7015 BT->getKind() <= BuiltinType::SatULongFract;
7016 }
7017 return false;
7018}
7019
7020inline bool Type::isUnsaturatedFixedPointType() const {
7021 return isFixedPointType() && !isSaturatedFixedPointType();
7022}
7023
7024inline bool Type::isSignedFixedPointType() const {
7025 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7026 return ((BT->getKind() >= BuiltinType::ShortAccum &&
7027 BT->getKind() <= BuiltinType::LongAccum) ||
7028 (BT->getKind() >= BuiltinType::ShortFract &&
7029 BT->getKind() <= BuiltinType::LongFract) ||
7030 (BT->getKind() >= BuiltinType::SatShortAccum &&
7031 BT->getKind() <= BuiltinType::SatLongAccum) ||
7032 (BT->getKind() >= BuiltinType::SatShortFract &&
7033 BT->getKind() <= BuiltinType::SatLongFract));
7034 }
7035 return false;
7036}
7037
7038inline bool Type::isUnsignedFixedPointType() const {
7039 return isFixedPointType() && !isSignedFixedPointType();
7040}
7041
7042inline bool Type::isScalarType() const {
7043 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7044 return BT->getKind() > BuiltinType::Void &&
7045 BT->getKind() <= BuiltinType::NullPtr;
7046 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
7047 // Enums are scalar types, but only if they are defined. Incomplete enums
7048 // are not treated as scalar types.
7049 return IsEnumDeclComplete(ET->getDecl());
7050 return isa<PointerType>(CanonicalType) ||
7051 isa<BlockPointerType>(CanonicalType) ||
7052 isa<MemberPointerType>(CanonicalType) ||
7053 isa<ComplexType>(CanonicalType) ||
7054 isa<ObjCObjectPointerType>(CanonicalType) ||
7055 isExtIntType();
7056}
7057
7058inline bool Type::isIntegralOrEnumerationType() const {
7059 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7060 return BT->getKind() >= BuiltinType::Bool &&
7061 BT->getKind() <= BuiltinType::Int128;
7062
7063 // Check for a complete enum type; incomplete enum types are not properly an
7064 // enumeration type in the sense required here.
7065 if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
7066 return IsEnumDeclComplete(ET->getDecl());
7067
7068 return isExtIntType();
7069}
7070
7071inline bool Type::isBooleanType() const {
7072 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7073 return BT->getKind() == BuiltinType::Bool;
7074 return false;
7075}
7076
7077inline bool Type::isUndeducedType() const {
7078 auto *DT = getContainedDeducedType();
7079 return DT && !DT->isDeduced();
7080}
7081
7082/// Determines whether this is a type for which one can define
7083/// an overloaded operator.
7084inline bool Type::isOverloadableType() const {
7085 return isDependentType() || isRecordType() || isEnumeralType();
7086}
7087
7088/// Determines whether this type is written as a typedef-name.
7089inline bool Type::isTypedefNameType() const {
7090 if (getAs<TypedefType>())
7091 return true;
7092 if (auto *TST = getAs<TemplateSpecializationType>())
7093 return TST->isTypeAlias();
7094 return false;
7095}
7096
7097/// Determines whether this type can decay to a pointer type.
7098inline bool Type::canDecayToPointerType() const {
7099 return isFunctionType() || isArrayType();
7100}
7101
7102inline bool Type::hasPointerRepresentation() const {
7103 return (isPointerType() || isReferenceType() || isBlockPointerType() ||
7104 isObjCObjectPointerType() || isNullPtrType());
7105}
7106
7107inline bool Type::hasObjCPointerRepresentation() const {
7108 return isObjCObjectPointerType();
7109}
7110
7111inline const Type *Type::getBaseElementTypeUnsafe() const {
7112 const Type *type = this;
7113 while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
7114 type = arrayType->getElementType().getTypePtr();
7115 return type;
7116}
7117
7118inline const Type *Type::getPointeeOrArrayElementType() const {
7119 const Type *type = this;
7120 if (type->isAnyPointerType())
7121 return type->getPointeeType().getTypePtr();
7122 else if (type->isArrayType())
7123 return type->getBaseElementTypeUnsafe();
7124 return type;
7125}
7126/// Insertion operator for partial diagnostics. This allows sending adress
7127/// spaces into a diagnostic with <<.
7128inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7129 LangAS AS) {
7130 PD.AddTaggedVal(static_cast<std::underlying_type_t<LangAS>>(AS),
7131 DiagnosticsEngine::ArgumentKind::ak_addrspace);
7132 return PD;
7133}
7134
7135/// Insertion operator for partial diagnostics. This allows sending Qualifiers
7136/// into a diagnostic with <<.
7137inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7138 Qualifiers Q) {
7139 PD.AddTaggedVal(Q.getAsOpaqueValue(),
7140 DiagnosticsEngine::ArgumentKind::ak_qual);
7141 return PD;
7142}
7143
7144/// Insertion operator for partial diagnostics. This allows sending QualType's
7145/// into a diagnostic with <<.
7146inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7147 QualType T) {
7148 PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
7149 DiagnosticsEngine::ak_qualtype);
7150 return PD;
7151}
7152
7153// Helper class template that is used by Type::getAs to ensure that one does
7154// not try to look through a qualified type to get to an array type.
7155template <typename T>
7156using TypeIsArrayType =
7157 std::integral_constant<bool, std::is_same<T, ArrayType>::value ||
7158 std::is_base_of<ArrayType, T>::value>;
7159
7160// Member-template getAs<specific type>'.
7161template <typename T> const T *Type::getAs() const {
7162 static_assert(!TypeIsArrayType<T>::value,
7163 "ArrayType cannot be used with getAs!");
7164
7165 // If this is directly a T type, return it.
7166 if (const auto *Ty = dyn_cast<T>(this))
7167 return Ty;
7168
7169 // If the canonical form of this type isn't the right kind, reject it.
7170 if (!isa<T>(CanonicalType))
7171 return nullptr;
7172
7173 // If this is a typedef for the type, strip the typedef off without
7174 // losing all typedef information.
7175 return cast<T>(getUnqualifiedDesugaredType());
7176}
7177
7178template <typename T> const T *Type::getAsAdjusted() const {
7179 static_assert(!TypeIsArrayType<T>::value, "ArrayType cannot be used with getAsAdjusted!");
7180
7181 // If this is directly a T type, return it.
7182 if (const auto *Ty = dyn_cast<T>(this))
7183 return Ty;
7184
7185 // If the canonical form of this type isn't the right kind, reject it.
7186 if (!isa<T>(CanonicalType))
7187 return nullptr;
7188
7189 // Strip off type adjustments that do not modify the underlying nature of the
7190 // type.
7191 const Type *Ty = this;
7192 while (Ty) {
7193 if (const auto *A = dyn_cast<AttributedType>(Ty))
7194 Ty = A->getModifiedType().getTypePtr();
7195 else if (const auto *E = dyn_cast<ElaboratedType>(Ty))
7196 Ty = E->desugar().getTypePtr();
7197 else if (const auto *P = dyn_cast<ParenType>(Ty))
7198 Ty = P->desugar().getTypePtr();
7199 else if (const auto *A = dyn_cast<AdjustedType>(Ty))
7200 Ty = A->desugar().getTypePtr();
7201 else if (const auto *M = dyn_cast<MacroQualifiedType>(Ty))
7202 Ty = M->desugar().getTypePtr();
7203 else
7204 break;
7205 }
7206
7207 // Just because the canonical type is correct does not mean we can use cast<>,
7208 // since we may not have stripped off all the sugar down to the base type.
7209 return dyn_cast<T>(Ty);
7210}
7211
7212inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
7213 // If this is directly an array type, return it.
7214 if (const auto *arr = dyn_cast<ArrayType>(this))
7215 return arr;
7216
7217 // If the canonical form of this type isn't the right kind, reject it.
7218 if (!isa<ArrayType>(CanonicalType))
7219 return nullptr;
7220
7221 // If this is a typedef for the type, strip the typedef off without
7222 // losing all typedef information.
7223 return cast<ArrayType>(getUnqualifiedDesugaredType());
7224}
7225
7226template <typename T> const T *Type::castAs() const {
7227 static_assert(!TypeIsArrayType<T>::value,
7228 "ArrayType cannot be used with castAs!");
7229
7230 if (const auto *ty = dyn_cast<T>(this)) return ty;
7231 assert(isa<T>(CanonicalType))(static_cast <bool> (isa<T>(CanonicalType)) ? void
(0) : __assert_fail ("isa<T>(CanonicalType)", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 7231, __extension__ __PRETTY_FUNCTION__))
;
7232 return cast<T>(getUnqualifiedDesugaredType());
7233}
7234
7235inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
7236 assert(isa<ArrayType>(CanonicalType))(static_cast <bool> (isa<ArrayType>(CanonicalType
)) ? void (0) : __assert_fail ("isa<ArrayType>(CanonicalType)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 7236, __extension__ __PRETTY_FUNCTION__))
;
7237 if (const auto *arr = dyn_cast<ArrayType>(this)) return arr;
7238 return cast<ArrayType>(getUnqualifiedDesugaredType());
7239}
7240
7241DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr,
7242 QualType CanonicalPtr)
7243 : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
7244#ifndef NDEBUG
7245 QualType Adjusted = getAdjustedType();
7246 (void)AttributedType::stripOuterNullability(Adjusted);
7247 assert(isa<PointerType>(Adjusted))(static_cast <bool> (isa<PointerType>(Adjusted)) ?
void (0) : __assert_fail ("isa<PointerType>(Adjusted)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 7247, __extension__ __PRETTY_FUNCTION__))
;
7248#endif
7249}
7250
7251QualType DecayedType::getPointeeType() const {
7252 QualType Decayed = getDecayedType();
7253 (void)AttributedType::stripOuterNullability(Decayed);
7254 return cast<PointerType>(Decayed)->getPointeeType();
7255}
7256
7257// Get the decimal string representation of a fixed point type, represented
7258// as a scaled integer.
7259// TODO: At some point, we should change the arguments to instead just accept an
7260// APFixedPoint instead of APSInt and scale.
7261void FixedPointValueToString(SmallVectorImpl<char> &Str, llvm::APSInt Val,
7262 unsigned Scale);
7263
7264} // namespace clang
7265
7266#endif // LLVM_CLANG_AST_TYPE_H

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h

1//===- ExprCXX.h - Classes for representing expressions ---------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Defines the clang::Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/AST/ASTConcept.h"
18#include "clang/AST/ComputeDependence.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclBase.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/DeclarationName.h"
24#include "clang/AST/DependenceFlags.h"
25#include "clang/AST/Expr.h"
26#include "clang/AST/NestedNameSpecifier.h"
27#include "clang/AST/OperationKinds.h"
28#include "clang/AST/Stmt.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/TemplateBase.h"
31#include "clang/AST/Type.h"
32#include "clang/AST/UnresolvedSet.h"
33#include "clang/Basic/ExceptionSpecificationType.h"
34#include "clang/Basic/ExpressionTraits.h"
35#include "clang/Basic/LLVM.h"
36#include "clang/Basic/Lambda.h"
37#include "clang/Basic/LangOptions.h"
38#include "clang/Basic/OperatorKinds.h"
39#include "clang/Basic/SourceLocation.h"
40#include "clang/Basic/Specifiers.h"
41#include "clang/Basic/TypeTraits.h"
42#include "llvm/ADT/ArrayRef.h"
43#include "llvm/ADT/None.h"
44#include "llvm/ADT/Optional.h"
45#include "llvm/ADT/PointerUnion.h"
46#include "llvm/ADT/StringRef.h"
47#include "llvm/ADT/iterator_range.h"
48#include "llvm/Support/Casting.h"
49#include "llvm/Support/Compiler.h"
50#include "llvm/Support/TrailingObjects.h"
51#include <cassert>
52#include <cstddef>
53#include <cstdint>
54#include <memory>
55
56namespace clang {
57
58class ASTContext;
59class DeclAccessPair;
60class IdentifierInfo;
61class LambdaCapture;
62class NonTypeTemplateParmDecl;
63class TemplateParameterList;
64
65//===--------------------------------------------------------------------===//
66// C++ Expressions.
67//===--------------------------------------------------------------------===//
68
69/// A call to an overloaded operator written using operator
70/// syntax.
71///
72/// Represents a call to an overloaded operator written using operator
73/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
74/// normal call, this AST node provides better information about the
75/// syntactic representation of the call.
76///
77/// In a C++ template, this expression node kind will be used whenever
78/// any of the arguments are type-dependent. In this case, the
79/// function itself will be a (possibly empty) set of functions and
80/// function templates that were found by name lookup at template
81/// definition time.
82class CXXOperatorCallExpr final : public CallExpr {
83 friend class ASTStmtReader;
84 friend class ASTStmtWriter;
85
86 SourceRange Range;
87
88 // CXXOperatorCallExpr has some trailing objects belonging
89 // to CallExpr. See CallExpr for the details.
90
91 SourceRange getSourceRangeImpl() const LLVM_READONLY__attribute__((__pure__));
92
93 CXXOperatorCallExpr(OverloadedOperatorKind OpKind, Expr *Fn,
94 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
95 SourceLocation OperatorLoc, FPOptionsOverride FPFeatures,
96 ADLCallKind UsesADL);
97
98 CXXOperatorCallExpr(unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty);
99
100public:
101 static CXXOperatorCallExpr *
102 Create(const ASTContext &Ctx, OverloadedOperatorKind OpKind, Expr *Fn,
103 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
104 SourceLocation OperatorLoc, FPOptionsOverride FPFeatures,
105 ADLCallKind UsesADL = NotADL);
106
107 static CXXOperatorCallExpr *CreateEmpty(const ASTContext &Ctx,
108 unsigned NumArgs, bool HasFPFeatures,
109 EmptyShell Empty);
110
111 /// Returns the kind of overloaded operator that this expression refers to.
112 OverloadedOperatorKind getOperator() const {
113 return static_cast<OverloadedOperatorKind>(
114 CXXOperatorCallExprBits.OperatorKind);
115 }
116
117 static bool isAssignmentOp(OverloadedOperatorKind Opc) {
118 return Opc == OO_Equal || Opc == OO_StarEqual || Opc == OO_SlashEqual ||
119 Opc == OO_PercentEqual || Opc == OO_PlusEqual ||
120 Opc == OO_MinusEqual || Opc == OO_LessLessEqual ||
121 Opc == OO_GreaterGreaterEqual || Opc == OO_AmpEqual ||
122 Opc == OO_CaretEqual || Opc == OO_PipeEqual;
123 }
124 bool isAssignmentOp() const { return isAssignmentOp(getOperator()); }
125
126 static bool isComparisonOp(OverloadedOperatorKind Opc) {
127 switch (Opc) {
128 case OO_EqualEqual:
129 case OO_ExclaimEqual:
130 case OO_Greater:
131 case OO_GreaterEqual:
132 case OO_Less:
133 case OO_LessEqual:
134 case OO_Spaceship:
135 return true;
136 default:
137 return false;
138 }
139 }
140 bool isComparisonOp() const { return isComparisonOp(getOperator()); }
141
142 /// Is this written as an infix binary operator?
143 bool isInfixBinaryOp() const;
144
145 /// Returns the location of the operator symbol in the expression.
146 ///
147 /// When \c getOperator()==OO_Call, this is the location of the right
148 /// parentheses; when \c getOperator()==OO_Subscript, this is the location
149 /// of the right bracket.
150 SourceLocation getOperatorLoc() const { return getRParenLoc(); }
151
152 SourceLocation getExprLoc() const LLVM_READONLY__attribute__((__pure__)) {
153 OverloadedOperatorKind Operator = getOperator();
154 return (Operator < OO_Plus || Operator >= OO_Arrow ||
155 Operator == OO_PlusPlus || Operator == OO_MinusMinus)
156 ? getBeginLoc()
157 : getOperatorLoc();
158 }
159
160 SourceLocation getBeginLoc() const { return Range.getBegin(); }
161 SourceLocation getEndLoc() const { return Range.getEnd(); }
162 SourceRange getSourceRange() const { return Range; }
163
164 static bool classof(const Stmt *T) {
165 return T->getStmtClass() == CXXOperatorCallExprClass;
166 }
167};
168
169/// Represents a call to a member function that
170/// may be written either with member call syntax (e.g., "obj.func()"
171/// or "objptr->func()") or with normal function-call syntax
172/// ("func()") within a member function that ends up calling a member
173/// function. The callee in either case is a MemberExpr that contains
174/// both the object argument and the member function, while the
175/// arguments are the arguments within the parentheses (not including
176/// the object argument).
177class CXXMemberCallExpr final : public CallExpr {
178 // CXXMemberCallExpr has some trailing objects belonging
179 // to CallExpr. See CallExpr for the details.
180
181 CXXMemberCallExpr(Expr *Fn, ArrayRef<Expr *> Args, QualType Ty,
182 ExprValueKind VK, SourceLocation RP,
183 FPOptionsOverride FPOptions, unsigned MinNumArgs);
184
185 CXXMemberCallExpr(unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty);
186
187public:
188 static CXXMemberCallExpr *Create(const ASTContext &Ctx, Expr *Fn,
189 ArrayRef<Expr *> Args, QualType Ty,
190 ExprValueKind VK, SourceLocation RP,
191 FPOptionsOverride FPFeatures,
192 unsigned MinNumArgs = 0);
193
194 static CXXMemberCallExpr *CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
195 bool HasFPFeatures, EmptyShell Empty);
196
197 /// Retrieve the implicit object argument for the member call.
198 ///
199 /// For example, in "x.f(5)", this returns the sub-expression "x".
200 Expr *getImplicitObjectArgument() const;
201
202 /// Retrieve the type of the object argument.
203 ///
204 /// Note that this always returns a non-pointer type.
205 QualType getObjectType() const;
206
207 /// Retrieve the declaration of the called method.
208 CXXMethodDecl *getMethodDecl() const;
209
210 /// Retrieve the CXXRecordDecl for the underlying type of
211 /// the implicit object argument.
212 ///
213 /// Note that this is may not be the same declaration as that of the class
214 /// context of the CXXMethodDecl which this function is calling.
215 /// FIXME: Returns 0 for member pointer call exprs.
216 CXXRecordDecl *getRecordDecl() const;
217
218 SourceLocation getExprLoc() const LLVM_READONLY__attribute__((__pure__)) {
219 SourceLocation CLoc = getCallee()->getExprLoc();
220 if (CLoc.isValid())
221 return CLoc;
222
223 return getBeginLoc();
224 }
225
226 static bool classof(const Stmt *T) {
227 return T->getStmtClass() == CXXMemberCallExprClass;
228 }
229};
230
231/// Represents a call to a CUDA kernel function.
232class CUDAKernelCallExpr final : public CallExpr {
233 friend class ASTStmtReader;
234
235 enum { CONFIG, END_PREARG };
236
237 // CUDAKernelCallExpr has some trailing objects belonging
238 // to CallExpr. See CallExpr for the details.
239
240 CUDAKernelCallExpr(Expr *Fn, CallExpr *Config, ArrayRef<Expr *> Args,
241 QualType Ty, ExprValueKind VK, SourceLocation RP,
242 FPOptionsOverride FPFeatures, unsigned MinNumArgs);
243
244 CUDAKernelCallExpr(unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty);
245
246public:
247 static CUDAKernelCallExpr *Create(const ASTContext &Ctx, Expr *Fn,
248 CallExpr *Config, ArrayRef<Expr *> Args,
249 QualType Ty, ExprValueKind VK,
250 SourceLocation RP,
251 FPOptionsOverride FPFeatures,
252 unsigned MinNumArgs = 0);
253
254 static CUDAKernelCallExpr *CreateEmpty(const ASTContext &Ctx,
255 unsigned NumArgs, bool HasFPFeatures,
256 EmptyShell Empty);
257
258 const CallExpr *getConfig() const {
259 return cast_or_null<CallExpr>(getPreArg(CONFIG));
260 }
261 CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
262
263 static bool classof(const Stmt *T) {
264 return T->getStmtClass() == CUDAKernelCallExprClass;
265 }
266};
267
268/// A rewritten comparison expression that was originally written using
269/// operator syntax.
270///
271/// In C++20, the following rewrites are performed:
272/// - <tt>a == b</tt> -> <tt>b == a</tt>
273/// - <tt>a != b</tt> -> <tt>!(a == b)</tt>
274/// - <tt>a != b</tt> -> <tt>!(b == a)</tt>
275/// - For \c \@ in \c <, \c <=, \c >, \c >=, \c <=>:
276/// - <tt>a @ b</tt> -> <tt>(a <=> b) @ 0</tt>
277/// - <tt>a @ b</tt> -> <tt>0 @ (b <=> a)</tt>
278///
279/// This expression provides access to both the original syntax and the
280/// rewritten expression.
281///
282/// Note that the rewritten calls to \c ==, \c <=>, and \c \@ are typically
283/// \c CXXOperatorCallExprs, but could theoretically be \c BinaryOperators.
284class CXXRewrittenBinaryOperator : public Expr {
285 friend class ASTStmtReader;
286
287 /// The rewritten semantic form.
288 Stmt *SemanticForm;
289
290public:
291 CXXRewrittenBinaryOperator(Expr *SemanticForm, bool IsReversed)
292 : Expr(CXXRewrittenBinaryOperatorClass, SemanticForm->getType(),
293 SemanticForm->getValueKind(), SemanticForm->getObjectKind()),
294 SemanticForm(SemanticForm) {
295 CXXRewrittenBinaryOperatorBits.IsReversed = IsReversed;
296 setDependence(computeDependence(this));
297 }
298 CXXRewrittenBinaryOperator(EmptyShell Empty)
299 : Expr(CXXRewrittenBinaryOperatorClass, Empty), SemanticForm() {}
300
301 /// Get an equivalent semantic form for this expression.
302 Expr *getSemanticForm() { return cast<Expr>(SemanticForm); }
303 const Expr *getSemanticForm() const { return cast<Expr>(SemanticForm); }
304
305 struct DecomposedForm {
306 /// The original opcode, prior to rewriting.
307 BinaryOperatorKind Opcode;
308 /// The original left-hand side.
309 const Expr *LHS;
310 /// The original right-hand side.
311 const Expr *RHS;
312 /// The inner \c == or \c <=> operator expression.
313 const Expr *InnerBinOp;
314 };
315
316 /// Decompose this operator into its syntactic form.
317 DecomposedForm getDecomposedForm() const LLVM_READONLY__attribute__((__pure__));
318
319 /// Determine whether this expression was rewritten in reverse form.
320 bool isReversed() const { return CXXRewrittenBinaryOperatorBits.IsReversed; }
321
322 BinaryOperatorKind getOperator() const { return getDecomposedForm().Opcode; }
323 BinaryOperatorKind getOpcode() const { return getOperator(); }
324 static StringRef getOpcodeStr(BinaryOperatorKind Op) {
325 return BinaryOperator::getOpcodeStr(Op);
326 }
327 StringRef getOpcodeStr() const {
328 return BinaryOperator::getOpcodeStr(getOpcode());
329 }
330 bool isComparisonOp() const { return true; }
331 bool isAssignmentOp() const { return false; }
332
333 const Expr *getLHS() const { return getDecomposedForm().LHS; }
334 const Expr *getRHS() const { return getDecomposedForm().RHS; }
335
336 SourceLocation getOperatorLoc() const LLVM_READONLY__attribute__((__pure__)) {
337 return getDecomposedForm().InnerBinOp->getExprLoc();
338 }
339 SourceLocation getExprLoc() const LLVM_READONLY__attribute__((__pure__)) { return getOperatorLoc(); }
340
341 /// Compute the begin and end locations from the decomposed form.
342 /// The locations of the semantic form are not reliable if this is
343 /// a reversed expression.
344 //@{
345 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
346 return getDecomposedForm().LHS->getBeginLoc();
347 }
348 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
349 return getDecomposedForm().RHS->getEndLoc();
350 }
351 SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) {
352 DecomposedForm DF = getDecomposedForm();
353 return SourceRange(DF.LHS->getBeginLoc(), DF.RHS->getEndLoc());
354 }
355 //@}
356
357 child_range children() {
358 return child_range(&SemanticForm, &SemanticForm + 1);
359 }
360
361 static bool classof(const Stmt *T) {
362 return T->getStmtClass() == CXXRewrittenBinaryOperatorClass;
363 }
364};
365
366/// Abstract class common to all of the C++ "named"/"keyword" casts.
367///
368/// This abstract class is inherited by all of the classes
369/// representing "named" casts: CXXStaticCastExpr for \c static_cast,
370/// CXXDynamicCastExpr for \c dynamic_cast, CXXReinterpretCastExpr for
371/// reinterpret_cast, CXXConstCastExpr for \c const_cast and
372/// CXXAddrspaceCastExpr for addrspace_cast (in OpenCL).
373class CXXNamedCastExpr : public ExplicitCastExpr {
374private:
375 // the location of the casting op
376 SourceLocation Loc;
377
378 // the location of the right parenthesis
379 SourceLocation RParenLoc;
380
381 // range for '<' '>'
382 SourceRange AngleBrackets;
383
384protected:
385 friend class ASTStmtReader;
386
387 CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK, CastKind kind,
388 Expr *op, unsigned PathSize, bool HasFPFeatures,
389 TypeSourceInfo *writtenTy, SourceLocation l,
390 SourceLocation RParenLoc, SourceRange AngleBrackets)
391 : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, HasFPFeatures,
392 writtenTy),
393 Loc(l), RParenLoc(RParenLoc), AngleBrackets(AngleBrackets) {}
394
395 explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize,
396 bool HasFPFeatures)
397 : ExplicitCastExpr(SC, Shell, PathSize, HasFPFeatures) {}
398
399public:
400 const char *getCastName() const;
401
402 /// Retrieve the location of the cast operator keyword, e.g.,
403 /// \c static_cast.
404 SourceLocation getOperatorLoc() const { return Loc; }
405
406 /// Retrieve the location of the closing parenthesis.
407 SourceLocation getRParenLoc() const { return RParenLoc; }
408
409 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return Loc; }
410 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return RParenLoc; }
411 SourceRange getAngleBrackets() const LLVM_READONLY__attribute__((__pure__)) { return AngleBrackets; }
412
413 static bool classof(const Stmt *T) {
414 switch (T->getStmtClass()) {
415 case CXXStaticCastExprClass:
416 case CXXDynamicCastExprClass:
417 case CXXReinterpretCastExprClass:
418 case CXXConstCastExprClass:
419 case CXXAddrspaceCastExprClass:
420 return true;
421 default:
422 return false;
423 }
424 }
425};
426
427/// A C++ \c static_cast expression (C++ [expr.static.cast]).
428///
429/// This expression node represents a C++ static cast, e.g.,
430/// \c static_cast<int>(1.0).
431class CXXStaticCastExpr final
432 : public CXXNamedCastExpr,
433 private llvm::TrailingObjects<CXXStaticCastExpr, CXXBaseSpecifier *,
434 FPOptionsOverride> {
435 CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
436 unsigned pathSize, TypeSourceInfo *writtenTy,
437 FPOptionsOverride FPO, SourceLocation l,
438 SourceLocation RParenLoc, SourceRange AngleBrackets)
439 : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
440 FPO.requiresTrailingStorage(), writtenTy, l, RParenLoc,
441 AngleBrackets) {
442 if (hasStoredFPFeatures())
443 *getTrailingFPFeatures() = FPO;
444 }
445
446 explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize,
447 bool HasFPFeatures)
448 : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize,
449 HasFPFeatures) {}
450
451 unsigned numTrailingObjects(OverloadToken<CXXBaseSpecifier *>) const {
452 return path_size();
453 }
454
455public:
456 friend class CastExpr;
457 friend TrailingObjects;
458
459 static CXXStaticCastExpr *
460 Create(const ASTContext &Context, QualType T, ExprValueKind VK, CastKind K,
461 Expr *Op, const CXXCastPath *Path, TypeSourceInfo *Written,
462 FPOptionsOverride FPO, SourceLocation L, SourceLocation RParenLoc,
463 SourceRange AngleBrackets);
464 static CXXStaticCastExpr *CreateEmpty(const ASTContext &Context,
465 unsigned PathSize, bool hasFPFeatures);
466
467 static bool classof(const Stmt *T) {
468 return T->getStmtClass() == CXXStaticCastExprClass;
469 }
470};
471
472/// A C++ @c dynamic_cast expression (C++ [expr.dynamic.cast]).
473///
474/// This expression node represents a dynamic cast, e.g.,
475/// \c dynamic_cast<Derived*>(BasePtr). Such a cast may perform a run-time
476/// check to determine how to perform the type conversion.
477class CXXDynamicCastExpr final
478 : public CXXNamedCastExpr,
479 private llvm::TrailingObjects<CXXDynamicCastExpr, CXXBaseSpecifier *> {
480 CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind, Expr *op,
481 unsigned pathSize, TypeSourceInfo *writtenTy,
482 SourceLocation l, SourceLocation RParenLoc,
483 SourceRange AngleBrackets)
484 : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
485 /*HasFPFeatures*/ false, writtenTy, l, RParenLoc,
486 AngleBrackets) {}
487
488 explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
489 : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize,
490 /*HasFPFeatures*/ false) {}
491
492public:
493 friend class CastExpr;
494 friend TrailingObjects;
495
496 static CXXDynamicCastExpr *Create(const ASTContext &Context, QualType T,
497 ExprValueKind VK, CastKind Kind, Expr *Op,
498 const CXXCastPath *Path,
499 TypeSourceInfo *Written, SourceLocation L,
500 SourceLocation RParenLoc,
501 SourceRange AngleBrackets);
502
503 static CXXDynamicCastExpr *CreateEmpty(const ASTContext &Context,
504 unsigned pathSize);
505
506 bool isAlwaysNull() const;
507
508 static bool classof(const Stmt *T) {
509 return T->getStmtClass() == CXXDynamicCastExprClass;
510 }
511};
512
513/// A C++ @c reinterpret_cast expression (C++ [expr.reinterpret.cast]).
514///
515/// This expression node represents a reinterpret cast, e.g.,
516/// @c reinterpret_cast<int>(VoidPtr).
517///
518/// A reinterpret_cast provides a differently-typed view of a value but
519/// (in Clang, as in most C++ implementations) performs no actual work at
520/// run time.
521class CXXReinterpretCastExpr final
522 : public CXXNamedCastExpr,
523 private llvm::TrailingObjects<CXXReinterpretCastExpr,
524 CXXBaseSpecifier *> {
525 CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
526 unsigned pathSize, TypeSourceInfo *writtenTy,
527 SourceLocation l, SourceLocation RParenLoc,
528 SourceRange AngleBrackets)
529 : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
530 pathSize, /*HasFPFeatures*/ false, writtenTy, l,
531 RParenLoc, AngleBrackets) {}
532
533 CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
534 : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize,
535 /*HasFPFeatures*/ false) {}
536
537public:
538 friend class CastExpr;
539 friend TrailingObjects;
540
541 static CXXReinterpretCastExpr *Create(const ASTContext &Context, QualType T,
542 ExprValueKind VK, CastKind Kind,
543 Expr *Op, const CXXCastPath *Path,
544 TypeSourceInfo *WrittenTy, SourceLocation L,
545 SourceLocation RParenLoc,
546 SourceRange AngleBrackets);
547 static CXXReinterpretCastExpr *CreateEmpty(const ASTContext &Context,
548 unsigned pathSize);
549
550 static bool classof(const Stmt *T) {
551 return T->getStmtClass() == CXXReinterpretCastExprClass;
552 }
553};
554
555/// A C++ \c const_cast expression (C++ [expr.const.cast]).
556///
557/// This expression node represents a const cast, e.g.,
558/// \c const_cast<char*>(PtrToConstChar).
559///
560/// A const_cast can remove type qualifiers but does not change the underlying
561/// value.
562class CXXConstCastExpr final
563 : public CXXNamedCastExpr,
564 private llvm::TrailingObjects<CXXConstCastExpr, CXXBaseSpecifier *> {
565 CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
566 TypeSourceInfo *writtenTy, SourceLocation l,
567 SourceLocation RParenLoc, SourceRange AngleBrackets)
568 : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op, 0,
569 /*HasFPFeatures*/ false, writtenTy, l, RParenLoc,
570 AngleBrackets) {}
571
572 explicit CXXConstCastExpr(EmptyShell Empty)
573 : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0,
574 /*HasFPFeatures*/ false) {}
575
576public:
577 friend class CastExpr;
578 friend TrailingObjects;
579
580 static CXXConstCastExpr *Create(const ASTContext &Context, QualType T,
581 ExprValueKind VK, Expr *Op,
582 TypeSourceInfo *WrittenTy, SourceLocation L,
583 SourceLocation RParenLoc,
584 SourceRange AngleBrackets);
585 static CXXConstCastExpr *CreateEmpty(const ASTContext &Context);
586
587 static bool classof(const Stmt *T) {
588 return T->getStmtClass() == CXXConstCastExprClass;
589 }
590};
591
592/// A C++ addrspace_cast expression (currently only enabled for OpenCL).
593///
594/// This expression node represents a cast between pointers to objects in
595/// different address spaces e.g.,
596/// \c addrspace_cast<global int*>(PtrToGenericInt).
597///
598/// A addrspace_cast can cast address space type qualifiers but does not change
599/// the underlying value.
600class CXXAddrspaceCastExpr final
601 : public CXXNamedCastExpr,
602 private llvm::TrailingObjects<CXXAddrspaceCastExpr, CXXBaseSpecifier *> {
603 CXXAddrspaceCastExpr(QualType ty, ExprValueKind VK, CastKind Kind, Expr *op,
604 TypeSourceInfo *writtenTy, SourceLocation l,
605 SourceLocation RParenLoc, SourceRange AngleBrackets)
606 : CXXNamedCastExpr(CXXAddrspaceCastExprClass, ty, VK, Kind, op, 0,
607 /*HasFPFeatures*/ false, writtenTy, l, RParenLoc,
608 AngleBrackets) {}
609
610 explicit CXXAddrspaceCastExpr(EmptyShell Empty)
611 : CXXNamedCastExpr(CXXAddrspaceCastExprClass, Empty, 0,
612 /*HasFPFeatures*/ false) {}
613
614public:
615 friend class CastExpr;
616 friend TrailingObjects;
617
618 static CXXAddrspaceCastExpr *
619 Create(const ASTContext &Context, QualType T, ExprValueKind VK, CastKind Kind,
620 Expr *Op, TypeSourceInfo *WrittenTy, SourceLocation L,
621 SourceLocation RParenLoc, SourceRange AngleBrackets);
622 static CXXAddrspaceCastExpr *CreateEmpty(const ASTContext &Context);
623
624 static bool classof(const Stmt *T) {
625 return T->getStmtClass() == CXXAddrspaceCastExprClass;
626 }
627};
628
629/// A call to a literal operator (C++11 [over.literal])
630/// written as a user-defined literal (C++11 [lit.ext]).
631///
632/// Represents a user-defined literal, e.g. "foo"_bar or 1.23_xyz. While this
633/// is semantically equivalent to a normal call, this AST node provides better
634/// information about the syntactic representation of the literal.
635///
636/// Since literal operators are never found by ADL and can only be declared at
637/// namespace scope, a user-defined literal is never dependent.
638class UserDefinedLiteral final : public CallExpr {
639 friend class ASTStmtReader;
640 friend class ASTStmtWriter;
641
642 /// The location of a ud-suffix within the literal.
643 SourceLocation UDSuffixLoc;
644
645 // UserDefinedLiteral has some trailing objects belonging
646 // to CallExpr. See CallExpr for the details.
647
648 UserDefinedLiteral(Expr *Fn, ArrayRef<Expr *> Args, QualType Ty,
649 ExprValueKind VK, SourceLocation LitEndLoc,
650 SourceLocation SuffixLoc, FPOptionsOverride FPFeatures);
651
652 UserDefinedLiteral(unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty);
653
654public:
655 static UserDefinedLiteral *Create(const ASTContext &Ctx, Expr *Fn,
656 ArrayRef<Expr *> Args, QualType Ty,
657 ExprValueKind VK, SourceLocation LitEndLoc,
658 SourceLocation SuffixLoc,
659 FPOptionsOverride FPFeatures);
660
661 static UserDefinedLiteral *CreateEmpty(const ASTContext &Ctx,
662 unsigned NumArgs, bool HasFPOptions,
663 EmptyShell Empty);
664
665 /// The kind of literal operator which is invoked.
666 enum LiteralOperatorKind {
667 /// Raw form: operator "" X (const char *)
668 LOK_Raw,
669
670 /// Raw form: operator "" X<cs...> ()
671 LOK_Template,
672
673 /// operator "" X (unsigned long long)
674 LOK_Integer,
675
676 /// operator "" X (long double)
677 LOK_Floating,
678
679 /// operator "" X (const CharT *, size_t)
680 LOK_String,
681
682 /// operator "" X (CharT)
683 LOK_Character
684 };
685
686 /// Returns the kind of literal operator invocation
687 /// which this expression represents.
688 LiteralOperatorKind getLiteralOperatorKind() const;
689
690 /// If this is not a raw user-defined literal, get the
691 /// underlying cooked literal (representing the literal with the suffix
692 /// removed).
693 Expr *getCookedLiteral();
694 const Expr *getCookedLiteral() const {
695 return const_cast<UserDefinedLiteral*>(this)->getCookedLiteral();
696 }
697
698 SourceLocation getBeginLoc() const {
699 if (getLiteralOperatorKind() == LOK_Template)
700 return getRParenLoc();
701 return getArg(0)->getBeginLoc();
702 }
703
704 SourceLocation getEndLoc() const { return getRParenLoc(); }
705
706 /// Returns the location of a ud-suffix in the expression.
707 ///
708 /// For a string literal, there may be multiple identical suffixes. This
709 /// returns the first.
710 SourceLocation getUDSuffixLoc() const { return UDSuffixLoc; }
711
712 /// Returns the ud-suffix specified for this literal.
713 const IdentifierInfo *getUDSuffix() const;
714
715 static bool classof(const Stmt *S) {
716 return S->getStmtClass() == UserDefinedLiteralClass;
717 }
718};
719
720/// A boolean literal, per ([C++ lex.bool] Boolean literals).
721class CXXBoolLiteralExpr : public Expr {
722public:
723 CXXBoolLiteralExpr(bool Val, QualType Ty, SourceLocation Loc)
724 : Expr(CXXBoolLiteralExprClass, Ty, VK_PRValue, OK_Ordinary) {
725 CXXBoolLiteralExprBits.Value = Val;
726 CXXBoolLiteralExprBits.Loc = Loc;
727 setDependence(ExprDependence::None);
728 }
729
730 explicit CXXBoolLiteralExpr(EmptyShell Empty)
731 : Expr(CXXBoolLiteralExprClass, Empty) {}
732
733 bool getValue() const { return CXXBoolLiteralExprBits.Value; }
734 void setValue(bool V) { CXXBoolLiteralExprBits.Value = V; }
735
736 SourceLocation getBeginLoc() const { return getLocation(); }
737 SourceLocation getEndLoc() const { return getLocation(); }
738
739 SourceLocation getLocation() const { return CXXBoolLiteralExprBits.Loc; }
740 void setLocation(SourceLocation L) { CXXBoolLiteralExprBits.Loc = L; }
741
742 static bool classof(const Stmt *T) {
743 return T->getStmtClass() == CXXBoolLiteralExprClass;
744 }
745
746 // Iterators
747 child_range children() {
748 return child_range(child_iterator(), child_iterator());
749 }
750
751 const_child_range children() const {
752 return const_child_range(const_child_iterator(), const_child_iterator());
753 }
754};
755
756/// The null pointer literal (C++11 [lex.nullptr])
757///
758/// Introduced in C++11, the only literal of type \c nullptr_t is \c nullptr.
759class CXXNullPtrLiteralExpr : public Expr {
760public:
761 CXXNullPtrLiteralExpr(QualType Ty, SourceLocation Loc)
762 : Expr(CXXNullPtrLiteralExprClass, Ty, VK_PRValue, OK_Ordinary) {
763 CXXNullPtrLiteralExprBits.Loc = Loc;
764 setDependence(ExprDependence::None);
765 }
766
767 explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
768 : Expr(CXXNullPtrLiteralExprClass, Empty) {}
769
770 SourceLocation getBeginLoc() const { return getLocation(); }
771 SourceLocation getEndLoc() const { return getLocation(); }
772
773 SourceLocation getLocation() const { return CXXNullPtrLiteralExprBits.Loc; }
774 void setLocation(SourceLocation L) { CXXNullPtrLiteralExprBits.Loc = L; }
775
776 static bool classof(const Stmt *T) {
777 return T->getStmtClass() == CXXNullPtrLiteralExprClass;
778 }
779
780 child_range children() {
781 return child_range(child_iterator(), child_iterator());
782 }
783
784 const_child_range children() const {
785 return const_child_range(const_child_iterator(), const_child_iterator());
786 }
787};
788
789/// Implicit construction of a std::initializer_list<T> object from an
790/// array temporary within list-initialization (C++11 [dcl.init.list]p5).
791class CXXStdInitializerListExpr : public Expr {
792 Stmt *SubExpr = nullptr;
793
794 CXXStdInitializerListExpr(EmptyShell Empty)
795 : Expr(CXXStdInitializerListExprClass, Empty) {}
796
797public:
798 friend class ASTReader;
799 friend class ASTStmtReader;
800
801 CXXStdInitializerListExpr(QualType Ty, Expr *SubExpr)
802 : Expr(CXXStdInitializerListExprClass, Ty, VK_PRValue, OK_Ordinary),
803 SubExpr(SubExpr) {
804 setDependence(computeDependence(this));
805 }
806
807 Expr *getSubExpr() { return static_cast<Expr*>(SubExpr); }
808 const Expr *getSubExpr() const { return static_cast<const Expr*>(SubExpr); }
809
810 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
811 return SubExpr->getBeginLoc();
812 }
813
814 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
815 return SubExpr->getEndLoc();
816 }
817
818 /// Retrieve the source range of the expression.
819 SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) {
820 return SubExpr->getSourceRange();
821 }
822
823 static bool classof(const Stmt *S) {
824 return S->getStmtClass() == CXXStdInitializerListExprClass;
825 }
826
827 child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
828
829 const_child_range children() const {
830 return const_child_range(&SubExpr, &SubExpr + 1);
831 }
832};
833
834/// A C++ \c typeid expression (C++ [expr.typeid]), which gets
835/// the \c type_info that corresponds to the supplied type, or the (possibly
836/// dynamic) type of the supplied expression.
837///
838/// This represents code like \c typeid(int) or \c typeid(*objPtr)
839class CXXTypeidExpr : public Expr {
840 friend class ASTStmtReader;
841
842private:
843 llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
844 SourceRange Range;
845
846public:
847 CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
848 : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary), Operand(Operand),
849 Range(R) {
850 setDependence(computeDependence(this));
851 }
852
853 CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
854 : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary), Operand(Operand),
855 Range(R) {
856 setDependence(computeDependence(this));
857 }
858
859 CXXTypeidExpr(EmptyShell Empty, bool isExpr)
860 : Expr(CXXTypeidExprClass, Empty) {
861 if (isExpr)
862 Operand = (Expr*)nullptr;
863 else
864 Operand = (TypeSourceInfo*)nullptr;
865 }
866
867 /// Determine whether this typeid has a type operand which is potentially
868 /// evaluated, per C++11 [expr.typeid]p3.
869 bool isPotentiallyEvaluated() const;
870
871 /// Best-effort check if the expression operand refers to a most derived
872 /// object. This is not a strong guarantee.
873 bool isMostDerived(ASTContext &Context) const;
874
875 bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
876
877 /// Retrieves the type operand of this typeid() expression after
878 /// various required adjustments (removing reference types, cv-qualifiers).
879 QualType getTypeOperand(ASTContext &Context) const;
880
881 /// Retrieve source information for the type operand.
882 TypeSourceInfo *getTypeOperandSourceInfo() const {
883 assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)")(static_cast <bool> (isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)"
) ? void (0) : __assert_fail ("isTypeOperand() && \"Cannot call getTypeOperand for typeid(expr)\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 883, __extension__ __PRETTY_FUNCTION__))
;
884 return Operand.get<TypeSourceInfo *>();
885 }
886 Expr *getExprOperand() const {
887 assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)")(static_cast <bool> (!isTypeOperand() && "Cannot call getExprOperand for typeid(type)"
) ? void (0) : __assert_fail ("!isTypeOperand() && \"Cannot call getExprOperand for typeid(type)\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 887, __extension__ __PRETTY_FUNCTION__))
;
888 return static_cast<Expr*>(Operand.get<Stmt *>());
889 }
890
891 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return Range.getBegin(); }
892 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return Range.getEnd(); }
893 SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) { return Range; }
894 void setSourceRange(SourceRange R) { Range = R; }
895
896 static bool classof(const Stmt *T) {
897 return T->getStmtClass() == CXXTypeidExprClass;
898 }
899
900 // Iterators
901 child_range children() {
902 if (isTypeOperand())
903 return child_range(child_iterator(), child_iterator());
904 auto **begin = reinterpret_cast<Stmt **>(&Operand);
905 return child_range(begin, begin + 1);
906 }
907
908 const_child_range children() const {
909 if (isTypeOperand())
910 return const_child_range(const_child_iterator(), const_child_iterator());
911
912 auto **begin =
913 reinterpret_cast<Stmt **>(&const_cast<CXXTypeidExpr *>(this)->Operand);
914 return const_child_range(begin, begin + 1);
915 }
916};
917
918/// A member reference to an MSPropertyDecl.
919///
920/// This expression always has pseudo-object type, and therefore it is
921/// typically not encountered in a fully-typechecked expression except
922/// within the syntactic form of a PseudoObjectExpr.
923class MSPropertyRefExpr : public Expr {
924 Expr *BaseExpr;
925 MSPropertyDecl *TheDecl;
926 SourceLocation MemberLoc;
927 bool IsArrow;
928 NestedNameSpecifierLoc QualifierLoc;
929
930public:
931 friend class ASTStmtReader;
932
933 MSPropertyRefExpr(Expr *baseExpr, MSPropertyDecl *decl, bool isArrow,
934 QualType ty, ExprValueKind VK,
935 NestedNameSpecifierLoc qualifierLoc, SourceLocation nameLoc)
936 : Expr(MSPropertyRefExprClass, ty, VK, OK_Ordinary), BaseExpr(baseExpr),
937 TheDecl(decl), MemberLoc(nameLoc), IsArrow(isArrow),
938 QualifierLoc(qualifierLoc) {
939 setDependence(computeDependence(this));
940 }
941
942 MSPropertyRefExpr(EmptyShell Empty) : Expr(MSPropertyRefExprClass, Empty) {}
943
944 SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) {
945 return SourceRange(getBeginLoc(), getEndLoc());
946 }
947
948 bool isImplicitAccess() const {
949 return getBaseExpr() && getBaseExpr()->isImplicitCXXThis();
950 }
951
952 SourceLocation getBeginLoc() const {
953 if (!isImplicitAccess())
954 return BaseExpr->getBeginLoc();
955 else if (QualifierLoc)
956 return QualifierLoc.getBeginLoc();
957 else
958 return MemberLoc;
959 }
960
961 SourceLocation getEndLoc() const { return getMemberLoc(); }
962
963 child_range children() {
964 return child_range((Stmt**)&BaseExpr, (Stmt**)&BaseExpr + 1);
965 }
966
967 const_child_range children() const {
968 auto Children = const_cast<MSPropertyRefExpr *>(this)->children();
969 return const_child_range(Children.begin(), Children.end());
970 }
971
972 static bool classof(const Stmt *T) {
973 return T->getStmtClass() == MSPropertyRefExprClass;
974 }
975
976 Expr *getBaseExpr() const { return BaseExpr; }
977 MSPropertyDecl *getPropertyDecl() const { return TheDecl; }
978 bool isArrow() const { return IsArrow; }
979 SourceLocation getMemberLoc() const { return MemberLoc; }
980 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
981};
982
983/// MS property subscript expression.
984/// MSVC supports 'property' attribute and allows to apply it to the
985/// declaration of an empty array in a class or structure definition.
986/// For example:
987/// \code
988/// __declspec(property(get=GetX, put=PutX)) int x[];
989/// \endcode
990/// The above statement indicates that x[] can be used with one or more array
991/// indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b), and
992/// p->x[a][b] = i will be turned into p->PutX(a, b, i).
993/// This is a syntactic pseudo-object expression.
994class MSPropertySubscriptExpr : public Expr {
995 friend class ASTStmtReader;
996
997 enum { BASE_EXPR, IDX_EXPR, NUM_SUBEXPRS = 2 };
998
999 Stmt *SubExprs[NUM_SUBEXPRS];
1000 SourceLocation RBracketLoc;
1001
1002 void setBase(Expr *Base) { SubExprs[BASE_EXPR] = Base; }
1003 void setIdx(Expr *Idx) { SubExprs[IDX_EXPR] = Idx; }
1004
1005public:
1006 MSPropertySubscriptExpr(Expr *Base, Expr *Idx, QualType Ty, ExprValueKind VK,
1007 ExprObjectKind OK, SourceLocation RBracketLoc)
1008 : Expr(MSPropertySubscriptExprClass, Ty, VK, OK),
1009 RBracketLoc(RBracketLoc) {
1010 SubExprs[BASE_EXPR] = Base;
1011 SubExprs[IDX_EXPR] = Idx;
1012 setDependence(computeDependence(this));
1013 }
1014
1015 /// Create an empty array subscript expression.
1016 explicit MSPropertySubscriptExpr(EmptyShell Shell)
1017 : Expr(MSPropertySubscriptExprClass, Shell) {}
1018
1019 Expr *getBase() { return cast<Expr>(SubExprs[BASE_EXPR]); }
1020 const Expr *getBase() const { return cast<Expr>(SubExprs[BASE_EXPR]); }
1021
1022 Expr *getIdx() { return cast<Expr>(SubExprs[IDX_EXPR]); }
1023 const Expr *getIdx() const { return cast<Expr>(SubExprs[IDX_EXPR]); }
1024
1025 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
1026 return getBase()->getBeginLoc();
1027 }
1028
1029 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return RBracketLoc; }
1030
1031 SourceLocation getRBracketLoc() const { return RBracketLoc; }
1032 void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1033
1034 SourceLocation getExprLoc() const LLVM_READONLY__attribute__((__pure__)) {
1035 return getBase()->getExprLoc();
1036 }
1037
1038 static bool classof(const Stmt *T) {
1039 return T->getStmtClass() == MSPropertySubscriptExprClass;
1040 }
1041
1042 // Iterators
1043 child_range children() {
1044 return child_range(&SubExprs[0], &SubExprs[0] + NUM_SUBEXPRS);
1045 }
1046
1047 const_child_range children() const {
1048 return const_child_range(&SubExprs[0], &SubExprs[0] + NUM_SUBEXPRS);
1049 }
1050};
1051
1052/// A Microsoft C++ @c __uuidof expression, which gets
1053/// the _GUID that corresponds to the supplied type or expression.
1054///
1055/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
1056class CXXUuidofExpr : public Expr {
1057 friend class ASTStmtReader;
1058
1059private:
1060 llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
1061 MSGuidDecl *Guid;
1062 SourceRange Range;
1063
1064public:
1065 CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, MSGuidDecl *Guid,
1066 SourceRange R)
1067 : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary), Operand(Operand),
1068 Guid(Guid), Range(R) {
1069 setDependence(computeDependence(this));
1070 }
1071
1072 CXXUuidofExpr(QualType Ty, Expr *Operand, MSGuidDecl *Guid, SourceRange R)
1073 : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary), Operand(Operand),
1074 Guid(Guid), Range(R) {
1075 setDependence(computeDependence(this));
1076 }
1077
1078 CXXUuidofExpr(EmptyShell Empty, bool isExpr)
1079 : Expr(CXXUuidofExprClass, Empty) {
1080 if (isExpr)
1081 Operand = (Expr*)nullptr;
1082 else
1083 Operand = (TypeSourceInfo*)nullptr;
1084 }
1085
1086 bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
1087
1088 /// Retrieves the type operand of this __uuidof() expression after
1089 /// various required adjustments (removing reference types, cv-qualifiers).
1090 QualType getTypeOperand(ASTContext &Context) const;
1091
1092 /// Retrieve source information for the type operand.
1093 TypeSourceInfo *getTypeOperandSourceInfo() const {
1094 assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)")(static_cast <bool> (isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)"
) ? void (0) : __assert_fail ("isTypeOperand() && \"Cannot call getTypeOperand for __uuidof(expr)\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 1094, __extension__ __PRETTY_FUNCTION__))
;
1095 return Operand.get<TypeSourceInfo *>();
1096 }
1097 Expr *getExprOperand() const {
1098 assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)")(static_cast <bool> (!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)"
) ? void (0) : __assert_fail ("!isTypeOperand() && \"Cannot call getExprOperand for __uuidof(type)\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 1098, __extension__ __PRETTY_FUNCTION__))
;
1099 return static_cast<Expr*>(Operand.get<Stmt *>());
1100 }
1101
1102 MSGuidDecl *getGuidDecl() const { return Guid; }
1103
1104 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return Range.getBegin(); }
1105 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return Range.getEnd(); }
1106 SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) { return Range; }
1107 void setSourceRange(SourceRange R) { Range = R; }
1108
1109 static bool classof(const Stmt *T) {
1110 return T->getStmtClass() == CXXUuidofExprClass;
1111 }
1112
1113 // Iterators
1114 child_range children() {
1115 if (isTypeOperand())
1116 return child_range(child_iterator(), child_iterator());
1117 auto **begin = reinterpret_cast<Stmt **>(&Operand);
1118 return child_range(begin, begin + 1);
1119 }
1120
1121 const_child_range children() const {
1122 if (isTypeOperand())
1123 return const_child_range(const_child_iterator(), const_child_iterator());
1124 auto **begin =
1125 reinterpret_cast<Stmt **>(&const_cast<CXXUuidofExpr *>(this)->Operand);
1126 return const_child_range(begin, begin + 1);
1127 }
1128};
1129
1130/// Represents the \c this expression in C++.
1131///
1132/// This is a pointer to the object on which the current member function is
1133/// executing (C++ [expr.prim]p3). Example:
1134///
1135/// \code
1136/// class Foo {
1137/// public:
1138/// void bar();
1139/// void test() { this->bar(); }
1140/// };
1141/// \endcode
1142class CXXThisExpr : public Expr {
1143public:
1144 CXXThisExpr(SourceLocation L, QualType Ty, bool IsImplicit)
1145 : Expr(CXXThisExprClass, Ty, VK_PRValue, OK_Ordinary) {
1146 CXXThisExprBits.IsImplicit = IsImplicit;
1147 CXXThisExprBits.Loc = L;
1148 setDependence(computeDependence(this));
1149 }
1150
1151 CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
1152
1153 SourceLocation getLocation() const { return CXXThisExprBits.Loc; }
1154 void setLocation(SourceLocation L) { CXXThisExprBits.Loc = L; }
1155
1156 SourceLocation getBeginLoc() const { return getLocation(); }
1157 SourceLocation getEndLoc() const { return getLocation(); }
1158
1159 bool isImplicit() const { return CXXThisExprBits.IsImplicit; }
1160 void setImplicit(bool I) { CXXThisExprBits.IsImplicit = I; }
1161
1162 static bool classof(const Stmt *T) {
1163 return T->getStmtClass() == CXXThisExprClass;
1164 }
1165
1166 // Iterators
1167 child_range children() {
1168 return child_range(child_iterator(), child_iterator());
1169 }
1170
1171 const_child_range children() const {
1172 return const_child_range(const_child_iterator(), const_child_iterator());
1173 }
1174};
1175
1176/// A C++ throw-expression (C++ [except.throw]).
1177///
1178/// This handles 'throw' (for re-throwing the current exception) and
1179/// 'throw' assignment-expression. When assignment-expression isn't
1180/// present, Op will be null.
1181class CXXThrowExpr : public Expr {
1182 friend class ASTStmtReader;
1183
1184 /// The optional expression in the throw statement.
1185 Stmt *Operand;
1186
1187public:
1188 // \p Ty is the void type which is used as the result type of the
1189 // expression. The \p Loc is the location of the throw keyword.
1190 // \p Operand is the expression in the throw statement, and can be
1191 // null if not present.
1192 CXXThrowExpr(Expr *Operand, QualType Ty, SourceLocation Loc,
1193 bool IsThrownVariableInScope)
1194 : Expr(CXXThrowExprClass, Ty, VK_PRValue, OK_Ordinary), Operand(Operand) {
1195 CXXThrowExprBits.ThrowLoc = Loc;
1196 CXXThrowExprBits.IsThrownVariableInScope = IsThrownVariableInScope;
1197 setDependence(computeDependence(this));
1198 }
1199 CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
1200
1201 const Expr *getSubExpr() const { return cast_or_null<Expr>(Operand); }
1202 Expr *getSubExpr() { return cast_or_null<Expr>(Operand); }
1203
1204 SourceLocation getThrowLoc() const { return CXXThrowExprBits.ThrowLoc; }
1205
1206 /// Determines whether the variable thrown by this expression (if any!)
1207 /// is within the innermost try block.
1208 ///
1209 /// This information is required to determine whether the NRVO can apply to
1210 /// this variable.
1211 bool isThrownVariableInScope() const {
1212 return CXXThrowExprBits.IsThrownVariableInScope;
1213 }
1214
1215 SourceLocation getBeginLoc() const { return getThrowLoc(); }
1216 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
1217 if (!getSubExpr())
1218 return getThrowLoc();
1219 return getSubExpr()->getEndLoc();
1220 }
1221
1222 static bool classof(const Stmt *T) {
1223 return T->getStmtClass() == CXXThrowExprClass;
1224 }
1225
1226 // Iterators
1227 child_range children() {
1228 return child_range(&Operand, Operand ? &Operand + 1 : &Operand);
1229 }
1230
1231 const_child_range children() const {
1232 return const_child_range(&Operand, Operand ? &Operand + 1 : &Operand);
1233 }
1234};
1235
1236/// A default argument (C++ [dcl.fct.default]).
1237///
1238/// This wraps up a function call argument that was created from the
1239/// corresponding parameter's default argument, when the call did not
1240/// explicitly supply arguments for all of the parameters.
1241class CXXDefaultArgExpr final : public Expr {
1242 friend class ASTStmtReader;
1243
1244 /// The parameter whose default is being used.
1245 ParmVarDecl *Param;
1246
1247 /// The context where the default argument expression was used.
1248 DeclContext *UsedContext;
1249
1250 CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *Param,
1251 DeclContext *UsedContext)
1252 : Expr(SC,
1253 Param->hasUnparsedDefaultArg()
1254 ? Param->getType().getNonReferenceType()
1255 : Param->getDefaultArg()->getType(),
1256 Param->getDefaultArg()->getValueKind(),
1257 Param->getDefaultArg()->getObjectKind()),
1258 Param(Param), UsedContext(UsedContext) {
1259 CXXDefaultArgExprBits.Loc = Loc;
1260 setDependence(computeDependence(this));
1261 }
1262
1263public:
1264 CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
1265
1266 // \p Param is the parameter whose default argument is used by this
1267 // expression.
1268 static CXXDefaultArgExpr *Create(const ASTContext &C, SourceLocation Loc,
1269 ParmVarDecl *Param,
1270 DeclContext *UsedContext) {
1271 return new (C)
1272 CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param, UsedContext);
1273 }
1274
1275 // Retrieve the parameter that the argument was created from.
1276 const ParmVarDecl *getParam() const { return Param; }
1277 ParmVarDecl *getParam() { return Param; }
1278
1279 // Retrieve the actual argument to the function call.
1280 const Expr *getExpr() const { return getParam()->getDefaultArg(); }
1281 Expr *getExpr() { return getParam()->getDefaultArg(); }
1282
1283 const DeclContext *getUsedContext() const { return UsedContext; }
1284 DeclContext *getUsedContext() { return UsedContext; }
1285
1286 /// Retrieve the location where this default argument was actually used.
1287 SourceLocation getUsedLocation() const { return CXXDefaultArgExprBits.Loc; }
1288
1289 /// Default argument expressions have no representation in the
1290 /// source, so they have an empty source range.
1291 SourceLocation getBeginLoc() const { return SourceLocation(); }
1292 SourceLocation getEndLoc() const { return SourceLocation(); }
1293
1294 SourceLocation getExprLoc() const { return getUsedLocation(); }
1295
1296 static bool classof(const Stmt *T) {
1297 return T->getStmtClass() == CXXDefaultArgExprClass;
1298 }
1299
1300 // Iterators
1301 child_range children() {
1302 return child_range(child_iterator(), child_iterator());
1303 }
1304
1305 const_child_range children() const {
1306 return const_child_range(const_child_iterator(), const_child_iterator());
1307 }
1308};
1309
1310/// A use of a default initializer in a constructor or in aggregate
1311/// initialization.
1312///
1313/// This wraps a use of a C++ default initializer (technically,
1314/// a brace-or-equal-initializer for a non-static data member) when it
1315/// is implicitly used in a mem-initializer-list in a constructor
1316/// (C++11 [class.base.init]p8) or in aggregate initialization
1317/// (C++1y [dcl.init.aggr]p7).
1318class CXXDefaultInitExpr : public Expr {
1319 friend class ASTReader;
1320 friend class ASTStmtReader;
1321
1322 /// The field whose default is being used.
1323 FieldDecl *Field;
1324
1325 /// The context where the default initializer expression was used.
1326 DeclContext *UsedContext;
1327
1328 CXXDefaultInitExpr(const ASTContext &Ctx, SourceLocation Loc,
1329 FieldDecl *Field, QualType Ty, DeclContext *UsedContext);
1330
1331 CXXDefaultInitExpr(EmptyShell Empty) : Expr(CXXDefaultInitExprClass, Empty) {}
1332
1333public:
1334 /// \p Field is the non-static data member whose default initializer is used
1335 /// by this expression.
1336 static CXXDefaultInitExpr *Create(const ASTContext &Ctx, SourceLocation Loc,
1337 FieldDecl *Field, DeclContext *UsedContext) {
1338 return new (Ctx) CXXDefaultInitExpr(Ctx, Loc, Field, Field->getType(), UsedContext);
1339 }
1340
1341 /// Get the field whose initializer will be used.
1342 FieldDecl *getField() { return Field; }
1343 const FieldDecl *getField() const { return Field; }
1344
1345 /// Get the initialization expression that will be used.
1346 const Expr *getExpr() const {
1347 assert(Field->getInClassInitializer() && "initializer hasn't been parsed")(static_cast <bool> (Field->getInClassInitializer() &&
"initializer hasn't been parsed") ? void (0) : __assert_fail
("Field->getInClassInitializer() && \"initializer hasn't been parsed\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 1347, __extension__ __PRETTY_FUNCTION__))
;
1348 return Field->getInClassInitializer();
1349 }
1350 Expr *getExpr() {
1351 assert(Field->getInClassInitializer() && "initializer hasn't been parsed")(static_cast <bool> (Field->getInClassInitializer() &&
"initializer hasn't been parsed") ? void (0) : __assert_fail
("Field->getInClassInitializer() && \"initializer hasn't been parsed\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 1351, __extension__ __PRETTY_FUNCTION__))
;
1352 return Field->getInClassInitializer();
1353 }
1354
1355 const DeclContext *getUsedContext() const { return UsedContext; }
1356 DeclContext *getUsedContext() { return UsedContext; }
1357
1358 /// Retrieve the location where this default initializer expression was
1359 /// actually used.
1360 SourceLocation getUsedLocation() const { return getBeginLoc(); }
1361
1362 SourceLocation getBeginLoc() const { return CXXDefaultInitExprBits.Loc; }
1363 SourceLocation getEndLoc() const { return CXXDefaultInitExprBits.Loc; }
1364
1365 static bool classof(const Stmt *T) {
1366 return T->getStmtClass() == CXXDefaultInitExprClass;
1367 }
1368
1369 // Iterators
1370 child_range children() {
1371 return child_range(child_iterator(), child_iterator());
1372 }
1373
1374 const_child_range children() const {
1375 return const_child_range(const_child_iterator(), const_child_iterator());
1376 }
1377};
1378
1379/// Represents a C++ temporary.
1380class CXXTemporary {
1381 /// The destructor that needs to be called.
1382 const CXXDestructorDecl *Destructor;
1383
1384 explicit CXXTemporary(const CXXDestructorDecl *destructor)
1385 : Destructor(destructor) {}
1386
1387public:
1388 static CXXTemporary *Create(const ASTContext &C,
1389 const CXXDestructorDecl *Destructor);
1390
1391 const CXXDestructorDecl *getDestructor() const { return Destructor; }
1392
1393 void setDestructor(const CXXDestructorDecl *Dtor) {
1394 Destructor = Dtor;
1395 }
1396};
1397
1398/// Represents binding an expression to a temporary.
1399///
1400/// This ensures the destructor is called for the temporary. It should only be
1401/// needed for non-POD, non-trivially destructable class types. For example:
1402///
1403/// \code
1404/// struct S {
1405/// S() { } // User defined constructor makes S non-POD.
1406/// ~S() { } // User defined destructor makes it non-trivial.
1407/// };
1408/// void test() {
1409/// const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
1410/// }
1411/// \endcode
1412class CXXBindTemporaryExpr : public Expr {
1413 CXXTemporary *Temp = nullptr;
1414 Stmt *SubExpr = nullptr;
1415
1416 CXXBindTemporaryExpr(CXXTemporary *temp, Expr *SubExpr)
1417 : Expr(CXXBindTemporaryExprClass, SubExpr->getType(), VK_PRValue,
1418 OK_Ordinary),
1419 Temp(temp), SubExpr(SubExpr) {
1420 setDependence(computeDependence(this));
1421 }
1422
1423public:
1424 CXXBindTemporaryExpr(EmptyShell Empty)
1425 : Expr(CXXBindTemporaryExprClass, Empty) {}
1426
1427 static CXXBindTemporaryExpr *Create(const ASTContext &C, CXXTemporary *Temp,
1428 Expr* SubExpr);
1429
1430 CXXTemporary *getTemporary() { return Temp; }
1431 const CXXTemporary *getTemporary() const { return Temp; }
1432 void setTemporary(CXXTemporary *T) { Temp = T; }
1433
1434 const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
1435 Expr *getSubExpr() { return cast<Expr>(SubExpr); }
1436 void setSubExpr(Expr *E) { SubExpr = E; }
1437
1438 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
1439 return SubExpr->getBeginLoc();
1440 }
1441
1442 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
1443 return SubExpr->getEndLoc();
1444 }
1445
1446 // Implement isa/cast/dyncast/etc.
1447 static bool classof(const Stmt *T) {
1448 return T->getStmtClass() == CXXBindTemporaryExprClass;
1449 }
1450
1451 // Iterators
1452 child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
1453
1454 const_child_range children() const {
1455 return const_child_range(&SubExpr, &SubExpr + 1);
1456 }
1457};
1458
1459/// Represents a call to a C++ constructor.
1460class CXXConstructExpr : public Expr {
1461 friend class ASTStmtReader;
1462
1463public:
1464 enum ConstructionKind {
1465 CK_Complete,
1466 CK_NonVirtualBase,
1467 CK_VirtualBase,
1468 CK_Delegating
1469 };
1470
1471private:
1472 /// A pointer to the constructor which will be ultimately called.
1473 CXXConstructorDecl *Constructor;
1474
1475 SourceRange ParenOrBraceRange;
1476
1477 /// The number of arguments.
1478 unsigned NumArgs;
1479
1480 // We would like to stash the arguments of the constructor call after
1481 // CXXConstructExpr. However CXXConstructExpr is used as a base class of
1482 // CXXTemporaryObjectExpr which makes the use of llvm::TrailingObjects
1483 // impossible.
1484 //
1485 // Instead we manually stash the trailing object after the full object
1486 // containing CXXConstructExpr (that is either CXXConstructExpr or
1487 // CXXTemporaryObjectExpr).
1488 //
1489 // The trailing objects are:
1490 //
1491 // * An array of getNumArgs() "Stmt *" for the arguments of the
1492 // constructor call.
1493
1494 /// Return a pointer to the start of the trailing arguments.
1495 /// Defined just after CXXTemporaryObjectExpr.
1496 inline Stmt **getTrailingArgs();
1497 const Stmt *const *getTrailingArgs() const {
1498 return const_cast<CXXConstructExpr *>(this)->getTrailingArgs();
1499 }
1500
1501protected:
1502 /// Build a C++ construction expression.
1503 CXXConstructExpr(StmtClass SC, QualType Ty, SourceLocation Loc,
1504 CXXConstructorDecl *Ctor, bool Elidable,
1505 ArrayRef<Expr *> Args, bool HadMultipleCandidates,
1506 bool ListInitialization, bool StdInitListInitialization,
1507 bool ZeroInitialization, ConstructionKind ConstructKind,
1508 SourceRange ParenOrBraceRange);
1509
1510 /// Build an empty C++ construction expression.
1511 CXXConstructExpr(StmtClass SC, EmptyShell Empty, unsigned NumArgs);
1512
1513 /// Return the size in bytes of the trailing objects. Used by
1514 /// CXXTemporaryObjectExpr to allocate the right amount of storage.
1515 static unsigned sizeOfTrailingObjects(unsigned NumArgs) {
1516 return NumArgs * sizeof(Stmt *);
1517 }
1518
1519public:
1520 /// Create a C++ construction expression.
1521 static CXXConstructExpr *
1522 Create(const ASTContext &Ctx, QualType Ty, SourceLocation Loc,
1523 CXXConstructorDecl *Ctor, bool Elidable, ArrayRef<Expr *> Args,
1524 bool HadMultipleCandidates, bool ListInitialization,
1525 bool StdInitListInitialization, bool ZeroInitialization,
1526 ConstructionKind ConstructKind, SourceRange ParenOrBraceRange);
1527
1528 /// Create an empty C++ construction expression.
1529 static CXXConstructExpr *CreateEmpty(const ASTContext &Ctx, unsigned NumArgs);
1530
1531 /// Get the constructor that this expression will (ultimately) call.
1532 CXXConstructorDecl *getConstructor() const { return Constructor; }
1533
1534 SourceLocation getLocation() const { return CXXConstructExprBits.Loc; }
1535 void setLocation(SourceLocation Loc) { CXXConstructExprBits.Loc = Loc; }
1536
1537 /// Whether this construction is elidable.
1538 bool isElidable() const { return CXXConstructExprBits.Elidable; }
1539 void setElidable(bool E) { CXXConstructExprBits.Elidable = E; }
1540
1541 /// Whether the referred constructor was resolved from
1542 /// an overloaded set having size greater than 1.
1543 bool hadMultipleCandidates() const {
1544 return CXXConstructExprBits.HadMultipleCandidates;
1545 }
1546 void setHadMultipleCandidates(bool V) {
1547 CXXConstructExprBits.HadMultipleCandidates = V;
1548 }
1549
1550 /// Whether this constructor call was written as list-initialization.
1551 bool isListInitialization() const {
1552 return CXXConstructExprBits.ListInitialization;
1553 }
1554 void setListInitialization(bool V) {
1555 CXXConstructExprBits.ListInitialization = V;
1556 }
1557
1558 /// Whether this constructor call was written as list-initialization,
1559 /// but was interpreted as forming a std::initializer_list<T> from the list
1560 /// and passing that as a single constructor argument.
1561 /// See C++11 [over.match.list]p1 bullet 1.
1562 bool isStdInitListInitialization() const {
1563 return CXXConstructExprBits.StdInitListInitialization;
1564 }
1565 void setStdInitListInitialization(bool V) {
1566 CXXConstructExprBits.StdInitListInitialization = V;
1567 }
1568
1569 /// Whether this construction first requires
1570 /// zero-initialization before the initializer is called.
1571 bool requiresZeroInitialization() const {
1572 return CXXConstructExprBits.ZeroInitialization;
1573 }
1574 void setRequiresZeroInitialization(bool ZeroInit) {
1575 CXXConstructExprBits.ZeroInitialization = ZeroInit;
1576 }
1577
1578 /// Determine whether this constructor is actually constructing
1579 /// a base class (rather than a complete object).
1580 ConstructionKind getConstructionKind() const {
1581 return static_cast<ConstructionKind>(CXXConstructExprBits.ConstructionKind);
1582 }
1583 void setConstructionKind(ConstructionKind CK) {
1584 CXXConstructExprBits.ConstructionKind = CK;
1585 }
1586
1587 using arg_iterator = ExprIterator;
1588 using const_arg_iterator = ConstExprIterator;
1589 using arg_range = llvm::iterator_range<arg_iterator>;
1590 using const_arg_range = llvm::iterator_range<const_arg_iterator>;
1591
1592 arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
1593 const_arg_range arguments() const {
1594 return const_arg_range(arg_begin(), arg_end());
1595 }
1596
1597 arg_iterator arg_begin() { return getTrailingArgs(); }
1598 arg_iterator arg_end() { return arg_begin() + getNumArgs(); }
1599 const_arg_iterator arg_begin() const { return getTrailingArgs(); }
1600 const_arg_iterator arg_end() const { return arg_begin() + getNumArgs(); }
1601
1602 Expr **getArgs() { return reinterpret_cast<Expr **>(getTrailingArgs()); }
1603 const Expr *const *getArgs() const {
1604 return reinterpret_cast<const Expr *const *>(getTrailingArgs());
1605 }
1606
1607 /// Return the number of arguments to the constructor call.
1608 unsigned getNumArgs() const { return NumArgs; }
1609
1610 /// Return the specified argument.
1611 Expr *getArg(unsigned Arg) {
1612 assert(Arg < getNumArgs() && "Arg access out of range!")(static_cast <bool> (Arg < getNumArgs() && "Arg access out of range!"
) ? void (0) : __assert_fail ("Arg < getNumArgs() && \"Arg access out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 1612, __extension__ __PRETTY_FUNCTION__))
;
1613 return getArgs()[Arg];
1614 }
1615 const Expr *getArg(unsigned Arg) const {
1616 assert(Arg < getNumArgs() && "Arg access out of range!")(static_cast <bool> (Arg < getNumArgs() && "Arg access out of range!"
) ? void (0) : __assert_fail ("Arg < getNumArgs() && \"Arg access out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 1616, __extension__ __PRETTY_FUNCTION__))
;
1617 return getArgs()[Arg];
1618 }
1619
1620 /// Set the specified argument.
1621 void setArg(unsigned Arg, Expr *ArgExpr) {
1622 assert(Arg < getNumArgs() && "Arg access out of range!")(static_cast <bool> (Arg < getNumArgs() && "Arg access out of range!"
) ? void (0) : __assert_fail ("Arg < getNumArgs() && \"Arg access out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 1622, __extension__ __PRETTY_FUNCTION__))
;
1623 getArgs()[Arg] = ArgExpr;
1624 }
1625
1626 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__));
1627 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__));
1628 SourceRange getParenOrBraceRange() const { return ParenOrBraceRange; }
1629 void setParenOrBraceRange(SourceRange Range) { ParenOrBraceRange = Range; }
1630
1631 static bool classof(const Stmt *T) {
1632 return T->getStmtClass() == CXXConstructExprClass ||
1633 T->getStmtClass() == CXXTemporaryObjectExprClass;
1634 }
1635
1636 // Iterators
1637 child_range children() {
1638 return child_range(getTrailingArgs(), getTrailingArgs() + getNumArgs());
1639 }
1640
1641 const_child_range children() const {
1642 auto Children = const_cast<CXXConstructExpr *>(this)->children();
1643 return const_child_range(Children.begin(), Children.end());
1644 }
1645};
1646
1647/// Represents a call to an inherited base class constructor from an
1648/// inheriting constructor. This call implicitly forwards the arguments from
1649/// the enclosing context (an inheriting constructor) to the specified inherited
1650/// base class constructor.
1651class CXXInheritedCtorInitExpr : public Expr {
1652private:
1653 CXXConstructorDecl *Constructor = nullptr;
1654
1655 /// The location of the using declaration.
1656 SourceLocation Loc;
1657
1658 /// Whether this is the construction of a virtual base.
1659 unsigned ConstructsVirtualBase : 1;
1660
1661 /// Whether the constructor is inherited from a virtual base class of the
1662 /// class that we construct.
1663 unsigned InheritedFromVirtualBase : 1;
1664
1665public:
1666 friend class ASTStmtReader;
1667
1668 /// Construct a C++ inheriting construction expression.
1669 CXXInheritedCtorInitExpr(SourceLocation Loc, QualType T,
1670 CXXConstructorDecl *Ctor, bool ConstructsVirtualBase,
1671 bool InheritedFromVirtualBase)
1672 : Expr(CXXInheritedCtorInitExprClass, T, VK_PRValue, OK_Ordinary),
1673 Constructor(Ctor), Loc(Loc),
1674 ConstructsVirtualBase(ConstructsVirtualBase),
1675 InheritedFromVirtualBase(InheritedFromVirtualBase) {
1676 assert(!T->isDependentType())(static_cast <bool> (!T->isDependentType()) ? void (
0) : __assert_fail ("!T->isDependentType()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 1676, __extension__ __PRETTY_FUNCTION__))
;
1677 setDependence(ExprDependence::None);
1678 }
1679
1680 /// Construct an empty C++ inheriting construction expression.
1681 explicit CXXInheritedCtorInitExpr(EmptyShell Empty)
1682 : Expr(CXXInheritedCtorInitExprClass, Empty),
1683 ConstructsVirtualBase(false), InheritedFromVirtualBase(false) {}
1684
1685 /// Get the constructor that this expression will call.
1686 CXXConstructorDecl *getConstructor() const { return Constructor; }
1687
1688 /// Determine whether this constructor is actually constructing
1689 /// a base class (rather than a complete object).
1690 bool constructsVBase() const { return ConstructsVirtualBase; }
1691 CXXConstructExpr::ConstructionKind getConstructionKind() const {
1692 return ConstructsVirtualBase ? CXXConstructExpr::CK_VirtualBase
1693 : CXXConstructExpr::CK_NonVirtualBase;
1694 }
1695
1696 /// Determine whether the inherited constructor is inherited from a
1697 /// virtual base of the object we construct. If so, we are not responsible
1698 /// for calling the inherited constructor (the complete object constructor
1699 /// does that), and so we don't need to pass any arguments.
1700 bool inheritedFromVBase() const { return InheritedFromVirtualBase; }
1701
1702 SourceLocation getLocation() const LLVM_READONLY__attribute__((__pure__)) { return Loc; }
1703 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return Loc; }
1704 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return Loc; }
1705
1706 static bool classof(const Stmt *T) {
1707 return T->getStmtClass() == CXXInheritedCtorInitExprClass;
1708 }
1709
1710 child_range children() {
1711 return child_range(child_iterator(), child_iterator());
1712 }
1713
1714 const_child_range children() const {
1715 return const_child_range(const_child_iterator(), const_child_iterator());
1716 }
1717};
1718
1719/// Represents an explicit C++ type conversion that uses "functional"
1720/// notation (C++ [expr.type.conv]).
1721///
1722/// Example:
1723/// \code
1724/// x = int(0.5);
1725/// \endcode
1726class CXXFunctionalCastExpr final
1727 : public ExplicitCastExpr,
1728 private llvm::TrailingObjects<CXXFunctionalCastExpr, CXXBaseSpecifier *,
1729 FPOptionsOverride> {
1730 SourceLocation LParenLoc;
1731 SourceLocation RParenLoc;
1732
1733 CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
1734 TypeSourceInfo *writtenTy, CastKind kind,
1735 Expr *castExpr, unsigned pathSize,
1736 FPOptionsOverride FPO, SourceLocation lParenLoc,
1737 SourceLocation rParenLoc)
1738 : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind, castExpr,
1739 pathSize, FPO.requiresTrailingStorage(), writtenTy),
1740 LParenLoc(lParenLoc), RParenLoc(rParenLoc) {
1741 if (hasStoredFPFeatures())
1742 *getTrailingFPFeatures() = FPO;
1743 }
1744
1745 explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize,
1746 bool HasFPFeatures)
1747 : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize,
1748 HasFPFeatures) {}
1749
1750 unsigned numTrailingObjects(OverloadToken<CXXBaseSpecifier *>) const {
1751 return path_size();
1752 }
1753
1754public:
1755 friend class CastExpr;
1756 friend TrailingObjects;
1757
1758 static CXXFunctionalCastExpr *
1759 Create(const ASTContext &Context, QualType T, ExprValueKind VK,
1760 TypeSourceInfo *Written, CastKind Kind, Expr *Op,
1761 const CXXCastPath *Path, FPOptionsOverride FPO, SourceLocation LPLoc,
1762 SourceLocation RPLoc);
1763 static CXXFunctionalCastExpr *
1764 CreateEmpty(const ASTContext &Context, unsigned PathSize, bool HasFPFeatures);
1765
1766 SourceLocation getLParenLoc() const { return LParenLoc; }
1767 void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1768 SourceLocation getRParenLoc() const { return RParenLoc; }
1769 void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1770
1771 /// Determine whether this expression models list-initialization.
1772 bool isListInitialization() const { return LParenLoc.isInvalid(); }
1773
1774 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__));
1775 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__));
1776
1777 static bool classof(const Stmt *T) {
1778 return T->getStmtClass() == CXXFunctionalCastExprClass;
1779 }
1780};
1781
1782/// Represents a C++ functional cast expression that builds a
1783/// temporary object.
1784///
1785/// This expression type represents a C++ "functional" cast
1786/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
1787/// constructor to build a temporary object. With N == 1 arguments the
1788/// functional cast expression will be represented by CXXFunctionalCastExpr.
1789/// Example:
1790/// \code
1791/// struct X { X(int, float); }
1792///
1793/// X create_X() {
1794/// return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
1795/// };
1796/// \endcode
1797class CXXTemporaryObjectExpr final : public CXXConstructExpr {
1798 friend class ASTStmtReader;
1799
1800 // CXXTemporaryObjectExpr has some trailing objects belonging
1801 // to CXXConstructExpr. See the comment inside CXXConstructExpr
1802 // for more details.
1803
1804 TypeSourceInfo *TSI;
1805
1806 CXXTemporaryObjectExpr(CXXConstructorDecl *Cons, QualType Ty,
1807 TypeSourceInfo *TSI, ArrayRef<Expr *> Args,
1808 SourceRange ParenOrBraceRange,
1809 bool HadMultipleCandidates, bool ListInitialization,
1810 bool StdInitListInitialization,
1811 bool ZeroInitialization);
1812
1813 CXXTemporaryObjectExpr(EmptyShell Empty, unsigned NumArgs);
1814
1815public:
1816 static CXXTemporaryObjectExpr *
1817 Create(const ASTContext &Ctx, CXXConstructorDecl *Cons, QualType Ty,
1818 TypeSourceInfo *TSI, ArrayRef<Expr *> Args,
1819 SourceRange ParenOrBraceRange, bool HadMultipleCandidates,
1820 bool ListInitialization, bool StdInitListInitialization,
1821 bool ZeroInitialization);
1822
1823 static CXXTemporaryObjectExpr *CreateEmpty(const ASTContext &Ctx,
1824 unsigned NumArgs);
1825
1826 TypeSourceInfo *getTypeSourceInfo() const { return TSI; }
1827
1828 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__));
1829 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__));
1830
1831 static bool classof(const Stmt *T) {
1832 return T->getStmtClass() == CXXTemporaryObjectExprClass;
1833 }
1834};
1835
1836Stmt **CXXConstructExpr::getTrailingArgs() {
1837 if (auto *E = dyn_cast<CXXTemporaryObjectExpr>(this))
1838 return reinterpret_cast<Stmt **>(E + 1);
1839 assert((getStmtClass() == CXXConstructExprClass) &&(static_cast <bool> ((getStmtClass() == CXXConstructExprClass
) && "Unexpected class deriving from CXXConstructExpr!"
) ? void (0) : __assert_fail ("(getStmtClass() == CXXConstructExprClass) && \"Unexpected class deriving from CXXConstructExpr!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 1840, __extension__ __PRETTY_FUNCTION__))
1840 "Unexpected class deriving from CXXConstructExpr!")(static_cast <bool> ((getStmtClass() == CXXConstructExprClass
) && "Unexpected class deriving from CXXConstructExpr!"
) ? void (0) : __assert_fail ("(getStmtClass() == CXXConstructExprClass) && \"Unexpected class deriving from CXXConstructExpr!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 1840, __extension__ __PRETTY_FUNCTION__))
;
1841 return reinterpret_cast<Stmt **>(this + 1);
1842}
1843
1844/// A C++ lambda expression, which produces a function object
1845/// (of unspecified type) that can be invoked later.
1846///
1847/// Example:
1848/// \code
1849/// void low_pass_filter(std::vector<double> &values, double cutoff) {
1850/// values.erase(std::remove_if(values.begin(), values.end(),
1851/// [=](double value) { return value > cutoff; });
1852/// }
1853/// \endcode
1854///
1855/// C++11 lambda expressions can capture local variables, either by copying
1856/// the values of those local variables at the time the function
1857/// object is constructed (not when it is called!) or by holding a
1858/// reference to the local variable. These captures can occur either
1859/// implicitly or can be written explicitly between the square
1860/// brackets ([...]) that start the lambda expression.
1861///
1862/// C++1y introduces a new form of "capture" called an init-capture that
1863/// includes an initializing expression (rather than capturing a variable),
1864/// and which can never occur implicitly.
1865class LambdaExpr final : public Expr,
1866 private llvm::TrailingObjects<LambdaExpr, Stmt *> {
1867 // LambdaExpr has some data stored in LambdaExprBits.
1868
1869 /// The source range that covers the lambda introducer ([...]).
1870 SourceRange IntroducerRange;
1871
1872 /// The source location of this lambda's capture-default ('=' or '&').
1873 SourceLocation CaptureDefaultLoc;
1874
1875 /// The location of the closing brace ('}') that completes
1876 /// the lambda.
1877 ///
1878 /// The location of the brace is also available by looking up the
1879 /// function call operator in the lambda class. However, it is
1880 /// stored here to improve the performance of getSourceRange(), and
1881 /// to avoid having to deserialize the function call operator from a
1882 /// module file just to determine the source range.
1883 SourceLocation ClosingBrace;
1884
1885 /// Construct a lambda expression.
1886 LambdaExpr(QualType T, SourceRange IntroducerRange,
1887 LambdaCaptureDefault CaptureDefault,
1888 SourceLocation CaptureDefaultLoc, bool ExplicitParams,
1889 bool ExplicitResultType, ArrayRef<Expr *> CaptureInits,
1890 SourceLocation ClosingBrace, bool ContainsUnexpandedParameterPack);
1891
1892 /// Construct an empty lambda expression.
1893 LambdaExpr(EmptyShell Empty, unsigned NumCaptures);
1894
1895 Stmt **getStoredStmts() { return getTrailingObjects<Stmt *>(); }
1896 Stmt *const *getStoredStmts() const { return getTrailingObjects<Stmt *>(); }
1897
1898 void initBodyIfNeeded() const;
1899
1900public:
1901 friend class ASTStmtReader;
1902 friend class ASTStmtWriter;
1903 friend TrailingObjects;
1904
1905 /// Construct a new lambda expression.
1906 static LambdaExpr *
1907 Create(const ASTContext &C, CXXRecordDecl *Class, SourceRange IntroducerRange,
1908 LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc,
1909 bool ExplicitParams, bool ExplicitResultType,
1910 ArrayRef<Expr *> CaptureInits, SourceLocation ClosingBrace,
1911 bool ContainsUnexpandedParameterPack);
1912
1913 /// Construct a new lambda expression that will be deserialized from
1914 /// an external source.
1915 static LambdaExpr *CreateDeserialized(const ASTContext &C,
1916 unsigned NumCaptures);
1917
1918 /// Determine the default capture kind for this lambda.
1919 LambdaCaptureDefault getCaptureDefault() const {
1920 return static_cast<LambdaCaptureDefault>(LambdaExprBits.CaptureDefault);
1921 }
1922
1923 /// Retrieve the location of this lambda's capture-default, if any.
1924 SourceLocation getCaptureDefaultLoc() const { return CaptureDefaultLoc; }
1925
1926 /// Determine whether one of this lambda's captures is an init-capture.
1927 bool isInitCapture(const LambdaCapture *Capture) const;
1928
1929 /// An iterator that walks over the captures of the lambda,
1930 /// both implicit and explicit.
1931 using capture_iterator = const LambdaCapture *;
1932
1933 /// An iterator over a range of lambda captures.
1934 using capture_range = llvm::iterator_range<capture_iterator>;
1935
1936 /// Retrieve this lambda's captures.
1937 capture_range captures() const;
1938
1939 /// Retrieve an iterator pointing to the first lambda capture.
1940 capture_iterator capture_begin() const;
1941
1942 /// Retrieve an iterator pointing past the end of the
1943 /// sequence of lambda captures.
1944 capture_iterator capture_end() const;
1945
1946 /// Determine the number of captures in this lambda.
1947 unsigned capture_size() const { return LambdaExprBits.NumCaptures; }
1948
1949 /// Retrieve this lambda's explicit captures.
1950 capture_range explicit_captures() const;
1951
1952 /// Retrieve an iterator pointing to the first explicit
1953 /// lambda capture.
1954 capture_iterator explicit_capture_begin() const;
1955
1956 /// Retrieve an iterator pointing past the end of the sequence of
1957 /// explicit lambda captures.
1958 capture_iterator explicit_capture_end() const;
1959
1960 /// Retrieve this lambda's implicit captures.
1961 capture_range implicit_captures() const;
1962
1963 /// Retrieve an iterator pointing to the first implicit
1964 /// lambda capture.
1965 capture_iterator implicit_capture_begin() const;
1966
1967 /// Retrieve an iterator pointing past the end of the sequence of
1968 /// implicit lambda captures.
1969 capture_iterator implicit_capture_end() const;
1970
1971 /// Iterator that walks over the capture initialization
1972 /// arguments.
1973 using capture_init_iterator = Expr **;
1974
1975 /// Const iterator that walks over the capture initialization
1976 /// arguments.
1977 /// FIXME: This interface is prone to being used incorrectly.
1978 using const_capture_init_iterator = Expr *const *;
1979
1980 /// Retrieve the initialization expressions for this lambda's captures.
1981 llvm::iterator_range<capture_init_iterator> capture_inits() {
1982 return llvm::make_range(capture_init_begin(), capture_init_end());
1983 }
1984
1985 /// Retrieve the initialization expressions for this lambda's captures.
1986 llvm::iterator_range<const_capture_init_iterator> capture_inits() const {
1987 return llvm::make_range(capture_init_begin(), capture_init_end());
1988 }
1989
1990 /// Retrieve the first initialization argument for this
1991 /// lambda expression (which initializes the first capture field).
1992 capture_init_iterator capture_init_begin() {
1993 return reinterpret_cast<Expr **>(getStoredStmts());
1994 }
1995
1996 /// Retrieve the first initialization argument for this
1997 /// lambda expression (which initializes the first capture field).
1998 const_capture_init_iterator capture_init_begin() const {
1999 return reinterpret_cast<Expr *const *>(getStoredStmts());
2000 }
2001
2002 /// Retrieve the iterator pointing one past the last
2003 /// initialization argument for this lambda expression.
2004 capture_init_iterator capture_init_end() {
2005 return capture_init_begin() + capture_size();
2006 }
2007
2008 /// Retrieve the iterator pointing one past the last
2009 /// initialization argument for this lambda expression.
2010 const_capture_init_iterator capture_init_end() const {
2011 return capture_init_begin() + capture_size();
2012 }
2013
2014 /// Retrieve the source range covering the lambda introducer,
2015 /// which contains the explicit capture list surrounded by square
2016 /// brackets ([...]).
2017 SourceRange getIntroducerRange() const { return IntroducerRange; }
2018
2019 /// Retrieve the class that corresponds to the lambda.
2020 ///
2021 /// This is the "closure type" (C++1y [expr.prim.lambda]), and stores the
2022 /// captures in its fields and provides the various operations permitted
2023 /// on a lambda (copying, calling).
2024 CXXRecordDecl *getLambdaClass() const;
2025
2026 /// Retrieve the function call operator associated with this
2027 /// lambda expression.
2028 CXXMethodDecl *getCallOperator() const;
2029
2030 /// Retrieve the function template call operator associated with this
2031 /// lambda expression.
2032 FunctionTemplateDecl *getDependentCallOperator() const;
2033
2034 /// If this is a generic lambda expression, retrieve the template
2035 /// parameter list associated with it, or else return null.
2036 TemplateParameterList *getTemplateParameterList() const;
2037
2038 /// Get the template parameters were explicitly specified (as opposed to being
2039 /// invented by use of an auto parameter).
2040 ArrayRef<NamedDecl *> getExplicitTemplateParameters() const;
2041
2042 /// Get the trailing requires clause, if any.
2043 Expr *getTrailingRequiresClause() const;
2044
2045 /// Whether this is a generic lambda.
2046 bool isGenericLambda() const { return getTemplateParameterList(); }
2047
2048 /// Retrieve the body of the lambda. This will be most of the time
2049 /// a \p CompoundStmt, but can also be \p CoroutineBodyStmt wrapping
2050 /// a \p CompoundStmt. Note that unlike functions, lambda-expressions
2051 /// cannot have a function-try-block.
2052 Stmt *getBody() const;
2053
2054 /// Retrieve the \p CompoundStmt representing the body of the lambda.
2055 /// This is a convenience function for callers who do not need
2056 /// to handle node(s) which may wrap a \p CompoundStmt.
2057 const CompoundStmt *getCompoundStmtBody() const;
2058 CompoundStmt *getCompoundStmtBody() {
2059 const auto *ConstThis = this;
2060 return const_cast<CompoundStmt *>(ConstThis->getCompoundStmtBody());
2061 }
2062
2063 /// Determine whether the lambda is mutable, meaning that any
2064 /// captures values can be modified.
2065 bool isMutable() const;
2066
2067 /// Determine whether this lambda has an explicit parameter
2068 /// list vs. an implicit (empty) parameter list.
2069 bool hasExplicitParameters() const { return LambdaExprBits.ExplicitParams; }
2070
2071 /// Whether this lambda had its result type explicitly specified.
2072 bool hasExplicitResultType() const {
2073 return LambdaExprBits.ExplicitResultType;
2074 }
2075
2076 static bool classof(const Stmt *T) {
2077 return T->getStmtClass() == LambdaExprClass;
2078 }
2079
2080 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
2081 return IntroducerRange.getBegin();
2082 }
2083
2084 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return ClosingBrace; }
2085
2086 /// Includes the captures and the body of the lambda.
2087 child_range children();
2088 const_child_range children() const;
2089};
2090
2091/// An expression "T()" which creates a value-initialized rvalue of type
2092/// T, which is a non-class type. See (C++98 [5.2.3p2]).
2093class CXXScalarValueInitExpr : public Expr {
2094 friend class ASTStmtReader;
2095
2096 TypeSourceInfo *TypeInfo;
2097
2098public:
2099 /// Create an explicitly-written scalar-value initialization
2100 /// expression.
2101 CXXScalarValueInitExpr(QualType Type, TypeSourceInfo *TypeInfo,
2102 SourceLocation RParenLoc)
2103 : Expr(CXXScalarValueInitExprClass, Type, VK_PRValue, OK_Ordinary),
2104 TypeInfo(TypeInfo) {
2105 CXXScalarValueInitExprBits.RParenLoc = RParenLoc;
2106 setDependence(computeDependence(this));
2107 }
2108
2109 explicit CXXScalarValueInitExpr(EmptyShell Shell)
2110 : Expr(CXXScalarValueInitExprClass, Shell) {}
2111
2112 TypeSourceInfo *getTypeSourceInfo() const {
2113 return TypeInfo;
2114 }
2115
2116 SourceLocation getRParenLoc() const {
2117 return CXXScalarValueInitExprBits.RParenLoc;
2118 }
2119
2120 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__));
2121 SourceLocation getEndLoc() const { return getRParenLoc(); }
2122
2123 static bool classof(const Stmt *T) {
2124 return T->getStmtClass() == CXXScalarValueInitExprClass;
2125 }
2126
2127 // Iterators
2128 child_range children() {
2129 return child_range(child_iterator(), child_iterator());
2130 }
2131
2132 const_child_range children() const {
2133 return const_child_range(const_child_iterator(), const_child_iterator());
2134 }
2135};
2136
2137/// Represents a new-expression for memory allocation and constructor
2138/// calls, e.g: "new CXXNewExpr(foo)".
2139class CXXNewExpr final
2140 : public Expr,
2141 private llvm::TrailingObjects<CXXNewExpr, Stmt *, SourceRange> {
2142 friend class ASTStmtReader;
2143 friend class ASTStmtWriter;
2144 friend TrailingObjects;
2145
2146 /// Points to the allocation function used.
2147 FunctionDecl *OperatorNew;
2148
2149 /// Points to the deallocation function used in case of error. May be null.
2150 FunctionDecl *OperatorDelete;
2151
2152 /// The allocated type-source information, as written in the source.
2153 TypeSourceInfo *AllocatedTypeInfo;
2154
2155 /// Range of the entire new expression.
2156 SourceRange Range;
2157
2158 /// Source-range of a paren-delimited initializer.
2159 SourceRange DirectInitRange;
2160
2161 // CXXNewExpr is followed by several optional trailing objects.
2162 // They are in order:
2163 //
2164 // * An optional "Stmt *" for the array size expression.
2165 // Present if and ony if isArray().
2166 //
2167 // * An optional "Stmt *" for the init expression.
2168 // Present if and only if hasInitializer().
2169 //
2170 // * An array of getNumPlacementArgs() "Stmt *" for the placement new
2171 // arguments, if any.
2172 //
2173 // * An optional SourceRange for the range covering the parenthesized type-id
2174 // if the allocated type was expressed as a parenthesized type-id.
2175 // Present if and only if isParenTypeId().
2176 unsigned arraySizeOffset() const { return 0; }
2177 unsigned initExprOffset() const { return arraySizeOffset() + isArray(); }
2178 unsigned placementNewArgsOffset() const {
2179 return initExprOffset() + hasInitializer();
2180 }
2181
2182 unsigned numTrailingObjects(OverloadToken<Stmt *>) const {
2183 return isArray() + hasInitializer() + getNumPlacementArgs();
2184 }
2185
2186 unsigned numTrailingObjects(OverloadToken<SourceRange>) const {
2187 return isParenTypeId();
2188 }
2189
2190public:
2191 enum InitializationStyle {
2192 /// New-expression has no initializer as written.
2193 NoInit,
2194
2195 /// New-expression has a C++98 paren-delimited initializer.
2196 CallInit,
2197
2198 /// New-expression has a C++11 list-initializer.
2199 ListInit
2200 };
2201
2202private:
2203 /// Build a c++ new expression.
2204 CXXNewExpr(bool IsGlobalNew, FunctionDecl *OperatorNew,
2205 FunctionDecl *OperatorDelete, bool ShouldPassAlignment,
2206 bool UsualArrayDeleteWantsSize, ArrayRef<Expr *> PlacementArgs,
2207 SourceRange TypeIdParens, Optional<Expr *> ArraySize,
2208 InitializationStyle InitializationStyle, Expr *Initializer,
2209 QualType Ty, TypeSourceInfo *AllocatedTypeInfo, SourceRange Range,
2210 SourceRange DirectInitRange);
2211
2212 /// Build an empty c++ new expression.
2213 CXXNewExpr(EmptyShell Empty, bool IsArray, unsigned NumPlacementArgs,
2214 bool IsParenTypeId);
2215
2216public:
2217 /// Create a c++ new expression.
2218 static CXXNewExpr *
2219 Create(const ASTContext &Ctx, bool IsGlobalNew, FunctionDecl *OperatorNew,
2220 FunctionDecl *OperatorDelete, bool ShouldPassAlignment,
2221 bool UsualArrayDeleteWantsSize, ArrayRef<Expr *> PlacementArgs,
2222 SourceRange TypeIdParens, Optional<Expr *> ArraySize,
2223 InitializationStyle InitializationStyle, Expr *Initializer,
2224 QualType Ty, TypeSourceInfo *AllocatedTypeInfo, SourceRange Range,
2225 SourceRange DirectInitRange);
2226
2227 /// Create an empty c++ new expression.
2228 static CXXNewExpr *CreateEmpty(const ASTContext &Ctx, bool IsArray,
2229 bool HasInit, unsigned NumPlacementArgs,
2230 bool IsParenTypeId);
2231
2232 QualType getAllocatedType() const {
2233 return getType()->castAs<PointerType>()->getPointeeType();
2234 }
2235
2236 TypeSourceInfo *getAllocatedTypeSourceInfo() const {
2237 return AllocatedTypeInfo;
2238 }
2239
2240 /// True if the allocation result needs to be null-checked.
2241 ///
2242 /// C++11 [expr.new]p13:
2243 /// If the allocation function returns null, initialization shall
2244 /// not be done, the deallocation function shall not be called,
2245 /// and the value of the new-expression shall be null.
2246 ///
2247 /// C++ DR1748:
2248 /// If the allocation function is a reserved placement allocation
2249 /// function that returns null, the behavior is undefined.
2250 ///
2251 /// An allocation function is not allowed to return null unless it
2252 /// has a non-throwing exception-specification. The '03 rule is
2253 /// identical except that the definition of a non-throwing
2254 /// exception specification is just "is it throw()?".
2255 bool shouldNullCheckAllocation() const;
2256
2257 FunctionDecl *getOperatorNew() const { return OperatorNew; }
2258 void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
2259 FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
2260 void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
2261
2262 bool isArray() const { return CXXNewExprBits.IsArray; }
2263
2264 Optional<Expr *> getArraySize() {
2265 if (!isArray())
2266 return None;
2267 return cast_or_null<Expr>(getTrailingObjects<Stmt *>()[arraySizeOffset()]);
2268 }
2269 Optional<const Expr *> getArraySize() const {
2270 if (!isArray())
2271 return None;
2272 return cast_or_null<Expr>(getTrailingObjects<Stmt *>()[arraySizeOffset()]);
2273 }
2274
2275 unsigned getNumPlacementArgs() const {
2276 return CXXNewExprBits.NumPlacementArgs;
2277 }
2278
2279 Expr **getPlacementArgs() {
2280 return reinterpret_cast<Expr **>(getTrailingObjects<Stmt *>() +
2281 placementNewArgsOffset());
2282 }
2283
2284 Expr *getPlacementArg(unsigned I) {
2285 assert((I < getNumPlacementArgs()) && "Index out of range!")(static_cast <bool> ((I < getNumPlacementArgs()) &&
"Index out of range!") ? void (0) : __assert_fail ("(I < getNumPlacementArgs()) && \"Index out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 2285, __extension__ __PRETTY_FUNCTION__))
;
2286 return getPlacementArgs()[I];
2287 }
2288 const Expr *getPlacementArg(unsigned I) const {
2289 return const_cast<CXXNewExpr *>(this)->getPlacementArg(I);
2290 }
2291
2292 bool isParenTypeId() const { return CXXNewExprBits.IsParenTypeId; }
2293 SourceRange getTypeIdParens() const {
2294 return isParenTypeId() ? getTrailingObjects<SourceRange>()[0]
2295 : SourceRange();
2296 }
2297
2298 bool isGlobalNew() const { return CXXNewExprBits.IsGlobalNew; }
2299
2300 /// Whether this new-expression has any initializer at all.
2301 bool hasInitializer() const {
2302 return CXXNewExprBits.StoredInitializationStyle > 0;
2303 }
2304
2305 /// The kind of initializer this new-expression has.
2306 InitializationStyle getInitializationStyle() const {
2307 if (CXXNewExprBits.StoredInitializationStyle == 0)
2308 return NoInit;
2309 return static_cast<InitializationStyle>(
2310 CXXNewExprBits.StoredInitializationStyle - 1);
2311 }
2312
2313 /// The initializer of this new-expression.
2314 Expr *getInitializer() {
2315 return hasInitializer()
2316 ? cast<Expr>(getTrailingObjects<Stmt *>()[initExprOffset()])
2317 : nullptr;
2318 }
2319 const Expr *getInitializer() const {
2320 return hasInitializer()
2321 ? cast<Expr>(getTrailingObjects<Stmt *>()[initExprOffset()])
2322 : nullptr;
2323 }
2324
2325 /// Returns the CXXConstructExpr from this new-expression, or null.
2326 const CXXConstructExpr *getConstructExpr() const {
2327 return dyn_cast_or_null<CXXConstructExpr>(getInitializer());
2328 }
2329
2330 /// Indicates whether the required alignment should be implicitly passed to
2331 /// the allocation function.
2332 bool passAlignment() const { return CXXNewExprBits.ShouldPassAlignment; }
2333
2334 /// Answers whether the usual array deallocation function for the
2335 /// allocated type expects the size of the allocation as a
2336 /// parameter.
2337 bool doesUsualArrayDeleteWantSize() const {
2338 return CXXNewExprBits.UsualArrayDeleteWantsSize;
2339 }
2340
2341 using arg_iterator = ExprIterator;
2342 using const_arg_iterator = ConstExprIterator;
2343
2344 llvm::iterator_range<arg_iterator> placement_arguments() {
2345 return llvm::make_range(placement_arg_begin(), placement_arg_end());
2346 }
2347
2348 llvm::iterator_range<const_arg_iterator> placement_arguments() const {
2349 return llvm::make_range(placement_arg_begin(), placement_arg_end());
2350 }
2351
2352 arg_iterator placement_arg_begin() {
2353 return getTrailingObjects<Stmt *>() + placementNewArgsOffset();
2354 }
2355 arg_iterator placement_arg_end() {
2356 return placement_arg_begin() + getNumPlacementArgs();
2357 }
2358 const_arg_iterator placement_arg_begin() const {
2359 return getTrailingObjects<Stmt *>() + placementNewArgsOffset();
2360 }
2361 const_arg_iterator placement_arg_end() const {
2362 return placement_arg_begin() + getNumPlacementArgs();
2363 }
2364
2365 using raw_arg_iterator = Stmt **;
2366
2367 raw_arg_iterator raw_arg_begin() { return getTrailingObjects<Stmt *>(); }
2368 raw_arg_iterator raw_arg_end() {
2369 return raw_arg_begin() + numTrailingObjects(OverloadToken<Stmt *>());
2370 }
2371 const_arg_iterator raw_arg_begin() const {
2372 return getTrailingObjects<Stmt *>();
2373 }
2374 const_arg_iterator raw_arg_end() const {
2375 return raw_arg_begin() + numTrailingObjects(OverloadToken<Stmt *>());
2376 }
2377
2378 SourceLocation getBeginLoc() const { return Range.getBegin(); }
2379 SourceLocation getEndLoc() const { return Range.getEnd(); }
2380
2381 SourceRange getDirectInitRange() const { return DirectInitRange; }
2382 SourceRange getSourceRange() const { return Range; }
2383
2384 static bool classof(const Stmt *T) {
2385 return T->getStmtClass() == CXXNewExprClass;
2386 }
2387
2388 // Iterators
2389 child_range children() { return child_range(raw_arg_begin(), raw_arg_end()); }
2390
2391 const_child_range children() const {
2392 return const_child_range(const_cast<CXXNewExpr *>(this)->children());
2393 }
2394};
2395
2396/// Represents a \c delete expression for memory deallocation and
2397/// destructor calls, e.g. "delete[] pArray".
2398class CXXDeleteExpr : public Expr {
2399 friend class ASTStmtReader;
2400
2401 /// Points to the operator delete overload that is used. Could be a member.
2402 FunctionDecl *OperatorDelete = nullptr;
2403
2404 /// The pointer expression to be deleted.
2405 Stmt *Argument = nullptr;
2406
2407public:
2408 CXXDeleteExpr(QualType Ty, bool GlobalDelete, bool ArrayForm,
2409 bool ArrayFormAsWritten, bool UsualArrayDeleteWantsSize,
2410 FunctionDecl *OperatorDelete, Expr *Arg, SourceLocation Loc)
2411 : Expr(CXXDeleteExprClass, Ty, VK_PRValue, OK_Ordinary),
2412 OperatorDelete(OperatorDelete), Argument(Arg) {
2413 CXXDeleteExprBits.GlobalDelete = GlobalDelete;
2414 CXXDeleteExprBits.ArrayForm = ArrayForm;
2415 CXXDeleteExprBits.ArrayFormAsWritten = ArrayFormAsWritten;
2416 CXXDeleteExprBits.UsualArrayDeleteWantsSize = UsualArrayDeleteWantsSize;
2417 CXXDeleteExprBits.Loc = Loc;
2418 setDependence(computeDependence(this));
2419 }
2420
2421 explicit CXXDeleteExpr(EmptyShell Shell) : Expr(CXXDeleteExprClass, Shell) {}
2422
2423 bool isGlobalDelete() const { return CXXDeleteExprBits.GlobalDelete; }
2424 bool isArrayForm() const { return CXXDeleteExprBits.ArrayForm; }
2425 bool isArrayFormAsWritten() const {
2426 return CXXDeleteExprBits.ArrayFormAsWritten;
2427 }
2428
2429 /// Answers whether the usual array deallocation function for the
2430 /// allocated type expects the size of the allocation as a
2431 /// parameter. This can be true even if the actual deallocation
2432 /// function that we're using doesn't want a size.
2433 bool doesUsualArrayDeleteWantSize() const {
2434 return CXXDeleteExprBits.UsualArrayDeleteWantsSize;
2435 }
2436
2437 FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
2438
2439 Expr *getArgument() { return cast<Expr>(Argument); }
2440 const Expr *getArgument() const { return cast<Expr>(Argument); }
2441
2442 /// Retrieve the type being destroyed.
2443 ///
2444 /// If the type being destroyed is a dependent type which may or may not
2445 /// be a pointer, return an invalid type.
2446 QualType getDestroyedType() const;
2447
2448 SourceLocation getBeginLoc() const { return CXXDeleteExprBits.Loc; }
2449 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
2450 return Argument->getEndLoc();
2451 }
2452
2453 static bool classof(const Stmt *T) {
2454 return T->getStmtClass() == CXXDeleteExprClass;
2455 }
2456
2457 // Iterators
2458 child_range children() { return child_range(&Argument, &Argument + 1); }
2459
2460 const_child_range children() const {
2461 return const_child_range(&Argument, &Argument + 1);
2462 }
2463};
2464
2465/// Stores the type being destroyed by a pseudo-destructor expression.
2466class PseudoDestructorTypeStorage {
2467 /// Either the type source information or the name of the type, if
2468 /// it couldn't be resolved due to type-dependence.
2469 llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
2470
2471 /// The starting source location of the pseudo-destructor type.
2472 SourceLocation Location;
2473
2474public:
2475 PseudoDestructorTypeStorage() = default;
2476
2477 PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
2478 : Type(II), Location(Loc) {}
2479
2480 PseudoDestructorTypeStorage(TypeSourceInfo *Info);
2481
2482 TypeSourceInfo *getTypeSourceInfo() const {
2483 return Type.dyn_cast<TypeSourceInfo *>();
2484 }
2485
2486 IdentifierInfo *getIdentifier() const {
2487 return Type.dyn_cast<IdentifierInfo *>();
2488 }
2489
2490 SourceLocation getLocation() const { return Location; }
2491};
2492
2493/// Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
2494///
2495/// A pseudo-destructor is an expression that looks like a member access to a
2496/// destructor of a scalar type, except that scalar types don't have
2497/// destructors. For example:
2498///
2499/// \code
2500/// typedef int T;
2501/// void f(int *p) {
2502/// p->T::~T();
2503/// }
2504/// \endcode
2505///
2506/// Pseudo-destructors typically occur when instantiating templates such as:
2507///
2508/// \code
2509/// template<typename T>
2510/// void destroy(T* ptr) {
2511/// ptr->T::~T();
2512/// }
2513/// \endcode
2514///
2515/// for scalar types. A pseudo-destructor expression has no run-time semantics
2516/// beyond evaluating the base expression.
2517class CXXPseudoDestructorExpr : public Expr {
2518 friend class ASTStmtReader;
2519
2520 /// The base expression (that is being destroyed).
2521 Stmt *Base = nullptr;
2522
2523 /// Whether the operator was an arrow ('->'); otherwise, it was a
2524 /// period ('.').
2525 bool IsArrow : 1;
2526
2527 /// The location of the '.' or '->' operator.
2528 SourceLocation OperatorLoc;
2529
2530 /// The nested-name-specifier that follows the operator, if present.
2531 NestedNameSpecifierLoc QualifierLoc;
2532
2533 /// The type that precedes the '::' in a qualified pseudo-destructor
2534 /// expression.
2535 TypeSourceInfo *ScopeType = nullptr;
2536
2537 /// The location of the '::' in a qualified pseudo-destructor
2538 /// expression.
2539 SourceLocation ColonColonLoc;
2540
2541 /// The location of the '~'.
2542 SourceLocation TildeLoc;
2543
2544 /// The type being destroyed, or its name if we were unable to
2545 /// resolve the name.
2546 PseudoDestructorTypeStorage DestroyedType;
2547
2548public:
2549 CXXPseudoDestructorExpr(const ASTContext &Context,
2550 Expr *Base, bool isArrow, SourceLocation OperatorLoc,
2551 NestedNameSpecifierLoc QualifierLoc,
2552 TypeSourceInfo *ScopeType,
2553 SourceLocation ColonColonLoc,
2554 SourceLocation TildeLoc,
2555 PseudoDestructorTypeStorage DestroyedType);
2556
2557 explicit CXXPseudoDestructorExpr(EmptyShell Shell)
2558 : Expr(CXXPseudoDestructorExprClass, Shell), IsArrow(false) {}
2559
2560 Expr *getBase() const { return cast<Expr>(Base); }
2561
2562 /// Determines whether this member expression actually had
2563 /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2564 /// x->Base::foo.
2565 bool hasQualifier() const { return QualifierLoc.hasQualifier(); }
2566
2567 /// Retrieves the nested-name-specifier that qualifies the type name,
2568 /// with source-location information.
2569 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2570
2571 /// If the member name was qualified, retrieves the
2572 /// nested-name-specifier that precedes the member name. Otherwise, returns
2573 /// null.
2574 NestedNameSpecifier *getQualifier() const {
2575 return QualifierLoc.getNestedNameSpecifier();
2576 }
2577
2578 /// Determine whether this pseudo-destructor expression was written
2579 /// using an '->' (otherwise, it used a '.').
2580 bool isArrow() const { return IsArrow; }
2581
2582 /// Retrieve the location of the '.' or '->' operator.
2583 SourceLocation getOperatorLoc() const { return OperatorLoc; }
2584
2585 /// Retrieve the scope type in a qualified pseudo-destructor
2586 /// expression.
2587 ///
2588 /// Pseudo-destructor expressions can have extra qualification within them
2589 /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
2590 /// Here, if the object type of the expression is (or may be) a scalar type,
2591 /// \p T may also be a scalar type and, therefore, cannot be part of a
2592 /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
2593 /// destructor expression.
2594 TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
2595
2596 /// Retrieve the location of the '::' in a qualified pseudo-destructor
2597 /// expression.
2598 SourceLocation getColonColonLoc() const { return ColonColonLoc; }
2599
2600 /// Retrieve the location of the '~'.
2601 SourceLocation getTildeLoc() const { return TildeLoc; }
2602
2603 /// Retrieve the source location information for the type
2604 /// being destroyed.
2605 ///
2606 /// This type-source information is available for non-dependent
2607 /// pseudo-destructor expressions and some dependent pseudo-destructor
2608 /// expressions. Returns null if we only have the identifier for a
2609 /// dependent pseudo-destructor expression.
2610 TypeSourceInfo *getDestroyedTypeInfo() const {
2611 return DestroyedType.getTypeSourceInfo();
2612 }
2613
2614 /// In a dependent pseudo-destructor expression for which we do not
2615 /// have full type information on the destroyed type, provides the name
2616 /// of the destroyed type.
2617 IdentifierInfo *getDestroyedTypeIdentifier() const {
2618 return DestroyedType.getIdentifier();
2619 }
2620
2621 /// Retrieve the type being destroyed.
2622 QualType getDestroyedType() const;
2623
2624 /// Retrieve the starting location of the type being destroyed.
2625 SourceLocation getDestroyedTypeLoc() const {
2626 return DestroyedType.getLocation();
2627 }
2628
2629 /// Set the name of destroyed type for a dependent pseudo-destructor
2630 /// expression.
2631 void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
2632 DestroyedType = PseudoDestructorTypeStorage(II, Loc);
2633 }
2634
2635 /// Set the destroyed type.
2636 void setDestroyedType(TypeSourceInfo *Info) {
2637 DestroyedType = PseudoDestructorTypeStorage(Info);
2638 }
2639
2640 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
2641 return Base->getBeginLoc();
2642 }
2643 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__));
2644
2645 static bool classof(const Stmt *T) {
2646 return T->getStmtClass() == CXXPseudoDestructorExprClass;
2647 }
2648
2649 // Iterators
2650 child_range children() { return child_range(&Base, &Base + 1); }
2651
2652 const_child_range children() const {
2653 return const_child_range(&Base, &Base + 1);
2654 }
2655};
2656
2657/// A type trait used in the implementation of various C++11 and
2658/// Library TR1 trait templates.
2659///
2660/// \code
2661/// __is_pod(int) == true
2662/// __is_enum(std::string) == false
2663/// __is_trivially_constructible(vector<int>, int*, int*)
2664/// \endcode
2665class TypeTraitExpr final
2666 : public Expr,
2667 private llvm::TrailingObjects<TypeTraitExpr, TypeSourceInfo *> {
2668 /// The location of the type trait keyword.
2669 SourceLocation Loc;
2670
2671 /// The location of the closing parenthesis.
2672 SourceLocation RParenLoc;
2673
2674 // Note: The TypeSourceInfos for the arguments are allocated after the
2675 // TypeTraitExpr.
2676
2677 TypeTraitExpr(QualType T, SourceLocation Loc, TypeTrait Kind,
2678 ArrayRef<TypeSourceInfo *> Args,
2679 SourceLocation RParenLoc,
2680 bool Value);
2681
2682 TypeTraitExpr(EmptyShell Empty) : Expr(TypeTraitExprClass, Empty) {}
2683
2684 size_t numTrailingObjects(OverloadToken<TypeSourceInfo *>) const {
2685 return getNumArgs();
2686 }
2687
2688public:
2689 friend class ASTStmtReader;
2690 friend class ASTStmtWriter;
2691 friend TrailingObjects;
2692
2693 /// Create a new type trait expression.
2694 static TypeTraitExpr *Create(const ASTContext &C, QualType T,
2695 SourceLocation Loc, TypeTrait Kind,
2696 ArrayRef<TypeSourceInfo *> Args,
2697 SourceLocation RParenLoc,
2698 bool Value);
2699
2700 static TypeTraitExpr *CreateDeserialized(const ASTContext &C,
2701 unsigned NumArgs);
2702
2703 /// Determine which type trait this expression uses.
2704 TypeTrait getTrait() const {
2705 return static_cast<TypeTrait>(TypeTraitExprBits.Kind);
2706 }
2707
2708 bool getValue() const {
2709 assert(!isValueDependent())(static_cast <bool> (!isValueDependent()) ? void (0) : __assert_fail
("!isValueDependent()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 2709, __extension__ __PRETTY_FUNCTION__))
;
2710 return TypeTraitExprBits.Value;
2711 }
2712
2713 /// Determine the number of arguments to this type trait.
2714 unsigned getNumArgs() const { return TypeTraitExprBits.NumArgs; }
2715
2716 /// Retrieve the Ith argument.
2717 TypeSourceInfo *getArg(unsigned I) const {
2718 assert(I < getNumArgs() && "Argument out-of-range")(static_cast <bool> (I < getNumArgs() && "Argument out-of-range"
) ? void (0) : __assert_fail ("I < getNumArgs() && \"Argument out-of-range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 2718, __extension__ __PRETTY_FUNCTION__))
;
2719 return getArgs()[I];
2720 }
2721
2722 /// Retrieve the argument types.
2723 ArrayRef<TypeSourceInfo *> getArgs() const {
2724 return llvm::makeArrayRef(getTrailingObjects<TypeSourceInfo *>(),
2725 getNumArgs());
2726 }
2727
2728 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return Loc; }
2729 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return RParenLoc; }
2730
2731 static bool classof(const Stmt *T) {
2732 return T->getStmtClass() == TypeTraitExprClass;
2733 }
2734
2735 // Iterators
2736 child_range children() {
2737 return child_range(child_iterator(), child_iterator());
2738 }
2739
2740 const_child_range children() const {
2741 return const_child_range(const_child_iterator(), const_child_iterator());
2742 }
2743};
2744
2745/// An Embarcadero array type trait, as used in the implementation of
2746/// __array_rank and __array_extent.
2747///
2748/// Example:
2749/// \code
2750/// __array_rank(int[10][20]) == 2
2751/// __array_extent(int, 1) == 20
2752/// \endcode
2753class ArrayTypeTraitExpr : public Expr {
2754 /// The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
2755 unsigned ATT : 2;
2756
2757 /// The value of the type trait. Unspecified if dependent.
2758 uint64_t Value = 0;
2759
2760 /// The array dimension being queried, or -1 if not used.
2761 Expr *Dimension;
2762
2763 /// The location of the type trait keyword.
2764 SourceLocation Loc;
2765
2766 /// The location of the closing paren.
2767 SourceLocation RParen;
2768
2769 /// The type being queried.
2770 TypeSourceInfo *QueriedType = nullptr;
2771
2772public:
2773 friend class ASTStmtReader;
2774
2775 ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
2776 TypeSourceInfo *queried, uint64_t value, Expr *dimension,
2777 SourceLocation rparen, QualType ty)
2778 : Expr(ArrayTypeTraitExprClass, ty, VK_PRValue, OK_Ordinary), ATT(att),
2779 Value(value), Dimension(dimension), Loc(loc), RParen(rparen),
2780 QueriedType(queried) {
2781 assert(att <= ATT_Last && "invalid enum value!")(static_cast <bool> (att <= ATT_Last && "invalid enum value!"
) ? void (0) : __assert_fail ("att <= ATT_Last && \"invalid enum value!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 2781, __extension__ __PRETTY_FUNCTION__))
;
2782 assert(static_cast<unsigned>(att) == ATT && "ATT overflow!")(static_cast <bool> (static_cast<unsigned>(att) ==
ATT && "ATT overflow!") ? void (0) : __assert_fail (
"static_cast<unsigned>(att) == ATT && \"ATT overflow!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 2782, __extension__ __PRETTY_FUNCTION__))
;
2783 setDependence(computeDependence(this));
2784 }
2785
2786 explicit ArrayTypeTraitExpr(EmptyShell Empty)
2787 : Expr(ArrayTypeTraitExprClass, Empty), ATT(0) {}
2788
2789 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return Loc; }
2790 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return RParen; }
2791
2792 ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
2793
2794 QualType getQueriedType() const { return QueriedType->getType(); }
2795
2796 TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
2797
2798 uint64_t getValue() const { assert(!isTypeDependent())(static_cast <bool> (!isTypeDependent()) ? void (0) : __assert_fail
("!isTypeDependent()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 2798, __extension__ __PRETTY_FUNCTION__))
; return Value; }
2799
2800 Expr *getDimensionExpression() const { return Dimension; }
2801
2802 static bool classof(const Stmt *T) {
2803 return T->getStmtClass() == ArrayTypeTraitExprClass;
2804 }
2805
2806 // Iterators
2807 child_range children() {
2808 return child_range(child_iterator(), child_iterator());
2809 }
2810
2811 const_child_range children() const {
2812 return const_child_range(const_child_iterator(), const_child_iterator());
2813 }
2814};
2815
2816/// An expression trait intrinsic.
2817///
2818/// Example:
2819/// \code
2820/// __is_lvalue_expr(std::cout) == true
2821/// __is_lvalue_expr(1) == false
2822/// \endcode
2823class ExpressionTraitExpr : public Expr {
2824 /// The trait. A ExpressionTrait enum in MSVC compatible unsigned.
2825 unsigned ET : 31;
2826
2827 /// The value of the type trait. Unspecified if dependent.
2828 unsigned Value : 1;
2829
2830 /// The location of the type trait keyword.
2831 SourceLocation Loc;
2832
2833 /// The location of the closing paren.
2834 SourceLocation RParen;
2835
2836 /// The expression being queried.
2837 Expr* QueriedExpression = nullptr;
2838
2839public:
2840 friend class ASTStmtReader;
2841
2842 ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et, Expr *queried,
2843 bool value, SourceLocation rparen, QualType resultType)
2844 : Expr(ExpressionTraitExprClass, resultType, VK_PRValue, OK_Ordinary),
2845 ET(et), Value(value), Loc(loc), RParen(rparen),
2846 QueriedExpression(queried) {
2847 assert(et <= ET_Last && "invalid enum value!")(static_cast <bool> (et <= ET_Last && "invalid enum value!"
) ? void (0) : __assert_fail ("et <= ET_Last && \"invalid enum value!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 2847, __extension__ __PRETTY_FUNCTION__))
;
2848 assert(static_cast<unsigned>(et) == ET && "ET overflow!")(static_cast <bool> (static_cast<unsigned>(et) ==
ET && "ET overflow!") ? void (0) : __assert_fail ("static_cast<unsigned>(et) == ET && \"ET overflow!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 2848, __extension__ __PRETTY_FUNCTION__))
;
2849 setDependence(computeDependence(this));
2850 }
2851
2852 explicit ExpressionTraitExpr(EmptyShell Empty)
2853 : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false) {}
2854
2855 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return Loc; }
2856 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return RParen; }
2857
2858 ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
2859
2860 Expr *getQueriedExpression() const { return QueriedExpression; }
2861
2862 bool getValue() const { return Value; }
2863
2864 static bool classof(const Stmt *T) {
2865 return T->getStmtClass() == ExpressionTraitExprClass;
2866 }
2867
2868 // Iterators
2869 child_range children() {
2870 return child_range(child_iterator(), child_iterator());
2871 }
2872
2873 const_child_range children() const {
2874 return const_child_range(const_child_iterator(), const_child_iterator());
2875 }
2876};
2877
2878/// A reference to an overloaded function set, either an
2879/// \c UnresolvedLookupExpr or an \c UnresolvedMemberExpr.
2880class OverloadExpr : public Expr {
2881 friend class ASTStmtReader;
2882 friend class ASTStmtWriter;
2883
2884 /// The common name of these declarations.
2885 DeclarationNameInfo NameInfo;
2886
2887 /// The nested-name-specifier that qualifies the name, if any.
2888 NestedNameSpecifierLoc QualifierLoc;
2889
2890protected:
2891 OverloadExpr(StmtClass SC, const ASTContext &Context,
2892 NestedNameSpecifierLoc QualifierLoc,
2893 SourceLocation TemplateKWLoc,
2894 const DeclarationNameInfo &NameInfo,
2895 const TemplateArgumentListInfo *TemplateArgs,
2896 UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2897 bool KnownDependent, bool KnownInstantiationDependent,
2898 bool KnownContainsUnexpandedParameterPack);
2899
2900 OverloadExpr(StmtClass SC, EmptyShell Empty, unsigned NumResults,
2901 bool HasTemplateKWAndArgsInfo);
2902
2903 /// Return the results. Defined after UnresolvedMemberExpr.
2904 inline DeclAccessPair *getTrailingResults();
2905 const DeclAccessPair *getTrailingResults() const {
2906 return const_cast<OverloadExpr *>(this)->getTrailingResults();
2907 }
2908
2909 /// Return the optional template keyword and arguments info.
2910 /// Defined after UnresolvedMemberExpr.
2911 inline ASTTemplateKWAndArgsInfo *getTrailingASTTemplateKWAndArgsInfo();
2912 const ASTTemplateKWAndArgsInfo *getTrailingASTTemplateKWAndArgsInfo() const {
2913 return const_cast<OverloadExpr *>(this)
2914 ->getTrailingASTTemplateKWAndArgsInfo();
2915 }
2916
2917 /// Return the optional template arguments. Defined after
2918 /// UnresolvedMemberExpr.
2919 inline TemplateArgumentLoc *getTrailingTemplateArgumentLoc();
2920 const TemplateArgumentLoc *getTrailingTemplateArgumentLoc() const {
2921 return const_cast<OverloadExpr *>(this)->getTrailingTemplateArgumentLoc();
2922 }
2923
2924 bool hasTemplateKWAndArgsInfo() const {
2925 return OverloadExprBits.HasTemplateKWAndArgsInfo;
2926 }
2927
2928public:
2929 struct FindResult {
2930 OverloadExpr *Expression;
2931 bool IsAddressOfOperand;
2932 bool HasFormOfMemberPointer;
2933 };
2934
2935 /// Finds the overloaded expression in the given expression \p E of
2936 /// OverloadTy.
2937 ///
2938 /// \return the expression (which must be there) and true if it has
2939 /// the particular form of a member pointer expression
2940 static FindResult find(Expr *E) {
2941 assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload))(static_cast <bool> (E->getType()->isSpecificBuiltinType
(BuiltinType::Overload)) ? void (0) : __assert_fail ("E->getType()->isSpecificBuiltinType(BuiltinType::Overload)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 2941, __extension__ __PRETTY_FUNCTION__))
;
2942
2943 FindResult Result;
2944
2945 E = E->IgnoreParens();
2946 if (isa<UnaryOperator>(E)) {
2947 assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf)(static_cast <bool> (cast<UnaryOperator>(E)->getOpcode
() == UO_AddrOf) ? void (0) : __assert_fail ("cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 2947, __extension__ __PRETTY_FUNCTION__))
;
2948 E = cast<UnaryOperator>(E)->getSubExpr();
2949 auto *Ovl = cast<OverloadExpr>(E->IgnoreParens());
2950
2951 Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
2952 Result.IsAddressOfOperand = true;
2953 Result.Expression = Ovl;
2954 } else {
2955 Result.HasFormOfMemberPointer = false;
2956 Result.IsAddressOfOperand = false;
2957 Result.Expression = cast<OverloadExpr>(E);
2958 }
2959
2960 return Result;
2961 }
2962
2963 /// Gets the naming class of this lookup, if any.
2964 /// Defined after UnresolvedMemberExpr.
2965 inline CXXRecordDecl *getNamingClass();
2966 const CXXRecordDecl *getNamingClass() const {
2967 return const_cast<OverloadExpr *>(this)->getNamingClass();
2968 }
2969
2970 using decls_iterator = UnresolvedSetImpl::iterator;
2971
2972 decls_iterator decls_begin() const {
2973 return UnresolvedSetIterator(getTrailingResults());
2974 }
2975 decls_iterator decls_end() const {
2976 return UnresolvedSetIterator(getTrailingResults() + getNumDecls());
2977 }
2978 llvm::iterator_range<decls_iterator> decls() const {
2979 return llvm::make_range(decls_begin(), decls_end());
2980 }
2981
2982 /// Gets the number of declarations in the unresolved set.
2983 unsigned getNumDecls() const { return OverloadExprBits.NumResults; }
2984
2985 /// Gets the full name info.
2986 const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2987
2988 /// Gets the name looked up.
2989 DeclarationName getName() const { return NameInfo.getName(); }
2990
2991 /// Gets the location of the name.
2992 SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
2993
2994 /// Fetches the nested-name qualifier, if one was given.
2995 NestedNameSpecifier *getQualifier() const {
2996 return QualifierLoc.getNestedNameSpecifier();
2997 }
2998
2999 /// Fetches the nested-name qualifier with source-location
3000 /// information, if one was given.
3001 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3002
3003 /// Retrieve the location of the template keyword preceding
3004 /// this name, if any.
3005 SourceLocation getTemplateKeywordLoc() const {
3006 if (!hasTemplateKWAndArgsInfo())
3007 return SourceLocation();
3008 return getTrailingASTTemplateKWAndArgsInfo()->TemplateKWLoc;
3009 }
3010
3011 /// Retrieve the location of the left angle bracket starting the
3012 /// explicit template argument list following the name, if any.
3013 SourceLocation getLAngleLoc() const {
3014 if (!hasTemplateKWAndArgsInfo())
3015 return SourceLocation();
3016 return getTrailingASTTemplateKWAndArgsInfo()->LAngleLoc;
3017 }
3018
3019 /// Retrieve the location of the right angle bracket ending the
3020 /// explicit template argument list following the name, if any.
3021 SourceLocation getRAngleLoc() const {
3022 if (!hasTemplateKWAndArgsInfo())
3023 return SourceLocation();
3024 return getTrailingASTTemplateKWAndArgsInfo()->RAngleLoc;
3025 }
3026
3027 /// Determines whether the name was preceded by the template keyword.
3028 bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
3029
3030 /// Determines whether this expression had explicit template arguments.
3031 bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
3032
3033 TemplateArgumentLoc const *getTemplateArgs() const {
3034 if (!hasExplicitTemplateArgs())
3035 return nullptr;
3036 return const_cast<OverloadExpr *>(this)->getTrailingTemplateArgumentLoc();
3037 }
3038
3039 unsigned getNumTemplateArgs() const {
3040 if (!hasExplicitTemplateArgs())
3041 return 0;
3042
3043 return getTrailingASTTemplateKWAndArgsInfo()->NumTemplateArgs;
3044 }
3045
3046 ArrayRef<TemplateArgumentLoc> template_arguments() const {
3047 return {getTemplateArgs(), getNumTemplateArgs()};
3048 }
3049
3050 /// Copies the template arguments into the given structure.
3051 void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
3052 if (hasExplicitTemplateArgs())
3053 getTrailingASTTemplateKWAndArgsInfo()->copyInto(getTemplateArgs(), List);
3054 }
3055
3056 static bool classof(const Stmt *T) {
3057 return T->getStmtClass() == UnresolvedLookupExprClass ||
3058 T->getStmtClass() == UnresolvedMemberExprClass;
3059 }
3060};
3061
3062/// A reference to a name which we were able to look up during
3063/// parsing but could not resolve to a specific declaration.
3064///
3065/// This arises in several ways:
3066/// * we might be waiting for argument-dependent lookup;
3067/// * the name might resolve to an overloaded function;
3068/// and eventually:
3069/// * the lookup might have included a function template.
3070///
3071/// These never include UnresolvedUsingValueDecls, which are always class
3072/// members and therefore appear only in UnresolvedMemberLookupExprs.
3073class UnresolvedLookupExpr final
3074 : public OverloadExpr,
3075 private llvm::TrailingObjects<UnresolvedLookupExpr, DeclAccessPair,
3076 ASTTemplateKWAndArgsInfo,
3077 TemplateArgumentLoc> {
3078 friend class ASTStmtReader;
3079 friend class OverloadExpr;
3080 friend TrailingObjects;
3081
3082 /// The naming class (C++ [class.access.base]p5) of the lookup, if
3083 /// any. This can generally be recalculated from the context chain,
3084 /// but that can be fairly expensive for unqualified lookups.
3085 CXXRecordDecl *NamingClass;
3086
3087 // UnresolvedLookupExpr is followed by several trailing objects.
3088 // They are in order:
3089 //
3090 // * An array of getNumResults() DeclAccessPair for the results. These are
3091 // undesugared, which is to say, they may include UsingShadowDecls.
3092 // Access is relative to the naming class.
3093 //
3094 // * An optional ASTTemplateKWAndArgsInfo for the explicitly specified
3095 // template keyword and arguments. Present if and only if
3096 // hasTemplateKWAndArgsInfo().
3097 //
3098 // * An array of getNumTemplateArgs() TemplateArgumentLoc containing
3099 // location information for the explicitly specified template arguments.
3100
3101 UnresolvedLookupExpr(const ASTContext &Context, CXXRecordDecl *NamingClass,
3102 NestedNameSpecifierLoc QualifierLoc,
3103 SourceLocation TemplateKWLoc,
3104 const DeclarationNameInfo &NameInfo, bool RequiresADL,
3105 bool Overloaded,
3106 const TemplateArgumentListInfo *TemplateArgs,
3107 UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3108
3109 UnresolvedLookupExpr(EmptyShell Empty, unsigned NumResults,
3110 bool HasTemplateKWAndArgsInfo);
3111
3112 unsigned numTrailingObjects(OverloadToken<DeclAccessPair>) const {
3113 return getNumDecls();
3114 }
3115
3116 unsigned numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
3117 return hasTemplateKWAndArgsInfo();
3118 }
3119
3120public:
3121 static UnresolvedLookupExpr *
3122 Create(const ASTContext &Context, CXXRecordDecl *NamingClass,
3123 NestedNameSpecifierLoc QualifierLoc,
3124 const DeclarationNameInfo &NameInfo, bool RequiresADL, bool Overloaded,
3125 UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3126
3127 static UnresolvedLookupExpr *
3128 Create(const ASTContext &Context, CXXRecordDecl *NamingClass,
3129 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
3130 const DeclarationNameInfo &NameInfo, bool RequiresADL,
3131 const TemplateArgumentListInfo *Args, UnresolvedSetIterator Begin,
3132 UnresolvedSetIterator End);
3133
3134 static UnresolvedLookupExpr *CreateEmpty(const ASTContext &Context,
3135 unsigned NumResults,
3136 bool HasTemplateKWAndArgsInfo,
3137 unsigned NumTemplateArgs);
3138
3139 /// True if this declaration should be extended by
3140 /// argument-dependent lookup.
3141 bool requiresADL() const { return UnresolvedLookupExprBits.RequiresADL; }
3142
3143 /// True if this lookup is overloaded.
3144 bool isOverloaded() const { return UnresolvedLookupExprBits.Overloaded; }
3145
3146 /// Gets the 'naming class' (in the sense of C++0x
3147 /// [class.access.base]p5) of the lookup. This is the scope
3148 /// that was looked in to find these results.
3149 CXXRecordDecl *getNamingClass() { return NamingClass; }
3150 const CXXRecordDecl *getNamingClass() const { return NamingClass; }
3151
3152 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
3153 if (NestedNameSpecifierLoc l = getQualifierLoc())
3154 return l.getBeginLoc();
3155 return getNameInfo().getBeginLoc();
3156 }
3157
3158 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
3159 if (hasExplicitTemplateArgs())
3160 return getRAngleLoc();
3161 return getNameInfo().getEndLoc();
3162 }
3163
3164 child_range children() {
3165 return child_range(child_iterator(), child_iterator());
3166 }
3167
3168 const_child_range children() const {
3169 return const_child_range(const_child_iterator(), const_child_iterator());
3170 }
3171
3172 static bool classof(const Stmt *T) {
3173 return T->getStmtClass() == UnresolvedLookupExprClass;
3174 }
3175};
3176
3177/// A qualified reference to a name whose declaration cannot
3178/// yet be resolved.
3179///
3180/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
3181/// it expresses a reference to a declaration such as
3182/// X<T>::value. The difference, however, is that an
3183/// DependentScopeDeclRefExpr node is used only within C++ templates when
3184/// the qualification (e.g., X<T>::) refers to a dependent type. In
3185/// this case, X<T>::value cannot resolve to a declaration because the
3186/// declaration will differ from one instantiation of X<T> to the
3187/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
3188/// qualifier (X<T>::) and the name of the entity being referenced
3189/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
3190/// declaration can be found.
3191class DependentScopeDeclRefExpr final
3192 : public Expr,
3193 private llvm::TrailingObjects<DependentScopeDeclRefExpr,
3194 ASTTemplateKWAndArgsInfo,
3195 TemplateArgumentLoc> {
3196 friend class ASTStmtReader;
3197 friend class ASTStmtWriter;
3198 friend TrailingObjects;
3199
3200 /// The nested-name-specifier that qualifies this unresolved
3201 /// declaration name.
3202 NestedNameSpecifierLoc QualifierLoc;
3203
3204 /// The name of the entity we will be referencing.
3205 DeclarationNameInfo NameInfo;
3206
3207 DependentScopeDeclRefExpr(QualType Ty, NestedNameSpecifierLoc QualifierLoc,
3208 SourceLocation TemplateKWLoc,
3209 const DeclarationNameInfo &NameInfo,
3210 const TemplateArgumentListInfo *Args);
3211
3212 size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
3213 return hasTemplateKWAndArgsInfo();
3214 }
3215
3216 bool hasTemplateKWAndArgsInfo() const {
3217 return DependentScopeDeclRefExprBits.HasTemplateKWAndArgsInfo;
3218 }
3219
3220public:
3221 static DependentScopeDeclRefExpr *
3222 Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
3223 SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo,
3224 const TemplateArgumentListInfo *TemplateArgs);
3225
3226 static DependentScopeDeclRefExpr *CreateEmpty(const ASTContext &Context,
3227 bool HasTemplateKWAndArgsInfo,
3228 unsigned NumTemplateArgs);
3229
3230 /// Retrieve the name that this expression refers to.
3231 const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
3232
3233 /// Retrieve the name that this expression refers to.
3234 DeclarationName getDeclName() const { return NameInfo.getName(); }
3235
3236 /// Retrieve the location of the name within the expression.
3237 ///
3238 /// For example, in "X<T>::value" this is the location of "value".
3239 SourceLocation getLocation() const { return NameInfo.getLoc(); }
3240
3241 /// Retrieve the nested-name-specifier that qualifies the
3242 /// name, with source location information.
3243 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3244
3245 /// Retrieve the nested-name-specifier that qualifies this
3246 /// declaration.
3247 NestedNameSpecifier *getQualifier() const {
3248 return QualifierLoc.getNestedNameSpecifier();
3249 }
3250
3251 /// Retrieve the location of the template keyword preceding
3252 /// this name, if any.
3253 SourceLocation getTemplateKeywordLoc() const {
3254 if (!hasTemplateKWAndArgsInfo())
3255 return SourceLocation();
3256 return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
3257 }
3258
3259 /// Retrieve the location of the left angle bracket starting the
3260 /// explicit template argument list following the name, if any.
3261 SourceLocation getLAngleLoc() const {
3262 if (!hasTemplateKWAndArgsInfo())
3263 return SourceLocation();
3264 return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
3265 }
3266
3267 /// Retrieve the location of the right angle bracket ending the
3268 /// explicit template argument list following the name, if any.
3269 SourceLocation getRAngleLoc() const {
3270 if (!hasTemplateKWAndArgsInfo())
3271 return SourceLocation();
3272 return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
3273 }
3274
3275 /// Determines whether the name was preceded by the template keyword.
3276 bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
3277
3278 /// Determines whether this lookup had explicit template arguments.
3279 bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
3280
3281 /// Copies the template arguments (if present) into the given
3282 /// structure.
3283 void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
3284 if (hasExplicitTemplateArgs())
3285 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
3286 getTrailingObjects<TemplateArgumentLoc>(), List);
3287 }
3288
3289 TemplateArgumentLoc const *getTemplateArgs() const {
3290 if (!hasExplicitTemplateArgs())
3291 return nullptr;
3292
3293 return getTrailingObjects<TemplateArgumentLoc>();
3294 }
3295
3296 unsigned getNumTemplateArgs() const {
3297 if (!hasExplicitTemplateArgs())
3298 return 0;
3299
3300 return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
3301 }
3302
3303 ArrayRef<TemplateArgumentLoc> template_arguments() const {
3304 return {getTemplateArgs(), getNumTemplateArgs()};
3305 }
3306
3307 /// Note: getBeginLoc() is the start of the whole DependentScopeDeclRefExpr,
3308 /// and differs from getLocation().getStart().
3309 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
3310 return QualifierLoc.getBeginLoc();
3311 }
3312
3313 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
3314 if (hasExplicitTemplateArgs())
3315 return getRAngleLoc();
3316 return getLocation();
3317 }
3318
3319 static bool classof(const Stmt *T) {
3320 return T->getStmtClass() == DependentScopeDeclRefExprClass;
3321 }
3322
3323 child_range children() {
3324 return child_range(child_iterator(), child_iterator());
3325 }
3326
3327 const_child_range children() const {
3328 return const_child_range(const_child_iterator(), const_child_iterator());
3329 }
3330};
3331
3332/// Represents an expression -- generally a full-expression -- that
3333/// introduces cleanups to be run at the end of the sub-expression's
3334/// evaluation. The most common source of expression-introduced
3335/// cleanups is temporary objects in C++, but several other kinds of
3336/// expressions can create cleanups, including basically every
3337/// call in ARC that returns an Objective-C pointer.
3338///
3339/// This expression also tracks whether the sub-expression contains a
3340/// potentially-evaluated block literal. The lifetime of a block
3341/// literal is the extent of the enclosing scope.
3342class ExprWithCleanups final
3343 : public FullExpr,
3344 private llvm::TrailingObjects<
3345 ExprWithCleanups,
3346 llvm::PointerUnion<BlockDecl *, CompoundLiteralExpr *>> {
3347public:
3348 /// The type of objects that are kept in the cleanup.
3349 /// It's useful to remember the set of blocks and block-scoped compound
3350 /// literals; we could also remember the set of temporaries, but there's
3351 /// currently no need.
3352 using CleanupObject = llvm::PointerUnion<BlockDecl *, CompoundLiteralExpr *>;
3353
3354private:
3355 friend class ASTStmtReader;
3356 friend TrailingObjects;
3357
3358 ExprWithCleanups(EmptyShell, unsigned NumObjects);
3359 ExprWithCleanups(Expr *SubExpr, bool CleanupsHaveSideEffects,
3360 ArrayRef<CleanupObject> Objects);
3361
3362public:
3363 static ExprWithCleanups *Create(const ASTContext &C, EmptyShell empty,
3364 unsigned numObjects);
3365
3366 static ExprWithCleanups *Create(const ASTContext &C, Expr *subexpr,
3367 bool CleanupsHaveSideEffects,
3368 ArrayRef<CleanupObject> objects);
3369
3370 ArrayRef<CleanupObject> getObjects() const {
3371 return llvm::makeArrayRef(getTrailingObjects<CleanupObject>(),
3372 getNumObjects());
3373 }
3374
3375 unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
3376
3377 CleanupObject getObject(unsigned i) const {
3378 assert(i < getNumObjects() && "Index out of range")(static_cast <bool> (i < getNumObjects() && "Index out of range"
) ? void (0) : __assert_fail ("i < getNumObjects() && \"Index out of range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 3378, __extension__ __PRETTY_FUNCTION__))
;
3379 return getObjects()[i];
3380 }
3381
3382 bool cleanupsHaveSideEffects() const {
3383 return ExprWithCleanupsBits.CleanupsHaveSideEffects;
3384 }
3385
3386 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
3387 return SubExpr->getBeginLoc();
3388 }
3389
3390 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
3391 return SubExpr->getEndLoc();
3392 }
3393
3394 // Implement isa/cast/dyncast/etc.
3395 static bool classof(const Stmt *T) {
3396 return T->getStmtClass() == ExprWithCleanupsClass;
3397 }
3398
3399 // Iterators
3400 child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
3401
3402 const_child_range children() const {
3403 return const_child_range(&SubExpr, &SubExpr + 1);
3404 }
3405};
3406
3407/// Describes an explicit type conversion that uses functional
3408/// notion but could not be resolved because one or more arguments are
3409/// type-dependent.
3410///
3411/// The explicit type conversions expressed by
3412/// CXXUnresolvedConstructExpr have the form <tt>T(a1, a2, ..., aN)</tt>,
3413/// where \c T is some type and \c a1, \c a2, ..., \c aN are values, and
3414/// either \c T is a dependent type or one or more of the <tt>a</tt>'s is
3415/// type-dependent. For example, this would occur in a template such
3416/// as:
3417///
3418/// \code
3419/// template<typename T, typename A1>
3420/// inline T make_a(const A1& a1) {
3421/// return T(a1);
3422/// }
3423/// \endcode
3424///
3425/// When the returned expression is instantiated, it may resolve to a
3426/// constructor call, conversion function call, or some kind of type
3427/// conversion.
3428class CXXUnresolvedConstructExpr final
3429 : public Expr,
3430 private llvm::TrailingObjects<CXXUnresolvedConstructExpr, Expr *> {
3431 friend class ASTStmtReader;
3432 friend TrailingObjects;
3433
3434 /// The type being constructed.
3435 TypeSourceInfo *TSI;
3436
3437 /// The location of the left parentheses ('(').
3438 SourceLocation LParenLoc;
3439
3440 /// The location of the right parentheses (')').
3441 SourceLocation RParenLoc;
3442
3443 CXXUnresolvedConstructExpr(QualType T, TypeSourceInfo *TSI,
3444 SourceLocation LParenLoc, ArrayRef<Expr *> Args,
3445 SourceLocation RParenLoc);
3446
3447 CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
3448 : Expr(CXXUnresolvedConstructExprClass, Empty), TSI(nullptr) {
3449 CXXUnresolvedConstructExprBits.NumArgs = NumArgs;
3450 }
3451
3452public:
3453 static CXXUnresolvedConstructExpr *Create(const ASTContext &Context,
3454 QualType T, TypeSourceInfo *TSI,
3455 SourceLocation LParenLoc,
3456 ArrayRef<Expr *> Args,
3457 SourceLocation RParenLoc);
3458
3459 static CXXUnresolvedConstructExpr *CreateEmpty(const ASTContext &Context,
3460 unsigned NumArgs);
3461
3462 /// Retrieve the type that is being constructed, as specified
3463 /// in the source code.
3464 QualType getTypeAsWritten() const { return TSI->getType(); }
3465
3466 /// Retrieve the type source information for the type being
3467 /// constructed.
3468 TypeSourceInfo *getTypeSourceInfo() const { return TSI; }
3469
3470 /// Retrieve the location of the left parentheses ('(') that
3471 /// precedes the argument list.
3472 SourceLocation getLParenLoc() const { return LParenLoc; }
3473 void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3474
3475 /// Retrieve the location of the right parentheses (')') that
3476 /// follows the argument list.
3477 SourceLocation getRParenLoc() const { return RParenLoc; }
3478 void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3479
3480 /// Determine whether this expression models list-initialization.
3481 /// If so, there will be exactly one subexpression, which will be
3482 /// an InitListExpr.
3483 bool isListInitialization() const { return LParenLoc.isInvalid(); }
3484
3485 /// Retrieve the number of arguments.
3486 unsigned getNumArgs() const { return CXXUnresolvedConstructExprBits.NumArgs; }
3487
3488 using arg_iterator = Expr **;
3489 using arg_range = llvm::iterator_range<arg_iterator>;
3490
3491 arg_iterator arg_begin() { return getTrailingObjects<Expr *>(); }
3492 arg_iterator arg_end() { return arg_begin() + getNumArgs(); }
3493 arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
3494
3495 using const_arg_iterator = const Expr* const *;
3496 using const_arg_range = llvm::iterator_range<const_arg_iterator>;
3497
3498 const_arg_iterator arg_begin() const { return getTrailingObjects<Expr *>(); }
3499 const_arg_iterator arg_end() const { return arg_begin() + getNumArgs(); }
3500 const_arg_range arguments() const {
3501 return const_arg_range(arg_begin(), arg_end());
3502 }
3503
3504 Expr *getArg(unsigned I) {
3505 assert(I < getNumArgs() && "Argument index out-of-range")(static_cast <bool> (I < getNumArgs() && "Argument index out-of-range"
) ? void (0) : __assert_fail ("I < getNumArgs() && \"Argument index out-of-range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 3505, __extension__ __PRETTY_FUNCTION__))
;
3506 return arg_begin()[I];
3507 }
3508
3509 const Expr *getArg(unsigned I) const {
3510 assert(I < getNumArgs() && "Argument index out-of-range")(static_cast <bool> (I < getNumArgs() && "Argument index out-of-range"
) ? void (0) : __assert_fail ("I < getNumArgs() && \"Argument index out-of-range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 3510, __extension__ __PRETTY_FUNCTION__))
;
3511 return arg_begin()[I];
3512 }
3513
3514 void setArg(unsigned I, Expr *E) {
3515 assert(I < getNumArgs() && "Argument index out-of-range")(static_cast <bool> (I < getNumArgs() && "Argument index out-of-range"
) ? void (0) : __assert_fail ("I < getNumArgs() && \"Argument index out-of-range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 3515, __extension__ __PRETTY_FUNCTION__))
;
3516 arg_begin()[I] = E;
3517 }
3518
3519 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__));
3520 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
3521 if (!RParenLoc.isValid() && getNumArgs() > 0)
3522 return getArg(getNumArgs() - 1)->getEndLoc();
3523 return RParenLoc;
3524 }
3525
3526 static bool classof(const Stmt *T) {
3527 return T->getStmtClass() == CXXUnresolvedConstructExprClass;
3528 }
3529
3530 // Iterators
3531 child_range children() {
3532 auto **begin = reinterpret_cast<Stmt **>(arg_begin());
3533 return child_range(begin, begin + getNumArgs());
3534 }
3535
3536 const_child_range children() const {
3537 auto **begin = reinterpret_cast<Stmt **>(
3538 const_cast<CXXUnresolvedConstructExpr *>(this)->arg_begin());
3539 return const_child_range(begin, begin + getNumArgs());
3540 }
3541};
3542
3543/// Represents a C++ member access expression where the actual
3544/// member referenced could not be resolved because the base
3545/// expression or the member name was dependent.
3546///
3547/// Like UnresolvedMemberExprs, these can be either implicit or
3548/// explicit accesses. It is only possible to get one of these with
3549/// an implicit access if a qualifier is provided.
3550class CXXDependentScopeMemberExpr final
3551 : public Expr,
3552 private llvm::TrailingObjects<CXXDependentScopeMemberExpr,
3553 ASTTemplateKWAndArgsInfo,
3554 TemplateArgumentLoc, NamedDecl *> {
3555 friend class ASTStmtReader;
3556 friend class ASTStmtWriter;
3557 friend TrailingObjects;
3558
3559 /// The expression for the base pointer or class reference,
3560 /// e.g., the \c x in x.f. Can be null in implicit accesses.
3561 Stmt *Base;
3562
3563 /// The type of the base expression. Never null, even for
3564 /// implicit accesses.
3565 QualType BaseType;
3566
3567 /// The nested-name-specifier that precedes the member name, if any.
3568 /// FIXME: This could be in principle store as a trailing object.
3569 /// However the performance impact of doing so should be investigated first.
3570 NestedNameSpecifierLoc QualifierLoc;
3571
3572 /// The member to which this member expression refers, which
3573 /// can be name, overloaded operator, or destructor.
3574 ///
3575 /// FIXME: could also be a template-id
3576 DeclarationNameInfo MemberNameInfo;
3577
3578 // CXXDependentScopeMemberExpr is followed by several trailing objects,
3579 // some of which optional. They are in order:
3580 //
3581 // * An optional ASTTemplateKWAndArgsInfo for the explicitly specified
3582 // template keyword and arguments. Present if and only if
3583 // hasTemplateKWAndArgsInfo().
3584 //
3585 // * An array of getNumTemplateArgs() TemplateArgumentLoc containing location
3586 // information for the explicitly specified template arguments.
3587 //
3588 // * An optional NamedDecl *. In a qualified member access expression such
3589 // as t->Base::f, this member stores the resolves of name lookup in the
3590 // context of the member access expression, to be used at instantiation
3591 // time. Present if and only if hasFirstQualifierFoundInScope().
3592
3593 bool hasTemplateKWAndArgsInfo() const {
3594 return CXXDependentScopeMemberExprBits.HasTemplateKWAndArgsInfo;
3595 }
3596
3597 bool hasFirstQualifierFoundInScope() const {
3598 return CXXDependentScopeMemberExprBits.HasFirstQualifierFoundInScope;
3599 }
3600
3601 unsigned numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
3602 return hasTemplateKWAndArgsInfo();
3603 }
3604
3605 unsigned numTrailingObjects(OverloadToken<TemplateArgumentLoc>) const {
3606 return getNumTemplateArgs();
3607 }
3608
3609 unsigned numTrailingObjects(OverloadToken<NamedDecl *>) const {
3610 return hasFirstQualifierFoundInScope();
3611 }
3612
3613 CXXDependentScopeMemberExpr(const ASTContext &Ctx, Expr *Base,
3614 QualType BaseType, bool IsArrow,
3615 SourceLocation OperatorLoc,
3616 NestedNameSpecifierLoc QualifierLoc,
3617 SourceLocation TemplateKWLoc,
3618 NamedDecl *FirstQualifierFoundInScope,
3619 DeclarationNameInfo MemberNameInfo,
3620 const TemplateArgumentListInfo *TemplateArgs);
3621
3622 CXXDependentScopeMemberExpr(EmptyShell Empty, bool HasTemplateKWAndArgsInfo,
3623 bool HasFirstQualifierFoundInScope);
3624
3625public:
3626 static CXXDependentScopeMemberExpr *
3627 Create(const ASTContext &Ctx, Expr *Base, QualType BaseType, bool IsArrow,
3628 SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc,
3629 SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierFoundInScope,
3630 DeclarationNameInfo MemberNameInfo,
3631 const TemplateArgumentListInfo *TemplateArgs);
3632
3633 static CXXDependentScopeMemberExpr *
3634 CreateEmpty(const ASTContext &Ctx, bool HasTemplateKWAndArgsInfo,
3635 unsigned NumTemplateArgs, bool HasFirstQualifierFoundInScope);
3636
3637 /// True if this is an implicit access, i.e. one in which the
3638 /// member being accessed was not written in the source. The source
3639 /// location of the operator is invalid in this case.
3640 bool isImplicitAccess() const {
3641 if (!Base)
3642 return true;
3643 return cast<Expr>(Base)->isImplicitCXXThis();
3644 }
3645
3646 /// Retrieve the base object of this member expressions,
3647 /// e.g., the \c x in \c x.m.
3648 Expr *getBase() const {
3649 assert(!isImplicitAccess())(static_cast <bool> (!isImplicitAccess()) ? void (0) : __assert_fail
("!isImplicitAccess()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 3649, __extension__ __PRETTY_FUNCTION__))
;
3650 return cast<Expr>(Base);
3651 }
3652
3653 QualType getBaseType() const { return BaseType; }
3654
3655 /// Determine whether this member expression used the '->'
3656 /// operator; otherwise, it used the '.' operator.
3657 bool isArrow() const { return CXXDependentScopeMemberExprBits.IsArrow; }
3658
3659 /// Retrieve the location of the '->' or '.' operator.
3660 SourceLocation getOperatorLoc() const {
3661 return CXXDependentScopeMemberExprBits.OperatorLoc;
3662 }
3663
3664 /// Retrieve the nested-name-specifier that qualifies the member name.
3665 NestedNameSpecifier *getQualifier() const {
3666 return QualifierLoc.getNestedNameSpecifier();
3667 }
3668
3669 /// Retrieve the nested-name-specifier that qualifies the member
3670 /// name, with source location information.
3671 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3672
3673 /// Retrieve the first part of the nested-name-specifier that was
3674 /// found in the scope of the member access expression when the member access
3675 /// was initially parsed.
3676 ///
3677 /// This function only returns a useful result when member access expression
3678 /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
3679 /// returned by this function describes what was found by unqualified name
3680 /// lookup for the identifier "Base" within the scope of the member access
3681 /// expression itself. At template instantiation time, this information is
3682 /// combined with the results of name lookup into the type of the object
3683 /// expression itself (the class type of x).
3684 NamedDecl *getFirstQualifierFoundInScope() const {
3685 if (!hasFirstQualifierFoundInScope())
3686 return nullptr;
3687 return *getTrailingObjects<NamedDecl *>();
3688 }
3689
3690 /// Retrieve the name of the member that this expression refers to.
3691 const DeclarationNameInfo &getMemberNameInfo() const {
3692 return MemberNameInfo;
3693 }
3694
3695 /// Retrieve the name of the member that this expression refers to.
3696 DeclarationName getMember() const { return MemberNameInfo.getName(); }
3697
3698 // Retrieve the location of the name of the member that this
3699 // expression refers to.
3700 SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
3701
3702 /// Retrieve the location of the template keyword preceding the
3703 /// member name, if any.
3704 SourceLocation getTemplateKeywordLoc() const {
3705 if (!hasTemplateKWAndArgsInfo())
3706 return SourceLocation();
3707 return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
3708 }
3709
3710 /// Retrieve the location of the left angle bracket starting the
3711 /// explicit template argument list following the member name, if any.
3712 SourceLocation getLAngleLoc() const {
3713 if (!hasTemplateKWAndArgsInfo())
3714 return SourceLocation();
3715 return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
3716 }
3717
3718 /// Retrieve the location of the right angle bracket ending the
3719 /// explicit template argument list following the member name, if any.
3720 SourceLocation getRAngleLoc() const {
3721 if (!hasTemplateKWAndArgsInfo())
3722 return SourceLocation();
3723 return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
3724 }
3725
3726 /// Determines whether the member name was preceded by the template keyword.
3727 bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
3728
3729 /// Determines whether this member expression actually had a C++
3730 /// template argument list explicitly specified, e.g., x.f<int>.
3731 bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
3732
3733 /// Copies the template arguments (if present) into the given
3734 /// structure.
3735 void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
3736 if (hasExplicitTemplateArgs())
3737 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
3738 getTrailingObjects<TemplateArgumentLoc>(), List);
3739 }
3740
3741 /// Retrieve the template arguments provided as part of this
3742 /// template-id.
3743 const TemplateArgumentLoc *getTemplateArgs() const {
3744 if (!hasExplicitTemplateArgs())
3745 return nullptr;
3746
3747 return getTrailingObjects<TemplateArgumentLoc>();
3748 }
3749
3750 /// Retrieve the number of template arguments provided as part of this
3751 /// template-id.
3752 unsigned getNumTemplateArgs() const {
3753 if (!hasExplicitTemplateArgs())
3754 return 0;
3755
3756 return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
3757 }
3758
3759 ArrayRef<TemplateArgumentLoc> template_arguments() const {
3760 return {getTemplateArgs(), getNumTemplateArgs()};
3761 }
3762
3763 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
3764 if (!isImplicitAccess())
3765 return Base->getBeginLoc();
3766 if (getQualifier())
3767 return getQualifierLoc().getBeginLoc();
3768 return MemberNameInfo.getBeginLoc();
3769 }
3770
3771 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
3772 if (hasExplicitTemplateArgs())
3773 return getRAngleLoc();
3774 return MemberNameInfo.getEndLoc();
3775 }
3776
3777 static bool classof(const Stmt *T) {
3778 return T->getStmtClass() == CXXDependentScopeMemberExprClass;
3779 }
3780
3781 // Iterators
3782 child_range children() {
3783 if (isImplicitAccess())
3784 return child_range(child_iterator(), child_iterator());
3785 return child_range(&Base, &Base + 1);
3786 }
3787
3788 const_child_range children() const {
3789 if (isImplicitAccess())
3790 return const_child_range(const_child_iterator(), const_child_iterator());
3791 return const_child_range(&Base, &Base + 1);
3792 }
3793};
3794
3795/// Represents a C++ member access expression for which lookup
3796/// produced a set of overloaded functions.
3797///
3798/// The member access may be explicit or implicit:
3799/// \code
3800/// struct A {
3801/// int a, b;
3802/// int explicitAccess() { return this->a + this->A::b; }
3803/// int implicitAccess() { return a + A::b; }
3804/// };
3805/// \endcode
3806///
3807/// In the final AST, an explicit access always becomes a MemberExpr.
3808/// An implicit access may become either a MemberExpr or a
3809/// DeclRefExpr, depending on whether the member is static.
3810class UnresolvedMemberExpr final
3811 : public OverloadExpr,
3812 private llvm::TrailingObjects<UnresolvedMemberExpr, DeclAccessPair,
3813 ASTTemplateKWAndArgsInfo,
3814 TemplateArgumentLoc> {
3815 friend class ASTStmtReader;
3816 friend class OverloadExpr;
3817 friend TrailingObjects;
3818
3819 /// The expression for the base pointer or class reference,
3820 /// e.g., the \c x in x.f.
3821 ///
3822 /// This can be null if this is an 'unbased' member expression.
3823 Stmt *Base;
3824
3825 /// The type of the base expression; never null.
3826 QualType BaseType;
3827
3828 /// The location of the '->' or '.' operator.
3829 SourceLocation OperatorLoc;
3830
3831 // UnresolvedMemberExpr is followed by several trailing objects.
3832 // They are in order:
3833 //
3834 // * An array of getNumResults() DeclAccessPair for the results. These are
3835 // undesugared, which is to say, they may include UsingShadowDecls.
3836 // Access is relative to the naming class.
3837 //
3838 // * An optional ASTTemplateKWAndArgsInfo for the explicitly specified
3839 // template keyword and arguments. Present if and only if
3840 // hasTemplateKWAndArgsInfo().
3841 //
3842 // * An array of getNumTemplateArgs() TemplateArgumentLoc containing
3843 // location information for the explicitly specified template arguments.
3844
3845 UnresolvedMemberExpr(const ASTContext &Context, bool HasUnresolvedUsing,
3846 Expr *Base, QualType BaseType, bool IsArrow,
3847 SourceLocation OperatorLoc,
3848 NestedNameSpecifierLoc QualifierLoc,
3849 SourceLocation TemplateKWLoc,
3850 const DeclarationNameInfo &MemberNameInfo,
3851 const TemplateArgumentListInfo *TemplateArgs,
3852 UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3853
3854 UnresolvedMemberExpr(EmptyShell Empty, unsigned NumResults,
3855 bool HasTemplateKWAndArgsInfo);
3856
3857 unsigned numTrailingObjects(OverloadToken<DeclAccessPair>) const {
3858 return getNumDecls();
3859 }
3860
3861 unsigned numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
3862 return hasTemplateKWAndArgsInfo();
3863 }
3864
3865public:
3866 static UnresolvedMemberExpr *
3867 Create(const ASTContext &Context, bool HasUnresolvedUsing, Expr *Base,
3868 QualType BaseType, bool IsArrow, SourceLocation OperatorLoc,
3869 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
3870 const DeclarationNameInfo &MemberNameInfo,
3871 const TemplateArgumentListInfo *TemplateArgs,
3872 UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3873
3874 static UnresolvedMemberExpr *CreateEmpty(const ASTContext &Context,
3875 unsigned NumResults,
3876 bool HasTemplateKWAndArgsInfo,
3877 unsigned NumTemplateArgs);
3878
3879 /// True if this is an implicit access, i.e., one in which the
3880 /// member being accessed was not written in the source.
3881 ///
3882 /// The source location of the operator is invalid in this case.
3883 bool isImplicitAccess() const;
3884
3885 /// Retrieve the base object of this member expressions,
3886 /// e.g., the \c x in \c x.m.
3887 Expr *getBase() {
3888 assert(!isImplicitAccess())(static_cast <bool> (!isImplicitAccess()) ? void (0) : __assert_fail
("!isImplicitAccess()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 3888, __extension__ __PRETTY_FUNCTION__))
;
3889 return cast<Expr>(Base);
3890 }
3891 const Expr *getBase() const {
3892 assert(!isImplicitAccess())(static_cast <bool> (!isImplicitAccess()) ? void (0) : __assert_fail
("!isImplicitAccess()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 3892, __extension__ __PRETTY_FUNCTION__))
;
3893 return cast<Expr>(Base);
3894 }
3895
3896 QualType getBaseType() const { return BaseType; }
3897
3898 /// Determine whether the lookup results contain an unresolved using
3899 /// declaration.
3900 bool hasUnresolvedUsing() const {
3901 return UnresolvedMemberExprBits.HasUnresolvedUsing;
3902 }
3903
3904 /// Determine whether this member expression used the '->'
3905 /// operator; otherwise, it used the '.' operator.
3906 bool isArrow() const { return UnresolvedMemberExprBits.IsArrow; }
3907
3908 /// Retrieve the location of the '->' or '.' operator.
3909 SourceLocation getOperatorLoc() const { return OperatorLoc; }
3910
3911 /// Retrieve the naming class of this lookup.
3912 CXXRecordDecl *getNamingClass();
3913 const CXXRecordDecl *getNamingClass() const {
3914 return const_cast<UnresolvedMemberExpr *>(this)->getNamingClass();
3915 }
3916
3917 /// Retrieve the full name info for the member that this expression
3918 /// refers to.
3919 const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
3920
3921 /// Retrieve the name of the member that this expression refers to.
3922 DeclarationName getMemberName() const { return getName(); }
3923
3924 /// Retrieve the location of the name of the member that this
3925 /// expression refers to.
3926 SourceLocation getMemberLoc() const { return getNameLoc(); }
3927
3928 /// Return the preferred location (the member name) for the arrow when
3929 /// diagnosing a problem with this expression.
3930 SourceLocation getExprLoc() const LLVM_READONLY__attribute__((__pure__)) { return getMemberLoc(); }
3931
3932 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
3933 if (!isImplicitAccess())
3934 return Base->getBeginLoc();
3935 if (NestedNameSpecifierLoc l = getQualifierLoc())
3936 return l.getBeginLoc();
3937 return getMemberNameInfo().getBeginLoc();
3938 }
3939
3940 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
3941 if (hasExplicitTemplateArgs())
3942 return getRAngleLoc();
3943 return getMemberNameInfo().getEndLoc();
3944 }
3945
3946 static bool classof(const Stmt *T) {
3947 return T->getStmtClass() == UnresolvedMemberExprClass;
3948 }
3949
3950 // Iterators
3951 child_range children() {
3952 if (isImplicitAccess())
3953 return child_range(child_iterator(), child_iterator());
3954 return child_range(&Base, &Base + 1);
3955 }
3956
3957 const_child_range children() const {
3958 if (isImplicitAccess())
3959 return const_child_range(const_child_iterator(), const_child_iterator());
3960 return const_child_range(&Base, &Base + 1);
3961 }
3962};
3963
3964DeclAccessPair *OverloadExpr::getTrailingResults() {
3965 if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(this))
3966 return ULE->getTrailingObjects<DeclAccessPair>();
3967 return cast<UnresolvedMemberExpr>(this)->getTrailingObjects<DeclAccessPair>();
3968}
3969
3970ASTTemplateKWAndArgsInfo *OverloadExpr::getTrailingASTTemplateKWAndArgsInfo() {
3971 if (!hasTemplateKWAndArgsInfo())
3972 return nullptr;
3973
3974 if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(this))
3975 return ULE->getTrailingObjects<ASTTemplateKWAndArgsInfo>();
3976 return cast<UnresolvedMemberExpr>(this)
3977 ->getTrailingObjects<ASTTemplateKWAndArgsInfo>();
3978}
3979
3980TemplateArgumentLoc *OverloadExpr::getTrailingTemplateArgumentLoc() {
3981 if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(this))
3982 return ULE->getTrailingObjects<TemplateArgumentLoc>();
3983 return cast<UnresolvedMemberExpr>(this)
3984 ->getTrailingObjects<TemplateArgumentLoc>();
3985}
3986
3987CXXRecordDecl *OverloadExpr::getNamingClass() {
3988 if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(this))
3989 return ULE->getNamingClass();
3990 return cast<UnresolvedMemberExpr>(this)->getNamingClass();
3991}
3992
3993/// Represents a C++11 noexcept expression (C++ [expr.unary.noexcept]).
3994///
3995/// The noexcept expression tests whether a given expression might throw. Its
3996/// result is a boolean constant.
3997class CXXNoexceptExpr : public Expr {
3998 friend class ASTStmtReader;
3999
4000 Stmt *Operand;
4001 SourceRange Range;
4002
4003public:
4004 CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
4005 SourceLocation Keyword, SourceLocation RParen)
4006 : Expr(CXXNoexceptExprClass, Ty, VK_PRValue, OK_Ordinary),
4007 Operand(Operand), Range(Keyword, RParen) {
4008 CXXNoexceptExprBits.Value = Val == CT_Cannot;
4009 setDependence(computeDependence(this, Val));
4010 }
4011
4012 CXXNoexceptExpr(EmptyShell Empty) : Expr(CXXNoexceptExprClass, Empty) {}
4013
4014 Expr *getOperand() const { return static_cast<Expr *>(Operand); }
4015
4016 SourceLocation getBeginLoc() const { return Range.getBegin(); }
4017 SourceLocation getEndLoc() const { return Range.getEnd(); }
4018 SourceRange getSourceRange() const { return Range; }
4019
4020 bool getValue() const { return CXXNoexceptExprBits.Value; }
4021
4022 static bool classof(const Stmt *T) {
4023 return T->getStmtClass() == CXXNoexceptExprClass;
4024 }
4025
4026 // Iterators
4027 child_range children() { return child_range(&Operand, &Operand + 1); }
4028
4029 const_child_range children() const {
4030 return const_child_range(&Operand, &Operand + 1);
4031 }
4032};
4033
4034/// Represents a C++11 pack expansion that produces a sequence of
4035/// expressions.
4036///
4037/// A pack expansion expression contains a pattern (which itself is an
4038/// expression) followed by an ellipsis. For example:
4039///
4040/// \code
4041/// template<typename F, typename ...Types>
4042/// void forward(F f, Types &&...args) {
4043/// f(static_cast<Types&&>(args)...);
4044/// }
4045/// \endcode
4046///
4047/// Here, the argument to the function object \c f is a pack expansion whose
4048/// pattern is \c static_cast<Types&&>(args). When the \c forward function
4049/// template is instantiated, the pack expansion will instantiate to zero or
4050/// or more function arguments to the function object \c f.
4051class PackExpansionExpr : public Expr {
4052 friend class ASTStmtReader;
4053 friend class ASTStmtWriter;
4054
4055 SourceLocation EllipsisLoc;
4056
4057 /// The number of expansions that will be produced by this pack
4058 /// expansion expression, if known.
4059 ///
4060 /// When zero, the number of expansions is not known. Otherwise, this value
4061 /// is the number of expansions + 1.
4062 unsigned NumExpansions;
4063
4064 Stmt *Pattern;
4065
4066public:
4067 PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
4068 Optional<unsigned> NumExpansions)
4069 : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
4070 Pattern->getObjectKind()),
4071 EllipsisLoc(EllipsisLoc),
4072 NumExpansions(NumExpansions ? *NumExpansions + 1 : 0),
4073 Pattern(Pattern) {
4074 setDependence(computeDependence(this));
4075 }
4076
4077 PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) {}
4078
4079 /// Retrieve the pattern of the pack expansion.
4080 Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
4081
4082 /// Retrieve the pattern of the pack expansion.
4083 const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
4084
4085 /// Retrieve the location of the ellipsis that describes this pack
4086 /// expansion.
4087 SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
4088
4089 /// Determine the number of expansions that will be produced when
4090 /// this pack expansion is instantiated, if already known.
4091 Optional<unsigned> getNumExpansions() const {
4092 if (NumExpansions)
4093 return NumExpansions - 1;
4094
4095 return None;
4096 }
4097
4098 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
4099 return Pattern->getBeginLoc();
4100 }
4101
4102 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return EllipsisLoc; }
4103
4104 static bool classof(const Stmt *T) {
4105 return T->getStmtClass() == PackExpansionExprClass;
4106 }
4107
4108 // Iterators
4109 child_range children() {
4110 return child_range(&Pattern, &Pattern + 1);
4111 }
4112
4113 const_child_range children() const {
4114 return const_child_range(&Pattern, &Pattern + 1);
4115 }
4116};
4117
4118/// Represents an expression that computes the length of a parameter
4119/// pack.
4120///
4121/// \code
4122/// template<typename ...Types>
4123/// struct count {
4124/// static const unsigned value = sizeof...(Types);
4125/// };
4126/// \endcode
4127class SizeOfPackExpr final
4128 : public Expr,
4129 private llvm::TrailingObjects<SizeOfPackExpr, TemplateArgument> {
4130 friend class ASTStmtReader;
4131 friend class ASTStmtWriter;
4132 friend TrailingObjects;
4133
4134 /// The location of the \c sizeof keyword.
4135 SourceLocation OperatorLoc;
4136
4137 /// The location of the name of the parameter pack.
4138 SourceLocation PackLoc;
4139
4140 /// The location of the closing parenthesis.
4141 SourceLocation RParenLoc;
4142
4143 /// The length of the parameter pack, if known.
4144 ///
4145 /// When this expression is not value-dependent, this is the length of
4146 /// the pack. When the expression was parsed rather than instantiated
4147 /// (and thus is value-dependent), this is zero.
4148 ///
4149 /// After partial substitution into a sizeof...(X) expression (for instance,
4150 /// within an alias template or during function template argument deduction),
4151 /// we store a trailing array of partially-substituted TemplateArguments,
4152 /// and this is the length of that array.
4153 unsigned Length;
4154
4155 /// The parameter pack.
4156 NamedDecl *Pack = nullptr;
4157
4158 /// Create an expression that computes the length of
4159 /// the given parameter pack.
4160 SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
4161 SourceLocation PackLoc, SourceLocation RParenLoc,
4162 Optional<unsigned> Length,
4163 ArrayRef<TemplateArgument> PartialArgs)
4164 : Expr(SizeOfPackExprClass, SizeType, VK_PRValue, OK_Ordinary),
4165 OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
4166 Length(Length ? *Length : PartialArgs.size()), Pack(Pack) {
4167 assert((!Length || PartialArgs.empty()) &&(static_cast <bool> ((!Length || PartialArgs.empty()) &&
"have partial args for non-dependent sizeof... expression") ?
void (0) : __assert_fail ("(!Length || PartialArgs.empty()) && \"have partial args for non-dependent sizeof... expression\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 4168, __extension__ __PRETTY_FUNCTION__))
4168 "have partial args for non-dependent sizeof... expression")(static_cast <bool> ((!Length || PartialArgs.empty()) &&
"have partial args for non-dependent sizeof... expression") ?
void (0) : __assert_fail ("(!Length || PartialArgs.empty()) && \"have partial args for non-dependent sizeof... expression\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 4168, __extension__ __PRETTY_FUNCTION__))
;
4169 auto *Args = getTrailingObjects<TemplateArgument>();
4170 std::uninitialized_copy(PartialArgs.begin(), PartialArgs.end(), Args);
4171 setDependence(Length ? ExprDependence::None
4172 : ExprDependence::ValueInstantiation);
4173 }
4174
4175 /// Create an empty expression.
4176 SizeOfPackExpr(EmptyShell Empty, unsigned NumPartialArgs)
4177 : Expr(SizeOfPackExprClass, Empty), Length(NumPartialArgs) {}
4178
4179public:
4180 static SizeOfPackExpr *Create(ASTContext &Context, SourceLocation OperatorLoc,
4181 NamedDecl *Pack, SourceLocation PackLoc,
4182 SourceLocation RParenLoc,
4183 Optional<unsigned> Length = None,
4184 ArrayRef<TemplateArgument> PartialArgs = None);
4185 static SizeOfPackExpr *CreateDeserialized(ASTContext &Context,
4186 unsigned NumPartialArgs);
4187
4188 /// Determine the location of the 'sizeof' keyword.
4189 SourceLocation getOperatorLoc() const { return OperatorLoc; }
4190
4191 /// Determine the location of the parameter pack.
4192 SourceLocation getPackLoc() const { return PackLoc; }
4193
4194 /// Determine the location of the right parenthesis.
4195 SourceLocation getRParenLoc() const { return RParenLoc; }
4196
4197 /// Retrieve the parameter pack.
4198 NamedDecl *getPack() const { return Pack; }
4199
4200 /// Retrieve the length of the parameter pack.
4201 ///
4202 /// This routine may only be invoked when the expression is not
4203 /// value-dependent.
4204 unsigned getPackLength() const {
4205 assert(!isValueDependent() &&(static_cast <bool> (!isValueDependent() && "Cannot get the length of a value-dependent pack size expression"
) ? void (0) : __assert_fail ("!isValueDependent() && \"Cannot get the length of a value-dependent pack size expression\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 4206, __extension__ __PRETTY_FUNCTION__))
4206 "Cannot get the length of a value-dependent pack size expression")(static_cast <bool> (!isValueDependent() && "Cannot get the length of a value-dependent pack size expression"
) ? void (0) : __assert_fail ("!isValueDependent() && \"Cannot get the length of a value-dependent pack size expression\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 4206, __extension__ __PRETTY_FUNCTION__))
;
4207 return Length;
4208 }
4209
4210 /// Determine whether this represents a partially-substituted sizeof...
4211 /// expression, such as is produced for:
4212 ///
4213 /// template<typename ...Ts> using X = int[sizeof...(Ts)];
4214 /// template<typename ...Us> void f(X<Us..., 1, 2, 3, Us...>);
4215 bool isPartiallySubstituted() const {
4216 return isValueDependent() && Length;
4217 }
4218
4219 /// Get
4220 ArrayRef<TemplateArgument> getPartialArguments() const {
4221 assert(isPartiallySubstituted())(static_cast <bool> (isPartiallySubstituted()) ? void (
0) : __assert_fail ("isPartiallySubstituted()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 4221, __extension__ __PRETTY_FUNCTION__))
;
4222 const auto *Args = getTrailingObjects<TemplateArgument>();
4223 return llvm::makeArrayRef(Args, Args + Length);
4224 }
4225
4226 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return OperatorLoc; }
4227 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return RParenLoc; }
4228
4229 static bool classof(const Stmt *T) {
4230 return T->getStmtClass() == SizeOfPackExprClass;
4231 }
4232
4233 // Iterators
4234 child_range children() {
4235 return child_range(child_iterator(), child_iterator());
4236 }
4237
4238 const_child_range children() const {
4239 return const_child_range(const_child_iterator(), const_child_iterator());
4240 }
4241};
4242
4243/// Represents a reference to a non-type template parameter
4244/// that has been substituted with a template argument.
4245class SubstNonTypeTemplateParmExpr : public Expr {
4246 friend class ASTReader;
4247 friend class ASTStmtReader;
4248
4249 /// The replaced parameter and a flag indicating if it was a reference
4250 /// parameter. For class NTTPs, we can't determine that based on the value
4251 /// category alone.
4252 llvm::PointerIntPair<NonTypeTemplateParmDecl*, 1, bool> ParamAndRef;
4253
4254 /// The replacement expression.
4255 Stmt *Replacement;
4256
4257 explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
4258 : Expr(SubstNonTypeTemplateParmExprClass, Empty) {}
4259
4260public:
4261 SubstNonTypeTemplateParmExpr(QualType Ty, ExprValueKind ValueKind,
4262 SourceLocation Loc,
4263 NonTypeTemplateParmDecl *Param, bool RefParam,
4264 Expr *Replacement)
4265 : Expr(SubstNonTypeTemplateParmExprClass, Ty, ValueKind, OK_Ordinary),
4266 ParamAndRef(Param, RefParam), Replacement(Replacement) {
4267 SubstNonTypeTemplateParmExprBits.NameLoc = Loc;
4268 setDependence(computeDependence(this));
4269 }
4270
4271 SourceLocation getNameLoc() const {
4272 return SubstNonTypeTemplateParmExprBits.NameLoc;
4273 }
4274 SourceLocation getBeginLoc() const { return getNameLoc(); }
4275 SourceLocation getEndLoc() const { return getNameLoc(); }
4276
4277 Expr *getReplacement() const { return cast<Expr>(Replacement); }
4278
4279 NonTypeTemplateParmDecl *getParameter() const {
4280 return ParamAndRef.getPointer();
4281 }
4282
4283 bool isReferenceParameter() const { return ParamAndRef.getInt(); }
4284
4285 /// Determine the substituted type of the template parameter.
4286 QualType getParameterType(const ASTContext &Ctx) const;
4287
4288 static bool classof(const Stmt *s) {
4289 return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
4290 }
4291
4292 // Iterators
4293 child_range children() { return child_range(&Replacement, &Replacement + 1); }
4294
4295 const_child_range children() const {
4296 return const_child_range(&Replacement, &Replacement + 1);
4297 }
4298};
4299
4300/// Represents a reference to a non-type template parameter pack that
4301/// has been substituted with a non-template argument pack.
4302///
4303/// When a pack expansion in the source code contains multiple parameter packs
4304/// and those parameter packs correspond to different levels of template
4305/// parameter lists, this node is used to represent a non-type template
4306/// parameter pack from an outer level, which has already had its argument pack
4307/// substituted but that still lives within a pack expansion that itself
4308/// could not be instantiated. When actually performing a substitution into
4309/// that pack expansion (e.g., when all template parameters have corresponding
4310/// arguments), this type will be replaced with the appropriate underlying
4311/// expression at the current pack substitution index.
4312class SubstNonTypeTemplateParmPackExpr : public Expr {
4313 friend class ASTReader;
4314 friend class ASTStmtReader;
4315
4316 /// The non-type template parameter pack itself.
4317 NonTypeTemplateParmDecl *Param;
4318
4319 /// A pointer to the set of template arguments that this
4320 /// parameter pack is instantiated with.
4321 const TemplateArgument *Arguments;
4322
4323 /// The number of template arguments in \c Arguments.
4324 unsigned NumArguments;
4325
4326 /// The location of the non-type template parameter pack reference.
4327 SourceLocation NameLoc;
4328
4329 explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
4330 : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) {}
4331
4332public:
4333 SubstNonTypeTemplateParmPackExpr(QualType T,
4334 ExprValueKind ValueKind,
4335 NonTypeTemplateParmDecl *Param,
4336 SourceLocation NameLoc,
4337 const TemplateArgument &ArgPack);
4338
4339 /// Retrieve the non-type template parameter pack being substituted.
4340 NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
4341
4342 /// Retrieve the location of the parameter pack name.
4343 SourceLocation getParameterPackLocation() const { return NameLoc; }
4344
4345 /// Retrieve the template argument pack containing the substituted
4346 /// template arguments.
4347 TemplateArgument getArgumentPack() const;
4348
4349 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return NameLoc; }
4350 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return NameLoc; }
4351
4352 static bool classof(const Stmt *T) {
4353 return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
4354 }
4355
4356 // Iterators
4357 child_range children() {
4358 return child_range(child_iterator(), child_iterator());
4359 }
4360
4361 const_child_range children() const {
4362 return const_child_range(const_child_iterator(), const_child_iterator());
4363 }
4364};
4365
4366/// Represents a reference to a function parameter pack or init-capture pack
4367/// that has been substituted but not yet expanded.
4368///
4369/// When a pack expansion contains multiple parameter packs at different levels,
4370/// this node is used to represent a function parameter pack at an outer level
4371/// which we have already substituted to refer to expanded parameters, but where
4372/// the containing pack expansion cannot yet be expanded.
4373///
4374/// \code
4375/// template<typename...Ts> struct S {
4376/// template<typename...Us> auto f(Ts ...ts) -> decltype(g(Us(ts)...));
4377/// };
4378/// template struct S<int, int>;
4379/// \endcode
4380class FunctionParmPackExpr final
4381 : public Expr,
4382 private llvm::TrailingObjects<FunctionParmPackExpr, VarDecl *> {
4383 friend class ASTReader;
4384 friend class ASTStmtReader;
4385 friend TrailingObjects;
4386
4387 /// The function parameter pack which was referenced.
4388 VarDecl *ParamPack;
4389
4390 /// The location of the function parameter pack reference.
4391 SourceLocation NameLoc;
4392
4393 /// The number of expansions of this pack.
4394 unsigned NumParameters;
4395
4396 FunctionParmPackExpr(QualType T, VarDecl *ParamPack,
4397 SourceLocation NameLoc, unsigned NumParams,
4398 VarDecl *const *Params);
4399
4400public:
4401 static FunctionParmPackExpr *Create(const ASTContext &Context, QualType T,
4402 VarDecl *ParamPack,
4403 SourceLocation NameLoc,
4404 ArrayRef<VarDecl *> Params);
4405 static FunctionParmPackExpr *CreateEmpty(const ASTContext &Context,
4406 unsigned NumParams);
4407
4408 /// Get the parameter pack which this expression refers to.
4409 VarDecl *getParameterPack() const { return ParamPack; }
4410
4411 /// Get the location of the parameter pack.
4412 SourceLocation getParameterPackLocation() const { return NameLoc; }
4413
4414 /// Iterators over the parameters which the parameter pack expanded
4415 /// into.
4416 using iterator = VarDecl * const *;
4417 iterator begin() const { return getTrailingObjects<VarDecl *>(); }
4418 iterator end() const { return begin() + NumParameters; }
4419
4420 /// Get the number of parameters in this parameter pack.
4421 unsigned getNumExpansions() const { return NumParameters; }
4422
4423 /// Get an expansion of the parameter pack by index.
4424 VarDecl *getExpansion(unsigned I) const { return begin()[I]; }
4425
4426 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return NameLoc; }
4427 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return NameLoc; }
4428
4429 static bool classof(const Stmt *T) {
4430 return T->getStmtClass() == FunctionParmPackExprClass;
4431 }
4432
4433 child_range children() {
4434 return child_range(child_iterator(), child_iterator());
4435 }
4436
4437 const_child_range children() const {
4438 return const_child_range(const_child_iterator(), const_child_iterator());
4439 }
4440};
4441
4442/// Represents a prvalue temporary that is written into memory so that
4443/// a reference can bind to it.
4444///
4445/// Prvalue expressions are materialized when they need to have an address
4446/// in memory for a reference to bind to. This happens when binding a
4447/// reference to the result of a conversion, e.g.,
4448///
4449/// \code
4450/// const int &r = 1.0;
4451/// \endcode
4452///
4453/// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
4454/// then materialized via a \c MaterializeTemporaryExpr, and the reference
4455/// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
4456/// (either an lvalue or an xvalue, depending on the kind of reference binding
4457/// to it), maintaining the invariant that references always bind to glvalues.
4458///
4459/// Reference binding and copy-elision can both extend the lifetime of a
4460/// temporary. When either happens, the expression will also track the
4461/// declaration which is responsible for the lifetime extension.
4462class MaterializeTemporaryExpr : public Expr {
4463private:
4464 friend class ASTStmtReader;
4465 friend class ASTStmtWriter;
4466
4467 llvm::PointerUnion<Stmt *, LifetimeExtendedTemporaryDecl *> State;
4468
4469public:
4470 MaterializeTemporaryExpr(QualType T, Expr *Temporary,
4471 bool BoundToLvalueReference,
4472 LifetimeExtendedTemporaryDecl *MTD = nullptr);
4473
4474 MaterializeTemporaryExpr(EmptyShell Empty)
4475 : Expr(MaterializeTemporaryExprClass, Empty) {}
4476
4477 /// Retrieve the temporary-generating subexpression whose value will
4478 /// be materialized into a glvalue.
4479 Expr *getSubExpr() const {
4480 return cast<Expr>(
4481 State.is<Stmt *>()
4482 ? State.get<Stmt *>()
4483 : State.get<LifetimeExtendedTemporaryDecl *>()->getTemporaryExpr());
4484 }
4485
4486 /// Retrieve the storage duration for the materialized temporary.
4487 StorageDuration getStorageDuration() const {
4488 return State.is<Stmt *>() ? SD_FullExpression
4489 : State.get<LifetimeExtendedTemporaryDecl *>()
4490 ->getStorageDuration();
4491 }
4492
4493 /// Get the storage for the constant value of a materialized temporary
4494 /// of static storage duration.
4495 APValue *getOrCreateValue(bool MayCreate) const {
4496 assert(State.is<LifetimeExtendedTemporaryDecl *>() &&(static_cast <bool> (State.is<LifetimeExtendedTemporaryDecl
*>() && "the temporary has not been lifetime extended"
) ? void (0) : __assert_fail ("State.is<LifetimeExtendedTemporaryDecl *>() && \"the temporary has not been lifetime extended\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 4497, __extension__ __PRETTY_FUNCTION__))
4497 "the temporary has not been lifetime extended")(static_cast <bool> (State.is<LifetimeExtendedTemporaryDecl
*>() && "the temporary has not been lifetime extended"
) ? void (0) : __assert_fail ("State.is<LifetimeExtendedTemporaryDecl *>() && \"the temporary has not been lifetime extended\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 4497, __extension__ __PRETTY_FUNCTION__))
;
4498 return State.get<LifetimeExtendedTemporaryDecl *>()->getOrCreateValue(
4499 MayCreate);
4500 }
4501
4502 LifetimeExtendedTemporaryDecl *getLifetimeExtendedTemporaryDecl() {
4503 return State.dyn_cast<LifetimeExtendedTemporaryDecl *>();
4504 }
4505 const LifetimeExtendedTemporaryDecl *
4506 getLifetimeExtendedTemporaryDecl() const {
4507 return State.dyn_cast<LifetimeExtendedTemporaryDecl *>();
4508 }
4509
4510 /// Get the declaration which triggered the lifetime-extension of this
4511 /// temporary, if any.
4512 ValueDecl *getExtendingDecl() {
4513 return State.is<Stmt *>() ? nullptr
4514 : State.get<LifetimeExtendedTemporaryDecl *>()
4515 ->getExtendingDecl();
4516 }
4517 const ValueDecl *getExtendingDecl() const {
4518 return const_cast<MaterializeTemporaryExpr *>(this)->getExtendingDecl();
4519 }
4520
4521 void setExtendingDecl(ValueDecl *ExtendedBy, unsigned ManglingNumber);
4522
4523 unsigned getManglingNumber() const {
4524 return State.is<Stmt *>() ? 0
4525 : State.get<LifetimeExtendedTemporaryDecl *>()
4526 ->getManglingNumber();
4527 }
4528
4529 /// Determine whether this materialized temporary is bound to an
4530 /// lvalue reference; otherwise, it's bound to an rvalue reference.
4531 bool isBoundToLvalueReference() const { return isLValue(); }
4532
4533 /// Determine whether this temporary object is usable in constant
4534 /// expressions, as specified in C++20 [expr.const]p4.
4535 bool isUsableInConstantExpressions(const ASTContext &Context) const;
4536
4537 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
4538 return getSubExpr()->getBeginLoc();
4539 }
4540
4541 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
4542 return getSubExpr()->getEndLoc();
4543 }
4544
4545 static bool classof(const Stmt *T) {
4546 return T->getStmtClass() == MaterializeTemporaryExprClass;
4547 }
4548
4549 // Iterators
4550 child_range children() {
4551 return State.is<Stmt *>()
4552 ? child_range(State.getAddrOfPtr1(), State.getAddrOfPtr1() + 1)
4553 : State.get<LifetimeExtendedTemporaryDecl *>()->childrenExpr();
4554 }
4555
4556 const_child_range children() const {
4557 return State.is<Stmt *>()
4558 ? const_child_range(State.getAddrOfPtr1(),
4559 State.getAddrOfPtr1() + 1)
4560 : const_cast<const LifetimeExtendedTemporaryDecl *>(
4561 State.get<LifetimeExtendedTemporaryDecl *>())
4562 ->childrenExpr();
4563 }
4564};
4565
4566/// Represents a folding of a pack over an operator.
4567///
4568/// This expression is always dependent and represents a pack expansion of the
4569/// forms:
4570///
4571/// ( expr op ... )
4572/// ( ... op expr )
4573/// ( expr op ... op expr )
4574class CXXFoldExpr : public Expr {
4575 friend class ASTStmtReader;
4576 friend class ASTStmtWriter;
4577
4578 enum SubExpr { Callee, LHS, RHS, Count };
4579
4580 SourceLocation LParenLoc;
4581 SourceLocation EllipsisLoc;
4582 SourceLocation RParenLoc;
4583 // When 0, the number of expansions is not known. Otherwise, this is one more
4584 // than the number of expansions.
4585 unsigned NumExpansions;
4586 Stmt *SubExprs[SubExpr::Count];
4587 BinaryOperatorKind Opcode;
4588
4589public:
4590 CXXFoldExpr(QualType T, UnresolvedLookupExpr *Callee,
4591 SourceLocation LParenLoc, Expr *LHS, BinaryOperatorKind Opcode,
4592 SourceLocation EllipsisLoc, Expr *RHS, SourceLocation RParenLoc,
4593 Optional<unsigned> NumExpansions)
4594 : Expr(CXXFoldExprClass, T, VK_PRValue, OK_Ordinary),
4595 LParenLoc(LParenLoc), EllipsisLoc(EllipsisLoc), RParenLoc(RParenLoc),
4596 NumExpansions(NumExpansions ? *NumExpansions + 1 : 0), Opcode(Opcode) {
4597 SubExprs[SubExpr::Callee] = Callee;
4598 SubExprs[SubExpr::LHS] = LHS;
4599 SubExprs[SubExpr::RHS] = RHS;
4600 setDependence(computeDependence(this));
4601 }
4602
4603 CXXFoldExpr(EmptyShell Empty) : Expr(CXXFoldExprClass, Empty) {}
4604
4605 UnresolvedLookupExpr *getCallee() const {
4606 return static_cast<UnresolvedLookupExpr *>(SubExprs[SubExpr::Callee]);
4607 }
4608 Expr *getLHS() const { return static_cast<Expr*>(SubExprs[SubExpr::LHS]); }
4609 Expr *getRHS() const { return static_cast<Expr*>(SubExprs[SubExpr::RHS]); }
4610
4611 /// Does this produce a right-associated sequence of operators?
4612 bool isRightFold() const {
4613 return getLHS() && getLHS()->containsUnexpandedParameterPack();
4614 }
4615
4616 /// Does this produce a left-associated sequence of operators?
4617 bool isLeftFold() const { return !isRightFold(); }
4618
4619 /// Get the pattern, that is, the operand that contains an unexpanded pack.
4620 Expr *getPattern() const { return isLeftFold() ? getRHS() : getLHS(); }
4621
4622 /// Get the operand that doesn't contain a pack, for a binary fold.
4623 Expr *getInit() const { return isLeftFold() ? getLHS() : getRHS(); }
4624
4625 SourceLocation getLParenLoc() const { return LParenLoc; }
4626 SourceLocation getRParenLoc() const { return RParenLoc; }
4627 SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
4628 BinaryOperatorKind getOperator() const { return Opcode; }
4629
4630 Optional<unsigned> getNumExpansions() const {
4631 if (NumExpansions)
4632 return NumExpansions - 1;
4633 return None;
4634 }
4635
4636 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
4637 if (LParenLoc.isValid())
4638 return LParenLoc;
4639 if (isLeftFold())
4640 return getEllipsisLoc();
4641 return getLHS()->getBeginLoc();
4642 }
4643
4644 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
4645 if (RParenLoc.isValid())
4646 return RParenLoc;
4647 if (isRightFold())
4648 return getEllipsisLoc();
4649 return getRHS()->getEndLoc();
4650 }
4651
4652 static bool classof(const Stmt *T) {
4653 return T->getStmtClass() == CXXFoldExprClass;
4654 }
4655
4656 // Iterators
4657 child_range children() {
4658 return child_range(SubExprs, SubExprs + SubExpr::Count);
4659 }
4660
4661 const_child_range children() const {
4662 return const_child_range(SubExprs, SubExprs + SubExpr::Count);
4663 }
4664};
4665
4666/// Represents an expression that might suspend coroutine execution;
4667/// either a co_await or co_yield expression.
4668///
4669/// Evaluation of this expression first evaluates its 'ready' expression. If
4670/// that returns 'false':
4671/// -- execution of the coroutine is suspended
4672/// -- the 'suspend' expression is evaluated
4673/// -- if the 'suspend' expression returns 'false', the coroutine is
4674/// resumed
4675/// -- otherwise, control passes back to the resumer.
4676/// If the coroutine is not suspended, or when it is resumed, the 'resume'
4677/// expression is evaluated, and its result is the result of the overall
4678/// expression.
4679class CoroutineSuspendExpr : public Expr {
4680 friend class ASTStmtReader;
4681
4682 SourceLocation KeywordLoc;
4683
4684 enum SubExpr { Common, Ready, Suspend, Resume, Count };
4685
4686 Stmt *SubExprs[SubExpr::Count];
4687 OpaqueValueExpr *OpaqueValue = nullptr;
4688
4689public:
4690 CoroutineSuspendExpr(StmtClass SC, SourceLocation KeywordLoc, Expr *Common,
4691 Expr *Ready, Expr *Suspend, Expr *Resume,
4692 OpaqueValueExpr *OpaqueValue)
4693 : Expr(SC, Resume->getType(), Resume->getValueKind(),
66
Called C++ object pointer is null
4694 Resume->getObjectKind()),
4695 KeywordLoc(KeywordLoc), OpaqueValue(OpaqueValue) {
4696 SubExprs[SubExpr::Common] = Common;
4697 SubExprs[SubExpr::Ready] = Ready;
4698 SubExprs[SubExpr::Suspend] = Suspend;
4699 SubExprs[SubExpr::Resume] = Resume;
4700 setDependence(computeDependence(this));
4701 }
4702
4703 CoroutineSuspendExpr(StmtClass SC, SourceLocation KeywordLoc, QualType Ty,
4704 Expr *Common)
4705 : Expr(SC, Ty, VK_PRValue, OK_Ordinary), KeywordLoc(KeywordLoc) {
4706 assert(Common->isTypeDependent() && Ty->isDependentType() &&(static_cast <bool> (Common->isTypeDependent() &&
Ty->isDependentType() && "wrong constructor for non-dependent co_await/co_yield expression"
) ? void (0) : __assert_fail ("Common->isTypeDependent() && Ty->isDependentType() && \"wrong constructor for non-dependent co_await/co_yield expression\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 4707, __extension__ __PRETTY_FUNCTION__))
4707 "wrong constructor for non-dependent co_await/co_yield expression")(static_cast <bool> (Common->isTypeDependent() &&
Ty->isDependentType() && "wrong constructor for non-dependent co_await/co_yield expression"
) ? void (0) : __assert_fail ("Common->isTypeDependent() && Ty->isDependentType() && \"wrong constructor for non-dependent co_await/co_yield expression\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 4707, __extension__ __PRETTY_FUNCTION__))
;
4708 SubExprs[SubExpr::Common] = Common;
4709 SubExprs[SubExpr::Ready] = nullptr;
4710 SubExprs[SubExpr::Suspend] = nullptr;
4711 SubExprs[SubExpr::Resume] = nullptr;
4712 setDependence(computeDependence(this));
4713 }
4714
4715 CoroutineSuspendExpr(StmtClass SC, EmptyShell Empty) : Expr(SC, Empty) {
4716 SubExprs[SubExpr::Common] = nullptr;
4717 SubExprs[SubExpr::Ready] = nullptr;
4718 SubExprs[SubExpr::Suspend] = nullptr;
4719 SubExprs[SubExpr::Resume] = nullptr;
4720 }
4721
4722 SourceLocation getKeywordLoc() const { return KeywordLoc; }
4723
4724 Expr *getCommonExpr() const {
4725 return static_cast<Expr*>(SubExprs[SubExpr::Common]);
4726 }
4727
4728 /// getOpaqueValue - Return the opaque value placeholder.
4729 OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
4730
4731 Expr *getReadyExpr() const {
4732 return static_cast<Expr*>(SubExprs[SubExpr::Ready]);
4733 }
4734
4735 Expr *getSuspendExpr() const {
4736 return static_cast<Expr*>(SubExprs[SubExpr::Suspend]);
4737 }
4738
4739 Expr *getResumeExpr() const {
4740 return static_cast<Expr*>(SubExprs[SubExpr::Resume]);
4741 }
4742
4743 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return KeywordLoc; }
4744
4745 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
4746 return getCommonExpr()->getEndLoc();
4747 }
4748
4749 child_range children() {
4750 return child_range(SubExprs, SubExprs + SubExpr::Count);
4751 }
4752
4753 const_child_range children() const {
4754 return const_child_range(SubExprs, SubExprs + SubExpr::Count);
4755 }
4756
4757 static bool classof(const Stmt *T) {
4758 return T->getStmtClass() == CoawaitExprClass ||
4759 T->getStmtClass() == CoyieldExprClass;
4760 }
4761};
4762
4763/// Represents a 'co_await' expression.
4764class CoawaitExpr : public CoroutineSuspendExpr {
4765 friend class ASTStmtReader;
4766
4767public:
4768 CoawaitExpr(SourceLocation CoawaitLoc, Expr *Operand, Expr *Ready,
4769 Expr *Suspend, Expr *Resume, OpaqueValueExpr *OpaqueValue,
4770 bool IsImplicit = false)
4771 : CoroutineSuspendExpr(CoawaitExprClass, CoawaitLoc, Operand, Ready,
4772 Suspend, Resume, OpaqueValue) {
4773 CoawaitBits.IsImplicit = IsImplicit;
4774 }
4775
4776 CoawaitExpr(SourceLocation CoawaitLoc, QualType Ty, Expr *Operand,
4777 bool IsImplicit = false)
4778 : CoroutineSuspendExpr(CoawaitExprClass, CoawaitLoc, Ty, Operand) {
4779 CoawaitBits.IsImplicit = IsImplicit;
4780 }
4781
4782 CoawaitExpr(EmptyShell Empty)
4783 : CoroutineSuspendExpr(CoawaitExprClass, Empty) {}
4784
4785 Expr *getOperand() const {
4786 // FIXME: Dig out the actual operand or store it.
4787 return getCommonExpr();
4788 }
4789
4790 bool isImplicit() const { return CoawaitBits.IsImplicit; }
4791 void setIsImplicit(bool value = true) { CoawaitBits.IsImplicit = value; }
4792
4793 static bool classof(const Stmt *T) {
4794 return T->getStmtClass() == CoawaitExprClass;
4795 }
4796};
4797
4798/// Represents a 'co_await' expression while the type of the promise
4799/// is dependent.
4800class DependentCoawaitExpr : public Expr {
4801 friend class ASTStmtReader;
4802
4803 SourceLocation KeywordLoc;
4804 Stmt *SubExprs[2];
4805
4806public:
4807 DependentCoawaitExpr(SourceLocation KeywordLoc, QualType Ty, Expr *Op,
4808 UnresolvedLookupExpr *OpCoawait)
4809 : Expr(DependentCoawaitExprClass, Ty, VK_PRValue, OK_Ordinary),
4810 KeywordLoc(KeywordLoc) {
4811 // NOTE: A co_await expression is dependent on the coroutines promise
4812 // type and may be dependent even when the `Op` expression is not.
4813 assert(Ty->isDependentType() &&(static_cast <bool> (Ty->isDependentType() &&
"wrong constructor for non-dependent co_await/co_yield expression"
) ? void (0) : __assert_fail ("Ty->isDependentType() && \"wrong constructor for non-dependent co_await/co_yield expression\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 4814, __extension__ __PRETTY_FUNCTION__))
4814 "wrong constructor for non-dependent co_await/co_yield expression")(static_cast <bool> (Ty->isDependentType() &&
"wrong constructor for non-dependent co_await/co_yield expression"
) ? void (0) : __assert_fail ("Ty->isDependentType() && \"wrong constructor for non-dependent co_await/co_yield expression\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ExprCXX.h"
, 4814, __extension__ __PRETTY_FUNCTION__))
;
4815 SubExprs[0] = Op;
4816 SubExprs[1] = OpCoawait;
4817 setDependence(computeDependence(this));
4818 }
4819
4820 DependentCoawaitExpr(EmptyShell Empty)
4821 : Expr(DependentCoawaitExprClass, Empty) {}
4822
4823 Expr *getOperand() const { return cast<Expr>(SubExprs[0]); }
4824
4825 UnresolvedLookupExpr *getOperatorCoawaitLookup() const {
4826 return cast<UnresolvedLookupExpr>(SubExprs[1]);
4827 }
4828
4829 SourceLocation getKeywordLoc() const { return KeywordLoc; }
4830
4831 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return KeywordLoc; }
4832
4833 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
4834 return getOperand()->getEndLoc();
4835 }
4836
4837 child_range children() { return child_range(SubExprs, SubExprs + 2); }
4838
4839 const_child_range children() const {
4840 return const_child_range(SubExprs, SubExprs + 2);
4841 }
4842
4843 static bool classof(const Stmt *T) {
4844 return T->getStmtClass() == DependentCoawaitExprClass;
4845 }
4846};
4847
4848/// Represents a 'co_yield' expression.
4849class CoyieldExpr : public CoroutineSuspendExpr {
4850 friend class ASTStmtReader;
4851
4852public:
4853 CoyieldExpr(SourceLocation CoyieldLoc, Expr *Operand, Expr *Ready,
4854 Expr *Suspend, Expr *Resume, OpaqueValueExpr *OpaqueValue)
4855 : CoroutineSuspendExpr(CoyieldExprClass, CoyieldLoc, Operand, Ready,
65
Calling constructor for 'CoroutineSuspendExpr'
4856 Suspend, Resume, OpaqueValue) {}
64
Passing null pointer value via 6th parameter 'Resume'
4857 CoyieldExpr(SourceLocation CoyieldLoc, QualType Ty, Expr *Operand)
4858 : CoroutineSuspendExpr(CoyieldExprClass, CoyieldLoc, Ty, Operand) {}
4859 CoyieldExpr(EmptyShell Empty)
4860 : CoroutineSuspendExpr(CoyieldExprClass, Empty) {}
4861
4862 Expr *getOperand() const {
4863 // FIXME: Dig out the actual operand or store it.
4864 return getCommonExpr();
4865 }
4866
4867 static bool classof(const Stmt *T) {
4868 return T->getStmtClass() == CoyieldExprClass;
4869 }
4870};
4871
4872/// Represents a C++2a __builtin_bit_cast(T, v) expression. Used to implement
4873/// std::bit_cast. These can sometimes be evaluated as part of a constant
4874/// expression, but otherwise CodeGen to a simple memcpy in general.
4875class BuiltinBitCastExpr final
4876 : public ExplicitCastExpr,
4877 private llvm::TrailingObjects<BuiltinBitCastExpr, CXXBaseSpecifier *> {
4878 friend class ASTStmtReader;
4879 friend class CastExpr;
4880 friend TrailingObjects;
4881
4882 SourceLocation KWLoc;
4883 SourceLocation RParenLoc;
4884
4885public:
4886 BuiltinBitCastExpr(QualType T, ExprValueKind VK, CastKind CK, Expr *SrcExpr,
4887 TypeSourceInfo *DstType, SourceLocation KWLoc,
4888 SourceLocation RParenLoc)
4889 : ExplicitCastExpr(BuiltinBitCastExprClass, T, VK, CK, SrcExpr, 0, false,
4890 DstType),
4891 KWLoc(KWLoc), RParenLoc(RParenLoc) {}
4892 BuiltinBitCastExpr(EmptyShell Empty)
4893 : ExplicitCastExpr(BuiltinBitCastExprClass, Empty, 0, false) {}
4894
4895 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return KWLoc; }
4896 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return RParenLoc; }
4897
4898 static bool classof(const Stmt *T) {
4899 return T->getStmtClass() == BuiltinBitCastExprClass;
4900 }
4901};
4902
4903} // namespace clang
4904
4905#endif // LLVM_CLANG_AST_EXPRCXX_H