Bug Summary

File:build/source/clang/lib/Sema/SemaCoroutine.cpp
Warning:line 1594, column 11
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaCoroutine.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-17/lib/clang/17 -I tools/clang/lib/Sema -I /build/source/clang/lib/Sema -I /build/source/clang/include -I tools/clang/include -I include -I /build/source/llvm/include -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-05-10-133810-16478-1 -x c++ /build/source/clang/lib/Sema/SemaCoroutine.cpp
1//===-- SemaCoroutine.cpp - Semantic Analysis for Coroutines --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for C++ Coroutines.
10//
11// This file contains references to sections of the Coroutines TS, which
12// can be found at http://wg21.link/coroutines.
13//
14//===----------------------------------------------------------------------===//
15
16#include "CoroutineStmtBuilder.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/Decl.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/StmtCXX.h"
21#include "clang/Basic/Builtins.h"
22#include "clang/Lex/Preprocessor.h"
23#include "clang/Sema/Initialization.h"
24#include "clang/Sema/Overload.h"
25#include "clang/Sema/ScopeInfo.h"
26#include "clang/Sema/SemaInternal.h"
27#include "llvm/ADT/SmallSet.h"
28
29using namespace clang;
30using namespace sema;
31
32static LookupResult lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD,
33 SourceLocation Loc, bool &Res) {
34 DeclarationName DN = S.PP.getIdentifierInfo(Name);
35 LookupResult LR(S, DN, Loc, Sema::LookupMemberName);
36 // Suppress diagnostics when a private member is selected. The same warnings
37 // will be produced again when building the call.
38 LR.suppressDiagnostics();
39 Res = S.LookupQualifiedName(LR, RD);
40 return LR;
41}
42
43static bool lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD,
44 SourceLocation Loc) {
45 bool Res;
46 lookupMember(S, Name, RD, Loc, Res);
47 return Res;
48}
49
50/// Look up the std::coroutine_traits<...>::promise_type for the given
51/// function type.
52static QualType lookupPromiseType(Sema &S, const FunctionDecl *FD,
53 SourceLocation KwLoc) {
54 const FunctionProtoType *FnType = FD->getType()->castAs<FunctionProtoType>();
55 const SourceLocation FuncLoc = FD->getLocation();
56
57 ClassTemplateDecl *CoroTraits =
58 S.lookupCoroutineTraits(KwLoc, FuncLoc);
59 if (!CoroTraits)
60 return QualType();
61
62 // Form template argument list for coroutine_traits<R, P1, P2, ...> according
63 // to [dcl.fct.def.coroutine]3
64 TemplateArgumentListInfo Args(KwLoc, KwLoc);
65 auto AddArg = [&](QualType T) {
66 Args.addArgument(TemplateArgumentLoc(
67 TemplateArgument(T), S.Context.getTrivialTypeSourceInfo(T, KwLoc)));
68 };
69 AddArg(FnType->getReturnType());
70 // If the function is a non-static member function, add the type
71 // of the implicit object parameter before the formal parameters.
72 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
73 if (MD->isInstance()) {
74 // [over.match.funcs]4
75 // For non-static member functions, the type of the implicit object
76 // parameter is
77 // -- "lvalue reference to cv X" for functions declared without a
78 // ref-qualifier or with the & ref-qualifier
79 // -- "rvalue reference to cv X" for functions declared with the &&
80 // ref-qualifier
81 QualType T = MD->getThisType()->castAs<PointerType>()->getPointeeType();
82 T = FnType->getRefQualifier() == RQ_RValue
83 ? S.Context.getRValueReferenceType(T)
84 : S.Context.getLValueReferenceType(T, /*SpelledAsLValue*/ true);
85 AddArg(T);
86 }
87 }
88 for (QualType T : FnType->getParamTypes())
89 AddArg(T);
90
91 // Build the template-id.
92 QualType CoroTrait =
93 S.CheckTemplateIdType(TemplateName(CoroTraits), KwLoc, Args);
94 if (CoroTrait.isNull())
95 return QualType();
96 if (S.RequireCompleteType(KwLoc, CoroTrait,
97 diag::err_coroutine_type_missing_specialization))
98 return QualType();
99
100 auto *RD = CoroTrait->getAsCXXRecordDecl();
101 assert(RD && "specialization of class template is not a class?")(static_cast <bool> (RD && "specialization of class template is not a class?"
) ? void (0) : __assert_fail ("RD && \"specialization of class template is not a class?\""
, "clang/lib/Sema/SemaCoroutine.cpp", 101, __extension__ __PRETTY_FUNCTION__
))
;
102
103 // Look up the ::promise_type member.
104 LookupResult R(S, &S.PP.getIdentifierTable().get("promise_type"), KwLoc,
105 Sema::LookupOrdinaryName);
106 S.LookupQualifiedName(R, RD);
107 auto *Promise = R.getAsSingle<TypeDecl>();
108 if (!Promise) {
109 S.Diag(FuncLoc,
110 diag::err_implied_std_coroutine_traits_promise_type_not_found)
111 << RD;
112 return QualType();
113 }
114 // The promise type is required to be a class type.
115 QualType PromiseType = S.Context.getTypeDeclType(Promise);
116
117 auto buildElaboratedType = [&]() {
118 auto *NNS = NestedNameSpecifier::Create(S.Context, nullptr, S.getStdNamespace());
119 NNS = NestedNameSpecifier::Create(S.Context, NNS, false,
120 CoroTrait.getTypePtr());
121 return S.Context.getElaboratedType(ETK_None, NNS, PromiseType);
122 };
123
124 if (!PromiseType->getAsCXXRecordDecl()) {
125 S.Diag(FuncLoc,
126 diag::err_implied_std_coroutine_traits_promise_type_not_class)
127 << buildElaboratedType();
128 return QualType();
129 }
130 if (S.RequireCompleteType(FuncLoc, buildElaboratedType(),
131 diag::err_coroutine_promise_type_incomplete))
132 return QualType();
133
134 return PromiseType;
135}
136
137/// Look up the std::coroutine_handle<PromiseType>.
138static QualType lookupCoroutineHandleType(Sema &S, QualType PromiseType,
139 SourceLocation Loc) {
140 if (PromiseType.isNull())
141 return QualType();
142
143 NamespaceDecl *CoroNamespace = S.getStdNamespace();
144 assert(CoroNamespace && "Should already be diagnosed")(static_cast <bool> (CoroNamespace && "Should already be diagnosed"
) ? void (0) : __assert_fail ("CoroNamespace && \"Should already be diagnosed\""
, "clang/lib/Sema/SemaCoroutine.cpp", 144, __extension__ __PRETTY_FUNCTION__
))
;
145
146 LookupResult Result(S, &S.PP.getIdentifierTable().get("coroutine_handle"),
147 Loc, Sema::LookupOrdinaryName);
148 if (!S.LookupQualifiedName(Result, CoroNamespace)) {
149 S.Diag(Loc, diag::err_implied_coroutine_type_not_found)
150 << "std::coroutine_handle";
151 return QualType();
152 }
153
154 ClassTemplateDecl *CoroHandle = Result.getAsSingle<ClassTemplateDecl>();
155 if (!CoroHandle) {
156 Result.suppressDiagnostics();
157 // We found something weird. Complain about the first thing we found.
158 NamedDecl *Found = *Result.begin();
159 S.Diag(Found->getLocation(), diag::err_malformed_std_coroutine_handle);
160 return QualType();
161 }
162
163 // Form template argument list for coroutine_handle<Promise>.
164 TemplateArgumentListInfo Args(Loc, Loc);
165 Args.addArgument(TemplateArgumentLoc(
166 TemplateArgument(PromiseType),
167 S.Context.getTrivialTypeSourceInfo(PromiseType, Loc)));
168
169 // Build the template-id.
170 QualType CoroHandleType =
171 S.CheckTemplateIdType(TemplateName(CoroHandle), Loc, Args);
172 if (CoroHandleType.isNull())
173 return QualType();
174 if (S.RequireCompleteType(Loc, CoroHandleType,
175 diag::err_coroutine_type_missing_specialization))
176 return QualType();
177
178 return CoroHandleType;
179}
180
181static bool isValidCoroutineContext(Sema &S, SourceLocation Loc,
182 StringRef Keyword) {
183 // [expr.await]p2 dictates that 'co_await' and 'co_yield' must be used within
184 // a function body.
185 // FIXME: This also covers [expr.await]p2: "An await-expression shall not
186 // appear in a default argument." But the diagnostic QoI here could be
187 // improved to inform the user that default arguments specifically are not
188 // allowed.
189 auto *FD = dyn_cast<FunctionDecl>(S.CurContext);
190 if (!FD) {
191 S.Diag(Loc, isa<ObjCMethodDecl>(S.CurContext)
192 ? diag::err_coroutine_objc_method
193 : diag::err_coroutine_outside_function) << Keyword;
194 return false;
195 }
196
197 // An enumeration for mapping the diagnostic type to the correct diagnostic
198 // selection index.
199 enum InvalidFuncDiag {
200 DiagCtor = 0,
201 DiagDtor,
202 DiagMain,
203 DiagConstexpr,
204 DiagAutoRet,
205 DiagVarargs,
206 DiagConsteval,
207 };
208 bool Diagnosed = false;
209 auto DiagInvalid = [&](InvalidFuncDiag ID) {
210 S.Diag(Loc, diag::err_coroutine_invalid_func_context) << ID << Keyword;
211 Diagnosed = true;
212 return false;
213 };
214
215 // Diagnose when a constructor, destructor
216 // or the function 'main' are declared as a coroutine.
217 auto *MD = dyn_cast<CXXMethodDecl>(FD);
218 // [class.ctor]p11: "A constructor shall not be a coroutine."
219 if (MD && isa<CXXConstructorDecl>(MD))
220 return DiagInvalid(DiagCtor);
221 // [class.dtor]p17: "A destructor shall not be a coroutine."
222 else if (MD && isa<CXXDestructorDecl>(MD))
223 return DiagInvalid(DiagDtor);
224 // [basic.start.main]p3: "The function main shall not be a coroutine."
225 else if (FD->isMain())
226 return DiagInvalid(DiagMain);
227
228 // Emit a diagnostics for each of the following conditions which is not met.
229 // [expr.const]p2: "An expression e is a core constant expression unless the
230 // evaluation of e [...] would evaluate one of the following expressions:
231 // [...] an await-expression [...] a yield-expression."
232 if (FD->isConstexpr())
233 DiagInvalid(FD->isConsteval() ? DiagConsteval : DiagConstexpr);
234 // [dcl.spec.auto]p15: "A function declared with a return type that uses a
235 // placeholder type shall not be a coroutine."
236 if (FD->getReturnType()->isUndeducedType())
237 DiagInvalid(DiagAutoRet);
238 // [dcl.fct.def.coroutine]p1
239 // The parameter-declaration-clause of the coroutine shall not terminate with
240 // an ellipsis that is not part of a parameter-declaration.
241 if (FD->isVariadic())
242 DiagInvalid(DiagVarargs);
243
244 return !Diagnosed;
245}
246
247/// Build a call to 'operator co_await' if there is a suitable operator for
248/// the given expression.
249ExprResult Sema::BuildOperatorCoawaitCall(SourceLocation Loc, Expr *E,
250 UnresolvedLookupExpr *Lookup) {
251 UnresolvedSet<16> Functions;
252 Functions.append(Lookup->decls_begin(), Lookup->decls_end());
253 return CreateOverloadedUnaryOp(Loc, UO_Coawait, Functions, E);
254}
255
256static ExprResult buildOperatorCoawaitCall(Sema &SemaRef, Scope *S,
257 SourceLocation Loc, Expr *E) {
258 ExprResult R = SemaRef.BuildOperatorCoawaitLookupExpr(S, Loc);
259 if (R.isInvalid())
260 return ExprError();
261 return SemaRef.BuildOperatorCoawaitCall(Loc, E,
262 cast<UnresolvedLookupExpr>(R.get()));
263}
264
265static ExprResult buildCoroutineHandle(Sema &S, QualType PromiseType,
266 SourceLocation Loc) {
267 QualType CoroHandleType = lookupCoroutineHandleType(S, PromiseType, Loc);
268 if (CoroHandleType.isNull())
269 return ExprError();
270
271 DeclContext *LookupCtx = S.computeDeclContext(CoroHandleType);
272 LookupResult Found(S, &S.PP.getIdentifierTable().get("from_address"), Loc,
273 Sema::LookupOrdinaryName);
274 if (!S.LookupQualifiedName(Found, LookupCtx)) {
275 S.Diag(Loc, diag::err_coroutine_handle_missing_member)
276 << "from_address";
277 return ExprError();
278 }
279
280 Expr *FramePtr =
281 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {});
282
283 CXXScopeSpec SS;
284 ExprResult FromAddr =
285 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false);
286 if (FromAddr.isInvalid())
287 return ExprError();
288
289 return S.BuildCallExpr(nullptr, FromAddr.get(), Loc, FramePtr, Loc);
290}
291
292struct ReadySuspendResumeResult {
293 enum AwaitCallType { ACT_Ready, ACT_Suspend, ACT_Resume };
294 Expr *Results[3];
295 OpaqueValueExpr *OpaqueValue;
296 bool IsInvalid;
297};
298
299static ExprResult buildMemberCall(Sema &S, Expr *Base, SourceLocation Loc,
300 StringRef Name, MultiExprArg Args) {
301 DeclarationNameInfo NameInfo(&S.PP.getIdentifierTable().get(Name), Loc);
302
303 // FIXME: Fix BuildMemberReferenceExpr to take a const CXXScopeSpec&.
304 CXXScopeSpec SS;
305 ExprResult Result = S.BuildMemberReferenceExpr(
306 Base, Base->getType(), Loc, /*IsPtr=*/false, SS,
307 SourceLocation(), nullptr, NameInfo, /*TemplateArgs=*/nullptr,
308 /*Scope=*/nullptr);
309 if (Result.isInvalid())
310 return ExprError();
311
312 // We meant exactly what we asked for. No need for typo correction.
313 if (auto *TE = dyn_cast<TypoExpr>(Result.get())) {
314 S.clearDelayedTypo(TE);
315 S.Diag(Loc, diag::err_no_member)
316 << NameInfo.getName() << Base->getType()->getAsCXXRecordDecl()
317 << Base->getSourceRange();
318 return ExprError();
319 }
320
321 return S.BuildCallExpr(nullptr, Result.get(), Loc, Args, Loc, nullptr);
322}
323
324// See if return type is coroutine-handle and if so, invoke builtin coro-resume
325// on its address. This is to enable the support for coroutine-handle
326// returning await_suspend that results in a guaranteed tail call to the target
327// coroutine.
328static Expr *maybeTailCall(Sema &S, QualType RetType, Expr *E,
329 SourceLocation Loc) {
330 if (RetType->isReferenceType())
331 return nullptr;
332 Type const *T = RetType.getTypePtr();
333 if (!T->isClassType() && !T->isStructureType())
334 return nullptr;
335
336 // FIXME: Add convertability check to coroutine_handle<>. Possibly via
337 // EvaluateBinaryTypeTrait(BTT_IsConvertible, ...) which is at the moment
338 // a private function in SemaExprCXX.cpp
339
340 ExprResult AddressExpr = buildMemberCall(S, E, Loc, "address", std::nullopt);
341 if (AddressExpr.isInvalid())
342 return nullptr;
343
344 Expr *JustAddress = AddressExpr.get();
345
346 // Check that the type of AddressExpr is void*
347 if (!JustAddress->getType().getTypePtr()->isVoidPointerType())
348 S.Diag(cast<CallExpr>(JustAddress)->getCalleeDecl()->getLocation(),
349 diag::warn_coroutine_handle_address_invalid_return_type)
350 << JustAddress->getType();
351
352 // Clean up temporary objects so that they don't live across suspension points
353 // unnecessarily. We choose to clean up before the call to
354 // __builtin_coro_resume so that the cleanup code are not inserted in-between
355 // the resume call and return instruction, which would interfere with the
356 // musttail call contract.
357 JustAddress = S.MaybeCreateExprWithCleanups(JustAddress);
358 return S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_resume,
359 JustAddress);
360}
361
362/// Build calls to await_ready, await_suspend, and await_resume for a co_await
363/// expression.
364/// The generated AST tries to clean up temporary objects as early as
365/// possible so that they don't live across suspension points if possible.
366/// Having temporary objects living across suspension points unnecessarily can
367/// lead to large frame size, and also lead to memory corruptions if the
368/// coroutine frame is destroyed after coming back from suspension. This is done
369/// by wrapping both the await_ready call and the await_suspend call with
370/// ExprWithCleanups. In the end of this function, we also need to explicitly
371/// set cleanup state so that the CoawaitExpr is also wrapped with an
372/// ExprWithCleanups to clean up the awaiter associated with the co_await
373/// expression.
374static ReadySuspendResumeResult buildCoawaitCalls(Sema &S, VarDecl *CoroPromise,
375 SourceLocation Loc, Expr *E) {
376 OpaqueValueExpr *Operand = new (S.Context)
377 OpaqueValueExpr(Loc, E->getType(), VK_LValue, E->getObjectKind(), E);
378
379 // Assume valid until we see otherwise.
380 // Further operations are responsible for setting IsInalid to true.
381 ReadySuspendResumeResult Calls = {{}, Operand, /*IsInvalid=*/false};
382
383 using ACT = ReadySuspendResumeResult::AwaitCallType;
384
385 auto BuildSubExpr = [&](ACT CallType, StringRef Func,
386 MultiExprArg Arg) -> Expr * {
387 ExprResult Result = buildMemberCall(S, Operand, Loc, Func, Arg);
388 if (Result.isInvalid()) {
389 Calls.IsInvalid = true;
390 return nullptr;
391 }
392 Calls.Results[CallType] = Result.get();
393 return Result.get();
394 };
395
396 CallExpr *AwaitReady = cast_or_null<CallExpr>(
397 BuildSubExpr(ACT::ACT_Ready, "await_ready", std::nullopt));
398 if (!AwaitReady)
399 return Calls;
400 if (!AwaitReady->getType()->isDependentType()) {
401 // [expr.await]p3 [...]
402 // — await-ready is the expression e.await_ready(), contextually converted
403 // to bool.
404 ExprResult Conv = S.PerformContextuallyConvertToBool(AwaitReady);
405 if (Conv.isInvalid()) {
406 S.Diag(AwaitReady->getDirectCallee()->getBeginLoc(),
407 diag::note_await_ready_no_bool_conversion);
408 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
409 << AwaitReady->getDirectCallee() << E->getSourceRange();
410 Calls.IsInvalid = true;
411 } else
412 Calls.Results[ACT::ACT_Ready] = S.MaybeCreateExprWithCleanups(Conv.get());
413 }
414
415 ExprResult CoroHandleRes =
416 buildCoroutineHandle(S, CoroPromise->getType(), Loc);
417 if (CoroHandleRes.isInvalid()) {
418 Calls.IsInvalid = true;
419 return Calls;
420 }
421 Expr *CoroHandle = CoroHandleRes.get();
422 CallExpr *AwaitSuspend = cast_or_null<CallExpr>(
423 BuildSubExpr(ACT::ACT_Suspend, "await_suspend", CoroHandle));
424 if (!AwaitSuspend)
425 return Calls;
426 if (!AwaitSuspend->getType()->isDependentType()) {
427 // [expr.await]p3 [...]
428 // - await-suspend is the expression e.await_suspend(h), which shall be
429 // a prvalue of type void, bool, or std::coroutine_handle<Z> for some
430 // type Z.
431 QualType RetType = AwaitSuspend->getCallReturnType(S.Context);
432
433 // Support for coroutine_handle returning await_suspend.
434 if (Expr *TailCallSuspend =
435 maybeTailCall(S, RetType, AwaitSuspend, Loc))
436 // Note that we don't wrap the expression with ExprWithCleanups here
437 // because that might interfere with tailcall contract (e.g. inserting
438 // clean up instructions in-between tailcall and return). Instead
439 // ExprWithCleanups is wrapped within maybeTailCall() prior to the resume
440 // call.
441 Calls.Results[ACT::ACT_Suspend] = TailCallSuspend;
442 else {
443 // non-class prvalues always have cv-unqualified types
444 if (RetType->isReferenceType() ||
445 (!RetType->isBooleanType() && !RetType->isVoidType())) {
446 S.Diag(AwaitSuspend->getCalleeDecl()->getLocation(),
447 diag::err_await_suspend_invalid_return_type)
448 << RetType;
449 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
450 << AwaitSuspend->getDirectCallee();
451 Calls.IsInvalid = true;
452 } else
453 Calls.Results[ACT::ACT_Suspend] =
454 S.MaybeCreateExprWithCleanups(AwaitSuspend);
455 }
456 }
457
458 BuildSubExpr(ACT::ACT_Resume, "await_resume", std::nullopt);
459
460 // Make sure the awaiter object gets a chance to be cleaned up.
461 S.Cleanup.setExprNeedsCleanups(true);
462
463 return Calls;
464}
465
466static ExprResult buildPromiseCall(Sema &S, VarDecl *Promise,
467 SourceLocation Loc, StringRef Name,
468 MultiExprArg Args) {
469
470 // Form a reference to the promise.
471 ExprResult PromiseRef = S.BuildDeclRefExpr(
472 Promise, Promise->getType().getNonReferenceType(), VK_LValue, Loc);
473 if (PromiseRef.isInvalid())
474 return ExprError();
475
476 return buildMemberCall(S, PromiseRef.get(), Loc, Name, Args);
477}
478
479VarDecl *Sema::buildCoroutinePromise(SourceLocation Loc) {
480 assert(isa<FunctionDecl>(CurContext) && "not in a function scope")(static_cast <bool> (isa<FunctionDecl>(CurContext
) && "not in a function scope") ? void (0) : __assert_fail
("isa<FunctionDecl>(CurContext) && \"not in a function scope\""
, "clang/lib/Sema/SemaCoroutine.cpp", 480, __extension__ __PRETTY_FUNCTION__
))
;
481 auto *FD = cast<FunctionDecl>(CurContext);
482 bool IsThisDependentType = [&] {
483 if (auto *MD = dyn_cast_or_null<CXXMethodDecl>(FD))
484 return MD->isInstance() && MD->getThisType()->isDependentType();
485 else
486 return false;
487 }();
488
489 QualType T = FD->getType()->isDependentType() || IsThisDependentType
490 ? Context.DependentTy
491 : lookupPromiseType(*this, FD, Loc);
492 if (T.isNull())
493 return nullptr;
494
495 auto *VD = VarDecl::Create(Context, FD, FD->getLocation(), FD->getLocation(),
496 &PP.getIdentifierTable().get("__promise"), T,
497 Context.getTrivialTypeSourceInfo(T, Loc), SC_None);
498 VD->setImplicit();
499 CheckVariableDeclarationType(VD);
500 if (VD->isInvalidDecl())
501 return nullptr;
502
503 auto *ScopeInfo = getCurFunction();
504
505 // Build a list of arguments, based on the coroutine function's arguments,
506 // that if present will be passed to the promise type's constructor.
507 llvm::SmallVector<Expr *, 4> CtorArgExprs;
508
509 // Add implicit object parameter.
510 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
511 if (MD->isInstance() && !isLambdaCallOperator(MD)) {
512 ExprResult ThisExpr = ActOnCXXThis(Loc);
513 if (ThisExpr.isInvalid())
514 return nullptr;
515 ThisExpr = CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get());
516 if (ThisExpr.isInvalid())
517 return nullptr;
518 CtorArgExprs.push_back(ThisExpr.get());
519 }
520 }
521
522 // Add the coroutine function's parameters.
523 auto &Moves = ScopeInfo->CoroutineParameterMoves;
524 for (auto *PD : FD->parameters()) {
525 if (PD->getType()->isDependentType())
526 continue;
527
528 auto RefExpr = ExprEmpty();
529 auto Move = Moves.find(PD);
530 assert(Move != Moves.end() &&(static_cast <bool> (Move != Moves.end() && "Coroutine function parameter not inserted into move map"
) ? void (0) : __assert_fail ("Move != Moves.end() && \"Coroutine function parameter not inserted into move map\""
, "clang/lib/Sema/SemaCoroutine.cpp", 531, __extension__ __PRETTY_FUNCTION__
))
531 "Coroutine function parameter not inserted into move map")(static_cast <bool> (Move != Moves.end() && "Coroutine function parameter not inserted into move map"
) ? void (0) : __assert_fail ("Move != Moves.end() && \"Coroutine function parameter not inserted into move map\""
, "clang/lib/Sema/SemaCoroutine.cpp", 531, __extension__ __PRETTY_FUNCTION__
))
;
532 // If a reference to the function parameter exists in the coroutine
533 // frame, use that reference.
534 auto *MoveDecl =
535 cast<VarDecl>(cast<DeclStmt>(Move->second)->getSingleDecl());
536 RefExpr =
537 BuildDeclRefExpr(MoveDecl, MoveDecl->getType().getNonReferenceType(),
538 ExprValueKind::VK_LValue, FD->getLocation());
539 if (RefExpr.isInvalid())
540 return nullptr;
541 CtorArgExprs.push_back(RefExpr.get());
542 }
543
544 // If we have a non-zero number of constructor arguments, try to use them.
545 // Otherwise, fall back to the promise type's default constructor.
546 if (!CtorArgExprs.empty()) {
547 // Create an initialization sequence for the promise type using the
548 // constructor arguments, wrapped in a parenthesized list expression.
549 Expr *PLE = ParenListExpr::Create(Context, FD->getLocation(),
550 CtorArgExprs, FD->getLocation());
551 InitializedEntity Entity = InitializedEntity::InitializeVariable(VD);
552 InitializationKind Kind = InitializationKind::CreateForInit(
553 VD->getLocation(), /*DirectInit=*/true, PLE);
554 InitializationSequence InitSeq(*this, Entity, Kind, CtorArgExprs,
555 /*TopLevelOfInitList=*/false,
556 /*TreatUnavailableAsInvalid=*/false);
557
558 // [dcl.fct.def.coroutine]5.7
559 // promise-constructor-arguments is determined as follows: overload
560 // resolution is performed on a promise constructor call created by
561 // assembling an argument list q_1 ... q_n . If a viable constructor is
562 // found ([over.match.viable]), then promise-constructor-arguments is ( q_1
563 // , ..., q_n ), otherwise promise-constructor-arguments is empty.
564 if (InitSeq) {
565 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, CtorArgExprs);
566 if (Result.isInvalid()) {
567 VD->setInvalidDecl();
568 } else if (Result.get()) {
569 VD->setInit(MaybeCreateExprWithCleanups(Result.get()));
570 VD->setInitStyle(VarDecl::CallInit);
571 CheckCompleteVariableDeclaration(VD);
572 }
573 } else
574 ActOnUninitializedDecl(VD);
575 } else
576 ActOnUninitializedDecl(VD);
577
578 FD->addDecl(VD);
579 return VD;
580}
581
582/// Check that this is a context in which a coroutine suspension can appear.
583static FunctionScopeInfo *checkCoroutineContext(Sema &S, SourceLocation Loc,
584 StringRef Keyword,
585 bool IsImplicit = false) {
586 if (!isValidCoroutineContext(S, Loc, Keyword))
587 return nullptr;
588
589 assert(isa<FunctionDecl>(S.CurContext) && "not in a function scope")(static_cast <bool> (isa<FunctionDecl>(S.CurContext
) && "not in a function scope") ? void (0) : __assert_fail
("isa<FunctionDecl>(S.CurContext) && \"not in a function scope\""
, "clang/lib/Sema/SemaCoroutine.cpp", 589, __extension__ __PRETTY_FUNCTION__
))
;
590
591 auto *ScopeInfo = S.getCurFunction();
592 assert(ScopeInfo && "missing function scope for function")(static_cast <bool> (ScopeInfo && "missing function scope for function"
) ? void (0) : __assert_fail ("ScopeInfo && \"missing function scope for function\""
, "clang/lib/Sema/SemaCoroutine.cpp", 592, __extension__ __PRETTY_FUNCTION__
))
;
593
594 if (ScopeInfo->FirstCoroutineStmtLoc.isInvalid() && !IsImplicit)
595 ScopeInfo->setFirstCoroutineStmt(Loc, Keyword);
596
597 if (ScopeInfo->CoroutinePromise)
598 return ScopeInfo;
599
600 if (!S.buildCoroutineParameterMoves(Loc))
601 return nullptr;
602
603 ScopeInfo->CoroutinePromise = S.buildCoroutinePromise(Loc);
604 if (!ScopeInfo->CoroutinePromise)
605 return nullptr;
606
607 return ScopeInfo;
608}
609
610/// Recursively check \p E and all its children to see if any call target
611/// (including constructor call) is declared noexcept. Also any value returned
612/// from the call has a noexcept destructor.
613static void checkNoThrow(Sema &S, const Stmt *E,
614 llvm::SmallPtrSetImpl<const Decl *> &ThrowingDecls) {
615 auto checkDeclNoexcept = [&](const Decl *D, bool IsDtor = false) {
616 // In the case of dtor, the call to dtor is implicit and hence we should
617 // pass nullptr to canCalleeThrow.
618 if (Sema::canCalleeThrow(S, IsDtor ? nullptr : cast<Expr>(E), D)) {
619 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
620 // co_await promise.final_suspend() could end up calling
621 // __builtin_coro_resume for symmetric transfer if await_suspend()
622 // returns a handle. In that case, even __builtin_coro_resume is not
623 // declared as noexcept and may throw, it does not throw _into_ the
624 // coroutine that just suspended, but rather throws back out from
625 // whoever called coroutine_handle::resume(), hence we claim that
626 // logically it does not throw.
627 if (FD->getBuiltinID() == Builtin::BI__builtin_coro_resume)
628 return;
629 }
630 if (ThrowingDecls.empty()) {
631 // [dcl.fct.def.coroutine]p15
632 // The expression co_await promise.final_suspend() shall not be
633 // potentially-throwing ([except.spec]).
634 //
635 // First time seeing an error, emit the error message.
636 S.Diag(cast<FunctionDecl>(S.CurContext)->getLocation(),
637 diag::err_coroutine_promise_final_suspend_requires_nothrow);
638 }
639 ThrowingDecls.insert(D);
640 }
641 };
642
643 if (auto *CE = dyn_cast<CXXConstructExpr>(E)) {
644 CXXConstructorDecl *Ctor = CE->getConstructor();
645 checkDeclNoexcept(Ctor);
646 // Check the corresponding destructor of the constructor.
647 checkDeclNoexcept(Ctor->getParent()->getDestructor(), /*IsDtor=*/true);
648 } else if (auto *CE = dyn_cast<CallExpr>(E)) {
649 if (CE->isTypeDependent())
650 return;
651
652 checkDeclNoexcept(CE->getCalleeDecl());
653 QualType ReturnType = CE->getCallReturnType(S.getASTContext());
654 // Check the destructor of the call return type, if any.
655 if (ReturnType.isDestructedType() ==
656 QualType::DestructionKind::DK_cxx_destructor) {
657 const auto *T =
658 cast<RecordType>(ReturnType.getCanonicalType().getTypePtr());
659 checkDeclNoexcept(cast<CXXRecordDecl>(T->getDecl())->getDestructor(),
660 /*IsDtor=*/true);
661 }
662 } else
663 for (const auto *Child : E->children()) {
664 if (!Child)
665 continue;
666 checkNoThrow(S, Child, ThrowingDecls);
667 }
668}
669
670bool Sema::checkFinalSuspendNoThrow(const Stmt *FinalSuspend) {
671 llvm::SmallPtrSet<const Decl *, 4> ThrowingDecls;
672 // We first collect all declarations that should not throw but not declared
673 // with noexcept. We then sort them based on the location before printing.
674 // This is to avoid emitting the same note multiple times on the same
675 // declaration, and also provide a deterministic order for the messages.
676 checkNoThrow(*this, FinalSuspend, ThrowingDecls);
677 auto SortedDecls = llvm::SmallVector<const Decl *, 4>{ThrowingDecls.begin(),
678 ThrowingDecls.end()};
679 sort(SortedDecls, [](const Decl *A, const Decl *B) {
680 return A->getEndLoc() < B->getEndLoc();
681 });
682 for (const auto *D : SortedDecls) {
683 Diag(D->getEndLoc(), diag::note_coroutine_function_declare_noexcept);
684 }
685 return ThrowingDecls.empty();
686}
687
688bool Sema::ActOnCoroutineBodyStart(Scope *SC, SourceLocation KWLoc,
689 StringRef Keyword) {
690 if (!checkCoroutineContext(*this, KWLoc, Keyword))
691 return false;
692 auto *ScopeInfo = getCurFunction();
693 assert(ScopeInfo->CoroutinePromise)(static_cast <bool> (ScopeInfo->CoroutinePromise) ? void
(0) : __assert_fail ("ScopeInfo->CoroutinePromise", "clang/lib/Sema/SemaCoroutine.cpp"
, 693, __extension__ __PRETTY_FUNCTION__))
;
694
695 // If we have existing coroutine statements then we have already built
696 // the initial and final suspend points.
697 if (!ScopeInfo->NeedsCoroutineSuspends)
698 return true;
699
700 ScopeInfo->setNeedsCoroutineSuspends(false);
701
702 auto *Fn = cast<FunctionDecl>(CurContext);
703 SourceLocation Loc = Fn->getLocation();
704 // Build the initial suspend point
705 auto buildSuspends = [&](StringRef Name) mutable -> StmtResult {
706 ExprResult Operand = buildPromiseCall(*this, ScopeInfo->CoroutinePromise,
707 Loc, Name, std::nullopt);
708 if (Operand.isInvalid())
709 return StmtError();
710 ExprResult Suspend =
711 buildOperatorCoawaitCall(*this, SC, Loc, Operand.get());
712 if (Suspend.isInvalid())
713 return StmtError();
714 Suspend = BuildResolvedCoawaitExpr(Loc, Operand.get(), Suspend.get(),
715 /*IsImplicit*/ true);
716 Suspend = ActOnFinishFullExpr(Suspend.get(), /*DiscardedValue*/ false);
717 if (Suspend.isInvalid()) {
718 Diag(Loc, diag::note_coroutine_promise_suspend_implicitly_required)
719 << ((Name == "initial_suspend") ? 0 : 1);
720 Diag(KWLoc, diag::note_declared_coroutine_here) << Keyword;
721 return StmtError();
722 }
723 return cast<Stmt>(Suspend.get());
724 };
725
726 StmtResult InitSuspend = buildSuspends("initial_suspend");
727 if (InitSuspend.isInvalid())
728 return true;
729
730 StmtResult FinalSuspend = buildSuspends("final_suspend");
731 if (FinalSuspend.isInvalid() || !checkFinalSuspendNoThrow(FinalSuspend.get()))
732 return true;
733
734 ScopeInfo->setCoroutineSuspends(InitSuspend.get(), FinalSuspend.get());
735
736 return true;
737}
738
739// Recursively walks up the scope hierarchy until either a 'catch' or a function
740// scope is found, whichever comes first.
741static bool isWithinCatchScope(Scope *S) {
742 // 'co_await' and 'co_yield' keywords are disallowed within catch blocks, but
743 // lambdas that use 'co_await' are allowed. The loop below ends when a
744 // function scope is found in order to ensure the following behavior:
745 //
746 // void foo() { // <- function scope
747 // try { //
748 // co_await x; // <- 'co_await' is OK within a function scope
749 // } catch { // <- catch scope
750 // co_await x; // <- 'co_await' is not OK within a catch scope
751 // []() { // <- function scope
752 // co_await x; // <- 'co_await' is OK within a function scope
753 // }();
754 // }
755 // }
756 while (S && !S->isFunctionScope()) {
757 if (S->isCatchScope())
758 return true;
759 S = S->getParent();
760 }
761 return false;
762}
763
764// [expr.await]p2, emphasis added: "An await-expression shall appear only in
765// a *potentially evaluated* expression within the compound-statement of a
766// function-body *outside of a handler* [...] A context within a function
767// where an await-expression can appear is called a suspension context of the
768// function."
769static bool checkSuspensionContext(Sema &S, SourceLocation Loc,
770 StringRef Keyword) {
771 // First emphasis of [expr.await]p2: must be a potentially evaluated context.
772 // That is, 'co_await' and 'co_yield' cannot appear in subexpressions of
773 // \c sizeof.
774 if (S.isUnevaluatedContext()) {
775 S.Diag(Loc, diag::err_coroutine_unevaluated_context) << Keyword;
776 return false;
777 }
778
779 // Second emphasis of [expr.await]p2: must be outside of an exception handler.
780 if (isWithinCatchScope(S.getCurScope())) {
781 S.Diag(Loc, diag::err_coroutine_within_handler) << Keyword;
782 return false;
783 }
784
785 return true;
786}
787
788ExprResult Sema::ActOnCoawaitExpr(Scope *S, SourceLocation Loc, Expr *E) {
789 if (!checkSuspensionContext(*this, Loc, "co_await"))
790 return ExprError();
791
792 if (!ActOnCoroutineBodyStart(S, Loc, "co_await")) {
793 CorrectDelayedTyposInExpr(E);
794 return ExprError();
795 }
796
797 if (E->hasPlaceholderType()) {
798 ExprResult R = CheckPlaceholderExpr(E);
799 if (R.isInvalid()) return ExprError();
800 E = R.get();
801 }
802 ExprResult Lookup = BuildOperatorCoawaitLookupExpr(S, Loc);
803 if (Lookup.isInvalid())
804 return ExprError();
805 return BuildUnresolvedCoawaitExpr(Loc, E,
806 cast<UnresolvedLookupExpr>(Lookup.get()));
807}
808
809ExprResult Sema::BuildOperatorCoawaitLookupExpr(Scope *S, SourceLocation Loc) {
810 DeclarationName OpName =
811 Context.DeclarationNames.getCXXOperatorName(OO_Coawait);
812 LookupResult Operators(*this, OpName, SourceLocation(),
813 Sema::LookupOperatorName);
814 LookupName(Operators, S);
815
816 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous")(static_cast <bool> (!Operators.isAmbiguous() &&
"Operator lookup cannot be ambiguous") ? void (0) : __assert_fail
("!Operators.isAmbiguous() && \"Operator lookup cannot be ambiguous\""
, "clang/lib/Sema/SemaCoroutine.cpp", 816, __extension__ __PRETTY_FUNCTION__
))
;
817 const auto &Functions = Operators.asUnresolvedSet();
818 bool IsOverloaded =
819 Functions.size() > 1 ||
820 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
821 Expr *CoawaitOp = UnresolvedLookupExpr::Create(
822 Context, /*NamingClass*/ nullptr, NestedNameSpecifierLoc(),
823 DeclarationNameInfo(OpName, Loc), /*RequiresADL*/ true, IsOverloaded,
824 Functions.begin(), Functions.end());
825 assert(CoawaitOp)(static_cast <bool> (CoawaitOp) ? void (0) : __assert_fail
("CoawaitOp", "clang/lib/Sema/SemaCoroutine.cpp", 825, __extension__
__PRETTY_FUNCTION__))
;
826 return CoawaitOp;
827}
828
829// Attempts to resolve and build a CoawaitExpr from "raw" inputs, bailing out to
830// DependentCoawaitExpr if needed.
831ExprResult Sema::BuildUnresolvedCoawaitExpr(SourceLocation Loc, Expr *Operand,
832 UnresolvedLookupExpr *Lookup) {
833 auto *FSI = checkCoroutineContext(*this, Loc, "co_await");
834 if (!FSI)
835 return ExprError();
836
837 if (Operand->hasPlaceholderType()) {
838 ExprResult R = CheckPlaceholderExpr(Operand);
839 if (R.isInvalid())
840 return ExprError();
841 Operand = R.get();
842 }
843
844 auto *Promise = FSI->CoroutinePromise;
845 if (Promise->getType()->isDependentType()) {
846 Expr *Res = new (Context)
847 DependentCoawaitExpr(Loc, Context.DependentTy, Operand, Lookup);
848 return Res;
849 }
850
851 auto *RD = Promise->getType()->getAsCXXRecordDecl();
852 auto *Transformed = Operand;
853 if (lookupMember(*this, "await_transform", RD, Loc)) {
854 ExprResult R =
855 buildPromiseCall(*this, Promise, Loc, "await_transform", Operand);
856 if (R.isInvalid()) {
857 Diag(Loc,
858 diag::note_coroutine_promise_implicit_await_transform_required_here)
859 << Operand->getSourceRange();
860 return ExprError();
861 }
862 Transformed = R.get();
863 }
864 ExprResult Awaiter = BuildOperatorCoawaitCall(Loc, Transformed, Lookup);
865 if (Awaiter.isInvalid())
866 return ExprError();
867
868 return BuildResolvedCoawaitExpr(Loc, Operand, Awaiter.get());
869}
870
871ExprResult Sema::BuildResolvedCoawaitExpr(SourceLocation Loc, Expr *Operand,
872 Expr *Awaiter, bool IsImplicit) {
873 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_await", IsImplicit);
874 if (!Coroutine)
875 return ExprError();
876
877 if (Awaiter->hasPlaceholderType()) {
878 ExprResult R = CheckPlaceholderExpr(Awaiter);
879 if (R.isInvalid()) return ExprError();
880 Awaiter = R.get();
881 }
882
883 if (Awaiter->getType()->isDependentType()) {
884 Expr *Res = new (Context)
885 CoawaitExpr(Loc, Context.DependentTy, Operand, Awaiter, IsImplicit);
886 return Res;
887 }
888
889 // If the expression is a temporary, materialize it as an lvalue so that we
890 // can use it multiple times.
891 if (Awaiter->isPRValue())
892 Awaiter = CreateMaterializeTemporaryExpr(Awaiter->getType(), Awaiter, true);
893
894 // The location of the `co_await` token cannot be used when constructing
895 // the member call expressions since it's before the location of `Expr`, which
896 // is used as the start of the member call expression.
897 SourceLocation CallLoc = Awaiter->getExprLoc();
898
899 // Build the await_ready, await_suspend, await_resume calls.
900 ReadySuspendResumeResult RSS =
901 buildCoawaitCalls(*this, Coroutine->CoroutinePromise, CallLoc, Awaiter);
902 if (RSS.IsInvalid)
903 return ExprError();
904
905 Expr *Res = new (Context)
906 CoawaitExpr(Loc, Operand, Awaiter, RSS.Results[0], RSS.Results[1],
907 RSS.Results[2], RSS.OpaqueValue, IsImplicit);
908
909 return Res;
910}
911
912ExprResult Sema::ActOnCoyieldExpr(Scope *S, SourceLocation Loc, Expr *E) {
913 if (!checkSuspensionContext(*this, Loc, "co_yield"))
914 return ExprError();
915
916 if (!ActOnCoroutineBodyStart(S, Loc, "co_yield")) {
917 CorrectDelayedTyposInExpr(E);
918 return ExprError();
919 }
920
921 // Build yield_value call.
922 ExprResult Awaitable = buildPromiseCall(
923 *this, getCurFunction()->CoroutinePromise, Loc, "yield_value", E);
924 if (Awaitable.isInvalid())
925 return ExprError();
926
927 // Build 'operator co_await' call.
928 Awaitable = buildOperatorCoawaitCall(*this, S, Loc, Awaitable.get());
929 if (Awaitable.isInvalid())
930 return ExprError();
931
932 return BuildCoyieldExpr(Loc, Awaitable.get());
933}
934ExprResult Sema::BuildCoyieldExpr(SourceLocation Loc, Expr *E) {
935 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_yield");
936 if (!Coroutine)
937 return ExprError();
938
939 if (E->hasPlaceholderType()) {
940 ExprResult R = CheckPlaceholderExpr(E);
941 if (R.isInvalid()) return ExprError();
942 E = R.get();
943 }
944
945 Expr *Operand = E;
946
947 if (E->getType()->isDependentType()) {
948 Expr *Res = new (Context) CoyieldExpr(Loc, Context.DependentTy, Operand, E);
949 return Res;
950 }
951
952 // If the expression is a temporary, materialize it as an lvalue so that we
953 // can use it multiple times.
954 if (E->isPRValue())
955 E = CreateMaterializeTemporaryExpr(E->getType(), E, true);
956
957 // Build the await_ready, await_suspend, await_resume calls.
958 ReadySuspendResumeResult RSS = buildCoawaitCalls(
959 *this, Coroutine->CoroutinePromise, Loc, E);
960 if (RSS.IsInvalid)
961 return ExprError();
962
963 Expr *Res =
964 new (Context) CoyieldExpr(Loc, Operand, E, RSS.Results[0], RSS.Results[1],
965 RSS.Results[2], RSS.OpaqueValue);
966
967 return Res;
968}
969
970StmtResult Sema::ActOnCoreturnStmt(Scope *S, SourceLocation Loc, Expr *E) {
971 if (!ActOnCoroutineBodyStart(S, Loc, "co_return")) {
972 CorrectDelayedTyposInExpr(E);
973 return StmtError();
974 }
975 return BuildCoreturnStmt(Loc, E);
976}
977
978StmtResult Sema::BuildCoreturnStmt(SourceLocation Loc, Expr *E,
979 bool IsImplicit) {
980 auto *FSI = checkCoroutineContext(*this, Loc, "co_return", IsImplicit);
981 if (!FSI)
982 return StmtError();
983
984 if (E && E->hasPlaceholderType() &&
985 !E->hasPlaceholderType(BuiltinType::Overload)) {
986 ExprResult R = CheckPlaceholderExpr(E);
987 if (R.isInvalid()) return StmtError();
988 E = R.get();
989 }
990
991 VarDecl *Promise = FSI->CoroutinePromise;
992 ExprResult PC;
993 if (E && (isa<InitListExpr>(E) || !E->getType()->isVoidType())) {
994 getNamedReturnInfo(E, SimplerImplicitMoveMode::ForceOn);
995 PC = buildPromiseCall(*this, Promise, Loc, "return_value", E);
996 } else {
997 E = MakeFullDiscardedValueExpr(E).get();
998 PC = buildPromiseCall(*this, Promise, Loc, "return_void", std::nullopt);
999 }
1000 if (PC.isInvalid())
1001 return StmtError();
1002
1003 Expr *PCE = ActOnFinishFullExpr(PC.get(), /*DiscardedValue*/ false).get();
1004
1005 Stmt *Res = new (Context) CoreturnStmt(Loc, E, PCE, IsImplicit);
1006 return Res;
1007}
1008
1009/// Look up the std::nothrow object.
1010static Expr *buildStdNoThrowDeclRef(Sema &S, SourceLocation Loc) {
1011 NamespaceDecl *Std = S.getStdNamespace();
1012 assert(Std && "Should already be diagnosed")(static_cast <bool> (Std && "Should already be diagnosed"
) ? void (0) : __assert_fail ("Std && \"Should already be diagnosed\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1012, __extension__ __PRETTY_FUNCTION__
))
;
1013
1014 LookupResult Result(S, &S.PP.getIdentifierTable().get("nothrow"), Loc,
1015 Sema::LookupOrdinaryName);
1016 if (!S.LookupQualifiedName(Result, Std)) {
1017 // <coroutine> is not requred to include <new>, so we couldn't omit
1018 // the check here.
1019 S.Diag(Loc, diag::err_implicit_coroutine_std_nothrow_type_not_found);
1020 return nullptr;
1021 }
1022
1023 auto *VD = Result.getAsSingle<VarDecl>();
1024 if (!VD) {
1025 Result.suppressDiagnostics();
1026 // We found something weird. Complain about the first thing we found.
1027 NamedDecl *Found = *Result.begin();
1028 S.Diag(Found->getLocation(), diag::err_malformed_std_nothrow);
1029 return nullptr;
1030 }
1031
1032 ExprResult DR = S.BuildDeclRefExpr(VD, VD->getType(), VK_LValue, Loc);
1033 if (DR.isInvalid())
1034 return nullptr;
1035
1036 return DR.get();
1037}
1038
1039static TypeSourceInfo *getTypeSourceInfoForStdAlignValT(Sema &S,
1040 SourceLocation Loc) {
1041 EnumDecl *StdAlignValT = S.getStdAlignValT();
1042 QualType StdAlignValDecl = S.Context.getTypeDeclType(StdAlignValT);
1043 return S.Context.getTrivialTypeSourceInfo(StdAlignValDecl);
1044}
1045
1046// Find an appropriate delete for the promise.
1047static bool findDeleteForPromise(Sema &S, SourceLocation Loc, QualType PromiseType,
1048 FunctionDecl *&OperatorDelete) {
1049 DeclarationName DeleteName =
1050 S.Context.DeclarationNames.getCXXOperatorName(OO_Delete);
1051
1052 auto *PointeeRD = PromiseType->getAsCXXRecordDecl();
1053 assert(PointeeRD && "PromiseType must be a CxxRecordDecl type")(static_cast <bool> (PointeeRD && "PromiseType must be a CxxRecordDecl type"
) ? void (0) : __assert_fail ("PointeeRD && \"PromiseType must be a CxxRecordDecl type\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1053, __extension__ __PRETTY_FUNCTION__
))
;
1054
1055 const bool Overaligned = S.getLangOpts().CoroAlignedAllocation;
1056
1057 // [dcl.fct.def.coroutine]p12
1058 // The deallocation function's name is looked up by searching for it in the
1059 // scope of the promise type. If nothing is found, a search is performed in
1060 // the global scope.
1061 if (S.FindDeallocationFunction(Loc, PointeeRD, DeleteName, OperatorDelete,
1062 /*Diagnose*/ true, /*WantSize*/ true,
1063 /*WantAligned*/ Overaligned))
1064 return false;
1065
1066 // [dcl.fct.def.coroutine]p12
1067 // If both a usual deallocation function with only a pointer parameter and a
1068 // usual deallocation function with both a pointer parameter and a size
1069 // parameter are found, then the selected deallocation function shall be the
1070 // one with two parameters. Otherwise, the selected deallocation function
1071 // shall be the function with one parameter.
1072 if (!OperatorDelete) {
1073 // Look for a global declaration.
1074 // Coroutines can always provide their required size.
1075 const bool CanProvideSize = true;
1076 // Sema::FindUsualDeallocationFunction will try to find the one with two
1077 // parameters first. It will return the deallocation function with one
1078 // parameter if failed.
1079 OperatorDelete = S.FindUsualDeallocationFunction(Loc, CanProvideSize,
1080 Overaligned, DeleteName);
1081
1082 if (!OperatorDelete)
1083 return false;
1084 }
1085
1086 S.MarkFunctionReferenced(Loc, OperatorDelete);
1087 return true;
1088}
1089
1090
1091void Sema::CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body) {
1092 FunctionScopeInfo *Fn = getCurFunction();
1093 assert(Fn && Fn->isCoroutine() && "not a coroutine")(static_cast <bool> (Fn && Fn->isCoroutine()
&& "not a coroutine") ? void (0) : __assert_fail ("Fn && Fn->isCoroutine() && \"not a coroutine\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1093, __extension__ __PRETTY_FUNCTION__
))
;
1
Assuming 'Fn' is non-null
2
'?' condition is true
1094 if (!Body) {
3
Assuming 'Body' is non-null
4
Taking false branch
1095 assert(FD->isInvalidDecl() &&(static_cast <bool> (FD->isInvalidDecl() && "a null body is only allowed for invalid declarations"
) ? void (0) : __assert_fail ("FD->isInvalidDecl() && \"a null body is only allowed for invalid declarations\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1096, __extension__ __PRETTY_FUNCTION__
))
1096 "a null body is only allowed for invalid declarations")(static_cast <bool> (FD->isInvalidDecl() && "a null body is only allowed for invalid declarations"
) ? void (0) : __assert_fail ("FD->isInvalidDecl() && \"a null body is only allowed for invalid declarations\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1096, __extension__ __PRETTY_FUNCTION__
))
;
1097 return;
1098 }
1099 // We have a function that uses coroutine keywords, but we failed to build
1100 // the promise type.
1101 if (!Fn->CoroutinePromise)
5
Assuming field 'CoroutinePromise' is non-null
6
Taking false branch
1102 return FD->setInvalidDecl();
1103
1104 if (isa<CoroutineBodyStmt>(Body)) {
7
Assuming 'Body' is not a 'CoroutineBodyStmt'
8
Taking false branch
1105 // Nothing todo. the body is already a transformed coroutine body statement.
1106 return;
1107 }
1108
1109 // The always_inline attribute doesn't reliably apply to a coroutine,
1110 // because the coroutine will be split into pieces and some pieces
1111 // might be called indirectly, as in a virtual call. Even the ramp
1112 // function cannot be inlined at -O0, due to pipeline ordering
1113 // problems (see https://llvm.org/PR53413). Tell the user about it.
1114 if (FD->hasAttr<AlwaysInlineAttr>())
9
Taking false branch
1115 Diag(FD->getLocation(), diag::warn_always_inline_coroutine);
1116
1117 // [stmt.return.coroutine]p1:
1118 // A coroutine shall not enclose a return statement ([stmt.return]).
1119 if (Fn->FirstReturnLoc.isValid()) {
10
Taking false branch
1120 assert(Fn->FirstCoroutineStmtLoc.isValid() &&(static_cast <bool> (Fn->FirstCoroutineStmtLoc.isValid
() && "first coroutine location not set") ? void (0) :
__assert_fail ("Fn->FirstCoroutineStmtLoc.isValid() && \"first coroutine location not set\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1121, __extension__ __PRETTY_FUNCTION__
))
1121 "first coroutine location not set")(static_cast <bool> (Fn->FirstCoroutineStmtLoc.isValid
() && "first coroutine location not set") ? void (0) :
__assert_fail ("Fn->FirstCoroutineStmtLoc.isValid() && \"first coroutine location not set\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1121, __extension__ __PRETTY_FUNCTION__
))
;
1122 Diag(Fn->FirstReturnLoc, diag::err_return_in_coroutine);
1123 Diag(Fn->FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1124 << Fn->getFirstCoroutineStmtKeyword();
1125 }
1126
1127 // Coroutines will get splitted into pieces. The GNU address of label
1128 // extension wouldn't be meaningful in coroutines.
1129 for (AddrLabelExpr *ALE : Fn->AddrLabels)
11
Assuming '__begin1' is equal to '__end1'
1130 Diag(ALE->getBeginLoc(), diag::err_coro_invalid_addr_of_label);
1131
1132 CoroutineStmtBuilder Builder(*this, *FD, *Fn, Body);
1133 if (Builder.isInvalid() || !Builder.buildStatements())
12
Calling 'CoroutineStmtBuilder::buildStatements'
1134 return FD->setInvalidDecl();
1135
1136 // Build body for the coroutine wrapper statement.
1137 Body = CoroutineBodyStmt::Create(Context, Builder);
1138}
1139
1140static CompoundStmt *buildCoroutineBody(Stmt *Body, ASTContext &Context) {
1141 if (auto *CS = dyn_cast<CompoundStmt>(Body))
1142 return CS;
1143
1144 // The body of the coroutine may be a try statement if it is in
1145 // 'function-try-block' syntax. Here we wrap it into a compound
1146 // statement for consistency.
1147 assert(isa<CXXTryStmt>(Body) && "Unimaged coroutine body type")(static_cast <bool> (isa<CXXTryStmt>(Body) &&
"Unimaged coroutine body type") ? void (0) : __assert_fail (
"isa<CXXTryStmt>(Body) && \"Unimaged coroutine body type\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1147, __extension__ __PRETTY_FUNCTION__
))
;
1148 return CompoundStmt::Create(Context, {Body}, FPOptionsOverride(),
1149 SourceLocation(), SourceLocation());
1150}
1151
1152CoroutineStmtBuilder::CoroutineStmtBuilder(Sema &S, FunctionDecl &FD,
1153 sema::FunctionScopeInfo &Fn,
1154 Stmt *Body)
1155 : S(S), FD(FD), Fn(Fn), Loc(FD.getLocation()),
1156 IsPromiseDependentType(
1157 !Fn.CoroutinePromise ||
1158 Fn.CoroutinePromise->getType()->isDependentType()) {
1159 this->Body = buildCoroutineBody(Body, S.getASTContext());
1160
1161 for (auto KV : Fn.CoroutineParameterMoves)
1162 this->ParamMovesVector.push_back(KV.second);
1163 this->ParamMoves = this->ParamMovesVector;
1164
1165 if (!IsPromiseDependentType) {
1166 PromiseRecordDecl = Fn.CoroutinePromise->getType()->getAsCXXRecordDecl();
1167 assert(PromiseRecordDecl && "Type should have already been checked")(static_cast <bool> (PromiseRecordDecl && "Type should have already been checked"
) ? void (0) : __assert_fail ("PromiseRecordDecl && \"Type should have already been checked\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1167, __extension__ __PRETTY_FUNCTION__
))
;
1168 }
1169 this->IsValid = makePromiseStmt() && makeInitialAndFinalSuspend();
1170}
1171
1172bool CoroutineStmtBuilder::buildStatements() {
1173 assert(this->IsValid && "coroutine already invalid")(static_cast <bool> (this->IsValid && "coroutine already invalid"
) ? void (0) : __assert_fail ("this->IsValid && \"coroutine already invalid\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1173, __extension__ __PRETTY_FUNCTION__
))
;
13
'?' condition is true
1174 this->IsValid = makeReturnObject();
1175 if (this->IsValid
13.1
Field 'IsValid' is true
&& !IsPromiseDependentType)
14
Assuming field 'IsPromiseDependentType' is false
15
Taking true branch
1176 buildDependentStatements();
16
Calling 'CoroutineStmtBuilder::buildDependentStatements'
1177 return this->IsValid;
1178}
1179
1180bool CoroutineStmtBuilder::buildDependentStatements() {
1181 assert(this->IsValid && "coroutine already invalid")(static_cast <bool> (this->IsValid && "coroutine already invalid"
) ? void (0) : __assert_fail ("this->IsValid && \"coroutine already invalid\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1181, __extension__ __PRETTY_FUNCTION__
))
;
17
'?' condition is true
1182 assert(!this->IsPromiseDependentType &&(static_cast <bool> (!this->IsPromiseDependentType &&
"coroutine cannot have a dependent promise type") ? void (0)
: __assert_fail ("!this->IsPromiseDependentType && \"coroutine cannot have a dependent promise type\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1183, __extension__ __PRETTY_FUNCTION__
))
18
'?' condition is true
1183 "coroutine cannot have a dependent promise type")(static_cast <bool> (!this->IsPromiseDependentType &&
"coroutine cannot have a dependent promise type") ? void (0)
: __assert_fail ("!this->IsPromiseDependentType && \"coroutine cannot have a dependent promise type\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1183, __extension__ __PRETTY_FUNCTION__
))
;
1184 this->IsValid = makeOnException() && makeOnFallthrough() &&
1185 makeGroDeclAndReturnStmt() && makeReturnOnAllocFailure() &&
1186 makeNewAndDeleteExpr();
19
Calling 'CoroutineStmtBuilder::makeNewAndDeleteExpr'
1187 return this->IsValid;
1188}
1189
1190bool CoroutineStmtBuilder::makePromiseStmt() {
1191 // Form a declaration statement for the promise declaration, so that AST
1192 // visitors can more easily find it.
1193 StmtResult PromiseStmt =
1194 S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(Fn.CoroutinePromise), Loc, Loc);
1195 if (PromiseStmt.isInvalid())
1196 return false;
1197
1198 this->Promise = PromiseStmt.get();
1199 return true;
1200}
1201
1202bool CoroutineStmtBuilder::makeInitialAndFinalSuspend() {
1203 if (Fn.hasInvalidCoroutineSuspends())
1204 return false;
1205 this->InitialSuspend = cast<Expr>(Fn.CoroutineSuspends.first);
1206 this->FinalSuspend = cast<Expr>(Fn.CoroutineSuspends.second);
1207 return true;
1208}
1209
1210static bool diagReturnOnAllocFailure(Sema &S, Expr *E,
1211 CXXRecordDecl *PromiseRecordDecl,
1212 FunctionScopeInfo &Fn) {
1213 auto Loc = E->getExprLoc();
1214 if (auto *DeclRef = dyn_cast_or_null<DeclRefExpr>(E)) {
1215 auto *Decl = DeclRef->getDecl();
1216 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(Decl)) {
1217 if (Method->isStatic())
1218 return true;
1219 else
1220 Loc = Decl->getLocation();
1221 }
1222 }
1223
1224 S.Diag(
1225 Loc,
1226 diag::err_coroutine_promise_get_return_object_on_allocation_failure)
1227 << PromiseRecordDecl;
1228 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1229 << Fn.getFirstCoroutineStmtKeyword();
1230 return false;
1231}
1232
1233bool CoroutineStmtBuilder::makeReturnOnAllocFailure() {
1234 assert(!IsPromiseDependentType &&(static_cast <bool> (!IsPromiseDependentType &&
"cannot make statement while the promise type is dependent")
? void (0) : __assert_fail ("!IsPromiseDependentType && \"cannot make statement while the promise type is dependent\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1235, __extension__ __PRETTY_FUNCTION__
))
1235 "cannot make statement while the promise type is dependent")(static_cast <bool> (!IsPromiseDependentType &&
"cannot make statement while the promise type is dependent")
? void (0) : __assert_fail ("!IsPromiseDependentType && \"cannot make statement while the promise type is dependent\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1235, __extension__ __PRETTY_FUNCTION__
))
;
1236
1237 // [dcl.fct.def.coroutine]p10
1238 // If a search for the name get_return_object_on_allocation_failure in
1239 // the scope of the promise type ([class.member.lookup]) finds any
1240 // declarations, then the result of a call to an allocation function used to
1241 // obtain storage for the coroutine state is assumed to return nullptr if it
1242 // fails to obtain storage, ... If the allocation function returns nullptr,
1243 // ... and the return value is obtained by a call to
1244 // T::get_return_object_on_allocation_failure(), where T is the
1245 // promise type.
1246 DeclarationName DN =
1247 S.PP.getIdentifierInfo("get_return_object_on_allocation_failure");
1248 LookupResult Found(S, DN, Loc, Sema::LookupMemberName);
1249 if (!S.LookupQualifiedName(Found, PromiseRecordDecl))
1250 return true;
1251
1252 CXXScopeSpec SS;
1253 ExprResult DeclNameExpr =
1254 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false);
1255 if (DeclNameExpr.isInvalid())
1256 return false;
1257
1258 if (!diagReturnOnAllocFailure(S, DeclNameExpr.get(), PromiseRecordDecl, Fn))
1259 return false;
1260
1261 ExprResult ReturnObjectOnAllocationFailure =
1262 S.BuildCallExpr(nullptr, DeclNameExpr.get(), Loc, {}, Loc);
1263 if (ReturnObjectOnAllocationFailure.isInvalid())
1264 return false;
1265
1266 StmtResult ReturnStmt =
1267 S.BuildReturnStmt(Loc, ReturnObjectOnAllocationFailure.get());
1268 if (ReturnStmt.isInvalid()) {
1269 S.Diag(Found.getFoundDecl()->getLocation(), diag::note_member_declared_here)
1270 << DN;
1271 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1272 << Fn.getFirstCoroutineStmtKeyword();
1273 return false;
1274 }
1275
1276 this->ReturnStmtOnAllocFailure = ReturnStmt.get();
1277 return true;
1278}
1279
1280// Collect placement arguments for allocation function of coroutine FD.
1281// Return true if we collect placement arguments succesfully. Return false,
1282// otherwise.
1283static bool collectPlacementArgs(Sema &S, FunctionDecl &FD, SourceLocation Loc,
1284 SmallVectorImpl<Expr *> &PlacementArgs) {
1285 if (auto *MD = dyn_cast<CXXMethodDecl>(&FD)) {
1286 if (MD->isInstance() && !isLambdaCallOperator(MD)) {
1287 ExprResult ThisExpr = S.ActOnCXXThis(Loc);
1288 if (ThisExpr.isInvalid())
1289 return false;
1290 ThisExpr = S.CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get());
1291 if (ThisExpr.isInvalid())
1292 return false;
1293 PlacementArgs.push_back(ThisExpr.get());
1294 }
1295 }
1296
1297 for (auto *PD : FD.parameters()) {
1298 if (PD->getType()->isDependentType())
1299 continue;
1300
1301 // Build a reference to the parameter.
1302 auto PDLoc = PD->getLocation();
1303 ExprResult PDRefExpr =
1304 S.BuildDeclRefExpr(PD, PD->getOriginalType().getNonReferenceType(),
1305 ExprValueKind::VK_LValue, PDLoc);
1306 if (PDRefExpr.isInvalid())
1307 return false;
1308
1309 PlacementArgs.push_back(PDRefExpr.get());
1310 }
1311
1312 return true;
1313}
1314
1315bool CoroutineStmtBuilder::makeNewAndDeleteExpr() {
1316 // Form and check allocation and deallocation calls.
1317 assert(!IsPromiseDependentType &&(static_cast <bool> (!IsPromiseDependentType &&
"cannot make statement while the promise type is dependent")
? void (0) : __assert_fail ("!IsPromiseDependentType && \"cannot make statement while the promise type is dependent\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1318, __extension__ __PRETTY_FUNCTION__
))
20
'?' condition is true
1318 "cannot make statement while the promise type is dependent")(static_cast <bool> (!IsPromiseDependentType &&
"cannot make statement while the promise type is dependent")
? void (0) : __assert_fail ("!IsPromiseDependentType && \"cannot make statement while the promise type is dependent\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1318, __extension__ __PRETTY_FUNCTION__
))
;
1319 QualType PromiseType = Fn.CoroutinePromise->getType();
1320
1321 if (S.RequireCompleteType(Loc, PromiseType, diag::err_incomplete_type))
21
Assuming the condition is false
22
Taking false branch
1322 return false;
1323
1324 const bool RequiresNoThrowAlloc = ReturnStmtOnAllocFailure != nullptr;
23
Assuming the condition is false
1325
1326 // According to [dcl.fct.def.coroutine]p9, Lookup allocation functions using a
1327 // parameter list composed of the requested size of the coroutine state being
1328 // allocated, followed by the coroutine function's arguments. If a matching
1329 // allocation function exists, use it. Otherwise, use an allocation function
1330 // that just takes the requested size.
1331 //
1332 // [dcl.fct.def.coroutine]p9
1333 // An implementation may need to allocate additional storage for a
1334 // coroutine.
1335 // This storage is known as the coroutine state and is obtained by calling a
1336 // non-array allocation function ([basic.stc.dynamic.allocation]). The
1337 // allocation function's name is looked up by searching for it in the scope of
1338 // the promise type.
1339 // - If any declarations are found, overload resolution is performed on a
1340 // function call created by assembling an argument list. The first argument is
1341 // the amount of space requested, and has type std::size_t. The
1342 // lvalues p1 ... pn are the succeeding arguments.
1343 //
1344 // ...where "p1 ... pn" are defined earlier as:
1345 //
1346 // [dcl.fct.def.coroutine]p3
1347 // The promise type of a coroutine is `std::coroutine_traits<R, P1, ...,
1348 // Pn>`
1349 // , where R is the return type of the function, and `P1, ..., Pn` are the
1350 // sequence of types of the non-object function parameters, preceded by the
1351 // type of the object parameter ([dcl.fct]) if the coroutine is a non-static
1352 // member function. [dcl.fct.def.coroutine]p4 In the following, p_i is an
1353 // lvalue of type P_i, where p1 denotes the object parameter and p_i+1 denotes
1354 // the i-th non-object function parameter for a non-static member function,
1355 // and p_i denotes the i-th function parameter otherwise. For a non-static
1356 // member function, q_1 is an lvalue that denotes *this; any other q_i is an
1357 // lvalue that denotes the parameter copy corresponding to p_i.
1358
1359 FunctionDecl *OperatorNew = nullptr;
1360 SmallVector<Expr *, 1> PlacementArgs;
1361
1362 const bool PromiseContainsNew = [this, &PromiseType]() -> bool {
24
Calling 'operator()'
27
Returning from 'operator()'
1363 DeclarationName NewName =
1364 S.getASTContext().DeclarationNames.getCXXOperatorName(OO_New);
1365 LookupResult R(S, NewName, Loc, Sema::LookupOrdinaryName);
1366
1367 if (PromiseType->isRecordType())
1368 S.LookupQualifiedName(R, PromiseType->getAsCXXRecordDecl());
1369
1370 return !R.empty() && !R.isAmbiguous();
25
Assuming the condition is false
26
Returning zero, which participates in a condition later
1371 }();
1372
1373 // Helper function to indicate whether the last lookup found the aligned
1374 // allocation function.
1375 bool PassAlignment = S.getLangOpts().CoroAlignedAllocation;
1376 auto LookupAllocationFunction = [&](Sema::AllocationFunctionScope NewScope =
1377 Sema::AFS_Both,
1378 bool WithoutPlacementArgs = false,
1379 bool ForceNonAligned = false) {
1380 // [dcl.fct.def.coroutine]p9
1381 // The allocation function's name is looked up by searching for it in the
1382 // scope of the promise type.
1383 // - If any declarations are found, ...
1384 // - If no declarations are found in the scope of the promise type, a search
1385 // is performed in the global scope.
1386 if (NewScope
28.1
'NewScope' is equal to AFS_Both
== Sema::AFS_Both)
1387 NewScope = PromiseContainsNew
29.1
'PromiseContainsNew' is false
? Sema::AFS_Class : Sema::AFS_Global;
29
Taking true branch
30
'?' condition is false
1388
1389 PassAlignment = !ForceNonAligned
30.1
'ForceNonAligned' is false
&& S.getLangOpts().CoroAlignedAllocation;
1390 FunctionDecl *UnusedResult = nullptr;
1391 S.FindAllocationFunctions(Loc, SourceRange(), NewScope,
32
Value assigned to 'OperatorNew', which participates in a condition later
1392 /*DeleteScope*/ Sema::AFS_Both, PromiseType,
1393 /*isArray*/ false, PassAlignment,
1394 WithoutPlacementArgs
30.2
'WithoutPlacementArgs' is false
? MultiExprArg{}
31
'?' condition is false
1395 : PlacementArgs,
1396 OperatorNew, UnusedResult, /*Diagnose*/ false);
1397 };
1398
1399 // We don't expect to call to global operator new with (size, p0, …, pn).
1400 // So if we choose to lookup the allocation function in global scope, we
1401 // shouldn't lookup placement arguments.
1402 if (PromiseContainsNew
27.1
'PromiseContainsNew' is false
&& !collectPlacementArgs(S, FD, Loc, PlacementArgs))
1403 return false;
1404
1405 LookupAllocationFunction();
28
Calling 'operator()'
33
Returning from 'operator()'
1406
1407 if (PromiseContainsNew
33.1
'PromiseContainsNew' is false
&& !PlacementArgs.empty()) {
1408 // [dcl.fct.def.coroutine]p9
1409 // If no viable function is found ([over.match.viable]), overload
1410 // resolution
1411 // is performed again on a function call created by passing just the amount
1412 // of space required as an argument of type std::size_t.
1413 //
1414 // Proposed Change of [dcl.fct.def.coroutine]p9 in P2014R0:
1415 // Otherwise, overload resolution is performed again on a function call
1416 // created
1417 // by passing the amount of space requested as an argument of type
1418 // std::size_t as the first argument, and the requested alignment as
1419 // an argument of type std:align_val_t as the second argument.
1420 if (!OperatorNew ||
1421 (S.getLangOpts().CoroAlignedAllocation && !PassAlignment))
1422 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class,
1423 /*WithoutPlacementArgs*/ true);
1424 }
1425
1426 // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0:
1427 // Otherwise, overload resolution is performed again on a function call
1428 // created
1429 // by passing the amount of space requested as an argument of type
1430 // std::size_t as the first argument, and the lvalues p1 ... pn as the
1431 // succeeding arguments. Otherwise, overload resolution is performed again
1432 // on a function call created by passing just the amount of space required as
1433 // an argument of type std::size_t.
1434 //
1435 // So within the proposed change in P2014RO, the priority order of aligned
1436 // allocation functions wiht promise_type is:
1437 //
1438 // void* operator new( std::size_t, std::align_val_t, placement_args... );
1439 // void* operator new( std::size_t, std::align_val_t);
1440 // void* operator new( std::size_t, placement_args... );
1441 // void* operator new( std::size_t);
1442
1443 // Helper variable to emit warnings.
1444 bool FoundNonAlignedInPromise = false;
1445 if (PromiseContainsNew
33.2
'PromiseContainsNew' is false
&& S.getLangOpts().CoroAlignedAllocation)
1446 if (!OperatorNew || !PassAlignment) {
1447 FoundNonAlignedInPromise = OperatorNew;
1448
1449 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class,
1450 /*WithoutPlacementArgs*/ false,
1451 /*ForceNonAligned*/ true);
1452
1453 if (!OperatorNew && !PlacementArgs.empty())
1454 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class,
1455 /*WithoutPlacementArgs*/ true,
1456 /*ForceNonAligned*/ true);
1457 }
1458
1459 bool IsGlobalOverload =
1460 OperatorNew && !isa<CXXRecordDecl>(OperatorNew->getDeclContext());
34
Assuming 'OperatorNew' is non-null
35
Assuming the object is not a 'CXXRecordDecl'
1461 // If we didn't find a class-local new declaration and non-throwing new
1462 // was is required then we need to lookup the non-throwing global operator
1463 // instead.
1464 if (RequiresNoThrowAlloc
35.1
'RequiresNoThrowAlloc' is false
&& (!OperatorNew || IsGlobalOverload)) {
1465 auto *StdNoThrow = buildStdNoThrowDeclRef(S, Loc);
1466 if (!StdNoThrow)
1467 return false;
1468 PlacementArgs = {StdNoThrow};
1469 OperatorNew = nullptr;
1470 LookupAllocationFunction(Sema::AFS_Global);
1471 }
1472
1473 // If we found a non-aligned allocation function in the promise_type,
1474 // it indicates the user forgot to update the allocation function. Let's emit
1475 // a warning here.
1476 if (FoundNonAlignedInPromise
35.2
'FoundNonAlignedInPromise' is false
) {
36
Taking false branch
1477 S.Diag(OperatorNew->getLocation(),
1478 diag::warn_non_aligned_allocation_function)
1479 << &FD;
1480 }
1481
1482 if (!OperatorNew
36.1
'OperatorNew' is non-null
) {
37
Taking false branch
1483 if (PromiseContainsNew)
1484 S.Diag(Loc, diag::err_coroutine_unusable_new) << PromiseType << &FD;
1485 else if (RequiresNoThrowAlloc)
1486 S.Diag(Loc, diag::err_coroutine_unfound_nothrow_new)
1487 << &FD << S.getLangOpts().CoroAlignedAllocation;
1488
1489 return false;
1490 }
1491
1492 if (RequiresNoThrowAlloc
37.1
'RequiresNoThrowAlloc' is false
) {
38
Taking false branch
1493 const auto *FT = OperatorNew->getType()->castAs<FunctionProtoType>();
1494 if (!FT->isNothrow(/*ResultIfDependent*/ false)) {
1495 S.Diag(OperatorNew->getLocation(),
1496 diag::err_coroutine_promise_new_requires_nothrow)
1497 << OperatorNew;
1498 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
1499 << OperatorNew;
1500 return false;
1501 }
1502 }
1503
1504 FunctionDecl *OperatorDelete = nullptr;
1505 if (!findDeleteForPromise(S, Loc, PromiseType, OperatorDelete)) {
39
Taking false branch
1506 // FIXME: We should add an error here. According to:
1507 // [dcl.fct.def.coroutine]p12
1508 // If no usual deallocation function is found, the program is ill-formed.
1509 return false;
1510 }
1511
1512 Expr *FramePtr =
1513 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {});
1514
1515 Expr *FrameSize =
1516 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_size, {});
1517
1518 Expr *FrameAlignment = nullptr;
40
'FrameAlignment' initialized to a null pointer value
1519
1520 if (S.getLangOpts().CoroAlignedAllocation) {
41
Assuming field 'CoroAlignedAllocation' is 0
42
Taking false branch
1521 FrameAlignment =
1522 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_align, {});
1523
1524 TypeSourceInfo *AlignValTy = getTypeSourceInfoForStdAlignValT(S, Loc);
1525 if (!AlignValTy)
1526 return false;
1527
1528 FrameAlignment = S.BuildCXXNamedCast(Loc, tok::kw_static_cast, AlignValTy,
1529 FrameAlignment, SourceRange(Loc, Loc),
1530 SourceRange(Loc, Loc))
1531 .get();
1532 }
1533
1534 // Make new call.
1535 ExprResult NewRef =
1536 S.BuildDeclRefExpr(OperatorNew, OperatorNew->getType(), VK_LValue, Loc);
1537 if (NewRef.isInvalid())
43
Assuming the condition is false
44
Taking false branch
1538 return false;
1539
1540 SmallVector<Expr *, 2> NewArgs(1, FrameSize);
1541 if (S.getLangOpts().CoroAlignedAllocation && PassAlignment)
45
Assuming field 'CoroAlignedAllocation' is 0
1542 NewArgs.push_back(FrameAlignment);
1543
1544 if (OperatorNew->getNumParams() > NewArgs.size())
46
Assuming the condition is false
47
Taking false branch
1545 llvm::append_range(NewArgs, PlacementArgs);
1546
1547 ExprResult NewExpr =
1548 S.BuildCallExpr(S.getCurScope(), NewRef.get(), Loc, NewArgs, Loc);
1549 NewExpr = S.ActOnFinishFullExpr(NewExpr.get(), /*DiscardedValue*/ false);
1550 if (NewExpr.isInvalid())
48
Assuming the condition is false
49
Taking false branch
1551 return false;
1552
1553 // Make delete call.
1554
1555 QualType OpDeleteQualType = OperatorDelete->getType();
1556
1557 ExprResult DeleteRef =
1558 S.BuildDeclRefExpr(OperatorDelete, OpDeleteQualType, VK_LValue, Loc);
1559 if (DeleteRef.isInvalid())
50
Assuming the condition is false
51
Taking false branch
1560 return false;
1561
1562 Expr *CoroFree =
1563 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_free, {FramePtr});
1564
1565 SmallVector<Expr *, 2> DeleteArgs{CoroFree};
1566
1567 // [dcl.fct.def.coroutine]p12
1568 // The selected deallocation function shall be called with the address of
1569 // the block of storage to be reclaimed as its first argument. If a
1570 // deallocation function with a parameter of type std::size_t is
1571 // used, the size of the block is passed as the corresponding argument.
1572 const auto *OpDeleteType =
1573 OpDeleteQualType.getTypePtr()->castAs<FunctionProtoType>();
52
The object is a 'const class clang::FunctionProtoType *'
1574 if (OpDeleteType->getNumParams() > DeleteArgs.size() &&
53
Assuming the condition is true
1575 S.getASTContext().hasSameUnqualifiedType(
54
Assuming the condition is false
1576 OpDeleteType->getParamType(DeleteArgs.size()), FrameSize->getType()))
1577 DeleteArgs.push_back(FrameSize);
1578
1579 // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0:
1580 // If deallocation function lookup finds a usual deallocation function with
1581 // a pointer parameter, size parameter and alignment parameter then this
1582 // will be the selected deallocation function, otherwise if lookup finds a
1583 // usual deallocation function with both a pointer parameter and a size
1584 // parameter, then this will be the selected deallocation function.
1585 // Otherwise, if lookup finds a usual deallocation function with only a
1586 // pointer parameter, then this will be the selected deallocation
1587 // function.
1588 //
1589 // So we are not forced to pass alignment to the deallocation function.
1590 if (S.getLangOpts().CoroAlignedAllocation &&
55
Assuming field 'CoroAlignedAllocation' is not equal to 0
1591 OpDeleteType->getNumParams() > DeleteArgs.size() &&
1592 S.getASTContext().hasSameUnqualifiedType(
1593 OpDeleteType->getParamType(DeleteArgs.size()),
1594 FrameAlignment->getType()))
56
Called C++ object pointer is null
1595 DeleteArgs.push_back(FrameAlignment);
1596
1597 ExprResult DeleteExpr =
1598 S.BuildCallExpr(S.getCurScope(), DeleteRef.get(), Loc, DeleteArgs, Loc);
1599 DeleteExpr =
1600 S.ActOnFinishFullExpr(DeleteExpr.get(), /*DiscardedValue*/ false);
1601 if (DeleteExpr.isInvalid())
1602 return false;
1603
1604 this->Allocate = NewExpr.get();
1605 this->Deallocate = DeleteExpr.get();
1606
1607 return true;
1608}
1609
1610bool CoroutineStmtBuilder::makeOnFallthrough() {
1611 assert(!IsPromiseDependentType &&(static_cast <bool> (!IsPromiseDependentType &&
"cannot make statement while the promise type is dependent")
? void (0) : __assert_fail ("!IsPromiseDependentType && \"cannot make statement while the promise type is dependent\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1612, __extension__ __PRETTY_FUNCTION__
))
1612 "cannot make statement while the promise type is dependent")(static_cast <bool> (!IsPromiseDependentType &&
"cannot make statement while the promise type is dependent")
? void (0) : __assert_fail ("!IsPromiseDependentType && \"cannot make statement while the promise type is dependent\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1612, __extension__ __PRETTY_FUNCTION__
))
;
1613
1614 // [dcl.fct.def.coroutine]/p6
1615 // If searches for the names return_void and return_value in the scope of
1616 // the promise type each find any declarations, the program is ill-formed.
1617 // [Note 1: If return_void is found, flowing off the end of a coroutine is
1618 // equivalent to a co_return with no operand. Otherwise, flowing off the end
1619 // of a coroutine results in undefined behavior ([stmt.return.coroutine]). —
1620 // end note]
1621 bool HasRVoid, HasRValue;
1622 LookupResult LRVoid =
1623 lookupMember(S, "return_void", PromiseRecordDecl, Loc, HasRVoid);
1624 LookupResult LRValue =
1625 lookupMember(S, "return_value", PromiseRecordDecl, Loc, HasRValue);
1626
1627 StmtResult Fallthrough;
1628 if (HasRVoid && HasRValue) {
1629 // FIXME Improve this diagnostic
1630 S.Diag(FD.getLocation(),
1631 diag::err_coroutine_promise_incompatible_return_functions)
1632 << PromiseRecordDecl;
1633 S.Diag(LRVoid.getRepresentativeDecl()->getLocation(),
1634 diag::note_member_first_declared_here)
1635 << LRVoid.getLookupName();
1636 S.Diag(LRValue.getRepresentativeDecl()->getLocation(),
1637 diag::note_member_first_declared_here)
1638 << LRValue.getLookupName();
1639 return false;
1640 } else if (!HasRVoid && !HasRValue) {
1641 // We need to set 'Fallthrough'. Otherwise the other analysis part might
1642 // think the coroutine has defined a return_value method. So it might emit
1643 // **false** positive warning. e.g.,
1644 //
1645 // promise_without_return_func foo() {
1646 // co_await something();
1647 // }
1648 //
1649 // Then AnalysisBasedWarning would emit a warning about `foo()` lacking a
1650 // co_return statements, which isn't correct.
1651 Fallthrough = S.ActOnNullStmt(PromiseRecordDecl->getLocation());
1652 if (Fallthrough.isInvalid())
1653 return false;
1654 } else if (HasRVoid) {
1655 Fallthrough = S.BuildCoreturnStmt(FD.getLocation(), nullptr,
1656 /*IsImplicit*/false);
1657 Fallthrough = S.ActOnFinishFullStmt(Fallthrough.get());
1658 if (Fallthrough.isInvalid())
1659 return false;
1660 }
1661
1662 this->OnFallthrough = Fallthrough.get();
1663 return true;
1664}
1665
1666bool CoroutineStmtBuilder::makeOnException() {
1667 // Try to form 'p.unhandled_exception();'
1668 assert(!IsPromiseDependentType &&(static_cast <bool> (!IsPromiseDependentType &&
"cannot make statement while the promise type is dependent")
? void (0) : __assert_fail ("!IsPromiseDependentType && \"cannot make statement while the promise type is dependent\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1669, __extension__ __PRETTY_FUNCTION__
))
1669 "cannot make statement while the promise type is dependent")(static_cast <bool> (!IsPromiseDependentType &&
"cannot make statement while the promise type is dependent")
? void (0) : __assert_fail ("!IsPromiseDependentType && \"cannot make statement while the promise type is dependent\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1669, __extension__ __PRETTY_FUNCTION__
))
;
1670
1671 const bool RequireUnhandledException = S.getLangOpts().CXXExceptions;
1672
1673 if (!lookupMember(S, "unhandled_exception", PromiseRecordDecl, Loc)) {
1674 auto DiagID =
1675 RequireUnhandledException
1676 ? diag::err_coroutine_promise_unhandled_exception_required
1677 : diag::
1678 warn_coroutine_promise_unhandled_exception_required_with_exceptions;
1679 S.Diag(Loc, DiagID) << PromiseRecordDecl;
1680 S.Diag(PromiseRecordDecl->getLocation(), diag::note_defined_here)
1681 << PromiseRecordDecl;
1682 return !RequireUnhandledException;
1683 }
1684
1685 // If exceptions are disabled, don't try to build OnException.
1686 if (!S.getLangOpts().CXXExceptions)
1687 return true;
1688
1689 ExprResult UnhandledException = buildPromiseCall(
1690 S, Fn.CoroutinePromise, Loc, "unhandled_exception", std::nullopt);
1691 UnhandledException = S.ActOnFinishFullExpr(UnhandledException.get(), Loc,
1692 /*DiscardedValue*/ false);
1693 if (UnhandledException.isInvalid())
1694 return false;
1695
1696 // Since the body of the coroutine will be wrapped in try-catch, it will
1697 // be incompatible with SEH __try if present in a function.
1698 if (!S.getLangOpts().Borland && Fn.FirstSEHTryLoc.isValid()) {
1699 S.Diag(Fn.FirstSEHTryLoc, diag::err_seh_in_a_coroutine_with_cxx_exceptions);
1700 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1701 << Fn.getFirstCoroutineStmtKeyword();
1702 return false;
1703 }
1704
1705 this->OnException = UnhandledException.get();
1706 return true;
1707}
1708
1709bool CoroutineStmtBuilder::makeReturnObject() {
1710 // [dcl.fct.def.coroutine]p7
1711 // The expression promise.get_return_object() is used to initialize the
1712 // returned reference or prvalue result object of a call to a coroutine.
1713 ExprResult ReturnObject = buildPromiseCall(S, Fn.CoroutinePromise, Loc,
1714 "get_return_object", std::nullopt);
1715 if (ReturnObject.isInvalid())
1716 return false;
1717
1718 this->ReturnValue = ReturnObject.get();
1719 return true;
1720}
1721
1722static void noteMemberDeclaredHere(Sema &S, Expr *E, FunctionScopeInfo &Fn) {
1723 if (auto *MbrRef = dyn_cast<CXXMemberCallExpr>(E)) {
1724 auto *MethodDecl = MbrRef->getMethodDecl();
1725 S.Diag(MethodDecl->getLocation(), diag::note_member_declared_here)
1726 << MethodDecl;
1727 }
1728 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1729 << Fn.getFirstCoroutineStmtKeyword();
1730}
1731
1732bool CoroutineStmtBuilder::makeGroDeclAndReturnStmt() {
1733 assert(!IsPromiseDependentType &&(static_cast <bool> (!IsPromiseDependentType &&
"cannot make statement while the promise type is dependent")
? void (0) : __assert_fail ("!IsPromiseDependentType && \"cannot make statement while the promise type is dependent\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1734, __extension__ __PRETTY_FUNCTION__
))
1734 "cannot make statement while the promise type is dependent")(static_cast <bool> (!IsPromiseDependentType &&
"cannot make statement while the promise type is dependent")
? void (0) : __assert_fail ("!IsPromiseDependentType && \"cannot make statement while the promise type is dependent\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1734, __extension__ __PRETTY_FUNCTION__
))
;
1735 assert(this->ReturnValue && "ReturnValue must be already formed")(static_cast <bool> (this->ReturnValue && "ReturnValue must be already formed"
) ? void (0) : __assert_fail ("this->ReturnValue && \"ReturnValue must be already formed\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1735, __extension__ __PRETTY_FUNCTION__
))
;
1736
1737 QualType const GroType = this->ReturnValue->getType();
1738 assert(!GroType->isDependentType() &&(static_cast <bool> (!GroType->isDependentType() &&
"get_return_object type must no longer be dependent") ? void
(0) : __assert_fail ("!GroType->isDependentType() && \"get_return_object type must no longer be dependent\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1739, __extension__ __PRETTY_FUNCTION__
))
1739 "get_return_object type must no longer be dependent")(static_cast <bool> (!GroType->isDependentType() &&
"get_return_object type must no longer be dependent") ? void
(0) : __assert_fail ("!GroType->isDependentType() && \"get_return_object type must no longer be dependent\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1739, __extension__ __PRETTY_FUNCTION__
))
;
1740
1741 QualType const FnRetType = FD.getReturnType();
1742 assert(!FnRetType->isDependentType() &&(static_cast <bool> (!FnRetType->isDependentType() &&
"get_return_object type must no longer be dependent") ? void
(0) : __assert_fail ("!FnRetType->isDependentType() && \"get_return_object type must no longer be dependent\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1743, __extension__ __PRETTY_FUNCTION__
))
1743 "get_return_object type must no longer be dependent")(static_cast <bool> (!FnRetType->isDependentType() &&
"get_return_object type must no longer be dependent") ? void
(0) : __assert_fail ("!FnRetType->isDependentType() && \"get_return_object type must no longer be dependent\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1743, __extension__ __PRETTY_FUNCTION__
))
;
1744
1745 // The call to get_­return_­object is sequenced before the call to
1746 // initial_­suspend and is invoked at most once, but there are caveats
1747 // regarding on whether the prvalue result object may be initialized
1748 // directly/eager or delayed, depending on the types involved.
1749 //
1750 // More info at https://github.com/cplusplus/papers/issues/1414
1751 bool GroMatchesRetType = S.getASTContext().hasSameType(GroType, FnRetType);
1752
1753 if (FnRetType->isVoidType()) {
1754 ExprResult Res =
1755 S.ActOnFinishFullExpr(this->ReturnValue, Loc, /*DiscardedValue*/ false);
1756 if (Res.isInvalid())
1757 return false;
1758
1759 if (!GroMatchesRetType)
1760 this->ResultDecl = Res.get();
1761 return true;
1762 }
1763
1764 if (GroType->isVoidType()) {
1765 // Trigger a nice error message.
1766 InitializedEntity Entity =
1767 InitializedEntity::InitializeResult(Loc, FnRetType);
1768 S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue);
1769 noteMemberDeclaredHere(S, ReturnValue, Fn);
1770 return false;
1771 }
1772
1773 StmtResult ReturnStmt;
1774 clang::VarDecl *GroDecl = nullptr;
1775 if (GroMatchesRetType) {
1776 ReturnStmt = S.BuildReturnStmt(Loc, ReturnValue);
1777 } else {
1778 GroDecl = VarDecl::Create(
1779 S.Context, &FD, FD.getLocation(), FD.getLocation(),
1780 &S.PP.getIdentifierTable().get("__coro_gro"), GroType,
1781 S.Context.getTrivialTypeSourceInfo(GroType, Loc), SC_None);
1782 GroDecl->setImplicit();
1783
1784 S.CheckVariableDeclarationType(GroDecl);
1785 if (GroDecl->isInvalidDecl())
1786 return false;
1787
1788 InitializedEntity Entity = InitializedEntity::InitializeVariable(GroDecl);
1789 ExprResult Res =
1790 S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue);
1791 if (Res.isInvalid())
1792 return false;
1793
1794 Res = S.ActOnFinishFullExpr(Res.get(), /*DiscardedValue*/ false);
1795 if (Res.isInvalid())
1796 return false;
1797
1798 S.AddInitializerToDecl(GroDecl, Res.get(),
1799 /*DirectInit=*/false);
1800
1801 S.FinalizeDeclaration(GroDecl);
1802
1803 // Form a declaration statement for the return declaration, so that AST
1804 // visitors can more easily find it.
1805 StmtResult GroDeclStmt =
1806 S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(GroDecl), Loc, Loc);
1807 if (GroDeclStmt.isInvalid())
1808 return false;
1809
1810 this->ResultDecl = GroDeclStmt.get();
1811
1812 ExprResult declRef = S.BuildDeclRefExpr(GroDecl, GroType, VK_LValue, Loc);
1813 if (declRef.isInvalid())
1814 return false;
1815
1816 ReturnStmt = S.BuildReturnStmt(Loc, declRef.get());
1817 }
1818
1819 if (ReturnStmt.isInvalid()) {
1820 noteMemberDeclaredHere(S, ReturnValue, Fn);
1821 return false;
1822 }
1823
1824 if (!GroMatchesRetType &&
1825 cast<clang::ReturnStmt>(ReturnStmt.get())->getNRVOCandidate() == GroDecl)
1826 GroDecl->setNRVOVariable(true);
1827
1828 this->ReturnStmt = ReturnStmt.get();
1829 return true;
1830}
1831
1832// Create a static_cast\<T&&>(expr).
1833static Expr *castForMoving(Sema &S, Expr *E, QualType T = QualType()) {
1834 if (T.isNull())
1835 T = E->getType();
1836 QualType TargetType = S.BuildReferenceType(
1837 T, /*SpelledAsLValue*/ false, SourceLocation(), DeclarationName());
1838 SourceLocation ExprLoc = E->getBeginLoc();
1839 TypeSourceInfo *TargetLoc =
1840 S.Context.getTrivialTypeSourceInfo(TargetType, ExprLoc);
1841
1842 return S
1843 .BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
1844 SourceRange(ExprLoc, ExprLoc), E->getSourceRange())
1845 .get();
1846}
1847
1848/// Build a variable declaration for move parameter.
1849static VarDecl *buildVarDecl(Sema &S, SourceLocation Loc, QualType Type,
1850 IdentifierInfo *II) {
1851 TypeSourceInfo *TInfo = S.Context.getTrivialTypeSourceInfo(Type, Loc);
1852 VarDecl *Decl = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, II, Type,
1853 TInfo, SC_None);
1854 Decl->setImplicit();
1855 return Decl;
1856}
1857
1858// Build statements that move coroutine function parameters to the coroutine
1859// frame, and store them on the function scope info.
1860bool Sema::buildCoroutineParameterMoves(SourceLocation Loc) {
1861 assert(isa<FunctionDecl>(CurContext) && "not in a function scope")(static_cast <bool> (isa<FunctionDecl>(CurContext
) && "not in a function scope") ? void (0) : __assert_fail
("isa<FunctionDecl>(CurContext) && \"not in a function scope\""
, "clang/lib/Sema/SemaCoroutine.cpp", 1861, __extension__ __PRETTY_FUNCTION__
))
;
1862 auto *FD = cast<FunctionDecl>(CurContext);
1863
1864 auto *ScopeInfo = getCurFunction();
1865 if (!ScopeInfo->CoroutineParameterMoves.empty())
1866 return false;
1867
1868 // [dcl.fct.def.coroutine]p13
1869 // When a coroutine is invoked, after initializing its parameters
1870 // ([expr.call]), a copy is created for each coroutine parameter. For a
1871 // parameter of type cv T, the copy is a variable of type cv T with
1872 // automatic storage duration that is direct-initialized from an xvalue of
1873 // type T referring to the parameter.
1874 for (auto *PD : FD->parameters()) {
1875 if (PD->getType()->isDependentType())
1876 continue;
1877
1878 ExprResult PDRefExpr =
1879 BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
1880 ExprValueKind::VK_LValue, Loc); // FIXME: scope?
1881 if (PDRefExpr.isInvalid())
1882 return false;
1883
1884 Expr *CExpr = nullptr;
1885 if (PD->getType()->getAsCXXRecordDecl() ||
1886 PD->getType()->isRValueReferenceType())
1887 CExpr = castForMoving(*this, PDRefExpr.get());
1888 else
1889 CExpr = PDRefExpr.get();
1890 // [dcl.fct.def.coroutine]p13
1891 // The initialization and destruction of each parameter copy occurs in the
1892 // context of the called coroutine.
1893 auto *D = buildVarDecl(*this, Loc, PD->getType(), PD->getIdentifier());
1894 AddInitializerToDecl(D, CExpr, /*DirectInit=*/true);
1895
1896 // Convert decl to a statement.
1897 StmtResult Stmt = ActOnDeclStmt(ConvertDeclToDeclGroup(D), Loc, Loc);
1898 if (Stmt.isInvalid())
1899 return false;
1900
1901 ScopeInfo->CoroutineParameterMoves.insert(std::make_pair(PD, Stmt.get()));
1902 }
1903 return true;
1904}
1905
1906StmtResult Sema::BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) {
1907 CoroutineBodyStmt *Res = CoroutineBodyStmt::Create(Context, Args);
1908 if (!Res)
1909 return StmtError();
1910 return Res;
1911}
1912
1913ClassTemplateDecl *Sema::lookupCoroutineTraits(SourceLocation KwLoc,
1914 SourceLocation FuncLoc) {
1915 if (StdCoroutineTraitsCache)
1916 return StdCoroutineTraitsCache;
1917
1918 IdentifierInfo const &TraitIdent =
1919 PP.getIdentifierTable().get("coroutine_traits");
1920
1921 NamespaceDecl *StdSpace = getStdNamespace();
1922 LookupResult Result(*this, &TraitIdent, FuncLoc, LookupOrdinaryName);
1923 bool Found = StdSpace && LookupQualifiedName(Result, StdSpace);
1924
1925 if (!Found) {
1926 // The goggles, we found nothing!
1927 Diag(KwLoc, diag::err_implied_coroutine_type_not_found)
1928 << "std::coroutine_traits";
1929 return nullptr;
1930 }
1931
1932 // coroutine_traits is required to be a class template.
1933 StdCoroutineTraitsCache = Result.getAsSingle<ClassTemplateDecl>();
1934 if (!StdCoroutineTraitsCache) {
1935 Result.suppressDiagnostics();
1936 NamedDecl *Found = *Result.begin();
1937 Diag(Found->getLocation(), diag::err_malformed_std_coroutine_traits);
1938 return nullptr;
1939 }
1940
1941 return StdCoroutineTraitsCache;
1942}