File: | build/source/clang/lib/Sema/SemaDecl.cpp |
Warning: | line 14518, column 23 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements semantic analysis for declarations. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "TypeLocBuilder.h" |
14 | #include "clang/AST/ASTConsumer.h" |
15 | #include "clang/AST/ASTContext.h" |
16 | #include "clang/AST/ASTLambda.h" |
17 | #include "clang/AST/CXXInheritance.h" |
18 | #include "clang/AST/CharUnits.h" |
19 | #include "clang/AST/CommentDiagnostic.h" |
20 | #include "clang/AST/DeclCXX.h" |
21 | #include "clang/AST/DeclObjC.h" |
22 | #include "clang/AST/DeclTemplate.h" |
23 | #include "clang/AST/EvaluatedExprVisitor.h" |
24 | #include "clang/AST/Expr.h" |
25 | #include "clang/AST/ExprCXX.h" |
26 | #include "clang/AST/NonTrivialTypeVisitor.h" |
27 | #include "clang/AST/Randstruct.h" |
28 | #include "clang/AST/StmtCXX.h" |
29 | #include "clang/Basic/Builtins.h" |
30 | #include "clang/Basic/HLSLRuntime.h" |
31 | #include "clang/Basic/PartialDiagnostic.h" |
32 | #include "clang/Basic/SourceManager.h" |
33 | #include "clang/Basic/TargetInfo.h" |
34 | #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex |
35 | #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. |
36 | #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex |
37 | #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled() |
38 | #include "clang/Sema/CXXFieldCollector.h" |
39 | #include "clang/Sema/DeclSpec.h" |
40 | #include "clang/Sema/DelayedDiagnostic.h" |
41 | #include "clang/Sema/Initialization.h" |
42 | #include "clang/Sema/Lookup.h" |
43 | #include "clang/Sema/ParsedTemplate.h" |
44 | #include "clang/Sema/Scope.h" |
45 | #include "clang/Sema/ScopeInfo.h" |
46 | #include "clang/Sema/SemaInternal.h" |
47 | #include "clang/Sema/Template.h" |
48 | #include "llvm/ADT/SmallString.h" |
49 | #include "llvm/TargetParser/Triple.h" |
50 | #include <algorithm> |
51 | #include <cstring> |
52 | #include <functional> |
53 | #include <optional> |
54 | #include <unordered_map> |
55 | |
56 | using namespace clang; |
57 | using namespace sema; |
58 | |
59 | Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) { |
60 | if (OwnedType) { |
61 | Decl *Group[2] = { OwnedType, Ptr }; |
62 | return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2)); |
63 | } |
64 | |
65 | return DeclGroupPtrTy::make(DeclGroupRef(Ptr)); |
66 | } |
67 | |
68 | namespace { |
69 | |
70 | class TypeNameValidatorCCC final : public CorrectionCandidateCallback { |
71 | public: |
72 | TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false, |
73 | bool AllowTemplates = false, |
74 | bool AllowNonTemplates = true) |
75 | : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass), |
76 | AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) { |
77 | WantExpressionKeywords = false; |
78 | WantCXXNamedCasts = false; |
79 | WantRemainingKeywords = false; |
80 | } |
81 | |
82 | bool ValidateCandidate(const TypoCorrection &candidate) override { |
83 | if (NamedDecl *ND = candidate.getCorrectionDecl()) { |
84 | if (!AllowInvalidDecl && ND->isInvalidDecl()) |
85 | return false; |
86 | |
87 | if (getAsTypeTemplateDecl(ND)) |
88 | return AllowTemplates; |
89 | |
90 | bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND); |
91 | if (!IsType) |
92 | return false; |
93 | |
94 | if (AllowNonTemplates) |
95 | return true; |
96 | |
97 | // An injected-class-name of a class template (specialization) is valid |
98 | // as a template or as a non-template. |
99 | if (AllowTemplates) { |
100 | auto *RD = dyn_cast<CXXRecordDecl>(ND); |
101 | if (!RD || !RD->isInjectedClassName()) |
102 | return false; |
103 | RD = cast<CXXRecordDecl>(RD->getDeclContext()); |
104 | return RD->getDescribedClassTemplate() || |
105 | isa<ClassTemplateSpecializationDecl>(RD); |
106 | } |
107 | |
108 | return false; |
109 | } |
110 | |
111 | return !WantClassName && candidate.isKeyword(); |
112 | } |
113 | |
114 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
115 | return std::make_unique<TypeNameValidatorCCC>(*this); |
116 | } |
117 | |
118 | private: |
119 | bool AllowInvalidDecl; |
120 | bool WantClassName; |
121 | bool AllowTemplates; |
122 | bool AllowNonTemplates; |
123 | }; |
124 | |
125 | } // end anonymous namespace |
126 | |
127 | /// Determine whether the token kind starts a simple-type-specifier. |
128 | bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const { |
129 | switch (Kind) { |
130 | // FIXME: Take into account the current language when deciding whether a |
131 | // token kind is a valid type specifier |
132 | case tok::kw_short: |
133 | case tok::kw_long: |
134 | case tok::kw___int64: |
135 | case tok::kw___int128: |
136 | case tok::kw_signed: |
137 | case tok::kw_unsigned: |
138 | case tok::kw_void: |
139 | case tok::kw_char: |
140 | case tok::kw_int: |
141 | case tok::kw_half: |
142 | case tok::kw_float: |
143 | case tok::kw_double: |
144 | case tok::kw___bf16: |
145 | case tok::kw__Float16: |
146 | case tok::kw___float128: |
147 | case tok::kw___ibm128: |
148 | case tok::kw_wchar_t: |
149 | case tok::kw_bool: |
150 | #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait: |
151 | #include "clang/Basic/TransformTypeTraits.def" |
152 | case tok::kw___auto_type: |
153 | return true; |
154 | |
155 | case tok::annot_typename: |
156 | case tok::kw_char16_t: |
157 | case tok::kw_char32_t: |
158 | case tok::kw_typeof: |
159 | case tok::annot_decltype: |
160 | case tok::kw_decltype: |
161 | return getLangOpts().CPlusPlus; |
162 | |
163 | case tok::kw_char8_t: |
164 | return getLangOpts().Char8; |
165 | |
166 | default: |
167 | break; |
168 | } |
169 | |
170 | return false; |
171 | } |
172 | |
173 | namespace { |
174 | enum class UnqualifiedTypeNameLookupResult { |
175 | NotFound, |
176 | FoundNonType, |
177 | FoundType |
178 | }; |
179 | } // end anonymous namespace |
180 | |
181 | /// Tries to perform unqualified lookup of the type decls in bases for |
182 | /// dependent class. |
183 | /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a |
184 | /// type decl, \a FoundType if only type decls are found. |
185 | static UnqualifiedTypeNameLookupResult |
186 | lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II, |
187 | SourceLocation NameLoc, |
188 | const CXXRecordDecl *RD) { |
189 | if (!RD->hasDefinition()) |
190 | return UnqualifiedTypeNameLookupResult::NotFound; |
191 | // Look for type decls in base classes. |
192 | UnqualifiedTypeNameLookupResult FoundTypeDecl = |
193 | UnqualifiedTypeNameLookupResult::NotFound; |
194 | for (const auto &Base : RD->bases()) { |
195 | const CXXRecordDecl *BaseRD = nullptr; |
196 | if (auto *BaseTT = Base.getType()->getAs<TagType>()) |
197 | BaseRD = BaseTT->getAsCXXRecordDecl(); |
198 | else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) { |
199 | // Look for type decls in dependent base classes that have known primary |
200 | // templates. |
201 | if (!TST || !TST->isDependentType()) |
202 | continue; |
203 | auto *TD = TST->getTemplateName().getAsTemplateDecl(); |
204 | if (!TD) |
205 | continue; |
206 | if (auto *BasePrimaryTemplate = |
207 | dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) { |
208 | if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl()) |
209 | BaseRD = BasePrimaryTemplate; |
210 | else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) { |
211 | if (const ClassTemplatePartialSpecializationDecl *PS = |
212 | CTD->findPartialSpecialization(Base.getType())) |
213 | if (PS->getCanonicalDecl() != RD->getCanonicalDecl()) |
214 | BaseRD = PS; |
215 | } |
216 | } |
217 | } |
218 | if (BaseRD) { |
219 | for (NamedDecl *ND : BaseRD->lookup(&II)) { |
220 | if (!isa<TypeDecl>(ND)) |
221 | return UnqualifiedTypeNameLookupResult::FoundNonType; |
222 | FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType; |
223 | } |
224 | if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) { |
225 | switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) { |
226 | case UnqualifiedTypeNameLookupResult::FoundNonType: |
227 | return UnqualifiedTypeNameLookupResult::FoundNonType; |
228 | case UnqualifiedTypeNameLookupResult::FoundType: |
229 | FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType; |
230 | break; |
231 | case UnqualifiedTypeNameLookupResult::NotFound: |
232 | break; |
233 | } |
234 | } |
235 | } |
236 | } |
237 | |
238 | return FoundTypeDecl; |
239 | } |
240 | |
241 | static ParsedType recoverFromTypeInKnownDependentBase(Sema &S, |
242 | const IdentifierInfo &II, |
243 | SourceLocation NameLoc) { |
244 | // Lookup in the parent class template context, if any. |
245 | const CXXRecordDecl *RD = nullptr; |
246 | UnqualifiedTypeNameLookupResult FoundTypeDecl = |
247 | UnqualifiedTypeNameLookupResult::NotFound; |
248 | for (DeclContext *DC = S.CurContext; |
249 | DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound; |
250 | DC = DC->getParent()) { |
251 | // Look for type decls in dependent base classes that have known primary |
252 | // templates. |
253 | RD = dyn_cast<CXXRecordDecl>(DC); |
254 | if (RD && RD->getDescribedClassTemplate()) |
255 | FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD); |
256 | } |
257 | if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType) |
258 | return nullptr; |
259 | |
260 | // We found some types in dependent base classes. Recover as if the user |
261 | // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the |
262 | // lookup during template instantiation. |
263 | S.Diag(NameLoc, diag::ext_found_in_dependent_base) << &II; |
264 | |
265 | ASTContext &Context = S.Context; |
266 | auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false, |
267 | cast<Type>(Context.getRecordType(RD))); |
268 | QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II); |
269 | |
270 | CXXScopeSpec SS; |
271 | SS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); |
272 | |
273 | TypeLocBuilder Builder; |
274 | DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); |
275 | DepTL.setNameLoc(NameLoc); |
276 | DepTL.setElaboratedKeywordLoc(SourceLocation()); |
277 | DepTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
278 | return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); |
279 | } |
280 | |
281 | /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier. |
282 | static ParsedType buildNamedType(Sema &S, const CXXScopeSpec *SS, QualType T, |
283 | SourceLocation NameLoc, |
284 | bool WantNontrivialTypeSourceInfo = true) { |
285 | switch (T->getTypeClass()) { |
286 | case Type::DeducedTemplateSpecialization: |
287 | case Type::Enum: |
288 | case Type::InjectedClassName: |
289 | case Type::Record: |
290 | case Type::Typedef: |
291 | case Type::UnresolvedUsing: |
292 | case Type::Using: |
293 | break; |
294 | // These can never be qualified so an ElaboratedType node |
295 | // would carry no additional meaning. |
296 | case Type::ObjCInterface: |
297 | case Type::ObjCTypeParam: |
298 | case Type::TemplateTypeParm: |
299 | return ParsedType::make(T); |
300 | default: |
301 | llvm_unreachable("Unexpected Type Class")::llvm::llvm_unreachable_internal("Unexpected Type Class", "clang/lib/Sema/SemaDecl.cpp" , 301); |
302 | } |
303 | |
304 | if (!SS || SS->isEmpty()) |
305 | return ParsedType::make( |
306 | S.Context.getElaboratedType(ETK_None, nullptr, T, nullptr)); |
307 | |
308 | QualType ElTy = S.getElaboratedType(ETK_None, *SS, T); |
309 | if (!WantNontrivialTypeSourceInfo) |
310 | return ParsedType::make(ElTy); |
311 | |
312 | TypeLocBuilder Builder; |
313 | Builder.pushTypeSpec(T).setNameLoc(NameLoc); |
314 | ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(ElTy); |
315 | ElabTL.setElaboratedKeywordLoc(SourceLocation()); |
316 | ElabTL.setQualifierLoc(SS->getWithLocInContext(S.Context)); |
317 | return S.CreateParsedType(ElTy, Builder.getTypeSourceInfo(S.Context, ElTy)); |
318 | } |
319 | |
320 | /// If the identifier refers to a type name within this scope, |
321 | /// return the declaration of that type. |
322 | /// |
323 | /// This routine performs ordinary name lookup of the identifier II |
324 | /// within the given scope, with optional C++ scope specifier SS, to |
325 | /// determine whether the name refers to a type. If so, returns an |
326 | /// opaque pointer (actually a QualType) corresponding to that |
327 | /// type. Otherwise, returns NULL. |
328 | ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc, |
329 | Scope *S, CXXScopeSpec *SS, bool isClassName, |
330 | bool HasTrailingDot, ParsedType ObjectTypePtr, |
331 | bool IsCtorOrDtorName, |
332 | bool WantNontrivialTypeSourceInfo, |
333 | bool IsClassTemplateDeductionContext, |
334 | ImplicitTypenameContext AllowImplicitTypename, |
335 | IdentifierInfo **CorrectedII) { |
336 | // FIXME: Consider allowing this outside C++1z mode as an extension. |
337 | bool AllowDeducedTemplate = IsClassTemplateDeductionContext && |
338 | getLangOpts().CPlusPlus17 && !IsCtorOrDtorName && |
339 | !isClassName && !HasTrailingDot; |
340 | |
341 | // Determine where we will perform name lookup. |
342 | DeclContext *LookupCtx = nullptr; |
343 | if (ObjectTypePtr) { |
344 | QualType ObjectType = ObjectTypePtr.get(); |
345 | if (ObjectType->isRecordType()) |
346 | LookupCtx = computeDeclContext(ObjectType); |
347 | } else if (SS && SS->isNotEmpty()) { |
348 | LookupCtx = computeDeclContext(*SS, false); |
349 | |
350 | if (!LookupCtx) { |
351 | if (isDependentScopeSpecifier(*SS)) { |
352 | // C++ [temp.res]p3: |
353 | // A qualified-id that refers to a type and in which the |
354 | // nested-name-specifier depends on a template-parameter (14.6.2) |
355 | // shall be prefixed by the keyword typename to indicate that the |
356 | // qualified-id denotes a type, forming an |
357 | // elaborated-type-specifier (7.1.5.3). |
358 | // |
359 | // We therefore do not perform any name lookup if the result would |
360 | // refer to a member of an unknown specialization. |
361 | // In C++2a, in several contexts a 'typename' is not required. Also |
362 | // allow this as an extension. |
363 | if (AllowImplicitTypename == ImplicitTypenameContext::No && |
364 | !isClassName && !IsCtorOrDtorName) |
365 | return nullptr; |
366 | bool IsImplicitTypename = !isClassName && !IsCtorOrDtorName; |
367 | if (IsImplicitTypename) { |
368 | SourceLocation QualifiedLoc = SS->getRange().getBegin(); |
369 | if (getLangOpts().CPlusPlus20) |
370 | Diag(QualifiedLoc, diag::warn_cxx17_compat_implicit_typename); |
371 | else |
372 | Diag(QualifiedLoc, diag::ext_implicit_typename) |
373 | << SS->getScopeRep() << II.getName() |
374 | << FixItHint::CreateInsertion(QualifiedLoc, "typename "); |
375 | } |
376 | |
377 | // We know from the grammar that this name refers to a type, |
378 | // so build a dependent node to describe the type. |
379 | if (WantNontrivialTypeSourceInfo) |
380 | return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc, |
381 | (ImplicitTypenameContext)IsImplicitTypename) |
382 | .get(); |
383 | |
384 | NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context); |
385 | QualType T = |
386 | CheckTypenameType(IsImplicitTypename ? ETK_Typename : ETK_None, |
387 | SourceLocation(), QualifierLoc, II, NameLoc); |
388 | return ParsedType::make(T); |
389 | } |
390 | |
391 | return nullptr; |
392 | } |
393 | |
394 | if (!LookupCtx->isDependentContext() && |
395 | RequireCompleteDeclContext(*SS, LookupCtx)) |
396 | return nullptr; |
397 | } |
398 | |
399 | // FIXME: LookupNestedNameSpecifierName isn't the right kind of |
400 | // lookup for class-names. |
401 | LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName : |
402 | LookupOrdinaryName; |
403 | LookupResult Result(*this, &II, NameLoc, Kind); |
404 | if (LookupCtx) { |
405 | // Perform "qualified" name lookup into the declaration context we |
406 | // computed, which is either the type of the base of a member access |
407 | // expression or the declaration context associated with a prior |
408 | // nested-name-specifier. |
409 | LookupQualifiedName(Result, LookupCtx); |
410 | |
411 | if (ObjectTypePtr && Result.empty()) { |
412 | // C++ [basic.lookup.classref]p3: |
413 | // If the unqualified-id is ~type-name, the type-name is looked up |
414 | // in the context of the entire postfix-expression. If the type T of |
415 | // the object expression is of a class type C, the type-name is also |
416 | // looked up in the scope of class C. At least one of the lookups shall |
417 | // find a name that refers to (possibly cv-qualified) T. |
418 | LookupName(Result, S); |
419 | } |
420 | } else { |
421 | // Perform unqualified name lookup. |
422 | LookupName(Result, S); |
423 | |
424 | // For unqualified lookup in a class template in MSVC mode, look into |
425 | // dependent base classes where the primary class template is known. |
426 | if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) { |
427 | if (ParsedType TypeInBase = |
428 | recoverFromTypeInKnownDependentBase(*this, II, NameLoc)) |
429 | return TypeInBase; |
430 | } |
431 | } |
432 | |
433 | NamedDecl *IIDecl = nullptr; |
434 | UsingShadowDecl *FoundUsingShadow = nullptr; |
435 | switch (Result.getResultKind()) { |
436 | case LookupResult::NotFound: |
437 | case LookupResult::NotFoundInCurrentInstantiation: |
438 | if (CorrectedII) { |
439 | TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName, |
440 | AllowDeducedTemplate); |
441 | TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind, |
442 | S, SS, CCC, CTK_ErrorRecovery); |
443 | IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo(); |
444 | TemplateTy Template; |
445 | bool MemberOfUnknownSpecialization; |
446 | UnqualifiedId TemplateName; |
447 | TemplateName.setIdentifier(NewII, NameLoc); |
448 | NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier(); |
449 | CXXScopeSpec NewSS, *NewSSPtr = SS; |
450 | if (SS && NNS) { |
451 | NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); |
452 | NewSSPtr = &NewSS; |
453 | } |
454 | if (Correction && (NNS || NewII != &II) && |
455 | // Ignore a correction to a template type as the to-be-corrected |
456 | // identifier is not a template (typo correction for template names |
457 | // is handled elsewhere). |
458 | !(getLangOpts().CPlusPlus && NewSSPtr && |
459 | isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false, |
460 | Template, MemberOfUnknownSpecialization))) { |
461 | ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr, |
462 | isClassName, HasTrailingDot, ObjectTypePtr, |
463 | IsCtorOrDtorName, |
464 | WantNontrivialTypeSourceInfo, |
465 | IsClassTemplateDeductionContext); |
466 | if (Ty) { |
467 | diagnoseTypo(Correction, |
468 | PDiag(diag::err_unknown_type_or_class_name_suggest) |
469 | << Result.getLookupName() << isClassName); |
470 | if (SS && NNS) |
471 | SS->MakeTrivial(Context, NNS, SourceRange(NameLoc)); |
472 | *CorrectedII = NewII; |
473 | return Ty; |
474 | } |
475 | } |
476 | } |
477 | // If typo correction failed or was not performed, fall through |
478 | [[fallthrough]]; |
479 | case LookupResult::FoundOverloaded: |
480 | case LookupResult::FoundUnresolvedValue: |
481 | Result.suppressDiagnostics(); |
482 | return nullptr; |
483 | |
484 | case LookupResult::Ambiguous: |
485 | // Recover from type-hiding ambiguities by hiding the type. We'll |
486 | // do the lookup again when looking for an object, and we can |
487 | // diagnose the error then. If we don't do this, then the error |
488 | // about hiding the type will be immediately followed by an error |
489 | // that only makes sense if the identifier was treated like a type. |
490 | if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) { |
491 | Result.suppressDiagnostics(); |
492 | return nullptr; |
493 | } |
494 | |
495 | // Look to see if we have a type anywhere in the list of results. |
496 | for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end(); |
497 | Res != ResEnd; ++Res) { |
498 | NamedDecl *RealRes = (*Res)->getUnderlyingDecl(); |
499 | if (isa<TypeDecl, ObjCInterfaceDecl, UnresolvedUsingIfExistsDecl>( |
500 | RealRes) || |
501 | (AllowDeducedTemplate && getAsTypeTemplateDecl(RealRes))) { |
502 | if (!IIDecl || |
503 | // Make the selection of the recovery decl deterministic. |
504 | RealRes->getLocation() < IIDecl->getLocation()) { |
505 | IIDecl = RealRes; |
506 | FoundUsingShadow = dyn_cast<UsingShadowDecl>(*Res); |
507 | } |
508 | } |
509 | } |
510 | |
511 | if (!IIDecl) { |
512 | // None of the entities we found is a type, so there is no way |
513 | // to even assume that the result is a type. In this case, don't |
514 | // complain about the ambiguity. The parser will either try to |
515 | // perform this lookup again (e.g., as an object name), which |
516 | // will produce the ambiguity, or will complain that it expected |
517 | // a type name. |
518 | Result.suppressDiagnostics(); |
519 | return nullptr; |
520 | } |
521 | |
522 | // We found a type within the ambiguous lookup; diagnose the |
523 | // ambiguity and then return that type. This might be the right |
524 | // answer, or it might not be, but it suppresses any attempt to |
525 | // perform the name lookup again. |
526 | break; |
527 | |
528 | case LookupResult::Found: |
529 | IIDecl = Result.getFoundDecl(); |
530 | FoundUsingShadow = dyn_cast<UsingShadowDecl>(*Result.begin()); |
531 | break; |
532 | } |
533 | |
534 | assert(IIDecl && "Didn't find decl")(static_cast <bool> (IIDecl && "Didn't find decl" ) ? void (0) : __assert_fail ("IIDecl && \"Didn't find decl\"" , "clang/lib/Sema/SemaDecl.cpp", 534, __extension__ __PRETTY_FUNCTION__ )); |
535 | |
536 | QualType T; |
537 | if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) { |
538 | // C++ [class.qual]p2: A lookup that would find the injected-class-name |
539 | // instead names the constructors of the class, except when naming a class. |
540 | // This is ill-formed when we're not actually forming a ctor or dtor name. |
541 | auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); |
542 | auto *FoundRD = dyn_cast<CXXRecordDecl>(TD); |
543 | if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD && |
544 | FoundRD->isInjectedClassName() && |
545 | declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent()))) |
546 | Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor) |
547 | << &II << /*Type*/1; |
548 | |
549 | DiagnoseUseOfDecl(IIDecl, NameLoc); |
550 | |
551 | T = Context.getTypeDeclType(TD); |
552 | MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); |
553 | } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) { |
554 | (void)DiagnoseUseOfDecl(IDecl, NameLoc); |
555 | if (!HasTrailingDot) |
556 | T = Context.getObjCInterfaceType(IDecl); |
557 | FoundUsingShadow = nullptr; // FIXME: Target must be a TypeDecl. |
558 | } else if (auto *UD = dyn_cast<UnresolvedUsingIfExistsDecl>(IIDecl)) { |
559 | (void)DiagnoseUseOfDecl(UD, NameLoc); |
560 | // Recover with 'int' |
561 | return ParsedType::make(Context.IntTy); |
562 | } else if (AllowDeducedTemplate) { |
563 | if (auto *TD = getAsTypeTemplateDecl(IIDecl)) { |
564 | assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD)(static_cast <bool> (!FoundUsingShadow || FoundUsingShadow ->getTargetDecl() == TD) ? void (0) : __assert_fail ("!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD" , "clang/lib/Sema/SemaDecl.cpp", 564, __extension__ __PRETTY_FUNCTION__ )); |
565 | TemplateName Template = |
566 | FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD); |
567 | T = Context.getDeducedTemplateSpecializationType(Template, QualType(), |
568 | false); |
569 | // Don't wrap in a further UsingType. |
570 | FoundUsingShadow = nullptr; |
571 | } |
572 | } |
573 | |
574 | if (T.isNull()) { |
575 | // If it's not plausibly a type, suppress diagnostics. |
576 | Result.suppressDiagnostics(); |
577 | return nullptr; |
578 | } |
579 | |
580 | if (FoundUsingShadow) |
581 | T = Context.getUsingType(FoundUsingShadow, T); |
582 | |
583 | return buildNamedType(*this, SS, T, NameLoc, WantNontrivialTypeSourceInfo); |
584 | } |
585 | |
586 | // Builds a fake NNS for the given decl context. |
587 | static NestedNameSpecifier * |
588 | synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) { |
589 | for (;; DC = DC->getLookupParent()) { |
590 | DC = DC->getPrimaryContext(); |
591 | auto *ND = dyn_cast<NamespaceDecl>(DC); |
592 | if (ND && !ND->isInline() && !ND->isAnonymousNamespace()) |
593 | return NestedNameSpecifier::Create(Context, nullptr, ND); |
594 | else if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) |
595 | return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(), |
596 | RD->getTypeForDecl()); |
597 | else if (isa<TranslationUnitDecl>(DC)) |
598 | return NestedNameSpecifier::GlobalSpecifier(Context); |
599 | } |
600 | llvm_unreachable("something isn't in TU scope?")::llvm::llvm_unreachable_internal("something isn't in TU scope?" , "clang/lib/Sema/SemaDecl.cpp", 600); |
601 | } |
602 | |
603 | /// Find the parent class with dependent bases of the innermost enclosing method |
604 | /// context. Do not look for enclosing CXXRecordDecls directly, or we will end |
605 | /// up allowing unqualified dependent type names at class-level, which MSVC |
606 | /// correctly rejects. |
607 | static const CXXRecordDecl * |
608 | findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) { |
609 | for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) { |
610 | DC = DC->getPrimaryContext(); |
611 | if (const auto *MD = dyn_cast<CXXMethodDecl>(DC)) |
612 | if (MD->getParent()->hasAnyDependentBases()) |
613 | return MD->getParent(); |
614 | } |
615 | return nullptr; |
616 | } |
617 | |
618 | ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II, |
619 | SourceLocation NameLoc, |
620 | bool IsTemplateTypeArg) { |
621 | assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode")(static_cast <bool> (getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode") ? void (0) : __assert_fail ("getLangOpts().MSVCCompat && \"shouldn't be called in non-MSVC mode\"" , "clang/lib/Sema/SemaDecl.cpp", 621, __extension__ __PRETTY_FUNCTION__ )); |
622 | |
623 | NestedNameSpecifier *NNS = nullptr; |
624 | if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) { |
625 | // If we weren't able to parse a default template argument, delay lookup |
626 | // until instantiation time by making a non-dependent DependentTypeName. We |
627 | // pretend we saw a NestedNameSpecifier referring to the current scope, and |
628 | // lookup is retried. |
629 | // FIXME: This hurts our diagnostic quality, since we get errors like "no |
630 | // type named 'Foo' in 'current_namespace'" when the user didn't write any |
631 | // name specifiers. |
632 | NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext); |
633 | Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II; |
634 | } else if (const CXXRecordDecl *RD = |
635 | findRecordWithDependentBasesOfEnclosingMethod(CurContext)) { |
636 | // Build a DependentNameType that will perform lookup into RD at |
637 | // instantiation time. |
638 | NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(), |
639 | RD->getTypeForDecl()); |
640 | |
641 | // Diagnose that this identifier was undeclared, and retry the lookup during |
642 | // template instantiation. |
643 | Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II |
644 | << RD; |
645 | } else { |
646 | // This is not a situation that we should recover from. |
647 | return ParsedType(); |
648 | } |
649 | |
650 | QualType T = Context.getDependentNameType(ETK_None, NNS, &II); |
651 | |
652 | // Build type location information. We synthesized the qualifier, so we have |
653 | // to build a fake NestedNameSpecifierLoc. |
654 | NestedNameSpecifierLocBuilder NNSLocBuilder; |
655 | NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc)); |
656 | NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context); |
657 | |
658 | TypeLocBuilder Builder; |
659 | DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); |
660 | DepTL.setNameLoc(NameLoc); |
661 | DepTL.setElaboratedKeywordLoc(SourceLocation()); |
662 | DepTL.setQualifierLoc(QualifierLoc); |
663 | return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); |
664 | } |
665 | |
666 | /// isTagName() - This method is called *for error recovery purposes only* |
667 | /// to determine if the specified name is a valid tag name ("struct foo"). If |
668 | /// so, this returns the TST for the tag corresponding to it (TST_enum, |
669 | /// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose |
670 | /// cases in C where the user forgot to specify the tag. |
671 | DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) { |
672 | // Do a tag name lookup in this scope. |
673 | LookupResult R(*this, &II, SourceLocation(), LookupTagName); |
674 | LookupName(R, S, false); |
675 | R.suppressDiagnostics(); |
676 | if (R.getResultKind() == LookupResult::Found) |
677 | if (const TagDecl *TD = R.getAsSingle<TagDecl>()) { |
678 | switch (TD->getTagKind()) { |
679 | case TTK_Struct: return DeclSpec::TST_struct; |
680 | case TTK_Interface: return DeclSpec::TST_interface; |
681 | case TTK_Union: return DeclSpec::TST_union; |
682 | case TTK_Class: return DeclSpec::TST_class; |
683 | case TTK_Enum: return DeclSpec::TST_enum; |
684 | } |
685 | } |
686 | |
687 | return DeclSpec::TST_unspecified; |
688 | } |
689 | |
690 | /// isMicrosoftMissingTypename - In Microsoft mode, within class scope, |
691 | /// if a CXXScopeSpec's type is equal to the type of one of the base classes |
692 | /// then downgrade the missing typename error to a warning. |
693 | /// This is needed for MSVC compatibility; Example: |
694 | /// @code |
695 | /// template<class T> class A { |
696 | /// public: |
697 | /// typedef int TYPE; |
698 | /// }; |
699 | /// template<class T> class B : public A<T> { |
700 | /// public: |
701 | /// A<T>::TYPE a; // no typename required because A<T> is a base class. |
702 | /// }; |
703 | /// @endcode |
704 | bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) { |
705 | if (CurContext->isRecord()) { |
706 | if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super) |
707 | return true; |
708 | |
709 | const Type *Ty = SS->getScopeRep()->getAsType(); |
710 | |
711 | CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext); |
712 | for (const auto &Base : RD->bases()) |
713 | if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType())) |
714 | return true; |
715 | return S->isFunctionPrototypeScope(); |
716 | } |
717 | return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope(); |
718 | } |
719 | |
720 | void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II, |
721 | SourceLocation IILoc, |
722 | Scope *S, |
723 | CXXScopeSpec *SS, |
724 | ParsedType &SuggestedType, |
725 | bool IsTemplateName) { |
726 | // Don't report typename errors for editor placeholders. |
727 | if (II->isEditorPlaceholder()) |
728 | return; |
729 | // We don't have anything to suggest (yet). |
730 | SuggestedType = nullptr; |
731 | |
732 | // There may have been a typo in the name of the type. Look up typo |
733 | // results, in case we have something that we can suggest. |
734 | TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false, |
735 | /*AllowTemplates=*/IsTemplateName, |
736 | /*AllowNonTemplates=*/!IsTemplateName); |
737 | if (TypoCorrection Corrected = |
738 | CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS, |
739 | CCC, CTK_ErrorRecovery)) { |
740 | // FIXME: Support error recovery for the template-name case. |
741 | bool CanRecover = !IsTemplateName; |
742 | if (Corrected.isKeyword()) { |
743 | // We corrected to a keyword. |
744 | diagnoseTypo(Corrected, |
745 | PDiag(IsTemplateName ? diag::err_no_template_suggest |
746 | : diag::err_unknown_typename_suggest) |
747 | << II); |
748 | II = Corrected.getCorrectionAsIdentifierInfo(); |
749 | } else { |
750 | // We found a similarly-named type or interface; suggest that. |
751 | if (!SS || !SS->isSet()) { |
752 | diagnoseTypo(Corrected, |
753 | PDiag(IsTemplateName ? diag::err_no_template_suggest |
754 | : diag::err_unknown_typename_suggest) |
755 | << II, CanRecover); |
756 | } else if (DeclContext *DC = computeDeclContext(*SS, false)) { |
757 | std::string CorrectedStr(Corrected.getAsString(getLangOpts())); |
758 | bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && |
759 | II->getName().equals(CorrectedStr); |
760 | diagnoseTypo(Corrected, |
761 | PDiag(IsTemplateName |
762 | ? diag::err_no_member_template_suggest |
763 | : diag::err_unknown_nested_typename_suggest) |
764 | << II << DC << DroppedSpecifier << SS->getRange(), |
765 | CanRecover); |
766 | } else { |
767 | llvm_unreachable("could not have corrected a typo here")::llvm::llvm_unreachable_internal("could not have corrected a typo here" , "clang/lib/Sema/SemaDecl.cpp", 767); |
768 | } |
769 | |
770 | if (!CanRecover) |
771 | return; |
772 | |
773 | CXXScopeSpec tmpSS; |
774 | if (Corrected.getCorrectionSpecifier()) |
775 | tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), |
776 | SourceRange(IILoc)); |
777 | // FIXME: Support class template argument deduction here. |
778 | SuggestedType = |
779 | getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S, |
780 | tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr, |
781 | /*IsCtorOrDtorName=*/false, |
782 | /*WantNontrivialTypeSourceInfo=*/true); |
783 | } |
784 | return; |
785 | } |
786 | |
787 | if (getLangOpts().CPlusPlus && !IsTemplateName) { |
788 | // See if II is a class template that the user forgot to pass arguments to. |
789 | UnqualifiedId Name; |
790 | Name.setIdentifier(II, IILoc); |
791 | CXXScopeSpec EmptySS; |
792 | TemplateTy TemplateResult; |
793 | bool MemberOfUnknownSpecialization; |
794 | if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false, |
795 | Name, nullptr, true, TemplateResult, |
796 | MemberOfUnknownSpecialization) == TNK_Type_template) { |
797 | diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc); |
798 | return; |
799 | } |
800 | } |
801 | |
802 | // FIXME: Should we move the logic that tries to recover from a missing tag |
803 | // (struct, union, enum) from Parser::ParseImplicitInt here, instead? |
804 | |
805 | if (!SS || (!SS->isSet() && !SS->isInvalid())) |
806 | Diag(IILoc, IsTemplateName ? diag::err_no_template |
807 | : diag::err_unknown_typename) |
808 | << II; |
809 | else if (DeclContext *DC = computeDeclContext(*SS, false)) |
810 | Diag(IILoc, IsTemplateName ? diag::err_no_member_template |
811 | : diag::err_typename_nested_not_found) |
812 | << II << DC << SS->getRange(); |
813 | else if (SS->isValid() && SS->getScopeRep()->containsErrors()) { |
814 | SuggestedType = |
815 | ActOnTypenameType(S, SourceLocation(), *SS, *II, IILoc).get(); |
816 | } else if (isDependentScopeSpecifier(*SS)) { |
817 | unsigned DiagID = diag::err_typename_missing; |
818 | if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S)) |
819 | DiagID = diag::ext_typename_missing; |
820 | |
821 | Diag(SS->getRange().getBegin(), DiagID) |
822 | << SS->getScopeRep() << II->getName() |
823 | << SourceRange(SS->getRange().getBegin(), IILoc) |
824 | << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename "); |
825 | SuggestedType = ActOnTypenameType(S, SourceLocation(), |
826 | *SS, *II, IILoc).get(); |
827 | } else { |
828 | assert(SS && SS->isInvalid() &&(static_cast <bool> (SS && SS->isInvalid() && "Invalid scope specifier has already been diagnosed") ? void (0) : __assert_fail ("SS && SS->isInvalid() && \"Invalid scope specifier has already been diagnosed\"" , "clang/lib/Sema/SemaDecl.cpp", 829, __extension__ __PRETTY_FUNCTION__ )) |
829 | "Invalid scope specifier has already been diagnosed")(static_cast <bool> (SS && SS->isInvalid() && "Invalid scope specifier has already been diagnosed") ? void (0) : __assert_fail ("SS && SS->isInvalid() && \"Invalid scope specifier has already been diagnosed\"" , "clang/lib/Sema/SemaDecl.cpp", 829, __extension__ __PRETTY_FUNCTION__ )); |
830 | } |
831 | } |
832 | |
833 | /// Determine whether the given result set contains either a type name |
834 | /// or |
835 | static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) { |
836 | bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus && |
837 | NextToken.is(tok::less); |
838 | |
839 | for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { |
840 | if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I)) |
841 | return true; |
842 | |
843 | if (CheckTemplate && isa<TemplateDecl>(*I)) |
844 | return true; |
845 | } |
846 | |
847 | return false; |
848 | } |
849 | |
850 | static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result, |
851 | Scope *S, CXXScopeSpec &SS, |
852 | IdentifierInfo *&Name, |
853 | SourceLocation NameLoc) { |
854 | LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName); |
855 | SemaRef.LookupParsedName(R, S, &SS); |
856 | if (TagDecl *Tag = R.getAsSingle<TagDecl>()) { |
857 | StringRef FixItTagName; |
858 | switch (Tag->getTagKind()) { |
859 | case TTK_Class: |
860 | FixItTagName = "class "; |
861 | break; |
862 | |
863 | case TTK_Enum: |
864 | FixItTagName = "enum "; |
865 | break; |
866 | |
867 | case TTK_Struct: |
868 | FixItTagName = "struct "; |
869 | break; |
870 | |
871 | case TTK_Interface: |
872 | FixItTagName = "__interface "; |
873 | break; |
874 | |
875 | case TTK_Union: |
876 | FixItTagName = "union "; |
877 | break; |
878 | } |
879 | |
880 | StringRef TagName = FixItTagName.drop_back(); |
881 | SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag) |
882 | << Name << TagName << SemaRef.getLangOpts().CPlusPlus |
883 | << FixItHint::CreateInsertion(NameLoc, FixItTagName); |
884 | |
885 | for (LookupResult::iterator I = Result.begin(), IEnd = Result.end(); |
886 | I != IEnd; ++I) |
887 | SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type) |
888 | << Name << TagName; |
889 | |
890 | // Replace lookup results with just the tag decl. |
891 | Result.clear(Sema::LookupTagName); |
892 | SemaRef.LookupParsedName(Result, S, &SS); |
893 | return true; |
894 | } |
895 | |
896 | return false; |
897 | } |
898 | |
899 | Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, |
900 | IdentifierInfo *&Name, |
901 | SourceLocation NameLoc, |
902 | const Token &NextToken, |
903 | CorrectionCandidateCallback *CCC) { |
904 | DeclarationNameInfo NameInfo(Name, NameLoc); |
905 | ObjCMethodDecl *CurMethod = getCurMethodDecl(); |
906 | |
907 | assert(NextToken.isNot(tok::coloncolon) &&(static_cast <bool> (NextToken.isNot(tok::coloncolon) && "parse nested name specifiers before calling ClassifyName") ? void (0) : __assert_fail ("NextToken.isNot(tok::coloncolon) && \"parse nested name specifiers before calling ClassifyName\"" , "clang/lib/Sema/SemaDecl.cpp", 908, __extension__ __PRETTY_FUNCTION__ )) |
908 | "parse nested name specifiers before calling ClassifyName")(static_cast <bool> (NextToken.isNot(tok::coloncolon) && "parse nested name specifiers before calling ClassifyName") ? void (0) : __assert_fail ("NextToken.isNot(tok::coloncolon) && \"parse nested name specifiers before calling ClassifyName\"" , "clang/lib/Sema/SemaDecl.cpp", 908, __extension__ __PRETTY_FUNCTION__ )); |
909 | if (getLangOpts().CPlusPlus && SS.isSet() && |
910 | isCurrentClassName(*Name, S, &SS)) { |
911 | // Per [class.qual]p2, this names the constructors of SS, not the |
912 | // injected-class-name. We don't have a classification for that. |
913 | // There's not much point caching this result, since the parser |
914 | // will reject it later. |
915 | return NameClassification::Unknown(); |
916 | } |
917 | |
918 | LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); |
919 | LookupParsedName(Result, S, &SS, !CurMethod); |
920 | |
921 | if (SS.isInvalid()) |
922 | return NameClassification::Error(); |
923 | |
924 | // For unqualified lookup in a class template in MSVC mode, look into |
925 | // dependent base classes where the primary class template is known. |
926 | if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) { |
927 | if (ParsedType TypeInBase = |
928 | recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc)) |
929 | return TypeInBase; |
930 | } |
931 | |
932 | // Perform lookup for Objective-C instance variables (including automatically |
933 | // synthesized instance variables), if we're in an Objective-C method. |
934 | // FIXME: This lookup really, really needs to be folded in to the normal |
935 | // unqualified lookup mechanism. |
936 | if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) { |
937 | DeclResult Ivar = LookupIvarInObjCMethod(Result, S, Name); |
938 | if (Ivar.isInvalid()) |
939 | return NameClassification::Error(); |
940 | if (Ivar.isUsable()) |
941 | return NameClassification::NonType(cast<NamedDecl>(Ivar.get())); |
942 | |
943 | // We defer builtin creation until after ivar lookup inside ObjC methods. |
944 | if (Result.empty()) |
945 | LookupBuiltin(Result); |
946 | } |
947 | |
948 | bool SecondTry = false; |
949 | bool IsFilteredTemplateName = false; |
950 | |
951 | Corrected: |
952 | switch (Result.getResultKind()) { |
953 | case LookupResult::NotFound: |
954 | // If an unqualified-id is followed by a '(', then we have a function |
955 | // call. |
956 | if (SS.isEmpty() && NextToken.is(tok::l_paren)) { |
957 | // In C++, this is an ADL-only call. |
958 | // FIXME: Reference? |
959 | if (getLangOpts().CPlusPlus) |
960 | return NameClassification::UndeclaredNonType(); |
961 | |
962 | // C90 6.3.2.2: |
963 | // If the expression that precedes the parenthesized argument list in a |
964 | // function call consists solely of an identifier, and if no |
965 | // declaration is visible for this identifier, the identifier is |
966 | // implicitly declared exactly as if, in the innermost block containing |
967 | // the function call, the declaration |
968 | // |
969 | // extern int identifier (); |
970 | // |
971 | // appeared. |
972 | // |
973 | // We also allow this in C99 as an extension. However, this is not |
974 | // allowed in all language modes as functions without prototypes may not |
975 | // be supported. |
976 | if (getLangOpts().implicitFunctionsAllowed()) { |
977 | if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) |
978 | return NameClassification::NonType(D); |
979 | } |
980 | } |
981 | |
982 | if (getLangOpts().CPlusPlus20 && SS.isEmpty() && NextToken.is(tok::less)) { |
983 | // In C++20 onwards, this could be an ADL-only call to a function |
984 | // template, and we're required to assume that this is a template name. |
985 | // |
986 | // FIXME: Find a way to still do typo correction in this case. |
987 | TemplateName Template = |
988 | Context.getAssumedTemplateName(NameInfo.getName()); |
989 | return NameClassification::UndeclaredTemplate(Template); |
990 | } |
991 | |
992 | // In C, we first see whether there is a tag type by the same name, in |
993 | // which case it's likely that the user just forgot to write "enum", |
994 | // "struct", or "union". |
995 | if (!getLangOpts().CPlusPlus && !SecondTry && |
996 | isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { |
997 | break; |
998 | } |
999 | |
1000 | // Perform typo correction to determine if there is another name that is |
1001 | // close to this name. |
1002 | if (!SecondTry && CCC) { |
1003 | SecondTry = true; |
1004 | if (TypoCorrection Corrected = |
1005 | CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S, |
1006 | &SS, *CCC, CTK_ErrorRecovery)) { |
1007 | unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest; |
1008 | unsigned QualifiedDiag = diag::err_no_member_suggest; |
1009 | |
1010 | NamedDecl *FirstDecl = Corrected.getFoundDecl(); |
1011 | NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl(); |
1012 | if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && |
1013 | UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) { |
1014 | UnqualifiedDiag = diag::err_no_template_suggest; |
1015 | QualifiedDiag = diag::err_no_member_template_suggest; |
1016 | } else if (UnderlyingFirstDecl && |
1017 | (isa<TypeDecl>(UnderlyingFirstDecl) || |
1018 | isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) || |
1019 | isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) { |
1020 | UnqualifiedDiag = diag::err_unknown_typename_suggest; |
1021 | QualifiedDiag = diag::err_unknown_nested_typename_suggest; |
1022 | } |
1023 | |
1024 | if (SS.isEmpty()) { |
1025 | diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name); |
1026 | } else {// FIXME: is this even reachable? Test it. |
1027 | std::string CorrectedStr(Corrected.getAsString(getLangOpts())); |
1028 | bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && |
1029 | Name->getName().equals(CorrectedStr); |
1030 | diagnoseTypo(Corrected, PDiag(QualifiedDiag) |
1031 | << Name << computeDeclContext(SS, false) |
1032 | << DroppedSpecifier << SS.getRange()); |
1033 | } |
1034 | |
1035 | // Update the name, so that the caller has the new name. |
1036 | Name = Corrected.getCorrectionAsIdentifierInfo(); |
1037 | |
1038 | // Typo correction corrected to a keyword. |
1039 | if (Corrected.isKeyword()) |
1040 | return Name; |
1041 | |
1042 | // Also update the LookupResult... |
1043 | // FIXME: This should probably go away at some point |
1044 | Result.clear(); |
1045 | Result.setLookupName(Corrected.getCorrection()); |
1046 | if (FirstDecl) |
1047 | Result.addDecl(FirstDecl); |
1048 | |
1049 | // If we found an Objective-C instance variable, let |
1050 | // LookupInObjCMethod build the appropriate expression to |
1051 | // reference the ivar. |
1052 | // FIXME: This is a gross hack. |
1053 | if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) { |
1054 | DeclResult R = |
1055 | LookupIvarInObjCMethod(Result, S, Ivar->getIdentifier()); |
1056 | if (R.isInvalid()) |
1057 | return NameClassification::Error(); |
1058 | if (R.isUsable()) |
1059 | return NameClassification::NonType(Ivar); |
1060 | } |
1061 | |
1062 | goto Corrected; |
1063 | } |
1064 | } |
1065 | |
1066 | // We failed to correct; just fall through and let the parser deal with it. |
1067 | Result.suppressDiagnostics(); |
1068 | return NameClassification::Unknown(); |
1069 | |
1070 | case LookupResult::NotFoundInCurrentInstantiation: { |
1071 | // We performed name lookup into the current instantiation, and there were |
1072 | // dependent bases, so we treat this result the same way as any other |
1073 | // dependent nested-name-specifier. |
1074 | |
1075 | // C++ [temp.res]p2: |
1076 | // A name used in a template declaration or definition and that is |
1077 | // dependent on a template-parameter is assumed not to name a type |
1078 | // unless the applicable name lookup finds a type name or the name is |
1079 | // qualified by the keyword typename. |
1080 | // |
1081 | // FIXME: If the next token is '<', we might want to ask the parser to |
1082 | // perform some heroics to see if we actually have a |
1083 | // template-argument-list, which would indicate a missing 'template' |
1084 | // keyword here. |
1085 | return NameClassification::DependentNonType(); |
1086 | } |
1087 | |
1088 | case LookupResult::Found: |
1089 | case LookupResult::FoundOverloaded: |
1090 | case LookupResult::FoundUnresolvedValue: |
1091 | break; |
1092 | |
1093 | case LookupResult::Ambiguous: |
1094 | if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && |
1095 | hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true, |
1096 | /*AllowDependent=*/false)) { |
1097 | // C++ [temp.local]p3: |
1098 | // A lookup that finds an injected-class-name (10.2) can result in an |
1099 | // ambiguity in certain cases (for example, if it is found in more than |
1100 | // one base class). If all of the injected-class-names that are found |
1101 | // refer to specializations of the same class template, and if the name |
1102 | // is followed by a template-argument-list, the reference refers to the |
1103 | // class template itself and not a specialization thereof, and is not |
1104 | // ambiguous. |
1105 | // |
1106 | // This filtering can make an ambiguous result into an unambiguous one, |
1107 | // so try again after filtering out template names. |
1108 | FilterAcceptableTemplateNames(Result); |
1109 | if (!Result.isAmbiguous()) { |
1110 | IsFilteredTemplateName = true; |
1111 | break; |
1112 | } |
1113 | } |
1114 | |
1115 | // Diagnose the ambiguity and return an error. |
1116 | return NameClassification::Error(); |
1117 | } |
1118 | |
1119 | if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && |
1120 | (IsFilteredTemplateName || |
1121 | hasAnyAcceptableTemplateNames( |
1122 | Result, /*AllowFunctionTemplates=*/true, |
1123 | /*AllowDependent=*/false, |
1124 | /*AllowNonTemplateFunctions*/ SS.isEmpty() && |
1125 | getLangOpts().CPlusPlus20))) { |
1126 | // C++ [temp.names]p3: |
1127 | // After name lookup (3.4) finds that a name is a template-name or that |
1128 | // an operator-function-id or a literal- operator-id refers to a set of |
1129 | // overloaded functions any member of which is a function template if |
1130 | // this is followed by a <, the < is always taken as the delimiter of a |
1131 | // template-argument-list and never as the less-than operator. |
1132 | // C++2a [temp.names]p2: |
1133 | // A name is also considered to refer to a template if it is an |
1134 | // unqualified-id followed by a < and name lookup finds either one |
1135 | // or more functions or finds nothing. |
1136 | if (!IsFilteredTemplateName) |
1137 | FilterAcceptableTemplateNames(Result); |
1138 | |
1139 | bool IsFunctionTemplate; |
1140 | bool IsVarTemplate; |
1141 | TemplateName Template; |
1142 | if (Result.end() - Result.begin() > 1) { |
1143 | IsFunctionTemplate = true; |
1144 | Template = Context.getOverloadedTemplateName(Result.begin(), |
1145 | Result.end()); |
1146 | } else if (!Result.empty()) { |
1147 | auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl( |
1148 | *Result.begin(), /*AllowFunctionTemplates=*/true, |
1149 | /*AllowDependent=*/false)); |
1150 | IsFunctionTemplate = isa<FunctionTemplateDecl>(TD); |
1151 | IsVarTemplate = isa<VarTemplateDecl>(TD); |
1152 | |
1153 | UsingShadowDecl *FoundUsingShadow = |
1154 | dyn_cast<UsingShadowDecl>(*Result.begin()); |
1155 | assert(!FoundUsingShadow ||(static_cast <bool> (!FoundUsingShadow || TD == cast< TemplateDecl>(FoundUsingShadow->getTargetDecl())) ? void (0) : __assert_fail ("!FoundUsingShadow || TD == cast<TemplateDecl>(FoundUsingShadow->getTargetDecl())" , "clang/lib/Sema/SemaDecl.cpp", 1156, __extension__ __PRETTY_FUNCTION__ )) |
1156 | TD == cast<TemplateDecl>(FoundUsingShadow->getTargetDecl()))(static_cast <bool> (!FoundUsingShadow || TD == cast< TemplateDecl>(FoundUsingShadow->getTargetDecl())) ? void (0) : __assert_fail ("!FoundUsingShadow || TD == cast<TemplateDecl>(FoundUsingShadow->getTargetDecl())" , "clang/lib/Sema/SemaDecl.cpp", 1156, __extension__ __PRETTY_FUNCTION__ )); |
1157 | Template = |
1158 | FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD); |
1159 | if (SS.isNotEmpty()) |
1160 | Template = Context.getQualifiedTemplateName(SS.getScopeRep(), |
1161 | /*TemplateKeyword=*/false, |
1162 | Template); |
1163 | } else { |
1164 | // All results were non-template functions. This is a function template |
1165 | // name. |
1166 | IsFunctionTemplate = true; |
1167 | Template = Context.getAssumedTemplateName(NameInfo.getName()); |
1168 | } |
1169 | |
1170 | if (IsFunctionTemplate) { |
1171 | // Function templates always go through overload resolution, at which |
1172 | // point we'll perform the various checks (e.g., accessibility) we need |
1173 | // to based on which function we selected. |
1174 | Result.suppressDiagnostics(); |
1175 | |
1176 | return NameClassification::FunctionTemplate(Template); |
1177 | } |
1178 | |
1179 | return IsVarTemplate ? NameClassification::VarTemplate(Template) |
1180 | : NameClassification::TypeTemplate(Template); |
1181 | } |
1182 | |
1183 | auto BuildTypeFor = [&](TypeDecl *Type, NamedDecl *Found) { |
1184 | QualType T = Context.getTypeDeclType(Type); |
1185 | if (const auto *USD = dyn_cast<UsingShadowDecl>(Found)) |
1186 | T = Context.getUsingType(USD, T); |
1187 | return buildNamedType(*this, &SS, T, NameLoc); |
1188 | }; |
1189 | |
1190 | NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl(); |
1191 | if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) { |
1192 | DiagnoseUseOfDecl(Type, NameLoc); |
1193 | MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); |
1194 | return BuildTypeFor(Type, *Result.begin()); |
1195 | } |
1196 | |
1197 | ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl); |
1198 | if (!Class) { |
1199 | // FIXME: It's unfortunate that we don't have a Type node for handling this. |
1200 | if (ObjCCompatibleAliasDecl *Alias = |
1201 | dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl)) |
1202 | Class = Alias->getClassInterface(); |
1203 | } |
1204 | |
1205 | if (Class) { |
1206 | DiagnoseUseOfDecl(Class, NameLoc); |
1207 | |
1208 | if (NextToken.is(tok::period)) { |
1209 | // Interface. <something> is parsed as a property reference expression. |
1210 | // Just return "unknown" as a fall-through for now. |
1211 | Result.suppressDiagnostics(); |
1212 | return NameClassification::Unknown(); |
1213 | } |
1214 | |
1215 | QualType T = Context.getObjCInterfaceType(Class); |
1216 | return ParsedType::make(T); |
1217 | } |
1218 | |
1219 | if (isa<ConceptDecl>(FirstDecl)) |
1220 | return NameClassification::Concept( |
1221 | TemplateName(cast<TemplateDecl>(FirstDecl))); |
1222 | |
1223 | if (auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(FirstDecl)) { |
1224 | (void)DiagnoseUseOfDecl(EmptyD, NameLoc); |
1225 | return NameClassification::Error(); |
1226 | } |
1227 | |
1228 | // We can have a type template here if we're classifying a template argument. |
1229 | if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) && |
1230 | !isa<VarTemplateDecl>(FirstDecl)) |
1231 | return NameClassification::TypeTemplate( |
1232 | TemplateName(cast<TemplateDecl>(FirstDecl))); |
1233 | |
1234 | // Check for a tag type hidden by a non-type decl in a few cases where it |
1235 | // seems likely a type is wanted instead of the non-type that was found. |
1236 | bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star); |
1237 | if ((NextToken.is(tok::identifier) || |
1238 | (NextIsOp && |
1239 | FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) && |
1240 | isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { |
1241 | TypeDecl *Type = Result.getAsSingle<TypeDecl>(); |
1242 | DiagnoseUseOfDecl(Type, NameLoc); |
1243 | return BuildTypeFor(Type, *Result.begin()); |
1244 | } |
1245 | |
1246 | // If we already know which single declaration is referenced, just annotate |
1247 | // that declaration directly. Defer resolving even non-overloaded class |
1248 | // member accesses, as we need to defer certain access checks until we know |
1249 | // the context. |
1250 | bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren)); |
1251 | if (Result.isSingleResult() && !ADL && |
1252 | (!FirstDecl->isCXXClassMember() || isa<EnumConstantDecl>(FirstDecl))) |
1253 | return NameClassification::NonType(Result.getRepresentativeDecl()); |
1254 | |
1255 | // Otherwise, this is an overload set that we will need to resolve later. |
1256 | Result.suppressDiagnostics(); |
1257 | return NameClassification::OverloadSet(UnresolvedLookupExpr::Create( |
1258 | Context, Result.getNamingClass(), SS.getWithLocInContext(Context), |
1259 | Result.getLookupNameInfo(), ADL, Result.isOverloadedResult(), |
1260 | Result.begin(), Result.end())); |
1261 | } |
1262 | |
1263 | ExprResult |
1264 | Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name, |
1265 | SourceLocation NameLoc) { |
1266 | assert(getLangOpts().CPlusPlus && "ADL-only call in C?")(static_cast <bool> (getLangOpts().CPlusPlus && "ADL-only call in C?") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"ADL-only call in C?\"" , "clang/lib/Sema/SemaDecl.cpp", 1266, __extension__ __PRETTY_FUNCTION__ )); |
1267 | CXXScopeSpec SS; |
1268 | LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); |
1269 | return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true); |
1270 | } |
1271 | |
1272 | ExprResult |
1273 | Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS, |
1274 | IdentifierInfo *Name, |
1275 | SourceLocation NameLoc, |
1276 | bool IsAddressOfOperand) { |
1277 | DeclarationNameInfo NameInfo(Name, NameLoc); |
1278 | return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(), |
1279 | NameInfo, IsAddressOfOperand, |
1280 | /*TemplateArgs=*/nullptr); |
1281 | } |
1282 | |
1283 | ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS, |
1284 | NamedDecl *Found, |
1285 | SourceLocation NameLoc, |
1286 | const Token &NextToken) { |
1287 | if (getCurMethodDecl() && SS.isEmpty()) |
1288 | if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Found->getUnderlyingDecl())) |
1289 | return BuildIvarRefExpr(S, NameLoc, Ivar); |
1290 | |
1291 | // Reconstruct the lookup result. |
1292 | LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName); |
1293 | Result.addDecl(Found); |
1294 | Result.resolveKind(); |
1295 | |
1296 | bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren)); |
1297 | return BuildDeclarationNameExpr(SS, Result, ADL, /*AcceptInvalidDecl=*/true); |
1298 | } |
1299 | |
1300 | ExprResult Sema::ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *E) { |
1301 | // For an implicit class member access, transform the result into a member |
1302 | // access expression if necessary. |
1303 | auto *ULE = cast<UnresolvedLookupExpr>(E); |
1304 | if ((*ULE->decls_begin())->isCXXClassMember()) { |
1305 | CXXScopeSpec SS; |
1306 | SS.Adopt(ULE->getQualifierLoc()); |
1307 | |
1308 | // Reconstruct the lookup result. |
1309 | LookupResult Result(*this, ULE->getName(), ULE->getNameLoc(), |
1310 | LookupOrdinaryName); |
1311 | Result.setNamingClass(ULE->getNamingClass()); |
1312 | for (auto I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I) |
1313 | Result.addDecl(*I, I.getAccess()); |
1314 | Result.resolveKind(); |
1315 | return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, |
1316 | nullptr, S); |
1317 | } |
1318 | |
1319 | // Otherwise, this is already in the form we needed, and no further checks |
1320 | // are necessary. |
1321 | return ULE; |
1322 | } |
1323 | |
1324 | Sema::TemplateNameKindForDiagnostics |
1325 | Sema::getTemplateNameKindForDiagnostics(TemplateName Name) { |
1326 | auto *TD = Name.getAsTemplateDecl(); |
1327 | if (!TD) |
1328 | return TemplateNameKindForDiagnostics::DependentTemplate; |
1329 | if (isa<ClassTemplateDecl>(TD)) |
1330 | return TemplateNameKindForDiagnostics::ClassTemplate; |
1331 | if (isa<FunctionTemplateDecl>(TD)) |
1332 | return TemplateNameKindForDiagnostics::FunctionTemplate; |
1333 | if (isa<VarTemplateDecl>(TD)) |
1334 | return TemplateNameKindForDiagnostics::VarTemplate; |
1335 | if (isa<TypeAliasTemplateDecl>(TD)) |
1336 | return TemplateNameKindForDiagnostics::AliasTemplate; |
1337 | if (isa<TemplateTemplateParmDecl>(TD)) |
1338 | return TemplateNameKindForDiagnostics::TemplateTemplateParam; |
1339 | if (isa<ConceptDecl>(TD)) |
1340 | return TemplateNameKindForDiagnostics::Concept; |
1341 | return TemplateNameKindForDiagnostics::DependentTemplate; |
1342 | } |
1343 | |
1344 | void Sema::PushDeclContext(Scope *S, DeclContext *DC) { |
1345 | assert(DC->getLexicalParent() == CurContext &&(static_cast <bool> (DC->getLexicalParent() == CurContext && "The next DeclContext should be lexically contained in the current one." ) ? void (0) : __assert_fail ("DC->getLexicalParent() == CurContext && \"The next DeclContext should be lexically contained in the current one.\"" , "clang/lib/Sema/SemaDecl.cpp", 1346, __extension__ __PRETTY_FUNCTION__ )) |
1346 | "The next DeclContext should be lexically contained in the current one.")(static_cast <bool> (DC->getLexicalParent() == CurContext && "The next DeclContext should be lexically contained in the current one." ) ? void (0) : __assert_fail ("DC->getLexicalParent() == CurContext && \"The next DeclContext should be lexically contained in the current one.\"" , "clang/lib/Sema/SemaDecl.cpp", 1346, __extension__ __PRETTY_FUNCTION__ )); |
1347 | CurContext = DC; |
1348 | S->setEntity(DC); |
1349 | } |
1350 | |
1351 | void Sema::PopDeclContext() { |
1352 | assert(CurContext && "DeclContext imbalance!")(static_cast <bool> (CurContext && "DeclContext imbalance!" ) ? void (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\"" , "clang/lib/Sema/SemaDecl.cpp", 1352, __extension__ __PRETTY_FUNCTION__ )); |
1353 | |
1354 | CurContext = CurContext->getLexicalParent(); |
1355 | assert(CurContext && "Popped translation unit!")(static_cast <bool> (CurContext && "Popped translation unit!" ) ? void (0) : __assert_fail ("CurContext && \"Popped translation unit!\"" , "clang/lib/Sema/SemaDecl.cpp", 1355, __extension__ __PRETTY_FUNCTION__ )); |
1356 | } |
1357 | |
1358 | Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S, |
1359 | Decl *D) { |
1360 | // Unlike PushDeclContext, the context to which we return is not necessarily |
1361 | // the containing DC of TD, because the new context will be some pre-existing |
1362 | // TagDecl definition instead of a fresh one. |
1363 | auto Result = static_cast<SkippedDefinitionContext>(CurContext); |
1364 | CurContext = cast<TagDecl>(D)->getDefinition(); |
1365 | assert(CurContext && "skipping definition of undefined tag")(static_cast <bool> (CurContext && "skipping definition of undefined tag" ) ? void (0) : __assert_fail ("CurContext && \"skipping definition of undefined tag\"" , "clang/lib/Sema/SemaDecl.cpp", 1365, __extension__ __PRETTY_FUNCTION__ )); |
1366 | // Start lookups from the parent of the current context; we don't want to look |
1367 | // into the pre-existing complete definition. |
1368 | S->setEntity(CurContext->getLookupParent()); |
1369 | return Result; |
1370 | } |
1371 | |
1372 | void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) { |
1373 | CurContext = static_cast<decltype(CurContext)>(Context); |
1374 | } |
1375 | |
1376 | /// EnterDeclaratorContext - Used when we must lookup names in the context |
1377 | /// of a declarator's nested name specifier. |
1378 | /// |
1379 | void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) { |
1380 | // C++0x [basic.lookup.unqual]p13: |
1381 | // A name used in the definition of a static data member of class |
1382 | // X (after the qualified-id of the static member) is looked up as |
1383 | // if the name was used in a member function of X. |
1384 | // C++0x [basic.lookup.unqual]p14: |
1385 | // If a variable member of a namespace is defined outside of the |
1386 | // scope of its namespace then any name used in the definition of |
1387 | // the variable member (after the declarator-id) is looked up as |
1388 | // if the definition of the variable member occurred in its |
1389 | // namespace. |
1390 | // Both of these imply that we should push a scope whose context |
1391 | // is the semantic context of the declaration. We can't use |
1392 | // PushDeclContext here because that context is not necessarily |
1393 | // lexically contained in the current context. Fortunately, |
1394 | // the containing scope should have the appropriate information. |
1395 | |
1396 | assert(!S->getEntity() && "scope already has entity")(static_cast <bool> (!S->getEntity() && "scope already has entity" ) ? void (0) : __assert_fail ("!S->getEntity() && \"scope already has entity\"" , "clang/lib/Sema/SemaDecl.cpp", 1396, __extension__ __PRETTY_FUNCTION__ )); |
1397 | |
1398 | #ifndef NDEBUG |
1399 | Scope *Ancestor = S->getParent(); |
1400 | while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); |
1401 | assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch")(static_cast <bool> (Ancestor->getEntity() == CurContext && "ancestor context mismatch") ? void (0) : __assert_fail ("Ancestor->getEntity() == CurContext && \"ancestor context mismatch\"" , "clang/lib/Sema/SemaDecl.cpp", 1401, __extension__ __PRETTY_FUNCTION__ )); |
1402 | #endif |
1403 | |
1404 | CurContext = DC; |
1405 | S->setEntity(DC); |
1406 | |
1407 | if (S->getParent()->isTemplateParamScope()) { |
1408 | // Also set the corresponding entities for all immediately-enclosing |
1409 | // template parameter scopes. |
1410 | EnterTemplatedContext(S->getParent(), DC); |
1411 | } |
1412 | } |
1413 | |
1414 | void Sema::ExitDeclaratorContext(Scope *S) { |
1415 | assert(S->getEntity() == CurContext && "Context imbalance!")(static_cast <bool> (S->getEntity() == CurContext && "Context imbalance!") ? void (0) : __assert_fail ("S->getEntity() == CurContext && \"Context imbalance!\"" , "clang/lib/Sema/SemaDecl.cpp", 1415, __extension__ __PRETTY_FUNCTION__ )); |
1416 | |
1417 | // Switch back to the lexical context. The safety of this is |
1418 | // enforced by an assert in EnterDeclaratorContext. |
1419 | Scope *Ancestor = S->getParent(); |
1420 | while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); |
1421 | CurContext = Ancestor->getEntity(); |
1422 | |
1423 | // We don't need to do anything with the scope, which is going to |
1424 | // disappear. |
1425 | } |
1426 | |
1427 | void Sema::EnterTemplatedContext(Scope *S, DeclContext *DC) { |
1428 | assert(S->isTemplateParamScope() &&(static_cast <bool> (S->isTemplateParamScope() && "expected to be initializing a template parameter scope") ? void (0) : __assert_fail ("S->isTemplateParamScope() && \"expected to be initializing a template parameter scope\"" , "clang/lib/Sema/SemaDecl.cpp", 1429, __extension__ __PRETTY_FUNCTION__ )) |
1429 | "expected to be initializing a template parameter scope")(static_cast <bool> (S->isTemplateParamScope() && "expected to be initializing a template parameter scope") ? void (0) : __assert_fail ("S->isTemplateParamScope() && \"expected to be initializing a template parameter scope\"" , "clang/lib/Sema/SemaDecl.cpp", 1429, __extension__ __PRETTY_FUNCTION__ )); |
1430 | |
1431 | // C++20 [temp.local]p7: |
1432 | // In the definition of a member of a class template that appears outside |
1433 | // of the class template definition, the name of a member of the class |
1434 | // template hides the name of a template-parameter of any enclosing class |
1435 | // templates (but not a template-parameter of the member if the member is a |
1436 | // class or function template). |
1437 | // C++20 [temp.local]p9: |
1438 | // In the definition of a class template or in the definition of a member |
1439 | // of such a template that appears outside of the template definition, for |
1440 | // each non-dependent base class (13.8.2.1), if the name of the base class |
1441 | // or the name of a member of the base class is the same as the name of a |
1442 | // template-parameter, the base class name or member name hides the |
1443 | // template-parameter name (6.4.10). |
1444 | // |
1445 | // This means that a template parameter scope should be searched immediately |
1446 | // after searching the DeclContext for which it is a template parameter |
1447 | // scope. For example, for |
1448 | // template<typename T> template<typename U> template<typename V> |
1449 | // void N::A<T>::B<U>::f(...) |
1450 | // we search V then B<U> (and base classes) then U then A<T> (and base |
1451 | // classes) then T then N then ::. |
1452 | unsigned ScopeDepth = getTemplateDepth(S); |
1453 | for (; S && S->isTemplateParamScope(); S = S->getParent(), --ScopeDepth) { |
1454 | DeclContext *SearchDCAfterScope = DC; |
1455 | for (; DC; DC = DC->getLookupParent()) { |
1456 | if (const TemplateParameterList *TPL = |
1457 | cast<Decl>(DC)->getDescribedTemplateParams()) { |
1458 | unsigned DCDepth = TPL->getDepth() + 1; |
1459 | if (DCDepth > ScopeDepth) |
1460 | continue; |
1461 | if (ScopeDepth == DCDepth) |
1462 | SearchDCAfterScope = DC = DC->getLookupParent(); |
1463 | break; |
1464 | } |
1465 | } |
1466 | S->setLookupEntity(SearchDCAfterScope); |
1467 | } |
1468 | } |
1469 | |
1470 | void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) { |
1471 | // We assume that the caller has already called |
1472 | // ActOnReenterTemplateScope so getTemplatedDecl() works. |
1473 | FunctionDecl *FD = D->getAsFunction(); |
1474 | if (!FD) |
1475 | return; |
1476 | |
1477 | // Same implementation as PushDeclContext, but enters the context |
1478 | // from the lexical parent, rather than the top-level class. |
1479 | assert(CurContext == FD->getLexicalParent() &&(static_cast <bool> (CurContext == FD->getLexicalParent () && "The next DeclContext should be lexically contained in the current one." ) ? void (0) : __assert_fail ("CurContext == FD->getLexicalParent() && \"The next DeclContext should be lexically contained in the current one.\"" , "clang/lib/Sema/SemaDecl.cpp", 1480, __extension__ __PRETTY_FUNCTION__ )) |
1480 | "The next DeclContext should be lexically contained in the current one.")(static_cast <bool> (CurContext == FD->getLexicalParent () && "The next DeclContext should be lexically contained in the current one." ) ? void (0) : __assert_fail ("CurContext == FD->getLexicalParent() && \"The next DeclContext should be lexically contained in the current one.\"" , "clang/lib/Sema/SemaDecl.cpp", 1480, __extension__ __PRETTY_FUNCTION__ )); |
1481 | CurContext = FD; |
1482 | S->setEntity(CurContext); |
1483 | |
1484 | for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) { |
1485 | ParmVarDecl *Param = FD->getParamDecl(P); |
1486 | // If the parameter has an identifier, then add it to the scope |
1487 | if (Param->getIdentifier()) { |
1488 | S->AddDecl(Param); |
1489 | IdResolver.AddDecl(Param); |
1490 | } |
1491 | } |
1492 | } |
1493 | |
1494 | void Sema::ActOnExitFunctionContext() { |
1495 | // Same implementation as PopDeclContext, but returns to the lexical parent, |
1496 | // rather than the top-level class. |
1497 | assert(CurContext && "DeclContext imbalance!")(static_cast <bool> (CurContext && "DeclContext imbalance!" ) ? void (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\"" , "clang/lib/Sema/SemaDecl.cpp", 1497, __extension__ __PRETTY_FUNCTION__ )); |
1498 | CurContext = CurContext->getLexicalParent(); |
1499 | assert(CurContext && "Popped translation unit!")(static_cast <bool> (CurContext && "Popped translation unit!" ) ? void (0) : __assert_fail ("CurContext && \"Popped translation unit!\"" , "clang/lib/Sema/SemaDecl.cpp", 1499, __extension__ __PRETTY_FUNCTION__ )); |
1500 | } |
1501 | |
1502 | /// Determine whether overloading is allowed for a new function |
1503 | /// declaration considering prior declarations of the same name. |
1504 | /// |
1505 | /// This routine determines whether overloading is possible, not |
1506 | /// whether a new declaration actually overloads a previous one. |
1507 | /// It will return true in C++ (where overloads are alway permitted) |
1508 | /// or, as a C extension, when either the new declaration or a |
1509 | /// previous one is declared with the 'overloadable' attribute. |
1510 | static bool AllowOverloadingOfFunction(const LookupResult &Previous, |
1511 | ASTContext &Context, |
1512 | const FunctionDecl *New) { |
1513 | if (Context.getLangOpts().CPlusPlus || New->hasAttr<OverloadableAttr>()) |
1514 | return true; |
1515 | |
1516 | // Multiversion function declarations are not overloads in the |
1517 | // usual sense of that term, but lookup will report that an |
1518 | // overload set was found if more than one multiversion function |
1519 | // declaration is present for the same name. It is therefore |
1520 | // inadequate to assume that some prior declaration(s) had |
1521 | // the overloadable attribute; checking is required. Since one |
1522 | // declaration is permitted to omit the attribute, it is necessary |
1523 | // to check at least two; hence the 'any_of' check below. Note that |
1524 | // the overloadable attribute is implicitly added to declarations |
1525 | // that were required to have it but did not. |
1526 | if (Previous.getResultKind() == LookupResult::FoundOverloaded) { |
1527 | return llvm::any_of(Previous, [](const NamedDecl *ND) { |
1528 | return ND->hasAttr<OverloadableAttr>(); |
1529 | }); |
1530 | } else if (Previous.getResultKind() == LookupResult::Found) |
1531 | return Previous.getFoundDecl()->hasAttr<OverloadableAttr>(); |
1532 | |
1533 | return false; |
1534 | } |
1535 | |
1536 | /// Add this decl to the scope shadowed decl chains. |
1537 | void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) { |
1538 | // Move up the scope chain until we find the nearest enclosing |
1539 | // non-transparent context. The declaration will be introduced into this |
1540 | // scope. |
1541 | while (S->getEntity() && S->getEntity()->isTransparentContext()) |
1542 | S = S->getParent(); |
1543 | |
1544 | // Add scoped declarations into their context, so that they can be |
1545 | // found later. Declarations without a context won't be inserted |
1546 | // into any context. |
1547 | if (AddToContext) |
1548 | CurContext->addDecl(D); |
1549 | |
1550 | // Out-of-line definitions shouldn't be pushed into scope in C++, unless they |
1551 | // are function-local declarations. |
1552 | if (getLangOpts().CPlusPlus && D->isOutOfLine() && !S->getFnParent()) |
1553 | return; |
1554 | |
1555 | // Template instantiations should also not be pushed into scope. |
1556 | if (isa<FunctionDecl>(D) && |
1557 | cast<FunctionDecl>(D)->isFunctionTemplateSpecialization()) |
1558 | return; |
1559 | |
1560 | // If this replaces anything in the current scope, |
1561 | IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()), |
1562 | IEnd = IdResolver.end(); |
1563 | for (; I != IEnd; ++I) { |
1564 | if (S->isDeclScope(*I) && D->declarationReplaces(*I)) { |
1565 | S->RemoveDecl(*I); |
1566 | IdResolver.RemoveDecl(*I); |
1567 | |
1568 | // Should only need to replace one decl. |
1569 | break; |
1570 | } |
1571 | } |
1572 | |
1573 | S->AddDecl(D); |
1574 | |
1575 | if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) { |
1576 | // Implicitly-generated labels may end up getting generated in an order that |
1577 | // isn't strictly lexical, which breaks name lookup. Be careful to insert |
1578 | // the label at the appropriate place in the identifier chain. |
1579 | for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) { |
1580 | DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext(); |
1581 | if (IDC == CurContext) { |
1582 | if (!S->isDeclScope(*I)) |
1583 | continue; |
1584 | } else if (IDC->Encloses(CurContext)) |
1585 | break; |
1586 | } |
1587 | |
1588 | IdResolver.InsertDeclAfter(I, D); |
1589 | } else { |
1590 | IdResolver.AddDecl(D); |
1591 | } |
1592 | warnOnReservedIdentifier(D); |
1593 | } |
1594 | |
1595 | bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S, |
1596 | bool AllowInlineNamespace) const { |
1597 | return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace); |
1598 | } |
1599 | |
1600 | Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) { |
1601 | DeclContext *TargetDC = DC->getPrimaryContext(); |
1602 | do { |
1603 | if (DeclContext *ScopeDC = S->getEntity()) |
1604 | if (ScopeDC->getPrimaryContext() == TargetDC) |
1605 | return S; |
1606 | } while ((S = S->getParent())); |
1607 | |
1608 | return nullptr; |
1609 | } |
1610 | |
1611 | static bool isOutOfScopePreviousDeclaration(NamedDecl *, |
1612 | DeclContext*, |
1613 | ASTContext&); |
1614 | |
1615 | /// Filters out lookup results that don't fall within the given scope |
1616 | /// as determined by isDeclInScope. |
1617 | void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S, |
1618 | bool ConsiderLinkage, |
1619 | bool AllowInlineNamespace) { |
1620 | LookupResult::Filter F = R.makeFilter(); |
1621 | while (F.hasNext()) { |
1622 | NamedDecl *D = F.next(); |
1623 | |
1624 | if (isDeclInScope(D, Ctx, S, AllowInlineNamespace)) |
1625 | continue; |
1626 | |
1627 | if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context)) |
1628 | continue; |
1629 | |
1630 | F.erase(); |
1631 | } |
1632 | |
1633 | F.done(); |
1634 | } |
1635 | |
1636 | /// We've determined that \p New is a redeclaration of \p Old. Check that they |
1637 | /// have compatible owning modules. |
1638 | bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) { |
1639 | // [module.interface]p7: |
1640 | // A declaration is attached to a module as follows: |
1641 | // - If the declaration is a non-dependent friend declaration that nominates a |
1642 | // function with a declarator-id that is a qualified-id or template-id or that |
1643 | // nominates a class other than with an elaborated-type-specifier with neither |
1644 | // a nested-name-specifier nor a simple-template-id, it is attached to the |
1645 | // module to which the friend is attached ([basic.link]). |
1646 | if (New->getFriendObjectKind() && |
1647 | Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) { |
1648 | New->setLocalOwningModule(Old->getOwningModule()); |
1649 | makeMergedDefinitionVisible(New); |
1650 | return false; |
1651 | } |
1652 | |
1653 | Module *NewM = New->getOwningModule(); |
1654 | Module *OldM = Old->getOwningModule(); |
1655 | |
1656 | if (NewM && NewM->isPrivateModule()) |
1657 | NewM = NewM->Parent; |
1658 | if (OldM && OldM->isPrivateModule()) |
1659 | OldM = OldM->Parent; |
1660 | |
1661 | if (NewM == OldM) |
1662 | return false; |
1663 | |
1664 | // Partitions are part of the module, but a partition could import another |
1665 | // module, so verify that the PMIs agree. |
1666 | if (NewM && OldM && |
1667 | (NewM->isModulePartition() || OldM->isModulePartition()) && |
1668 | NewM->getPrimaryModuleInterfaceName() == |
1669 | OldM->getPrimaryModuleInterfaceName()) |
1670 | return false; |
1671 | |
1672 | bool NewIsModuleInterface = NewM && NewM->isModulePurview(); |
1673 | bool OldIsModuleInterface = OldM && OldM->isModulePurview(); |
1674 | if (NewIsModuleInterface || OldIsModuleInterface) { |
1675 | // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]: |
1676 | // if a declaration of D [...] appears in the purview of a module, all |
1677 | // other such declarations shall appear in the purview of the same module |
1678 | Diag(New->getLocation(), diag::err_mismatched_owning_module) |
1679 | << New |
1680 | << NewIsModuleInterface |
1681 | << (NewIsModuleInterface ? NewM->getFullModuleName() : "") |
1682 | << OldIsModuleInterface |
1683 | << (OldIsModuleInterface ? OldM->getFullModuleName() : ""); |
1684 | Diag(Old->getLocation(), diag::note_previous_declaration); |
1685 | New->setInvalidDecl(); |
1686 | return true; |
1687 | } |
1688 | |
1689 | return false; |
1690 | } |
1691 | |
1692 | // [module.interface]p6: |
1693 | // A redeclaration of an entity X is implicitly exported if X was introduced by |
1694 | // an exported declaration; otherwise it shall not be exported. |
1695 | bool Sema::CheckRedeclarationExported(NamedDecl *New, NamedDecl *Old) { |
1696 | // [module.interface]p1: |
1697 | // An export-declaration shall inhabit a namespace scope. |
1698 | // |
1699 | // So it is meaningless to talk about redeclaration which is not at namespace |
1700 | // scope. |
1701 | if (!New->getLexicalDeclContext() |
1702 | ->getNonTransparentContext() |
1703 | ->isFileContext() || |
1704 | !Old->getLexicalDeclContext() |
1705 | ->getNonTransparentContext() |
1706 | ->isFileContext()) |
1707 | return false; |
1708 | |
1709 | bool IsNewExported = New->isInExportDeclContext(); |
1710 | bool IsOldExported = Old->isInExportDeclContext(); |
1711 | |
1712 | // It should be irrevelant if both of them are not exported. |
1713 | if (!IsNewExported && !IsOldExported) |
1714 | return false; |
1715 | |
1716 | if (IsOldExported) |
1717 | return false; |
1718 | |
1719 | assert(IsNewExported)(static_cast <bool> (IsNewExported) ? void (0) : __assert_fail ("IsNewExported", "clang/lib/Sema/SemaDecl.cpp", 1719, __extension__ __PRETTY_FUNCTION__)); |
1720 | |
1721 | auto Lk = Old->getFormalLinkage(); |
1722 | int S = 0; |
1723 | if (Lk == Linkage::InternalLinkage) |
1724 | S = 1; |
1725 | else if (Lk == Linkage::ModuleLinkage) |
1726 | S = 2; |
1727 | Diag(New->getLocation(), diag::err_redeclaration_non_exported) << New << S; |
1728 | Diag(Old->getLocation(), diag::note_previous_declaration); |
1729 | return true; |
1730 | } |
1731 | |
1732 | // A wrapper function for checking the semantic restrictions of |
1733 | // a redeclaration within a module. |
1734 | bool Sema::CheckRedeclarationInModule(NamedDecl *New, NamedDecl *Old) { |
1735 | if (CheckRedeclarationModuleOwnership(New, Old)) |
1736 | return true; |
1737 | |
1738 | if (CheckRedeclarationExported(New, Old)) |
1739 | return true; |
1740 | |
1741 | return false; |
1742 | } |
1743 | |
1744 | // Check the redefinition in C++20 Modules. |
1745 | // |
1746 | // [basic.def.odr]p14: |
1747 | // For any definable item D with definitions in multiple translation units, |
1748 | // - if D is a non-inline non-templated function or variable, or |
1749 | // - if the definitions in different translation units do not satisfy the |
1750 | // following requirements, |
1751 | // the program is ill-formed; a diagnostic is required only if the definable |
1752 | // item is attached to a named module and a prior definition is reachable at |
1753 | // the point where a later definition occurs. |
1754 | // - Each such definition shall not be attached to a named module |
1755 | // ([module.unit]). |
1756 | // - Each such definition shall consist of the same sequence of tokens, ... |
1757 | // ... |
1758 | // |
1759 | // Return true if the redefinition is not allowed. Return false otherwise. |
1760 | bool Sema::IsRedefinitionInModule(const NamedDecl *New, |
1761 | const NamedDecl *Old) const { |
1762 | assert(getASTContext().isSameEntity(New, Old) &&(static_cast <bool> (getASTContext().isSameEntity(New, Old ) && "New and Old are not the same definition, we should diagnostic it " "immediately instead of checking it.") ? void (0) : __assert_fail ("getASTContext().isSameEntity(New, Old) && \"New and Old are not the same definition, we should diagnostic it \" \"immediately instead of checking it.\"" , "clang/lib/Sema/SemaDecl.cpp", 1764, __extension__ __PRETTY_FUNCTION__ )) |
1763 | "New and Old are not the same definition, we should diagnostic it "(static_cast <bool> (getASTContext().isSameEntity(New, Old ) && "New and Old are not the same definition, we should diagnostic it " "immediately instead of checking it.") ? void (0) : __assert_fail ("getASTContext().isSameEntity(New, Old) && \"New and Old are not the same definition, we should diagnostic it \" \"immediately instead of checking it.\"" , "clang/lib/Sema/SemaDecl.cpp", 1764, __extension__ __PRETTY_FUNCTION__ )) |
1764 | "immediately instead of checking it.")(static_cast <bool> (getASTContext().isSameEntity(New, Old ) && "New and Old are not the same definition, we should diagnostic it " "immediately instead of checking it.") ? void (0) : __assert_fail ("getASTContext().isSameEntity(New, Old) && \"New and Old are not the same definition, we should diagnostic it \" \"immediately instead of checking it.\"" , "clang/lib/Sema/SemaDecl.cpp", 1764, __extension__ __PRETTY_FUNCTION__ )); |
1765 | assert(const_cast<Sema *>(this)->isReachable(New) &&(static_cast <bool> (const_cast<Sema *>(this)-> isReachable(New) && const_cast<Sema *>(this)-> isReachable(Old) && "We shouldn't see unreachable definitions here." ) ? void (0) : __assert_fail ("const_cast<Sema *>(this)->isReachable(New) && const_cast<Sema *>(this)->isReachable(Old) && \"We shouldn't see unreachable definitions here.\"" , "clang/lib/Sema/SemaDecl.cpp", 1767, __extension__ __PRETTY_FUNCTION__ )) |
1766 | const_cast<Sema *>(this)->isReachable(Old) &&(static_cast <bool> (const_cast<Sema *>(this)-> isReachable(New) && const_cast<Sema *>(this)-> isReachable(Old) && "We shouldn't see unreachable definitions here." ) ? void (0) : __assert_fail ("const_cast<Sema *>(this)->isReachable(New) && const_cast<Sema *>(this)->isReachable(Old) && \"We shouldn't see unreachable definitions here.\"" , "clang/lib/Sema/SemaDecl.cpp", 1767, __extension__ __PRETTY_FUNCTION__ )) |
1767 | "We shouldn't see unreachable definitions here.")(static_cast <bool> (const_cast<Sema *>(this)-> isReachable(New) && const_cast<Sema *>(this)-> isReachable(Old) && "We shouldn't see unreachable definitions here." ) ? void (0) : __assert_fail ("const_cast<Sema *>(this)->isReachable(New) && const_cast<Sema *>(this)->isReachable(Old) && \"We shouldn't see unreachable definitions here.\"" , "clang/lib/Sema/SemaDecl.cpp", 1767, __extension__ __PRETTY_FUNCTION__ )); |
1768 | |
1769 | Module *NewM = New->getOwningModule(); |
1770 | Module *OldM = Old->getOwningModule(); |
1771 | |
1772 | // We only checks for named modules here. The header like modules is skipped. |
1773 | // FIXME: This is not right if we import the header like modules in the module |
1774 | // purview. |
1775 | // |
1776 | // For example, assuming "header.h" provides definition for `D`. |
1777 | // ```C++ |
1778 | // //--- M.cppm |
1779 | // export module M; |
1780 | // import "header.h"; // or #include "header.h" but import it by clang modules |
1781 | // actually. |
1782 | // |
1783 | // //--- Use.cpp |
1784 | // import M; |
1785 | // import "header.h"; // or uses clang modules. |
1786 | // ``` |
1787 | // |
1788 | // In this case, `D` has multiple definitions in multiple TU (M.cppm and |
1789 | // Use.cpp) and `D` is attached to a named module `M`. The compiler should |
1790 | // reject it. But the current implementation couldn't detect the case since we |
1791 | // don't record the information about the importee modules. |
1792 | // |
1793 | // But this might not be painful in practice. Since the design of C++20 Named |
1794 | // Modules suggests us to use headers in global module fragment instead of |
1795 | // module purview. |
1796 | if (NewM && NewM->isHeaderLikeModule()) |
1797 | NewM = nullptr; |
1798 | if (OldM && OldM->isHeaderLikeModule()) |
1799 | OldM = nullptr; |
1800 | |
1801 | if (!NewM && !OldM) |
1802 | return true; |
1803 | |
1804 | // [basic.def.odr]p14.3 |
1805 | // Each such definition shall not be attached to a named module |
1806 | // ([module.unit]). |
1807 | if ((NewM && NewM->isModulePurview()) || (OldM && OldM->isModulePurview())) |
1808 | return true; |
1809 | |
1810 | // Then New and Old lives in the same TU if their share one same module unit. |
1811 | if (NewM) |
1812 | NewM = NewM->getTopLevelModule(); |
1813 | if (OldM) |
1814 | OldM = OldM->getTopLevelModule(); |
1815 | return OldM == NewM; |
1816 | } |
1817 | |
1818 | static bool isUsingDecl(NamedDecl *D) { |
1819 | return isa<UsingShadowDecl>(D) || |
1820 | isa<UnresolvedUsingTypenameDecl>(D) || |
1821 | isa<UnresolvedUsingValueDecl>(D); |
1822 | } |
1823 | |
1824 | /// Removes using shadow declarations from the lookup results. |
1825 | static void RemoveUsingDecls(LookupResult &R) { |
1826 | LookupResult::Filter F = R.makeFilter(); |
1827 | while (F.hasNext()) |
1828 | if (isUsingDecl(F.next())) |
1829 | F.erase(); |
1830 | |
1831 | F.done(); |
1832 | } |
1833 | |
1834 | /// Check for this common pattern: |
1835 | /// @code |
1836 | /// class S { |
1837 | /// S(const S&); // DO NOT IMPLEMENT |
1838 | /// void operator=(const S&); // DO NOT IMPLEMENT |
1839 | /// }; |
1840 | /// @endcode |
1841 | static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) { |
1842 | // FIXME: Should check for private access too but access is set after we get |
1843 | // the decl here. |
1844 | if (D->doesThisDeclarationHaveABody()) |
1845 | return false; |
1846 | |
1847 | if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) |
1848 | return CD->isCopyConstructor(); |
1849 | return D->isCopyAssignmentOperator(); |
1850 | } |
1851 | |
1852 | // We need this to handle |
1853 | // |
1854 | // typedef struct { |
1855 | // void *foo() { return 0; } |
1856 | // } A; |
1857 | // |
1858 | // When we see foo we don't know if after the typedef we will get 'A' or '*A' |
1859 | // for example. If 'A', foo will have external linkage. If we have '*A', |
1860 | // foo will have no linkage. Since we can't know until we get to the end |
1861 | // of the typedef, this function finds out if D might have non-external linkage. |
1862 | // Callers should verify at the end of the TU if it D has external linkage or |
1863 | // not. |
1864 | bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) { |
1865 | const DeclContext *DC = D->getDeclContext(); |
1866 | while (!DC->isTranslationUnit()) { |
1867 | if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){ |
1868 | if (!RD->hasNameForLinkage()) |
1869 | return true; |
1870 | } |
1871 | DC = DC->getParent(); |
1872 | } |
1873 | |
1874 | return !D->isExternallyVisible(); |
1875 | } |
1876 | |
1877 | // FIXME: This needs to be refactored; some other isInMainFile users want |
1878 | // these semantics. |
1879 | static bool isMainFileLoc(const Sema &S, SourceLocation Loc) { |
1880 | if (S.TUKind != TU_Complete || S.getLangOpts().IsHeaderFile) |
1881 | return false; |
1882 | return S.SourceMgr.isInMainFile(Loc); |
1883 | } |
1884 | |
1885 | bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const { |
1886 | assert(D)(static_cast <bool> (D) ? void (0) : __assert_fail ("D" , "clang/lib/Sema/SemaDecl.cpp", 1886, __extension__ __PRETTY_FUNCTION__ )); |
1887 | |
1888 | if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>()) |
1889 | return false; |
1890 | |
1891 | // Ignore all entities declared within templates, and out-of-line definitions |
1892 | // of members of class templates. |
1893 | if (D->getDeclContext()->isDependentContext() || |
1894 | D->getLexicalDeclContext()->isDependentContext()) |
1895 | return false; |
1896 | |
1897 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
1898 | if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
1899 | return false; |
1900 | // A non-out-of-line declaration of a member specialization was implicitly |
1901 | // instantiated; it's the out-of-line declaration that we're interested in. |
1902 | if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && |
1903 | FD->getMemberSpecializationInfo() && !FD->isOutOfLine()) |
1904 | return false; |
1905 | |
1906 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { |
1907 | if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD)) |
1908 | return false; |
1909 | } else { |
1910 | // 'static inline' functions are defined in headers; don't warn. |
1911 | if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation())) |
1912 | return false; |
1913 | } |
1914 | |
1915 | if (FD->doesThisDeclarationHaveABody() && |
1916 | Context.DeclMustBeEmitted(FD)) |
1917 | return false; |
1918 | } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
1919 | // Constants and utility variables are defined in headers with internal |
1920 | // linkage; don't warn. (Unlike functions, there isn't a convenient marker |
1921 | // like "inline".) |
1922 | if (!isMainFileLoc(*this, VD->getLocation())) |
1923 | return false; |
1924 | |
1925 | if (Context.DeclMustBeEmitted(VD)) |
1926 | return false; |
1927 | |
1928 | if (VD->isStaticDataMember() && |
1929 | VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
1930 | return false; |
1931 | if (VD->isStaticDataMember() && |
1932 | VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && |
1933 | VD->getMemberSpecializationInfo() && !VD->isOutOfLine()) |
1934 | return false; |
1935 | |
1936 | if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation())) |
1937 | return false; |
1938 | } else { |
1939 | return false; |
1940 | } |
1941 | |
1942 | // Only warn for unused decls internal to the translation unit. |
1943 | // FIXME: This seems like a bogus check; it suppresses -Wunused-function |
1944 | // for inline functions defined in the main source file, for instance. |
1945 | return mightHaveNonExternalLinkage(D); |
1946 | } |
1947 | |
1948 | void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) { |
1949 | if (!D) |
1950 | return; |
1951 | |
1952 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
1953 | const FunctionDecl *First = FD->getFirstDecl(); |
1954 | if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First)) |
1955 | return; // First should already be in the vector. |
1956 | } |
1957 | |
1958 | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
1959 | const VarDecl *First = VD->getFirstDecl(); |
1960 | if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First)) |
1961 | return; // First should already be in the vector. |
1962 | } |
1963 | |
1964 | if (ShouldWarnIfUnusedFileScopedDecl(D)) |
1965 | UnusedFileScopedDecls.push_back(D); |
1966 | } |
1967 | |
1968 | static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) { |
1969 | if (D->isInvalidDecl()) |
1970 | return false; |
1971 | |
1972 | if (auto *DD = dyn_cast<DecompositionDecl>(D)) { |
1973 | // For a decomposition declaration, warn if none of the bindings are |
1974 | // referenced, instead of if the variable itself is referenced (which |
1975 | // it is, by the bindings' expressions). |
1976 | for (auto *BD : DD->bindings()) |
1977 | if (BD->isReferenced()) |
1978 | return false; |
1979 | } else if (!D->getDeclName()) { |
1980 | return false; |
1981 | } else if (D->isReferenced() || D->isUsed()) { |
1982 | return false; |
1983 | } |
1984 | |
1985 | if (D->hasAttr<UnusedAttr>() || D->hasAttr<ObjCPreciseLifetimeAttr>()) |
1986 | return false; |
1987 | |
1988 | if (isa<LabelDecl>(D)) |
1989 | return true; |
1990 | |
1991 | // Except for labels, we only care about unused decls that are local to |
1992 | // functions. |
1993 | bool WithinFunction = D->getDeclContext()->isFunctionOrMethod(); |
1994 | if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext())) |
1995 | // For dependent types, the diagnostic is deferred. |
1996 | WithinFunction = |
1997 | WithinFunction || (R->isLocalClass() && !R->isDependentType()); |
1998 | if (!WithinFunction) |
1999 | return false; |
2000 | |
2001 | if (isa<TypedefNameDecl>(D)) |
2002 | return true; |
2003 | |
2004 | // White-list anything that isn't a local variable. |
2005 | if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) |
2006 | return false; |
2007 | |
2008 | // Types of valid local variables should be complete, so this should succeed. |
2009 | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
2010 | |
2011 | const Expr *Init = VD->getInit(); |
2012 | if (const auto *Cleanups = dyn_cast_or_null<ExprWithCleanups>(Init)) |
2013 | Init = Cleanups->getSubExpr(); |
2014 | |
2015 | const auto *Ty = VD->getType().getTypePtr(); |
2016 | |
2017 | // Only look at the outermost level of typedef. |
2018 | if (const TypedefType *TT = Ty->getAs<TypedefType>()) { |
2019 | // Allow anything marked with __attribute__((unused)). |
2020 | if (TT->getDecl()->hasAttr<UnusedAttr>()) |
2021 | return false; |
2022 | } |
2023 | |
2024 | // Warn for reference variables whose initializtion performs lifetime |
2025 | // extension. |
2026 | if (const auto *MTE = dyn_cast_or_null<MaterializeTemporaryExpr>(Init)) { |
2027 | if (MTE->getExtendingDecl()) { |
2028 | Ty = VD->getType().getNonReferenceType().getTypePtr(); |
2029 | Init = MTE->getSubExpr()->IgnoreImplicitAsWritten(); |
2030 | } |
2031 | } |
2032 | |
2033 | // If we failed to complete the type for some reason, or if the type is |
2034 | // dependent, don't diagnose the variable. |
2035 | if (Ty->isIncompleteType() || Ty->isDependentType()) |
2036 | return false; |
2037 | |
2038 | // Look at the element type to ensure that the warning behaviour is |
2039 | // consistent for both scalars and arrays. |
2040 | Ty = Ty->getBaseElementTypeUnsafe(); |
2041 | |
2042 | if (const TagType *TT = Ty->getAs<TagType>()) { |
2043 | const TagDecl *Tag = TT->getDecl(); |
2044 | if (Tag->hasAttr<UnusedAttr>()) |
2045 | return false; |
2046 | |
2047 | if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) { |
2048 | if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>()) |
2049 | return false; |
2050 | |
2051 | if (Init) { |
2052 | const CXXConstructExpr *Construct = |
2053 | dyn_cast<CXXConstructExpr>(Init); |
2054 | if (Construct && !Construct->isElidable()) { |
2055 | CXXConstructorDecl *CD = Construct->getConstructor(); |
2056 | if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() && |
2057 | (VD->getInit()->isValueDependent() || !VD->evaluateValue())) |
2058 | return false; |
2059 | } |
2060 | |
2061 | // Suppress the warning if we don't know how this is constructed, and |
2062 | // it could possibly be non-trivial constructor. |
2063 | if (Init->isTypeDependent()) { |
2064 | for (const CXXConstructorDecl *Ctor : RD->ctors()) |
2065 | if (!Ctor->isTrivial()) |
2066 | return false; |
2067 | } |
2068 | |
2069 | // Suppress the warning if the constructor is unresolved because |
2070 | // its arguments are dependent. |
2071 | if (isa<CXXUnresolvedConstructExpr>(Init)) |
2072 | return false; |
2073 | } |
2074 | } |
2075 | } |
2076 | |
2077 | // TODO: __attribute__((unused)) templates? |
2078 | } |
2079 | |
2080 | return true; |
2081 | } |
2082 | |
2083 | static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx, |
2084 | FixItHint &Hint) { |
2085 | if (isa<LabelDecl>(D)) { |
2086 | SourceLocation AfterColon = Lexer::findLocationAfterToken( |
2087 | D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), |
2088 | true); |
2089 | if (AfterColon.isInvalid()) |
2090 | return; |
2091 | Hint = FixItHint::CreateRemoval( |
2092 | CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon)); |
2093 | } |
2094 | } |
2095 | |
2096 | void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) { |
2097 | DiagnoseUnusedNestedTypedefs( |
2098 | D, [this](SourceLocation Loc, PartialDiagnostic PD) { Diag(Loc, PD); }); |
2099 | } |
2100 | |
2101 | void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D, |
2102 | DiagReceiverTy DiagReceiver) { |
2103 | if (D->getTypeForDecl()->isDependentType()) |
2104 | return; |
2105 | |
2106 | for (auto *TmpD : D->decls()) { |
2107 | if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD)) |
2108 | DiagnoseUnusedDecl(T, DiagReceiver); |
2109 | else if(const auto *R = dyn_cast<RecordDecl>(TmpD)) |
2110 | DiagnoseUnusedNestedTypedefs(R, DiagReceiver); |
2111 | } |
2112 | } |
2113 | |
2114 | void Sema::DiagnoseUnusedDecl(const NamedDecl *D) { |
2115 | DiagnoseUnusedDecl( |
2116 | D, [this](SourceLocation Loc, PartialDiagnostic PD) { Diag(Loc, PD); }); |
2117 | } |
2118 | |
2119 | /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used |
2120 | /// unless they are marked attr(unused). |
2121 | void Sema::DiagnoseUnusedDecl(const NamedDecl *D, DiagReceiverTy DiagReceiver) { |
2122 | if (!ShouldDiagnoseUnusedDecl(D)) |
2123 | return; |
2124 | |
2125 | if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { |
2126 | // typedefs can be referenced later on, so the diagnostics are emitted |
2127 | // at end-of-translation-unit. |
2128 | UnusedLocalTypedefNameCandidates.insert(TD); |
2129 | return; |
2130 | } |
2131 | |
2132 | FixItHint Hint; |
2133 | GenerateFixForUnusedDecl(D, Context, Hint); |
2134 | |
2135 | unsigned DiagID; |
2136 | if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable()) |
2137 | DiagID = diag::warn_unused_exception_param; |
2138 | else if (isa<LabelDecl>(D)) |
2139 | DiagID = diag::warn_unused_label; |
2140 | else |
2141 | DiagID = diag::warn_unused_variable; |
2142 | |
2143 | DiagReceiver(D->getLocation(), PDiag(DiagID) << D << Hint); |
2144 | } |
2145 | |
2146 | void Sema::DiagnoseUnusedButSetDecl(const VarDecl *VD, |
2147 | DiagReceiverTy DiagReceiver) { |
2148 | // If it's not referenced, it can't be set. If it has the Cleanup attribute, |
2149 | // it's not really unused. |
2150 | if (!VD->isReferenced() || !VD->getDeclName() || VD->hasAttr<UnusedAttr>() || |
2151 | VD->hasAttr<CleanupAttr>()) |
2152 | return; |
2153 | |
2154 | const auto *Ty = VD->getType().getTypePtr()->getBaseElementTypeUnsafe(); |
2155 | |
2156 | if (Ty->isReferenceType() || Ty->isDependentType()) |
2157 | return; |
2158 | |
2159 | if (const TagType *TT = Ty->getAs<TagType>()) { |
2160 | const TagDecl *Tag = TT->getDecl(); |
2161 | if (Tag->hasAttr<UnusedAttr>()) |
2162 | return; |
2163 | // In C++, don't warn for record types that don't have WarnUnusedAttr, to |
2164 | // mimic gcc's behavior. |
2165 | if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) { |
2166 | if (!RD->hasAttr<WarnUnusedAttr>()) |
2167 | return; |
2168 | } |
2169 | } |
2170 | |
2171 | // Don't warn about __block Objective-C pointer variables, as they might |
2172 | // be assigned in the block but not used elsewhere for the purpose of lifetime |
2173 | // extension. |
2174 | if (VD->hasAttr<BlocksAttr>() && Ty->isObjCObjectPointerType()) |
2175 | return; |
2176 | |
2177 | // Don't warn about Objective-C pointer variables with precise lifetime |
2178 | // semantics; they can be used to ensure ARC releases the object at a known |
2179 | // time, which may mean assignment but no other references. |
2180 | if (VD->hasAttr<ObjCPreciseLifetimeAttr>() && Ty->isObjCObjectPointerType()) |
2181 | return; |
2182 | |
2183 | auto iter = RefsMinusAssignments.find(VD); |
2184 | if (iter == RefsMinusAssignments.end()) |
2185 | return; |
2186 | |
2187 | assert(iter->getSecond() >= 0 &&(static_cast <bool> (iter->getSecond() >= 0 && "Found a negative number of references to a VarDecl") ? void (0) : __assert_fail ("iter->getSecond() >= 0 && \"Found a negative number of references to a VarDecl\"" , "clang/lib/Sema/SemaDecl.cpp", 2188, __extension__ __PRETTY_FUNCTION__ )) |
2188 | "Found a negative number of references to a VarDecl")(static_cast <bool> (iter->getSecond() >= 0 && "Found a negative number of references to a VarDecl") ? void (0) : __assert_fail ("iter->getSecond() >= 0 && \"Found a negative number of references to a VarDecl\"" , "clang/lib/Sema/SemaDecl.cpp", 2188, __extension__ __PRETTY_FUNCTION__ )); |
2189 | if (iter->getSecond() != 0) |
2190 | return; |
2191 | unsigned DiagID = isa<ParmVarDecl>(VD) ? diag::warn_unused_but_set_parameter |
2192 | : diag::warn_unused_but_set_variable; |
2193 | DiagReceiver(VD->getLocation(), PDiag(DiagID) << VD); |
2194 | } |
2195 | |
2196 | static void CheckPoppedLabel(LabelDecl *L, Sema &S, |
2197 | Sema::DiagReceiverTy DiagReceiver) { |
2198 | // Verify that we have no forward references left. If so, there was a goto |
2199 | // or address of a label taken, but no definition of it. Label fwd |
2200 | // definitions are indicated with a null substmt which is also not a resolved |
2201 | // MS inline assembly label name. |
2202 | bool Diagnose = false; |
2203 | if (L->isMSAsmLabel()) |
2204 | Diagnose = !L->isResolvedMSAsmLabel(); |
2205 | else |
2206 | Diagnose = L->getStmt() == nullptr; |
2207 | if (Diagnose) |
2208 | DiagReceiver(L->getLocation(), S.PDiag(diag::err_undeclared_label_use) |
2209 | << L); |
2210 | } |
2211 | |
2212 | void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) { |
2213 | S->applyNRVO(); |
2214 | |
2215 | if (S->decl_empty()) return; |
2216 | assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&(static_cast <bool> ((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && "Scope shouldn't contain decls!" ) ? void (0) : __assert_fail ("(S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && \"Scope shouldn't contain decls!\"" , "clang/lib/Sema/SemaDecl.cpp", 2217, __extension__ __PRETTY_FUNCTION__ )) |
2217 | "Scope shouldn't contain decls!")(static_cast <bool> ((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && "Scope shouldn't contain decls!" ) ? void (0) : __assert_fail ("(S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && \"Scope shouldn't contain decls!\"" , "clang/lib/Sema/SemaDecl.cpp", 2217, __extension__ __PRETTY_FUNCTION__ )); |
2218 | |
2219 | /// We visit the decls in non-deterministic order, but we want diagnostics |
2220 | /// emitted in deterministic order. Collect any diagnostic that may be emitted |
2221 | /// and sort the diagnostics before emitting them, after we visited all decls. |
2222 | struct LocAndDiag { |
2223 | SourceLocation Loc; |
2224 | std::optional<SourceLocation> PreviousDeclLoc; |
2225 | PartialDiagnostic PD; |
2226 | }; |
2227 | SmallVector<LocAndDiag, 16> DeclDiags; |
2228 | auto addDiag = [&DeclDiags](SourceLocation Loc, PartialDiagnostic PD) { |
2229 | DeclDiags.push_back(LocAndDiag{Loc, std::nullopt, std::move(PD)}); |
2230 | }; |
2231 | auto addDiagWithPrev = [&DeclDiags](SourceLocation Loc, |
2232 | SourceLocation PreviousDeclLoc, |
2233 | PartialDiagnostic PD) { |
2234 | DeclDiags.push_back(LocAndDiag{Loc, PreviousDeclLoc, std::move(PD)}); |
2235 | }; |
2236 | |
2237 | for (auto *TmpD : S->decls()) { |
2238 | assert(TmpD && "This decl didn't get pushed??")(static_cast <bool> (TmpD && "This decl didn't get pushed??" ) ? void (0) : __assert_fail ("TmpD && \"This decl didn't get pushed??\"" , "clang/lib/Sema/SemaDecl.cpp", 2238, __extension__ __PRETTY_FUNCTION__ )); |
2239 | |
2240 | assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?")(static_cast <bool> (isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?") ? void (0) : __assert_fail ("isa<NamedDecl>(TmpD) && \"Decl isn't NamedDecl?\"" , "clang/lib/Sema/SemaDecl.cpp", 2240, __extension__ __PRETTY_FUNCTION__ )); |
2241 | NamedDecl *D = cast<NamedDecl>(TmpD); |
2242 | |
2243 | // Diagnose unused variables in this scope. |
2244 | if (!S->hasUnrecoverableErrorOccurred()) { |
2245 | DiagnoseUnusedDecl(D, addDiag); |
2246 | if (const auto *RD = dyn_cast<RecordDecl>(D)) |
2247 | DiagnoseUnusedNestedTypedefs(RD, addDiag); |
2248 | if (VarDecl *VD = dyn_cast<VarDecl>(D)) { |
2249 | DiagnoseUnusedButSetDecl(VD, addDiag); |
2250 | RefsMinusAssignments.erase(VD); |
2251 | } |
2252 | } |
2253 | |
2254 | if (!D->getDeclName()) continue; |
2255 | |
2256 | // If this was a forward reference to a label, verify it was defined. |
2257 | if (LabelDecl *LD = dyn_cast<LabelDecl>(D)) |
2258 | CheckPoppedLabel(LD, *this, addDiag); |
2259 | |
2260 | // Remove this name from our lexical scope, and warn on it if we haven't |
2261 | // already. |
2262 | IdResolver.RemoveDecl(D); |
2263 | auto ShadowI = ShadowingDecls.find(D); |
2264 | if (ShadowI != ShadowingDecls.end()) { |
2265 | if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) { |
2266 | addDiagWithPrev(D->getLocation(), FD->getLocation(), |
2267 | PDiag(diag::warn_ctor_parm_shadows_field) |
2268 | << D << FD << FD->getParent()); |
2269 | } |
2270 | ShadowingDecls.erase(ShadowI); |
2271 | } |
2272 | } |
2273 | |
2274 | llvm::sort(DeclDiags, |
2275 | [](const LocAndDiag &LHS, const LocAndDiag &RHS) -> bool { |
2276 | // The particular order for diagnostics is not important, as long |
2277 | // as the order is deterministic. Using the raw location is going |
2278 | // to generally be in source order unless there are macro |
2279 | // expansions involved. |
2280 | return LHS.Loc.getRawEncoding() < RHS.Loc.getRawEncoding(); |
2281 | }); |
2282 | for (const LocAndDiag &D : DeclDiags) { |
2283 | Diag(D.Loc, D.PD); |
2284 | if (D.PreviousDeclLoc) |
2285 | Diag(*D.PreviousDeclLoc, diag::note_previous_declaration); |
2286 | } |
2287 | } |
2288 | |
2289 | /// Look for an Objective-C class in the translation unit. |
2290 | /// |
2291 | /// \param Id The name of the Objective-C class we're looking for. If |
2292 | /// typo-correction fixes this name, the Id will be updated |
2293 | /// to the fixed name. |
2294 | /// |
2295 | /// \param IdLoc The location of the name in the translation unit. |
2296 | /// |
2297 | /// \param DoTypoCorrection If true, this routine will attempt typo correction |
2298 | /// if there is no class with the given name. |
2299 | /// |
2300 | /// \returns The declaration of the named Objective-C class, or NULL if the |
2301 | /// class could not be found. |
2302 | ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id, |
2303 | SourceLocation IdLoc, |
2304 | bool DoTypoCorrection) { |
2305 | // The third "scope" argument is 0 since we aren't enabling lazy built-in |
2306 | // creation from this context. |
2307 | NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName); |
2308 | |
2309 | if (!IDecl && DoTypoCorrection) { |
2310 | // Perform typo correction at the given location, but only if we |
2311 | // find an Objective-C class name. |
2312 | DeclFilterCCC<ObjCInterfaceDecl> CCC{}; |
2313 | if (TypoCorrection C = |
2314 | CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, |
2315 | TUScope, nullptr, CCC, CTK_ErrorRecovery)) { |
2316 | diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id); |
2317 | IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>(); |
2318 | Id = IDecl->getIdentifier(); |
2319 | } |
2320 | } |
2321 | ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl); |
2322 | // This routine must always return a class definition, if any. |
2323 | if (Def && Def->getDefinition()) |
2324 | Def = Def->getDefinition(); |
2325 | return Def; |
2326 | } |
2327 | |
2328 | /// getNonFieldDeclScope - Retrieves the innermost scope, starting |
2329 | /// from S, where a non-field would be declared. This routine copes |
2330 | /// with the difference between C and C++ scoping rules in structs and |
2331 | /// unions. For example, the following code is well-formed in C but |
2332 | /// ill-formed in C++: |
2333 | /// @code |
2334 | /// struct S6 { |
2335 | /// enum { BAR } e; |
2336 | /// }; |
2337 | /// |
2338 | /// void test_S6() { |
2339 | /// struct S6 a; |
2340 | /// a.e = BAR; |
2341 | /// } |
2342 | /// @endcode |
2343 | /// For the declaration of BAR, this routine will return a different |
2344 | /// scope. The scope S will be the scope of the unnamed enumeration |
2345 | /// within S6. In C++, this routine will return the scope associated |
2346 | /// with S6, because the enumeration's scope is a transparent |
2347 | /// context but structures can contain non-field names. In C, this |
2348 | /// routine will return the translation unit scope, since the |
2349 | /// enumeration's scope is a transparent context and structures cannot |
2350 | /// contain non-field names. |
2351 | Scope *Sema::getNonFieldDeclScope(Scope *S) { |
2352 | while (((S->getFlags() & Scope::DeclScope) == 0) || |
2353 | (S->getEntity() && S->getEntity()->isTransparentContext()) || |
2354 | (S->isClassScope() && !getLangOpts().CPlusPlus)) |
2355 | S = S->getParent(); |
2356 | return S; |
2357 | } |
2358 | |
2359 | static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID, |
2360 | ASTContext::GetBuiltinTypeError Error) { |
2361 | switch (Error) { |
2362 | case ASTContext::GE_None: |
2363 | return ""; |
2364 | case ASTContext::GE_Missing_type: |
2365 | return BuiltinInfo.getHeaderName(ID); |
2366 | case ASTContext::GE_Missing_stdio: |
2367 | return "stdio.h"; |
2368 | case ASTContext::GE_Missing_setjmp: |
2369 | return "setjmp.h"; |
2370 | case ASTContext::GE_Missing_ucontext: |
2371 | return "ucontext.h"; |
2372 | } |
2373 | llvm_unreachable("unhandled error kind")::llvm::llvm_unreachable_internal("unhandled error kind", "clang/lib/Sema/SemaDecl.cpp" , 2373); |
2374 | } |
2375 | |
2376 | FunctionDecl *Sema::CreateBuiltin(IdentifierInfo *II, QualType Type, |
2377 | unsigned ID, SourceLocation Loc) { |
2378 | DeclContext *Parent = Context.getTranslationUnitDecl(); |
2379 | |
2380 | if (getLangOpts().CPlusPlus) { |
2381 | LinkageSpecDecl *CLinkageDecl = LinkageSpecDecl::Create( |
2382 | Context, Parent, Loc, Loc, LinkageSpecDecl::lang_c, false); |
2383 | CLinkageDecl->setImplicit(); |
2384 | Parent->addDecl(CLinkageDecl); |
2385 | Parent = CLinkageDecl; |
2386 | } |
2387 | |
2388 | FunctionDecl *New = FunctionDecl::Create(Context, Parent, Loc, Loc, II, Type, |
2389 | /*TInfo=*/nullptr, SC_Extern, |
2390 | getCurFPFeatures().isFPConstrained(), |
2391 | false, Type->isFunctionProtoType()); |
2392 | New->setImplicit(); |
2393 | New->addAttr(BuiltinAttr::CreateImplicit(Context, ID)); |
2394 | |
2395 | // Create Decl objects for each parameter, adding them to the |
2396 | // FunctionDecl. |
2397 | if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(Type)) { |
2398 | SmallVector<ParmVarDecl *, 16> Params; |
2399 | for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { |
2400 | ParmVarDecl *parm = ParmVarDecl::Create( |
2401 | Context, New, SourceLocation(), SourceLocation(), nullptr, |
2402 | FT->getParamType(i), /*TInfo=*/nullptr, SC_None, nullptr); |
2403 | parm->setScopeInfo(0, i); |
2404 | Params.push_back(parm); |
2405 | } |
2406 | New->setParams(Params); |
2407 | } |
2408 | |
2409 | AddKnownFunctionAttributes(New); |
2410 | return New; |
2411 | } |
2412 | |
2413 | /// LazilyCreateBuiltin - The specified Builtin-ID was first used at |
2414 | /// file scope. lazily create a decl for it. ForRedeclaration is true |
2415 | /// if we're creating this built-in in anticipation of redeclaring the |
2416 | /// built-in. |
2417 | NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, |
2418 | Scope *S, bool ForRedeclaration, |
2419 | SourceLocation Loc) { |
2420 | LookupNecessaryTypesForBuiltin(S, ID); |
2421 | |
2422 | ASTContext::GetBuiltinTypeError Error; |
2423 | QualType R = Context.GetBuiltinType(ID, Error); |
2424 | if (Error) { |
2425 | if (!ForRedeclaration) |
2426 | return nullptr; |
2427 | |
2428 | // If we have a builtin without an associated type we should not emit a |
2429 | // warning when we were not able to find a type for it. |
2430 | if (Error == ASTContext::GE_Missing_type || |
2431 | Context.BuiltinInfo.allowTypeMismatch(ID)) |
2432 | return nullptr; |
2433 | |
2434 | // If we could not find a type for setjmp it is because the jmp_buf type was |
2435 | // not defined prior to the setjmp declaration. |
2436 | if (Error == ASTContext::GE_Missing_setjmp) { |
2437 | Diag(Loc, diag::warn_implicit_decl_no_jmp_buf) |
2438 | << Context.BuiltinInfo.getName(ID); |
2439 | return nullptr; |
2440 | } |
2441 | |
2442 | // Generally, we emit a warning that the declaration requires the |
2443 | // appropriate header. |
2444 | Diag(Loc, diag::warn_implicit_decl_requires_sysheader) |
2445 | << getHeaderName(Context.BuiltinInfo, ID, Error) |
2446 | << Context.BuiltinInfo.getName(ID); |
2447 | return nullptr; |
2448 | } |
2449 | |
2450 | if (!ForRedeclaration && |
2451 | (Context.BuiltinInfo.isPredefinedLibFunction(ID) || |
2452 | Context.BuiltinInfo.isHeaderDependentFunction(ID))) { |
2453 | Diag(Loc, LangOpts.C99 ? diag::ext_implicit_lib_function_decl_c99 |
2454 | : diag::ext_implicit_lib_function_decl) |
2455 | << Context.BuiltinInfo.getName(ID) << R; |
2456 | if (const char *Header = Context.BuiltinInfo.getHeaderName(ID)) |
2457 | Diag(Loc, diag::note_include_header_or_declare) |
2458 | << Header << Context.BuiltinInfo.getName(ID); |
2459 | } |
2460 | |
2461 | if (R.isNull()) |
2462 | return nullptr; |
2463 | |
2464 | FunctionDecl *New = CreateBuiltin(II, R, ID, Loc); |
2465 | RegisterLocallyScopedExternCDecl(New, S); |
2466 | |
2467 | // TUScope is the translation-unit scope to insert this function into. |
2468 | // FIXME: This is hideous. We need to teach PushOnScopeChains to |
2469 | // relate Scopes to DeclContexts, and probably eliminate CurContext |
2470 | // entirely, but we're not there yet. |
2471 | DeclContext *SavedContext = CurContext; |
2472 | CurContext = New->getDeclContext(); |
2473 | PushOnScopeChains(New, TUScope); |
2474 | CurContext = SavedContext; |
2475 | return New; |
2476 | } |
2477 | |
2478 | /// Typedef declarations don't have linkage, but they still denote the same |
2479 | /// entity if their types are the same. |
2480 | /// FIXME: This is notionally doing the same thing as ASTReaderDecl's |
2481 | /// isSameEntity. |
2482 | static void filterNonConflictingPreviousTypedefDecls(Sema &S, |
2483 | TypedefNameDecl *Decl, |
2484 | LookupResult &Previous) { |
2485 | // This is only interesting when modules are enabled. |
2486 | if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility) |
2487 | return; |
2488 | |
2489 | // Empty sets are uninteresting. |
2490 | if (Previous.empty()) |
2491 | return; |
2492 | |
2493 | LookupResult::Filter Filter = Previous.makeFilter(); |
2494 | while (Filter.hasNext()) { |
2495 | NamedDecl *Old = Filter.next(); |
2496 | |
2497 | // Non-hidden declarations are never ignored. |
2498 | if (S.isVisible(Old)) |
2499 | continue; |
2500 | |
2501 | // Declarations of the same entity are not ignored, even if they have |
2502 | // different linkages. |
2503 | if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) { |
2504 | if (S.Context.hasSameType(OldTD->getUnderlyingType(), |
2505 | Decl->getUnderlyingType())) |
2506 | continue; |
2507 | |
2508 | // If both declarations give a tag declaration a typedef name for linkage |
2509 | // purposes, then they declare the same entity. |
2510 | if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) && |
2511 | Decl->getAnonDeclWithTypedefName()) |
2512 | continue; |
2513 | } |
2514 | |
2515 | Filter.erase(); |
2516 | } |
2517 | |
2518 | Filter.done(); |
2519 | } |
2520 | |
2521 | bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) { |
2522 | QualType OldType; |
2523 | if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old)) |
2524 | OldType = OldTypedef->getUnderlyingType(); |
2525 | else |
2526 | OldType = Context.getTypeDeclType(Old); |
2527 | QualType NewType = New->getUnderlyingType(); |
2528 | |
2529 | if (NewType->isVariablyModifiedType()) { |
2530 | // Must not redefine a typedef with a variably-modified type. |
2531 | int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; |
2532 | Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef) |
2533 | << Kind << NewType; |
2534 | if (Old->getLocation().isValid()) |
2535 | notePreviousDefinition(Old, New->getLocation()); |
2536 | New->setInvalidDecl(); |
2537 | return true; |
2538 | } |
2539 | |
2540 | if (OldType != NewType && |
2541 | !OldType->isDependentType() && |
2542 | !NewType->isDependentType() && |
2543 | !Context.hasSameType(OldType, NewType)) { |
2544 | int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; |
2545 | Diag(New->getLocation(), diag::err_redefinition_different_typedef) |
2546 | << Kind << NewType << OldType; |
2547 | if (Old->getLocation().isValid()) |
2548 | notePreviousDefinition(Old, New->getLocation()); |
2549 | New->setInvalidDecl(); |
2550 | return true; |
2551 | } |
2552 | return false; |
2553 | } |
2554 | |
2555 | /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the |
2556 | /// same name and scope as a previous declaration 'Old'. Figure out |
2557 | /// how to resolve this situation, merging decls or emitting |
2558 | /// diagnostics as appropriate. If there was an error, set New to be invalid. |
2559 | /// |
2560 | void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New, |
2561 | LookupResult &OldDecls) { |
2562 | // If the new decl is known invalid already, don't bother doing any |
2563 | // merging checks. |
2564 | if (New->isInvalidDecl()) return; |
2565 | |
2566 | // Allow multiple definitions for ObjC built-in typedefs. |
2567 | // FIXME: Verify the underlying types are equivalent! |
2568 | if (getLangOpts().ObjC) { |
2569 | const IdentifierInfo *TypeID = New->getIdentifier(); |
2570 | switch (TypeID->getLength()) { |
2571 | default: break; |
2572 | case 2: |
2573 | { |
2574 | if (!TypeID->isStr("id")) |
2575 | break; |
2576 | QualType T = New->getUnderlyingType(); |
2577 | if (!T->isPointerType()) |
2578 | break; |
2579 | if (!T->isVoidPointerType()) { |
2580 | QualType PT = T->castAs<PointerType>()->getPointeeType(); |
2581 | if (!PT->isStructureType()) |
2582 | break; |
2583 | } |
2584 | Context.setObjCIdRedefinitionType(T); |
2585 | // Install the built-in type for 'id', ignoring the current definition. |
2586 | New->setTypeForDecl(Context.getObjCIdType().getTypePtr()); |
2587 | return; |
2588 | } |
2589 | case 5: |
2590 | if (!TypeID->isStr("Class")) |
2591 | break; |
2592 | Context.setObjCClassRedefinitionType(New->getUnderlyingType()); |
2593 | // Install the built-in type for 'Class', ignoring the current definition. |
2594 | New->setTypeForDecl(Context.getObjCClassType().getTypePtr()); |
2595 | return; |
2596 | case 3: |
2597 | if (!TypeID->isStr("SEL")) |
2598 | break; |
2599 | Context.setObjCSelRedefinitionType(New->getUnderlyingType()); |
2600 | // Install the built-in type for 'SEL', ignoring the current definition. |
2601 | New->setTypeForDecl(Context.getObjCSelType().getTypePtr()); |
2602 | return; |
2603 | } |
2604 | // Fall through - the typedef name was not a builtin type. |
2605 | } |
2606 | |
2607 | // Verify the old decl was also a type. |
2608 | TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>(); |
2609 | if (!Old) { |
2610 | Diag(New->getLocation(), diag::err_redefinition_different_kind) |
2611 | << New->getDeclName(); |
2612 | |
2613 | NamedDecl *OldD = OldDecls.getRepresentativeDecl(); |
2614 | if (OldD->getLocation().isValid()) |
2615 | notePreviousDefinition(OldD, New->getLocation()); |
2616 | |
2617 | return New->setInvalidDecl(); |
2618 | } |
2619 | |
2620 | // If the old declaration is invalid, just give up here. |
2621 | if (Old->isInvalidDecl()) |
2622 | return New->setInvalidDecl(); |
2623 | |
2624 | if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) { |
2625 | auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true); |
2626 | auto *NewTag = New->getAnonDeclWithTypedefName(); |
2627 | NamedDecl *Hidden = nullptr; |
2628 | if (OldTag && NewTag && |
2629 | OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() && |
2630 | !hasVisibleDefinition(OldTag, &Hidden)) { |
2631 | // There is a definition of this tag, but it is not visible. Use it |
2632 | // instead of our tag. |
2633 | New->setTypeForDecl(OldTD->getTypeForDecl()); |
2634 | if (OldTD->isModed()) |
2635 | New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(), |
2636 | OldTD->getUnderlyingType()); |
2637 | else |
2638 | New->setTypeSourceInfo(OldTD->getTypeSourceInfo()); |
2639 | |
2640 | // Make the old tag definition visible. |
2641 | makeMergedDefinitionVisible(Hidden); |
2642 | |
2643 | // If this was an unscoped enumeration, yank all of its enumerators |
2644 | // out of the scope. |
2645 | if (isa<EnumDecl>(NewTag)) { |
2646 | Scope *EnumScope = getNonFieldDeclScope(S); |
2647 | for (auto *D : NewTag->decls()) { |
2648 | auto *ED = cast<EnumConstantDecl>(D); |
2649 | assert(EnumScope->isDeclScope(ED))(static_cast <bool> (EnumScope->isDeclScope(ED)) ? void (0) : __assert_fail ("EnumScope->isDeclScope(ED)", "clang/lib/Sema/SemaDecl.cpp" , 2649, __extension__ __PRETTY_FUNCTION__)); |
2650 | EnumScope->RemoveDecl(ED); |
2651 | IdResolver.RemoveDecl(ED); |
2652 | ED->getLexicalDeclContext()->removeDecl(ED); |
2653 | } |
2654 | } |
2655 | } |
2656 | } |
2657 | |
2658 | // If the typedef types are not identical, reject them in all languages and |
2659 | // with any extensions enabled. |
2660 | if (isIncompatibleTypedef(Old, New)) |
2661 | return; |
2662 | |
2663 | // The types match. Link up the redeclaration chain and merge attributes if |
2664 | // the old declaration was a typedef. |
2665 | if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) { |
2666 | New->setPreviousDecl(Typedef); |
2667 | mergeDeclAttributes(New, Old); |
2668 | } |
2669 | |
2670 | if (getLangOpts().MicrosoftExt) |
2671 | return; |
2672 | |
2673 | if (getLangOpts().CPlusPlus) { |
2674 | // C++ [dcl.typedef]p2: |
2675 | // In a given non-class scope, a typedef specifier can be used to |
2676 | // redefine the name of any type declared in that scope to refer |
2677 | // to the type to which it already refers. |
2678 | if (!isa<CXXRecordDecl>(CurContext)) |
2679 | return; |
2680 | |
2681 | // C++0x [dcl.typedef]p4: |
2682 | // In a given class scope, a typedef specifier can be used to redefine |
2683 | // any class-name declared in that scope that is not also a typedef-name |
2684 | // to refer to the type to which it already refers. |
2685 | // |
2686 | // This wording came in via DR424, which was a correction to the |
2687 | // wording in DR56, which accidentally banned code like: |
2688 | // |
2689 | // struct S { |
2690 | // typedef struct A { } A; |
2691 | // }; |
2692 | // |
2693 | // in the C++03 standard. We implement the C++0x semantics, which |
2694 | // allow the above but disallow |
2695 | // |
2696 | // struct S { |
2697 | // typedef int I; |
2698 | // typedef int I; |
2699 | // }; |
2700 | // |
2701 | // since that was the intent of DR56. |
2702 | if (!isa<TypedefNameDecl>(Old)) |
2703 | return; |
2704 | |
2705 | Diag(New->getLocation(), diag::err_redefinition) |
2706 | << New->getDeclName(); |
2707 | notePreviousDefinition(Old, New->getLocation()); |
2708 | return New->setInvalidDecl(); |
2709 | } |
2710 | |
2711 | // Modules always permit redefinition of typedefs, as does C11. |
2712 | if (getLangOpts().Modules || getLangOpts().C11) |
2713 | return; |
2714 | |
2715 | // If we have a redefinition of a typedef in C, emit a warning. This warning |
2716 | // is normally mapped to an error, but can be controlled with |
2717 | // -Wtypedef-redefinition. If either the original or the redefinition is |
2718 | // in a system header, don't emit this for compatibility with GCC. |
2719 | if (getDiagnostics().getSuppressSystemWarnings() && |
2720 | // Some standard types are defined implicitly in Clang (e.g. OpenCL). |
2721 | (Old->isImplicit() || |
2722 | Context.getSourceManager().isInSystemHeader(Old->getLocation()) || |
2723 | Context.getSourceManager().isInSystemHeader(New->getLocation()))) |
2724 | return; |
2725 | |
2726 | Diag(New->getLocation(), diag::ext_redefinition_of_typedef) |
2727 | << New->getDeclName(); |
2728 | notePreviousDefinition(Old, New->getLocation()); |
2729 | } |
2730 | |
2731 | /// DeclhasAttr - returns true if decl Declaration already has the target |
2732 | /// attribute. |
2733 | static bool DeclHasAttr(const Decl *D, const Attr *A) { |
2734 | const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A); |
2735 | const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A); |
2736 | for (const auto *i : D->attrs()) |
2737 | if (i->getKind() == A->getKind()) { |
2738 | if (Ann) { |
2739 | if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation()) |
2740 | return true; |
2741 | continue; |
2742 | } |
2743 | // FIXME: Don't hardcode this check |
2744 | if (OA && isa<OwnershipAttr>(i)) |
2745 | return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind(); |
2746 | return true; |
2747 | } |
2748 | |
2749 | return false; |
2750 | } |
2751 | |
2752 | static bool isAttributeTargetADefinition(Decl *D) { |
2753 | if (VarDecl *VD = dyn_cast<VarDecl>(D)) |
2754 | return VD->isThisDeclarationADefinition(); |
2755 | if (TagDecl *TD = dyn_cast<TagDecl>(D)) |
2756 | return TD->isCompleteDefinition() || TD->isBeingDefined(); |
2757 | return true; |
2758 | } |
2759 | |
2760 | /// Merge alignment attributes from \p Old to \p New, taking into account the |
2761 | /// special semantics of C11's _Alignas specifier and C++11's alignas attribute. |
2762 | /// |
2763 | /// \return \c true if any attributes were added to \p New. |
2764 | static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) { |
2765 | // Look for alignas attributes on Old, and pick out whichever attribute |
2766 | // specifies the strictest alignment requirement. |
2767 | AlignedAttr *OldAlignasAttr = nullptr; |
2768 | AlignedAttr *OldStrictestAlignAttr = nullptr; |
2769 | unsigned OldAlign = 0; |
2770 | for (auto *I : Old->specific_attrs<AlignedAttr>()) { |
2771 | // FIXME: We have no way of representing inherited dependent alignments |
2772 | // in a case like: |
2773 | // template<int A, int B> struct alignas(A) X; |
2774 | // template<int A, int B> struct alignas(B) X {}; |
2775 | // For now, we just ignore any alignas attributes which are not on the |
2776 | // definition in such a case. |
2777 | if (I->isAlignmentDependent()) |
2778 | return false; |
2779 | |
2780 | if (I->isAlignas()) |
2781 | OldAlignasAttr = I; |
2782 | |
2783 | unsigned Align = I->getAlignment(S.Context); |
2784 | if (Align > OldAlign) { |
2785 | OldAlign = Align; |
2786 | OldStrictestAlignAttr = I; |
2787 | } |
2788 | } |
2789 | |
2790 | // Look for alignas attributes on New. |
2791 | AlignedAttr *NewAlignasAttr = nullptr; |
2792 | unsigned NewAlign = 0; |
2793 | for (auto *I : New->specific_attrs<AlignedAttr>()) { |
2794 | if (I->isAlignmentDependent()) |
2795 | return false; |
2796 | |
2797 | if (I->isAlignas()) |
2798 | NewAlignasAttr = I; |
2799 | |
2800 | unsigned Align = I->getAlignment(S.Context); |
2801 | if (Align > NewAlign) |
2802 | NewAlign = Align; |
2803 | } |
2804 | |
2805 | if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) { |
2806 | // Both declarations have 'alignas' attributes. We require them to match. |
2807 | // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but |
2808 | // fall short. (If two declarations both have alignas, they must both match |
2809 | // every definition, and so must match each other if there is a definition.) |
2810 | |
2811 | // If either declaration only contains 'alignas(0)' specifiers, then it |
2812 | // specifies the natural alignment for the type. |
2813 | if (OldAlign == 0 || NewAlign == 0) { |
2814 | QualType Ty; |
2815 | if (ValueDecl *VD = dyn_cast<ValueDecl>(New)) |
2816 | Ty = VD->getType(); |
2817 | else |
2818 | Ty = S.Context.getTagDeclType(cast<TagDecl>(New)); |
2819 | |
2820 | if (OldAlign == 0) |
2821 | OldAlign = S.Context.getTypeAlign(Ty); |
2822 | if (NewAlign == 0) |
2823 | NewAlign = S.Context.getTypeAlign(Ty); |
2824 | } |
2825 | |
2826 | if (OldAlign != NewAlign) { |
2827 | S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch) |
2828 | << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity() |
2829 | << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity(); |
2830 | S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration); |
2831 | } |
2832 | } |
2833 | |
2834 | if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) { |
2835 | // C++11 [dcl.align]p6: |
2836 | // if any declaration of an entity has an alignment-specifier, |
2837 | // every defining declaration of that entity shall specify an |
2838 | // equivalent alignment. |
2839 | // C11 6.7.5/7: |
2840 | // If the definition of an object does not have an alignment |
2841 | // specifier, any other declaration of that object shall also |
2842 | // have no alignment specifier. |
2843 | S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition) |
2844 | << OldAlignasAttr; |
2845 | S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration) |
2846 | << OldAlignasAttr; |
2847 | } |
2848 | |
2849 | bool AnyAdded = false; |
2850 | |
2851 | // Ensure we have an attribute representing the strictest alignment. |
2852 | if (OldAlign > NewAlign) { |
2853 | AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context); |
2854 | Clone->setInherited(true); |
2855 | New->addAttr(Clone); |
2856 | AnyAdded = true; |
2857 | } |
2858 | |
2859 | // Ensure we have an alignas attribute if the old declaration had one. |
2860 | if (OldAlignasAttr && !NewAlignasAttr && |
2861 | !(AnyAdded && OldStrictestAlignAttr->isAlignas())) { |
2862 | AlignedAttr *Clone = OldAlignasAttr->clone(S.Context); |
2863 | Clone->setInherited(true); |
2864 | New->addAttr(Clone); |
2865 | AnyAdded = true; |
2866 | } |
2867 | |
2868 | return AnyAdded; |
2869 | } |
2870 | |
2871 | #define WANT_DECL_MERGE_LOGIC |
2872 | #include "clang/Sema/AttrParsedAttrImpl.inc" |
2873 | #undef WANT_DECL_MERGE_LOGIC |
2874 | |
2875 | static bool mergeDeclAttribute(Sema &S, NamedDecl *D, |
2876 | const InheritableAttr *Attr, |
2877 | Sema::AvailabilityMergeKind AMK) { |
2878 | // Diagnose any mutual exclusions between the attribute that we want to add |
2879 | // and attributes that already exist on the declaration. |
2880 | if (!DiagnoseMutualExclusions(S, D, Attr)) |
2881 | return false; |
2882 | |
2883 | // This function copies an attribute Attr from a previous declaration to the |
2884 | // new declaration D if the new declaration doesn't itself have that attribute |
2885 | // yet or if that attribute allows duplicates. |
2886 | // If you're adding a new attribute that requires logic different from |
2887 | // "use explicit attribute on decl if present, else use attribute from |
2888 | // previous decl", for example if the attribute needs to be consistent |
2889 | // between redeclarations, you need to call a custom merge function here. |
2890 | InheritableAttr *NewAttr = nullptr; |
2891 | if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr)) |
2892 | NewAttr = S.mergeAvailabilityAttr( |
2893 | D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(), |
2894 | AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(), |
2895 | AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK, |
2896 | AA->getPriority()); |
2897 | else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr)) |
2898 | NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility()); |
2899 | else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr)) |
2900 | NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility()); |
2901 | else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr)) |
2902 | NewAttr = S.mergeDLLImportAttr(D, *ImportA); |
2903 | else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr)) |
2904 | NewAttr = S.mergeDLLExportAttr(D, *ExportA); |
2905 | else if (const auto *EA = dyn_cast<ErrorAttr>(Attr)) |
2906 | NewAttr = S.mergeErrorAttr(D, *EA, EA->getUserDiagnostic()); |
2907 | else if (const auto *FA = dyn_cast<FormatAttr>(Attr)) |
2908 | NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(), |
2909 | FA->getFirstArg()); |
2910 | else if (const auto *SA = dyn_cast<SectionAttr>(Attr)) |
2911 | NewAttr = S.mergeSectionAttr(D, *SA, SA->getName()); |
2912 | else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr)) |
2913 | NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName()); |
2914 | else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr)) |
2915 | NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(), |
2916 | IA->getInheritanceModel()); |
2917 | else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr)) |
2918 | NewAttr = S.mergeAlwaysInlineAttr(D, *AA, |
2919 | &S.Context.Idents.get(AA->getSpelling())); |
2920 | else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) && |
2921 | (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) || |
2922 | isa<CUDAGlobalAttr>(Attr))) { |
2923 | // CUDA target attributes are part of function signature for |
2924 | // overloading purposes and must not be merged. |
2925 | return false; |
2926 | } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr)) |
2927 | NewAttr = S.mergeMinSizeAttr(D, *MA); |
2928 | else if (const auto *SNA = dyn_cast<SwiftNameAttr>(Attr)) |
2929 | NewAttr = S.mergeSwiftNameAttr(D, *SNA, SNA->getName()); |
2930 | else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr)) |
2931 | NewAttr = S.mergeOptimizeNoneAttr(D, *OA); |
2932 | else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr)) |
2933 | NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA); |
2934 | else if (isa<AlignedAttr>(Attr)) |
2935 | // AlignedAttrs are handled separately, because we need to handle all |
2936 | // such attributes on a declaration at the same time. |
2937 | NewAttr = nullptr; |
2938 | else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) && |
2939 | (AMK == Sema::AMK_Override || |
2940 | AMK == Sema::AMK_ProtocolImplementation || |
2941 | AMK == Sema::AMK_OptionalProtocolImplementation)) |
2942 | NewAttr = nullptr; |
2943 | else if (const auto *UA = dyn_cast<UuidAttr>(Attr)) |
2944 | NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid(), UA->getGuidDecl()); |
2945 | else if (const auto *IMA = dyn_cast<WebAssemblyImportModuleAttr>(Attr)) |
2946 | NewAttr = S.mergeImportModuleAttr(D, *IMA); |
2947 | else if (const auto *INA = dyn_cast<WebAssemblyImportNameAttr>(Attr)) |
2948 | NewAttr = S.mergeImportNameAttr(D, *INA); |
2949 | else if (const auto *TCBA = dyn_cast<EnforceTCBAttr>(Attr)) |
2950 | NewAttr = S.mergeEnforceTCBAttr(D, *TCBA); |
2951 | else if (const auto *TCBLA = dyn_cast<EnforceTCBLeafAttr>(Attr)) |
2952 | NewAttr = S.mergeEnforceTCBLeafAttr(D, *TCBLA); |
2953 | else if (const auto *BTFA = dyn_cast<BTFDeclTagAttr>(Attr)) |
2954 | NewAttr = S.mergeBTFDeclTagAttr(D, *BTFA); |
2955 | else if (const auto *NT = dyn_cast<HLSLNumThreadsAttr>(Attr)) |
2956 | NewAttr = |
2957 | S.mergeHLSLNumThreadsAttr(D, *NT, NT->getX(), NT->getY(), NT->getZ()); |
2958 | else if (const auto *SA = dyn_cast<HLSLShaderAttr>(Attr)) |
2959 | NewAttr = S.mergeHLSLShaderAttr(D, *SA, SA->getType()); |
2960 | else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr)) |
2961 | NewAttr = cast<InheritableAttr>(Attr->clone(S.Context)); |
2962 | |
2963 | if (NewAttr) { |
2964 | NewAttr->setInherited(true); |
2965 | D->addAttr(NewAttr); |
2966 | if (isa<MSInheritanceAttr>(NewAttr)) |
2967 | S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D)); |
2968 | return true; |
2969 | } |
2970 | |
2971 | return false; |
2972 | } |
2973 | |
2974 | static const NamedDecl *getDefinition(const Decl *D) { |
2975 | if (const TagDecl *TD = dyn_cast<TagDecl>(D)) |
2976 | return TD->getDefinition(); |
2977 | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
2978 | const VarDecl *Def = VD->getDefinition(); |
2979 | if (Def) |
2980 | return Def; |
2981 | return VD->getActingDefinition(); |
2982 | } |
2983 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
2984 | const FunctionDecl *Def = nullptr; |
2985 | if (FD->isDefined(Def, true)) |
2986 | return Def; |
2987 | } |
2988 | return nullptr; |
2989 | } |
2990 | |
2991 | static bool hasAttribute(const Decl *D, attr::Kind Kind) { |
2992 | for (const auto *Attribute : D->attrs()) |
2993 | if (Attribute->getKind() == Kind) |
2994 | return true; |
2995 | return false; |
2996 | } |
2997 | |
2998 | /// checkNewAttributesAfterDef - If we already have a definition, check that |
2999 | /// there are no new attributes in this declaration. |
3000 | static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) { |
3001 | if (!New->hasAttrs()) |
3002 | return; |
3003 | |
3004 | const NamedDecl *Def = getDefinition(Old); |
3005 | if (!Def || Def == New) |
3006 | return; |
3007 | |
3008 | AttrVec &NewAttributes = New->getAttrs(); |
3009 | for (unsigned I = 0, E = NewAttributes.size(); I != E;) { |
3010 | const Attr *NewAttribute = NewAttributes[I]; |
3011 | |
3012 | if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) { |
3013 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) { |
3014 | Sema::SkipBodyInfo SkipBody; |
3015 | S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody); |
3016 | |
3017 | // If we're skipping this definition, drop the "alias" attribute. |
3018 | if (SkipBody.ShouldSkip) { |
3019 | NewAttributes.erase(NewAttributes.begin() + I); |
3020 | --E; |
3021 | continue; |
3022 | } |
3023 | } else { |
3024 | VarDecl *VD = cast<VarDecl>(New); |
3025 | unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() == |
3026 | VarDecl::TentativeDefinition |
3027 | ? diag::err_alias_after_tentative |
3028 | : diag::err_redefinition; |
3029 | S.Diag(VD->getLocation(), Diag) << VD->getDeclName(); |
3030 | if (Diag == diag::err_redefinition) |
3031 | S.notePreviousDefinition(Def, VD->getLocation()); |
3032 | else |
3033 | S.Diag(Def->getLocation(), diag::note_previous_definition); |
3034 | VD->setInvalidDecl(); |
3035 | } |
3036 | ++I; |
3037 | continue; |
3038 | } |
3039 | |
3040 | if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) { |
3041 | // Tentative definitions are only interesting for the alias check above. |
3042 | if (VD->isThisDeclarationADefinition() != VarDecl::Definition) { |
3043 | ++I; |
3044 | continue; |
3045 | } |
3046 | } |
3047 | |
3048 | if (hasAttribute(Def, NewAttribute->getKind())) { |
3049 | ++I; |
3050 | continue; // regular attr merging will take care of validating this. |
3051 | } |
3052 | |
3053 | if (isa<C11NoReturnAttr>(NewAttribute)) { |
3054 | // C's _Noreturn is allowed to be added to a function after it is defined. |
3055 | ++I; |
3056 | continue; |
3057 | } else if (isa<UuidAttr>(NewAttribute)) { |
3058 | // msvc will allow a subsequent definition to add an uuid to a class |
3059 | ++I; |
3060 | continue; |
3061 | } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) { |
3062 | if (AA->isAlignas()) { |
3063 | // C++11 [dcl.align]p6: |
3064 | // if any declaration of an entity has an alignment-specifier, |
3065 | // every defining declaration of that entity shall specify an |
3066 | // equivalent alignment. |
3067 | // C11 6.7.5/7: |
3068 | // If the definition of an object does not have an alignment |
3069 | // specifier, any other declaration of that object shall also |
3070 | // have no alignment specifier. |
3071 | S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition) |
3072 | << AA; |
3073 | S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration) |
3074 | << AA; |
3075 | NewAttributes.erase(NewAttributes.begin() + I); |
3076 | --E; |
3077 | continue; |
3078 | } |
3079 | } else if (isa<LoaderUninitializedAttr>(NewAttribute)) { |
3080 | // If there is a C definition followed by a redeclaration with this |
3081 | // attribute then there are two different definitions. In C++, prefer the |
3082 | // standard diagnostics. |
3083 | if (!S.getLangOpts().CPlusPlus) { |
3084 | S.Diag(NewAttribute->getLocation(), |
3085 | diag::err_loader_uninitialized_redeclaration); |
3086 | S.Diag(Def->getLocation(), diag::note_previous_definition); |
3087 | NewAttributes.erase(NewAttributes.begin() + I); |
3088 | --E; |
3089 | continue; |
3090 | } |
3091 | } else if (isa<SelectAnyAttr>(NewAttribute) && |
3092 | cast<VarDecl>(New)->isInline() && |
3093 | !cast<VarDecl>(New)->isInlineSpecified()) { |
3094 | // Don't warn about applying selectany to implicitly inline variables. |
3095 | // Older compilers and language modes would require the use of selectany |
3096 | // to make such variables inline, and it would have no effect if we |
3097 | // honored it. |
3098 | ++I; |
3099 | continue; |
3100 | } else if (isa<OMPDeclareVariantAttr>(NewAttribute)) { |
3101 | // We allow to add OMP[Begin]DeclareVariantAttr to be added to |
3102 | // declarations after definitions. |
3103 | ++I; |
3104 | continue; |
3105 | } |
3106 | |
3107 | S.Diag(NewAttribute->getLocation(), |
3108 | diag::warn_attribute_precede_definition); |
3109 | S.Diag(Def->getLocation(), diag::note_previous_definition); |
3110 | NewAttributes.erase(NewAttributes.begin() + I); |
3111 | --E; |
3112 | } |
3113 | } |
3114 | |
3115 | static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl, |
3116 | const ConstInitAttr *CIAttr, |
3117 | bool AttrBeforeInit) { |
3118 | SourceLocation InsertLoc = InitDecl->getInnerLocStart(); |
3119 | |
3120 | // Figure out a good way to write this specifier on the old declaration. |
3121 | // FIXME: We should just use the spelling of CIAttr, but we don't preserve |
3122 | // enough of the attribute list spelling information to extract that without |
3123 | // heroics. |
3124 | std::string SuitableSpelling; |
3125 | if (S.getLangOpts().CPlusPlus20) |
3126 | SuitableSpelling = std::string( |
3127 | S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit})); |
3128 | if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11) |
3129 | SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling( |
3130 | InsertLoc, {tok::l_square, tok::l_square, |
3131 | S.PP.getIdentifierInfo("clang"), tok::coloncolon, |
3132 | S.PP.getIdentifierInfo("require_constant_initialization"), |
3133 | tok::r_square, tok::r_square})); |
3134 | if (SuitableSpelling.empty()) |
3135 | SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling( |
3136 | InsertLoc, {tok::kw___attribute, tok::l_paren, tok::r_paren, |
3137 | S.PP.getIdentifierInfo("require_constant_initialization"), |
3138 | tok::r_paren, tok::r_paren})); |
3139 | if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus20) |
3140 | SuitableSpelling = "constinit"; |
3141 | if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11) |
3142 | SuitableSpelling = "[[clang::require_constant_initialization]]"; |
3143 | if (SuitableSpelling.empty()) |
3144 | SuitableSpelling = "__attribute__((require_constant_initialization))"; |
3145 | SuitableSpelling += " "; |
3146 | |
3147 | if (AttrBeforeInit) { |
3148 | // extern constinit int a; |
3149 | // int a = 0; // error (missing 'constinit'), accepted as extension |
3150 | assert(CIAttr->isConstinit() && "should not diagnose this for attribute")(static_cast <bool> (CIAttr->isConstinit() && "should not diagnose this for attribute") ? void (0) : __assert_fail ("CIAttr->isConstinit() && \"should not diagnose this for attribute\"" , "clang/lib/Sema/SemaDecl.cpp", 3150, __extension__ __PRETTY_FUNCTION__ )); |
3151 | S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing) |
3152 | << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling); |
3153 | S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here); |
3154 | } else { |
3155 | // int a = 0; |
3156 | // constinit extern int a; // error (missing 'constinit') |
3157 | S.Diag(CIAttr->getLocation(), |
3158 | CIAttr->isConstinit() ? diag::err_constinit_added_too_late |
3159 | : diag::warn_require_const_init_added_too_late) |
3160 | << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation())); |
3161 | S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here) |
3162 | << CIAttr->isConstinit() |
3163 | << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling); |
3164 | } |
3165 | } |
3166 | |
3167 | /// mergeDeclAttributes - Copy attributes from the Old decl to the New one. |
3168 | void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old, |
3169 | AvailabilityMergeKind AMK) { |
3170 | if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) { |
3171 | UsedAttr *NewAttr = OldAttr->clone(Context); |
3172 | NewAttr->setInherited(true); |
3173 | New->addAttr(NewAttr); |
3174 | } |
3175 | if (RetainAttr *OldAttr = Old->getMostRecentDecl()->getAttr<RetainAttr>()) { |
3176 | RetainAttr *NewAttr = OldAttr->clone(Context); |
3177 | NewAttr->setInherited(true); |
3178 | New->addAttr(NewAttr); |
3179 | } |
3180 | |
3181 | if (!Old->hasAttrs() && !New->hasAttrs()) |
3182 | return; |
3183 | |
3184 | // [dcl.constinit]p1: |
3185 | // If the [constinit] specifier is applied to any declaration of a |
3186 | // variable, it shall be applied to the initializing declaration. |
3187 | const auto *OldConstInit = Old->getAttr<ConstInitAttr>(); |
3188 | const auto *NewConstInit = New->getAttr<ConstInitAttr>(); |
3189 | if (bool(OldConstInit) != bool(NewConstInit)) { |
3190 | const auto *OldVD = cast<VarDecl>(Old); |
3191 | auto *NewVD = cast<VarDecl>(New); |
3192 | |
3193 | // Find the initializing declaration. Note that we might not have linked |
3194 | // the new declaration into the redeclaration chain yet. |
3195 | const VarDecl *InitDecl = OldVD->getInitializingDeclaration(); |
3196 | if (!InitDecl && |
3197 | (NewVD->hasInit() || NewVD->isThisDeclarationADefinition())) |
3198 | InitDecl = NewVD; |
3199 | |
3200 | if (InitDecl == NewVD) { |
3201 | // This is the initializing declaration. If it would inherit 'constinit', |
3202 | // that's ill-formed. (Note that we do not apply this to the attribute |
3203 | // form). |
3204 | if (OldConstInit && OldConstInit->isConstinit()) |
3205 | diagnoseMissingConstinit(*this, NewVD, OldConstInit, |
3206 | /*AttrBeforeInit=*/true); |
3207 | } else if (NewConstInit) { |
3208 | // This is the first time we've been told that this declaration should |
3209 | // have a constant initializer. If we already saw the initializing |
3210 | // declaration, this is too late. |
3211 | if (InitDecl && InitDecl != NewVD) { |
3212 | diagnoseMissingConstinit(*this, InitDecl, NewConstInit, |
3213 | /*AttrBeforeInit=*/false); |
3214 | NewVD->dropAttr<ConstInitAttr>(); |
3215 | } |
3216 | } |
3217 | } |
3218 | |
3219 | // Attributes declared post-definition are currently ignored. |
3220 | checkNewAttributesAfterDef(*this, New, Old); |
3221 | |
3222 | if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) { |
3223 | if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) { |
3224 | if (!OldA->isEquivalent(NewA)) { |
3225 | // This redeclaration changes __asm__ label. |
3226 | Diag(New->getLocation(), diag::err_different_asm_label); |
3227 | Diag(OldA->getLocation(), diag::note_previous_declaration); |
3228 | } |
3229 | } else if (Old->isUsed()) { |
3230 | // This redeclaration adds an __asm__ label to a declaration that has |
3231 | // already been ODR-used. |
3232 | Diag(New->getLocation(), diag::err_late_asm_label_name) |
3233 | << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange(); |
3234 | } |
3235 | } |
3236 | |
3237 | // Re-declaration cannot add abi_tag's. |
3238 | if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) { |
3239 | if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) { |
3240 | for (const auto &NewTag : NewAbiTagAttr->tags()) { |
3241 | if (!llvm::is_contained(OldAbiTagAttr->tags(), NewTag)) { |
3242 | Diag(NewAbiTagAttr->getLocation(), |
3243 | diag::err_new_abi_tag_on_redeclaration) |
3244 | << NewTag; |
3245 | Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration); |
3246 | } |
3247 | } |
3248 | } else { |
3249 | Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration); |
3250 | Diag(Old->getLocation(), diag::note_previous_declaration); |
3251 | } |
3252 | } |
3253 | |
3254 | // This redeclaration adds a section attribute. |
3255 | if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) { |
3256 | if (auto *VD = dyn_cast<VarDecl>(New)) { |
3257 | if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) { |
3258 | Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration); |
3259 | Diag(Old->getLocation(), diag::note_previous_declaration); |
3260 | } |
3261 | } |
3262 | } |
3263 | |
3264 | // Redeclaration adds code-seg attribute. |
3265 | const auto *NewCSA = New->getAttr<CodeSegAttr>(); |
3266 | if (NewCSA && !Old->hasAttr<CodeSegAttr>() && |
3267 | !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) { |
3268 | Diag(New->getLocation(), diag::warn_mismatched_section) |
3269 | << 0 /*codeseg*/; |
3270 | Diag(Old->getLocation(), diag::note_previous_declaration); |
3271 | } |
3272 | |
3273 | if (!Old->hasAttrs()) |
3274 | return; |
3275 | |
3276 | bool foundAny = New->hasAttrs(); |
3277 | |
3278 | // Ensure that any moving of objects within the allocated map is done before |
3279 | // we process them. |
3280 | if (!foundAny) New->setAttrs(AttrVec()); |
3281 | |
3282 | for (auto *I : Old->specific_attrs<InheritableAttr>()) { |
3283 | // Ignore deprecated/unavailable/availability attributes if requested. |
3284 | AvailabilityMergeKind LocalAMK = AMK_None; |
3285 | if (isa<DeprecatedAttr>(I) || |
3286 | isa<UnavailableAttr>(I) || |
3287 | isa<AvailabilityAttr>(I)) { |
3288 | switch (AMK) { |
3289 | case AMK_None: |
3290 | continue; |
3291 | |
3292 | case AMK_Redeclaration: |
3293 | case AMK_Override: |
3294 | case AMK_ProtocolImplementation: |
3295 | case AMK_OptionalProtocolImplementation: |
3296 | LocalAMK = AMK; |
3297 | break; |
3298 | } |
3299 | } |
3300 | |
3301 | // Already handled. |
3302 | if (isa<UsedAttr>(I) || isa<RetainAttr>(I)) |
3303 | continue; |
3304 | |
3305 | if (mergeDeclAttribute(*this, New, I, LocalAMK)) |
3306 | foundAny = true; |
3307 | } |
3308 | |
3309 | if (mergeAlignedAttrs(*this, New, Old)) |
3310 | foundAny = true; |
3311 | |
3312 | if (!foundAny) New->dropAttrs(); |
3313 | } |
3314 | |
3315 | /// mergeParamDeclAttributes - Copy attributes from the old parameter |
3316 | /// to the new one. |
3317 | static void mergeParamDeclAttributes(ParmVarDecl *newDecl, |
3318 | const ParmVarDecl *oldDecl, |
3319 | Sema &S) { |
3320 | // C++11 [dcl.attr.depend]p2: |
3321 | // The first declaration of a function shall specify the |
3322 | // carries_dependency attribute for its declarator-id if any declaration |
3323 | // of the function specifies the carries_dependency attribute. |
3324 | const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>(); |
3325 | if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) { |
3326 | S.Diag(CDA->getLocation(), |
3327 | diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/; |
3328 | // Find the first declaration of the parameter. |
3329 | // FIXME: Should we build redeclaration chains for function parameters? |
3330 | const FunctionDecl *FirstFD = |
3331 | cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl(); |
3332 | const ParmVarDecl *FirstVD = |
3333 | FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex()); |
3334 | S.Diag(FirstVD->getLocation(), |
3335 | diag::note_carries_dependency_missing_first_decl) << 1/*Param*/; |
3336 | } |
3337 | |
3338 | if (!oldDecl->hasAttrs()) |
3339 | return; |
3340 | |
3341 | bool foundAny = newDecl->hasAttrs(); |
3342 | |
3343 | // Ensure that any moving of objects within the allocated map is |
3344 | // done before we process them. |
3345 | if (!foundAny) newDecl->setAttrs(AttrVec()); |
3346 | |
3347 | for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) { |
3348 | if (!DeclHasAttr(newDecl, I)) { |
3349 | InheritableAttr *newAttr = |
3350 | cast<InheritableParamAttr>(I->clone(S.Context)); |
3351 | newAttr->setInherited(true); |
3352 | newDecl->addAttr(newAttr); |
3353 | foundAny = true; |
3354 | } |
3355 | } |
3356 | |
3357 | if (!foundAny) newDecl->dropAttrs(); |
3358 | } |
3359 | |
3360 | static bool EquivalentArrayTypes(QualType Old, QualType New, |
3361 | const ASTContext &Ctx) { |
3362 | |
3363 | auto NoSizeInfo = [&Ctx](QualType Ty) { |
3364 | if (Ty->isIncompleteArrayType() || Ty->isPointerType()) |
3365 | return true; |
3366 | if (const auto *VAT = Ctx.getAsVariableArrayType(Ty)) |
3367 | return VAT->getSizeModifier() == ArrayType::ArraySizeModifier::Star; |
3368 | return false; |
3369 | }; |
3370 | |
3371 | // `type[]` is equivalent to `type *` and `type[*]`. |
3372 | if (NoSizeInfo(Old) && NoSizeInfo(New)) |
3373 | return true; |
3374 | |
3375 | // Don't try to compare VLA sizes, unless one of them has the star modifier. |
3376 | if (Old->isVariableArrayType() && New->isVariableArrayType()) { |
3377 | const auto *OldVAT = Ctx.getAsVariableArrayType(Old); |
3378 | const auto *NewVAT = Ctx.getAsVariableArrayType(New); |
3379 | if ((OldVAT->getSizeModifier() == ArrayType::ArraySizeModifier::Star) ^ |
3380 | (NewVAT->getSizeModifier() == ArrayType::ArraySizeModifier::Star)) |
3381 | return false; |
3382 | return true; |
3383 | } |
3384 | |
3385 | // Only compare size, ignore Size modifiers and CVR. |
3386 | if (Old->isConstantArrayType() && New->isConstantArrayType()) { |
3387 | return Ctx.getAsConstantArrayType(Old)->getSize() == |
3388 | Ctx.getAsConstantArrayType(New)->getSize(); |
3389 | } |
3390 | |
3391 | // Don't try to compare dependent sized array |
3392 | if (Old->isDependentSizedArrayType() && New->isDependentSizedArrayType()) { |
3393 | return true; |
3394 | } |
3395 | |
3396 | return Old == New; |
3397 | } |
3398 | |
3399 | static void mergeParamDeclTypes(ParmVarDecl *NewParam, |
3400 | const ParmVarDecl *OldParam, |
3401 | Sema &S) { |
3402 | if (auto Oldnullability = OldParam->getType()->getNullability()) { |
3403 | if (auto Newnullability = NewParam->getType()->getNullability()) { |
3404 | if (*Oldnullability != *Newnullability) { |
3405 | S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr) |
3406 | << DiagNullabilityKind( |
3407 | *Newnullability, |
3408 | ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) |
3409 | != 0)) |
3410 | << DiagNullabilityKind( |
3411 | *Oldnullability, |
3412 | ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) |
3413 | != 0)); |
3414 | S.Diag(OldParam->getLocation(), diag::note_previous_declaration); |
3415 | } |
3416 | } else { |
3417 | QualType NewT = NewParam->getType(); |
3418 | NewT = S.Context.getAttributedType( |
3419 | AttributedType::getNullabilityAttrKind(*Oldnullability), |
3420 | NewT, NewT); |
3421 | NewParam->setType(NewT); |
3422 | } |
3423 | } |
3424 | const auto *OldParamDT = dyn_cast<DecayedType>(OldParam->getType()); |
3425 | const auto *NewParamDT = dyn_cast<DecayedType>(NewParam->getType()); |
3426 | if (OldParamDT && NewParamDT && |
3427 | OldParamDT->getPointeeType() == NewParamDT->getPointeeType()) { |
3428 | QualType OldParamOT = OldParamDT->getOriginalType(); |
3429 | QualType NewParamOT = NewParamDT->getOriginalType(); |
3430 | if (!EquivalentArrayTypes(OldParamOT, NewParamOT, S.getASTContext())) { |
3431 | S.Diag(NewParam->getLocation(), diag::warn_inconsistent_array_form) |
3432 | << NewParam << NewParamOT; |
3433 | S.Diag(OldParam->getLocation(), diag::note_previous_declaration_as) |
3434 | << OldParamOT; |
3435 | } |
3436 | } |
3437 | } |
3438 | |
3439 | namespace { |
3440 | |
3441 | /// Used in MergeFunctionDecl to keep track of function parameters in |
3442 | /// C. |
3443 | struct GNUCompatibleParamWarning { |
3444 | ParmVarDecl *OldParm; |
3445 | ParmVarDecl *NewParm; |
3446 | QualType PromotedType; |
3447 | }; |
3448 | |
3449 | } // end anonymous namespace |
3450 | |
3451 | // Determine whether the previous declaration was a definition, implicit |
3452 | // declaration, or a declaration. |
3453 | template <typename T> |
3454 | static std::pair<diag::kind, SourceLocation> |
3455 | getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) { |
3456 | diag::kind PrevDiag; |
3457 | SourceLocation OldLocation = Old->getLocation(); |
3458 | if (Old->isThisDeclarationADefinition()) |
3459 | PrevDiag = diag::note_previous_definition; |
3460 | else if (Old->isImplicit()) { |
3461 | PrevDiag = diag::note_previous_implicit_declaration; |
3462 | if (const auto *FD = dyn_cast<FunctionDecl>(Old)) { |
3463 | if (FD->getBuiltinID()) |
3464 | PrevDiag = diag::note_previous_builtin_declaration; |
3465 | } |
3466 | if (OldLocation.isInvalid()) |
3467 | OldLocation = New->getLocation(); |
3468 | } else |
3469 | PrevDiag = diag::note_previous_declaration; |
3470 | return std::make_pair(PrevDiag, OldLocation); |
3471 | } |
3472 | |
3473 | /// canRedefineFunction - checks if a function can be redefined. Currently, |
3474 | /// only extern inline functions can be redefined, and even then only in |
3475 | /// GNU89 mode. |
3476 | static bool canRedefineFunction(const FunctionDecl *FD, |
3477 | const LangOptions& LangOpts) { |
3478 | return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) && |
3479 | !LangOpts.CPlusPlus && |
3480 | FD->isInlineSpecified() && |
3481 | FD->getStorageClass() == SC_Extern); |
3482 | } |
3483 | |
3484 | const AttributedType *Sema::getCallingConvAttributedType(QualType T) const { |
3485 | const AttributedType *AT = T->getAs<AttributedType>(); |
3486 | while (AT && !AT->isCallingConv()) |
3487 | AT = AT->getModifiedType()->getAs<AttributedType>(); |
3488 | return AT; |
3489 | } |
3490 | |
3491 | template <typename T> |
3492 | static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) { |
3493 | const DeclContext *DC = Old->getDeclContext(); |
3494 | if (DC->isRecord()) |
3495 | return false; |
3496 | |
3497 | LanguageLinkage OldLinkage = Old->getLanguageLinkage(); |
3498 | if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext()) |
3499 | return true; |
3500 | if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext()) |
3501 | return true; |
3502 | return false; |
3503 | } |
3504 | |
3505 | template<typename T> static bool isExternC(T *D) { return D->isExternC(); } |
3506 | static bool isExternC(VarTemplateDecl *) { return false; } |
3507 | static bool isExternC(FunctionTemplateDecl *) { return false; } |
3508 | |
3509 | /// Check whether a redeclaration of an entity introduced by a |
3510 | /// using-declaration is valid, given that we know it's not an overload |
3511 | /// (nor a hidden tag declaration). |
3512 | template<typename ExpectedDecl> |
3513 | static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS, |
3514 | ExpectedDecl *New) { |
3515 | // C++11 [basic.scope.declarative]p4: |
3516 | // Given a set of declarations in a single declarative region, each of |
3517 | // which specifies the same unqualified name, |
3518 | // -- they shall all refer to the same entity, or all refer to functions |
3519 | // and function templates; or |
3520 | // -- exactly one declaration shall declare a class name or enumeration |
3521 | // name that is not a typedef name and the other declarations shall all |
3522 | // refer to the same variable or enumerator, or all refer to functions |
3523 | // and function templates; in this case the class name or enumeration |
3524 | // name is hidden (3.3.10). |
3525 | |
3526 | // C++11 [namespace.udecl]p14: |
3527 | // If a function declaration in namespace scope or block scope has the |
3528 | // same name and the same parameter-type-list as a function introduced |
3529 | // by a using-declaration, and the declarations do not declare the same |
3530 | // function, the program is ill-formed. |
3531 | |
3532 | auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl()); |
3533 | if (Old && |
3534 | !Old->getDeclContext()->getRedeclContext()->Equals( |
3535 | New->getDeclContext()->getRedeclContext()) && |
3536 | !(isExternC(Old) && isExternC(New))) |
3537 | Old = nullptr; |
3538 | |
3539 | if (!Old) { |
3540 | S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse); |
3541 | S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target); |
3542 | S.Diag(OldS->getIntroducer()->getLocation(), diag::note_using_decl) << 0; |
3543 | return true; |
3544 | } |
3545 | return false; |
3546 | } |
3547 | |
3548 | static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A, |
3549 | const FunctionDecl *B) { |
3550 | assert(A->getNumParams() == B->getNumParams())(static_cast <bool> (A->getNumParams() == B->getNumParams ()) ? void (0) : __assert_fail ("A->getNumParams() == B->getNumParams()" , "clang/lib/Sema/SemaDecl.cpp", 3550, __extension__ __PRETTY_FUNCTION__ )); |
3551 | |
3552 | auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) { |
3553 | const auto *AttrA = A->getAttr<PassObjectSizeAttr>(); |
3554 | const auto *AttrB = B->getAttr<PassObjectSizeAttr>(); |
3555 | if (AttrA == AttrB) |
3556 | return true; |
3557 | return AttrA && AttrB && AttrA->getType() == AttrB->getType() && |
3558 | AttrA->isDynamic() == AttrB->isDynamic(); |
3559 | }; |
3560 | |
3561 | return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq); |
3562 | } |
3563 | |
3564 | /// If necessary, adjust the semantic declaration context for a qualified |
3565 | /// declaration to name the correct inline namespace within the qualifier. |
3566 | static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD, |
3567 | DeclaratorDecl *OldD) { |
3568 | // The only case where we need to update the DeclContext is when |
3569 | // redeclaration lookup for a qualified name finds a declaration |
3570 | // in an inline namespace within the context named by the qualifier: |
3571 | // |
3572 | // inline namespace N { int f(); } |
3573 | // int ::f(); // Sema DC needs adjusting from :: to N::. |
3574 | // |
3575 | // For unqualified declarations, the semantic context *can* change |
3576 | // along the redeclaration chain (for local extern declarations, |
3577 | // extern "C" declarations, and friend declarations in particular). |
3578 | if (!NewD->getQualifier()) |
3579 | return; |
3580 | |
3581 | // NewD is probably already in the right context. |
3582 | auto *NamedDC = NewD->getDeclContext()->getRedeclContext(); |
3583 | auto *SemaDC = OldD->getDeclContext()->getRedeclContext(); |
3584 | if (NamedDC->Equals(SemaDC)) |
3585 | return; |
3586 | |
3587 | assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||(static_cast <bool> ((NamedDC->InEnclosingNamespaceSetOf (SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl ()) && "unexpected context for redeclaration") ? void (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\"" , "clang/lib/Sema/SemaDecl.cpp", 3589, __extension__ __PRETTY_FUNCTION__ )) |
3588 | NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&(static_cast <bool> ((NamedDC->InEnclosingNamespaceSetOf (SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl ()) && "unexpected context for redeclaration") ? void (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\"" , "clang/lib/Sema/SemaDecl.cpp", 3589, __extension__ __PRETTY_FUNCTION__ )) |
3589 | "unexpected context for redeclaration")(static_cast <bool> ((NamedDC->InEnclosingNamespaceSetOf (SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl ()) && "unexpected context for redeclaration") ? void (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\"" , "clang/lib/Sema/SemaDecl.cpp", 3589, __extension__ __PRETTY_FUNCTION__ )); |
3590 | |
3591 | auto *LexDC = NewD->getLexicalDeclContext(); |
3592 | auto FixSemaDC = [=](NamedDecl *D) { |
3593 | if (!D) |
3594 | return; |
3595 | D->setDeclContext(SemaDC); |
3596 | D->setLexicalDeclContext(LexDC); |
3597 | }; |
3598 | |
3599 | FixSemaDC(NewD); |
3600 | if (auto *FD = dyn_cast<FunctionDecl>(NewD)) |
3601 | FixSemaDC(FD->getDescribedFunctionTemplate()); |
3602 | else if (auto *VD = dyn_cast<VarDecl>(NewD)) |
3603 | FixSemaDC(VD->getDescribedVarTemplate()); |
3604 | } |
3605 | |
3606 | /// MergeFunctionDecl - We just parsed a function 'New' from |
3607 | /// declarator D which has the same name and scope as a previous |
3608 | /// declaration 'Old'. Figure out how to resolve this situation, |
3609 | /// merging decls or emitting diagnostics as appropriate. |
3610 | /// |
3611 | /// In C++, New and Old must be declarations that are not |
3612 | /// overloaded. Use IsOverload to determine whether New and Old are |
3613 | /// overloaded, and to select the Old declaration that New should be |
3614 | /// merged with. |
3615 | /// |
3616 | /// Returns true if there was an error, false otherwise. |
3617 | bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD, Scope *S, |
3618 | bool MergeTypeWithOld, bool NewDeclIsDefn) { |
3619 | // Verify the old decl was also a function. |
3620 | FunctionDecl *Old = OldD->getAsFunction(); |
3621 | if (!Old) { |
3622 | if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) { |
3623 | if (New->getFriendObjectKind()) { |
3624 | Diag(New->getLocation(), diag::err_using_decl_friend); |
3625 | Diag(Shadow->getTargetDecl()->getLocation(), |
3626 | diag::note_using_decl_target); |
3627 | Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) |
3628 | << 0; |
3629 | return true; |
3630 | } |
3631 | |
3632 | // Check whether the two declarations might declare the same function or |
3633 | // function template. |
3634 | if (FunctionTemplateDecl *NewTemplate = |
3635 | New->getDescribedFunctionTemplate()) { |
3636 | if (checkUsingShadowRedecl<FunctionTemplateDecl>(*this, Shadow, |
3637 | NewTemplate)) |
3638 | return true; |
3639 | OldD = Old = cast<FunctionTemplateDecl>(Shadow->getTargetDecl()) |
3640 | ->getAsFunction(); |
3641 | } else { |
3642 | if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New)) |
3643 | return true; |
3644 | OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl()); |
3645 | } |
3646 | } else { |
3647 | Diag(New->getLocation(), diag::err_redefinition_different_kind) |
3648 | << New->getDeclName(); |
3649 | notePreviousDefinition(OldD, New->getLocation()); |
3650 | return true; |
3651 | } |
3652 | } |
3653 | |
3654 | // If the old declaration was found in an inline namespace and the new |
3655 | // declaration was qualified, update the DeclContext to match. |
3656 | adjustDeclContextForDeclaratorDecl(New, Old); |
3657 | |
3658 | // If the old declaration is invalid, just give up here. |
3659 | if (Old->isInvalidDecl()) |
3660 | return true; |
3661 | |
3662 | // Disallow redeclaration of some builtins. |
3663 | if (!getASTContext().canBuiltinBeRedeclared(Old)) { |
3664 | Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName(); |
3665 | Diag(Old->getLocation(), diag::note_previous_builtin_declaration) |
3666 | << Old << Old->getType(); |
3667 | return true; |
3668 | } |
3669 | |
3670 | diag::kind PrevDiag; |
3671 | SourceLocation OldLocation; |
3672 | std::tie(PrevDiag, OldLocation) = |
3673 | getNoteDiagForInvalidRedeclaration(Old, New); |
3674 | |
3675 | // Don't complain about this if we're in GNU89 mode and the old function |
3676 | // is an extern inline function. |
3677 | // Don't complain about specializations. They are not supposed to have |
3678 | // storage classes. |
3679 | if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) && |
3680 | New->getStorageClass() == SC_Static && |
3681 | Old->hasExternalFormalLinkage() && |
3682 | !New->getTemplateSpecializationInfo() && |
3683 | !canRedefineFunction(Old, getLangOpts())) { |
3684 | if (getLangOpts().MicrosoftExt) { |
3685 | Diag(New->getLocation(), diag::ext_static_non_static) << New; |
3686 | Diag(OldLocation, PrevDiag); |
3687 | } else { |
3688 | Diag(New->getLocation(), diag::err_static_non_static) << New; |
3689 | Diag(OldLocation, PrevDiag); |
3690 | return true; |
3691 | } |
3692 | } |
3693 | |
3694 | if (const auto *ILA = New->getAttr<InternalLinkageAttr>()) |
3695 | if (!Old->hasAttr<InternalLinkageAttr>()) { |
3696 | Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl) |
3697 | << ILA; |
3698 | Diag(Old->getLocation(), diag::note_previous_declaration); |
3699 | New->dropAttr<InternalLinkageAttr>(); |
3700 | } |
3701 | |
3702 | if (auto *EA = New->getAttr<ErrorAttr>()) { |
3703 | if (!Old->hasAttr<ErrorAttr>()) { |
3704 | Diag(EA->getLocation(), diag::err_attribute_missing_on_first_decl) << EA; |
3705 | Diag(Old->getLocation(), diag::note_previous_declaration); |
3706 | New->dropAttr<ErrorAttr>(); |
3707 | } |
3708 | } |
3709 | |
3710 | if (CheckRedeclarationInModule(New, Old)) |
3711 | return true; |
3712 | |
3713 | if (!getLangOpts().CPlusPlus) { |
3714 | bool OldOvl = Old->hasAttr<OverloadableAttr>(); |
3715 | if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) { |
3716 | Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch) |
3717 | << New << OldOvl; |
3718 | |
3719 | // Try our best to find a decl that actually has the overloadable |
3720 | // attribute for the note. In most cases (e.g. programs with only one |
3721 | // broken declaration/definition), this won't matter. |
3722 | // |
3723 | // FIXME: We could do this if we juggled some extra state in |
3724 | // OverloadableAttr, rather than just removing it. |
3725 | const Decl *DiagOld = Old; |
3726 | if (OldOvl) { |
3727 | auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) { |
3728 | const auto *A = D->getAttr<OverloadableAttr>(); |
3729 | return A && !A->isImplicit(); |
3730 | }); |
3731 | // If we've implicitly added *all* of the overloadable attrs to this |
3732 | // chain, emitting a "previous redecl" note is pointless. |
3733 | DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter; |
3734 | } |
3735 | |
3736 | if (DiagOld) |
3737 | Diag(DiagOld->getLocation(), |
3738 | diag::note_attribute_overloadable_prev_overload) |
3739 | << OldOvl; |
3740 | |
3741 | if (OldOvl) |
3742 | New->addAttr(OverloadableAttr::CreateImplicit(Context)); |
3743 | else |
3744 | New->dropAttr<OverloadableAttr>(); |
3745 | } |
3746 | } |
3747 | |
3748 | // If a function is first declared with a calling convention, but is later |
3749 | // declared or defined without one, all following decls assume the calling |
3750 | // convention of the first. |
3751 | // |
3752 | // It's OK if a function is first declared without a calling convention, |
3753 | // but is later declared or defined with the default calling convention. |
3754 | // |
3755 | // To test if either decl has an explicit calling convention, we look for |
3756 | // AttributedType sugar nodes on the type as written. If they are missing or |
3757 | // were canonicalized away, we assume the calling convention was implicit. |
3758 | // |
3759 | // Note also that we DO NOT return at this point, because we still have |
3760 | // other tests to run. |
3761 | QualType OldQType = Context.getCanonicalType(Old->getType()); |
3762 | QualType NewQType = Context.getCanonicalType(New->getType()); |
3763 | const FunctionType *OldType = cast<FunctionType>(OldQType); |
3764 | const FunctionType *NewType = cast<FunctionType>(NewQType); |
3765 | FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); |
3766 | FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); |
3767 | bool RequiresAdjustment = false; |
3768 | |
3769 | if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) { |
3770 | FunctionDecl *First = Old->getFirstDecl(); |
3771 | const FunctionType *FT = |
3772 | First->getType().getCanonicalType()->castAs<FunctionType>(); |
3773 | FunctionType::ExtInfo FI = FT->getExtInfo(); |
3774 | bool NewCCExplicit = getCallingConvAttributedType(New->getType()); |
3775 | if (!NewCCExplicit) { |
3776 | // Inherit the CC from the previous declaration if it was specified |
3777 | // there but not here. |
3778 | NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); |
3779 | RequiresAdjustment = true; |
3780 | } else if (Old->getBuiltinID()) { |
3781 | // Builtin attribute isn't propagated to the new one yet at this point, |
3782 | // so we check if the old one is a builtin. |
3783 | |
3784 | // Calling Conventions on a Builtin aren't really useful and setting a |
3785 | // default calling convention and cdecl'ing some builtin redeclarations is |
3786 | // common, so warn and ignore the calling convention on the redeclaration. |
3787 | Diag(New->getLocation(), diag::warn_cconv_unsupported) |
3788 | << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) |
3789 | << (int)CallingConventionIgnoredReason::BuiltinFunction; |
3790 | NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); |
3791 | RequiresAdjustment = true; |
3792 | } else { |
3793 | // Calling conventions aren't compatible, so complain. |
3794 | bool FirstCCExplicit = getCallingConvAttributedType(First->getType()); |
3795 | Diag(New->getLocation(), diag::err_cconv_change) |
3796 | << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) |
3797 | << !FirstCCExplicit |
3798 | << (!FirstCCExplicit ? "" : |
3799 | FunctionType::getNameForCallConv(FI.getCC())); |
3800 | |
3801 | // Put the note on the first decl, since it is the one that matters. |
3802 | Diag(First->getLocation(), diag::note_previous_declaration); |
3803 | return true; |
3804 | } |
3805 | } |
3806 | |
3807 | // FIXME: diagnose the other way around? |
3808 | if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) { |
3809 | NewTypeInfo = NewTypeInfo.withNoReturn(true); |
3810 | RequiresAdjustment = true; |
3811 | } |
3812 | |
3813 | // Merge regparm attribute. |
3814 | if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() || |
3815 | OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) { |
3816 | if (NewTypeInfo.getHasRegParm()) { |
3817 | Diag(New->getLocation(), diag::err_regparm_mismatch) |
3818 | << NewType->getRegParmType() |
3819 | << OldType->getRegParmType(); |
3820 | Diag(OldLocation, diag::note_previous_declaration); |
3821 | return true; |
3822 | } |
3823 | |
3824 | NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm()); |
3825 | RequiresAdjustment = true; |
3826 | } |
3827 | |
3828 | // Merge ns_returns_retained attribute. |
3829 | if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) { |
3830 | if (NewTypeInfo.getProducesResult()) { |
3831 | Diag(New->getLocation(), diag::err_function_attribute_mismatch) |
3832 | << "'ns_returns_retained'"; |
3833 | Diag(OldLocation, diag::note_previous_declaration); |
3834 | return true; |
3835 | } |
3836 | |
3837 | NewTypeInfo = NewTypeInfo.withProducesResult(true); |
3838 | RequiresAdjustment = true; |
3839 | } |
3840 | |
3841 | if (OldTypeInfo.getNoCallerSavedRegs() != |
3842 | NewTypeInfo.getNoCallerSavedRegs()) { |
3843 | if (NewTypeInfo.getNoCallerSavedRegs()) { |
3844 | AnyX86NoCallerSavedRegistersAttr *Attr = |
3845 | New->getAttr<AnyX86NoCallerSavedRegistersAttr>(); |
3846 | Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr; |
3847 | Diag(OldLocation, diag::note_previous_declaration); |
3848 | return true; |
3849 | } |
3850 | |
3851 | NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true); |
3852 | RequiresAdjustment = true; |
3853 | } |
3854 | |
3855 | if (RequiresAdjustment) { |
3856 | const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>(); |
3857 | AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo); |
3858 | New->setType(QualType(AdjustedType, 0)); |
3859 | NewQType = Context.getCanonicalType(New->getType()); |
3860 | } |
3861 | |
3862 | // If this redeclaration makes the function inline, we may need to add it to |
3863 | // UndefinedButUsed. |
3864 | if (!Old->isInlined() && New->isInlined() && |
3865 | !New->hasAttr<GNUInlineAttr>() && |
3866 | !getLangOpts().GNUInline && |
3867 | Old->isUsed(false) && |
3868 | !Old->isDefined() && !New->isThisDeclarationADefinition()) |
3869 | UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(), |
3870 | SourceLocation())); |
3871 | |
3872 | // If this redeclaration makes it newly gnu_inline, we don't want to warn |
3873 | // about it. |
3874 | if (New->hasAttr<GNUInlineAttr>() && |
3875 | Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) { |
3876 | UndefinedButUsed.erase(Old->getCanonicalDecl()); |
3877 | } |
3878 | |
3879 | // If pass_object_size params don't match up perfectly, this isn't a valid |
3880 | // redeclaration. |
3881 | if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() && |
3882 | !hasIdenticalPassObjectSizeAttrs(Old, New)) { |
3883 | Diag(New->getLocation(), diag::err_different_pass_object_size_params) |
3884 | << New->getDeclName(); |
3885 | Diag(OldLocation, PrevDiag) << Old << Old->getType(); |
3886 | return true; |
3887 | } |
3888 | |
3889 | if (getLangOpts().CPlusPlus) { |
3890 | // C++1z [over.load]p2 |
3891 | // Certain function declarations cannot be overloaded: |
3892 | // -- Function declarations that differ only in the return type, |
3893 | // the exception specification, or both cannot be overloaded. |
3894 | |
3895 | // Check the exception specifications match. This may recompute the type of |
3896 | // both Old and New if it resolved exception specifications, so grab the |
3897 | // types again after this. Because this updates the type, we do this before |
3898 | // any of the other checks below, which may update the "de facto" NewQType |
3899 | // but do not necessarily update the type of New. |
3900 | if (CheckEquivalentExceptionSpec(Old, New)) |
3901 | return true; |
3902 | OldQType = Context.getCanonicalType(Old->getType()); |
3903 | NewQType = Context.getCanonicalType(New->getType()); |
3904 | |
3905 | // Go back to the type source info to compare the declared return types, |
3906 | // per C++1y [dcl.type.auto]p13: |
3907 | // Redeclarations or specializations of a function or function template |
3908 | // with a declared return type that uses a placeholder type shall also |
3909 | // use that placeholder, not a deduced type. |
3910 | QualType OldDeclaredReturnType = Old->getDeclaredReturnType(); |
3911 | QualType NewDeclaredReturnType = New->getDeclaredReturnType(); |
3912 | if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) && |
3913 | canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType, |
3914 | OldDeclaredReturnType)) { |
3915 | QualType ResQT; |
3916 | if (NewDeclaredReturnType->isObjCObjectPointerType() && |
3917 | OldDeclaredReturnType->isObjCObjectPointerType()) |
3918 | // FIXME: This does the wrong thing for a deduced return type. |
3919 | ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType); |
3920 | if (ResQT.isNull()) { |
3921 | if (New->isCXXClassMember() && New->isOutOfLine()) |
3922 | Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type) |
3923 | << New << New->getReturnTypeSourceRange(); |
3924 | else |
3925 | Diag(New->getLocation(), diag::err_ovl_diff_return_type) |
3926 | << New->getReturnTypeSourceRange(); |
3927 | Diag(OldLocation, PrevDiag) << Old << Old->getType() |
3928 | << Old->getReturnTypeSourceRange(); |
3929 | return true; |
3930 | } |
3931 | else |
3932 | NewQType = ResQT; |
3933 | } |
3934 | |
3935 | QualType OldReturnType = OldType->getReturnType(); |
3936 | QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType(); |
3937 | if (OldReturnType != NewReturnType) { |
3938 | // If this function has a deduced return type and has already been |
3939 | // defined, copy the deduced value from the old declaration. |
3940 | AutoType *OldAT = Old->getReturnType()->getContainedAutoType(); |
3941 | if (OldAT && OldAT->isDeduced()) { |
3942 | QualType DT = OldAT->getDeducedType(); |
3943 | if (DT.isNull()) { |
3944 | New->setType(SubstAutoTypeDependent(New->getType())); |
3945 | NewQType = Context.getCanonicalType(SubstAutoTypeDependent(NewQType)); |
3946 | } else { |
3947 | New->setType(SubstAutoType(New->getType(), DT)); |
3948 | NewQType = Context.getCanonicalType(SubstAutoType(NewQType, DT)); |
3949 | } |
3950 | } |
3951 | } |
3952 | |
3953 | const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); |
3954 | CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); |
3955 | if (OldMethod && NewMethod) { |
3956 | // Preserve triviality. |
3957 | NewMethod->setTrivial(OldMethod->isTrivial()); |
3958 | |
3959 | // MSVC allows explicit template specialization at class scope: |
3960 | // 2 CXXMethodDecls referring to the same function will be injected. |
3961 | // We don't want a redeclaration error. |
3962 | bool IsClassScopeExplicitSpecialization = |
3963 | OldMethod->isFunctionTemplateSpecialization() && |
3964 | NewMethod->isFunctionTemplateSpecialization(); |
3965 | bool isFriend = NewMethod->getFriendObjectKind(); |
3966 | |
3967 | if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() && |
3968 | !IsClassScopeExplicitSpecialization) { |
3969 | // -- Member function declarations with the same name and the |
3970 | // same parameter types cannot be overloaded if any of them |
3971 | // is a static member function declaration. |
3972 | if (OldMethod->isStatic() != NewMethod->isStatic()) { |
3973 | Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member); |
3974 | Diag(OldLocation, PrevDiag) << Old << Old->getType(); |
3975 | return true; |
3976 | } |
3977 | |
3978 | // C++ [class.mem]p1: |
3979 | // [...] A member shall not be declared twice in the |
3980 | // member-specification, except that a nested class or member |
3981 | // class template can be declared and then later defined. |
3982 | if (!inTemplateInstantiation()) { |
3983 | unsigned NewDiag; |
3984 | if (isa<CXXConstructorDecl>(OldMethod)) |
3985 | NewDiag = diag::err_constructor_redeclared; |
3986 | else if (isa<CXXDestructorDecl>(NewMethod)) |
3987 | NewDiag = diag::err_destructor_redeclared; |
3988 | else if (isa<CXXConversionDecl>(NewMethod)) |
3989 | NewDiag = diag::err_conv_function_redeclared; |
3990 | else |
3991 | NewDiag = diag::err_member_redeclared; |
3992 | |
3993 | Diag(New->getLocation(), NewDiag); |
3994 | } else { |
3995 | Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation) |
3996 | << New << New->getType(); |
3997 | } |
3998 | Diag(OldLocation, PrevDiag) << Old << Old->getType(); |
3999 | return true; |
4000 | |
4001 | // Complain if this is an explicit declaration of a special |
4002 | // member that was initially declared implicitly. |
4003 | // |
4004 | // As an exception, it's okay to befriend such methods in order |
4005 | // to permit the implicit constructor/destructor/operator calls. |
4006 | } else if (OldMethod->isImplicit()) { |
4007 | if (isFriend) { |
4008 | NewMethod->setImplicit(); |
4009 | } else { |
4010 | Diag(NewMethod->getLocation(), |
4011 | diag::err_definition_of_implicitly_declared_member) |
4012 | << New << getSpecialMember(OldMethod); |
4013 | return true; |
4014 | } |
4015 | } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) { |
4016 | Diag(NewMethod->getLocation(), |
4017 | diag::err_definition_of_explicitly_defaulted_member) |
4018 | << getSpecialMember(OldMethod); |
4019 | return true; |
4020 | } |
4021 | } |
4022 | |
4023 | // C++11 [dcl.attr.noreturn]p1: |
4024 | // The first declaration of a function shall specify the noreturn |
4025 | // attribute if any declaration of that function specifies the noreturn |
4026 | // attribute. |
4027 | if (const auto *NRA = New->getAttr<CXX11NoReturnAttr>()) |
4028 | if (!Old->hasAttr<CXX11NoReturnAttr>()) { |
4029 | Diag(NRA->getLocation(), diag::err_attribute_missing_on_first_decl) |
4030 | << NRA; |
4031 | Diag(Old->getLocation(), diag::note_previous_declaration); |
4032 | } |
4033 | |
4034 | // C++11 [dcl.attr.depend]p2: |
4035 | // The first declaration of a function shall specify the |
4036 | // carries_dependency attribute for its declarator-id if any declaration |
4037 | // of the function specifies the carries_dependency attribute. |
4038 | const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>(); |
4039 | if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) { |
4040 | Diag(CDA->getLocation(), |
4041 | diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/; |
4042 | Diag(Old->getFirstDecl()->getLocation(), |
4043 | diag::note_carries_dependency_missing_first_decl) << 0/*Function*/; |
4044 | } |
4045 | |
4046 | // (C++98 8.3.5p3): |
4047 | // All declarations for a function shall agree exactly in both the |
4048 | // return type and the parameter-type-list. |
4049 | // We also want to respect all the extended bits except noreturn. |
4050 | |
4051 | // noreturn should now match unless the old type info didn't have it. |
4052 | QualType OldQTypeForComparison = OldQType; |
4053 | if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) { |
4054 | auto *OldType = OldQType->castAs<FunctionProtoType>(); |
4055 | const FunctionType *OldTypeForComparison |
4056 | = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true)); |
4057 | OldQTypeForComparison = QualType(OldTypeForComparison, 0); |
4058 | assert(OldQTypeForComparison.isCanonical())(static_cast <bool> (OldQTypeForComparison.isCanonical( )) ? void (0) : __assert_fail ("OldQTypeForComparison.isCanonical()" , "clang/lib/Sema/SemaDecl.cpp", 4058, __extension__ __PRETTY_FUNCTION__ )); |
4059 | } |
4060 | |
4061 | if (haveIncompatibleLanguageLinkages(Old, New)) { |
4062 | // As a special case, retain the language linkage from previous |
4063 | // declarations of a friend function as an extension. |
4064 | // |
4065 | // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC |
4066 | // and is useful because there's otherwise no way to specify language |
4067 | // linkage within class scope. |
4068 | // |
4069 | // Check cautiously as the friend object kind isn't yet complete. |
4070 | if (New->getFriendObjectKind() != Decl::FOK_None) { |
4071 | Diag(New->getLocation(), diag::ext_retained_language_linkage) << New; |
4072 | Diag(OldLocation, PrevDiag); |
4073 | } else { |
4074 | Diag(New->getLocation(), diag::err_different_language_linkage) << New; |
4075 | Diag(OldLocation, PrevDiag); |
4076 | return true; |
4077 | } |
4078 | } |
4079 | |
4080 | // If the function types are compatible, merge the declarations. Ignore the |
4081 | // exception specifier because it was already checked above in |
4082 | // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics |
4083 | // about incompatible types under -fms-compatibility. |
4084 | if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison, |
4085 | NewQType)) |
4086 | return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); |
4087 | |
4088 | // If the types are imprecise (due to dependent constructs in friends or |
4089 | // local extern declarations), it's OK if they differ. We'll check again |
4090 | // during instantiation. |
4091 | if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType)) |
4092 | return false; |
4093 | |
4094 | // Fall through for conflicting redeclarations and redefinitions. |
4095 | } |
4096 | |
4097 | // C: Function types need to be compatible, not identical. This handles |
4098 | // duplicate function decls like "void f(int); void f(enum X);" properly. |
4099 | if (!getLangOpts().CPlusPlus) { |
4100 | // C99 6.7.5.3p15: ...If one type has a parameter type list and the other |
4101 | // type is specified by a function definition that contains a (possibly |
4102 | // empty) identifier list, both shall agree in the number of parameters |
4103 | // and the type of each parameter shall be compatible with the type that |
4104 | // results from the application of default argument promotions to the |
4105 | // type of the corresponding identifier. ... |
4106 | // This cannot be handled by ASTContext::typesAreCompatible() because that |
4107 | // doesn't know whether the function type is for a definition or not when |
4108 | // eventually calling ASTContext::mergeFunctionTypes(). The only situation |
4109 | // we need to cover here is that the number of arguments agree as the |
4110 | // default argument promotion rules were already checked by |
4111 | // ASTContext::typesAreCompatible(). |
4112 | if (Old->hasPrototype() && !New->hasWrittenPrototype() && NewDeclIsDefn && |
4113 | Old->getNumParams() != New->getNumParams() && !Old->isImplicit()) { |
4114 | if (Old->hasInheritedPrototype()) |
4115 | Old = Old->getCanonicalDecl(); |
4116 | Diag(New->getLocation(), diag::err_conflicting_types) << New; |
4117 | Diag(Old->getLocation(), PrevDiag) << Old << Old->getType(); |
4118 | return true; |
4119 | } |
4120 | |
4121 | // If we are merging two functions where only one of them has a prototype, |
4122 | // we may have enough information to decide to issue a diagnostic that the |
4123 | // function without a protoype will change behavior in C2x. This handles |
4124 | // cases like: |
4125 | // void i(); void i(int j); |
4126 | // void i(int j); void i(); |
4127 | // void i(); void i(int j) {} |
4128 | // See ActOnFinishFunctionBody() for other cases of the behavior change |
4129 | // diagnostic. See GetFullTypeForDeclarator() for handling of a function |
4130 | // type without a prototype. |
4131 | if (New->hasWrittenPrototype() != Old->hasWrittenPrototype() && |
4132 | !New->isImplicit() && !Old->isImplicit()) { |
4133 | const FunctionDecl *WithProto, *WithoutProto; |
4134 | if (New->hasWrittenPrototype()) { |
4135 | WithProto = New; |
4136 | WithoutProto = Old; |
4137 | } else { |
4138 | WithProto = Old; |
4139 | WithoutProto = New; |
4140 | } |
4141 | |
4142 | if (WithProto->getNumParams() != 0) { |
4143 | if (WithoutProto->getBuiltinID() == 0 && !WithoutProto->isImplicit()) { |
4144 | // The one without the prototype will be changing behavior in C2x, so |
4145 | // warn about that one so long as it's a user-visible declaration. |
4146 | bool IsWithoutProtoADef = false, IsWithProtoADef = false; |
4147 | if (WithoutProto == New) |
4148 | IsWithoutProtoADef = NewDeclIsDefn; |
4149 | else |
4150 | IsWithProtoADef = NewDeclIsDefn; |
4151 | Diag(WithoutProto->getLocation(), |
4152 | diag::warn_non_prototype_changes_behavior) |
4153 | << IsWithoutProtoADef << (WithoutProto->getNumParams() ? 0 : 1) |
4154 | << (WithoutProto == Old) << IsWithProtoADef; |
4155 | |
4156 | // The reason the one without the prototype will be changing behavior |
4157 | // is because of the one with the prototype, so note that so long as |
4158 | // it's a user-visible declaration. There is one exception to this: |
4159 | // when the new declaration is a definition without a prototype, the |
4160 | // old declaration with a prototype is not the cause of the issue, |
4161 | // and that does not need to be noted because the one with a |
4162 | // prototype will not change behavior in C2x. |
4163 | if (WithProto->getBuiltinID() == 0 && !WithProto->isImplicit() && |
4164 | !IsWithoutProtoADef) |
4165 | Diag(WithProto->getLocation(), diag::note_conflicting_prototype); |
4166 | } |
4167 | } |
4168 | } |
4169 | |
4170 | if (Context.typesAreCompatible(OldQType, NewQType)) { |
4171 | const FunctionType *OldFuncType = OldQType->getAs<FunctionType>(); |
4172 | const FunctionType *NewFuncType = NewQType->getAs<FunctionType>(); |
4173 | const FunctionProtoType *OldProto = nullptr; |
4174 | if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) && |
4175 | (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) { |
4176 | // The old declaration provided a function prototype, but the |
4177 | // new declaration does not. Merge in the prototype. |
4178 | assert(!OldProto->hasExceptionSpec() && "Exception spec in C")(static_cast <bool> (!OldProto->hasExceptionSpec() && "Exception spec in C") ? void (0) : __assert_fail ("!OldProto->hasExceptionSpec() && \"Exception spec in C\"" , "clang/lib/Sema/SemaDecl.cpp", 4178, __extension__ __PRETTY_FUNCTION__ )); |
4179 | NewQType = Context.getFunctionType(NewFuncType->getReturnType(), |
4180 | OldProto->getParamTypes(), |
4181 | OldProto->getExtProtoInfo()); |
4182 | New->setType(NewQType); |
4183 | New->setHasInheritedPrototype(); |
4184 | |
4185 | // Synthesize parameters with the same types. |
4186 | SmallVector<ParmVarDecl *, 16> Params; |
4187 | for (const auto &ParamType : OldProto->param_types()) { |
4188 | ParmVarDecl *Param = ParmVarDecl::Create( |
4189 | Context, New, SourceLocation(), SourceLocation(), nullptr, |
4190 | ParamType, /*TInfo=*/nullptr, SC_None, nullptr); |
4191 | Param->setScopeInfo(0, Params.size()); |
4192 | Param->setImplicit(); |
4193 | Params.push_back(Param); |
4194 | } |
4195 | |
4196 | New->setParams(Params); |
4197 | } |
4198 | |
4199 | return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); |
4200 | } |
4201 | } |
4202 | |
4203 | // Check if the function types are compatible when pointer size address |
4204 | // spaces are ignored. |
4205 | if (Context.hasSameFunctionTypeIgnoringPtrSizes(OldQType, NewQType)) |
4206 | return false; |
4207 | |
4208 | // GNU C permits a K&R definition to follow a prototype declaration |
4209 | // if the declared types of the parameters in the K&R definition |
4210 | // match the types in the prototype declaration, even when the |
4211 | // promoted types of the parameters from the K&R definition differ |
4212 | // from the types in the prototype. GCC then keeps the types from |
4213 | // the prototype. |
4214 | // |
4215 | // If a variadic prototype is followed by a non-variadic K&R definition, |
4216 | // the K&R definition becomes variadic. This is sort of an edge case, but |
4217 | // it's legal per the standard depending on how you read C99 6.7.5.3p15 and |
4218 | // C99 6.9.1p8. |
4219 | if (!getLangOpts().CPlusPlus && |
4220 | Old->hasPrototype() && !New->hasPrototype() && |
4221 | New->getType()->getAs<FunctionProtoType>() && |
4222 | Old->getNumParams() == New->getNumParams()) { |
4223 | SmallVector<QualType, 16> ArgTypes; |
4224 | SmallVector<GNUCompatibleParamWarning, 16> Warnings; |
4225 | const FunctionProtoType *OldProto |
4226 | = Old->getType()->getAs<FunctionProtoType>(); |
4227 | const FunctionProtoType *NewProto |
4228 | = New->getType()->getAs<FunctionProtoType>(); |
4229 | |
4230 | // Determine whether this is the GNU C extension. |
4231 | QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(), |
4232 | NewProto->getReturnType()); |
4233 | bool LooseCompatible = !MergedReturn.isNull(); |
4234 | for (unsigned Idx = 0, End = Old->getNumParams(); |
4235 | LooseCompatible && Idx != End; ++Idx) { |
4236 | ParmVarDecl *OldParm = Old->getParamDecl(Idx); |
4237 | ParmVarDecl *NewParm = New->getParamDecl(Idx); |
4238 | if (Context.typesAreCompatible(OldParm->getType(), |
4239 | NewProto->getParamType(Idx))) { |
4240 | ArgTypes.push_back(NewParm->getType()); |
4241 | } else if (Context.typesAreCompatible(OldParm->getType(), |
4242 | NewParm->getType(), |
4243 | /*CompareUnqualified=*/true)) { |
4244 | GNUCompatibleParamWarning Warn = { OldParm, NewParm, |
4245 | NewProto->getParamType(Idx) }; |
4246 | Warnings.push_back(Warn); |
4247 | ArgTypes.push_back(NewParm->getType()); |
4248 | } else |
4249 | LooseCompatible = false; |
4250 | } |
4251 | |
4252 | if (LooseCompatible) { |
4253 | for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) { |
4254 | Diag(Warnings[Warn].NewParm->getLocation(), |
4255 | diag::ext_param_promoted_not_compatible_with_prototype) |
4256 | << Warnings[Warn].PromotedType |
4257 | << Warnings[Warn].OldParm->getType(); |
4258 | if (Warnings[Warn].OldParm->getLocation().isValid()) |
4259 | Diag(Warnings[Warn].OldParm->getLocation(), |
4260 | diag::note_previous_declaration); |
4261 | } |
4262 | |
4263 | if (MergeTypeWithOld) |
4264 | New->setType(Context.getFunctionType(MergedReturn, ArgTypes, |
4265 | OldProto->getExtProtoInfo())); |
4266 | return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); |
4267 | } |
4268 | |
4269 | // Fall through to diagnose conflicting types. |
4270 | } |
4271 | |
4272 | // A function that has already been declared has been redeclared or |
4273 | // defined with a different type; show an appropriate diagnostic. |
4274 | |
4275 | // If the previous declaration was an implicitly-generated builtin |
4276 | // declaration, then at the very least we should use a specialized note. |
4277 | unsigned BuiltinID; |
4278 | if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) { |
4279 | // If it's actually a library-defined builtin function like 'malloc' |
4280 | // or 'printf', just warn about the incompatible redeclaration. |
4281 | if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) { |
4282 | Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New; |
4283 | Diag(OldLocation, diag::note_previous_builtin_declaration) |
4284 | << Old << Old->getType(); |
4285 | return false; |
4286 | } |
4287 | |
4288 | PrevDiag = diag::note_previous_builtin_declaration; |
4289 | } |
4290 | |
4291 | Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName(); |
4292 | Diag(OldLocation, PrevDiag) << Old << Old->getType(); |
4293 | return true; |
4294 | } |
4295 | |
4296 | /// Completes the merge of two function declarations that are |
4297 | /// known to be compatible. |
4298 | /// |
4299 | /// This routine handles the merging of attributes and other |
4300 | /// properties of function declarations from the old declaration to |
4301 | /// the new declaration, once we know that New is in fact a |
4302 | /// redeclaration of Old. |
4303 | /// |
4304 | /// \returns false |
4305 | bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old, |
4306 | Scope *S, bool MergeTypeWithOld) { |
4307 | // Merge the attributes |
4308 | mergeDeclAttributes(New, Old); |
4309 | |
4310 | // Merge "pure" flag. |
4311 | if (Old->isPure()) |
4312 | New->setPure(); |
4313 | |
4314 | // Merge "used" flag. |
4315 | if (Old->getMostRecentDecl()->isUsed(false)) |
4316 | New->setIsUsed(); |
4317 | |
4318 | // Merge attributes from the parameters. These can mismatch with K&R |
4319 | // declarations. |
4320 | if (New->getNumParams() == Old->getNumParams()) |
4321 | for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) { |
4322 | ParmVarDecl *NewParam = New->getParamDecl(i); |
4323 | ParmVarDecl *OldParam = Old->getParamDecl(i); |
4324 | mergeParamDeclAttributes(NewParam, OldParam, *this); |
4325 | mergeParamDeclTypes(NewParam, OldParam, *this); |
4326 | } |
4327 | |
4328 | if (getLangOpts().CPlusPlus) |
4329 | return MergeCXXFunctionDecl(New, Old, S); |
4330 | |
4331 | // Merge the function types so the we get the composite types for the return |
4332 | // and argument types. Per C11 6.2.7/4, only update the type if the old decl |
4333 | // was visible. |
4334 | QualType Merged = Context.mergeTypes(Old->getType(), New->getType()); |
4335 | if (!Merged.isNull() && MergeTypeWithOld) |
4336 | New->setType(Merged); |
4337 | |
4338 | return false; |
4339 | } |
4340 | |
4341 | void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod, |
4342 | ObjCMethodDecl *oldMethod) { |
4343 | // Merge the attributes, including deprecated/unavailable |
4344 | AvailabilityMergeKind MergeKind = |
4345 | isa<ObjCProtocolDecl>(oldMethod->getDeclContext()) |
4346 | ? (oldMethod->isOptional() ? AMK_OptionalProtocolImplementation |
4347 | : AMK_ProtocolImplementation) |
4348 | : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration |
4349 | : AMK_Override; |
4350 | |
4351 | mergeDeclAttributes(newMethod, oldMethod, MergeKind); |
4352 | |
4353 | // Merge attributes from the parameters. |
4354 | ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(), |
4355 | oe = oldMethod->param_end(); |
4356 | for (ObjCMethodDecl::param_iterator |
4357 | ni = newMethod->param_begin(), ne = newMethod->param_end(); |
4358 | ni != ne && oi != oe; ++ni, ++oi) |
4359 | mergeParamDeclAttributes(*ni, *oi, *this); |
4360 | |
4361 | CheckObjCMethodOverride(newMethod, oldMethod); |
4362 | } |
4363 | |
4364 | static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) { |
4365 | assert(!S.Context.hasSameType(New->getType(), Old->getType()))(static_cast <bool> (!S.Context.hasSameType(New->getType (), Old->getType())) ? void (0) : __assert_fail ("!S.Context.hasSameType(New->getType(), Old->getType())" , "clang/lib/Sema/SemaDecl.cpp", 4365, __extension__ __PRETTY_FUNCTION__ )); |
4366 | |
4367 | S.Diag(New->getLocation(), New->isThisDeclarationADefinition() |
4368 | ? diag::err_redefinition_different_type |
4369 | : diag::err_redeclaration_different_type) |
4370 | << New->getDeclName() << New->getType() << Old->getType(); |
4371 | |
4372 | diag::kind PrevDiag; |
4373 | SourceLocation OldLocation; |
4374 | std::tie(PrevDiag, OldLocation) |
4375 | = getNoteDiagForInvalidRedeclaration(Old, New); |
4376 | S.Diag(OldLocation, PrevDiag); |
4377 | New->setInvalidDecl(); |
4378 | } |
4379 | |
4380 | /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and |
4381 | /// scope as a previous declaration 'Old'. Figure out how to merge their types, |
4382 | /// emitting diagnostics as appropriate. |
4383 | /// |
4384 | /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back |
4385 | /// to here in AddInitializerToDecl. We can't check them before the initializer |
4386 | /// is attached. |
4387 | void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, |
4388 | bool MergeTypeWithOld) { |
4389 | if (New->isInvalidDecl() || Old->isInvalidDecl()) |
4390 | return; |
4391 | |
4392 | QualType MergedT; |
4393 | if (getLangOpts().CPlusPlus) { |
4394 | if (New->getType()->isUndeducedType()) { |
4395 | // We don't know what the new type is until the initializer is attached. |
4396 | return; |
4397 | } else if (Context.hasSameType(New->getType(), Old->getType())) { |
4398 | // These could still be something that needs exception specs checked. |
4399 | return MergeVarDeclExceptionSpecs(New, Old); |
4400 | } |
4401 | // C++ [basic.link]p10: |
4402 | // [...] the types specified by all declarations referring to a given |
4403 | // object or function shall be identical, except that declarations for an |
4404 | // array object can specify array types that differ by the presence or |
4405 | // absence of a major array bound (8.3.4). |
4406 | else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) { |
4407 | const ArrayType *OldArray = Context.getAsArrayType(Old->getType()); |
4408 | const ArrayType *NewArray = Context.getAsArrayType(New->getType()); |
4409 | |
4410 | // We are merging a variable declaration New into Old. If it has an array |
4411 | // bound, and that bound differs from Old's bound, we should diagnose the |
4412 | // mismatch. |
4413 | if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) { |
4414 | for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD; |
4415 | PrevVD = PrevVD->getPreviousDecl()) { |
4416 | QualType PrevVDTy = PrevVD->getType(); |
4417 | if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType()) |
4418 | continue; |
4419 | |
4420 | if (!Context.hasSameType(New->getType(), PrevVDTy)) |
4421 | return diagnoseVarDeclTypeMismatch(*this, New, PrevVD); |
4422 | } |
4423 | } |
4424 | |
4425 | if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) { |
4426 | if (Context.hasSameType(OldArray->getElementType(), |
4427 | NewArray->getElementType())) |
4428 | MergedT = New->getType(); |
4429 | } |
4430 | // FIXME: Check visibility. New is hidden but has a complete type. If New |
4431 | // has no array bound, it should not inherit one from Old, if Old is not |
4432 | // visible. |
4433 | else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) { |
4434 | if (Context.hasSameType(OldArray->getElementType(), |
4435 | NewArray->getElementType())) |
4436 | MergedT = Old->getType(); |
4437 | } |
4438 | } |
4439 | else if (New->getType()->isObjCObjectPointerType() && |
4440 | Old->getType()->isObjCObjectPointerType()) { |
4441 | MergedT = Context.mergeObjCGCQualifiers(New->getType(), |
4442 | Old->getType()); |
4443 | } |
4444 | } else { |
4445 | // C 6.2.7p2: |
4446 | // All declarations that refer to the same object or function shall have |
4447 | // compatible type. |
4448 | MergedT = Context.mergeTypes(New->getType(), Old->getType()); |
4449 | } |
4450 | if (MergedT.isNull()) { |
4451 | // It's OK if we couldn't merge types if either type is dependent, for a |
4452 | // block-scope variable. In other cases (static data members of class |
4453 | // templates, variable templates, ...), we require the types to be |
4454 | // equivalent. |
4455 | // FIXME: The C++ standard doesn't say anything about this. |
4456 | if ((New->getType()->isDependentType() || |
4457 | Old->getType()->isDependentType()) && New->isLocalVarDecl()) { |
4458 | // If the old type was dependent, we can't merge with it, so the new type |
4459 | // becomes dependent for now. We'll reproduce the original type when we |
4460 | // instantiate the TypeSourceInfo for the variable. |
4461 | if (!New->getType()->isDependentType() && MergeTypeWithOld) |
4462 | New->setType(Context.DependentTy); |
4463 | return; |
4464 | } |
4465 | return diagnoseVarDeclTypeMismatch(*this, New, Old); |
4466 | } |
4467 | |
4468 | // Don't actually update the type on the new declaration if the old |
4469 | // declaration was an extern declaration in a different scope. |
4470 | if (MergeTypeWithOld) |
4471 | New->setType(MergedT); |
4472 | } |
4473 | |
4474 | static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD, |
4475 | LookupResult &Previous) { |
4476 | // C11 6.2.7p4: |
4477 | // For an identifier with internal or external linkage declared |
4478 | // in a scope in which a prior declaration of that identifier is |
4479 | // visible, if the prior declaration specifies internal or |
4480 | // external linkage, the type of the identifier at the later |
4481 | // declaration becomes the composite type. |
4482 | // |
4483 | // If the variable isn't visible, we do not merge with its type. |
4484 | if (Previous.isShadowed()) |
4485 | return false; |
4486 | |
4487 | if (S.getLangOpts().CPlusPlus) { |
4488 | // C++11 [dcl.array]p3: |
4489 | // If there is a preceding declaration of the entity in the same |
4490 | // scope in which the bound was specified, an omitted array bound |
4491 | // is taken to be the same as in that earlier declaration. |
4492 | return NewVD->isPreviousDeclInSameBlockScope() || |
4493 | (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() && |
4494 | !NewVD->getLexicalDeclContext()->isFunctionOrMethod()); |
4495 | } else { |
4496 | // If the old declaration was function-local, don't merge with its |
4497 | // type unless we're in the same function. |
4498 | return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() || |
4499 | OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext(); |
4500 | } |
4501 | } |
4502 | |
4503 | /// MergeVarDecl - We just parsed a variable 'New' which has the same name |
4504 | /// and scope as a previous declaration 'Old'. Figure out how to resolve this |
4505 | /// situation, merging decls or emitting diagnostics as appropriate. |
4506 | /// |
4507 | /// Tentative definition rules (C99 6.9.2p2) are checked by |
4508 | /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative |
4509 | /// definitions here, since the initializer hasn't been attached. |
4510 | /// |
4511 | void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) { |
4512 | // If the new decl is already invalid, don't do any other checking. |
4513 | if (New->isInvalidDecl()) |
4514 | return; |
4515 | |
4516 | if (!shouldLinkPossiblyHiddenDecl(Previous, New)) |
4517 | return; |
4518 | |
4519 | VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate(); |
4520 | |
4521 | // Verify the old decl was also a variable or variable template. |
4522 | VarDecl *Old = nullptr; |
4523 | VarTemplateDecl *OldTemplate = nullptr; |
4524 | if (Previous.isSingleResult()) { |
4525 | if (NewTemplate) { |
4526 | OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl()); |
4527 | Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr; |
4528 | |
4529 | if (auto *Shadow = |
4530 | dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl())) |
4531 | if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate)) |
4532 | return New->setInvalidDecl(); |
4533 | } else { |
4534 | Old = dyn_cast<VarDecl>(Previous.getFoundDecl()); |
4535 | |
4536 | if (auto *Shadow = |
4537 | dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl())) |
4538 | if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New)) |
4539 | return New->setInvalidDecl(); |
4540 | } |
4541 | } |
4542 | if (!Old) { |
4543 | Diag(New->getLocation(), diag::err_redefinition_different_kind) |
4544 | << New->getDeclName(); |
4545 | notePreviousDefinition(Previous.getRepresentativeDecl(), |
4546 | New->getLocation()); |
4547 | return New->setInvalidDecl(); |
4548 | } |
4549 | |
4550 | // If the old declaration was found in an inline namespace and the new |
4551 | // declaration was qualified, update the DeclContext to match. |
4552 | adjustDeclContextForDeclaratorDecl(New, Old); |
4553 | |
4554 | // Ensure the template parameters are compatible. |
4555 | if (NewTemplate && |
4556 | !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), |
4557 | OldTemplate->getTemplateParameters(), |
4558 | /*Complain=*/true, TPL_TemplateMatch)) |
4559 | return New->setInvalidDecl(); |
4560 | |
4561 | // C++ [class.mem]p1: |
4562 | // A member shall not be declared twice in the member-specification [...] |
4563 | // |
4564 | // Here, we need only consider static data members. |
4565 | if (Old->isStaticDataMember() && !New->isOutOfLine()) { |
4566 | Diag(New->getLocation(), diag::err_duplicate_member) |
4567 | << New->getIdentifier(); |
4568 | Diag(Old->getLocation(), diag::note_previous_declaration); |
4569 | New->setInvalidDecl(); |
4570 | } |
4571 | |
4572 | mergeDeclAttributes(New, Old); |
4573 | // Warn if an already-declared variable is made a weak_import in a subsequent |
4574 | // declaration |
4575 | if (New->hasAttr<WeakImportAttr>() && |
4576 | Old->getStorageClass() == SC_None && |
4577 | !Old->hasAttr<WeakImportAttr>()) { |
4578 | Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName(); |
4579 | Diag(Old->getLocation(), diag::note_previous_declaration); |
4580 | // Remove weak_import attribute on new declaration. |
4581 | New->dropAttr<WeakImportAttr>(); |
4582 | } |
4583 | |
4584 | if (const auto *ILA = New->getAttr<InternalLinkageAttr>()) |
4585 | if (!Old->hasAttr<InternalLinkageAttr>()) { |
4586 | Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl) |
4587 | << ILA; |
4588 | Diag(Old->getLocation(), diag::note_previous_declaration); |
4589 | New->dropAttr<InternalLinkageAttr>(); |
4590 | } |
4591 | |
4592 | // Merge the types. |
4593 | VarDecl *MostRecent = Old->getMostRecentDecl(); |
4594 | if (MostRecent != Old) { |
4595 | MergeVarDeclTypes(New, MostRecent, |
4596 | mergeTypeWithPrevious(*this, New, MostRecent, Previous)); |
4597 | if (New->isInvalidDecl()) |
4598 | return; |
4599 | } |
4600 | |
4601 | MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous)); |
4602 | if (New->isInvalidDecl()) |
4603 | return; |
4604 | |
4605 | diag::kind PrevDiag; |
4606 | SourceLocation OldLocation; |
4607 | std::tie(PrevDiag, OldLocation) = |
4608 | getNoteDiagForInvalidRedeclaration(Old, New); |
4609 | |
4610 | // [dcl.stc]p8: Check if we have a non-static decl followed by a static. |
4611 | if (New->getStorageClass() == SC_Static && |
4612 | !New->isStaticDataMember() && |
4613 | Old->hasExternalFormalLinkage()) { |
4614 | if (getLangOpts().MicrosoftExt) { |
4615 | Diag(New->getLocation(), diag::ext_static_non_static) |
4616 | << New->getDeclName(); |
4617 | Diag(OldLocation, PrevDiag); |
4618 | } else { |
4619 | Diag(New->getLocation(), diag::err_static_non_static) |
4620 | << New->getDeclName(); |
4621 | Diag(OldLocation, PrevDiag); |
4622 | return New->setInvalidDecl(); |
4623 | } |
4624 | } |
4625 | // C99 6.2.2p4: |
4626 | // For an identifier declared with the storage-class specifier |
4627 | // extern in a scope in which a prior declaration of that |
4628 | // identifier is visible,23) if the prior declaration specifies |
4629 | // internal or external linkage, the linkage of the identifier at |
4630 | // the later declaration is the same as the linkage specified at |
4631 | // the prior declaration. If no prior declaration is visible, or |
4632 | // if the prior declaration specifies no linkage, then the |
4633 | // identifier has external linkage. |
4634 | if (New->hasExternalStorage() && Old->hasLinkage()) |
4635 | /* Okay */; |
4636 | else if (New->getCanonicalDecl()->getStorageClass() != SC_Static && |
4637 | !New->isStaticDataMember() && |
4638 | Old->getCanonicalDecl()->getStorageClass() == SC_Static) { |
4639 | Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName(); |
4640 | Diag(OldLocation, PrevDiag); |
4641 | return New->setInvalidDecl(); |
4642 | } |
4643 | |
4644 | // Check if extern is followed by non-extern and vice-versa. |
4645 | if (New->hasExternalStorage() && |
4646 | !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) { |
4647 | Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName(); |
4648 | Diag(OldLocation, PrevDiag); |
4649 | return New->setInvalidDecl(); |
4650 | } |
4651 | if (Old->hasLinkage() && New->isLocalVarDeclOrParm() && |
4652 | !New->hasExternalStorage()) { |
4653 | Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName(); |
4654 | Diag(OldLocation, PrevDiag); |
4655 | return New->setInvalidDecl(); |
4656 | } |
4657 | |
4658 | if (CheckRedeclarationInModule(New, Old)) |
4659 | return; |
4660 | |
4661 | // Variables with external linkage are analyzed in FinalizeDeclaratorGroup. |
4662 | |
4663 | // FIXME: The test for external storage here seems wrong? We still |
4664 | // need to check for mismatches. |
4665 | if (!New->hasExternalStorage() && !New->isFileVarDecl() && |
4666 | // Don't complain about out-of-line definitions of static members. |
4667 | !(Old->getLexicalDeclContext()->isRecord() && |
4668 | !New->getLexicalDeclContext()->isRecord())) { |
4669 | Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName(); |
4670 | Diag(OldLocation, PrevDiag); |
4671 | return New->setInvalidDecl(); |
4672 | } |
4673 | |
4674 | if (New->isInline() && !Old->getMostRecentDecl()->isInline()) { |
4675 | if (VarDecl *Def = Old->getDefinition()) { |
4676 | // C++1z [dcl.fcn.spec]p4: |
4677 | // If the definition of a variable appears in a translation unit before |
4678 | // its first declaration as inline, the program is ill-formed. |
4679 | Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; |
4680 | Diag(Def->getLocation(), diag::note_previous_definition); |
4681 | } |
4682 | } |
4683 | |
4684 | // If this redeclaration makes the variable inline, we may need to add it to |
4685 | // UndefinedButUsed. |
4686 | if (!Old->isInline() && New->isInline() && Old->isUsed(false) && |
4687 | !Old->getDefinition() && !New->isThisDeclarationADefinition()) |
4688 | UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(), |
4689 | SourceLocation())); |
4690 | |
4691 | if (New->getTLSKind() != Old->getTLSKind()) { |
4692 | if (!Old->getTLSKind()) { |
4693 | Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName(); |
4694 | Diag(OldLocation, PrevDiag); |
4695 | } else if (!New->getTLSKind()) { |
4696 | Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName(); |
4697 | Diag(OldLocation, PrevDiag); |
4698 | } else { |
4699 | // Do not allow redeclaration to change the variable between requiring |
4700 | // static and dynamic initialization. |
4701 | // FIXME: GCC allows this, but uses the TLS keyword on the first |
4702 | // declaration to determine the kind. Do we need to be compatible here? |
4703 | Diag(New->getLocation(), diag::err_thread_thread_different_kind) |
4704 | << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic); |
4705 | Diag(OldLocation, PrevDiag); |
4706 | } |
4707 | } |
4708 | |
4709 | // C++ doesn't have tentative definitions, so go right ahead and check here. |
4710 | if (getLangOpts().CPlusPlus) { |
4711 | if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() && |
4712 | Old->getCanonicalDecl()->isConstexpr()) { |
4713 | // This definition won't be a definition any more once it's been merged. |
4714 | Diag(New->getLocation(), |
4715 | diag::warn_deprecated_redundant_constexpr_static_def); |
4716 | } else if (New->isThisDeclarationADefinition() == VarDecl::Definition) { |
4717 | VarDecl *Def = Old->getDefinition(); |
4718 | if (Def && checkVarDeclRedefinition(Def, New)) |
4719 | return; |
4720 | } |
4721 | } |
4722 | |
4723 | if (haveIncompatibleLanguageLinkages(Old, New)) { |
4724 | Diag(New->getLocation(), diag::err_different_language_linkage) << New; |
4725 | Diag(OldLocation, PrevDiag); |
4726 | New->setInvalidDecl(); |
4727 | return; |
4728 | } |
4729 | |
4730 | // Merge "used" flag. |
4731 | if (Old->getMostRecentDecl()->isUsed(false)) |
4732 | New->setIsUsed(); |
4733 | |
4734 | // Keep a chain of previous declarations. |
4735 | New->setPreviousDecl(Old); |
4736 | if (NewTemplate) |
4737 | NewTemplate->setPreviousDecl(OldTemplate); |
4738 | |
4739 | // Inherit access appropriately. |
4740 | New->setAccess(Old->getAccess()); |
4741 | if (NewTemplate) |
4742 | NewTemplate->setAccess(New->getAccess()); |
4743 | |
4744 | if (Old->isInline()) |
4745 | New->setImplicitlyInline(); |
4746 | } |
4747 | |
4748 | void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) { |
4749 | SourceManager &SrcMgr = getSourceManager(); |
4750 | auto FNewDecLoc = SrcMgr.getDecomposedLoc(New); |
4751 | auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation()); |
4752 | auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first); |
4753 | auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first); |
4754 | auto &HSI = PP.getHeaderSearchInfo(); |
4755 | StringRef HdrFilename = |
4756 | SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation())); |
4757 | |
4758 | auto noteFromModuleOrInclude = [&](Module *Mod, |
4759 | SourceLocation IncLoc) -> bool { |
4760 | // Redefinition errors with modules are common with non modular mapped |
4761 | // headers, example: a non-modular header H in module A that also gets |
4762 | // included directly in a TU. Pointing twice to the same header/definition |
4763 | // is confusing, try to get better diagnostics when modules is on. |
4764 | if (IncLoc.isValid()) { |
4765 | if (Mod) { |
4766 | Diag(IncLoc, diag::note_redefinition_modules_same_file) |
4767 | << HdrFilename.str() << Mod->getFullModuleName(); |
4768 | if (!Mod->DefinitionLoc.isInvalid()) |
4769 | Diag(Mod->DefinitionLoc, diag::note_defined_here) |
4770 | << Mod->getFullModuleName(); |
4771 | } else { |
4772 | Diag(IncLoc, diag::note_redefinition_include_same_file) |
4773 | << HdrFilename.str(); |
4774 | } |
4775 | return true; |
4776 | } |
4777 | |
4778 | return false; |
4779 | }; |
4780 | |
4781 | // Is it the same file and same offset? Provide more information on why |
4782 | // this leads to a redefinition error. |
4783 | if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) { |
4784 | SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first); |
4785 | SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first); |
4786 | bool EmittedDiag = |
4787 | noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc); |
4788 | EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc); |
4789 | |
4790 | // If the header has no guards, emit a note suggesting one. |
4791 | if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld)) |
4792 | Diag(Old->getLocation(), diag::note_use_ifdef_guards); |
4793 | |
4794 | if (EmittedDiag) |
4795 | return; |
4796 | } |
4797 | |
4798 | // Redefinition coming from different files or couldn't do better above. |
4799 | if (Old->getLocation().isValid()) |
4800 | Diag(Old->getLocation(), diag::note_previous_definition); |
4801 | } |
4802 | |
4803 | /// We've just determined that \p Old and \p New both appear to be definitions |
4804 | /// of the same variable. Either diagnose or fix the problem. |
4805 | bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) { |
4806 | if (!hasVisibleDefinition(Old) && |
4807 | (New->getFormalLinkage() == InternalLinkage || |
4808 | New->isInline() || |
4809 | isa<VarTemplateSpecializationDecl>(New) || |
4810 | New->getDescribedVarTemplate() || |
4811 | New->getNumTemplateParameterLists() || |
4812 | New->getDeclContext()->isDependentContext())) { |
4813 | // The previous definition is hidden, and multiple definitions are |
4814 | // permitted (in separate TUs). Demote this to a declaration. |
4815 | New->demoteThisDefinitionToDeclaration(); |
4816 | |
4817 | // Make the canonical definition visible. |
4818 | if (auto *OldTD = Old->getDescribedVarTemplate()) |
4819 | makeMergedDefinitionVisible(OldTD); |
4820 | makeMergedDefinitionVisible(Old); |
4821 | return false; |
4822 | } else { |
4823 | Diag(New->getLocation(), diag::err_redefinition) << New; |
4824 | notePreviousDefinition(Old, New->getLocation()); |
4825 | New->setInvalidDecl(); |
4826 | return true; |
4827 | } |
4828 | } |
4829 | |
4830 | /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with |
4831 | /// no declarator (e.g. "struct foo;") is parsed. |
4832 | Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, |
4833 | DeclSpec &DS, |
4834 | const ParsedAttributesView &DeclAttrs, |
4835 | RecordDecl *&AnonRecord) { |
4836 | return ParsedFreeStandingDeclSpec( |
4837 | S, AS, DS, DeclAttrs, MultiTemplateParamsArg(), false, AnonRecord); |
4838 | } |
4839 | |
4840 | // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to |
4841 | // disambiguate entities defined in different scopes. |
4842 | // While the VS2015 ABI fixes potential miscompiles, it is also breaks |
4843 | // compatibility. |
4844 | // We will pick our mangling number depending on which version of MSVC is being |
4845 | // targeted. |
4846 | static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) { |
4847 | return LO.isCompatibleWithMSVC(LangOptions::MSVC2015) |
4848 | ? S->getMSCurManglingNumber() |
4849 | : S->getMSLastManglingNumber(); |
4850 | } |
4851 | |
4852 | void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) { |
4853 | if (!Context.getLangOpts().CPlusPlus) |
4854 | return; |
4855 | |
4856 | if (isa<CXXRecordDecl>(Tag->getParent())) { |
4857 | // If this tag is the direct child of a class, number it if |
4858 | // it is anonymous. |
4859 | if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl()) |
4860 | return; |
4861 | MangleNumberingContext &MCtx = |
4862 | Context.getManglingNumberContext(Tag->getParent()); |
4863 | Context.setManglingNumber( |
4864 | Tag, MCtx.getManglingNumber( |
4865 | Tag, getMSManglingNumber(getLangOpts(), TagScope))); |
4866 | return; |
4867 | } |
4868 | |
4869 | // If this tag isn't a direct child of a class, number it if it is local. |
4870 | MangleNumberingContext *MCtx; |
4871 | Decl *ManglingContextDecl; |
4872 | std::tie(MCtx, ManglingContextDecl) = |
4873 | getCurrentMangleNumberContext(Tag->getDeclContext()); |
4874 | if (MCtx) { |
4875 | Context.setManglingNumber( |
4876 | Tag, MCtx->getManglingNumber( |
4877 | Tag, getMSManglingNumber(getLangOpts(), TagScope))); |
4878 | } |
4879 | } |
4880 | |
4881 | namespace { |
4882 | struct NonCLikeKind { |
4883 | enum { |
4884 | None, |
4885 | BaseClass, |
4886 | DefaultMemberInit, |
4887 | Lambda, |
4888 | Friend, |
4889 | OtherMember, |
4890 | Invalid, |
4891 | } Kind = None; |
4892 | SourceRange Range; |
4893 | |
4894 | explicit operator bool() { return Kind != None; } |
4895 | }; |
4896 | } |
4897 | |
4898 | /// Determine whether a class is C-like, according to the rules of C++ |
4899 | /// [dcl.typedef] for anonymous classes with typedef names for linkage. |
4900 | static NonCLikeKind getNonCLikeKindForAnonymousStruct(const CXXRecordDecl *RD) { |
4901 | if (RD->isInvalidDecl()) |
4902 | return {NonCLikeKind::Invalid, {}}; |
4903 | |
4904 | // C++ [dcl.typedef]p9: [P1766R1] |
4905 | // An unnamed class with a typedef name for linkage purposes shall not |
4906 | // |
4907 | // -- have any base classes |
4908 | if (RD->getNumBases()) |
4909 | return {NonCLikeKind::BaseClass, |
4910 | SourceRange(RD->bases_begin()->getBeginLoc(), |
4911 | RD->bases_end()[-1].getEndLoc())}; |
4912 | bool Invalid = false; |
4913 | for (Decl *D : RD->decls()) { |
4914 | // Don't complain about things we already diagnosed. |
4915 | if (D->isInvalidDecl()) { |
4916 | Invalid = true; |
4917 | continue; |
4918 | } |
4919 | |
4920 | // -- have any [...] default member initializers |
4921 | if (auto *FD = dyn_cast<FieldDecl>(D)) { |
4922 | if (FD->hasInClassInitializer()) { |
4923 | auto *Init = FD->getInClassInitializer(); |
4924 | return {NonCLikeKind::DefaultMemberInit, |
4925 | Init ? Init->getSourceRange() : D->getSourceRange()}; |
4926 | } |
4927 | continue; |
4928 | } |
4929 | |
4930 | // FIXME: We don't allow friend declarations. This violates the wording of |
4931 | // P1766, but not the intent. |
4932 | if (isa<FriendDecl>(D)) |
4933 | return {NonCLikeKind::Friend, D->getSourceRange()}; |
4934 | |
4935 | // -- declare any members other than non-static data members, member |
4936 | // enumerations, or member classes, |
4937 | if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D) || |
4938 | isa<EnumDecl>(D)) |
4939 | continue; |
4940 | auto *MemberRD = dyn_cast<CXXRecordDecl>(D); |
4941 | if (!MemberRD) { |
4942 | if (D->isImplicit()) |
4943 | continue; |
4944 | return {NonCLikeKind::OtherMember, D->getSourceRange()}; |
4945 | } |
4946 | |
4947 | // -- contain a lambda-expression, |
4948 | if (MemberRD->isLambda()) |
4949 | return {NonCLikeKind::Lambda, MemberRD->getSourceRange()}; |
4950 | |
4951 | // and all member classes shall also satisfy these requirements |
4952 | // (recursively). |
4953 | if (MemberRD->isThisDeclarationADefinition()) { |
4954 | if (auto Kind = getNonCLikeKindForAnonymousStruct(MemberRD)) |
4955 | return Kind; |
4956 | } |
4957 | } |
4958 | |
4959 | return {Invalid ? NonCLikeKind::Invalid : NonCLikeKind::None, {}}; |
4960 | } |
4961 | |
4962 | void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec, |
4963 | TypedefNameDecl *NewTD) { |
4964 | if (TagFromDeclSpec->isInvalidDecl()) |
4965 | return; |
4966 | |
4967 | // Do nothing if the tag already has a name for linkage purposes. |
4968 | if (TagFromDeclSpec->hasNameForLinkage()) |
4969 | return; |
4970 | |
4971 | // A well-formed anonymous tag must always be a TUK_Definition. |
4972 | assert(TagFromDeclSpec->isThisDeclarationADefinition())(static_cast <bool> (TagFromDeclSpec->isThisDeclarationADefinition ()) ? void (0) : __assert_fail ("TagFromDeclSpec->isThisDeclarationADefinition()" , "clang/lib/Sema/SemaDecl.cpp", 4972, __extension__ __PRETTY_FUNCTION__ )); |
4973 | |
4974 | // The type must match the tag exactly; no qualifiers allowed. |
4975 | if (!Context.hasSameType(NewTD->getUnderlyingType(), |
4976 | Context.getTagDeclType(TagFromDeclSpec))) { |
4977 | if (getLangOpts().CPlusPlus) |
4978 | Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD); |
4979 | return; |
4980 | } |
4981 | |
4982 | // C++ [dcl.typedef]p9: [P1766R1, applied as DR] |
4983 | // An unnamed class with a typedef name for linkage purposes shall [be |
4984 | // C-like]. |
4985 | // |
4986 | // FIXME: Also diagnose if we've already computed the linkage. That ideally |
4987 | // shouldn't happen, but there are constructs that the language rule doesn't |
4988 | // disallow for which we can't reasonably avoid computing linkage early. |
4989 | const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TagFromDeclSpec); |
4990 | NonCLikeKind NonCLike = RD ? getNonCLikeKindForAnonymousStruct(RD) |
4991 | : NonCLikeKind(); |
4992 | bool ChangesLinkage = TagFromDeclSpec->hasLinkageBeenComputed(); |
4993 | if (NonCLike || ChangesLinkage) { |
4994 | if (NonCLike.Kind == NonCLikeKind::Invalid) |
4995 | return; |
4996 | |
4997 | unsigned DiagID = diag::ext_non_c_like_anon_struct_in_typedef; |
4998 | if (ChangesLinkage) { |
4999 | // If the linkage changes, we can't accept this as an extension. |
5000 | if (NonCLike.Kind == NonCLikeKind::None) |
5001 | DiagID = diag::err_typedef_changes_linkage; |
5002 | else |
5003 | DiagID = diag::err_non_c_like_anon_struct_in_typedef; |
5004 | } |
5005 | |
5006 | SourceLocation FixitLoc = |
5007 | getLocForEndOfToken(TagFromDeclSpec->getInnerLocStart()); |
5008 | llvm::SmallString<40> TextToInsert; |
5009 | TextToInsert += ' '; |
5010 | TextToInsert += NewTD->getIdentifier()->getName(); |
5011 | |
5012 | Diag(FixitLoc, DiagID) |
5013 | << isa<TypeAliasDecl>(NewTD) |
5014 | << FixItHint::CreateInsertion(FixitLoc, TextToInsert); |
5015 | if (NonCLike.Kind != NonCLikeKind::None) { |
5016 | Diag(NonCLike.Range.getBegin(), diag::note_non_c_like_anon_struct) |
5017 | << NonCLike.Kind - 1 << NonCLike.Range; |
5018 | } |
5019 | Diag(NewTD->getLocation(), diag::note_typedef_for_linkage_here) |
5020 | << NewTD << isa<TypeAliasDecl>(NewTD); |
5021 | |
5022 | if (ChangesLinkage) |
5023 | return; |
5024 | } |
5025 | |
5026 | // Otherwise, set this as the anon-decl typedef for the tag. |
5027 | TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD); |
5028 | } |
5029 | |
5030 | static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) { |
5031 | switch (T) { |
5032 | case DeclSpec::TST_class: |
5033 | return 0; |
5034 | case DeclSpec::TST_struct: |
5035 | return 1; |
5036 | case DeclSpec::TST_interface: |
5037 | return 2; |
5038 | case DeclSpec::TST_union: |
5039 | return 3; |
5040 | case DeclSpec::TST_enum: |
5041 | return 4; |
5042 | default: |
5043 | llvm_unreachable("unexpected type specifier")::llvm::llvm_unreachable_internal("unexpected type specifier" , "clang/lib/Sema/SemaDecl.cpp", 5043); |
5044 | } |
5045 | } |
5046 | |
5047 | /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with |
5048 | /// no declarator (e.g. "struct foo;") is parsed. It also accepts template |
5049 | /// parameters to cope with template friend declarations. |
5050 | Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, |
5051 | DeclSpec &DS, |
5052 | const ParsedAttributesView &DeclAttrs, |
5053 | MultiTemplateParamsArg TemplateParams, |
5054 | bool IsExplicitInstantiation, |
5055 | RecordDecl *&AnonRecord) { |
5056 | Decl *TagD = nullptr; |
5057 | TagDecl *Tag = nullptr; |
5058 | if (DS.getTypeSpecType() == DeclSpec::TST_class || |
5059 | DS.getTypeSpecType() == DeclSpec::TST_struct || |
5060 | DS.getTypeSpecType() == DeclSpec::TST_interface || |
5061 | DS.getTypeSpecType() == DeclSpec::TST_union || |
5062 | DS.getTypeSpecType() == DeclSpec::TST_enum) { |
5063 | TagD = DS.getRepAsDecl(); |
5064 | |
5065 | if (!TagD) // We probably had an error |
5066 | return nullptr; |
5067 | |
5068 | // Note that the above type specs guarantee that the |
5069 | // type rep is a Decl, whereas in many of the others |
5070 | // it's a Type. |
5071 | if (isa<TagDecl>(TagD)) |
5072 | Tag = cast<TagDecl>(TagD); |
5073 | else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD)) |
5074 | Tag = CTD->getTemplatedDecl(); |
5075 | } |
5076 | |
5077 | if (Tag) { |
5078 | handleTagNumbering(Tag, S); |
5079 | Tag->setFreeStanding(); |
5080 | if (Tag->isInvalidDecl()) |
5081 | return Tag; |
5082 | } |
5083 | |
5084 | if (unsigned TypeQuals = DS.getTypeQualifiers()) { |
5085 | // Enforce C99 6.7.3p2: "Types other than pointer types derived from object |
5086 | // or incomplete types shall not be restrict-qualified." |
5087 | if (TypeQuals & DeclSpec::TQ_restrict) |
5088 | Diag(DS.getRestrictSpecLoc(), |
5089 | diag::err_typecheck_invalid_restrict_not_pointer_noarg) |
5090 | << DS.getSourceRange(); |
5091 | } |
5092 | |
5093 | if (DS.isInlineSpecified()) |
5094 | Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) |
5095 | << getLangOpts().CPlusPlus17; |
5096 | |
5097 | if (DS.hasConstexprSpecifier()) { |
5098 | // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations |
5099 | // and definitions of functions and variables. |
5100 | // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to |
5101 | // the declaration of a function or function template |
5102 | if (Tag) |
5103 | Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag) |
5104 | << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) |
5105 | << static_cast<int>(DS.getConstexprSpecifier()); |
5106 | else |
5107 | Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind) |
5108 | << static_cast<int>(DS.getConstexprSpecifier()); |
5109 | // Don't emit warnings after this error. |
5110 | return TagD; |
5111 | } |
5112 | |
5113 | DiagnoseFunctionSpecifiers(DS); |
5114 | |
5115 | if (DS.isFriendSpecified()) { |
5116 | // If we're dealing with a decl but not a TagDecl, assume that |
5117 | // whatever routines created it handled the friendship aspect. |
5118 | if (TagD && !Tag) |
5119 | return nullptr; |
5120 | return ActOnFriendTypeDecl(S, DS, TemplateParams); |
5121 | } |
5122 | |
5123 | const CXXScopeSpec &SS = DS.getTypeSpecScope(); |
5124 | bool IsExplicitSpecialization = |
5125 | !TemplateParams.empty() && TemplateParams.back()->size() == 0; |
5126 | if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() && |
5127 | !IsExplicitInstantiation && !IsExplicitSpecialization && |
5128 | !isa<ClassTemplatePartialSpecializationDecl>(Tag)) { |
5129 | // Per C++ [dcl.type.elab]p1, a class declaration cannot have a |
5130 | // nested-name-specifier unless it is an explicit instantiation |
5131 | // or an explicit specialization. |
5132 | // |
5133 | // FIXME: We allow class template partial specializations here too, per the |
5134 | // obvious intent of DR1819. |
5135 | // |
5136 | // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either. |
5137 | Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier) |
5138 | << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange(); |
5139 | return nullptr; |
5140 | } |
5141 | |
5142 | // Track whether this decl-specifier declares anything. |
5143 | bool DeclaresAnything = true; |
5144 | |
5145 | // Handle anonymous struct definitions. |
5146 | if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) { |
5147 | if (!Record->getDeclName() && Record->isCompleteDefinition() && |
5148 | DS.getStorageClassSpec() != DeclSpec::SCS_typedef) { |
5149 | if (getLangOpts().CPlusPlus || |
5150 | Record->getDeclContext()->isRecord()) { |
5151 | // If CurContext is a DeclContext that can contain statements, |
5152 | // RecursiveASTVisitor won't visit the decls that |
5153 | // BuildAnonymousStructOrUnion() will put into CurContext. |
5154 | // Also store them here so that they can be part of the |
5155 | // DeclStmt that gets created in this case. |
5156 | // FIXME: Also return the IndirectFieldDecls created by |
5157 | // BuildAnonymousStructOr union, for the same reason? |
5158 | if (CurContext->isFunctionOrMethod()) |
5159 | AnonRecord = Record; |
5160 | return BuildAnonymousStructOrUnion(S, DS, AS, Record, |
5161 | Context.getPrintingPolicy()); |
5162 | } |
5163 | |
5164 | DeclaresAnything = false; |
5165 | } |
5166 | } |
5167 | |
5168 | // C11 6.7.2.1p2: |
5169 | // A struct-declaration that does not declare an anonymous structure or |
5170 | // anonymous union shall contain a struct-declarator-list. |
5171 | // |
5172 | // This rule also existed in C89 and C99; the grammar for struct-declaration |
5173 | // did not permit a struct-declaration without a struct-declarator-list. |
5174 | if (!getLangOpts().CPlusPlus && CurContext->isRecord() && |
5175 | DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) { |
5176 | // Check for Microsoft C extension: anonymous struct/union member. |
5177 | // Handle 2 kinds of anonymous struct/union: |
5178 | // struct STRUCT; |
5179 | // union UNION; |
5180 | // and |
5181 | // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct. |
5182 | // UNION_TYPE; <- where UNION_TYPE is a typedef union. |
5183 | if ((Tag && Tag->getDeclName()) || |
5184 | DS.getTypeSpecType() == DeclSpec::TST_typename) { |
5185 | RecordDecl *Record = nullptr; |
5186 | if (Tag) |
5187 | Record = dyn_cast<RecordDecl>(Tag); |
5188 | else if (const RecordType *RT = |
5189 | DS.getRepAsType().get()->getAsStructureType()) |
5190 | Record = RT->getDecl(); |
5191 | else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType()) |
5192 | Record = UT->getDecl(); |
5193 | |
5194 | if (Record && getLangOpts().MicrosoftExt) { |
5195 | Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record) |
5196 | << Record->isUnion() << DS.getSourceRange(); |
5197 | return BuildMicrosoftCAnonymousStruct(S, DS, Record); |
5198 | } |
5199 | |
5200 | DeclaresAnything = false; |
5201 | } |
5202 | } |
5203 | |
5204 | // Skip all the checks below if we have a type error. |
5205 | if (DS.getTypeSpecType() == DeclSpec::TST_error || |
5206 | (TagD && TagD->isInvalidDecl())) |
5207 | return TagD; |
5208 | |
5209 | if (getLangOpts().CPlusPlus && |
5210 | DS.getStorageClassSpec() != DeclSpec::SCS_typedef) |
5211 | if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag)) |
5212 | if (Enum->enumerator_begin() == Enum->enumerator_end() && |
5213 | !Enum->getIdentifier() && !Enum->isInvalidDecl()) |
5214 | DeclaresAnything = false; |
5215 | |
5216 | if (!DS.isMissingDeclaratorOk()) { |
5217 | // Customize diagnostic for a typedef missing a name. |
5218 | if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) |
5219 | Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name) |
5220 | << DS.getSourceRange(); |
5221 | else |
5222 | DeclaresAnything = false; |
5223 | } |
5224 | |
5225 | if (DS.isModulePrivateSpecified() && |
5226 | Tag && Tag->getDeclContext()->isFunctionOrMethod()) |
5227 | Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class) |
5228 | << Tag->getTagKind() |
5229 | << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc()); |
5230 | |
5231 | ActOnDocumentableDecl(TagD); |
5232 | |
5233 | // C 6.7/2: |
5234 | // A declaration [...] shall declare at least a declarator [...], a tag, |
5235 | // or the members of an enumeration. |
5236 | // C++ [dcl.dcl]p3: |
5237 | // [If there are no declarators], and except for the declaration of an |
5238 | // unnamed bit-field, the decl-specifier-seq shall introduce one or more |
5239 | // names into the program, or shall redeclare a name introduced by a |
5240 | // previous declaration. |
5241 | if (!DeclaresAnything) { |
5242 | // In C, we allow this as a (popular) extension / bug. Don't bother |
5243 | // producing further diagnostics for redundant qualifiers after this. |
5244 | Diag(DS.getBeginLoc(), (IsExplicitInstantiation || !TemplateParams.empty()) |
5245 | ? diag::err_no_declarators |
5246 | : diag::ext_no_declarators) |
5247 | << DS.getSourceRange(); |
5248 | return TagD; |
5249 | } |
5250 | |
5251 | // C++ [dcl.stc]p1: |
5252 | // If a storage-class-specifier appears in a decl-specifier-seq, [...] the |
5253 | // init-declarator-list of the declaration shall not be empty. |
5254 | // C++ [dcl.fct.spec]p1: |
5255 | // If a cv-qualifier appears in a decl-specifier-seq, the |
5256 | // init-declarator-list of the declaration shall not be empty. |
5257 | // |
5258 | // Spurious qualifiers here appear to be valid in C. |
5259 | unsigned DiagID = diag::warn_standalone_specifier; |
5260 | if (getLangOpts().CPlusPlus) |
5261 | DiagID = diag::ext_standalone_specifier; |
5262 | |
5263 | // Note that a linkage-specification sets a storage class, but |
5264 | // 'extern "C" struct foo;' is actually valid and not theoretically |
5265 | // useless. |
5266 | if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { |
5267 | if (SCS == DeclSpec::SCS_mutable) |
5268 | // Since mutable is not a viable storage class specifier in C, there is |
5269 | // no reason to treat it as an extension. Instead, diagnose as an error. |
5270 | Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember); |
5271 | else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef) |
5272 | Diag(DS.getStorageClassSpecLoc(), DiagID) |
5273 | << DeclSpec::getSpecifierName(SCS); |
5274 | } |
5275 | |
5276 | if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) |
5277 | Diag(DS.getThreadStorageClassSpecLoc(), DiagID) |
5278 | << DeclSpec::getSpecifierName(TSCS); |
5279 | if (DS.getTypeQualifiers()) { |
5280 | if (DS.getTypeQualifiers() & DeclSpec::TQ_const) |
5281 | Diag(DS.getConstSpecLoc(), DiagID) << "const"; |
5282 | if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) |
5283 | Diag(DS.getConstSpecLoc(), DiagID) << "volatile"; |
5284 | // Restrict is covered above. |
5285 | if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) |
5286 | Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic"; |
5287 | if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) |
5288 | Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned"; |
5289 | } |
5290 | |
5291 | // Warn about ignored type attributes, for example: |
5292 | // __attribute__((aligned)) struct A; |
5293 | // Attributes should be placed after tag to apply to type declaration. |
5294 | if (!DS.getAttributes().empty() || !DeclAttrs.empty()) { |
5295 | DeclSpec::TST TypeSpecType = DS.getTypeSpecType(); |
5296 | if (TypeSpecType == DeclSpec::TST_class || |
5297 | TypeSpecType == DeclSpec::TST_struct || |
5298 | TypeSpecType == DeclSpec::TST_interface || |
5299 | TypeSpecType == DeclSpec::TST_union || |
5300 | TypeSpecType == DeclSpec::TST_enum) { |
5301 | for (const ParsedAttr &AL : DS.getAttributes()) |
5302 | Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored) |
5303 | << AL << GetDiagnosticTypeSpecifierID(TypeSpecType); |
5304 | for (const ParsedAttr &AL : DeclAttrs) |
5305 | Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored) |
5306 | << AL << GetDiagnosticTypeSpecifierID(TypeSpecType); |
5307 | } |
5308 | } |
5309 | |
5310 | return TagD; |
5311 | } |
5312 | |
5313 | /// We are trying to inject an anonymous member into the given scope; |
5314 | /// check if there's an existing declaration that can't be overloaded. |
5315 | /// |
5316 | /// \return true if this is a forbidden redeclaration |
5317 | static bool CheckAnonMemberRedeclaration(Sema &SemaRef, |
5318 | Scope *S, |
5319 | DeclContext *Owner, |
5320 | DeclarationName Name, |
5321 | SourceLocation NameLoc, |
5322 | bool IsUnion) { |
5323 | LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName, |
5324 | Sema::ForVisibleRedeclaration); |
5325 | if (!SemaRef.LookupName(R, S)) return false; |
5326 | |
5327 | // Pick a representative declaration. |
5328 | NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl(); |
5329 | assert(PrevDecl && "Expected a non-null Decl")(static_cast <bool> (PrevDecl && "Expected a non-null Decl" ) ? void (0) : __assert_fail ("PrevDecl && \"Expected a non-null Decl\"" , "clang/lib/Sema/SemaDecl.cpp", 5329, __extension__ __PRETTY_FUNCTION__ )); |
5330 | |
5331 | if (!SemaRef.isDeclInScope(PrevDecl, Owner, S)) |
5332 | return false; |
5333 | |
5334 | SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl) |
5335 | << IsUnion << Name; |
5336 | SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration); |
5337 | |
5338 | return true; |
5339 | } |
5340 | |
5341 | /// InjectAnonymousStructOrUnionMembers - Inject the members of the |
5342 | /// anonymous struct or union AnonRecord into the owning context Owner |
5343 | /// and scope S. This routine will be invoked just after we realize |
5344 | /// that an unnamed union or struct is actually an anonymous union or |
5345 | /// struct, e.g., |
5346 | /// |
5347 | /// @code |
5348 | /// union { |
5349 | /// int i; |
5350 | /// float f; |
5351 | /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and |
5352 | /// // f into the surrounding scope.x |
5353 | /// @endcode |
5354 | /// |
5355 | /// This routine is recursive, injecting the names of nested anonymous |
5356 | /// structs/unions into the owning context and scope as well. |
5357 | static bool |
5358 | InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner, |
5359 | RecordDecl *AnonRecord, AccessSpecifier AS, |
5360 | SmallVectorImpl<NamedDecl *> &Chaining) { |
5361 | bool Invalid = false; |
5362 | |
5363 | // Look every FieldDecl and IndirectFieldDecl with a name. |
5364 | for (auto *D : AnonRecord->decls()) { |
5365 | if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) && |
5366 | cast<NamedDecl>(D)->getDeclName()) { |
5367 | ValueDecl *VD = cast<ValueDecl>(D); |
5368 | if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(), |
5369 | VD->getLocation(), |
5370 | AnonRecord->isUnion())) { |
5371 | // C++ [class.union]p2: |
5372 | // The names of the members of an anonymous union shall be |
5373 | // distinct from the names of any other entity in the |
5374 | // scope in which the anonymous union is declared. |
5375 | Invalid = true; |
5376 | } else { |
5377 | // C++ [class.union]p2: |
5378 | // For the purpose of name lookup, after the anonymous union |
5379 | // definition, the members of the anonymous union are |
5380 | // considered to have been defined in the scope in which the |
5381 | // anonymous union is declared. |
5382 | unsigned OldChainingSize = Chaining.size(); |
5383 | if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD)) |
5384 | Chaining.append(IF->chain_begin(), IF->chain_end()); |
5385 | else |
5386 | Chaining.push_back(VD); |
5387 | |
5388 | assert(Chaining.size() >= 2)(static_cast <bool> (Chaining.size() >= 2) ? void (0 ) : __assert_fail ("Chaining.size() >= 2", "clang/lib/Sema/SemaDecl.cpp" , 5388, __extension__ __PRETTY_FUNCTION__)); |
5389 | NamedDecl **NamedChain = |
5390 | new (SemaRef.Context)NamedDecl*[Chaining.size()]; |
5391 | for (unsigned i = 0; i < Chaining.size(); i++) |
5392 | NamedChain[i] = Chaining[i]; |
5393 | |
5394 | IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create( |
5395 | SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(), |
5396 | VD->getType(), {NamedChain, Chaining.size()}); |
5397 | |
5398 | for (const auto *Attr : VD->attrs()) |
5399 | IndirectField->addAttr(Attr->clone(SemaRef.Context)); |
5400 | |
5401 | IndirectField->setAccess(AS); |
5402 | IndirectField->setImplicit(); |
5403 | SemaRef.PushOnScopeChains(IndirectField, S); |
5404 | |
5405 | // That includes picking up the appropriate access specifier. |
5406 | if (AS != AS_none) IndirectField->setAccess(AS); |
5407 | |
5408 | Chaining.resize(OldChainingSize); |
5409 | } |
5410 | } |
5411 | } |
5412 | |
5413 | return Invalid; |
5414 | } |
5415 | |
5416 | /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to |
5417 | /// a VarDecl::StorageClass. Any error reporting is up to the caller: |
5418 | /// illegal input values are mapped to SC_None. |
5419 | static StorageClass |
5420 | StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) { |
5421 | DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec(); |
5422 | assert(StorageClassSpec != DeclSpec::SCS_typedef &&(static_cast <bool> (StorageClassSpec != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class VarDecl." ) ? void (0) : __assert_fail ("StorageClassSpec != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class VarDecl.\"" , "clang/lib/Sema/SemaDecl.cpp", 5423, __extension__ __PRETTY_FUNCTION__ )) |
5423 | "Parser allowed 'typedef' as storage class VarDecl.")(static_cast <bool> (StorageClassSpec != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class VarDecl." ) ? void (0) : __assert_fail ("StorageClassSpec != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class VarDecl.\"" , "clang/lib/Sema/SemaDecl.cpp", 5423, __extension__ __PRETTY_FUNCTION__ )); |
5424 | switch (StorageClassSpec) { |
5425 | case DeclSpec::SCS_unspecified: return SC_None; |
5426 | case DeclSpec::SCS_extern: |
5427 | if (DS.isExternInLinkageSpec()) |
5428 | return SC_None; |
5429 | return SC_Extern; |
5430 | case DeclSpec::SCS_static: return SC_Static; |
5431 | case DeclSpec::SCS_auto: return SC_Auto; |
5432 | case DeclSpec::SCS_register: return SC_Register; |
5433 | case DeclSpec::SCS_private_extern: return SC_PrivateExtern; |
5434 | // Illegal SCSs map to None: error reporting is up to the caller. |
5435 | case DeclSpec::SCS_mutable: // Fall through. |
5436 | case DeclSpec::SCS_typedef: return SC_None; |
5437 | } |
5438 | llvm_unreachable("unknown storage class specifier")::llvm::llvm_unreachable_internal("unknown storage class specifier" , "clang/lib/Sema/SemaDecl.cpp", 5438); |
5439 | } |
5440 | |
5441 | static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) { |
5442 | assert(Record->hasInClassInitializer())(static_cast <bool> (Record->hasInClassInitializer() ) ? void (0) : __assert_fail ("Record->hasInClassInitializer()" , "clang/lib/Sema/SemaDecl.cpp", 5442, __extension__ __PRETTY_FUNCTION__ )); |
5443 | |
5444 | for (const auto *I : Record->decls()) { |
5445 | const auto *FD = dyn_cast<FieldDecl>(I); |
5446 | if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) |
5447 | FD = IFD->getAnonField(); |
5448 | if (FD && FD->hasInClassInitializer()) |
5449 | return FD->getLocation(); |
5450 | } |
5451 | |
5452 | llvm_unreachable("couldn't find in-class initializer")::llvm::llvm_unreachable_internal("couldn't find in-class initializer" , "clang/lib/Sema/SemaDecl.cpp", 5452); |
5453 | } |
5454 | |
5455 | static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, |
5456 | SourceLocation DefaultInitLoc) { |
5457 | if (!Parent->isUnion() || !Parent->hasInClassInitializer()) |
5458 | return; |
5459 | |
5460 | S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization); |
5461 | S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0; |
5462 | } |
5463 | |
5464 | static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, |
5465 | CXXRecordDecl *AnonUnion) { |
5466 | if (!Parent->isUnion() || !Parent->hasInClassInitializer()) |
5467 | return; |
5468 | |
5469 | checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion)); |
5470 | } |
5471 | |
5472 | /// BuildAnonymousStructOrUnion - Handle the declaration of an |
5473 | /// anonymous structure or union. Anonymous unions are a C++ feature |
5474 | /// (C++ [class.union]) and a C11 feature; anonymous structures |
5475 | /// are a C11 feature and GNU C++ extension. |
5476 | Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, |
5477 | AccessSpecifier AS, |
5478 | RecordDecl *Record, |
5479 | const PrintingPolicy &Policy) { |
5480 | DeclContext *Owner = Record->getDeclContext(); |
5481 | |
5482 | // Diagnose whether this anonymous struct/union is an extension. |
5483 | if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11) |
5484 | Diag(Record->getLocation(), diag::ext_anonymous_union); |
5485 | else if (!Record->isUnion() && getLangOpts().CPlusPlus) |
5486 | Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct); |
5487 | else if (!Record->isUnion() && !getLangOpts().C11) |
5488 | Diag(Record->getLocation(), diag::ext_c11_anonymous_struct); |
5489 | |
5490 | // C and C++ require different kinds of checks for anonymous |
5491 | // structs/unions. |
5492 | bool Invalid = false; |
5493 | if (getLangOpts().CPlusPlus) { |
5494 | const char *PrevSpec = nullptr; |
5495 | if (Record->isUnion()) { |
5496 | // C++ [class.union]p6: |
5497 | // C++17 [class.union.anon]p2: |
5498 | // Anonymous unions declared in a named namespace or in the |
5499 | // global namespace shall be declared static. |
5500 | unsigned DiagID; |
5501 | DeclContext *OwnerScope = Owner->getRedeclContext(); |
5502 | if (DS.getStorageClassSpec() != DeclSpec::SCS_static && |
5503 | (OwnerScope->isTranslationUnit() || |
5504 | (OwnerScope->isNamespace() && |
5505 | !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) { |
5506 | Diag(Record->getLocation(), diag::err_anonymous_union_not_static) |
5507 | << FixItHint::CreateInsertion(Record->getLocation(), "static "); |
5508 | |
5509 | // Recover by adding 'static'. |
5510 | DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(), |
5511 | PrevSpec, DiagID, Policy); |
5512 | } |
5513 | // C++ [class.union]p6: |
5514 | // A storage class is not allowed in a declaration of an |
5515 | // anonymous union in a class scope. |
5516 | else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && |
5517 | isa<RecordDecl>(Owner)) { |
5518 | Diag(DS.getStorageClassSpecLoc(), |
5519 | diag::err_anonymous_union_with_storage_spec) |
5520 | << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); |
5521 | |
5522 | // Recover by removing the storage specifier. |
5523 | DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified, |
5524 | SourceLocation(), |
5525 | PrevSpec, DiagID, Context.getPrintingPolicy()); |
5526 | } |
5527 | } |
5528 | |
5529 | // Ignore const/volatile/restrict qualifiers. |
5530 | if (DS.getTypeQualifiers()) { |
5531 | if (DS.getTypeQualifiers() & DeclSpec::TQ_const) |
5532 | Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified) |
5533 | << Record->isUnion() << "const" |
5534 | << FixItHint::CreateRemoval(DS.getConstSpecLoc()); |
5535 | if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) |
5536 | Diag(DS.getVolatileSpecLoc(), |
5537 | diag::ext_anonymous_struct_union_qualified) |
5538 | << Record->isUnion() << "volatile" |
5539 | << FixItHint::CreateRemoval(DS.getVolatileSpecLoc()); |
5540 | if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) |
5541 | Diag(DS.getRestrictSpecLoc(), |
5542 | diag::ext_anonymous_struct_union_qualified) |
5543 | << Record->isUnion() << "restrict" |
5544 | << FixItHint::CreateRemoval(DS.getRestrictSpecLoc()); |
5545 | if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) |
5546 | Diag(DS.getAtomicSpecLoc(), |
5547 | diag::ext_anonymous_struct_union_qualified) |
5548 | << Record->isUnion() << "_Atomic" |
5549 | << FixItHint::CreateRemoval(DS.getAtomicSpecLoc()); |
5550 | if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) |
5551 | Diag(DS.getUnalignedSpecLoc(), |
5552 | diag::ext_anonymous_struct_union_qualified) |
5553 | << Record->isUnion() << "__unaligned" |
5554 | << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc()); |
5555 | |
5556 | DS.ClearTypeQualifiers(); |
5557 | } |
5558 | |
5559 | // C++ [class.union]p2: |
5560 | // The member-specification of an anonymous union shall only |
5561 | // define non-static data members. [Note: nested types and |
5562 | // functions cannot be declared within an anonymous union. ] |
5563 | for (auto *Mem : Record->decls()) { |
5564 | // Ignore invalid declarations; we already diagnosed them. |
5565 | if (Mem->isInvalidDecl()) |
5566 | continue; |
5567 | |
5568 | if (auto *FD = dyn_cast<FieldDecl>(Mem)) { |
5569 | // C++ [class.union]p3: |
5570 | // An anonymous union shall not have private or protected |
5571 | // members (clause 11). |
5572 | assert(FD->getAccess() != AS_none)(static_cast <bool> (FD->getAccess() != AS_none) ? void (0) : __assert_fail ("FD->getAccess() != AS_none", "clang/lib/Sema/SemaDecl.cpp" , 5572, __extension__ __PRETTY_FUNCTION__)); |
5573 | if (FD->getAccess() != AS_public) { |
5574 | Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member) |
5575 | << Record->isUnion() << (FD->getAccess() == AS_protected); |
5576 | Invalid = true; |
5577 | } |
5578 | |
5579 | // C++ [class.union]p1 |
5580 | // An object of a class with a non-trivial constructor, a non-trivial |
5581 | // copy constructor, a non-trivial destructor, or a non-trivial copy |
5582 | // assignment operator cannot be a member of a union, nor can an |
5583 | // array of such objects. |
5584 | if (CheckNontrivialField(FD)) |
5585 | Invalid = true; |
5586 | } else if (Mem->isImplicit()) { |
5587 | // Any implicit members are fine. |
5588 | } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) { |
5589 | // This is a type that showed up in an |
5590 | // elaborated-type-specifier inside the anonymous struct or |
5591 | // union, but which actually declares a type outside of the |
5592 | // anonymous struct or union. It's okay. |
5593 | } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) { |
5594 | if (!MemRecord->isAnonymousStructOrUnion() && |
5595 | MemRecord->getDeclName()) { |
5596 | // Visual C++ allows type definition in anonymous struct or union. |
5597 | if (getLangOpts().MicrosoftExt) |
5598 | Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type) |
5599 | << Record->isUnion(); |
5600 | else { |
5601 | // This is a nested type declaration. |
5602 | Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type) |
5603 | << Record->isUnion(); |
5604 | Invalid = true; |
5605 | } |
5606 | } else { |
5607 | // This is an anonymous type definition within another anonymous type. |
5608 | // This is a popular extension, provided by Plan9, MSVC and GCC, but |
5609 | // not part of standard C++. |
5610 | Diag(MemRecord->getLocation(), |
5611 | diag::ext_anonymous_record_with_anonymous_type) |
5612 | << Record->isUnion(); |
5613 | } |
5614 | } else if (isa<AccessSpecDecl>(Mem)) { |
5615 | // Any access specifier is fine. |
5616 | } else if (isa<StaticAssertDecl>(Mem)) { |
5617 | // In C++1z, static_assert declarations are also fine. |
5618 | } else { |
5619 | // We have something that isn't a non-static data |
5620 | // member. Complain about it. |
5621 | unsigned DK = diag::err_anonymous_record_bad_member; |
5622 | if (isa<TypeDecl>(Mem)) |
5623 | DK = diag::err_anonymous_record_with_type; |
5624 | else if (isa<FunctionDecl>(Mem)) |
5625 | DK = diag::err_anonymous_record_with_function; |
5626 | else if (isa<VarDecl>(Mem)) |
5627 | DK = diag::err_anonymous_record_with_static; |
5628 | |
5629 | // Visual C++ allows type definition in anonymous struct or union. |
5630 | if (getLangOpts().MicrosoftExt && |
5631 | DK == diag::err_anonymous_record_with_type) |
5632 | Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type) |
5633 | << Record->isUnion(); |
5634 | else { |
5635 | Diag(Mem->getLocation(), DK) << Record->isUnion(); |
5636 | Invalid = true; |
5637 | } |
5638 | } |
5639 | } |
5640 | |
5641 | // C++11 [class.union]p8 (DR1460): |
5642 | // At most one variant member of a union may have a |
5643 | // brace-or-equal-initializer. |
5644 | if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() && |
5645 | Owner->isRecord()) |
5646 | checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner), |
5647 | cast<CXXRecordDecl>(Record)); |
5648 | } |
5649 | |
5650 | if (!Record->isUnion() && !Owner->isRecord()) { |
5651 | Diag(Record->getLocation(), diag::err_anonymous_struct_not_member) |
5652 | << getLangOpts().CPlusPlus; |
5653 | Invalid = true; |
5654 | } |
5655 | |
5656 | // C++ [dcl.dcl]p3: |
5657 | // [If there are no declarators], and except for the declaration of an |
5658 | // unnamed bit-field, the decl-specifier-seq shall introduce one or more |
5659 | // names into the program |
5660 | // C++ [class.mem]p2: |
5661 | // each such member-declaration shall either declare at least one member |
5662 | // name of the class or declare at least one unnamed bit-field |
5663 | // |
5664 | // For C this is an error even for a named struct, and is diagnosed elsewhere. |
5665 | if (getLangOpts().CPlusPlus && Record->field_empty()) |
5666 | Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange(); |
5667 | |
5668 | // Mock up a declarator. |
5669 | Declarator Dc(DS, ParsedAttributesView::none(), DeclaratorContext::Member); |
5670 | TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); |
5671 | assert(TInfo && "couldn't build declarator info for anonymous struct/union")(static_cast <bool> (TInfo && "couldn't build declarator info for anonymous struct/union" ) ? void (0) : __assert_fail ("TInfo && \"couldn't build declarator info for anonymous struct/union\"" , "clang/lib/Sema/SemaDecl.cpp", 5671, __extension__ __PRETTY_FUNCTION__ )); |
5672 | |
5673 | // Create a declaration for this anonymous struct/union. |
5674 | NamedDecl *Anon = nullptr; |
5675 | if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) { |
5676 | Anon = FieldDecl::Create( |
5677 | Context, OwningClass, DS.getBeginLoc(), Record->getLocation(), |
5678 | /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo, |
5679 | /*BitWidth=*/nullptr, /*Mutable=*/false, |
5680 | /*InitStyle=*/ICIS_NoInit); |
5681 | Anon->setAccess(AS); |
5682 | ProcessDeclAttributes(S, Anon, Dc); |
5683 | |
5684 | if (getLangOpts().CPlusPlus) |
5685 | FieldCollector->Add(cast<FieldDecl>(Anon)); |
5686 | } else { |
5687 | DeclSpec::SCS SCSpec = DS.getStorageClassSpec(); |
5688 | StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS); |
5689 | if (SCSpec == DeclSpec::SCS_mutable) { |
5690 | // mutable can only appear on non-static class members, so it's always |
5691 | // an error here |
5692 | Diag(Record->getLocation(), diag::err_mutable_nonmember); |
5693 | Invalid = true; |
5694 | SC = SC_None; |
5695 | } |
5696 | |
5697 | assert(DS.getAttributes().empty() && "No attribute expected")(static_cast <bool> (DS.getAttributes().empty() && "No attribute expected") ? void (0) : __assert_fail ("DS.getAttributes().empty() && \"No attribute expected\"" , "clang/lib/Sema/SemaDecl.cpp", 5697, __extension__ __PRETTY_FUNCTION__ )); |
5698 | Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(), |
5699 | Record->getLocation(), /*IdentifierInfo=*/nullptr, |
5700 | Context.getTypeDeclType(Record), TInfo, SC); |
5701 | |
5702 | // Default-initialize the implicit variable. This initialization will be |
5703 | // trivial in almost all cases, except if a union member has an in-class |
5704 | // initializer: |
5705 | // union { int n = 0; }; |
5706 | ActOnUninitializedDecl(Anon); |
5707 | } |
5708 | Anon->setImplicit(); |
5709 | |
5710 | // Mark this as an anonymous struct/union type. |
5711 | Record->setAnonymousStructOrUnion(true); |
5712 | |
5713 | // Add the anonymous struct/union object to the current |
5714 | // context. We'll be referencing this object when we refer to one of |
5715 | // its members. |
5716 | Owner->addDecl(Anon); |
5717 | |
5718 | // Inject the members of the anonymous struct/union into the owning |
5719 | // context and into the identifier resolver chain for name lookup |
5720 | // purposes. |
5721 | SmallVector<NamedDecl*, 2> Chain; |
5722 | Chain.push_back(Anon); |
5723 | |
5724 | if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain)) |
5725 | Invalid = true; |
5726 | |
5727 | if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) { |
5728 | if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { |
5729 | MangleNumberingContext *MCtx; |
5730 | Decl *ManglingContextDecl; |
5731 | std::tie(MCtx, ManglingContextDecl) = |
5732 | getCurrentMangleNumberContext(NewVD->getDeclContext()); |
5733 | if (MCtx) { |
5734 | Context.setManglingNumber( |
5735 | NewVD, MCtx->getManglingNumber( |
5736 | NewVD, getMSManglingNumber(getLangOpts(), S))); |
5737 | Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD)); |
5738 | } |
5739 | } |
5740 | } |
5741 | |
5742 | if (Invalid) |
5743 | Anon->setInvalidDecl(); |
5744 | |
5745 | return Anon; |
5746 | } |
5747 | |
5748 | /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an |
5749 | /// Microsoft C anonymous structure. |
5750 | /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx |
5751 | /// Example: |
5752 | /// |
5753 | /// struct A { int a; }; |
5754 | /// struct B { struct A; int b; }; |
5755 | /// |
5756 | /// void foo() { |
5757 | /// B var; |
5758 | /// var.a = 3; |
5759 | /// } |
5760 | /// |
5761 | Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS, |
5762 | RecordDecl *Record) { |
5763 | assert(Record && "expected a record!")(static_cast <bool> (Record && "expected a record!" ) ? void (0) : __assert_fail ("Record && \"expected a record!\"" , "clang/lib/Sema/SemaDecl.cpp", 5763, __extension__ __PRETTY_FUNCTION__ )); |
5764 | |
5765 | // Mock up a declarator. |
5766 | Declarator Dc(DS, ParsedAttributesView::none(), DeclaratorContext::TypeName); |
5767 | TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); |
5768 | assert(TInfo && "couldn't build declarator info for anonymous struct")(static_cast <bool> (TInfo && "couldn't build declarator info for anonymous struct" ) ? void (0) : __assert_fail ("TInfo && \"couldn't build declarator info for anonymous struct\"" , "clang/lib/Sema/SemaDecl.cpp", 5768, __extension__ __PRETTY_FUNCTION__ )); |
5769 | |
5770 | auto *ParentDecl = cast<RecordDecl>(CurContext); |
5771 | QualType RecTy = Context.getTypeDeclType(Record); |
5772 | |
5773 | // Create a declaration for this anonymous struct. |
5774 | NamedDecl *Anon = |
5775 | FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(), |
5776 | /*IdentifierInfo=*/nullptr, RecTy, TInfo, |
5777 | /*BitWidth=*/nullptr, /*Mutable=*/false, |
5778 | /*InitStyle=*/ICIS_NoInit); |
5779 | Anon->setImplicit(); |
5780 | |
5781 | // Add the anonymous struct object to the current context. |
5782 | CurContext->addDecl(Anon); |
5783 | |
5784 | // Inject the members of the anonymous struct into the current |
5785 | // context and into the identifier resolver chain for name lookup |
5786 | // purposes. |
5787 | SmallVector<NamedDecl*, 2> Chain; |
5788 | Chain.push_back(Anon); |
5789 | |
5790 | RecordDecl *RecordDef = Record->getDefinition(); |
5791 | if (RequireCompleteSizedType(Anon->getLocation(), RecTy, |
5792 | diag::err_field_incomplete_or_sizeless) || |
5793 | InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef, |
5794 | AS_none, Chain)) { |
5795 | Anon->setInvalidDecl(); |
5796 | ParentDecl->setInvalidDecl(); |
5797 | } |
5798 | |
5799 | return Anon; |
5800 | } |
5801 | |
5802 | /// GetNameForDeclarator - Determine the full declaration name for the |
5803 | /// given Declarator. |
5804 | DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) { |
5805 | return GetNameFromUnqualifiedId(D.getName()); |
5806 | } |
5807 | |
5808 | /// Retrieves the declaration name from a parsed unqualified-id. |
5809 | DeclarationNameInfo |
5810 | Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) { |
5811 | DeclarationNameInfo NameInfo; |
5812 | NameInfo.setLoc(Name.StartLocation); |
5813 | |
5814 | switch (Name.getKind()) { |
5815 | |
5816 | case UnqualifiedIdKind::IK_ImplicitSelfParam: |
5817 | case UnqualifiedIdKind::IK_Identifier: |
5818 | NameInfo.setName(Name.Identifier); |
5819 | return NameInfo; |
5820 | |
5821 | case UnqualifiedIdKind::IK_DeductionGuideName: { |
5822 | // C++ [temp.deduct.guide]p3: |
5823 | // The simple-template-id shall name a class template specialization. |
5824 | // The template-name shall be the same identifier as the template-name |
5825 | // of the simple-template-id. |
5826 | // These together intend to imply that the template-name shall name a |
5827 | // class template. |
5828 | // FIXME: template<typename T> struct X {}; |
5829 | // template<typename T> using Y = X<T>; |
5830 | // Y(int) -> Y<int>; |
5831 | // satisfies these rules but does not name a class template. |
5832 | TemplateName TN = Name.TemplateName.get().get(); |
5833 | auto *Template = TN.getAsTemplateDecl(); |
5834 | if (!Template || !isa<ClassTemplateDecl>(Template)) { |
5835 | Diag(Name.StartLocation, |
5836 | diag::err_deduction_guide_name_not_class_template) |
5837 | << (int)getTemplateNameKindForDiagnostics(TN) << TN; |
5838 | if (Template) |
5839 | Diag(Template->getLocation(), diag::note_template_decl_here); |
5840 | return DeclarationNameInfo(); |
5841 | } |
5842 | |
5843 | NameInfo.setName( |
5844 | Context.DeclarationNames.getCXXDeductionGuideName(Template)); |
5845 | return NameInfo; |
5846 | } |
5847 | |
5848 | case UnqualifiedIdKind::IK_OperatorFunctionId: |
5849 | NameInfo.setName(Context.DeclarationNames.getCXXOperatorName( |
5850 | Name.OperatorFunctionId.Operator)); |
5851 | NameInfo.setCXXOperatorNameRange(SourceRange( |
5852 | Name.OperatorFunctionId.SymbolLocations[0], Name.EndLocation)); |
5853 | return NameInfo; |
5854 | |
5855 | case UnqualifiedIdKind::IK_LiteralOperatorId: |
5856 | NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName( |
5857 | Name.Identifier)); |
5858 | NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation); |
5859 | return NameInfo; |
5860 | |
5861 | case UnqualifiedIdKind::IK_ConversionFunctionId: { |
5862 | TypeSourceInfo *TInfo; |
5863 | QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo); |
5864 | if (Ty.isNull()) |
5865 | return DeclarationNameInfo(); |
5866 | NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName( |
5867 | Context.getCanonicalType(Ty))); |
5868 | NameInfo.setNamedTypeInfo(TInfo); |
5869 | return NameInfo; |
5870 | } |
5871 | |
5872 | case UnqualifiedIdKind::IK_ConstructorName: { |
5873 | TypeSourceInfo *TInfo; |
5874 | QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo); |
5875 | if (Ty.isNull()) |
5876 | return DeclarationNameInfo(); |
5877 | NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( |
5878 | Context.getCanonicalType(Ty))); |
5879 | NameInfo.setNamedTypeInfo(TInfo); |
5880 | return NameInfo; |
5881 | } |
5882 | |
5883 | case UnqualifiedIdKind::IK_ConstructorTemplateId: { |
5884 | // In well-formed code, we can only have a constructor |
5885 | // template-id that refers to the current context, so go there |
5886 | // to find the actual type being constructed. |
5887 | CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext); |
5888 | if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name) |
5889 | return DeclarationNameInfo(); |
5890 | |
5891 | // Determine the type of the class being constructed. |
5892 | QualType CurClassType = Context.getTypeDeclType(CurClass); |
5893 | |
5894 | // FIXME: Check two things: that the template-id names the same type as |
5895 |