Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/Sema/SemaDecl.cpp
Warning:line 17360, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaDecl.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/Sema -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-04-20-140412-16051-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/Sema/SemaDecl.cpp
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for declarations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TypeLocBuilder.h"
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTLambda.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/CommentDiagnostic.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/EvaluatedExprVisitor.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/NonTrivialTypeVisitor.h"
27#include "clang/AST/Randstruct.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/Basic/Builtins.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33#include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
34#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
35#include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
36#include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
37#include "clang/Sema/CXXFieldCollector.h"
38#include "clang/Sema/DeclSpec.h"
39#include "clang/Sema/DelayedDiagnostic.h"
40#include "clang/Sema/Initialization.h"
41#include "clang/Sema/Lookup.h"
42#include "clang/Sema/ParsedTemplate.h"
43#include "clang/Sema/Scope.h"
44#include "clang/Sema/ScopeInfo.h"
45#include "clang/Sema/SemaInternal.h"
46#include "clang/Sema/Template.h"
47#include "llvm/ADT/SmallString.h"
48#include "llvm/ADT/Triple.h"
49#include <algorithm>
50#include <cstring>
51#include <functional>
52#include <unordered_map>
53
54using namespace clang;
55using namespace sema;
56
57Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
58 if (OwnedType) {
59 Decl *Group[2] = { OwnedType, Ptr };
60 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
61 }
62
63 return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
64}
65
66namespace {
67
68class TypeNameValidatorCCC final : public CorrectionCandidateCallback {
69 public:
70 TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
71 bool AllowTemplates = false,
72 bool AllowNonTemplates = true)
73 : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
74 AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
75 WantExpressionKeywords = false;
76 WantCXXNamedCasts = false;
77 WantRemainingKeywords = false;
78 }
79
80 bool ValidateCandidate(const TypoCorrection &candidate) override {
81 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
82 if (!AllowInvalidDecl && ND->isInvalidDecl())
83 return false;
84
85 if (getAsTypeTemplateDecl(ND))
86 return AllowTemplates;
87
88 bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
89 if (!IsType)
90 return false;
91
92 if (AllowNonTemplates)
93 return true;
94
95 // An injected-class-name of a class template (specialization) is valid
96 // as a template or as a non-template.
97 if (AllowTemplates) {
98 auto *RD = dyn_cast<CXXRecordDecl>(ND);
99 if (!RD || !RD->isInjectedClassName())
100 return false;
101 RD = cast<CXXRecordDecl>(RD->getDeclContext());
102 return RD->getDescribedClassTemplate() ||
103 isa<ClassTemplateSpecializationDecl>(RD);
104 }
105
106 return false;
107 }
108
109 return !WantClassName && candidate.isKeyword();
110 }
111
112 std::unique_ptr<CorrectionCandidateCallback> clone() override {
113 return std::make_unique<TypeNameValidatorCCC>(*this);
114 }
115
116 private:
117 bool AllowInvalidDecl;
118 bool WantClassName;
119 bool AllowTemplates;
120 bool AllowNonTemplates;
121};
122
123} // end anonymous namespace
124
125/// Determine whether the token kind starts a simple-type-specifier.
126bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
127 switch (Kind) {
128 // FIXME: Take into account the current language when deciding whether a
129 // token kind is a valid type specifier
130 case tok::kw_short:
131 case tok::kw_long:
132 case tok::kw___int64:
133 case tok::kw___int128:
134 case tok::kw_signed:
135 case tok::kw_unsigned:
136 case tok::kw_void:
137 case tok::kw_char:
138 case tok::kw_int:
139 case tok::kw_half:
140 case tok::kw_float:
141 case tok::kw_double:
142 case tok::kw___bf16:
143 case tok::kw__Float16:
144 case tok::kw___float128:
145 case tok::kw___ibm128:
146 case tok::kw_wchar_t:
147 case tok::kw_bool:
148 case tok::kw___underlying_type:
149 case tok::kw___auto_type:
150 return true;
151
152 case tok::annot_typename:
153 case tok::kw_char16_t:
154 case tok::kw_char32_t:
155 case tok::kw_typeof:
156 case tok::annot_decltype:
157 case tok::kw_decltype:
158 return getLangOpts().CPlusPlus;
159
160 case tok::kw_char8_t:
161 return getLangOpts().Char8;
162
163 default:
164 break;
165 }
166
167 return false;
168}
169
170namespace {
171enum class UnqualifiedTypeNameLookupResult {
172 NotFound,
173 FoundNonType,
174 FoundType
175};
176} // end anonymous namespace
177
178/// Tries to perform unqualified lookup of the type decls in bases for
179/// dependent class.
180/// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
181/// type decl, \a FoundType if only type decls are found.
182static UnqualifiedTypeNameLookupResult
183lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
184 SourceLocation NameLoc,
185 const CXXRecordDecl *RD) {
186 if (!RD->hasDefinition())
187 return UnqualifiedTypeNameLookupResult::NotFound;
188 // Look for type decls in base classes.
189 UnqualifiedTypeNameLookupResult FoundTypeDecl =
190 UnqualifiedTypeNameLookupResult::NotFound;
191 for (const auto &Base : RD->bases()) {
192 const CXXRecordDecl *BaseRD = nullptr;
193 if (auto *BaseTT = Base.getType()->getAs<TagType>())
194 BaseRD = BaseTT->getAsCXXRecordDecl();
195 else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
196 // Look for type decls in dependent base classes that have known primary
197 // templates.
198 if (!TST || !TST->isDependentType())
199 continue;
200 auto *TD = TST->getTemplateName().getAsTemplateDecl();
201 if (!TD)
202 continue;
203 if (auto *BasePrimaryTemplate =
204 dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
205 if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
206 BaseRD = BasePrimaryTemplate;
207 else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
208 if (const ClassTemplatePartialSpecializationDecl *PS =
209 CTD->findPartialSpecialization(Base.getType()))
210 if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
211 BaseRD = PS;
212 }
213 }
214 }
215 if (BaseRD) {
216 for (NamedDecl *ND : BaseRD->lookup(&II)) {
217 if (!isa<TypeDecl>(ND))
218 return UnqualifiedTypeNameLookupResult::FoundNonType;
219 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
220 }
221 if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
222 switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
223 case UnqualifiedTypeNameLookupResult::FoundNonType:
224 return UnqualifiedTypeNameLookupResult::FoundNonType;
225 case UnqualifiedTypeNameLookupResult::FoundType:
226 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
227 break;
228 case UnqualifiedTypeNameLookupResult::NotFound:
229 break;
230 }
231 }
232 }
233 }
234
235 return FoundTypeDecl;
236}
237
238static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
239 const IdentifierInfo &II,
240 SourceLocation NameLoc) {
241 // Lookup in the parent class template context, if any.
242 const CXXRecordDecl *RD = nullptr;
243 UnqualifiedTypeNameLookupResult FoundTypeDecl =
244 UnqualifiedTypeNameLookupResult::NotFound;
245 for (DeclContext *DC = S.CurContext;
246 DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
247 DC = DC->getParent()) {
248 // Look for type decls in dependent base classes that have known primary
249 // templates.
250 RD = dyn_cast<CXXRecordDecl>(DC);
251 if (RD && RD->getDescribedClassTemplate())
252 FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
253 }
254 if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
255 return nullptr;
256
257 // We found some types in dependent base classes. Recover as if the user
258 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the
259 // lookup during template instantiation.
260 S.Diag(NameLoc, diag::ext_found_in_dependent_base) << &II;
261
262 ASTContext &Context = S.Context;
263 auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
264 cast<Type>(Context.getRecordType(RD)));
265 QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
266
267 CXXScopeSpec SS;
268 SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
269
270 TypeLocBuilder Builder;
271 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
272 DepTL.setNameLoc(NameLoc);
273 DepTL.setElaboratedKeywordLoc(SourceLocation());
274 DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
275 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
276}
277
278/// If the identifier refers to a type name within this scope,
279/// return the declaration of that type.
280///
281/// This routine performs ordinary name lookup of the identifier II
282/// within the given scope, with optional C++ scope specifier SS, to
283/// determine whether the name refers to a type. If so, returns an
284/// opaque pointer (actually a QualType) corresponding to that
285/// type. Otherwise, returns NULL.
286ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
287 Scope *S, CXXScopeSpec *SS,
288 bool isClassName, bool HasTrailingDot,
289 ParsedType ObjectTypePtr,
290 bool IsCtorOrDtorName,
291 bool WantNontrivialTypeSourceInfo,
292 bool IsClassTemplateDeductionContext,
293 IdentifierInfo **CorrectedII) {
294 // FIXME: Consider allowing this outside C++1z mode as an extension.
295 bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
296 getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
297 !isClassName && !HasTrailingDot;
298
299 // Determine where we will perform name lookup.
300 DeclContext *LookupCtx = nullptr;
301 if (ObjectTypePtr) {
302 QualType ObjectType = ObjectTypePtr.get();
303 if (ObjectType->isRecordType())
304 LookupCtx = computeDeclContext(ObjectType);
305 } else if (SS && SS->isNotEmpty()) {
306 LookupCtx = computeDeclContext(*SS, false);
307
308 if (!LookupCtx) {
309 if (isDependentScopeSpecifier(*SS)) {
310 // C++ [temp.res]p3:
311 // A qualified-id that refers to a type and in which the
312 // nested-name-specifier depends on a template-parameter (14.6.2)
313 // shall be prefixed by the keyword typename to indicate that the
314 // qualified-id denotes a type, forming an
315 // elaborated-type-specifier (7.1.5.3).
316 //
317 // We therefore do not perform any name lookup if the result would
318 // refer to a member of an unknown specialization.
319 if (!isClassName && !IsCtorOrDtorName)
320 return nullptr;
321
322 // We know from the grammar that this name refers to a type,
323 // so build a dependent node to describe the type.
324 if (WantNontrivialTypeSourceInfo)
325 return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
326
327 NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
328 QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
329 II, NameLoc);
330 return ParsedType::make(T);
331 }
332
333 return nullptr;
334 }
335
336 if (!LookupCtx->isDependentContext() &&
337 RequireCompleteDeclContext(*SS, LookupCtx))
338 return nullptr;
339 }
340
341 // FIXME: LookupNestedNameSpecifierName isn't the right kind of
342 // lookup for class-names.
343 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
344 LookupOrdinaryName;
345 LookupResult Result(*this, &II, NameLoc, Kind);
346 if (LookupCtx) {
347 // Perform "qualified" name lookup into the declaration context we
348 // computed, which is either the type of the base of a member access
349 // expression or the declaration context associated with a prior
350 // nested-name-specifier.
351 LookupQualifiedName(Result, LookupCtx);
352
353 if (ObjectTypePtr && Result.empty()) {
354 // C++ [basic.lookup.classref]p3:
355 // If the unqualified-id is ~type-name, the type-name is looked up
356 // in the context of the entire postfix-expression. If the type T of
357 // the object expression is of a class type C, the type-name is also
358 // looked up in the scope of class C. At least one of the lookups shall
359 // find a name that refers to (possibly cv-qualified) T.
360 LookupName(Result, S);
361 }
362 } else {
363 // Perform unqualified name lookup.
364 LookupName(Result, S);
365
366 // For unqualified lookup in a class template in MSVC mode, look into
367 // dependent base classes where the primary class template is known.
368 if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
369 if (ParsedType TypeInBase =
370 recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
371 return TypeInBase;
372 }
373 }
374
375 NamedDecl *IIDecl = nullptr;
376 UsingShadowDecl *FoundUsingShadow = nullptr;
377 switch (Result.getResultKind()) {
378 case LookupResult::NotFound:
379 case LookupResult::NotFoundInCurrentInstantiation:
380 if (CorrectedII) {
381 TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName,
382 AllowDeducedTemplate);
383 TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind,
384 S, SS, CCC, CTK_ErrorRecovery);
385 IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
386 TemplateTy Template;
387 bool MemberOfUnknownSpecialization;
388 UnqualifiedId TemplateName;
389 TemplateName.setIdentifier(NewII, NameLoc);
390 NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
391 CXXScopeSpec NewSS, *NewSSPtr = SS;
392 if (SS && NNS) {
393 NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
394 NewSSPtr = &NewSS;
395 }
396 if (Correction && (NNS || NewII != &II) &&
397 // Ignore a correction to a template type as the to-be-corrected
398 // identifier is not a template (typo correction for template names
399 // is handled elsewhere).
400 !(getLangOpts().CPlusPlus && NewSSPtr &&
401 isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
402 Template, MemberOfUnknownSpecialization))) {
403 ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
404 isClassName, HasTrailingDot, ObjectTypePtr,
405 IsCtorOrDtorName,
406 WantNontrivialTypeSourceInfo,
407 IsClassTemplateDeductionContext);
408 if (Ty) {
409 diagnoseTypo(Correction,
410 PDiag(diag::err_unknown_type_or_class_name_suggest)
411 << Result.getLookupName() << isClassName);
412 if (SS && NNS)
413 SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
414 *CorrectedII = NewII;
415 return Ty;
416 }
417 }
418 }
419 // If typo correction failed or was not performed, fall through
420 LLVM_FALLTHROUGH[[gnu::fallthrough]];
421 case LookupResult::FoundOverloaded:
422 case LookupResult::FoundUnresolvedValue:
423 Result.suppressDiagnostics();
424 return nullptr;
425
426 case LookupResult::Ambiguous:
427 // Recover from type-hiding ambiguities by hiding the type. We'll
428 // do the lookup again when looking for an object, and we can
429 // diagnose the error then. If we don't do this, then the error
430 // about hiding the type will be immediately followed by an error
431 // that only makes sense if the identifier was treated like a type.
432 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
433 Result.suppressDiagnostics();
434 return nullptr;
435 }
436
437 // Look to see if we have a type anywhere in the list of results.
438 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
439 Res != ResEnd; ++Res) {
440 NamedDecl *RealRes = (*Res)->getUnderlyingDecl();
441 if (isa<TypeDecl, ObjCInterfaceDecl, UnresolvedUsingIfExistsDecl>(
442 RealRes) ||
443 (AllowDeducedTemplate && getAsTypeTemplateDecl(RealRes))) {
444 if (!IIDecl ||
445 // Make the selection of the recovery decl deterministic.
446 RealRes->getLocation() < IIDecl->getLocation()) {
447 IIDecl = RealRes;
448 FoundUsingShadow = dyn_cast<UsingShadowDecl>(*Res);
449 }
450 }
451 }
452
453 if (!IIDecl) {
454 // None of the entities we found is a type, so there is no way
455 // to even assume that the result is a type. In this case, don't
456 // complain about the ambiguity. The parser will either try to
457 // perform this lookup again (e.g., as an object name), which
458 // will produce the ambiguity, or will complain that it expected
459 // a type name.
460 Result.suppressDiagnostics();
461 return nullptr;
462 }
463
464 // We found a type within the ambiguous lookup; diagnose the
465 // ambiguity and then return that type. This might be the right
466 // answer, or it might not be, but it suppresses any attempt to
467 // perform the name lookup again.
468 break;
469
470 case LookupResult::Found:
471 IIDecl = Result.getFoundDecl();
472 FoundUsingShadow = dyn_cast<UsingShadowDecl>(*Result.begin());
473 break;
474 }
475
476 assert(IIDecl && "Didn't find decl")(static_cast <bool> (IIDecl && "Didn't find decl"
) ? void (0) : __assert_fail ("IIDecl && \"Didn't find decl\""
, "clang/lib/Sema/SemaDecl.cpp", 476, __extension__ __PRETTY_FUNCTION__
))
;
477
478 QualType T;
479 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
480 // C++ [class.qual]p2: A lookup that would find the injected-class-name
481 // instead names the constructors of the class, except when naming a class.
482 // This is ill-formed when we're not actually forming a ctor or dtor name.
483 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
484 auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
485 if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
486 FoundRD->isInjectedClassName() &&
487 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
488 Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
489 << &II << /*Type*/1;
490
491 DiagnoseUseOfDecl(IIDecl, NameLoc);
492
493 T = Context.getTypeDeclType(TD);
494 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
495 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
496 (void)DiagnoseUseOfDecl(IDecl, NameLoc);
497 if (!HasTrailingDot)
498 T = Context.getObjCInterfaceType(IDecl);
499 FoundUsingShadow = nullptr; // FIXME: Target must be a TypeDecl.
500 } else if (auto *UD = dyn_cast<UnresolvedUsingIfExistsDecl>(IIDecl)) {
501 (void)DiagnoseUseOfDecl(UD, NameLoc);
502 // Recover with 'int'
503 T = Context.IntTy;
504 FoundUsingShadow = nullptr;
505 } else if (AllowDeducedTemplate) {
506 if (auto *TD = getAsTypeTemplateDecl(IIDecl)) {
507 assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD)(static_cast <bool> (!FoundUsingShadow || FoundUsingShadow
->getTargetDecl() == TD) ? void (0) : __assert_fail ("!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD"
, "clang/lib/Sema/SemaDecl.cpp", 507, __extension__ __PRETTY_FUNCTION__
))
;
508 TemplateName Template =
509 FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD);
510 T = Context.getDeducedTemplateSpecializationType(Template, QualType(),
511 false);
512 // Don't wrap in a further UsingType.
513 FoundUsingShadow = nullptr;
514 }
515 }
516
517 if (T.isNull()) {
518 // If it's not plausibly a type, suppress diagnostics.
519 Result.suppressDiagnostics();
520 return nullptr;
521 }
522
523 if (FoundUsingShadow)
524 T = Context.getUsingType(FoundUsingShadow, T);
525
526 // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
527 // constructor or destructor name (in such a case, the scope specifier
528 // will be attached to the enclosing Expr or Decl node).
529 if (SS && SS->isNotEmpty() && !IsCtorOrDtorName &&
530 !isa<ObjCInterfaceDecl, UnresolvedUsingIfExistsDecl>(IIDecl)) {
531 if (WantNontrivialTypeSourceInfo) {
532 // Construct a type with type-source information.
533 TypeLocBuilder Builder;
534 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
535
536 T = getElaboratedType(ETK_None, *SS, T);
537 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
538 ElabTL.setElaboratedKeywordLoc(SourceLocation());
539 ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
540 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
541 } else {
542 T = getElaboratedType(ETK_None, *SS, T);
543 }
544 }
545
546 return ParsedType::make(T);
547}
548
549// Builds a fake NNS for the given decl context.
550static NestedNameSpecifier *
551synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
552 for (;; DC = DC->getLookupParent()) {
553 DC = DC->getPrimaryContext();
554 auto *ND = dyn_cast<NamespaceDecl>(DC);
555 if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
556 return NestedNameSpecifier::Create(Context, nullptr, ND);
557 else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
558 return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
559 RD->getTypeForDecl());
560 else if (isa<TranslationUnitDecl>(DC))
561 return NestedNameSpecifier::GlobalSpecifier(Context);
562 }
563 llvm_unreachable("something isn't in TU scope?")::llvm::llvm_unreachable_internal("something isn't in TU scope?"
, "clang/lib/Sema/SemaDecl.cpp", 563)
;
564}
565
566/// Find the parent class with dependent bases of the innermost enclosing method
567/// context. Do not look for enclosing CXXRecordDecls directly, or we will end
568/// up allowing unqualified dependent type names at class-level, which MSVC
569/// correctly rejects.
570static const CXXRecordDecl *
571findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
572 for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
573 DC = DC->getPrimaryContext();
574 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
575 if (MD->getParent()->hasAnyDependentBases())
576 return MD->getParent();
577 }
578 return nullptr;
579}
580
581ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
582 SourceLocation NameLoc,
583 bool IsTemplateTypeArg) {
584 assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode")(static_cast <bool> (getLangOpts().MSVCCompat &&
"shouldn't be called in non-MSVC mode") ? void (0) : __assert_fail
("getLangOpts().MSVCCompat && \"shouldn't be called in non-MSVC mode\""
, "clang/lib/Sema/SemaDecl.cpp", 584, __extension__ __PRETTY_FUNCTION__
))
;
585
586 NestedNameSpecifier *NNS = nullptr;
587 if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
588 // If we weren't able to parse a default template argument, delay lookup
589 // until instantiation time by making a non-dependent DependentTypeName. We
590 // pretend we saw a NestedNameSpecifier referring to the current scope, and
591 // lookup is retried.
592 // FIXME: This hurts our diagnostic quality, since we get errors like "no
593 // type named 'Foo' in 'current_namespace'" when the user didn't write any
594 // name specifiers.
595 NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
596 Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
597 } else if (const CXXRecordDecl *RD =
598 findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
599 // Build a DependentNameType that will perform lookup into RD at
600 // instantiation time.
601 NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
602 RD->getTypeForDecl());
603
604 // Diagnose that this identifier was undeclared, and retry the lookup during
605 // template instantiation.
606 Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
607 << RD;
608 } else {
609 // This is not a situation that we should recover from.
610 return ParsedType();
611 }
612
613 QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
614
615 // Build type location information. We synthesized the qualifier, so we have
616 // to build a fake NestedNameSpecifierLoc.
617 NestedNameSpecifierLocBuilder NNSLocBuilder;
618 NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
619 NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
620
621 TypeLocBuilder Builder;
622 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
623 DepTL.setNameLoc(NameLoc);
624 DepTL.setElaboratedKeywordLoc(SourceLocation());
625 DepTL.setQualifierLoc(QualifierLoc);
626 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
627}
628
629/// isTagName() - This method is called *for error recovery purposes only*
630/// to determine if the specified name is a valid tag name ("struct foo"). If
631/// so, this returns the TST for the tag corresponding to it (TST_enum,
632/// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose
633/// cases in C where the user forgot to specify the tag.
634DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
635 // Do a tag name lookup in this scope.
636 LookupResult R(*this, &II, SourceLocation(), LookupTagName);
637 LookupName(R, S, false);
638 R.suppressDiagnostics();
639 if (R.getResultKind() == LookupResult::Found)
640 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
641 switch (TD->getTagKind()) {
642 case TTK_Struct: return DeclSpec::TST_struct;
643 case TTK_Interface: return DeclSpec::TST_interface;
644 case TTK_Union: return DeclSpec::TST_union;
645 case TTK_Class: return DeclSpec::TST_class;
646 case TTK_Enum: return DeclSpec::TST_enum;
647 }
648 }
649
650 return DeclSpec::TST_unspecified;
651}
652
653/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
654/// if a CXXScopeSpec's type is equal to the type of one of the base classes
655/// then downgrade the missing typename error to a warning.
656/// This is needed for MSVC compatibility; Example:
657/// @code
658/// template<class T> class A {
659/// public:
660/// typedef int TYPE;
661/// };
662/// template<class T> class B : public A<T> {
663/// public:
664/// A<T>::TYPE a; // no typename required because A<T> is a base class.
665/// };
666/// @endcode
667bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
668 if (CurContext->isRecord()) {
669 if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
670 return true;
671
672 const Type *Ty = SS->getScopeRep()->getAsType();
673
674 CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
675 for (const auto &Base : RD->bases())
676 if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
677 return true;
678 return S->isFunctionPrototypeScope();
679 }
680 return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
681}
682
683void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
684 SourceLocation IILoc,
685 Scope *S,
686 CXXScopeSpec *SS,
687 ParsedType &SuggestedType,
688 bool IsTemplateName) {
689 // Don't report typename errors for editor placeholders.
690 if (II->isEditorPlaceholder())
691 return;
692 // We don't have anything to suggest (yet).
693 SuggestedType = nullptr;
694
695 // There may have been a typo in the name of the type. Look up typo
696 // results, in case we have something that we can suggest.
697 TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
698 /*AllowTemplates=*/IsTemplateName,
699 /*AllowNonTemplates=*/!IsTemplateName);
700 if (TypoCorrection Corrected =
701 CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
702 CCC, CTK_ErrorRecovery)) {
703 // FIXME: Support error recovery for the template-name case.
704 bool CanRecover = !IsTemplateName;
705 if (Corrected.isKeyword()) {
706 // We corrected to a keyword.
707 diagnoseTypo(Corrected,
708 PDiag(IsTemplateName ? diag::err_no_template_suggest
709 : diag::err_unknown_typename_suggest)
710 << II);
711 II = Corrected.getCorrectionAsIdentifierInfo();
712 } else {
713 // We found a similarly-named type or interface; suggest that.
714 if (!SS || !SS->isSet()) {
715 diagnoseTypo(Corrected,
716 PDiag(IsTemplateName ? diag::err_no_template_suggest
717 : diag::err_unknown_typename_suggest)
718 << II, CanRecover);
719 } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
720 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
721 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
722 II->getName().equals(CorrectedStr);
723 diagnoseTypo(Corrected,
724 PDiag(IsTemplateName
725 ? diag::err_no_member_template_suggest
726 : diag::err_unknown_nested_typename_suggest)
727 << II << DC << DroppedSpecifier << SS->getRange(),
728 CanRecover);
729 } else {
730 llvm_unreachable("could not have corrected a typo here")::llvm::llvm_unreachable_internal("could not have corrected a typo here"
, "clang/lib/Sema/SemaDecl.cpp", 730)
;
731 }
732
733 if (!CanRecover)
734 return;
735
736 CXXScopeSpec tmpSS;
737 if (Corrected.getCorrectionSpecifier())
738 tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
739 SourceRange(IILoc));
740 // FIXME: Support class template argument deduction here.
741 SuggestedType =
742 getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
743 tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
744 /*IsCtorOrDtorName=*/false,
745 /*WantNontrivialTypeSourceInfo=*/true);
746 }
747 return;
748 }
749
750 if (getLangOpts().CPlusPlus && !IsTemplateName) {
751 // See if II is a class template that the user forgot to pass arguments to.
752 UnqualifiedId Name;
753 Name.setIdentifier(II, IILoc);
754 CXXScopeSpec EmptySS;
755 TemplateTy TemplateResult;
756 bool MemberOfUnknownSpecialization;
757 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
758 Name, nullptr, true, TemplateResult,
759 MemberOfUnknownSpecialization) == TNK_Type_template) {
760 diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
761 return;
762 }
763 }
764
765 // FIXME: Should we move the logic that tries to recover from a missing tag
766 // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
767
768 if (!SS || (!SS->isSet() && !SS->isInvalid()))
769 Diag(IILoc, IsTemplateName ? diag::err_no_template
770 : diag::err_unknown_typename)
771 << II;
772 else if (DeclContext *DC = computeDeclContext(*SS, false))
773 Diag(IILoc, IsTemplateName ? diag::err_no_member_template
774 : diag::err_typename_nested_not_found)
775 << II << DC << SS->getRange();
776 else if (SS->isValid() && SS->getScopeRep()->containsErrors()) {
777 SuggestedType =
778 ActOnTypenameType(S, SourceLocation(), *SS, *II, IILoc).get();
779 } else if (isDependentScopeSpecifier(*SS)) {
780 unsigned DiagID = diag::err_typename_missing;
781 if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
782 DiagID = diag::ext_typename_missing;
783
784 Diag(SS->getRange().getBegin(), DiagID)
785 << SS->getScopeRep() << II->getName()
786 << SourceRange(SS->getRange().getBegin(), IILoc)
787 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
788 SuggestedType = ActOnTypenameType(S, SourceLocation(),
789 *SS, *II, IILoc).get();
790 } else {
791 assert(SS && SS->isInvalid() &&(static_cast <bool> (SS && SS->isInvalid() &&
"Invalid scope specifier has already been diagnosed") ? void
(0) : __assert_fail ("SS && SS->isInvalid() && \"Invalid scope specifier has already been diagnosed\""
, "clang/lib/Sema/SemaDecl.cpp", 792, __extension__ __PRETTY_FUNCTION__
))
792 "Invalid scope specifier has already been diagnosed")(static_cast <bool> (SS && SS->isInvalid() &&
"Invalid scope specifier has already been diagnosed") ? void
(0) : __assert_fail ("SS && SS->isInvalid() && \"Invalid scope specifier has already been diagnosed\""
, "clang/lib/Sema/SemaDecl.cpp", 792, __extension__ __PRETTY_FUNCTION__
))
;
793 }
794}
795
796/// Determine whether the given result set contains either a type name
797/// or
798static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
799 bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
800 NextToken.is(tok::less);
801
802 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
803 if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
804 return true;
805
806 if (CheckTemplate && isa<TemplateDecl>(*I))
807 return true;
808 }
809
810 return false;
811}
812
813static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
814 Scope *S, CXXScopeSpec &SS,
815 IdentifierInfo *&Name,
816 SourceLocation NameLoc) {
817 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
818 SemaRef.LookupParsedName(R, S, &SS);
819 if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
820 StringRef FixItTagName;
821 switch (Tag->getTagKind()) {
822 case TTK_Class:
823 FixItTagName = "class ";
824 break;
825
826 case TTK_Enum:
827 FixItTagName = "enum ";
828 break;
829
830 case TTK_Struct:
831 FixItTagName = "struct ";
832 break;
833
834 case TTK_Interface:
835 FixItTagName = "__interface ";
836 break;
837
838 case TTK_Union:
839 FixItTagName = "union ";
840 break;
841 }
842
843 StringRef TagName = FixItTagName.drop_back();
844 SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
845 << Name << TagName << SemaRef.getLangOpts().CPlusPlus
846 << FixItHint::CreateInsertion(NameLoc, FixItTagName);
847
848 for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
849 I != IEnd; ++I)
850 SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
851 << Name << TagName;
852
853 // Replace lookup results with just the tag decl.
854 Result.clear(Sema::LookupTagName);
855 SemaRef.LookupParsedName(Result, S, &SS);
856 return true;
857 }
858
859 return false;
860}
861
862Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS,
863 IdentifierInfo *&Name,
864 SourceLocation NameLoc,
865 const Token &NextToken,
866 CorrectionCandidateCallback *CCC) {
867 DeclarationNameInfo NameInfo(Name, NameLoc);
868 ObjCMethodDecl *CurMethod = getCurMethodDecl();
869
870 assert(NextToken.isNot(tok::coloncolon) &&(static_cast <bool> (NextToken.isNot(tok::coloncolon) &&
"parse nested name specifiers before calling ClassifyName") ?
void (0) : __assert_fail ("NextToken.isNot(tok::coloncolon) && \"parse nested name specifiers before calling ClassifyName\""
, "clang/lib/Sema/SemaDecl.cpp", 871, __extension__ __PRETTY_FUNCTION__
))
871 "parse nested name specifiers before calling ClassifyName")(static_cast <bool> (NextToken.isNot(tok::coloncolon) &&
"parse nested name specifiers before calling ClassifyName") ?
void (0) : __assert_fail ("NextToken.isNot(tok::coloncolon) && \"parse nested name specifiers before calling ClassifyName\""
, "clang/lib/Sema/SemaDecl.cpp", 871, __extension__ __PRETTY_FUNCTION__
))
;
872 if (getLangOpts().CPlusPlus && SS.isSet() &&
873 isCurrentClassName(*Name, S, &SS)) {
874 // Per [class.qual]p2, this names the constructors of SS, not the
875 // injected-class-name. We don't have a classification for that.
876 // There's not much point caching this result, since the parser
877 // will reject it later.
878 return NameClassification::Unknown();
879 }
880
881 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
882 LookupParsedName(Result, S, &SS, !CurMethod);
883
884 if (SS.isInvalid())
885 return NameClassification::Error();
886
887 // For unqualified lookup in a class template in MSVC mode, look into
888 // dependent base classes where the primary class template is known.
889 if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
890 if (ParsedType TypeInBase =
891 recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
892 return TypeInBase;
893 }
894
895 // Perform lookup for Objective-C instance variables (including automatically
896 // synthesized instance variables), if we're in an Objective-C method.
897 // FIXME: This lookup really, really needs to be folded in to the normal
898 // unqualified lookup mechanism.
899 if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
900 DeclResult Ivar = LookupIvarInObjCMethod(Result, S, Name);
901 if (Ivar.isInvalid())
902 return NameClassification::Error();
903 if (Ivar.isUsable())
904 return NameClassification::NonType(cast<NamedDecl>(Ivar.get()));
905
906 // We defer builtin creation until after ivar lookup inside ObjC methods.
907 if (Result.empty())
908 LookupBuiltin(Result);
909 }
910
911 bool SecondTry = false;
912 bool IsFilteredTemplateName = false;
913
914Corrected:
915 switch (Result.getResultKind()) {
916 case LookupResult::NotFound:
917 // If an unqualified-id is followed by a '(', then we have a function
918 // call.
919 if (SS.isEmpty() && NextToken.is(tok::l_paren)) {
920 // In C++, this is an ADL-only call.
921 // FIXME: Reference?
922 if (getLangOpts().CPlusPlus)
923 return NameClassification::UndeclaredNonType();
924
925 // C90 6.3.2.2:
926 // If the expression that precedes the parenthesized argument list in a
927 // function call consists solely of an identifier, and if no
928 // declaration is visible for this identifier, the identifier is
929 // implicitly declared exactly as if, in the innermost block containing
930 // the function call, the declaration
931 //
932 // extern int identifier ();
933 //
934 // appeared.
935 //
936 // We also allow this in C99 as an extension.
937 if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S))
938 return NameClassification::NonType(D);
939 }
940
941 if (getLangOpts().CPlusPlus20 && SS.isEmpty() && NextToken.is(tok::less)) {
942 // In C++20 onwards, this could be an ADL-only call to a function
943 // template, and we're required to assume that this is a template name.
944 //
945 // FIXME: Find a way to still do typo correction in this case.
946 TemplateName Template =
947 Context.getAssumedTemplateName(NameInfo.getName());
948 return NameClassification::UndeclaredTemplate(Template);
949 }
950
951 // In C, we first see whether there is a tag type by the same name, in
952 // which case it's likely that the user just forgot to write "enum",
953 // "struct", or "union".
954 if (!getLangOpts().CPlusPlus && !SecondTry &&
955 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
956 break;
957 }
958
959 // Perform typo correction to determine if there is another name that is
960 // close to this name.
961 if (!SecondTry && CCC) {
962 SecondTry = true;
963 if (TypoCorrection Corrected =
964 CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S,
965 &SS, *CCC, CTK_ErrorRecovery)) {
966 unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
967 unsigned QualifiedDiag = diag::err_no_member_suggest;
968
969 NamedDecl *FirstDecl = Corrected.getFoundDecl();
970 NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
971 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
972 UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
973 UnqualifiedDiag = diag::err_no_template_suggest;
974 QualifiedDiag = diag::err_no_member_template_suggest;
975 } else if (UnderlyingFirstDecl &&
976 (isa<TypeDecl>(UnderlyingFirstDecl) ||
977 isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
978 isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
979 UnqualifiedDiag = diag::err_unknown_typename_suggest;
980 QualifiedDiag = diag::err_unknown_nested_typename_suggest;
981 }
982
983 if (SS.isEmpty()) {
984 diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
985 } else {// FIXME: is this even reachable? Test it.
986 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
987 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
988 Name->getName().equals(CorrectedStr);
989 diagnoseTypo(Corrected, PDiag(QualifiedDiag)
990 << Name << computeDeclContext(SS, false)
991 << DroppedSpecifier << SS.getRange());
992 }
993
994 // Update the name, so that the caller has the new name.
995 Name = Corrected.getCorrectionAsIdentifierInfo();
996
997 // Typo correction corrected to a keyword.
998 if (Corrected.isKeyword())
999 return Name;
1000
1001 // Also update the LookupResult...
1002 // FIXME: This should probably go away at some point
1003 Result.clear();
1004 Result.setLookupName(Corrected.getCorrection());
1005 if (FirstDecl)
1006 Result.addDecl(FirstDecl);
1007
1008 // If we found an Objective-C instance variable, let
1009 // LookupInObjCMethod build the appropriate expression to
1010 // reference the ivar.
1011 // FIXME: This is a gross hack.
1012 if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
1013 DeclResult R =
1014 LookupIvarInObjCMethod(Result, S, Ivar->getIdentifier());
1015 if (R.isInvalid())
1016 return NameClassification::Error();
1017 if (R.isUsable())
1018 return NameClassification::NonType(Ivar);
1019 }
1020
1021 goto Corrected;
1022 }
1023 }
1024
1025 // We failed to correct; just fall through and let the parser deal with it.
1026 Result.suppressDiagnostics();
1027 return NameClassification::Unknown();
1028
1029 case LookupResult::NotFoundInCurrentInstantiation: {
1030 // We performed name lookup into the current instantiation, and there were
1031 // dependent bases, so we treat this result the same way as any other
1032 // dependent nested-name-specifier.
1033
1034 // C++ [temp.res]p2:
1035 // A name used in a template declaration or definition and that is
1036 // dependent on a template-parameter is assumed not to name a type
1037 // unless the applicable name lookup finds a type name or the name is
1038 // qualified by the keyword typename.
1039 //
1040 // FIXME: If the next token is '<', we might want to ask the parser to
1041 // perform some heroics to see if we actually have a
1042 // template-argument-list, which would indicate a missing 'template'
1043 // keyword here.
1044 return NameClassification::DependentNonType();
1045 }
1046
1047 case LookupResult::Found:
1048 case LookupResult::FoundOverloaded:
1049 case LookupResult::FoundUnresolvedValue:
1050 break;
1051
1052 case LookupResult::Ambiguous:
1053 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1054 hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true,
1055 /*AllowDependent=*/false)) {
1056 // C++ [temp.local]p3:
1057 // A lookup that finds an injected-class-name (10.2) can result in an
1058 // ambiguity in certain cases (for example, if it is found in more than
1059 // one base class). If all of the injected-class-names that are found
1060 // refer to specializations of the same class template, and if the name
1061 // is followed by a template-argument-list, the reference refers to the
1062 // class template itself and not a specialization thereof, and is not
1063 // ambiguous.
1064 //
1065 // This filtering can make an ambiguous result into an unambiguous one,
1066 // so try again after filtering out template names.
1067 FilterAcceptableTemplateNames(Result);
1068 if (!Result.isAmbiguous()) {
1069 IsFilteredTemplateName = true;
1070 break;
1071 }
1072 }
1073
1074 // Diagnose the ambiguity and return an error.
1075 return NameClassification::Error();
1076 }
1077
1078 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1079 (IsFilteredTemplateName ||
1080 hasAnyAcceptableTemplateNames(
1081 Result, /*AllowFunctionTemplates=*/true,
1082 /*AllowDependent=*/false,
1083 /*AllowNonTemplateFunctions*/ SS.isEmpty() &&
1084 getLangOpts().CPlusPlus20))) {
1085 // C++ [temp.names]p3:
1086 // After name lookup (3.4) finds that a name is a template-name or that
1087 // an operator-function-id or a literal- operator-id refers to a set of
1088 // overloaded functions any member of which is a function template if
1089 // this is followed by a <, the < is always taken as the delimiter of a
1090 // template-argument-list and never as the less-than operator.
1091 // C++2a [temp.names]p2:
1092 // A name is also considered to refer to a template if it is an
1093 // unqualified-id followed by a < and name lookup finds either one
1094 // or more functions or finds nothing.
1095 if (!IsFilteredTemplateName)
1096 FilterAcceptableTemplateNames(Result);
1097
1098 bool IsFunctionTemplate;
1099 bool IsVarTemplate;
1100 TemplateName Template;
1101 if (Result.end() - Result.begin() > 1) {
1102 IsFunctionTemplate = true;
1103 Template = Context.getOverloadedTemplateName(Result.begin(),
1104 Result.end());
1105 } else if (!Result.empty()) {
1106 auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl(
1107 *Result.begin(), /*AllowFunctionTemplates=*/true,
1108 /*AllowDependent=*/false));
1109 IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1110 IsVarTemplate = isa<VarTemplateDecl>(TD);
1111
1112 UsingShadowDecl *FoundUsingShadow =
1113 dyn_cast<UsingShadowDecl>(*Result.begin());
1114
1115 if (SS.isNotEmpty()) {
1116 // FIXME: support using shadow-declaration in qualified template name.
1117 Template =
1118 Context.getQualifiedTemplateName(SS.getScopeRep(),
1119 /*TemplateKeyword=*/false, TD);
1120 } else {
1121 assert(!FoundUsingShadow ||(static_cast <bool> (!FoundUsingShadow || TD == cast<
TemplateDecl>(FoundUsingShadow->getTargetDecl())) ? void
(0) : __assert_fail ("!FoundUsingShadow || TD == cast<TemplateDecl>(FoundUsingShadow->getTargetDecl())"
, "clang/lib/Sema/SemaDecl.cpp", 1122, __extension__ __PRETTY_FUNCTION__
))
1122 TD == cast<TemplateDecl>(FoundUsingShadow->getTargetDecl()))(static_cast <bool> (!FoundUsingShadow || TD == cast<
TemplateDecl>(FoundUsingShadow->getTargetDecl())) ? void
(0) : __assert_fail ("!FoundUsingShadow || TD == cast<TemplateDecl>(FoundUsingShadow->getTargetDecl())"
, "clang/lib/Sema/SemaDecl.cpp", 1122, __extension__ __PRETTY_FUNCTION__
))
;
1123 Template = FoundUsingShadow ? TemplateName(FoundUsingShadow)
1124 : TemplateName(TD);
1125 }
1126 } else {
1127 // All results were non-template functions. This is a function template
1128 // name.
1129 IsFunctionTemplate = true;
1130 Template = Context.getAssumedTemplateName(NameInfo.getName());
1131 }
1132
1133 if (IsFunctionTemplate) {
1134 // Function templates always go through overload resolution, at which
1135 // point we'll perform the various checks (e.g., accessibility) we need
1136 // to based on which function we selected.
1137 Result.suppressDiagnostics();
1138
1139 return NameClassification::FunctionTemplate(Template);
1140 }
1141
1142 return IsVarTemplate ? NameClassification::VarTemplate(Template)
1143 : NameClassification::TypeTemplate(Template);
1144 }
1145
1146 auto BuildTypeFor = [&](TypeDecl *Type, NamedDecl *Found) {
1147 QualType T = Context.getTypeDeclType(Type);
1148 if (const auto *USD = dyn_cast<UsingShadowDecl>(Found))
1149 T = Context.getUsingType(USD, T);
1150
1151 if (SS.isEmpty()) // No elaborated type, trivial location info
1152 return ParsedType::make(T);
1153
1154 TypeLocBuilder Builder;
1155 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
1156 T = getElaboratedType(ETK_None, SS, T);
1157 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
1158 ElabTL.setElaboratedKeywordLoc(SourceLocation());
1159 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
1160 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
1161 };
1162
1163 NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1164 if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1165 DiagnoseUseOfDecl(Type, NameLoc);
1166 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1167 return BuildTypeFor(Type, *Result.begin());
1168 }
1169
1170 ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1171 if (!Class) {
1172 // FIXME: It's unfortunate that we don't have a Type node for handling this.
1173 if (ObjCCompatibleAliasDecl *Alias =
1174 dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1175 Class = Alias->getClassInterface();
1176 }
1177
1178 if (Class) {
1179 DiagnoseUseOfDecl(Class, NameLoc);
1180
1181 if (NextToken.is(tok::period)) {
1182 // Interface. <something> is parsed as a property reference expression.
1183 // Just return "unknown" as a fall-through for now.
1184 Result.suppressDiagnostics();
1185 return NameClassification::Unknown();
1186 }
1187
1188 QualType T = Context.getObjCInterfaceType(Class);
1189 return ParsedType::make(T);
1190 }
1191
1192 if (isa<ConceptDecl>(FirstDecl))
1193 return NameClassification::Concept(
1194 TemplateName(cast<TemplateDecl>(FirstDecl)));
1195
1196 if (auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(FirstDecl)) {
1197 (void)DiagnoseUseOfDecl(EmptyD, NameLoc);
1198 return NameClassification::Error();
1199 }
1200
1201 // We can have a type template here if we're classifying a template argument.
1202 if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1203 !isa<VarTemplateDecl>(FirstDecl))
1204 return NameClassification::TypeTemplate(
1205 TemplateName(cast<TemplateDecl>(FirstDecl)));
1206
1207 // Check for a tag type hidden by a non-type decl in a few cases where it
1208 // seems likely a type is wanted instead of the non-type that was found.
1209 bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1210 if ((NextToken.is(tok::identifier) ||
1211 (NextIsOp &&
1212 FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1213 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1214 TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1215 DiagnoseUseOfDecl(Type, NameLoc);
1216 return BuildTypeFor(Type, *Result.begin());
1217 }
1218
1219 // If we already know which single declaration is referenced, just annotate
1220 // that declaration directly. Defer resolving even non-overloaded class
1221 // member accesses, as we need to defer certain access checks until we know
1222 // the context.
1223 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1224 if (Result.isSingleResult() && !ADL && !FirstDecl->isCXXClassMember())
1225 return NameClassification::NonType(Result.getRepresentativeDecl());
1226
1227 // Otherwise, this is an overload set that we will need to resolve later.
1228 Result.suppressDiagnostics();
1229 return NameClassification::OverloadSet(UnresolvedLookupExpr::Create(
1230 Context, Result.getNamingClass(), SS.getWithLocInContext(Context),
1231 Result.getLookupNameInfo(), ADL, Result.isOverloadedResult(),
1232 Result.begin(), Result.end()));
1233}
1234
1235ExprResult
1236Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
1237 SourceLocation NameLoc) {
1238 assert(getLangOpts().CPlusPlus && "ADL-only call in C?")(static_cast <bool> (getLangOpts().CPlusPlus &&
"ADL-only call in C?") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"ADL-only call in C?\""
, "clang/lib/Sema/SemaDecl.cpp", 1238, __extension__ __PRETTY_FUNCTION__
))
;
1239 CXXScopeSpec SS;
1240 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
1241 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
1242}
1243
1244ExprResult
1245Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
1246 IdentifierInfo *Name,
1247 SourceLocation NameLoc,
1248 bool IsAddressOfOperand) {
1249 DeclarationNameInfo NameInfo(Name, NameLoc);
1250 return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1251 NameInfo, IsAddressOfOperand,
1252 /*TemplateArgs=*/nullptr);
1253}
1254
1255ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
1256 NamedDecl *Found,
1257 SourceLocation NameLoc,
1258 const Token &NextToken) {
1259 if (getCurMethodDecl() && SS.isEmpty())
1260 if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Found->getUnderlyingDecl()))
1261 return BuildIvarRefExpr(S, NameLoc, Ivar);
1262
1263 // Reconstruct the lookup result.
1264 LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName);
1265 Result.addDecl(Found);
1266 Result.resolveKind();
1267
1268 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1269 return BuildDeclarationNameExpr(SS, Result, ADL);
1270}
1271
1272ExprResult Sema::ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *E) {
1273 // For an implicit class member access, transform the result into a member
1274 // access expression if necessary.
1275 auto *ULE = cast<UnresolvedLookupExpr>(E);
1276 if ((*ULE->decls_begin())->isCXXClassMember()) {
1277 CXXScopeSpec SS;
1278 SS.Adopt(ULE->getQualifierLoc());
1279
1280 // Reconstruct the lookup result.
1281 LookupResult Result(*this, ULE->getName(), ULE->getNameLoc(),
1282 LookupOrdinaryName);
1283 Result.setNamingClass(ULE->getNamingClass());
1284 for (auto I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I)
1285 Result.addDecl(*I, I.getAccess());
1286 Result.resolveKind();
1287 return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1288 nullptr, S);
1289 }
1290
1291 // Otherwise, this is already in the form we needed, and no further checks
1292 // are necessary.
1293 return ULE;
1294}
1295
1296Sema::TemplateNameKindForDiagnostics
1297Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1298 auto *TD = Name.getAsTemplateDecl();
1299 if (!TD)
1300 return TemplateNameKindForDiagnostics::DependentTemplate;
1301 if (isa<ClassTemplateDecl>(TD))
1302 return TemplateNameKindForDiagnostics::ClassTemplate;
1303 if (isa<FunctionTemplateDecl>(TD))
1304 return TemplateNameKindForDiagnostics::FunctionTemplate;
1305 if (isa<VarTemplateDecl>(TD))
1306 return TemplateNameKindForDiagnostics::VarTemplate;
1307 if (isa<TypeAliasTemplateDecl>(TD))
1308 return TemplateNameKindForDiagnostics::AliasTemplate;
1309 if (isa<TemplateTemplateParmDecl>(TD))
1310 return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1311 if (isa<ConceptDecl>(TD))
1312 return TemplateNameKindForDiagnostics::Concept;
1313 return TemplateNameKindForDiagnostics::DependentTemplate;
1314}
1315
1316void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1317 assert(DC->getLexicalParent() == CurContext &&(static_cast <bool> (DC->getLexicalParent() == CurContext
&& "The next DeclContext should be lexically contained in the current one."
) ? void (0) : __assert_fail ("DC->getLexicalParent() == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "clang/lib/Sema/SemaDecl.cpp", 1318, __extension__ __PRETTY_FUNCTION__
))
1318 "The next DeclContext should be lexically contained in the current one.")(static_cast <bool> (DC->getLexicalParent() == CurContext
&& "The next DeclContext should be lexically contained in the current one."
) ? void (0) : __assert_fail ("DC->getLexicalParent() == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "clang/lib/Sema/SemaDecl.cpp", 1318, __extension__ __PRETTY_FUNCTION__
))
;
1319 CurContext = DC;
1320 S->setEntity(DC);
1321}
1322
1323void Sema::PopDeclContext() {
1324 assert(CurContext && "DeclContext imbalance!")(static_cast <bool> (CurContext && "DeclContext imbalance!"
) ? void (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\""
, "clang/lib/Sema/SemaDecl.cpp", 1324, __extension__ __PRETTY_FUNCTION__
))
;
1325
1326 CurContext = CurContext->getLexicalParent();
1327 assert(CurContext && "Popped translation unit!")(static_cast <bool> (CurContext && "Popped translation unit!"
) ? void (0) : __assert_fail ("CurContext && \"Popped translation unit!\""
, "clang/lib/Sema/SemaDecl.cpp", 1327, __extension__ __PRETTY_FUNCTION__
))
;
1328}
1329
1330Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1331 Decl *D) {
1332 // Unlike PushDeclContext, the context to which we return is not necessarily
1333 // the containing DC of TD, because the new context will be some pre-existing
1334 // TagDecl definition instead of a fresh one.
1335 auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1336 CurContext = cast<TagDecl>(D)->getDefinition();
1337 assert(CurContext && "skipping definition of undefined tag")(static_cast <bool> (CurContext && "skipping definition of undefined tag"
) ? void (0) : __assert_fail ("CurContext && \"skipping definition of undefined tag\""
, "clang/lib/Sema/SemaDecl.cpp", 1337, __extension__ __PRETTY_FUNCTION__
))
;
1338 // Start lookups from the parent of the current context; we don't want to look
1339 // into the pre-existing complete definition.
1340 S->setEntity(CurContext->getLookupParent());
1341 return Result;
1342}
1343
1344void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1345 CurContext = static_cast<decltype(CurContext)>(Context);
1346}
1347
1348/// EnterDeclaratorContext - Used when we must lookup names in the context
1349/// of a declarator's nested name specifier.
1350///
1351void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1352 // C++0x [basic.lookup.unqual]p13:
1353 // A name used in the definition of a static data member of class
1354 // X (after the qualified-id of the static member) is looked up as
1355 // if the name was used in a member function of X.
1356 // C++0x [basic.lookup.unqual]p14:
1357 // If a variable member of a namespace is defined outside of the
1358 // scope of its namespace then any name used in the definition of
1359 // the variable member (after the declarator-id) is looked up as
1360 // if the definition of the variable member occurred in its
1361 // namespace.
1362 // Both of these imply that we should push a scope whose context
1363 // is the semantic context of the declaration. We can't use
1364 // PushDeclContext here because that context is not necessarily
1365 // lexically contained in the current context. Fortunately,
1366 // the containing scope should have the appropriate information.
1367
1368 assert(!S->getEntity() && "scope already has entity")(static_cast <bool> (!S->getEntity() && "scope already has entity"
) ? void (0) : __assert_fail ("!S->getEntity() && \"scope already has entity\""
, "clang/lib/Sema/SemaDecl.cpp", 1368, __extension__ __PRETTY_FUNCTION__
))
;
1369
1370#ifndef NDEBUG
1371 Scope *Ancestor = S->getParent();
1372 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1373 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch")(static_cast <bool> (Ancestor->getEntity() == CurContext
&& "ancestor context mismatch") ? void (0) : __assert_fail
("Ancestor->getEntity() == CurContext && \"ancestor context mismatch\""
, "clang/lib/Sema/SemaDecl.cpp", 1373, __extension__ __PRETTY_FUNCTION__
))
;
1374#endif
1375
1376 CurContext = DC;
1377 S->setEntity(DC);
1378
1379 if (S->getParent()->isTemplateParamScope()) {
1380 // Also set the corresponding entities for all immediately-enclosing
1381 // template parameter scopes.
1382 EnterTemplatedContext(S->getParent(), DC);
1383 }
1384}
1385
1386void Sema::ExitDeclaratorContext(Scope *S) {
1387 assert(S->getEntity() == CurContext && "Context imbalance!")(static_cast <bool> (S->getEntity() == CurContext &&
"Context imbalance!") ? void (0) : __assert_fail ("S->getEntity() == CurContext && \"Context imbalance!\""
, "clang/lib/Sema/SemaDecl.cpp", 1387, __extension__ __PRETTY_FUNCTION__
))
;
1388
1389 // Switch back to the lexical context. The safety of this is
1390 // enforced by an assert in EnterDeclaratorContext.
1391 Scope *Ancestor = S->getParent();
1392 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1393 CurContext = Ancestor->getEntity();
1394
1395 // We don't need to do anything with the scope, which is going to
1396 // disappear.
1397}
1398
1399void Sema::EnterTemplatedContext(Scope *S, DeclContext *DC) {
1400 assert(S->isTemplateParamScope() &&(static_cast <bool> (S->isTemplateParamScope() &&
"expected to be initializing a template parameter scope") ? void
(0) : __assert_fail ("S->isTemplateParamScope() && \"expected to be initializing a template parameter scope\""
, "clang/lib/Sema/SemaDecl.cpp", 1401, __extension__ __PRETTY_FUNCTION__
))
1401 "expected to be initializing a template parameter scope")(static_cast <bool> (S->isTemplateParamScope() &&
"expected to be initializing a template parameter scope") ? void
(0) : __assert_fail ("S->isTemplateParamScope() && \"expected to be initializing a template parameter scope\""
, "clang/lib/Sema/SemaDecl.cpp", 1401, __extension__ __PRETTY_FUNCTION__
))
;
1402
1403 // C++20 [temp.local]p7:
1404 // In the definition of a member of a class template that appears outside
1405 // of the class template definition, the name of a member of the class
1406 // template hides the name of a template-parameter of any enclosing class
1407 // templates (but not a template-parameter of the member if the member is a
1408 // class or function template).
1409 // C++20 [temp.local]p9:
1410 // In the definition of a class template or in the definition of a member
1411 // of such a template that appears outside of the template definition, for
1412 // each non-dependent base class (13.8.2.1), if the name of the base class
1413 // or the name of a member of the base class is the same as the name of a
1414 // template-parameter, the base class name or member name hides the
1415 // template-parameter name (6.4.10).
1416 //
1417 // This means that a template parameter scope should be searched immediately
1418 // after searching the DeclContext for which it is a template parameter
1419 // scope. For example, for
1420 // template<typename T> template<typename U> template<typename V>
1421 // void N::A<T>::B<U>::f(...)
1422 // we search V then B<U> (and base classes) then U then A<T> (and base
1423 // classes) then T then N then ::.
1424 unsigned ScopeDepth = getTemplateDepth(S);
1425 for (; S && S->isTemplateParamScope(); S = S->getParent(), --ScopeDepth) {
1426 DeclContext *SearchDCAfterScope = DC;
1427 for (; DC; DC = DC->getLookupParent()) {
1428 if (const TemplateParameterList *TPL =
1429 cast<Decl>(DC)->getDescribedTemplateParams()) {
1430 unsigned DCDepth = TPL->getDepth() + 1;
1431 if (DCDepth > ScopeDepth)
1432 continue;
1433 if (ScopeDepth == DCDepth)
1434 SearchDCAfterScope = DC = DC->getLookupParent();
1435 break;
1436 }
1437 }
1438 S->setLookupEntity(SearchDCAfterScope);
1439 }
1440}
1441
1442void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1443 // We assume that the caller has already called
1444 // ActOnReenterTemplateScope so getTemplatedDecl() works.
1445 FunctionDecl *FD = D->getAsFunction();
1446 if (!FD)
1447 return;
1448
1449 // Same implementation as PushDeclContext, but enters the context
1450 // from the lexical parent, rather than the top-level class.
1451 assert(CurContext == FD->getLexicalParent() &&(static_cast <bool> (CurContext == FD->getLexicalParent
() && "The next DeclContext should be lexically contained in the current one."
) ? void (0) : __assert_fail ("CurContext == FD->getLexicalParent() && \"The next DeclContext should be lexically contained in the current one.\""
, "clang/lib/Sema/SemaDecl.cpp", 1452, __extension__ __PRETTY_FUNCTION__
))
1452 "The next DeclContext should be lexically contained in the current one.")(static_cast <bool> (CurContext == FD->getLexicalParent
() && "The next DeclContext should be lexically contained in the current one."
) ? void (0) : __assert_fail ("CurContext == FD->getLexicalParent() && \"The next DeclContext should be lexically contained in the current one.\""
, "clang/lib/Sema/SemaDecl.cpp", 1452, __extension__ __PRETTY_FUNCTION__
))
;
1453 CurContext = FD;
1454 S->setEntity(CurContext);
1455
1456 for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1457 ParmVarDecl *Param = FD->getParamDecl(P);
1458 // If the parameter has an identifier, then add it to the scope
1459 if (Param->getIdentifier()) {
1460 S->AddDecl(Param);
1461 IdResolver.AddDecl(Param);
1462 }
1463 }
1464}
1465
1466void Sema::ActOnExitFunctionContext() {
1467 // Same implementation as PopDeclContext, but returns to the lexical parent,
1468 // rather than the top-level class.
1469 assert(CurContext && "DeclContext imbalance!")(static_cast <bool> (CurContext && "DeclContext imbalance!"
) ? void (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\""
, "clang/lib/Sema/SemaDecl.cpp", 1469, __extension__ __PRETTY_FUNCTION__
))
;
1470 CurContext = CurContext->getLexicalParent();
1471 assert(CurContext && "Popped translation unit!")(static_cast <bool> (CurContext && "Popped translation unit!"
) ? void (0) : __assert_fail ("CurContext && \"Popped translation unit!\""
, "clang/lib/Sema/SemaDecl.cpp", 1471, __extension__ __PRETTY_FUNCTION__
))
;
1472}
1473
1474/// Determine whether overloading is allowed for a new function
1475/// declaration considering prior declarations of the same name.
1476///
1477/// This routine determines whether overloading is possible, not
1478/// whether a new declaration actually overloads a previous one.
1479/// It will return true in C++ (where overloads are alway permitted)
1480/// or, as a C extension, when either the new declaration or a
1481/// previous one is declared with the 'overloadable' attribute.
1482static bool AllowOverloadingOfFunction(const LookupResult &Previous,
1483 ASTContext &Context,
1484 const FunctionDecl *New) {
1485 if (Context.getLangOpts().CPlusPlus || New->hasAttr<OverloadableAttr>())
1486 return true;
1487
1488 // Multiversion function declarations are not overloads in the
1489 // usual sense of that term, but lookup will report that an
1490 // overload set was found if more than one multiversion function
1491 // declaration is present for the same name. It is therefore
1492 // inadequate to assume that some prior declaration(s) had
1493 // the overloadable attribute; checking is required. Since one
1494 // declaration is permitted to omit the attribute, it is necessary
1495 // to check at least two; hence the 'any_of' check below. Note that
1496 // the overloadable attribute is implicitly added to declarations
1497 // that were required to have it but did not.
1498 if (Previous.getResultKind() == LookupResult::FoundOverloaded) {
1499 return llvm::any_of(Previous, [](const NamedDecl *ND) {
1500 return ND->hasAttr<OverloadableAttr>();
1501 });
1502 } else if (Previous.getResultKind() == LookupResult::Found)
1503 return Previous.getFoundDecl()->hasAttr<OverloadableAttr>();
1504
1505 return false;
1506}
1507
1508/// Add this decl to the scope shadowed decl chains.
1509void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1510 // Move up the scope chain until we find the nearest enclosing
1511 // non-transparent context. The declaration will be introduced into this
1512 // scope.
1513 while (S->getEntity() && S->getEntity()->isTransparentContext())
1514 S = S->getParent();
1515
1516 // Add scoped declarations into their context, so that they can be
1517 // found later. Declarations without a context won't be inserted
1518 // into any context.
1519 if (AddToContext)
1520 CurContext->addDecl(D);
1521
1522 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1523 // are function-local declarations.
1524 if (getLangOpts().CPlusPlus && D->isOutOfLine() && !S->getFnParent())
1525 return;
1526
1527 // Template instantiations should also not be pushed into scope.
1528 if (isa<FunctionDecl>(D) &&
1529 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1530 return;
1531
1532 // If this replaces anything in the current scope,
1533 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1534 IEnd = IdResolver.end();
1535 for (; I != IEnd; ++I) {
1536 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1537 S->RemoveDecl(*I);
1538 IdResolver.RemoveDecl(*I);
1539
1540 // Should only need to replace one decl.
1541 break;
1542 }
1543 }
1544
1545 S->AddDecl(D);
1546
1547 if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1548 // Implicitly-generated labels may end up getting generated in an order that
1549 // isn't strictly lexical, which breaks name lookup. Be careful to insert
1550 // the label at the appropriate place in the identifier chain.
1551 for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1552 DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1553 if (IDC == CurContext) {
1554 if (!S->isDeclScope(*I))
1555 continue;
1556 } else if (IDC->Encloses(CurContext))
1557 break;
1558 }
1559
1560 IdResolver.InsertDeclAfter(I, D);
1561 } else {
1562 IdResolver.AddDecl(D);
1563 }
1564 warnOnReservedIdentifier(D);
1565}
1566
1567bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1568 bool AllowInlineNamespace) {
1569 return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1570}
1571
1572Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1573 DeclContext *TargetDC = DC->getPrimaryContext();
1574 do {
1575 if (DeclContext *ScopeDC = S->getEntity())
1576 if (ScopeDC->getPrimaryContext() == TargetDC)
1577 return S;
1578 } while ((S = S->getParent()));
1579
1580 return nullptr;
1581}
1582
1583static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1584 DeclContext*,
1585 ASTContext&);
1586
1587/// Filters out lookup results that don't fall within the given scope
1588/// as determined by isDeclInScope.
1589void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1590 bool ConsiderLinkage,
1591 bool AllowInlineNamespace) {
1592 LookupResult::Filter F = R.makeFilter();
1593 while (F.hasNext()) {
1594 NamedDecl *D = F.next();
1595
1596 if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1597 continue;
1598
1599 if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1600 continue;
1601
1602 F.erase();
1603 }
1604
1605 F.done();
1606}
1607
1608/// We've determined that \p New is a redeclaration of \p Old. Check that they
1609/// have compatible owning modules.
1610bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1611 // [module.interface]p7:
1612 // A declaration is attached to a module as follows:
1613 // - If the declaration is a non-dependent friend declaration that nominates a
1614 // function with a declarator-id that is a qualified-id or template-id or that
1615 // nominates a class other than with an elaborated-type-specifier with neither
1616 // a nested-name-specifier nor a simple-template-id, it is attached to the
1617 // module to which the friend is attached ([basic.link]).
1618 if (New->getFriendObjectKind() &&
1619 Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
1620 New->setLocalOwningModule(Old->getOwningModule());
1621 makeMergedDefinitionVisible(New);
1622 return false;
1623 }
1624
1625 Module *NewM = New->getOwningModule();
1626 Module *OldM = Old->getOwningModule();
1627
1628 if (NewM && NewM->Kind == Module::PrivateModuleFragment)
1629 NewM = NewM->Parent;
1630 if (OldM && OldM->Kind == Module::PrivateModuleFragment)
1631 OldM = OldM->Parent;
1632
1633 // If we have a decl in a module partition, it is part of the containing
1634 // module (which is the only thing that can be importing it).
1635 if (NewM && OldM &&
1636 (OldM->Kind == Module::ModulePartitionInterface ||
1637 OldM->Kind == Module::ModulePartitionImplementation)) {
1638 return false;
1639 }
1640
1641 if (NewM == OldM)
1642 return false;
1643
1644 bool NewIsModuleInterface = NewM && NewM->isModulePurview();
1645 bool OldIsModuleInterface = OldM && OldM->isModulePurview();
1646 if (NewIsModuleInterface || OldIsModuleInterface) {
1647 // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1648 // if a declaration of D [...] appears in the purview of a module, all
1649 // other such declarations shall appear in the purview of the same module
1650 Diag(New->getLocation(), diag::err_mismatched_owning_module)
1651 << New
1652 << NewIsModuleInterface
1653 << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1654 << OldIsModuleInterface
1655 << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1656 Diag(Old->getLocation(), diag::note_previous_declaration);
1657 New->setInvalidDecl();
1658 return true;
1659 }
1660
1661 return false;
1662}
1663
1664// [module.interface]p6:
1665// A redeclaration of an entity X is implicitly exported if X was introduced by
1666// an exported declaration; otherwise it shall not be exported.
1667bool Sema::CheckRedeclarationExported(NamedDecl *New, NamedDecl *Old) {
1668 // [module.interface]p1:
1669 // An export-declaration shall inhabit a namespace scope.
1670 //
1671 // So it is meaningless to talk about redeclaration which is not at namespace
1672 // scope.
1673 if (!New->getLexicalDeclContext()
1674 ->getNonTransparentContext()
1675 ->isFileContext() ||
1676 !Old->getLexicalDeclContext()
1677 ->getNonTransparentContext()
1678 ->isFileContext())
1679 return false;
1680
1681 bool IsNewExported = New->isInExportDeclContext();
1682 bool IsOldExported = Old->isInExportDeclContext();
1683
1684 // It should be irrevelant if both of them are not exported.
1685 if (!IsNewExported && !IsOldExported)
1686 return false;
1687
1688 if (IsOldExported)
1689 return false;
1690
1691 assert(IsNewExported)(static_cast <bool> (IsNewExported) ? void (0) : __assert_fail
("IsNewExported", "clang/lib/Sema/SemaDecl.cpp", 1691, __extension__
__PRETTY_FUNCTION__))
;
1692
1693 auto Lk = Old->getFormalLinkage();
1694 int S = 0;
1695 if (Lk == Linkage::InternalLinkage)
1696 S = 1;
1697 else if (Lk == Linkage::ModuleLinkage)
1698 S = 2;
1699 Diag(New->getLocation(), diag::err_redeclaration_non_exported) << New << S;
1700 Diag(Old->getLocation(), diag::note_previous_declaration);
1701 return true;
1702}
1703
1704// A wrapper function for checking the semantic restrictions of
1705// a redeclaration within a module.
1706bool Sema::CheckRedeclarationInModule(NamedDecl *New, NamedDecl *Old) {
1707 if (CheckRedeclarationModuleOwnership(New, Old))
1708 return true;
1709
1710 if (CheckRedeclarationExported(New, Old))
1711 return true;
1712
1713 return false;
1714}
1715
1716static bool isUsingDecl(NamedDecl *D) {
1717 return isa<UsingShadowDecl>(D) ||
1718 isa<UnresolvedUsingTypenameDecl>(D) ||
1719 isa<UnresolvedUsingValueDecl>(D);
1720}
1721
1722/// Removes using shadow declarations from the lookup results.
1723static void RemoveUsingDecls(LookupResult &R) {
1724 LookupResult::Filter F = R.makeFilter();
1725 while (F.hasNext())
1726 if (isUsingDecl(F.next()))
1727 F.erase();
1728
1729 F.done();
1730}
1731
1732/// Check for this common pattern:
1733/// @code
1734/// class S {
1735/// S(const S&); // DO NOT IMPLEMENT
1736/// void operator=(const S&); // DO NOT IMPLEMENT
1737/// };
1738/// @endcode
1739static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1740 // FIXME: Should check for private access too but access is set after we get
1741 // the decl here.
1742 if (D->doesThisDeclarationHaveABody())
1743 return false;
1744
1745 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1746 return CD->isCopyConstructor();
1747 return D->isCopyAssignmentOperator();
1748}
1749
1750// We need this to handle
1751//
1752// typedef struct {
1753// void *foo() { return 0; }
1754// } A;
1755//
1756// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1757// for example. If 'A', foo will have external linkage. If we have '*A',
1758// foo will have no linkage. Since we can't know until we get to the end
1759// of the typedef, this function finds out if D might have non-external linkage.
1760// Callers should verify at the end of the TU if it D has external linkage or
1761// not.
1762bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1763 const DeclContext *DC = D->getDeclContext();
1764 while (!DC->isTranslationUnit()) {
1765 if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1766 if (!RD->hasNameForLinkage())
1767 return true;
1768 }
1769 DC = DC->getParent();
1770 }
1771
1772 return !D->isExternallyVisible();
1773}
1774
1775// FIXME: This needs to be refactored; some other isInMainFile users want
1776// these semantics.
1777static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1778 if (S.TUKind != TU_Complete)
1779 return false;
1780 return S.SourceMgr.isInMainFile(Loc);
1781}
1782
1783bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1784 assert(D)(static_cast <bool> (D) ? void (0) : __assert_fail ("D"
, "clang/lib/Sema/SemaDecl.cpp", 1784, __extension__ __PRETTY_FUNCTION__
))
;
1785
1786 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1787 return false;
1788
1789 // Ignore all entities declared within templates, and out-of-line definitions
1790 // of members of class templates.
1791 if (D->getDeclContext()->isDependentContext() ||
1792 D->getLexicalDeclContext()->isDependentContext())
1793 return false;
1794
1795 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1796 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1797 return false;
1798 // A non-out-of-line declaration of a member specialization was implicitly
1799 // instantiated; it's the out-of-line declaration that we're interested in.
1800 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1801 FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1802 return false;
1803
1804 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1805 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1806 return false;
1807 } else {
1808 // 'static inline' functions are defined in headers; don't warn.
1809 if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1810 return false;
1811 }
1812
1813 if (FD->doesThisDeclarationHaveABody() &&
1814 Context.DeclMustBeEmitted(FD))
1815 return false;
1816 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1817 // Constants and utility variables are defined in headers with internal
1818 // linkage; don't warn. (Unlike functions, there isn't a convenient marker
1819 // like "inline".)
1820 if (!isMainFileLoc(*this, VD->getLocation()))
1821 return false;
1822
1823 if (Context.DeclMustBeEmitted(VD))
1824 return false;
1825
1826 if (VD->isStaticDataMember() &&
1827 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1828 return false;
1829 if (VD->isStaticDataMember() &&
1830 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1831 VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1832 return false;
1833
1834 if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1835 return false;
1836 } else {
1837 return false;
1838 }
1839
1840 // Only warn for unused decls internal to the translation unit.
1841 // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1842 // for inline functions defined in the main source file, for instance.
1843 return mightHaveNonExternalLinkage(D);
1844}
1845
1846void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1847 if (!D)
1848 return;
1849
1850 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1851 const FunctionDecl *First = FD->getFirstDecl();
1852 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1853 return; // First should already be in the vector.
1854 }
1855
1856 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1857 const VarDecl *First = VD->getFirstDecl();
1858 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1859 return; // First should already be in the vector.
1860 }
1861
1862 if (ShouldWarnIfUnusedFileScopedDecl(D))
1863 UnusedFileScopedDecls.push_back(D);
1864}
1865
1866static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1867 if (D->isInvalidDecl())
1868 return false;
1869
1870 if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
1871 // For a decomposition declaration, warn if none of the bindings are
1872 // referenced, instead of if the variable itself is referenced (which
1873 // it is, by the bindings' expressions).
1874 for (auto *BD : DD->bindings())
1875 if (BD->isReferenced())
1876 return false;
1877 } else if (!D->getDeclName()) {
1878 return false;
1879 } else if (D->isReferenced() || D->isUsed()) {
1880 return false;
1881 }
1882
1883 if (D->hasAttr<UnusedAttr>() || D->hasAttr<ObjCPreciseLifetimeAttr>())
1884 return false;
1885
1886 if (isa<LabelDecl>(D))
1887 return true;
1888
1889 // Except for labels, we only care about unused decls that are local to
1890 // functions.
1891 bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1892 if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1893 // For dependent types, the diagnostic is deferred.
1894 WithinFunction =
1895 WithinFunction || (R->isLocalClass() && !R->isDependentType());
1896 if (!WithinFunction)
1897 return false;
1898
1899 if (isa<TypedefNameDecl>(D))
1900 return true;
1901
1902 // White-list anything that isn't a local variable.
1903 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1904 return false;
1905
1906 // Types of valid local variables should be complete, so this should succeed.
1907 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1908
1909 const Expr *Init = VD->getInit();
1910 if (const auto *Cleanups = dyn_cast_or_null<ExprWithCleanups>(Init))
1911 Init = Cleanups->getSubExpr();
1912
1913 const auto *Ty = VD->getType().getTypePtr();
1914
1915 // Only look at the outermost level of typedef.
1916 if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1917 // Allow anything marked with __attribute__((unused)).
1918 if (TT->getDecl()->hasAttr<UnusedAttr>())
1919 return false;
1920 }
1921
1922 // Warn for reference variables whose initializtion performs lifetime
1923 // extension.
1924 if (const auto *MTE = dyn_cast_or_null<MaterializeTemporaryExpr>(Init)) {
1925 if (MTE->getExtendingDecl()) {
1926 Ty = VD->getType().getNonReferenceType().getTypePtr();
1927 Init = MTE->getSubExpr()->IgnoreImplicitAsWritten();
1928 }
1929 }
1930
1931 // If we failed to complete the type for some reason, or if the type is
1932 // dependent, don't diagnose the variable.
1933 if (Ty->isIncompleteType() || Ty->isDependentType())
1934 return false;
1935
1936 // Look at the element type to ensure that the warning behaviour is
1937 // consistent for both scalars and arrays.
1938 Ty = Ty->getBaseElementTypeUnsafe();
1939
1940 if (const TagType *TT = Ty->getAs<TagType>()) {
1941 const TagDecl *Tag = TT->getDecl();
1942 if (Tag->hasAttr<UnusedAttr>())
1943 return false;
1944
1945 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1946 if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1947 return false;
1948
1949 if (Init) {
1950 const CXXConstructExpr *Construct =
1951 dyn_cast<CXXConstructExpr>(Init);
1952 if (Construct && !Construct->isElidable()) {
1953 CXXConstructorDecl *CD = Construct->getConstructor();
1954 if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
1955 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
1956 return false;
1957 }
1958
1959 // Suppress the warning if we don't know how this is constructed, and
1960 // it could possibly be non-trivial constructor.
1961 if (Init->isTypeDependent()) {
1962 for (const CXXConstructorDecl *Ctor : RD->ctors())
1963 if (!Ctor->isTrivial())
1964 return false;
1965 }
1966
1967 // Suppress the warning if the constructor is unresolved because
1968 // its arguments are dependent.
1969 if (isa<CXXUnresolvedConstructExpr>(Init))
1970 return false;
1971 }
1972 }
1973 }
1974
1975 // TODO: __attribute__((unused)) templates?
1976 }
1977
1978 return true;
1979}
1980
1981static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1982 FixItHint &Hint) {
1983 if (isa<LabelDecl>(D)) {
1984 SourceLocation AfterColon = Lexer::findLocationAfterToken(
1985 D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
1986 true);
1987 if (AfterColon.isInvalid())
1988 return;
1989 Hint = FixItHint::CreateRemoval(
1990 CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
1991 }
1992}
1993
1994void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1995 if (D->getTypeForDecl()->isDependentType())
1996 return;
1997
1998 for (auto *TmpD : D->decls()) {
1999 if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
2000 DiagnoseUnusedDecl(T);
2001 else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
2002 DiagnoseUnusedNestedTypedefs(R);
2003 }
2004}
2005
2006/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
2007/// unless they are marked attr(unused).
2008void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
2009 if (!ShouldDiagnoseUnusedDecl(D))
2010 return;
2011
2012 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
2013 // typedefs can be referenced later on, so the diagnostics are emitted
2014 // at end-of-translation-unit.
2015 UnusedLocalTypedefNameCandidates.insert(TD);
2016 return;
2017 }
2018
2019 FixItHint Hint;
2020 GenerateFixForUnusedDecl(D, Context, Hint);
2021
2022 unsigned DiagID;
2023 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
2024 DiagID = diag::warn_unused_exception_param;
2025 else if (isa<LabelDecl>(D))
2026 DiagID = diag::warn_unused_label;
2027 else
2028 DiagID = diag::warn_unused_variable;
2029
2030 Diag(D->getLocation(), DiagID) << D << Hint;
2031}
2032
2033void Sema::DiagnoseUnusedButSetDecl(const VarDecl *VD) {
2034 // If it's not referenced, it can't be set. If it has the Cleanup attribute,
2035 // it's not really unused.
2036 if (!VD->isReferenced() || !VD->getDeclName() || VD->hasAttr<UnusedAttr>() ||
2037 VD->hasAttr<CleanupAttr>())
2038 return;
2039
2040 const auto *Ty = VD->getType().getTypePtr()->getBaseElementTypeUnsafe();
2041
2042 if (Ty->isReferenceType() || Ty->isDependentType())
2043 return;
2044
2045 if (const TagType *TT = Ty->getAs<TagType>()) {
2046 const TagDecl *Tag = TT->getDecl();
2047 if (Tag->hasAttr<UnusedAttr>())
2048 return;
2049 // In C++, don't warn for record types that don't have WarnUnusedAttr, to
2050 // mimic gcc's behavior.
2051 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
2052 if (!RD->hasAttr<WarnUnusedAttr>())
2053 return;
2054 }
2055 }
2056
2057 // Don't warn about __block Objective-C pointer variables, as they might
2058 // be assigned in the block but not used elsewhere for the purpose of lifetime
2059 // extension.
2060 if (VD->hasAttr<BlocksAttr>() && Ty->isObjCObjectPointerType())
2061 return;
2062
2063 // Don't warn about Objective-C pointer variables with precise lifetime
2064 // semantics; they can be used to ensure ARC releases the object at a known
2065 // time, which may mean assignment but no other references.
2066 if (VD->hasAttr<ObjCPreciseLifetimeAttr>() && Ty->isObjCObjectPointerType())
2067 return;
2068
2069 auto iter = RefsMinusAssignments.find(VD);
2070 if (iter == RefsMinusAssignments.end())
2071 return;
2072
2073 assert(iter->getSecond() >= 0 &&(static_cast <bool> (iter->getSecond() >= 0 &&
"Found a negative number of references to a VarDecl") ? void
(0) : __assert_fail ("iter->getSecond() >= 0 && \"Found a negative number of references to a VarDecl\""
, "clang/lib/Sema/SemaDecl.cpp", 2074, __extension__ __PRETTY_FUNCTION__
))
2074 "Found a negative number of references to a VarDecl")(static_cast <bool> (iter->getSecond() >= 0 &&
"Found a negative number of references to a VarDecl") ? void
(0) : __assert_fail ("iter->getSecond() >= 0 && \"Found a negative number of references to a VarDecl\""
, "clang/lib/Sema/SemaDecl.cpp", 2074, __extension__ __PRETTY_FUNCTION__
))
;
2075 if (iter->getSecond() != 0)
2076 return;
2077 unsigned DiagID = isa<ParmVarDecl>(VD) ? diag::warn_unused_but_set_parameter
2078 : diag::warn_unused_but_set_variable;
2079 Diag(VD->getLocation(), DiagID) << VD;
2080}
2081
2082static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
2083 // Verify that we have no forward references left. If so, there was a goto
2084 // or address of a label taken, but no definition of it. Label fwd
2085 // definitions are indicated with a null substmt which is also not a resolved
2086 // MS inline assembly label name.
2087 bool Diagnose = false;
2088 if (L->isMSAsmLabel())
2089 Diagnose = !L->isResolvedMSAsmLabel();
2090 else
2091 Diagnose = L->getStmt() == nullptr;
2092 if (Diagnose)
2093 S.Diag(L->getLocation(), diag::err_undeclared_label_use) << L;
2094}
2095
2096void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
2097 S->mergeNRVOIntoParent();
2098
2099 if (S->decl_empty()) return;
2100 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&(static_cast <bool> ((S->getFlags() & (Scope::DeclScope
| Scope::TemplateParamScope)) && "Scope shouldn't contain decls!"
) ? void (0) : __assert_fail ("(S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && \"Scope shouldn't contain decls!\""
, "clang/lib/Sema/SemaDecl.cpp", 2101, __extension__ __PRETTY_FUNCTION__
))
2101 "Scope shouldn't contain decls!")(static_cast <bool> ((S->getFlags() & (Scope::DeclScope
| Scope::TemplateParamScope)) && "Scope shouldn't contain decls!"
) ? void (0) : __assert_fail ("(S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && \"Scope shouldn't contain decls!\""
, "clang/lib/Sema/SemaDecl.cpp", 2101, __extension__ __PRETTY_FUNCTION__
))
;
2102
2103 for (auto *TmpD : S->decls()) {
2104 assert(TmpD && "This decl didn't get pushed??")(static_cast <bool> (TmpD && "This decl didn't get pushed??"
) ? void (0) : __assert_fail ("TmpD && \"This decl didn't get pushed??\""
, "clang/lib/Sema/SemaDecl.cpp", 2104, __extension__ __PRETTY_FUNCTION__
))
;
2105
2106 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?")(static_cast <bool> (isa<NamedDecl>(TmpD) &&
"Decl isn't NamedDecl?") ? void (0) : __assert_fail ("isa<NamedDecl>(TmpD) && \"Decl isn't NamedDecl?\""
, "clang/lib/Sema/SemaDecl.cpp", 2106, __extension__ __PRETTY_FUNCTION__
))
;
2107 NamedDecl *D = cast<NamedDecl>(TmpD);
2108
2109 // Diagnose unused variables in this scope.
2110 if (!S->hasUnrecoverableErrorOccurred()) {
2111 DiagnoseUnusedDecl(D);
2112 if (const auto *RD = dyn_cast<RecordDecl>(D))
2113 DiagnoseUnusedNestedTypedefs(RD);
2114 if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
2115 DiagnoseUnusedButSetDecl(VD);
2116 RefsMinusAssignments.erase(VD);
2117 }
2118 }
2119
2120 if (!D->getDeclName()) continue;
2121
2122 // If this was a forward reference to a label, verify it was defined.
2123 if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
2124 CheckPoppedLabel(LD, *this);
2125
2126 // Remove this name from our lexical scope, and warn on it if we haven't
2127 // already.
2128 IdResolver.RemoveDecl(D);
2129 auto ShadowI = ShadowingDecls.find(D);
2130 if (ShadowI != ShadowingDecls.end()) {
2131 if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
2132 Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
2133 << D << FD << FD->getParent();
2134 Diag(FD->getLocation(), diag::note_previous_declaration);
2135 }
2136 ShadowingDecls.erase(ShadowI);
2137 }
2138 }
2139}
2140
2141/// Look for an Objective-C class in the translation unit.
2142///
2143/// \param Id The name of the Objective-C class we're looking for. If
2144/// typo-correction fixes this name, the Id will be updated
2145/// to the fixed name.
2146///
2147/// \param IdLoc The location of the name in the translation unit.
2148///
2149/// \param DoTypoCorrection If true, this routine will attempt typo correction
2150/// if there is no class with the given name.
2151///
2152/// \returns The declaration of the named Objective-C class, or NULL if the
2153/// class could not be found.
2154ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
2155 SourceLocation IdLoc,
2156 bool DoTypoCorrection) {
2157 // The third "scope" argument is 0 since we aren't enabling lazy built-in
2158 // creation from this context.
2159 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
2160
2161 if (!IDecl && DoTypoCorrection) {
2162 // Perform typo correction at the given location, but only if we
2163 // find an Objective-C class name.
2164 DeclFilterCCC<ObjCInterfaceDecl> CCC{};
2165 if (TypoCorrection C =
2166 CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
2167 TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
2168 diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
2169 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
2170 Id = IDecl->getIdentifier();
2171 }
2172 }
2173 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
2174 // This routine must always return a class definition, if any.
2175 if (Def && Def->getDefinition())
2176 Def = Def->getDefinition();
2177 return Def;
2178}
2179
2180/// getNonFieldDeclScope - Retrieves the innermost scope, starting
2181/// from S, where a non-field would be declared. This routine copes
2182/// with the difference between C and C++ scoping rules in structs and
2183/// unions. For example, the following code is well-formed in C but
2184/// ill-formed in C++:
2185/// @code
2186/// struct S6 {
2187/// enum { BAR } e;
2188/// };
2189///
2190/// void test_S6() {
2191/// struct S6 a;
2192/// a.e = BAR;
2193/// }
2194/// @endcode
2195/// For the declaration of BAR, this routine will return a different
2196/// scope. The scope S will be the scope of the unnamed enumeration
2197/// within S6. In C++, this routine will return the scope associated
2198/// with S6, because the enumeration's scope is a transparent
2199/// context but structures can contain non-field names. In C, this
2200/// routine will return the translation unit scope, since the
2201/// enumeration's scope is a transparent context and structures cannot
2202/// contain non-field names.
2203Scope *Sema::getNonFieldDeclScope(Scope *S) {
2204 while (((S->getFlags() & Scope::DeclScope) == 0) ||
2205 (S->getEntity() && S->getEntity()->isTransparentContext()) ||
2206 (S->isClassScope() && !getLangOpts().CPlusPlus))
2207 S = S->getParent();
2208 return S;
2209}
2210
2211static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID,
2212 ASTContext::GetBuiltinTypeError Error) {
2213 switch (Error) {
2214 case ASTContext::GE_None:
2215 return "";
2216 case ASTContext::GE_Missing_type:
2217 return BuiltinInfo.getHeaderName(ID);
2218 case ASTContext::GE_Missing_stdio:
2219 return "stdio.h";
2220 case ASTContext::GE_Missing_setjmp:
2221 return "setjmp.h";
2222 case ASTContext::GE_Missing_ucontext:
2223 return "ucontext.h";
2224 }
2225 llvm_unreachable("unhandled error kind")::llvm::llvm_unreachable_internal("unhandled error kind", "clang/lib/Sema/SemaDecl.cpp"
, 2225)
;
2226}
2227
2228FunctionDecl *Sema::CreateBuiltin(IdentifierInfo *II, QualType Type,
2229 unsigned ID, SourceLocation Loc) {
2230 DeclContext *Parent = Context.getTranslationUnitDecl();
2231
2232 if (getLangOpts().CPlusPlus) {
2233 LinkageSpecDecl *CLinkageDecl = LinkageSpecDecl::Create(
2234 Context, Parent, Loc, Loc, LinkageSpecDecl::lang_c, false);
2235 CLinkageDecl->setImplicit();
2236 Parent->addDecl(CLinkageDecl);
2237 Parent = CLinkageDecl;
2238 }
2239
2240 FunctionDecl *New = FunctionDecl::Create(Context, Parent, Loc, Loc, II, Type,
2241 /*TInfo=*/nullptr, SC_Extern,
2242 getCurFPFeatures().isFPConstrained(),
2243 false, Type->isFunctionProtoType());
2244 New->setImplicit();
2245 New->addAttr(BuiltinAttr::CreateImplicit(Context, ID));
2246
2247 // Create Decl objects for each parameter, adding them to the
2248 // FunctionDecl.
2249 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(Type)) {
2250 SmallVector<ParmVarDecl *, 16> Params;
2251 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2252 ParmVarDecl *parm = ParmVarDecl::Create(
2253 Context, New, SourceLocation(), SourceLocation(), nullptr,
2254 FT->getParamType(i), /*TInfo=*/nullptr, SC_None, nullptr);
2255 parm->setScopeInfo(0, i);
2256 Params.push_back(parm);
2257 }
2258 New->setParams(Params);
2259 }
2260
2261 AddKnownFunctionAttributes(New);
2262 return New;
2263}
2264
2265/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
2266/// file scope. lazily create a decl for it. ForRedeclaration is true
2267/// if we're creating this built-in in anticipation of redeclaring the
2268/// built-in.
2269NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
2270 Scope *S, bool ForRedeclaration,
2271 SourceLocation Loc) {
2272 LookupNecessaryTypesForBuiltin(S, ID);
2273
2274 ASTContext::GetBuiltinTypeError Error;
2275 QualType R = Context.GetBuiltinType(ID, Error);
2276 if (Error) {
2277 if (!ForRedeclaration)
2278 return nullptr;
2279
2280 // If we have a builtin without an associated type we should not emit a
2281 // warning when we were not able to find a type for it.
2282 if (Error == ASTContext::GE_Missing_type ||
2283 Context.BuiltinInfo.allowTypeMismatch(ID))
2284 return nullptr;
2285
2286 // If we could not find a type for setjmp it is because the jmp_buf type was
2287 // not defined prior to the setjmp declaration.
2288 if (Error == ASTContext::GE_Missing_setjmp) {
2289 Diag(Loc, diag::warn_implicit_decl_no_jmp_buf)
2290 << Context.BuiltinInfo.getName(ID);
2291 return nullptr;
2292 }
2293
2294 // Generally, we emit a warning that the declaration requires the
2295 // appropriate header.
2296 Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
2297 << getHeaderName(Context.BuiltinInfo, ID, Error)
2298 << Context.BuiltinInfo.getName(ID);
2299 return nullptr;
2300 }
2301
2302 if (!ForRedeclaration &&
2303 (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
2304 Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
2305 Diag(Loc, diag::ext_implicit_lib_function_decl)
2306 << Context.BuiltinInfo.getName(ID) << R;
2307 if (const char *Header = Context.BuiltinInfo.getHeaderName(ID))
2308 Diag(Loc, diag::note_include_header_or_declare)
2309 << Header << Context.BuiltinInfo.getName(ID);
2310 }
2311
2312 if (R.isNull())
2313 return nullptr;
2314
2315 FunctionDecl *New = CreateBuiltin(II, R, ID, Loc);
2316 RegisterLocallyScopedExternCDecl(New, S);
2317
2318 // TUScope is the translation-unit scope to insert this function into.
2319 // FIXME: This is hideous. We need to teach PushOnScopeChains to
2320 // relate Scopes to DeclContexts, and probably eliminate CurContext
2321 // entirely, but we're not there yet.
2322 DeclContext *SavedContext = CurContext;
2323 CurContext = New->getDeclContext();
2324 PushOnScopeChains(New, TUScope);
2325 CurContext = SavedContext;
2326 return New;
2327}
2328
2329/// Typedef declarations don't have linkage, but they still denote the same
2330/// entity if their types are the same.
2331/// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2332/// isSameEntity.
2333static void filterNonConflictingPreviousTypedefDecls(Sema &S,
2334 TypedefNameDecl *Decl,
2335 LookupResult &Previous) {
2336 // This is only interesting when modules are enabled.
2337 if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2338 return;
2339
2340 // Empty sets are uninteresting.
2341 if (Previous.empty())
2342 return;
2343
2344 LookupResult::Filter Filter = Previous.makeFilter();
2345 while (Filter.hasNext()) {
2346 NamedDecl *Old = Filter.next();
2347
2348 // Non-hidden declarations are never ignored.
2349 if (S.isVisible(Old))
2350 continue;
2351
2352 // Declarations of the same entity are not ignored, even if they have
2353 // different linkages.
2354 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2355 if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2356 Decl->getUnderlyingType()))
2357 continue;
2358
2359 // If both declarations give a tag declaration a typedef name for linkage
2360 // purposes, then they declare the same entity.
2361 if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2362 Decl->getAnonDeclWithTypedefName())
2363 continue;
2364 }
2365
2366 Filter.erase();
2367 }
2368
2369 Filter.done();
2370}
2371
2372bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
2373 QualType OldType;
2374 if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2375 OldType = OldTypedef->getUnderlyingType();
2376 else
2377 OldType = Context.getTypeDeclType(Old);
2378 QualType NewType = New->getUnderlyingType();
2379
2380 if (NewType->isVariablyModifiedType()) {
2381 // Must not redefine a typedef with a variably-modified type.
2382 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2383 Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2384 << Kind << NewType;
2385 if (Old->getLocation().isValid())
2386 notePreviousDefinition(Old, New->getLocation());
2387 New->setInvalidDecl();
2388 return true;
2389 }
2390
2391 if (OldType != NewType &&
2392 !OldType->isDependentType() &&
2393 !NewType->isDependentType() &&
2394 !Context.hasSameType(OldType, NewType)) {
2395 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2396 Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2397 << Kind << NewType << OldType;
2398 if (Old->getLocation().isValid())
2399 notePreviousDefinition(Old, New->getLocation());
2400 New->setInvalidDecl();
2401 return true;
2402 }
2403 return false;
2404}
2405
2406/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2407/// same name and scope as a previous declaration 'Old'. Figure out
2408/// how to resolve this situation, merging decls or emitting
2409/// diagnostics as appropriate. If there was an error, set New to be invalid.
2410///
2411void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2412 LookupResult &OldDecls) {
2413 // If the new decl is known invalid already, don't bother doing any
2414 // merging checks.
2415 if (New->isInvalidDecl()) return;
2416
2417 // Allow multiple definitions for ObjC built-in typedefs.
2418 // FIXME: Verify the underlying types are equivalent!
2419 if (getLangOpts().ObjC) {
2420 const IdentifierInfo *TypeID = New->getIdentifier();
2421 switch (TypeID->getLength()) {
2422 default: break;
2423 case 2:
2424 {
2425 if (!TypeID->isStr("id"))
2426 break;
2427 QualType T = New->getUnderlyingType();
2428 if (!T->isPointerType())
2429 break;
2430 if (!T->isVoidPointerType()) {
2431 QualType PT = T->castAs<PointerType>()->getPointeeType();
2432 if (!PT->isStructureType())
2433 break;
2434 }
2435 Context.setObjCIdRedefinitionType(T);
2436 // Install the built-in type for 'id', ignoring the current definition.
2437 New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2438 return;
2439 }
2440 case 5:
2441 if (!TypeID->isStr("Class"))
2442 break;
2443 Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2444 // Install the built-in type for 'Class', ignoring the current definition.
2445 New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2446 return;
2447 case 3:
2448 if (!TypeID->isStr("SEL"))
2449 break;
2450 Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2451 // Install the built-in type for 'SEL', ignoring the current definition.
2452 New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2453 return;
2454 }
2455 // Fall through - the typedef name was not a builtin type.
2456 }
2457
2458 // Verify the old decl was also a type.
2459 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2460 if (!Old) {
2461 Diag(New->getLocation(), diag::err_redefinition_different_kind)
2462 << New->getDeclName();
2463
2464 NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2465 if (OldD->getLocation().isValid())
2466 notePreviousDefinition(OldD, New->getLocation());
2467
2468 return New->setInvalidDecl();
2469 }
2470
2471 // If the old declaration is invalid, just give up here.
2472 if (Old->isInvalidDecl())
2473 return New->setInvalidDecl();
2474
2475 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2476 auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2477 auto *NewTag = New->getAnonDeclWithTypedefName();
2478 NamedDecl *Hidden = nullptr;
2479 if (OldTag && NewTag &&
2480 OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2481 !hasVisibleDefinition(OldTag, &Hidden)) {
2482 // There is a definition of this tag, but it is not visible. Use it
2483 // instead of our tag.
2484 New->setTypeForDecl(OldTD->getTypeForDecl());
2485 if (OldTD->isModed())
2486 New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2487 OldTD->getUnderlyingType());
2488 else
2489 New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2490
2491 // Make the old tag definition visible.
2492 makeMergedDefinitionVisible(Hidden);
2493
2494 // If this was an unscoped enumeration, yank all of its enumerators
2495 // out of the scope.
2496 if (isa<EnumDecl>(NewTag)) {
2497 Scope *EnumScope = getNonFieldDeclScope(S);
2498 for (auto *D : NewTag->decls()) {
2499 auto *ED = cast<EnumConstantDecl>(D);
2500 assert(EnumScope->isDeclScope(ED))(static_cast <bool> (EnumScope->isDeclScope(ED)) ? void
(0) : __assert_fail ("EnumScope->isDeclScope(ED)", "clang/lib/Sema/SemaDecl.cpp"
, 2500, __extension__ __PRETTY_FUNCTION__))
;
2501 EnumScope->RemoveDecl(ED);
2502 IdResolver.RemoveDecl(ED);
2503 ED->getLexicalDeclContext()->removeDecl(ED);
2504 }
2505 }
2506 }
2507 }
2508
2509 // If the typedef types are not identical, reject them in all languages and
2510 // with any extensions enabled.
2511 if (isIncompatibleTypedef(Old, New))
2512 return;
2513
2514 // The types match. Link up the redeclaration chain and merge attributes if
2515 // the old declaration was a typedef.
2516 if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2517 New->setPreviousDecl(Typedef);
2518 mergeDeclAttributes(New, Old);
2519 }
2520
2521 if (getLangOpts().MicrosoftExt)
2522 return;
2523
2524 if (getLangOpts().CPlusPlus) {
2525 // C++ [dcl.typedef]p2:
2526 // In a given non-class scope, a typedef specifier can be used to
2527 // redefine the name of any type declared in that scope to refer
2528 // to the type to which it already refers.
2529 if (!isa<CXXRecordDecl>(CurContext))
2530 return;
2531
2532 // C++0x [dcl.typedef]p4:
2533 // In a given class scope, a typedef specifier can be used to redefine
2534 // any class-name declared in that scope that is not also a typedef-name
2535 // to refer to the type to which it already refers.
2536 //
2537 // This wording came in via DR424, which was a correction to the
2538 // wording in DR56, which accidentally banned code like:
2539 //
2540 // struct S {
2541 // typedef struct A { } A;
2542 // };
2543 //
2544 // in the C++03 standard. We implement the C++0x semantics, which
2545 // allow the above but disallow
2546 //
2547 // struct S {
2548 // typedef int I;
2549 // typedef int I;
2550 // };
2551 //
2552 // since that was the intent of DR56.
2553 if (!isa<TypedefNameDecl>(Old))
2554 return;
2555
2556 Diag(New->getLocation(), diag::err_redefinition)
2557 << New->getDeclName();
2558 notePreviousDefinition(Old, New->getLocation());
2559 return New->setInvalidDecl();
2560 }
2561
2562 // Modules always permit redefinition of typedefs, as does C11.
2563 if (getLangOpts().Modules || getLangOpts().C11)
2564 return;
2565
2566 // If we have a redefinition of a typedef in C, emit a warning. This warning
2567 // is normally mapped to an error, but can be controlled with
2568 // -Wtypedef-redefinition. If either the original or the redefinition is
2569 // in a system header, don't emit this for compatibility with GCC.
2570 if (getDiagnostics().getSuppressSystemWarnings() &&
2571 // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2572 (Old->isImplicit() ||
2573 Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2574 Context.getSourceManager().isInSystemHeader(New->getLocation())))
2575 return;
2576
2577 Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2578 << New->getDeclName();
2579 notePreviousDefinition(Old, New->getLocation());
2580}
2581
2582/// DeclhasAttr - returns true if decl Declaration already has the target
2583/// attribute.
2584static bool DeclHasAttr(const Decl *D, const Attr *A) {
2585 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2586 const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2587 for (const auto *i : D->attrs())
2588 if (i->getKind() == A->getKind()) {
2589 if (Ann) {
2590 if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2591 return true;
2592 continue;
2593 }
2594 // FIXME: Don't hardcode this check
2595 if (OA && isa<OwnershipAttr>(i))
2596 return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2597 return true;
2598 }
2599
2600 return false;
2601}
2602
2603static bool isAttributeTargetADefinition(Decl *D) {
2604 if (VarDecl *VD = dyn_cast<VarDecl>(D))
2605 return VD->isThisDeclarationADefinition();
2606 if (TagDecl *TD = dyn_cast<TagDecl>(D))
2607 return TD->isCompleteDefinition() || TD->isBeingDefined();
2608 return true;
2609}
2610
2611/// Merge alignment attributes from \p Old to \p New, taking into account the
2612/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2613///
2614/// \return \c true if any attributes were added to \p New.
2615static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2616 // Look for alignas attributes on Old, and pick out whichever attribute
2617 // specifies the strictest alignment requirement.
2618 AlignedAttr *OldAlignasAttr = nullptr;
2619 AlignedAttr *OldStrictestAlignAttr = nullptr;
2620 unsigned OldAlign = 0;
2621 for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2622 // FIXME: We have no way of representing inherited dependent alignments
2623 // in a case like:
2624 // template<int A, int B> struct alignas(A) X;
2625 // template<int A, int B> struct alignas(B) X {};
2626 // For now, we just ignore any alignas attributes which are not on the
2627 // definition in such a case.
2628 if (I->isAlignmentDependent())
2629 return false;
2630
2631 if (I->isAlignas())
2632 OldAlignasAttr = I;
2633
2634 unsigned Align = I->getAlignment(S.Context);
2635 if (Align > OldAlign) {
2636 OldAlign = Align;
2637 OldStrictestAlignAttr = I;
2638 }
2639 }
2640
2641 // Look for alignas attributes on New.
2642 AlignedAttr *NewAlignasAttr = nullptr;
2643 unsigned NewAlign = 0;
2644 for (auto *I : New->specific_attrs<AlignedAttr>()) {
2645 if (I->isAlignmentDependent())
2646 return false;
2647
2648 if (I->isAlignas())
2649 NewAlignasAttr = I;
2650
2651 unsigned Align = I->getAlignment(S.Context);
2652 if (Align > NewAlign)
2653 NewAlign = Align;
2654 }
2655
2656 if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2657 // Both declarations have 'alignas' attributes. We require them to match.
2658 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2659 // fall short. (If two declarations both have alignas, they must both match
2660 // every definition, and so must match each other if there is a definition.)
2661
2662 // If either declaration only contains 'alignas(0)' specifiers, then it
2663 // specifies the natural alignment for the type.
2664 if (OldAlign == 0 || NewAlign == 0) {
2665 QualType Ty;
2666 if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2667 Ty = VD->getType();
2668 else
2669 Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2670
2671 if (OldAlign == 0)
2672 OldAlign = S.Context.getTypeAlign(Ty);
2673 if (NewAlign == 0)
2674 NewAlign = S.Context.getTypeAlign(Ty);
2675 }
2676
2677 if (OldAlign != NewAlign) {
2678 S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2679 << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2680 << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2681 S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2682 }
2683 }
2684
2685 if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2686 // C++11 [dcl.align]p6:
2687 // if any declaration of an entity has an alignment-specifier,
2688 // every defining declaration of that entity shall specify an
2689 // equivalent alignment.
2690 // C11 6.7.5/7:
2691 // If the definition of an object does not have an alignment
2692 // specifier, any other declaration of that object shall also
2693 // have no alignment specifier.
2694 S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2695 << OldAlignasAttr;
2696 S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2697 << OldAlignasAttr;
2698 }
2699
2700 bool AnyAdded = false;
2701
2702 // Ensure we have an attribute representing the strictest alignment.
2703 if (OldAlign > NewAlign) {
2704 AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2705 Clone->setInherited(true);
2706 New->addAttr(Clone);
2707 AnyAdded = true;
2708 }
2709
2710 // Ensure we have an alignas attribute if the old declaration had one.
2711 if (OldAlignasAttr && !NewAlignasAttr &&
2712 !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2713 AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2714 Clone->setInherited(true);
2715 New->addAttr(Clone);
2716 AnyAdded = true;
2717 }
2718
2719 return AnyAdded;
2720}
2721
2722#define WANT_DECL_MERGE_LOGIC
2723#include "clang/Sema/AttrParsedAttrImpl.inc"
2724#undef WANT_DECL_MERGE_LOGIC
2725
2726static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2727 const InheritableAttr *Attr,
2728 Sema::AvailabilityMergeKind AMK) {
2729 // Diagnose any mutual exclusions between the attribute that we want to add
2730 // and attributes that already exist on the declaration.
2731 if (!DiagnoseMutualExclusions(S, D, Attr))
2732 return false;
2733
2734 // This function copies an attribute Attr from a previous declaration to the
2735 // new declaration D if the new declaration doesn't itself have that attribute
2736 // yet or if that attribute allows duplicates.
2737 // If you're adding a new attribute that requires logic different from
2738 // "use explicit attribute on decl if present, else use attribute from
2739 // previous decl", for example if the attribute needs to be consistent
2740 // between redeclarations, you need to call a custom merge function here.
2741 InheritableAttr *NewAttr = nullptr;
2742 if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2743 NewAttr = S.mergeAvailabilityAttr(
2744 D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(),
2745 AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(),
2746 AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK,
2747 AA->getPriority());
2748 else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2749 NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility());
2750 else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2751 NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility());
2752 else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2753 NewAttr = S.mergeDLLImportAttr(D, *ImportA);
2754 else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2755 NewAttr = S.mergeDLLExportAttr(D, *ExportA);
2756 else if (const auto *EA = dyn_cast<ErrorAttr>(Attr))
2757 NewAttr = S.mergeErrorAttr(D, *EA, EA->getUserDiagnostic());
2758 else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2759 NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(),
2760 FA->getFirstArg());
2761 else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2762 NewAttr = S.mergeSectionAttr(D, *SA, SA->getName());
2763 else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
2764 NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName());
2765 else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2766 NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(),
2767 IA->getInheritanceModel());
2768 else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2769 NewAttr = S.mergeAlwaysInlineAttr(D, *AA,
2770 &S.Context.Idents.get(AA->getSpelling()));
2771 else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2772 (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2773 isa<CUDAGlobalAttr>(Attr))) {
2774 // CUDA target attributes are part of function signature for
2775 // overloading purposes and must not be merged.
2776 return false;
2777 } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2778 NewAttr = S.mergeMinSizeAttr(D, *MA);
2779 else if (const auto *SNA = dyn_cast<SwiftNameAttr>(Attr))
2780 NewAttr = S.mergeSwiftNameAttr(D, *SNA, SNA->getName());
2781 else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2782 NewAttr = S.mergeOptimizeNoneAttr(D, *OA);
2783 else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2784 NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
2785 else if (isa<AlignedAttr>(Attr))
2786 // AlignedAttrs are handled separately, because we need to handle all
2787 // such attributes on a declaration at the same time.
2788 NewAttr = nullptr;
2789 else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2790 (AMK == Sema::AMK_Override ||
2791 AMK == Sema::AMK_ProtocolImplementation ||
2792 AMK == Sema::AMK_OptionalProtocolImplementation))
2793 NewAttr = nullptr;
2794 else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2795 NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid(), UA->getGuidDecl());
2796 else if (const auto *IMA = dyn_cast<WebAssemblyImportModuleAttr>(Attr))
2797 NewAttr = S.mergeImportModuleAttr(D, *IMA);
2798 else if (const auto *INA = dyn_cast<WebAssemblyImportNameAttr>(Attr))
2799 NewAttr = S.mergeImportNameAttr(D, *INA);
2800 else if (const auto *TCBA = dyn_cast<EnforceTCBAttr>(Attr))
2801 NewAttr = S.mergeEnforceTCBAttr(D, *TCBA);
2802 else if (const auto *TCBLA = dyn_cast<EnforceTCBLeafAttr>(Attr))
2803 NewAttr = S.mergeEnforceTCBLeafAttr(D, *TCBLA);
2804 else if (const auto *BTFA = dyn_cast<BTFDeclTagAttr>(Attr))
2805 NewAttr = S.mergeBTFDeclTagAttr(D, *BTFA);
2806 else if (const auto *NT = dyn_cast<HLSLNumThreadsAttr>(Attr))
2807 NewAttr =
2808 S.mergeHLSLNumThreadsAttr(D, *NT, NT->getX(), NT->getY(), NT->getZ());
2809 else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
2810 NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2811
2812 if (NewAttr) {
2813 NewAttr->setInherited(true);
2814 D->addAttr(NewAttr);
2815 if (isa<MSInheritanceAttr>(NewAttr))
2816 S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
2817 return true;
2818 }
2819
2820 return false;
2821}
2822
2823static const NamedDecl *getDefinition(const Decl *D) {
2824 if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2825 return TD->getDefinition();
2826 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2827 const VarDecl *Def = VD->getDefinition();
2828 if (Def)
2829 return Def;
2830 return VD->getActingDefinition();
2831 }
2832 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2833 const FunctionDecl *Def = nullptr;
2834 if (FD->isDefined(Def, true))
2835 return Def;
2836 }
2837 return nullptr;
2838}
2839
2840static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2841 for (const auto *Attribute : D->attrs())
2842 if (Attribute->getKind() == Kind)
2843 return true;
2844 return false;
2845}
2846
2847/// checkNewAttributesAfterDef - If we already have a definition, check that
2848/// there are no new attributes in this declaration.
2849static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2850 if (!New->hasAttrs())
2851 return;
2852
2853 const NamedDecl *Def = getDefinition(Old);
2854 if (!Def || Def == New)
2855 return;
2856
2857 AttrVec &NewAttributes = New->getAttrs();
2858 for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2859 const Attr *NewAttribute = NewAttributes[I];
2860
2861 if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
2862 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2863 Sema::SkipBodyInfo SkipBody;
2864 S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2865
2866 // If we're skipping this definition, drop the "alias" attribute.
2867 if (SkipBody.ShouldSkip) {
2868 NewAttributes.erase(NewAttributes.begin() + I);
2869 --E;
2870 continue;
2871 }
2872 } else {
2873 VarDecl *VD = cast<VarDecl>(New);
2874 unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2875 VarDecl::TentativeDefinition
2876 ? diag::err_alias_after_tentative
2877 : diag::err_redefinition;
2878 S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2879 if (Diag == diag::err_redefinition)
2880 S.notePreviousDefinition(Def, VD->getLocation());
2881 else
2882 S.Diag(Def->getLocation(), diag::note_previous_definition);
2883 VD->setInvalidDecl();
2884 }
2885 ++I;
2886 continue;
2887 }
2888
2889 if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2890 // Tentative definitions are only interesting for the alias check above.
2891 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2892 ++I;
2893 continue;
2894 }
2895 }
2896
2897 if (hasAttribute(Def, NewAttribute->getKind())) {
2898 ++I;
2899 continue; // regular attr merging will take care of validating this.
2900 }
2901
2902 if (isa<C11NoReturnAttr>(NewAttribute)) {
2903 // C's _Noreturn is allowed to be added to a function after it is defined.
2904 ++I;
2905 continue;
2906 } else if (isa<UuidAttr>(NewAttribute)) {
2907 // msvc will allow a subsequent definition to add an uuid to a class
2908 ++I;
2909 continue;
2910 } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2911 if (AA->isAlignas()) {
2912 // C++11 [dcl.align]p6:
2913 // if any declaration of an entity has an alignment-specifier,
2914 // every defining declaration of that entity shall specify an
2915 // equivalent alignment.
2916 // C11 6.7.5/7:
2917 // If the definition of an object does not have an alignment
2918 // specifier, any other declaration of that object shall also
2919 // have no alignment specifier.
2920 S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2921 << AA;
2922 S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2923 << AA;
2924 NewAttributes.erase(NewAttributes.begin() + I);
2925 --E;
2926 continue;
2927 }
2928 } else if (isa<LoaderUninitializedAttr>(NewAttribute)) {
2929 // If there is a C definition followed by a redeclaration with this
2930 // attribute then there are two different definitions. In C++, prefer the
2931 // standard diagnostics.
2932 if (!S.getLangOpts().CPlusPlus) {
2933 S.Diag(NewAttribute->getLocation(),
2934 diag::err_loader_uninitialized_redeclaration);
2935 S.Diag(Def->getLocation(), diag::note_previous_definition);
2936 NewAttributes.erase(NewAttributes.begin() + I);
2937 --E;
2938 continue;
2939 }
2940 } else if (isa<SelectAnyAttr>(NewAttribute) &&
2941 cast<VarDecl>(New)->isInline() &&
2942 !cast<VarDecl>(New)->isInlineSpecified()) {
2943 // Don't warn about applying selectany to implicitly inline variables.
2944 // Older compilers and language modes would require the use of selectany
2945 // to make such variables inline, and it would have no effect if we
2946 // honored it.
2947 ++I;
2948 continue;
2949 } else if (isa<OMPDeclareVariantAttr>(NewAttribute)) {
2950 // We allow to add OMP[Begin]DeclareVariantAttr to be added to
2951 // declarations after defintions.
2952 ++I;
2953 continue;
2954 }
2955
2956 S.Diag(NewAttribute->getLocation(),
2957 diag::warn_attribute_precede_definition);
2958 S.Diag(Def->getLocation(), diag::note_previous_definition);
2959 NewAttributes.erase(NewAttributes.begin() + I);
2960 --E;
2961 }
2962}
2963
2964static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl,
2965 const ConstInitAttr *CIAttr,
2966 bool AttrBeforeInit) {
2967 SourceLocation InsertLoc = InitDecl->getInnerLocStart();
2968
2969 // Figure out a good way to write this specifier on the old declaration.
2970 // FIXME: We should just use the spelling of CIAttr, but we don't preserve
2971 // enough of the attribute list spelling information to extract that without
2972 // heroics.
2973 std::string SuitableSpelling;
2974 if (S.getLangOpts().CPlusPlus20)
2975 SuitableSpelling = std::string(
2976 S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit}));
2977 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
2978 SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
2979 InsertLoc, {tok::l_square, tok::l_square,
2980 S.PP.getIdentifierInfo("clang"), tok::coloncolon,
2981 S.PP.getIdentifierInfo("require_constant_initialization"),
2982 tok::r_square, tok::r_square}));
2983 if (SuitableSpelling.empty())
2984 SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
2985 InsertLoc, {tok::kw___attribute, tok::l_paren, tok::r_paren,
2986 S.PP.getIdentifierInfo("require_constant_initialization"),
2987 tok::r_paren, tok::r_paren}));
2988 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus20)
2989 SuitableSpelling = "constinit";
2990 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
2991 SuitableSpelling = "[[clang::require_constant_initialization]]";
2992 if (SuitableSpelling.empty())
2993 SuitableSpelling = "__attribute__((require_constant_initialization))";
2994 SuitableSpelling += " ";
2995
2996 if (AttrBeforeInit) {
2997 // extern constinit int a;
2998 // int a = 0; // error (missing 'constinit'), accepted as extension
2999 assert(CIAttr->isConstinit() && "should not diagnose this for attribute")(static_cast <bool> (CIAttr->isConstinit() &&
"should not diagnose this for attribute") ? void (0) : __assert_fail
("CIAttr->isConstinit() && \"should not diagnose this for attribute\""
, "clang/lib/Sema/SemaDecl.cpp", 2999, __extension__ __PRETTY_FUNCTION__
))
;
3000 S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing)
3001 << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
3002 S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here);
3003 } else {
3004 // int a = 0;
3005 // constinit extern int a; // error (missing 'constinit')
3006 S.Diag(CIAttr->getLocation(),
3007 CIAttr->isConstinit() ? diag::err_constinit_added_too_late
3008 : diag::warn_require_const_init_added_too_late)
3009 << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation()));
3010 S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here)
3011 << CIAttr->isConstinit()
3012 << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
3013 }
3014}
3015
3016/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
3017void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
3018 AvailabilityMergeKind AMK) {
3019 if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
3020 UsedAttr *NewAttr = OldAttr->clone(Context);
3021 NewAttr->setInherited(true);
3022 New->addAttr(NewAttr);
3023 }
3024 if (RetainAttr *OldAttr = Old->getMostRecentDecl()->getAttr<RetainAttr>()) {
3025 RetainAttr *NewAttr = OldAttr->clone(Context);
3026 NewAttr->setInherited(true);
3027 New->addAttr(NewAttr);
3028 }
3029
3030 if (!Old->hasAttrs() && !New->hasAttrs())
3031 return;
3032
3033 // [dcl.constinit]p1:
3034 // If the [constinit] specifier is applied to any declaration of a
3035 // variable, it shall be applied to the initializing declaration.
3036 const auto *OldConstInit = Old->getAttr<ConstInitAttr>();
3037 const auto *NewConstInit = New->getAttr<ConstInitAttr>();
3038 if (bool(OldConstInit) != bool(NewConstInit)) {
3039 const auto *OldVD = cast<VarDecl>(Old);
3040 auto *NewVD = cast<VarDecl>(New);
3041
3042 // Find the initializing declaration. Note that we might not have linked
3043 // the new declaration into the redeclaration chain yet.
3044 const VarDecl *InitDecl = OldVD->getInitializingDeclaration();
3045 if (!InitDecl &&
3046 (NewVD->hasInit() || NewVD->isThisDeclarationADefinition()))
3047 InitDecl = NewVD;
3048
3049 if (InitDecl == NewVD) {
3050 // This is the initializing declaration. If it would inherit 'constinit',
3051 // that's ill-formed. (Note that we do not apply this to the attribute
3052 // form).
3053 if (OldConstInit && OldConstInit->isConstinit())
3054 diagnoseMissingConstinit(*this, NewVD, OldConstInit,
3055 /*AttrBeforeInit=*/true);
3056 } else if (NewConstInit) {
3057 // This is the first time we've been told that this declaration should
3058 // have a constant initializer. If we already saw the initializing
3059 // declaration, this is too late.
3060 if (InitDecl && InitDecl != NewVD) {
3061 diagnoseMissingConstinit(*this, InitDecl, NewConstInit,
3062 /*AttrBeforeInit=*/false);
3063 NewVD->dropAttr<ConstInitAttr>();
3064 }
3065 }
3066 }
3067
3068 // Attributes declared post-definition are currently ignored.
3069 checkNewAttributesAfterDef(*this, New, Old);
3070
3071 if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
3072 if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
3073 if (!OldA->isEquivalent(NewA)) {
3074 // This redeclaration changes __asm__ label.
3075 Diag(New->getLocation(), diag::err_different_asm_label);
3076 Diag(OldA->getLocation(), diag::note_previous_declaration);
3077 }
3078 } else if (Old->isUsed()) {
3079 // This redeclaration adds an __asm__ label to a declaration that has
3080 // already been ODR-used.
3081 Diag(New->getLocation(), diag::err_late_asm_label_name)
3082 << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
3083 }
3084 }
3085
3086 // Re-declaration cannot add abi_tag's.
3087 if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
3088 if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
3089 for (const auto &NewTag : NewAbiTagAttr->tags()) {
3090 if (!llvm::is_contained(OldAbiTagAttr->tags(), NewTag)) {
3091 Diag(NewAbiTagAttr->getLocation(),
3092 diag::err_new_abi_tag_on_redeclaration)
3093 << NewTag;
3094 Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
3095 }
3096 }
3097 } else {
3098 Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
3099 Diag(Old->getLocation(), diag::note_previous_declaration);
3100 }
3101 }
3102
3103 // This redeclaration adds a section attribute.
3104 if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
3105 if (auto *VD = dyn_cast<VarDecl>(New)) {
3106 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
3107 Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
3108 Diag(Old->getLocation(), diag::note_previous_declaration);
3109 }
3110 }
3111 }
3112
3113 // Redeclaration adds code-seg attribute.
3114 const auto *NewCSA = New->getAttr<CodeSegAttr>();
3115 if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
3116 !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
3117 Diag(New->getLocation(), diag::warn_mismatched_section)
3118 << 0 /*codeseg*/;
3119 Diag(Old->getLocation(), diag::note_previous_declaration);
3120 }
3121
3122 if (!Old->hasAttrs())
3123 return;
3124
3125 bool foundAny = New->hasAttrs();
3126
3127 // Ensure that any moving of objects within the allocated map is done before
3128 // we process them.
3129 if (!foundAny) New->setAttrs(AttrVec());
3130
3131 for (auto *I : Old->specific_attrs<InheritableAttr>()) {
3132 // Ignore deprecated/unavailable/availability attributes if requested.
3133 AvailabilityMergeKind LocalAMK = AMK_None;
3134 if (isa<DeprecatedAttr>(I) ||
3135 isa<UnavailableAttr>(I) ||
3136 isa<AvailabilityAttr>(I)) {
3137 switch (AMK) {
3138 case AMK_None:
3139 continue;
3140
3141 case AMK_Redeclaration:
3142 case AMK_Override:
3143 case AMK_ProtocolImplementation:
3144 case AMK_OptionalProtocolImplementation:
3145 LocalAMK = AMK;
3146 break;
3147 }
3148 }
3149
3150 // Already handled.
3151 if (isa<UsedAttr>(I) || isa<RetainAttr>(I))
3152 continue;
3153
3154 if (mergeDeclAttribute(*this, New, I, LocalAMK))
3155 foundAny = true;
3156 }
3157
3158 if (mergeAlignedAttrs(*this, New, Old))
3159 foundAny = true;
3160
3161 if (!foundAny) New->dropAttrs();
3162}
3163
3164/// mergeParamDeclAttributes - Copy attributes from the old parameter
3165/// to the new one.
3166static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
3167 const ParmVarDecl *oldDecl,
3168 Sema &S) {
3169 // C++11 [dcl.attr.depend]p2:
3170 // The first declaration of a function shall specify the
3171 // carries_dependency attribute for its declarator-id if any declaration
3172 // of the function specifies the carries_dependency attribute.
3173 const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
3174 if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
3175 S.Diag(CDA->getLocation(),
3176 diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
3177 // Find the first declaration of the parameter.
3178 // FIXME: Should we build redeclaration chains for function parameters?
3179 const FunctionDecl *FirstFD =
3180 cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
3181 const ParmVarDecl *FirstVD =
3182 FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
3183 S.Diag(FirstVD->getLocation(),
3184 diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
3185 }
3186
3187 if (!oldDecl->hasAttrs())
3188 return;
3189
3190 bool foundAny = newDecl->hasAttrs();
3191
3192 // Ensure that any moving of objects within the allocated map is
3193 // done before we process them.
3194 if (!foundAny) newDecl->setAttrs(AttrVec());
3195
3196 for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
3197 if (!DeclHasAttr(newDecl, I)) {
3198 InheritableAttr *newAttr =
3199 cast<InheritableParamAttr>(I->clone(S.Context));
3200 newAttr->setInherited(true);
3201 newDecl->addAttr(newAttr);
3202 foundAny = true;
3203 }
3204 }
3205
3206 if (!foundAny) newDecl->dropAttrs();
3207}
3208
3209static void mergeParamDeclTypes(ParmVarDecl *NewParam,
3210 const ParmVarDecl *OldParam,
3211 Sema &S) {
3212 if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
3213 if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
3214 if (*Oldnullability != *Newnullability) {
3215 S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
3216 << DiagNullabilityKind(
3217 *Newnullability,
3218 ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3219 != 0))
3220 << DiagNullabilityKind(
3221 *Oldnullability,
3222 ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3223 != 0));
3224 S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
3225 }
3226 } else {
3227 QualType NewT = NewParam->getType();
3228 NewT = S.Context.getAttributedType(
3229 AttributedType::getNullabilityAttrKind(*Oldnullability),
3230 NewT, NewT);
3231 NewParam->setType(NewT);
3232 }
3233 }
3234}
3235
3236namespace {
3237
3238/// Used in MergeFunctionDecl to keep track of function parameters in
3239/// C.
3240struct GNUCompatibleParamWarning {
3241 ParmVarDecl *OldParm;
3242 ParmVarDecl *NewParm;
3243 QualType PromotedType;
3244};
3245
3246} // end anonymous namespace
3247
3248// Determine whether the previous declaration was a definition, implicit
3249// declaration, or a declaration.
3250template <typename T>
3251static std::pair<diag::kind, SourceLocation>
3252getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
3253 diag::kind PrevDiag;
3254 SourceLocation OldLocation = Old->getLocation();
3255 if (Old->isThisDeclarationADefinition())
3256 PrevDiag = diag::note_previous_definition;
3257 else if (Old->isImplicit()) {
3258 PrevDiag = diag::note_previous_implicit_declaration;
3259 if (const auto *FD = dyn_cast<FunctionDecl>(Old)) {
3260 if (FD->getBuiltinID())
3261 PrevDiag = diag::note_previous_builtin_declaration;
3262 }
3263 if (OldLocation.isInvalid())
3264 OldLocation = New->getLocation();
3265 } else
3266 PrevDiag = diag::note_previous_declaration;
3267 return std::make_pair(PrevDiag, OldLocation);
3268}
3269
3270/// canRedefineFunction - checks if a function can be redefined. Currently,
3271/// only extern inline functions can be redefined, and even then only in
3272/// GNU89 mode.
3273static bool canRedefineFunction(const FunctionDecl *FD,
3274 const LangOptions& LangOpts) {
3275 return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
3276 !LangOpts.CPlusPlus &&
3277 FD->isInlineSpecified() &&
3278 FD->getStorageClass() == SC_Extern);
3279}
3280
3281const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
3282 const AttributedType *AT = T->getAs<AttributedType>();
3283 while (AT && !AT->isCallingConv())
3284 AT = AT->getModifiedType()->getAs<AttributedType>();
3285 return AT;
3286}
3287
3288template <typename T>
3289static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
3290 const DeclContext *DC = Old->getDeclContext();
3291 if (DC->isRecord())
3292 return false;
3293
3294 LanguageLinkage OldLinkage = Old->getLanguageLinkage();
3295 if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
3296 return true;
3297 if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
3298 return true;
3299 return false;
3300}
3301
3302template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
3303static bool isExternC(VarTemplateDecl *) { return false; }
3304static bool isExternC(FunctionTemplateDecl *) { return false; }
3305
3306/// Check whether a redeclaration of an entity introduced by a
3307/// using-declaration is valid, given that we know it's not an overload
3308/// (nor a hidden tag declaration).
3309template<typename ExpectedDecl>
3310static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
3311 ExpectedDecl *New) {
3312 // C++11 [basic.scope.declarative]p4:
3313 // Given a set of declarations in a single declarative region, each of
3314 // which specifies the same unqualified name,
3315 // -- they shall all refer to the same entity, or all refer to functions
3316 // and function templates; or
3317 // -- exactly one declaration shall declare a class name or enumeration
3318 // name that is not a typedef name and the other declarations shall all
3319 // refer to the same variable or enumerator, or all refer to functions
3320 // and function templates; in this case the class name or enumeration
3321 // name is hidden (3.3.10).
3322
3323 // C++11 [namespace.udecl]p14:
3324 // If a function declaration in namespace scope or block scope has the
3325 // same name and the same parameter-type-list as a function introduced
3326 // by a using-declaration, and the declarations do not declare the same
3327 // function, the program is ill-formed.
3328
3329 auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
3330 if (Old &&
3331 !Old->getDeclContext()->getRedeclContext()->Equals(
3332 New->getDeclContext()->getRedeclContext()) &&
3333 !(isExternC(Old) && isExternC(New)))
3334 Old = nullptr;
3335
3336 if (!Old) {
3337 S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
3338 S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
3339 S.Diag(OldS->getIntroducer()->getLocation(), diag::note_using_decl) << 0;
3340 return true;
3341 }
3342 return false;
3343}
3344
3345static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
3346 const FunctionDecl *B) {
3347 assert(A->getNumParams() == B->getNumParams())(static_cast <bool> (A->getNumParams() == B->getNumParams
()) ? void (0) : __assert_fail ("A->getNumParams() == B->getNumParams()"
, "clang/lib/Sema/SemaDecl.cpp", 3347, __extension__ __PRETTY_FUNCTION__
))
;
3348
3349 auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
3350 const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
3351 const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
3352 if (AttrA == AttrB)
3353 return true;
3354 return AttrA && AttrB && AttrA->getType() == AttrB->getType() &&
3355 AttrA->isDynamic() == AttrB->isDynamic();
3356 };
3357
3358 return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
3359}
3360
3361/// If necessary, adjust the semantic declaration context for a qualified
3362/// declaration to name the correct inline namespace within the qualifier.
3363static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
3364 DeclaratorDecl *OldD) {
3365 // The only case where we need to update the DeclContext is when
3366 // redeclaration lookup for a qualified name finds a declaration
3367 // in an inline namespace within the context named by the qualifier:
3368 //
3369 // inline namespace N { int f(); }
3370 // int ::f(); // Sema DC needs adjusting from :: to N::.
3371 //
3372 // For unqualified declarations, the semantic context *can* change
3373 // along the redeclaration chain (for local extern declarations,
3374 // extern "C" declarations, and friend declarations in particular).
3375 if (!NewD->getQualifier())
3376 return;
3377
3378 // NewD is probably already in the right context.
3379 auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
3380 auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
3381 if (NamedDC->Equals(SemaDC))
3382 return;
3383
3384 assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||(static_cast <bool> ((NamedDC->InEnclosingNamespaceSetOf
(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl
()) && "unexpected context for redeclaration") ? void
(0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\""
, "clang/lib/Sema/SemaDecl.cpp", 3386, __extension__ __PRETTY_FUNCTION__
))
3385 NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&(static_cast <bool> ((NamedDC->InEnclosingNamespaceSetOf
(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl
()) && "unexpected context for redeclaration") ? void
(0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\""
, "clang/lib/Sema/SemaDecl.cpp", 3386, __extension__ __PRETTY_FUNCTION__
))
3386 "unexpected context for redeclaration")(static_cast <bool> ((NamedDC->InEnclosingNamespaceSetOf
(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl
()) && "unexpected context for redeclaration") ? void
(0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\""
, "clang/lib/Sema/SemaDecl.cpp", 3386, __extension__ __PRETTY_FUNCTION__
))
;
3387
3388 auto *LexDC = NewD->getLexicalDeclContext();
3389 auto FixSemaDC = [=](NamedDecl *D) {
3390 if (!D)
3391 return;
3392 D->setDeclContext(SemaDC);
3393 D->setLexicalDeclContext(LexDC);
3394 };
3395
3396 FixSemaDC(NewD);
3397 if (auto *FD = dyn_cast<FunctionDecl>(NewD))
3398 FixSemaDC(FD->getDescribedFunctionTemplate());
3399 else if (auto *VD = dyn_cast<VarDecl>(NewD))
3400 FixSemaDC(VD->getDescribedVarTemplate());
3401}
3402
3403/// MergeFunctionDecl - We just parsed a function 'New' from
3404/// declarator D which has the same name and scope as a previous
3405/// declaration 'Old'. Figure out how to resolve this situation,
3406/// merging decls or emitting diagnostics as appropriate.
3407///
3408/// In C++, New and Old must be declarations that are not
3409/// overloaded. Use IsOverload to determine whether New and Old are
3410/// overloaded, and to select the Old declaration that New should be
3411/// merged with.
3412///
3413/// Returns true if there was an error, false otherwise.
3414bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD, Scope *S,
3415 bool MergeTypeWithOld, bool NewDeclIsDefn) {
3416 // Verify the old decl was also a function.
3417 FunctionDecl *Old = OldD->getAsFunction();
3418 if (!Old) {
3419 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
3420 if (New->getFriendObjectKind()) {
3421 Diag(New->getLocation(), diag::err_using_decl_friend);
3422 Diag(Shadow->getTargetDecl()->getLocation(),
3423 diag::note_using_decl_target);
3424 Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl)
3425 << 0;
3426 return true;
3427 }
3428
3429 // Check whether the two declarations might declare the same function or
3430 // function template.
3431 if (FunctionTemplateDecl *NewTemplate =
3432 New->getDescribedFunctionTemplate()) {
3433 if (checkUsingShadowRedecl<FunctionTemplateDecl>(*this, Shadow,
3434 NewTemplate))
3435 return true;
3436 OldD = Old = cast<FunctionTemplateDecl>(Shadow->getTargetDecl())
3437 ->getAsFunction();
3438 } else {
3439 if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3440 return true;
3441 OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3442 }
3443 } else {
3444 Diag(New->getLocation(), diag::err_redefinition_different_kind)
3445 << New->getDeclName();
3446 notePreviousDefinition(OldD, New->getLocation());
3447 return true;
3448 }
3449 }
3450
3451 // If the old declaration was found in an inline namespace and the new
3452 // declaration was qualified, update the DeclContext to match.
3453 adjustDeclContextForDeclaratorDecl(New, Old);
3454
3455 // If the old declaration is invalid, just give up here.
3456 if (Old->isInvalidDecl())
3457 return true;
3458
3459 // Disallow redeclaration of some builtins.
3460 if (!getASTContext().canBuiltinBeRedeclared(Old)) {
3461 Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
3462 Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
3463 << Old << Old->getType();
3464 return true;
3465 }
3466
3467 diag::kind PrevDiag;
3468 SourceLocation OldLocation;
3469 std::tie(PrevDiag, OldLocation) =
3470 getNoteDiagForInvalidRedeclaration(Old, New);
3471
3472 // Don't complain about this if we're in GNU89 mode and the old function
3473 // is an extern inline function.
3474 // Don't complain about specializations. They are not supposed to have
3475 // storage classes.
3476 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3477 New->getStorageClass() == SC_Static &&
3478 Old->hasExternalFormalLinkage() &&
3479 !New->getTemplateSpecializationInfo() &&
3480 !canRedefineFunction(Old, getLangOpts())) {
3481 if (getLangOpts().MicrosoftExt) {
3482 Diag(New->getLocation(), diag::ext_static_non_static) << New;
3483 Diag(OldLocation, PrevDiag);
3484 } else {
3485 Diag(New->getLocation(), diag::err_static_non_static) << New;
3486 Diag(OldLocation, PrevDiag);
3487 return true;
3488 }
3489 }
3490
3491 if (const auto *ILA = New->getAttr<InternalLinkageAttr>())
3492 if (!Old->hasAttr<InternalLinkageAttr>()) {
3493 Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl)
3494 << ILA;
3495 Diag(Old->getLocation(), diag::note_previous_declaration);
3496 New->dropAttr<InternalLinkageAttr>();
3497 }
3498
3499 if (auto *EA = New->getAttr<ErrorAttr>()) {
3500 if (!Old->hasAttr<ErrorAttr>()) {
3501 Diag(EA->getLocation(), diag::err_attribute_missing_on_first_decl) << EA;
3502 Diag(Old->getLocation(), diag::note_previous_declaration);
3503 New->dropAttr<ErrorAttr>();
3504 }
3505 }
3506
3507 if (CheckRedeclarationInModule(New, Old))
3508 return true;
3509
3510 if (!getLangOpts().CPlusPlus) {
3511 bool OldOvl = Old->hasAttr<OverloadableAttr>();
3512 if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3513 Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3514 << New << OldOvl;
3515
3516 // Try our best to find a decl that actually has the overloadable
3517 // attribute for the note. In most cases (e.g. programs with only one
3518 // broken declaration/definition), this won't matter.
3519 //
3520 // FIXME: We could do this if we juggled some extra state in
3521 // OverloadableAttr, rather than just removing it.
3522 const Decl *DiagOld = Old;
3523 if (OldOvl) {
3524 auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3525 const auto *A = D->getAttr<OverloadableAttr>();
3526 return A && !A->isImplicit();
3527 });
3528 // If we've implicitly added *all* of the overloadable attrs to this
3529 // chain, emitting a "previous redecl" note is pointless.
3530 DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3531 }
3532
3533 if (DiagOld)
3534 Diag(DiagOld->getLocation(),
3535 diag::note_attribute_overloadable_prev_overload)
3536 << OldOvl;
3537
3538 if (OldOvl)
3539 New->addAttr(OverloadableAttr::CreateImplicit(Context));
3540 else
3541 New->dropAttr<OverloadableAttr>();
3542 }
3543 }
3544
3545 // If a function is first declared with a calling convention, but is later
3546 // declared or defined without one, all following decls assume the calling
3547 // convention of the first.
3548 //
3549 // It's OK if a function is first declared without a calling convention,
3550 // but is later declared or defined with the default calling convention.
3551 //
3552 // To test if either decl has an explicit calling convention, we look for
3553 // AttributedType sugar nodes on the type as written. If they are missing or
3554 // were canonicalized away, we assume the calling convention was implicit.
3555 //
3556 // Note also that we DO NOT return at this point, because we still have
3557 // other tests to run.
3558 QualType OldQType = Context.getCanonicalType(Old->getType());
3559 QualType NewQType = Context.getCanonicalType(New->getType());
3560 const FunctionType *OldType = cast<FunctionType>(OldQType);
3561 const FunctionType *NewType = cast<FunctionType>(NewQType);
3562 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3563 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3564 bool RequiresAdjustment = false;
3565
3566 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3567 FunctionDecl *First = Old->getFirstDecl();
3568 const FunctionType *FT =
3569 First->getType().getCanonicalType()->castAs<FunctionType>();
3570 FunctionType::ExtInfo FI = FT->getExtInfo();
3571 bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3572 if (!NewCCExplicit) {
3573 // Inherit the CC from the previous declaration if it was specified
3574 // there but not here.
3575 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3576 RequiresAdjustment = true;
3577 } else if (Old->getBuiltinID()) {
3578 // Builtin attribute isn't propagated to the new one yet at this point,
3579 // so we check if the old one is a builtin.
3580
3581 // Calling Conventions on a Builtin aren't really useful and setting a
3582 // default calling convention and cdecl'ing some builtin redeclarations is
3583 // common, so warn and ignore the calling convention on the redeclaration.
3584 Diag(New->getLocation(), diag::warn_cconv_unsupported)
3585 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3586 << (int)CallingConventionIgnoredReason::BuiltinFunction;
3587 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3588 RequiresAdjustment = true;
3589 } else {
3590 // Calling conventions aren't compatible, so complain.
3591 bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3592 Diag(New->getLocation(), diag::err_cconv_change)
3593 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3594 << !FirstCCExplicit
3595 << (!FirstCCExplicit ? "" :
3596 FunctionType::getNameForCallConv(FI.getCC()));
3597
3598 // Put the note on the first decl, since it is the one that matters.
3599 Diag(First->getLocation(), diag::note_previous_declaration);
3600 return true;
3601 }
3602 }
3603
3604 // FIXME: diagnose the other way around?
3605 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3606 NewTypeInfo = NewTypeInfo.withNoReturn(true);
3607 RequiresAdjustment = true;
3608 }
3609
3610 // Merge regparm attribute.
3611 if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3612 OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3613 if (NewTypeInfo.getHasRegParm()) {
3614 Diag(New->getLocation(), diag::err_regparm_mismatch)
3615 << NewType->getRegParmType()
3616 << OldType->getRegParmType();
3617 Diag(OldLocation, diag::note_previous_declaration);
3618 return true;
3619 }
3620
3621 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3622 RequiresAdjustment = true;
3623 }
3624
3625 // Merge ns_returns_retained attribute.
3626 if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3627 if (NewTypeInfo.getProducesResult()) {
3628 Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3629 << "'ns_returns_retained'";
3630 Diag(OldLocation, diag::note_previous_declaration);
3631 return true;
3632 }
3633
3634 NewTypeInfo = NewTypeInfo.withProducesResult(true);
3635 RequiresAdjustment = true;
3636 }
3637
3638 if (OldTypeInfo.getNoCallerSavedRegs() !=
3639 NewTypeInfo.getNoCallerSavedRegs()) {
3640 if (NewTypeInfo.getNoCallerSavedRegs()) {
3641 AnyX86NoCallerSavedRegistersAttr *Attr =
3642 New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3643 Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3644 Diag(OldLocation, diag::note_previous_declaration);
3645 return true;
3646 }
3647
3648 NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3649 RequiresAdjustment = true;
3650 }
3651
3652 if (RequiresAdjustment) {
3653 const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3654 AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3655 New->setType(QualType(AdjustedType, 0));
3656 NewQType = Context.getCanonicalType(New->getType());
3657 }
3658
3659 // If this redeclaration makes the function inline, we may need to add it to
3660 // UndefinedButUsed.
3661 if (!Old->isInlined() && New->isInlined() &&
3662 !New->hasAttr<GNUInlineAttr>() &&
3663 !getLangOpts().GNUInline &&
3664 Old->isUsed(false) &&
3665 !Old->isDefined() && !New->isThisDeclarationADefinition())
3666 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3667 SourceLocation()));
3668
3669 // If this redeclaration makes it newly gnu_inline, we don't want to warn
3670 // about it.
3671 if (New->hasAttr<GNUInlineAttr>() &&
3672 Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3673 UndefinedButUsed.erase(Old->getCanonicalDecl());
3674 }
3675
3676 // If pass_object_size params don't match up perfectly, this isn't a valid
3677 // redeclaration.
3678 if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3679 !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3680 Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3681 << New->getDeclName();
3682 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3683 return true;
3684 }
3685
3686 if (getLangOpts().CPlusPlus) {
3687 // C++1z [over.load]p2
3688 // Certain function declarations cannot be overloaded:
3689 // -- Function declarations that differ only in the return type,
3690 // the exception specification, or both cannot be overloaded.
3691
3692 // Check the exception specifications match. This may recompute the type of
3693 // both Old and New if it resolved exception specifications, so grab the
3694 // types again after this. Because this updates the type, we do this before
3695 // any of the other checks below, which may update the "de facto" NewQType
3696 // but do not necessarily update the type of New.
3697 if (CheckEquivalentExceptionSpec(Old, New))
3698 return true;
3699 OldQType = Context.getCanonicalType(Old->getType());
3700 NewQType = Context.getCanonicalType(New->getType());
3701
3702 // Go back to the type source info to compare the declared return types,
3703 // per C++1y [dcl.type.auto]p13:
3704 // Redeclarations or specializations of a function or function template
3705 // with a declared return type that uses a placeholder type shall also
3706 // use that placeholder, not a deduced type.
3707 QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
3708 QualType NewDeclaredReturnType = New->getDeclaredReturnType();
3709 if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3710 canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
3711 OldDeclaredReturnType)) {
3712 QualType ResQT;
3713 if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3714 OldDeclaredReturnType->isObjCObjectPointerType())
3715 // FIXME: This does the wrong thing for a deduced return type.
3716 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3717 if (ResQT.isNull()) {
3718 if (New->isCXXClassMember() && New->isOutOfLine())
3719 Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3720 << New << New->getReturnTypeSourceRange();
3721 else
3722 Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3723 << New->getReturnTypeSourceRange();
3724 Diag(OldLocation, PrevDiag) << Old << Old->getType()
3725 << Old->getReturnTypeSourceRange();
3726 return true;
3727 }
3728 else
3729 NewQType = ResQT;
3730 }
3731
3732 QualType OldReturnType = OldType->getReturnType();
3733 QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
3734 if (OldReturnType != NewReturnType) {
3735 // If this function has a deduced return type and has already been
3736 // defined, copy the deduced value from the old declaration.
3737 AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
3738 if (OldAT && OldAT->isDeduced()) {
3739 QualType DT = OldAT->getDeducedType();
3740 if (DT.isNull()) {
3741 New->setType(SubstAutoTypeDependent(New->getType()));
3742 NewQType = Context.getCanonicalType(SubstAutoTypeDependent(NewQType));
3743 } else {
3744 New->setType(SubstAutoType(New->getType(), DT));
3745 NewQType = Context.getCanonicalType(SubstAutoType(NewQType, DT));
3746 }
3747 }
3748 }
3749
3750 const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
3751 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
3752 if (OldMethod && NewMethod) {
3753 // Preserve triviality.
3754 NewMethod->setTrivial(OldMethod->isTrivial());
3755
3756 // MSVC allows explicit template specialization at class scope:
3757 // 2 CXXMethodDecls referring to the same function will be injected.
3758 // We don't want a redeclaration error.
3759 bool IsClassScopeExplicitSpecialization =
3760 OldMethod->isFunctionTemplateSpecialization() &&
3761 NewMethod->isFunctionTemplateSpecialization();
3762 bool isFriend = NewMethod->getFriendObjectKind();
3763
3764 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
3765 !IsClassScopeExplicitSpecialization) {
3766 // -- Member function declarations with the same name and the
3767 // same parameter types cannot be overloaded if any of them
3768 // is a static member function declaration.
3769 if (OldMethod->isStatic() != NewMethod->isStatic()) {
3770 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
3771 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3772 return true;
3773 }
3774
3775 // C++ [class.mem]p1:
3776 // [...] A member shall not be declared twice in the
3777 // member-specification, except that a nested class or member
3778 // class template can be declared and then later defined.
3779 if (!inTemplateInstantiation()) {
3780 unsigned NewDiag;
3781 if (isa<CXXConstructorDecl>(OldMethod))
3782 NewDiag = diag::err_constructor_redeclared;
3783 else if (isa<CXXDestructorDecl>(NewMethod))
3784 NewDiag = diag::err_destructor_redeclared;
3785 else if (isa<CXXConversionDecl>(NewMethod))
3786 NewDiag = diag::err_conv_function_redeclared;
3787 else
3788 NewDiag = diag::err_member_redeclared;
3789
3790 Diag(New->getLocation(), NewDiag);
3791 } else {
3792 Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
3793 << New << New->getType();
3794 }
3795 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3796 return true;
3797
3798 // Complain if this is an explicit declaration of a special
3799 // member that was initially declared implicitly.
3800 //
3801 // As an exception, it's okay to befriend such methods in order
3802 // to permit the implicit constructor/destructor/operator calls.
3803 } else if (OldMethod->isImplicit()) {
3804 if (isFriend) {
3805 NewMethod->setImplicit();
3806 } else {
3807 Diag(NewMethod->getLocation(),
3808 diag::err_definition_of_implicitly_declared_member)
3809 << New << getSpecialMember(OldMethod);
3810 return true;
3811 }
3812 } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
3813 Diag(NewMethod->getLocation(),
3814 diag::err_definition_of_explicitly_defaulted_member)
3815 << getSpecialMember(OldMethod);
3816 return true;
3817 }
3818 }
3819
3820 // C++11 [dcl.attr.noreturn]p1:
3821 // The first declaration of a function shall specify the noreturn
3822 // attribute if any declaration of that function specifies the noreturn
3823 // attribute.
3824 if (const auto *NRA = New->getAttr<CXX11NoReturnAttr>())
3825 if (!Old->hasAttr<CXX11NoReturnAttr>()) {
3826 Diag(NRA->getLocation(), diag::err_attribute_missing_on_first_decl)
3827 << NRA;
3828 Diag(Old->getLocation(), diag::note_previous_declaration);
3829 }
3830
3831 // C++11 [dcl.attr.depend]p2:
3832 // The first declaration of a function shall specify the
3833 // carries_dependency attribute for its declarator-id if any declaration
3834 // of the function specifies the carries_dependency attribute.
3835 const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
3836 if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
3837 Diag(CDA->getLocation(),
3838 diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
3839 Diag(Old->getFirstDecl()->getLocation(),
3840 diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
3841 }
3842
3843 // (C++98 8.3.5p3):
3844 // All declarations for a function shall agree exactly in both the
3845 // return type and the parameter-type-list.
3846 // We also want to respect all the extended bits except noreturn.
3847
3848 // noreturn should now match unless the old type info didn't have it.
3849 QualType OldQTypeForComparison = OldQType;
3850 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
3851 auto *OldType = OldQType->castAs<FunctionProtoType>();
3852 const FunctionType *OldTypeForComparison
3853 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
3854 OldQTypeForComparison = QualType(OldTypeForComparison, 0);
3855 assert(OldQTypeForComparison.isCanonical())(static_cast <bool> (OldQTypeForComparison.isCanonical(
)) ? void (0) : __assert_fail ("OldQTypeForComparison.isCanonical()"
, "clang/lib/Sema/SemaDecl.cpp", 3855, __extension__ __PRETTY_FUNCTION__
))
;
3856 }
3857
3858 if (haveIncompatibleLanguageLinkages(Old, New)) {
3859 // As a special case, retain the language linkage from previous
3860 // declarations of a friend function as an extension.
3861 //
3862 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
3863 // and is useful because there's otherwise no way to specify language
3864 // linkage within class scope.
3865 //
3866 // Check cautiously as the friend object kind isn't yet complete.
3867 if (New->getFriendObjectKind() != Decl::FOK_None) {
3868 Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
3869 Diag(OldLocation, PrevDiag);
3870 } else {
3871 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3872 Diag(OldLocation, PrevDiag);
3873 return true;
3874 }
3875 }
3876
3877 // If the function types are compatible, merge the declarations. Ignore the
3878 // exception specifier because it was already checked above in
3879 // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics
3880 // about incompatible types under -fms-compatibility.
3881 if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison,
3882 NewQType))
3883 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3884
3885 // If the types are imprecise (due to dependent constructs in friends or
3886 // local extern declarations), it's OK if they differ. We'll check again
3887 // during instantiation.
3888 if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
3889 return false;
3890
3891 // Fall through for conflicting redeclarations and redefinitions.
3892 }
3893
3894 // C: Function types need to be compatible, not identical. This handles
3895 // duplicate function decls like "void f(int); void f(enum X);" properly.
3896 if (!getLangOpts().CPlusPlus) {
3897 // C99 6.7.5.3p15: ...If one type has a parameter type list and the other
3898 // type is specified by a function definition that contains a (possibly
3899 // empty) identifier list, both shall agree in the number of parameters
3900 // and the type of each parameter shall be compatible with the type that
3901 // results from the application of default argument promotions to the
3902 // type of the corresponding identifier. ...
3903 // This cannot be handled by ASTContext::typesAreCompatible() because that
3904 // doesn't know whether the function type is for a definition or not when
3905 // eventually calling ASTContext::mergeFunctionTypes(). The only situation
3906 // we need to cover here is that the number of arguments agree as the
3907 // default argument promotion rules were already checked by
3908 // ASTContext::typesAreCompatible().
3909 if (Old->hasPrototype() && !New->hasWrittenPrototype() && NewDeclIsDefn &&
3910 Old->getNumParams() != New->getNumParams()) {
3911 Diag(New->getLocation(), diag::err_conflicting_types) << New;
3912 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
3913 return true;
3914 }
3915
3916 // If we are merging two functions where only one of them has a prototype,
3917 // we may have enough information to decide to issue a diagnostic that the
3918 // function without a protoype will change behavior in C2x. This handles
3919 // cases like:
3920 // void i(); void i(int j);
3921 // void i(int j); void i();
3922 // void i(); void i(int j) {}
3923 // See ActOnFinishFunctionBody() for other cases of the behavior change
3924 // diagnostic. See GetFullTypeForDeclarator() for handling of a function
3925 // type without a prototype.
3926 if (New->hasWrittenPrototype() != Old->hasWrittenPrototype() &&
3927 !New->isImplicit() && !Old->isImplicit()) {
3928 const FunctionDecl *WithProto, *WithoutProto;
3929 if (New->hasWrittenPrototype()) {
3930 WithProto = New;
3931 WithoutProto = Old;
3932 } else {
3933 WithProto = Old;
3934 WithoutProto = New;
3935 }
3936
3937 if (WithProto->getNumParams() != 0) {
3938 // The function definition has parameters, so this will change
3939 // behavior in C2x.
3940 //
3941 // If we already warned about about the function without a prototype
3942 // being deprecated, add a note that it also changes behavior. If we
3943 // didn't warn about it being deprecated (because the diagnostic is
3944 // not enabled), warn now that it is deprecated and changes behavior.
3945 bool AddNote = false;
3946 if (Diags.isIgnored(diag::warn_strict_prototypes,
3947 WithoutProto->getLocation())) {
3948 if (WithoutProto->getBuiltinID() == 0 &&
3949 !WithoutProto->isImplicit() &&
3950 SourceMgr.isBeforeInTranslationUnit(WithoutProto->getLocation(),
3951 WithProto->getLocation())) {
3952 PartialDiagnostic PD =
3953 PDiag(diag::warn_non_prototype_changes_behavior);
3954 if (TypeSourceInfo *TSI = WithoutProto->getTypeSourceInfo()) {
3955 if (auto FTL = TSI->getTypeLoc().getAs<FunctionNoProtoTypeLoc>())
3956 PD << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
3957 }
3958 Diag(WithoutProto->getLocation(), PD);
3959 }
3960 } else {
3961 AddNote = true;
3962 }
3963
3964 // Because the function with a prototype has parameters but a previous
3965 // declaration had none, the function with the prototype will also
3966 // change behavior in C2x.
3967 if (WithProto->getBuiltinID() == 0 && !WithProto->isImplicit()) {
3968 if (SourceMgr.isBeforeInTranslationUnit(
3969 WithProto->getLocation(), WithoutProto->getLocation())) {
3970 // If the function with the prototype comes before the function
3971 // without the prototype, we only want to diagnose the one without
3972 // the prototype.
3973 Diag(WithoutProto->getLocation(),
3974 diag::warn_non_prototype_changes_behavior);
3975 } else {
3976 // Otherwise, diagnose the one with the prototype, and potentially
3977 // attach a note to the one without a prototype if needed.
3978 Diag(WithProto->getLocation(),
3979 diag::warn_non_prototype_changes_behavior);
3980 if (AddNote && WithoutProto->getBuiltinID() == 0)
3981 Diag(WithoutProto->getLocation(),
3982 diag::note_func_decl_changes_behavior);
3983 }
3984 } else if (AddNote && WithoutProto->getBuiltinID() == 0 &&
3985 !WithoutProto->isImplicit()) {
3986 // If we were supposed to add a note but the function with a
3987 // prototype is a builtin or was implicitly declared, which means we
3988 // have nothing to attach the note to, so we issue a warning instead.
3989 Diag(WithoutProto->getLocation(),
3990 diag::warn_non_prototype_changes_behavior);
3991 }
3992 }
3993 }
3994
3995 if (Context.typesAreCompatible(OldQType, NewQType)) {
3996 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
3997 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
3998 const FunctionProtoType *OldProto = nullptr;
3999 if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
4000 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
4001 // The old declaration provided a function prototype, but the
4002 // new declaration does not. Merge in the prototype.
4003 assert(!OldProto->hasExceptionSpec() && "Exception spec in C")(static_cast <bool> (!OldProto->hasExceptionSpec() &&
"Exception spec in C") ? void (0) : __assert_fail ("!OldProto->hasExceptionSpec() && \"Exception spec in C\""
, "clang/lib/Sema/SemaDecl.cpp", 4003, __extension__ __PRETTY_FUNCTION__
))
;
4004 SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
4005 NewQType =
4006 Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
4007 OldProto->getExtProtoInfo());
4008 New->setType(NewQType);
4009 New->setHasInheritedPrototype();
4010
4011 // Synthesize parameters with the same types.
4012 SmallVector<ParmVarDecl *, 16> Params;
4013 for (const auto &ParamType : OldProto->param_types()) {
4014 ParmVarDecl *Param = ParmVarDecl::Create(
4015 Context, New, SourceLocation(), SourceLocation(), nullptr,
4016 ParamType, /*TInfo=*/nullptr, SC_None, nullptr);
4017 Param->setScopeInfo(0, Params.size());
4018 Param->setImplicit();
4019 Params.push_back(Param);
4020 }
4021
4022 New->setParams(Params);
4023 }
4024
4025 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
4026 }
4027 }
4028
4029 // Check if the function types are compatible when pointer size address
4030 // spaces are ignored.
4031 if (Context.hasSameFunctionTypeIgnoringPtrSizes(OldQType, NewQType))
4032 return false;
4033
4034 // GNU C permits a K&R definition to follow a prototype declaration
4035 // if the declared types of the parameters in the K&R definition
4036 // match the types in the prototype declaration, even when the
4037 // promoted types of the parameters from the K&R definition differ
4038 // from the types in the prototype. GCC then keeps the types from
4039 // the prototype.
4040 //
4041 // If a variadic prototype is followed by a non-variadic K&R definition,
4042 // the K&R definition becomes variadic. This is sort of an edge case, but
4043 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
4044 // C99 6.9.1p8.
4045 if (!getLangOpts().CPlusPlus &&
4046 Old->hasPrototype() && !New->hasPrototype() &&
4047 New->getType()->getAs<FunctionProtoType>() &&
4048 Old->getNumParams() == New->getNumParams()) {
4049 SmallVector<QualType, 16> ArgTypes;
4050 SmallVector<GNUCompatibleParamWarning, 16> Warnings;
4051 const FunctionProtoType *OldProto
4052 = Old->getType()->getAs<FunctionProtoType>();
4053 const FunctionProtoType *NewProto
4054 = New->getType()->getAs<FunctionProtoType>();
4055
4056 // Determine whether this is the GNU C extension.
4057 QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
4058 NewProto->getReturnType());
4059 bool LooseCompatible = !MergedReturn.isNull();
4060 for (unsigned Idx = 0, End = Old->getNumParams();
4061 LooseCompatible && Idx != End; ++Idx) {
4062 ParmVarDecl *OldParm = Old->getParamDecl(Idx);
4063 ParmVarDecl *NewParm = New->getParamDecl(Idx);
4064 if (Context.typesAreCompatible(OldParm->getType(),
4065 NewProto->getParamType(Idx))) {
4066 ArgTypes.push_back(NewParm->getType());
4067 } else if (Context.typesAreCompatible(OldParm->getType(),
4068 NewParm->getType(),
4069 /*CompareUnqualified=*/true)) {
4070 GNUCompatibleParamWarning Warn = { OldParm, NewParm,
4071 NewProto->getParamType(Idx) };
4072 Warnings.push_back(Warn);
4073 ArgTypes.push_back(NewParm->getType());
4074 } else
4075 LooseCompatible = false;
4076 }
4077
4078 if (LooseCompatible) {
4079 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
4080 Diag(Warnings[Warn].NewParm->getLocation(),
4081 diag::ext_param_promoted_not_compatible_with_prototype)
4082 << Warnings[Warn].PromotedType
4083 << Warnings[Warn].OldParm->getType();
4084 if (Warnings[Warn].OldParm->getLocation().isValid())
4085 Diag(Warnings[Warn].OldParm->getLocation(),
4086 diag::note_previous_declaration);
4087 }
4088
4089 if (MergeTypeWithOld)
4090 New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
4091 OldProto->getExtProtoInfo()));
4092 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
4093 }
4094
4095 // Fall through to diagnose conflicting types.
4096 }
4097
4098 // A function that has already been declared has been redeclared or
4099 // defined with a different type; show an appropriate diagnostic.
4100
4101 // If the previous declaration was an implicitly-generated builtin
4102 // declaration, then at the very least we should use a specialized note.
4103 unsigned BuiltinID;
4104 if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
4105 // If it's actually a library-defined builtin function like 'malloc'
4106 // or 'printf', just warn about the incompatible redeclaration.
4107 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4108 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
4109 Diag(OldLocation, diag::note_previous_builtin_declaration)
4110 << Old << Old->getType();
4111 return false;
4112 }
4113
4114 PrevDiag = diag::note_previous_builtin_declaration;
4115 }
4116
4117 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
4118 Diag(OldLocation, PrevDiag) << Old << Old->getType();
4119 return true;
4120}
4121
4122/// Completes the merge of two function declarations that are
4123/// known to be compatible.
4124///
4125/// This routine handles the merging of attributes and other
4126/// properties of function declarations from the old declaration to
4127/// the new declaration, once we know that New is in fact a
4128/// redeclaration of Old.
4129///
4130/// \returns false
4131bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
4132 Scope *S, bool MergeTypeWithOld) {
4133 // Merge the attributes
4134 mergeDeclAttributes(New, Old);
4135
4136 // Merge "pure" flag.
4137 if (Old->isPure())
4138 New->setPure();
4139
4140 // Merge "used" flag.
4141 if (Old->getMostRecentDecl()->isUsed(false))
4142 New->setIsUsed();
4143
4144 // Merge attributes from the parameters. These can mismatch with K&R
4145 // declarations.
4146 if (New->getNumParams() == Old->getNumParams())
4147 for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
4148 ParmVarDecl *NewParam = New->getParamDecl(i);
4149 ParmVarDecl *OldParam = Old->getParamDecl(i);
4150 mergeParamDeclAttributes(NewParam, OldParam, *this);
4151 mergeParamDeclTypes(NewParam, OldParam, *this);
4152 }
4153
4154 if (getLangOpts().CPlusPlus)
4155 return MergeCXXFunctionDecl(New, Old, S);
4156
4157 // Merge the function types so the we get the composite types for the return
4158 // and argument types. Per C11 6.2.7/4, only update the type if the old decl
4159 // was visible.
4160 QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
4161 if (!Merged.isNull() && MergeTypeWithOld)
4162 New->setType(Merged);
4163
4164 return false;
4165}
4166
4167void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
4168 ObjCMethodDecl *oldMethod) {
4169 // Merge the attributes, including deprecated/unavailable
4170 AvailabilityMergeKind MergeKind =
4171 isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
4172 ? (oldMethod->isOptional() ? AMK_OptionalProtocolImplementation
4173 : AMK_ProtocolImplementation)
4174 : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
4175 : AMK_Override;
4176
4177 mergeDeclAttributes(newMethod, oldMethod, MergeKind);
4178
4179 // Merge attributes from the parameters.
4180 ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
4181 oe = oldMethod->param_end();
4182 for (ObjCMethodDecl::param_iterator
4183 ni = newMethod->param_begin(), ne = newMethod->param_end();
4184 ni != ne && oi != oe; ++ni, ++oi)
4185 mergeParamDeclAttributes(*ni, *oi, *this);
4186
4187 CheckObjCMethodOverride(newMethod, oldMethod);
4188}
4189
4190static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
4191 assert(!S.Context.hasSameType(New->getType(), Old->getType()))(static_cast <bool> (!S.Context.hasSameType(New->getType
(), Old->getType())) ? void (0) : __assert_fail ("!S.Context.hasSameType(New->getType(), Old->getType())"
, "clang/lib/Sema/SemaDecl.cpp", 4191, __extension__ __PRETTY_FUNCTION__
))
;
4192
4193 S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
4194 ? diag::err_redefinition_different_type
4195 : diag::err_redeclaration_different_type)
4196 << New->getDeclName() << New->getType() << Old->getType();
4197
4198 diag::kind PrevDiag;
4199 SourceLocation OldLocation;
4200 std::tie(PrevDiag, OldLocation)
4201 = getNoteDiagForInvalidRedeclaration(Old, New);
4202 S.Diag(OldLocation, PrevDiag);
4203 New->setInvalidDecl();
4204}
4205
4206/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
4207/// scope as a previous declaration 'Old'. Figure out how to merge their types,
4208/// emitting diagnostics as appropriate.
4209///
4210/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
4211/// to here in AddInitializerToDecl. We can't check them before the initializer
4212/// is attached.
4213void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
4214 bool MergeTypeWithOld) {
4215 if (New->isInvalidDecl() || Old->isInvalidDecl())
4216 return;
4217
4218 QualType MergedT;
4219 if (getLangOpts().CPlusPlus) {
4220 if (New->getType()->isUndeducedType()) {
4221 // We don't know what the new type is until the initializer is attached.
4222 return;
4223 } else if (Context.hasSameType(New->getType(), Old->getType())) {
4224 // These could still be something that needs exception specs checked.
4225 return MergeVarDeclExceptionSpecs(New, Old);
4226 }
4227 // C++ [basic.link]p10:
4228 // [...] the types specified by all declarations referring to a given
4229 // object or function shall be identical, except that declarations for an
4230 // array object can specify array types that differ by the presence or
4231 // absence of a major array bound (8.3.4).
4232 else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
4233 const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
4234 const ArrayType *NewArray = Context.getAsArrayType(New->getType());
4235
4236 // We are merging a variable declaration New into Old. If it has an array
4237 // bound, and that bound differs from Old's bound, we should diagnose the
4238 // mismatch.
4239 if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
4240 for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
4241 PrevVD = PrevVD->getPreviousDecl()) {
4242 QualType PrevVDTy = PrevVD->getType();
4243 if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
4244 continue;
4245
4246 if (!Context.hasSameType(New->getType(), PrevVDTy))
4247 return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
4248 }
4249 }
4250
4251 if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
4252 if (Context.hasSameType(OldArray->getElementType(),
4253 NewArray->getElementType()))
4254 MergedT = New->getType();
4255 }
4256 // FIXME: Check visibility. New is hidden but has a complete type. If New
4257 // has no array bound, it should not inherit one from Old, if Old is not
4258 // visible.
4259 else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
4260 if (Context.hasSameType(OldArray->getElementType(),
4261 NewArray->getElementType()))
4262 MergedT = Old->getType();
4263 }
4264 }
4265 else if (New->getType()->isObjCObjectPointerType() &&
4266 Old->getType()->isObjCObjectPointerType()) {
4267 MergedT = Context.mergeObjCGCQualifiers(New->getType(),
4268 Old->getType());
4269 }
4270 } else {
4271 // C 6.2.7p2:
4272 // All declarations that refer to the same object or function shall have
4273 // compatible type.
4274 MergedT = Context.mergeTypes(New->getType(), Old->getType());
4275 }
4276 if (MergedT.isNull()) {
4277 // It's OK if we couldn't merge types if either type is dependent, for a
4278 // block-scope variable. In other cases (static data members of class
4279 // templates, variable templates, ...), we require the types to be
4280 // equivalent.
4281 // FIXME: The C++ standard doesn't say anything about this.
4282 if ((New->getType()->isDependentType() ||
4283 Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
4284 // If the old type was dependent, we can't merge with it, so the new type
4285 // becomes dependent for now. We'll reproduce the original type when we
4286 // instantiate the TypeSourceInfo for the variable.
4287 if (!New->getType()->isDependentType() && MergeTypeWithOld)
4288 New->setType(Context.DependentTy);
4289 return;
4290 }
4291 return diagnoseVarDeclTypeMismatch(*this, New, Old);
4292 }
4293
4294 // Don't actually update the type on the new declaration if the old
4295 // declaration was an extern declaration in a different scope.
4296 if (MergeTypeWithOld)
4297 New->setType(MergedT);
4298}
4299
4300static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
4301 LookupResult &Previous) {
4302 // C11 6.2.7p4:
4303 // For an identifier with internal or external linkage declared
4304 // in a scope in which a prior declaration of that identifier is
4305 // visible, if the prior declaration specifies internal or
4306 // external linkage, the type of the identifier at the later
4307 // declaration becomes the composite type.
4308 //
4309 // If the variable isn't visible, we do not merge with its type.
4310 if (Previous.isShadowed())
4311 return false;
4312
4313 if (S.getLangOpts().CPlusPlus) {
4314 // C++11 [dcl.array]p3:
4315 // If there is a preceding declaration of the entity in the same
4316 // scope in which the bound was specified, an omitted array bound
4317 // is taken to be the same as in that earlier declaration.
4318 return NewVD->isPreviousDeclInSameBlockScope() ||
4319 (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
4320 !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
4321 } else {
4322 // If the old declaration was function-local, don't merge with its
4323 // type unless we're in the same function.
4324 return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
4325 OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
4326 }
4327}
4328
4329/// MergeVarDecl - We just parsed a variable 'New' which has the same name
4330/// and scope as a previous declaration 'Old'. Figure out how to resolve this
4331/// situation, merging decls or emitting diagnostics as appropriate.
4332///
4333/// Tentative definition rules (C99 6.9.2p2) are checked by
4334/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
4335/// definitions here, since the initializer hasn't been attached.
4336///
4337void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
4338 // If the new decl is already invalid, don't do any other checking.
4339 if (New->isInvalidDecl())
4340 return;
4341
4342 if (!shouldLinkPossiblyHiddenDecl(Previous, New))
4343 return;
4344
4345 VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
4346
4347 // Verify the old decl was also a variable or variable template.
4348 VarDecl *Old = nullptr;
4349 VarTemplateDecl *OldTemplate = nullptr;
4350 if (Previous.isSingleResult()) {
4351 if (NewTemplate) {
4352 OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
4353 Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
4354
4355 if (auto *Shadow =
4356 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4357 if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
4358 return New->setInvalidDecl();
4359 } else {
4360 Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
4361
4362 if (auto *Shadow =
4363 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4364 if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
4365 return New->setInvalidDecl();
4366 }
4367 }
4368 if (!Old) {
4369 Diag(New->getLocation(), diag::err_redefinition_different_kind)
4370 << New->getDeclName();
4371 notePreviousDefinition(Previous.getRepresentativeDecl(),
4372 New->getLocation());
4373 return New->setInvalidDecl();
4374 }
4375
4376 // If the old declaration was found in an inline namespace and the new
4377 // declaration was qualified, update the DeclContext to match.
4378 adjustDeclContextForDeclaratorDecl(New, Old);
4379
4380 // Ensure the template parameters are compatible.
4381 if (NewTemplate &&
4382 !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
4383 OldTemplate->getTemplateParameters(),
4384 /*Complain=*/true, TPL_TemplateMatch))
4385 return New->setInvalidDecl();
4386
4387 // C++ [class.mem]p1:
4388 // A member shall not be declared twice in the member-specification [...]
4389 //
4390 // Here, we need only consider static data members.
4391 if (Old->isStaticDataMember() && !New->isOutOfLine()) {
4392 Diag(New->getLocation(), diag::err_duplicate_member)
4393 << New->getIdentifier();
4394 Diag(Old->getLocation(), diag::note_previous_declaration);
4395 New->setInvalidDecl();
4396 }
4397
4398 mergeDeclAttributes(New, Old);
4399 // Warn if an already-declared variable is made a weak_import in a subsequent
4400 // declaration
4401 if (New->hasAttr<WeakImportAttr>() &&
4402 Old->getStorageClass() == SC_None &&
4403 !Old->hasAttr<WeakImportAttr>()) {
4404 Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
4405 Diag(Old->getLocation(), diag::note_previous_declaration);
4406 // Remove weak_import attribute on new declaration.
4407 New->dropAttr<WeakImportAttr>();
4408 }
4409
4410 if (const auto *ILA = New->getAttr<InternalLinkageAttr>())
4411 if (!Old->hasAttr<InternalLinkageAttr>()) {
4412 Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl)
4413 << ILA;
4414 Diag(Old->getLocation(), diag::note_previous_declaration);
4415 New->dropAttr<InternalLinkageAttr>();
4416 }
4417
4418 // Merge the types.
4419 VarDecl *MostRecent = Old->getMostRecentDecl();
4420 if (MostRecent != Old) {
4421 MergeVarDeclTypes(New, MostRecent,
4422 mergeTypeWithPrevious(*this, New, MostRecent, Previous));
4423 if (New->isInvalidDecl())
4424 return;
4425 }
4426
4427 MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
4428 if (New->isInvalidDecl())
4429 return;
4430
4431 diag::kind PrevDiag;
4432 SourceLocation OldLocation;
4433 std::tie(PrevDiag, OldLocation) =
4434 getNoteDiagForInvalidRedeclaration(Old, New);
4435
4436 // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
4437 if (New->getStorageClass() == SC_Static &&
4438 !New->isStaticDataMember() &&
4439 Old->hasExternalFormalLinkage()) {
4440 if (getLangOpts().MicrosoftExt) {
4441 Diag(New->getLocation(), diag::ext_static_non_static)
4442 << New->getDeclName();
4443 Diag(OldLocation, PrevDiag);
4444 } else {
4445 Diag(New->getLocation(), diag::err_static_non_static)
4446 << New->getDeclName();
4447 Diag(OldLocation, PrevDiag);
4448 return New->setInvalidDecl();
4449 }
4450 }
4451 // C99 6.2.2p4:
4452 // For an identifier declared with the storage-class specifier
4453 // extern in a scope in which a prior declaration of that
4454 // identifier is visible,23) if the prior declaration specifies
4455 // internal or external linkage, the linkage of the identifier at
4456 // the later declaration is the same as the linkage specified at
4457 // the prior declaration. If no prior declaration is visible, or
4458 // if the prior declaration specifies no linkage, then the
4459 // identifier has external linkage.
4460 if (New->hasExternalStorage() && Old->hasLinkage())
4461 /* Okay */;
4462 else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
4463 !New->isStaticDataMember() &&
4464 Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
4465 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
4466 Diag(OldLocation, PrevDiag);
4467 return New->setInvalidDecl();
4468 }
4469
4470 // Check if extern is followed by non-extern and vice-versa.
4471 if (New->hasExternalStorage() &&
4472 !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
4473 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
4474 Diag(OldLocation, PrevDiag);
4475 return New->setInvalidDecl();
4476 }
4477 if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
4478 !New->hasExternalStorage()) {
4479 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
4480 Diag(OldLocation, PrevDiag);
4481 return New->setInvalidDecl();
4482 }
4483
4484 if (CheckRedeclarationInModule(New, Old))
4485 return;
4486
4487 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
4488
4489 // FIXME: The test for external storage here seems wrong? We still
4490 // need to check for mismatches.
4491 if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
4492 // Don't complain about out-of-line definitions of static members.
4493 !(Old->getLexicalDeclContext()->isRecord() &&
4494 !New->getLexicalDeclContext()->isRecord())) {
4495 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
4496 Diag(OldLocation, PrevDiag);
4497 return New->setInvalidDecl();
4498 }
4499
4500 if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
4501 if (VarDecl *Def = Old->getDefinition()) {
4502 // C++1z [dcl.fcn.spec]p4:
4503 // If the definition of a variable appears in a translation unit before
4504 // its first declaration as inline, the program is ill-formed.
4505 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
4506 Diag(Def->getLocation(), diag::note_previous_definition);
4507 }
4508 }
4509
4510 // If this redeclaration makes the variable inline, we may need to add it to
4511 // UndefinedButUsed.
4512 if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
4513 !Old->getDefinition() && !New->isThisDeclarationADefinition())
4514 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
4515 SourceLocation()));
4516
4517 if (New->getTLSKind() != Old->getTLSKind()) {
4518 if (!Old->getTLSKind()) {
4519 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
4520 Diag(OldLocation, PrevDiag);
4521 } else if (!New->getTLSKind()) {
4522 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
4523 Diag(OldLocation, PrevDiag);
4524 } else {
4525 // Do not allow redeclaration to change the variable between requiring
4526 // static and dynamic initialization.
4527 // FIXME: GCC allows this, but uses the TLS keyword on the first
4528 // declaration to determine the kind. Do we need to be compatible here?
4529 Diag(New->getLocation(), diag::err_thread_thread_different_kind)
4530 << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
4531 Diag(OldLocation, PrevDiag);
4532 }
4533 }
4534
4535 // C++ doesn't have tentative definitions, so go right ahead and check here.
4536 if (getLangOpts().CPlusPlus &&
4537 New->isThisDeclarationADefinition() == VarDecl::Definition) {
4538 if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
4539 Old->getCanonicalDecl()->isConstexpr()) {
4540 // This definition won't be a definition any more once it's been merged.
4541 Diag(New->getLocation(),
4542 diag::warn_deprecated_redundant_constexpr_static_def);
4543 } else if (VarDecl *Def = Old->getDefinition()) {
4544 if (checkVarDeclRedefinition(Def, New))
4545 return;
4546 }
4547 }
4548
4549 if (haveIncompatibleLanguageLinkages(Old, New)) {
4550 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4551 Diag(OldLocation, PrevDiag);
4552 New->setInvalidDecl();
4553 return;
4554 }
4555
4556 // Merge "used" flag.
4557 if (Old->getMostRecentDecl()->isUsed(false))
4558 New->setIsUsed();
4559
4560 // Keep a chain of previous declarations.
4561 New->setPreviousDecl(Old);
4562 if (NewTemplate)
4563 NewTemplate->setPreviousDecl(OldTemplate);
4564
4565 // Inherit access appropriately.
4566 New->setAccess(Old->getAccess());
4567 if (NewTemplate)
4568 NewTemplate->setAccess(New->getAccess());
4569
4570 if (Old->isInline())
4571 New->setImplicitlyInline();
4572}
4573
4574void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4575 SourceManager &SrcMgr = getSourceManager();
4576 auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4577 auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4578 auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4579 auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first);
4580 auto &HSI = PP.getHeaderSearchInfo();
4581 StringRef HdrFilename =
4582 SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4583
4584 auto noteFromModuleOrInclude = [&](Module *Mod,
4585 SourceLocation IncLoc) -> bool {
4586 // Redefinition errors with modules are common with non modular mapped
4587 // headers, example: a non-modular header H in module A that also gets
4588 // included directly in a TU. Pointing twice to the same header/definition
4589 // is confusing, try to get better diagnostics when modules is on.
4590 if (IncLoc.isValid()) {
4591 if (Mod) {
4592 Diag(IncLoc, diag::note_redefinition_modules_same_file)
4593 << HdrFilename.str() << Mod->getFullModuleName();
4594 if (!Mod->DefinitionLoc.isInvalid())
4595 Diag(Mod->DefinitionLoc, diag::note_defined_here)
4596 << Mod->getFullModuleName();
4597 } else {
4598 Diag(IncLoc, diag::note_redefinition_include_same_file)
4599 << HdrFilename.str();
4600 }
4601 return true;
4602 }
4603
4604 return false;
4605 };
4606
4607 // Is it the same file and same offset? Provide more information on why
4608 // this leads to a redefinition error.
4609 if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4610 SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4611 SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4612 bool EmittedDiag =
4613 noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4614 EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4615
4616 // If the header has no guards, emit a note suggesting one.
4617 if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld))
4618 Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4619
4620 if (EmittedDiag)
4621 return;
4622 }
4623
4624 // Redefinition coming from different files or couldn't do better above.
4625 if (Old->getLocation().isValid())
4626 Diag(Old->getLocation(), diag::note_previous_definition);
4627}
4628
4629/// We've just determined that \p Old and \p New both appear to be definitions
4630/// of the same variable. Either diagnose or fix the problem.
4631bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4632 if (!hasVisibleDefinition(Old) &&
4633 (New->getFormalLinkage() == InternalLinkage ||
4634 New->isInline() ||
4635 New->getDescribedVarTemplate() ||
4636 New->getNumTemplateParameterLists() ||
4637 New->getDeclContext()->isDependentContext())) {
4638 // The previous definition is hidden, and multiple definitions are
4639 // permitted (in separate TUs). Demote this to a declaration.
4640 New->demoteThisDefinitionToDeclaration();
4641
4642 // Make the canonical definition visible.
4643 if (auto *OldTD = Old->getDescribedVarTemplate())
4644 makeMergedDefinitionVisible(OldTD);
4645 makeMergedDefinitionVisible(Old);
4646 return false;
4647 } else {
4648 Diag(New->getLocation(), diag::err_redefinition) << New;
4649 notePreviousDefinition(Old, New->getLocation());
4650 New->setInvalidDecl();
4651 return true;
4652 }
4653}
4654
4655/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4656/// no declarator (e.g. "struct foo;") is parsed.
4657Decl *
4658Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4659 RecordDecl *&AnonRecord) {
4660 return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false,
4661 AnonRecord);
4662}
4663
4664// The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4665// disambiguate entities defined in different scopes.
4666// While the VS2015 ABI fixes potential miscompiles, it is also breaks
4667// compatibility.
4668// We will pick our mangling number depending on which version of MSVC is being
4669// targeted.
4670static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4671 return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4672 ? S->getMSCurManglingNumber()
4673 : S->getMSLastManglingNumber();
4674}
4675
4676void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4677 if (!Context.getLangOpts().CPlusPlus)
4678 return;
4679
4680 if (isa<CXXRecordDecl>(Tag->getParent())) {
4681 // If this tag is the direct child of a class, number it if
4682 // it is anonymous.
4683 if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4684 return;
4685 MangleNumberingContext &MCtx =
4686 Context.getManglingNumberContext(Tag->getParent());
4687 Context.setManglingNumber(
4688 Tag, MCtx.getManglingNumber(
4689 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4690 return;
4691 }
4692
4693 // If this tag isn't a direct child of a class, number it if it is local.
4694 MangleNumberingContext *MCtx;
4695 Decl *ManglingContextDecl;
4696 std::tie(MCtx, ManglingContextDecl) =
4697 getCurrentMangleNumberContext(Tag->getDeclContext());
4698 if (MCtx) {
4699 Context.setManglingNumber(
4700 Tag, MCtx->getManglingNumber(
4701 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4702 }
4703}
4704
4705namespace {
4706struct NonCLikeKind {
4707 enum {
4708 None,
4709 BaseClass,
4710 DefaultMemberInit,
4711 Lambda,
4712 Friend,
4713 OtherMember,
4714 Invalid,
4715 } Kind = None;
4716 SourceRange Range;
4717
4718 explicit operator bool() { return Kind != None; }
4719};
4720}
4721
4722/// Determine whether a class is C-like, according to the rules of C++
4723/// [dcl.typedef] for anonymous classes with typedef names for linkage.
4724static NonCLikeKind getNonCLikeKindForAnonymousStruct(const CXXRecordDecl *RD) {
4725 if (RD->isInvalidDecl())
4726 return {NonCLikeKind::Invalid, {}};
4727
4728 // C++ [dcl.typedef]p9: [P1766R1]
4729 // An unnamed class with a typedef name for linkage purposes shall not
4730 //
4731 // -- have any base classes
4732 if (RD->getNumBases())
4733 return {NonCLikeKind::BaseClass,
4734 SourceRange(RD->bases_begin()->getBeginLoc(),
4735 RD->bases_end()[-1].getEndLoc())};
4736 bool Invalid = false;
4737 for (Decl *D : RD->decls()) {
4738 // Don't complain about things we already diagnosed.
4739 if (D->isInvalidDecl()) {
4740 Invalid = true;
4741 continue;
4742 }
4743
4744 // -- have any [...] default member initializers
4745 if (auto *FD = dyn_cast<FieldDecl>(D)) {
4746 if (FD->hasInClassInitializer()) {
4747 auto *Init = FD->getInClassInitializer();
4748 return {NonCLikeKind::DefaultMemberInit,
4749 Init ? Init->getSourceRange() : D->getSourceRange()};
4750 }
4751 continue;
4752 }
4753
4754 // FIXME: We don't allow friend declarations. This violates the wording of
4755 // P1766, but not the intent.
4756 if (isa<FriendDecl>(D))
4757 return {NonCLikeKind::Friend, D->getSourceRange()};
4758
4759 // -- declare any members other than non-static data members, member
4760 // enumerations, or member classes,
4761 if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D) ||
4762 isa<EnumDecl>(D))
4763 continue;
4764 auto *MemberRD = dyn_cast<CXXRecordDecl>(D);
4765 if (!MemberRD) {
4766 if (D->isImplicit())
4767 continue;
4768 return {NonCLikeKind::OtherMember, D->getSourceRange()};
4769 }
4770
4771 // -- contain a lambda-expression,
4772 if (MemberRD->isLambda())
4773 return {NonCLikeKind::Lambda, MemberRD->getSourceRange()};
4774
4775 // and all member classes shall also satisfy these requirements
4776 // (recursively).
4777 if (MemberRD->isThisDeclarationADefinition()) {
4778 if (auto Kind = getNonCLikeKindForAnonymousStruct(MemberRD))
4779 return Kind;
4780 }
4781 }
4782
4783 return {Invalid ? NonCLikeKind::Invalid : NonCLikeKind::None, {}};
4784}
4785
4786void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
4787 TypedefNameDecl *NewTD) {
4788 if (TagFromDeclSpec->isInvalidDecl())
4789 return;
4790
4791 // Do nothing if the tag already has a name for linkage purposes.
4792 if (TagFromDeclSpec->hasNameForLinkage())
4793 return;
4794
4795 // A well-formed anonymous tag must always be a TUK_Definition.
4796 assert(TagFromDeclSpec->isThisDeclarationADefinition())(static_cast <bool> (TagFromDeclSpec->isThisDeclarationADefinition
()) ? void (0) : __assert_fail ("TagFromDeclSpec->isThisDeclarationADefinition()"
, "clang/lib/Sema/SemaDecl.cpp", 4796, __extension__ __PRETTY_FUNCTION__
))
;
4797
4798 // The type must match the tag exactly; no qualifiers allowed.
4799 if (!Context.hasSameType(NewTD->getUnderlyingType(),
4800 Context.getTagDeclType(TagFromDeclSpec))) {
4801 if (getLangOpts().CPlusPlus)
4802 Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
4803 return;
4804 }
4805
4806 // C++ [dcl.typedef]p9: [P1766R1, applied as DR]
4807 // An unnamed class with a typedef name for linkage purposes shall [be
4808 // C-like].
4809 //
4810 // FIXME: Also diagnose if we've already computed the linkage. That ideally
4811 // shouldn't happen, but there are constructs that the language rule doesn't
4812 // disallow for which we can't reasonably avoid computing linkage early.
4813 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TagFromDeclSpec);
4814 NonCLikeKind NonCLike = RD ? getNonCLikeKindForAnonymousStruct(RD)
4815 : NonCLikeKind();
4816 bool ChangesLinkage = TagFromDeclSpec->hasLinkageBeenComputed();
4817 if (NonCLike || ChangesLinkage) {
4818 if (NonCLike.Kind == NonCLikeKind::Invalid)
4819 return;
4820
4821 unsigned DiagID = diag::ext_non_c_like_anon_struct_in_typedef;
4822 if (ChangesLinkage) {
4823 // If the linkage changes, we can't accept this as an extension.
4824 if (NonCLike.Kind == NonCLikeKind::None)
4825 DiagID = diag::err_typedef_changes_linkage;
4826 else
4827 DiagID = diag::err_non_c_like_anon_struct_in_typedef;
4828 }
4829
4830 SourceLocation FixitLoc =
4831 getLocForEndOfToken(TagFromDeclSpec->getInnerLocStart());
4832 llvm::SmallString<40> TextToInsert;
4833 TextToInsert += ' ';
4834 TextToInsert += NewTD->getIdentifier()->getName();
4835
4836 Diag(FixitLoc, DiagID)
4837 << isa<TypeAliasDecl>(NewTD)
4838 << FixItHint::CreateInsertion(FixitLoc, TextToInsert);
4839 if (NonCLike.Kind != NonCLikeKind::None) {
4840 Diag(NonCLike.Range.getBegin(), diag::note_non_c_like_anon_struct)
4841 << NonCLike.Kind - 1 << NonCLike.Range;
4842 }
4843 Diag(NewTD->getLocation(), diag::note_typedef_for_linkage_here)
4844 << NewTD << isa<TypeAliasDecl>(NewTD);
4845
4846 if (ChangesLinkage)
4847 return;
4848 }
4849
4850 // Otherwise, set this as the anon-decl typedef for the tag.
4851 TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
4852}
4853
4854static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
4855 switch (T) {
4856 case DeclSpec::TST_class:
4857 return 0;
4858 case DeclSpec::TST_struct:
4859 return 1;
4860 case DeclSpec::TST_interface:
4861 return 2;
4862 case DeclSpec::TST_union:
4863 return 3;
4864 case DeclSpec::TST_enum:
4865 return 4;
4866 default:
4867 llvm_unreachable("unexpected type specifier")::llvm::llvm_unreachable_internal("unexpected type specifier"
, "clang/lib/Sema/SemaDecl.cpp", 4867)
;
4868 }
4869}
4870
4871/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4872/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
4873/// parameters to cope with template friend declarations.
4874Decl *
4875Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4876 MultiTemplateParamsArg TemplateParams,
4877 bool IsExplicitInstantiation,
4878 RecordDecl *&AnonRecord) {
4879 Decl *TagD = nullptr;
4880 TagDecl *Tag = nullptr;
4881 if (DS.getTypeSpecType() == DeclSpec::TST_class ||
4882 DS.getTypeSpecType() == DeclSpec::TST_struct ||
4883 DS.getTypeSpecType() == DeclSpec::TST_interface ||
4884 DS.getTypeSpecType() == DeclSpec::TST_union ||
4885 DS.getTypeSpecType() == DeclSpec::TST_enum) {
4886 TagD = DS.getRepAsDecl();
4887
4888 if (!TagD) // We probably had an error
4889 return nullptr;
4890
4891 // Note that the above type specs guarantee that the
4892 // type rep is a Decl, whereas in many of the others
4893 // it's a Type.
4894 if (isa<TagDecl>(TagD))
4895 Tag = cast<TagDecl>(TagD);
4896 else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
4897 Tag = CTD->getTemplatedDecl();
4898 }
4899
4900 if (Tag) {
4901 handleTagNumbering(Tag, S);
4902 Tag->setFreeStanding();
4903 if (Tag->isInvalidDecl())
4904 return Tag;
4905 }
4906
4907 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
4908 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
4909 // or incomplete types shall not be restrict-qualified."
4910 if (TypeQuals & DeclSpec::TQ_restrict)
4911 Diag(DS.getRestrictSpecLoc(),
4912 diag::err_typecheck_invalid_restrict_not_pointer_noarg)
4913 << DS.getSourceRange();
4914 }
4915
4916 if (DS.isInlineSpecified())
4917 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4918 << getLangOpts().CPlusPlus17;
4919
4920 if (DS.hasConstexprSpecifier()) {
4921 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
4922 // and definitions of functions and variables.
4923 // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to
4924 // the declaration of a function or function template
4925 if (Tag)
4926 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
4927 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType())
4928 << static_cast<int>(DS.getConstexprSpecifier());
4929 else
4930 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind)
4931 << static_cast<int>(DS.getConstexprSpecifier());
4932 // Don't emit warnings after this error.
4933 return TagD;
4934 }
4935
4936 DiagnoseFunctionSpecifiers(DS);
4937
4938 if (DS.isFriendSpecified()) {
4939 // If we're dealing with a decl but not a TagDecl, assume that
4940 // whatever routines created it handled the friendship aspect.
4941 if (TagD && !Tag)
4942 return nullptr;
4943 return ActOnFriendTypeDecl(S, DS, TemplateParams);
4944 }
4945
4946 const CXXScopeSpec &SS = DS.getTypeSpecScope();
4947 bool IsExplicitSpecialization =
4948 !TemplateParams.empty() && TemplateParams.back()->size() == 0;
4949 if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
4950 !IsExplicitInstantiation && !IsExplicitSpecialization &&
4951 !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
4952 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
4953 // nested-name-specifier unless it is an explicit instantiation
4954 // or an explicit specialization.
4955 //
4956 // FIXME: We allow class template partial specializations here too, per the
4957 // obvious intent of DR1819.
4958 //
4959 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
4960 Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
4961 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
4962 return nullptr;
4963 }
4964
4965 // Track whether this decl-specifier declares anything.
4966 bool DeclaresAnything = true;
4967
4968 // Handle anonymous struct definitions.
4969 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
4970 if (!Record->getDeclName() && Record->isCompleteDefinition() &&
4971 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
4972 if (getLangOpts().CPlusPlus ||
4973 Record->getDeclContext()->isRecord()) {
4974 // If CurContext is a DeclContext that can contain statements,
4975 // RecursiveASTVisitor won't visit the decls that
4976 // BuildAnonymousStructOrUnion() will put into CurContext.
4977 // Also store them here so that they can be part of the
4978 // DeclStmt that gets created in this case.
4979 // FIXME: Also return the IndirectFieldDecls created by
4980 // BuildAnonymousStructOr union, for the same reason?
4981 if (CurContext->isFunctionOrMethod())
4982 AnonRecord = Record;
4983 return BuildAnonymousStructOrUnion(S, DS, AS, Record,
4984 Context.getPrintingPolicy());
4985 }
4986
4987 DeclaresAnything = false;
4988 }
4989 }
4990
4991 // C11 6.7.2.1p2:
4992 // A struct-declaration that does not declare an anonymous structure or
4993 // anonymous union shall contain a struct-declarator-list.
4994 //
4995 // This rule also existed in C89 and C99; the grammar for struct-declaration
4996 // did not permit a struct-declaration without a struct-declarator-list.
4997 if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
4998 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
4999 // Check for Microsoft C extension: anonymous struct/union member.
5000 // Handle 2 kinds of anonymous struct/union:
5001 // struct STRUCT;
5002 // union UNION;
5003 // and
5004 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
5005 // UNION_TYPE; <- where UNION_TYPE is a typedef union.
5006 if ((Tag && Tag->getDeclName()) ||
5007 DS.getTypeSpecType() == DeclSpec::TST_typename) {
5008 RecordDecl *Record = nullptr;
5009 if (Tag)
5010 Record = dyn_cast<RecordDecl>(Tag);
5011 else if (const RecordType *RT =
5012 DS.getRepAsType().get()->getAsStructureType())
5013 Record = RT->getDecl();
5014 else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
5015 Record = UT->getDecl();
5016
5017 if (Record && getLangOpts().MicrosoftExt) {
5018 Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
5019 << Record->isUnion() << DS.getSourceRange();
5020 return BuildMicrosoftCAnonymousStruct(S, DS, Record);
5021 }
5022
5023 DeclaresAnything = false;
5024 }
5025 }
5026
5027 // Skip all the checks below if we have a type error.
5028 if (DS.getTypeSpecType() == DeclSpec::TST_error ||
5029 (TagD && TagD->isInvalidDecl()))
5030 return TagD;
5031
5032 if (getLangOpts().CPlusPlus &&
5033 DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
5034 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
5035 if (Enum->enumerator_begin() == Enum->enumerator_end() &&
5036 !Enum->getIdentifier() && !Enum->isInvalidDecl())
5037 DeclaresAnything = false;
5038
5039 if (!DS.isMissingDeclaratorOk()) {
5040 // Customize diagnostic for a typedef missing a name.
5041 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
5042 Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
5043 << DS.getSourceRange();
5044 else
5045 DeclaresAnything = false;
5046 }
5047
5048 if (DS.isModulePrivateSpecified() &&
5049 Tag && Tag->getDeclContext()->isFunctionOrMethod())
5050 Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
5051 << Tag->getTagKind()
5052 << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
5053
5054 ActOnDocumentableDecl(TagD);
5055
5056 // C 6.7/2:
5057 // A declaration [...] shall declare at least a declarator [...], a tag,
5058 // or the members of an enumeration.
5059 // C++ [dcl.dcl]p3:
5060 // [If there are no declarators], and except for the declaration of an
5061 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
5062 // names into the program, or shall redeclare a name introduced by a
5063 // previous declaration.
5064 if (!DeclaresAnything) {
5065 // In C, we allow this as a (popular) extension / bug. Don't bother
5066 // producing further diagnostics for redundant qualifiers after this.
5067 Diag(DS.getBeginLoc(), (IsExplicitInstantiation || !TemplateParams.empty())
5068 ? diag::err_no_declarators
5069 : diag::ext_no_declarators)
5070 << DS.getSourceRange();
5071 return TagD;
5072 }
5073
5074 // C++ [dcl.stc]p1:
5075 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the
5076 // init-declarator-list of the declaration shall not be empty.
5077 // C++ [dcl.fct.spec]p1:
5078 // If a cv-qualifier appears in a decl-specifier-seq, the
5079 // init-declarator-list of the declaration shall not be empty.
5080 //
5081 // Spurious qualifiers here appear to be valid in C.
5082 unsigned DiagID = diag::warn_standalone_specifier;
5083 if (getLangOpts().CPlusPlus)
5084 DiagID = diag::ext_standalone_specifier;
5085
5086 // Note that a linkage-specification sets a storage class, but
5087 // 'extern "C" struct foo;' is actually valid and not theoretically
5088 // useless.
5089 if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
5090 if (SCS == DeclSpec::SCS_mutable)
5091 // Since mutable is not a viable storage class specifier in C, there is
5092 // no reason to treat it as an extension. Instead, diagnose as an error.
5093 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
5094 else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
5095 Diag(DS.getStorageClassSpecLoc(), DiagID)
5096 << DeclSpec::getSpecifierName(SCS);
5097 }
5098
5099 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
5100 Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
5101 << DeclSpec::getSpecifierName(TSCS);
5102 if (DS.getTypeQualifiers()) {
5103 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5104 Diag(DS.getConstSpecLoc(), DiagID) << "const";
5105 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5106 Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
5107 // Restrict is covered above.
5108 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5109 Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
5110 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
5111 Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
5112 }
5113
5114 // Warn about ignored type attributes, for example:
5115 // __attribute__((aligned)) struct A;
5116 // Attributes should be placed after tag to apply to type declaration.
5117 if (!DS.getAttributes().empty()) {
5118 DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
5119 if (TypeSpecType == DeclSpec::TST_class ||
5120 TypeSpecType == DeclSpec::TST_struct ||
5121 TypeSpecType == DeclSpec::TST_interface ||
5122 TypeSpecType == DeclSpec::TST_union ||
5123 TypeSpecType == DeclSpec::TST_enum) {
5124 for (const ParsedAttr &AL : DS.getAttributes())
5125 Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored)
5126 << AL << GetDiagnosticTypeSpecifierID(TypeSpecType);
5127 }
5128 }
5129
5130 return TagD;
5131}
5132
5133/// We are trying to inject an anonymous member into the given scope;
5134/// check if there's an existing declaration that can't be overloaded.
5135///
5136/// \return true if this is a forbidden redeclaration
5137static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
5138 Scope *S,
5139 DeclContext *Owner,
5140 DeclarationName Name,
5141 SourceLocation NameLoc,
5142 bool IsUnion) {
5143 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
5144 Sema::ForVisibleRedeclaration);
5145 if (!SemaRef.LookupName(R, S)) return false;
5146
5147 // Pick a representative declaration.
5148 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
5149 assert(PrevDecl && "Expected a non-null Decl")(static_cast <bool> (PrevDecl && "Expected a non-null Decl"
) ? void (0) : __assert_fail ("PrevDecl && \"Expected a non-null Decl\""
, "clang/lib/Sema/SemaDecl.cpp", 5149, __extension__ __PRETTY_FUNCTION__
))
;
5150
5151 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
5152 return false;
5153
5154 SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
5155 << IsUnion << Name;
5156 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5157
5158 return true;
5159}
5160
5161/// InjectAnonymousStructOrUnionMembers - Inject the members of the
5162/// anonymous struct or union AnonRecord into the owning context Owner
5163/// and scope S. This routine will be invoked just after we realize
5164/// that an unnamed union or struct is actually an anonymous union or
5165/// struct, e.g.,
5166///
5167/// @code
5168/// union {
5169/// int i;
5170/// float f;
5171/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
5172/// // f into the surrounding scope.x
5173/// @endcode
5174///
5175/// This routine is recursive, injecting the names of nested anonymous
5176/// structs/unions into the owning context and scope as well.
5177static bool
5178InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
5179 RecordDecl *AnonRecord, AccessSpecifier AS,
5180 SmallVectorImpl<NamedDecl *> &Chaining) {
5181 bool Invalid = false;
5182
5183 // Look every FieldDecl and IndirectFieldDecl with a name.
5184 for (auto *D : AnonRecord->decls()) {
5185 if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
5186 cast<NamedDecl>(D)->getDeclName()) {
5187 ValueDecl *VD = cast<ValueDecl>(D);
5188 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
5189 VD->getLocation(),
5190 AnonRecord->isUnion())) {
5191 // C++ [class.union]p2:
5192 // The names of the members of an anonymous union shall be
5193 // distinct from the names of any other entity in the
5194 // scope in which the anonymous union is declared.
5195 Invalid = true;
5196 } else {
5197 // C++ [class.union]p2:
5198 // For the purpose of name lookup, after the anonymous union
5199 // definition, the members of the anonymous union are
5200 // considered to have been defined in the scope in which the
5201 // anonymous union is declared.
5202 unsigned OldChainingSize = Chaining.size();
5203 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
5204 Chaining.append(IF->chain_begin(), IF->chain_end());
5205 else
5206 Chaining.push_back(VD);
5207
5208 assert(Chaining.size() >= 2)(static_cast <bool> (Chaining.size() >= 2) ? void (0
) : __assert_fail ("Chaining.size() >= 2", "clang/lib/Sema/SemaDecl.cpp"
, 5208, __extension__ __PRETTY_FUNCTION__))
;
5209 NamedDecl **NamedChain =
5210 new (SemaRef.Context)NamedDecl*[Chaining.size()];
5211 for (unsigned i = 0; i < Chaining.size(); i++)
5212 NamedChain[i] = Chaining[i];
5213
5214 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
5215 SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
5216 VD->getType(), {NamedChain, Chaining.size()});
5217
5218 for (const auto *Attr : VD->attrs())
5219 IndirectField->addAttr(Attr->clone(SemaRef.Context));
5220
5221 IndirectField->setAccess(AS);
5222 IndirectField->setImplicit();
5223 SemaRef.PushOnScopeChains(IndirectField, S);
5224
5225 // That includes picking up the appropriate access specifier.
5226 if (AS != AS_none) IndirectField->setAccess(AS);
5227
5228 Chaining.resize(OldChainingSize);
5229 }
5230 }
5231 }
5232
5233 return Invalid;
5234}
5235
5236/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
5237/// a VarDecl::StorageClass. Any error reporting is up to the caller:
5238/// illegal input values are mapped to SC_None.
5239static StorageClass
5240StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
5241 DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
5242 assert(StorageClassSpec != DeclSpec::SCS_typedef &&(static_cast <bool> (StorageClassSpec != DeclSpec::SCS_typedef
&& "Parser allowed 'typedef' as storage class VarDecl."
) ? void (0) : __assert_fail ("StorageClassSpec != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class VarDecl.\""
, "clang/lib/Sema/SemaDecl.cpp", 5243, __extension__ __PRETTY_FUNCTION__
))
5243 "Parser allowed 'typedef' as storage class VarDecl.")(static_cast <bool> (StorageClassSpec != DeclSpec::SCS_typedef
&& "Parser allowed 'typedef' as storage class VarDecl."
) ? void (0) : __assert_fail ("StorageClassSpec != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class VarDecl.\""
, "clang/lib/Sema/SemaDecl.cpp", 5243, __extension__ __PRETTY_FUNCTION__
))
;
5244 switch (StorageClassSpec) {
5245 case DeclSpec::SCS_unspecified: return SC_None;
5246 case DeclSpec::SCS_extern:
5247 if (DS.isExternInLinkageSpec())
5248 return SC_None;
5249 return SC_Extern;
5250 case DeclSpec::SCS_static: return SC_Static;
5251 case DeclSpec::SCS_auto: return SC_Auto;
5252 case DeclSpec::SCS_register: return SC_Register;
5253 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5254 // Illegal SCSs map to None: error reporting is up to the caller.
5255 case DeclSpec::SCS_mutable: // Fall through.
5256 case DeclSpec::SCS_typedef: return SC_None;
5257 }
5258 llvm_unreachable("unknown storage class specifier")::llvm::llvm_unreachable_internal("unknown storage class specifier"
, "clang/lib/Sema/SemaDecl.cpp", 5258)
;
5259}
5260
5261static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
5262 assert(Record->hasInClassInitializer())(static_cast <bool> (Record->hasInClassInitializer()
) ? void (0) : __assert_fail ("Record->hasInClassInitializer()"
, "clang/lib/Sema/SemaDecl.cpp", 5262, __extension__ __PRETTY_FUNCTION__
))
;
5263
5264 for (const auto *I : Record->decls()) {
5265 const auto *FD = dyn_cast<FieldDecl>(I);
5266 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
5267 FD = IFD->getAnonField();
5268 if (FD && FD->hasInClassInitializer())
5269 return FD->getLocation();
5270 }
5271
5272 llvm_unreachable("couldn't find in-class initializer")::llvm::llvm_unreachable_internal("couldn't find in-class initializer"
, "clang/lib/Sema/SemaDecl.cpp", 5272)
;
5273}
5274
5275static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
5276 SourceLocation DefaultInitLoc) {
5277 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
5278 return;
5279
5280 S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
5281 S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
5282}
5283
5284static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
5285 CXXRecordDecl *AnonUnion) {
5286 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
5287 return;
5288
5289 checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
5290}
5291
5292/// BuildAnonymousStructOrUnion - Handle the declaration of an
5293/// anonymous structure or union. Anonymous unions are a C++ feature
5294/// (C++ [class.union]) and a C11 feature; anonymous structures
5295/// are a C11 feature and GNU C++ extension.
5296Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
5297 AccessSpecifier AS,
5298 RecordDecl *Record,
5299 const PrintingPolicy &Policy) {
5300 DeclContext *Owner = Record->getDeclContext();
5301
5302 // Diagnose whether this anonymous struct/union is an extension.
5303 if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
5304 Diag(Record->getLocation(), diag::ext_anonymous_union);
5305 else if (!Record->isUnion() && getLangOpts().CPlusPlus)
5306 Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
5307 else if (!Record->isUnion() && !getLangOpts().C11)
5308 Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
5309
5310 // C and C++ require different kinds of checks for anonymous
5311 // structs/unions.
5312 bool Invalid = false;
5313 if (getLangOpts().CPlusPlus) {
5314 const char *PrevSpec = nullptr;
5315 if (Record->isUnion()) {
5316 // C++ [class.union]p6:
5317 // C++17 [class.union.anon]p2:
5318 // Anonymous unions declared in a named namespace or in the
5319 // global namespace shall be declared static.
5320 unsigned DiagID;
5321 DeclContext *OwnerScope = Owner->getRedeclContext();
5322 if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
5323 (OwnerScope->isTranslationUnit() ||
5324 (OwnerScope->isNamespace() &&
5325 !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
5326 Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
5327 << FixItHint::CreateInsertion(Record->getLocation(), "static ");
5328
5329 // Recover by adding 'static'.
5330 DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
5331 PrevSpec, DiagID, Policy);
5332 }
5333 // C++ [class.union]p6:
5334 // A storage class is not allowed in a declaration of an
5335 // anonymous union in a class scope.
5336 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
5337 isa<RecordDecl>(Owner)) {
5338 Diag(DS.getStorageClassSpecLoc(),
5339 diag::err_anonymous_union_with_storage_spec)
5340 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5341
5342 // Recover by removing the storage specifier.
5343 DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
5344 SourceLocation(),
5345 PrevSpec, DiagID, Context.getPrintingPolicy());
5346 }
5347 }
5348
5349 // Ignore const/volatile/restrict qualifiers.
5350 if (DS.getTypeQualifiers()) {
5351 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5352 Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
5353 << Record->isUnion() << "const"
5354 << FixItHint::CreateRemoval(DS.getConstSpecLoc());
5355 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5356 Diag(DS.getVolatileSpecLoc(),
5357 diag::ext_anonymous_struct_union_qualified)
5358 << Record->isUnion() << "volatile"
5359 << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
5360 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
5361 Diag(DS.getRestrictSpecLoc(),
5362 diag::ext_anonymous_struct_union_qualified)
5363 << Record->isUnion() << "restrict"
5364 << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
5365 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5366 Diag(DS.getAtomicSpecLoc(),
5367 diag::ext_anonymous_struct_union_qualified)
5368 << Record->isUnion() << "_Atomic"
5369 << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
5370 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
5371 Diag(DS.getUnalignedSpecLoc(),
5372 diag::ext_anonymous_struct_union_qualified)
5373 << Record->isUnion() << "__unaligned"
5374 << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
5375
5376 DS.ClearTypeQualifiers();
5377 }
5378
5379 // C++ [class.union]p2:
5380 // The member-specification of an anonymous union shall only
5381 // define non-static data members. [Note: nested types and
5382 // functions cannot be declared within an anonymous union. ]
5383 for (auto *Mem : Record->decls()) {
5384 // Ignore invalid declarations; we already diagnosed them.
5385 if (Mem->isInvalidDecl())
5386 continue;
5387
5388 if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
5389 // C++ [class.union]p3:
5390 // An anonymous union shall not have private or protected
5391 // members (clause 11).
5392 assert(FD->getAccess() != AS_none)(static_cast <bool> (FD->getAccess() != AS_none) ? void
(0) : __assert_fail ("FD->getAccess() != AS_none", "clang/lib/Sema/SemaDecl.cpp"
, 5392, __extension__ __PRETTY_FUNCTION__))
;
5393 if (FD->getAccess() != AS_public) {
5394 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
5395 << Record->isUnion() << (FD->getAccess() == AS_protected);
5396 Invalid = true;
5397 }
5398
5399 // C++ [class.union]p1
5400 // An object of a class with a non-trivial constructor, a non-trivial
5401 // copy constructor, a non-trivial destructor, or a non-trivial copy
5402 // assignment operator cannot be a member of a union, nor can an
5403 // array of such objects.
5404 if (CheckNontrivialField(FD))
5405 Invalid = true;
5406 } else if (Mem->isImplicit()) {
5407 // Any implicit members are fine.
5408 } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
5409 // This is a type that showed up in an
5410 // elaborated-type-specifier inside the anonymous struct or
5411 // union, but which actually declares a type outside of the
5412 // anonymous struct or union. It's okay.
5413 } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
5414 if (!MemRecord->isAnonymousStructOrUnion() &&
5415 MemRecord->getDeclName()) {
5416 // Visual C++ allows type definition in anonymous struct or union.
5417 if (getLangOpts().MicrosoftExt)
5418 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
5419 << Record->isUnion();
5420 else {
5421 // This is a nested type declaration.
5422 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
5423 << Record->isUnion();
5424 Invalid = true;
5425 }
5426 } else {
5427 // This is an anonymous type definition within another anonymous type.
5428 // This is a popular extension, provided by Plan9, MSVC and GCC, but
5429 // not part of standard C++.
5430 Diag(MemRecord->getLocation(),
5431 diag::ext_anonymous_record_with_anonymous_type)
5432 << Record->isUnion();
5433 }
5434 } else if (isa<AccessSpecDecl>(Mem)) {
5435 // Any access specifier is fine.
5436 } else if (isa<StaticAssertDecl>(Mem)) {
5437 // In C++1z, static_assert declarations are also fine.
5438 } else {
5439 // We have something that isn't a non-static data
5440 // member. Complain about it.
5441 unsigned DK = diag::err_anonymous_record_bad_member;
5442 if (isa<TypeDecl>(Mem))
5443 DK = diag::err_anonymous_record_with_type;
5444 else if (isa<FunctionDecl>(Mem))
5445 DK = diag::err_anonymous_record_with_function;
5446 else if (isa<VarDecl>(Mem))
5447 DK = diag::err_anonymous_record_with_static;
5448
5449 // Visual C++ allows type definition in anonymous struct or union.
5450 if (getLangOpts().MicrosoftExt &&
5451 DK == diag::err_anonymous_record_with_type)
5452 Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
5453 << Record->isUnion();
5454 else {
5455 Diag(Mem->getLocation(), DK) << Record->isUnion();
5456 Invalid = true;
5457 }
5458 }
5459 }
5460
5461 // C++11 [class.union]p8 (DR1460):
5462 // At most one variant member of a union may have a
5463 // brace-or-equal-initializer.
5464 if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
5465 Owner->isRecord())
5466 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
5467 cast<CXXRecordDecl>(Record));
5468 }
5469
5470 if (!Record->isUnion() && !Owner->isRecord()) {
5471 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
5472 << getLangOpts().CPlusPlus;
5473 Invalid = true;
5474 }
5475
5476 // C++ [dcl.dcl]p3:
5477 // [If there are no declarators], and except for the declaration of an
5478 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
5479 // names into the program
5480 // C++ [class.mem]p2:
5481 // each such member-declaration shall either declare at least one member
5482 // name of the class or declare at least one unnamed bit-field
5483 //
5484 // For C this is an error even for a named struct, and is diagnosed elsewhere.
5485 if (getLangOpts().CPlusPlus && Record->field_empty())
5486 Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
5487
5488 // Mock up a declarator.
5489 Declarator Dc(DS, DeclaratorContext::Member);
5490 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5491 assert(TInfo && "couldn't build declarator info for anonymous struct/union")(static_cast <bool> (TInfo && "couldn't build declarator info for anonymous struct/union"
) ? void (0) : __assert_fail ("TInfo && \"couldn't build declarator info for anonymous struct/union\""
, "clang/lib/Sema/SemaDecl.cpp", 5491, __extension__ __PRETTY_FUNCTION__
))
;
5492
5493 // Create a declaration for this anonymous struct/union.
5494 NamedDecl *Anon = nullptr;
5495 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
5496 Anon = FieldDecl::Create(
5497 Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
5498 /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
5499 /*BitWidth=*/nullptr, /*Mutable=*/false,
5500 /*InitStyle=*/ICIS_NoInit);
5501 Anon->setAccess(AS);
5502 ProcessDeclAttributes(S, Anon, Dc);
5503
5504 if (getLangOpts().CPlusPlus)
5505 FieldCollector->Add(cast<FieldDecl>(Anon));
5506 } else {
5507 DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
5508 StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
5509 if (SCSpec == DeclSpec::SCS_mutable) {
5510 // mutable can only appear on non-static class members, so it's always
5511 // an error here
5512 Diag(Record->getLocation(), diag::err_mutable_nonmember);
5513 Invalid = true;
5514 SC = SC_None;
5515 }
5516
5517 assert(DS.getAttributes().empty() && "No attribute expected")(static_cast <bool> (DS.getAttributes().empty() &&
"No attribute expected") ? void (0) : __assert_fail ("DS.getAttributes().empty() && \"No attribute expected\""
, "clang/lib/Sema/SemaDecl.cpp", 5517, __extension__ __PRETTY_FUNCTION__
))
;
5518 Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
5519 Record->getLocation(), /*IdentifierInfo=*/nullptr,
5520 Context.getTypeDeclType(Record), TInfo, SC);
5521
5522 // Default-initialize the implicit variable. This initialization will be
5523 // trivial in almost all cases, except if a union member has an in-class
5524 // initializer:
5525 // union { int n = 0; };
5526 ActOnUninitializedDecl(Anon);
5527 }
5528 Anon->setImplicit();
5529
5530 // Mark this as an anonymous struct/union type.
5531 Record->setAnonymousStructOrUnion(true);
5532
5533 // Add the anonymous struct/union object to the current
5534 // context. We'll be referencing this object when we refer to one of
5535 // its members.
5536 Owner->addDecl(Anon);
5537
5538 // Inject the members of the anonymous struct/union into the owning
5539 // context and into the identifier resolver chain for name lookup
5540 // purposes.
5541 SmallVector<NamedDecl*, 2> Chain;
5542 Chain.push_back(Anon);
5543
5544 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
5545 Invalid = true;
5546
5547 if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
5548 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5549 MangleNumberingContext *MCtx;
5550 Decl *ManglingContextDecl;
5551 std::tie(MCtx, ManglingContextDecl) =
5552 getCurrentMangleNumberContext(NewVD->getDeclContext());
5553 if (MCtx) {
5554 Context.setManglingNumber(
5555 NewVD, MCtx->getManglingNumber(
5556 NewVD, getMSManglingNumber(getLangOpts(), S)));
5557 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
5558 }
5559 }
5560 }
5561
5562 if (Invalid)
5563 Anon->setInvalidDecl();
5564
5565 return Anon;
5566}
5567
5568/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
5569/// Microsoft C anonymous structure.
5570/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
5571/// Example:
5572///
5573/// struct A { int a; };
5574/// struct B { struct A; int b; };
5575///
5576/// void foo() {
5577/// B var;
5578/// var.a = 3;
5579/// }
5580///
5581Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
5582 RecordDecl *Record) {
5583 assert(Record && "expected a record!")(static_cast <bool> (Record && "expected a record!"
) ? void (0) : __assert_fail ("Record && \"expected a record!\""
, "clang/lib/Sema/SemaDecl.cpp", 5583, __extension__ __PRETTY_FUNCTION__
))
;
5584
5585 // Mock up a declarator.
5586 Declarator Dc(DS, DeclaratorContext::TypeName);
5587 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5588 assert(TInfo && "couldn't build declarator info for anonymous struct")(static_cast <bool> (TInfo && "couldn't build declarator info for anonymous struct"
) ? void (0) : __assert_fail ("TInfo && \"couldn't build declarator info for anonymous struct\""
, "clang/lib/Sema/SemaDecl.cpp", 5588, __extension__ __PRETTY_FUNCTION__
))
;
5589
5590 auto *ParentDecl = cast<RecordDecl>(CurContext);
5591 QualType RecTy = Context.getTypeDeclType(Record);
5592
5593 // Create a declaration for this anonymous struct.
5594 NamedDecl *Anon =
5595 FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
5596 /*IdentifierInfo=*/nullptr, RecTy, TInfo,
5597 /*BitWidth=*/nullptr, /*Mutable=*/false,
5598 /*InitStyle=*/ICIS_NoInit);
5599 Anon->setImplicit();
5600
5601 // Add the anonymous struct object to the current context.
5602 CurContext->addDecl(Anon);
5603
5604 // Inject the members of the anonymous struct into the current
5605 // context and into the identifier resolver chain for name lookup
5606 // purposes.
5607 SmallVector<NamedDecl*, 2> Chain;
5608 Chain.push_back(Anon);
5609
5610 RecordDecl *RecordDef = Record->getDefinition();
5611 if (RequireCompleteSizedType(Anon->getLocation(), RecTy,
5612 diag::err_field_incomplete_or_sizeless) ||
5613 InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
5614 AS_none, Chain)) {
5615 Anon->setInvalidDecl();
5616 ParentDecl->setInvalidDecl();
5617 }
5618
5619 return Anon;
5620}
5621
5622/// GetNameForDeclarator - Determine the full declaration name for the
5623/// given Declarator.
5624DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
5625 return GetNameFromUnqualifiedId(D.getName());
5626}
5627
5628/// Retrieves the declaration name from a parsed unqualified-id.
5629DeclarationNameInfo
5630Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
5631 DeclarationNameInfo NameInfo;
5632 NameInfo.setLoc(Name.StartLocation);
5633
5634 switch (Name.getKind()) {
5635
5636 case UnqualifiedIdKind::IK_ImplicitSelfParam:
5637 case UnqualifiedIdKind::IK_Identifier:
5638 NameInfo.setName(Name.Identifier);
5639 return NameInfo;
5640
5641 case UnqualifiedIdKind::IK_DeductionGuideName: {
5642 // C++ [temp.deduct.guide]p3:
5643 // The simple-template-id shall name a class template specialization.
5644 // The template-name shall be the same identifier as the template-name
5645 // of the simple-template-id.
5646 // These together intend to imply that the template-name shall name a
5647 // class template.
5648 // FIXME: template<typename T> struct X {};
5649 // template<typename T> using Y = X<T>;
5650 // Y(int) -> Y<int>;
5651 // satisfies these rules but does not name a class template.
5652 TemplateName TN = Name.TemplateName.get().get();
5653 auto *Template = TN.getAsTemplateDecl();
5654 if (!Template || !isa<ClassTemplateDecl>(Template)) {
5655 Diag(Name.StartLocation,
5656 diag::err_deduction_guide_name_not_class_template)
5657 << (int)getTemplateNameKindForDiagnostics(TN) << TN;
5658 if (Template)
5659 Diag(Template->getLocation(), diag::note_template_decl_here);
5660 return DeclarationNameInfo();
5661 }
5662
5663 NameInfo.setName(
5664 Context.DeclarationNames.getCXXDeductionGuideName(Template));
5665 return NameInfo;
5666 }
5667
5668 case UnqualifiedIdKind::IK_OperatorFunctionId:
5669 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
5670 Name.OperatorFunctionId.Operator));
5671 NameInfo.setCXXOperatorNameRange(SourceRange(
5672 Name.OperatorFunctionId.SymbolLocations[0], Name.EndLocation));
5673 return NameInfo;
5674
5675 case UnqualifiedIdKind::IK_LiteralOperatorId:
5676 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
5677 Name.Identifier));
5678 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
5679 return NameInfo;
5680
5681 case UnqualifiedIdKind::IK_ConversionFunctionId: {
5682 TypeSourceInfo *TInfo;
5683 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
5684 if (Ty.isNull())
5685 return DeclarationNameInfo();
5686 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
5687 Context.getCanonicalType(Ty)));
5688 NameInfo.setNamedTypeInfo(TInfo);
5689 return NameInfo;
5690 }
5691
5692 case UnqualifiedIdKind::IK_ConstructorName: {
5693 TypeSourceInfo *TInfo;
5694 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
5695 if (Ty.isNull())
5696 return DeclarationNameInfo();
5697 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5698 Context.getCanonicalType(Ty)));
5699 NameInfo.setNamedTypeInfo(TInfo);
5700 return NameInfo;
5701 }
5702
5703 case UnqualifiedIdKind::IK_ConstructorTemplateId: {
5704 // In well-formed code, we can only have a constructor
5705 // template-id that refers to the current context, so go there
5706 // to find the actual type being constructed.
5707 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
5708 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
5709 return DeclarationNameInfo();
5710
5711 // Determine the type of the class being constructed.
5712 QualType CurClassType = Context.getTypeDeclType(CurClass);
5713
5714 // FIXME: Check two things: that the template-id names the same type as
5715 // CurClassType, and that the template-id does not occur when the name
5716 // was qualified.
5717
5718 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5719 Context.getCanonicalType(CurClassType)));
5720 // FIXME: should we retrieve TypeSourceInfo?
5721 NameInfo.setNamedTypeInfo(nullptr);
5722 return NameInfo;
5723 }
5724
5725 case UnqualifiedIdKind::IK_DestructorName: {
5726 TypeSourceInfo *TInfo;
5727 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
5728 if (Ty.isNull())
5729 return DeclarationNameInfo();
5730 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
5731 Context.getCanonicalType(Ty)));
5732 NameInfo.setNamedTypeInfo(TInfo);
5733 return NameInfo;
5734 }
5735
5736 case UnqualifiedIdKind::IK_TemplateId: {
5737 TemplateName TName = Name.TemplateId->Template.get();
5738 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
5739 return Context.getNameForTemplate(TName, TNameLoc);
5740 }
5741
5742 } // switch (Name.getKind())
5743
5744 llvm_unreachable("Unknown name kind")::llvm::llvm_unreachable_internal("Unknown name kind", "clang/lib/Sema/SemaDecl.cpp"
, 5744)
;
5745}
5746
5747static QualType getCoreType(QualType Ty) {
5748 do {
5749 if (Ty->isPointerType() || Ty->isReferenceType())
5750 Ty = Ty->getPointeeType();
5751 else if (Ty->isArrayType())
5752 Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
5753 else
5754 return Ty.withoutLocalFastQualifiers();
5755 } while (true);
5756}
5757
5758/// hasSimilarParameters - Determine whether the C++ functions Declaration
5759/// and Definition have "nearly" matching parameters. This heuristic is
5760/// used to improve diagnostics in the case where an out-of-line function
5761/// definition doesn't match any declaration within the class or namespace.
5762/// Also sets Params to the list of indices to the parameters that differ
5763/// between the declaration and the definition. If hasSimilarParameters
5764/// returns true and Params is empty, then all of the parameters match.
5765static bool hasSimilarParameters(ASTContext &Context,
5766 FunctionDecl *Declaration,
5767 FunctionDecl *Definition,
5768 SmallVectorImpl<unsigned> &Params) {
5769 Params.clear();
5770 if (Declaration->param_size() != Definition->param_size())
5771 return false;
5772 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
5773 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
5774 QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
5775
5776 // The parameter types are identical
5777 if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy))
5778 continue;
5779
5780 QualType DeclParamBaseTy = getCoreType(DeclParamTy);
5781 QualType DefParamBaseTy = getCoreType(DefParamTy);
5782 const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
5783 const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
5784
5785 if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
5786 (DeclTyName && DeclTyName == DefTyName))
5787 Params.push_back(Idx);
5788 else // The two parameters aren't even close
5789 return false;
5790 }
5791
5792 return true;
5793}
5794
5795/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
5796/// declarator needs to be rebuilt in the current instantiation.
5797/// Any bits of declarator which appear before the name are valid for
5798/// consideration here. That's specifically the type in the decl spec
5799/// and the base type in any member-pointer chunks.
5800static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
5801 DeclarationName Name) {
5802 // The types we specifically need to rebuild are:
5803 // - typenames, typeofs, and decltypes
5804 // - types which will become injected class names
5805 // Of course, we also need to rebuild any type referencing such a
5806 // type. It's safest to just say "dependent", but we call out a
5807 // few cases here.
5808
5809 DeclSpec &DS = D.getMutableDeclSpec();
5810 switch (DS.getTypeSpecType()) {
5811 case DeclSpec::TST_typename:
5812 case DeclSpec::TST_typeofType:
5813 case DeclSpec::TST_underlyingType:
5814 case DeclSpec::TST_atomic: {
5815 // Grab the type from the parser.
5816 TypeSourceInfo *TSI = nullptr;
5817 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
5818 if (T.isNull() || !T->isInstantiationDependentType()) break;
5819
5820 // Make sure there's a type source info. This isn't really much
5821 // of a waste; most dependent types should have type source info
5822 // attached already.
5823 if (!TSI)
5824 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
5825
5826 // Rebuild the type in the current instantiation.
5827 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
5828 if (!TSI) return true;
5829
5830 // Store the new type back in the decl spec.
5831 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
5832 DS.UpdateTypeRep(LocType);
5833 break;
5834 }
5835
5836 case DeclSpec::TST_decltype:
5837 case DeclSpec::TST_typeofExpr: {
5838 Expr *E = DS.getRepAsExpr();
5839 ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
5840 if (Result.isInvalid()) return true;
5841 DS.UpdateExprRep(Result.get());
5842 break;
5843 }
5844
5845 default:
5846 // Nothing to do for these decl specs.
5847 break;
5848 }
5849
5850 // It doesn't matter what order we do this in.
5851 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
5852 DeclaratorChunk &Chunk = D.getTypeObject(I);
5853
5854 // The only type information in the declarator which can come
5855 // before the declaration name is the base type of a member
5856 // pointer.
5857 if (Chunk.Kind != DeclaratorChunk::MemberPointer)
5858 continue;
5859
5860 // Rebuild the scope specifier in-place.
5861 CXXScopeSpec &SS = Chunk.Mem.Scope();
5862 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
5863 return true;
5864 }
5865
5866 return false;
5867}
5868
5869/// Returns true if the declaration is declared in a system header or from a
5870/// system macro.
5871static bool isFromSystemHeader(SourceManager &SM, const Decl *D) {
5872 return SM.isInSystemHeader(D->getLocation()) ||
5873 SM.isInSystemMacro(D->getLocation());
5874}
5875
5876void Sema::warnOnReservedIdentifier(const NamedDecl *D) {
5877 // Avoid warning twice on the same identifier, and don't warn on redeclaration
5878 // of system decl.
5879 if (D->getPreviousDecl() || D->isImplicit())
5880 return;
5881 ReservedIdentifierStatus Status = D->isReserved(getLangOpts());
5882 if (Status != ReservedIdentifierStatus::NotReserved &&
5883 !isFromSystemHeader(Context.getSourceManager(), D)) {
5884 Diag(D->getLocation(), diag::warn_reserved_extern_symbol)
5885 << D << static_cast<int>(Status);
5886 }
5887}
5888
5889Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
5890 D.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration);
5891 Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
5892
5893 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
5894 Dcl && Dcl->getDeclContext()->isFileContext())
5895 Dcl->setTopLevelDeclInObjCContainer();
5896
5897 return Dcl;
5898}
5899
5900/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
5901/// If T is the name of a class, then each of the following shall have a
5902/// name different from T:
5903/// - every static data member of class T;
5904/// - every member function of class T
5905/// - every member of class T that is itself a type;
5906/// \returns true if the declaration name violates these rules.
5907bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
5908 DeclarationNameInfo NameInfo) {
5909 DeclarationName Name = NameInfo.getName();
5910
5911 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
5912 while (Record && Record->isAnonymousStructOrUnion())
5913 Record = dyn_cast<CXXRecordDecl>(Record->getParent());
5914 if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
5915 Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
5916 return true;
5917 }
5918
5919 return false;
5920}
5921
5922/// Diagnose a declaration whose declarator-id has the given
5923/// nested-name-specifier.
5924///
5925/// \param SS The nested-name-specifier of the declarator-id.
5926///
5927/// \param DC The declaration context to which the nested-name-specifier
5928/// resolves.
5929///
5930/// \param Name The name of the entity being declared.
5931///
5932/// \param Loc The location of the name of the entity being declared.
5933///
5934/// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
5935/// we're declaring an explicit / partial specialization / instantiation.
5936///
5937/// \returns true if we cannot safely recover from this error, false otherwise.
5938bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
5939 DeclarationName Name,
5940 SourceLocation Loc, bool IsTemplateId) {
5941 DeclContext *Cur = CurContext;
5942 while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
5943 Cur = Cur->getParent();
5944
5945 // If the user provided a superfluous scope specifier that refers back to the
5946 // class in which the entity is already declared, diagnose and ignore it.
5947 //
5948 // class X {
5949 // void X::f();
5950 // };
5951 //
5952 // Note, it was once ill-formed to give redundant qualification in all
5953 // contexts, but that rule was removed by DR482.
5954 if (Cur->Equals(DC)) {
5955 if (Cur->isRecord()) {
5956 Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
5957 : diag::err_member_extra_qualification)
5958 << Name << FixItHint::CreateRemoval(SS.getRange());
5959 SS.clear();
5960 } else {
5961 Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
5962 }
5963 return false;
5964 }
5965
5966 // Check whether the qualifying scope encloses the scope of the original
5967 // declaration. For a template-id, we perform the checks in
5968 // CheckTemplateSpecializationScope.
5969 if (!Cur->Encloses(DC) && !IsTemplateId) {
5970 if (Cur->isRecord())
5971 Diag(Loc, diag::err_member_qualification)
5972 << Name << SS.getRange();
5973 else if (isa<TranslationUnitDecl>(DC))
5974 Diag(Loc, diag::err_invalid_declarator_global_scope)
5975 << Name << SS.getRange();
5976 else if (isa<FunctionDecl>(Cur))
5977 Diag(Loc, diag::err_invalid_declarator_in_function)
5978 << Name << SS.getRange();
5979 else if (isa<BlockDecl>(Cur))
5980 Diag(Loc, diag::err_invalid_declarator_in_block)
5981 << Name << SS.getRange();
5982 else if (isa<ExportDecl>(Cur)) {
5983 if (!isa<NamespaceDecl>(DC))
5984 Diag(Loc, diag::err_export_non_namespace_scope_name)
5985 << Name << SS.getRange();
5986 else
5987 // The cases that DC is not NamespaceDecl should be handled in
5988 // CheckRedeclarationExported.
5989 return false;
5990 } else
5991 Diag(Loc, diag::err_invalid_declarator_scope)
5992 << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
5993
5994 return true;
5995 }
5996
5997 if (Cur->isRecord()) {
5998 // Cannot qualify members within a class.
5999 Diag(Loc, diag::err_member_qualification)
6000 << Name << SS.getRange();
6001 SS.clear();
6002
6003 // C++ constructors and destructors with incorrect scopes can break
6004 // our AST invariants by having the wrong underlying types. If
6005 // that's the case, then drop this declaration entirely.
6006 if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
6007 Name.getNameKind() == DeclarationName::CXXDestructorName) &&
6008 !Context.hasSameType(Name.getCXXNameType(),
6009 Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
6010 return true;
6011
6012 return false;
6013 }
6014
6015 // C++11 [dcl.meaning]p1:
6016 // [...] "The nested-name-specifier of the qualified declarator-id shall
6017 // not begin with a decltype-specifer"
6018 NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
6019 while (SpecLoc.getPrefix())
6020 SpecLoc = SpecLoc.getPrefix();
6021 if (isa_and_nonnull<DecltypeType>(
6022 SpecLoc.getNestedNameSpecifier()->getAsType()))
6023 Diag(Loc, diag::err_decltype_in_declarator)
6024 << SpecLoc.getTypeLoc().getSourceRange();
6025
6026 return false;
6027}
6028
6029NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
6030 MultiTemplateParamsArg TemplateParamLists) {
6031 // TODO: consider using NameInfo for diagnostic.
6032 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6033 DeclarationName Name = NameInfo.getName();
6034
6035 // All of these full declarators require an identifier. If it doesn't have
6036 // one, the ParsedFreeStandingDeclSpec action should be used.
6037 if (D.isDecompositionDeclarator()) {
6038 return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
6039 } else if (!Name) {
6040 if (!D.isInvalidType()) // Reject this if we think it is valid.
6041 Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
6042 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
6043 return nullptr;
6044 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
6045 return nullptr;
6046
6047 // The scope passed in may not be a decl scope. Zip up the scope tree until
6048 // we find one that is.
6049 while ((S->getFlags() & Scope::DeclScope) == 0 ||
6050 (S->getFlags() & Scope::TemplateParamScope) != 0)
6051 S = S->getParent();
6052
6053 DeclContext *DC = CurContext;
6054 if (D.getCXXScopeSpec().isInvalid())
6055 D.setInvalidType();
6056 else if (D.getCXXScopeSpec().isSet()) {
6057 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
6058 UPPC_DeclarationQualifier))
6059 return nullptr;
6060
6061 bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
6062 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
6063 if (!DC || isa<EnumDecl>(DC)) {
6064 // If we could not compute the declaration context, it's because the
6065 // declaration context is dependent but does not refer to a class,
6066 // class template, or class template partial specialization. Complain
6067 // and return early, to avoid the coming semantic disaster.
6068 Diag(D.getIdentifierLoc(),
6069 diag::err_template_qualified_declarator_no_match)
6070 << D.getCXXScopeSpec().getScopeRep()
6071 << D.getCXXScopeSpec().getRange();
6072 return nullptr;
6073 }
6074 bool IsDependentContext = DC->isDependentContext();
6075
6076 if (!IsDependentContext &&
6077 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
6078 return nullptr;
6079
6080 // If a class is incomplete, do not parse entities inside it.
6081 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
6082 Diag(D.getIdentifierLoc(),
6083 diag::err_member_def_undefined_record)
6084 << Name << DC << D.getCXXScopeSpec().getRange();
6085 return nullptr;
6086 }
6087 if (!D.getDeclSpec().isFriendSpecified()) {
6088 if (diagnoseQualifiedDeclaration(
6089 D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
6090 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
6091 if (DC->isRecord())
6092 return nullptr;
6093
6094 D.setInvalidType();
6095 }
6096 }
6097
6098 // Check whether we need to rebuild the type of the given
6099 // declaration in the current instantiation.
6100 if (EnteringContext && IsDependentContext &&
6101 TemplateParamLists.size() != 0) {
6102 ContextRAII SavedContext(*this, DC);
6103 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
6104 D.setInvalidType();
6105 }
6106 }
6107
6108 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6109 QualType R = TInfo->getType();
6110
6111 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6112 UPPC_DeclarationType))
6113 D.setInvalidType();
6114
6115 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
6116 forRedeclarationInCurContext());
6117
6118 // See if this is a redefinition of a variable in the same scope.
6119 if (!D.getCXXScopeSpec().isSet()) {
6120 bool IsLinkageLookup = false;
6121 bool CreateBuiltins = false;
6122
6123 // If the declaration we're planning to build will be a function
6124 // or object with linkage, then look for another declaration with
6125 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
6126 //
6127 // If the declaration we're planning to build will be declared with
6128 // external linkage in the translation unit, create any builtin with
6129 // the same name.
6130 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
6131 /* Do nothing*/;
6132 else if (CurContext->isFunctionOrMethod() &&
6133 (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
6134 R->isFunctionType())) {
6135 IsLinkageLookup = true;
6136 CreateBuiltins =
6137 CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
6138 } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
6139 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
6140 CreateBuiltins = true;
6141
6142 if (IsLinkageLookup) {
6143 Previous.clear(LookupRedeclarationWithLinkage);
6144 Previous.setRedeclarationKind(ForExternalRedeclaration);
6145 }
6146
6147 LookupName(Previous, S, CreateBuiltins);
6148 } else { // Something like "int foo::x;"
6149 LookupQualifiedName(Previous, DC);
6150
6151 // C++ [dcl.meaning]p1:
6152 // When the declarator-id is qualified, the declaration shall refer to a
6153 // previously declared member of the class or namespace to which the
6154 // qualifier refers (or, in the case of a namespace, of an element of the
6155 // inline namespace set of that namespace (7.3.1)) or to a specialization
6156 // thereof; [...]
6157 //
6158 // Note that we already checked the context above, and that we do not have
6159 // enough information to make sure that Previous contains the declaration
6160 // we want to match. For example, given:
6161 //
6162 // class X {
6163 // void f();
6164 // void f(float);
6165 // };
6166 //
6167 // void X::f(int) { } // ill-formed
6168 //
6169 // In this case, Previous will point to the overload set
6170 // containing the two f's declared in X, but neither of them
6171 // matches.
6172
6173 // C++ [dcl.meaning]p1:
6174 // [...] the member shall not merely have been introduced by a
6175 // using-declaration in the scope of the class or namespace nominated by
6176 // the nested-name-specifier of the declarator-id.
6177 RemoveUsingDecls(Previous);
6178 }
6179
6180 if (Previous.isSingleResult() &&
6181 Previous.getFoundDecl()->isTemplateParameter()) {
6182 // Maybe we will complain about the shadowed template parameter.
6183 if (!D.isInvalidType())
6184 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
6185 Previous.getFoundDecl());
6186
6187 // Just pretend that we didn't see the previous declaration.
6188 Previous.clear();
6189 }
6190
6191 if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
6192 // Forget that the previous declaration is the injected-class-name.
6193 Previous.clear();
6194
6195 // In C++, the previous declaration we find might be a tag type
6196 // (class or enum). In this case, the new declaration will hide the
6197 // tag type. Note that this applies to functions, function templates, and
6198 // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
6199 if (Previous.isSingleTagDecl() &&
6200 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6201 (TemplateParamLists.size() == 0 || R->isFunctionType()))
6202 Previous.clear();
6203
6204 // Check that there are no default arguments other than in the parameters
6205 // of a function declaration (C++ only).
6206 if (getLangOpts().CPlusPlus)
6207 CheckExtraCXXDefaultArguments(D);
6208
6209 NamedDecl *New;
6210
6211 bool AddToScope = true;
6212 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6213 if (TemplateParamLists.size()) {
6214 Diag(D.getIdentifierLoc(), diag::err_template_typedef);
6215 return nullptr;
6216 }
6217
6218 New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
6219 } else if (R->isFunctionType()) {
6220 New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
6221 TemplateParamLists,
6222 AddToScope);
6223 } else {
6224 New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
6225 AddToScope);
6226 }
6227
6228 if (!New)
6229 return nullptr;
6230
6231 // If this has an identifier and is not a function template specialization,
6232 // add it to the scope stack.
6233 if (New->getDeclName() && AddToScope)
6234 PushOnScopeChains(New, S);
6235
6236 if (isInOpenMPDeclareTargetContext())
6237 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
6238
6239 return New;
6240}
6241
6242/// Helper method to turn variable array types into constant array
6243/// types in certain situations which would otherwise be errors (for
6244/// GCC compatibility).
6245static QualType TryToFixInvalidVariablyModifiedType(QualType T,
6246 ASTContext &Context,
6247 bool &SizeIsNegative,
6248 llvm::APSInt &Oversized) {
6249 // This method tries to turn a variable array into a constant
6250 // array even when the size isn't an ICE. This is necessary
6251 // for compatibility with code that depends on gcc's buggy
6252 // constant expression folding, like struct {char x[(int)(char*)2];}
6253 SizeIsNegative = false;
6254 Oversized = 0;
6255
6256 if (T->isDependentType())
6257 return QualType();
6258
6259 QualifierCollector Qs;
6260 const Type *Ty = Qs.strip(T);
6261
6262 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
6263 QualType Pointee = PTy->getPointeeType();
6264 QualType FixedType =
6265 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
6266 Oversized);
6267 if (FixedType.isNull()) return FixedType;
6268 FixedType = Context.getPointerType(FixedType);
6269 return Qs.apply(Context, FixedType);
6270 }
6271 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
6272 QualType Inner = PTy->getInnerType();
6273 QualType FixedType =
6274 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
6275 Oversized);
6276 if (FixedType.isNull()) return FixedType;
6277 FixedType = Context.getParenType(FixedType);
6278 return Qs.apply(Context, FixedType);
6279 }
6280
6281 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
6282 if (!VLATy)
6283 return QualType();
6284
6285 QualType ElemTy = VLATy->getElementType();
6286 if (ElemTy->isVariablyModifiedType()) {
6287 ElemTy = TryToFixInvalidVariablyModifiedType(ElemTy, Context,
6288 SizeIsNegative, Oversized);
6289 if (ElemTy.isNull())
6290 return QualType();
6291 }
6292
6293 Expr::EvalResult Result;
6294 if (!VLATy->getSizeExpr() ||
6295 !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
6296 return QualType();
6297
6298 llvm::APSInt Res = Result.Val.getInt();
6299
6300 // Check whether the array size is negative.
6301 if (Res.isSigned() && Res.isNegative()) {
6302 SizeIsNegative = true;
6303 return QualType();
6304 }
6305
6306 // Check whether the array is too large to be addressed.
6307 unsigned ActiveSizeBits =
6308 (!ElemTy->isDependentType() && !ElemTy->isVariablyModifiedType() &&
6309 !ElemTy->isIncompleteType() && !ElemTy->isUndeducedType())
6310 ? ConstantArrayType::getNumAddressingBits(Context, ElemTy, Res)
6311 : Res.getActiveBits();
6312 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
6313 Oversized = Res;
6314 return QualType();
6315 }
6316
6317 QualType FoldedArrayType = Context.getConstantArrayType(
6318 ElemTy, Res, VLATy->getSizeExpr(), ArrayType::Normal, 0);
6319 return Qs.apply(Context, FoldedArrayType);
6320}
6321
6322static void
6323FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
6324 SrcTL = SrcTL.getUnqualifiedLoc();
6325 DstTL = DstTL.getUnqualifiedLoc();
6326 if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
6327 PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
6328 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
6329 DstPTL.getPointeeLoc());
6330 DstPTL.setStarLoc(SrcPTL.getStarLoc());
6331 return;
6332 }
6333 if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
6334 ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
6335 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
6336 DstPTL.getInnerLoc());
6337 DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
6338 DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
6339 return;
6340 }
6341 ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
6342 ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
6343 TypeLoc SrcElemTL = SrcATL.getElementLoc();
6344 TypeLoc DstElemTL = DstATL.getElementLoc();
6345 if (VariableArrayTypeLoc SrcElemATL =
6346 SrcElemTL.getAs<VariableArrayTypeLoc>()) {
6347 ConstantArrayTypeLoc DstElemATL = DstElemTL.castAs<ConstantArrayTypeLoc>();
6348 FixInvalidVariablyModifiedTypeLoc(SrcElemATL, DstElemATL);
6349 } else {
6350 DstElemTL.initializeFullCopy(SrcElemTL);
6351 }
6352 DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
6353 DstATL.setSizeExpr(SrcATL.getSizeExpr());
6354 DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
6355}
6356
6357/// Helper method to turn variable array types into constant array
6358/// types in certain situations which would otherwise be errors (for
6359/// GCC compatibility).
6360static TypeSourceInfo*
6361TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
6362 ASTContext &Context,
6363 bool &SizeIsNegative,
6364 llvm::APSInt &Oversized) {
6365 QualType FixedTy
6366 = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
6367 SizeIsNegative, Oversized);
6368 if (FixedTy.isNull())
6369 return nullptr;
6370 TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
6371 FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
6372 FixedTInfo->getTypeLoc());
6373 return FixedTInfo;
6374}
6375
6376/// Attempt to fold a variable-sized type to a constant-sized type, returning
6377/// true if we were successful.
6378bool Sema::tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo,
6379 QualType &T, SourceLocation Loc,
6380 unsigned FailedFoldDiagID) {
6381 bool SizeIsNegative;
6382 llvm::APSInt Oversized;
6383 TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
6384 TInfo, Context, SizeIsNegative, Oversized);
6385 if (FixedTInfo) {
6386 Diag(Loc, diag::ext_vla_folded_to_constant);
6387 TInfo = FixedTInfo;
6388 T = FixedTInfo->getType();
6389 return true;
6390 }
6391
6392 if (SizeIsNegative)
6393 Diag(Loc, diag::err_typecheck_negative_array_size);
6394 else if (Oversized.getBoolValue())
6395 Diag(Loc, diag::err_array_too_large) << toString(Oversized, 10);
6396 else if (FailedFoldDiagID)
6397 Diag(Loc, FailedFoldDiagID);
6398 return false;
6399}
6400
6401/// Register the given locally-scoped extern "C" declaration so
6402/// that it can be found later for redeclarations. We include any extern "C"
6403/// declaration that is not visible in the translation unit here, not just
6404/// function-scope declarations.
6405void
6406Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
6407 if (!getLangOpts().CPlusPlus &&
6408 ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
6409 // Don't need to track declarations in the TU in C.
6410 return;
6411
6412 // Note that we have a locally-scoped external with this name.
6413 Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
6414}
6415
6416NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
6417 // FIXME: We can have multiple results via __attribute__((overloadable)).
6418 auto Result = Context.getExternCContextDecl()->lookup(Name);
6419 return Result.empty() ? nullptr : *Result.begin();
6420}
6421
6422/// Diagnose function specifiers on a declaration of an identifier that
6423/// does not identify a function.
6424void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
6425 // FIXME: We should probably indicate the identifier in question to avoid
6426 // confusion for constructs like "virtual int a(), b;"
6427 if (DS.isVirtualSpecified())
6428 Diag(DS.getVirtualSpecLoc(),
6429 diag::err_virtual_non_function);
6430
6431 if (DS.hasExplicitSpecifier())
6432 Diag(DS.getExplicitSpecLoc(),
6433 diag::err_explicit_non_function);
6434
6435 if (DS.isNoreturnSpecified())
6436 Diag(DS.getNoreturnSpecLoc(),
6437 diag::err_noreturn_non_function);
6438}
6439
6440NamedDecl*
6441Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
6442 TypeSourceInfo *TInfo, LookupResult &Previous) {
6443 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
6444 if (D.getCXXScopeSpec().isSet()) {
6445 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
6446 << D.getCXXScopeSpec().getRange();
6447 D.setInvalidType();
6448 // Pretend we didn't see the scope specifier.
6449 DC = CurContext;
6450 Previous.clear();
6451 }
6452
6453 DiagnoseFunctionSpecifiers(D.getDeclSpec());
6454
6455 if (D.getDeclSpec().isInlineSpecified())
6456 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
6457 << getLangOpts().CPlusPlus17;
6458 if (D.getDeclSpec().hasConstexprSpecifier())
6459 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6460 << 1 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
6461
6462 if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) {
6463 if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName)
6464 Diag(D.getName().StartLocation,
6465 diag::err_deduction_guide_invalid_specifier)
6466 << "typedef";
6467 else
6468 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
6469 << D.getName().getSourceRange();
6470 return nullptr;
6471 }
6472
6473 TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
6474 if (!NewTD) return nullptr;
6475
6476 // Handle attributes prior to checking for duplicates in MergeVarDecl
6477 ProcessDeclAttributes(S, NewTD, D);
6478
6479 CheckTypedefForVariablyModifiedType(S, NewTD);
6480
6481 bool Redeclaration = D.isRedeclaration();
6482 NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
6483 D.setRedeclaration(Redeclaration);
6484 return ND;
6485}
6486
6487void
6488Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
6489 // C99 6.7.7p2: If a typedef name specifies a variably modified type
6490 // then it shall have block scope.
6491 // Note that variably modified types must be fixed before merging the decl so
6492 // that redeclarations will match.
6493 TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
6494 QualType T = TInfo->getType();
6495 if (T->isVariablyModifiedType()) {
6496 setFunctionHasBranchProtectedScope();
6497
6498 if (S->getFnParent() == nullptr) {
6499 bool SizeIsNegative;
6500 llvm::APSInt Oversized;
6501 TypeSourceInfo *FixedTInfo =
6502 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
6503 SizeIsNegative,
6504 Oversized);
6505 if (FixedTInfo) {
6506 Diag(NewTD->getLocation(), diag::ext_vla_folded_to_constant);
6507 NewTD->setTypeSourceInfo(FixedTInfo);
6508 } else {
6509 if (SizeIsNegative)
6510 Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
6511 else if (T->isVariableArrayType())
6512 Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
6513 else if (Oversized.getBoolValue())
6514 Diag(NewTD->getLocation(), diag::err_array_too_large)
6515 << toString(Oversized, 10);
6516 else
6517 Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
6518 NewTD->setInvalidDecl();
6519 }
6520 }
6521 }
6522}
6523
6524/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
6525/// declares a typedef-name, either using the 'typedef' type specifier or via
6526/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
6527NamedDecl*
6528Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
6529 LookupResult &Previous, bool &Redeclaration) {
6530
6531 // Find the shadowed declaration before filtering for scope.
6532 NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
6533
6534 // Merge the decl with the existing one if appropriate. If the decl is
6535 // in an outer scope, it isn't the same thing.
6536 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
6537 /*AllowInlineNamespace*/false);
6538 filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
6539 if (!Previous.empty()) {
6540 Redeclaration = true;
6541 MergeTypedefNameDecl(S, NewTD, Previous);
6542 } else {
6543 inferGslPointerAttribute(NewTD);
6544 }
6545
6546 if (ShadowedDecl && !Redeclaration)
6547 CheckShadow(NewTD, ShadowedDecl, Previous);
6548
6549 // If this is the C FILE type, notify the AST context.
6550 if (IdentifierInfo *II = NewTD->getIdentifier())
6551 if (!NewTD->isInvalidDecl() &&
6552 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6553 if (II->isStr("FILE"))
6554 Context.setFILEDecl(NewTD);
6555 else if (II->isStr("jmp_buf"))
6556 Context.setjmp_bufDecl(NewTD);
6557 else if (II->isStr("sigjmp_buf"))
6558 Context.setsigjmp_bufDecl(NewTD);
6559 else if (II->isStr("ucontext_t"))
6560 Context.setucontext_tDecl(NewTD);
6561 }
6562
6563 return NewTD;
6564}
6565
6566/// Determines whether the given declaration is an out-of-scope
6567/// previous declaration.
6568///
6569/// This routine should be invoked when name lookup has found a
6570/// previous declaration (PrevDecl) that is not in the scope where a
6571/// new declaration by the same name is being introduced. If the new
6572/// declaration occurs in a local scope, previous declarations with
6573/// linkage may still be considered previous declarations (C99
6574/// 6.2.2p4-5, C++ [basic.link]p6).
6575///
6576/// \param PrevDecl the previous declaration found by name
6577/// lookup
6578///
6579/// \param DC the context in which the new declaration is being
6580/// declared.
6581///
6582/// \returns true if PrevDecl is an out-of-scope previous declaration
6583/// for a new delcaration with the same name.
6584static bool
6585isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
6586 ASTContext &Context) {
6587 if (!PrevDecl)
6588 return false;
6589
6590 if (!PrevDecl->hasLinkage())
6591 return false;
6592
6593 if (Context.getLangOpts().CPlusPlus) {
6594 // C++ [basic.link]p6:
6595 // If there is a visible declaration of an entity with linkage
6596 // having the same name and type, ignoring entities declared
6597 // outside the innermost enclosing namespace scope, the block
6598 // scope declaration declares that same entity and receives the
6599 // linkage of the previous declaration.
6600 DeclContext *OuterContext = DC->getRedeclContext();
6601 if (!OuterContext->isFunctionOrMethod())
6602 // This rule only applies to block-scope declarations.
6603 return false;
6604
6605 DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
6606 if (PrevOuterContext->isRecord())
6607 // We found a member function: ignore it.
6608 return false;
6609
6610 // Find the innermost enclosing namespace for the new and
6611 // previous declarations.
6612 OuterContext = OuterContext->getEnclosingNamespaceContext();
6613 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
6614
6615 // The previous declaration is in a different namespace, so it
6616 // isn't the same function.
6617 if (!OuterContext->Equals(PrevOuterContext))
6618 return false;
6619 }
6620
6621 return true;
6622}
6623
6624static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) {
6625 CXXScopeSpec &SS = D.getCXXScopeSpec();
6626 if (!SS.isSet()) return;
6627 DD->setQualifierInfo(SS.getWithLocInContext(S.Context));
6628}
6629
6630bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
6631 QualType type = decl->getType();
6632 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
6633 if (lifetime == Qualifiers::OCL_Autoreleasing) {
6634 // Various kinds of declaration aren't allowed to be __autoreleasing.
6635 unsigned kind = -1U;
6636 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6637 if (var->hasAttr<BlocksAttr>())
6638 kind = 0; // __block
6639 else if (!var->hasLocalStorage())
6640 kind = 1; // global
6641 } else if (isa<ObjCIvarDecl>(decl)) {
6642 kind = 3; // ivar
6643 } else if (isa<FieldDecl>(decl)) {
6644 kind = 2; // field
6645 }
6646
6647 if (kind != -1U) {
6648 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
6649 << kind;
6650 }
6651 } else if (lifetime == Qualifiers::OCL_None) {
6652 // Try to infer lifetime.
6653 if (!type->isObjCLifetimeType())
6654 return false;
6655
6656 lifetime = type->getObjCARCImplicitLifetime();
6657 type = Context.getLifetimeQualifiedType(type, lifetime);
6658 decl->setType(type);
6659 }
6660
6661 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6662 // Thread-local variables cannot have lifetime.
6663 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
6664 var->getTLSKind()) {
6665 Diag(var->getLocation(), diag::err_arc_thread_ownership)
6666 << var->getType();
6667 return true;
6668 }
6669 }
6670
6671 return false;
6672}
6673
6674void Sema::deduceOpenCLAddressSpace(ValueDecl *Decl) {
6675 if (Decl->getType().hasAddressSpace())
6676 return;
6677 if (Decl->getType()->isDependentType())
6678 return;
6679 if (VarDecl *Var = dyn_cast<VarDecl>(Decl)) {
6680 QualType Type = Var->getType();
6681 if (Type->isSamplerT() || Type->isVoidType())
6682 return;
6683 LangAS ImplAS = LangAS::opencl_private;
6684 // OpenCL C v3.0 s6.7.8 - For OpenCL C 2.0 or with the
6685 // __opencl_c_program_scope_global_variables feature, the address space
6686 // for a variable at program scope or a static or extern variable inside
6687 // a function are inferred to be __global.
6688 if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()) &&
6689 Var->hasGlobalStorage())
6690 ImplAS = LangAS::opencl_global;
6691 // If the original type from a decayed type is an array type and that array
6692 // type has no address space yet, deduce it now.
6693 if (auto DT = dyn_cast<DecayedType>(Type)) {
6694 auto OrigTy = DT->getOriginalType();
6695 if (!OrigTy.hasAddressSpace() && OrigTy->isArrayType()) {
6696 // Add the address space to the original array type and then propagate
6697 // that to the element type through `getAsArrayType`.
6698 OrigTy = Context.getAddrSpaceQualType(OrigTy, ImplAS);
6699 OrigTy = QualType(Context.getAsArrayType(OrigTy), 0);
6700 // Re-generate the decayed type.
6701 Type = Context.getDecayedType(OrigTy);
6702 }
6703 }
6704 Type = Context.getAddrSpaceQualType(Type, ImplAS);
6705 // Apply any qualifiers (including address space) from the array type to
6706 // the element type. This implements C99 6.7.3p8: "If the specification of
6707 // an array type includes any type qualifiers, the element type is so
6708 // qualified, not the array type."
6709 if (Type->isArrayType())
6710 Type = QualType(Context.getAsArrayType(Type), 0);
6711 Decl->setType(Type);
6712 }
6713}
6714
6715static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
6716 // Ensure that an auto decl is deduced otherwise the checks below might cache
6717 // the wrong linkage.
6718 assert(S.ParsingInitForAutoVars.count(&ND) == 0)(static_cast <bool> (S.ParsingInitForAutoVars.count(&
ND) == 0) ? void (0) : __assert_fail ("S.ParsingInitForAutoVars.count(&ND) == 0"
, "clang/lib/Sema/SemaDecl.cpp", 6718, __extension__ __PRETTY_FUNCTION__
))
;
6719
6720 // 'weak' only applies to declarations with external linkage.
6721 if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
6722 if (!ND.isExternallyVisible()) {
6723 S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
6724 ND.dropAttr<WeakAttr>();
6725 }
6726 }
6727 if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
6728 if (ND.isExternallyVisible()) {
6729 S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
6730 ND.dropAttr<WeakRefAttr>();
6731 ND.dropAttr<AliasAttr>();
6732 }
6733 }
6734
6735 if (auto *VD = dyn_cast<VarDecl>(&ND)) {
6736 if (VD->hasInit()) {
6737 if (const auto *Attr = VD->getAttr<AliasAttr>()) {
6738 assert(VD->isThisDeclarationADefinition() &&(static_cast <bool> (VD->isThisDeclarationADefinition
() && !VD->isExternallyVisible() && "Broken AliasAttr handled late!"
) ? void (0) : __assert_fail ("VD->isThisDeclarationADefinition() && !VD->isExternallyVisible() && \"Broken AliasAttr handled late!\""
, "clang/lib/Sema/SemaDecl.cpp", 6739, __extension__ __PRETTY_FUNCTION__
))
6739 !VD->isExternallyVisible() && "Broken AliasAttr handled late!")(static_cast <bool> (VD->isThisDeclarationADefinition
() && !VD->isExternallyVisible() && "Broken AliasAttr handled late!"
) ? void (0) : __assert_fail ("VD->isThisDeclarationADefinition() && !VD->isExternallyVisible() && \"Broken AliasAttr handled late!\""
, "clang/lib/Sema/SemaDecl.cpp", 6739, __extension__ __PRETTY_FUNCTION__
))
;
6740 S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
6741 VD->dropAttr<AliasAttr>();
6742 }
6743 }
6744 }
6745
6746 // 'selectany' only applies to externally visible variable declarations.
6747 // It does not apply to functions.
6748 if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
6749 if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
6750 S.Diag(Attr->getLocation(),
6751 diag::err_attribute_selectany_non_extern_data);
6752 ND.dropAttr<SelectAnyAttr>();
6753 }
6754 }
6755
6756 if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
6757 auto *VD = dyn_cast<VarDecl>(&ND);
6758 bool IsAnonymousNS = false;
6759 bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6760 if (VD) {
6761 const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext());
6762 while (NS && !IsAnonymousNS) {
6763 IsAnonymousNS = NS->isAnonymousNamespace();
6764 NS = dyn_cast<NamespaceDecl>(NS->getParent());
6765 }
6766 }
6767 // dll attributes require external linkage. Static locals may have external
6768 // linkage but still cannot be explicitly imported or exported.
6769 // In Microsoft mode, a variable defined in anonymous namespace must have
6770 // external linkage in order to be exported.
6771 bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft;
6772 if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) ||
6773 (!AnonNSInMicrosoftMode &&
6774 (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) {
6775 S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
6776 << &ND << Attr;
6777 ND.setInvalidDecl();
6778 }
6779 }
6780
6781 // Check the attributes on the function type, if any.
6782 if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
6783 // Don't declare this variable in the second operand of the for-statement;
6784 // GCC miscompiles that by ending its lifetime before evaluating the
6785 // third operand. See gcc.gnu.org/PR86769.
6786 AttributedTypeLoc ATL;
6787 for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc();
6788 (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6789 TL = ATL.getModifiedLoc()) {
6790 // The [[lifetimebound]] attribute can be applied to the implicit object
6791 // parameter of a non-static member function (other than a ctor or dtor)
6792 // by applying it to the function type.
6793 if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) {
6794 const auto *MD = dyn_cast<CXXMethodDecl>(FD);
6795 if (!MD || MD->isStatic()) {
6796 S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param)
6797 << !MD << A->getRange();
6798 } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) {
6799 S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor)
6800 << isa<CXXDestructorDecl>(MD) << A->getRange();
6801 }
6802 }
6803 }
6804 }
6805}
6806
6807static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
6808 NamedDecl *NewDecl,
6809 bool IsSpecialization,
6810 bool IsDefinition) {
6811 if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
6812 return;
6813
6814 bool IsTemplate = false;
6815 if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
6816 OldDecl = OldTD->getTemplatedDecl();
6817 IsTemplate = true;
6818 if (!IsSpecialization)
6819 IsDefinition = false;
6820 }
6821 if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
6822 NewDecl = NewTD->getTemplatedDecl();
6823 IsTemplate = true;
6824 }
6825
6826 if (!OldDecl || !NewDecl)
6827 return;
6828
6829 const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
6830 const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
6831 const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
6832 const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
6833
6834 // dllimport and dllexport are inheritable attributes so we have to exclude
6835 // inherited attribute instances.
6836 bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
6837 (NewExportAttr && !NewExportAttr->isInherited());
6838
6839 // A redeclaration is not allowed to add a dllimport or dllexport attribute,
6840 // the only exception being explicit specializations.
6841 // Implicitly generated declarations are also excluded for now because there
6842 // is no other way to switch these to use dllimport or dllexport.
6843 bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
6844
6845 if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
6846 // Allow with a warning for free functions and global variables.
6847 bool JustWarn = false;
6848 if (!OldDecl->isCXXClassMember()) {
6849 auto *VD = dyn_cast<VarDecl>(OldDecl);
6850 if (VD && !VD->getDescribedVarTemplate())
6851 JustWarn = true;
6852 auto *FD = dyn_cast<FunctionDecl>(OldDecl);
6853 if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
6854 JustWarn = true;
6855 }
6856
6857 // We cannot change a declaration that's been used because IR has already
6858 // been emitted. Dllimported functions will still work though (modulo
6859 // address equality) as they can use the thunk.
6860 if (OldDecl->isUsed())
6861 if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
6862 JustWarn = false;
6863
6864 unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
6865 : diag::err_attribute_dll_redeclaration;
6866 S.Diag(NewDecl->getLocation(), DiagID)
6867 << NewDecl
6868 << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
6869 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6870 if (!JustWarn) {
6871 NewDecl->setInvalidDecl();
6872 return;
6873 }
6874 }
6875
6876 // A redeclaration is not allowed to drop a dllimport attribute, the only
6877 // exceptions being inline function definitions (except for function
6878 // templates), local extern declarations, qualified friend declarations or
6879 // special MSVC extension: in the last case, the declaration is treated as if
6880 // it were marked dllexport.
6881 bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
6882 bool IsMicrosoftABI = S.Context.getTargetInfo().shouldDLLImportComdatSymbols();
6883 if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
6884 // Ignore static data because out-of-line definitions are diagnosed
6885 // separately.
6886 IsStaticDataMember = VD->isStaticDataMember();
6887 IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
6888 VarDecl::DeclarationOnly;
6889 } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
6890 IsInline = FD->isInlined();
6891 IsQualifiedFriend = FD->getQualifier() &&
6892 FD->getFriendObjectKind() == Decl::FOK_Declared;
6893 }
6894
6895 if (OldImportAttr && !HasNewAttr &&
6896 (!IsInline || (IsMicrosoftABI && IsTemplate)) && !IsStaticDataMember &&
6897 !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
6898 if (IsMicrosoftABI && IsDefinition) {
6899 S.Diag(NewDecl->getLocation(),
6900 diag::warn_redeclaration_without_import_attribute)
6901 << NewDecl;
6902 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6903 NewDecl->dropAttr<DLLImportAttr>();
6904 NewDecl->addAttr(
6905 DLLExportAttr::CreateImplicit(S.Context, NewImportAttr->getRange()));
6906 } else {
6907 S.Diag(NewDecl->getLocation(),
6908 diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6909 << NewDecl << OldImportAttr;
6910 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6911 S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
6912 OldDecl->dropAttr<DLLImportAttr>();
6913 NewDecl->dropAttr<DLLImportAttr>();
6914 }
6915 } else if (IsInline && OldImportAttr && !IsMicrosoftABI) {
6916 // In MinGW, seeing a function declared inline drops the dllimport
6917 // attribute.
6918 OldDecl->dropAttr<DLLImportAttr>();
6919 NewDecl->dropAttr<DLLImportAttr>();
6920 S.Diag(NewDecl->getLocation(),
6921 diag::warn_dllimport_dropped_from_inline_function)
6922 << NewDecl << OldImportAttr;
6923 }
6924
6925 // A specialization of a class template member function is processed here
6926 // since it's a redeclaration. If the parent class is dllexport, the
6927 // specialization inherits that attribute. This doesn't happen automatically
6928 // since the parent class isn't instantiated until later.
6929 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
6930 if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
6931 !NewImportAttr && !NewExportAttr) {
6932 if (const DLLExportAttr *ParentExportAttr =
6933 MD->getParent()->getAttr<DLLExportAttr>()) {
6934 DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
6935 NewAttr->setInherited(true);
6936 NewDecl->addAttr(NewAttr);
6937 }
6938 }
6939 }
6940}
6941
6942/// Given that we are within the definition of the given function,
6943/// will that definition behave like C99's 'inline', where the
6944/// definition is discarded except for optimization purposes?
6945static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
6946 // Try to avoid calling GetGVALinkageForFunction.
6947
6948 // All cases of this require the 'inline' keyword.
6949 if (!FD->isInlined()) return false;
6950
6951 // This is only possible in C++ with the gnu_inline attribute.
6952 if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
6953 return false;
6954
6955 // Okay, go ahead and call the relatively-more-expensive function.
6956 return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
6957}
6958
6959/// Determine whether a variable is extern "C" prior to attaching
6960/// an initializer. We can't just call isExternC() here, because that
6961/// will also compute and cache whether the declaration is externally
6962/// visible, which might change when we attach the initializer.
6963///
6964/// This can only be used if the declaration is known to not be a
6965/// redeclaration of an internal linkage declaration.
6966///
6967/// For instance:
6968///
6969/// auto x = []{};
6970///
6971/// Attaching the initializer here makes this declaration not externally
6972/// visible, because its type has internal linkage.
6973///
6974/// FIXME: This is a hack.
6975template<typename T>
6976static bool isIncompleteDeclExternC(Sema &S, const T *D) {
6977 if (S.getLangOpts().CPlusPlus) {
6978 // In C++, the overloadable attribute negates the effects of extern "C".
6979 if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
6980 return false;
6981
6982 // So do CUDA's host/device attributes.
6983 if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
6984 D->template hasAttr<CUDAHostAttr>()))
6985 return false;
6986 }
6987 return D->isExternC();
6988}
6989
6990static bool shouldConsiderLinkage(const VarDecl *VD) {
6991 const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
6992 if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) ||
6993 isa<OMPDeclareMapperDecl>(DC))
6994 return VD->hasExternalStorage();
6995 if (DC->isFileContext())
6996 return true;
6997 if (DC->isRecord())
6998 return false;
6999 if (isa<RequiresExprBodyDecl>(DC))
7000 return false;
7001 llvm_unreachable("Unexpected context")::llvm::llvm_unreachable_internal("Unexpected context", "clang/lib/Sema/SemaDecl.cpp"
, 7001)
;
7002}
7003
7004static bool shouldConsiderLinkage(const FunctionDecl *FD) {
7005 const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
7006 if (DC->isFileContext() || DC->isFunctionOrMethod() ||
7007 isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC))
7008 return true;
7009 if (DC->isRecord())
7010 return false;
7011 llvm_unreachable("Unexpected context")::llvm::llvm_unreachable_internal("Unexpected context", "clang/lib/Sema/SemaDecl.cpp"
, 7011)
;
7012}
7013
7014static bool hasParsedAttr(Scope *S, const Declarator &PD,
7015 ParsedAttr::Kind Kind) {
7016 // Check decl attributes on the DeclSpec.
7017 if (PD.getDeclSpec().getAttributes().hasAttribute(Kind))
7018 return true;
7019
7020 // Walk the declarator structure, checking decl attributes that were in a type
7021 // position to the decl itself.
7022 for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
7023 if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind))
7024 return true;
7025 }
7026
7027 // Finally, check attributes on the decl itself.
7028 return PD.getAttributes().hasAttribute(Kind);
7029}
7030
7031/// Adjust the \c DeclContext for a function or variable that might be a
7032/// function-local external declaration.
7033bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
7034 if (!DC->isFunctionOrMethod())
7035 return false;
7036
7037 // If this is a local extern function or variable declared within a function
7038 // template, don't add it into the enclosing namespace scope until it is
7039 // instantiated; it might have a dependent type right now.
7040 if (DC->isDependentContext())
7041 return true;
7042
7043 // C++11 [basic.link]p7:
7044 // When a block scope declaration of an entity with linkage is not found to
7045 // refer to some other declaration, then that entity is a member of the
7046 // innermost enclosing namespace.
7047 //
7048 // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
7049 // semantically-enclosing namespace, not a lexically-enclosing one.
7050 while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
7051 DC = DC->getParent();
7052 return true;
7053}
7054
7055/// Returns true if given declaration has external C language linkage.
7056static bool isDeclExternC(const Decl *D) {
7057 if (const auto *FD = dyn_cast<FunctionDecl>(D))
7058 return FD->isExternC();
7059 if (const auto *VD = dyn_cast<VarDecl>(D))
7060 return VD->isExternC();
7061
7062 llvm_unreachable("Unknown type of decl!")::llvm::llvm_unreachable_internal("Unknown type of decl!", "clang/lib/Sema/SemaDecl.cpp"
, 7062)
;
7063}
7064
7065/// Returns true if there hasn't been any invalid type diagnosed.
7066static bool diagnoseOpenCLTypes(Sema &Se, VarDecl *NewVD) {
7067 DeclContext *DC = NewVD->getDeclContext();
7068 QualType R = NewVD->getType();
7069
7070 // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
7071 // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
7072 // argument.
7073 if (R->isImageType() || R->isPipeType()) {
7074 Se.Diag(NewVD->getLocation(),
7075 diag::err_opencl_type_can_only_be_used_as_function_parameter)
7076 << R;
7077 NewVD->setInvalidDecl();
7078 return false;
7079 }
7080
7081 // OpenCL v1.2 s6.9.r:
7082 // The event type cannot be used to declare a program scope variable.
7083 // OpenCL v2.0 s6.9.q:
7084 // The clk_event_t and reserve_id_t types cannot be declared in program
7085 // scope.
7086 if (NewVD->hasGlobalStorage() && !NewVD->isStaticLocal()) {
7087 if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
7088 Se.Diag(NewVD->getLocation(),
7089 diag::err_invalid_type_for_program_scope_var)
7090 << R;
7091 NewVD->setInvalidDecl();
7092 return false;
7093 }
7094 }
7095
7096 // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
7097 if (!Se.getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
7098 Se.getLangOpts())) {
7099 QualType NR = R.getCanonicalType();
7100 while (NR->isPointerType() || NR->isMemberFunctionPointerType() ||
7101 NR->isReferenceType()) {
7102 if (NR->isFunctionPointerType() || NR->isMemberFunctionPointerType() ||
7103 NR->isFunctionReferenceType()) {
7104 Se.Diag(NewVD->getLocation(), diag::err_opencl_function_pointer)
7105 << NR->isReferenceType();
7106 NewVD->setInvalidDecl();
7107 return false;
7108 }
7109 NR = NR->getPointeeType();
7110 }
7111 }
7112
7113 if (!Se.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
7114 Se.getLangOpts())) {
7115 // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
7116 // half array type (unless the cl_khr_fp16 extension is enabled).
7117 if (Se.Context.getBaseElementType(R)->isHalfType()) {
7118 Se.Diag(NewVD->getLocation(), diag::err_opencl_half_declaration) << R;
7119 NewVD->setInvalidDecl();
7120 return false;
7121 }
7122 }
7123
7124 // OpenCL v1.2 s6.9.r:
7125 // The event type cannot be used with the __local, __constant and __global
7126 // address space qualifiers.
7127 if (R->isEventT()) {
7128 if (R.getAddressSpace() != LangAS::opencl_private) {
7129 Se.Diag(NewVD->getBeginLoc(), diag::err_event_t_addr_space_qual);
7130 NewVD->setInvalidDecl();
7131 return false;
7132 }
7133 }
7134
7135 if (R->isSamplerT()) {
7136 // OpenCL v1.2 s6.9.b p4:
7137 // The sampler type cannot be used with the __local and __global address
7138 // space qualifiers.
7139 if (R.getAddressSpace() == LangAS::opencl_local ||
7140 R.getAddressSpace() == LangAS::opencl_global) {
7141 Se.Diag(NewVD->getLocation(), diag::err_wrong_sampler_addressspace);
7142 NewVD->setInvalidDecl();
7143 }
7144
7145 // OpenCL v1.2 s6.12.14.1:
7146 // A global sampler must be declared with either the constant address
7147 // space qualifier or with the const qualifier.
7148 if (DC->isTranslationUnit() &&
7149 !(R.getAddressSpace() == LangAS::opencl_constant ||
7150 R.isConstQualified())) {
7151 Se.Diag(NewVD->getLocation(), diag::err_opencl_nonconst_global_sampler);
7152 NewVD->setInvalidDecl();
7153 }
7154 if (NewVD->isInvalidDecl())
7155 return false;
7156 }
7157
7158 return true;
7159}
7160
7161template <typename AttrTy>
7162static void copyAttrFromTypedefToDecl(Sema &S, Decl *D, const TypedefType *TT) {
7163 const TypedefNameDecl *TND = TT->getDecl();
7164 if (const auto *Attribute = TND->getAttr<AttrTy>()) {
7165 AttrTy *Clone = Attribute->clone(S.Context);
7166 Clone->setInherited(true);
7167 D->addAttr(Clone);
7168 }
7169}
7170
7171NamedDecl *Sema::ActOnVariableDeclarator(
7172 Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
7173 LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
7174 bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
7175 QualType R = TInfo->getType();
7176 DeclarationName Name = GetNameForDeclarator(D).getName();
7177
7178 IdentifierInfo *II = Name.getAsIdentifierInfo();
7179
7180 if (D.isDecompositionDeclarator()) {
7181 // Take the name of the first declarator as our name for diagnostic
7182 // purposes.
7183 auto &Decomp = D.getDecompositionDeclarator();
7184 if (!Decomp.bindings().empty()) {
7185 II = Decomp.bindings()[0].Name;
7186 Name = II;
7187 }
7188 } else if (!II) {
7189 Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
7190 return nullptr;
7191 }
7192
7193
7194 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
7195 StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
7196
7197 // dllimport globals without explicit storage class are treated as extern. We
7198 // have to change the storage class this early to get the right DeclContext.
7199 if (SC == SC_None && !DC->isRecord() &&
7200 hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) &&
7201 !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport))
7202 SC = SC_Extern;
7203
7204 DeclContext *OriginalDC = DC;
7205 bool IsLocalExternDecl = SC == SC_Extern &&
7206 adjustContextForLocalExternDecl(DC);
7207
7208 if (SCSpec == DeclSpec::SCS_mutable) {
7209 // mutable can only appear on non-static class members, so it's always
7210 // an error here
7211 Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
7212 D.setInvalidType();
7213 SC = SC_None;
7214 }
7215
7216 if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
7217 !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
7218 D.getDeclSpec().getStorageClassSpecLoc())) {
7219 // In C++11, the 'register' storage class specifier is deprecated.
7220 // Suppress the warning in system macros, it's used in macros in some
7221 // popular C system headers, such as in glibc's htonl() macro.
7222 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7223 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
7224 : diag::warn_deprecated_register)
7225 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7226 }
7227
7228 DiagnoseFunctionSpecifiers(D.getDeclSpec());
7229
7230 if (!DC->isRecord() && S->getFnParent() == nullptr) {
7231 // C99 6.9p2: The storage-class specifiers auto and register shall not
7232 // appear in the declaration specifiers in an external declaration.
7233 // Global Register+Asm is a GNU extension we support.
7234 if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
7235 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
7236 D.setInvalidType();
7237 }
7238 }
7239
7240 // If this variable has a VLA type and an initializer, try to
7241 // fold to a constant-sized type. This is otherwise invalid.
7242 if (D.hasInitializer() && R->isVariableArrayType())
7243 tryToFixVariablyModifiedVarType(TInfo, R, D.getIdentifierLoc(),
7244 /*DiagID=*/0);
7245
7246 bool IsMemberSpecialization = false;
7247 bool IsVariableTemplateSpecialization = false;
7248 bool IsPartialSpecialization = false;
7249 bool IsVariableTemplate = false;
7250 VarDecl *NewVD = nullptr;
7251 VarTemplateDecl *NewTemplate = nullptr;
7252 TemplateParameterList *TemplateParams = nullptr;
7253 if (!getLangOpts().CPlusPlus) {
7254 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(),
7255 II, R, TInfo, SC);
7256
7257 if (R->getContainedDeducedType())
7258 ParsingInitForAutoVars.insert(NewVD);
7259
7260 if (D.isInvalidType())
7261 NewVD->setInvalidDecl();
7262
7263 if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() &&
7264 NewVD->hasLocalStorage())
7265 checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(),
7266 NTCUC_AutoVar, NTCUK_Destruct);
7267 } else {
7268 bool Invalid = false;
7269
7270 if (DC->isRecord() && !CurContext->isRecord()) {
7271 // This is an out-of-line definition of a static data member.
7272 switch (SC) {
7273 case SC_None:
7274 break;
7275 case SC_Static:
7276 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7277 diag::err_static_out_of_line)
7278 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7279 break;
7280 case SC_Auto:
7281 case SC_Register:
7282 case SC_Extern:
7283 // [dcl.stc] p2: The auto or register specifiers shall be applied only
7284 // to names of variables declared in a block or to function parameters.
7285 // [dcl.stc] p6: The extern specifier cannot be used in the declaration
7286 // of class members
7287
7288 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7289 diag::err_storage_class_for_static_member)
7290 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7291 break;
7292 case SC_PrivateExtern:
7293 llvm_unreachable("C storage class in c++!")::llvm::llvm_unreachable_internal("C storage class in c++!", "clang/lib/Sema/SemaDecl.cpp"
, 7293)
;
7294 }
7295 }
7296
7297 if (SC == SC_Static && CurContext->isRecord()) {
7298 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
7299 // Walk up the enclosing DeclContexts to check for any that are
7300 // incompatible with static data members.
7301 const DeclContext *FunctionOrMethod = nullptr;
7302 const CXXRecordDecl *AnonStruct = nullptr;
7303 for (DeclContext *Ctxt = DC; Ctxt; Ctxt = Ctxt->getParent()) {
7304 if (Ctxt->isFunctionOrMethod()) {
7305 FunctionOrMethod = Ctxt;
7306 break;
7307 }
7308 const CXXRecordDecl *ParentDecl = dyn_cast<CXXRecordDecl>(Ctxt);
7309 if (ParentDecl && !ParentDecl->getDeclName()) {
7310 AnonStruct = ParentDecl;
7311 break;
7312 }
7313 }
7314 if (FunctionOrMethod) {
7315 // C++ [class.static.data]p5: A local class shall not have static data
7316 // members.
7317 Diag(D.getIdentifierLoc(),
7318 diag::err_static_data_member_not_allowed_in_local_class)
7319 << Name << RD->getDeclName() << RD->getTagKind();
7320 } else if (AnonStruct) {
7321 // C++ [class.static.data]p4: Unnamed classes and classes contained
7322 // directly or indirectly within unnamed classes shall not contain
7323 // static data members.
7324 Diag(D.getIdentifierLoc(),
7325 diag::err_static_data_member_not_allowed_in_anon_struct)
7326 << Name << AnonStruct->getTagKind();
7327 Invalid = true;
7328 } else if (RD->isUnion()) {
7329 // C++98 [class.union]p1: If a union contains a static data member,
7330 // the program is ill-formed. C++11 drops this restriction.
7331 Diag(D.getIdentifierLoc(),
7332 getLangOpts().CPlusPlus11
7333 ? diag::warn_cxx98_compat_static_data_member_in_union
7334 : diag::ext_static_data_member_in_union) << Name;
7335 }
7336 }
7337 }
7338
7339 // Match up the template parameter lists with the scope specifier, then
7340 // determine whether we have a template or a template specialization.
7341 bool InvalidScope = false;
7342 TemplateParams = MatchTemplateParametersToScopeSpecifier(
7343 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
7344 D.getCXXScopeSpec(),
7345 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
7346 ? D.getName().TemplateId
7347 : nullptr,
7348 TemplateParamLists,
7349 /*never a friend*/ false, IsMemberSpecialization, InvalidScope);
7350 Invalid |= InvalidScope;
7351
7352 if (TemplateParams) {
7353 if (!TemplateParams->size() &&
7354 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
7355 // There is an extraneous 'template<>' for this variable. Complain
7356 // about it, but allow the declaration of the variable.
7357 Diag(TemplateParams->getTemplateLoc(),
7358 diag::err_template_variable_noparams)
7359 << II
7360 << SourceRange(TemplateParams->getTemplateLoc(),
7361 TemplateParams->getRAngleLoc());
7362 TemplateParams = nullptr;
7363 } else {
7364 // Check that we can declare a template here.
7365 if (CheckTemplateDeclScope(S, TemplateParams))
7366 return nullptr;
7367
7368 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
7369 // This is an explicit specialization or a partial specialization.
7370 IsVariableTemplateSpecialization = true;
7371 IsPartialSpecialization = TemplateParams->size() > 0;
7372 } else { // if (TemplateParams->size() > 0)
7373 // This is a template declaration.
7374 IsVariableTemplate = true;
7375
7376 // Only C++1y supports variable templates (N3651).
7377 Diag(D.getIdentifierLoc(),
7378 getLangOpts().CPlusPlus14
7379 ? diag::warn_cxx11_compat_variable_template
7380 : diag::ext_variable_template);
7381 }
7382 }
7383 } else {
7384 // Check that we can declare a member specialization here.
7385 if (!TemplateParamLists.empty() && IsMemberSpecialization &&
7386 CheckTemplateDeclScope(S, TemplateParamLists.back()))
7387 return nullptr;
7388 assert((Invalid ||(static_cast <bool> ((Invalid || D.getName().getKind() !=
UnqualifiedIdKind::IK_TemplateId) && "should have a 'template<>' for this decl"
) ? void (0) : __assert_fail ("(Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && \"should have a 'template<>' for this decl\""
, "clang/lib/Sema/SemaDecl.cpp", 7390, __extension__ __PRETTY_FUNCTION__
))
7389 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&(static_cast <bool> ((Invalid || D.getName().getKind() !=
UnqualifiedIdKind::IK_TemplateId) && "should have a 'template<>' for this decl"
) ? void (0) : __assert_fail ("(Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && \"should have a 'template<>' for this decl\""
, "clang/lib/Sema/SemaDecl.cpp", 7390, __extension__ __PRETTY_FUNCTION__
))
7390 "should have a 'template<>' for this decl")(static_cast <bool> ((Invalid || D.getName().getKind() !=
UnqualifiedIdKind::IK_TemplateId) && "should have a 'template<>' for this decl"
) ? void (0) : __assert_fail ("(Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && \"should have a 'template<>' for this decl\""
, "clang/lib/Sema/SemaDecl.cpp", 7390, __extension__ __PRETTY_FUNCTION__
))
;
7391 }
7392
7393 if (IsVariableTemplateSpecialization) {
7394 SourceLocation TemplateKWLoc =
7395 TemplateParamLists.size() > 0
7396 ? TemplateParamLists[0]->getTemplateLoc()
7397 : SourceLocation();
7398 DeclResult Res = ActOnVarTemplateSpecialization(
7399 S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
7400 IsPartialSpecialization);
7401 if (Res.isInvalid())
7402 return nullptr;
7403 NewVD = cast<VarDecl>(Res.get());
7404 AddToScope = false;
7405 } else if (D.isDecompositionDeclarator()) {
7406 NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(),
7407 D.getIdentifierLoc(), R, TInfo, SC,
7408 Bindings);
7409 } else
7410 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(),
7411 D.getIdentifierLoc(), II, R, TInfo, SC);
7412
7413 // If this is supposed to be a variable template, create it as such.
7414 if (IsVariableTemplate) {
7415 NewTemplate =
7416 VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
7417 TemplateParams, NewVD);
7418 NewVD->setDescribedVarTemplate(NewTemplate);
7419 }
7420
7421 // If this decl has an auto type in need of deduction, make a note of the
7422 // Decl so we can diagnose uses of it in its own initializer.
7423 if (R->getContainedDeducedType())
7424 ParsingInitForAutoVars.insert(NewVD);
7425
7426 if (D.isInvalidType() || Invalid) {
7427 NewVD->setInvalidDecl();
7428 if (NewTemplate)
7429 NewTemplate->setInvalidDecl();
7430 }
7431
7432 SetNestedNameSpecifier(*this, NewVD, D);
7433
7434 // If we have any template parameter lists that don't directly belong to
7435 // the variable (matching the scope specifier), store them.
7436 unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
7437 if (TemplateParamLists.size() > VDTemplateParamLists)
7438 NewVD->setTemplateParameterListsInfo(
7439 Context, TemplateParamLists.drop_back(VDTemplateParamLists));
7440 }
7441
7442 if (D.getDeclSpec().isInlineSpecified()) {
7443 if (!getLangOpts().CPlusPlus) {
7444 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
7445 << 0;
7446 } else if (CurContext->isFunctionOrMethod()) {
7447 // 'inline' is not allowed on block scope variable declaration.
7448 Diag(D.getDeclSpec().getInlineSpecLoc(),
7449 diag::err_inline_declaration_block_scope) << Name
7450 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7451 } else {
7452 Diag(D.getDeclSpec().getInlineSpecLoc(),
7453 getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
7454 : diag::ext_inline_variable);
7455 NewVD->setInlineSpecified();
7456 }
7457 }
7458
7459 // Set the lexical context. If the declarator has a C++ scope specifier, the
7460 // lexical context will be different from the semantic context.
7461 NewVD->setLexicalDeclContext(CurContext);
7462 if (NewTemplate)
7463 NewTemplate->setLexicalDeclContext(CurContext);
7464
7465 if (IsLocalExternDecl) {
7466 if (D.isDecompositionDeclarator())
7467 for (auto *B : Bindings)
7468 B->setLocalExternDecl();
7469 else
7470 NewVD->setLocalExternDecl();
7471 }
7472
7473 bool EmitTLSUnsupportedError = false;
7474 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
7475 // C++11 [dcl.stc]p4:
7476 // When thread_local is applied to a variable of block scope the
7477 // storage-class-specifier static is implied if it does not appear
7478 // explicitly.
7479 // Core issue: 'static' is not implied if the variable is declared
7480 // 'extern'.
7481 if (NewVD->hasLocalStorage() &&
7482 (SCSpec != DeclSpec::SCS_unspecified ||
7483 TSCS != DeclSpec::TSCS_thread_local ||
7484 !DC->isFunctionOrMethod()))
7485 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7486 diag::err_thread_non_global)
7487 << DeclSpec::getSpecifierName(TSCS);
7488 else if (!Context.getTargetInfo().isTLSSupported()) {
7489 if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice ||
7490 getLangOpts().SYCLIsDevice) {
7491 // Postpone error emission until we've collected attributes required to
7492 // figure out whether it's a host or device variable and whether the
7493 // error should be ignored.
7494 EmitTLSUnsupportedError = true;
7495 // We still need to mark the variable as TLS so it shows up in AST with
7496 // proper storage class for other tools to use even if we're not going
7497 // to emit any code for it.
7498 NewVD->setTSCSpec(TSCS);
7499 } else
7500 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7501 diag::err_thread_unsupported);
7502 } else
7503 NewVD->setTSCSpec(TSCS);
7504 }
7505
7506 switch (D.getDeclSpec().getConstexprSpecifier()) {
7507 case ConstexprSpecKind::Unspecified:
7508 break;
7509
7510 case ConstexprSpecKind::Consteval:
7511 Diag(D.getDeclSpec().getConstexprSpecLoc(),
7512 diag::err_constexpr_wrong_decl_kind)
7513 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
7514 LLVM_FALLTHROUGH[[gnu::fallthrough]];
7515
7516 case ConstexprSpecKind::Constexpr:
7517 NewVD->setConstexpr(true);
7518 // C++1z [dcl.spec.constexpr]p1:
7519 // A static data member declared with the constexpr specifier is
7520 // implicitly an inline variable.
7521 if (NewVD->isStaticDataMember() &&
7522 (getLangOpts().CPlusPlus17 ||
7523 Context.getTargetInfo().getCXXABI().isMicrosoft()))
7524 NewVD->setImplicitlyInline();
7525 break;
7526
7527 case ConstexprSpecKind::Constinit:
7528 if (!NewVD->hasGlobalStorage())
7529 Diag(D.getDeclSpec().getConstexprSpecLoc(),
7530 diag::err_constinit_local_variable);
7531 else
7532 NewVD->addAttr(ConstInitAttr::Create(
7533 Context, D.getDeclSpec().getConstexprSpecLoc(),
7534 AttributeCommonInfo::AS_Keyword, ConstInitAttr::Keyword_constinit));
7535 break;
7536 }
7537
7538 // C99 6.7.4p3
7539 // An inline definition of a function with external linkage shall
7540 // not contain a definition of a modifiable object with static or
7541 // thread storage duration...
7542 // We only apply this when the function is required to be defined
7543 // elsewhere, i.e. when the function is not 'extern inline'. Note
7544 // that a local variable with thread storage duration still has to
7545 // be marked 'static'. Also note that it's possible to get these
7546 // semantics in C++ using __attribute__((gnu_inline)).
7547 if (SC == SC_Static && S->getFnParent() != nullptr &&
7548 !NewVD->getType().isConstQualified()) {
7549 FunctionDecl *CurFD = getCurFunctionDecl();
7550 if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
7551 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7552 diag::warn_static_local_in_extern_inline);
7553 MaybeSuggestAddingStaticToDecl(CurFD);
7554 }
7555 }
7556
7557 if (D.getDeclSpec().isModulePrivateSpecified()) {
7558 if (IsVariableTemplateSpecialization)
7559 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7560 << (IsPartialSpecialization ? 1 : 0)
7561 << FixItHint::CreateRemoval(
7562 D.getDeclSpec().getModulePrivateSpecLoc());
7563 else if (IsMemberSpecialization)
7564 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7565 << 2
7566 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7567 else if (NewVD->hasLocalStorage())
7568 Diag(NewVD->getLocation(), diag::err_module_private_local)
7569 << 0 << NewVD
7570 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7571 << FixItHint::CreateRemoval(
7572 D.getDeclSpec().getModulePrivateSpecLoc());
7573 else {
7574 NewVD->setModulePrivate();
7575 if (NewTemplate)
7576 NewTemplate->setModulePrivate();
7577 for (auto *B : Bindings)
7578 B->setModulePrivate();
7579 }
7580 }
7581
7582 if (getLangOpts().OpenCL) {
7583 deduceOpenCLAddressSpace(NewVD);
7584
7585 DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec();
7586 if (TSC != TSCS_unspecified) {
7587 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7588 diag::err_opencl_unknown_type_specifier)
7589 << getLangOpts().getOpenCLVersionString()
7590 << DeclSpec::getSpecifierName(TSC) << 1;
7591 NewVD->setInvalidDecl();
7592 }
7593 }
7594
7595 // Handle attributes prior to checking for duplicates in MergeVarDecl
7596 ProcessDeclAttributes(S, NewVD, D);
7597
7598 // FIXME: This is probably the wrong location to be doing this and we should
7599 // probably be doing this for more attributes (especially for function
7600 // pointer attributes such as format, warn_unused_result, etc.). Ideally
7601 // the code to copy attributes would be generated by TableGen.
7602 if (R->isFunctionPointerType())
7603 if (const auto *TT = R->getAs<TypedefType>())
7604 copyAttrFromTypedefToDecl<AllocSizeAttr>(*this, NewVD, TT);
7605
7606 if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice ||
7607 getLangOpts().SYCLIsDevice) {
7608 if (EmitTLSUnsupportedError &&
7609 ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
7610 (getLangOpts().OpenMPIsDevice &&
7611 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD))))
7612 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7613 diag::err_thread_unsupported);
7614
7615 if (EmitTLSUnsupportedError &&
7616 (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)))
7617 targetDiag(D.getIdentifierLoc(), diag::err_thread_unsupported);
7618 // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
7619 // storage [duration]."
7620 if (SC == SC_None && S->getFnParent() != nullptr &&
7621 (NewVD->hasAttr<CUDASharedAttr>() ||
7622 NewVD->hasAttr<CUDAConstantAttr>())) {
7623 NewVD->setStorageClass(SC_Static);
7624 }
7625 }
7626
7627 // Ensure that dllimport globals without explicit storage class are treated as
7628 // extern. The storage class is set above using parsed attributes. Now we can
7629 // check the VarDecl itself.
7630 assert(!NewVD->hasAttr<DLLImportAttr>() ||(static_cast <bool> (!NewVD->hasAttr<DLLImportAttr
>() || NewVD->getAttr<DLLImportAttr>()->isInherited
() || NewVD->isStaticDataMember() || NewVD->getStorageClass
() != SC_None) ? void (0) : __assert_fail ("!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None"
, "clang/lib/Sema/SemaDecl.cpp", 7632, __extension__ __PRETTY_FUNCTION__
))
7631 NewVD->getAttr<DLLImportAttr>()->isInherited() ||(static_cast <bool> (!NewVD->hasAttr<DLLImportAttr
>() || NewVD->getAttr<DLLImportAttr>()->isInherited
() || NewVD->isStaticDataMember() || NewVD->getStorageClass
() != SC_None) ? void (0) : __assert_fail ("!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None"
, "clang/lib/Sema/SemaDecl.cpp", 7632, __extension__ __PRETTY_FUNCTION__
))
7632 NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None)(static_cast <bool> (!NewVD->hasAttr<DLLImportAttr
>() || NewVD->getAttr<DLLImportAttr>()->isInherited
() || NewVD->isStaticDataMember() || NewVD->getStorageClass
() != SC_None) ? void (0) : __assert_fail ("!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None"
, "clang/lib/Sema/SemaDecl.cpp", 7632, __extension__ __PRETTY_FUNCTION__
))
;
7633
7634 // In auto-retain/release, infer strong retension for variables of
7635 // retainable type.
7636 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
7637 NewVD->setInvalidDecl();
7638
7639 // Handle GNU asm-label extension (encoded as an attribute).
7640 if (Expr *E = (Expr*)D.getAsmLabel()) {
7641 // The parser guarantees this is a string.
7642 StringLiteral *SE = cast<StringLiteral>(E);
7643 StringRef Label = SE->getString();
7644 if (S->getFnParent() != nullptr) {
7645 switch (SC) {
7646 case SC_None:
7647 case SC_Auto:
7648 Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
7649 break;
7650 case SC_Register:
7651 // Local Named register
7652 if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
7653 DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
7654 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
7655 break;
7656 case SC_Static:
7657 case SC_Extern:
7658 case SC_PrivateExtern:
7659 break;
7660 }
7661 } else if (SC == SC_Register) {
7662 // Global Named register
7663 if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
7664 const auto &TI = Context.getTargetInfo();
7665 bool HasSizeMismatch;
7666
7667 if (!TI.isValidGCCRegisterName(Label))
7668 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
7669 else if (!TI.validateGlobalRegisterVariable(Label,
7670 Context.getTypeSize(R),
7671 HasSizeMismatch))
7672 Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
7673 else if (HasSizeMismatch)
7674 Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
7675 }
7676
7677 if (!R->isIntegralType(Context) && !R->isPointerType()) {
7678 Diag(D.getBeginLoc(), diag::err_asm_bad_register_type);
7679 NewVD->setInvalidDecl(true);
7680 }
7681 }
7682
7683 NewVD->addAttr(AsmLabelAttr::Create(Context, Label,
7684 /*IsLiteralLabel=*/true,
7685 SE->getStrTokenLoc(0)));
7686 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
7687 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
7688 ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
7689 if (I != ExtnameUndeclaredIdentifiers.end()) {
7690 if (isDeclExternC(NewVD)) {
7691 NewVD->addAttr(I->second);
7692 ExtnameUndeclaredIdentifiers.erase(I);
7693 } else
7694 Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
7695 << /*Variable*/1 << NewVD;
7696 }
7697 }
7698
7699 // Find the shadowed declaration before filtering for scope.
7700 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
7701 ? getShadowedDeclaration(NewVD, Previous)
7702 : nullptr;
7703
7704 // Don't consider existing declarations that are in a different
7705 // scope and are out-of-semantic-context declarations (if the new
7706 // declaration has linkage).
7707 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
7708 D.getCXXScopeSpec().isNotEmpty() ||
7709 IsMemberSpecialization ||
7710 IsVariableTemplateSpecialization);
7711
7712 // Check whether the previous declaration is in the same block scope. This
7713 // affects whether we merge types with it, per C++11 [dcl.array]p3.
7714 if (getLangOpts().CPlusPlus &&
7715 NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
7716 NewVD->setPreviousDeclInSameBlockScope(
7717 Previous.isSingleResult() && !Previous.isShadowed() &&
7718 isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
7719
7720 if (!getLangOpts().CPlusPlus) {
7721 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
7722 } else {
7723 // If this is an explicit specialization of a static data member, check it.
7724 if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
7725 CheckMemberSpecialization(NewVD, Previous))
7726 NewVD->setInvalidDecl();
7727
7728 // Merge the decl with the existing one if appropriate.
7729 if (!Previous.empty()) {
7730 if (Previous.isSingleResult() &&
7731 isa<FieldDecl>(Previous.getFoundDecl()) &&
7732 D.getCXXScopeSpec().isSet()) {
7733 // The user tried to define a non-static data member
7734 // out-of-line (C++ [dcl.meaning]p1).
7735 Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
7736 << D.getCXXScopeSpec().getRange();
7737 Previous.clear();
7738 NewVD->setInvalidDecl();
7739 }
7740 } else if (D.getCXXScopeSpec().isSet()) {
7741 // No previous declaration in the qualifying scope.
7742 Diag(D.getIdentifierLoc(), diag::err_no_member)
7743 << Name << computeDeclContext(D.getCXXScopeSpec(), true)
7744 << D.getCXXScopeSpec().getRange();
7745 NewVD->setInvalidDecl();
7746 }
7747
7748 if (!IsVariableTemplateSpecialization)
7749 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
7750
7751 if (NewTemplate) {
7752 VarTemplateDecl *PrevVarTemplate =
7753 NewVD->getPreviousDecl()
7754 ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
7755 : nullptr;
7756
7757 // Check the template parameter list of this declaration, possibly
7758 // merging in the template parameter list from the previous variable
7759 // template declaration.
7760 if (CheckTemplateParameterList(
7761 TemplateParams,
7762 PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
7763 : nullptr,
7764 (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
7765 DC->isDependentContext())
7766 ? TPC_ClassTemplateMember
7767 : TPC_VarTemplate))
7768 NewVD->setInvalidDecl();
7769
7770 // If we are providing an explicit specialization of a static variable
7771 // template, make a note of that.
7772 if (PrevVarTemplate &&
7773 PrevVarTemplate->getInstantiatedFromMemberTemplate())
7774 PrevVarTemplate->setMemberSpecialization();
7775 }
7776 }
7777
7778 // Diagnose shadowed variables iff this isn't a redeclaration.
7779 if (ShadowedDecl && !D.isRedeclaration())
7780 CheckShadow(NewVD, ShadowedDecl, Previous);
7781
7782 ProcessPragmaWeak(S, NewVD);
7783
7784 // If this is the first declaration of an extern C variable, update
7785 // the map of such variables.
7786 if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
7787 isIncompleteDeclExternC(*this, NewVD))
7788 RegisterLocallyScopedExternCDecl(NewVD, S);
7789
7790 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
7791 MangleNumberingContext *MCtx;
7792 Decl *ManglingContextDecl;
7793 std::tie(MCtx, ManglingContextDecl) =
7794 getCurrentMangleNumberContext(NewVD->getDeclContext());
7795 if (MCtx) {
7796 Context.setManglingNumber(
7797 NewVD, MCtx->getManglingNumber(
7798 NewVD, getMSManglingNumber(getLangOpts(), S)));
7799 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
7800 }
7801 }
7802
7803 // Special handling of variable named 'main'.
7804 if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
7805 NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7806 !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
7807
7808 // C++ [basic.start.main]p3
7809 // A program that declares a variable main at global scope is ill-formed.
7810 if (getLangOpts().CPlusPlus)
7811 Diag(D.getBeginLoc(), diag::err_main_global_variable);
7812
7813 // In C, and external-linkage variable named main results in undefined
7814 // behavior.
7815 else if (NewVD->hasExternalFormalLinkage())
7816 Diag(D.getBeginLoc(), diag::warn_main_redefined);
7817 }
7818
7819 if (D.isRedeclaration() && !Previous.empty()) {
7820 NamedDecl *Prev = Previous.getRepresentativeDecl();
7821 checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
7822 D.isFunctionDefinition());
7823 }
7824
7825 if (NewTemplate) {
7826 if (NewVD->isInvalidDecl())
7827 NewTemplate->setInvalidDecl();
7828 ActOnDocumentableDecl(NewTemplate);
7829 return NewTemplate;
7830 }
7831
7832 if (IsMemberSpecialization && !NewVD->isInvalidDecl())
7833 CompleteMemberSpecialization(NewVD, Previous);
7834
7835 return NewVD;
7836}
7837
7838/// Enum describing the %select options in diag::warn_decl_shadow.
7839enum ShadowedDeclKind {
7840 SDK_Local,
7841 SDK_Global,
7842 SDK_StaticMember,
7843 SDK_Field,
7844 SDK_Typedef,
7845 SDK_Using,
7846 SDK_StructuredBinding
7847};
7848
7849/// Determine what kind of declaration we're shadowing.
7850static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
7851 const DeclContext *OldDC) {
7852 if (isa<TypeAliasDecl>(ShadowedDecl))
7853 return SDK_Using;
7854 else if (isa<TypedefDecl>(ShadowedDecl))
7855 return SDK_Typedef;
7856 else if (isa<BindingDecl>(ShadowedDecl))
7857 return SDK_StructuredBinding;
7858 else if (isa<RecordDecl>(OldDC))
7859 return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
7860
7861 return OldDC->isFileContext() ? SDK_Global : SDK_Local;
7862}
7863
7864/// Return the location of the capture if the given lambda captures the given
7865/// variable \p VD, or an invalid source location otherwise.
7866static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
7867 const VarDecl *VD) {
7868 for (const Capture &Capture : LSI->Captures) {
7869 if (Capture.isVariableCapture() && Capture.getVariable() == VD)
7870 return Capture.getLocation();
7871 }
7872 return SourceLocation();
7873}
7874
7875static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
7876 const LookupResult &R) {
7877 // Only diagnose if we're shadowing an unambiguous field or variable.
7878 if (R.getResultKind() != LookupResult::Found)
7879 return false;
7880
7881 // Return false if warning is ignored.
7882 return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
7883}
7884
7885/// Return the declaration shadowed by the given variable \p D, or null
7886/// if it doesn't shadow any declaration or shadowing warnings are disabled.
7887NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
7888 const LookupResult &R) {
7889 if (!shouldWarnIfShadowedDecl(Diags, R))
7890 return nullptr;
7891
7892 // Don't diagnose declarations at file scope.
7893 if (D->hasGlobalStorage())
7894 return nullptr;
7895
7896 NamedDecl *ShadowedDecl = R.getFoundDecl();
7897 return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl
7898 : nullptr;
7899}
7900
7901/// Return the declaration shadowed by the given typedef \p D, or null
7902/// if it doesn't shadow any declaration or shadowing warnings are disabled.
7903NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
7904 const LookupResult &R) {
7905 // Don't warn if typedef declaration is part of a class
7906 if (D->getDeclContext()->isRecord())
7907 return nullptr;
7908
7909 if (!shouldWarnIfShadowedDecl(Diags, R))
7910 return nullptr;
7911
7912 NamedDecl *ShadowedDecl = R.getFoundDecl();
7913 return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
7914}
7915
7916/// Return the declaration shadowed by the given variable \p D, or null
7917/// if it doesn't shadow any declaration or shadowing warnings are disabled.
7918NamedDecl *Sema::getShadowedDeclaration(const BindingDecl *D,
7919 const LookupResult &R) {
7920 if (!shouldWarnIfShadowedDecl(Diags, R))
7921 return nullptr;
7922
7923 NamedDecl *ShadowedDecl = R.getFoundDecl();
7924 return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl
7925 : nullptr;
7926}
7927
7928/// Diagnose variable or built-in function shadowing. Implements
7929/// -Wshadow.
7930///
7931/// This method is called whenever a VarDecl is added to a "useful"
7932/// scope.
7933///
7934/// \param ShadowedDecl the declaration that is shadowed by the given variable
7935/// \param R the lookup of the name
7936///
7937void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
7938 const LookupResult &R) {
7939 DeclContext *NewDC = D->getDeclContext();
7940
7941 if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
7942 // Fields are not shadowed by variables in C++ static methods.
7943 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
7944 if (MD->isStatic())
7945 return;
7946
7947 // Fields shadowed by constructor parameters are a special case. Usually
7948 // the constructor initializes the field with the parameter.
7949 if (isa<CXXConstructorDecl>(NewDC))
7950 if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
7951 // Remember that this was shadowed so we can either warn about its
7952 // modification or its existence depending on warning settings.
7953 ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
7954 return;
7955 }
7956 }
7957
7958 if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
7959 if (shadowedVar->isExternC()) {
7960 // For shadowing external vars, make sure that we point to the global
7961 // declaration, not a locally scoped extern declaration.
7962 for (auto I : shadowedVar->redecls())
7963 if (I->isFileVarDecl()) {
7964 ShadowedDecl = I;
7965 break;
7966 }
7967 }
7968
7969 DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
7970
7971 unsigned WarningDiag = diag::warn_decl_shadow;
7972 SourceLocation CaptureLoc;
7973 if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC &&
7974 isa<CXXMethodDecl>(NewDC)) {
7975 if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
7976 if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
7977 if (RD->getLambdaCaptureDefault() == LCD_None) {
7978 // Try to avoid warnings for lambdas with an explicit capture list.
7979 const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
7980 // Warn only when the lambda captures the shadowed decl explicitly.
7981 CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl));
7982 if (CaptureLoc.isInvalid())
7983 WarningDiag = diag::warn_decl_shadow_uncaptured_local;
7984 } else {
7985 // Remember that this was shadowed so we can avoid the warning if the
7986 // shadowed decl isn't captured and the warning settings allow it.
7987 cast<LambdaScopeInfo>(getCurFunction())
7988 ->ShadowingDecls.push_back(
7989 {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)});
7990 return;
7991 }
7992 }
7993
7994 if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) {
7995 // A variable can't shadow a local variable in an enclosing scope, if
7996 // they are separated by a non-capturing declaration context.
7997 for (DeclContext *ParentDC = NewDC;
7998 ParentDC && !ParentDC->Equals(OldDC);
7999 ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
8000 // Only block literals, captured statements, and lambda expressions
8001 // can capture; other scopes don't.
8002 if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
8003 !isLambdaCallOperator(ParentDC)) {
8004 return;
8005 }
8006 }
8007 }
8008 }
8009 }
8010
8011 // Only warn about certain kinds of shadowing for class members.
8012 if (NewDC && NewDC->isRecord()) {
8013 // In particular, don't warn about shadowing non-class members.
8014 if (!OldDC->isRecord())
8015 return;
8016
8017 // TODO: should we warn about static data members shadowing
8018 // static data members from base classes?
8019
8020 // TODO: don't diagnose for inaccessible shadowed members.
8021 // This is hard to do perfectly because we might friend the
8022 // shadowing context, but that's just a false negative.
8023 }
8024
8025
8026 DeclarationName Name = R.getLookupName();
8027
8028 // Emit warning and note.
8029 ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
8030 Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
8031 if (!CaptureLoc.isInvalid())
8032 Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
8033 << Name << /*explicitly*/ 1;
8034 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
8035}
8036
8037/// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
8038/// when these variables are captured by the lambda.
8039void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
8040 for (const auto &Shadow : LSI->ShadowingDecls) {
8041 const VarDecl *ShadowedDecl = Shadow.ShadowedDecl;
8042 // Try to avoid the warning when the shadowed decl isn't captured.
8043 SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl);
8044 const DeclContext *OldDC = ShadowedDecl->getDeclContext();
8045 Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid()
8046 ? diag::warn_decl_shadow_uncaptured_local
8047 : diag::warn_decl_shadow)
8048 << Shadow.VD->getDeclName()
8049 << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
8050 if (!CaptureLoc.isInvalid())
8051 Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
8052 << Shadow.VD->getDeclName() << /*explicitly*/ 0;
8053 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
8054 }
8055}
8056
8057/// Check -Wshadow without the advantage of a previous lookup.
8058void Sema::CheckShadow(Scope *S, VarDecl *D) {
8059 if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
8060 return;
8061
8062 LookupResult R(*this, D->getDeclName(), D->getLocation(),
8063 Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
8064 LookupName(R, S);
8065 if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
8066 CheckShadow(D, ShadowedDecl, R);
8067}
8068
8069/// Check if 'E', which is an expression that is about to be modified, refers
8070/// to a constructor parameter that shadows a field.
8071void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
8072 // Quickly ignore expressions that can't be shadowing ctor parameters.
8073 if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
8074 return;
8075 E = E->IgnoreParenImpCasts();
8076 auto *DRE = dyn_cast<DeclRefExpr>(E);
8077 if (!DRE)
8078 return;
8079 const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
8080 auto I = ShadowingDecls.find(D);
8081 if (I == ShadowingDecls.end())
8082 return;
8083 const NamedDecl *ShadowedDecl = I->second;
8084 const DeclContext *OldDC = ShadowedDecl->getDeclContext();
8085 Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
8086 Diag(D->getLocation(), diag::note_var_declared_here) << D;
8087 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
8088
8089 // Avoid issuing multiple warnings about the same decl.
8090 ShadowingDecls.erase(I);
8091}
8092
8093/// Check for conflict between this global or extern "C" declaration and
8094/// previous global or extern "C" declarations. This is only used in C++.
8095template<typename T>
8096static bool checkGlobalOrExternCConflict(
8097 Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
8098 assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"")(static_cast <bool> (S.getLangOpts().CPlusPlus &&
"only C++ has extern \"C\"") ? void (0) : __assert_fail ("S.getLangOpts().CPlusPlus && \"only C++ has extern \\\"C\\\"\""
, "clang/lib/Sema/SemaDecl.cpp", 8098, __extension__ __PRETTY_FUNCTION__
))
;
8099 NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
8100
8101 if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
8102 // The common case: this global doesn't conflict with any extern "C"
8103 // declaration.
8104 return false;
8105 }
8106
8107 if (Prev) {
8108 if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
8109 // Both the old and new declarations have C language linkage. This is a
8110 // redeclaration.
8111 Previous.clear();
8112 Previous.addDecl(Prev);
8113 return true;
8114 }
8115
8116 // This is a global, non-extern "C" declaration, and there is a previous
8117 // non-global extern "C" declaration. Diagnose if this is a variable
8118 // declaration.
8119 if (!isa<VarDecl>(ND))
8120 return false;
8121 } else {
8122 // The declaration is extern "C". Check for any declaration in the
8123 // translation unit which might conflict.
8124 if (IsGlobal) {
8125 // We have already performed the lookup into the translation unit.
8126 IsGlobal = false;
8127 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8128 I != E; ++I) {
8129 if (isa<VarDecl>(*I)) {
8130 Prev = *I;
8131 break;
8132 }
8133 }
8134 } else {
8135 DeclContext::lookup_result R =
8136 S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
8137 for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
8138 I != E; ++I) {
8139 if (isa<VarDecl>(*I)) {
8140 Prev = *I;
8141 break;
8142 }
8143 // FIXME: If we have any other entity with this name in global scope,
8144 // the declaration is ill-formed, but that is a defect: it breaks the
8145 // 'stat' hack, for instance. Only variables can have mangled name
8146 // clashes with extern "C" declarations, so only they deserve a
8147 // diagnostic.
8148 }
8149 }
8150
8151 if (!Prev)
8152 return false;
8153 }
8154
8155 // Use the first declaration's location to ensure we point at something which
8156 // is lexically inside an extern "C" linkage-spec.
8157 assert(Prev && "should have found a previous declaration to diagnose")(static_cast <bool> (Prev && "should have found a previous declaration to diagnose"
) ? void (0) : __assert_fail ("Prev && \"should have found a previous declaration to diagnose\""
, "clang/lib/Sema/SemaDecl.cpp", 8157, __extension__ __PRETTY_FUNCTION__
))
;
8158 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
8159 Prev = FD->getFirstDecl();
8160 else
8161 Prev = cast<VarDecl>(Prev)->getFirstDecl();
8162
8163 S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
8164 << IsGlobal << ND;
8165 S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
8166 << IsGlobal;
8167 return false;
8168}
8169
8170/// Apply special rules for handling extern "C" declarations. Returns \c true
8171/// if we have found that this is a redeclaration of some prior entity.
8172///
8173/// Per C++ [dcl.link]p6:
8174/// Two declarations [for a function or variable] with C language linkage
8175/// with the same name that appear in different scopes refer to the same
8176/// [entity]. An entity with C language linkage shall not be declared with
8177/// the same name as an entity in global scope.
8178template<typename T>
8179static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
8180 LookupResult &Previous) {
8181 if (!S.getLangOpts().CPlusPlus) {
8182 // In C, when declaring a global variable, look for a corresponding 'extern'
8183 // variable declared in function scope. We don't need this in C++, because
8184 // we find local extern decls in the surrounding file-scope DeclContext.
8185 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
8186 if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
8187 Previous.clear();
8188 Previous.addDecl(Prev);
8189 return true;
8190 }
8191 }
8192 return false;
8193 }
8194
8195 // A declaration in the translation unit can conflict with an extern "C"
8196 // declaration.
8197 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
8198 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
8199
8200 // An extern "C" declaration can conflict with a declaration in the
8201 // translation unit or can be a redeclaration of an extern "C" declaration
8202 // in another scope.
8203 if (isIncompleteDeclExternC(S,ND))
8204 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
8205
8206 // Neither global nor extern "C": nothing to do.
8207 return false;
8208}
8209
8210void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
8211 // If the decl is already known invalid, don't check it.
8212 if (NewVD->isInvalidDecl())
8213 return;
8214
8215 QualType T = NewVD->getType();
8216
8217 // Defer checking an 'auto' type until its initializer is attached.
8218 if (T->isUndeducedType())
8219 return;
8220
8221 if (NewVD->hasAttrs())
8222 CheckAlignasUnderalignment(NewVD);
8223
8224 if (T->isObjCObjectType()) {
8225 Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
8226 << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
8227 T = Context.getObjCObjectPointerType(T);
8228 NewVD->setType(T);
8229 }
8230
8231 // Emit an error if an address space was applied to decl with local storage.
8232 // This includes arrays of objects with address space qualifiers, but not
8233 // automatic variables that point to other address spaces.
8234 // ISO/IEC TR 18037 S5.1.2
8235 if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
8236 T.getAddressSpace() != LangAS::Default) {
8237 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
8238 NewVD->setInvalidDecl();
8239 return;
8240 }
8241
8242 // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
8243 // scope.
8244 if (getLangOpts().OpenCLVersion == 120 &&
8245 !getOpenCLOptions().isAvailableOption("cl_clang_storage_class_specifiers",
8246 getLangOpts()) &&
8247 NewVD->isStaticLocal()) {
8248 Diag(NewVD->getLocation(), diag::err_static_function_scope);
8249 NewVD->setInvalidDecl();
8250 return;
8251 }
8252
8253 if (getLangOpts().OpenCL) {
8254 if (!diagnoseOpenCLTypes(*this, NewVD))
8255 return;
8256
8257 // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
8258 if (NewVD->hasAttr<BlocksAttr>()) {
8259 Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
8260 return;
8261 }
8262
8263 if (T->isBlockPointerType()) {
8264 // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
8265 // can't use 'extern' storage class.
8266 if (!T.isConstQualified()) {
8267 Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
8268 << 0 /*const*/;
8269 NewVD->setInvalidDecl();
8270 return;
8271 }
8272 if (NewVD->hasExternalStorage()) {
8273 Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
8274 NewVD->setInvalidDecl();
8275 return;
8276 }
8277 }
8278
8279 // FIXME: Adding local AS in C++ for OpenCL might make sense.
8280 if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
8281 NewVD->hasExternalStorage()) {
8282 if (!T->isSamplerT() && !T->isDependentType() &&
8283 !(T.getAddressSpace() == LangAS::opencl_constant ||
8284 (T.getAddressSpace() == LangAS::opencl_global &&
8285 getOpenCLOptions().areProgramScopeVariablesSupported(
8286 getLangOpts())))) {
8287 int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
8288 if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()))
8289 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
8290 << Scope << "global or constant";
8291 else
8292 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
8293 << Scope << "constant";
8294 NewVD->setInvalidDecl();
8295 return;
8296 }
8297 } else {
8298 if (T.getAddressSpace() == LangAS::opencl_global) {
8299 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8300 << 1 /*is any function*/ << "global";
8301 NewVD->setInvalidDecl();
8302 return;
8303 }
8304 if (T.getAddressSpace() == LangAS::opencl_constant ||
8305 T.getAddressSpace() == LangAS::opencl_local) {
8306 FunctionDecl *FD = getCurFunctionDecl();
8307 // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
8308 // in functions.
8309 if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
8310 if (T.getAddressSpace() == LangAS::opencl_constant)
8311 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8312 << 0 /*non-kernel only*/ << "constant";
8313 else
8314 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8315 << 0 /*non-kernel only*/ << "local";
8316 NewVD->setInvalidDecl();
8317 return;
8318 }
8319 // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
8320 // in the outermost scope of a kernel function.
8321 if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
8322 if (!getCurScope()->isFunctionScope()) {
8323 if (T.getAddressSpace() == LangAS::opencl_constant)
8324 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
8325 << "constant";
8326 else
8327 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
8328 << "local";
8329 NewVD->setInvalidDecl();
8330 return;
8331 }
8332 }
8333 } else if (T.getAddressSpace() != LangAS::opencl_private &&
8334 // If we are parsing a template we didn't deduce an addr
8335 // space yet.
8336 T.getAddressSpace() != LangAS::Default) {
8337 // Do not allow other address spaces on automatic variable.
8338 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
8339 NewVD->setInvalidDecl();
8340 return;
8341 }
8342 }
8343 }
8344
8345 if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
8346 && !NewVD->hasAttr<BlocksAttr>()) {
8347 if (getLangOpts().getGC() != LangOptions::NonGC)
8348 Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
8349 else {
8350 assert(!getLangOpts().ObjCAutoRefCount)(static_cast <bool> (!getLangOpts().ObjCAutoRefCount) ?
void (0) : __assert_fail ("!getLangOpts().ObjCAutoRefCount",
"clang/lib/Sema/SemaDecl.cpp", 8350, __extension__ __PRETTY_FUNCTION__
))
;
8351 Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
8352 }
8353 }
8354
8355 bool isVM = T->isVariablyModifiedType();
8356 if (isVM || NewVD->hasAttr<CleanupAttr>() ||
8357 NewVD->hasAttr<BlocksAttr>())
8358 setFunctionHasBranchProtectedScope();
8359
8360 if ((isVM && NewVD->hasLinkage()) ||
8361 (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
8362 bool SizeIsNegative;
8363 llvm::APSInt Oversized;
8364 TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
8365 NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized);
8366 QualType FixedT;
8367 if (FixedTInfo && T == NewVD->getTypeSourceInfo()->getType())
8368 FixedT = FixedTInfo->getType();
8369 else if (FixedTInfo) {
8370 // Type and type-as-written are canonically different. We need to fix up
8371 // both types separately.
8372 FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
8373 Oversized);
8374 }
8375 if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) {
8376 const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
8377 // FIXME: This won't give the correct result for
8378 // int a[10][n];
8379 SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
8380
8381 if (NewVD->isFileVarDecl())
8382 Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
8383 << SizeRange;
8384 else if (NewVD->isStaticLocal())
8385 Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
8386 << SizeRange;
8387 else
8388 Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
8389 << SizeRange;
8390 NewVD->setInvalidDecl();
8391 return;
8392 }
8393
8394 if (!FixedTInfo) {
8395 if (NewVD->isFileVarDecl())
8396 Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
8397 else
8398 Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
8399 NewVD->setInvalidDecl();
8400 return;
8401 }
8402
8403 Diag(NewVD->getLocation(), diag::ext_vla_folded_to_constant);
8404 NewVD->setType(FixedT);
8405 NewVD->setTypeSourceInfo(FixedTInfo);
8406 }
8407
8408 if (T->isVoidType()) {
8409 // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
8410 // of objects and functions.
8411 if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
8412 Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
8413 << T;
8414 NewVD->setInvalidDecl();
8415 return;
8416 }
8417 }
8418
8419 if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
8420 Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
8421 NewVD->setInvalidDecl();
8422 return;
8423 }
8424
8425 if (!NewVD->hasLocalStorage() && T->isSizelessType()) {
8426 Diag(NewVD->getLocation(), diag::err_sizeless_nonlocal) << T;
8427 NewVD->setInvalidDecl();
8428 return;
8429 }
8430
8431 if (isVM && NewVD->hasAttr<BlocksAttr>()) {
8432 Diag(NewVD->getLocation(), diag::err_block_on_vm);
8433 NewVD->setInvalidDecl();
8434 return;
8435 }
8436
8437 if (NewVD->isConstexpr() && !T->isDependentType() &&
8438 RequireLiteralType(NewVD->getLocation(), T,
8439 diag::err_constexpr_var_non_literal)) {
8440 NewVD->setInvalidDecl();
8441 return;
8442 }
8443
8444 // PPC MMA non-pointer types are not allowed as non-local variable types.
8445 if (Context.getTargetInfo().getTriple().isPPC64() &&
8446 !NewVD->isLocalVarDecl() &&
8447 CheckPPCMMAType(T, NewVD->getLocation())) {
8448 NewVD->setInvalidDecl();
8449 return;
8450 }
8451}
8452
8453/// Perform semantic checking on a newly-created variable
8454/// declaration.
8455///
8456/// This routine performs all of the type-checking required for a
8457/// variable declaration once it has been built. It is used both to
8458/// check variables after they have been parsed and their declarators
8459/// have been translated into a declaration, and to check variables
8460/// that have been instantiated from a template.
8461///
8462/// Sets NewVD->isInvalidDecl() if an error was encountered.
8463///
8464/// Returns true if the variable declaration is a redeclaration.
8465bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
8466 CheckVariableDeclarationType(NewVD);
8467
8468 // If the decl is already known invalid, don't check it.
8469 if (NewVD->isInvalidDecl())
8470 return false;
8471
8472 // If we did not find anything by this name, look for a non-visible
8473 // extern "C" declaration with the same name.
8474 if (Previous.empty() &&
8475 checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
8476 Previous.setShadowed();
8477
8478 if (!Previous.empty()) {
8479 MergeVarDecl(NewVD, Previous);
8480 return true;
8481 }
8482 return false;
8483}
8484
8485/// AddOverriddenMethods - See if a method overrides any in the base classes,
8486/// and if so, check that it's a valid override and remember it.
8487bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
8488 llvm::SmallPtrSet<const CXXMethodDecl*, 4> Overridden;
8489
8490 // Look for methods in base classes that this method might override.
8491 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
8492 /*DetectVirtual=*/false);
8493 auto VisitBase = [&] (const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
8494 CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
8495 DeclarationName Name = MD->getDeclName();
8496
8497 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8498 // We really want to find the base class destructor here.
8499 QualType T = Context.getTypeDeclType(BaseRecord);
8500 CanQualType CT = Context.getCanonicalType(T);
8501 Name = Context.DeclarationNames.getCXXDestructorName(CT);
8502 }
8503
8504 for (NamedDecl *BaseND : BaseRecord->lookup(Name)) {
8505 CXXMethodDecl *BaseMD =
8506 dyn_cast<CXXMethodDecl>(BaseND->getCanonicalDecl());
8507 if (!BaseMD || !BaseMD->isVirtual() ||
8508 IsOverload(MD, BaseMD, /*UseMemberUsingDeclRules=*/false,
8509 /*ConsiderCudaAttrs=*/true,
8510 // C++2a [class.virtual]p2 does not consider requires
8511 // clauses when overriding.
8512 /*ConsiderRequiresClauses=*/false))
8513 continue;
8514
8515 if (Overridden.insert(BaseMD).second) {
8516 MD->addOverriddenMethod(BaseMD);
8517 CheckOverridingFunctionReturnType(MD, BaseMD);
8518 CheckOverridingFunctionAttributes(MD, BaseMD);
8519 CheckOverridingFunctionExceptionSpec(MD, BaseMD);
8520 CheckIfOverriddenFunctionIsMarkedFinal(MD, BaseMD);
8521 }
8522
8523 // A method can only override one function from each base class. We
8524 // don't track indirectly overridden methods from bases of bases.
8525 return true;
8526 }
8527
8528 return false;
8529 };
8530
8531 DC->lookupInBases(VisitBase, Paths);
8532 return !Overridden.empty();
8533}
8534
8535namespace {
8536 // Struct for holding all of the extra arguments needed by
8537 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
8538 struct ActOnFDArgs {
8539 Scope *S;
8540 Declarator &D;
8541 MultiTemplateParamsArg TemplateParamLists;
8542 bool AddToScope;
8543 };
8544} // end anonymous namespace
8545
8546namespace {
8547
8548// Callback to only accept typo corrections that have a non-zero edit distance.
8549// Also only accept corrections that have the same parent decl.
8550class DifferentNameValidatorCCC final : public CorrectionCandidateCallback {
8551 public:
8552 DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
8553 CXXRecordDecl *Parent)
8554 : Context(Context), OriginalFD(TypoFD),
8555 ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
8556
8557 bool ValidateCandidate(const TypoCorrection &candidate) override {
8558 if (candidate.getEditDistance() == 0)
8559 return false;
8560
8561 SmallVector<unsigned, 1> MismatchedParams;
8562 for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
8563 CDeclEnd = candidate.end();
8564 CDecl != CDeclEnd; ++CDecl) {
8565 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
8566
8567 if (FD && !FD->hasBody() &&
8568 hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
8569 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
8570 CXXRecordDecl *Parent = MD->getParent();
8571 if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
8572 return true;
8573 } else if (!ExpectedParent) {
8574 return true;
8575 }
8576 }
8577 }
8578
8579 return false;
8580 }
8581
8582 std::unique_ptr<CorrectionCandidateCallback> clone() override {
8583 return std::make_unique<DifferentNameValidatorCCC>(*this);
8584 }
8585
8586 private:
8587 ASTContext &Context;
8588 FunctionDecl *OriginalFD;
8589 CXXRecordDecl *ExpectedParent;
8590};
8591
8592} // end anonymous namespace
8593
8594void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
8595 TypoCorrectedFunctionDefinitions.insert(F);
8596}
8597
8598/// Generate diagnostics for an invalid function redeclaration.
8599///
8600/// This routine handles generating the diagnostic messages for an invalid
8601/// function redeclaration, including finding possible similar declarations
8602/// or performing typo correction if there are no previous declarations with
8603/// the same name.
8604///
8605/// Returns a NamedDecl iff typo correction was performed and substituting in
8606/// the new declaration name does not cause new errors.
8607static NamedDecl *DiagnoseInvalidRedeclaration(
8608 Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
8609 ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
8610 DeclarationName Name = NewFD->getDeclName();
8611 DeclContext *NewDC = NewFD->getDeclContext();
8612 SmallVector<unsigned, 1> MismatchedParams;
8613 SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
8614 TypoCorrection Correction;
8615 bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
8616 unsigned DiagMsg =
8617 IsLocalFriend ? diag::err_no_matching_local_friend :
8618 NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match :
8619 diag::err_member_decl_does_not_match;
8620 LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
8621 IsLocalFriend ? Sema::LookupLocalFriendName
8622 : Sema::LookupOrdinaryName,
8623 Sema::ForVisibleRedeclaration);
8624
8625 NewFD->setInvalidDecl();
8626 if (IsLocalFriend)
8627 SemaRef.LookupName(Prev, S);
8628 else
8629 SemaRef.LookupQualifiedName(Prev, NewDC);
8630 assert(!Prev.isAmbiguous() &&(static_cast <bool> (!Prev.isAmbiguous() && "Cannot have an ambiguity in previous-declaration lookup"
) ? void (0) : __assert_fail ("!Prev.isAmbiguous() && \"Cannot have an ambiguity in previous-declaration lookup\""
, "clang/lib/Sema/SemaDecl.cpp", 8631, __extension__ __PRETTY_FUNCTION__
))
8631 "Cannot have an ambiguity in previous-declaration lookup")(static_cast <bool> (!Prev.isAmbiguous() && "Cannot have an ambiguity in previous-declaration lookup"
) ? void (0) : __assert_fail ("!Prev.isAmbiguous() && \"Cannot have an ambiguity in previous-declaration lookup\""
, "clang/lib/Sema/SemaDecl.cpp", 8631, __extension__ __PRETTY_FUNCTION__
))
;
8632 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
8633 DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD,
8634 MD ? MD->getParent() : nullptr);
8635 if (!Prev.empty()) {
8636 for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
8637 Func != FuncEnd; ++Func) {
8638 FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
8639 if (FD &&
8640 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
8641 // Add 1 to the index so that 0 can mean the mismatch didn't
8642 // involve a parameter
8643 unsigned ParamNum =
8644 MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
8645 NearMatches.push_back(std::make_pair(FD, ParamNum));
8646 }
8647 }
8648 // If the qualified name lookup yielded nothing, try typo correction
8649 } else if ((Correction = SemaRef.CorrectTypo(
8650 Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
8651 &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery,
8652 IsLocalFriend ? nullptr : NewDC))) {
8653 // Set up everything for the call to ActOnFunctionDeclarator
8654 ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
8655 ExtraArgs.D.getIdentifierLoc());
8656 Previous.clear();
8657 Previous.setLookupName(Correction.getCorrection());
8658 for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
8659 CDeclEnd = Correction.end();
8660 CDecl != CDeclEnd; ++CDecl) {
8661 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
8662 if (FD && !FD->hasBody() &&
8663 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
8664 Previous.addDecl(FD);
8665 }
8666 }
8667 bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
8668
8669 NamedDecl *Result;
8670 // Retry building the function declaration with the new previous
8671 // declarations, and with errors suppressed.
8672 {
8673 // Trap errors.
8674 Sema::SFINAETrap Trap(SemaRef);
8675
8676 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
8677 // pieces need to verify the typo-corrected C++ declaration and hopefully
8678 // eliminate the need for the parameter pack ExtraArgs.
8679 Result = SemaRef.ActOnFunctionDeclarator(
8680 ExtraArgs.S, ExtraArgs.D,
8681 Correction.getCorrectionDecl()->getDeclContext(),
8682 NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
8683 ExtraArgs.AddToScope);
8684
8685 if (Trap.hasErrorOccurred())
8686 Result = nullptr;
8687 }
8688
8689 if (Result) {
8690 // Determine which correction we picked.
8691 Decl *Canonical = Result->getCanonicalDecl();
8692 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8693 I != E; ++I)
8694 if ((*I)->getCanonicalDecl() == Canonical)
8695 Correction.setCorrectionDecl(*I);
8696
8697 // Let Sema know about the correction.
8698 SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
8699 SemaRef.diagnoseTypo(
8700 Correction,
8701 SemaRef.PDiag(IsLocalFriend
8702 ? diag::err_no_matching_local_friend_suggest
8703 : diag::err_member_decl_does_not_match_suggest)
8704 << Name << NewDC << IsDefinition);
8705 return Result;
8706 }
8707
8708 // Pretend the typo correction never occurred
8709 ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
8710 ExtraArgs.D.getIdentifierLoc());
8711 ExtraArgs.D.setRedeclaration(wasRedeclaration);
8712 Previous.clear();
8713 Previous.setLookupName(Name);
8714 }
8715
8716 SemaRef.Diag(NewFD->getLocation(), DiagMsg)
8717 << Name << NewDC << IsDefinition << NewFD->getLocation();
8718
8719 bool NewFDisConst = false;
8720 if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
8721 NewFDisConst = NewMD->isConst();
8722
8723 for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
8724 NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
8725 NearMatch != NearMatchEnd; ++NearMatch) {
8726 FunctionDecl *FD = NearMatch->first;
8727 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
8728 bool FDisConst = MD && MD->isConst();
8729 bool IsMember = MD || !IsLocalFriend;
8730
8731 // FIXME: These notes are poorly worded for the local friend case.
8732 if (unsigned Idx = NearMatch->second) {
8733 ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
8734 SourceLocation Loc = FDParam->getTypeSpecStartLoc();
8735 if (Loc.isInvalid()) Loc = FD->getLocation();
8736 SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
8737 : diag::note_local_decl_close_param_match)
8738 << Idx << FDParam->getType()
8739 << NewFD->getParamDecl(Idx - 1)->getType();
8740 } else if (FDisConst != NewFDisConst) {
8741 SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
8742 << NewFDisConst << FD->getSourceRange().getEnd()
8743 << (NewFDisConst
8744 ? FixItHint::CreateRemoval(ExtraArgs.D.getFunctionTypeInfo()
8745 .getConstQualifierLoc())
8746 : FixItHint::CreateInsertion(ExtraArgs.D.getFunctionTypeInfo()
8747 .getRParenLoc()
8748 .getLocWithOffset(1),
8749 " const"));
8750 } else
8751 SemaRef.Diag(FD->getLocation(),
8752 IsMember ? diag::note_member_def_close_match
8753 : diag::note_local_decl_close_match);
8754 }
8755 return nullptr;
8756}
8757
8758static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
8759 switch (D.getDeclSpec().getStorageClassSpec()) {
8760 default: llvm_unreachable("Unknown storage class!")::llvm::llvm_unreachable_internal("Unknown storage class!", "clang/lib/Sema/SemaDecl.cpp"
, 8760)
;
8761 case DeclSpec::SCS_auto:
8762 case DeclSpec::SCS_register:
8763 case DeclSpec::SCS_mutable:
8764 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8765 diag::err_typecheck_sclass_func);
8766 D.getMutableDeclSpec().ClearStorageClassSpecs();
8767 D.setInvalidType();
8768 break;
8769 case DeclSpec::SCS_unspecified: break;
8770 case DeclSpec::SCS_extern:
8771 if (D.getDeclSpec().isExternInLinkageSpec())
8772 return SC_None;
8773 return SC_Extern;
8774 case DeclSpec::SCS_static: {
8775 if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
8776 // C99 6.7.1p5:
8777 // The declaration of an identifier for a function that has
8778 // block scope shall have no explicit storage-class specifier
8779 // other than extern
8780 // See also (C++ [dcl.stc]p4).
8781 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8782 diag::err_static_block_func);
8783 break;
8784 } else
8785 return SC_Static;
8786 }
8787 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
8788 }
8789
8790 // No explicit storage class has already been returned
8791 return SC_None;
8792}
8793
8794static FunctionDecl *CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
8795 DeclContext *DC, QualType &R,
8796 TypeSourceInfo *TInfo,
8797 StorageClass SC,
8798 bool &IsVirtualOkay) {
8799 DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
8800 DeclarationName Name = NameInfo.getName();
8801
8802 FunctionDecl *NewFD = nullptr;
8803 bool isInline = D.getDeclSpec().isInlineSpecified();
8804
8805 if (!SemaRef.getLangOpts().CPlusPlus) {
8806 // Determine whether the function was written with a prototype. This is
8807 // true when:
8808 // - there is a prototype in the declarator, or
8809 // - the type R of the function is some kind of typedef or other non-
8810 // attributed reference to a type name (which eventually refers to a
8811 // function type). Note, we can't always look at the adjusted type to
8812 // check this case because attributes may cause a non-function
8813 // declarator to still have a function type. e.g.,
8814 // typedef void func(int a);
8815 // __attribute__((noreturn)) func other_func; // This has a prototype
8816 bool HasPrototype =
8817 (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
8818 (D.getDeclSpec().isTypeRep() &&
8819 D.getDeclSpec().getRepAsType().get()->isFunctionProtoType()) ||
8820 (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());
8821
8822 NewFD = FunctionDecl::Create(
8823 SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC,
8824 SemaRef.getCurFPFeatures().isFPConstrained(), isInline, HasPrototype,
8825 ConstexprSpecKind::Unspecified,
8826 /*TrailingRequiresClause=*/nullptr);
8827 if (D.isInvalidType())
8828 NewFD->setInvalidDecl();
8829
8830 return NewFD;
8831 }
8832
8833 ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier();
8834
8835 ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
8836 if (ConstexprKind == ConstexprSpecKind::Constinit) {
8837 SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(),
8838 diag::err_constexpr_wrong_decl_kind)
8839 << static_cast<int>(ConstexprKind);
8840 ConstexprKind = ConstexprSpecKind::Unspecified;
8841 D.getMutableDeclSpec().ClearConstexprSpec();
8842 }
8843 Expr *TrailingRequiresClause = D.getTrailingRequiresClause();
8844
8845 // Check that the return type is not an abstract class type.
8846 // For record types, this is done by the AbstractClassUsageDiagnoser once
8847 // the class has been completely parsed.
8848 if (!DC->isRecord() &&
8849 SemaRef.RequireNonAbstractType(
8850 D.getIdentifierLoc(), R->castAs<FunctionType>()->getReturnType(),
8851 diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
8852 D.setInvalidType();
8853
8854 if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
8855 // This is a C++ constructor declaration.
8856 assert(DC->isRecord() &&(static_cast <bool> (DC->isRecord() && "Constructors can only be declared in a member context"
) ? void (0) : __assert_fail ("DC->isRecord() && \"Constructors can only be declared in a member context\""
, "clang/lib/Sema/SemaDecl.cpp", 8857, __extension__ __PRETTY_FUNCTION__
))
8857 "Constructors can only be declared in a member context")(static_cast <bool> (DC->isRecord() && "Constructors can only be declared in a member context"
) ? void (0) : __assert_fail ("DC->isRecord() && \"Constructors can only be declared in a member context\""
, "clang/lib/Sema/SemaDecl.cpp", 8857, __extension__ __PRETTY_FUNCTION__
))
;
8858
8859 R = SemaRef.CheckConstructorDeclarator(D, R, SC);
8860 return CXXConstructorDecl::Create(
8861 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8862 TInfo, ExplicitSpecifier, SemaRef.getCurFPFeatures().isFPConstrained(),
8863 isInline, /*isImplicitlyDeclared=*/false, ConstexprKind,
8864 InheritedConstructor(), TrailingRequiresClause);
8865
8866 } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8867 // This is a C++ destructor declaration.
8868 if (DC->isRecord()) {
8869 R = SemaRef.CheckDestructorDeclarator(D, R, SC);
8870 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
8871 CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
8872 SemaRef.Context, Record, D.getBeginLoc(), NameInfo, R, TInfo,
8873 SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
8874 /*isImplicitlyDeclared=*/false, ConstexprKind,
8875 TrailingRequiresClause);
8876
8877 // If the destructor needs an implicit exception specification, set it
8878 // now. FIXME: It'd be nice to be able to create the right type to start
8879 // with, but the type needs to reference the destructor declaration.
8880 if (SemaRef.getLangOpts().CPlusPlus11)
8881 SemaRef.AdjustDestructorExceptionSpec(NewDD);
8882
8883 IsVirtualOkay = true;
8884 return NewDD;
8885
8886 } else {
8887 SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
8888 D.setInvalidType();
8889
8890 // Create a FunctionDecl to satisfy the function definition parsing
8891 // code path.
8892 return FunctionDecl::Create(
8893 SemaRef.Context, DC, D.getBeginLoc(), D.getIdentifierLoc(), Name, R,
8894 TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
8895 /*hasPrototype=*/true, ConstexprKind, TrailingRequiresClause);
8896 }
8897
8898 } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
8899 if (!DC->isRecord()) {
8900 SemaRef.Diag(D.getIdentifierLoc(),
8901 diag::err_conv_function_not_member);
8902 return nullptr;
8903 }
8904
8905 SemaRef.CheckConversionDeclarator(D, R, SC);
8906 if (D.isInvalidType())
8907 return nullptr;
8908
8909 IsVirtualOkay = true;
8910 return CXXConversionDecl::Create(
8911 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8912 TInfo, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
8913 ExplicitSpecifier, ConstexprKind, SourceLocation(),
8914 TrailingRequiresClause);
8915
8916 } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
8917 if (TrailingRequiresClause)
8918 SemaRef.Diag(TrailingRequiresClause->getBeginLoc(),
8919 diag::err_trailing_requires_clause_on_deduction_guide)
8920 << TrailingRequiresClause->getSourceRange();
8921 SemaRef.CheckDeductionGuideDeclarator(D, R, SC);
8922
8923 return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
8924 ExplicitSpecifier, NameInfo, R, TInfo,
8925 D.getEndLoc());
8926 } else if (DC->isRecord()) {
8927 // If the name of the function is the same as the name of the record,
8928 // then this must be an invalid constructor that has a return type.
8929 // (The parser checks for a return type and makes the declarator a
8930 // constructor if it has no return type).
8931 if (Name.getAsIdentifierInfo() &&
8932 Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
8933 SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
8934 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
8935 << SourceRange(D.getIdentifierLoc());
8936 return nullptr;
8937 }
8938
8939 // This is a C++ method declaration.
8940 CXXMethodDecl *Ret = CXXMethodDecl::Create(
8941 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8942 TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
8943 ConstexprKind, SourceLocation(), TrailingRequiresClause);
8944 IsVirtualOkay = !Ret->isStatic();
8945 return Ret;
8946 } else {
8947 bool isFriend =
8948 SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
8949 if (!isFriend && SemaRef.CurContext->isRecord())
8950 return nullptr;
8951
8952 // Determine whether the function was written with a
8953 // prototype. This true when:
8954 // - we're in C++ (where every function has a prototype),
8955 return FunctionDecl::Create(
8956 SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC,
8957 SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
8958 true /*HasPrototype*/, ConstexprKind, TrailingRequiresClause);
8959 }
8960}
8961
8962enum OpenCLParamType {
8963 ValidKernelParam,
8964 PtrPtrKernelParam,
8965 PtrKernelParam,
8966 InvalidAddrSpacePtrKernelParam,
8967 InvalidKernelParam,
8968 RecordKernelParam
8969};
8970
8971static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) {
8972 // Size dependent types are just typedefs to normal integer types
8973 // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
8974 // integers other than by their names.
8975 StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
8976
8977 // Remove typedefs one by one until we reach a typedef
8978 // for a size dependent type.
8979 QualType DesugaredTy = Ty;
8980 do {
8981 ArrayRef<StringRef> Names(SizeTypeNames);
8982 auto Match = llvm::find(Names, DesugaredTy.getUnqualifiedType().getAsString());
8983 if (Names.end() != Match)
8984 return true;
8985
8986 Ty = DesugaredTy;
8987 DesugaredTy = Ty.getSingleStepDesugaredType(C);
8988 } while (DesugaredTy != Ty);
8989
8990 return false;
8991}
8992
8993static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
8994 if (PT->isDependentType())
8995 return InvalidKernelParam;
8996
8997 if (PT->isPointerType() || PT->isReferenceType()) {
8998 QualType PointeeType = PT->getPointeeType();
8999 if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
9000 PointeeType.getAddressSpace() == LangAS::opencl_private ||
9001 PointeeType.getAddressSpace() == LangAS::Default)
9002 return InvalidAddrSpacePtrKernelParam;
9003
9004 if (PointeeType->isPointerType()) {
9005 // This is a pointer to pointer parameter.
9006 // Recursively check inner type.
9007 OpenCLParamType ParamKind = getOpenCLKernelParameterType(S, PointeeType);
9008 if (ParamKind == InvalidAddrSpacePtrKernelParam ||
9009 ParamKind == InvalidKernelParam)
9010 return ParamKind;
9011
9012 return PtrPtrKernelParam;
9013 }
9014
9015 // C++ for OpenCL v1.0 s2.4:
9016 // Moreover the types used in parameters of the kernel functions must be:
9017 // Standard layout types for pointer parameters. The same applies to
9018 // reference if an implementation supports them in kernel parameters.
9019 if (S.getLangOpts().OpenCLCPlusPlus &&
9020 !S.getOpenCLOptions().isAvailableOption(
9021 "__cl_clang_non_portable_kernel_param_types", S.getLangOpts()) &&
9022 !PointeeType->isAtomicType() && !PointeeType->isVoidType() &&
9023 !PointeeType->isStandardLayoutType())
9024 return InvalidKernelParam;
9025
9026 return PtrKernelParam;
9027 }
9028
9029 // OpenCL v1.2 s6.9.k:
9030 // Arguments to kernel functions in a program cannot be declared with the
9031 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
9032 // uintptr_t or a struct and/or union that contain fields declared to be one
9033 // of these built-in scalar types.
9034 if (isOpenCLSizeDependentType(S.getASTContext(), PT))
9035 return InvalidKernelParam;
9036
9037 if (PT->isImageType())
9038 return PtrKernelParam;
9039
9040 if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
9041 return InvalidKernelParam;
9042
9043 // OpenCL extension spec v1.2 s9.5:
9044 // This extension adds support for half scalar and vector types as built-in
9045 // types that can be used for arithmetic operations, conversions etc.
9046 if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16", S.getLangOpts()) &&
9047 PT->isHalfType())
9048 return InvalidKernelParam;
9049
9050 // Look into an array argument to check if it has a forbidden type.
9051 if (PT->isArrayType()) {
9052 const Type *UnderlyingTy = PT->getPointeeOrArrayElementType();
9053 // Call ourself to check an underlying type of an array. Since the
9054 // getPointeeOrArrayElementType returns an innermost type which is not an
9055 // array, this recursive call only happens once.
9056 return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0));
9057 }
9058
9059 // C++ for OpenCL v1.0 s2.4:
9060 // Moreover the types used in parameters of the kernel functions must be:
9061 // Trivial and standard-layout types C++17 [basic.types] (plain old data
9062 // types) for parameters passed by value;
9063 if (S.getLangOpts().OpenCLCPlusPlus &&
9064 !S.getOpenCLOptions().isAvailableOption(
9065 "__cl_clang_non_portable_kernel_param_types", S.getLangOpts()) &&
9066 !PT->isOpenCLSpecificType() && !PT.isPODType(S.Context))
9067 return InvalidKernelParam;
9068
9069 if (PT->isRecordType())
9070 return RecordKernelParam;
9071
9072 return ValidKernelParam;
9073}
9074
9075static void checkIsValidOpenCLKernelParameter(
9076 Sema &S,
9077 Declarator &D,
9078 ParmVarDecl *Param,
9079 llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
9080 QualType PT = Param->getType();
9081
9082 // Cache the valid types we encounter to avoid rechecking structs that are
9083 // used again
9084 if (ValidTypes.count(PT.getTypePtr()))
9085 return;
9086
9087 switch (getOpenCLKernelParameterType(S, PT)) {
9088 case PtrPtrKernelParam:
9089 // OpenCL v3.0 s6.11.a:
9090 // A kernel function argument cannot be declared as a pointer to a pointer
9091 // type. [...] This restriction only applies to OpenCL C 1.2 or below.
9092 if (S.getLangOpts().getOpenCLCompatibleVersion() <= 120) {
9093 S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
9094 D.setInvalidType();
9095 return;
9096 }
9097
9098 ValidTypes.insert(PT.getTypePtr());
9099 return;
9100
9101 case InvalidAddrSpacePtrKernelParam:
9102 // OpenCL v1.0 s6.5:
9103 // __kernel function arguments declared to be a pointer of a type can point
9104 // to one of the following address spaces only : __global, __local or
9105 // __constant.
9106 S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
9107 D.setInvalidType();
9108 return;
9109
9110 // OpenCL v1.2 s6.9.k:
9111 // Arguments to kernel functions in a program cannot be declared with the
9112 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
9113 // uintptr_t or a struct and/or union that contain fields declared to be
9114 // one of these built-in scalar types.
9115
9116 case InvalidKernelParam:
9117 // OpenCL v1.2 s6.8 n:
9118 // A kernel function argument cannot be declared
9119 // of event_t type.
9120 // Do not diagnose half type since it is diagnosed as invalid argument
9121 // type for any function elsewhere.
9122 if (!PT->isHalfType()) {
9123 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
9124
9125 // Explain what typedefs are involved.
9126 const TypedefType *Typedef = nullptr;
9127 while ((Typedef = PT->getAs<TypedefType>())) {
9128 SourceLocation Loc = Typedef->getDecl()->getLocation();
9129 // SourceLocation may be invalid for a built-in type.
9130 if (Loc.isValid())
9131 S.Diag(Loc, diag::note_entity_declared_at) << PT;
9132 PT = Typedef->desugar();
9133 }
9134 }
9135
9136 D.setInvalidType();
9137 return;
9138
9139 case PtrKernelParam:
9140 case ValidKernelParam:
9141 ValidTypes.insert(PT.getTypePtr());
9142 return;
9143
9144 case RecordKernelParam:
9145 break;
9146 }
9147
9148 // Track nested structs we will inspect
9149 SmallVector<const Decl *, 4> VisitStack;
9150
9151 // Track where we are in the nested structs. Items will migrate from
9152 // VisitStack to HistoryStack as we do the DFS for bad field.
9153 SmallVector<const FieldDecl *, 4> HistoryStack;
9154 HistoryStack.push_back(nullptr);
9155
9156 // At this point we already handled everything except of a RecordType or
9157 // an ArrayType of a RecordType.
9158 assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type.")(static_cast <bool> ((PT->isArrayType() || PT->isRecordType
()) && "Unexpected type.") ? void (0) : __assert_fail
("(PT->isArrayType() || PT->isRecordType()) && \"Unexpected type.\""
, "clang/lib/Sema/SemaDecl.cpp", 9158, __extension__ __PRETTY_FUNCTION__
))
;
9159 const RecordType *RecTy =
9160 PT->getPointeeOrArrayElementType()->getAs<RecordType>();
9161 const RecordDecl *OrigRecDecl = RecTy->getDecl();
9162
9163 VisitStack.push_back(RecTy->getDecl());
9164 assert(VisitStack.back() && "First decl null?")(static_cast <bool> (VisitStack.back() && "First decl null?"
) ? void (0) : __assert_fail ("VisitStack.back() && \"First decl null?\""
, "clang/lib/Sema/SemaDecl.cpp", 9164, __extension__ __PRETTY_FUNCTION__
))
;
9165
9166 do {
9167 const Decl *Next = VisitStack.pop_back_val();
9168 if (!Next) {
9169 assert(!HistoryStack.empty())(static_cast <bool> (!HistoryStack.empty()) ? void (0) :
__assert_fail ("!HistoryStack.empty()", "clang/lib/Sema/SemaDecl.cpp"
, 9169, __extension__ __PRETTY_FUNCTION__))
;
9170 // Found a marker, we have gone up a level
9171 if (const FieldDecl *Hist = HistoryStack.pop_back_val())
9172 ValidTypes.insert(Hist->getType().getTypePtr());
9173
9174 continue;
9175 }
9176
9177 // Adds everything except the original parameter declaration (which is not a
9178 // field itself) to the history stack.
9179 const RecordDecl *RD;
9180 if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
9181 HistoryStack.push_back(Field);
9182
9183 QualType FieldTy = Field->getType();
9184 // Other field types (known to be valid or invalid) are handled while we
9185 // walk around RecordDecl::fields().
9186 assert((FieldTy->isArrayType() || FieldTy->isRecordType()) &&(static_cast <bool> ((FieldTy->isArrayType() || FieldTy
->isRecordType()) && "Unexpected type.") ? void (0
) : __assert_fail ("(FieldTy->isArrayType() || FieldTy->isRecordType()) && \"Unexpected type.\""
, "clang/lib/Sema/SemaDecl.cpp", 9187, __extension__ __PRETTY_FUNCTION__
))
9187 "Unexpected type.")(static_cast <bool> ((FieldTy->isArrayType() || FieldTy
->isRecordType()) && "Unexpected type.") ? void (0
) : __assert_fail ("(FieldTy->isArrayType() || FieldTy->isRecordType()) && \"Unexpected type.\""
, "clang/lib/Sema/SemaDecl.cpp", 9187, __extension__ __PRETTY_FUNCTION__
))
;
9188 const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType();
9189
9190 RD = FieldRecTy->castAs<RecordType>()->getDecl();
9191 } else {
9192 RD = cast<RecordDecl>(Next);
9193 }
9194
9195 // Add a null marker so we know when we've gone back up a level
9196 VisitStack.push_back(nullptr);
9197
9198 for (const auto *FD : RD->fields()) {
9199 QualType QT = FD->getType();
9200
9201 if (ValidTypes.count(QT.getTypePtr()))
9202 continue;
9203
9204 OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
9205 if (ParamType == ValidKernelParam)
9206 continue;
9207
9208 if (ParamType == RecordKernelParam) {
9209 VisitStack.push_back(FD);
9210 continue;
9211 }
9212
9213 // OpenCL v1.2 s6.9.p:
9214 // Arguments to kernel functions that are declared to be a struct or union
9215 // do not allow OpenCL objects to be passed as elements of the struct or
9216 // union.
9217 if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
9218 ParamType == InvalidAddrSpacePtrKernelParam) {
9219 S.Diag(Param->getLocation(),
9220 diag::err_record_with_pointers_kernel_param)
9221 << PT->isUnionType()
9222 << PT;
9223 } else {
9224 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
9225 }
9226
9227 S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type)
9228 << OrigRecDecl->getDeclName();
9229
9230 // We have an error, now let's go back up through history and show where
9231 // the offending field came from
9232 for (ArrayRef<const FieldDecl *>::const_iterator
9233 I = HistoryStack.begin() + 1,
9234 E = HistoryStack.end();
9235 I != E; ++I) {
9236 const FieldDecl *OuterField = *I;
9237 S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
9238 << OuterField->getType();
9239 }
9240
9241 S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
9242 << QT->isPointerType()
9243 << QT;
9244 D.setInvalidType();
9245 return;
9246 }
9247 } while (!VisitStack.empty());
9248}
9249
9250/// Find the DeclContext in which a tag is implicitly declared if we see an
9251/// elaborated type specifier in the specified context, and lookup finds
9252/// nothing.
9253static DeclContext *getTagInjectionContext(DeclContext *DC) {
9254 while (!DC->isFileContext() && !DC->isFunctionOrMethod())
9255 DC = DC->getParent();
9256 return DC;
9257}
9258
9259/// Find the Scope in which a tag is implicitly declared if we see an
9260/// elaborated type specifier in the specified context, and lookup finds
9261/// nothing.
9262static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
9263 while (S->isClassScope() ||
9264 (LangOpts.CPlusPlus &&
9265 S->isFunctionPrototypeScope()) ||
9266 ((S->getFlags() & Scope::DeclScope) == 0) ||
9267 (S->getEntity() && S->getEntity()->isTransparentContext()))
9268 S = S->getParent();
9269 return S;
9270}
9271
9272/// Determine whether a declaration matches a known function in namespace std.
9273static bool isStdBuiltin(ASTContext &Ctx, FunctionDecl *FD,
9274 unsigned BuiltinID) {
9275 switch (BuiltinID) {
9276 case Builtin::BI__GetExceptionInfo:
9277 // No type checking whatsoever.
9278 return Ctx.getTargetInfo().getCXXABI().isMicrosoft();
9279
9280 case Builtin::BIaddressof:
9281 case Builtin::BI__addressof:
9282 case Builtin::BIforward:
9283 case Builtin::BImove:
9284 case Builtin::BImove_if_noexcept:
9285 case Builtin::BIas_const: {
9286 // Ensure that we don't treat the algorithm
9287 // OutputIt std::move(InputIt, InputIt, OutputIt)
9288 // as the builtin std::move.
9289 const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
9290 return FPT->getNumParams() == 1 && !FPT->isVariadic();
9291 }
9292
9293 default:
9294 return false;
9295 }
9296}
9297
9298NamedDecl*
9299Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
9300 TypeSourceInfo *TInfo, LookupResult &Previous,
9301 MultiTemplateParamsArg TemplateParamListsRef,
9302 bool &AddToScope) {
9303 QualType R = TInfo->getType();
9304
9305 assert(R->isFunctionType())(static_cast <bool> (R->isFunctionType()) ? void (0)
: __assert_fail ("R->isFunctionType()", "clang/lib/Sema/SemaDecl.cpp"
, 9305, __extension__ __PRETTY_FUNCTION__))
;
9306 if (R.getCanonicalType()->castAs<FunctionType>()->getCmseNSCallAttr())
9307 Diag(D.getIdentifierLoc(), diag::err_function_decl_cmse_ns_call);
9308
9309 SmallVector<TemplateParameterList *, 4> TemplateParamLists;
9310 llvm::append_range(TemplateParamLists, TemplateParamListsRef);
9311 if (TemplateParameterList *Invented = D.getInventedTemplateParameterList()) {
9312 if (!TemplateParamLists.empty() &&
9313 Invented->getDepth() == TemplateParamLists.back()->getDepth())
9314 TemplateParamLists.back() = Invented;
9315 else
9316 TemplateParamLists.push_back(Invented);
9317 }
9318
9319 // TODO: consider using NameInfo for diagnostic.
9320 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
9321 DeclarationName Name = NameInfo.getName();
9322 StorageClass SC = getFunctionStorageClass(*this, D);
9323
9324 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
9325 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
9326 diag::err_invalid_thread)
9327 << DeclSpec::getSpecifierName(TSCS);
9328
9329 if (D.isFirstDeclarationOfMember())
9330 adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
9331 D.getIdentifierLoc());
9332
9333 bool isFriend = false;
9334 FunctionTemplateDecl *FunctionTemplate = nullptr;
9335 bool isMemberSpecialization = false;
9336 bool isFunctionTemplateSpecialization = false;
9337
9338 bool isDependentClassScopeExplicitSpecialization = false;
9339 bool HasExplicitTemplateArgs = false;
9340 TemplateArgumentListInfo TemplateArgs;
9341
9342 bool isVirtualOkay = false;
9343
9344 DeclContext *OriginalDC = DC;
9345 bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
9346
9347 FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
9348 isVirtualOkay);
9349 if (!NewFD) return nullptr;
9350
9351 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
9352 NewFD->setTopLevelDeclInObjCContainer();
9353
9354 // Set the lexical context. If this is a function-scope declaration, or has a
9355 // C++ scope specifier, or is the object of a friend declaration, the lexical
9356 // context will be different from the semantic context.
9357 NewFD->setLexicalDeclContext(CurContext);
9358
9359 if (IsLocalExternDecl)
9360 NewFD->setLocalExternDecl();
9361
9362 if (getLangOpts().CPlusPlus) {
9363 bool isInline = D.getDeclSpec().isInlineSpecified();
9364 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
9365 bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier();
9366 isFriend = D.getDeclSpec().isFriendSpecified();
9367 if (isFriend && !isInline && D.isFunctionDefinition()) {
9368 // C++ [class.friend]p5
9369 // A function can be defined in a friend declaration of a
9370 // class . . . . Such a function is implicitly inline.
9371 NewFD->setImplicitlyInline();
9372 }
9373
9374 // If this is a method defined in an __interface, and is not a constructor
9375 // or an overloaded operator, then set the pure flag (isVirtual will already
9376 // return true).
9377 if (const CXXRecordDecl *Parent =
9378 dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
9379 if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
9380 NewFD->setPure(true);
9381
9382 // C++ [class.union]p2
9383 // A union can have member functions, but not virtual functions.
9384 if (isVirtual && Parent->isUnion()) {
9385 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
9386 NewFD->setInvalidDecl();
9387 }
9388 if ((Parent->isClass() || Parent->isStruct()) &&
9389 Parent->hasAttr<SYCLSpecialClassAttr>() &&
9390 NewFD->getKind() == Decl::Kind::CXXMethod && NewFD->getIdentifier() &&
9391 NewFD->getName() == "__init" && D.isFunctionDefinition()) {
9392 if (auto *Def = Parent->getDefinition())
9393 Def->setInitMethod(true);
9394 }
9395 }
9396
9397 SetNestedNameSpecifier(*this, NewFD, D);
9398 isMemberSpecialization = false;
9399 isFunctionTemplateSpecialization = false;
9400 if (D.isInvalidType())
9401 NewFD->setInvalidDecl();
9402
9403 // Match up the template parameter lists with the scope specifier, then
9404 // determine whether we have a template or a template specialization.
9405 bool Invalid = false;
9406 TemplateParameterList *TemplateParams =
9407 MatchTemplateParametersToScopeSpecifier(
9408 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
9409 D.getCXXScopeSpec(),
9410 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
9411 ? D.getName().TemplateId
9412 : nullptr,
9413 TemplateParamLists, isFriend, isMemberSpecialization,
9414 Invalid);
9415 if (TemplateParams) {
9416 // Check that we can declare a template here.
9417 if (CheckTemplateDeclScope(S, TemplateParams))
9418 NewFD->setInvalidDecl();
9419
9420 if (TemplateParams->size() > 0) {
9421 // This is a function template
9422
9423 // A destructor cannot be a template.
9424 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
9425 Diag(NewFD->getLocation(), diag::err_destructor_template);
9426 NewFD->setInvalidDecl();
9427 }
9428
9429 // If we're adding a template to a dependent context, we may need to
9430 // rebuilding some of the types used within the template parameter list,
9431 // now that we know what the current instantiation is.
9432 if (DC->isDependentContext()) {
9433 ContextRAII SavedContext(*this, DC);
9434 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
9435 Invalid = true;
9436 }
9437
9438 FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
9439 NewFD->getLocation(),
9440 Name, TemplateParams,
9441 NewFD);
9442 FunctionTemplate->setLexicalDeclContext(CurContext);
9443 NewFD->setDescribedFunctionTemplate(FunctionTemplate);
9444
9445 // For source fidelity, store the other template param lists.
9446 if (TemplateParamLists.size() > 1) {
9447 NewFD->setTemplateParameterListsInfo(Context,
9448 ArrayRef<TemplateParameterList *>(TemplateParamLists)
9449 .drop_back(1));
9450 }
9451 } else {
9452 // This is a function template specialization.
9453 isFunctionTemplateSpecialization = true;
9454 // For source fidelity, store all the template param lists.
9455 if (TemplateParamLists.size() > 0)
9456 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
9457
9458 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
9459 if (isFriend) {
9460 // We want to remove the "template<>", found here.
9461 SourceRange RemoveRange = TemplateParams->getSourceRange();
9462
9463 // If we remove the template<> and the name is not a
9464 // template-id, we're actually silently creating a problem:
9465 // the friend declaration will refer to an untemplated decl,
9466 // and clearly the user wants a template specialization. So
9467 // we need to insert '<>' after the name.
9468 SourceLocation InsertLoc;
9469 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
9470 InsertLoc = D.getName().getSourceRange().getEnd();
9471 InsertLoc = getLocForEndOfToken(InsertLoc);
9472 }
9473
9474 Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
9475 << Name << RemoveRange
9476 << FixItHint::CreateRemoval(RemoveRange)
9477 << FixItHint::CreateInsertion(InsertLoc, "<>");
9478 Invalid = true;
9479 }
9480 }
9481 } else {
9482 // Check that we can declare a template here.
9483 if (!TemplateParamLists.empty() && isMemberSpecialization &&
9484 CheckTemplateDeclScope(S, TemplateParamLists.back()))
9485 NewFD->setInvalidDecl();
9486
9487 // All template param lists were matched against the scope specifier:
9488 // this is NOT (an explicit specialization of) a template.
9489 if (TemplateParamLists.size() > 0)
9490 // For source fidelity, store all the template param lists.
9491 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
9492 }
9493
9494 if (Invalid) {
9495 NewFD->setInvalidDecl();
9496 if (FunctionTemplate)
9497 FunctionTemplate->setInvalidDecl();
9498 }
9499
9500 // C++ [dcl.fct.spec]p5:
9501 // The virtual specifier shall only be used in declarations of
9502 // nonstatic class member functions that appear within a
9503 // member-specification of a class declaration; see 10.3.
9504 //
9505 if (isVirtual && !NewFD->isInvalidDecl()) {
9506 if (!isVirtualOkay) {
9507 Diag(D.getDeclSpec().getVirtualSpecLoc(),
9508 diag::err_virtual_non_function);
9509 } else if (!CurContext->isRecord()) {
9510 // 'virtual' was specified outside of the class.
9511 Diag(D.getDeclSpec().getVirtualSpecLoc(),
9512 diag::err_virtual_out_of_class)
9513 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
9514 } else if (NewFD->getDescribedFunctionTemplate()) {
9515 // C++ [temp.mem]p3:
9516 // A member function template shall not be virtual.
9517 Diag(D.getDeclSpec().getVirtualSpecLoc(),
9518 diag::err_virtual_member_function_template)
9519 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
9520 } else {
9521 // Okay: Add virtual to the method.
9522 NewFD->setVirtualAsWritten(true);
9523 }
9524
9525 if (getLangOpts().CPlusPlus14 &&
9526 NewFD->getReturnType()->isUndeducedType())
9527 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
9528 }
9529
9530 if (getLangOpts().CPlusPlus14 &&
9531 (NewFD->isDependentContext() ||
9532 (isFriend && CurContext->isDependentContext())) &&
9533 NewFD->getReturnType()->isUndeducedType()) {
9534 // If the function template is referenced directly (for instance, as a
9535 // member of the current instantiation), pretend it has a dependent type.
9536 // This is not really justified by the standard, but is the only sane
9537 // thing to do.
9538 // FIXME: For a friend function, we have not marked the function as being
9539 // a friend yet, so 'isDependentContext' on the FD doesn't work.
9540 const FunctionProtoType *FPT =
9541 NewFD->getType()->castAs<FunctionProtoType>();
9542 QualType Result = SubstAutoTypeDependent(FPT->getReturnType());
9543 NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
9544 FPT->getExtProtoInfo()));
9545 }
9546
9547 // C++ [dcl.fct.spec]p3:
9548 // The inline specifier shall not appear on a block scope function
9549 // declaration.
9550 if (isInline && !NewFD->isInvalidDecl()) {
9551 if (CurContext->isFunctionOrMethod()) {
9552 // 'inline' is not allowed on block scope function declaration.
9553 Diag(D.getDeclSpec().getInlineSpecLoc(),
9554 diag::err_inline_declaration_block_scope) << Name
9555 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
9556 }
9557 }
9558
9559 // C++ [dcl.fct.spec]p6:
9560 // The explicit specifier shall be used only in the declaration of a
9561 // constructor or conversion function within its class definition;
9562 // see 12.3.1 and 12.3.2.
9563 if (hasExplicit && !NewFD->isInvalidDecl() &&
9564 !isa<CXXDeductionGuideDecl>(NewFD)) {
9565 if (!CurContext->isRecord()) {
9566 // 'explicit' was specified outside of the class.
9567 Diag(D.getDeclSpec().getExplicitSpecLoc(),
9568 diag::err_explicit_out_of_class)
9569 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
9570 } else if (!isa<CXXConstructorDecl>(NewFD) &&
9571 !isa<CXXConversionDecl>(NewFD)) {
9572 // 'explicit' was specified on a function that wasn't a constructor
9573 // or conversion function.
9574 Diag(D.getDeclSpec().getExplicitSpecLoc(),
9575 diag::err_explicit_non_ctor_or_conv_function)
9576 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
9577 }
9578 }
9579
9580 ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
9581 if (ConstexprKind != ConstexprSpecKind::Unspecified) {
9582 // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
9583 // are implicitly inline.
9584 NewFD->setImplicitlyInline();
9585
9586 // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
9587 // be either constructors or to return a literal type. Therefore,
9588 // destructors cannot be declared constexpr.
9589 if (isa<CXXDestructorDecl>(NewFD) &&
9590 (!getLangOpts().CPlusPlus20 ||
9591 ConstexprKind == ConstexprSpecKind::Consteval)) {
9592 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor)
9593 << static_cast<int>(ConstexprKind);
9594 NewFD->setConstexprKind(getLangOpts().CPlusPlus20
9595 ? ConstexprSpecKind::Unspecified
9596 : ConstexprSpecKind::Constexpr);
9597 }
9598 // C++20 [dcl.constexpr]p2: An allocation function, or a
9599 // deallocation function shall not be declared with the consteval
9600 // specifier.
9601 if (ConstexprKind == ConstexprSpecKind::Consteval &&
9602 (NewFD->getOverloadedOperator() == OO_New ||
9603 NewFD->getOverloadedOperator() == OO_Array_New ||
9604 NewFD->getOverloadedOperator() == OO_Delete ||
9605 NewFD->getOverloadedOperator() == OO_Array_Delete)) {
9606 Diag(D.getDeclSpec().getConstexprSpecLoc(),
9607 diag::err_invalid_consteval_decl_kind)
9608 << NewFD;
9609 NewFD->setConstexprKind(ConstexprSpecKind::Constexpr);
9610 }
9611 }
9612
9613 // If __module_private__ was specified, mark the function accordingly.
9614 if (D.getDeclSpec().isModulePrivateSpecified()) {
9615 if (isFunctionTemplateSpecialization) {
9616 SourceLocation ModulePrivateLoc
9617 = D.getDeclSpec().getModulePrivateSpecLoc();
9618 Diag(ModulePrivateLoc, diag::err_module_private_specialization)
9619 << 0
9620 << FixItHint::CreateRemoval(ModulePrivateLoc);
9621 } else {
9622 NewFD->setModulePrivate();
9623 if (FunctionTemplate)
9624 FunctionTemplate->setModulePrivate();
9625 }
9626 }
9627
9628 if (isFriend) {
9629 if (FunctionTemplate) {
9630 FunctionTemplate->setObjectOfFriendDecl();
9631 FunctionTemplate->setAccess(AS_public);
9632 }
9633 NewFD->setObjectOfFriendDecl();
9634 NewFD->setAccess(AS_public);
9635 }
9636
9637 // If a function is defined as defaulted or deleted, mark it as such now.
9638 // We'll do the relevant checks on defaulted / deleted functions later.
9639 switch (D.getFunctionDefinitionKind()) {
9640 case FunctionDefinitionKind::Declaration:
9641 case FunctionDefinitionKind::Definition:
9642 break;
9643
9644 case FunctionDefinitionKind::Defaulted:
9645 NewFD->setDefaulted();
9646 break;
9647
9648 case FunctionDefinitionKind::Deleted:
9649 NewFD->setDeletedAsWritten();
9650 break;
9651 }
9652
9653 if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
9654 D.isFunctionDefinition()) {
9655 // C++ [class.mfct]p2:
9656 // A member function may be defined (8.4) in its class definition, in
9657 // which case it is an inline member function (7.1.2)
9658 NewFD->setImplicitlyInline();
9659 }
9660
9661 if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
9662 !CurContext->isRecord()) {
9663 // C++ [class.static]p1:
9664 // A data or function member of a class may be declared static
9665 // in a class definition, in which case it is a static member of
9666 // the class.
9667
9668 // Complain about the 'static' specifier if it's on an out-of-line
9669 // member function definition.
9670
9671 // MSVC permits the use of a 'static' storage specifier on an out-of-line
9672 // member function template declaration and class member template
9673 // declaration (MSVC versions before 2015), warn about this.
9674 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
9675 ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
9676 cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) ||
9677 (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate()))
9678 ? diag::ext_static_out_of_line : diag::err_static_out_of_line)
9679 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
9680 }
9681
9682 // C++11 [except.spec]p15:
9683 // A deallocation function with no exception-specification is treated
9684 // as if it were specified with noexcept(true).
9685 const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
9686 if ((Name.getCXXOverloadedOperator() == OO_Delete ||
9687 Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
9688 getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
9689 NewFD->setType(Context.getFunctionType(
9690 FPT->getReturnType(), FPT->getParamTypes(),
9691 FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
9692 }
9693
9694 // Filter out previous declarations that don't match the scope.
9695 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
9696 D.getCXXScopeSpec().isNotEmpty() ||
9697 isMemberSpecialization ||
9698 isFunctionTemplateSpecialization);
9699
9700 // Handle GNU asm-label extension (encoded as an attribute).
9701 if (Expr *E = (Expr*) D.getAsmLabel()) {
9702 // The parser guarantees this is a string.
9703 StringLiteral *SE = cast<StringLiteral>(E);
9704 NewFD->addAttr(AsmLabelAttr::Create(Context, SE->getString(),
9705 /*IsLiteralLabel=*/true,
9706 SE->getStrTokenLoc(0)));
9707 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
9708 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
9709 ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
9710 if (I != ExtnameUndeclaredIdentifiers.end()) {
9711 if (isDeclExternC(NewFD)) {
9712 NewFD->addAttr(I->second);
9713 ExtnameUndeclaredIdentifiers.erase(I);
9714 } else
9715 Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
9716 << /*Variable*/0 << NewFD;
9717 }
9718 }
9719
9720 // Copy the parameter declarations from the declarator D to the function
9721 // declaration NewFD, if they are available. First scavenge them into Params.
9722 SmallVector<ParmVarDecl*, 16> Params;
9723 unsigned FTIIdx;
9724 if (D.isFunctionDeclarator(FTIIdx)) {
9725 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;
9726
9727 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
9728 // function that takes no arguments, not a function that takes a
9729 // single void argument.
9730 // We let through "const void" here because Sema::GetTypeForDeclarator
9731 // already checks for that case.
9732 if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
9733 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
9734 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
9735 assert(Param->getDeclContext() != NewFD && "Was set before ?")(static_cast <bool> (Param->getDeclContext() != NewFD
&& "Was set before ?") ? void (0) : __assert_fail ("Param->getDeclContext() != NewFD && \"Was set before ?\""
, "clang/lib/Sema/SemaDecl.cpp", 9735, __extension__ __PRETTY_FUNCTION__
))
;
9736 Param->setDeclContext(NewFD);
9737 Params.push_back(Param);
9738
9739 if (Param->isInvalidDecl())
9740 NewFD->setInvalidDecl();
9741 }
9742 }
9743
9744 if (!getLangOpts().CPlusPlus) {
9745 // In C, find all the tag declarations from the prototype and move them
9746 // into the function DeclContext. Remove them from the surrounding tag
9747 // injection context of the function, which is typically but not always
9748 // the TU.
9749 DeclContext *PrototypeTagContext =
9750 getTagInjectionContext(NewFD->getLexicalDeclContext());
9751 for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
9752 auto *TD = dyn_cast<TagDecl>(NonParmDecl);
9753
9754 // We don't want to reparent enumerators. Look at their parent enum
9755 // instead.
9756 if (!TD) {
9757 if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
9758 TD = cast<EnumDecl>(ECD->getDeclContext());
9759 }
9760 if (!TD)
9761 continue;
9762 DeclContext *TagDC = TD->getLexicalDeclContext();
9763 if (!TagDC->containsDecl(TD))
9764 continue;
9765 TagDC->removeDecl(TD);
9766 TD->setDeclContext(NewFD);
9767 NewFD->addDecl(TD);
9768
9769 // Preserve the lexical DeclContext if it is not the surrounding tag
9770 // injection context of the FD. In this example, the semantic context of
9771 // E will be f and the lexical context will be S, while both the
9772 // semantic and lexical contexts of S will be f:
9773 // void f(struct S { enum E { a } f; } s);
9774 if (TagDC != PrototypeTagContext)
9775 TD->setLexicalDeclContext(TagDC);
9776 }
9777 }
9778 } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
9779 // When we're declaring a function with a typedef, typeof, etc as in the
9780 // following example, we'll need to synthesize (unnamed)
9781 // parameters for use in the declaration.
9782 //
9783 // @code
9784 // typedef void fn(int);
9785 // fn f;
9786 // @endcode
9787
9788 // Synthesize a parameter for each argument type.
9789 for (const auto &AI : FT->param_types()) {
9790 ParmVarDecl *Param =
9791 BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
9792 Param->setScopeInfo(0, Params.size());
9793 Params.push_back(Param);
9794 }
9795 } else {
9796 assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&(static_cast <bool> (R->isFunctionNoProtoType() &&
NewFD->getNumParams() == 0 && "Should not need args for typedef of non-prototype fn"
) ? void (0) : __assert_fail ("R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && \"Should not need args for typedef of non-prototype fn\""
, "clang/lib/Sema/SemaDecl.cpp", 9797, __extension__ __PRETTY_FUNCTION__
))
9797 "Should not need args for typedef of non-prototype fn")(static_cast <bool> (R->isFunctionNoProtoType() &&
NewFD->getNumParams() == 0 && "Should not need args for typedef of non-prototype fn"
) ? void (0) : __assert_fail ("R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && \"Should not need args for typedef of non-prototype fn\""
, "clang/lib/Sema/SemaDecl.cpp", 9797, __extension__ __PRETTY_FUNCTION__
))
;
9798 }
9799
9800 // Finally, we know we have the right number of parameters, install them.
9801 NewFD->setParams(Params);
9802
9803 if (D.getDeclSpec().isNoreturnSpecified())
9804 NewFD->addAttr(C11NoReturnAttr::Create(Context,
9805 D.getDeclSpec().getNoreturnSpecLoc(),
9806 AttributeCommonInfo::AS_Keyword));
9807
9808 // Functions returning a variably modified type violate C99 6.7.5.2p2
9809 // because all functions have linkage.
9810 if (!NewFD->isInvalidDecl() &&
9811 NewFD->getReturnType()->isVariablyModifiedType()) {
9812 Diag(NewFD->getLocation(), diag::err_vm_func_decl);
9813 NewFD->setInvalidDecl();
9814 }
9815
9816 // Apply an implicit SectionAttr if '#pragma clang section text' is active
9817 if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
9818 !NewFD->hasAttr<SectionAttr>())
9819 NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(
9820 Context, PragmaClangTextSection.SectionName,
9821 PragmaClangTextSection.PragmaLocation, AttributeCommonInfo::AS_Pragma));
9822
9823 // Apply an implicit SectionAttr if #pragma code_seg is active.
9824 if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
9825 !NewFD->hasAttr<SectionAttr>()) {
9826 NewFD->addAttr(SectionAttr::CreateImplicit(
9827 Context, CodeSegStack.CurrentValue->getString(),
9828 CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
9829 SectionAttr::Declspec_allocate));
9830 if (UnifySection(CodeSegStack.CurrentValue->getString(),
9831 ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
9832 ASTContext::PSF_Read,
9833 NewFD))
9834 NewFD->dropAttr<SectionAttr>();
9835 }
9836
9837 // Apply an implicit CodeSegAttr from class declspec or
9838 // apply an implicit SectionAttr from #pragma code_seg if active.
9839 if (!NewFD->hasAttr<CodeSegAttr>()) {
9840 if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD,
9841 D.isFunctionDefinition())) {
9842 NewFD->addAttr(SAttr);
9843 }
9844 }
9845
9846 // Handle attributes.
9847 ProcessDeclAttributes(S, NewFD, D);
9848
9849 if (getLangOpts().OpenCL) {
9850 // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
9851 // type declaration will generate a compilation error.
9852 LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
9853 if (AddressSpace != LangAS::Default) {
9854 Diag(NewFD->getLocation(),
9855 diag::err_opencl_return_value_with_address_space);
9856 NewFD->setInvalidDecl();
9857 }
9858 }
9859
9860 if (!getLangOpts().CPlusPlus) {
9861 // Perform semantic checking on the function declaration.
9862 if (!NewFD->isInvalidDecl() && NewFD->isMain())
9863 CheckMain(NewFD, D.getDeclSpec());
9864
9865 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
9866 CheckMSVCRTEntryPoint(NewFD);
9867
9868 if (!NewFD->isInvalidDecl())
9869 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
9870 isMemberSpecialization,
9871 D.isFunctionDefinition()));
9872 else if (!Previous.empty())
9873 // Recover gracefully from an invalid redeclaration.
9874 D.setRedeclaration(true);
9875 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||(static_cast <bool> ((NewFD->isInvalidDecl() || !D.isRedeclaration
() || Previous.getResultKind() != LookupResult::FoundOverloaded
) && "previous declaration set still overloaded") ? void
(0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "clang/lib/Sema/SemaDecl.cpp", 9877, __extension__ __PRETTY_FUNCTION__
))
9876 Previous.getResultKind() != LookupResult::FoundOverloaded) &&(static_cast <bool> ((NewFD->isInvalidDecl() || !D.isRedeclaration
() || Previous.getResultKind() != LookupResult::FoundOverloaded
) && "previous declaration set still overloaded") ? void
(0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "clang/lib/Sema/SemaDecl.cpp", 9877, __extension__ __PRETTY_FUNCTION__
))
9877 "previous declaration set still overloaded")(static_cast <bool> ((NewFD->isInvalidDecl() || !D.isRedeclaration
() || Previous.getResultKind() != LookupResult::FoundOverloaded
) && "previous declaration set still overloaded") ? void
(0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "clang/lib/Sema/SemaDecl.cpp", 9877, __extension__ __PRETTY_FUNCTION__
))
;
9878
9879 // Diagnose no-prototype function declarations with calling conventions that
9880 // don't support variadic calls. Only do this in C and do it after merging
9881 // possibly prototyped redeclarations.
9882 const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
9883 if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
9884 CallingConv CC = FT->getExtInfo().getCC();
9885 if (!supportsVariadicCall(CC)) {
9886 // Windows system headers sometimes accidentally use stdcall without
9887 // (void) parameters, so we relax this to a warning.
9888 int DiagID =
9889 CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
9890 Diag(NewFD->getLocation(), DiagID)
9891 << FunctionType::getNameForCallConv(CC);
9892 }
9893 }
9894
9895 if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() ||
9896 NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion())
9897 checkNonTrivialCUnion(NewFD->getReturnType(),
9898 NewFD->getReturnTypeSourceRange().getBegin(),
9899 NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy);
9900 } else {
9901 // C++11 [replacement.functions]p3:
9902 // The program's definitions shall not be specified as inline.
9903 //
9904 // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
9905 //
9906 // Suppress the diagnostic if the function is __attribute__((used)), since
9907 // that forces an external definition to be emitted.
9908 if (D.getDeclSpec().isInlineSpecified() &&
9909 NewFD->isReplaceableGlobalAllocationFunction() &&
9910 !NewFD->hasAttr<UsedAttr>())
9911 Diag(D.getDeclSpec().getInlineSpecLoc(),
9912 diag::ext_operator_new_delete_declared_inline)
9913 << NewFD->getDeclName();
9914
9915 // If the declarator is a template-id, translate the parser's template
9916 // argument list into our AST format.
9917 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
9918 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
9919 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
9920 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
9921 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
9922 TemplateId->NumArgs);
9923 translateTemplateArguments(TemplateArgsPtr,
9924 TemplateArgs);
9925
9926 HasExplicitTemplateArgs = true;
9927
9928 if (NewFD->isInvalidDecl()) {
9929 HasExplicitTemplateArgs = false;
9930 } else if (FunctionTemplate) {
9931 // Function template with explicit template arguments.
9932 Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
9933 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
9934
9935 HasExplicitTemplateArgs = false;
9936 } else {
9937 assert((isFunctionTemplateSpecialization ||(static_cast <bool> ((isFunctionTemplateSpecialization ||
D.getDeclSpec().isFriendSpecified()) && "should have a 'template<>' for this decl"
) ? void (0) : __assert_fail ("(isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified()) && \"should have a 'template<>' for this decl\""
, "clang/lib/Sema/SemaDecl.cpp", 9939, __extension__ __PRETTY_FUNCTION__
))
9938 D.getDeclSpec().isFriendSpecified()) &&(static_cast <bool> ((isFunctionTemplateSpecialization ||
D.getDeclSpec().isFriendSpecified()) && "should have a 'template<>' for this decl"
) ? void (0) : __assert_fail ("(isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified()) && \"should have a 'template<>' for this decl\""
, "clang/lib/Sema/SemaDecl.cpp", 9939, __extension__ __PRETTY_FUNCTION__
))
9939 "should have a 'template<>' for this decl")(static_cast <bool> ((isFunctionTemplateSpecialization ||
D.getDeclSpec().isFriendSpecified()) && "should have a 'template<>' for this decl"
) ? void (0) : __assert_fail ("(isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified()) && \"should have a 'template<>' for this decl\""
, "clang/lib/Sema/SemaDecl.cpp", 9939, __extension__ __PRETTY_FUNCTION__
))
;
9940 // "friend void foo<>(int);" is an implicit specialization decl.
9941 isFunctionTemplateSpecialization = true;
9942 }
9943 } else if (isFriend && isFunctionTemplateSpecialization) {
9944 // This combination is only possible in a recovery case; the user
9945 // wrote something like:
9946 // template <> friend void foo(int);
9947 // which we're recovering from as if the user had written:
9948 // friend void foo<>(int);
9949 // Go ahead and fake up a template id.
9950 HasExplicitTemplateArgs = true;
9951 TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
9952 TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
9953 }
9954
9955 // We do not add HD attributes to specializations here because
9956 // they may have different constexpr-ness compared to their
9957 // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
9958 // may end up with different effective targets. Instead, a
9959 // specialization inherits its target attributes from its template
9960 // in the CheckFunctionTemplateSpecialization() call below.
9961 if (getLangOpts().CUDA && !isFunctionTemplateSpecialization)
9962 maybeAddCUDAHostDeviceAttrs(NewFD, Previous);
9963
9964 // If it's a friend (and only if it's a friend), it's possible
9965 // that either the specialized function type or the specialized
9966 // template is dependent, and therefore matching will fail. In
9967 // this case, don't check the specialization yet.
9968 if (isFunctionTemplateSpecialization && isFriend &&
9969 (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
9970 TemplateSpecializationType::anyInstantiationDependentTemplateArguments(
9971 TemplateArgs.arguments()))) {
9972 assert(HasExplicitTemplateArgs &&(static_cast <bool> (HasExplicitTemplateArgs &&
"friend function specialization without template args") ? void
(0) : __assert_fail ("HasExplicitTemplateArgs && \"friend function specialization without template args\""
, "clang/lib/Sema/SemaDecl.cpp", 9973, __extension__ __PRETTY_FUNCTION__
))
9973 "friend function specialization without template args")(static_cast <bool> (HasExplicitTemplateArgs &&
"friend function specialization without template args") ? void
(0) : __assert_fail ("HasExplicitTemplateArgs && \"friend function specialization without template args\""
, "clang/lib/Sema/SemaDecl.cpp", 9973, __extension__ __PRETTY_FUNCTION__
))
;
9974 if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
9975 Previous))
9976 NewFD->setInvalidDecl();
9977 } else if (isFunctionTemplateSpecialization) {
9978 if (CurContext->isDependentContext() && CurContext->isRecord()
9979 && !isFriend) {
9980 isDependentClassScopeExplicitSpecialization = true;
9981 } else if (!NewFD->isInvalidDecl() &&
9982 CheckFunctionTemplateSpecialization(
9983 NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr),
9984 Previous))
9985 NewFD->setInvalidDecl();
9986
9987 // C++ [dcl.stc]p1:
9988 // A storage-class-specifier shall not be specified in an explicit
9989 // specialization (14.7.3)
9990 FunctionTemplateSpecializationInfo *Info =
9991 NewFD->getTemplateSpecializationInfo();
9992 if (Info && SC != SC_None) {
9993 if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
9994 Diag(NewFD->getLocation(),
9995 diag::err_explicit_specialization_inconsistent_storage_class)
9996 << SC
9997 << FixItHint::CreateRemoval(
9998 D.getDeclSpec().getStorageClassSpecLoc());
9999
10000 else
10001 Diag(NewFD->getLocation(),
10002 diag::ext_explicit_specialization_storage_class)
10003 << FixItHint::CreateRemoval(
10004 D.getDeclSpec().getStorageClassSpecLoc());
10005 }
10006 } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
10007 if (CheckMemberSpecialization(NewFD, Previous))
10008 NewFD->setInvalidDecl();
10009 }
10010
10011 // Perform semantic checking on the function declaration.
10012 if (!isDependentClassScopeExplicitSpecialization) {
10013 if (!NewFD->isInvalidDecl() && NewFD->isMain())
10014 CheckMain(NewFD, D.getDeclSpec());
10015
10016 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
10017 CheckMSVCRTEntryPoint(NewFD);
10018
10019 if (!NewFD->isInvalidDecl())
10020 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
10021 isMemberSpecialization,
10022 D.isFunctionDefinition()));
10023 else if (!Previous.empty())
10024 // Recover gracefully from an invalid redeclaration.
10025 D.setRedeclaration(true);
10026 }
10027
10028 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||(static_cast <bool> ((NewFD->isInvalidDecl() || !D.isRedeclaration
() || Previous.getResultKind() != LookupResult::FoundOverloaded
) && "previous declaration set still overloaded") ? void
(0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "clang/lib/Sema/SemaDecl.cpp", 10030, __extension__ __PRETTY_FUNCTION__
))
10029 Previous.getResultKind() != LookupResult::FoundOverloaded) &&(static_cast <bool> ((NewFD->isInvalidDecl() || !D.isRedeclaration
() || Previous.getResultKind() != LookupResult::FoundOverloaded
) && "previous declaration set still overloaded") ? void
(0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "clang/lib/Sema/SemaDecl.cpp", 10030, __extension__ __PRETTY_FUNCTION__
))
10030 "previous declaration set still overloaded")(static_cast <bool> ((NewFD->isInvalidDecl() || !D.isRedeclaration
() || Previous.getResultKind() != LookupResult::FoundOverloaded
) && "previous declaration set still overloaded") ? void
(0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "clang/lib/Sema/SemaDecl.cpp", 10030, __extension__ __PRETTY_FUNCTION__
))
;
10031
10032 NamedDecl *PrincipalDecl = (FunctionTemplate
10033 ? cast<NamedDecl>(FunctionTemplate)
10034 : NewFD);
10035
10036 if (isFriend && NewFD->getPreviousDecl()) {
10037 AccessSpecifier Access = AS_public;
10038 if (!NewFD->isInvalidDecl())
10039 Access = NewFD->getPreviousDecl()->getAccess();
10040
10041 NewFD->setAccess(Access);
10042 if (FunctionTemplate) FunctionTemplate->setAccess(Access);
10043 }
10044
10045 if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
10046 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
10047 PrincipalDecl->setNonMemberOperator();
10048
10049 // If we have a function template, check the template parameter
10050 // list. This will check and merge default template arguments.
10051 if (FunctionTemplate) {
10052 FunctionTemplateDecl *PrevTemplate =
10053 FunctionTemplate->getPreviousDecl();
10054 CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
10055 PrevTemplate ? PrevTemplate->getTemplateParameters()
10056 : nullptr,
10057 D.getDeclSpec().isFriendSpecified()
10058 ? (D.isFunctionDefinition()
10059 ? TPC_FriendFunctionTemplateDefinition
10060 : TPC_FriendFunctionTemplate)
10061 : (D.getCXXScopeSpec().isSet() &&
10062 DC && DC->isRecord() &&
10063 DC->isDependentContext())
10064 ? TPC_ClassTemplateMember
10065 : TPC_FunctionTemplate);
10066 }
10067
10068 if (NewFD->isInvalidDecl()) {
10069 // Ignore all the rest of this.
10070 } else if (!D.isRedeclaration()) {
10071 struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
10072 AddToScope };
10073 // Fake up an access specifier if it's supposed to be a class member.
10074 if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
10075 NewFD->setAccess(AS_public);
10076
10077 // Qualified decls generally require a previous declaration.
10078 if (D.getCXXScopeSpec().isSet()) {
10079 // ...with the major exception of templated-scope or
10080 // dependent-scope friend declarations.
10081
10082 // TODO: we currently also suppress this check in dependent
10083 // contexts because (1) the parameter depth will be off when
10084 // matching friend templates and (2) we might actually be
10085 // selecting a friend based on a dependent factor. But there
10086 // are situations where these conditions don't apply and we
10087 // can actually do this check immediately.
10088 //
10089 // Unless the scope is dependent, it's always an error if qualified
10090 // redeclaration lookup found nothing at all. Diagnose that now;
10091 // nothing will diagnose that error later.
10092 if (isFriend &&
10093 (D.getCXXScopeSpec().getScopeRep()->isDependent() ||
10094 (!Previous.empty() && CurContext->isDependentContext()))) {
10095 // ignore these
10096 } else if (NewFD->isCPUDispatchMultiVersion() ||
10097 NewFD->isCPUSpecificMultiVersion()) {
10098 // ignore this, we allow the redeclaration behavior here to create new
10099 // versions of the function.
10100 } else {
10101 // The user tried to provide an out-of-line definition for a
10102 // function that is a member of a class or namespace, but there
10103 // was no such member function declared (C++ [class.mfct]p2,
10104 // C++ [namespace.memdef]p2). For example:
10105 //
10106 // class X {
10107 // void f() const;
10108 // };
10109 //
10110 // void X::f() { } // ill-formed
10111 //
10112 // Complain about this problem, and attempt to suggest close
10113 // matches (e.g., those that differ only in cv-qualifiers and
10114 // whether the parameter types are references).
10115
10116 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
10117 *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
10118 AddToScope = ExtraArgs.AddToScope;
10119 return Result;
10120 }
10121 }
10122
10123 // Unqualified local friend declarations are required to resolve
10124 // to something.
10125 } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
10126 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
10127 *this, Previous, NewFD, ExtraArgs, true, S)) {
10128 AddToScope = ExtraArgs.AddToScope;
10129 return Result;
10130 }
10131 }
10132 } else if (!D.isFunctionDefinition() &&
10133 isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
10134 !isFriend && !isFunctionTemplateSpecialization &&
10135 !isMemberSpecialization) {
10136 // An out-of-line member function declaration must also be a
10137 // definition (C++ [class.mfct]p2).
10138 // Note that this is not the case for explicit specializations of
10139 // function templates or member functions of class templates, per
10140 // C++ [temp.expl.spec]p2. We also allow these declarations as an
10141 // extension for compatibility with old SWIG code which likes to
10142 // generate them.
10143 Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
10144 << D.getCXXScopeSpec().getRange();
10145 }
10146 }
10147
10148 // If this is the first declaration of a library builtin function, add
10149 // attributes as appropriate.
10150 if (!D.isRedeclaration()) {
10151 if (IdentifierInfo *II = Previous.getLookupName().getAsIdentifierInfo()) {
10152 if (unsigned BuiltinID = II->getBuiltinID()) {
10153 bool InStdNamespace = Context.BuiltinInfo.isInStdNamespace(BuiltinID);
10154 if (!InStdNamespace &&
10155 NewFD->getDeclContext()->getRedeclContext()->isFileContext()) {
10156 if (NewFD->getLanguageLinkage() == CLanguageLinkage) {
10157 // Validate the type matches unless this builtin is specified as
10158 // matching regardless of its declared type.
10159 if (Context.BuiltinInfo.allowTypeMismatch(BuiltinID)) {
10160 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
10161 } else {
10162 ASTContext::GetBuiltinTypeError Error;
10163 LookupNecessaryTypesForBuiltin(S, BuiltinID);
10164 QualType BuiltinType = Context.GetBuiltinType(BuiltinID, Error);
10165
10166 if (!Error && !BuiltinType.isNull() &&
10167 Context.hasSameFunctionTypeIgnoringExceptionSpec(
10168 NewFD->getType(), BuiltinType))
10169 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
10170 }
10171 }
10172 } else if (InStdNamespace && NewFD->isInStdNamespace() &&
10173 isStdBuiltin(Context, NewFD, BuiltinID)) {
10174 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
10175 }
10176 }
10177 }
10178 }
10179
10180 ProcessPragmaWeak(S, NewFD);
10181 checkAttributesAfterMerging(*this, *NewFD);
10182
10183 AddKnownFunctionAttributes(NewFD);
10184
10185 if (NewFD->hasAttr<OverloadableAttr>() &&
10186 !NewFD->getType()->getAs<FunctionProtoType>()) {
10187 Diag(NewFD->getLocation(),
10188 diag::err_attribute_overloadable_no_prototype)
10189 << NewFD;
10190
10191 // Turn this into a variadic function with no parameters.
10192 const auto *FT = NewFD->getType()->castAs<FunctionType>();
10193 FunctionProtoType::ExtProtoInfo EPI(
10194 Context.getDefaultCallingConvention(true, false));
10195 EPI.Variadic = true;
10196 EPI.ExtInfo = FT->getExtInfo();
10197
10198 QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
10199 NewFD->setType(R);
10200 }
10201
10202 // If there's a #pragma GCC visibility in scope, and this isn't a class
10203 // member, set the visibility of this function.
10204 if (!DC->isRecord() && NewFD->isExternallyVisible())
10205 AddPushedVisibilityAttribute(NewFD);
10206
10207 // If there's a #pragma clang arc_cf_code_audited in scope, consider
10208 // marking the function.
10209 AddCFAuditedAttribute(NewFD);
10210
10211 // If this is a function definition, check if we have to apply optnone due to
10212 // a pragma.
10213 if(D.isFunctionDefinition())
10214 AddRangeBasedOptnone(NewFD);
10215
10216 // If this is the first declaration of an extern C variable, update
10217 // the map of such variables.
10218 if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
10219 isIncompleteDeclExternC(*this, NewFD))
10220 RegisterLocallyScopedExternCDecl(NewFD, S);
10221
10222 // Set this FunctionDecl's range up to the right paren.
10223 NewFD->setRangeEnd(D.getSourceRange().getEnd());
10224
10225 if (D.isRedeclaration() && !Previous.empty()) {
10226 NamedDecl *Prev = Previous.getRepresentativeDecl();
10227 checkDLLAttributeRedeclaration(*this, Prev, NewFD,
10228 isMemberSpecialization ||
10229 isFunctionTemplateSpecialization,
10230 D.isFunctionDefinition());
10231 }
10232
10233 if (getLangOpts().CUDA) {
10234 IdentifierInfo *II = NewFD->getIdentifier();
10235 if (II && II->isStr(getCudaConfigureFuncName()) &&
10236 !NewFD->isInvalidDecl() &&
10237 NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
10238 if (!R->castAs<FunctionType>()->getReturnType()->isScalarType())
10239 Diag(NewFD->getLocation(), diag::err_config_scalar_return)
10240 << getCudaConfigureFuncName();
10241 Context.setcudaConfigureCallDecl(NewFD);
10242 }
10243
10244 // Variadic functions, other than a *declaration* of printf, are not allowed
10245 // in device-side CUDA code, unless someone passed
10246 // -fcuda-allow-variadic-functions.
10247 if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
10248 (NewFD->hasAttr<CUDADeviceAttr>() ||
10249 NewFD->hasAttr<CUDAGlobalAttr>()) &&
10250 !(II && II->isStr("printf") && NewFD->isExternC() &&
10251 !D.isFunctionDefinition())) {
10252 Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
10253 }
10254 }
10255
10256 MarkUnusedFileScopedDecl(NewFD);
10257
10258
10259
10260 if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) {
10261 // OpenCL v1.2 s6.8 static is invalid for kernel functions.
10262 if (SC == SC_Static) {
10263 Diag(D.getIdentifierLoc(), diag::err_static_kernel);
10264 D.setInvalidType();
10265 }
10266
10267 // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
10268 if (!NewFD->getReturnType()->isVoidType()) {
10269 SourceRange RTRange = NewFD->getReturnTypeSourceRange();
10270 Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
10271 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
10272 : FixItHint());
10273 D.setInvalidType();
10274 }
10275
10276 llvm::SmallPtrSet<const Type *, 16> ValidTypes;
10277 for (auto Param : NewFD->parameters())
10278 checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
10279
10280 if (getLangOpts().OpenCLCPlusPlus) {
10281 if (DC->isRecord()) {
10282 Diag(D.getIdentifierLoc(), diag::err_method_kernel);
10283 D.setInvalidType();
10284 }
10285 if (FunctionTemplate) {
10286 Diag(D.getIdentifierLoc(), diag::err_template_kernel);
10287 D.setInvalidType();
10288 }
10289 }
10290 }
10291
10292 if (getLangOpts().CPlusPlus) {
10293 if (FunctionTemplate) {
10294 if (NewFD->isInvalidDecl())
10295 FunctionTemplate->setInvalidDecl();
10296 return FunctionTemplate;
10297 }
10298
10299 if (isMemberSpecialization && !NewFD->isInvalidDecl())
10300 CompleteMemberSpecialization(NewFD, Previous);
10301 }
10302
10303 for (const ParmVarDecl *Param : NewFD->parameters()) {
10304 QualType PT = Param->getType();
10305
10306 // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
10307 // types.
10308 if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
10309 if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
10310 QualType ElemTy = PipeTy->getElementType();
10311 if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
10312 Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
10313 D.setInvalidType();
10314 }
10315 }
10316 }
10317 }
10318
10319 // Here we have an function template explicit specialization at class scope.
10320 // The actual specialization will be postponed to template instatiation
10321 // time via the ClassScopeFunctionSpecializationDecl node.
10322 if (isDependentClassScopeExplicitSpecialization) {
10323 ClassScopeFunctionSpecializationDecl *NewSpec =
10324 ClassScopeFunctionSpecializationDecl::Create(
10325 Context, CurContext, NewFD->getLocation(),
10326 cast<CXXMethodDecl>(NewFD),
10327 HasExplicitTemplateArgs, TemplateArgs);
10328 CurContext->addDecl(NewSpec);
10329 AddToScope = false;
10330 }
10331
10332 // Diagnose availability attributes. Availability cannot be used on functions
10333 // that are run during load/unload.
10334 if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) {
10335 if (NewFD->hasAttr<ConstructorAttr>()) {
10336 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
10337 << 1;
10338 NewFD->dropAttr<AvailabilityAttr>();
10339 }
10340 if (NewFD->hasAttr<DestructorAttr>()) {
10341 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
10342 << 2;
10343 NewFD->dropAttr<AvailabilityAttr>();
10344 }
10345 }
10346
10347 // Diagnose no_builtin attribute on function declaration that are not a
10348 // definition.
10349 // FIXME: We should really be doing this in
10350 // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to
10351 // the FunctionDecl and at this point of the code
10352 // FunctionDecl::isThisDeclarationADefinition() which always returns `false`
10353 // because Sema::ActOnStartOfFunctionDef has not been called yet.
10354 if (const auto *NBA = NewFD->getAttr<NoBuiltinAttr>())
10355 switch (D.getFunctionDefinitionKind()) {
10356 case FunctionDefinitionKind::Defaulted:
10357 case FunctionDefinitionKind::Deleted:
10358 Diag(NBA->getLocation(),
10359 diag::err_attribute_no_builtin_on_defaulted_deleted_function)
10360 << NBA->getSpelling();
10361 break;
10362 case FunctionDefinitionKind::Declaration:
10363 Diag(NBA->getLocation(), diag::err_attribute_no_builtin_on_non_definition)
10364 << NBA->getSpelling();
10365 break;
10366 case FunctionDefinitionKind::Definition:
10367 break;
10368 }
10369
10370 return NewFD;
10371}
10372
10373/// Return a CodeSegAttr from a containing class. The Microsoft docs say
10374/// when __declspec(code_seg) "is applied to a class, all member functions of
10375/// the class and nested classes -- this includes compiler-generated special
10376/// member functions -- are put in the specified segment."
10377/// The actual behavior is a little more complicated. The Microsoft compiler
10378/// won't check outer classes if there is an active value from #pragma code_seg.
10379/// The CodeSeg is always applied from the direct parent but only from outer
10380/// classes when the #pragma code_seg stack is empty. See:
10381/// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
10382/// available since MS has removed the page.
10383static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) {
10384 const auto *Method = dyn_cast<CXXMethodDecl>(FD);
10385 if (!Method)
10386 return nullptr;
10387 const CXXRecordDecl *Parent = Method->getParent();
10388 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
10389 Attr *NewAttr = SAttr->clone(S.getASTContext());
10390 NewAttr->setImplicit(true);
10391 return NewAttr;
10392 }
10393
10394 // The Microsoft compiler won't check outer classes for the CodeSeg
10395 // when the #pragma code_seg stack is active.
10396 if (S.CodeSegStack.CurrentValue)
10397 return nullptr;
10398
10399 while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) {
10400 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
10401 Attr *NewAttr = SAttr->clone(S.getASTContext());
10402 NewAttr->setImplicit(true);
10403 return NewAttr;
10404 }
10405 }
10406 return nullptr;
10407}
10408
10409/// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
10410/// containing class. Otherwise it will return implicit SectionAttr if the
10411/// function is a definition and there is an active value on CodeSegStack
10412/// (from the current #pragma code-seg value).
10413///
10414/// \param FD Function being declared.
10415/// \param IsDefinition Whether it is a definition or just a declarartion.
10416/// \returns A CodeSegAttr or SectionAttr to apply to the function or
10417/// nullptr if no attribute should be added.
10418Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
10419 bool IsDefinition) {
10420 if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD))
10421 return A;
10422 if (!FD->hasAttr<SectionAttr>() && IsDefinition &&
10423 CodeSegStack.CurrentValue)
10424 return SectionAttr::CreateImplicit(
10425 getASTContext(), CodeSegStack.CurrentValue->getString(),
10426 CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
10427 SectionAttr::Declspec_allocate);
10428 return nullptr;
10429}
10430
10431/// Determines if we can perform a correct type check for \p D as a
10432/// redeclaration of \p PrevDecl. If not, we can generally still perform a
10433/// best-effort check.
10434///
10435/// \param NewD The new declaration.
10436/// \param OldD The old declaration.
10437/// \param NewT The portion of the type of the new declaration to check.
10438/// \param OldT The portion of the type of the old declaration to check.
10439bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
10440 QualType NewT, QualType OldT) {
10441 if (!NewD->getLexicalDeclContext()->isDependentContext())
10442 return true;
10443
10444 // For dependently-typed local extern declarations and friends, we can't
10445 // perform a correct type check in general until instantiation:
10446 //
10447 // int f();
10448 // template<typename T> void g() { T f(); }
10449 //
10450 // (valid if g() is only instantiated with T = int).
10451 if (NewT->isDependentType() &&
10452 (NewD->isLocalExternDecl() || NewD->getFriendObjectKind()))
10453 return false;
10454
10455 // Similarly, if the previous declaration was a dependent local extern
10456 // declaration, we don't really know its type yet.
10457 if (OldT->isDependentType() && OldD->isLocalExternDecl())
10458 return false;
10459
10460 return true;
10461}
10462
10463/// Checks if the new declaration declared in dependent context must be
10464/// put in the same redeclaration chain as the specified declaration.
10465///
10466/// \param D Declaration that is checked.
10467/// \param PrevDecl Previous declaration found with proper lookup method for the
10468/// same declaration name.
10469/// \returns True if D must be added to the redeclaration chain which PrevDecl
10470/// belongs to.
10471///
10472bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
10473 if (!D->getLexicalDeclContext()->isDependentContext())
10474 return true;
10475
10476 // Don't chain dependent friend function definitions until instantiation, to
10477 // permit cases like
10478 //
10479 // void func();
10480 // template<typename T> class C1 { friend void func() {} };
10481 // template<typename T> class C2 { friend void func() {} };
10482 //
10483 // ... which is valid if only one of C1 and C2 is ever instantiated.
10484 //
10485 // FIXME: This need only apply to function definitions. For now, we proxy
10486 // this by checking for a file-scope function. We do not want this to apply
10487 // to friend declarations nominating member functions, because that gets in
10488 // the way of access checks.
10489 if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext())
10490 return false;
10491
10492 auto *VD = dyn_cast<ValueDecl>(D);
10493 auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl);
10494 return !VD || !PrevVD ||
10495 canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(),
10496 PrevVD->getType());
10497}
10498
10499/// Check the target attribute of the function for MultiVersion
10500/// validity.
10501///
10502/// Returns true if there was an error, false otherwise.
10503static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
10504 const auto *TA = FD->getAttr<TargetAttr>();
10505 assert(TA && "MultiVersion Candidate requires a target attribute")(static_cast <bool> (TA && "MultiVersion Candidate requires a target attribute"
) ? void (0) : __assert_fail ("TA && \"MultiVersion Candidate requires a target attribute\""
, "clang/lib/Sema/SemaDecl.cpp", 10505, __extension__ __PRETTY_FUNCTION__
))
;
10506 ParsedTargetAttr ParseInfo = TA->parse();
10507 const TargetInfo &TargetInfo = S.Context.getTargetInfo();
10508 enum ErrType { Feature = 0, Architecture = 1 };
10509
10510 if (!ParseInfo.Architecture.empty() &&
10511 !TargetInfo.validateCpuIs(ParseInfo.Architecture)) {
10512 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
10513 << Architecture << ParseInfo.Architecture;
10514 return true;
10515 }
10516
10517 for (const auto &Feat : ParseInfo.Features) {
10518 auto BareFeat = StringRef{Feat}.substr(1);
10519 if (Feat[0] == '-') {
10520 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
10521 << Feature << ("no-" + BareFeat).str();
10522 return true;
10523 }
10524
10525 if (!TargetInfo.validateCpuSupports(BareFeat) ||
10526 !TargetInfo.isValidFeatureName(BareFeat)) {
10527 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
10528 << Feature << BareFeat;
10529 return true;
10530 }
10531 }
10532 return false;
10533}
10534
10535// Provide a white-list of attributes that are allowed to be combined with
10536// multiversion functions.
10537static bool AttrCompatibleWithMultiVersion(attr::Kind Kind,
10538 MultiVersionKind MVKind) {
10539 // Note: this list/diagnosis must match the list in
10540 // checkMultiversionAttributesAllSame.
10541 switch (Kind) {
10542 default:
10543 return false;
10544 case attr::Used:
10545 return MVKind == MultiVersionKind::Target;
10546 case attr::NonNull:
10547 case attr::NoThrow:
10548 return true;
10549 }
10550}
10551
10552static bool checkNonMultiVersionCompatAttributes(Sema &S,
10553 const FunctionDecl *FD,
10554 const FunctionDecl *CausedFD,
10555 MultiVersionKind MVKind) {
10556 const auto Diagnose = [FD, CausedFD, MVKind](Sema &S, const Attr *A) {
10557 S.Diag(FD->getLocation(), diag::err_multiversion_disallowed_other_attr)
10558 << static_cast<unsigned>(MVKind) << A;
10559 if (CausedFD)
10560 S.Diag(CausedFD->getLocation(), diag::note_multiversioning_caused_here);
10561 return true;
10562 };
10563
10564 for (const Attr *A : FD->attrs()) {
10565 switch (A->getKind()) {
10566 case attr::CPUDispatch:
10567 case attr::CPUSpecific:
10568 if (MVKind != MultiVersionKind::CPUDispatch &&
10569 MVKind != MultiVersionKind::CPUSpecific)
10570 return Diagnose(S, A);
10571 break;
10572 case attr::Target:
10573 if (MVKind != MultiVersionKind::Target)
10574 return Diagnose(S, A);
10575 break;
10576 case attr::TargetClones:
10577 if (MVKind != MultiVersionKind::TargetClones)
10578 return Diagnose(S, A);
10579 break;
10580 default:
10581 if (!AttrCompatibleWithMultiVersion(A->getKind(), MVKind))
10582 return Diagnose(S, A);
10583 break;
10584 }
10585 }
10586 return false;
10587}
10588
10589bool Sema::areMultiversionVariantFunctionsCompatible(
10590 const FunctionDecl *OldFD, const FunctionDecl *NewFD,
10591 const PartialDiagnostic &NoProtoDiagID,
10592 const PartialDiagnosticAt &NoteCausedDiagIDAt,
10593 const PartialDiagnosticAt &NoSupportDiagIDAt,
10594 const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
10595 bool ConstexprSupported, bool CLinkageMayDiffer) {
10596 enum DoesntSupport {
10597 FuncTemplates = 0,
10598 VirtFuncs = 1,
10599 DeducedReturn = 2,
10600 Constructors = 3,
10601 Destructors = 4,
10602 DeletedFuncs = 5,
10603 DefaultedFuncs = 6,
10604 ConstexprFuncs = 7,
10605 ConstevalFuncs = 8,
10606 Lambda = 9,
10607 };
10608 enum Different {
10609 CallingConv = 0,
10610 ReturnType = 1,
10611 ConstexprSpec = 2,
10612 InlineSpec = 3,
10613 Linkage = 4,
10614 LanguageLinkage = 5,
10615 };
10616
10617 if (NoProtoDiagID.getDiagID() != 0 && OldFD &&
10618 !OldFD->getType()->getAs<FunctionProtoType>()) {
10619 Diag(OldFD->getLocation(), NoProtoDiagID);
10620 Diag(NoteCausedDiagIDAt.first, NoteCausedDiagIDAt.second);
10621 return true;
10622 }
10623
10624 if (NoProtoDiagID.getDiagID() != 0 &&
10625 !NewFD->getType()->getAs<FunctionProtoType>())
10626 return Diag(NewFD->getLocation(), NoProtoDiagID);
10627
10628 if (!TemplatesSupported &&
10629 NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
10630 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10631 << FuncTemplates;
10632
10633 if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
10634 if (NewCXXFD->isVirtual())
10635 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10636 << VirtFuncs;
10637
10638 if (isa<CXXConstructorDecl>(NewCXXFD))
10639 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10640 << Constructors;
10641
10642 if (isa<CXXDestructorDecl>(NewCXXFD))
10643 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10644 << Destructors;
10645 }
10646
10647 if (NewFD->isDeleted())
10648 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10649 << DeletedFuncs;
10650
10651 if (NewFD->isDefaulted())
10652 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10653 << DefaultedFuncs;
10654
10655 if (!ConstexprSupported && NewFD->isConstexpr())
10656 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10657 << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs);
10658
10659 QualType NewQType = Context.getCanonicalType(NewFD->getType());
10660 const auto *NewType = cast<FunctionType>(NewQType);
10661 QualType NewReturnType = NewType->getReturnType();
10662
10663 if (NewReturnType->isUndeducedType())
10664 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10665 << DeducedReturn;
10666
10667 // Ensure the return type is identical.
10668 if (OldFD) {
10669 QualType OldQType = Context.getCanonicalType(OldFD->getType());
10670 const auto *OldType = cast<FunctionType>(OldQType);
10671 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
10672 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
10673
10674 if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
10675 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << CallingConv;
10676
10677 QualType OldReturnType = OldType->getReturnType();
10678
10679 if (OldReturnType != NewReturnType)
10680 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ReturnType;
10681
10682 if (OldFD->getConstexprKind() != NewFD->getConstexprKind())
10683 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ConstexprSpec;
10684
10685 if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
10686 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << InlineSpec;
10687
10688 if (OldFD->getFormalLinkage() != NewFD->getFormalLinkage())
10689 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << Linkage;
10690
10691 if (!CLinkageMayDiffer && OldFD->isExternC() != NewFD->isExternC())
10692 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << LanguageLinkage;
10693
10694 if (CheckEquivalentExceptionSpec(
10695 OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
10696 NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
10697 return true;
10698 }
10699 return false;
10700}
10701
10702static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
10703 const FunctionDecl *NewFD,
10704 bool CausesMV,
10705 MultiVersionKind MVKind) {
10706 if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
10707 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
10708 if (OldFD)
10709 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10710 return true;
10711 }
10712
10713 bool IsCPUSpecificCPUDispatchMVKind =
10714 MVKind == MultiVersionKind::CPUDispatch ||
10715 MVKind == MultiVersionKind::CPUSpecific;
10716
10717 if (CausesMV && OldFD &&
10718 checkNonMultiVersionCompatAttributes(S, OldFD, NewFD, MVKind))
10719 return true;
10720
10721 if (checkNonMultiVersionCompatAttributes(S, NewFD, nullptr, MVKind))
10722 return true;
10723
10724 // Only allow transition to MultiVersion if it hasn't been used.
10725 if (OldFD && CausesMV && OldFD->isUsed(false))
10726 return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
10727
10728 return S.areMultiversionVariantFunctionsCompatible(
10729 OldFD, NewFD, S.PDiag(diag::err_multiversion_noproto),
10730 PartialDiagnosticAt(NewFD->getLocation(),
10731 S.PDiag(diag::note_multiversioning_caused_here)),
10732 PartialDiagnosticAt(NewFD->getLocation(),
10733 S.PDiag(diag::err_multiversion_doesnt_support)
10734 << static_cast<unsigned>(MVKind)),
10735 PartialDiagnosticAt(NewFD->getLocation(),
10736 S.PDiag(diag::err_multiversion_diff)),
10737 /*TemplatesSupported=*/false,
10738 /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVKind,
10739 /*CLinkageMayDiffer=*/false);
10740}
10741
10742/// Check the validity of a multiversion function declaration that is the
10743/// first of its kind. Also sets the multiversion'ness' of the function itself.
10744///
10745/// This sets NewFD->isInvalidDecl() to true if there was an error.
10746///
10747/// Returns true if there was an error, false otherwise.
10748static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD,
10749 MultiVersionKind MVKind,
10750 const TargetAttr *TA) {
10751 assert(MVKind != MultiVersionKind::None &&(static_cast <bool> (MVKind != MultiVersionKind::None &&
"Function lacks multiversion attribute") ? void (0) : __assert_fail
("MVKind != MultiVersionKind::None && \"Function lacks multiversion attribute\""
, "clang/lib/Sema/SemaDecl.cpp", 10752, __extension__ __PRETTY_FUNCTION__
))
10752 "Function lacks multiversion attribute")(static_cast <bool> (MVKind != MultiVersionKind::None &&
"Function lacks multiversion attribute") ? void (0) : __assert_fail
("MVKind != MultiVersionKind::None && \"Function lacks multiversion attribute\""
, "clang/lib/Sema/SemaDecl.cpp", 10752, __extension__ __PRETTY_FUNCTION__
))
;
10753
10754 // Target only causes MV if it is default, otherwise this is a normal
10755 // function.
10756 if (MVKind == MultiVersionKind::Target && !TA->isDefaultVersion())
10757 return false;
10758
10759 if (MVKind == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) {
10760 FD->setInvalidDecl();
10761 return true;
10762 }
10763
10764 if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVKind)) {
10765 FD->setInvalidDecl();
10766 return true;
10767 }
10768
10769 FD->setIsMultiVersion();
10770 return false;
10771}
10772
10773static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) {
10774 for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) {
10775 if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None)
10776 return true;
10777 }
10778
10779 return false;
10780}
10781
10782static bool CheckTargetCausesMultiVersioning(
10783 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA,
10784 bool &Redeclaration, NamedDecl *&OldDecl, LookupResult &Previous) {
10785 const auto *OldTA = OldFD->getAttr<TargetAttr>();
10786 ParsedTargetAttr NewParsed = NewTA->parse();
10787 // Sort order doesn't matter, it just needs to be consistent.
10788 llvm::sort(NewParsed.Features);
10789
10790 // If the old decl is NOT MultiVersioned yet, and we don't cause that
10791 // to change, this is a simple redeclaration.
10792 if (!NewTA->isDefaultVersion() &&
10793 (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr()))
10794 return false;
10795
10796 // Otherwise, this decl causes MultiVersioning.
10797 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true,
10798 MultiVersionKind::Target)) {
10799 NewFD->setInvalidDecl();
10800 return true;
10801 }
10802
10803 if (CheckMultiVersionValue(S, NewFD)) {
10804 NewFD->setInvalidDecl();
10805 return true;
10806 }
10807
10808 // If this is 'default', permit the forward declaration.
10809 if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) {
10810 Redeclaration = true;
10811 OldDecl = OldFD;
10812 OldFD->setIsMultiVersion();
10813 NewFD->setIsMultiVersion();
10814 return false;
10815 }
10816
10817 if (CheckMultiVersionValue(S, OldFD)) {
10818 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
10819 NewFD->setInvalidDecl();
10820 return true;
10821 }
10822
10823 ParsedTargetAttr OldParsed = OldTA->parse(std::less<std::string>());
10824
10825 if (OldParsed == NewParsed) {
10826 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
10827 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10828 NewFD->setInvalidDecl();
10829 return true;
10830 }
10831
10832 for (const auto *FD : OldFD->redecls()) {
10833 const auto *CurTA = FD->getAttr<TargetAttr>();
10834 // We allow forward declarations before ANY multiversioning attributes, but
10835 // nothing after the fact.
10836 if (PreviousDeclsHaveMultiVersionAttribute(FD) &&
10837 (!CurTA || CurTA->isInherited())) {
10838 S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl)
10839 << 0;
10840 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
10841 NewFD->setInvalidDecl();
10842 return true;
10843 }
10844 }
10845
10846 OldFD->setIsMultiVersion();
10847 NewFD->setIsMultiVersion();
10848 Redeclaration = false;
10849 OldDecl = nullptr;
10850 Previous.clear();
10851 return false;
10852}
10853
10854static bool MultiVersionTypesCompatible(MultiVersionKind Old,
10855 MultiVersionKind New) {
10856 if (Old == New || Old == MultiVersionKind::None ||
10857 New == MultiVersionKind::None)
10858 return true;
10859
10860 return (Old == MultiVersionKind::CPUDispatch &&
10861 New == MultiVersionKind::CPUSpecific) ||
10862 (Old == MultiVersionKind::CPUSpecific &&
10863 New == MultiVersionKind::CPUDispatch);
10864}
10865
10866/// Check the validity of a new function declaration being added to an existing
10867/// multiversioned declaration collection.
10868static bool CheckMultiVersionAdditionalDecl(
10869 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD,
10870 MultiVersionKind NewMVKind, const TargetAttr *NewTA,
10871 const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec,
10872 const TargetClonesAttr *NewClones, bool &Redeclaration, NamedDecl *&OldDecl,
10873 LookupResult &Previous) {
10874
10875 MultiVersionKind OldMVKind = OldFD->getMultiVersionKind();
10876 // Disallow mixing of multiversioning types.
10877 if (!MultiVersionTypesCompatible(OldMVKind, NewMVKind)) {
10878 S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
10879 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10880 NewFD->setInvalidDecl();
10881 return true;
10882 }
10883
10884 ParsedTargetAttr NewParsed;
10885 if (NewTA) {
10886 NewParsed = NewTA->parse();
10887 llvm::sort(NewParsed.Features);
10888 }
10889
10890 bool UseMemberUsingDeclRules =
10891 S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
10892
10893 bool MayNeedOverloadableChecks =
10894 AllowOverloadingOfFunction(Previous, S.Context, NewFD);
10895
10896 // Next, check ALL non-overloads to see if this is a redeclaration of a
10897 // previous member of the MultiVersion set.
10898 for (NamedDecl *ND : Previous) {
10899 FunctionDecl *CurFD = ND->getAsFunction();
10900 if (!CurFD)
10901 continue;
10902 if (MayNeedOverloadableChecks &&
10903 S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
10904 continue;
10905
10906 switch (NewMVKind) {
10907 case MultiVersionKind::None:
10908 assert(OldMVKind == MultiVersionKind::TargetClones &&(static_cast <bool> (OldMVKind == MultiVersionKind::TargetClones
&& "Only target_clones can be omitted in subsequent declarations"
) ? void (0) : __assert_fail ("OldMVKind == MultiVersionKind::TargetClones && \"Only target_clones can be omitted in subsequent declarations\""
, "clang/lib/Sema/SemaDecl.cpp", 10909, __extension__ __PRETTY_FUNCTION__
))
10909 "Only target_clones can be omitted in subsequent declarations")(static_cast <bool> (OldMVKind == MultiVersionKind::TargetClones
&& "Only target_clones can be omitted in subsequent declarations"
) ? void (0) : __assert_fail ("OldMVKind == MultiVersionKind::TargetClones && \"Only target_clones can be omitted in subsequent declarations\""
, "clang/lib/Sema/SemaDecl.cpp", 10909, __extension__ __PRETTY_FUNCTION__
))
;
10910 break;
10911 case MultiVersionKind::Target: {
10912 const auto *CurTA = CurFD->getAttr<TargetAttr>();
10913 if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
10914 NewFD->setIsMultiVersion();
10915 Redeclaration = true;
10916 OldDecl = ND;
10917 return false;
10918 }
10919
10920 ParsedTargetAttr CurParsed = CurTA->parse(std::less<std::string>());
10921 if (CurParsed == NewParsed) {
10922 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
10923 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10924 NewFD->setInvalidDecl();
10925 return true;
10926 }
10927 break;
10928 }
10929 case MultiVersionKind::TargetClones: {
10930 const auto *CurClones = CurFD->getAttr<TargetClonesAttr>();
10931 Redeclaration = true;
10932 OldDecl = CurFD;
10933 NewFD->setIsMultiVersion();
10934
10935 if (CurClones && NewClones &&
10936 (CurClones->featuresStrs_size() != NewClones->featuresStrs_size() ||
10937 !std::equal(CurClones->featuresStrs_begin(),
10938 CurClones->featuresStrs_end(),
10939 NewClones->featuresStrs_begin()))) {
10940 S.Diag(NewFD->getLocation(), diag::err_target_clone_doesnt_match);
10941 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10942 NewFD->setInvalidDecl();
10943 return true;
10944 }
10945
10946 return false;
10947 }
10948 case MultiVersionKind::CPUSpecific:
10949 case MultiVersionKind::CPUDispatch: {
10950 const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>();
10951 const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>();
10952 // Handle CPUDispatch/CPUSpecific versions.
10953 // Only 1 CPUDispatch function is allowed, this will make it go through
10954 // the redeclaration errors.
10955 if (NewMVKind == MultiVersionKind::CPUDispatch &&
10956 CurFD->hasAttr<CPUDispatchAttr>()) {
10957 if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() &&
10958 std::equal(
10959 CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(),
10960 NewCPUDisp->cpus_begin(),
10961 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
10962 return Cur->getName() == New->getName();
10963 })) {
10964 NewFD->setIsMultiVersion();
10965 Redeclaration = true;
10966 OldDecl = ND;
10967 return false;
10968 }
10969
10970 // If the declarations don't match, this is an error condition.
10971 S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch);
10972 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10973 NewFD->setInvalidDecl();
10974 return true;
10975 }
10976 if (NewMVKind == MultiVersionKind::CPUSpecific && CurCPUSpec) {
10977 if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() &&
10978 std::equal(
10979 CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(),
10980 NewCPUSpec->cpus_begin(),
10981 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
10982 return Cur->getName() == New->getName();
10983 })) {
10984 NewFD->setIsMultiVersion();
10985 Redeclaration = true;
10986 OldDecl = ND;
10987 return false;
10988 }
10989
10990 // Only 1 version of CPUSpecific is allowed for each CPU.
10991 for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) {
10992 for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) {
10993 if (CurII == NewII) {
10994 S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs)
10995 << NewII;
10996 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10997 NewFD->setInvalidDecl();
10998 return true;
10999 }
11000 }
11001 }
11002 }
11003 break;
11004 }
11005 }
11006 }
11007
11008 // Else, this is simply a non-redecl case. Checking the 'value' is only
11009 // necessary in the Target case, since The CPUSpecific/Dispatch cases are
11010 // handled in the attribute adding step.
11011 if (NewMVKind == MultiVersionKind::Target &&
11012 CheckMultiVersionValue(S, NewFD)) {
11013 NewFD->setInvalidDecl();
11014 return true;
11015 }
11016
11017 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD,
11018 !OldFD->isMultiVersion(), NewMVKind)) {
11019 NewFD->setInvalidDecl();
11020 return true;
11021 }
11022
11023 // Permit forward declarations in the case where these two are compatible.
11024 if (!OldFD->isMultiVersion()) {
11025 OldFD->setIsMultiVersion();
11026 NewFD->setIsMultiVersion();
11027 Redeclaration = true;
11028 OldDecl = OldFD;
11029 return false;
11030 }
11031
11032 NewFD->setIsMultiVersion();
11033 Redeclaration = false;
11034 OldDecl = nullptr;
11035 Previous.clear();
11036 return false;
11037}
11038
11039/// Check the validity of a mulitversion function declaration.
11040/// Also sets the multiversion'ness' of the function itself.
11041///
11042/// This sets NewFD->isInvalidDecl() to true if there was an error.
11043///
11044/// Returns true if there was an error, false otherwise.
11045static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
11046 bool &Redeclaration, NamedDecl *&OldDecl,
11047 LookupResult &Previous) {
11048 const auto *NewTA = NewFD->getAttr<TargetAttr>();
11049 const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>();
11050 const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>();
11051 const auto *NewClones = NewFD->getAttr<TargetClonesAttr>();
11052 MultiVersionKind MVKind = NewFD->getMultiVersionKind();
11053
11054 // Main isn't allowed to become a multiversion function, however it IS
11055 // permitted to have 'main' be marked with the 'target' optimization hint.
11056 if (NewFD->isMain()) {
11057 if (MVKind != MultiVersionKind::None &&
11058 !(MVKind == MultiVersionKind::Target && !NewTA->isDefaultVersion())) {
11059 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
11060 NewFD->setInvalidDecl();
11061 return true;
11062 }
11063 return false;
11064 }
11065
11066 if (!OldDecl || !OldDecl->getAsFunction() ||
11067 OldDecl->getDeclContext()->getRedeclContext() !=
11068 NewFD->getDeclContext()->getRedeclContext()) {
11069 // If there's no previous declaration, AND this isn't attempting to cause
11070 // multiversioning, this isn't an error condition.
11071 if (MVKind == MultiVersionKind::None)
11072 return false;
11073 return CheckMultiVersionFirstFunction(S, NewFD, MVKind, NewTA);
11074 }
11075
11076 FunctionDecl *OldFD = OldDecl->getAsFunction();
11077
11078 if (!OldFD->isMultiVersion() && MVKind == MultiVersionKind::None)
11079 return false;
11080
11081 // Multiversioned redeclarations aren't allowed to omit the attribute, except
11082 // for target_clones.
11083 if (OldFD->isMultiVersion() && MVKind == MultiVersionKind::None &&
11084 OldFD->getMultiVersionKind() != MultiVersionKind::TargetClones) {
11085 S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl)
11086 << (OldFD->getMultiVersionKind() != MultiVersionKind::Target);
11087 NewFD->setInvalidDecl();
11088 return true;
11089 }
11090
11091 if (!OldFD->isMultiVersion()) {
11092 switch (MVKind) {
11093 case MultiVersionKind::Target:
11094 return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA,
11095 Redeclaration, OldDecl, Previous);
11096 case MultiVersionKind::TargetClones:
11097 if (OldFD->isUsed(false)) {
11098 NewFD->setInvalidDecl();
11099 return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
11100 }
11101 OldFD->setIsMultiVersion();
11102 break;
11103 case MultiVersionKind::CPUDispatch:
11104 case MultiVersionKind::CPUSpecific:
11105 case MultiVersionKind::None:
11106 break;
11107 }
11108 }
11109
11110 // At this point, we have a multiversion function decl (in OldFD) AND an
11111 // appropriate attribute in the current function decl. Resolve that these are
11112 // still compatible with previous declarations.
11113 return CheckMultiVersionAdditionalDecl(S, OldFD, NewFD, MVKind, NewTA,
11114 NewCPUDisp, NewCPUSpec, NewClones,
11115 Redeclaration, OldDecl, Previous);
11116}
11117
11118/// Perform semantic checking of a new function declaration.
11119///
11120/// Performs semantic analysis of the new function declaration
11121/// NewFD. This routine performs all semantic checking that does not
11122/// require the actual declarator involved in the declaration, and is
11123/// used both for the declaration of functions as they are parsed
11124/// (called via ActOnDeclarator) and for the declaration of functions
11125/// that have been instantiated via C++ template instantiation (called
11126/// via InstantiateDecl).
11127///
11128/// \param IsMemberSpecialization whether this new function declaration is
11129/// a member specialization (that replaces any definition provided by the
11130/// previous declaration).
11131///
11132/// This sets NewFD->isInvalidDecl() to true if there was an error.
11133///
11134/// \returns true if the function declaration is a redeclaration.
11135bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
11136 LookupResult &Previous,
11137 bool IsMemberSpecialization,
11138 bool DeclIsDefn) {
11139 assert(!NewFD->getReturnType()->isVariablyModifiedType() &&(static_cast <bool> (!NewFD->getReturnType()->isVariablyModifiedType
() && "Variably modified return types are not handled here"
) ? void (0) : __assert_fail ("!NewFD->getReturnType()->isVariablyModifiedType() && \"Variably modified return types are not handled here\""
, "clang/lib/Sema/SemaDecl.cpp", 11140, __extension__ __PRETTY_FUNCTION__
))
11140 "Variably modified return types are not handled here")(static_cast <bool> (!NewFD->getReturnType()->isVariablyModifiedType
() && "Variably modified return types are not handled here"
) ? void (0) : __assert_fail ("!NewFD->getReturnType()->isVariablyModifiedType() && \"Variably modified return types are not handled here\""
, "clang/lib/Sema/SemaDecl.cpp", 11140, __extension__ __PRETTY_FUNCTION__
))
;
11141
11142 // Determine whether the type of this function should be merged with
11143 // a previous visible declaration. This never happens for functions in C++,
11144 // and always happens in C if the previous declaration was visible.
11145 bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
11146 !Previous.isShadowed();
11147
11148 bool Redeclaration = false;
11149 NamedDecl *OldDecl = nullptr;
11150 bool MayNeedOverloadableChecks = false;
11151
11152 // Merge or overload the declaration with an existing declaration of
11153 // the same name, if appropriate.
11154 if (!Previous.empty()) {
11155 // Determine whether NewFD is an overload of PrevDecl or
11156 // a declaration that requires merging. If it's an overload,
11157 // there's no more work to do here; we'll just add the new
11158 // function to the scope.
11159 if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
11160 NamedDecl *Candidate = Previous.getRepresentativeDecl();
11161 if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
11162 Redeclaration = true;
11163 OldDecl = Candidate;
11164 }
11165 } else {
11166 MayNeedOverloadableChecks = true;
11167 switch (CheckOverload(S, NewFD, Previous, OldDecl,
11168 /*NewIsUsingDecl*/ false)) {
11169 case Ovl_Match:
11170 Redeclaration = true;
11171 break;
11172
11173 case Ovl_NonFunction:
11174 Redeclaration = true;
11175 break;
11176
11177 case Ovl_Overload:
11178 Redeclaration = false;
11179 break;
11180 }
11181 }
11182 }
11183
11184 // Check for a previous extern "C" declaration with this name.
11185 if (!Redeclaration &&
11186 checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
11187 if (!Previous.empty()) {
11188 // This is an extern "C" declaration with the same name as a previous
11189 // declaration, and thus redeclares that entity...
11190 Redeclaration = true;
11191 OldDecl = Previous.getFoundDecl();
11192 MergeTypeWithPrevious = false;
11193
11194 // ... except in the presence of __attribute__((overloadable)).
11195 if (OldDecl->hasAttr<OverloadableAttr>() ||
11196 NewFD->hasAttr<OverloadableAttr>()) {
11197 if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
11198 MayNeedOverloadableChecks = true;
11199 Redeclaration = false;
11200 OldDecl = nullptr;
11201 }
11202 }
11203 }
11204 }
11205
11206 if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl, Previous))
11207 return Redeclaration;
11208
11209 // PPC MMA non-pointer types are not allowed as function return types.
11210 if (Context.getTargetInfo().getTriple().isPPC64() &&
11211 CheckPPCMMAType(NewFD->getReturnType(), NewFD->getLocation())) {
11212 NewFD->setInvalidDecl();
11213 }
11214
11215 // C++11 [dcl.constexpr]p8:
11216 // A constexpr specifier for a non-static member function that is not
11217 // a constructor declares that member function to be const.
11218 //
11219 // This needs to be delayed until we know whether this is an out-of-line
11220 // definition of a static member function.
11221 //
11222 // This rule is not present in C++1y, so we produce a backwards
11223 // compatibility warning whenever it happens in C++11.
11224 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
11225 if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
11226 !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
11227 !isa<CXXDestructorDecl>(MD) && !MD->getMethodQualifiers().hasConst()) {
11228 CXXMethodDecl *OldMD = nullptr;
11229 if (OldDecl)
11230 OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
11231 if (!OldMD || !OldMD->isStatic()) {
11232 const FunctionProtoType *FPT =
11233 MD->getType()->castAs<FunctionProtoType>();
11234 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
11235 EPI.TypeQuals.addConst();
11236 MD->setType(Context.getFunctionType(FPT->getReturnType(),
11237 FPT->getParamTypes(), EPI));
11238
11239 // Warn that we did this, if we're not performing template instantiation.
11240 // In that case, we'll have warned already when the template was defined.
11241 if (!inTemplateInstantiation()) {
11242 SourceLocation AddConstLoc;
11243 if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
11244 .IgnoreParens().getAs<FunctionTypeLoc>())
11245 AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
11246
11247 Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
11248 << FixItHint::CreateInsertion(AddConstLoc, " const");
11249 }
11250 }
11251 }
11252
11253 if (Redeclaration) {
11254 // NewFD and OldDecl represent declarations that need to be
11255 // merged.
11256 if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious,
11257 DeclIsDefn)) {
11258 NewFD->setInvalidDecl();
11259 return Redeclaration;
11260 }
11261
11262 Previous.clear();
11263 Previous.addDecl(OldDecl);
11264
11265 if (FunctionTemplateDecl *OldTemplateDecl =
11266 dyn_cast<FunctionTemplateDecl>(OldDecl)) {
11267 auto *OldFD = OldTemplateDecl->getTemplatedDecl();
11268 FunctionTemplateDecl *NewTemplateDecl
11269 = NewFD->getDescribedFunctionTemplate();
11270 assert(NewTemplateDecl && "Template/non-template mismatch")(static_cast <bool> (NewTemplateDecl && "Template/non-template mismatch"
) ? void (0) : __assert_fail ("NewTemplateDecl && \"Template/non-template mismatch\""
, "clang/lib/Sema/SemaDecl.cpp", 11270, __extension__ __PRETTY_FUNCTION__
))
;
11271
11272 // The call to MergeFunctionDecl above may have created some state in
11273 // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
11274 // can add it as a redeclaration.
11275 NewTemplateDecl->mergePrevDecl(OldTemplateDecl);
11276
11277 NewFD->setPreviousDeclaration(OldFD);
11278 if (NewFD->isCXXClassMember()) {
11279 NewFD->setAccess(OldTemplateDecl->getAccess());
11280 NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
11281 }
11282
11283 // If this is an explicit specialization of a member that is a function
11284 // template, mark it as a member specialization.
11285 if (IsMemberSpecialization &&
11286 NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
11287 NewTemplateDecl->setMemberSpecialization();
11288 assert(OldTemplateDecl->isMemberSpecialization())(static_cast <bool> (OldTemplateDecl->isMemberSpecialization
()) ? void (0) : __assert_fail ("OldTemplateDecl->isMemberSpecialization()"
, "clang/lib/Sema/SemaDecl.cpp", 11288, __extension__ __PRETTY_FUNCTION__
))
;
11289 // Explicit specializations of a member template do not inherit deleted
11290 // status from the parent member template that they are specializing.
11291 if (OldFD->isDeleted()) {
11292 // FIXME: This assert will not hold in the presence of modules.
11293 assert(OldFD->getCanonicalDecl() == OldFD)(static_cast <bool> (OldFD->getCanonicalDecl() == OldFD
) ? void (0) : __assert_fail ("OldFD->getCanonicalDecl() == OldFD"
, "clang/lib/Sema/SemaDecl.cpp", 11293, __extension__ __PRETTY_FUNCTION__
))
;
11294 // FIXME: We need an update record for this AST mutation.
11295 OldFD->setDeletedAsWritten(false);
11296 }
11297 }
11298
11299 } else {
11300 if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
11301 auto *OldFD = cast<FunctionDecl>(OldDecl);
11302 // This needs to happen first so that 'inline' propagates.
11303 NewFD->setPreviousDeclaration(OldFD);
11304 if (NewFD->isCXXClassMember())
11305 NewFD->setAccess(OldFD->getAccess());
11306 }
11307 }
11308 } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
11309 !NewFD->getAttr<OverloadableAttr>()) {
11310 assert((Previous.empty() ||(static_cast <bool> ((Previous.empty() || llvm::any_of(
Previous, [](const NamedDecl *ND) { return ND->hasAttr<
OverloadableAttr>(); })) && "Non-redecls shouldn't happen without overloadable present"
) ? void (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "clang/lib/Sema/SemaDecl.cpp", 11315, __extension__ __PRETTY_FUNCTION__
))
11311 llvm::any_of(Previous,(static_cast <bool> ((Previous.empty() || llvm::any_of(
Previous, [](const NamedDecl *ND) { return ND->hasAttr<
OverloadableAttr>(); })) && "Non-redecls shouldn't happen without overloadable present"
) ? void (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "clang/lib/Sema/SemaDecl.cpp", 11315, __extension__ __PRETTY_FUNCTION__
))
11312 [](const NamedDecl *ND) {(static_cast <bool> ((Previous.empty() || llvm::any_of(
Previous, [](const NamedDecl *ND) { return ND->hasAttr<
OverloadableAttr>(); })) && "Non-redecls shouldn't happen without overloadable present"
) ? void (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "clang/lib/Sema/SemaDecl.cpp", 11315, __extension__ __PRETTY_FUNCTION__
))
11313 return ND->hasAttr<OverloadableAttr>();(static_cast <bool> ((Previous.empty() || llvm::any_of(
Previous, [](const NamedDecl *ND) { return ND->hasAttr<
OverloadableAttr>(); })) && "Non-redecls shouldn't happen without overloadable present"
) ? void (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "clang/lib/Sema/SemaDecl.cpp", 11315, __extension__ __PRETTY_FUNCTION__
))
11314 })) &&(static_cast <bool> ((Previous.empty() || llvm::any_of(
Previous, [](const NamedDecl *ND) { return ND->hasAttr<
OverloadableAttr>(); })) && "Non-redecls shouldn't happen without overloadable present"
) ? void (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "clang/lib/Sema/SemaDecl.cpp", 11315, __extension__ __PRETTY_FUNCTION__
))
11315 "Non-redecls shouldn't happen without overloadable present")(static_cast <bool> ((Previous.empty() || llvm::any_of(
Previous, [](const NamedDecl *ND) { return ND->hasAttr<
OverloadableAttr>(); })) && "Non-redecls shouldn't happen without overloadable present"
) ? void (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "clang/lib/Sema/SemaDecl.cpp", 11315, __extension__ __PRETTY_FUNCTION__
))
;
11316
11317 auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
11318 const auto *FD = dyn_cast<FunctionDecl>(ND);
11319 return FD && !FD->hasAttr<OverloadableAttr>();
11320 });
11321
11322 if (OtherUnmarkedIter != Previous.end()) {
11323 Diag(NewFD->getLocation(),
11324 diag::err_attribute_overloadable_multiple_unmarked_overloads);
11325 Diag((*OtherUnmarkedIter)->getLocation(),
11326 diag::note_attribute_overloadable_prev_overload)
11327 << false;
11328
11329 NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
11330 }
11331 }
11332
11333 if (LangOpts.OpenMP)
11334 ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(NewFD);
11335
11336 // Semantic checking for this function declaration (in isolation).
11337
11338 if (getLangOpts().CPlusPlus) {
11339 // C++-specific checks.
11340 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
11341 CheckConstructor(Constructor);
11342 } else if (CXXDestructorDecl *Destructor =
11343 dyn_cast<CXXDestructorDecl>(NewFD)) {
11344 CXXRecordDecl *Record = Destructor->getParent();
11345 QualType ClassType = Context.getTypeDeclType(Record);
11346
11347 // FIXME: Shouldn't we be able to perform this check even when the class
11348 // type is dependent? Both gcc and edg can handle that.
11349 if (!ClassType->isDependentType()) {
11350 DeclarationName Name
11351 = Context.DeclarationNames.getCXXDestructorName(
11352 Context.getCanonicalType(ClassType));
11353 if (NewFD->getDeclName() != Name) {
11354 Diag(NewFD->getLocation(), diag::err_destructor_name);
11355 NewFD->setInvalidDecl();
11356 return Redeclaration;
11357 }
11358 }
11359 } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
11360 if (auto *TD = Guide->getDescribedFunctionTemplate())
11361 CheckDeductionGuideTemplate(TD);
11362
11363 // A deduction guide is not on the list of entities that can be
11364 // explicitly specialized.
11365 if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
11366 Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized)
11367 << /*explicit specialization*/ 1;
11368 }
11369
11370 // Find any virtual functions that this function overrides.
11371 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
11372 if (!Method->isFunctionTemplateSpecialization() &&
11373 !Method->getDescribedFunctionTemplate() &&
11374 Method->isCanonicalDecl()) {
11375 AddOverriddenMethods(Method->getParent(), Method);
11376 }
11377 if (Method->isVirtual() && NewFD->getTrailingRequiresClause())
11378 // C++2a [class.virtual]p6
11379 // A virtual method shall not have a requires-clause.
11380 Diag(NewFD->getTrailingRequiresClause()->getBeginLoc(),
11381 diag::err_constrained_virtual_method);
11382
11383 if (Method->isStatic())
11384 checkThisInStaticMemberFunctionType(Method);
11385 }
11386
11387 if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
11388 ActOnConversionDeclarator(Conversion);
11389
11390 // Extra checking for C++ overloaded operators (C++ [over.oper]).
11391 if (NewFD->isOverloadedOperator() &&
11392 CheckOverloadedOperatorDeclaration(NewFD)) {
11393 NewFD->setInvalidDecl();
11394 return Redeclaration;
11395 }
11396
11397 // Extra checking for C++0x literal operators (C++0x [over.literal]).
11398 if (NewFD->getLiteralIdentifier() &&
11399 CheckLiteralOperatorDeclaration(NewFD)) {
11400 NewFD->setInvalidDecl();
11401 return Redeclaration;
11402 }
11403
11404 // In C++, check default arguments now that we have merged decls. Unless
11405 // the lexical context is the class, because in this case this is done
11406 // during delayed parsing anyway.
11407 if (!CurContext->isRecord())
11408 CheckCXXDefaultArguments(NewFD);
11409
11410 // If this function is declared as being extern "C", then check to see if
11411 // the function returns a UDT (class, struct, or union type) that is not C
11412 // compatible, and if it does, warn the user.
11413 // But, issue any diagnostic on the first declaration only.
11414 if (Previous.empty() && NewFD->isExternC()) {
11415 QualType R = NewFD->getReturnType();
11416 if (R->isIncompleteType() && !R->isVoidType())
11417 Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
11418 << NewFD << R;
11419 else if (!R.isPODType(Context) && !R->isVoidType() &&
11420 !R->isObjCObjectPointerType())
11421 Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
11422 }
11423
11424 // C++1z [dcl.fct]p6:
11425 // [...] whether the function has a non-throwing exception-specification
11426 // [is] part of the function type
11427 //
11428 // This results in an ABI break between C++14 and C++17 for functions whose
11429 // declared type includes an exception-specification in a parameter or
11430 // return type. (Exception specifications on the function itself are OK in
11431 // most cases, and exception specifications are not permitted in most other
11432 // contexts where they could make it into a mangling.)
11433 if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
11434 auto HasNoexcept = [&](QualType T) -> bool {
11435 // Strip off declarator chunks that could be between us and a function
11436 // type. We don't need to look far, exception specifications are very
11437 // restricted prior to C++17.
11438 if (auto *RT = T->getAs<ReferenceType>())
11439 T = RT->getPointeeType();
11440 else if (T->isAnyPointerType())
11441 T = T->getPointeeType();
11442 else if (auto *MPT = T->getAs<MemberPointerType>())
11443 T = MPT->getPointeeType();
11444 if (auto *FPT = T->getAs<FunctionProtoType>())
11445 if (FPT->isNothrow())
11446 return true;
11447 return false;
11448 };
11449
11450 auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
11451 bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
11452 for (QualType T : FPT->param_types())
11453 AnyNoexcept |= HasNoexcept(T);
11454 if (AnyNoexcept)
11455 Diag(NewFD->getLocation(),
11456 diag::warn_cxx17_compat_exception_spec_in_signature)
11457 << NewFD;
11458 }
11459
11460 if (!Redeclaration && LangOpts.CUDA)
11461 checkCUDATargetOverload(NewFD, Previous);
11462 }
11463 return Redeclaration;
11464}
11465
11466void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
11467 // C++11 [basic.start.main]p3:
11468 // A program that [...] declares main to be inline, static or
11469 // constexpr is ill-formed.
11470 // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall
11471 // appear in a declaration of main.
11472 // static main is not an error under C99, but we should warn about it.
11473 // We accept _Noreturn main as an extension.
11474 if (FD->getStorageClass() == SC_Static)
11475 Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
11476 ? diag::err_static_main : diag::warn_static_main)
11477 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
11478 if (FD->isInlineSpecified())
11479 Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
11480 << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
11481 if (DS.isNoreturnSpecified()) {
11482 SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
11483 SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
11484 Diag(NoreturnLoc, diag::ext_noreturn_main);
11485 Diag(NoreturnLoc, diag::note_main_remove_noreturn)
11486 << FixItHint::CreateRemoval(NoreturnRange);
11487 }
11488 if (FD->isConstexpr()) {
11489 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
11490 << FD->isConsteval()
11491 << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
11492 FD->setConstexprKind(ConstexprSpecKind::Unspecified);
11493 }
11494
11495 if (getLangOpts().OpenCL) {
11496 Diag(FD->getLocation(), diag::err_opencl_no_main)
11497 << FD->hasAttr<OpenCLKernelAttr>();
11498 FD->setInvalidDecl();
11499 return;
11500 }
11501
11502 // Functions named main in hlsl are default entries, but don't have specific
11503 // signatures they are required to conform to.
11504 if (getLangOpts().HLSL)
11505 return;
11506
11507 QualType T = FD->getType();
11508 assert(T->isFunctionType() && "function decl is not of function type")(static_cast <bool> (T->isFunctionType() && "function decl is not of function type"
) ? void (0) : __assert_fail ("T->isFunctionType() && \"function decl is not of function type\""
, "clang/lib/Sema/SemaDecl.cpp", 11508, __extension__ __PRETTY_FUNCTION__
))
;
11509 const FunctionType* FT = T->castAs<FunctionType>();
11510
11511 // Set default calling convention for main()
11512 if (FT->getCallConv() != CC_C) {
11513 FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
11514 FD->setType(QualType(FT, 0));
11515 T = Context.getCanonicalType(FD->getType());
11516 }
11517
11518 if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
11519 // In C with GNU extensions we allow main() to have non-integer return
11520 // type, but we should warn about the extension, and we disable the
11521 // implicit-return-zero rule.
11522
11523 // GCC in C mode accepts qualified 'int'.
11524 if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
11525 FD->setHasImplicitReturnZero(true);
11526 else {
11527 Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
11528 SourceRange RTRange = FD->getReturnTypeSourceRange();
11529 if (RTRange.isValid())
11530 Diag(RTRange.getBegin(), diag::note_main_change_return_type)
11531 << FixItHint::CreateReplacement(RTRange, "int");
11532 }
11533 } else {
11534 // In C and C++, main magically returns 0 if you fall off the end;
11535 // set the flag which tells us that.
11536 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
11537
11538 // All the standards say that main() should return 'int'.
11539 if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
11540 FD->setHasImplicitReturnZero(true);
11541 else {
11542 // Otherwise, this is just a flat-out error.
11543 SourceRange RTRange = FD->getReturnTypeSourceRange();
11544 Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
11545 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
11546 : FixItHint());
11547 FD->setInvalidDecl(true);
11548 }
11549 }
11550
11551 // Treat protoless main() as nullary.
11552 if (isa<FunctionNoProtoType>(FT)) return;
11553
11554 const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
11555 unsigned nparams = FTP->getNumParams();
11556 assert(FD->getNumParams() == nparams)(static_cast <bool> (FD->getNumParams() == nparams) ?
void (0) : __assert_fail ("FD->getNumParams() == nparams"
, "clang/lib/Sema/SemaDecl.cpp", 11556, __extension__ __PRETTY_FUNCTION__
))
;
11557
11558 bool HasExtraParameters = (nparams > 3);
11559
11560 if (FTP->isVariadic()) {
11561 Diag(FD->getLocation(), diag::ext_variadic_main);
11562 // FIXME: if we had information about the location of the ellipsis, we
11563 // could add a FixIt hint to remove it as a parameter.
11564 }
11565
11566 // Darwin passes an undocumented fourth argument of type char**. If
11567 // other platforms start sprouting these, the logic below will start
11568 // getting shifty.
11569 if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
11570 HasExtraParameters = false;
11571
11572 if (HasExtraParameters) {
11573 Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
11574 FD->setInvalidDecl(true);
11575 nparams = 3;
11576 }
11577
11578 // FIXME: a lot of the following diagnostics would be improved
11579 // if we had some location information about types.
11580
11581 QualType CharPP =
11582 Context.getPointerType(Context.getPointerType(Context.CharTy));
11583 QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
11584
11585 for (unsigned i = 0; i < nparams; ++i) {
11586 QualType AT = FTP->getParamType(i);
11587
11588 bool mismatch = true;
11589
11590 if (Context.hasSameUnqualifiedType(AT, Expected[i]))
11591 mismatch = false;
11592 else if (Expected[i] == CharPP) {
11593 // As an extension, the following forms are okay:
11594 // char const **
11595 // char const * const *
11596 // char * const *
11597
11598 QualifierCollector qs;
11599 const PointerType* PT;
11600 if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
11601 (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
11602 Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
11603 Context.CharTy)) {
11604 qs.removeConst();
11605 mismatch = !qs.empty();
11606 }
11607 }
11608
11609 if (mismatch) {
11610 Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
11611 // TODO: suggest replacing given type with expected type
11612 FD->setInvalidDecl(true);
11613 }
11614 }
11615
11616 if (nparams == 1 && !FD->isInvalidDecl()) {
11617 Diag(FD->getLocation(), diag::warn_main_one_arg);
11618 }
11619
11620 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
11621 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
11622 FD->setInvalidDecl();
11623 }
11624}
11625
11626static bool isDefaultStdCall(FunctionDecl *FD, Sema &S) {
11627
11628 // Default calling convention for main and wmain is __cdecl
11629 if (FD->getName() == "main" || FD->getName() == "wmain")
11630 return false;
11631
11632 // Default calling convention for MinGW is __cdecl
11633 const llvm::Triple &T = S.Context.getTargetInfo().getTriple();
11634 if (T.isWindowsGNUEnvironment())
11635 return false;
11636
11637 // Default calling convention for WinMain, wWinMain and DllMain
11638 // is __stdcall on 32 bit Windows
11639 if (T.isOSWindows() && T.getArch() == llvm::Triple::x86)
11640 return true;
11641
11642 return false;
11643}
11644
11645void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
11646 QualType T = FD->getType();
11647 assert(T->isFunctionType() && "function decl is not of function type")(static_cast <bool> (T->isFunctionType() && "function decl is not of function type"
) ? void (0) : __assert_fail ("T->isFunctionType() && \"function decl is not of function type\""
, "clang/lib/Sema/SemaDecl.cpp", 11647, __extension__ __PRETTY_FUNCTION__
))
;
11648 const FunctionType *FT = T->castAs<FunctionType>();
11649
11650 // Set an implicit return of 'zero' if the function can return some integral,
11651 // enumeration, pointer or nullptr type.
11652 if (FT->getReturnType()->isIntegralOrEnumerationType() ||
11653 FT->getReturnType()->isAnyPointerType() ||
11654 FT->getReturnType()->isNullPtrType())
11655 // DllMain is exempt because a return value of zero means it failed.
11656 if (FD->getName() != "DllMain")
11657 FD->setHasImplicitReturnZero(true);
11658
11659 // Explicity specified calling conventions are applied to MSVC entry points
11660 if (!hasExplicitCallingConv(T)) {
11661 if (isDefaultStdCall(FD, *this)) {
11662 if (FT->getCallConv() != CC_X86StdCall) {
11663 FT = Context.adjustFunctionType(
11664 FT, FT->getExtInfo().withCallingConv(CC_X86StdCall));
11665 FD->setType(QualType(FT, 0));
11666 }
11667 } else if (FT->getCallConv() != CC_C) {
11668 FT = Context.adjustFunctionType(FT,
11669 FT->getExtInfo().withCallingConv(CC_C));
11670 FD->setType(QualType(FT, 0));
11671 }
11672 }
11673
11674 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
11675 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
11676 FD->setInvalidDecl();
11677 }
11678}
11679
11680bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
11681 // FIXME: Need strict checking. In C89, we need to check for
11682 // any assignment, increment, decrement, function-calls, or
11683 // commas outside of a sizeof. In C99, it's the same list,
11684 // except that the aforementioned are allowed in unevaluated
11685 // expressions. Everything else falls under the
11686 // "may accept other forms of constant expressions" exception.
11687 //
11688 // Regular C++ code will not end up here (exceptions: language extensions,
11689 // OpenCL C++ etc), so the constant expression rules there don't matter.
11690 if (Init->isValueDependent()) {
11691 assert(Init->containsErrors() &&(static_cast <bool> (Init->containsErrors() &&
"Dependent code should only occur in error-recovery path.") ?
void (0) : __assert_fail ("Init->containsErrors() && \"Dependent code should only occur in error-recovery path.\""
, "clang/lib/Sema/SemaDecl.cpp", 11692, __extension__ __PRETTY_FUNCTION__
))
11692 "Dependent code should only occur in error-recovery path.")(static_cast <bool> (Init->containsErrors() &&
"Dependent code should only occur in error-recovery path.") ?
void (0) : __assert_fail ("Init->containsErrors() && \"Dependent code should only occur in error-recovery path.\""
, "clang/lib/Sema/SemaDecl.cpp", 11692, __extension__ __PRETTY_FUNCTION__
))
;
11693 return true;
11694 }
11695 const Expr *Culprit;
11696 if (Init->isConstantInitializer(Context, false, &Culprit))
11697 return false;
11698 Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
11699 << Culprit->getSourceRange();
11700 return true;
11701}
11702
11703namespace {
11704 // Visits an initialization expression to see if OrigDecl is evaluated in
11705 // its own initialization and throws a warning if it does.
11706 class SelfReferenceChecker
11707 : public EvaluatedExprVisitor<SelfReferenceChecker> {
11708 Sema &S;
11709 Decl *OrigDecl;
11710 bool isRecordType;
11711 bool isPODType;
11712 bool isReferenceType;
11713
11714 bool isInitList;
11715 llvm::SmallVector<unsigned, 4> InitFieldIndex;
11716
11717 public:
11718 typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
11719
11720 SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
11721 S(S), OrigDecl(OrigDecl) {
11722 isPODType = false;
11723 isRecordType = false;
11724 isReferenceType = false;
11725 isInitList = false;
11726 if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
11727 isPODType = VD->getType().isPODType(S.Context);
11728 isRecordType = VD->getType()->isRecordType();
11729 isReferenceType = VD->getType()->isReferenceType();
11730 }
11731 }
11732
11733 // For most expressions, just call the visitor. For initializer lists,
11734 // track the index of the field being initialized since fields are
11735 // initialized in order allowing use of previously initialized fields.
11736 void CheckExpr(Expr *E) {
11737 InitListExpr *InitList = dyn_cast<InitListExpr>(E);
11738 if (!InitList) {
11739 Visit(E);
11740 return;
11741 }
11742
11743 // Track and increment the index here.
11744 isInitList = true;
11745 InitFieldIndex.push_back(0);
11746 for (auto Child : InitList->children()) {
11747 CheckExpr(cast<Expr>(Child));
11748 ++InitFieldIndex.back();
11749 }
11750 InitFieldIndex.pop_back();
11751 }
11752
11753 // Returns true if MemberExpr is checked and no further checking is needed.
11754 // Returns false if additional checking is required.
11755 bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
11756 llvm::SmallVector<FieldDecl*, 4> Fields;
11757 Expr *Base = E;
11758 bool ReferenceField = false;
11759
11760 // Get the field members used.
11761 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11762 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
11763 if (!FD)
11764 return false;
11765 Fields.push_back(FD);
11766 if (FD->getType()->isReferenceType())
11767 ReferenceField = true;
11768 Base = ME->getBase()->IgnoreParenImpCasts();
11769 }
11770
11771 // Keep checking only if the base Decl is the same.
11772 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
11773 if (!DRE || DRE->getDecl() != OrigDecl)
11774 return false;
11775
11776 // A reference field can be bound to an unininitialized field.
11777 if (CheckReference && !ReferenceField)
11778 return true;
11779
11780 // Convert FieldDecls to their index number.
11781 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
11782 for (const FieldDecl *I : llvm::reverse(Fields))
11783 UsedFieldIndex.push_back(I->getFieldIndex());
11784
11785 // See if a warning is needed by checking the first difference in index
11786 // numbers. If field being used has index less than the field being
11787 // initialized, then the use is safe.
11788 for (auto UsedIter = UsedFieldIndex.begin(),
11789 UsedEnd = UsedFieldIndex.end(),
11790 OrigIter = InitFieldIndex.begin(),
11791 OrigEnd = InitFieldIndex.end();
11792 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
11793 if (*UsedIter < *OrigIter)
11794 return true;
11795 if (*UsedIter > *OrigIter)
11796 break;
11797 }
11798
11799 // TODO: Add a different warning which will print the field names.
11800 HandleDeclRefExpr(DRE);
11801 return true;
11802 }
11803
11804 // For most expressions, the cast is directly above the DeclRefExpr.
11805 // For conditional operators, the cast can be outside the conditional
11806 // operator if both expressions are DeclRefExpr's.
11807 void HandleValue(Expr *E) {
11808 E = E->IgnoreParens();
11809 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
11810 HandleDeclRefExpr(DRE);
11811 return;
11812 }
11813
11814 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
11815 Visit(CO->getCond());
11816 HandleValue(CO->getTrueExpr());
11817 HandleValue(CO->getFalseExpr());
11818 return;
11819 }
11820
11821 if (BinaryConditionalOperator *BCO =
11822 dyn_cast<BinaryConditionalOperator>(E)) {
11823 Visit(BCO->getCond());
11824 HandleValue(BCO->getFalseExpr());
11825 return;
11826 }
11827
11828 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
11829 HandleValue(OVE->getSourceExpr());
11830 return;
11831 }
11832
11833 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
11834 if (BO->getOpcode() == BO_Comma) {
11835 Visit(BO->getLHS());
11836 HandleValue(BO->getRHS());
11837 return;
11838 }
11839 }
11840
11841 if (isa<MemberExpr>(E)) {
11842 if (isInitList) {
11843 if (CheckInitListMemberExpr(cast<MemberExpr>(E),
11844 false /*CheckReference*/))
11845 return;
11846 }
11847
11848 Expr *Base = E->IgnoreParenImpCasts();
11849 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11850 // Check for static member variables and don't warn on them.
11851 if (!isa<FieldDecl>(ME->getMemberDecl()))
11852 return;
11853 Base = ME->getBase()->IgnoreParenImpCasts();
11854 }
11855 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
11856 HandleDeclRefExpr(DRE);
11857 return;
11858 }
11859
11860 Visit(E);
11861 }
11862
11863 // Reference types not handled in HandleValue are handled here since all
11864 // uses of references are bad, not just r-value uses.
11865 void VisitDeclRefExpr(DeclRefExpr *E) {
11866 if (isReferenceType)
11867 HandleDeclRefExpr(E);
11868 }
11869
11870 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
11871 if (E->getCastKind() == CK_LValueToRValue) {
11872 HandleValue(E->getSubExpr());
11873 return;
11874 }
11875
11876 Inherited::VisitImplicitCastExpr(E);
11877 }
11878
11879 void VisitMemberExpr(MemberExpr *E) {
11880 if (isInitList) {
11881 if (CheckInitListMemberExpr(E, true /*CheckReference*/))
11882 return;
11883 }
11884
11885 // Don't warn on arrays since they can be treated as pointers.
11886 if (E->getType()->canDecayToPointerType()) return;
11887
11888 // Warn when a non-static method call is followed by non-static member
11889 // field accesses, which is followed by a DeclRefExpr.
11890 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
11891 bool Warn = (MD && !MD->isStatic());
11892 Expr *Base = E->getBase()->IgnoreParenImpCasts();
11893 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11894 if (!isa<FieldDecl>(ME->getMemberDecl()))
11895 Warn = false;
11896 Base = ME->getBase()->IgnoreParenImpCasts();
11897 }
11898
11899 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
11900 if (Warn)
11901 HandleDeclRefExpr(DRE);
11902 return;
11903 }
11904
11905 // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
11906 // Visit that expression.
11907 Visit(Base);
11908 }
11909
11910 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
11911 Expr *Callee = E->getCallee();
11912
11913 if (isa<UnresolvedLookupExpr>(Callee))
11914 return Inherited::VisitCXXOperatorCallExpr(E);
11915
11916 Visit(Callee);
11917 for (auto Arg: E->arguments())
11918 HandleValue(Arg->IgnoreParenImpCasts());
11919 }
11920
11921 void VisitUnaryOperator(UnaryOperator *E) {
11922 // For POD record types, addresses of its own members are well-defined.
11923 if (E->getOpcode() == UO_AddrOf && isRecordType &&
11924 isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
11925 if (!isPODType)
11926 HandleValue(E->getSubExpr());
11927 return;
11928 }
11929
11930 if (E->isIncrementDecrementOp()) {
11931 HandleValue(E->getSubExpr());
11932 return;
11933 }
11934
11935 Inherited::VisitUnaryOperator(E);
11936 }
11937
11938 void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
11939
11940 void VisitCXXConstructExpr(CXXConstructExpr *E) {
11941 if (E->getConstructor()->isCopyConstructor()) {
11942 Expr *ArgExpr = E->getArg(0);
11943 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
11944 if (ILE->getNumInits() == 1)
11945 ArgExpr = ILE->getInit(0);
11946 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
11947 if (ICE->getCastKind() == CK_NoOp)
11948 ArgExpr = ICE->getSubExpr();
11949 HandleValue(ArgExpr);
11950 return;
11951 }
11952 Inherited::VisitCXXConstructExpr(E);
11953 }
11954
11955 void VisitCallExpr(CallExpr *E) {
11956 // Treat std::move as a use.
11957 if (E->isCallToStdMove()) {
11958 HandleValue(E->getArg(0));
11959 return;
11960 }
11961
11962 Inherited::VisitCallExpr(E);
11963 }
11964
11965 void VisitBinaryOperator(BinaryOperator *E) {
11966 if (E->isCompoundAssignmentOp()) {
11967 HandleValue(E->getLHS());
11968 Visit(E->getRHS());
11969 return;
11970 }
11971
11972 Inherited::VisitBinaryOperator(E);
11973 }
11974
11975 // A custom visitor for BinaryConditionalOperator is needed because the
11976 // regular visitor would check the condition and true expression separately
11977 // but both point to the same place giving duplicate diagnostics.
11978 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
11979 Visit(E->getCond());
11980 Visit(E->getFalseExpr());
11981 }
11982
11983 void HandleDeclRefExpr(DeclRefExpr *DRE) {
11984 Decl* ReferenceDecl = DRE->getDecl();
11985 if (OrigDecl != ReferenceDecl) return;
11986 unsigned diag;
11987 if (isReferenceType) {
11988 diag = diag::warn_uninit_self_reference_in_reference_init;
11989 } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
11990 diag = diag::warn_static_self_reference_in_init;
11991 } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
11992 isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
11993 DRE->getDecl()->getType()->isRecordType()) {
11994 diag = diag::warn_uninit_self_reference_in_init;
11995 } else {
11996 // Local variables will be handled by the CFG analysis.
11997 return;
11998 }
11999
12000 S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE,
12001 S.PDiag(diag)
12002 << DRE->getDecl() << OrigDecl->getLocation()
12003 << DRE->getSourceRange());
12004 }
12005 };
12006
12007 /// CheckSelfReference - Warns if OrigDecl is used in expression E.
12008 static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
12009 bool DirectInit) {
12010 // Parameters arguments are occassionially constructed with itself,
12011 // for instance, in recursive functions. Skip them.
12012 if (isa<ParmVarDecl>(OrigDecl))
12013 return;
12014
12015 E = E->IgnoreParens();
12016
12017 // Skip checking T a = a where T is not a record or reference type.
12018 // Doing so is a way to silence uninitialized warnings.
12019 if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
12020 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
12021 if (ICE->getCastKind() == CK_LValueToRValue)
12022 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
12023 if (DRE->getDecl() == OrigDecl)
12024 return;
12025
12026 SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
12027 }
12028} // end anonymous namespace
12029
12030namespace {
12031 // Simple wrapper to add the name of a variable or (if no variable is
12032 // available) a DeclarationName into a diagnostic.
12033 struct VarDeclOrName {
12034 VarDecl *VDecl;
12035 DeclarationName Name;
12036
12037 friend const Sema::SemaDiagnosticBuilder &
12038 operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
12039 return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
12040 }
12041 };
12042} // end anonymous namespace
12043
12044QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
12045 DeclarationName Name, QualType Type,
12046 TypeSourceInfo *TSI,
12047 SourceRange Range, bool DirectInit,
12048 Expr *Init) {
12049 bool IsInitCapture = !VDecl;
12050 assert((!VDecl || !VDecl->isInitCapture()) &&(static_cast <bool> ((!VDecl || !VDecl->isInitCapture
()) && "init captures are expected to be deduced prior to initialization"
) ? void (0) : __assert_fail ("(!VDecl || !VDecl->isInitCapture()) && \"init captures are expected to be deduced prior to initialization\""
, "clang/lib/Sema/SemaDecl.cpp", 12051, __extension__ __PRETTY_FUNCTION__
))
12051 "init captures are expected to be deduced prior to initialization")(static_cast <bool> ((!VDecl || !VDecl->isInitCapture
()) && "init captures are expected to be deduced prior to initialization"
) ? void (0) : __assert_fail ("(!VDecl || !VDecl->isInitCapture()) && \"init captures are expected to be deduced prior to initialization\""
, "clang/lib/Sema/SemaDecl.cpp", 12051, __extension__ __PRETTY_FUNCTION__
))
;
12052
12053 VarDeclOrName VN{VDecl, Name};
12054
12055 DeducedType *Deduced = Type->getContainedDeducedType();
12056 assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type")(static_cast <bool> (Deduced && "deduceVarTypeFromInitializer for non-deduced type"
) ? void (0) : __assert_fail ("Deduced && \"deduceVarTypeFromInitializer for non-deduced type\""
, "clang/lib/Sema/SemaDecl.cpp", 12056, __extension__ __PRETTY_FUNCTION__
))
;
12057
12058 // C++11 [dcl.spec.auto]p3
12059 if (!Init) {
12060 assert(VDecl && "no init for init capture deduction?")(static_cast <bool> (VDecl && "no init for init capture deduction?"
) ? void (0) : __assert_fail ("VDecl && \"no init for init capture deduction?\""
, "clang/lib/Sema/SemaDecl.cpp", 12060, __extension__ __PRETTY_FUNCTION__
))
;
12061
12062 // Except for class argument deduction, and then for an initializing
12063 // declaration only, i.e. no static at class scope or extern.
12064 if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
12065 VDecl->hasExternalStorage() ||
12066 VDecl->isStaticDataMember()) {
12067 Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
12068 << VDecl->getDeclName() << Type;
12069 return QualType();
12070 }
12071 }
12072
12073 ArrayRef<Expr*> DeduceInits;
12074 if (Init)
12075 DeduceInits = Init;
12076
12077 if (DirectInit) {
12078 if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init))
12079 DeduceInits = PL->exprs();
12080 }
12081
12082 if (isa<DeducedTemplateSpecializationType>(Deduced)) {
12083 assert(VDecl && "non-auto type for init capture deduction?")(static_cast <bool> (VDecl && "non-auto type for init capture deduction?"
) ? void (0) : __assert_fail ("VDecl && \"non-auto type for init capture deduction?\""
, "clang/lib/Sema/SemaDecl.cpp", 12083, __extension__ __PRETTY_FUNCTION__
))
;
12084 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
12085 InitializationKind Kind = InitializationKind::CreateForInit(
12086 VDecl->getLocation(), DirectInit, Init);
12087 // FIXME: Initialization should not be taking a mutable list of inits.
12088 SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
12089 return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
12090 InitsCopy);
12091 }
12092
12093 if (DirectInit) {
12094 if (auto *IL = dyn_cast<InitListExpr>(Init))
12095 DeduceInits = IL->inits();
12096 }
12097
12098 // Deduction only works if we have exactly one source expression.
12099 if (DeduceInits.empty()) {
12100 // It isn't possible to write this directly, but it is possible to
12101 // end up in this situation with "auto x(some_pack...);"
12102 Diag(Init->getBeginLoc(), IsInitCapture
12103 ? diag::err_init_capture_no_expression
12104 : diag::err_auto_var_init_no_expression)
12105 << VN << Type << Range;
12106 return QualType();
12107 }
12108
12109 if (DeduceInits.size() > 1) {
12110 Diag(DeduceInits[1]->getBeginLoc(),
12111 IsInitCapture ? diag::err_init_capture_multiple_expressions
12112 : diag::err_auto_var_init_multiple_expressions)
12113 << VN << Type << Range;
12114 return QualType();
12115 }
12116
12117 Expr *DeduceInit = DeduceInits[0];
12118 if (DirectInit && isa<InitListExpr>(DeduceInit)) {
12119 Diag(Init->getBeginLoc(), IsInitCapture
12120 ? diag::err_init_capture_paren_braces
12121 : diag::err_auto_var_init_paren_braces)
12122 << isa<InitListExpr>(Init) << VN << Type << Range;
12123 return QualType();
12124 }
12125
12126 // Expressions default to 'id' when we're in a debugger.
12127 bool DefaultedAnyToId = false;
12128 if (getLangOpts().DebuggerCastResultToId &&
12129 Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
12130 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
12131 if (Result.isInvalid()) {
12132 return QualType();
12133 }
12134 Init = Result.get();
12135 DefaultedAnyToId = true;
12136 }
12137
12138 // C++ [dcl.decomp]p1:
12139 // If the assignment-expression [...] has array type A and no ref-qualifier
12140 // is present, e has type cv A
12141 if (VDecl && isa<DecompositionDecl>(VDecl) &&
12142 Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
12143 DeduceInit->getType()->isConstantArrayType())
12144 return Context.getQualifiedType(DeduceInit->getType(),
12145 Type.getQualifiers());
12146
12147 QualType DeducedType;
12148 if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
12149 if (!IsInitCapture)
12150 DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
12151 else if (isa<InitListExpr>(Init))
12152 Diag(Range.getBegin(),
12153 diag::err_init_capture_deduction_failure_from_init_list)
12154 << VN
12155 << (DeduceInit->getType().isNull() ? TSI->getType()
12156 : DeduceInit->getType())
12157 << DeduceInit->getSourceRange();
12158 else
12159 Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
12160 << VN << TSI->getType()
12161 << (DeduceInit->getType().isNull() ? TSI->getType()
12162 : DeduceInit->getType())
12163 << DeduceInit->getSourceRange();
12164 }
12165
12166 // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
12167 // 'id' instead of a specific object type prevents most of our usual
12168 // checks.
12169 // We only want to warn outside of template instantiations, though:
12170 // inside a template, the 'id' could have come from a parameter.
12171 if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
12172 !DeducedType.isNull() && DeducedType->isObjCIdType()) {
12173 SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
12174 Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
12175 }
12176
12177 return DeducedType;
12178}
12179
12180bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
12181 Expr *Init) {
12182 assert(!Init || !Init->containsErrors())(static_cast <bool> (!Init || !Init->containsErrors(
)) ? void (0) : __assert_fail ("!Init || !Init->containsErrors()"
, "clang/lib/Sema/SemaDecl.cpp", 12182, __extension__ __PRETTY_FUNCTION__
))
;
12183 QualType DeducedType = deduceVarTypeFromInitializer(
12184 VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
12185 VDecl->getSourceRange(), DirectInit, Init);
12186 if (DeducedType.isNull()) {
12187 VDecl->setInvalidDecl();
12188 return true;
12189 }
12190
12191 VDecl->setType(DeducedType);
12192 assert(VDecl->isLinkageValid())(static_cast <bool> (VDecl->isLinkageValid()) ? void
(0) : __assert_fail ("VDecl->isLinkageValid()", "clang/lib/Sema/SemaDecl.cpp"
, 12192, __extension__ __PRETTY_FUNCTION__))
;
12193
12194 // In ARC, infer lifetime.
12195 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
12196 VDecl->setInvalidDecl();
12197
12198 if (getLangOpts().OpenCL)
12199 deduceOpenCLAddressSpace(VDecl);
12200
12201 // If this is a redeclaration, check that the type we just deduced matches
12202 // the previously declared type.
12203 if (VarDecl *Old = VDecl->getPreviousDecl()) {
12204 // We never need to merge the type, because we cannot form an incomplete
12205 // array of auto, nor deduce such a type.
12206 MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
12207 }
12208
12209 // Check the deduced type is valid for a variable declaration.
12210 CheckVariableDeclarationType(VDecl);
12211 return VDecl->isInvalidDecl();
12212}
12213
12214void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init,
12215 SourceLocation Loc) {
12216 if (auto *EWC = dyn_cast<ExprWithCleanups>(Init))
12217 Init = EWC->getSubExpr();
12218
12219 if (auto *CE = dyn_cast<ConstantExpr>(Init))
12220 Init = CE->getSubExpr();
12221
12222 QualType InitType = Init->getType();
12223 assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||(static_cast <bool> ((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion
() || InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&
"shouldn't be called if type doesn't have a non-trivial C struct"
) ? void (0) : __assert_fail ("(InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || InitType.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C struct\""
, "clang/lib/Sema/SemaDecl.cpp", 12225, __extension__ __PRETTY_FUNCTION__
))
12224 InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&(static_cast <bool> ((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion
() || InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&
"shouldn't be called if type doesn't have a non-trivial C struct"
) ? void (0) : __assert_fail ("(InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || InitType.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C struct\""
, "clang/lib/Sema/SemaDecl.cpp", 12225, __extension__ __PRETTY_FUNCTION__
))
12225 "shouldn't be called if type doesn't have a non-trivial C struct")(static_cast <bool> ((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion
() || InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&
"shouldn't be called if type doesn't have a non-trivial C struct"
) ? void (0) : __assert_fail ("(InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || InitType.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C struct\""
, "clang/lib/Sema/SemaDecl.cpp", 12225, __extension__ __PRETTY_FUNCTION__
))
;
12226 if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
12227 for (auto I : ILE->inits()) {
12228 if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() &&
12229 !I->getType().hasNonTrivialToPrimitiveCopyCUnion())
12230 continue;
12231 SourceLocation SL = I->getExprLoc();
12232 checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc);
12233 }
12234 return;
12235 }
12236
12237 if (isa<ImplicitValueInitExpr>(Init)) {
12238 if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
12239 checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject,
12240 NTCUK_Init);
12241 } else {
12242 // Assume all other explicit initializers involving copying some existing
12243 // object.
12244 // TODO: ignore any explicit initializers where we can guarantee
12245 // copy-elision.
12246 if (InitType.hasNonTrivialToPrimitiveCopyCUnion())
12247 checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy);
12248 }
12249}
12250
12251namespace {
12252
12253bool shouldIgnoreForRecordTriviality(const FieldDecl *FD) {
12254 // Ignore unavailable fields. A field can be marked as unavailable explicitly
12255 // in the source code or implicitly by the compiler if it is in a union
12256 // defined in a system header and has non-trivial ObjC ownership
12257 // qualifications. We don't want those fields to participate in determining
12258 // whether the containing union is non-trivial.
12259 return FD->hasAttr<UnavailableAttr>();
12260}
12261
12262struct DiagNonTrivalCUnionDefaultInitializeVisitor
12263 : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
12264 void> {
12265 using Super =
12266 DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
12267 void>;
12268
12269 DiagNonTrivalCUnionDefaultInitializeVisitor(
12270 QualType OrigTy, SourceLocation OrigLoc,
12271 Sema::NonTrivialCUnionContext UseContext, Sema &S)
12272 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
12273
12274 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT,
12275 const FieldDecl *FD, bool InNonTrivialUnion) {
12276 if (const auto *AT = S.Context.getAsArrayType(QT))
12277 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
12278 InNonTrivialUnion);
12279 return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion);
12280 }
12281
12282 void visitARCStrong(QualType QT, const FieldDecl *FD,
12283 bool InNonTrivialUnion) {
12284 if (InNonTrivialUnion)
12285 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
12286 << 1 << 0 << QT << FD->getName();
12287 }
12288
12289 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
12290 if (InNonTrivialUnion)
12291 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
12292 << 1 << 0 << QT << FD->getName();
12293 }
12294
12295 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
12296 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
12297 if (RD->isUnion()) {
12298 if (OrigLoc.isValid()) {
12299 bool IsUnion = false;
12300 if (auto *OrigRD = OrigTy->getAsRecordDecl())
12301 IsUnion = OrigRD->isUnion();
12302 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
12303 << 0 << OrigTy << IsUnion << UseContext;
12304 // Reset OrigLoc so that this diagnostic is emitted only once.
12305 OrigLoc = SourceLocation();
12306 }
12307 InNonTrivialUnion = true;
12308 }
12309
12310 if (InNonTrivialUnion)
12311 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
12312 << 0 << 0 << QT.getUnqualifiedType() << "";
12313
12314 for (const FieldDecl *FD : RD->fields())
12315 if (!shouldIgnoreForRecordTriviality(FD))
12316 asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
12317 }
12318
12319 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
12320
12321 // The non-trivial C union type or the struct/union type that contains a
12322 // non-trivial C union.
12323 QualType OrigTy;
12324 SourceLocation OrigLoc;
12325 Sema::NonTrivialCUnionContext UseContext;
12326 Sema &S;
12327};
12328
12329struct DiagNonTrivalCUnionDestructedTypeVisitor
12330 : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> {
12331 using Super =
12332 DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>;
12333
12334 DiagNonTrivalCUnionDestructedTypeVisitor(
12335 QualType OrigTy, SourceLocation OrigLoc,
12336 Sema::NonTrivialCUnionContext UseContext, Sema &S)
12337 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
12338
12339 void visitWithKind(QualType::DestructionKind DK, QualType QT,
12340 const FieldDecl *FD, bool InNonTrivialUnion) {
12341 if (const auto *AT = S.Context.getAsArrayType(QT))
12342 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
12343 InNonTrivialUnion);
12344 return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion);
12345 }
12346
12347 void visitARCStrong(QualType QT, const FieldDecl *FD,
12348 bool InNonTrivialUnion) {
12349 if (InNonTrivialUnion)
12350 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
12351 << 1 << 1 << QT << FD->getName();
12352 }
12353
12354 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
12355 if (InNonTrivialUnion)
12356 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
12357 << 1 << 1 << QT << FD->getName();
12358 }
12359
12360 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
12361 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
12362 if (RD->isUnion()) {
12363 if (OrigLoc.isValid()) {
12364 bool IsUnion = false;
12365 if (auto *OrigRD = OrigTy->getAsRecordDecl())
12366 IsUnion = OrigRD->isUnion();
12367 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
12368 << 1 << OrigTy << IsUnion << UseContext;
12369 // Reset OrigLoc so that this diagnostic is emitted only once.
12370 OrigLoc = SourceLocation();
12371 }
12372 InNonTrivialUnion = true;
12373 }
12374
12375 if (InNonTrivialUnion)
12376 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
12377 << 0 << 1 << QT.getUnqualifiedType() << "";
12378
12379 for (const FieldDecl *FD : RD->fields())
12380 if (!shouldIgnoreForRecordTriviality(FD))
12381 asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
12382 }
12383
12384 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
12385 void visitCXXDestructor(QualType QT, const FieldDecl *FD,
12386 bool InNonTrivialUnion) {}
12387
12388 // The non-trivial C union type or the struct/union type that contains a
12389 // non-trivial C union.
12390 QualType OrigTy;
12391 SourceLocation OrigLoc;
12392 Sema::NonTrivialCUnionContext UseContext;
12393 Sema &S;
12394};
12395
12396struct DiagNonTrivalCUnionCopyVisitor
12397 : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> {
12398 using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>;
12399
12400 DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc,
12401 Sema::NonTrivialCUnionContext UseContext,
12402 Sema &S)
12403 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
12404
12405 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT,
12406 const FieldDecl *FD, bool InNonTrivialUnion) {
12407 if (const auto *AT = S.Context.getAsArrayType(QT))
12408 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
12409 InNonTrivialUnion);
12410 return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion);
12411 }
12412
12413 void visitARCStrong(QualType QT, const FieldDecl *FD,
12414 bool InNonTrivialUnion) {
12415 if (InNonTrivialUnion)
12416 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
12417 << 1 << 2 << QT << FD->getName();
12418 }
12419
12420 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
12421 if (InNonTrivialUnion)
12422 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
12423 << 1 << 2 << QT << FD->getName();
12424 }
12425
12426 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
12427 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
12428 if (RD->isUnion()) {
12429 if (OrigLoc.isValid()) {
12430 bool IsUnion = false;
12431 if (auto *OrigRD = OrigTy->getAsRecordDecl())
12432 IsUnion = OrigRD->isUnion();
12433 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
12434 << 2 << OrigTy << IsUnion << UseContext;
12435 // Reset OrigLoc so that this diagnostic is emitted only once.
12436 OrigLoc = SourceLocation();
12437 }
12438 InNonTrivialUnion = true;
12439 }
12440
12441 if (InNonTrivialUnion)
12442 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
12443 << 0 << 2 << QT.getUnqualifiedType() << "";
12444
12445 for (const FieldDecl *FD : RD->fields())
12446 if (!shouldIgnoreForRecordTriviality(FD))
12447 asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
12448 }
12449
12450 void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT,
12451 const FieldDecl *FD, bool InNonTrivialUnion) {}
12452 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
12453 void visitVolatileTrivial(QualType QT, const FieldDecl *FD,
12454 bool InNonTrivialUnion) {}
12455
12456 // The non-trivial C union type or the struct/union type that contains a
12457 // non-trivial C union.
12458 QualType OrigTy;
12459 SourceLocation OrigLoc;
12460 Sema::NonTrivialCUnionContext UseContext;
12461 Sema &S;
12462};
12463
12464} // namespace
12465
12466void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
12467 NonTrivialCUnionContext UseContext,
12468 unsigned NonTrivialKind) {
12469 assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||(static_cast <bool> ((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion
() || QT.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion
()) && "shouldn't be called if type doesn't have a non-trivial C union"
) ? void (0) : __assert_fail ("(QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || QT.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C union\""
, "clang/lib/Sema/SemaDecl.cpp", 12472, __extension__ __PRETTY_FUNCTION__
))
12470 QT.hasNonTrivialToPrimitiveDestructCUnion() ||(static_cast <bool> ((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion
() || QT.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion
()) && "shouldn't be called if type doesn't have a non-trivial C union"
) ? void (0) : __assert_fail ("(QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || QT.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C union\""
, "clang/lib/Sema/SemaDecl.cpp", 12472, __extension__ __PRETTY_FUNCTION__
))
12471 QT.hasNonTrivialToPrimitiveCopyCUnion()) &&(static_cast <bool> ((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion
() || QT.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion
()) && "shouldn't be called if type doesn't have a non-trivial C union"
) ? void (0) : __assert_fail ("(QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || QT.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C union\""
, "clang/lib/Sema/SemaDecl.cpp", 12472, __extension__ __PRETTY_FUNCTION__
))
12472 "shouldn't be called if type doesn't have a non-trivial C union")(static_cast <bool> ((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion
() || QT.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion
()) && "shouldn't be called if type doesn't have a non-trivial C union"
) ? void (0) : __assert_fail ("(QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || QT.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C union\""
, "clang/lib/Sema/SemaDecl.cpp", 12472, __extension__ __PRETTY_FUNCTION__
))
;
12473
12474 if ((NonTrivialKind & NTCUK_Init) &&
12475 QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
12476 DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this)
12477 .visit(QT, nullptr, false);
12478 if ((NonTrivialKind & NTCUK_Destruct) &&
12479 QT.hasNonTrivialToPrimitiveDestructCUnion())
12480 DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this)
12481 .visit(QT, nullptr, false);
12482 if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion())
12483 DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this)
12484 .visit(QT, nullptr, false);
12485}
12486
12487/// AddInitializerToDecl - Adds the initializer Init to the
12488/// declaration dcl. If DirectInit is true, this is C++ direct
12489/// initialization rather than copy initialization.
12490void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
12491 // If there is no declaration, there was an error parsing it. Just ignore
12492 // the initializer.
12493 if (!RealDecl || RealDecl->isInvalidDecl()) {
12494 CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
12495 return;
12496 }
12497
12498 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
12499 // Pure-specifiers are handled in ActOnPureSpecifier.
12500 Diag(Method->getLocation(), diag::err_member_function_initialization)
12501 << Method->getDeclName() << Init->getSourceRange();
12502 Method->setInvalidDecl();
12503 return;
12504 }
12505
12506 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
12507 if (!VDecl) {
12508 assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here")(static_cast <bool> (!isa<FieldDecl>(RealDecl) &&
"field init shouldn't get here") ? void (0) : __assert_fail (
"!isa<FieldDecl>(RealDecl) && \"field init shouldn't get here\""
, "clang/lib/Sema/SemaDecl.cpp", 12508, __extension__ __PRETTY_FUNCTION__
))
;
12509 Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
12510 RealDecl->setInvalidDecl();
12511 return;
12512 }
12513
12514 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
12515 if (VDecl->getType()->isUndeducedType()) {
12516 // Attempt typo correction early so that the type of the init expression can
12517 // be deduced based on the chosen correction if the original init contains a
12518 // TypoExpr.
12519 ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
12520 if (!Res.isUsable()) {
12521 // There are unresolved typos in Init, just drop them.
12522 // FIXME: improve the recovery strategy to preserve the Init.
12523 RealDecl->setInvalidDecl();
12524 return;
12525 }
12526 if (Res.get()->containsErrors()) {
12527 // Invalidate the decl as we don't know the type for recovery-expr yet.
12528 RealDecl->setInvalidDecl();
12529 VDecl->setInit(Res.get());
12530 return;
12531 }
12532 Init = Res.get();
12533
12534 if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
12535 return;
12536 }
12537
12538 // dllimport cannot be used on variable definitions.
12539 if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
12540 Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
12541 VDecl->setInvalidDecl();
12542 return;
12543 }
12544
12545 if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
12546 // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
12547 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
12548 VDecl->setInvalidDecl();
12549 return;
12550 }
12551
12552 if (!VDecl->getType()->isDependentType()) {
12553 // A definition must end up with a complete type, which means it must be
12554 // complete with the restriction that an array type might be completed by
12555 // the initializer; note that later code assumes this restriction.
12556 QualType BaseDeclType = VDecl->getType();
12557 if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
12558 BaseDeclType = Array->getElementType();
12559 if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
12560 diag::err_typecheck_decl_incomplete_type)) {
12561 RealDecl->setInvalidDecl();
12562 return;
12563 }
12564
12565 // The variable can not have an abstract class type.
12566 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
12567 diag::err_abstract_type_in_decl,
12568 AbstractVariableType))
12569 VDecl->setInvalidDecl();
12570 }
12571
12572 // If adding the initializer will turn this declaration into a definition,
12573 // and we already have a definition for this variable, diagnose or otherwise
12574 // handle the situation.
12575 if (VarDecl *Def = VDecl->getDefinition())
12576 if (Def != VDecl &&
12577 (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
12578 !VDecl->isThisDeclarationADemotedDefinition() &&
12579 checkVarDeclRedefinition(Def, VDecl))
12580 return;
12581
12582 if (getLangOpts().CPlusPlus) {
12583 // C++ [class.static.data]p4
12584 // If a static data member is of const integral or const
12585 // enumeration type, its declaration in the class definition can
12586 // specify a constant-initializer which shall be an integral
12587 // constant expression (5.19). In that case, the member can appear
12588 // in integral constant expressions. The member shall still be
12589 // defined in a namespace scope if it is used in the program and the
12590 // namespace scope definition shall not contain an initializer.
12591 //
12592 // We already performed a redefinition check above, but for static
12593 // data members we also need to check whether there was an in-class
12594 // declaration with an initializer.
12595 if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
12596 Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
12597 << VDecl->getDeclName();
12598 Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
12599 diag::note_previous_initializer)
12600 << 0;
12601 return;
12602 }
12603
12604 if (VDecl->hasLocalStorage())
12605 setFunctionHasBranchProtectedScope();
12606
12607 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
12608 VDecl->setInvalidDecl();
12609 return;
12610 }
12611 }
12612
12613 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
12614 // a kernel function cannot be initialized."
12615 if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
12616 Diag(VDecl->getLocation(), diag::err_local_cant_init);
12617 VDecl->setInvalidDecl();
12618 return;
12619 }
12620
12621 // The LoaderUninitialized attribute acts as a definition (of undef).
12622 if (VDecl->hasAttr<LoaderUninitializedAttr>()) {
12623 Diag(VDecl->getLocation(), diag::err_loader_uninitialized_cant_init);
12624 VDecl->setInvalidDecl();
12625 return;
12626 }
12627
12628 // Get the decls type and save a reference for later, since
12629 // CheckInitializerTypes may change it.
12630 QualType DclT = VDecl->getType(), SavT = DclT;
12631
12632 // Expressions default to 'id' when we're in a debugger
12633 // and we are assigning it to a variable of Objective-C pointer type.
12634 if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
12635 Init->getType() == Context.UnknownAnyTy) {
12636 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
12637 if (Result.isInvalid()) {
12638 VDecl->setInvalidDecl();
12639 return;
12640 }
12641 Init = Result.get();
12642 }
12643
12644 // Perform the initialization.
12645 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
12646 if (!VDecl->isInvalidDecl()) {
12647 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
12648 InitializationKind Kind = InitializationKind::CreateForInit(
12649 VDecl->getLocation(), DirectInit, Init);
12650
12651 MultiExprArg Args = Init;
12652 if (CXXDirectInit)
12653 Args = MultiExprArg(CXXDirectInit->getExprs(),
12654 CXXDirectInit->getNumExprs());
12655
12656 // Try to correct any TypoExprs in the initialization arguments.
12657 for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
12658 ExprResult Res = CorrectDelayedTyposInExpr(
12659 Args[Idx], VDecl, /*RecoverUncorrectedTypos=*/true,
12660 [this, Entity, Kind](Expr *E) {
12661 InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
12662 return Init.Failed() ? ExprError() : E;
12663 });
12664 if (Res.isInvalid()) {
12665 VDecl->setInvalidDecl();
12666 } else if (Res.get() != Args[Idx]) {
12667 Args[Idx] = Res.get();
12668 }
12669 }
12670 if (VDecl->isInvalidDecl())
12671 return;
12672
12673 InitializationSequence InitSeq(*this, Entity, Kind, Args,
12674 /*TopLevelOfInitList=*/false,
12675 /*TreatUnavailableAsInvalid=*/false);
12676 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
12677 if (Result.isInvalid()) {
12678 // If the provided initializer fails to initialize the var decl,
12679 // we attach a recovery expr for better recovery.
12680 auto RecoveryExpr =
12681 CreateRecoveryExpr(Init->getBeginLoc(), Init->getEndLoc(), Args);
12682 if (RecoveryExpr.get())
12683 VDecl->setInit(RecoveryExpr.get());
12684 return;
12685 }
12686
12687 Init = Result.getAs<Expr>();
12688 }
12689
12690 // Check for self-references within variable initializers.
12691 // Variables declared within a function/method body (except for references)
12692 // are handled by a dataflow analysis.
12693 // This is undefined behavior in C++, but valid in C.
12694 if (getLangOpts().CPlusPlus)
12695 if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
12696 VDecl->getType()->isReferenceType())
12697 CheckSelfReference(*this, RealDecl, Init, DirectInit);
12698
12699 // If the type changed, it means we had an incomplete type that was
12700 // completed by the initializer. For example:
12701 // int ary[] = { 1, 3, 5 };
12702 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
12703 if (!VDecl->isInvalidDecl() && (DclT != SavT))
12704 VDecl->setType(DclT);
12705
12706 if (!VDecl->isInvalidDecl()) {
12707 checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
12708
12709 if (VDecl->hasAttr<BlocksAttr>())
12710 checkRetainCycles(VDecl, Init);
12711
12712 // It is safe to assign a weak reference into a strong variable.
12713 // Although this code can still have problems:
12714 // id x = self.weakProp;
12715 // id y = self.weakProp;
12716 // we do not warn to warn spuriously when 'x' and 'y' are on separate
12717 // paths through the function. This should be revisited if
12718 // -Wrepeated-use-of-weak is made flow-sensitive.
12719 if (FunctionScopeInfo *FSI = getCurFunction())
12720 if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
12721 VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
12722 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
12723 Init->getBeginLoc()))
12724 FSI->markSafeWeakUse(Init);
12725 }
12726
12727 // The initialization is usually a full-expression.
12728 //
12729 // FIXME: If this is a braced initialization of an aggregate, it is not
12730 // an expression, and each individual field initializer is a separate
12731 // full-expression. For instance, in:
12732 //
12733 // struct Temp { ~Temp(); };
12734 // struct S { S(Temp); };
12735 // struct T { S a, b; } t = { Temp(), Temp() }
12736 //
12737 // we should destroy the first Temp before constructing the second.
12738 ExprResult Result =
12739 ActOnFinishFullExpr(Init, VDecl->getLocation(),
12740 /*DiscardedValue*/ false, VDecl->isConstexpr());
12741 if (Result.isInvalid()) {
12742 VDecl->setInvalidDecl();
12743 return;
12744 }
12745 Init = Result.get();
12746
12747 // Attach the initializer to the decl.
12748 VDecl->setInit(Init);
12749
12750 if (VDecl->isLocalVarDecl()) {
12751 // Don't check the initializer if the declaration is malformed.
12752 if (VDecl->isInvalidDecl()) {
12753 // do nothing
12754
12755 // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
12756 // This is true even in C++ for OpenCL.
12757 } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
12758 CheckForConstantInitializer(Init, DclT);
12759
12760 // Otherwise, C++ does not restrict the initializer.
12761 } else if (getLangOpts().CPlusPlus) {
12762 // do nothing
12763
12764 // C99 6.7.8p4: All the expressions in an initializer for an object that has
12765 // static storage duration shall be constant expressions or string literals.
12766 } else if (VDecl->getStorageClass() == SC_Static) {
12767 CheckForConstantInitializer(Init, DclT);
12768
12769 // C89 is stricter than C99 for aggregate initializers.
12770 // C89 6.5.7p3: All the expressions [...] in an initializer list
12771 // for an object that has aggregate or union type shall be
12772 // constant expressions.
12773 } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
12774 isa<InitListExpr>(Init)) {
12775 const Expr *Culprit;
12776 if (!Init->isConstantInitializer(Context, false, &Culprit)) {
12777 Diag(Culprit->getExprLoc(),
12778 diag::ext_aggregate_init_not_constant)
12779 << Culprit->getSourceRange();
12780 }
12781 }
12782
12783 if (auto *E = dyn_cast<ExprWithCleanups>(Init))
12784 if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens()))
12785 if (VDecl->hasLocalStorage())
12786 BE->getBlockDecl()->setCanAvoidCopyToHeap();
12787 } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
12788 VDecl->getLexicalDeclContext()->isRecord()) {
12789 // This is an in-class initialization for a static data member, e.g.,
12790 //
12791 // struct S {
12792 // static const int value = 17;
12793 // };
12794
12795 // C++ [class.mem]p4:
12796 // A member-declarator can contain a constant-initializer only
12797 // if it declares a static member (9.4) of const integral or
12798 // const enumeration type, see 9.4.2.
12799 //
12800 // C++11 [class.static.data]p3:
12801 // If a non-volatile non-inline const static data member is of integral
12802 // or enumeration type, its declaration in the class definition can
12803 // specify a brace-or-equal-initializer in which every initializer-clause
12804 // that is an assignment-expression is a constant expression. A static
12805 // data member of literal type can be declared in the class definition
12806 // with the constexpr specifier; if so, its declaration shall specify a
12807 // brace-or-equal-initializer in which every initializer-clause that is
12808 // an assignment-expression is a constant expression.
12809
12810 // Do nothing on dependent types.
12811 if (DclT->isDependentType()) {
12812
12813 // Allow any 'static constexpr' members, whether or not they are of literal
12814 // type. We separately check that every constexpr variable is of literal
12815 // type.
12816 } else if (VDecl->isConstexpr()) {
12817
12818 // Require constness.
12819 } else if (!DclT.isConstQualified()) {
12820 Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
12821 << Init->getSourceRange();
12822 VDecl->setInvalidDecl();
12823
12824 // We allow integer constant expressions in all cases.
12825 } else if (DclT->isIntegralOrEnumerationType()) {
12826 // Check whether the expression is a constant expression.
12827 SourceLocation Loc;
12828 if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
12829 // In C++11, a non-constexpr const static data member with an
12830 // in-class initializer cannot be volatile.
12831 Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
12832 else if (Init->isValueDependent())
12833 ; // Nothing to check.
12834 else if (Init->isIntegerConstantExpr(Context, &Loc))
12835 ; // Ok, it's an ICE!
12836 else if (Init->getType()->isScopedEnumeralType() &&
12837 Init->isCXX11ConstantExpr(Context))
12838 ; // Ok, it is a scoped-enum constant expression.
12839 else if (Init->isEvaluatable(Context)) {
12840 // If we can constant fold the initializer through heroics, accept it,
12841 // but report this as a use of an extension for -pedantic.
12842 Diag(Loc, diag::ext_in_class_initializer_non_constant)
12843 << Init->getSourceRange();
12844 } else {
12845 // Otherwise, this is some crazy unknown case. Report the issue at the
12846 // location provided by the isIntegerConstantExpr failed check.
12847 Diag(Loc, diag::err_in_class_initializer_non_constant)
12848 << Init->getSourceRange();
12849 VDecl->setInvalidDecl();
12850 }
12851
12852 // We allow foldable floating-point constants as an extension.
12853 } else if (DclT->isFloatingType()) { // also permits complex, which is ok
12854 // In C++98, this is a GNU extension. In C++11, it is not, but we support
12855 // it anyway and provide a fixit to add the 'constexpr'.
12856 if (getLangOpts().CPlusPlus11) {
12857 Diag(VDecl->getLocation(),
12858 diag::ext_in_class_initializer_float_type_cxx11)
12859 << DclT << Init->getSourceRange();
12860 Diag(VDecl->getBeginLoc(),
12861 diag::note_in_class_initializer_float_type_cxx11)
12862 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
12863 } else {
12864 Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
12865 << DclT << Init->getSourceRange();
12866
12867 if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
12868 Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
12869 << Init->getSourceRange();
12870 VDecl->setInvalidDecl();
12871 }
12872 }
12873
12874 // Suggest adding 'constexpr' in C++11 for literal types.
12875 } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
12876 Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
12877 << DclT << Init->getSourceRange()
12878 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
12879 VDecl->setConstexpr(true);
12880
12881 } else {
12882 Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
12883 << DclT << Init->getSourceRange();
12884 VDecl->setInvalidDecl();
12885 }
12886 } else if (VDecl->isFileVarDecl()) {
12887 // In C, extern is typically used to avoid tentative definitions when
12888 // declaring variables in headers, but adding an intializer makes it a
12889 // definition. This is somewhat confusing, so GCC and Clang both warn on it.
12890 // In C++, extern is often used to give implictly static const variables
12891 // external linkage, so don't warn in that case. If selectany is present,
12892 // this might be header code intended for C and C++ inclusion, so apply the
12893 // C++ rules.
12894 if (VDecl->getStorageClass() == SC_Extern &&
12895 ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
12896 !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
12897 !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
12898 !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
12899 Diag(VDecl->getLocation(), diag::warn_extern_init);
12900
12901 // In Microsoft C++ mode, a const variable defined in namespace scope has
12902 // external linkage by default if the variable is declared with
12903 // __declspec(dllexport).
12904 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
12905 getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() &&
12906 VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition())
12907 VDecl->setStorageClass(SC_Extern);
12908
12909 // C99 6.7.8p4. All file scoped initializers need to be constant.
12910 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
12911 CheckForConstantInitializer(Init, DclT);
12912 }
12913
12914 QualType InitType = Init->getType();
12915 if (!InitType.isNull() &&
12916 (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
12917 InitType.hasNonTrivialToPrimitiveCopyCUnion()))
12918 checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc());
12919
12920 // We will represent direct-initialization similarly to copy-initialization:
12921 // int x(1); -as-> int x = 1;
12922 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
12923 //
12924 // Clients that want to distinguish between the two forms, can check for
12925 // direct initializer using VarDecl::getInitStyle().
12926 // A major benefit is that clients that don't particularly care about which
12927 // exactly form was it (like the CodeGen) can handle both cases without
12928 // special case code.
12929
12930 // C++ 8.5p11:
12931 // The form of initialization (using parentheses or '=') is generally
12932 // insignificant, but does matter when the entity being initialized has a
12933 // class type.
12934 if (CXXDirectInit) {
12935 assert(DirectInit && "Call-style initializer must be direct init.")(static_cast <bool> (DirectInit && "Call-style initializer must be direct init."
) ? void (0) : __assert_fail ("DirectInit && \"Call-style initializer must be direct init.\""
, "clang/lib/Sema/SemaDecl.cpp", 12935, __extension__ __PRETTY_FUNCTION__
))
;
12936 VDecl->setInitStyle(VarDecl::CallInit);
12937 } else if (DirectInit) {
12938 // This must be list-initialization. No other way is direct-initialization.
12939 VDecl->setInitStyle(VarDecl::ListInit);
12940 }
12941
12942 if (LangOpts.OpenMP &&
12943 (LangOpts.OpenMPIsDevice || !LangOpts.OMPTargetTriples.empty()) &&
12944 VDecl->isFileVarDecl())
12945 DeclsToCheckForDeferredDiags.insert(VDecl);
12946 CheckCompleteVariableDeclaration(VDecl);
12947}
12948
12949/// ActOnInitializerError - Given that there was an error parsing an
12950/// initializer for the given declaration, try to at least re-establish
12951/// invariants such as whether a variable's type is either dependent or
12952/// complete.
12953void Sema::ActOnInitializerError(Decl *D) {
12954 // Our main concern here is re-establishing invariants like "a
12955 // variable's type is either dependent or complete".
12956 if (!D || D->isInvalidDecl()) return;
12957
12958 VarDecl *VD = dyn_cast<VarDecl>(D);
12959 if (!VD) return;
12960
12961 // Bindings are not usable if we can't make sense of the initializer.
12962 if (auto *DD = dyn_cast<DecompositionDecl>(D))
12963 for (auto *BD : DD->bindings())
12964 BD->setInvalidDecl();
12965
12966 // Auto types are meaningless if we can't make sense of the initializer.
12967 if (VD->getType()->isUndeducedType()) {
12968 D->setInvalidDecl();
12969 return;
12970 }
12971
12972 QualType Ty = VD->getType();
12973 if (Ty->isDependentType()) return;
12974
12975 // Require a complete type.
12976 if (RequireCompleteType(VD->getLocation(),
12977 Context.getBaseElementType(Ty),
12978 diag::err_typecheck_decl_incomplete_type)) {
12979 VD->setInvalidDecl();
12980 return;
12981 }
12982
12983 // Require a non-abstract type.
12984 if (RequireNonAbstractType(VD->getLocation(), Ty,
12985 diag::err_abstract_type_in_decl,
12986 AbstractVariableType)) {
12987 VD->setInvalidDecl();
12988 return;
12989 }
12990
12991 // Don't bother complaining about constructors or destructors,
12992 // though.
12993}
12994
12995void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
12996 // If there is no declaration, there was an error parsing it. Just ignore it.
12997 if (!RealDecl)
12998 return;
12999
13000 if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
13001 QualType Type = Var->getType();
13002
13003 // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
13004 if (isa<DecompositionDecl>(RealDecl)) {
13005 Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
13006 Var->setInvalidDecl();
13007 return;
13008 }
13009
13010 if (Type->isUndeducedType() &&
13011 DeduceVariableDeclarationType(Var, false, nullptr))
13012 return;
13013
13014 // C++11 [class.static.data]p3: A static data member can be declared with
13015 // the constexpr specifier; if so, its declaration shall specify
13016 // a brace-or-equal-initializer.
13017 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
13018 // the definition of a variable [...] or the declaration of a static data
13019 // member.
13020 if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
13021 !Var->isThisDeclarationADemotedDefinition()) {
13022 if (Var->isStaticDataMember()) {
13023 // C++1z removes the relevant rule; the in-class declaration is always
13024 // a definition there.
13025 if (!getLangOpts().CPlusPlus17 &&
13026 !Context.getTargetInfo().getCXXABI().isMicrosoft()) {
13027 Diag(Var->getLocation(),
13028 diag::err_constexpr_static_mem_var_requires_init)
13029 << Var;
13030 Var->setInvalidDecl();
13031 return;
13032 }
13033 } else {
13034 Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
13035 Var->setInvalidDecl();
13036 return;
13037 }
13038 }
13039
13040 // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
13041 // be initialized.
13042 if (!Var->isInvalidDecl() &&
13043 Var->getType().getAddressSpace() == LangAS::opencl_constant &&
13044 Var->getStorageClass() != SC_Extern && !Var->getInit()) {
13045 bool HasConstExprDefaultConstructor = false;
13046 if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) {
13047 for (auto *Ctor : RD->ctors()) {
13048 if (Ctor->isConstexpr() && Ctor->getNumParams() == 0 &&
13049 Ctor->getMethodQualifiers().getAddressSpace() ==
13050 LangAS::opencl_constant) {
13051 HasConstExprDefaultConstructor = true;
13052 }
13053 }
13054 }
13055 if (!HasConstExprDefaultConstructor) {
13056 Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
13057 Var->setInvalidDecl();
13058 return;
13059 }
13060 }
13061
13062 if (!Var->isInvalidDecl() && RealDecl->hasAttr<LoaderUninitializedAttr>()) {
13063 if (Var->getStorageClass() == SC_Extern) {
13064 Diag(Var->getLocation(), diag::err_loader_uninitialized_extern_decl)
13065 << Var;
13066 Var->setInvalidDecl();
13067 return;
13068 }
13069 if (RequireCompleteType(Var->getLocation(), Var->getType(),
13070 diag::err_typecheck_decl_incomplete_type)) {
13071 Var->setInvalidDecl();
13072 return;
13073 }
13074 if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) {
13075 if (!RD->hasTrivialDefaultConstructor()) {
13076 Diag(Var->getLocation(), diag::err_loader_uninitialized_trivial_ctor);
13077 Var->setInvalidDecl();
13078 return;
13079 }
13080 }
13081 // The declaration is unitialized, no need for further checks.
13082 return;
13083 }
13084
13085 VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition();
13086 if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly &&
13087 Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion())
13088 checkNonTrivialCUnion(Var->getType(), Var->getLocation(),
13089 NTCUC_DefaultInitializedObject, NTCUK_Init);
13090
13091
13092 switch (DefKind) {
13093 case VarDecl::Definition:
13094 if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
13095 break;
13096
13097 // We have an out-of-line definition of a static data member
13098 // that has an in-class initializer, so we type-check this like
13099 // a declaration.
13100 //
13101 LLVM_FALLTHROUGH[[gnu::fallthrough]];
13102
13103 case VarDecl::DeclarationOnly:
13104 // It's only a declaration.
13105
13106 // Block scope. C99 6.7p7: If an identifier for an object is
13107 // declared with no linkage (C99 6.2.2p6), the type for the
13108 // object shall be complete.
13109 if (!Type->isDependentType() && Var->isLocalVarDecl() &&
13110 !Var->hasLinkage() && !Var->isInvalidDecl() &&
13111 RequireCompleteType(Var->getLocation(), Type,
13112 diag::err_typecheck_decl_incomplete_type))
13113 Var->setInvalidDecl();
13114
13115 // Make sure that the type is not abstract.
13116 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
13117 RequireNonAbstractType(Var->getLocation(), Type,
13118 diag::err_abstract_type_in_decl,
13119 AbstractVariableType))
13120 Var->setInvalidDecl();
13121 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
13122 Var->getStorageClass() == SC_PrivateExtern) {
13123 Diag(Var->getLocation(), diag::warn_private_extern);
13124 Diag(Var->getLocation(), diag::note_private_extern);
13125 }
13126
13127 if (Context.getTargetInfo().allowDebugInfoForExternalRef() &&
13128 !Var->isInvalidDecl() && !getLangOpts().CPlusPlus)
13129 ExternalDeclarations.push_back(Var);
13130
13131 return;
13132
13133 case VarDecl::TentativeDefinition:
13134 // File scope. C99 6.9.2p2: A declaration of an identifier for an
13135 // object that has file scope without an initializer, and without a
13136 // storage-class specifier or with the storage-class specifier "static",
13137 // constitutes a tentative definition. Note: A tentative definition with
13138 // external linkage is valid (C99 6.2.2p5).
13139 if (!Var->isInvalidDecl()) {
13140 if (const IncompleteArrayType *ArrayT
13141 = Context.getAsIncompleteArrayType(Type)) {
13142 if (RequireCompleteSizedType(
13143 Var->getLocation(), ArrayT->getElementType(),
13144 diag::err_array_incomplete_or_sizeless_type))
13145 Var->setInvalidDecl();
13146 } else if (Var->getStorageClass() == SC_Static) {
13147 // C99 6.9.2p3: If the declaration of an identifier for an object is
13148 // a tentative definition and has internal linkage (C99 6.2.2p3), the
13149 // declared type shall not be an incomplete type.
13150 // NOTE: code such as the following
13151 // static struct s;
13152 // struct s { int a; };
13153 // is accepted by gcc. Hence here we issue a warning instead of
13154 // an error and we do not invalidate the static declaration.
13155 // NOTE: to avoid multiple warnings, only check the first declaration.
13156 if (Var->isFirstDecl())
13157 RequireCompleteType(Var->getLocation(), Type,
13158 diag::ext_typecheck_decl_incomplete_type);
13159 }
13160 }
13161
13162 // Record the tentative definition; we're done.
13163 if (!Var->isInvalidDecl())
13164 TentativeDefinitions.push_back(Var);
13165 return;
13166 }
13167
13168 // Provide a specific diagnostic for uninitialized variable
13169 // definitions with incomplete array type.
13170 if (Type->isIncompleteArrayType()) {
13171 Diag(Var->getLocation(),
13172 diag::err_typecheck_incomplete_array_needs_initializer);
13173 Var->setInvalidDecl();
13174 return;
13175 }
13176
13177 // Provide a specific diagnostic for uninitialized variable
13178 // definitions with reference type.
13179 if (Type->isReferenceType()) {
13180 Diag(Var->getLocation(), diag::err_reference_var_requires_init)
13181 << Var << SourceRange(Var->getLocation(), Var->getLocation());
13182 Var->setInvalidDecl();
13183 return;
13184 }
13185
13186 // Do not attempt to type-check the default initializer for a
13187 // variable with dependent type.
13188 if (Type->isDependentType())
13189 return;
13190
13191 if (Var->isInvalidDecl())
13192 return;
13193
13194 if (!Var->hasAttr<AliasAttr>()) {
13195 if (RequireCompleteType(Var->getLocation(),
13196 Context.getBaseElementType(Type),
13197 diag::err_typecheck_decl_incomplete_type)) {
13198 Var->setInvalidDecl();
13199 return;
13200 }
13201 } else {
13202 return;
13203 }
13204
13205 // The variable can not have an abstract class type.
13206 if (RequireNonAbstractType(Var->getLocation(), Type,
13207 diag::err_abstract_type_in_decl,
13208 AbstractVariableType)) {
13209 Var->setInvalidDecl();
13210 return;
13211 }
13212
13213 // Check for jumps past the implicit initializer. C++0x
13214 // clarifies that this applies to a "variable with automatic
13215 // storage duration", not a "local variable".
13216 // C++11 [stmt.dcl]p3
13217 // A program that jumps from a point where a variable with automatic
13218 // storage duration is not in scope to a point where it is in scope is
13219 // ill-formed unless the variable has scalar type, class type with a
13220 // trivial default constructor and a trivial destructor, a cv-qualified
13221 // version of one of these types, or an array of one of the preceding
13222 // types and is declared without an initializer.
13223 if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
13224 if (const RecordType *Record
13225 = Context.getBaseElementType(Type)->getAs<RecordType>()) {
13226 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
13227 // Mark the function (if we're in one) for further checking even if the
13228 // looser rules of C++11 do not require such checks, so that we can
13229 // diagnose incompatibilities with C++98.
13230 if (!CXXRecord->isPOD())
13231 setFunctionHasBranchProtectedScope();
13232 }
13233 }
13234 // In OpenCL, we can't initialize objects in the __local address space,
13235 // even implicitly, so don't synthesize an implicit initializer.
13236 if (getLangOpts().OpenCL &&
13237 Var->getType().getAddressSpace() == LangAS::opencl_local)
13238 return;
13239 // C++03 [dcl.init]p9:
13240 // If no initializer is specified for an object, and the
13241 // object is of (possibly cv-qualified) non-POD class type (or
13242 // array thereof), the object shall be default-initialized; if
13243 // the object is of const-qualified type, the underlying class
13244 // type shall have a user-declared default
13245 // constructor. Otherwise, if no initializer is specified for
13246 // a non- static object, the object and its subobjects, if
13247 // any, have an indeterminate initial value); if the object
13248 // or any of its subobjects are of const-qualified type, the
13249 // program is ill-formed.
13250 // C++0x [dcl.init]p11:
13251 // If no initializer is specified for an object, the object is
13252 // default-initialized; [...].
13253 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
13254 InitializationKind Kind
13255 = InitializationKind::CreateDefault(Var->getLocation());
13256
13257 InitializationSequence InitSeq(*this, Entity, Kind, None);
13258 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
13259
13260 if (Init.get()) {
13261 Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
13262 // This is important for template substitution.
13263 Var->setInitStyle(VarDecl::CallInit);
13264 } else if (Init.isInvalid()) {
13265 // If default-init fails, attach a recovery-expr initializer to track
13266 // that initialization was attempted and failed.
13267 auto RecoveryExpr =
13268 CreateRecoveryExpr(Var->getLocation(), Var->getLocation(), {});
13269 if (RecoveryExpr.get())
13270 Var->setInit(RecoveryExpr.get());
13271 }
13272
13273 CheckCompleteVariableDeclaration(Var);
13274 }
13275}
13276
13277void Sema::ActOnCXXForRangeDecl(Decl *D) {
13278 // If there is no declaration, there was an error parsing it. Ignore it.
13279 if (!D)
13280 return;
13281
13282 VarDecl *VD = dyn_cast<VarDecl>(D);
13283 if (!VD) {
13284 Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
13285 D->setInvalidDecl();
13286 return;
13287 }
13288
13289 VD->setCXXForRangeDecl(true);
13290
13291 // for-range-declaration cannot be given a storage class specifier.
13292 int Error = -1;
13293 switch (VD->getStorageClass()) {
13294 case SC_None:
13295 break;
13296 case SC_Extern:
13297 Error = 0;
13298 break;
13299 case SC_Static:
13300 Error = 1;
13301 break;
13302 case SC_PrivateExtern:
13303 Error = 2;
13304 break;
13305 case SC_Auto:
13306 Error = 3;
13307 break;
13308 case SC_Register:
13309 Error = 4;
13310 break;
13311 }
13312
13313 // for-range-declaration cannot be given a storage class specifier con't.
13314 switch (VD->getTSCSpec()) {
13315 case TSCS_thread_local:
13316 Error = 6;
13317 break;
13318 case TSCS___thread:
13319 case TSCS__Thread_local:
13320 case TSCS_unspecified:
13321 break;
13322 }
13323
13324 if (Error != -1) {
13325 Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
13326 << VD << Error;
13327 D->setInvalidDecl();
13328 }
13329}
13330
13331StmtResult Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
13332 IdentifierInfo *Ident,
13333 ParsedAttributes &Attrs) {
13334 // C++1y [stmt.iter]p1:
13335 // A range-based for statement of the form
13336 // for ( for-range-identifier : for-range-initializer ) statement
13337 // is equivalent to
13338 // for ( auto&& for-range-identifier : for-range-initializer ) statement
13339 DeclSpec DS(Attrs.getPool().getFactory());
13340
13341 const char *PrevSpec;
13342 unsigned DiagID;
13343 DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
13344 getPrintingPolicy());
13345
13346 Declarator D(DS, DeclaratorContext::ForInit);
13347 D.SetIdentifier(Ident, IdentLoc);
13348 D.takeAttributes(Attrs);
13349
13350 D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false),
13351 IdentLoc);
13352 Decl *Var = ActOnDeclarator(S, D);
13353 cast<VarDecl>(Var)->setCXXForRangeDecl(true);
13354 FinalizeDeclaration(Var);
13355 return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
13356 Attrs.Range.getEnd().isValid() ? Attrs.Range.getEnd()
13357 : IdentLoc);
13358}
13359
13360void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
13361 if (var->isInvalidDecl()) return;
13362
13363 MaybeAddCUDAConstantAttr(var);
13364
13365 if (getLangOpts().OpenCL) {
13366 // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
13367 // initialiser
13368 if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
13369 !var->hasInit()) {
13370 Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
13371 << 1 /*Init*/;
13372 var->setInvalidDecl();
13373 return;
13374 }
13375 }
13376
13377 // In Objective-C, don't allow jumps past the implicit initialization of a
13378 // local retaining variable.
13379 if (getLangOpts().ObjC &&
13380 var->hasLocalStorage()) {
13381 switch (var->getType().getObjCLifetime()) {
13382 case Qualifiers::OCL_None:
13383 case Qualifiers::OCL_ExplicitNone:
13384 case Qualifiers::OCL_Autoreleasing:
13385 break;
13386
13387 case Qualifiers::OCL_Weak:
13388 case Qualifiers::OCL_Strong:
13389 setFunctionHasBranchProtectedScope();
13390 break;
13391 }
13392 }
13393
13394 if (var->hasLocalStorage() &&
13395 var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
13396 setFunctionHasBranchProtectedScope();
13397
13398 // Warn about externally-visible variables being defined without a
13399 // prior declaration. We only want to do this for global
13400 // declarations, but we also specifically need to avoid doing it for
13401 // class members because the linkage of an anonymous class can
13402 // change if it's later given a typedef name.
13403 if (var->isThisDeclarationADefinition() &&
13404 var->getDeclContext()->getRedeclContext()->isFileContext() &&
13405 var->isExternallyVisible() && var->hasLinkage() &&
13406 !var->isInline() && !var->getDescribedVarTemplate() &&
13407 !isa<VarTemplatePartialSpecializationDecl>(var) &&
13408 !isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
13409 !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
13410 var->getLocation())) {
13411 // Find a previous declaration that's not a definition.
13412 VarDecl *prev = var->getPreviousDecl();
13413 while (prev && prev->isThisDeclarationADefinition())
13414 prev = prev->getPreviousDecl();
13415
13416 if (!prev) {
13417 Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
13418 Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
13419 << /* variable */ 0;
13420 }
13421 }
13422
13423 // Cache the result of checking for constant initialization.
13424 Optional<bool> CacheHasConstInit;
13425 const Expr *CacheCulprit = nullptr;
13426 auto checkConstInit = [&]() mutable {
13427 if (!CacheHasConstInit)
13428 CacheHasConstInit = var->getInit()->isConstantInitializer(
13429 Context, var->getType()->isReferenceType(), &CacheCulprit);
13430 return *CacheHasConstInit;
13431 };
13432
13433 if (var->getTLSKind() == VarDecl::TLS_Static) {
13434 if (var->getType().isDestructedType()) {
13435 // GNU C++98 edits for __thread, [basic.start.term]p3:
13436 // The type of an object with thread storage duration shall not
13437 // have a non-trivial destructor.
13438 Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
13439 if (getLangOpts().CPlusPlus11)
13440 Diag(var->getLocation(), diag::note_use_thread_local);
13441 } else if (getLangOpts().CPlusPlus && var->hasInit()) {
13442 if (!checkConstInit()) {
13443 // GNU C++98 edits for __thread, [basic.start.init]p4:
13444 // An object of thread storage duration shall not require dynamic
13445 // initialization.
13446 // FIXME: Need strict checking here.
13447 Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
13448 << CacheCulprit->getSourceRange();
13449 if (getLangOpts().CPlusPlus11)
13450 Diag(var->getLocation(), diag::note_use_thread_local);
13451 }
13452 }
13453 }
13454
13455
13456 if (!var->getType()->isStructureType() && var->hasInit() &&
13457 isa<InitListExpr>(var->getInit())) {
13458 const auto *ILE = cast<InitListExpr>(var->getInit());
13459 unsigned NumInits = ILE->getNumInits();
13460 if (NumInits > 2)
13461 for (unsigned I = 0; I < NumInits; ++I) {
13462 const auto *Init = ILE->getInit(I);
13463 if (!Init)
13464 break;
13465 const auto *SL = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
13466 if (!SL)
13467 break;
13468
13469 unsigned NumConcat = SL->getNumConcatenated();
13470 // Diagnose missing comma in string array initialization.
13471 // Do not warn when all the elements in the initializer are concatenated
13472 // together. Do not warn for macros too.
13473 if (NumConcat == 2 && !SL->getBeginLoc().isMacroID()) {
13474 bool OnlyOneMissingComma = true;
13475 for (unsigned J = I + 1; J < NumInits; ++J) {
13476 const auto *Init = ILE->getInit(J);
13477 if (!Init)
13478 break;
13479 const auto *SLJ = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
13480 if (!SLJ || SLJ->getNumConcatenated() > 1) {
13481 OnlyOneMissingComma = false;
13482 break;
13483 }
13484 }
13485
13486 if (OnlyOneMissingComma) {
13487 SmallVector<FixItHint, 1> Hints;
13488 for (unsigned i = 0; i < NumConcat - 1; ++i)
13489 Hints.push_back(FixItHint::CreateInsertion(
13490 PP.getLocForEndOfToken(SL->getStrTokenLoc(i)), ","));
13491
13492 Diag(SL->getStrTokenLoc(1),
13493 diag::warn_concatenated_literal_array_init)
13494 << Hints;
13495 Diag(SL->getBeginLoc(),
13496 diag::note_concatenated_string_literal_silence);
13497 }
13498 // In any case, stop now.
13499 break;
13500 }
13501 }
13502 }
13503
13504
13505 QualType type = var->getType();
13506
13507 if (var->hasAttr<BlocksAttr>())
13508 getCurFunction()->addByrefBlockVar(var);
13509
13510 Expr *Init = var->getInit();
13511 bool GlobalStorage = var->hasGlobalStorage();
13512 bool IsGlobal = GlobalStorage && !var->isStaticLocal();
13513 QualType baseType = Context.getBaseElementType(type);
13514 bool HasConstInit = true;
13515
13516 // Check whether the initializer is sufficiently constant.
13517 if (getLangOpts().CPlusPlus && !type->isDependentType() && Init &&
13518 !Init->isValueDependent() &&
13519 (GlobalStorage || var->isConstexpr() ||
13520 var->mightBeUsableInConstantExpressions(Context))) {
13521 // If this variable might have a constant initializer or might be usable in
13522 // constant expressions, check whether or not it actually is now. We can't
13523 // do this lazily, because the result might depend on things that change
13524 // later, such as which constexpr functions happen to be defined.
13525 SmallVector<PartialDiagnosticAt, 8> Notes;
13526 if (!getLangOpts().CPlusPlus11) {
13527 // Prior to C++11, in contexts where a constant initializer is required,
13528 // the set of valid constant initializers is described by syntactic rules
13529 // in [expr.const]p2-6.
13530 // FIXME: Stricter checking for these rules would be useful for constinit /
13531 // -Wglobal-constructors.
13532 HasConstInit = checkConstInit();
13533
13534 // Compute and cache the constant value, and remember that we have a
13535 // constant initializer.
13536 if (HasConstInit) {
13537 (void)var->checkForConstantInitialization(Notes);
13538 Notes.clear();
13539 } else if (CacheCulprit) {
13540 Notes.emplace_back(CacheCulprit->getExprLoc(),
13541 PDiag(diag::note_invalid_subexpr_in_const_expr));
13542 Notes.back().second << CacheCulprit->getSourceRange();
13543 }
13544 } else {
13545 // Evaluate the initializer to see if it's a constant initializer.
13546 HasConstInit = var->checkForConstantInitialization(Notes);
13547 }
13548
13549 if (HasConstInit) {
13550 // FIXME: Consider replacing the initializer with a ConstantExpr.
13551 } else if (var->isConstexpr()) {
13552 SourceLocation DiagLoc = var->getLocation();
13553 // If the note doesn't add any useful information other than a source
13554 // location, fold it into the primary diagnostic.
13555 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
13556 diag::note_invalid_subexpr_in_const_expr) {
13557 DiagLoc = Notes[0].first;
13558 Notes.clear();
13559 }
13560 Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
13561 << var << Init->getSourceRange();
13562 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
13563 Diag(Notes[I].first, Notes[I].second);
13564 } else if (GlobalStorage && var->hasAttr<ConstInitAttr>()) {
13565 auto *Attr = var->getAttr<ConstInitAttr>();
13566 Diag(var->getLocation(), diag::err_require_constant_init_failed)
13567 << Init->getSourceRange();
13568 Diag(Attr->getLocation(), diag::note_declared_required_constant_init_here)
13569 << Attr->getRange() << Attr->isConstinit();
13570 for (auto &it : Notes)
13571 Diag(it.first, it.second);
13572 } else if (IsGlobal &&
13573 !getDiagnostics().isIgnored(diag::warn_global_constructor,
13574 var->getLocation())) {
13575 // Warn about globals which don't have a constant initializer. Don't
13576 // warn about globals with a non-trivial destructor because we already
13577 // warned about them.
13578 CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
13579 if (!(RD && !RD->hasTrivialDestructor())) {
13580 // checkConstInit() here permits trivial default initialization even in
13581 // C++11 onwards, where such an initializer is not a constant initializer
13582 // but nonetheless doesn't require a global constructor.
13583 if (!checkConstInit())
13584 Diag(var->getLocation(), diag::warn_global_constructor)
13585 << Init->getSourceRange();
13586 }
13587 }
13588 }
13589
13590 // Apply section attributes and pragmas to global variables.
13591 if (GlobalStorage && var->isThisDeclarationADefinition() &&
13592 !inTemplateInstantiation()) {
13593 PragmaStack<StringLiteral *> *Stack = nullptr;
13594 int SectionFlags = ASTContext::PSF_Read;
13595 if (var->getType().isConstQualified()) {
13596 if (HasConstInit)
13597 Stack = &ConstSegStack;
13598 else {
13599 Stack = &BSSSegStack;
13600 SectionFlags |= ASTContext::PSF_Write;
13601 }
13602 } else if (var->hasInit() && HasConstInit) {
13603 Stack = &DataSegStack;
13604 SectionFlags |= ASTContext::PSF_Write;
13605 } else {
13606 Stack = &BSSSegStack;
13607 SectionFlags |= ASTContext::PSF_Write;
13608 }
13609 if (const SectionAttr *SA = var->getAttr<SectionAttr>()) {
13610 if (SA->getSyntax() == AttributeCommonInfo::AS_Declspec)
13611 SectionFlags |= ASTContext::PSF_Implicit;
13612 UnifySection(SA->getName(), SectionFlags, var);
13613 } else if (Stack->CurrentValue) {
13614 SectionFlags |= ASTContext::PSF_Implicit;
13615 auto SectionName = Stack->CurrentValue->getString();
13616 var->addAttr(SectionAttr::CreateImplicit(
13617 Context, SectionName, Stack->CurrentPragmaLocation,
13618 AttributeCommonInfo::AS_Pragma, SectionAttr::Declspec_allocate));
13619 if (UnifySection(SectionName, SectionFlags, var))
13620 var->dropAttr<SectionAttr>();
13621 }
13622
13623 // Apply the init_seg attribute if this has an initializer. If the
13624 // initializer turns out to not be dynamic, we'll end up ignoring this
13625 // attribute.
13626 if (CurInitSeg && var->getInit())
13627 var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
13628 CurInitSegLoc,
13629 AttributeCommonInfo::AS_Pragma));
13630 }
13631
13632 // All the following checks are C++ only.
13633 if (!getLangOpts().CPlusPlus) {
13634 // If this variable must be emitted, add it as an initializer for the
13635 // current module.
13636 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
13637 Context.addModuleInitializer(ModuleScopes.back().Module, var);
13638 return;
13639 }
13640
13641 // Require the destructor.
13642 if (!type->isDependentType())
13643 if (const RecordType *recordType = baseType->getAs<RecordType>())
13644 FinalizeVarWithDestructor(var, recordType);
13645
13646 // If this variable must be emitted, add it as an initializer for the current
13647 // module.
13648 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
13649 Context.addModuleInitializer(ModuleScopes.back().Module, var);
13650
13651 // Build the bindings if this is a structured binding declaration.
13652 if (auto *DD = dyn_cast<DecompositionDecl>(var))
13653 CheckCompleteDecompositionDeclaration(DD);
13654}
13655
13656/// Check if VD needs to be dllexport/dllimport due to being in a
13657/// dllexport/import function.
13658void Sema::CheckStaticLocalForDllExport(VarDecl *VD) {
13659 assert(VD->isStaticLocal())(static_cast <bool> (VD->isStaticLocal()) ? void (0)
: __assert_fail ("VD->isStaticLocal()", "clang/lib/Sema/SemaDecl.cpp"
, 13659, __extension__ __PRETTY_FUNCTION__))
;
13660
13661 auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
13662
13663 // Find outermost function when VD is in lambda function.
13664 while (FD && !getDLLAttr(FD) &&
13665 !FD->hasAttr<DLLExportStaticLocalAttr>() &&
13666 !FD->hasAttr<DLLImportStaticLocalAttr>()) {
13667 FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod());
13668 }
13669
13670 if (!FD)
13671 return;
13672
13673 // Static locals inherit dll attributes from their function.
13674 if (Attr *A = getDLLAttr(FD)) {
13675 auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
13676 NewAttr->setInherited(true);
13677 VD->addAttr(NewAttr);
13678 } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) {
13679 auto *NewAttr = DLLExportAttr::CreateImplicit(getASTContext(), *A);
13680 NewAttr->setInherited(true);
13681 VD->addAttr(NewAttr);
13682
13683 // Export this function to enforce exporting this static variable even
13684 // if it is not used in this compilation unit.
13685 if (!FD->hasAttr<DLLExportAttr>())
13686 FD->addAttr(NewAttr);
13687
13688 } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) {
13689 auto *NewAttr = DLLImportAttr::CreateImplicit(getASTContext(), *A);
13690 NewAttr->setInherited(true);
13691 VD->addAttr(NewAttr);
13692 }
13693}
13694
13695/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
13696/// any semantic actions necessary after any initializer has been attached.
13697void Sema::FinalizeDeclaration(Decl *ThisDecl) {
13698 // Note that we are no longer parsing the initializer for this declaration.
13699 ParsingInitForAutoVars.erase(ThisDecl);
13700
13701 VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
13702 if (!VD)
13703 return;
13704
13705 // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
13706 if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
13707 !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
13708 if (PragmaClangBSSSection.Valid)
13709 VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(
13710 Context, PragmaClangBSSSection.SectionName,
13711 PragmaClangBSSSection.PragmaLocation,
13712 AttributeCommonInfo::AS_Pragma));
13713 if (PragmaClangDataSection.Valid)
13714 VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(
13715 Context, PragmaClangDataSection.SectionName,
13716 PragmaClangDataSection.PragmaLocation,
13717 AttributeCommonInfo::AS_Pragma));
13718 if (PragmaClangRodataSection.Valid)
13719 VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(
13720 Context, PragmaClangRodataSection.SectionName,
13721 PragmaClangRodataSection.PragmaLocation,
13722 AttributeCommonInfo::AS_Pragma));
13723 if (PragmaClangRelroSection.Valid)
13724 VD->addAttr(PragmaClangRelroSectionAttr::CreateImplicit(
13725 Context, PragmaClangRelroSection.SectionName,
13726 PragmaClangRelroSection.PragmaLocation,
13727 AttributeCommonInfo::AS_Pragma));
13728 }
13729
13730 if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
13731 for (auto *BD : DD->bindings()) {
13732 FinalizeDeclaration(BD);
13733 }
13734 }
13735
13736 checkAttributesAfterMerging(*this, *VD);
13737
13738 // Perform TLS alignment check here after attributes attached to the variable
13739 // which may affect the alignment have been processed. Only perform the check
13740 // if the target has a maximum TLS alignment (zero means no constraints).
13741 if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
13742 // Protect the check so that it's not performed on dependent types and
13743 // dependent alignments (we can't determine the alignment in that case).
13744 if (VD->getTLSKind() && !VD->hasDependentAlignment()) {
13745 CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
13746 if (Context.getDeclAlign(VD) > MaxAlignChars) {
13747 Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
13748 << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
13749 << (unsigned)MaxAlignChars.getQuantity();
13750 }
13751 }
13752 }
13753
13754 if (VD->isStaticLocal())
13755 CheckStaticLocalForDllExport(VD);
13756
13757 // Perform check for initializers of device-side global variables.
13758 // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
13759 // 7.5). We must also apply the same checks to all __shared__
13760 // variables whether they are local or not. CUDA also allows
13761 // constant initializers for __constant__ and __device__ variables.
13762 if (getLangOpts().CUDA)
13763 checkAllowedCUDAInitializer(VD);
13764
13765 // Grab the dllimport or dllexport attribute off of the VarDecl.
13766 const InheritableAttr *DLLAttr = getDLLAttr(VD);
13767
13768 // Imported static data members cannot be defined out-of-line.
13769 if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
13770 if (VD->isStaticDataMember() && VD->isOutOfLine() &&
13771 VD->isThisDeclarationADefinition()) {
13772 // We allow definitions of dllimport class template static data members
13773 // with a warning.
13774 CXXRecordDecl *Context =
13775 cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
13776 bool IsClassTemplateMember =
13777 isa<ClassTemplatePartialSpecializationDecl>(Context) ||
13778 Context->getDescribedClassTemplate();
13779
13780 Diag(VD->getLocation(),
13781 IsClassTemplateMember
13782 ? diag::warn_attribute_dllimport_static_field_definition
13783 : diag::err_attribute_dllimport_static_field_definition);
13784 Diag(IA->getLocation(), diag::note_attribute);
13785 if (!IsClassTemplateMember)
13786 VD->setInvalidDecl();
13787 }
13788 }
13789
13790 // dllimport/dllexport variables cannot be thread local, their TLS index
13791 // isn't exported with the variable.
13792 if (DLLAttr && VD->getTLSKind()) {
13793 auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
13794 if (F && getDLLAttr(F)) {
13795 assert(VD->isStaticLocal())(static_cast <bool> (VD->isStaticLocal()) ? void (0)
: __assert_fail ("VD->isStaticLocal()", "clang/lib/Sema/SemaDecl.cpp"
, 13795, __extension__ __PRETTY_FUNCTION__))
;
13796 // But if this is a static local in a dlimport/dllexport function, the
13797 // function will never be inlined, which means the var would never be
13798 // imported, so having it marked import/export is safe.
13799 } else {
13800 Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
13801 << DLLAttr;
13802 VD->setInvalidDecl();
13803 }
13804 }
13805
13806 if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
13807 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
13808 Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition)
13809 << Attr;
13810 VD->dropAttr<UsedAttr>();
13811 }
13812 }
13813 if (RetainAttr *Attr = VD->getAttr<RetainAttr>()) {
13814 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
13815 Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition)
13816 << Attr;
13817 VD->dropAttr<RetainAttr>();
13818 }
13819 }
13820
13821 const DeclContext *DC = VD->getDeclContext();
13822 // If there's a #pragma GCC visibility in scope, and this isn't a class
13823 // member, set the visibility of this variable.
13824 if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
13825 AddPushedVisibilityAttribute(VD);
13826
13827 // FIXME: Warn on unused var template partial specializations.
13828 if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
13829 MarkUnusedFileScopedDecl(VD);
13830
13831 // Now we have parsed the initializer and can update the table of magic
13832 // tag values.
13833 if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
13834 !VD->getType()->isIntegralOrEnumerationType())
13835 return;
13836
13837 for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
13838 const Expr *MagicValueExpr = VD->getInit();
13839 if (!MagicValueExpr) {
13840 continue;
13841 }
13842 Optional<llvm::APSInt> MagicValueInt;
13843 if (!(MagicValueInt = MagicValueExpr->getIntegerConstantExpr(Context))) {
13844 Diag(I->getRange().getBegin(),
13845 diag::err_type_tag_for_datatype_not_ice)
13846 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
13847 continue;
13848 }
13849 if (MagicValueInt->getActiveBits() > 64) {
13850 Diag(I->getRange().getBegin(),
13851 diag::err_type_tag_for_datatype_too_large)
13852 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
13853 continue;
13854 }
13855 uint64_t MagicValue = MagicValueInt->getZExtValue();
13856 RegisterTypeTagForDatatype(I->getArgumentKind(),
13857 MagicValue,
13858 I->getMatchingCType(),
13859 I->getLayoutCompatible(),
13860 I->getMustBeNull());
13861 }
13862}
13863
13864static bool hasDeducedAuto(DeclaratorDecl *DD) {
13865 auto *VD = dyn_cast<VarDecl>(DD);
13866 return VD && !VD->getType()->hasAutoForTrailingReturnType();
13867}
13868
13869Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
13870 ArrayRef<Decl *> Group) {
13871 SmallVector<Decl*, 8> Decls;
13872
13873 if (DS.isTypeSpecOwned())
13874 Decls.push_back(DS.getRepAsDecl());
13875
13876 DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
13877 DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
13878 bool DiagnosedMultipleDecomps = false;
13879 DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
13880 bool DiagnosedNonDeducedAuto = false;
13881
13882 for (unsigned i = 0, e = Group.size(); i != e; ++i) {
13883 if (Decl *D = Group[i]) {
13884 // For declarators, there are some additional syntactic-ish checks we need
13885 // to perform.
13886 if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
13887 if (!FirstDeclaratorInGroup)
13888 FirstDeclaratorInGroup = DD;
13889 if (!FirstDecompDeclaratorInGroup)
13890 FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
13891 if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
13892 !hasDeducedAuto(DD))
13893 FirstNonDeducedAutoInGroup = DD;
13894
13895 if (FirstDeclaratorInGroup != DD) {
13896 // A decomposition declaration cannot be combined with any other
13897 // declaration in the same group.
13898 if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
13899 Diag(FirstDecompDeclaratorInGroup->getLocation(),
13900 diag::err_decomp_decl_not_alone)
13901 << FirstDeclaratorInGroup->getSourceRange()
13902 << DD->getSourceRange();
13903 DiagnosedMultipleDecomps = true;
13904 }
13905
13906 // A declarator that uses 'auto' in any way other than to declare a
13907 // variable with a deduced type cannot be combined with any other
13908 // declarator in the same group.
13909 if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
13910 Diag(FirstNonDeducedAutoInGroup->getLocation(),
13911 diag::err_auto_non_deduced_not_alone)
13912 << FirstNonDeducedAutoInGroup->getType()
13913 ->hasAutoForTrailingReturnType()
13914 << FirstDeclaratorInGroup->getSourceRange()
13915 << DD->getSourceRange();
13916 DiagnosedNonDeducedAuto = true;
13917 }
13918 }
13919 }
13920
13921 Decls.push_back(D);
13922 }
13923 }
13924
13925 if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
13926 if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
13927 handleTagNumbering(Tag, S);
13928 if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
13929 getLangOpts().CPlusPlus)
13930 Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
13931 }
13932 }
13933
13934 return BuildDeclaratorGroup(Decls);
13935}
13936
13937/// BuildDeclaratorGroup - convert a list of declarations into a declaration
13938/// group, performing any necessary semantic checking.
13939Sema::DeclGroupPtrTy
13940Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
13941 // C++14 [dcl.spec.auto]p7: (DR1347)
13942 // If the type that replaces the placeholder type is not the same in each
13943 // deduction, the program is ill-formed.
13944 if (Group.size() > 1) {
13945 QualType Deduced;
13946 VarDecl *DeducedDecl = nullptr;
13947 for (unsigned i = 0, e = Group.size(); i != e; ++i) {
13948 VarDecl *D = dyn_cast<VarDecl>(Group[i]);
13949 if (!D || D->isInvalidDecl())
13950 break;
13951 DeducedType *DT = D->getType()->getContainedDeducedType();
13952 if (!DT || DT->getDeducedType().isNull())
13953 continue;
13954 if (Deduced.isNull()) {
13955 Deduced = DT->getDeducedType();
13956 DeducedDecl = D;
13957 } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
13958 auto *AT = dyn_cast<AutoType>(DT);
13959 auto Dia = Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
13960 diag::err_auto_different_deductions)
13961 << (AT ? (unsigned)AT->getKeyword() : 3) << Deduced
13962 << DeducedDecl->getDeclName() << DT->getDeducedType()
13963 << D->getDeclName();
13964 if (DeducedDecl->hasInit())
13965 Dia << DeducedDecl->getInit()->getSourceRange();
13966 if (D->getInit())
13967 Dia << D->getInit()->getSourceRange();
13968 D->setInvalidDecl();
13969 break;
13970 }
13971 }
13972 }
13973
13974 ActOnDocumentableDecls(Group);
13975
13976 return DeclGroupPtrTy::make(
13977 DeclGroupRef::Create(Context, Group.data(), Group.size()));
13978}
13979
13980void Sema::ActOnDocumentableDecl(Decl *D) {
13981 ActOnDocumentableDecls(D);
13982}
13983
13984void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
13985 // Don't parse the comment if Doxygen diagnostics are ignored.
13986 if (Group.empty() || !Group[0])
13987 return;
13988
13989 if (Diags.isIgnored(diag::warn_doc_param_not_found,
13990 Group[0]->getLocation()) &&
13991 Diags.isIgnored(diag::warn_unknown_comment_command_name,
13992 Group[0]->getLocation()))
13993 return;
13994
13995 if (Group.size() >= 2) {
13996 // This is a decl group. Normally it will contain only declarations
13997 // produced from declarator list. But in case we have any definitions or
13998 // additional declaration references:
13999 // 'typedef struct S {} S;'
14000 // 'typedef struct S *S;'
14001 // 'struct S *pS;'
14002 // FinalizeDeclaratorGroup adds these as separate declarations.
14003 Decl *MaybeTagDecl = Group[0];
14004 if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
14005 Group = Group.slice(1);
14006 }
14007 }
14008
14009 // FIMXE: We assume every Decl in the group is in the same file.
14010 // This is false when preprocessor constructs the group from decls in
14011 // different files (e. g. macros or #include).
14012 Context.attachCommentsToJustParsedDecls(Group, &getPreprocessor());
14013}
14014
14015/// Common checks for a parameter-declaration that should apply to both function
14016/// parameters and non-type template parameters.
14017void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) {
14018 // Check that there are no default arguments inside the type of this
14019 // parameter.
14020 if (getLangOpts().CPlusPlus)
14021 CheckExtraCXXDefaultArguments(D);
14022
14023 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
14024 if (D.getCXXScopeSpec().isSet()) {
14025 Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
14026 << D.getCXXScopeSpec().getRange();
14027 }
14028
14029 // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a
14030 // simple identifier except [...irrelevant cases...].
14031 switch (D.getName().getKind()) {
14032 case UnqualifiedIdKind::IK_Identifier:
14033 break;
14034
14035 case UnqualifiedIdKind::IK_OperatorFunctionId:
14036 case UnqualifiedIdKind::IK_ConversionFunctionId:
14037 case UnqualifiedIdKind::IK_LiteralOperatorId:
14038 case UnqualifiedIdKind::IK_ConstructorName:
14039 case UnqualifiedIdKind::IK_DestructorName:
14040 case UnqualifiedIdKind::IK_ImplicitSelfParam:
14041 case UnqualifiedIdKind::IK_DeductionGuideName:
14042 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
14043 << GetNameForDeclarator(D).getName();
14044 break;
14045
14046 case UnqualifiedIdKind::IK_TemplateId:
14047 case UnqualifiedIdKind::IK_ConstructorTemplateId:
14048 // GetNameForDeclarator would not produce a useful name in this case.
14049 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id);
14050 break;
14051 }
14052}
14053
14054/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
14055/// to introduce parameters into function prototype scope.
14056Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
14057 const DeclSpec &DS = D.getDeclSpec();
14058
14059 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
14060
14061 // C++03 [dcl.stc]p2 also permits 'auto'.
14062 StorageClass SC = SC_None;
14063 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
14064 SC = SC_Register;
14065 // In C++11, the 'register' storage class specifier is deprecated.
14066 // In C++17, it is not allowed, but we tolerate it as an extension.
14067 if (getLangOpts().CPlusPlus11) {
14068 Diag(DS.getStorageClassSpecLoc(),
14069 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
14070 : diag::warn_deprecated_register)
14071 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
14072 }
14073 } else if (getLangOpts().CPlusPlus &&
14074 DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
14075 SC = SC_Auto;
14076 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
14077 Diag(DS.getStorageClassSpecLoc(),
14078 diag::err_invalid_storage_class_in_func_decl);
14079 D.getMutableDeclSpec().ClearStorageClassSpecs();
14080 }
14081
14082 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
14083 Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
14084 << DeclSpec::getSpecifierName(TSCS);
14085 if (DS.isInlineSpecified())
14086 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
14087 << getLangOpts().CPlusPlus17;
14088 if (DS.hasConstexprSpecifier())
14089 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
14090 << 0 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
14091
14092 DiagnoseFunctionSpecifiers(DS);
14093
14094 CheckFunctionOrTemplateParamDeclarator(S, D);
14095
14096 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
14097 QualType parmDeclType = TInfo->getType();
14098
14099 // Check for redeclaration of parameters, e.g. int foo(int x, int x);
14100 IdentifierInfo *II = D.getIdentifier();
14101 if (II) {
14102 LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
14103 ForVisibleRedeclaration);
14104 LookupName(R, S);
14105 if (R.isSingleResult()) {
14106 NamedDecl *PrevDecl = R.getFoundDecl();
14107 if (PrevDecl->isTemplateParameter()) {
14108 // Maybe we will complain about the shadowed template parameter.
14109 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
14110 // Just pretend that we didn't see the previous declaration.
14111 PrevDecl = nullptr;
14112 } else if (S->isDeclScope(PrevDecl)) {
14113 Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
14114 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
14115
14116 // Recover by removing the name
14117 II = nullptr;
14118 D.SetIdentifier(nullptr, D.getIdentifierLoc());
14119 D.setInvalidType(true);
14120 }
14121 }
14122 }
14123
14124 // Temporarily put parameter variables in the translation unit, not
14125 // the enclosing context. This prevents them from accidentally
14126 // looking like class members in C++.
14127 ParmVarDecl *New =
14128 CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(),
14129 D.getIdentifierLoc(), II, parmDeclType, TInfo, SC);
14130
14131 if (D.isInvalidType())
14132 New->setInvalidDecl();
14133
14134 assert(S->isFunctionPrototypeScope())(static_cast <bool> (S->isFunctionPrototypeScope()) ?
void (0) : __assert_fail ("S->isFunctionPrototypeScope()"
, "clang/lib/Sema/SemaDecl.cpp", 14134, __extension__ __PRETTY_FUNCTION__
))
;
14135 assert(S->getFunctionPrototypeDepth() >= 1)(static_cast <bool> (S->getFunctionPrototypeDepth() >=
1) ? void (0) : __assert_fail ("S->getFunctionPrototypeDepth() >= 1"
, "clang/lib/Sema/SemaDecl.cpp", 14135, __extension__ __PRETTY_FUNCTION__
))
;
14136 New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
14137 S->getNextFunctionPrototypeIndex());
14138
14139 // Add the parameter declaration into this scope.
14140 S->AddDecl(New);
14141 if (II)
14142 IdResolver.AddDecl(New);
14143
14144 ProcessDeclAttributes(S, New, D);
14145
14146 if (D.getDeclSpec().isModulePrivateSpecified())
14147 Diag(New->getLocation(), diag::err_module_private_local)
14148 << 1 << New << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
14149 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
14150
14151 if (New->hasAttr<BlocksAttr>()) {
14152 Diag(New->getLocation(), diag::err_block_on_nonlocal);
14153 }
14154
14155 if (getLangOpts().OpenCL)
14156 deduceOpenCLAddressSpace(New);
14157
14158 return New;
14159}
14160
14161/// Synthesizes a variable for a parameter arising from a
14162/// typedef.
14163ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
14164 SourceLocation Loc,
14165 QualType T) {
14166 /* FIXME: setting StartLoc == Loc.
14167 Would it be worth to modify callers so as to provide proper source
14168 location for the unnamed parameters, embedding the parameter's type? */
14169 ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
14170 T, Context.getTrivialTypeSourceInfo(T, Loc),
14171 SC_None, nullptr);
14172 Param->setImplicit();
14173 return Param;
14174}
14175
14176void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
14177 // Don't diagnose unused-parameter errors in template instantiations; we
14178 // will already have done so in the template itself.
14179 if (inTemplateInstantiation())
14180 return;
14181
14182 for (const ParmVarDecl *Parameter : Parameters) {
14183 if (!Parameter->isReferenced() && Parameter->getDeclName() &&
14184 !Parameter->hasAttr<UnusedAttr>()) {
14185 Diag(Parameter->getLocation(), diag::warn_unused_parameter)
14186 << Parameter->getDeclName();
14187 }
14188 }
14189}
14190
14191void Sema::DiagnoseSizeOfParametersAndReturnValue(
14192 ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
14193 if (LangOpts.NumLargeByValueCopy == 0) // No check.
14194 return;
14195
14196 // Warn if the return value is pass-by-value and larger than the specified
14197 // threshold.
14198 if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
14199 unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
14200 if (Size > LangOpts.NumLargeByValueCopy)
14201 Diag(D->getLocation(), diag::warn_return_value_size) << D << Size;
14202 }
14203
14204 // Warn if any parameter is pass-by-value and larger than the specified
14205 // threshold.
14206 for (const ParmVarDecl *Parameter : Parameters) {
14207 QualType T = Parameter->getType();
14208 if (T->isDependentType() || !T.isPODType(Context))
14209 continue;
14210 unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
14211 if (Size > LangOpts.NumLargeByValueCopy)
14212 Diag(Parameter->getLocation(), diag::warn_parameter_size)
14213 << Parameter << Size;
14214 }
14215}
14216
14217ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
14218 SourceLocation NameLoc, IdentifierInfo *Name,
14219 QualType T, TypeSourceInfo *TSInfo,
14220 StorageClass SC) {
14221 // In ARC, infer a lifetime qualifier for appropriate parameter types.
14222 if (getLangOpts().ObjCAutoRefCount &&
14223 T.getObjCLifetime() == Qualifiers::OCL_None &&
14224 T->isObjCLifetimeType()) {
14225
14226 Qualifiers::ObjCLifetime lifetime;
14227
14228 // Special cases for arrays:
14229 // - if it's const, use __unsafe_unretained
14230 // - otherwise, it's an error
14231 if (T->isArrayType()) {
14232 if (!T.isConstQualified()) {
14233 if (DelayedDiagnostics.shouldDelayDiagnostics())
14234 DelayedDiagnostics.add(
14235 sema::DelayedDiagnostic::makeForbiddenType(
14236 NameLoc, diag::err_arc_array_param_no_ownership, T, false));
14237 else
14238 Diag(NameLoc, diag::err_arc_array_param_no_ownership)
14239 << TSInfo->getTypeLoc().getSourceRange();
14240 }
14241 lifetime = Qualifiers::OCL_ExplicitNone;
14242 } else {
14243 lifetime = T->getObjCARCImplicitLifetime();
14244 }
14245 T = Context.getLifetimeQualifiedType(T, lifetime);
14246 }
14247
14248 ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
14249 Context.getAdjustedParameterType(T),
14250 TSInfo, SC, nullptr);
14251
14252 // Make a note if we created a new pack in the scope of a lambda, so that
14253 // we know that references to that pack must also be expanded within the
14254 // lambda scope.
14255 if (New->isParameterPack())
14256 if (auto *LSI = getEnclosingLambda())
14257 LSI->LocalPacks.push_back(New);
14258
14259 if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
14260 New->getType().hasNonTrivialToPrimitiveCopyCUnion())
14261 checkNonTrivialCUnion(New->getType(), New->getLocation(),
14262 NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy);
14263
14264 // Parameters can not be abstract class types.
14265 // For record types, this is done by the AbstractClassUsageDiagnoser once
14266 // the class has been completely parsed.
14267 if (!CurContext->isRecord() &&
14268 RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
14269 AbstractParamType))
14270 New->setInvalidDecl();
14271
14272 // Parameter declarators cannot be interface types. All ObjC objects are
14273 // passed by reference.
14274 if (T->isObjCObjectType()) {
14275 SourceLocation TypeEndLoc =
14276 getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc());
14277 Diag(NameLoc,
14278 diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
14279 << FixItHint::CreateInsertion(TypeEndLoc, "*");
14280 T = Context.getObjCObjectPointerType(T);
14281 New->setType(T);
14282 }
14283
14284 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
14285 // duration shall not be qualified by an address-space qualifier."
14286 // Since all parameters have automatic store duration, they can not have
14287 // an address space.
14288 if (T.getAddressSpace() != LangAS::Default &&
14289 // OpenCL allows function arguments declared to be an array of a type
14290 // to be qualified with an address space.
14291 !(getLangOpts().OpenCL &&
14292 (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) {
14293 Diag(NameLoc, diag::err_arg_with_address_space);
14294 New->setInvalidDecl();
14295 }
14296
14297 // PPC MMA non-pointer types are not allowed as function argument types.
14298 if (Context.getTargetInfo().getTriple().isPPC64() &&
14299 CheckPPCMMAType(New->getOriginalType(), New->getLocation())) {
14300 New->setInvalidDecl();
14301 }
14302
14303 return New;
14304}
14305
14306void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
14307 SourceLocation LocAfterDecls) {
14308 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
14309
14310 // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
14311 // for a K&R function.
14312 if (!FTI.hasPrototype) {
14313 for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
14314 --i;
14315 if (FTI.Params[i].Param == nullptr) {
14316 SmallString<256> Code;
14317 llvm::raw_svector_ostream(Code)
14318 << " int " << FTI.Params[i].Ident->getName() << ";\n";
14319 Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
14320 << FTI.Params[i].Ident
14321 << FixItHint::CreateInsertion(LocAfterDecls, Code);
14322
14323 // Implicitly declare the argument as type 'int' for lack of a better
14324 // type.
14325 AttributeFactory attrs;
14326 DeclSpec DS(attrs);
14327 const char* PrevSpec; // unused
14328 unsigned DiagID; // unused
14329 DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
14330 DiagID, Context.getPrintingPolicy());
14331 // Use the identifier location for the type source range.
14332 DS.SetRangeStart(FTI.Params[i].IdentLoc);
14333 DS.SetRangeEnd(FTI.Params[i].IdentLoc);
14334 Declarator ParamD(DS, DeclaratorContext::KNRTypeList);
14335 ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
14336 FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
14337 }
14338 }
14339 }
14340}
14341
14342Decl *
14343Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
14344 MultiTemplateParamsArg TemplateParameterLists,
14345 SkipBodyInfo *SkipBody, FnBodyKind BodyKind) {
14346 assert(getCurFunctionDecl() == nullptr && "Function parsing confused")(static_cast <bool> (getCurFunctionDecl() == nullptr &&
"Function parsing confused") ? void (0) : __assert_fail ("getCurFunctionDecl() == nullptr && \"Function parsing confused\""
, "clang/lib/Sema/SemaDecl.cpp", 14346, __extension__ __PRETTY_FUNCTION__
))
;
14347 assert(D.isFunctionDeclarator() && "Not a function declarator!")(static_cast <bool> (D.isFunctionDeclarator() &&
"Not a function declarator!") ? void (0) : __assert_fail ("D.isFunctionDeclarator() && \"Not a function declarator!\""
, "clang/lib/Sema/SemaDecl.cpp", 14347, __extension__ __PRETTY_FUNCTION__
))
;
14348 Scope *ParentScope = FnBodyScope->getParent();
14349
14350 // Check if we are in an `omp begin/end declare variant` scope. If we are, and
14351 // we define a non-templated function definition, we will create a declaration
14352 // instead (=BaseFD), and emit the definition with a mangled name afterwards.
14353 // The base function declaration will have the equivalent of an `omp declare
14354 // variant` annotation which specifies the mangled definition as a
14355 // specialization function under the OpenMP context defined as part of the
14356 // `omp begin declare variant`.
14357 SmallVector<FunctionDecl *, 4> Bases;
14358 if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope())
14359 ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
14360 ParentScope, D, TemplateParameterLists, Bases);
14361
14362 D.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
14363 Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
14364 Decl *Dcl = ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody, BodyKind);
14365
14366 if (!Bases.empty())
14367 ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl, Bases);
14368
14369 return Dcl;
14370}
14371
14372void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
14373 Consumer.HandleInlineFunctionDefinition(D);
14374}
14375
14376static bool
14377ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
14378 const FunctionDecl *&PossiblePrototype) {
14379 // Don't warn about invalid declarations.
14380 if (FD->isInvalidDecl())
14381 return false;
14382
14383 // Or declarations that aren't global.
14384 if (!FD->isGlobal())
14385 return false;
14386
14387 // Don't warn about C++ member functions.
14388 if (isa<CXXMethodDecl>(FD))
14389 return false;
14390
14391 // Don't warn about 'main'.
14392 if (isa<TranslationUnitDecl>(FD->getDeclContext()->getRedeclContext()))
14393 if (IdentifierInfo *II = FD->getIdentifier())
14394 if (II->isStr("main") || II->isStr("efi_main"))
14395 return false;
14396
14397 // Don't warn about inline functions.
14398 if (FD->isInlined())
14399 return false;
14400
14401 // Don't warn about function templates.
14402 if (FD->getDescribedFunctionTemplate())
14403 return false;
14404
14405 // Don't warn about function template specializations.
14406 if (FD->isFunctionTemplateSpecialization())
14407 return false;
14408
14409 // Don't warn for OpenCL kernels.
14410 if (FD->hasAttr<OpenCLKernelAttr>())
14411 return false;
14412
14413 // Don't warn on explicitly deleted functions.
14414 if (FD->isDeleted())
14415 return false;
14416
14417 // Don't warn on implicitly local functions (such as having local-typed
14418 // parameters).
14419 if (!FD->isExternallyVisible())
14420 return false;
14421
14422 for (const FunctionDecl *Prev = FD->getPreviousDecl();
14423 Prev; Prev = Prev->getPreviousDecl()) {
14424 // Ignore any declarations that occur in function or method
14425 // scope, because they aren't visible from the header.
14426 if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
14427 continue;
14428
14429 PossiblePrototype = Prev;
14430 return Prev->getType()->isFunctionNoProtoType();
14431 }
14432
14433 return true;
14434}
14435
14436void
14437Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
14438 const FunctionDecl *EffectiveDefinition,
14439 SkipBodyInfo *SkipBody) {
14440 const FunctionDecl *Definition = EffectiveDefinition;
14441 if (!Definition &&
14442 !FD->isDefined(Definition, /*CheckForPendingFriendDefinition*/ true))
14443 return;
14444
14445 if (Definition->getFriendObjectKind() != Decl::FOK_None) {
14446 if (FunctionDecl *OrigDef = Definition->getInstantiatedFromMemberFunction()) {
14447 if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
14448 // A merged copy of the same function, instantiated as a member of
14449 // the same class, is OK.
14450 if (declaresSameEntity(OrigFD, OrigDef) &&
14451 declaresSameEntity(cast<Decl>(Definition->getLexicalDeclContext()),
14452 cast<Decl>(FD->getLexicalDeclContext())))
14453 return;
14454 }
14455 }
14456 }
14457
14458 if (canRedefineFunction(Definition, getLangOpts()))
14459 return;
14460
14461 // Don't emit an error when this is redefinition of a typo-corrected
14462 // definition.
14463 if (TypoCorrectedFunctionDefinitions.count(Definition))
14464 return;
14465
14466 // If we don't have a visible definition of the function, and it's inline or
14467 // a template, skip the new definition.
14468 if (SkipBody && !hasVisibleDefinition(Definition) &&
14469 (Definition->getFormalLinkage() == InternalLinkage ||
14470 Definition->isInlined() ||
14471 Definition->getDescribedFunctionTemplate() ||
14472 Definition->getNumTemplateParameterLists())) {
14473 SkipBody->ShouldSkip = true;
14474 SkipBody->Previous = const_cast<FunctionDecl*>(Definition);
14475 if (auto *TD = Definition->getDescribedFunctionTemplate())
14476 makeMergedDefinitionVisible(TD);
14477 makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
14478 return;
14479 }
14480
14481 if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
14482 Definition->getStorageClass() == SC_Extern)
14483 Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
14484 << FD << getLangOpts().CPlusPlus;
14485 else
14486 Diag(FD->getLocation(), diag::err_redefinition) << FD;
14487
14488 Diag(Definition->getLocation(), diag::note_previous_definition);
14489 FD->setInvalidDecl();
14490}
14491
14492static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
14493 Sema &S) {
14494 CXXRecordDecl *const LambdaClass = CallOperator->getParent();
14495
14496 LambdaScopeInfo *LSI = S.PushLambdaScope();
14497 LSI->CallOperator = CallOperator;
14498 LSI->Lambda = LambdaClass;
14499 LSI->ReturnType = CallOperator->getReturnType();
14500 const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
14501
14502 if (LCD == LCD_None)
14503 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
14504 else if (LCD == LCD_ByCopy)
14505 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
14506 else if (LCD == LCD_ByRef)
14507 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
14508 DeclarationNameInfo DNI = CallOperator->getNameInfo();
14509
14510 LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
14511 LSI->Mutable = !CallOperator->isConst();
14512
14513 // Add the captures to the LSI so they can be noted as already
14514 // captured within tryCaptureVar.
14515 auto I = LambdaClass->field_begin();
14516 for (const auto &C : LambdaClass->captures()) {
14517 if (C.capturesVariable()) {
14518 VarDecl *VD = C.getCapturedVar();
14519 if (VD->isInitCapture())
14520 S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
14521 const bool ByRef = C.getCaptureKind() == LCK_ByRef;
14522 LSI->addCapture(VD, /*IsBlock*/false, ByRef,
14523 /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
14524 /*EllipsisLoc*/C.isPackExpansion()
14525 ? C.getEllipsisLoc() : SourceLocation(),
14526 I->getType(), /*Invalid*/false);
14527
14528 } else if (C.capturesThis()) {
14529 LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(),
14530 C.getCaptureKind() == LCK_StarThis);
14531 } else {
14532 LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(),
14533 I->getType());
14534 }
14535 ++I;
14536 }
14537}
14538
14539Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
14540 SkipBodyInfo *SkipBody,
14541 FnBodyKind BodyKind) {
14542 if (!D) {
14543 // Parsing the function declaration failed in some way. Push on a fake scope
14544 // anyway so we can try to parse the function body.
14545 PushFunctionScope();
14546 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
14547 return D;
14548 }
14549
14550 FunctionDecl *FD = nullptr;
14551
14552 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
14553 FD = FunTmpl->getTemplatedDecl();
14554 else
14555 FD = cast<FunctionDecl>(D);
14556
14557 // Do not push if it is a lambda because one is already pushed when building
14558 // the lambda in ActOnStartOfLambdaDefinition().
14559 if (!isLambdaCallOperator(FD))
14560 PushExpressionEvaluationContext(
14561 FD->isConsteval() ? ExpressionEvaluationContext::ConstantEvaluated
14562 : ExprEvalContexts.back().Context);
14563
14564 // Check for defining attributes before the check for redefinition.
14565 if (const auto *Attr = FD->getAttr<AliasAttr>()) {
14566 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
14567 FD->dropAttr<AliasAttr>();
14568 FD->setInvalidDecl();
14569 }
14570 if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
14571 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
14572 FD->dropAttr<IFuncAttr>();
14573 FD->setInvalidDecl();
14574 }
14575
14576 if (auto *Ctor = dyn_cast<CXXConstructorDecl>(FD)) {
14577 if (Ctor->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
14578 Ctor->isDefaultConstructor() &&
14579 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
14580 // If this is an MS ABI dllexport default constructor, instantiate any
14581 // default arguments.
14582 InstantiateDefaultCtorDefaultArgs(Ctor);
14583 }
14584 }
14585
14586 // See if this is a redefinition. If 'will have body' (or similar) is already
14587 // set, then these checks were already performed when it was set.
14588 if (!FD->willHaveBody() && !FD->isLateTemplateParsed() &&
14589 !FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
14590 CheckForFunctionRedefinition(FD, nullptr, SkipBody);
14591
14592 // If we're skipping the body, we're done. Don't enter the scope.
14593 if (SkipBody && SkipBody->ShouldSkip)
14594 return D;
14595 }
14596
14597 // Mark this function as "will have a body eventually". This lets users to
14598 // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
14599 // this function.
14600 FD->setWillHaveBody();
14601
14602 // If we are instantiating a generic lambda call operator, push
14603 // a LambdaScopeInfo onto the function stack. But use the information
14604 // that's already been calculated (ActOnLambdaExpr) to prime the current
14605 // LambdaScopeInfo.
14606 // When the template operator is being specialized, the LambdaScopeInfo,
14607 // has to be properly restored so that tryCaptureVariable doesn't try
14608 // and capture any new variables. In addition when calculating potential
14609 // captures during transformation of nested lambdas, it is necessary to
14610 // have the LSI properly restored.
14611 if (isGenericLambdaCallOperatorSpecialization(FD)) {
14612 assert(inTemplateInstantiation() &&(static_cast <bool> (inTemplateInstantiation() &&
"There should be an active template instantiation on the stack "
"when instantiating a generic lambda!") ? void (0) : __assert_fail
("inTemplateInstantiation() && \"There should be an active template instantiation on the stack \" \"when instantiating a generic lambda!\""
, "clang/lib/Sema/SemaDecl.cpp", 14614, __extension__ __PRETTY_FUNCTION__
))
14613 "There should be an active template instantiation on the stack "(static_cast <bool> (inTemplateInstantiation() &&
"There should be an active template instantiation on the stack "
"when instantiating a generic lambda!") ? void (0) : __assert_fail
("inTemplateInstantiation() && \"There should be an active template instantiation on the stack \" \"when instantiating a generic lambda!\""
, "clang/lib/Sema/SemaDecl.cpp", 14614, __extension__ __PRETTY_FUNCTION__
))
14614 "when instantiating a generic lambda!")(static_cast <bool> (inTemplateInstantiation() &&
"There should be an active template instantiation on the stack "
"when instantiating a generic lambda!") ? void (0) : __assert_fail
("inTemplateInstantiation() && \"There should be an active template instantiation on the stack \" \"when instantiating a generic lambda!\""
, "clang/lib/Sema/SemaDecl.cpp", 14614, __extension__ __PRETTY_FUNCTION__
))
;
14615 RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
14616 } else {
14617 // Enter a new function scope
14618 PushFunctionScope();
14619 }
14620
14621 // Builtin functions cannot be defined.
14622 if (unsigned BuiltinID = FD->getBuiltinID()) {
14623 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
14624 !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
14625 Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
14626 FD->setInvalidDecl();
14627 }
14628 }
14629
14630 // The return type of a function definition must be complete (C99 6.9.1p3),
14631 // unless the function is deleted (C++ specifc, C++ [dcl.fct.def.general]p2)
14632 QualType ResultType = FD->getReturnType();
14633 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
14634 !FD->isInvalidDecl() && BodyKind != FnBodyKind::Delete &&
14635 RequireCompleteType(FD->getLocation(), ResultType,
14636 diag::err_func_def_incomplete_result))
14637 FD->setInvalidDecl();
14638
14639 if (FnBodyScope)
14640 PushDeclContext(FnBodyScope, FD);
14641
14642 // Check the validity of our function parameters
14643 if (BodyKind != FnBodyKind::Delete)
14644 CheckParmsForFunctionDef(FD->parameters(),
14645 /*CheckParameterNames=*/true);
14646
14647 // Add non-parameter declarations already in the function to the current
14648 // scope.
14649 if (FnBodyScope) {
14650 for (Decl *NPD : FD->decls()) {
14651 auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
14652 if (!NonParmDecl)
14653 continue;
14654 assert(!isa<ParmVarDecl>(NonParmDecl) &&(static_cast <bool> (!isa<ParmVarDecl>(NonParmDecl
) && "parameters should not be in newly created FD yet"
) ? void (0) : __assert_fail ("!isa<ParmVarDecl>(NonParmDecl) && \"parameters should not be in newly created FD yet\""
, "clang/lib/Sema/SemaDecl.cpp", 14655, __extension__ __PRETTY_FUNCTION__
))
14655 "parameters should not be in newly created FD yet")(static_cast <bool> (!isa<ParmVarDecl>(NonParmDecl
) && "parameters should not be in newly created FD yet"
) ? void (0) : __assert_fail ("!isa<ParmVarDecl>(NonParmDecl) && \"parameters should not be in newly created FD yet\""
, "clang/lib/Sema/SemaDecl.cpp", 14655, __extension__ __PRETTY_FUNCTION__
))
;
14656
14657 // If the decl has a name, make it accessible in the current scope.
14658 if (NonParmDecl->getDeclName())
14659 PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
14660
14661 // Similarly, dive into enums and fish their constants out, making them
14662 // accessible in this scope.
14663 if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
14664 for (auto *EI : ED->enumerators())
14665 PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
14666 }
14667 }
14668 }
14669
14670 // Introduce our parameters into the function scope
14671 for (auto Param : FD->parameters()) {
14672 Param->setOwningFunction(FD);
14673
14674 // If this has an identifier, add it to the scope stack.
14675 if (Param->getIdentifier() && FnBodyScope) {
14676 CheckShadow(FnBodyScope, Param);
14677
14678 PushOnScopeChains(Param, FnBodyScope);
14679 }
14680 }
14681
14682 // Ensure that the function's exception specification is instantiated.
14683 if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
14684 ResolveExceptionSpec(D->getLocation(), FPT);
14685
14686 // dllimport cannot be applied to non-inline function definitions.
14687 if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
14688 !FD->isTemplateInstantiation()) {
14689 assert(!FD->hasAttr<DLLExportAttr>())(static_cast <bool> (!FD->hasAttr<DLLExportAttr>
()) ? void (0) : __assert_fail ("!FD->hasAttr<DLLExportAttr>()"
, "clang/lib/Sema/SemaDecl.cpp", 14689, __extension__ __PRETTY_FUNCTION__
))
;
14690 Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
14691 FD->setInvalidDecl();
14692 return D;
14693 }
14694 // We want to attach documentation to original Decl (which might be
14695 // a function template).
14696 ActOnDocumentableDecl(D);
14697 if (getCurLexicalContext()->isObjCContainer() &&
14698 getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
14699 getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
14700 Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
14701
14702 return D;
14703}
14704
14705/// Given the set of return statements within a function body,
14706/// compute the variables that are subject to the named return value
14707/// optimization.
14708///
14709/// Each of the variables that is subject to the named return value
14710/// optimization will be marked as NRVO variables in the AST, and any
14711/// return statement that has a marked NRVO variable as its NRVO candidate can
14712/// use the named return value optimization.
14713///
14714/// This function applies a very simplistic algorithm for NRVO: if every return
14715/// statement in the scope of a variable has the same NRVO candidate, that
14716/// candidate is an NRVO variable.
14717void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
14718 ReturnStmt **Returns = Scope->Returns.data();
14719
14720 for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
14721 if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
14722 if (!NRVOCandidate->isNRVOVariable())
14723 Returns[I]->setNRVOCandidate(nullptr);
14724 }
14725 }
14726}
14727
14728bool Sema::canDelayFunctionBody(const Declarator &D) {
14729 // We can't delay parsing the body of a constexpr function template (yet).
14730 if (D.getDeclSpec().hasConstexprSpecifier())
14731 return false;
14732
14733 // We can't delay parsing the body of a function template with a deduced
14734 // return type (yet).
14735 if (D.getDeclSpec().hasAutoTypeSpec()) {
14736 // If the placeholder introduces a non-deduced trailing return type,
14737 // we can still delay parsing it.
14738 if (D.getNumTypeObjects()) {
14739 const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
14740 if (Outer.Kind == DeclaratorChunk::Function &&
14741 Outer.Fun.hasTrailingReturnType()) {
14742 QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
14743 return Ty.isNull() || !Ty->isUndeducedType();
14744 }
14745 }
14746 return false;
14747 }
14748
14749 return true;
14750}
14751
14752bool Sema::canSkipFunctionBody(Decl *D) {
14753 // We cannot skip the body of a function (or function template) which is
14754 // constexpr, since we may need to evaluate its body in order to parse the
14755 // rest of the file.
14756 // We cannot skip the body of a function with an undeduced return type,
14757 // because any callers of that function need to know the type.
14758 if (const FunctionDecl *FD = D->getAsFunction()) {
14759 if (FD->isConstexpr())
14760 return false;
14761 // We can't simply call Type::isUndeducedType here, because inside template
14762 // auto can be deduced to a dependent type, which is not considered
14763 // "undeduced".
14764 if (FD->getReturnType()->getContainedDeducedType())
14765 return false;
14766 }
14767 return Consumer.shouldSkipFunctionBody(D);
14768}
14769
14770Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
14771 if (!Decl)
14772 return nullptr;
14773 if (FunctionDecl *FD = Decl->getAsFunction())
14774 FD->setHasSkippedBody();
14775 else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
14776 MD->setHasSkippedBody();
14777 return Decl;
14778}
14779
14780Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
14781 return ActOnFinishFunctionBody(D, BodyArg, false);
14782}
14783
14784/// RAII object that pops an ExpressionEvaluationContext when exiting a function
14785/// body.
14786class ExitFunctionBodyRAII {
14787public:
14788 ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {}
14789 ~ExitFunctionBodyRAII() {
14790 if (!IsLambda)
14791 S.PopExpressionEvaluationContext();
14792 }
14793
14794private:
14795 Sema &S;
14796 bool IsLambda = false;
14797};
14798
14799static void diagnoseImplicitlyRetainedSelf(Sema &S) {
14800 llvm::DenseMap<const BlockDecl *, bool> EscapeInfo;
14801
14802 auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) {
14803 if (EscapeInfo.count(BD))
14804 return EscapeInfo[BD];
14805
14806 bool R = false;
14807 const BlockDecl *CurBD = BD;
14808
14809 do {
14810 R = !CurBD->doesNotEscape();
14811 if (R)
14812 break;
14813 CurBD = CurBD->getParent()->getInnermostBlockDecl();
14814 } while (CurBD);
14815
14816 return EscapeInfo[BD] = R;
14817 };
14818
14819 // If the location where 'self' is implicitly retained is inside a escaping
14820 // block, emit a diagnostic.
14821 for (const std::pair<SourceLocation, const BlockDecl *> &P :
14822 S.ImplicitlyRetainedSelfLocs)
14823 if (IsOrNestedInEscapingBlock(P.second))
14824 S.Diag(P.first, diag::warn_implicitly_retains_self)
14825 << FixItHint::CreateInsertion(P.first, "self->");
14826}
14827
14828Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
14829 bool IsInstantiation) {
14830 FunctionScopeInfo *FSI = getCurFunction();
14831 FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
14832
14833 if (FSI->UsesFPIntrin && FD && !FD->hasAttr<StrictFPAttr>())
14834 FD->addAttr(StrictFPAttr::CreateImplicit(Context));
14835
14836 sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
14837 sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
14838
14839 if (getLangOpts().Coroutines && FSI->isCoroutine())
14840 CheckCompletedCoroutineBody(FD, Body);
14841
14842 {
14843 // Do not call PopExpressionEvaluationContext() if it is a lambda because
14844 // one is already popped when finishing the lambda in BuildLambdaExpr().
14845 // This is meant to pop the context added in ActOnStartOfFunctionDef().
14846 ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD));
14847
14848 if (FD) {
14849 FD->setBody(Body);
14850 FD->setWillHaveBody(false);
14851
14852 if (getLangOpts().CPlusPlus14) {
14853 if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
14854 FD->getReturnType()->isUndeducedType()) {
14855 // For a function with a deduced result type to return void,
14856 // the result type as written must be 'auto' or 'decltype(auto)',
14857 // possibly cv-qualified or constrained, but not ref-qualified.
14858 if (!FD->getReturnType()->getAs<AutoType>()) {
14859 Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
14860 << FD->getReturnType();
14861 FD->setInvalidDecl();
14862 } else {
14863 // Falling off the end of the function is the same as 'return;'.
14864 Expr *Dummy = nullptr;
14865 if (DeduceFunctionTypeFromReturnExpr(
14866 FD, dcl->getLocation(), Dummy,
14867 FD->getReturnType()->getAs<AutoType>()))
14868 FD->setInvalidDecl();
14869 }
14870 }
14871 } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
14872 // In C++11, we don't use 'auto' deduction rules for lambda call
14873 // operators because we don't support return type deduction.
14874 auto *LSI = getCurLambda();
14875 if (LSI->HasImplicitReturnType) {
14876 deduceClosureReturnType(*LSI);
14877
14878 // C++11 [expr.prim.lambda]p4:
14879 // [...] if there are no return statements in the compound-statement
14880 // [the deduced type is] the type void
14881 QualType RetType =
14882 LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
14883
14884 // Update the return type to the deduced type.
14885 const auto *Proto = FD->getType()->castAs<FunctionProtoType>();
14886 FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
14887 Proto->getExtProtoInfo()));
14888 }
14889 }
14890
14891 // If the function implicitly returns zero (like 'main') or is naked,
14892 // don't complain about missing return statements.
14893 if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
14894 WP.disableCheckFallThrough();
14895
14896 // MSVC permits the use of pure specifier (=0) on function definition,
14897 // defined at class scope, warn about this non-standard construct.
14898 if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine())
14899 Diag(FD->getLocation(), diag::ext_pure_function_definition);
14900
14901 if (!FD->isInvalidDecl()) {
14902 // Don't diagnose unused parameters of defaulted, deleted or naked
14903 // functions.
14904 if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody() &&
14905 !FD->hasAttr<NakedAttr>())
14906 DiagnoseUnusedParameters(FD->parameters());
14907 DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
14908 FD->getReturnType(), FD);
14909
14910 // If this is a structor, we need a vtable.
14911 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
14912 MarkVTableUsed(FD->getLocation(), Constructor->getParent());
14913 else if (CXXDestructorDecl *Destructor =
14914 dyn_cast<CXXDestructorDecl>(FD))
14915 MarkVTableUsed(FD->getLocation(), Destructor->getParent());
14916
14917 // Try to apply the named return value optimization. We have to check
14918 // if we can do this here because lambdas keep return statements around
14919 // to deduce an implicit return type.
14920 if (FD->getReturnType()->isRecordType() &&
14921 (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
14922 computeNRVO(Body, FSI);
14923 }
14924
14925 // GNU warning -Wmissing-prototypes:
14926 // Warn if a global function is defined without a previous
14927 // prototype declaration. This warning is issued even if the
14928 // definition itself provides a prototype. The aim is to detect
14929 // global functions that fail to be declared in header files.
14930 const FunctionDecl *PossiblePrototype = nullptr;
14931 if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) {
14932 Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
14933
14934 if (PossiblePrototype) {
14935 // We found a declaration that is not a prototype,
14936 // but that could be a zero-parameter prototype
14937 if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) {
14938 TypeLoc TL = TI->getTypeLoc();
14939 if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
14940 Diag(PossiblePrototype->getLocation(),
14941 diag::note_declaration_not_a_prototype)
14942 << (FD->getNumParams() != 0)
14943 << (FD->getNumParams() == 0 ? FixItHint::CreateInsertion(
14944 FTL.getRParenLoc(), "void")
14945 : FixItHint{});
14946 }
14947 } else {
14948 // Returns true if the token beginning at this Loc is `const`.
14949 auto isLocAtConst = [&](SourceLocation Loc, const SourceManager &SM,
14950 const LangOptions &LangOpts) {
14951 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
14952 if (LocInfo.first.isInvalid())
14953 return false;
14954
14955 bool Invalid = false;
14956 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
14957 if (Invalid)
14958 return false;
14959
14960 if (LocInfo.second > Buffer.size())
14961 return false;
14962
14963 const char *LexStart = Buffer.data() + LocInfo.second;
14964 StringRef StartTok(LexStart, Buffer.size() - LocInfo.second);
14965
14966 return StartTok.consume_front("const") &&
14967 (StartTok.empty() || isWhitespace(StartTok[0]) ||
14968 StartTok.startswith("/*") || StartTok.startswith("//"));
14969 };
14970
14971 auto findBeginLoc = [&]() {
14972 // If the return type has `const` qualifier, we want to insert
14973 // `static` before `const` (and not before the typename).
14974 if ((FD->getReturnType()->isAnyPointerType() &&
14975 FD->getReturnType()->getPointeeType().isConstQualified()) ||
14976 FD->getReturnType().isConstQualified()) {
14977 // But only do this if we can determine where the `const` is.
14978
14979 if (isLocAtConst(FD->getBeginLoc(), getSourceManager(),
14980 getLangOpts()))
14981
14982 return FD->getBeginLoc();
14983 }
14984 return FD->getTypeSpecStartLoc();
14985 };
14986 Diag(FD->getTypeSpecStartLoc(),
14987 diag::note_static_for_internal_linkage)
14988 << /* function */ 1
14989 << (FD->getStorageClass() == SC_None
14990 ? FixItHint::CreateInsertion(findBeginLoc(), "static ")
14991 : FixItHint{});
14992 }
14993 }
14994
14995 // If the function being defined does not have a prototype, then we may
14996 // need to diagnose it as changing behavior in C2x because we now know
14997 // whether the function accepts arguments or not. This only handles the
14998 // case where the definition has no prototype but does have parameters
14999 // and either there is no previous potential prototype, or the previous
15000 // potential prototype also has no actual prototype. This handles cases
15001 // like:
15002 // void f(); void f(a) int a; {}
15003 // void g(a) int a; {}
15004 // See MergeFunctionDecl() for other cases of the behavior change
15005 // diagnostic. See GetFullTypeForDeclarator() for handling of a function
15006 // type without a prototype.
15007 if (!FD->hasWrittenPrototype() && FD->getNumParams() != 0 &&
15008 (!PossiblePrototype || (!PossiblePrototype->hasWrittenPrototype() &&
15009 !PossiblePrototype->isImplicit()))) {
15010 // The function definition has parameters, so this will change behavior
15011 // in C2x. If there is a possible prototype, it comes before the
15012 // function definition.
15013 // FIXME: The declaration may have already been diagnosed as being
15014 // deprecated in GetFullTypeForDeclarator() if it had no arguments, but
15015 // there's no way to test for the "changes behavior" condition in
15016 // SemaType.cpp when forming the declaration's function type. So, we do
15017 // this awkward dance instead.
15018 //
15019 // If we have a possible prototype and it declares a function with a
15020 // prototype, we don't want to diagnose it; if we have a possible
15021 // prototype and it has no prototype, it may have already been
15022 // diagnosed in SemaType.cpp as deprecated depending on whether
15023 // -Wstrict-prototypes is enabled. If we already warned about it being
15024 // deprecated, add a note that it also changes behavior. If we didn't
15025 // warn about it being deprecated (because the diagnostic is not
15026 // enabled), warn now that it is deprecated and changes behavior.
15027 bool AddNote = false;
15028 if (PossiblePrototype) {
15029 if (Diags.isIgnored(diag::warn_strict_prototypes,
15030 PossiblePrototype->getLocation())) {
15031
15032 PartialDiagnostic PD =
15033 PDiag(diag::warn_non_prototype_changes_behavior);
15034 if (TypeSourceInfo *TSI = PossiblePrototype->getTypeSourceInfo()) {
15035 if (auto FTL = TSI->getTypeLoc().getAs<FunctionNoProtoTypeLoc>())
15036 PD << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
15037 }
15038 Diag(PossiblePrototype->getLocation(), PD);
15039 } else {
15040 AddNote = true;
15041 }
15042 }
15043
15044 // Because this function definition has no prototype and it has
15045 // parameters, it will definitely change behavior in C2x.
15046 Diag(FD->getLocation(), diag::warn_non_prototype_changes_behavior);
15047 if (AddNote)
15048 Diag(PossiblePrototype->getLocation(),
15049 diag::note_func_decl_changes_behavior);
15050 }
15051
15052 // Warn on CPUDispatch with an actual body.
15053 if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body)
15054 if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body))
15055 if (!CmpndBody->body_empty())
15056 Diag(CmpndBody->body_front()->getBeginLoc(),
15057 diag::warn_dispatch_body_ignored);
15058
15059 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
15060 const CXXMethodDecl *KeyFunction;
15061 if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
15062 MD->isVirtual() &&
15063 (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
15064 MD == KeyFunction->getCanonicalDecl()) {
15065 // Update the key-function state if necessary for this ABI.
15066 if (FD->isInlined() &&
15067 !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
15068 Context.setNonKeyFunction(MD);
15069
15070 // If the newly-chosen key function is already defined, then we
15071 // need to mark the vtable as used retroactively.
15072 KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
15073 const FunctionDecl *Definition;
15074 if (KeyFunction && KeyFunction->isDefined(Definition))
15075 MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
15076 } else {
15077 // We just defined they key function; mark the vtable as used.
15078 MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
15079 }
15080 }
15081 }
15082
15083 assert((static_cast <bool> ((FD == getCurFunctionDecl() || getCurLambda
()->CallOperator == FD) && "Function parsing confused"
) ? void (0) : __assert_fail ("(FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && \"Function parsing confused\""
, "clang/lib/Sema/SemaDecl.cpp", 15085, __extension__ __PRETTY_FUNCTION__
))
15084 (FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&(static_cast <bool> ((FD == getCurFunctionDecl() || getCurLambda
()->CallOperator == FD) && "Function parsing confused"
) ? void (0) : __assert_fail ("(FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && \"Function parsing confused\""
, "clang/lib/Sema/SemaDecl.cpp", 15085, __extension__ __PRETTY_FUNCTION__
))
15085 "Function parsing confused")(static_cast <bool> ((FD == getCurFunctionDecl() || getCurLambda
()->CallOperator == FD) && "Function parsing confused"
) ? void (0) : __assert_fail ("(FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && \"Function parsing confused\""
, "clang/lib/Sema/SemaDecl.cpp", 15085, __extension__ __PRETTY_FUNCTION__
))
;
15086 } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
15087 assert(MD == getCurMethodDecl() && "Method parsing confused")(static_cast <bool> (MD == getCurMethodDecl() &&
"Method parsing confused") ? void (0) : __assert_fail ("MD == getCurMethodDecl() && \"Method parsing confused\""
, "clang/lib/Sema/SemaDecl.cpp", 15087, __extension__ __PRETTY_FUNCTION__
))
;
15088 MD->setBody(Body);
15089 if (!MD->isInvalidDecl()) {
15090 DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
15091 MD->getReturnType(), MD);
15092
15093 if (Body)
15094 computeNRVO(Body, FSI);
15095 }
15096 if (FSI->ObjCShouldCallSuper) {
15097 Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call)
15098 << MD->getSelector().getAsString();
15099 FSI->ObjCShouldCallSuper = false;
15100 }
15101 if (FSI->ObjCWarnForNoDesignatedInitChain) {
15102 const ObjCMethodDecl *InitMethod = nullptr;
15103 bool isDesignated =
15104 MD->isDesignatedInitializerForTheInterface(&InitMethod);
15105 assert(isDesignated && InitMethod)(static_cast <bool> (isDesignated && InitMethod
) ? void (0) : __assert_fail ("isDesignated && InitMethod"
, "clang/lib/Sema/SemaDecl.cpp", 15105, __extension__ __PRETTY_FUNCTION__
))
;
15106 (void)isDesignated;
15107
15108 auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
15109 auto IFace = MD->getClassInterface();
15110 if (!IFace)
15111 return false;
15112 auto SuperD = IFace->getSuperClass();
15113 if (!SuperD)
15114 return false;
15115 return SuperD->getIdentifier() ==
15116 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
15117 };
15118 // Don't issue this warning for unavailable inits or direct subclasses
15119 // of NSObject.
15120 if (!MD->isUnavailable() && !superIsNSObject(MD)) {
15121 Diag(MD->getLocation(),
15122 diag::warn_objc_designated_init_missing_super_call);
15123 Diag(InitMethod->getLocation(),
15124 diag::note_objc_designated_init_marked_here);
15125 }
15126 FSI->ObjCWarnForNoDesignatedInitChain = false;
15127 }
15128 if (FSI->ObjCWarnForNoInitDelegation) {
15129 // Don't issue this warning for unavaialable inits.
15130 if (!MD->isUnavailable())
15131 Diag(MD->getLocation(),
15132 diag::warn_objc_secondary_init_missing_init_call);
15133 FSI->ObjCWarnForNoInitDelegation = false;
15134 }
15135
15136 diagnoseImplicitlyRetainedSelf(*this);
15137 } else {
15138 // Parsing the function declaration failed in some way. Pop the fake scope
15139 // we pushed on.
15140 PopFunctionScopeInfo(ActivePolicy, dcl);
15141 return nullptr;
15142 }
15143
15144 if (Body && FSI->HasPotentialAvailabilityViolations)
15145 DiagnoseUnguardedAvailabilityViolations(dcl);
15146
15147 assert(!FSI->ObjCShouldCallSuper &&(static_cast <bool> (!FSI->ObjCShouldCallSuper &&
"This should only be set for ObjC methods, which should have been "
"handled in the block above.") ? void (0) : __assert_fail ("!FSI->ObjCShouldCallSuper && \"This should only be set for ObjC methods, which should have been \" \"handled in the block above.\""
, "clang/lib/Sema/SemaDecl.cpp", 15149, __extension__ __PRETTY_FUNCTION__
))
15148 "This should only be set for ObjC methods, which should have been "(static_cast <bool> (!FSI->ObjCShouldCallSuper &&
"This should only be set for ObjC methods, which should have been "
"handled in the block above.") ? void (0) : __assert_fail ("!FSI->ObjCShouldCallSuper && \"This should only be set for ObjC methods, which should have been \" \"handled in the block above.\""
, "clang/lib/Sema/SemaDecl.cpp", 15149, __extension__ __PRETTY_FUNCTION__
))
15149 "handled in the block above.")(static_cast <bool> (!FSI->ObjCShouldCallSuper &&
"This should only be set for ObjC methods, which should have been "
"handled in the block above.") ? void (0) : __assert_fail ("!FSI->ObjCShouldCallSuper && \"This should only be set for ObjC methods, which should have been \" \"handled in the block above.\""
, "clang/lib/Sema/SemaDecl.cpp", 15149, __extension__ __PRETTY_FUNCTION__
))
;
15150
15151 // Verify and clean out per-function state.
15152 if (Body && (!FD || !FD->isDefaulted())) {
15153 // C++ constructors that have function-try-blocks can't have return
15154 // statements in the handlers of that block. (C++ [except.handle]p14)
15155 // Verify this.
15156 if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
15157 DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
15158
15159 // Verify that gotos and switch cases don't jump into scopes illegally.
15160 if (FSI->NeedsScopeChecking() && !PP.isCodeCompletionEnabled())
15161 DiagnoseInvalidJumps(Body);
15162
15163 if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
15164 if (!Destructor->getParent()->isDependentType())
15165 CheckDestructor(Destructor);
15166
15167 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
15168 Destructor->getParent());
15169 }
15170
15171 // If any errors have occurred, clear out any temporaries that may have
15172 // been leftover. This ensures that these temporaries won't be picked up
15173 // for deletion in some later function.
15174 if (hasUncompilableErrorOccurred() ||
15175 getDiagnostics().getSuppressAllDiagnostics()) {
15176 DiscardCleanupsInEvaluationContext();
15177 }
15178 if (!hasUncompilableErrorOccurred() && !isa<FunctionTemplateDecl>(dcl)) {
15179 // Since the body is valid, issue any analysis-based warnings that are
15180 // enabled.
15181 ActivePolicy = &WP;
15182 }
15183
15184 if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
15185 !CheckConstexprFunctionDefinition(FD, CheckConstexprKind::Diagnose))
15186 FD->setInvalidDecl();
15187
15188 if (FD && FD->hasAttr<NakedAttr>()) {
15189 for (const Stmt *S : Body->children()) {
15190 // Allow local register variables without initializer as they don't
15191 // require prologue.
15192 bool RegisterVariables = false;
15193 if (auto *DS = dyn_cast<DeclStmt>(S)) {
15194 for (const auto *Decl : DS->decls()) {
15195 if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
15196 RegisterVariables =
15197 Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
15198 if (!RegisterVariables)
15199 break;
15200 }
15201 }
15202 }
15203 if (RegisterVariables)
15204 continue;
15205 if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
15206 Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function);
15207 Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
15208 FD->setInvalidDecl();
15209 break;
15210 }
15211 }
15212 }
15213
15214 assert(ExprCleanupObjects.size() ==(static_cast <bool> (ExprCleanupObjects.size() == ExprEvalContexts
.back().NumCleanupObjects && "Leftover temporaries in function"
) ? void (0) : __assert_fail ("ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects && \"Leftover temporaries in function\""
, "clang/lib/Sema/SemaDecl.cpp", 15216, __extension__ __PRETTY_FUNCTION__
))
15215 ExprEvalContexts.back().NumCleanupObjects &&(static_cast <bool> (ExprCleanupObjects.size() == ExprEvalContexts
.back().NumCleanupObjects && "Leftover temporaries in function"
) ? void (0) : __assert_fail ("ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects && \"Leftover temporaries in function\""
, "clang/lib/Sema/SemaDecl.cpp", 15216, __extension__ __PRETTY_FUNCTION__
))
15216 "Leftover temporaries in function")(static_cast <bool> (ExprCleanupObjects.size() == ExprEvalContexts
.back().NumCleanupObjects && "Leftover temporaries in function"
) ? void (0) : __assert_fail ("ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects && \"Leftover temporaries in function\""
, "clang/lib/Sema/SemaDecl.cpp", 15216, __extension__ __PRETTY_FUNCTION__
))
;
15217 assert(!Cleanup.exprNeedsCleanups() &&(static_cast <bool> (!Cleanup.exprNeedsCleanups() &&
"Unaccounted cleanups in function") ? void (0) : __assert_fail
("!Cleanup.exprNeedsCleanups() && \"Unaccounted cleanups in function\""
, "clang/lib/Sema/SemaDecl.cpp", 15218, __extension__ __PRETTY_FUNCTION__
))
15218 "Unaccounted cleanups in function")(static_cast <bool> (!Cleanup.exprNeedsCleanups() &&
"Unaccounted cleanups in function") ? void (0) : __assert_fail
("!Cleanup.exprNeedsCleanups() && \"Unaccounted cleanups in function\""
, "clang/lib/Sema/SemaDecl.cpp", 15218, __extension__ __PRETTY_FUNCTION__
))
;
15219 assert(MaybeODRUseExprs.empty() &&(static_cast <bool> (MaybeODRUseExprs.empty() &&
"Leftover expressions for odr-use checking") ? void (0) : __assert_fail
("MaybeODRUseExprs.empty() && \"Leftover expressions for odr-use checking\""
, "clang/lib/Sema/SemaDecl.cpp", 15220, __extension__ __PRETTY_FUNCTION__
))
15220 "Leftover expressions for odr-use checking")(static_cast <bool> (MaybeODRUseExprs.empty() &&
"Leftover expressions for odr-use checking") ? void (0) : __assert_fail
("MaybeODRUseExprs.empty() && \"Leftover expressions for odr-use checking\""
, "clang/lib/Sema/SemaDecl.cpp", 15220, __extension__ __PRETTY_FUNCTION__
))
;
15221 }
15222 } // Pops the ExitFunctionBodyRAII scope, which needs to happen before we pop
15223 // the declaration context below. Otherwise, we're unable to transform
15224 // 'this' expressions when transforming immediate context functions.
15225
15226 if (!IsInstantiation)
15227 PopDeclContext();
15228
15229 PopFunctionScopeInfo(ActivePolicy, dcl);
15230 // If any errors have occurred, clear out any temporaries that may have
15231 // been leftover. This ensures that these temporaries won't be picked up for
15232 // deletion in some later function.
15233 if (hasUncompilableErrorOccurred()) {
15234 DiscardCleanupsInEvaluationContext();
15235 }
15236
15237 if (FD && ((LangOpts.OpenMP && (LangOpts.OpenMPIsDevice ||
15238 !LangOpts.OMPTargetTriples.empty())) ||
15239 LangOpts.CUDA || LangOpts.SYCLIsDevice)) {
15240 auto ES = getEmissionStatus(FD);
15241 if (ES == Sema::FunctionEmissionStatus::Emitted ||
15242 ES == Sema::FunctionEmissionStatus::Unknown)
15243 DeclsToCheckForDeferredDiags.insert(FD);
15244 }
15245
15246 if (FD && !FD->isDeleted())
15247 checkTypeSupport(FD->getType(), FD->getLocation(), FD);
15248
15249 return dcl;
15250}
15251
15252/// When we finish delayed parsing of an attribute, we must attach it to the
15253/// relevant Decl.
15254void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
15255 ParsedAttributes &Attrs) {
15256 // Always attach attributes to the underlying decl.
15257 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
15258 D = TD->getTemplatedDecl();
15259 ProcessDeclAttributeList(S, D, Attrs);
15260
15261 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
15262 if (Method->isStatic())
15263 checkThisInStaticMemberFunctionAttributes(Method);
15264}
15265
15266/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
15267/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
15268NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
15269 IdentifierInfo &II, Scope *S) {
15270 // Find the scope in which the identifier is injected and the corresponding
15271 // DeclContext.
15272 // FIXME: C89 does not say what happens if there is no enclosing block scope.
15273 // In that case, we inject the declaration into the translation unit scope
15274 // instead.
15275 Scope *BlockScope = S;
15276 while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
15277 BlockScope = BlockScope->getParent();
15278
15279 Scope *ContextScope = BlockScope;
15280 while (!ContextScope->getEntity())
15281 ContextScope = ContextScope->getParent();
15282 ContextRAII SavedContext(*this, ContextScope->getEntity());
15283
15284 // Before we produce a declaration for an implicitly defined
15285 // function, see whether there was a locally-scoped declaration of
15286 // this name as a function or variable. If so, use that
15287 // (non-visible) declaration, and complain about it.
15288 NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
15289 if (ExternCPrev) {
15290 // We still need to inject the function into the enclosing block scope so
15291 // that later (non-call) uses can see it.
15292 PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
15293
15294 // C89 footnote 38:
15295 // If in fact it is not defined as having type "function returning int",
15296 // the behavior is undefined.
15297 if (!isa<FunctionDecl>(ExternCPrev) ||
15298 !Context.typesAreCompatible(
15299 cast<FunctionDecl>(ExternCPrev)->getType(),
15300 Context.getFunctionNoProtoType(Context.IntTy))) {
15301 Diag(Loc, diag::ext_use_out_of_scope_declaration)
15302 << ExternCPrev << !getLangOpts().C99;
15303 Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
15304 return ExternCPrev;
15305 }
15306 }
15307
15308 // Extension in C99. Legal in C90, but warn about it.
15309 unsigned diag_id;
15310 if (II.getName().startswith("__builtin_"))
15311 diag_id = diag::warn_builtin_unknown;
15312 // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
15313 else if (getLangOpts().OpenCL)
15314 diag_id = diag::err_opencl_implicit_function_decl;
15315 else if (getLangOpts().C99)
15316 diag_id = diag::ext_implicit_function_decl;
15317 else
15318 diag_id = diag::warn_implicit_function_decl;
15319
15320 TypoCorrection Corrected;
15321 // Because typo correction is expensive, only do it if the implicit
15322 // function declaration is going to be treated as an error.
15323 //
15324 // Perform the corection before issuing the main diagnostic, as some consumers
15325 // use typo-correction callbacks to enhance the main diagnostic.
15326 if (S && !ExternCPrev &&
15327 (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error)) {
15328 DeclFilterCCC<FunctionDecl> CCC{};
15329 Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName,
15330 S, nullptr, CCC, CTK_NonError);
15331 }
15332
15333 Diag(Loc, diag_id) << &II;
15334 if (Corrected)
15335 diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
15336 /*ErrorRecovery*/ false);
15337
15338 // If we found a prior declaration of this function, don't bother building
15339 // another one. We've already pushed that one into scope, so there's nothing
15340 // more to do.
15341 if (ExternCPrev)
15342 return ExternCPrev;
15343
15344 // Set a Declarator for the implicit definition: int foo();
15345 const char *Dummy;
15346 AttributeFactory attrFactory;
15347 DeclSpec DS(attrFactory);
15348 unsigned DiagID;
15349 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
15350 Context.getPrintingPolicy());
15351 (void)Error; // Silence warning.
15352 assert(!Error && "Error setting up implicit decl!")(static_cast <bool> (!Error && "Error setting up implicit decl!"
) ? void (0) : __assert_fail ("!Error && \"Error setting up implicit decl!\""
, "clang/lib/Sema/SemaDecl.cpp", 15352, __extension__ __PRETTY_FUNCTION__
))
;
15353 SourceLocation NoLoc;
15354 Declarator D(DS, DeclaratorContext::Block);
15355 D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
15356 /*IsAmbiguous=*/false,
15357 /*LParenLoc=*/NoLoc,
15358 /*Params=*/nullptr,
15359 /*NumParams=*/0,
15360 /*EllipsisLoc=*/NoLoc,
15361 /*RParenLoc=*/NoLoc,
15362 /*RefQualifierIsLvalueRef=*/true,
15363 /*RefQualifierLoc=*/NoLoc,
15364 /*MutableLoc=*/NoLoc, EST_None,
15365 /*ESpecRange=*/SourceRange(),
15366 /*Exceptions=*/nullptr,
15367 /*ExceptionRanges=*/nullptr,
15368 /*NumExceptions=*/0,
15369 /*NoexceptExpr=*/nullptr,
15370 /*ExceptionSpecTokens=*/nullptr,
15371 /*DeclsInPrototype=*/None, Loc,
15372 Loc, D),
15373 std::move(DS.getAttributes()), SourceLocation());
15374 D.SetIdentifier(&II, Loc);
15375
15376 // Insert this function into the enclosing block scope.
15377 FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
15378 FD->setImplicit();
15379
15380 AddKnownFunctionAttributes(FD);
15381
15382 return FD;
15383}
15384
15385/// If this function is a C++ replaceable global allocation function
15386/// (C++2a [basic.stc.dynamic.allocation], C++2a [new.delete]),
15387/// adds any function attributes that we know a priori based on the standard.
15388///
15389/// We need to check for duplicate attributes both here and where user-written
15390/// attributes are applied to declarations.
15391void Sema::AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
15392 FunctionDecl *FD) {
15393 if (FD->isInvalidDecl())
15394 return;
15395
15396 if (FD->getDeclName().getCXXOverloadedOperator() != OO_New &&
15397 FD->getDeclName().getCXXOverloadedOperator() != OO_Array_New)
15398 return;
15399
15400 Optional<unsigned> AlignmentParam;
15401 bool IsNothrow = false;
15402 if (!FD->isReplaceableGlobalAllocationFunction(&AlignmentParam, &IsNothrow))
15403 return;
15404
15405 // C++2a [basic.stc.dynamic.allocation]p4:
15406 // An allocation function that has a non-throwing exception specification
15407 // indicates failure by returning a null pointer value. Any other allocation
15408 // function never returns a null pointer value and indicates failure only by
15409 // throwing an exception [...]
15410 if (!IsNothrow && !FD->hasAttr<ReturnsNonNullAttr>())
15411 FD->addAttr(ReturnsNonNullAttr::CreateImplicit(Context, FD->getLocation()));
15412
15413 // C++2a [basic.stc.dynamic.allocation]p2:
15414 // An allocation function attempts to allocate the requested amount of
15415 // storage. [...] If the request succeeds, the value returned by a
15416 // replaceable allocation function is a [...] pointer value p0 different
15417 // from any previously returned value p1 [...]
15418 //
15419 // However, this particular information is being added in codegen,
15420 // because there is an opt-out switch for it (-fno-assume-sane-operator-new)
15421
15422 // C++2a [basic.stc.dynamic.allocation]p2:
15423 // An allocation function attempts to allocate the requested amount of
15424 // storage. If it is successful, it returns the address of the start of a
15425 // block of storage whose length in bytes is at least as large as the
15426 // requested size.
15427 if (!FD->hasAttr<AllocSizeAttr>()) {
15428 FD->addAttr(AllocSizeAttr::CreateImplicit(
15429 Context, /*ElemSizeParam=*/ParamIdx(1, FD),
15430 /*NumElemsParam=*/ParamIdx(), FD->getLocation()));
15431 }
15432
15433 // C++2a [basic.stc.dynamic.allocation]p3:
15434 // For an allocation function [...], the pointer returned on a successful
15435 // call shall represent the address of storage that is aligned as follows:
15436 // (3.1) If the allocation function takes an argument of type
15437 // std​::​align_­val_­t, the storage will have the alignment
15438 // specified by the value of this argument.
15439 if (AlignmentParam.hasValue() && !FD->hasAttr<AllocAlignAttr>()) {
15440 FD->addAttr(AllocAlignAttr::CreateImplicit(
15441 Context, ParamIdx(AlignmentParam.getValue(), FD), FD->getLocation()));
15442 }
15443
15444 // FIXME:
15445 // C++2a [basic.stc.dynamic.allocation]p3:
15446 // For an allocation function [...], the pointer returned on a successful
15447 // call shall represent the address of storage that is aligned as follows:
15448 // (3.2) Otherwise, if the allocation function is named operator new[],
15449 // the storage is aligned for any object that does not have
15450 // new-extended alignment ([basic.align]) and is no larger than the
15451 // requested size.
15452 // (3.3) Otherwise, the storage is aligned for any object that does not
15453 // have new-extended alignment and is of the requested size.
15454}
15455
15456/// Adds any function attributes that we know a priori based on
15457/// the declaration of this function.
15458///
15459/// These attributes can apply both to implicitly-declared builtins
15460/// (like __builtin___printf_chk) or to library-declared functions
15461/// like NSLog or printf.
15462///
15463/// We need to check for duplicate attributes both here and where user-written
15464/// attributes are applied to declarations.
15465void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
15466 if (FD->isInvalidDecl())
15467 return;
15468
15469 // If this is a built-in function, map its builtin attributes to
15470 // actual attributes.
15471 if (unsigned BuiltinID = FD->getBuiltinID()) {
15472 // Handle printf-formatting attributes.
15473 unsigned FormatIdx;
15474 bool HasVAListArg;
15475 if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
15476 if (!FD->hasAttr<FormatAttr>()) {
15477 const char *fmt = "printf";
15478 unsigned int NumParams = FD->getNumParams();
15479 if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
15480 FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
15481 fmt = "NSString";
15482 FD->addAttr(FormatAttr::CreateImplicit(Context,
15483 &Context.Idents.get(fmt),
15484 FormatIdx+1,
15485 HasVAListArg ? 0 : FormatIdx+2,
15486 FD->getLocation()));
15487 }
15488 }
15489 if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
15490 HasVAListArg)) {
15491 if (!FD->hasAttr<FormatAttr>())
15492 FD->addAttr(FormatAttr::CreateImplicit(Context,
15493 &Context.Idents.get("scanf"),
15494 FormatIdx+1,
15495 HasVAListArg ? 0 : FormatIdx+2,
15496 FD->getLocation()));
15497 }
15498
15499 // Handle automatically recognized callbacks.
15500 SmallVector<int, 4> Encoding;
15501 if (!FD->hasAttr<CallbackAttr>() &&
15502 Context.BuiltinInfo.performsCallback(BuiltinID, Encoding))
15503 FD->addAttr(CallbackAttr::CreateImplicit(
15504 Context, Encoding.data(), Encoding.size(), FD->getLocation()));
15505
15506 // Mark const if we don't care about errno and that is the only thing
15507 // preventing the function from being const. This allows IRgen to use LLVM
15508 // intrinsics for such functions.
15509 if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() &&
15510 Context.BuiltinInfo.isConstWithoutErrno(BuiltinID))
15511 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
15512
15513 // We make "fma" on GNU or Windows const because we know it does not set
15514 // errno in those environments even though it could set errno based on the
15515 // C standard.
15516 const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
15517 if ((Trip.isGNUEnvironment() || Trip.isOSMSVCRT()) &&
15518 !FD->hasAttr<ConstAttr>()) {
15519 switch (BuiltinID) {
15520 case Builtin::BI__builtin_fma:
15521 case Builtin::BI__builtin_fmaf:
15522 case Builtin::BI__builtin_fmal:
15523 case Builtin::BIfma:
15524 case Builtin::BIfmaf:
15525 case Builtin::BIfmal:
15526 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
15527 break;
15528 default:
15529 break;
15530 }
15531 }
15532
15533 if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
15534 !FD->hasAttr<ReturnsTwiceAttr>())
15535 FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
15536 FD->getLocation()));
15537 if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
15538 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
15539 if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
15540 FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
15541 if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
15542 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
15543 if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
15544 !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
15545 // Add the appropriate attribute, depending on the CUDA compilation mode
15546 // and which target the builtin belongs to. For example, during host
15547 // compilation, aux builtins are __device__, while the rest are __host__.
15548 if (getLangOpts().CUDAIsDevice !=
15549 Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
15550 FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
15551 else
15552 FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
15553 }
15554
15555 // Add known guaranteed alignment for allocation functions.
15556 switch (BuiltinID) {
15557 case Builtin::BImemalign:
15558 case Builtin::BIaligned_alloc:
15559 if (!FD->hasAttr<AllocAlignAttr>())
15560 FD->addAttr(AllocAlignAttr::CreateImplicit(Context, ParamIdx(1, FD),
15561 FD->getLocation()));
15562 break;
15563 default:
15564 break;
15565 }
15566
15567 // Add allocsize attribute for allocation functions.
15568 switch (BuiltinID) {
15569 case Builtin::BIcalloc:
15570 FD->addAttr(AllocSizeAttr::CreateImplicit(
15571 Context, ParamIdx(1, FD), ParamIdx(2, FD), FD->getLocation()));
15572 break;
15573 case Builtin::BImemalign:
15574 case Builtin::BIaligned_alloc:
15575 case Builtin::BIrealloc:
15576 FD->addAttr(AllocSizeAttr::CreateImplicit(Context, ParamIdx(2, FD),
15577 ParamIdx(), FD->getLocation()));
15578 break;
15579 case Builtin::BImalloc:
15580 FD->addAttr(AllocSizeAttr::CreateImplicit(Context, ParamIdx(1, FD),
15581 ParamIdx(), FD->getLocation()));
15582 break;
15583 default:
15584 break;
15585 }
15586 }
15587
15588 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD);
15589
15590 // If C++ exceptions are enabled but we are told extern "C" functions cannot
15591 // throw, add an implicit nothrow attribute to any extern "C" function we come
15592 // across.
15593 if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
15594 FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
15595 const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
15596 if (!FPT || FPT->getExceptionSpecType() == EST_None)
15597 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
15598 }
15599
15600 IdentifierInfo *Name = FD->getIdentifier();
15601 if (!Name)
15602 return;
15603 if ((!getLangOpts().CPlusPlus &&
15604 FD->getDeclContext()->isTranslationUnit()) ||
15605 (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
15606 cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
15607 LinkageSpecDecl::lang_c)) {
15608 // Okay: this could be a libc/libm/Objective-C function we know
15609 // about.
15610 } else
15611 return;
15612
15613 if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
15614 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
15615 // target-specific builtins, perhaps?
15616 if (!FD->hasAttr<FormatAttr>())
15617 FD->addAttr(FormatAttr::CreateImplicit(Context,
15618 &Context.Idents.get("printf"), 2,
15619 Name->isStr("vasprintf") ? 0 : 3,
15620 FD->getLocation()));
15621 }
15622
15623 if (Name->isStr("__CFStringMakeConstantString")) {
15624 // We already have a __builtin___CFStringMakeConstantString,
15625 // but builds that use -fno-constant-cfstrings don't go through that.
15626 if (!FD->hasAttr<FormatArgAttr>())
15627 FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
15628 FD->getLocation()));
15629 }
15630}
15631
15632TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
15633 TypeSourceInfo *TInfo) {
15634 assert(D.getIdentifier() && "Wrong callback for declspec without declarator")(static_cast <bool> (D.getIdentifier() && "Wrong callback for declspec without declarator"
) ? void (0) : __assert_fail ("D.getIdentifier() && \"Wrong callback for declspec without declarator\""
, "clang/lib/Sema/SemaDecl.cpp", 15634, __extension__ __PRETTY_FUNCTION__
))
;
15635 assert(!T.isNull() && "GetTypeForDeclarator() returned null type")(static_cast <bool> (!T.isNull() && "GetTypeForDeclarator() returned null type"
) ? void (0) : __assert_fail ("!T.isNull() && \"GetTypeForDeclarator() returned null type\""
, "clang/lib/Sema/SemaDecl.cpp", 15635, __extension__ __PRETTY_FUNCTION__
))
;
15636
15637 if (!TInfo) {
15638 assert(D.isInvalidType() && "no declarator info for valid type")(static_cast <bool> (D.isInvalidType() && "no declarator info for valid type"
) ? void (0) : __assert_fail ("D.isInvalidType() && \"no declarator info for valid type\""
, "clang/lib/Sema/SemaDecl.cpp", 15638, __extension__ __PRETTY_FUNCTION__
))
;
15639 TInfo = Context.getTrivialTypeSourceInfo(T);
15640 }
15641
15642 // Scope manipulation handled by caller.
15643 TypedefDecl *NewTD =
15644 TypedefDecl::Create(Context, CurContext, D.getBeginLoc(),
15645 D.getIdentifierLoc(), D.getIdentifier(), TInfo);
15646
15647 // Bail out immediately if we have an invalid declaration.
15648 if (D.isInvalidType()) {
15649 NewTD->setInvalidDecl();
15650 return NewTD;
15651 }
15652
15653 if (D.getDeclSpec().isModulePrivateSpecified()) {
15654 if (CurContext->isFunctionOrMethod())
15655 Diag(NewTD->getLocation(), diag::err_module_private_local)
15656 << 2 << NewTD
15657 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
15658 << FixItHint::CreateRemoval(
15659 D.getDeclSpec().getModulePrivateSpecLoc());
15660 else
15661 NewTD->setModulePrivate();
15662 }
15663
15664 // C++ [dcl.typedef]p8:
15665 // If the typedef declaration defines an unnamed class (or
15666 // enum), the first typedef-name declared by the declaration
15667 // to be that class type (or enum type) is used to denote the
15668 // class type (or enum type) for linkage purposes only.
15669 // We need to check whether the type was declared in the declaration.
15670 switch (D.getDeclSpec().getTypeSpecType()) {
15671 case TST_enum:
15672 case TST_struct:
15673 case TST_interface:
15674 case TST_union:
15675 case TST_class: {
15676 TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
15677 setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
15678 break;
15679 }
15680
15681 default:
15682 break;
15683 }
15684
15685 return NewTD;
15686}
15687
15688/// Check that this is a valid underlying type for an enum declaration.
15689bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
15690 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
15691 QualType T = TI->getType();
15692
15693 if (T->isDependentType())
15694 return false;
15695
15696 // This doesn't use 'isIntegralType' despite the error message mentioning
15697 // integral type because isIntegralType would also allow enum types in C.
15698 if (const BuiltinType *BT = T->getAs<BuiltinType>())
15699 if (BT->isInteger())
15700 return false;
15701
15702 if (T->isBitIntType())
15703 return false;
15704
15705 return Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
15706}
15707
15708/// Check whether this is a valid redeclaration of a previous enumeration.
15709/// \return true if the redeclaration was invalid.
15710bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
15711 QualType EnumUnderlyingTy, bool IsFixed,
15712 const EnumDecl *Prev) {
15713 if (IsScoped != Prev->isScoped()) {
15714 Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
15715 << Prev->isScoped();
15716 Diag(Prev->getLocation(), diag::note_previous_declaration);
15717 return true;
15718 }
15719
15720 if (IsFixed && Prev->isFixed()) {
15721 if (!EnumUnderlyingTy->isDependentType() &&
15722 !Prev->getIntegerType()->isDependentType() &&
15723 !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
15724 Prev->getIntegerType())) {
15725 // TODO: Highlight the underlying type of the redeclaration.
15726 Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
15727 << EnumUnderlyingTy << Prev->getIntegerType();
15728 Diag(Prev->getLocation(), diag::note_previous_declaration)
15729 << Prev->getIntegerTypeRange();
15730 return true;
15731 }
15732 } else if (IsFixed != Prev->isFixed()) {
15733 Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
15734 << Prev->isFixed();
15735 Diag(Prev->getLocation(), diag::note_previous_declaration);
15736 return true;
15737 }
15738
15739 return false;
15740}
15741
15742/// Get diagnostic %select index for tag kind for
15743/// redeclaration diagnostic message.
15744/// WARNING: Indexes apply to particular diagnostics only!
15745///
15746/// \returns diagnostic %select index.
15747static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
15748 switch (Tag) {
15749 case TTK_Struct: return 0;
15750 case TTK_Interface: return 1;
15751 case TTK_Class: return 2;
15752 default: llvm_unreachable("Invalid tag kind for redecl diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for redecl diagnostic!"
, "clang/lib/Sema/SemaDecl.cpp", 15752)
;
15753 }
15754}
15755
15756/// Determine if tag kind is a class-key compatible with
15757/// class for redeclaration (class, struct, or __interface).
15758///
15759/// \returns true iff the tag kind is compatible.
15760static bool isClassCompatTagKind(TagTypeKind Tag)
15761{
15762 return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
15763}
15764
15765Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
15766 TagTypeKind TTK) {
15767 if (isa<TypedefDecl>(PrevDecl))
15768 return NTK_Typedef;
15769 else if (isa<TypeAliasDecl>(PrevDecl))
15770 return NTK_TypeAlias;
15771 else if (isa<ClassTemplateDecl>(PrevDecl))
15772 return NTK_Template;
15773 else if (isa<TypeAliasTemplateDecl>(PrevDecl))
15774 return NTK_TypeAliasTemplate;
15775 else if (isa<TemplateTemplateParmDecl>(PrevDecl))
15776 return NTK_TemplateTemplateArgument;
15777 switch (TTK) {
15778 case TTK_Struct:
15779 case TTK_Interface:
15780 case TTK_Class:
15781 return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
15782 case TTK_Union:
15783 return NTK_NonUnion;
15784 case TTK_Enum:
15785 return NTK_NonEnum;
15786 }
15787 llvm_unreachable("invalid TTK")::llvm::llvm_unreachable_internal("invalid TTK", "clang/lib/Sema/SemaDecl.cpp"
, 15787)
;
15788}
15789
15790/// Determine whether a tag with a given kind is acceptable
15791/// as a redeclaration of the given tag declaration.
15792///
15793/// \returns true if the new tag kind is acceptable, false otherwise.
15794bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
15795 TagTypeKind NewTag, bool isDefinition,
15796 SourceLocation NewTagLoc,
15797 const IdentifierInfo *Name) {
15798 // C++ [dcl.type.elab]p3:
15799 // The class-key or enum keyword present in the
15800 // elaborated-type-specifier shall agree in kind with the
15801 // declaration to which the name in the elaborated-type-specifier
15802 // refers. This rule also applies to the form of
15803 // elaborated-type-specifier that declares a class-name or
15804 // friend class since it can be construed as referring to the
15805 // definition of the class. Thus, in any
15806 // elaborated-type-specifier, the enum keyword shall be used to
15807 // refer to an enumeration (7.2), the union class-key shall be
15808 // used to refer to a union (clause 9), and either the class or
15809 // struct class-key shall be used to refer to a class (clause 9)
15810 // declared using the class or struct class-key.
15811 TagTypeKind OldTag = Previous->getTagKind();
15812 if (OldTag != NewTag &&
15813 !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)))
15814 return false;
15815
15816 // Tags are compatible, but we might still want to warn on mismatched tags.
15817 // Non-class tags can't be mismatched at this point.
15818 if (!isClassCompatTagKind(NewTag))
15819 return true;
15820
15821 // Declarations for which -Wmismatched-tags is disabled are entirely ignored
15822 // by our warning analysis. We don't want to warn about mismatches with (eg)
15823 // declarations in system headers that are designed to be specialized, but if
15824 // a user asks us to warn, we should warn if their code contains mismatched
15825 // declarations.
15826 auto IsIgnoredLoc = [&](SourceLocation Loc) {
15827 return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch,
15828 Loc);
15829 };
15830 if (IsIgnoredLoc(NewTagLoc))
15831 return true;
15832
15833 auto IsIgnored = [&](const TagDecl *Tag) {
15834 return IsIgnoredLoc(Tag->getLocation());
15835 };
15836 while (IsIgnored(Previous)) {
15837 Previous = Previous->getPreviousDecl();
15838 if (!Previous)
15839 return true;
15840 OldTag = Previous->getTagKind();
15841 }
15842
15843 bool isTemplate = false;
15844 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
15845 isTemplate = Record->getDescribedClassTemplate();
15846
15847 if (inTemplateInstantiation()) {
15848 if (OldTag != NewTag) {
15849 // In a template instantiation, do not offer fix-its for tag mismatches
15850 // since they usually mess up the template instead of fixing the problem.
15851 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
15852 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
15853 << getRedeclDiagFromTagKind(OldTag);
15854 // FIXME: Note previous location?
15855 }
15856 return true;
15857 }
15858
15859 if (isDefinition) {
15860 // On definitions, check all previous tags and issue a fix-it for each
15861 // one that doesn't match the current tag.
15862 if (Previous->getDefinition()) {
15863 // Don't suggest fix-its for redefinitions.
15864 return true;
15865 }
15866
15867 bool previousMismatch = false;
15868 for (const TagDecl *I : Previous->redecls()) {
15869 if (I->getTagKind() != NewTag) {
15870 // Ignore previous declarations for which the warning was disabled.
15871 if (IsIgnored(I))
15872 continue;
15873
15874 if (!previousMismatch) {
15875 previousMismatch = true;
15876 Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
15877 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
15878 << getRedeclDiagFromTagKind(I->getTagKind());
15879 }
15880 Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
15881 << getRedeclDiagFromTagKind(NewTag)
15882 << FixItHint::CreateReplacement(I->getInnerLocStart(),
15883 TypeWithKeyword::getTagTypeKindName(NewTag));
15884 }
15885 }
15886 return true;
15887 }
15888
15889 // Identify the prevailing tag kind: this is the kind of the definition (if
15890 // there is a non-ignored definition), or otherwise the kind of the prior
15891 // (non-ignored) declaration.
15892 const TagDecl *PrevDef = Previous->getDefinition();
15893 if (PrevDef && IsIgnored(PrevDef))
15894 PrevDef = nullptr;
15895 const TagDecl *Redecl = PrevDef ? PrevDef : Previous;
15896 if (Redecl->getTagKind() != NewTag) {
15897 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
15898 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
15899 << getRedeclDiagFromTagKind(OldTag);
15900 Diag(Redecl->getLocation(), diag::note_previous_use);
15901
15902 // If there is a previous definition, suggest a fix-it.
15903 if (PrevDef) {
15904 Diag(NewTagLoc, diag::note_struct_class_suggestion)
15905 << getRedeclDiagFromTagKind(Redecl->getTagKind())
15906 << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
15907 TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
15908 }
15909 }
15910
15911 return true;
15912}
15913
15914/// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
15915/// from an outer enclosing namespace or file scope inside a friend declaration.
15916/// This should provide the commented out code in the following snippet:
15917/// namespace N {
15918/// struct X;
15919/// namespace M {
15920/// struct Y { friend struct /*N::*/ X; };
15921/// }
15922/// }
15923static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
15924 SourceLocation NameLoc) {
15925 // While the decl is in a namespace, do repeated lookup of that name and see
15926 // if we get the same namespace back. If we do not, continue until
15927 // translation unit scope, at which point we have a fully qualified NNS.
15928 SmallVector<IdentifierInfo *, 4> Namespaces;
15929 DeclContext *DC = ND->getDeclContext()->getRedeclContext();
15930 for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
15931 // This tag should be declared in a namespace, which can only be enclosed by
15932 // other namespaces. Bail if there's an anonymous namespace in the chain.
15933 NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
15934 if (!Namespace || Namespace->isAnonymousNamespace())
15935 return FixItHint();
15936 IdentifierInfo *II = Namespace->getIdentifier();
15937 Namespaces.push_back(II);
15938 NamedDecl *Lookup = SemaRef.LookupSingleName(
15939 S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
15940 if (Lookup == Namespace)
15941 break;
15942 }
15943
15944 // Once we have all the namespaces, reverse them to go outermost first, and
15945 // build an NNS.
15946 SmallString<64> Insertion;
15947 llvm::raw_svector_ostream OS(Insertion);
15948 if (DC->isTranslationUnit())
15949 OS << "::";
15950 std::reverse(Namespaces.begin(), Namespaces.end());
15951 for (auto *II : Namespaces)
15952 OS << II->getName() << "::";
15953 return FixItHint::CreateInsertion(NameLoc, Insertion);
15954}
15955
15956/// Determine whether a tag originally declared in context \p OldDC can
15957/// be redeclared with an unqualified name in \p NewDC (assuming name lookup
15958/// found a declaration in \p OldDC as a previous decl, perhaps through a
15959/// using-declaration).
15960static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
15961 DeclContext *NewDC) {
15962 OldDC = OldDC->getRedeclContext();
15963 NewDC = NewDC->getRedeclContext();
15964
15965 if (OldDC->Equals(NewDC))
15966 return true;
15967
15968 // In MSVC mode, we allow a redeclaration if the contexts are related (either
15969 // encloses the other).
15970 if (S.getLangOpts().MSVCCompat &&
15971 (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
15972 return true;
15973
15974 return false;
15975}
15976
15977/// This is invoked when we see 'struct foo' or 'struct {'. In the
15978/// former case, Name will be non-null. In the later case, Name will be null.
15979/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
15980/// reference/declaration/definition of a tag.
15981///
15982/// \param IsTypeSpecifier \c true if this is a type-specifier (or
15983/// trailing-type-specifier) other than one in an alias-declaration.
15984///
15985/// \param SkipBody If non-null, will be set to indicate if the caller should
15986/// skip the definition of this tag and treat it as if it were a declaration.
15987Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
15988 SourceLocation KWLoc, CXXScopeSpec &SS,
15989 IdentifierInfo *Name, SourceLocation NameLoc,
15990 const ParsedAttributesView &Attrs, AccessSpecifier AS,
15991 SourceLocation ModulePrivateLoc,
15992 MultiTemplateParamsArg TemplateParameterLists,
15993 bool &OwnedDecl, bool &IsDependent,
15994 SourceLocation ScopedEnumKWLoc,
15995 bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
15996 bool IsTypeSpecifier, bool IsTemplateParamOrArg,
15997 SkipBodyInfo *SkipBody) {
15998 // If this is not a definition, it must have a name.
15999 IdentifierInfo *OrigName = Name;
16000 assert((Name != nullptr || TUK == TUK_Definition) &&(static_cast <bool> ((Name != nullptr || TUK == TUK_Definition
) && "Nameless record must be a definition!") ? void (
0) : __assert_fail ("(Name != nullptr || TUK == TUK_Definition) && \"Nameless record must be a definition!\""
, "clang/lib/Sema/SemaDecl.cpp", 16001, __extension__ __PRETTY_FUNCTION__
))
16001 "Nameless record must be a definition!")(static_cast <bool> ((Name != nullptr || TUK == TUK_Definition
) && "Nameless record must be a definition!") ? void (
0) : __assert_fail ("(Name != nullptr || TUK == TUK_Definition) && \"Nameless record must be a definition!\""
, "clang/lib/Sema/SemaDecl.cpp", 16001, __extension__ __PRETTY_FUNCTION__
))
;
16002 assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference)(static_cast <bool> (TemplateParameterLists.size() == 0
|| TUK != TUK_Reference) ? void (0) : __assert_fail ("TemplateParameterLists.size() == 0 || TUK != TUK_Reference"
, "clang/lib/Sema/SemaDecl.cpp", 16002, __extension__ __PRETTY_FUNCTION__
))
;
16003
16004 OwnedDecl = false;
16005 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
16006 bool ScopedEnum = ScopedEnumKWLoc.isValid();
16007
16008 // FIXME: Check member specializations more carefully.
16009 bool isMemberSpecialization = false;
16010 bool Invalid = false;
16011
16012 // We only need to do this matching if we have template parameters
16013 // or a scope specifier, which also conveniently avoids this work
16014 // for non-C++ cases.
16015 if (TemplateParameterLists.size() > 0 ||
16016 (SS.isNotEmpty() && TUK != TUK_Reference)) {
16017 if (TemplateParameterList *TemplateParams =
16018 MatchTemplateParametersToScopeSpecifier(
16019 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
16020 TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
16021 if (Kind == TTK_Enum) {
16022 Diag(KWLoc, diag::err_enum_template);
16023 return nullptr;
16024 }
16025
16026 if (TemplateParams->size() > 0) {
16027 // This is a declaration or definition of a class template (which may
16028 // be a member of another template).
16029
16030 if (Invalid)
16031 return nullptr;
16032
16033 OwnedDecl = false;
16034 DeclResult Result = CheckClassTemplate(
16035 S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams,
16036 AS, ModulePrivateLoc,
16037 /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1,
16038 TemplateParameterLists.data(), SkipBody);
16039 return Result.get();
16040 } else {
16041 // The "template<>" header is extraneous.
16042 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
16043 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
16044 isMemberSpecialization = true;
16045 }
16046 }
16047
16048 if (!TemplateParameterLists.empty() && isMemberSpecialization &&
16049 CheckTemplateDeclScope(S, TemplateParameterLists.back()))
16050 return nullptr;
16051 }
16052
16053 // Figure out the underlying type if this a enum declaration. We need to do
16054 // this early, because it's needed to detect if this is an incompatible
16055 // redeclaration.
16056 llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
16057 bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
16058
16059 if (Kind == TTK_Enum) {
16060 if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
16061 // No underlying type explicitly specified, or we failed to parse the
16062 // type, default to int.
16063 EnumUnderlying = Context.IntTy.getTypePtr();
16064 } else if (UnderlyingType.get()) {
16065 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
16066 // integral type; any cv-qualification is ignored.
16067 TypeSourceInfo *TI = nullptr;
16068 GetTypeFromParser(UnderlyingType.get(), &TI);
16069 EnumUnderlying = TI;
16070
16071 if (CheckEnumUnderlyingType(TI))
16072 // Recover by falling back to int.
16073 EnumUnderlying = Context.IntTy.getTypePtr();
16074
16075 if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
16076 UPPC_FixedUnderlyingType))
16077 EnumUnderlying = Context.IntTy.getTypePtr();
16078
16079 } else if (Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) {
16080 // For MSVC ABI compatibility, unfixed enums must use an underlying type
16081 // of 'int'. However, if this is an unfixed forward declaration, don't set
16082 // the underlying type unless the user enables -fms-compatibility. This
16083 // makes unfixed forward declared enums incomplete and is more conforming.
16084 if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
16085 EnumUnderlying = Context.IntTy.getTypePtr();
16086 }
16087 }
16088
16089 DeclContext *SearchDC = CurContext;
16090 DeclContext *DC = CurContext;
16091 bool isStdBadAlloc = false;
16092 bool isStdAlignValT = false;
16093
16094 RedeclarationKind Redecl = forRedeclarationInCurContext();
16095 if (TUK == TUK_Friend || TUK == TUK_Reference)
16096 Redecl = NotForRedeclaration;
16097
16098 /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
16099 /// implemented asks for structural equivalence checking, the returned decl
16100 /// here is passed back to the parser, allowing the tag body to be parsed.
16101 auto createTagFromNewDecl = [&]() -> TagDecl * {
16102 assert(!getLangOpts().CPlusPlus && "not meant for C++ usage")(static_cast <bool> (!getLangOpts().CPlusPlus &&
"not meant for C++ usage") ? void (0) : __assert_fail ("!getLangOpts().CPlusPlus && \"not meant for C++ usage\""
, "clang/lib/Sema/SemaDecl.cpp", 16102, __extension__ __PRETTY_FUNCTION__
))
;
16103 // If there is an identifier, use the location of the identifier as the
16104 // location of the decl, otherwise use the location of the struct/union
16105 // keyword.
16106 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
16107 TagDecl *New = nullptr;
16108
16109 if (Kind == TTK_Enum) {
16110 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
16111 ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
16112 // If this is an undefined enum, bail.
16113 if (TUK != TUK_Definition && !Invalid)
16114 return nullptr;
16115 if (EnumUnderlying) {
16116 EnumDecl *ED = cast<EnumDecl>(New);
16117 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
16118 ED->setIntegerTypeSourceInfo(TI);
16119 else
16120 ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
16121 ED->setPromotionType(ED->getIntegerType());
16122 }
16123 } else { // struct/union
16124 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
16125 nullptr);
16126 }
16127
16128 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
16129 // Add alignment attributes if necessary; these attributes are checked
16130 // when the ASTContext lays out the structure.
16131 //
16132 // It is important for implementing the correct semantics that this
16133 // happen here (in ActOnTag). The #pragma pack stack is
16134 // maintained as a result of parser callbacks which can occur at
16135 // many points during the parsing of a struct declaration (because
16136 // the #pragma tokens are effectively skipped over during the
16137 // parsing of the struct).
16138 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
16139 AddAlignmentAttributesForRecord(RD);
16140 AddMsStructLayoutForRecord(RD);
16141 }
16142 }
16143 New->setLexicalDeclContext(CurContext);
16144 return New;
16145 };
16146
16147 LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
16148 if (Name && SS.isNotEmpty()) {
16149 // We have a nested-name tag ('struct foo::bar').
16150
16151 // Check for invalid 'foo::'.
16152 if (SS.isInvalid()) {
16153 Name = nullptr;
16154 goto CreateNewDecl;
16155 }
16156
16157 // If this is a friend or a reference to a class in a dependent
16158 // context, don't try to make a decl for it.
16159 if (TUK == TUK_Friend || TUK == TUK_Reference) {
16160 DC = computeDeclContext(SS, false);
16161 if (!DC) {
16162 IsDependent = true;
16163 return nullptr;
16164 }
16165 } else {
16166 DC = computeDeclContext(SS, true);
16167 if (!DC) {
16168 Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
16169 << SS.getRange();
16170 return nullptr;
16171 }
16172 }
16173
16174 if (RequireCompleteDeclContext(SS, DC))
16175 return nullptr;
16176
16177 SearchDC = DC;
16178 // Look-up name inside 'foo::'.
16179 LookupQualifiedName(Previous, DC);
16180
16181 if (Previous.isAmbiguous())
16182 return nullptr;
16183
16184 if (Previous.empty()) {
16185 // Name lookup did not find anything. However, if the
16186 // nested-name-specifier refers to the current instantiation,
16187 // and that current instantiation has any dependent base
16188 // classes, we might find something at instantiation time: treat
16189 // this as a dependent elaborated-type-specifier.
16190 // But this only makes any sense for reference-like lookups.
16191 if (Previous.wasNotFoundInCurrentInstantiation() &&
16192 (TUK == TUK_Reference || TUK == TUK_Friend)) {
16193 IsDependent = true;
16194 return nullptr;
16195 }
16196
16197 // A tag 'foo::bar' must already exist.
16198 Diag(NameLoc, diag::err_not_tag_in_scope)
16199 << Kind << Name << DC << SS.getRange();
16200 Name = nullptr;
16201 Invalid = true;
16202 goto CreateNewDecl;
16203 }
16204 } else if (Name) {
16205 // C++14 [class.mem]p14:
16206 // If T is the name of a class, then each of the following shall have a
16207 // name different from T:
16208 // -- every member of class T that is itself a type
16209 if (TUK != TUK_Reference && TUK != TUK_Friend &&
16210 DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
16211 return nullptr;
16212
16213 // If this is a named struct, check to see if there was a previous forward
16214 // declaration or definition.
16215 // FIXME: We're looking into outer scopes here, even when we
16216 // shouldn't be. Doing so can result in ambiguities that we
16217 // shouldn't be diagnosing.
16218 LookupName(Previous, S);
16219
16220 // When declaring or defining a tag, ignore ambiguities introduced
16221 // by types using'ed into this scope.
16222 if (Previous.isAmbiguous() &&
16223 (TUK == TUK_Definition || TUK == TUK_Declaration)) {
16224 LookupResult::Filter F = Previous.makeFilter();
16225 while (F.hasNext()) {
16226 NamedDecl *ND = F.next();
16227 if (!ND->getDeclContext()->getRedeclContext()->Equals(
16228 SearchDC->getRedeclContext()))
16229 F.erase();
16230 }
16231 F.done();
16232 }
16233
16234 // C++11 [namespace.memdef]p3:
16235 // If the name in a friend declaration is neither qualified nor
16236 // a template-id and the declaration is a function or an
16237 // elaborated-type-specifier, the lookup to determine whether
16238 // the entity has been previously declared shall not consider
16239 // any scopes outside the innermost enclosing namespace.
16240 //
16241 // MSVC doesn't implement the above rule for types, so a friend tag
16242 // declaration may be a redeclaration of a type declared in an enclosing
16243 // scope. They do implement this rule for friend functions.
16244 //
16245 // Does it matter that this should be by scope instead of by
16246 // semantic context?
16247 if (!Previous.empty() && TUK == TUK_Friend) {
16248 DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
16249 LookupResult::Filter F = Previous.makeFilter();
16250 bool FriendSawTagOutsideEnclosingNamespace = false;
16251 while (F.hasNext()) {
16252 NamedDecl *ND = F.next();
16253 DeclContext *DC = ND->getDeclContext()->getRedeclContext();
16254 if (DC->isFileContext() &&
16255 !EnclosingNS->Encloses(ND->getDeclContext())) {
16256 if (getLangOpts().MSVCCompat)
16257 FriendSawTagOutsideEnclosingNamespace = true;
16258 else
16259 F.erase();
16260 }
16261 }
16262 F.done();
16263
16264 // Diagnose this MSVC extension in the easy case where lookup would have
16265 // unambiguously found something outside the enclosing namespace.
16266 if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
16267 NamedDecl *ND = Previous.getFoundDecl();
16268 Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
16269 << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
16270 }
16271 }
16272
16273 // Note: there used to be some attempt at recovery here.
16274 if (Previous.isAmbiguous())
16275 return nullptr;
16276
16277 if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
16278 // FIXME: This makes sure that we ignore the contexts associated
16279 // with C structs, unions, and enums when looking for a matching
16280 // tag declaration or definition. See the similar lookup tweak
16281 // in Sema::LookupName; is there a better way to deal with this?
16282 while (isa<RecordDecl, EnumDecl, ObjCContainerDecl>(SearchDC))
16283 SearchDC = SearchDC->getParent();
16284 } else if (getLangOpts().CPlusPlus) {
16285 // Inside ObjCContainer want to keep it as a lexical decl context but go
16286 // past it (most often to TranslationUnit) to find the semantic decl
16287 // context.
16288 while (isa<ObjCContainerDecl>(SearchDC))
16289 SearchDC = SearchDC->getParent();
16290 }
16291 } else if (getLangOpts().CPlusPlus) {
16292 // Don't use ObjCContainerDecl as the semantic decl context for anonymous
16293 // TagDecl the same way as we skip it for named TagDecl.
16294 while (isa<ObjCContainerDecl>(SearchDC))
16295 SearchDC = SearchDC->getParent();
16296 }
16297
16298 if (Previous.isSingleResult() &&
16299 Previous.getFoundDecl()->isTemplateParameter()) {
16300 // Maybe we will complain about the shadowed template parameter.
16301 DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
16302 // Just pretend that we didn't see the previous declaration.
16303 Previous.clear();
16304 }
16305
16306 if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
16307 DC->Equals(getStdNamespace())) {
16308 if (Name->isStr("bad_alloc")) {
16309 // This is a declaration of or a reference to "std::bad_alloc".
16310 isStdBadAlloc = true;
16311
16312 // If std::bad_alloc has been implicitly declared (but made invisible to
16313 // name lookup), fill in this implicit declaration as the previous
16314 // declaration, so that the declarations get chained appropriately.
16315 if (Previous.empty() && StdBadAlloc)
16316 Previous.addDecl(getStdBadAlloc());
16317 } else if (Name->isStr("align_val_t")) {
16318 isStdAlignValT = true;
16319 if (Previous.empty() && StdAlignValT)
16320 Previous.addDecl(getStdAlignValT());
16321 }
16322 }
16323
16324 // If we didn't find a previous declaration, and this is a reference
16325 // (or friend reference), move to the correct scope. In C++, we
16326 // also need to do a redeclaration lookup there, just in case
16327 // there's a shadow friend decl.
16328 if (Name && Previous.empty() &&
16329 (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
16330 if (Invalid) goto CreateNewDecl;
16331 assert(SS.isEmpty())(static_cast <bool> (SS.isEmpty()) ? void (0) : __assert_fail
("SS.isEmpty()", "clang/lib/Sema/SemaDecl.cpp", 16331, __extension__
__PRETTY_FUNCTION__))
;
16332
16333 if (TUK == TUK_Reference || IsTemplateParamOrArg) {
16334 // C++ [basic.scope.pdecl]p5:
16335 // -- for an elaborated-type-specifier of the form
16336 //
16337 // class-key identifier
16338 //
16339 // if the elaborated-type-specifier is used in the
16340 // decl-specifier-seq or parameter-declaration-clause of a
16341 // function defined in namespace scope, the identifier is
16342 // declared as a class-name in the namespace that contains
16343 // the declaration; otherwise, except as a friend
16344 // declaration, the identifier is declared in the smallest
16345 // non-class, non-function-prototype scope that contains the
16346 // declaration.
16347 //
16348 // C99 6.7.2.3p8 has a similar (but not identical!) provision for
16349 // C structs and unions.
16350 //
16351 // It is an error in C++ to declare (rather than define) an enum
16352 // type, including via an elaborated type specifier. We'll
16353 // diagnose that later; for now, declare the enum in the same
16354 // scope as we would have picked for any other tag type.
16355 //
16356 // GNU C also supports this behavior as part of its incomplete
16357 // enum types extension, while GNU C++ does not.
16358 //
16359 // Find the context where we'll be declaring the tag.
16360 // FIXME: We would like to maintain the current DeclContext as the
16361 // lexical context,
16362 SearchDC = getTagInjectionContext(SearchDC);
16363
16364 // Find the scope where we'll be declaring the tag.
16365 S = getTagInjectionScope(S, getLangOpts());
16366 } else {
16367 assert(TUK == TUK_Friend)(static_cast <bool> (TUK == TUK_Friend) ? void (0) : __assert_fail
("TUK == TUK_Friend", "clang/lib/Sema/SemaDecl.cpp", 16367, __extension__
__PRETTY_FUNCTION__))
;
16368 // C++ [namespace.memdef]p3:
16369 // If a friend declaration in a non-local class first declares a
16370 // class or function, the friend class or function is a member of
16371 // the innermost enclosing namespace.
16372 SearchDC = SearchDC->getEnclosingNamespaceContext();
16373 }
16374
16375 // In C++, we need to do a redeclaration lookup to properly
16376 // diagnose some problems.
16377 // FIXME: redeclaration lookup is also used (with and without C++) to find a
16378 // hidden declaration so that we don't get ambiguity errors when using a
16379 // type declared by an elaborated-type-specifier. In C that is not correct
16380 // and we should instead merge compatible types found by lookup.
16381 if (getLangOpts().CPlusPlus) {
16382 // FIXME: This can perform qualified lookups into function contexts,
16383 // which are meaningless.
16384 Previous.setRedeclarationKind(forRedeclarationInCurContext());
16385 LookupQualifiedName(Previous, SearchDC);
16386 } else {
16387 Previous.setRedeclarationKind(forRedeclarationInCurContext());
16388 LookupName(Previous, S);
16389 }
16390 }
16391
16392 // If we have a known previous declaration to use, then use it.
16393 if (Previous.empty() && SkipBody && SkipBody->Previous)
16394 Previous.addDecl(SkipBody->Previous);
16395
16396 if (!Previous.empty()) {
16397 NamedDecl *PrevDecl = Previous.getFoundDecl();
16398 NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
16399
16400 // It's okay to have a tag decl in the same scope as a typedef
16401 // which hides a tag decl in the same scope. Finding this
16402 // with a redeclaration lookup can only actually happen in C++.
16403 //
16404 // This is also okay for elaborated-type-specifiers, which is
16405 // technically forbidden by the current standard but which is
16406 // okay according to the likely resolution of an open issue;
16407 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
16408 if (getLangOpts().CPlusPlus) {
16409 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
16410 if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
16411 TagDecl *Tag = TT->getDecl();
16412 if (Tag->getDeclName() == Name &&
16413 Tag->getDeclContext()->getRedeclContext()
16414 ->Equals(TD->getDeclContext()->getRedeclContext())) {
16415 PrevDecl = Tag;
16416 Previous.clear();
16417 Previous.addDecl(Tag);
16418 Previous.resolveKind();
16419 }
16420 }
16421 }
16422 }
16423
16424 // If this is a redeclaration of a using shadow declaration, it must
16425 // declare a tag in the same context. In MSVC mode, we allow a
16426 // redefinition if either context is within the other.
16427 if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
16428 auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
16429 if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
16430 isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
16431 !(OldTag && isAcceptableTagRedeclContext(
16432 *this, OldTag->getDeclContext(), SearchDC))) {
16433 Diag(KWLoc, diag::err_using_decl_conflict_reverse);
16434 Diag(Shadow->getTargetDecl()->getLocation(),
16435 diag::note_using_decl_target);
16436 Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl)
16437 << 0;
16438 // Recover by ignoring the old declaration.
16439 Previous.clear();
16440 goto CreateNewDecl;
16441 }
16442 }
16443
16444 if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
16445 // If this is a use of a previous tag, or if the tag is already declared
16446 // in the same scope (so that the definition/declaration completes or
16447 // rementions the tag), reuse the decl.
16448 if (TUK == TUK_Reference || TUK == TUK_Friend ||
16449 isDeclInScope(DirectPrevDecl, SearchDC, S,
16450 SS.isNotEmpty() || isMemberSpecialization)) {
16451 // Make sure that this wasn't declared as an enum and now used as a
16452 // struct or something similar.
16453 if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
16454 TUK == TUK_Definition, KWLoc,
16455 Name)) {
16456 bool SafeToContinue
16457 = (PrevTagDecl->getTagKind() != TTK_Enum &&
16458 Kind != TTK_Enum);
16459 if (SafeToContinue)
16460 Diag(KWLoc, diag::err_use_with_wrong_tag)
16461 << Name
16462 << FixItHint::CreateReplacement(SourceRange(KWLoc),
16463 PrevTagDecl->getKindName());
16464 else
16465 Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
16466 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
16467
16468 if (SafeToContinue)
16469 Kind = PrevTagDecl->getTagKind();
16470 else {
16471 // Recover by making this an anonymous redefinition.
16472 Name = nullptr;
16473 Previous.clear();
16474 Invalid = true;
16475 }
16476 }
16477
16478 if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
16479 const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
16480 if (TUK == TUK_Reference || TUK == TUK_Friend)
16481 return PrevTagDecl;
16482
16483 QualType EnumUnderlyingTy;
16484 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
16485 EnumUnderlyingTy = TI->getType().getUnqualifiedType();
16486 else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
16487 EnumUnderlyingTy = QualType(T, 0);
16488
16489 // All conflicts with previous declarations are recovered by
16490 // returning the previous declaration, unless this is a definition,
16491 // in which case we want the caller to bail out.
16492 if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
16493 ScopedEnum, EnumUnderlyingTy,
16494 IsFixed, PrevEnum))
16495 return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
16496 }
16497
16498 // C++11 [class.mem]p1:
16499 // A member shall not be declared twice in the member-specification,
16500 // except that a nested class or member class template can be declared
16501 // and then later defined.
16502 if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
16503 S->isDeclScope(PrevDecl)) {
16504 Diag(NameLoc, diag::ext_member_redeclared);
16505 Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
16506 }
16507
16508 if (!Invalid) {
16509 // If this is a use, just return the declaration we found, unless
16510 // we have attributes.
16511 if (TUK == TUK_Reference || TUK == TUK_Friend) {
16512 if (!Attrs.empty()) {
16513 // FIXME: Diagnose these attributes. For now, we create a new
16514 // declaration to hold them.
16515 } else if (TUK == TUK_Reference &&
16516 (PrevTagDecl->getFriendObjectKind() ==
16517 Decl::FOK_Undeclared ||
16518 PrevDecl->getOwningModule() != getCurrentModule()) &&
16519 SS.isEmpty()) {
16520 // This declaration is a reference to an existing entity, but
16521 // has different visibility from that entity: it either makes
16522 // a friend visible or it makes a type visible in a new module.
16523 // In either case, create a new declaration. We only do this if
16524 // the declaration would have meant the same thing if no prior
16525 // declaration were found, that is, if it was found in the same
16526 // scope where we would have injected a declaration.
16527 if (!getTagInjectionContext(CurContext)->getRedeclContext()
16528 ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
16529 return PrevTagDecl;
16530 // This is in the injected scope, create a new declaration in
16531 // that scope.
16532 S = getTagInjectionScope(S, getLangOpts());
16533 } else {
16534 return PrevTagDecl;
16535 }
16536 }
16537
16538 // Diagnose attempts to redefine a tag.
16539 if (TUK == TUK_Definition) {
16540 if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
16541 // If we're defining a specialization and the previous definition
16542 // is from an implicit instantiation, don't emit an error
16543 // here; we'll catch this in the general case below.
16544 bool IsExplicitSpecializationAfterInstantiation = false;
16545 if (isMemberSpecialization) {
16546 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
16547 IsExplicitSpecializationAfterInstantiation =
16548 RD->getTemplateSpecializationKind() !=
16549 TSK_ExplicitSpecialization;
16550 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
16551 IsExplicitSpecializationAfterInstantiation =
16552 ED->getTemplateSpecializationKind() !=
16553 TSK_ExplicitSpecialization;
16554 }
16555
16556 // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
16557 // not keep more that one definition around (merge them). However,
16558 // ensure the decl passes the structural compatibility check in
16559 // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
16560 NamedDecl *Hidden = nullptr;
16561 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
16562 // There is a definition of this tag, but it is not visible. We
16563 // explicitly make use of C++'s one definition rule here, and
16564 // assume that this definition is identical to the hidden one
16565 // we already have. Make the existing definition visible and
16566 // use it in place of this one.
16567 if (!getLangOpts().CPlusPlus) {
16568 // Postpone making the old definition visible until after we
16569 // complete parsing the new one and do the structural
16570 // comparison.
16571 SkipBody->CheckSameAsPrevious = true;
16572 SkipBody->New = createTagFromNewDecl();
16573 SkipBody->Previous = Def;
16574 return Def;
16575 } else {
16576 SkipBody->ShouldSkip = true;
16577 SkipBody->Previous = Def;
16578 makeMergedDefinitionVisible(Hidden);
16579 // Carry on and handle it like a normal definition. We'll
16580 // skip starting the definitiion later.
16581 }
16582 } else if (!IsExplicitSpecializationAfterInstantiation) {
16583 // A redeclaration in function prototype scope in C isn't
16584 // visible elsewhere, so merely issue a warning.
16585 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
16586 Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
16587 else
16588 Diag(NameLoc, diag::err_redefinition) << Name;
16589 notePreviousDefinition(Def,
16590 NameLoc.isValid() ? NameLoc : KWLoc);
16591 // If this is a redefinition, recover by making this
16592 // struct be anonymous, which will make any later
16593 // references get the previous definition.
16594 Name = nullptr;
16595 Previous.clear();
16596 Invalid = true;
16597 }
16598 } else {
16599 // If the type is currently being defined, complain
16600 // about a nested redefinition.
16601 auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
16602 if (TD->isBeingDefined()) {
16603 Diag(NameLoc, diag::err_nested_redefinition) << Name;
16604 Diag(PrevTagDecl->getLocation(),
16605 diag::note_previous_definition);
16606 Name = nullptr;
16607 Previous.clear();
16608 Invalid = true;
16609 }
16610 }
16611
16612 // Okay, this is definition of a previously declared or referenced
16613 // tag. We're going to create a new Decl for it.
16614 }
16615
16616 // Okay, we're going to make a redeclaration. If this is some kind
16617 // of reference, make sure we build the redeclaration in the same DC
16618 // as the original, and ignore the current access specifier.
16619 if (TUK == TUK_Friend || TUK == TUK_Reference) {
16620 SearchDC = PrevTagDecl->getDeclContext();
16621 AS = AS_none;
16622 }
16623 }
16624 // If we get here we have (another) forward declaration or we
16625 // have a definition. Just create a new decl.
16626
16627 } else {
16628 // If we get here, this is a definition of a new tag type in a nested
16629 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
16630 // new decl/type. We set PrevDecl to NULL so that the entities
16631 // have distinct types.
16632 Previous.clear();
16633 }
16634 // If we get here, we're going to create a new Decl. If PrevDecl
16635 // is non-NULL, it's a definition of the tag declared by
16636 // PrevDecl. If it's NULL, we have a new definition.
16637
16638 // Otherwise, PrevDecl is not a tag, but was found with tag
16639 // lookup. This is only actually possible in C++, where a few
16640 // things like templates still live in the tag namespace.
16641 } else {
16642 // Use a better diagnostic if an elaborated-type-specifier
16643 // found the wrong kind of type on the first
16644 // (non-redeclaration) lookup.
16645 if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
16646 !Previous.isForRedeclaration()) {
16647 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
16648 Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK
16649 << Kind;
16650 Diag(PrevDecl->getLocation(), diag::note_declared_at);
16651 Invalid = true;
16652
16653 // Otherwise, only diagnose if the declaration is in scope.
16654 } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
16655 SS.isNotEmpty() || isMemberSpecialization)) {
16656 // do nothing
16657
16658 // Diagnose implicit declarations introduced by elaborated types.
16659 } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
16660 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
16661 Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
16662 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
16663 Invalid = true;
16664
16665 // Otherwise it's a declaration. Call out a particularly common
16666 // case here.
16667 } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
16668 unsigned Kind = 0;
16669 if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
16670 Diag(NameLoc, diag::err_tag_definition_of_typedef)
16671 << Name << Kind << TND->getUnderlyingType();
16672 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
16673 Invalid = true;
16674
16675 // Otherwise, diagnose.
16676 } else {
16677 // The tag name clashes with something else in the target scope,
16678 // issue an error and recover by making this tag be anonymous.
16679 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
16680 notePreviousDefinition(PrevDecl, NameLoc);
16681 Name = nullptr;
16682 Invalid = true;
16683 }
16684
16685 // The existing declaration isn't relevant to us; we're in a
16686 // new scope, so clear out the previous declaration.
16687 Previous.clear();
16688 }
16689 }
16690
16691CreateNewDecl:
16692
16693 TagDecl *PrevDecl = nullptr;
16694 if (Previous.isSingleResult())
16695 PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
16696
16697 // If there is an identifier, use the location of the identifier as the
16698 // location of the decl, otherwise use the location of the struct/union
16699 // keyword.
16700 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
16701
16702 // Otherwise, create a new declaration. If there is a previous
16703 // declaration of the same entity, the two will be linked via
16704 // PrevDecl.
16705 TagDecl *New;
16706
16707 if (Kind == TTK_Enum) {
16708 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
16709 // enum X { A, B, C } D; D should chain to X.
16710 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
16711 cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
16712 ScopedEnumUsesClassTag, IsFixed);
16713
16714 if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
16715 StdAlignValT = cast<EnumDecl>(New);
16716
16717 // If this is an undefined enum, warn.
16718 if (TUK != TUK_Definition && !Invalid) {
16719 TagDecl *Def;
16720 if (IsFixed && cast<EnumDecl>(New)->isFixed()) {
16721 // C++0x: 7.2p2: opaque-enum-declaration.
16722 // Conflicts are diagnosed above. Do nothing.
16723 }
16724 else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
16725 Diag(Loc, diag::ext_forward_ref_enum_def)
16726 << New;
16727 Diag(Def->getLocation(), diag::note_previous_definition);
16728 } else {
16729 unsigned DiagID = diag::ext_forward_ref_enum;
16730 if (getLangOpts().MSVCCompat)
16731 DiagID = diag::ext_ms_forward_ref_enum;
16732 else if (getLangOpts().CPlusPlus)
16733 DiagID = diag::err_forward_ref_enum;
16734 Diag(Loc, DiagID);
16735 }
16736 }
16737
16738 if (EnumUnderlying) {
16739 EnumDecl *ED = cast<EnumDecl>(New);
16740 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
16741 ED->setIntegerTypeSourceInfo(TI);
16742 else
16743 ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
16744 ED->setPromotionType(ED->getIntegerType());
16745 assert(ED->isComplete() && "enum with type should be complete")(static_cast <bool> (ED->isComplete() && "enum with type should be complete"
) ? void (0) : __assert_fail ("ED->isComplete() && \"enum with type should be complete\""
, "clang/lib/Sema/SemaDecl.cpp", 16745, __extension__ __PRETTY_FUNCTION__
))
;
16746 }
16747 } else {
16748 // struct/union/class
16749
16750 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
16751 // struct X { int A; } D; D should chain to X.
16752 if (getLangOpts().CPlusPlus) {
16753 // FIXME: Look for a way to use RecordDecl for simple structs.
16754 New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
16755 cast_or_null<CXXRecordDecl>(PrevDecl));
16756
16757 if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
16758 StdBadAlloc = cast<CXXRecordDecl>(New);
16759 } else
16760 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
16761 cast_or_null<RecordDecl>(PrevDecl));
16762 }
16763
16764 // C++11 [dcl.type]p3:
16765 // A type-specifier-seq shall not define a class or enumeration [...].
16766 if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) &&
16767 TUK == TUK_Definition) {
16768 Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
16769 << Context.getTagDeclType(New);
16770 Invalid = true;
16771 }
16772
16773 if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
16774 DC->getDeclKind() == Decl::Enum) {
16775 Diag(New->getLocation(), diag::err_type_defined_in_enum)
16776 << Context.getTagDeclType(New);
16777 Invalid = true;
16778 }
16779
16780 // Maybe add qualifier info.
16781 if (SS.isNotEmpty()) {
16782 if (SS.isSet()) {
16783 // If this is either a declaration or a definition, check the
16784 // nested-name-specifier against the current context.
16785 if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
16786 diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
16787 isMemberSpecialization))
16788 Invalid = true;
16789
16790 New->setQualifierInfo(SS.getWithLocInContext(Context));
16791 if (TemplateParameterLists.size() > 0) {
16792 New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
16793 }
16794 }
16795 else
16796 Invalid = true;
16797 }
16798
16799 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
16800 // Add alignment attributes if necessary; these attributes are checked when
16801 // the ASTContext lays out the structure.
16802 //
16803 // It is important for implementing the correct semantics that this
16804 // happen here (in ActOnTag). The #pragma pack stack is
16805 // maintained as a result of parser callbacks which can occur at
16806 // many points during the parsing of a struct declaration (because
16807 // the #pragma tokens are effectively skipped over during the
16808 // parsing of the struct).
16809 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
16810 AddAlignmentAttributesForRecord(RD);
16811 AddMsStructLayoutForRecord(RD);
16812 }
16813 }
16814
16815 if (ModulePrivateLoc.isValid()) {
16816 if (isMemberSpecialization)
16817 Diag(New->getLocation(), diag::err_module_private_specialization)
16818 << 2
16819 << FixItHint::CreateRemoval(ModulePrivateLoc);
16820 // __module_private__ does not apply to local classes. However, we only
16821 // diagnose this as an error when the declaration specifiers are
16822 // freestanding. Here, we just ignore the __module_private__.
16823 else if (!SearchDC->isFunctionOrMethod())
16824 New->setModulePrivate();
16825 }
16826
16827 // If this is a specialization of a member class (of a class template),
16828 // check the specialization.
16829 if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
16830 Invalid = true;
16831
16832 // If we're declaring or defining a tag in function prototype scope in C,
16833 // note that this type can only be used within the function and add it to
16834 // the list of decls to inject into the function definition scope.
16835 if ((Name || Kind == TTK_Enum) &&
16836 getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
16837 if (getLangOpts().CPlusPlus) {
16838 // C++ [dcl.fct]p6:
16839 // Types shall not be defined in return or parameter types.
16840 if (TUK == TUK_Definition && !IsTypeSpecifier) {
16841 Diag(Loc, diag::err_type_defined_in_param_type)
16842 << Name;
16843 Invalid = true;
16844 }
16845 } else if (!PrevDecl) {
16846 Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
16847 }
16848 }
16849
16850 if (Invalid)
16851 New->setInvalidDecl();
16852
16853 // Set the lexical context. If the tag has a C++ scope specifier, the
16854 // lexical context will be different from the semantic context.
16855 New->setLexicalDeclContext(CurContext);
16856
16857 // Mark this as a friend decl if applicable.
16858 // In Microsoft mode, a friend declaration also acts as a forward
16859 // declaration so we always pass true to setObjectOfFriendDecl to make
16860 // the tag name visible.
16861 if (TUK == TUK_Friend)
16862 New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
16863
16864 // Set the access specifier.
16865 if (!Invalid && SearchDC->isRecord())
16866 SetMemberAccessSpecifier(New, PrevDecl, AS);
16867
16868 if (PrevDecl)
16869 CheckRedeclarationInModule(New, PrevDecl);
16870
16871 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
16872 New->startDefinition();
16873
16874 ProcessDeclAttributeList(S, New, Attrs);
16875 AddPragmaAttributes(S, New);
16876
16877 // If this has an identifier, add it to the scope stack.
16878 if (TUK == TUK_Friend) {
16879 // We might be replacing an existing declaration in the lookup tables;
16880 // if so, borrow its access specifier.
16881 if (PrevDecl)
16882 New->setAccess(PrevDecl->getAccess());
16883
16884 DeclContext *DC = New->getDeclContext()->getRedeclContext();
16885 DC->makeDeclVisibleInContext(New);
16886 if (Name) // can be null along some error paths
16887 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
16888 PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
16889 } else if (Name) {
16890 S = getNonFieldDeclScope(S);
16891 PushOnScopeChains(New, S, true);
16892 } else {
16893 CurContext->addDecl(New);
16894 }
16895
16896 // If this is the C FILE type, notify the AST context.
16897 if (IdentifierInfo *II = New->getIdentifier())
16898 if (!New->isInvalidDecl() &&
16899 New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
16900 II->isStr("FILE"))
16901 Context.setFILEDecl(New);
16902
16903 if (PrevDecl)
16904 mergeDeclAttributes(New, PrevDecl);
16905
16906 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(New))
16907 inferGslOwnerPointerAttribute(CXXRD);
16908
16909 // If there's a #pragma GCC visibility in scope, set the visibility of this
16910 // record.
16911 AddPushedVisibilityAttribute(New);
16912
16913 if (isMemberSpecialization && !New->isInvalidDecl())
16914 CompleteMemberSpecialization(New, Previous);
16915
16916 OwnedDecl = true;
16917 // In C++, don't return an invalid declaration. We can't recover well from
16918 // the cases where we make the type anonymous.
16919 if (Invalid && getLangOpts().CPlusPlus) {
16920 if (New->isBeingDefined())
16921 if (auto RD = dyn_cast<RecordDecl>(New))
16922 RD->completeDefinition();
16923 return nullptr;
16924 } else if (SkipBody && SkipBody->ShouldSkip) {
16925 return SkipBody->Previous;
16926 } else {
16927 return New;
16928 }
16929}
16930
16931void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
16932 AdjustDeclIfTemplate(TagD);
16933 TagDecl *Tag = cast<TagDecl>(TagD);
16934
16935 // Enter the tag context.
16936 PushDeclContext(S, Tag);
16937
16938 ActOnDocumentableDecl(TagD);
16939
16940 // If there's a #pragma GCC visibility in scope, set the visibility of this
16941 // record.
16942 AddPushedVisibilityAttribute(Tag);
16943}
16944
16945bool Sema::ActOnDuplicateDefinition(Decl *Prev, SkipBodyInfo &SkipBody) {
16946 if (!hasStructuralCompatLayout(Prev, SkipBody.New))
16947 return false;
16948
16949 // Make the previous decl visible.
16950 makeMergedDefinitionVisible(SkipBody.Previous);
16951 return true;
16952}
16953
16954Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
16955 assert(isa<ObjCContainerDecl>(IDecl) &&(static_cast <bool> (isa<ObjCContainerDecl>(IDecl
) && "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl"
) ? void (0) : __assert_fail ("isa<ObjCContainerDecl>(IDecl) && \"ActOnObjCContainerStartDefinition - Not ObjCContainerDecl\""
, "clang/lib/Sema/SemaDecl.cpp", 16956, __extension__ __PRETTY_FUNCTION__
))
16956 "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl")(static_cast <bool> (isa<ObjCContainerDecl>(IDecl
) && "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl"
) ? void (0) : __assert_fail ("isa<ObjCContainerDecl>(IDecl) && \"ActOnObjCContainerStartDefinition - Not ObjCContainerDecl\""
, "clang/lib/Sema/SemaDecl.cpp", 16956, __extension__ __PRETTY_FUNCTION__
))
;
16957 DeclContext *OCD = cast<DeclContext>(IDecl);
16958 assert(OCD->getLexicalParent() == CurContext &&(static_cast <bool> (OCD->getLexicalParent() == CurContext
&& "The next DeclContext should be lexically contained in the current one."
) ? void (0) : __assert_fail ("OCD->getLexicalParent() == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "clang/lib/Sema/SemaDecl.cpp", 16959, __extension__ __PRETTY_FUNCTION__
))
16959 "The next DeclContext should be lexically contained in the current one.")(static_cast <bool> (OCD->getLexicalParent() == CurContext
&& "The next DeclContext should be lexically contained in the current one."
) ? void (0) : __assert_fail ("OCD->getLexicalParent() == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "clang/lib/Sema/SemaDecl.cpp", 16959, __extension__ __PRETTY_FUNCTION__
))
;
16960 CurContext = OCD;
16961 return IDecl;
16962}
16963
16964void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
16965 SourceLocation FinalLoc,
16966 bool IsFinalSpelledSealed,
16967 bool IsAbstract,
16968 SourceLocation LBraceLoc) {
16969 AdjustDeclIfTemplate(TagD);
16970 CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
16971
16972 FieldCollector->StartClass();
16973
16974 if (!Record->getIdentifier())
16975 return;
16976
16977 if (IsAbstract)
16978 Record->markAbstract();
16979
16980 if (FinalLoc.isValid()) {
16981 Record->addAttr(FinalAttr::Create(
16982 Context, FinalLoc, AttributeCommonInfo::AS_Keyword,
16983 static_cast<FinalAttr::Spelling>(IsFinalSpelledSealed)));
16984 }
16985 // C++ [class]p2:
16986 // [...] The class-name is also inserted into the scope of the
16987 // class itself; this is known as the injected-class-name. For
16988 // purposes of access checking, the injected-class-name is treated
16989 // as if it were a public member name.
16990 CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create(
16991 Context, Record->getTagKind(), CurContext, Record->getBeginLoc(),
16992 Record->getLocation(), Record->getIdentifier(),
16993 /*PrevDecl=*/nullptr,
16994 /*DelayTypeCreation=*/true);
16995 Context.getTypeDeclType(InjectedClassName, Record);
16996 InjectedClassName->setImplicit();
16997 InjectedClassName->setAccess(AS_public);
16998 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
16999 InjectedClassName->setDescribedClassTemplate(Template);
17000 PushOnScopeChains(InjectedClassName, S);
17001 assert(InjectedClassName->isInjectedClassName() &&(static_cast <bool> (InjectedClassName->isInjectedClassName
() && "Broken injected-class-name") ? void (0) : __assert_fail
("InjectedClassName->isInjectedClassName() && \"Broken injected-class-name\""
, "clang/lib/Sema/SemaDecl.cpp", 17002, __extension__ __PRETTY_FUNCTION__
))
17002 "Broken injected-class-name")(static_cast <bool> (InjectedClassName->isInjectedClassName
() && "Broken injected-class-name") ? void (0) : __assert_fail
("InjectedClassName->isInjectedClassName() && \"Broken injected-class-name\""
, "clang/lib/Sema/SemaDecl.cpp", 17002, __extension__ __PRETTY_FUNCTION__
))
;
17003}
17004
17005void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
17006 SourceRange BraceRange) {
17007 AdjustDeclIfTemplate(TagD);
17008 TagDecl *Tag = cast<TagDecl>(TagD);
17009 Tag->setBraceRange(BraceRange);
17010
17011 // Make sure we "complete" the definition even it is invalid.
17012 if (Tag->isBeingDefined()) {
17013 assert(Tag->isInvalidDecl() && "We should already have completed it")(static_cast <bool> (Tag->isInvalidDecl() &&
"We should already have completed it") ? void (0) : __assert_fail
("Tag->isInvalidDecl() && \"We should already have completed it\""
, "clang/lib/Sema/SemaDecl.cpp", 17013, __extension__ __PRETTY_FUNCTION__
))
;
17014 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
17015 RD->completeDefinition();
17016 }
17017
17018 if (auto *RD = dyn_cast<CXXRecordDecl>(Tag)) {
17019 FieldCollector->FinishClass();
17020 if (RD->hasAttr<SYCLSpecialClassAttr>()) {
17021 auto *Def = RD->getDefinition();
17022 assert(Def && "The record is expected to have a completed definition")(static_cast <bool> (Def && "The record is expected to have a completed definition"
) ? void (0) : __assert_fail ("Def && \"The record is expected to have a completed definition\""
, "clang/lib/Sema/SemaDecl.cpp", 17022, __extension__ __PRETTY_FUNCTION__
))
;
17023 unsigned NumInitMethods = 0;
17024 for (auto *Method : Def->methods()) {
17025 if (!Method->getIdentifier())
17026 continue;
17027 if (Method->getName() == "__init")
17028 NumInitMethods++;
17029 }
17030 if (NumInitMethods > 1 || !Def->hasInitMethod())
17031 Diag(RD->getLocation(), diag::err_sycl_special_type_num_init_method);
17032 }
17033 }
17034
17035 // Exit this scope of this tag's definition.
17036 PopDeclContext();
17037
17038 if (getCurLexicalContext()->isObjCContainer() &&
17039 Tag->getDeclContext()->isFileContext())
17040 Tag->setTopLevelDeclInObjCContainer();
17041
17042 // Notify the consumer that we've defined a tag.
17043 if (!Tag->isInvalidDecl())
17044 Consumer.HandleTagDeclDefinition(Tag);
17045
17046 // Clangs implementation of #pragma align(packed) differs in bitfield layout
17047 // from XLs and instead matches the XL #pragma pack(1) behavior.
17048 if (Context.getTargetInfo().getTriple().isOSAIX() &&
17049 AlignPackStack.hasValue()) {
17050 AlignPackInfo APInfo = AlignPackStack.CurrentValue;
17051 // Only diagnose #pragma align(packed).
17052 if (!APInfo.IsAlignAttr() || APInfo.getAlignMode() != AlignPackInfo::Packed)
17053 return;
17054 const RecordDecl *RD = dyn_cast<RecordDecl>(Tag);
17055 if (!RD)
17056 return;
17057 // Only warn if there is at least 1 bitfield member.
17058 if (llvm::any_of(RD->fields(),
17059 [](const FieldDecl *FD) { return FD->isBitField(); }))
17060 Diag(BraceRange.getBegin(), diag::warn_pragma_align_not_xl_compatible);
17061 }
17062}
17063
17064void Sema::ActOnObjCContainerFinishDefinition() {
17065 // Exit this scope of this interface definition.
17066 PopDeclContext();
17067}
17068
17069void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
17070 assert(DC == CurContext && "Mismatch of container contexts")(static_cast <bool> (DC == CurContext && "Mismatch of container contexts"
) ? void (0) : __assert_fail ("DC == CurContext && \"Mismatch of container contexts\""
, "clang/lib/Sema/SemaDecl.cpp", 17070, __extension__ __PRETTY_FUNCTION__
))
;
17071 OriginalLexicalContext = DC;
17072 ActOnObjCContainerFinishDefinition();
17073}
17074
17075void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
17076 ActOnObjCContainerStartDefinition(cast<Decl>(DC));
17077 OriginalLexicalContext = nullptr;
17078}
17079
17080void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
17081 AdjustDeclIfTemplate(TagD);
17082 TagDecl *Tag = cast<TagDecl>(TagD);
17083 Tag->setInvalidDecl();
17084
17085 // Make sure we "complete" the definition even it is invalid.
17086 if (Tag->isBeingDefined()) {
17087 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
17088 RD->completeDefinition();
17089 }
17090
17091 // We're undoing ActOnTagStartDefinition here, not
17092 // ActOnStartCXXMemberDeclarations, so we don't have to mess with
17093 // the FieldCollector.
17094
17095 PopDeclContext();
17096}
17097
17098// Note that FieldName may be null for anonymous bitfields.
17099ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
17100 IdentifierInfo *FieldName,
17101 QualType FieldTy, bool IsMsStruct,
17102 Expr *BitWidth, bool *ZeroWidth) {
17103 assert(BitWidth)(static_cast <bool> (BitWidth) ? void (0) : __assert_fail
("BitWidth", "clang/lib/Sema/SemaDecl.cpp", 17103, __extension__
__PRETTY_FUNCTION__))
;
17104 if (BitWidth->containsErrors())
17105 return ExprError();
17106
17107 // Default to true; that shouldn't confuse checks for emptiness
17108 if (ZeroWidth)
17109 *ZeroWidth = true;
17110
17111 // C99 6.7.2.1p4 - verify the field type.
17112 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
17113 if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
17114 // Handle incomplete and sizeless types with a specific error.
17115 if (RequireCompleteSizedType(FieldLoc, FieldTy,
17116 diag::err_field_incomplete_or_sizeless))
17117 return ExprError();
17118 if (FieldName)
17119 return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
17120 << FieldName << FieldTy << BitWidth->getSourceRange();
17121 return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
17122 << FieldTy << BitWidth->getSourceRange();
17123 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
17124 UPPC_BitFieldWidth))
17125 return ExprError();
17126
17127 // If the bit-width is type- or value-dependent, don't try to check
17128 // it now.
17129 if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
17130 return BitWidth;
17131
17132 llvm::APSInt Value;
17133 ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value, AllowFold);
17134 if (ICE.isInvalid())
17135 return ICE;
17136 BitWidth = ICE.get();
17137
17138 if (Value != 0 && ZeroWidth)
17139 *ZeroWidth = false;
17140
17141 // Zero-width bitfield is ok for anonymous field.
17142 if (Value == 0 && FieldName)
17143 return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
17144
17145 if (Value.isSigned() && Value.isNegative()) {
17146 if (FieldName)
17147 return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
17148 << FieldName << toString(Value, 10);
17149 return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
17150 << toString(Value, 10);
17151 }
17152
17153 // The size of the bit-field must not exceed our maximum permitted object
17154 // size.
17155 if (Value.getActiveBits() > ConstantArrayType::getMaxSizeBits(Context)) {
17156 return Diag(FieldLoc, diag::err_bitfield_too_wide)
17157 << !FieldName << FieldName << toString(Value, 10);
17158 }
17159
17160 if (!FieldTy->isDependentType()) {
17161 uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
17162 uint64_t TypeWidth = Context.getIntWidth(FieldTy);
17163 bool BitfieldIsOverwide = Value.ugt(TypeWidth);
17164
17165 // Over-wide bitfields are an error in C or when using the MSVC bitfield
17166 // ABI.
17167 bool CStdConstraintViolation =
17168 BitfieldIsOverwide && !getLangOpts().CPlusPlus;
17169 bool MSBitfieldViolation =
17170 Value.ugt(TypeStorageSize) &&
17171 (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
17172 if (CStdConstraintViolation || MSBitfieldViolation) {
17173 unsigned DiagWidth =
17174 CStdConstraintViolation ? TypeWidth : TypeStorageSize;
17175 return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
17176 << (bool)FieldName << FieldName << toString(Value, 10)
17177 << !CStdConstraintViolation << DiagWidth;
17178 }
17179
17180 // Warn on types where the user might conceivably expect to get all
17181 // specified bits as value bits: that's all integral types other than
17182 // 'bool'.
17183 if (BitfieldIsOverwide && !FieldTy->isBooleanType() && FieldName) {
17184 Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
17185 << FieldName << toString(Value, 10)
17186 << (unsigned)TypeWidth;
17187 }
17188 }
17189
17190 return BitWidth;
17191}
17192
17193/// ActOnField - Each field of a C struct/union is passed into this in order
17194/// to create a FieldDecl object for it.
17195Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
17196 Declarator &D, Expr *BitfieldWidth) {
17197 FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
1
Assuming null pointer is passed into cast
2
Passing null pointer value via 2nd parameter 'Record'
3
Calling 'Sema::HandleField'
17198 DeclStart, D, static_cast<Expr*>(BitfieldWidth),
17199 /*InitStyle=*/ICIS_NoInit, AS_public);
17200 return Res;
17201}
17202
17203/// HandleField - Analyze a field of a C struct or a C++ data member.
17204///
17205FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
17206 SourceLocation DeclStart,
17207 Declarator &D, Expr *BitWidth,
17208 InClassInitStyle InitStyle,
17209 AccessSpecifier AS) {
17210 if (D.isDecompositionDeclarator()) {
4
Taking false branch
17211 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
17212 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
17213 << Decomp.getSourceRange();
17214 return nullptr;
17215 }
17216
17217 IdentifierInfo *II = D.getIdentifier();
17218 SourceLocation Loc = DeclStart;
17219 if (II
4.1
'II' is null
) Loc = D.getIdentifierLoc();
5
Taking false branch
17220
17221 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
17222 QualType T = TInfo->getType();
17223 if (getLangOpts().CPlusPlus) {
6
Assuming field 'CPlusPlus' is 0
7
Taking false branch
17224 CheckExtraCXXDefaultArguments(D);
17225
17226 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
17227 UPPC_DataMemberType)) {
17228 D.setInvalidType();
17229 T = Context.IntTy;
17230 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
17231 }
17232 }
17233
17234 DiagnoseFunctionSpecifiers(D.getDeclSpec());
17235
17236 if (D.getDeclSpec().isInlineSpecified())
8
Assuming the condition is false
9
Taking false branch
17237 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
17238 << getLangOpts().CPlusPlus17;
17239 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
10
Assuming 'TSCS' is 0
11
Taking false branch
17240 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
17241 diag::err_invalid_thread)
17242 << DeclSpec::getSpecifierName(TSCS);
17243
17244 // Check to see if this name was declared as a member previously
17245 NamedDecl *PrevDecl = nullptr;
17246 LookupResult Previous(*this, II, Loc, LookupMemberName,
17247 ForVisibleRedeclaration);
17248 LookupName(Previous, S);
17249 switch (Previous.getResultKind()) {
12
Control jumps to 'case Ambiguous:' at line 17261
17250 case LookupResult::Found:
17251 case LookupResult::FoundUnresolvedValue:
17252 PrevDecl = Previous.getAsSingle<NamedDecl>();
17253 break;
17254
17255 case LookupResult::FoundOverloaded:
17256 PrevDecl = Previous.getRepresentativeDecl();
17257 break;
17258
17259 case LookupResult::NotFound:
17260 case LookupResult::NotFoundInCurrentInstantiation:
17261 case LookupResult::Ambiguous:
17262 break;
13
Execution continues on line 17264
17263 }
17264 Previous.suppressDiagnostics();
17265
17266 if (PrevDecl
13.1
'PrevDecl' is null
&& PrevDecl->isTemplateParameter()) {
17267 // Maybe we will complain about the shadowed template parameter.
17268 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
17269 // Just pretend that we didn't see the previous declaration.
17270 PrevDecl = nullptr;
17271 }
17272
17273 if (PrevDecl
13.2
'PrevDecl' is null
&& !isDeclInScope(PrevDecl, Record, S))
17274 PrevDecl = nullptr;
17275
17276 bool Mutable
17277 = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
14
Assuming the condition is false
17278 SourceLocation TSSL = D.getBeginLoc();
17279 FieldDecl *NewFD
17280 = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
15
Passing null pointer value via 4th parameter 'Record'
16
Calling 'Sema::CheckFieldDecl'
17281 TSSL, AS, PrevDecl, &D);
17282
17283 if (NewFD->isInvalidDecl())
17284 Record->setInvalidDecl();
17285
17286 if (D.getDeclSpec().isModulePrivateSpecified())
17287 NewFD->setModulePrivate();
17288
17289 if (NewFD->isInvalidDecl() && PrevDecl) {
17290 // Don't introduce NewFD into scope; there's already something
17291 // with the same name in the same scope.
17292 } else if (II) {
17293 PushOnScopeChains(NewFD, S);
17294 } else
17295 Record->addDecl(NewFD);
17296
17297 return NewFD;
17298}
17299
17300/// Build a new FieldDecl and check its well-formedness.
17301///
17302/// This routine builds a new FieldDecl given the fields name, type,
17303/// record, etc. \p PrevDecl should refer to any previous declaration
17304/// with the same name and in the same scope as the field to be
17305/// created.
17306///
17307/// \returns a new FieldDecl.
17308///
17309/// \todo The Declarator argument is a hack. It will be removed once
17310FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
17311 TypeSourceInfo *TInfo,
17312 RecordDecl *Record, SourceLocation Loc,
17313 bool Mutable, Expr *BitWidth,
17314 InClassInitStyle InitStyle,
17315 SourceLocation TSSL,
17316 AccessSpecifier AS, NamedDecl *PrevDecl,
17317 Declarator *D) {
17318 IdentifierInfo *II = Name.getAsIdentifierInfo();
17319 bool InvalidDecl = false;
17320 if (D
16.1
'D' is non-null
) InvalidDecl = D->isInvalidType();
17
Taking true branch
17321
17322 // If we receive a broken type, recover by assuming 'int' and
17323 // marking this declaration as invalid.
17324 if (T.isNull() || T->containsErrors()) {
17325 InvalidDecl = true;
17326 T = Context.IntTy;
17327 }
17328
17329 QualType EltTy = Context.getBaseElementType(T);
17330 if (!EltTy->isDependentType() && !EltTy->containsErrors()) {
18
Assuming the condition is false
17331 if (RequireCompleteSizedType(Loc, EltTy,
17332 diag::err_field_incomplete_or_sizeless)) {
17333 // Fields of incomplete type force their record to be invalid.
17334 Record->setInvalidDecl();
17335 InvalidDecl = true;
17336 } else {
17337 NamedDecl *Def;
17338 EltTy->isIncompleteType(&Def);
17339 if (Def && Def->isInvalidDecl()) {
17340 Record->setInvalidDecl();
17341 InvalidDecl = true;
17342 }
17343 }
17344 }
17345
17346 // TR 18037 does not allow fields to be declared with address space
17347 if (T.hasAddressSpace() || T->isDependentAddressSpaceType() ||
19
Assuming the condition is false
20
Taking false branch
17348 T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
17349 Diag(Loc, diag::err_field_with_address_space);
17350 Record->setInvalidDecl();
17351 InvalidDecl = true;
17352 }
17353
17354 if (LangOpts.OpenCL) {
21
Assuming field 'OpenCL' is not equal to 0
17355 // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
17356 // used as structure or union field: image, sampler, event or block types.
17357 if (T->isEventT() || T->isImageType() || T->isSamplerT() ||
17358 T->isBlockPointerType()) {
17359 Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
17360 Record->setInvalidDecl();
22
Called C++ object pointer is null
17361 InvalidDecl = true;
17362 }
17363 // OpenCL v1.2 s6.9.c: bitfields are not supported, unless Clang extension
17364 // is enabled.
17365 if (BitWidth && !getOpenCLOptions().isAvailableOption(
17366 "__cl_clang_bitfields", LangOpts)) {
17367 Diag(Loc, diag::err_opencl_bitfields);
17368 InvalidDecl = true;
17369 }
17370 }
17371
17372 // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
17373 if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
17374 T.hasQualifiers()) {
17375 InvalidDecl = true;
17376 Diag(Loc, diag::err_anon_bitfield_qualifiers);
17377 }
17378
17379 // C99 6.7.2.1p8: A member of a structure or union may have any type other
17380 // than a variably modified type.
17381 if (!InvalidDecl && T->isVariablyModifiedType()) {
17382 if (!tryToFixVariablyModifiedVarType(
17383 TInfo, T, Loc, diag::err_typecheck_field_variable_size))
17384 InvalidDecl = true;
17385 }
17386
17387 // Fields can not have abstract class types
17388 if (!InvalidDecl && RequireNonAbstractType(Loc, T,
17389 diag::err_abstract_type_in_decl,
17390 AbstractFieldType))
17391 InvalidDecl = true;
17392
17393 bool ZeroWidth = false;
17394 if (InvalidDecl)
17395 BitWidth = nullptr;
17396 // If this is declared as a bit-field, check the bit-field.
17397 if (BitWidth) {
17398 BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
17399 &ZeroWidth).get();
17400 if (!BitWidth) {
17401 InvalidDecl = true;
17402 BitWidth = nullptr;
17403 ZeroWidth = false;
17404 }
17405 }
17406
17407 // Check that 'mutable' is consistent with the type of the declaration.
17408 if (!InvalidDecl && Mutable) {
17409 unsigned DiagID = 0;
17410 if (T->isReferenceType())
17411 DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
17412 : diag::err_mutable_reference;
17413 else if (T.isConstQualified())
17414 DiagID = diag::err_mutable_const;
17415
17416 if (DiagID) {
17417 SourceLocation ErrLoc = Loc;
17418 if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
17419 ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
17420 Diag(ErrLoc, DiagID);
17421 if (DiagID != diag::ext_mutable_reference) {
17422 Mutable = false;
17423 InvalidDecl = true;
17424 }
17425 }
17426 }
17427
17428 // C++11 [class.union]p8 (DR1460):
17429 // At most one variant member of a union may have a
17430 // brace-or-equal-initializer.
17431 if (InitStyle != ICIS_NoInit)
17432 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
17433
17434 FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
17435 BitWidth, Mutable, InitStyle);
17436 if (InvalidDecl)
17437 NewFD->setInvalidDecl();
17438
17439 if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
17440 Diag(Loc, diag::err_duplicate_member) << II;
17441 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
17442 NewFD->setInvalidDecl();
17443 }
17444
17445 if (!InvalidDecl && getLangOpts().CPlusPlus) {
17446 if (Record->isUnion()) {
17447 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
17448 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
17449 if (RDecl->getDefinition()) {
17450 // C++ [class.union]p1: An object of a class with a non-trivial
17451 // constructor, a non-trivial copy constructor, a non-trivial
17452 // destructor, or a non-trivial copy assignment operator
17453 // cannot be a member of a union, nor can an array of such
17454 // objects.
17455 if (CheckNontrivialField(NewFD))
17456 NewFD->setInvalidDecl();
17457 }
17458 }
17459
17460 // C++ [class.union]p1: If a union contains a member of reference type,
17461 // the program is ill-formed, except when compiling with MSVC extensions
17462 // enabled.
17463 if (EltTy->isReferenceType()) {
17464 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
17465 diag::ext_union_member_of_reference_type :
17466 diag::err_union_member_of_reference_type)
17467 << NewFD->getDeclName() << EltTy;
17468 if (!getLangOpts().MicrosoftExt)
17469 NewFD->setInvalidDecl();
17470 }
17471 }
17472 }
17473
17474 // FIXME: We need to pass in the attributes given an AST
17475 // representation, not a parser representation.
17476 if (D) {
17477 // FIXME: The current scope is almost... but not entirely... correct here.
17478 ProcessDeclAttributes(getCurScope(), NewFD, *D);
17479
17480 if (NewFD->hasAttrs())
17481 CheckAlignasUnderalignment(NewFD);
17482 }
17483
17484 // In auto-retain/release, infer strong retension for fields of
17485 // retainable type.
17486 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
17487 NewFD->setInvalidDecl();
17488
17489 if (T.isObjCGCWeak())
17490 Diag(Loc, diag::warn_attribute_weak_on_field);
17491
17492 // PPC MMA non-pointer types are not allowed as field types.
17493 if (Context.getTargetInfo().getTriple().isPPC64() &&
17494 CheckPPCMMAType(T, NewFD->getLocation()))
17495 NewFD->setInvalidDecl();
17496
17497 NewFD->setAccess(AS);
17498 return NewFD;
17499}
17500
17501bool Sema::CheckNontrivialField(FieldDecl *FD) {
17502 assert(FD)(static_cast <bool> (FD) ? void (0) : __assert_fail ("FD"
, "clang/lib/Sema/SemaDecl.cpp", 17502, __extension__ __PRETTY_FUNCTION__
))
;
17503 assert(getLangOpts().CPlusPlus && "valid check only for C++")(static_cast <bool> (getLangOpts().CPlusPlus &&
"valid check only for C++") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"valid check only for C++\""
, "clang/lib/Sema/SemaDecl.cpp", 17503, __extension__ __PRETTY_FUNCTION__
))
;
17504
17505 if (FD->isInvalidDecl() || FD->getType()->isDependentType())
17506 return false;
17507
17508 QualType EltTy = Context.getBaseElementType(FD->getType());
17509 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
17510 CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
17511 if (RDecl->getDefinition()) {
17512 // We check for copy constructors before constructors
17513 // because otherwise we'll never get complaints about
17514 // copy constructors.
17515
17516 CXXSpecialMember member = CXXInvalid;
17517 // We're required to check for any non-trivial constructors. Since the
17518 // implicit default constructor is suppressed if there are any
17519 // user-declared constructors, we just need to check that there is a
17520 // trivial default constructor and a trivial copy constructor. (We don't
17521 // worry about move constructors here, since this is a C++98 check.)
17522 if (RDecl->hasNonTrivialCopyConstructor())
17523 member = CXXCopyConstructor;
17524 else if (!RDecl->hasTrivialDefaultConstructor())
17525 member = CXXDefaultConstructor;
17526 else if (RDecl->hasNonTrivialCopyAssignment())
17527 member = CXXCopyAssignment;
17528 else if (RDecl->hasNonTrivialDestructor())
17529 member = CXXDestructor;
17530
17531 if (member != CXXInvalid) {
17532 if (!getLangOpts().CPlusPlus11 &&
17533 getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
17534 // Objective-C++ ARC: it is an error to have a non-trivial field of
17535 // a union. However, system headers in Objective-C programs
17536 // occasionally have Objective-C lifetime objects within unions,
17537 // and rather than cause the program to fail, we make those
17538 // members unavailable.
17539 SourceLocation Loc = FD->getLocation();
17540 if (getSourceManager().isInSystemHeader(Loc)) {
17541 if (!FD->hasAttr<UnavailableAttr>())
17542 FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
17543 UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
17544 return false;
17545 }
17546 }
17547
17548 Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
17549 diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
17550 diag::err_illegal_union_or_anon_struct_member)
17551 << FD->getParent()->isUnion() << FD->getDeclName() << member;
17552 DiagnoseNontrivial(RDecl, member);
17553 return !getLangOpts().CPlusPlus11;
17554 }
17555 }
17556 }
17557
17558 return false;
17559}
17560
17561/// TranslateIvarVisibility - Translate visibility from a token ID to an
17562/// AST enum value.
17563static ObjCIvarDecl::AccessControl
17564TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
17565 switch (ivarVisibility) {
17566 default: llvm_unreachable("Unknown visitibility kind")::llvm::llvm_unreachable_internal("Unknown visitibility kind"
, "clang/lib/Sema/SemaDecl.cpp", 17566)
;
17567 case tok::objc_private: return ObjCIvarDecl::Private;
17568 case tok::objc_public: return ObjCIvarDecl::Public;
17569 case tok::objc_protected: return ObjCIvarDecl::Protected;
17570 case tok::objc_package: return ObjCIvarDecl::Package;
17571 }
17572}
17573
17574/// ActOnIvar - Each ivar field of an objective-c class is passed into this
17575/// in order to create an IvarDecl object for it.
17576Decl *Sema::ActOnIvar(Scope *S,
17577 SourceLocation DeclStart,
17578 Declarator &D, Expr *BitfieldWidth,
17579 tok::ObjCKeywordKind Visibility) {
17580
17581 IdentifierInfo *II = D.getIdentifier();
17582 Expr *BitWidth = (Expr*)BitfieldWidth;
17583 SourceLocation Loc = DeclStart;
17584 if (II) Loc = D.getIdentifierLoc();
17585
17586 // FIXME: Unnamed fields can be handled in various different ways, for
17587 // example, unnamed unions inject all members into the struct namespace!
17588
17589 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
17590 QualType T = TInfo->getType();
17591
17592 if (BitWidth) {
17593 // 6.7.2.1p3, 6.7.2.1p4
17594 BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
17595 if (!BitWidth)
17596 D.setInvalidType();
17597 } else {
17598 // Not a bitfield.
17599
17600 // validate II.
17601
17602 }
17603 if (T->isReferenceType()) {
17604 Diag(Loc, diag::err_ivar_reference_type);
17605 D.setInvalidType();
17606 }
17607 // C99 6.7.2.1p8: A member of a structure or union may have any type other
17608 // than a variably modified type.
17609 else if (T->isVariablyModifiedType()) {
17610 if (!tryToFixVariablyModifiedVarType(
17611 TInfo, T, Loc, diag::err_typecheck_ivar_variable_size))
17612 D.setInvalidType();
17613 }
17614
17615 // Get the visibility (access control) for this ivar.
17616 ObjCIvarDecl::AccessControl ac =
17617 Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
17618 : ObjCIvarDecl::None;
17619 // Must set ivar's DeclContext to its enclosing interface.
17620 ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
17621 if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
17622 return nullptr;
17623 ObjCContainerDecl *EnclosingContext;
17624 if (ObjCImplementationDecl *IMPDecl =
17625 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
17626 if (LangOpts.ObjCRuntime.isFragile()) {
17627 // Case of ivar declared in an implementation. Context is that of its class.
17628 EnclosingContext = IMPDecl->getClassInterface();
17629 assert(EnclosingContext && "Implementation has no class interface!")(static_cast <bool> (EnclosingContext && "Implementation has no class interface!"
) ? void (0) : __assert_fail ("EnclosingContext && \"Implementation has no class interface!\""
, "clang/lib/Sema/SemaDecl.cpp", 17629, __extension__ __PRETTY_FUNCTION__
))
;
17630 }
17631 else
17632 EnclosingContext = EnclosingDecl;
17633 } else {
17634 if (ObjCCategoryDecl *CDecl =
17635 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
17636 if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
17637 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
17638 return nullptr;
17639 }
17640 }
17641 EnclosingContext = EnclosingDecl;
17642 }
17643
17644 // Construct the decl.
17645 ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
17646 DeclStart, Loc, II, T,
17647 TInfo, ac, (Expr *)BitfieldWidth);
17648
17649 if (II) {
17650 NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
17651 ForVisibleRedeclaration);
17652 if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
17653 && !isa<TagDecl>(PrevDecl)) {
17654 Diag(Loc, diag::err_duplicate_member) << II;
17655 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
17656 NewID->setInvalidDecl();
17657 }
17658 }
17659
17660 // Process attributes attached to the ivar.
17661 ProcessDeclAttributes(S, NewID, D);
17662
17663 if (D.isInvalidType())
17664 NewID->setInvalidDecl();
17665
17666 // In ARC, infer 'retaining' for ivars of retainable type.
17667 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
17668 NewID->setInvalidDecl();
17669
17670 if (D.getDeclSpec().isModulePrivateSpecified())
17671 NewID->setModulePrivate();
17672
17673 if (II) {
17674 // FIXME: When interfaces are DeclContexts, we'll need to add
17675 // these to the interface.
17676 S->AddDecl(NewID);
17677 IdResolver.AddDecl(NewID);
17678 }
17679
17680 if (LangOpts.ObjCRuntime.isNonFragile() &&
17681 !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
17682 Diag(Loc, diag::warn_ivars_in_interface);
17683
17684 return NewID;
17685}
17686
17687/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
17688/// class and class extensions. For every class \@interface and class
17689/// extension \@interface, if the last ivar is a bitfield of any type,
17690/// then add an implicit `char :0` ivar to the end of that interface.
17691void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
17692 SmallVectorImpl<Decl *> &AllIvarDecls) {
17693 if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
17694 return;
17695
17696 Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
17697 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
17698
17699 if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
17700 return;
17701 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
17702 if (!ID) {
17703 if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
17704 if (!CD->IsClassExtension())
17705 return;
17706 }
17707 // No need to add this to end of @implementation.
17708 else
17709 return;
17710 }
17711 // All conditions are met. Add a new bitfield to the tail end of ivars.
17712 llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
17713 Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
17714
17715 Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
17716 DeclLoc, DeclLoc, nullptr,
17717 Context.CharTy,
17718 Context.getTrivialTypeSourceInfo(Context.CharTy,
17719 DeclLoc),
17720 ObjCIvarDecl::Private, BW,
17721 true);
17722 AllIvarDecls.push_back(Ivar);
17723}
17724
17725void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
17726 ArrayRef<Decl *> Fields, SourceLocation LBrac,
17727 SourceLocation RBrac,
17728 const ParsedAttributesView &Attrs) {
17729 assert(EnclosingDecl && "missing record or interface decl")(static_cast <bool> (EnclosingDecl && "missing record or interface decl"
) ? void (0) : __assert_fail ("EnclosingDecl && \"missing record or interface decl\""
, "clang/lib/Sema/SemaDecl.cpp", 17729, __extension__ __PRETTY_FUNCTION__
))
;
17730
17731 // If this is an Objective-C @implementation or category and we have
17732 // new fields here we should reset the layout of the interface since
17733 // it will now change.
17734 if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
17735 ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
17736 switch (DC->getKind()) {
17737 default: break;
17738 case Decl::ObjCCategory:
17739 Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
17740 break;
17741 case Decl::ObjCImplementation:
17742 Context.
17743 ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
17744 break;
17745 }
17746 }
17747
17748 RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
17749 CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl);
17750
17751 // Start counting up the number of named members; make sure to include
17752 // members of anonymous structs and unions in the total.
17753 unsigned NumNamedMembers = 0;
17754 if (Record) {
17755 for (const auto *I : Record->decls()) {
17756 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
17757 if (IFD->getDeclName())
17758 ++NumNamedMembers;
17759 }
17760 }
17761
17762 // Verify that all the fields are okay.
17763 SmallVector<FieldDecl*, 32> RecFields;
17764
17765 for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
17766 i != end; ++i) {
17767 FieldDecl *FD = cast<FieldDecl>(*i);
17768
17769 // Get the type for the field.
17770 const Type *FDTy = FD->getType().getTypePtr();
17771
17772 if (!FD->isAnonymousStructOrUnion()) {
17773 // Remember all fields written by the user.
17774 RecFields.push_back(FD);
17775 }
17776
17777 // If the field is already invalid for some reason, don't emit more
17778 // diagnostics about it.
17779 if (FD->isInvalidDecl()) {
17780 EnclosingDecl->setInvalidDecl();
17781 continue;
17782 }
17783
17784 // C99 6.7.2.1p2:
17785 // A structure or union shall not contain a member with
17786 // incomplete or function type (hence, a structure shall not
17787 // contain an instance of itself, but may contain a pointer to
17788 // an instance of itself), except that the last member of a
17789 // structure with more than one named member may have incomplete
17790 // array type; such a structure (and any union containing,
17791 // possibly recursively, a member that is such a structure)
17792 // shall not be a member of a structure or an element of an
17793 // array.
17794 bool IsLastField = (i + 1 == Fields.end());
17795 if (FDTy->isFunctionType()) {
17796 // Field declared as a function.
17797 Diag(FD->getLocation(), diag::err_field_declared_as_function)
17798 << FD->getDeclName();
17799 FD->setInvalidDecl();
17800 EnclosingDecl->setInvalidDecl();
17801 continue;
17802 } else if (FDTy->isIncompleteArrayType() &&
17803 (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
17804 if (Record) {
17805 // Flexible array member.
17806 // Microsoft and g++ is more permissive regarding flexible array.
17807 // It will accept flexible array in union and also
17808 // as the sole element of a struct/class.
17809 unsigned DiagID = 0;
17810 if (!Record->isUnion() && !IsLastField) {
17811 Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
17812 << FD->getDeclName() << FD->getType() << Record->getTagKind();
17813 Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
17814 FD->setInvalidDecl();
17815 EnclosingDecl->setInvalidDecl();
17816 continue;
17817 } else if (Record->isUnion())
17818 DiagID = getLangOpts().MicrosoftExt
17819 ? diag::ext_flexible_array_union_ms
17820 : getLangOpts().CPlusPlus
17821 ? diag::ext_flexible_array_union_gnu
17822 : diag::err_flexible_array_union;
17823 else if (NumNamedMembers < 1)
17824 DiagID = getLangOpts().MicrosoftExt
17825 ? diag::ext_flexible_array_empty_aggregate_ms
17826 : getLangOpts().CPlusPlus
17827 ? diag::ext_flexible_array_empty_aggregate_gnu
17828 : diag::err_flexible_array_empty_aggregate;
17829
17830 if (DiagID)
17831 Diag(FD->getLocation(), DiagID) << FD->getDeclName()
17832 << Record->getTagKind();
17833 // While the layout of types that contain virtual bases is not specified
17834 // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
17835 // virtual bases after the derived members. This would make a flexible
17836 // array member declared at the end of an object not adjacent to the end
17837 // of the type.
17838 if (CXXRecord && CXXRecord->getNumVBases() != 0)
17839 Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
17840 << FD->getDeclName() << Record->getTagKind();
17841 if (!getLangOpts().C99)
17842 Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
17843 << FD->getDeclName() << Record->getTagKind();
17844
17845 // If the element type has a non-trivial destructor, we would not
17846 // implicitly destroy the elements, so disallow it for now.
17847 //
17848 // FIXME: GCC allows this. We should probably either implicitly delete
17849 // the destructor of the containing class, or just allow this.
17850 QualType BaseElem = Context.getBaseElementType(FD->getType());
17851 if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
17852 Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
17853 << FD->getDeclName() << FD->getType();
17854 FD->setInvalidDecl();
17855 EnclosingDecl->setInvalidDecl();
17856 continue;
17857 }
17858 // Okay, we have a legal flexible array member at the end of the struct.
17859 Record->setHasFlexibleArrayMember(true);
17860 } else {
17861 // In ObjCContainerDecl ivars with incomplete array type are accepted,
17862 // unless they are followed by another ivar. That check is done
17863 // elsewhere, after synthesized ivars are known.
17864 }
17865 } else if (!FDTy->isDependentType() &&
17866 RequireCompleteSizedType(
17867 FD->getLocation(), FD->getType(),
17868 diag::err_field_incomplete_or_sizeless)) {
17869 // Incomplete type
17870 FD->setInvalidDecl();
17871 EnclosingDecl->setInvalidDecl();
17872 continue;
17873 } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
17874 if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
17875 // A type which contains a flexible array member is considered to be a
17876 // flexible array member.
17877 Record->setHasFlexibleArrayMember(true);
17878 if (!Record->isUnion()) {
17879 // If this is a struct/class and this is not the last element, reject
17880 // it. Note that GCC supports variable sized arrays in the middle of
17881 // structures.
17882 if (!IsLastField)
17883 Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
17884 << FD->getDeclName() << FD->getType();
17885 else {
17886 // We support flexible arrays at the end of structs in
17887 // other structs as an extension.
17888 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
17889 << FD->getDeclName();
17890 }
17891 }
17892 }
17893 if (isa<ObjCContainerDecl>(EnclosingDecl) &&
17894 RequireNonAbstractType(FD->getLocation(), FD->getType(),
17895 diag::err_abstract_type_in_decl,
17896 AbstractIvarType)) {
17897 // Ivars can not have abstract class types
17898 FD->setInvalidDecl();
17899 }
17900 if (Record && FDTTy->getDecl()->hasObjectMember())
17901 Record->setHasObjectMember(true);
17902 if (Record && FDTTy->getDecl()->hasVolatileMember())
17903 Record->setHasVolatileMember(true);
17904 } else if (FDTy->isObjCObjectType()) {
17905 /// A field cannot be an Objective-c object
17906 Diag(FD->getLocation(), diag::err_statically_allocated_object)
17907 << FixItHint::CreateInsertion(FD->getLocation(), "*");
17908 QualType T = Context.getObjCObjectPointerType(FD->getType());
17909 FD->setType(T);
17910 } else if (Record && Record->isUnion() &&
17911 FD->getType().hasNonTrivialObjCLifetime() &&
17912 getSourceManager().isInSystemHeader(FD->getLocation()) &&
17913 !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>() &&
17914 (FD->getType().getObjCLifetime() != Qualifiers::OCL_Strong ||
17915 !Context.hasDirectOwnershipQualifier(FD->getType()))) {
17916 // For backward compatibility, fields of C unions declared in system
17917 // headers that have non-trivial ObjC ownership qualifications are marked
17918 // as unavailable unless the qualifier is explicit and __strong. This can
17919 // break ABI compatibility between programs compiled with ARC and MRR, but
17920 // is a better option than rejecting programs using those unions under
17921 // ARC.
17922 FD->addAttr(UnavailableAttr::CreateImplicit(
17923 Context, "", UnavailableAttr::IR_ARCFieldWithOwnership,
17924 FD->getLocation()));
17925 } else if (getLangOpts().ObjC &&
17926 getLangOpts().getGC() != LangOptions::NonGC && Record &&
17927 !Record->hasObjectMember()) {
17928 if (FD->getType()->isObjCObjectPointerType() ||
17929 FD->getType().isObjCGCStrong())
17930 Record->setHasObjectMember(true);
17931 else if (Context.getAsArrayType(FD->getType())) {
17932 QualType BaseType = Context.getBaseElementType(FD->getType());
17933 if (BaseType->isRecordType() &&
17934 BaseType->castAs<RecordType>()->getDecl()->hasObjectMember())
17935 Record->setHasObjectMember(true);
17936 else if (BaseType->isObjCObjectPointerType() ||
17937 BaseType.isObjCGCStrong())
17938 Record->setHasObjectMember(true);
17939 }
17940 }
17941
17942 if (Record && !getLangOpts().CPlusPlus &&
17943 !shouldIgnoreForRecordTriviality(FD)) {
17944 QualType FT = FD->getType();
17945 if (FT.isNonTrivialToPrimitiveDefaultInitialize()) {
17946 Record->setNonTrivialToPrimitiveDefaultInitialize(true);
17947 if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
17948 Record->isUnion())
17949 Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true);
17950 }
17951 QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
17952 if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) {
17953 Record->setNonTrivialToPrimitiveCopy(true);
17954 if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion())
17955 Record->setHasNonTrivialToPrimitiveCopyCUnion(true);
17956 }
17957 if (FT.isDestructedType()) {
17958 Record->setNonTrivialToPrimitiveDestroy(true);
17959 Record->setParamDestroyedInCallee(true);
17960 if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion())
17961 Record->setHasNonTrivialToPrimitiveDestructCUnion(true);
17962 }
17963
17964 if (const auto *RT = FT->getAs<RecordType>()) {
17965 if (RT->getDecl()->getArgPassingRestrictions() ==
17966 RecordDecl::APK_CanNeverPassInRegs)
17967 Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
17968 } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
17969 Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
17970 }
17971
17972 if (Record && FD->getType().isVolatileQualified())
17973 Record->setHasVolatileMember(true);
17974 // Keep track of the number of named members.
17975 if (FD->getIdentifier())
17976 ++NumNamedMembers;
17977 }
17978
17979 // Okay, we successfully defined 'Record'.
17980 if (Record) {
17981 bool Completed = false;
17982 if (CXXRecord) {
17983 if (!CXXRecord->isInvalidDecl()) {
17984 // Set access bits correctly on the directly-declared conversions.
17985 for (CXXRecordDecl::conversion_iterator
17986 I = CXXRecord->conversion_begin(),
17987 E = CXXRecord->conversion_end(); I != E; ++I)
17988 I.setAccess((*I)->getAccess());
17989 }
17990
17991 // Add any implicitly-declared members to this class.
17992 AddImplicitlyDeclaredMembersToClass(CXXRecord);
17993
17994 if (!CXXRecord->isDependentType()) {
17995 if (!CXXRecord->isInvalidDecl()) {
17996 // If we have virtual base classes, we may end up finding multiple
17997 // final overriders for a given virtual function. Check for this
17998 // problem now.
17999 if (CXXRecord->getNumVBases()) {
18000 CXXFinalOverriderMap FinalOverriders;
18001 CXXRecord->getFinalOverriders(FinalOverriders);
18002
18003 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
18004 MEnd = FinalOverriders.end();
18005 M != MEnd; ++M) {
18006 for (OverridingMethods::iterator SO = M->second.begin(),
18007 SOEnd = M->second.end();
18008 SO != SOEnd; ++SO) {
18009 assert(SO->second.size() > 0 &&(static_cast <bool> (SO->second.size() > 0 &&
"Virtual function without overriding functions?") ? void (0)
: __assert_fail ("SO->second.size() > 0 && \"Virtual function without overriding functions?\""
, "clang/lib/Sema/SemaDecl.cpp", 18010, __extension__ __PRETTY_FUNCTION__
))
18010 "Virtual function without overriding functions?")(static_cast <bool> (SO->second.size() > 0 &&
"Virtual function without overriding functions?") ? void (0)
: __assert_fail ("SO->second.size() > 0 && \"Virtual function without overriding functions?\""
, "clang/lib/Sema/SemaDecl.cpp", 18010, __extension__ __PRETTY_FUNCTION__
))
;
18011 if (SO->second.size() == 1)
18012 continue;
18013
18014 // C++ [class.virtual]p2:
18015 // In a derived class, if a virtual member function of a base
18016 // class subobject has more than one final overrider the
18017 // program is ill-formed.
18018 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
18019 << (const NamedDecl *)M->first << Record;
18020 Diag(M->first->getLocation(),
18021 diag::note_overridden_virtual_function);
18022 for (OverridingMethods::overriding_iterator
18023 OM = SO->second.begin(),
18024 OMEnd = SO->second.end();
18025 OM != OMEnd; ++OM)
18026 Diag(OM->Method->getLocation(), diag::note_final_overrider)
18027 << (const NamedDecl *)M->first << OM->Method->getParent();
18028
18029 Record->setInvalidDecl();
18030 }
18031 }
18032 CXXRecord->completeDefinition(&FinalOverriders);
18033 Completed = true;
18034 }
18035 }
18036 }
18037 }
18038
18039 if (!Completed)
18040 Record->completeDefinition();
18041
18042 // Handle attributes before checking the layout.
18043 ProcessDeclAttributeList(S, Record, Attrs);
18044
18045 // Maybe randomize the field order.
18046 if (!getLangOpts().CPlusPlus && Record->hasAttr<RandomizeLayoutAttr>() &&
18047 !Record->isUnion() && !getLangOpts().RandstructSeed.empty() &&
18048 !Record->isRandomized()) {
18049 SmallVector<Decl *, 32> OrigFieldOrdering(Record->fields());
18050 SmallVector<Decl *, 32> NewFieldOrdering;
18051 if (randstruct::randomizeStructureLayout(
18052 Context, Record->getNameAsString(), OrigFieldOrdering,
18053 NewFieldOrdering))
18054 Record->reorderFields(NewFieldOrdering);
18055 }
18056
18057 // We may have deferred checking for a deleted destructor. Check now.
18058 if (CXXRecord) {
18059 auto *Dtor = CXXRecord->getDestructor();
18060 if (Dtor && Dtor->isImplicit() &&
18061 ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
18062 CXXRecord->setImplicitDestructorIsDeleted();
18063 SetDeclDeleted(Dtor, CXXRecord->getLocation());
18064 }
18065 }
18066
18067 if (Record->hasAttrs()) {
18068 CheckAlignasUnderalignment(Record);
18069
18070 if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
18071 checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
18072 IA->getRange(), IA->getBestCase(),
18073 IA->getInheritanceModel());
18074 }
18075
18076 // Check if the structure/union declaration is a type that can have zero
18077 // size in C. For C this is a language extension, for C++ it may cause
18078 // compatibility problems.
18079 bool CheckForZeroSize;
18080 if (!getLangOpts().CPlusPlus) {
18081 CheckForZeroSize = true;
18082 } else {
18083 // For C++ filter out types that cannot be referenced in C code.
18084 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
18085 CheckForZeroSize =
18086 CXXRecord->getLexicalDeclContext()->isExternCContext() &&
18087 !CXXRecord->isDependentType() && !inTemplateInstantiation() &&
18088 CXXRecord->isCLike();
18089 }
18090 if (CheckForZeroSize) {
18091 bool ZeroSize = true;
18092 bool IsEmpty = true;
18093 unsigned NonBitFields = 0;
18094 for (RecordDecl::field_iterator I = Record->field_begin(),
18095 E = Record->field_end();
18096 (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
18097 IsEmpty = false;
18098 if (I->isUnnamedBitfield()) {
18099 if (!I->isZeroLengthBitField(Context))
18100 ZeroSize = false;
18101 } else {
18102 ++NonBitFields;
18103 QualType FieldType = I->getType();
18104 if (FieldType->isIncompleteType() ||
18105 !Context.getTypeSizeInChars(FieldType).isZero())
18106 ZeroSize = false;
18107 }
18108 }
18109
18110 // Empty structs are an extension in C (C99 6.7.2.1p7). They are
18111 // allowed in C++, but warn if its declaration is inside
18112 // extern "C" block.
18113 if (ZeroSize) {
18114 Diag(RecLoc, getLangOpts().CPlusPlus ?
18115 diag::warn_zero_size_struct_union_in_extern_c :
18116 diag::warn_zero_size_struct_union_compat)
18117 << IsEmpty << Record->isUnion() << (NonBitFields > 1);
18118 }
18119
18120 // Structs without named members are extension in C (C99 6.7.2.1p7),
18121 // but are accepted by GCC.
18122 if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
18123 Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
18124 diag::ext_no_named_members_in_struct_union)
18125 << Record->isUnion();
18126 }
18127 }
18128 } else {
18129 ObjCIvarDecl **ClsFields =
18130 reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
18131 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
18132 ID->setEndOfDefinitionLoc(RBrac);
18133 // Add ivar's to class's DeclContext.
18134 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
18135 ClsFields[i]->setLexicalDeclContext(ID);
18136 ID->addDecl(ClsFields[i]);
18137 }
18138 // Must enforce the rule that ivars in the base classes may not be
18139 // duplicates.
18140 if (ID->getSuperClass())
18141 DiagnoseDuplicateIvars(ID, ID->getSuperClass());
18142 } else if (ObjCImplementationDecl *IMPDecl =
18143 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
18144 assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl")(static_cast <bool> (IMPDecl && "ActOnFields - missing ObjCImplementationDecl"
) ? void (0) : __assert_fail ("IMPDecl && \"ActOnFields - missing ObjCImplementationDecl\""
, "clang/lib/Sema/SemaDecl.cpp", 18144, __extension__ __PRETTY_FUNCTION__
))
;
18145 for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
18146 // Ivar declared in @implementation never belongs to the implementation.
18147 // Only it is in implementation's lexical context.
18148 ClsFields[I]->setLexicalDeclContext(IMPDecl);
18149 CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
18150 IMPDecl->setIvarLBraceLoc(LBrac);
18151 IMPDecl->setIvarRBraceLoc(RBrac);
18152 } else if (ObjCCategoryDecl *CDecl =
18153 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
18154 // case of ivars in class extension; all other cases have been
18155 // reported as errors elsewhere.
18156 // FIXME. Class extension does not have a LocEnd field.
18157 // CDecl->setLocEnd(RBrac);
18158 // Add ivar's to class extension's DeclContext.
18159 // Diagnose redeclaration of private ivars.
18160 ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
18161 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
18162 if (IDecl) {
18163 if (const ObjCIvarDecl *ClsIvar =
18164 IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
18165 Diag(ClsFields[i]->getLocation(),
18166 diag::err_duplicate_ivar_declaration);
18167 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
18168 continue;
18169 }
18170 for (const auto *Ext : IDecl->known_extensions()) {
18171 if (const ObjCIvarDecl *ClsExtIvar
18172 = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
18173 Diag(ClsFields[i]->getLocation(),
18174 diag::err_duplicate_ivar_declaration);
18175 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
18176 continue;
18177 }
18178 }
18179 }
18180 ClsFields[i]->setLexicalDeclContext(CDecl);
18181 CDecl->addDecl(ClsFields[i]);
18182 }
18183 CDecl->setIvarLBraceLoc(LBrac);
18184 CDecl->setIvarRBraceLoc(RBrac);
18185 }
18186 }
18187}
18188
18189/// Determine whether the given integral value is representable within
18190/// the given type T.
18191static bool isRepresentableIntegerValue(ASTContext &Context,
18192 llvm::APSInt &Value,
18193 QualType T) {
18194 assert((T->isIntegralType(Context) || T->isEnumeralType()) &&(static_cast <bool> ((T->isIntegralType(Context) || T
->isEnumeralType()) && "Integral type required!") ?
void (0) : __assert_fail ("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\""
, "clang/lib/Sema/SemaDecl.cpp", 18195, __extension__ __PRETTY_FUNCTION__
))
18195 "Integral type required!")(static_cast <bool> ((T->isIntegralType(Context) || T
->isEnumeralType()) && "Integral type required!") ?
void (0) : __assert_fail ("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\""
, "clang/lib/Sema/SemaDecl.cpp", 18195, __extension__ __PRETTY_FUNCTION__
))
;
18196 unsigned BitWidth = Context.getIntWidth(T);
18197
18198 if (Value.isUnsigned() || Value.isNonNegative()) {
18199 if (T->isSignedIntegerOrEnumerationType())
18200 --BitWidth;
18201 return Value.getActiveBits() <= BitWidth;
18202 }
18203 return Value.getMinSignedBits() <= BitWidth;
18204}
18205
18206// Given an integral type, return the next larger integral type
18207// (or a NULL type of no such type exists).
18208static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
18209 // FIXME: Int128/UInt128 support, which also needs to be introduced into
18210 // enum checking below.
18211 assert((T->isIntegralType(Context) ||(static_cast <bool> ((T->isIntegralType(Context) || T
->isEnumeralType()) && "Integral type required!") ?
void (0) : __assert_fail ("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\""
, "clang/lib/Sema/SemaDecl.cpp", 18212, __extension__ __PRETTY_FUNCTION__
))
18212 T->isEnumeralType()) && "Integral type required!")(static_cast <bool> ((T->isIntegralType(Context) || T
->isEnumeralType()) && "Integral type required!") ?
void (0) : __assert_fail ("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\""
, "clang/lib/Sema/SemaDecl.cpp", 18212, __extension__ __PRETTY_FUNCTION__
))
;
18213 const unsigned NumTypes = 4;
18214 QualType SignedIntegralTypes[NumTypes] = {
18215 Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
18216 };
18217 QualType UnsignedIntegralTypes[NumTypes] = {
18218 Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
18219 Context.UnsignedLongLongTy
18220 };
18221
18222 unsigned BitWidth = Context.getTypeSize(T);
18223 QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
18224 : UnsignedIntegralTypes;
18225 for (unsigned I = 0; I != NumTypes; ++I)
18226 if (Context.getTypeSize(Types[I]) > BitWidth)
18227 return Types[I];
18228
18229 return QualType();
18230}
18231
18232EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
18233 EnumConstantDecl *LastEnumConst,
18234 SourceLocation IdLoc,
18235 IdentifierInfo *Id,
18236 Expr *Val) {
18237 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
18238 llvm::APSInt EnumVal(IntWidth);
18239 QualType EltTy;
18240
18241 if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
18242 Val = nullptr;
18243
18244 if (Val)
18245 Val = DefaultLvalueConversion(Val).get();
18246
18247 if (Val) {
18248 if (Enum->isDependentType() || Val->isTypeDependent() ||
18249 Val->containsErrors())
18250 EltTy = Context.DependentTy;
18251 else {
18252 // FIXME: We don't allow folding in C++11 mode for an enum with a fixed
18253 // underlying type, but do allow it in all other contexts.
18254 if (getLangOpts().CPlusPlus11 && Enum->isFixed()) {
18255 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
18256 // constant-expression in the enumerator-definition shall be a converted
18257 // constant expression of the underlying type.
18258 EltTy = Enum->getIntegerType();
18259 ExprResult Converted =
18260 CheckConvertedConstantExpression(Val, EltTy, EnumVal,
18261 CCEK_Enumerator);
18262 if (Converted.isInvalid())
18263 Val = nullptr;
18264 else
18265 Val = Converted.get();
18266 } else if (!Val->isValueDependent() &&
18267 !(Val =
18268 VerifyIntegerConstantExpression(Val, &EnumVal, AllowFold)
18269 .get())) {
18270 // C99 6.7.2.2p2: Make sure we have an integer constant expression.
18271 } else {
18272 if (Enum->isComplete()) {
18273 EltTy = Enum->getIntegerType();
18274
18275 // In Obj-C and Microsoft mode, require the enumeration value to be
18276 // representable in the underlying type of the enumeration. In C++11,
18277 // we perform a non-narrowing conversion as part of converted constant
18278 // expression checking.
18279 if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
18280 if (Context.getTargetInfo()
18281 .getTriple()
18282 .isWindowsMSVCEnvironment()) {
18283 Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
18284 } else {
18285 Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
18286 }
18287 }
18288
18289 // Cast to the underlying type.
18290 Val = ImpCastExprToType(Val, EltTy,
18291 EltTy->isBooleanType() ? CK_IntegralToBoolean
18292 : CK_IntegralCast)
18293 .get();
18294 } else if (getLangOpts().CPlusPlus) {
18295 // C++11 [dcl.enum]p5:
18296 // If the underlying type is not fixed, the type of each enumerator
18297 // is the type of its initializing value:
18298 // - If an initializer is specified for an enumerator, the
18299 // initializing value has the same type as the expression.
18300 EltTy = Val->getType();
18301 } else {
18302 // C99 6.7.2.2p2:
18303 // The expression that defines the value of an enumeration constant
18304 // shall be an integer constant expression that has a value
18305 // representable as an int.
18306
18307 // Complain if the value is not representable in an int.
18308 if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
18309 Diag(IdLoc, diag::ext_enum_value_not_int)
18310 << toString(EnumVal, 10) << Val->getSourceRange()
18311 << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
18312 else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
18313 // Force the type of the expression to 'int'.
18314 Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
18315 }
18316 EltTy = Val->getType();
18317 }
18318 }
18319 }
18320 }
18321
18322 if (!Val) {
18323 if (Enum->isDependentType())
18324 EltTy = Context.DependentTy;
18325 else if (!LastEnumConst) {
18326 // C++0x [dcl.enum]p5:
18327 // If the underlying type is not fixed, the type of each enumerator
18328 // is the type of its initializing value:
18329 // - If no initializer is specified for the first enumerator, the
18330 // initializing value has an unspecified integral type.
18331 //
18332 // GCC uses 'int' for its unspecified integral type, as does
18333 // C99 6.7.2.2p3.
18334 if (Enum->isFixed()) {
18335 EltTy = Enum->getIntegerType();
18336 }
18337 else {
18338 EltTy = Context.IntTy;
18339 }
18340 } else {
18341 // Assign the last value + 1.
18342 EnumVal = LastEnumConst->getInitVal();
18343 ++EnumVal;
18344 EltTy = LastEnumConst->getType();
18345
18346 // Check for overflow on increment.
18347 if (EnumVal < LastEnumConst->getInitVal()) {
18348 // C++0x [dcl.enum]p5:
18349 // If the underlying type is not fixed, the type of each enumerator
18350 // is the type of its initializing value:
18351 //
18352 // - Otherwise the type of the initializing value is the same as
18353 // the type of the initializing value of the preceding enumerator
18354 // unless the incremented value is not representable in that type,
18355 // in which case the type is an unspecified integral type
18356 // sufficient to contain the incremented value. If no such type
18357 // exists, the program is ill-formed.
18358 QualType T = getNextLargerIntegralType(Context, EltTy);
18359 if (T.isNull() || Enum->isFixed()) {
18360 // There is no integral type larger enough to represent this
18361 // value. Complain, then allow the value to wrap around.
18362 EnumVal = LastEnumConst->getInitVal();
18363 EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
18364 ++EnumVal;
18365 if (Enum->isFixed())
18366 // When the underlying type is fixed, this is ill-formed.
18367 Diag(IdLoc, diag::err_enumerator_wrapped)
18368 << toString(EnumVal, 10)
18369 << EltTy;
18370 else
18371 Diag(IdLoc, diag::ext_enumerator_increment_too_large)
18372 << toString(EnumVal, 10);
18373 } else {
18374 EltTy = T;
18375 }
18376
18377 // Retrieve the last enumerator's value, extent that type to the
18378 // type that is supposed to be large enough to represent the incremented
18379 // value, then increment.
18380 EnumVal = LastEnumConst->getInitVal();
18381 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
18382 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
18383 ++EnumVal;
18384
18385 // If we're not in C++, diagnose the overflow of enumerator values,
18386 // which in C99 means that the enumerator value is not representable in
18387 // an int (C99 6.7.2.2p2). However, we support GCC's extension that
18388 // permits enumerator values that are representable in some larger
18389 // integral type.
18390 if (!getLangOpts().CPlusPlus && !T.isNull())
18391 Diag(IdLoc, diag::warn_enum_value_overflow);
18392 } else if (!getLangOpts().CPlusPlus &&
18393 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
18394 // Enforce C99 6.7.2.2p2 even when we compute the next value.
18395 Diag(IdLoc, diag::ext_enum_value_not_int)
18396 << toString(EnumVal, 10) << 1;
18397 }
18398 }
18399 }
18400
18401 if (!EltTy->isDependentType()) {
18402 // Make the enumerator value match the signedness and size of the
18403 // enumerator's type.
18404 EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
18405 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
18406 }
18407
18408 return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
18409 Val, EnumVal);
18410}
18411
18412Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
18413 SourceLocation IILoc) {
18414 if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
18415 !getLangOpts().CPlusPlus)
18416 return SkipBodyInfo();
18417
18418 // We have an anonymous enum definition. Look up the first enumerator to
18419 // determine if we should merge the definition with an existing one and
18420 // skip the body.
18421 NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
18422 forRedeclarationInCurContext());
18423 auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
18424 if (!PrevECD)
18425 return SkipBodyInfo();
18426
18427 EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
18428 NamedDecl *Hidden;
18429 if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
18430 SkipBodyInfo Skip;
18431 Skip.Previous = Hidden;
18432 return Skip;
18433 }
18434
18435 return SkipBodyInfo();
18436}
18437
18438Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
18439 SourceLocation IdLoc, IdentifierInfo *Id,
18440 const ParsedAttributesView &Attrs,
18441 SourceLocation EqualLoc, Expr *Val) {
18442 EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
18443 EnumConstantDecl *LastEnumConst =
18444 cast_or_null<EnumConstantDecl>(lastEnumConst);
18445
18446 // The scope passed in may not be a decl scope. Zip up the scope tree until
18447 // we find one that is.
18448 S = getNonFieldDeclScope(S);
18449
18450 // Verify that there isn't already something declared with this name in this
18451 // scope.
18452 LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration);
18453 LookupName(R, S);
18454 NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();
18455
18456 if (PrevDecl && PrevDecl->isTemplateParameter()) {
18457 // Maybe we will complain about the shadowed template parameter.
18458 DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
18459 // Just pretend that we didn't see the previous declaration.
18460 PrevDecl = nullptr;
18461 }
18462
18463 // C++ [class.mem]p15:
18464 // If T is the name of a class, then each of the following shall have a name
18465 // different from T:
18466 // - every enumerator of every member of class T that is an unscoped
18467 // enumerated type
18468 if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
18469 DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
18470 DeclarationNameInfo(Id, IdLoc));
18471
18472 EnumConstantDecl *New =
18473 CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
18474 if (!New)
18475 return nullptr;
18476
18477 if (PrevDecl) {
18478 if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) {
18479 // Check for other kinds of shadowing not already handled.
18480 CheckShadow(New, PrevDecl, R);
18481 }
18482
18483 // When in C++, we may get a TagDecl with the same name; in this case the
18484 // enum constant will 'hide' the tag.
18485 assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&(static_cast <bool> ((getLangOpts().CPlusPlus || !isa<
TagDecl>(PrevDecl)) && "Received TagDecl when not in C++!"
) ? void (0) : __assert_fail ("(getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) && \"Received TagDecl when not in C++!\""
, "clang/lib/Sema/SemaDecl.cpp", 18486, __extension__ __PRETTY_FUNCTION__
))
18486 "Received TagDecl when not in C++!")(static_cast <bool> ((getLangOpts().CPlusPlus || !isa<
TagDecl>(PrevDecl)) && "Received TagDecl when not in C++!"
) ? void (0) : __assert_fail ("(getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) && \"Received TagDecl when not in C++!\""
, "clang/lib/Sema/SemaDecl.cpp", 18486, __extension__ __PRETTY_FUNCTION__
))
;
18487 if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
18488 if (isa<EnumConstantDecl>(PrevDecl))
18489 Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
18490 else
18491 Diag(IdLoc, diag::err_redefinition) << Id;
18492 notePreviousDefinition(PrevDecl, IdLoc);
18493 return nullptr;
18494 }
18495 }
18496
18497 // Process attributes.
18498 ProcessDeclAttributeList(S, New, Attrs);
18499 AddPragmaAttributes(S, New);
18500
18501 // Register this decl in the current scope stack.
18502 New->setAccess(TheEnumDecl->getAccess());
18503 PushOnScopeChains(New, S);
18504
18505 ActOnDocumentableDecl(New);
18506
18507 return New;
18508}
18509
18510// Returns true when the enum initial expression does not trigger the
18511// duplicate enum warning. A few common cases are exempted as follows:
18512// Element2 = Element1
18513// Element2 = Element1 + 1
18514// Element2 = Element1 - 1
18515// Where Element2 and Element1 are from the same enum.
18516static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
18517 Expr *InitExpr = ECD->getInitExpr();
18518 if (!InitExpr)
18519 return true;
18520 InitExpr = InitExpr->IgnoreImpCasts();
18521
18522 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
18523 if (!BO->isAdditiveOp())
18524 return true;
18525 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
18526 if (!IL)
18527 return true;
18528 if (IL->getValue() != 1)
18529 return true;
18530
18531 InitExpr = BO->getLHS();
18532 }
18533
18534 // This checks if the elements are from the same enum.
18535 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
18536 if (!DRE)
18537 return true;
18538
18539 EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
18540 if (!EnumConstant)
18541 return true;
18542
18543 if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
18544 Enum)
18545 return true;
18546
18547 return false;
18548}
18549
18550// Emits a warning when an element is implicitly set a value that
18551// a previous element has already been set to.
18552static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
18553 EnumDecl *Enum, QualType EnumType) {
18554 // Avoid anonymous enums
18555 if (!Enum->getIdentifier())
18556 return;
18557
18558 // Only check for small enums.
18559 if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
18560 return;
18561
18562 if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
18563 return;
18564
18565 typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
18566 typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
18567
18568 typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
18569
18570 // DenseMaps cannot contain the all ones int64_t value, so use unordered_map.
18571 typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap;
18572
18573 // Use int64_t as a key to avoid needing special handling for map keys.
18574 auto EnumConstantToKey = [](const EnumConstantDecl *D) {
18575 llvm::APSInt Val = D->getInitVal();
18576 return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
18577 };
18578
18579 DuplicatesVector DupVector;
18580 ValueToVectorMap EnumMap;
18581
18582 // Populate the EnumMap with all values represented by enum constants without
18583 // an initializer.
18584 for (auto *Element : Elements) {
18585 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
18586
18587 // Null EnumConstantDecl means a previous diagnostic has been emitted for
18588 // this constant. Skip this enum since it may be ill-formed.
18589 if (!ECD) {
18590 return;
18591 }
18592
18593 // Constants with initalizers are handled in the next loop.
18594 if (ECD->getInitExpr())
18595 continue;
18596
18597 // Duplicate values are handled in the next loop.
18598 EnumMap.insert({EnumConstantToKey(ECD), ECD});
18599 }
18600
18601 if (EnumMap.size() == 0)
18602 return;
18603
18604 // Create vectors for any values that has duplicates.
18605 for (auto *Element : Elements) {
18606 // The last loop returned if any constant was null.
18607 EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
18608 if (!ValidDuplicateEnum(ECD, Enum))
18609 continue;
18610
18611 auto Iter = EnumMap.find(EnumConstantToKey(ECD));
18612 if (Iter == EnumMap.end())
18613 continue;
18614
18615 DeclOrVector& Entry = Iter->second;
18616 if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
18617 // Ensure constants are different.
18618 if (D == ECD)
18619 continue;
18620
18621 // Create new vector and push values onto it.
18622 auto Vec = std::make_unique<ECDVector>();
18623 Vec->push_back(D);
18624 Vec->push_back(ECD);
18625
18626 // Update entry to point to the duplicates vector.
18627 Entry = Vec.get();
18628
18629 // Store the vector somewhere we can consult later for quick emission of
18630 // diagnostics.
18631 DupVector.emplace_back(std::move(Vec));
18632 continue;
18633 }
18634
18635 ECDVector *Vec = Entry.get<ECDVector*>();
18636 // Make sure constants are not added more than once.
18637 if (*Vec->begin() == ECD)
18638 continue;
18639
18640 Vec->push_back(ECD);
18641 }
18642
18643 // Emit diagnostics.
18644 for (const auto &Vec : DupVector) {
18645 assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.")(static_cast <bool> (Vec->size() > 1 && "ECDVector should have at least 2 elements."
) ? void (0) : __assert_fail ("Vec->size() > 1 && \"ECDVector should have at least 2 elements.\""
, "clang/lib/Sema/SemaDecl.cpp", 18645, __extension__ __PRETTY_FUNCTION__
))
;
18646
18647 // Emit warning for one enum constant.
18648 auto *FirstECD = Vec->front();
18649 S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
18650 << FirstECD << toString(FirstECD->getInitVal(), 10)
18651 << FirstECD->getSourceRange();
18652
18653 // Emit one note for each of the remaining enum constants with
18654 // the same value.
18655 for (auto *ECD : llvm::drop_begin(*Vec))
18656 S.Diag(ECD->getLocation(), diag::note_duplicate_element)
18657 << ECD << toString(ECD->getInitVal(), 10)
18658 << ECD->getSourceRange();
18659 }
18660}
18661
18662bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
18663 bool AllowMask) const {
18664 assert(ED->isClosedFlag() && "looking for value in non-flag or open enum")(static_cast <bool> (ED->isClosedFlag() && "looking for value in non-flag or open enum"
) ? void (0) : __assert_fail ("ED->isClosedFlag() && \"looking for value in non-flag or open enum\""
, "clang/lib/Sema/SemaDecl.cpp", 18664, __extension__ __PRETTY_FUNCTION__
))
;
18665 assert(ED->isCompleteDefinition() && "expected enum definition")(static_cast <bool> (ED->isCompleteDefinition() &&
"expected enum definition") ? void (0) : __assert_fail ("ED->isCompleteDefinition() && \"expected enum definition\""
, "clang/lib/Sema/SemaDecl.cpp", 18665, __extension__ __PRETTY_FUNCTION__
))
;
18666
18667 auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
18668 llvm::APInt &FlagBits = R.first->second;
18669
18670 if (R.second) {
18671 for (auto *E : ED->enumerators()) {
18672 const auto &EVal = E->getInitVal();
18673 // Only single-bit enumerators introduce new flag values.
18674 if (EVal.isPowerOf2())
18675 FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
18676 }
18677 }
18678
18679 // A value is in a flag enum if either its bits are a subset of the enum's
18680 // flag bits (the first condition) or we are allowing masks and the same is
18681 // true of its complement (the second condition). When masks are allowed, we
18682 // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
18683 //
18684 // While it's true that any value could be used as a mask, the assumption is
18685 // that a mask will have all of the insignificant bits set. Anything else is
18686 // likely a logic error.
18687 llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
18688 return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
18689}
18690
18691void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
18692 Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S,
18693 const ParsedAttributesView &Attrs) {
18694 EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
18695 QualType EnumType = Context.getTypeDeclType(Enum);
18696
18697 ProcessDeclAttributeList(S, Enum, Attrs);
18698
18699 if (Enum->isDependentType()) {
18700 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
18701 EnumConstantDecl *ECD =
18702 cast_or_null<EnumConstantDecl>(Elements[i]);
18703 if (!ECD) continue;
18704
18705 ECD->setType(EnumType);
18706 }
18707
18708 Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
18709 return;
18710 }
18711
18712 // TODO: If the result value doesn't fit in an int, it must be a long or long
18713 // long value. ISO C does not support this, but GCC does as an extension,
18714 // emit a warning.
18715 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
18716 unsigned CharWidth = Context.getTargetInfo().getCharWidth();
18717 unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
18718
18719 // Verify that all the values are okay, compute the size of the values, and
18720 // reverse the list.
18721 unsigned NumNegativeBits = 0;
18722 unsigned NumPositiveBits = 0;
18723
18724 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
18725 EnumConstantDecl *ECD =
18726 cast_or_null<EnumConstantDecl>(Elements[i]);
18727 if (!ECD) continue; // Already issued a diagnostic.
18728
18729 const llvm::APSInt &InitVal = ECD->getInitVal();
18730
18731 // Keep track of the size of positive and negative values.
18732 if (InitVal.isUnsigned() || InitVal.isNonNegative())
18733 NumPositiveBits = std::max(NumPositiveBits,
18734 (unsigned)InitVal.getActiveBits());
18735 else
18736 NumNegativeBits = std::max(NumNegativeBits,
18737 (unsigned)InitVal.getMinSignedBits());
18738 }
18739
18740 // Figure out the type that should be used for this enum.
18741 QualType BestType;
18742 unsigned BestWidth;
18743
18744 // C++0x N3000 [conv.prom]p3:
18745 // An rvalue of an unscoped enumeration type whose underlying
18746 // type is not fixed can be converted to an rvalue of the first
18747 // of the following types that can represent all the values of
18748 // the enumeration: int, unsigned int, long int, unsigned long
18749 // int, long long int, or unsigned long long int.
18750 // C99 6.4.4.3p2:
18751 // An identifier declared as an enumeration constant has type int.
18752 // The C99 rule is modified by a gcc extension
18753 QualType BestPromotionType;
18754
18755 bool Packed = Enum->hasAttr<PackedAttr>();
18756 // -fshort-enums is the equivalent to specifying the packed attribute on all
18757 // enum definitions.
18758 if (LangOpts.ShortEnums)
18759 Packed = true;
18760
18761 // If the enum already has a type because it is fixed or dictated by the
18762 // target, promote that type instead of analyzing the enumerators.
18763 if (Enum->isComplete()) {
18764 BestType = Enum->getIntegerType();
18765 if (BestType->isPromotableIntegerType())
18766 BestPromotionType = Context.getPromotedIntegerType(BestType);
18767 else
18768 BestPromotionType = BestType;
18769
18770 BestWidth = Context.getIntWidth(BestType);
18771 }
18772 else if (NumNegativeBits) {
18773 // If there is a negative value, figure out the smallest integer type (of
18774 // int/long/longlong) that fits.
18775 // If it's packed, check also if it fits a char or a short.
18776 if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
18777 BestType = Context.SignedCharTy;
18778 BestWidth = CharWidth;
18779 } else if (Packed && NumNegativeBits <= ShortWidth &&
18780 NumPositiveBits < ShortWidth) {
18781 BestType = Context.ShortTy;
18782 BestWidth = ShortWidth;
18783 } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
18784 BestType = Context.IntTy;
18785 BestWidth = IntWidth;
18786 } else {
18787 BestWidth = Context.getTargetInfo().getLongWidth();
18788
18789 if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
18790 BestType = Context.LongTy;
18791 } else {
18792 BestWidth = Context.getTargetInfo().getLongLongWidth();
18793
18794 if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
18795 Diag(Enum->getLocation(), diag::ext_enum_too_large);
18796 BestType = Context.LongLongTy;
18797 }
18798 }
18799 BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
18800 } else {
18801 // If there is no negative value, figure out the smallest type that fits
18802 // all of the enumerator values.
18803 // If it's packed, check also if it fits a char or a short.
18804 if (Packed && NumPositiveBits <= CharWidth) {
18805 BestType = Context.UnsignedCharTy;
18806 BestPromotionType = Context.IntTy;
18807 BestWidth = CharWidth;
18808 } else if (Packed && NumPositiveBits <= ShortWidth) {
18809 BestType = Context.UnsignedShortTy;
18810 BestPromotionType = Context.IntTy;
18811 BestWidth = ShortWidth;
18812 } else if (NumPositiveBits <= IntWidth) {
18813 BestType = Context.UnsignedIntTy;
18814 BestWidth = IntWidth;
18815 BestPromotionType
18816 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
18817 ? Context.UnsignedIntTy : Context.IntTy;
18818 } else if (NumPositiveBits <=
18819 (BestWidth = Context.getTargetInfo().getLongWidth())) {
18820 BestType = Context.UnsignedLongTy;
18821 BestPromotionType
18822 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
18823 ? Context.UnsignedLongTy : Context.LongTy;
18824 } else {
18825 BestWidth = Context.getTargetInfo().getLongLongWidth();
18826 assert(NumPositiveBits <= BestWidth &&(static_cast <bool> (NumPositiveBits <= BestWidth &&
"How could an initializer get larger than ULL?") ? void (0) :
__assert_fail ("NumPositiveBits <= BestWidth && \"How could an initializer get larger than ULL?\""
, "clang/lib/Sema/SemaDecl.cpp", 18827, __extension__ __PRETTY_FUNCTION__
))
18827 "How could an initializer get larger than ULL?")(static_cast <bool> (NumPositiveBits <= BestWidth &&
"How could an initializer get larger than ULL?") ? void (0) :
__assert_fail ("NumPositiveBits <= BestWidth && \"How could an initializer get larger than ULL?\""
, "clang/lib/Sema/SemaDecl.cpp", 18827, __extension__ __PRETTY_FUNCTION__
))
;
18828 BestType = Context.UnsignedLongLongTy;
18829 BestPromotionType
18830 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
18831 ? Context.UnsignedLongLongTy : Context.LongLongTy;
18832 }
18833 }
18834
18835 // Loop over all of the enumerator constants, changing their types to match
18836 // the type of the enum if needed.
18837 for (auto *D : Elements) {
18838 auto *ECD = cast_or_null<EnumConstantDecl>(D);
18839 if (!ECD) continue; // Already issued a diagnostic.
18840
18841 // Standard C says the enumerators have int type, but we allow, as an
18842 // extension, the enumerators to be larger than int size. If each
18843 // enumerator value fits in an int, type it as an int, otherwise type it the
18844 // same as the enumerator decl itself. This means that in "enum { X = 1U }"
18845 // that X has type 'int', not 'unsigned'.
18846
18847 // Determine whether the value fits into an int.
18848 llvm::APSInt InitVal = ECD->getInitVal();
18849
18850 // If it fits into an integer type, force it. Otherwise force it to match
18851 // the enum decl type.
18852 QualType NewTy;
18853 unsigned NewWidth;
18854 bool NewSign;
18855 if (!getLangOpts().CPlusPlus &&
18856 !Enum->isFixed() &&
18857 isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
18858 NewTy = Context.IntTy;
18859 NewWidth = IntWidth;
18860 NewSign = true;
18861 } else if (ECD->getType() == BestType) {
18862 // Already the right type!
18863 if (getLangOpts().CPlusPlus)
18864 // C++ [dcl.enum]p4: Following the closing brace of an
18865 // enum-specifier, each enumerator has the type of its
18866 // enumeration.
18867 ECD->setType(EnumType);
18868 continue;
18869 } else {
18870 NewTy = BestType;
18871 NewWidth = BestWidth;
18872 NewSign = BestType->isSignedIntegerOrEnumerationType();
18873 }
18874
18875 // Adjust the APSInt value.
18876 InitVal = InitVal.extOrTrunc(NewWidth);
18877 InitVal.setIsSigned(NewSign);
18878 ECD->setInitVal(InitVal);
18879
18880 // Adjust the Expr initializer and type.
18881 if (ECD->getInitExpr() &&
18882 !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
18883 ECD->setInitExpr(ImplicitCastExpr::Create(
18884 Context, NewTy, CK_IntegralCast, ECD->getInitExpr(),
18885 /*base paths*/ nullptr, VK_PRValue, FPOptionsOverride()));
18886 if (getLangOpts().CPlusPlus)
18887 // C++ [dcl.enum]p4: Following the closing brace of an
18888 // enum-specifier, each enumerator has the type of its
18889 // enumeration.
18890 ECD->setType(EnumType);
18891 else
18892 ECD->setType(NewTy);
18893 }
18894
18895 Enum->completeDefinition(BestType, BestPromotionType,
18896 NumPositiveBits, NumNegativeBits);
18897
18898 CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
18899
18900 if (Enum->isClosedFlag()) {
18901 for (Decl *D : Elements) {
18902 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
18903 if (!ECD) continue; // Already issued a diagnostic.
18904
18905 llvm::APSInt InitVal = ECD->getInitVal();
18906 if (InitVal != 0 && !InitVal.isPowerOf2() &&
18907 !IsValueInFlagEnum(Enum, InitVal, true))
18908 Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
18909 << ECD << Enum;
18910 }
18911 }
18912
18913 // Now that the enum type is defined, ensure it's not been underaligned.
18914 if (Enum->hasAttrs())
18915 CheckAlignasUnderalignment(Enum);
18916}
18917
18918Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
18919 SourceLocation StartLoc,
18920 SourceLocation EndLoc) {
18921 StringLiteral *AsmString = cast<StringLiteral>(expr);
18922
18923 FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
18924 AsmString, StartLoc,
18925 EndLoc);
18926 CurContext->addDecl(New);
18927 return New;
18928}
18929
18930void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
18931 IdentifierInfo* AliasName,
18932 SourceLocation PragmaLoc,
18933 SourceLocation NameLoc,
18934 SourceLocation AliasNameLoc) {
18935 NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
18936 LookupOrdinaryName);
18937 AttributeCommonInfo Info(AliasName, SourceRange(AliasNameLoc),
18938 AttributeCommonInfo::AS_Pragma);
18939 AsmLabelAttr *Attr = AsmLabelAttr::CreateImplicit(
18940 Context, AliasName->getName(), /*IsLiteralLabel=*/true, Info);
18941
18942 // If a declaration that:
18943 // 1) declares a function or a variable
18944 // 2) has external linkage
18945 // already exists, add a label attribute to it.
18946 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
18947 if (isDeclExternC(PrevDecl))
18948 PrevDecl->addAttr(Attr);
18949 else
18950 Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
18951 << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
18952 // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
18953 } else
18954 (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
18955}
18956
18957void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
18958 SourceLocation PragmaLoc,
18959 SourceLocation NameLoc) {
18960 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
18961
18962 if (PrevDecl) {
18963 PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc, AttributeCommonInfo::AS_Pragma));
18964 } else {
18965 (void)WeakUndeclaredIdentifiers[Name].insert(WeakInfo(nullptr, NameLoc));
18966 }
18967}
18968
18969void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
18970 IdentifierInfo* AliasName,
18971 SourceLocation PragmaLoc,
18972 SourceLocation NameLoc,
18973 SourceLocation AliasNameLoc) {
18974 Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
18975 LookupOrdinaryName);
18976 WeakInfo W = WeakInfo(Name, NameLoc);
18977
18978 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
18979 if (!PrevDecl->hasAttr<AliasAttr>())
18980 if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
18981 DeclApplyPragmaWeak(TUScope, ND, W);
18982 } else {
18983 (void)WeakUndeclaredIdentifiers[AliasName].insert(W);
18984 }
18985}
18986
18987Decl *Sema::getObjCDeclContext() const {
18988 return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
18989}
18990
18991Sema::FunctionEmissionStatus Sema::getEmissionStatus(FunctionDecl *FD,
18992 bool Final) {
18993 assert(FD && "Expected non-null FunctionDecl")(static_cast <bool> (FD && "Expected non-null FunctionDecl"
) ? void (0) : __assert_fail ("FD && \"Expected non-null FunctionDecl\""
, "clang/lib/Sema/SemaDecl.cpp", 18993, __extension__ __PRETTY_FUNCTION__
))
;
18994
18995 // SYCL functions can be template, so we check if they have appropriate
18996 // attribute prior to checking if it is a template.
18997 if (LangOpts.SYCLIsDevice && FD->hasAttr<SYCLKernelAttr>())
18998 return FunctionEmissionStatus::Emitted;
18999
19000 // Templates are emitted when they're instantiated.
19001 if (FD->isDependentContext())
19002 return FunctionEmissionStatus::TemplateDiscarded;
19003
19004 // Check whether this function is an externally visible definition.
19005 auto IsEmittedForExternalSymbol = [this, FD]() {
19006 // We have to check the GVA linkage of the function's *definition* -- if we
19007 // only have a declaration, we don't know whether or not the function will
19008 // be emitted, because (say) the definition could include "inline".
19009 FunctionDecl *Def = FD->getDefinition();
19010
19011 return Def && !isDiscardableGVALinkage(
19012 getASTContext().GetGVALinkageForFunction(Def));
19013 };
19014
19015 if (LangOpts.OpenMPIsDevice) {
19016 // In OpenMP device mode we will not emit host only functions, or functions
19017 // we don't need due to their linkage.
19018 Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
19019 OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
19020 // DevTy may be changed later by
19021 // #pragma omp declare target to(*) device_type(*).
19022 // Therefore DevTy having no value does not imply host. The emission status
19023 // will be checked again at the end of compilation unit with Final = true.
19024 if (DevTy.hasValue())
19025 if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host)
19026 return FunctionEmissionStatus::OMPDiscarded;
19027 // If we have an explicit value for the device type, or we are in a target
19028 // declare context, we need to emit all extern and used symbols.
19029 if (isInOpenMPDeclareTargetContext() || DevTy.hasValue())
19030 if (IsEmittedForExternalSymbol())
19031 return FunctionEmissionStatus::Emitted;
19032 // Device mode only emits what it must, if it wasn't tagged yet and needed,
19033 // we'll omit it.
19034 if (Final)
19035 return FunctionEmissionStatus::OMPDiscarded;
19036 } else if (LangOpts.OpenMP > 45) {
19037 // In OpenMP host compilation prior to 5.0 everything was an emitted host
19038 // function. In 5.0, no_host was introduced which might cause a function to
19039 // be ommitted.
19040 Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
19041 OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
19042 if (DevTy.hasValue())
19043 if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost)
19044 return FunctionEmissionStatus::OMPDiscarded;
19045 }
19046
19047 if (Final && LangOpts.OpenMP && !LangOpts.CUDA)
19048 return FunctionEmissionStatus::Emitted;
19049
19050 if (LangOpts.CUDA) {
19051 // When compiling for device, host functions are never emitted. Similarly,
19052 // when compiling for host, device and global functions are never emitted.
19053 // (Technically, we do emit a host-side stub for global functions, but this
19054 // doesn't count for our purposes here.)
19055 Sema::CUDAFunctionTarget T = IdentifyCUDATarget(FD);
19056 if (LangOpts.CUDAIsDevice && T == Sema::CFT_Host)
19057 return FunctionEmissionStatus::CUDADiscarded;
19058 if (!LangOpts.CUDAIsDevice &&
19059 (T == Sema::CFT_Device || T == Sema::CFT_Global))
19060 return FunctionEmissionStatus::CUDADiscarded;
19061
19062 if (IsEmittedForExternalSymbol())
19063 return FunctionEmissionStatus::Emitted;
19064 }
19065
19066 // Otherwise, the function is known-emitted if it's in our set of
19067 // known-emitted functions.
19068 return FunctionEmissionStatus::Unknown;
19069}
19070
19071bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee) {
19072 // Host-side references to a __global__ function refer to the stub, so the
19073 // function itself is never emitted and therefore should not be marked.
19074 // If we have host fn calls kernel fn calls host+device, the HD function
19075 // does not get instantiated on the host. We model this by omitting at the
19076 // call to the kernel from the callgraph. This ensures that, when compiling
19077 // for host, only HD functions actually called from the host get marked as
19078 // known-emitted.
19079 return LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
19080 IdentifyCUDATarget(Callee) == CFT_Global;
19081}