Bug Summary

File:clang/lib/Sema/SemaDecl.cpp
Warning:line 16922, column 43
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaDecl.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/lib/Sema -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include -D NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-09-04-040900-46481-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/lib/Sema/SemaDecl.cpp

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/lib/Sema/SemaDecl.cpp

1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for declarations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TypeLocBuilder.h"
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTLambda.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/CommentDiagnostic.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/EvaluatedExprVisitor.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/NonTrivialTypeVisitor.h"
27#include "clang/AST/StmtCXX.h"
28#include "clang/Basic/Builtins.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
33#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
34#include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
35#include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
36#include "clang/Sema/CXXFieldCollector.h"
37#include "clang/Sema/DeclSpec.h"
38#include "clang/Sema/DelayedDiagnostic.h"
39#include "clang/Sema/Initialization.h"
40#include "clang/Sema/Lookup.h"
41#include "clang/Sema/ParsedTemplate.h"
42#include "clang/Sema/Scope.h"
43#include "clang/Sema/ScopeInfo.h"
44#include "clang/Sema/SemaInternal.h"
45#include "clang/Sema/Template.h"
46#include "llvm/ADT/SmallString.h"
47#include "llvm/ADT/Triple.h"
48#include <algorithm>
49#include <cstring>
50#include <functional>
51#include <unordered_map>
52
53using namespace clang;
54using namespace sema;
55
56Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
57 if (OwnedType) {
58 Decl *Group[2] = { OwnedType, Ptr };
59 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
60 }
61
62 return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
63}
64
65namespace {
66
67class TypeNameValidatorCCC final : public CorrectionCandidateCallback {
68 public:
69 TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
70 bool AllowTemplates = false,
71 bool AllowNonTemplates = true)
72 : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
73 AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
74 WantExpressionKeywords = false;
75 WantCXXNamedCasts = false;
76 WantRemainingKeywords = false;
77 }
78
79 bool ValidateCandidate(const TypoCorrection &candidate) override {
80 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
81 if (!AllowInvalidDecl && ND->isInvalidDecl())
82 return false;
83
84 if (getAsTypeTemplateDecl(ND))
85 return AllowTemplates;
86
87 bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
88 if (!IsType)
89 return false;
90
91 if (AllowNonTemplates)
92 return true;
93
94 // An injected-class-name of a class template (specialization) is valid
95 // as a template or as a non-template.
96 if (AllowTemplates) {
97 auto *RD = dyn_cast<CXXRecordDecl>(ND);
98 if (!RD || !RD->isInjectedClassName())
99 return false;
100 RD = cast<CXXRecordDecl>(RD->getDeclContext());
101 return RD->getDescribedClassTemplate() ||
102 isa<ClassTemplateSpecializationDecl>(RD);
103 }
104
105 return false;
106 }
107
108 return !WantClassName && candidate.isKeyword();
109 }
110
111 std::unique_ptr<CorrectionCandidateCallback> clone() override {
112 return std::make_unique<TypeNameValidatorCCC>(*this);
113 }
114
115 private:
116 bool AllowInvalidDecl;
117 bool WantClassName;
118 bool AllowTemplates;
119 bool AllowNonTemplates;
120};
121
122} // end anonymous namespace
123
124/// Determine whether the token kind starts a simple-type-specifier.
125bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
126 switch (Kind) {
127 // FIXME: Take into account the current language when deciding whether a
128 // token kind is a valid type specifier
129 case tok::kw_short:
130 case tok::kw_long:
131 case tok::kw___int64:
132 case tok::kw___int128:
133 case tok::kw_signed:
134 case tok::kw_unsigned:
135 case tok::kw_void:
136 case tok::kw_char:
137 case tok::kw_int:
138 case tok::kw_half:
139 case tok::kw_float:
140 case tok::kw_double:
141 case tok::kw___bf16:
142 case tok::kw__Float16:
143 case tok::kw___float128:
144 case tok::kw_wchar_t:
145 case tok::kw_bool:
146 case tok::kw___underlying_type:
147 case tok::kw___auto_type:
148 return true;
149
150 case tok::annot_typename:
151 case tok::kw_char16_t:
152 case tok::kw_char32_t:
153 case tok::kw_typeof:
154 case tok::annot_decltype:
155 case tok::kw_decltype:
156 return getLangOpts().CPlusPlus;
157
158 case tok::kw_char8_t:
159 return getLangOpts().Char8;
160
161 default:
162 break;
163 }
164
165 return false;
166}
167
168namespace {
169enum class UnqualifiedTypeNameLookupResult {
170 NotFound,
171 FoundNonType,
172 FoundType
173};
174} // end anonymous namespace
175
176/// Tries to perform unqualified lookup of the type decls in bases for
177/// dependent class.
178/// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
179/// type decl, \a FoundType if only type decls are found.
180static UnqualifiedTypeNameLookupResult
181lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
182 SourceLocation NameLoc,
183 const CXXRecordDecl *RD) {
184 if (!RD->hasDefinition())
185 return UnqualifiedTypeNameLookupResult::NotFound;
186 // Look for type decls in base classes.
187 UnqualifiedTypeNameLookupResult FoundTypeDecl =
188 UnqualifiedTypeNameLookupResult::NotFound;
189 for (const auto &Base : RD->bases()) {
190 const CXXRecordDecl *BaseRD = nullptr;
191 if (auto *BaseTT = Base.getType()->getAs<TagType>())
192 BaseRD = BaseTT->getAsCXXRecordDecl();
193 else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
194 // Look for type decls in dependent base classes that have known primary
195 // templates.
196 if (!TST || !TST->isDependentType())
197 continue;
198 auto *TD = TST->getTemplateName().getAsTemplateDecl();
199 if (!TD)
200 continue;
201 if (auto *BasePrimaryTemplate =
202 dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
203 if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
204 BaseRD = BasePrimaryTemplate;
205 else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
206 if (const ClassTemplatePartialSpecializationDecl *PS =
207 CTD->findPartialSpecialization(Base.getType()))
208 if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
209 BaseRD = PS;
210 }
211 }
212 }
213 if (BaseRD) {
214 for (NamedDecl *ND : BaseRD->lookup(&II)) {
215 if (!isa<TypeDecl>(ND))
216 return UnqualifiedTypeNameLookupResult::FoundNonType;
217 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
218 }
219 if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
220 switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
221 case UnqualifiedTypeNameLookupResult::FoundNonType:
222 return UnqualifiedTypeNameLookupResult::FoundNonType;
223 case UnqualifiedTypeNameLookupResult::FoundType:
224 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
225 break;
226 case UnqualifiedTypeNameLookupResult::NotFound:
227 break;
228 }
229 }
230 }
231 }
232
233 return FoundTypeDecl;
234}
235
236static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
237 const IdentifierInfo &II,
238 SourceLocation NameLoc) {
239 // Lookup in the parent class template context, if any.
240 const CXXRecordDecl *RD = nullptr;
241 UnqualifiedTypeNameLookupResult FoundTypeDecl =
242 UnqualifiedTypeNameLookupResult::NotFound;
243 for (DeclContext *DC = S.CurContext;
244 DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
245 DC = DC->getParent()) {
246 // Look for type decls in dependent base classes that have known primary
247 // templates.
248 RD = dyn_cast<CXXRecordDecl>(DC);
249 if (RD && RD->getDescribedClassTemplate())
250 FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
251 }
252 if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
253 return nullptr;
254
255 // We found some types in dependent base classes. Recover as if the user
256 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the
257 // lookup during template instantiation.
258 S.Diag(NameLoc, diag::ext_found_in_dependent_base) << &II;
259
260 ASTContext &Context = S.Context;
261 auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
262 cast<Type>(Context.getRecordType(RD)));
263 QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
264
265 CXXScopeSpec SS;
266 SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
267
268 TypeLocBuilder Builder;
269 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
270 DepTL.setNameLoc(NameLoc);
271 DepTL.setElaboratedKeywordLoc(SourceLocation());
272 DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
273 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
274}
275
276/// If the identifier refers to a type name within this scope,
277/// return the declaration of that type.
278///
279/// This routine performs ordinary name lookup of the identifier II
280/// within the given scope, with optional C++ scope specifier SS, to
281/// determine whether the name refers to a type. If so, returns an
282/// opaque pointer (actually a QualType) corresponding to that
283/// type. Otherwise, returns NULL.
284ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
285 Scope *S, CXXScopeSpec *SS,
286 bool isClassName, bool HasTrailingDot,
287 ParsedType ObjectTypePtr,
288 bool IsCtorOrDtorName,
289 bool WantNontrivialTypeSourceInfo,
290 bool IsClassTemplateDeductionContext,
291 IdentifierInfo **CorrectedII) {
292 // FIXME: Consider allowing this outside C++1z mode as an extension.
293 bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
294 getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
295 !isClassName && !HasTrailingDot;
296
297 // Determine where we will perform name lookup.
298 DeclContext *LookupCtx = nullptr;
299 if (ObjectTypePtr) {
300 QualType ObjectType = ObjectTypePtr.get();
301 if (ObjectType->isRecordType())
302 LookupCtx = computeDeclContext(ObjectType);
303 } else if (SS && SS->isNotEmpty()) {
304 LookupCtx = computeDeclContext(*SS, false);
305
306 if (!LookupCtx) {
307 if (isDependentScopeSpecifier(*SS)) {
308 // C++ [temp.res]p3:
309 // A qualified-id that refers to a type and in which the
310 // nested-name-specifier depends on a template-parameter (14.6.2)
311 // shall be prefixed by the keyword typename to indicate that the
312 // qualified-id denotes a type, forming an
313 // elaborated-type-specifier (7.1.5.3).
314 //
315 // We therefore do not perform any name lookup if the result would
316 // refer to a member of an unknown specialization.
317 if (!isClassName && !IsCtorOrDtorName)
318 return nullptr;
319
320 // We know from the grammar that this name refers to a type,
321 // so build a dependent node to describe the type.
322 if (WantNontrivialTypeSourceInfo)
323 return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
324
325 NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
326 QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
327 II, NameLoc);
328 return ParsedType::make(T);
329 }
330
331 return nullptr;
332 }
333
334 if (!LookupCtx->isDependentContext() &&
335 RequireCompleteDeclContext(*SS, LookupCtx))
336 return nullptr;
337 }
338
339 // FIXME: LookupNestedNameSpecifierName isn't the right kind of
340 // lookup for class-names.
341 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
342 LookupOrdinaryName;
343 LookupResult Result(*this, &II, NameLoc, Kind);
344 if (LookupCtx) {
345 // Perform "qualified" name lookup into the declaration context we
346 // computed, which is either the type of the base of a member access
347 // expression or the declaration context associated with a prior
348 // nested-name-specifier.
349 LookupQualifiedName(Result, LookupCtx);
350
351 if (ObjectTypePtr && Result.empty()) {
352 // C++ [basic.lookup.classref]p3:
353 // If the unqualified-id is ~type-name, the type-name is looked up
354 // in the context of the entire postfix-expression. If the type T of
355 // the object expression is of a class type C, the type-name is also
356 // looked up in the scope of class C. At least one of the lookups shall
357 // find a name that refers to (possibly cv-qualified) T.
358 LookupName(Result, S);
359 }
360 } else {
361 // Perform unqualified name lookup.
362 LookupName(Result, S);
363
364 // For unqualified lookup in a class template in MSVC mode, look into
365 // dependent base classes where the primary class template is known.
366 if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
367 if (ParsedType TypeInBase =
368 recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
369 return TypeInBase;
370 }
371 }
372
373 NamedDecl *IIDecl = nullptr;
374 switch (Result.getResultKind()) {
375 case LookupResult::NotFound:
376 case LookupResult::NotFoundInCurrentInstantiation:
377 if (CorrectedII) {
378 TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName,
379 AllowDeducedTemplate);
380 TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind,
381 S, SS, CCC, CTK_ErrorRecovery);
382 IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
383 TemplateTy Template;
384 bool MemberOfUnknownSpecialization;
385 UnqualifiedId TemplateName;
386 TemplateName.setIdentifier(NewII, NameLoc);
387 NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
388 CXXScopeSpec NewSS, *NewSSPtr = SS;
389 if (SS && NNS) {
390 NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
391 NewSSPtr = &NewSS;
392 }
393 if (Correction && (NNS || NewII != &II) &&
394 // Ignore a correction to a template type as the to-be-corrected
395 // identifier is not a template (typo correction for template names
396 // is handled elsewhere).
397 !(getLangOpts().CPlusPlus && NewSSPtr &&
398 isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
399 Template, MemberOfUnknownSpecialization))) {
400 ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
401 isClassName, HasTrailingDot, ObjectTypePtr,
402 IsCtorOrDtorName,
403 WantNontrivialTypeSourceInfo,
404 IsClassTemplateDeductionContext);
405 if (Ty) {
406 diagnoseTypo(Correction,
407 PDiag(diag::err_unknown_type_or_class_name_suggest)
408 << Result.getLookupName() << isClassName);
409 if (SS && NNS)
410 SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
411 *CorrectedII = NewII;
412 return Ty;
413 }
414 }
415 }
416 // If typo correction failed or was not performed, fall through
417 LLVM_FALLTHROUGH[[gnu::fallthrough]];
418 case LookupResult::FoundOverloaded:
419 case LookupResult::FoundUnresolvedValue:
420 Result.suppressDiagnostics();
421 return nullptr;
422
423 case LookupResult::Ambiguous:
424 // Recover from type-hiding ambiguities by hiding the type. We'll
425 // do the lookup again when looking for an object, and we can
426 // diagnose the error then. If we don't do this, then the error
427 // about hiding the type will be immediately followed by an error
428 // that only makes sense if the identifier was treated like a type.
429 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
430 Result.suppressDiagnostics();
431 return nullptr;
432 }
433
434 // Look to see if we have a type anywhere in the list of results.
435 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
436 Res != ResEnd; ++Res) {
437 NamedDecl *RealRes = (*Res)->getUnderlyingDecl();
438 if (isa<TypeDecl, ObjCInterfaceDecl, UnresolvedUsingIfExistsDecl>(
439 RealRes) ||
440 (AllowDeducedTemplate && getAsTypeTemplateDecl(RealRes))) {
441 if (!IIDecl ||
442 // Make the selection of the recovery decl deterministic.
443 RealRes->getLocation() < IIDecl->getLocation())
444 IIDecl = RealRes;
445 }
446 }
447
448 if (!IIDecl) {
449 // None of the entities we found is a type, so there is no way
450 // to even assume that the result is a type. In this case, don't
451 // complain about the ambiguity. The parser will either try to
452 // perform this lookup again (e.g., as an object name), which
453 // will produce the ambiguity, or will complain that it expected
454 // a type name.
455 Result.suppressDiagnostics();
456 return nullptr;
457 }
458
459 // We found a type within the ambiguous lookup; diagnose the
460 // ambiguity and then return that type. This might be the right
461 // answer, or it might not be, but it suppresses any attempt to
462 // perform the name lookup again.
463 break;
464
465 case LookupResult::Found:
466 IIDecl = Result.getFoundDecl();
467 break;
468 }
469
470 assert(IIDecl && "Didn't find decl")(static_cast<void> (0));
471
472 QualType T;
473 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
474 // C++ [class.qual]p2: A lookup that would find the injected-class-name
475 // instead names the constructors of the class, except when naming a class.
476 // This is ill-formed when we're not actually forming a ctor or dtor name.
477 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
478 auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
479 if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
480 FoundRD->isInjectedClassName() &&
481 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
482 Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
483 << &II << /*Type*/1;
484
485 DiagnoseUseOfDecl(IIDecl, NameLoc);
486
487 T = Context.getTypeDeclType(TD);
488 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
489 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
490 (void)DiagnoseUseOfDecl(IDecl, NameLoc);
491 if (!HasTrailingDot)
492 T = Context.getObjCInterfaceType(IDecl);
493 } else if (auto *UD = dyn_cast<UnresolvedUsingIfExistsDecl>(IIDecl)) {
494 (void)DiagnoseUseOfDecl(UD, NameLoc);
495 // Recover with 'int'
496 T = Context.IntTy;
497 } else if (AllowDeducedTemplate) {
498 if (auto *TD = getAsTypeTemplateDecl(IIDecl))
499 T = Context.getDeducedTemplateSpecializationType(TemplateName(TD),
500 QualType(), false);
501 }
502
503 if (T.isNull()) {
504 // If it's not plausibly a type, suppress diagnostics.
505 Result.suppressDiagnostics();
506 return nullptr;
507 }
508
509 // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
510 // constructor or destructor name (in such a case, the scope specifier
511 // will be attached to the enclosing Expr or Decl node).
512 if (SS && SS->isNotEmpty() && !IsCtorOrDtorName &&
513 !isa<ObjCInterfaceDecl, UnresolvedUsingIfExistsDecl>(IIDecl)) {
514 if (WantNontrivialTypeSourceInfo) {
515 // Construct a type with type-source information.
516 TypeLocBuilder Builder;
517 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
518
519 T = getElaboratedType(ETK_None, *SS, T);
520 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
521 ElabTL.setElaboratedKeywordLoc(SourceLocation());
522 ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
523 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
524 } else {
525 T = getElaboratedType(ETK_None, *SS, T);
526 }
527 }
528
529 return ParsedType::make(T);
530}
531
532// Builds a fake NNS for the given decl context.
533static NestedNameSpecifier *
534synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
535 for (;; DC = DC->getLookupParent()) {
536 DC = DC->getPrimaryContext();
537 auto *ND = dyn_cast<NamespaceDecl>(DC);
538 if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
539 return NestedNameSpecifier::Create(Context, nullptr, ND);
540 else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
541 return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
542 RD->getTypeForDecl());
543 else if (isa<TranslationUnitDecl>(DC))
544 return NestedNameSpecifier::GlobalSpecifier(Context);
545 }
546 llvm_unreachable("something isn't in TU scope?")__builtin_unreachable();
547}
548
549/// Find the parent class with dependent bases of the innermost enclosing method
550/// context. Do not look for enclosing CXXRecordDecls directly, or we will end
551/// up allowing unqualified dependent type names at class-level, which MSVC
552/// correctly rejects.
553static const CXXRecordDecl *
554findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
555 for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
556 DC = DC->getPrimaryContext();
557 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
558 if (MD->getParent()->hasAnyDependentBases())
559 return MD->getParent();
560 }
561 return nullptr;
562}
563
564ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
565 SourceLocation NameLoc,
566 bool IsTemplateTypeArg) {
567 assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode")(static_cast<void> (0));
568
569 NestedNameSpecifier *NNS = nullptr;
570 if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
571 // If we weren't able to parse a default template argument, delay lookup
572 // until instantiation time by making a non-dependent DependentTypeName. We
573 // pretend we saw a NestedNameSpecifier referring to the current scope, and
574 // lookup is retried.
575 // FIXME: This hurts our diagnostic quality, since we get errors like "no
576 // type named 'Foo' in 'current_namespace'" when the user didn't write any
577 // name specifiers.
578 NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
579 Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
580 } else if (const CXXRecordDecl *RD =
581 findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
582 // Build a DependentNameType that will perform lookup into RD at
583 // instantiation time.
584 NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
585 RD->getTypeForDecl());
586
587 // Diagnose that this identifier was undeclared, and retry the lookup during
588 // template instantiation.
589 Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
590 << RD;
591 } else {
592 // This is not a situation that we should recover from.
593 return ParsedType();
594 }
595
596 QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
597
598 // Build type location information. We synthesized the qualifier, so we have
599 // to build a fake NestedNameSpecifierLoc.
600 NestedNameSpecifierLocBuilder NNSLocBuilder;
601 NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
602 NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
603
604 TypeLocBuilder Builder;
605 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
606 DepTL.setNameLoc(NameLoc);
607 DepTL.setElaboratedKeywordLoc(SourceLocation());
608 DepTL.setQualifierLoc(QualifierLoc);
609 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
610}
611
612/// isTagName() - This method is called *for error recovery purposes only*
613/// to determine if the specified name is a valid tag name ("struct foo"). If
614/// so, this returns the TST for the tag corresponding to it (TST_enum,
615/// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose
616/// cases in C where the user forgot to specify the tag.
617DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
618 // Do a tag name lookup in this scope.
619 LookupResult R(*this, &II, SourceLocation(), LookupTagName);
620 LookupName(R, S, false);
621 R.suppressDiagnostics();
622 if (R.getResultKind() == LookupResult::Found)
623 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
624 switch (TD->getTagKind()) {
625 case TTK_Struct: return DeclSpec::TST_struct;
626 case TTK_Interface: return DeclSpec::TST_interface;
627 case TTK_Union: return DeclSpec::TST_union;
628 case TTK_Class: return DeclSpec::TST_class;
629 case TTK_Enum: return DeclSpec::TST_enum;
630 }
631 }
632
633 return DeclSpec::TST_unspecified;
634}
635
636/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
637/// if a CXXScopeSpec's type is equal to the type of one of the base classes
638/// then downgrade the missing typename error to a warning.
639/// This is needed for MSVC compatibility; Example:
640/// @code
641/// template<class T> class A {
642/// public:
643/// typedef int TYPE;
644/// };
645/// template<class T> class B : public A<T> {
646/// public:
647/// A<T>::TYPE a; // no typename required because A<T> is a base class.
648/// };
649/// @endcode
650bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
651 if (CurContext->isRecord()) {
652 if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
653 return true;
654
655 const Type *Ty = SS->getScopeRep()->getAsType();
656
657 CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
658 for (const auto &Base : RD->bases())
659 if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
660 return true;
661 return S->isFunctionPrototypeScope();
662 }
663 return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
664}
665
666void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
667 SourceLocation IILoc,
668 Scope *S,
669 CXXScopeSpec *SS,
670 ParsedType &SuggestedType,
671 bool IsTemplateName) {
672 // Don't report typename errors for editor placeholders.
673 if (II->isEditorPlaceholder())
674 return;
675 // We don't have anything to suggest (yet).
676 SuggestedType = nullptr;
677
678 // There may have been a typo in the name of the type. Look up typo
679 // results, in case we have something that we can suggest.
680 TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
681 /*AllowTemplates=*/IsTemplateName,
682 /*AllowNonTemplates=*/!IsTemplateName);
683 if (TypoCorrection Corrected =
684 CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
685 CCC, CTK_ErrorRecovery)) {
686 // FIXME: Support error recovery for the template-name case.
687 bool CanRecover = !IsTemplateName;
688 if (Corrected.isKeyword()) {
689 // We corrected to a keyword.
690 diagnoseTypo(Corrected,
691 PDiag(IsTemplateName ? diag::err_no_template_suggest
692 : diag::err_unknown_typename_suggest)
693 << II);
694 II = Corrected.getCorrectionAsIdentifierInfo();
695 } else {
696 // We found a similarly-named type or interface; suggest that.
697 if (!SS || !SS->isSet()) {
698 diagnoseTypo(Corrected,
699 PDiag(IsTemplateName ? diag::err_no_template_suggest
700 : diag::err_unknown_typename_suggest)
701 << II, CanRecover);
702 } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
703 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
704 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
705 II->getName().equals(CorrectedStr);
706 diagnoseTypo(Corrected,
707 PDiag(IsTemplateName
708 ? diag::err_no_member_template_suggest
709 : diag::err_unknown_nested_typename_suggest)
710 << II << DC << DroppedSpecifier << SS->getRange(),
711 CanRecover);
712 } else {
713 llvm_unreachable("could not have corrected a typo here")__builtin_unreachable();
714 }
715
716 if (!CanRecover)
717 return;
718
719 CXXScopeSpec tmpSS;
720 if (Corrected.getCorrectionSpecifier())
721 tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
722 SourceRange(IILoc));
723 // FIXME: Support class template argument deduction here.
724 SuggestedType =
725 getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
726 tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
727 /*IsCtorOrDtorName=*/false,
728 /*WantNontrivialTypeSourceInfo=*/true);
729 }
730 return;
731 }
732
733 if (getLangOpts().CPlusPlus && !IsTemplateName) {
734 // See if II is a class template that the user forgot to pass arguments to.
735 UnqualifiedId Name;
736 Name.setIdentifier(II, IILoc);
737 CXXScopeSpec EmptySS;
738 TemplateTy TemplateResult;
739 bool MemberOfUnknownSpecialization;
740 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
741 Name, nullptr, true, TemplateResult,
742 MemberOfUnknownSpecialization) == TNK_Type_template) {
743 diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
744 return;
745 }
746 }
747
748 // FIXME: Should we move the logic that tries to recover from a missing tag
749 // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
750
751 if (!SS || (!SS->isSet() && !SS->isInvalid()))
752 Diag(IILoc, IsTemplateName ? diag::err_no_template
753 : diag::err_unknown_typename)
754 << II;
755 else if (DeclContext *DC = computeDeclContext(*SS, false))
756 Diag(IILoc, IsTemplateName ? diag::err_no_member_template
757 : diag::err_typename_nested_not_found)
758 << II << DC << SS->getRange();
759 else if (SS->isValid() && SS->getScopeRep()->containsErrors()) {
760 SuggestedType =
761 ActOnTypenameType(S, SourceLocation(), *SS, *II, IILoc).get();
762 } else if (isDependentScopeSpecifier(*SS)) {
763 unsigned DiagID = diag::err_typename_missing;
764 if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
765 DiagID = diag::ext_typename_missing;
766
767 Diag(SS->getRange().getBegin(), DiagID)
768 << SS->getScopeRep() << II->getName()
769 << SourceRange(SS->getRange().getBegin(), IILoc)
770 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
771 SuggestedType = ActOnTypenameType(S, SourceLocation(),
772 *SS, *II, IILoc).get();
773 } else {
774 assert(SS && SS->isInvalid() &&(static_cast<void> (0))
775 "Invalid scope specifier has already been diagnosed")(static_cast<void> (0));
776 }
777}
778
779/// Determine whether the given result set contains either a type name
780/// or
781static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
782 bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
783 NextToken.is(tok::less);
784
785 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
786 if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
787 return true;
788
789 if (CheckTemplate && isa<TemplateDecl>(*I))
790 return true;
791 }
792
793 return false;
794}
795
796static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
797 Scope *S, CXXScopeSpec &SS,
798 IdentifierInfo *&Name,
799 SourceLocation NameLoc) {
800 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
801 SemaRef.LookupParsedName(R, S, &SS);
802 if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
803 StringRef FixItTagName;
804 switch (Tag->getTagKind()) {
805 case TTK_Class:
806 FixItTagName = "class ";
807 break;
808
809 case TTK_Enum:
810 FixItTagName = "enum ";
811 break;
812
813 case TTK_Struct:
814 FixItTagName = "struct ";
815 break;
816
817 case TTK_Interface:
818 FixItTagName = "__interface ";
819 break;
820
821 case TTK_Union:
822 FixItTagName = "union ";
823 break;
824 }
825
826 StringRef TagName = FixItTagName.drop_back();
827 SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
828 << Name << TagName << SemaRef.getLangOpts().CPlusPlus
829 << FixItHint::CreateInsertion(NameLoc, FixItTagName);
830
831 for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
832 I != IEnd; ++I)
833 SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
834 << Name << TagName;
835
836 // Replace lookup results with just the tag decl.
837 Result.clear(Sema::LookupTagName);
838 SemaRef.LookupParsedName(Result, S, &SS);
839 return true;
840 }
841
842 return false;
843}
844
845/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
846static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
847 QualType T, SourceLocation NameLoc) {
848 ASTContext &Context = S.Context;
849
850 TypeLocBuilder Builder;
851 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
852
853 T = S.getElaboratedType(ETK_None, SS, T);
854 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
855 ElabTL.setElaboratedKeywordLoc(SourceLocation());
856 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
857 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
858}
859
860Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS,
861 IdentifierInfo *&Name,
862 SourceLocation NameLoc,
863 const Token &NextToken,
864 CorrectionCandidateCallback *CCC) {
865 DeclarationNameInfo NameInfo(Name, NameLoc);
866 ObjCMethodDecl *CurMethod = getCurMethodDecl();
867
868 assert(NextToken.isNot(tok::coloncolon) &&(static_cast<void> (0))
869 "parse nested name specifiers before calling ClassifyName")(static_cast<void> (0));
870 if (getLangOpts().CPlusPlus && SS.isSet() &&
871 isCurrentClassName(*Name, S, &SS)) {
872 // Per [class.qual]p2, this names the constructors of SS, not the
873 // injected-class-name. We don't have a classification for that.
874 // There's not much point caching this result, since the parser
875 // will reject it later.
876 return NameClassification::Unknown();
877 }
878
879 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
880 LookupParsedName(Result, S, &SS, !CurMethod);
881
882 if (SS.isInvalid())
883 return NameClassification::Error();
884
885 // For unqualified lookup in a class template in MSVC mode, look into
886 // dependent base classes where the primary class template is known.
887 if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
888 if (ParsedType TypeInBase =
889 recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
890 return TypeInBase;
891 }
892
893 // Perform lookup for Objective-C instance variables (including automatically
894 // synthesized instance variables), if we're in an Objective-C method.
895 // FIXME: This lookup really, really needs to be folded in to the normal
896 // unqualified lookup mechanism.
897 if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
898 DeclResult Ivar = LookupIvarInObjCMethod(Result, S, Name);
899 if (Ivar.isInvalid())
900 return NameClassification::Error();
901 if (Ivar.isUsable())
902 return NameClassification::NonType(cast<NamedDecl>(Ivar.get()));
903
904 // We defer builtin creation until after ivar lookup inside ObjC methods.
905 if (Result.empty())
906 LookupBuiltin(Result);
907 }
908
909 bool SecondTry = false;
910 bool IsFilteredTemplateName = false;
911
912Corrected:
913 switch (Result.getResultKind()) {
914 case LookupResult::NotFound:
915 // If an unqualified-id is followed by a '(', then we have a function
916 // call.
917 if (SS.isEmpty() && NextToken.is(tok::l_paren)) {
918 // In C++, this is an ADL-only call.
919 // FIXME: Reference?
920 if (getLangOpts().CPlusPlus)
921 return NameClassification::UndeclaredNonType();
922
923 // C90 6.3.2.2:
924 // If the expression that precedes the parenthesized argument list in a
925 // function call consists solely of an identifier, and if no
926 // declaration is visible for this identifier, the identifier is
927 // implicitly declared exactly as if, in the innermost block containing
928 // the function call, the declaration
929 //
930 // extern int identifier ();
931 //
932 // appeared.
933 //
934 // We also allow this in C99 as an extension.
935 if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S))
936 return NameClassification::NonType(D);
937 }
938
939 if (getLangOpts().CPlusPlus20 && SS.isEmpty() && NextToken.is(tok::less)) {
940 // In C++20 onwards, this could be an ADL-only call to a function
941 // template, and we're required to assume that this is a template name.
942 //
943 // FIXME: Find a way to still do typo correction in this case.
944 TemplateName Template =
945 Context.getAssumedTemplateName(NameInfo.getName());
946 return NameClassification::UndeclaredTemplate(Template);
947 }
948
949 // In C, we first see whether there is a tag type by the same name, in
950 // which case it's likely that the user just forgot to write "enum",
951 // "struct", or "union".
952 if (!getLangOpts().CPlusPlus && !SecondTry &&
953 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
954 break;
955 }
956
957 // Perform typo correction to determine if there is another name that is
958 // close to this name.
959 if (!SecondTry && CCC) {
960 SecondTry = true;
961 if (TypoCorrection Corrected =
962 CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S,
963 &SS, *CCC, CTK_ErrorRecovery)) {
964 unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
965 unsigned QualifiedDiag = diag::err_no_member_suggest;
966
967 NamedDecl *FirstDecl = Corrected.getFoundDecl();
968 NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
969 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
970 UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
971 UnqualifiedDiag = diag::err_no_template_suggest;
972 QualifiedDiag = diag::err_no_member_template_suggest;
973 } else if (UnderlyingFirstDecl &&
974 (isa<TypeDecl>(UnderlyingFirstDecl) ||
975 isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
976 isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
977 UnqualifiedDiag = diag::err_unknown_typename_suggest;
978 QualifiedDiag = diag::err_unknown_nested_typename_suggest;
979 }
980
981 if (SS.isEmpty()) {
982 diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
983 } else {// FIXME: is this even reachable? Test it.
984 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
985 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
986 Name->getName().equals(CorrectedStr);
987 diagnoseTypo(Corrected, PDiag(QualifiedDiag)
988 << Name << computeDeclContext(SS, false)
989 << DroppedSpecifier << SS.getRange());
990 }
991
992 // Update the name, so that the caller has the new name.
993 Name = Corrected.getCorrectionAsIdentifierInfo();
994
995 // Typo correction corrected to a keyword.
996 if (Corrected.isKeyword())
997 return Name;
998
999 // Also update the LookupResult...
1000 // FIXME: This should probably go away at some point
1001 Result.clear();
1002 Result.setLookupName(Corrected.getCorrection());
1003 if (FirstDecl)
1004 Result.addDecl(FirstDecl);
1005
1006 // If we found an Objective-C instance variable, let
1007 // LookupInObjCMethod build the appropriate expression to
1008 // reference the ivar.
1009 // FIXME: This is a gross hack.
1010 if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
1011 DeclResult R =
1012 LookupIvarInObjCMethod(Result, S, Ivar->getIdentifier());
1013 if (R.isInvalid())
1014 return NameClassification::Error();
1015 if (R.isUsable())
1016 return NameClassification::NonType(Ivar);
1017 }
1018
1019 goto Corrected;
1020 }
1021 }
1022
1023 // We failed to correct; just fall through and let the parser deal with it.
1024 Result.suppressDiagnostics();
1025 return NameClassification::Unknown();
1026
1027 case LookupResult::NotFoundInCurrentInstantiation: {
1028 // We performed name lookup into the current instantiation, and there were
1029 // dependent bases, so we treat this result the same way as any other
1030 // dependent nested-name-specifier.
1031
1032 // C++ [temp.res]p2:
1033 // A name used in a template declaration or definition and that is
1034 // dependent on a template-parameter is assumed not to name a type
1035 // unless the applicable name lookup finds a type name or the name is
1036 // qualified by the keyword typename.
1037 //
1038 // FIXME: If the next token is '<', we might want to ask the parser to
1039 // perform some heroics to see if we actually have a
1040 // template-argument-list, which would indicate a missing 'template'
1041 // keyword here.
1042 return NameClassification::DependentNonType();
1043 }
1044
1045 case LookupResult::Found:
1046 case LookupResult::FoundOverloaded:
1047 case LookupResult::FoundUnresolvedValue:
1048 break;
1049
1050 case LookupResult::Ambiguous:
1051 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1052 hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true,
1053 /*AllowDependent=*/false)) {
1054 // C++ [temp.local]p3:
1055 // A lookup that finds an injected-class-name (10.2) can result in an
1056 // ambiguity in certain cases (for example, if it is found in more than
1057 // one base class). If all of the injected-class-names that are found
1058 // refer to specializations of the same class template, and if the name
1059 // is followed by a template-argument-list, the reference refers to the
1060 // class template itself and not a specialization thereof, and is not
1061 // ambiguous.
1062 //
1063 // This filtering can make an ambiguous result into an unambiguous one,
1064 // so try again after filtering out template names.
1065 FilterAcceptableTemplateNames(Result);
1066 if (!Result.isAmbiguous()) {
1067 IsFilteredTemplateName = true;
1068 break;
1069 }
1070 }
1071
1072 // Diagnose the ambiguity and return an error.
1073 return NameClassification::Error();
1074 }
1075
1076 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1077 (IsFilteredTemplateName ||
1078 hasAnyAcceptableTemplateNames(
1079 Result, /*AllowFunctionTemplates=*/true,
1080 /*AllowDependent=*/false,
1081 /*AllowNonTemplateFunctions*/ SS.isEmpty() &&
1082 getLangOpts().CPlusPlus20))) {
1083 // C++ [temp.names]p3:
1084 // After name lookup (3.4) finds that a name is a template-name or that
1085 // an operator-function-id or a literal- operator-id refers to a set of
1086 // overloaded functions any member of which is a function template if
1087 // this is followed by a <, the < is always taken as the delimiter of a
1088 // template-argument-list and never as the less-than operator.
1089 // C++2a [temp.names]p2:
1090 // A name is also considered to refer to a template if it is an
1091 // unqualified-id followed by a < and name lookup finds either one
1092 // or more functions or finds nothing.
1093 if (!IsFilteredTemplateName)
1094 FilterAcceptableTemplateNames(Result);
1095
1096 bool IsFunctionTemplate;
1097 bool IsVarTemplate;
1098 TemplateName Template;
1099 if (Result.end() - Result.begin() > 1) {
1100 IsFunctionTemplate = true;
1101 Template = Context.getOverloadedTemplateName(Result.begin(),
1102 Result.end());
1103 } else if (!Result.empty()) {
1104 auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl(
1105 *Result.begin(), /*AllowFunctionTemplates=*/true,
1106 /*AllowDependent=*/false));
1107 IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1108 IsVarTemplate = isa<VarTemplateDecl>(TD);
1109
1110 if (SS.isNotEmpty())
1111 Template =
1112 Context.getQualifiedTemplateName(SS.getScopeRep(),
1113 /*TemplateKeyword=*/false, TD);
1114 else
1115 Template = TemplateName(TD);
1116 } else {
1117 // All results were non-template functions. This is a function template
1118 // name.
1119 IsFunctionTemplate = true;
1120 Template = Context.getAssumedTemplateName(NameInfo.getName());
1121 }
1122
1123 if (IsFunctionTemplate) {
1124 // Function templates always go through overload resolution, at which
1125 // point we'll perform the various checks (e.g., accessibility) we need
1126 // to based on which function we selected.
1127 Result.suppressDiagnostics();
1128
1129 return NameClassification::FunctionTemplate(Template);
1130 }
1131
1132 return IsVarTemplate ? NameClassification::VarTemplate(Template)
1133 : NameClassification::TypeTemplate(Template);
1134 }
1135
1136 NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1137 if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1138 DiagnoseUseOfDecl(Type, NameLoc);
1139 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1140 QualType T = Context.getTypeDeclType(Type);
1141 if (SS.isNotEmpty())
1142 return buildNestedType(*this, SS, T, NameLoc);
1143 return ParsedType::make(T);
1144 }
1145
1146 ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1147 if (!Class) {
1148 // FIXME: It's unfortunate that we don't have a Type node for handling this.
1149 if (ObjCCompatibleAliasDecl *Alias =
1150 dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1151 Class = Alias->getClassInterface();
1152 }
1153
1154 if (Class) {
1155 DiagnoseUseOfDecl(Class, NameLoc);
1156
1157 if (NextToken.is(tok::period)) {
1158 // Interface. <something> is parsed as a property reference expression.
1159 // Just return "unknown" as a fall-through for now.
1160 Result.suppressDiagnostics();
1161 return NameClassification::Unknown();
1162 }
1163
1164 QualType T = Context.getObjCInterfaceType(Class);
1165 return ParsedType::make(T);
1166 }
1167
1168 if (isa<ConceptDecl>(FirstDecl))
1169 return NameClassification::Concept(
1170 TemplateName(cast<TemplateDecl>(FirstDecl)));
1171
1172 if (auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(FirstDecl)) {
1173 (void)DiagnoseUseOfDecl(EmptyD, NameLoc);
1174 return NameClassification::Error();
1175 }
1176
1177 // We can have a type template here if we're classifying a template argument.
1178 if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1179 !isa<VarTemplateDecl>(FirstDecl))
1180 return NameClassification::TypeTemplate(
1181 TemplateName(cast<TemplateDecl>(FirstDecl)));
1182
1183 // Check for a tag type hidden by a non-type decl in a few cases where it
1184 // seems likely a type is wanted instead of the non-type that was found.
1185 bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1186 if ((NextToken.is(tok::identifier) ||
1187 (NextIsOp &&
1188 FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1189 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1190 TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1191 DiagnoseUseOfDecl(Type, NameLoc);
1192 QualType T = Context.getTypeDeclType(Type);
1193 if (SS.isNotEmpty())
1194 return buildNestedType(*this, SS, T, NameLoc);
1195 return ParsedType::make(T);
1196 }
1197
1198 // If we already know which single declaration is referenced, just annotate
1199 // that declaration directly. Defer resolving even non-overloaded class
1200 // member accesses, as we need to defer certain access checks until we know
1201 // the context.
1202 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1203 if (Result.isSingleResult() && !ADL && !FirstDecl->isCXXClassMember())
1204 return NameClassification::NonType(Result.getRepresentativeDecl());
1205
1206 // Otherwise, this is an overload set that we will need to resolve later.
1207 Result.suppressDiagnostics();
1208 return NameClassification::OverloadSet(UnresolvedLookupExpr::Create(
1209 Context, Result.getNamingClass(), SS.getWithLocInContext(Context),
1210 Result.getLookupNameInfo(), ADL, Result.isOverloadedResult(),
1211 Result.begin(), Result.end()));
1212}
1213
1214ExprResult
1215Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
1216 SourceLocation NameLoc) {
1217 assert(getLangOpts().CPlusPlus && "ADL-only call in C?")(static_cast<void> (0));
1218 CXXScopeSpec SS;
1219 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
1220 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
1221}
1222
1223ExprResult
1224Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
1225 IdentifierInfo *Name,
1226 SourceLocation NameLoc,
1227 bool IsAddressOfOperand) {
1228 DeclarationNameInfo NameInfo(Name, NameLoc);
1229 return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1230 NameInfo, IsAddressOfOperand,
1231 /*TemplateArgs=*/nullptr);
1232}
1233
1234ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
1235 NamedDecl *Found,
1236 SourceLocation NameLoc,
1237 const Token &NextToken) {
1238 if (getCurMethodDecl() && SS.isEmpty())
1239 if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Found->getUnderlyingDecl()))
1240 return BuildIvarRefExpr(S, NameLoc, Ivar);
1241
1242 // Reconstruct the lookup result.
1243 LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName);
1244 Result.addDecl(Found);
1245 Result.resolveKind();
1246
1247 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1248 return BuildDeclarationNameExpr(SS, Result, ADL);
1249}
1250
1251ExprResult Sema::ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *E) {
1252 // For an implicit class member access, transform the result into a member
1253 // access expression if necessary.
1254 auto *ULE = cast<UnresolvedLookupExpr>(E);
1255 if ((*ULE->decls_begin())->isCXXClassMember()) {
1256 CXXScopeSpec SS;
1257 SS.Adopt(ULE->getQualifierLoc());
1258
1259 // Reconstruct the lookup result.
1260 LookupResult Result(*this, ULE->getName(), ULE->getNameLoc(),
1261 LookupOrdinaryName);
1262 Result.setNamingClass(ULE->getNamingClass());
1263 for (auto I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I)
1264 Result.addDecl(*I, I.getAccess());
1265 Result.resolveKind();
1266 return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1267 nullptr, S);
1268 }
1269
1270 // Otherwise, this is already in the form we needed, and no further checks
1271 // are necessary.
1272 return ULE;
1273}
1274
1275Sema::TemplateNameKindForDiagnostics
1276Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1277 auto *TD = Name.getAsTemplateDecl();
1278 if (!TD)
1279 return TemplateNameKindForDiagnostics::DependentTemplate;
1280 if (isa<ClassTemplateDecl>(TD))
1281 return TemplateNameKindForDiagnostics::ClassTemplate;
1282 if (isa<FunctionTemplateDecl>(TD))
1283 return TemplateNameKindForDiagnostics::FunctionTemplate;
1284 if (isa<VarTemplateDecl>(TD))
1285 return TemplateNameKindForDiagnostics::VarTemplate;
1286 if (isa<TypeAliasTemplateDecl>(TD))
1287 return TemplateNameKindForDiagnostics::AliasTemplate;
1288 if (isa<TemplateTemplateParmDecl>(TD))
1289 return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1290 if (isa<ConceptDecl>(TD))
1291 return TemplateNameKindForDiagnostics::Concept;
1292 return TemplateNameKindForDiagnostics::DependentTemplate;
1293}
1294
1295void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1296 assert(DC->getLexicalParent() == CurContext &&(static_cast<void> (0))
1297 "The next DeclContext should be lexically contained in the current one.")(static_cast<void> (0));
1298 CurContext = DC;
1299 S->setEntity(DC);
1300}
1301
1302void Sema::PopDeclContext() {
1303 assert(CurContext && "DeclContext imbalance!")(static_cast<void> (0));
1304
1305 CurContext = CurContext->getLexicalParent();
1306 assert(CurContext && "Popped translation unit!")(static_cast<void> (0));
1307}
1308
1309Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1310 Decl *D) {
1311 // Unlike PushDeclContext, the context to which we return is not necessarily
1312 // the containing DC of TD, because the new context will be some pre-existing
1313 // TagDecl definition instead of a fresh one.
1314 auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1315 CurContext = cast<TagDecl>(D)->getDefinition();
1316 assert(CurContext && "skipping definition of undefined tag")(static_cast<void> (0));
1317 // Start lookups from the parent of the current context; we don't want to look
1318 // into the pre-existing complete definition.
1319 S->setEntity(CurContext->getLookupParent());
1320 return Result;
1321}
1322
1323void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1324 CurContext = static_cast<decltype(CurContext)>(Context);
1325}
1326
1327/// EnterDeclaratorContext - Used when we must lookup names in the context
1328/// of a declarator's nested name specifier.
1329///
1330void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1331 // C++0x [basic.lookup.unqual]p13:
1332 // A name used in the definition of a static data member of class
1333 // X (after the qualified-id of the static member) is looked up as
1334 // if the name was used in a member function of X.
1335 // C++0x [basic.lookup.unqual]p14:
1336 // If a variable member of a namespace is defined outside of the
1337 // scope of its namespace then any name used in the definition of
1338 // the variable member (after the declarator-id) is looked up as
1339 // if the definition of the variable member occurred in its
1340 // namespace.
1341 // Both of these imply that we should push a scope whose context
1342 // is the semantic context of the declaration. We can't use
1343 // PushDeclContext here because that context is not necessarily
1344 // lexically contained in the current context. Fortunately,
1345 // the containing scope should have the appropriate information.
1346
1347 assert(!S->getEntity() && "scope already has entity")(static_cast<void> (0));
1348
1349#ifndef NDEBUG1
1350 Scope *Ancestor = S->getParent();
1351 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1352 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch")(static_cast<void> (0));
1353#endif
1354
1355 CurContext = DC;
1356 S->setEntity(DC);
1357
1358 if (S->getParent()->isTemplateParamScope()) {
1359 // Also set the corresponding entities for all immediately-enclosing
1360 // template parameter scopes.
1361 EnterTemplatedContext(S->getParent(), DC);
1362 }
1363}
1364
1365void Sema::ExitDeclaratorContext(Scope *S) {
1366 assert(S->getEntity() == CurContext && "Context imbalance!")(static_cast<void> (0));
1367
1368 // Switch back to the lexical context. The safety of this is
1369 // enforced by an assert in EnterDeclaratorContext.
1370 Scope *Ancestor = S->getParent();
1371 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1372 CurContext = Ancestor->getEntity();
1373
1374 // We don't need to do anything with the scope, which is going to
1375 // disappear.
1376}
1377
1378void Sema::EnterTemplatedContext(Scope *S, DeclContext *DC) {
1379 assert(S->isTemplateParamScope() &&(static_cast<void> (0))
1380 "expected to be initializing a template parameter scope")(static_cast<void> (0));
1381
1382 // C++20 [temp.local]p7:
1383 // In the definition of a member of a class template that appears outside
1384 // of the class template definition, the name of a member of the class
1385 // template hides the name of a template-parameter of any enclosing class
1386 // templates (but not a template-parameter of the member if the member is a
1387 // class or function template).
1388 // C++20 [temp.local]p9:
1389 // In the definition of a class template or in the definition of a member
1390 // of such a template that appears outside of the template definition, for
1391 // each non-dependent base class (13.8.2.1), if the name of the base class
1392 // or the name of a member of the base class is the same as the name of a
1393 // template-parameter, the base class name or member name hides the
1394 // template-parameter name (6.4.10).
1395 //
1396 // This means that a template parameter scope should be searched immediately
1397 // after searching the DeclContext for which it is a template parameter
1398 // scope. For example, for
1399 // template<typename T> template<typename U> template<typename V>
1400 // void N::A<T>::B<U>::f(...)
1401 // we search V then B<U> (and base classes) then U then A<T> (and base
1402 // classes) then T then N then ::.
1403 unsigned ScopeDepth = getTemplateDepth(S);
1404 for (; S && S->isTemplateParamScope(); S = S->getParent(), --ScopeDepth) {
1405 DeclContext *SearchDCAfterScope = DC;
1406 for (; DC; DC = DC->getLookupParent()) {
1407 if (const TemplateParameterList *TPL =
1408 cast<Decl>(DC)->getDescribedTemplateParams()) {
1409 unsigned DCDepth = TPL->getDepth() + 1;
1410 if (DCDepth > ScopeDepth)
1411 continue;
1412 if (ScopeDepth == DCDepth)
1413 SearchDCAfterScope = DC = DC->getLookupParent();
1414 break;
1415 }
1416 }
1417 S->setLookupEntity(SearchDCAfterScope);
1418 }
1419}
1420
1421void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1422 // We assume that the caller has already called
1423 // ActOnReenterTemplateScope so getTemplatedDecl() works.
1424 FunctionDecl *FD = D->getAsFunction();
1425 if (!FD)
1426 return;
1427
1428 // Same implementation as PushDeclContext, but enters the context
1429 // from the lexical parent, rather than the top-level class.
1430 assert(CurContext == FD->getLexicalParent() &&(static_cast<void> (0))
1431 "The next DeclContext should be lexically contained in the current one.")(static_cast<void> (0));
1432 CurContext = FD;
1433 S->setEntity(CurContext);
1434
1435 for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1436 ParmVarDecl *Param = FD->getParamDecl(P);
1437 // If the parameter has an identifier, then add it to the scope
1438 if (Param->getIdentifier()) {
1439 S->AddDecl(Param);
1440 IdResolver.AddDecl(Param);
1441 }
1442 }
1443}
1444
1445void Sema::ActOnExitFunctionContext() {
1446 // Same implementation as PopDeclContext, but returns to the lexical parent,
1447 // rather than the top-level class.
1448 assert(CurContext && "DeclContext imbalance!")(static_cast<void> (0));
1449 CurContext = CurContext->getLexicalParent();
1450 assert(CurContext && "Popped translation unit!")(static_cast<void> (0));
1451}
1452
1453/// Determine whether we allow overloading of the function
1454/// PrevDecl with another declaration.
1455///
1456/// This routine determines whether overloading is possible, not
1457/// whether some new function is actually an overload. It will return
1458/// true in C++ (where we can always provide overloads) or, as an
1459/// extension, in C when the previous function is already an
1460/// overloaded function declaration or has the "overloadable"
1461/// attribute.
1462static bool AllowOverloadingOfFunction(LookupResult &Previous,
1463 ASTContext &Context,
1464 const FunctionDecl *New) {
1465 if (Context.getLangOpts().CPlusPlus)
1466 return true;
1467
1468 if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1469 return true;
1470
1471 return Previous.getResultKind() == LookupResult::Found &&
1472 (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() ||
1473 New->hasAttr<OverloadableAttr>());
1474}
1475
1476/// Add this decl to the scope shadowed decl chains.
1477void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1478 // Move up the scope chain until we find the nearest enclosing
1479 // non-transparent context. The declaration will be introduced into this
1480 // scope.
1481 while (S->getEntity() && S->getEntity()->isTransparentContext())
1482 S = S->getParent();
1483
1484 // Add scoped declarations into their context, so that they can be
1485 // found later. Declarations without a context won't be inserted
1486 // into any context.
1487 if (AddToContext)
1488 CurContext->addDecl(D);
1489
1490 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1491 // are function-local declarations.
1492 if (getLangOpts().CPlusPlus && D->isOutOfLine() && !S->getFnParent())
1493 return;
1494
1495 // Template instantiations should also not be pushed into scope.
1496 if (isa<FunctionDecl>(D) &&
1497 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1498 return;
1499
1500 // If this replaces anything in the current scope,
1501 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1502 IEnd = IdResolver.end();
1503 for (; I != IEnd; ++I) {
1504 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1505 S->RemoveDecl(*I);
1506 IdResolver.RemoveDecl(*I);
1507
1508 // Should only need to replace one decl.
1509 break;
1510 }
1511 }
1512
1513 S->AddDecl(D);
1514
1515 if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1516 // Implicitly-generated labels may end up getting generated in an order that
1517 // isn't strictly lexical, which breaks name lookup. Be careful to insert
1518 // the label at the appropriate place in the identifier chain.
1519 for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1520 DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1521 if (IDC == CurContext) {
1522 if (!S->isDeclScope(*I))
1523 continue;
1524 } else if (IDC->Encloses(CurContext))
1525 break;
1526 }
1527
1528 IdResolver.InsertDeclAfter(I, D);
1529 } else {
1530 IdResolver.AddDecl(D);
1531 }
1532 warnOnReservedIdentifier(D);
1533}
1534
1535bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1536 bool AllowInlineNamespace) {
1537 return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1538}
1539
1540Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1541 DeclContext *TargetDC = DC->getPrimaryContext();
1542 do {
1543 if (DeclContext *ScopeDC = S->getEntity())
1544 if (ScopeDC->getPrimaryContext() == TargetDC)
1545 return S;
1546 } while ((S = S->getParent()));
1547
1548 return nullptr;
1549}
1550
1551static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1552 DeclContext*,
1553 ASTContext&);
1554
1555/// Filters out lookup results that don't fall within the given scope
1556/// as determined by isDeclInScope.
1557void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1558 bool ConsiderLinkage,
1559 bool AllowInlineNamespace) {
1560 LookupResult::Filter F = R.makeFilter();
1561 while (F.hasNext()) {
1562 NamedDecl *D = F.next();
1563
1564 if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1565 continue;
1566
1567 if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1568 continue;
1569
1570 F.erase();
1571 }
1572
1573 F.done();
1574}
1575
1576/// We've determined that \p New is a redeclaration of \p Old. Check that they
1577/// have compatible owning modules.
1578bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1579 // FIXME: The Modules TS is not clear about how friend declarations are
1580 // to be treated. It's not meaningful to have different owning modules for
1581 // linkage in redeclarations of the same entity, so for now allow the
1582 // redeclaration and change the owning modules to match.
1583 if (New->getFriendObjectKind() &&
1584 Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
1585 New->setLocalOwningModule(Old->getOwningModule());
1586 makeMergedDefinitionVisible(New);
1587 return false;
1588 }
1589
1590 Module *NewM = New->getOwningModule();
1591 Module *OldM = Old->getOwningModule();
1592
1593 if (NewM && NewM->Kind == Module::PrivateModuleFragment)
1594 NewM = NewM->Parent;
1595 if (OldM && OldM->Kind == Module::PrivateModuleFragment)
1596 OldM = OldM->Parent;
1597
1598 if (NewM == OldM)
1599 return false;
1600
1601 bool NewIsModuleInterface = NewM && NewM->isModulePurview();
1602 bool OldIsModuleInterface = OldM && OldM->isModulePurview();
1603 if (NewIsModuleInterface || OldIsModuleInterface) {
1604 // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1605 // if a declaration of D [...] appears in the purview of a module, all
1606 // other such declarations shall appear in the purview of the same module
1607 Diag(New->getLocation(), diag::err_mismatched_owning_module)
1608 << New
1609 << NewIsModuleInterface
1610 << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1611 << OldIsModuleInterface
1612 << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1613 Diag(Old->getLocation(), diag::note_previous_declaration);
1614 New->setInvalidDecl();
1615 return true;
1616 }
1617
1618 return false;
1619}
1620
1621static bool isUsingDecl(NamedDecl *D) {
1622 return isa<UsingShadowDecl>(D) ||
1623 isa<UnresolvedUsingTypenameDecl>(D) ||
1624 isa<UnresolvedUsingValueDecl>(D);
1625}
1626
1627/// Removes using shadow declarations from the lookup results.
1628static void RemoveUsingDecls(LookupResult &R) {
1629 LookupResult::Filter F = R.makeFilter();
1630 while (F.hasNext())
1631 if (isUsingDecl(F.next()))
1632 F.erase();
1633
1634 F.done();
1635}
1636
1637/// Check for this common pattern:
1638/// @code
1639/// class S {
1640/// S(const S&); // DO NOT IMPLEMENT
1641/// void operator=(const S&); // DO NOT IMPLEMENT
1642/// };
1643/// @endcode
1644static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1645 // FIXME: Should check for private access too but access is set after we get
1646 // the decl here.
1647 if (D->doesThisDeclarationHaveABody())
1648 return false;
1649
1650 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1651 return CD->isCopyConstructor();
1652 return D->isCopyAssignmentOperator();
1653}
1654
1655// We need this to handle
1656//
1657// typedef struct {
1658// void *foo() { return 0; }
1659// } A;
1660//
1661// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1662// for example. If 'A', foo will have external linkage. If we have '*A',
1663// foo will have no linkage. Since we can't know until we get to the end
1664// of the typedef, this function finds out if D might have non-external linkage.
1665// Callers should verify at the end of the TU if it D has external linkage or
1666// not.
1667bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1668 const DeclContext *DC = D->getDeclContext();
1669 while (!DC->isTranslationUnit()) {
1670 if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1671 if (!RD->hasNameForLinkage())
1672 return true;
1673 }
1674 DC = DC->getParent();
1675 }
1676
1677 return !D->isExternallyVisible();
1678}
1679
1680// FIXME: This needs to be refactored; some other isInMainFile users want
1681// these semantics.
1682static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1683 if (S.TUKind != TU_Complete)
1684 return false;
1685 return S.SourceMgr.isInMainFile(Loc);
1686}
1687
1688bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1689 assert(D)(static_cast<void> (0));
1690
1691 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1692 return false;
1693
1694 // Ignore all entities declared within templates, and out-of-line definitions
1695 // of members of class templates.
1696 if (D->getDeclContext()->isDependentContext() ||
1697 D->getLexicalDeclContext()->isDependentContext())
1698 return false;
1699
1700 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1701 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1702 return false;
1703 // A non-out-of-line declaration of a member specialization was implicitly
1704 // instantiated; it's the out-of-line declaration that we're interested in.
1705 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1706 FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1707 return false;
1708
1709 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1710 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1711 return false;
1712 } else {
1713 // 'static inline' functions are defined in headers; don't warn.
1714 if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1715 return false;
1716 }
1717
1718 if (FD->doesThisDeclarationHaveABody() &&
1719 Context.DeclMustBeEmitted(FD))
1720 return false;
1721 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1722 // Constants and utility variables are defined in headers with internal
1723 // linkage; don't warn. (Unlike functions, there isn't a convenient marker
1724 // like "inline".)
1725 if (!isMainFileLoc(*this, VD->getLocation()))
1726 return false;
1727
1728 if (Context.DeclMustBeEmitted(VD))
1729 return false;
1730
1731 if (VD->isStaticDataMember() &&
1732 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1733 return false;
1734 if (VD->isStaticDataMember() &&
1735 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1736 VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1737 return false;
1738
1739 if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1740 return false;
1741 } else {
1742 return false;
1743 }
1744
1745 // Only warn for unused decls internal to the translation unit.
1746 // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1747 // for inline functions defined in the main source file, for instance.
1748 return mightHaveNonExternalLinkage(D);
1749}
1750
1751void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1752 if (!D)
1753 return;
1754
1755 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1756 const FunctionDecl *First = FD->getFirstDecl();
1757 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1758 return; // First should already be in the vector.
1759 }
1760
1761 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1762 const VarDecl *First = VD->getFirstDecl();
1763 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1764 return; // First should already be in the vector.
1765 }
1766
1767 if (ShouldWarnIfUnusedFileScopedDecl(D))
1768 UnusedFileScopedDecls.push_back(D);
1769}
1770
1771static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1772 if (D->isInvalidDecl())
1773 return false;
1774
1775 if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
1776 // For a decomposition declaration, warn if none of the bindings are
1777 // referenced, instead of if the variable itself is referenced (which
1778 // it is, by the bindings' expressions).
1779 for (auto *BD : DD->bindings())
1780 if (BD->isReferenced())
1781 return false;
1782 } else if (!D->getDeclName()) {
1783 return false;
1784 } else if (D->isReferenced() || D->isUsed()) {
1785 return false;
1786 }
1787
1788 if (D->hasAttr<UnusedAttr>() || D->hasAttr<ObjCPreciseLifetimeAttr>())
1789 return false;
1790
1791 if (isa<LabelDecl>(D))
1792 return true;
1793
1794 // Except for labels, we only care about unused decls that are local to
1795 // functions.
1796 bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1797 if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1798 // For dependent types, the diagnostic is deferred.
1799 WithinFunction =
1800 WithinFunction || (R->isLocalClass() && !R->isDependentType());
1801 if (!WithinFunction)
1802 return false;
1803
1804 if (isa<TypedefNameDecl>(D))
1805 return true;
1806
1807 // White-list anything that isn't a local variable.
1808 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1809 return false;
1810
1811 // Types of valid local variables should be complete, so this should succeed.
1812 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1813
1814 // White-list anything with an __attribute__((unused)) type.
1815 const auto *Ty = VD->getType().getTypePtr();
1816
1817 // Only look at the outermost level of typedef.
1818 if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1819 if (TT->getDecl()->hasAttr<UnusedAttr>())
1820 return false;
1821 }
1822
1823 // If we failed to complete the type for some reason, or if the type is
1824 // dependent, don't diagnose the variable.
1825 if (Ty->isIncompleteType() || Ty->isDependentType())
1826 return false;
1827
1828 // Look at the element type to ensure that the warning behaviour is
1829 // consistent for both scalars and arrays.
1830 Ty = Ty->getBaseElementTypeUnsafe();
1831
1832 if (const TagType *TT = Ty->getAs<TagType>()) {
1833 const TagDecl *Tag = TT->getDecl();
1834 if (Tag->hasAttr<UnusedAttr>())
1835 return false;
1836
1837 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1838 if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1839 return false;
1840
1841 if (const Expr *Init = VD->getInit()) {
1842 if (const ExprWithCleanups *Cleanups =
1843 dyn_cast<ExprWithCleanups>(Init))
1844 Init = Cleanups->getSubExpr();
1845 const CXXConstructExpr *Construct =
1846 dyn_cast<CXXConstructExpr>(Init);
1847 if (Construct && !Construct->isElidable()) {
1848 CXXConstructorDecl *CD = Construct->getConstructor();
1849 if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
1850 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
1851 return false;
1852 }
1853
1854 // Suppress the warning if we don't know how this is constructed, and
1855 // it could possibly be non-trivial constructor.
1856 if (Init->isTypeDependent())
1857 for (const CXXConstructorDecl *Ctor : RD->ctors())
1858 if (!Ctor->isTrivial())
1859 return false;
1860 }
1861 }
1862 }
1863
1864 // TODO: __attribute__((unused)) templates?
1865 }
1866
1867 return true;
1868}
1869
1870static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1871 FixItHint &Hint) {
1872 if (isa<LabelDecl>(D)) {
1873 SourceLocation AfterColon = Lexer::findLocationAfterToken(
1874 D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
1875 true);
1876 if (AfterColon.isInvalid())
1877 return;
1878 Hint = FixItHint::CreateRemoval(
1879 CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
1880 }
1881}
1882
1883void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1884 if (D->getTypeForDecl()->isDependentType())
1885 return;
1886
1887 for (auto *TmpD : D->decls()) {
1888 if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1889 DiagnoseUnusedDecl(T);
1890 else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1891 DiagnoseUnusedNestedTypedefs(R);
1892 }
1893}
1894
1895/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1896/// unless they are marked attr(unused).
1897void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1898 if (!ShouldDiagnoseUnusedDecl(D))
1899 return;
1900
1901 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1902 // typedefs can be referenced later on, so the diagnostics are emitted
1903 // at end-of-translation-unit.
1904 UnusedLocalTypedefNameCandidates.insert(TD);
1905 return;
1906 }
1907
1908 FixItHint Hint;
1909 GenerateFixForUnusedDecl(D, Context, Hint);
1910
1911 unsigned DiagID;
1912 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1913 DiagID = diag::warn_unused_exception_param;
1914 else if (isa<LabelDecl>(D))
1915 DiagID = diag::warn_unused_label;
1916 else
1917 DiagID = diag::warn_unused_variable;
1918
1919 Diag(D->getLocation(), DiagID) << D << Hint;
1920}
1921
1922void Sema::DiagnoseUnusedButSetDecl(const VarDecl *VD) {
1923 // If it's not referenced, it can't be set.
1924 if (!VD->isReferenced() || !VD->getDeclName() || VD->hasAttr<UnusedAttr>())
1925 return;
1926
1927 const auto *Ty = VD->getType().getTypePtr()->getBaseElementTypeUnsafe();
1928
1929 if (Ty->isReferenceType() || Ty->isDependentType())
1930 return;
1931
1932 if (const TagType *TT = Ty->getAs<TagType>()) {
1933 const TagDecl *Tag = TT->getDecl();
1934 if (Tag->hasAttr<UnusedAttr>())
1935 return;
1936 // In C++, don't warn for record types that don't have WarnUnusedAttr, to
1937 // mimic gcc's behavior.
1938 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1939 if (!RD->hasAttr<WarnUnusedAttr>())
1940 return;
1941 }
1942 }
1943
1944 auto iter = RefsMinusAssignments.find(VD);
1945 if (iter == RefsMinusAssignments.end())
1946 return;
1947
1948 assert(iter->getSecond() >= 0 &&(static_cast<void> (0))
1949 "Found a negative number of references to a VarDecl")(static_cast<void> (0));
1950 if (iter->getSecond() != 0)
1951 return;
1952 unsigned DiagID = isa<ParmVarDecl>(VD) ? diag::warn_unused_but_set_parameter
1953 : diag::warn_unused_but_set_variable;
1954 Diag(VD->getLocation(), DiagID) << VD;
1955}
1956
1957static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1958 // Verify that we have no forward references left. If so, there was a goto
1959 // or address of a label taken, but no definition of it. Label fwd
1960 // definitions are indicated with a null substmt which is also not a resolved
1961 // MS inline assembly label name.
1962 bool Diagnose = false;
1963 if (L->isMSAsmLabel())
1964 Diagnose = !L->isResolvedMSAsmLabel();
1965 else
1966 Diagnose = L->getStmt() == nullptr;
1967 if (Diagnose)
1968 S.Diag(L->getLocation(), diag::err_undeclared_label_use) << L;
1969}
1970
1971void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1972 S->mergeNRVOIntoParent();
1973
1974 if (S->decl_empty()) return;
1975 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&(static_cast<void> (0))
1976 "Scope shouldn't contain decls!")(static_cast<void> (0));
1977
1978 for (auto *TmpD : S->decls()) {
1979 assert(TmpD && "This decl didn't get pushed??")(static_cast<void> (0));
1980
1981 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?")(static_cast<void> (0));
1982 NamedDecl *D = cast<NamedDecl>(TmpD);
1983
1984 // Diagnose unused variables in this scope.
1985 if (!S->hasUnrecoverableErrorOccurred()) {
1986 DiagnoseUnusedDecl(D);
1987 if (const auto *RD = dyn_cast<RecordDecl>(D))
1988 DiagnoseUnusedNestedTypedefs(RD);
1989 if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
1990 DiagnoseUnusedButSetDecl(VD);
1991 RefsMinusAssignments.erase(VD);
1992 }
1993 }
1994
1995 if (!D->getDeclName()) continue;
1996
1997 // If this was a forward reference to a label, verify it was defined.
1998 if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1999 CheckPoppedLabel(LD, *this);
2000
2001 // Remove this name from our lexical scope, and warn on it if we haven't
2002 // already.
2003 IdResolver.RemoveDecl(D);
2004 auto ShadowI = ShadowingDecls.find(D);
2005 if (ShadowI != ShadowingDecls.end()) {
2006 if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
2007 Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
2008 << D << FD << FD->getParent();
2009 Diag(FD->getLocation(), diag::note_previous_declaration);
2010 }
2011 ShadowingDecls.erase(ShadowI);
2012 }
2013 }
2014}
2015
2016/// Look for an Objective-C class in the translation unit.
2017///
2018/// \param Id The name of the Objective-C class we're looking for. If
2019/// typo-correction fixes this name, the Id will be updated
2020/// to the fixed name.
2021///
2022/// \param IdLoc The location of the name in the translation unit.
2023///
2024/// \param DoTypoCorrection If true, this routine will attempt typo correction
2025/// if there is no class with the given name.
2026///
2027/// \returns The declaration of the named Objective-C class, or NULL if the
2028/// class could not be found.
2029ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
2030 SourceLocation IdLoc,
2031 bool DoTypoCorrection) {
2032 // The third "scope" argument is 0 since we aren't enabling lazy built-in
2033 // creation from this context.
2034 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
2035
2036 if (!IDecl && DoTypoCorrection) {
2037 // Perform typo correction at the given location, but only if we
2038 // find an Objective-C class name.
2039 DeclFilterCCC<ObjCInterfaceDecl> CCC{};
2040 if (TypoCorrection C =
2041 CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
2042 TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
2043 diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
2044 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
2045 Id = IDecl->getIdentifier();
2046 }
2047 }
2048 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
2049 // This routine must always return a class definition, if any.
2050 if (Def && Def->getDefinition())
2051 Def = Def->getDefinition();
2052 return Def;
2053}
2054
2055/// getNonFieldDeclScope - Retrieves the innermost scope, starting
2056/// from S, where a non-field would be declared. This routine copes
2057/// with the difference between C and C++ scoping rules in structs and
2058/// unions. For example, the following code is well-formed in C but
2059/// ill-formed in C++:
2060/// @code
2061/// struct S6 {
2062/// enum { BAR } e;
2063/// };
2064///
2065/// void test_S6() {
2066/// struct S6 a;
2067/// a.e = BAR;
2068/// }
2069/// @endcode
2070/// For the declaration of BAR, this routine will return a different
2071/// scope. The scope S will be the scope of the unnamed enumeration
2072/// within S6. In C++, this routine will return the scope associated
2073/// with S6, because the enumeration's scope is a transparent
2074/// context but structures can contain non-field names. In C, this
2075/// routine will return the translation unit scope, since the
2076/// enumeration's scope is a transparent context and structures cannot
2077/// contain non-field names.
2078Scope *Sema::getNonFieldDeclScope(Scope *S) {
2079 while (((S->getFlags() & Scope::DeclScope) == 0) ||
2080 (S->getEntity() && S->getEntity()->isTransparentContext()) ||
2081 (S->isClassScope() && !getLangOpts().CPlusPlus))
2082 S = S->getParent();
2083 return S;
2084}
2085
2086static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID,
2087 ASTContext::GetBuiltinTypeError Error) {
2088 switch (Error) {
2089 case ASTContext::GE_None:
2090 return "";
2091 case ASTContext::GE_Missing_type:
2092 return BuiltinInfo.getHeaderName(ID);
2093 case ASTContext::GE_Missing_stdio:
2094 return "stdio.h";
2095 case ASTContext::GE_Missing_setjmp:
2096 return "setjmp.h";
2097 case ASTContext::GE_Missing_ucontext:
2098 return "ucontext.h";
2099 }
2100 llvm_unreachable("unhandled error kind")__builtin_unreachable();
2101}
2102
2103FunctionDecl *Sema::CreateBuiltin(IdentifierInfo *II, QualType Type,
2104 unsigned ID, SourceLocation Loc) {
2105 DeclContext *Parent = Context.getTranslationUnitDecl();
2106
2107 if (getLangOpts().CPlusPlus) {
2108 LinkageSpecDecl *CLinkageDecl = LinkageSpecDecl::Create(
2109 Context, Parent, Loc, Loc, LinkageSpecDecl::lang_c, false);
2110 CLinkageDecl->setImplicit();
2111 Parent->addDecl(CLinkageDecl);
2112 Parent = CLinkageDecl;
2113 }
2114
2115 FunctionDecl *New = FunctionDecl::Create(Context, Parent, Loc, Loc, II, Type,
2116 /*TInfo=*/nullptr, SC_Extern,
2117 getCurFPFeatures().isFPConstrained(),
2118 false, Type->isFunctionProtoType());
2119 New->setImplicit();
2120 New->addAttr(BuiltinAttr::CreateImplicit(Context, ID));
2121
2122 // Create Decl objects for each parameter, adding them to the
2123 // FunctionDecl.
2124 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(Type)) {
2125 SmallVector<ParmVarDecl *, 16> Params;
2126 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2127 ParmVarDecl *parm = ParmVarDecl::Create(
2128 Context, New, SourceLocation(), SourceLocation(), nullptr,
2129 FT->getParamType(i), /*TInfo=*/nullptr, SC_None, nullptr);
2130 parm->setScopeInfo(0, i);
2131 Params.push_back(parm);
2132 }
2133 New->setParams(Params);
2134 }
2135
2136 AddKnownFunctionAttributes(New);
2137 return New;
2138}
2139
2140/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
2141/// file scope. lazily create a decl for it. ForRedeclaration is true
2142/// if we're creating this built-in in anticipation of redeclaring the
2143/// built-in.
2144NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
2145 Scope *S, bool ForRedeclaration,
2146 SourceLocation Loc) {
2147 LookupNecessaryTypesForBuiltin(S, ID);
2148
2149 ASTContext::GetBuiltinTypeError Error;
2150 QualType R = Context.GetBuiltinType(ID, Error);
2151 if (Error) {
2152 if (!ForRedeclaration)
2153 return nullptr;
2154
2155 // If we have a builtin without an associated type we should not emit a
2156 // warning when we were not able to find a type for it.
2157 if (Error == ASTContext::GE_Missing_type ||
2158 Context.BuiltinInfo.allowTypeMismatch(ID))
2159 return nullptr;
2160
2161 // If we could not find a type for setjmp it is because the jmp_buf type was
2162 // not defined prior to the setjmp declaration.
2163 if (Error == ASTContext::GE_Missing_setjmp) {
2164 Diag(Loc, diag::warn_implicit_decl_no_jmp_buf)
2165 << Context.BuiltinInfo.getName(ID);
2166 return nullptr;
2167 }
2168
2169 // Generally, we emit a warning that the declaration requires the
2170 // appropriate header.
2171 Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
2172 << getHeaderName(Context.BuiltinInfo, ID, Error)
2173 << Context.BuiltinInfo.getName(ID);
2174 return nullptr;
2175 }
2176
2177 if (!ForRedeclaration &&
2178 (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
2179 Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
2180 Diag(Loc, diag::ext_implicit_lib_function_decl)
2181 << Context.BuiltinInfo.getName(ID) << R;
2182 if (const char *Header = Context.BuiltinInfo.getHeaderName(ID))
2183 Diag(Loc, diag::note_include_header_or_declare)
2184 << Header << Context.BuiltinInfo.getName(ID);
2185 }
2186
2187 if (R.isNull())
2188 return nullptr;
2189
2190 FunctionDecl *New = CreateBuiltin(II, R, ID, Loc);
2191 RegisterLocallyScopedExternCDecl(New, S);
2192
2193 // TUScope is the translation-unit scope to insert this function into.
2194 // FIXME: This is hideous. We need to teach PushOnScopeChains to
2195 // relate Scopes to DeclContexts, and probably eliminate CurContext
2196 // entirely, but we're not there yet.
2197 DeclContext *SavedContext = CurContext;
2198 CurContext = New->getDeclContext();
2199 PushOnScopeChains(New, TUScope);
2200 CurContext = SavedContext;
2201 return New;
2202}
2203
2204/// Typedef declarations don't have linkage, but they still denote the same
2205/// entity if their types are the same.
2206/// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2207/// isSameEntity.
2208static void filterNonConflictingPreviousTypedefDecls(Sema &S,
2209 TypedefNameDecl *Decl,
2210 LookupResult &Previous) {
2211 // This is only interesting when modules are enabled.
2212 if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2213 return;
2214
2215 // Empty sets are uninteresting.
2216 if (Previous.empty())
2217 return;
2218
2219 LookupResult::Filter Filter = Previous.makeFilter();
2220 while (Filter.hasNext()) {
2221 NamedDecl *Old = Filter.next();
2222
2223 // Non-hidden declarations are never ignored.
2224 if (S.isVisible(Old))
2225 continue;
2226
2227 // Declarations of the same entity are not ignored, even if they have
2228 // different linkages.
2229 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2230 if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2231 Decl->getUnderlyingType()))
2232 continue;
2233
2234 // If both declarations give a tag declaration a typedef name for linkage
2235 // purposes, then they declare the same entity.
2236 if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2237 Decl->getAnonDeclWithTypedefName())
2238 continue;
2239 }
2240
2241 Filter.erase();
2242 }
2243
2244 Filter.done();
2245}
2246
2247bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
2248 QualType OldType;
2249 if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2250 OldType = OldTypedef->getUnderlyingType();
2251 else
2252 OldType = Context.getTypeDeclType(Old);
2253 QualType NewType = New->getUnderlyingType();
2254
2255 if (NewType->isVariablyModifiedType()) {
2256 // Must not redefine a typedef with a variably-modified type.
2257 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2258 Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2259 << Kind << NewType;
2260 if (Old->getLocation().isValid())
2261 notePreviousDefinition(Old, New->getLocation());
2262 New->setInvalidDecl();
2263 return true;
2264 }
2265
2266 if (OldType != NewType &&
2267 !OldType->isDependentType() &&
2268 !NewType->isDependentType() &&
2269 !Context.hasSameType(OldType, NewType)) {
2270 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2271 Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2272 << Kind << NewType << OldType;
2273 if (Old->getLocation().isValid())
2274 notePreviousDefinition(Old, New->getLocation());
2275 New->setInvalidDecl();
2276 return true;
2277 }
2278 return false;
2279}
2280
2281/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2282/// same name and scope as a previous declaration 'Old'. Figure out
2283/// how to resolve this situation, merging decls or emitting
2284/// diagnostics as appropriate. If there was an error, set New to be invalid.
2285///
2286void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2287 LookupResult &OldDecls) {
2288 // If the new decl is known invalid already, don't bother doing any
2289 // merging checks.
2290 if (New->isInvalidDecl()) return;
2291
2292 // Allow multiple definitions for ObjC built-in typedefs.
2293 // FIXME: Verify the underlying types are equivalent!
2294 if (getLangOpts().ObjC) {
2295 const IdentifierInfo *TypeID = New->getIdentifier();
2296 switch (TypeID->getLength()) {
2297 default: break;
2298 case 2:
2299 {
2300 if (!TypeID->isStr("id"))
2301 break;
2302 QualType T = New->getUnderlyingType();
2303 if (!T->isPointerType())
2304 break;
2305 if (!T->isVoidPointerType()) {
2306 QualType PT = T->castAs<PointerType>()->getPointeeType();
2307 if (!PT->isStructureType())
2308 break;
2309 }
2310 Context.setObjCIdRedefinitionType(T);
2311 // Install the built-in type for 'id', ignoring the current definition.
2312 New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2313 return;
2314 }
2315 case 5:
2316 if (!TypeID->isStr("Class"))
2317 break;
2318 Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2319 // Install the built-in type for 'Class', ignoring the current definition.
2320 New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2321 return;
2322 case 3:
2323 if (!TypeID->isStr("SEL"))
2324 break;
2325 Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2326 // Install the built-in type for 'SEL', ignoring the current definition.
2327 New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2328 return;
2329 }
2330 // Fall through - the typedef name was not a builtin type.
2331 }
2332
2333 // Verify the old decl was also a type.
2334 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2335 if (!Old) {
2336 Diag(New->getLocation(), diag::err_redefinition_different_kind)
2337 << New->getDeclName();
2338
2339 NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2340 if (OldD->getLocation().isValid())
2341 notePreviousDefinition(OldD, New->getLocation());
2342
2343 return New->setInvalidDecl();
2344 }
2345
2346 // If the old declaration is invalid, just give up here.
2347 if (Old->isInvalidDecl())
2348 return New->setInvalidDecl();
2349
2350 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2351 auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2352 auto *NewTag = New->getAnonDeclWithTypedefName();
2353 NamedDecl *Hidden = nullptr;
2354 if (OldTag && NewTag &&
2355 OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2356 !hasVisibleDefinition(OldTag, &Hidden)) {
2357 // There is a definition of this tag, but it is not visible. Use it
2358 // instead of our tag.
2359 New->setTypeForDecl(OldTD->getTypeForDecl());
2360 if (OldTD->isModed())
2361 New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2362 OldTD->getUnderlyingType());
2363 else
2364 New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2365
2366 // Make the old tag definition visible.
2367 makeMergedDefinitionVisible(Hidden);
2368
2369 // If this was an unscoped enumeration, yank all of its enumerators
2370 // out of the scope.
2371 if (isa<EnumDecl>(NewTag)) {
2372 Scope *EnumScope = getNonFieldDeclScope(S);
2373 for (auto *D : NewTag->decls()) {
2374 auto *ED = cast<EnumConstantDecl>(D);
2375 assert(EnumScope->isDeclScope(ED))(static_cast<void> (0));
2376 EnumScope->RemoveDecl(ED);
2377 IdResolver.RemoveDecl(ED);
2378 ED->getLexicalDeclContext()->removeDecl(ED);
2379 }
2380 }
2381 }
2382 }
2383
2384 // If the typedef types are not identical, reject them in all languages and
2385 // with any extensions enabled.
2386 if (isIncompatibleTypedef(Old, New))
2387 return;
2388
2389 // The types match. Link up the redeclaration chain and merge attributes if
2390 // the old declaration was a typedef.
2391 if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2392 New->setPreviousDecl(Typedef);
2393 mergeDeclAttributes(New, Old);
2394 }
2395
2396 if (getLangOpts().MicrosoftExt)
2397 return;
2398
2399 if (getLangOpts().CPlusPlus) {
2400 // C++ [dcl.typedef]p2:
2401 // In a given non-class scope, a typedef specifier can be used to
2402 // redefine the name of any type declared in that scope to refer
2403 // to the type to which it already refers.
2404 if (!isa<CXXRecordDecl>(CurContext))
2405 return;
2406
2407 // C++0x [dcl.typedef]p4:
2408 // In a given class scope, a typedef specifier can be used to redefine
2409 // any class-name declared in that scope that is not also a typedef-name
2410 // to refer to the type to which it already refers.
2411 //
2412 // This wording came in via DR424, which was a correction to the
2413 // wording in DR56, which accidentally banned code like:
2414 //
2415 // struct S {
2416 // typedef struct A { } A;
2417 // };
2418 //
2419 // in the C++03 standard. We implement the C++0x semantics, which
2420 // allow the above but disallow
2421 //
2422 // struct S {
2423 // typedef int I;
2424 // typedef int I;
2425 // };
2426 //
2427 // since that was the intent of DR56.
2428 if (!isa<TypedefNameDecl>(Old))
2429 return;
2430
2431 Diag(New->getLocation(), diag::err_redefinition)
2432 << New->getDeclName();
2433 notePreviousDefinition(Old, New->getLocation());
2434 return New->setInvalidDecl();
2435 }
2436
2437 // Modules always permit redefinition of typedefs, as does C11.
2438 if (getLangOpts().Modules || getLangOpts().C11)
2439 return;
2440
2441 // If we have a redefinition of a typedef in C, emit a warning. This warning
2442 // is normally mapped to an error, but can be controlled with
2443 // -Wtypedef-redefinition. If either the original or the redefinition is
2444 // in a system header, don't emit this for compatibility with GCC.
2445 if (getDiagnostics().getSuppressSystemWarnings() &&
2446 // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2447 (Old->isImplicit() ||
2448 Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2449 Context.getSourceManager().isInSystemHeader(New->getLocation())))
2450 return;
2451
2452 Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2453 << New->getDeclName();
2454 notePreviousDefinition(Old, New->getLocation());
2455}
2456
2457/// DeclhasAttr - returns true if decl Declaration already has the target
2458/// attribute.
2459static bool DeclHasAttr(const Decl *D, const Attr *A) {
2460 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2461 const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2462 for (const auto *i : D->attrs())
2463 if (i->getKind() == A->getKind()) {
2464 if (Ann) {
2465 if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2466 return true;
2467 continue;
2468 }
2469 // FIXME: Don't hardcode this check
2470 if (OA && isa<OwnershipAttr>(i))
2471 return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2472 return true;
2473 }
2474
2475 return false;
2476}
2477
2478static bool isAttributeTargetADefinition(Decl *D) {
2479 if (VarDecl *VD = dyn_cast<VarDecl>(D))
2480 return VD->isThisDeclarationADefinition();
2481 if (TagDecl *TD = dyn_cast<TagDecl>(D))
2482 return TD->isCompleteDefinition() || TD->isBeingDefined();
2483 return true;
2484}
2485
2486/// Merge alignment attributes from \p Old to \p New, taking into account the
2487/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2488///
2489/// \return \c true if any attributes were added to \p New.
2490static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2491 // Look for alignas attributes on Old, and pick out whichever attribute
2492 // specifies the strictest alignment requirement.
2493 AlignedAttr *OldAlignasAttr = nullptr;
2494 AlignedAttr *OldStrictestAlignAttr = nullptr;
2495 unsigned OldAlign = 0;
2496 for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2497 // FIXME: We have no way of representing inherited dependent alignments
2498 // in a case like:
2499 // template<int A, int B> struct alignas(A) X;
2500 // template<int A, int B> struct alignas(B) X {};
2501 // For now, we just ignore any alignas attributes which are not on the
2502 // definition in such a case.
2503 if (I->isAlignmentDependent())
2504 return false;
2505
2506 if (I->isAlignas())
2507 OldAlignasAttr = I;
2508
2509 unsigned Align = I->getAlignment(S.Context);
2510 if (Align > OldAlign) {
2511 OldAlign = Align;
2512 OldStrictestAlignAttr = I;
2513 }
2514 }
2515
2516 // Look for alignas attributes on New.
2517 AlignedAttr *NewAlignasAttr = nullptr;
2518 unsigned NewAlign = 0;
2519 for (auto *I : New->specific_attrs<AlignedAttr>()) {
2520 if (I->isAlignmentDependent())
2521 return false;
2522
2523 if (I->isAlignas())
2524 NewAlignasAttr = I;
2525
2526 unsigned Align = I->getAlignment(S.Context);
2527 if (Align > NewAlign)
2528 NewAlign = Align;
2529 }
2530
2531 if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2532 // Both declarations have 'alignas' attributes. We require them to match.
2533 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2534 // fall short. (If two declarations both have alignas, they must both match
2535 // every definition, and so must match each other if there is a definition.)
2536
2537 // If either declaration only contains 'alignas(0)' specifiers, then it
2538 // specifies the natural alignment for the type.
2539 if (OldAlign == 0 || NewAlign == 0) {
2540 QualType Ty;
2541 if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2542 Ty = VD->getType();
2543 else
2544 Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2545
2546 if (OldAlign == 0)
2547 OldAlign = S.Context.getTypeAlign(Ty);
2548 if (NewAlign == 0)
2549 NewAlign = S.Context.getTypeAlign(Ty);
2550 }
2551
2552 if (OldAlign != NewAlign) {
2553 S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2554 << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2555 << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2556 S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2557 }
2558 }
2559
2560 if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2561 // C++11 [dcl.align]p6:
2562 // if any declaration of an entity has an alignment-specifier,
2563 // every defining declaration of that entity shall specify an
2564 // equivalent alignment.
2565 // C11 6.7.5/7:
2566 // If the definition of an object does not have an alignment
2567 // specifier, any other declaration of that object shall also
2568 // have no alignment specifier.
2569 S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2570 << OldAlignasAttr;
2571 S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2572 << OldAlignasAttr;
2573 }
2574
2575 bool AnyAdded = false;
2576
2577 // Ensure we have an attribute representing the strictest alignment.
2578 if (OldAlign > NewAlign) {
2579 AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2580 Clone->setInherited(true);
2581 New->addAttr(Clone);
2582 AnyAdded = true;
2583 }
2584
2585 // Ensure we have an alignas attribute if the old declaration had one.
2586 if (OldAlignasAttr && !NewAlignasAttr &&
2587 !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2588 AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2589 Clone->setInherited(true);
2590 New->addAttr(Clone);
2591 AnyAdded = true;
2592 }
2593
2594 return AnyAdded;
2595}
2596
2597#define WANT_DECL_MERGE_LOGIC
2598#include "clang/Sema/AttrParsedAttrImpl.inc"
2599#undef WANT_DECL_MERGE_LOGIC
2600
2601static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2602 const InheritableAttr *Attr,
2603 Sema::AvailabilityMergeKind AMK) {
2604 // Diagnose any mutual exclusions between the attribute that we want to add
2605 // and attributes that already exist on the declaration.
2606 if (!DiagnoseMutualExclusions(S, D, Attr))
2607 return false;
2608
2609 // This function copies an attribute Attr from a previous declaration to the
2610 // new declaration D if the new declaration doesn't itself have that attribute
2611 // yet or if that attribute allows duplicates.
2612 // If you're adding a new attribute that requires logic different from
2613 // "use explicit attribute on decl if present, else use attribute from
2614 // previous decl", for example if the attribute needs to be consistent
2615 // between redeclarations, you need to call a custom merge function here.
2616 InheritableAttr *NewAttr = nullptr;
2617 if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2618 NewAttr = S.mergeAvailabilityAttr(
2619 D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(),
2620 AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(),
2621 AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK,
2622 AA->getPriority());
2623 else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2624 NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility());
2625 else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2626 NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility());
2627 else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2628 NewAttr = S.mergeDLLImportAttr(D, *ImportA);
2629 else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2630 NewAttr = S.mergeDLLExportAttr(D, *ExportA);
2631 else if (const auto *EA = dyn_cast<ErrorAttr>(Attr))
2632 NewAttr = S.mergeErrorAttr(D, *EA, EA->getUserDiagnostic());
2633 else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2634 NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(),
2635 FA->getFirstArg());
2636 else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2637 NewAttr = S.mergeSectionAttr(D, *SA, SA->getName());
2638 else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
2639 NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName());
2640 else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2641 NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(),
2642 IA->getInheritanceModel());
2643 else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2644 NewAttr = S.mergeAlwaysInlineAttr(D, *AA,
2645 &S.Context.Idents.get(AA->getSpelling()));
2646 else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2647 (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2648 isa<CUDAGlobalAttr>(Attr))) {
2649 // CUDA target attributes are part of function signature for
2650 // overloading purposes and must not be merged.
2651 return false;
2652 } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2653 NewAttr = S.mergeMinSizeAttr(D, *MA);
2654 else if (const auto *SNA = dyn_cast<SwiftNameAttr>(Attr))
2655 NewAttr = S.mergeSwiftNameAttr(D, *SNA, SNA->getName());
2656 else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2657 NewAttr = S.mergeOptimizeNoneAttr(D, *OA);
2658 else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2659 NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
2660 else if (isa<AlignedAttr>(Attr))
2661 // AlignedAttrs are handled separately, because we need to handle all
2662 // such attributes on a declaration at the same time.
2663 NewAttr = nullptr;
2664 else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2665 (AMK == Sema::AMK_Override ||
2666 AMK == Sema::AMK_ProtocolImplementation ||
2667 AMK == Sema::AMK_OptionalProtocolImplementation))
2668 NewAttr = nullptr;
2669 else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2670 NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid(), UA->getGuidDecl());
2671 else if (const auto *IMA = dyn_cast<WebAssemblyImportModuleAttr>(Attr))
2672 NewAttr = S.mergeImportModuleAttr(D, *IMA);
2673 else if (const auto *INA = dyn_cast<WebAssemblyImportNameAttr>(Attr))
2674 NewAttr = S.mergeImportNameAttr(D, *INA);
2675 else if (const auto *TCBA = dyn_cast<EnforceTCBAttr>(Attr))
2676 NewAttr = S.mergeEnforceTCBAttr(D, *TCBA);
2677 else if (const auto *TCBLA = dyn_cast<EnforceTCBLeafAttr>(Attr))
2678 NewAttr = S.mergeEnforceTCBLeafAttr(D, *TCBLA);
2679 else if (const auto *BTFA = dyn_cast<BTFTagAttr>(Attr))
2680 NewAttr = S.mergeBTFTagAttr(D, *BTFA);
2681 else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
2682 NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2683
2684 if (NewAttr) {
2685 NewAttr->setInherited(true);
2686 D->addAttr(NewAttr);
2687 if (isa<MSInheritanceAttr>(NewAttr))
2688 S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
2689 return true;
2690 }
2691
2692 return false;
2693}
2694
2695static const NamedDecl *getDefinition(const Decl *D) {
2696 if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2697 return TD->getDefinition();
2698 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2699 const VarDecl *Def = VD->getDefinition();
2700 if (Def)
2701 return Def;
2702 return VD->getActingDefinition();
2703 }
2704 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2705 const FunctionDecl *Def = nullptr;
2706 if (FD->isDefined(Def, true))
2707 return Def;
2708 }
2709 return nullptr;
2710}
2711
2712static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2713 for (const auto *Attribute : D->attrs())
2714 if (Attribute->getKind() == Kind)
2715 return true;
2716 return false;
2717}
2718
2719/// checkNewAttributesAfterDef - If we already have a definition, check that
2720/// there are no new attributes in this declaration.
2721static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2722 if (!New->hasAttrs())
2723 return;
2724
2725 const NamedDecl *Def = getDefinition(Old);
2726 if (!Def || Def == New)
2727 return;
2728
2729 AttrVec &NewAttributes = New->getAttrs();
2730 for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2731 const Attr *NewAttribute = NewAttributes[I];
2732
2733 if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
2734 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2735 Sema::SkipBodyInfo SkipBody;
2736 S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2737
2738 // If we're skipping this definition, drop the "alias" attribute.
2739 if (SkipBody.ShouldSkip) {
2740 NewAttributes.erase(NewAttributes.begin() + I);
2741 --E;
2742 continue;
2743 }
2744 } else {
2745 VarDecl *VD = cast<VarDecl>(New);
2746 unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2747 VarDecl::TentativeDefinition
2748 ? diag::err_alias_after_tentative
2749 : diag::err_redefinition;
2750 S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2751 if (Diag == diag::err_redefinition)
2752 S.notePreviousDefinition(Def, VD->getLocation());
2753 else
2754 S.Diag(Def->getLocation(), diag::note_previous_definition);
2755 VD->setInvalidDecl();
2756 }
2757 ++I;
2758 continue;
2759 }
2760
2761 if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2762 // Tentative definitions are only interesting for the alias check above.
2763 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2764 ++I;
2765 continue;
2766 }
2767 }
2768
2769 if (hasAttribute(Def, NewAttribute->getKind())) {
2770 ++I;
2771 continue; // regular attr merging will take care of validating this.
2772 }
2773
2774 if (isa<C11NoReturnAttr>(NewAttribute)) {
2775 // C's _Noreturn is allowed to be added to a function after it is defined.
2776 ++I;
2777 continue;
2778 } else if (isa<UuidAttr>(NewAttribute)) {
2779 // msvc will allow a subsequent definition to add an uuid to a class
2780 ++I;
2781 continue;
2782 } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2783 if (AA->isAlignas()) {
2784 // C++11 [dcl.align]p6:
2785 // if any declaration of an entity has an alignment-specifier,
2786 // every defining declaration of that entity shall specify an
2787 // equivalent alignment.
2788 // C11 6.7.5/7:
2789 // If the definition of an object does not have an alignment
2790 // specifier, any other declaration of that object shall also
2791 // have no alignment specifier.
2792 S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2793 << AA;
2794 S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2795 << AA;
2796 NewAttributes.erase(NewAttributes.begin() + I);
2797 --E;
2798 continue;
2799 }
2800 } else if (isa<LoaderUninitializedAttr>(NewAttribute)) {
2801 // If there is a C definition followed by a redeclaration with this
2802 // attribute then there are two different definitions. In C++, prefer the
2803 // standard diagnostics.
2804 if (!S.getLangOpts().CPlusPlus) {
2805 S.Diag(NewAttribute->getLocation(),
2806 diag::err_loader_uninitialized_redeclaration);
2807 S.Diag(Def->getLocation(), diag::note_previous_definition);
2808 NewAttributes.erase(NewAttributes.begin() + I);
2809 --E;
2810 continue;
2811 }
2812 } else if (isa<SelectAnyAttr>(NewAttribute) &&
2813 cast<VarDecl>(New)->isInline() &&
2814 !cast<VarDecl>(New)->isInlineSpecified()) {
2815 // Don't warn about applying selectany to implicitly inline variables.
2816 // Older compilers and language modes would require the use of selectany
2817 // to make such variables inline, and it would have no effect if we
2818 // honored it.
2819 ++I;
2820 continue;
2821 } else if (isa<OMPDeclareVariantAttr>(NewAttribute)) {
2822 // We allow to add OMP[Begin]DeclareVariantAttr to be added to
2823 // declarations after defintions.
2824 ++I;
2825 continue;
2826 }
2827
2828 S.Diag(NewAttribute->getLocation(),
2829 diag::warn_attribute_precede_definition);
2830 S.Diag(Def->getLocation(), diag::note_previous_definition);
2831 NewAttributes.erase(NewAttributes.begin() + I);
2832 --E;
2833 }
2834}
2835
2836static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl,
2837 const ConstInitAttr *CIAttr,
2838 bool AttrBeforeInit) {
2839 SourceLocation InsertLoc = InitDecl->getInnerLocStart();
2840
2841 // Figure out a good way to write this specifier on the old declaration.
2842 // FIXME: We should just use the spelling of CIAttr, but we don't preserve
2843 // enough of the attribute list spelling information to extract that without
2844 // heroics.
2845 std::string SuitableSpelling;
2846 if (S.getLangOpts().CPlusPlus20)
2847 SuitableSpelling = std::string(
2848 S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit}));
2849 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
2850 SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
2851 InsertLoc, {tok::l_square, tok::l_square,
2852 S.PP.getIdentifierInfo("clang"), tok::coloncolon,
2853 S.PP.getIdentifierInfo("require_constant_initialization"),
2854 tok::r_square, tok::r_square}));
2855 if (SuitableSpelling.empty())
2856 SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
2857 InsertLoc, {tok::kw___attribute, tok::l_paren, tok::r_paren,
2858 S.PP.getIdentifierInfo("require_constant_initialization"),
2859 tok::r_paren, tok::r_paren}));
2860 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus20)
2861 SuitableSpelling = "constinit";
2862 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
2863 SuitableSpelling = "[[clang::require_constant_initialization]]";
2864 if (SuitableSpelling.empty())
2865 SuitableSpelling = "__attribute__((require_constant_initialization))";
2866 SuitableSpelling += " ";
2867
2868 if (AttrBeforeInit) {
2869 // extern constinit int a;
2870 // int a = 0; // error (missing 'constinit'), accepted as extension
2871 assert(CIAttr->isConstinit() && "should not diagnose this for attribute")(static_cast<void> (0));
2872 S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing)
2873 << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
2874 S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here);
2875 } else {
2876 // int a = 0;
2877 // constinit extern int a; // error (missing 'constinit')
2878 S.Diag(CIAttr->getLocation(),
2879 CIAttr->isConstinit() ? diag::err_constinit_added_too_late
2880 : diag::warn_require_const_init_added_too_late)
2881 << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation()));
2882 S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here)
2883 << CIAttr->isConstinit()
2884 << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
2885 }
2886}
2887
2888/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2889void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2890 AvailabilityMergeKind AMK) {
2891 if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2892 UsedAttr *NewAttr = OldAttr->clone(Context);
2893 NewAttr->setInherited(true);
2894 New->addAttr(NewAttr);
2895 }
2896 if (RetainAttr *OldAttr = Old->getMostRecentDecl()->getAttr<RetainAttr>()) {
2897 RetainAttr *NewAttr = OldAttr->clone(Context);
2898 NewAttr->setInherited(true);
2899 New->addAttr(NewAttr);
2900 }
2901
2902 if (!Old->hasAttrs() && !New->hasAttrs())
2903 return;
2904
2905 // [dcl.constinit]p1:
2906 // If the [constinit] specifier is applied to any declaration of a
2907 // variable, it shall be applied to the initializing declaration.
2908 const auto *OldConstInit = Old->getAttr<ConstInitAttr>();
2909 const auto *NewConstInit = New->getAttr<ConstInitAttr>();
2910 if (bool(OldConstInit) != bool(NewConstInit)) {
2911 const auto *OldVD = cast<VarDecl>(Old);
2912 auto *NewVD = cast<VarDecl>(New);
2913
2914 // Find the initializing declaration. Note that we might not have linked
2915 // the new declaration into the redeclaration chain yet.
2916 const VarDecl *InitDecl = OldVD->getInitializingDeclaration();
2917 if (!InitDecl &&
2918 (NewVD->hasInit() || NewVD->isThisDeclarationADefinition()))
2919 InitDecl = NewVD;
2920
2921 if (InitDecl == NewVD) {
2922 // This is the initializing declaration. If it would inherit 'constinit',
2923 // that's ill-formed. (Note that we do not apply this to the attribute
2924 // form).
2925 if (OldConstInit && OldConstInit->isConstinit())
2926 diagnoseMissingConstinit(*this, NewVD, OldConstInit,
2927 /*AttrBeforeInit=*/true);
2928 } else if (NewConstInit) {
2929 // This is the first time we've been told that this declaration should
2930 // have a constant initializer. If we already saw the initializing
2931 // declaration, this is too late.
2932 if (InitDecl && InitDecl != NewVD) {
2933 diagnoseMissingConstinit(*this, InitDecl, NewConstInit,
2934 /*AttrBeforeInit=*/false);
2935 NewVD->dropAttr<ConstInitAttr>();
2936 }
2937 }
2938 }
2939
2940 // Attributes declared post-definition are currently ignored.
2941 checkNewAttributesAfterDef(*this, New, Old);
2942
2943 if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
2944 if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
2945 if (!OldA->isEquivalent(NewA)) {
2946 // This redeclaration changes __asm__ label.
2947 Diag(New->getLocation(), diag::err_different_asm_label);
2948 Diag(OldA->getLocation(), diag::note_previous_declaration);
2949 }
2950 } else if (Old->isUsed()) {
2951 // This redeclaration adds an __asm__ label to a declaration that has
2952 // already been ODR-used.
2953 Diag(New->getLocation(), diag::err_late_asm_label_name)
2954 << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
2955 }
2956 }
2957
2958 // Re-declaration cannot add abi_tag's.
2959 if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
2960 if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
2961 for (const auto &NewTag : NewAbiTagAttr->tags()) {
2962 if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(),
2963 NewTag) == OldAbiTagAttr->tags_end()) {
2964 Diag(NewAbiTagAttr->getLocation(),
2965 diag::err_new_abi_tag_on_redeclaration)
2966 << NewTag;
2967 Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
2968 }
2969 }
2970 } else {
2971 Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
2972 Diag(Old->getLocation(), diag::note_previous_declaration);
2973 }
2974 }
2975
2976 // This redeclaration adds a section attribute.
2977 if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
2978 if (auto *VD = dyn_cast<VarDecl>(New)) {
2979 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
2980 Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
2981 Diag(Old->getLocation(), diag::note_previous_declaration);
2982 }
2983 }
2984 }
2985
2986 // Redeclaration adds code-seg attribute.
2987 const auto *NewCSA = New->getAttr<CodeSegAttr>();
2988 if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
2989 !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
2990 Diag(New->getLocation(), diag::warn_mismatched_section)
2991 << 0 /*codeseg*/;
2992 Diag(Old->getLocation(), diag::note_previous_declaration);
2993 }
2994
2995 if (!Old->hasAttrs())
2996 return;
2997
2998 bool foundAny = New->hasAttrs();
2999
3000 // Ensure that any moving of objects within the allocated map is done before
3001 // we process them.
3002 if (!foundAny) New->setAttrs(AttrVec());
3003
3004 for (auto *I : Old->specific_attrs<InheritableAttr>()) {
3005 // Ignore deprecated/unavailable/availability attributes if requested.
3006 AvailabilityMergeKind LocalAMK = AMK_None;
3007 if (isa<DeprecatedAttr>(I) ||
3008 isa<UnavailableAttr>(I) ||
3009 isa<AvailabilityAttr>(I)) {
3010 switch (AMK) {
3011 case AMK_None:
3012 continue;
3013
3014 case AMK_Redeclaration:
3015 case AMK_Override:
3016 case AMK_ProtocolImplementation:
3017 case AMK_OptionalProtocolImplementation:
3018 LocalAMK = AMK;
3019 break;
3020 }
3021 }
3022
3023 // Already handled.
3024 if (isa<UsedAttr>(I) || isa<RetainAttr>(I))
3025 continue;
3026
3027 if (mergeDeclAttribute(*this, New, I, LocalAMK))
3028 foundAny = true;
3029 }
3030
3031 if (mergeAlignedAttrs(*this, New, Old))
3032 foundAny = true;
3033
3034 if (!foundAny) New->dropAttrs();
3035}
3036
3037/// mergeParamDeclAttributes - Copy attributes from the old parameter
3038/// to the new one.
3039static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
3040 const ParmVarDecl *oldDecl,
3041 Sema &S) {
3042 // C++11 [dcl.attr.depend]p2:
3043 // The first declaration of a function shall specify the
3044 // carries_dependency attribute for its declarator-id if any declaration
3045 // of the function specifies the carries_dependency attribute.
3046 const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
3047 if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
3048 S.Diag(CDA->getLocation(),
3049 diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
3050 // Find the first declaration of the parameter.
3051 // FIXME: Should we build redeclaration chains for function parameters?
3052 const FunctionDecl *FirstFD =
3053 cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
3054 const ParmVarDecl *FirstVD =
3055 FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
3056 S.Diag(FirstVD->getLocation(),
3057 diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
3058 }
3059
3060 if (!oldDecl->hasAttrs())
3061 return;
3062
3063 bool foundAny = newDecl->hasAttrs();
3064
3065 // Ensure that any moving of objects within the allocated map is
3066 // done before we process them.
3067 if (!foundAny) newDecl->setAttrs(AttrVec());
3068
3069 for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
3070 if (!DeclHasAttr(newDecl, I)) {
3071 InheritableAttr *newAttr =
3072 cast<InheritableParamAttr>(I->clone(S.Context));
3073 newAttr->setInherited(true);
3074 newDecl->addAttr(newAttr);
3075 foundAny = true;
3076 }
3077 }
3078
3079 if (!foundAny) newDecl->dropAttrs();
3080}
3081
3082static void mergeParamDeclTypes(ParmVarDecl *NewParam,
3083 const ParmVarDecl *OldParam,
3084 Sema &S) {
3085 if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
3086 if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
3087 if (*Oldnullability != *Newnullability) {
3088 S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
3089 << DiagNullabilityKind(
3090 *Newnullability,
3091 ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3092 != 0))
3093 << DiagNullabilityKind(
3094 *Oldnullability,
3095 ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3096 != 0));
3097 S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
3098 }
3099 } else {
3100 QualType NewT = NewParam->getType();
3101 NewT = S.Context.getAttributedType(
3102 AttributedType::getNullabilityAttrKind(*Oldnullability),
3103 NewT, NewT);
3104 NewParam->setType(NewT);
3105 }
3106 }
3107}
3108
3109namespace {
3110
3111/// Used in MergeFunctionDecl to keep track of function parameters in
3112/// C.
3113struct GNUCompatibleParamWarning {
3114 ParmVarDecl *OldParm;
3115 ParmVarDecl *NewParm;
3116 QualType PromotedType;
3117};
3118
3119} // end anonymous namespace
3120
3121// Determine whether the previous declaration was a definition, implicit
3122// declaration, or a declaration.
3123template <typename T>
3124static std::pair<diag::kind, SourceLocation>
3125getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
3126 diag::kind PrevDiag;
3127 SourceLocation OldLocation = Old->getLocation();
3128 if (Old->isThisDeclarationADefinition())
3129 PrevDiag = diag::note_previous_definition;
3130 else if (Old->isImplicit()) {
3131 PrevDiag = diag::note_previous_implicit_declaration;
3132 if (OldLocation.isInvalid())
3133 OldLocation = New->getLocation();
3134 } else
3135 PrevDiag = diag::note_previous_declaration;
3136 return std::make_pair(PrevDiag, OldLocation);
3137}
3138
3139/// canRedefineFunction - checks if a function can be redefined. Currently,
3140/// only extern inline functions can be redefined, and even then only in
3141/// GNU89 mode.
3142static bool canRedefineFunction(const FunctionDecl *FD,
3143 const LangOptions& LangOpts) {
3144 return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
3145 !LangOpts.CPlusPlus &&
3146 FD->isInlineSpecified() &&
3147 FD->getStorageClass() == SC_Extern);
3148}
3149
3150const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
3151 const AttributedType *AT = T->getAs<AttributedType>();
3152 while (AT && !AT->isCallingConv())
3153 AT = AT->getModifiedType()->getAs<AttributedType>();
3154 return AT;
3155}
3156
3157template <typename T>
3158static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
3159 const DeclContext *DC = Old->getDeclContext();
3160 if (DC->isRecord())
3161 return false;
3162
3163 LanguageLinkage OldLinkage = Old->getLanguageLinkage();
3164 if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
3165 return true;
3166 if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
3167 return true;
3168 return false;
3169}
3170
3171template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
3172static bool isExternC(VarTemplateDecl *) { return false; }
3173static bool isExternC(FunctionTemplateDecl *) { return false; }
3174
3175/// Check whether a redeclaration of an entity introduced by a
3176/// using-declaration is valid, given that we know it's not an overload
3177/// (nor a hidden tag declaration).
3178template<typename ExpectedDecl>
3179static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
3180 ExpectedDecl *New) {
3181 // C++11 [basic.scope.declarative]p4:
3182 // Given a set of declarations in a single declarative region, each of
3183 // which specifies the same unqualified name,
3184 // -- they shall all refer to the same entity, or all refer to functions
3185 // and function templates; or
3186 // -- exactly one declaration shall declare a class name or enumeration
3187 // name that is not a typedef name and the other declarations shall all
3188 // refer to the same variable or enumerator, or all refer to functions
3189 // and function templates; in this case the class name or enumeration
3190 // name is hidden (3.3.10).
3191
3192 // C++11 [namespace.udecl]p14:
3193 // If a function declaration in namespace scope or block scope has the
3194 // same name and the same parameter-type-list as a function introduced
3195 // by a using-declaration, and the declarations do not declare the same
3196 // function, the program is ill-formed.
3197
3198 auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
3199 if (Old &&
3200 !Old->getDeclContext()->getRedeclContext()->Equals(
3201 New->getDeclContext()->getRedeclContext()) &&
3202 !(isExternC(Old) && isExternC(New)))
3203 Old = nullptr;
3204
3205 if (!Old) {
3206 S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
3207 S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
3208 S.Diag(OldS->getIntroducer()->getLocation(), diag::note_using_decl) << 0;
3209 return true;
3210 }
3211 return false;
3212}
3213
3214static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
3215 const FunctionDecl *B) {
3216 assert(A->getNumParams() == B->getNumParams())(static_cast<void> (0));
3217
3218 auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
3219 const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
3220 const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
3221 if (AttrA == AttrB)
3222 return true;
3223 return AttrA && AttrB && AttrA->getType() == AttrB->getType() &&
3224 AttrA->isDynamic() == AttrB->isDynamic();
3225 };
3226
3227 return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
3228}
3229
3230/// If necessary, adjust the semantic declaration context for a qualified
3231/// declaration to name the correct inline namespace within the qualifier.
3232static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
3233 DeclaratorDecl *OldD) {
3234 // The only case where we need to update the DeclContext is when
3235 // redeclaration lookup for a qualified name finds a declaration
3236 // in an inline namespace within the context named by the qualifier:
3237 //
3238 // inline namespace N { int f(); }
3239 // int ::f(); // Sema DC needs adjusting from :: to N::.
3240 //
3241 // For unqualified declarations, the semantic context *can* change
3242 // along the redeclaration chain (for local extern declarations,
3243 // extern "C" declarations, and friend declarations in particular).
3244 if (!NewD->getQualifier())
3245 return;
3246
3247 // NewD is probably already in the right context.
3248 auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
3249 auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
3250 if (NamedDC->Equals(SemaDC))
3251 return;
3252
3253 assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||(static_cast<void> (0))
3254 NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&(static_cast<void> (0))
3255 "unexpected context for redeclaration")(static_cast<void> (0));
3256
3257 auto *LexDC = NewD->getLexicalDeclContext();
3258 auto FixSemaDC = [=](NamedDecl *D) {
3259 if (!D)
3260 return;
3261 D->setDeclContext(SemaDC);
3262 D->setLexicalDeclContext(LexDC);
3263 };
3264
3265 FixSemaDC(NewD);
3266 if (auto *FD = dyn_cast<FunctionDecl>(NewD))
3267 FixSemaDC(FD->getDescribedFunctionTemplate());
3268 else if (auto *VD = dyn_cast<VarDecl>(NewD))
3269 FixSemaDC(VD->getDescribedVarTemplate());
3270}
3271
3272/// MergeFunctionDecl - We just parsed a function 'New' from
3273/// declarator D which has the same name and scope as a previous
3274/// declaration 'Old'. Figure out how to resolve this situation,
3275/// merging decls or emitting diagnostics as appropriate.
3276///
3277/// In C++, New and Old must be declarations that are not
3278/// overloaded. Use IsOverload to determine whether New and Old are
3279/// overloaded, and to select the Old declaration that New should be
3280/// merged with.
3281///
3282/// Returns true if there was an error, false otherwise.
3283bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
3284 Scope *S, bool MergeTypeWithOld) {
3285 // Verify the old decl was also a function.
3286 FunctionDecl *Old = OldD->getAsFunction();
3287 if (!Old) {
3288 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
3289 if (New->getFriendObjectKind()) {
3290 Diag(New->getLocation(), diag::err_using_decl_friend);
3291 Diag(Shadow->getTargetDecl()->getLocation(),
3292 diag::note_using_decl_target);
3293 Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl)
3294 << 0;
3295 return true;
3296 }
3297
3298 // Check whether the two declarations might declare the same function or
3299 // function template.
3300 if (FunctionTemplateDecl *NewTemplate =
3301 New->getDescribedFunctionTemplate()) {
3302 if (checkUsingShadowRedecl<FunctionTemplateDecl>(*this, Shadow,
3303 NewTemplate))
3304 return true;
3305 OldD = Old = cast<FunctionTemplateDecl>(Shadow->getTargetDecl())
3306 ->getAsFunction();
3307 } else {
3308 if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3309 return true;
3310 OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3311 }
3312 } else {
3313 Diag(New->getLocation(), diag::err_redefinition_different_kind)
3314 << New->getDeclName();
3315 notePreviousDefinition(OldD, New->getLocation());
3316 return true;
3317 }
3318 }
3319
3320 // If the old declaration was found in an inline namespace and the new
3321 // declaration was qualified, update the DeclContext to match.
3322 adjustDeclContextForDeclaratorDecl(New, Old);
3323
3324 // If the old declaration is invalid, just give up here.
3325 if (Old->isInvalidDecl())
3326 return true;
3327
3328 // Disallow redeclaration of some builtins.
3329 if (!getASTContext().canBuiltinBeRedeclared(Old)) {
3330 Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
3331 Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
3332 << Old << Old->getType();
3333 return true;
3334 }
3335
3336 diag::kind PrevDiag;
3337 SourceLocation OldLocation;
3338 std::tie(PrevDiag, OldLocation) =
3339 getNoteDiagForInvalidRedeclaration(Old, New);
3340
3341 // Don't complain about this if we're in GNU89 mode and the old function
3342 // is an extern inline function.
3343 // Don't complain about specializations. They are not supposed to have
3344 // storage classes.
3345 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3346 New->getStorageClass() == SC_Static &&
3347 Old->hasExternalFormalLinkage() &&
3348 !New->getTemplateSpecializationInfo() &&
3349 !canRedefineFunction(Old, getLangOpts())) {
3350 if (getLangOpts().MicrosoftExt) {
3351 Diag(New->getLocation(), diag::ext_static_non_static) << New;
3352 Diag(OldLocation, PrevDiag);
3353 } else {
3354 Diag(New->getLocation(), diag::err_static_non_static) << New;
3355 Diag(OldLocation, PrevDiag);
3356 return true;
3357 }
3358 }
3359
3360 if (const auto *ILA = New->getAttr<InternalLinkageAttr>())
3361 if (!Old->hasAttr<InternalLinkageAttr>()) {
3362 Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl)
3363 << ILA;
3364 Diag(Old->getLocation(), diag::note_previous_declaration);
3365 New->dropAttr<InternalLinkageAttr>();
3366 }
3367
3368 if (auto *EA = New->getAttr<ErrorAttr>()) {
3369 if (!Old->hasAttr<ErrorAttr>()) {
3370 Diag(EA->getLocation(), diag::err_attribute_missing_on_first_decl) << EA;
3371 Diag(Old->getLocation(), diag::note_previous_declaration);
3372 New->dropAttr<ErrorAttr>();
3373 }
3374 }
3375
3376 if (CheckRedeclarationModuleOwnership(New, Old))
3377 return true;
3378
3379 if (!getLangOpts().CPlusPlus) {
3380 bool OldOvl = Old->hasAttr<OverloadableAttr>();
3381 if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3382 Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3383 << New << OldOvl;
3384
3385 // Try our best to find a decl that actually has the overloadable
3386 // attribute for the note. In most cases (e.g. programs with only one
3387 // broken declaration/definition), this won't matter.
3388 //
3389 // FIXME: We could do this if we juggled some extra state in
3390 // OverloadableAttr, rather than just removing it.
3391 const Decl *DiagOld = Old;
3392 if (OldOvl) {
3393 auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3394 const auto *A = D->getAttr<OverloadableAttr>();
3395 return A && !A->isImplicit();
3396 });
3397 // If we've implicitly added *all* of the overloadable attrs to this
3398 // chain, emitting a "previous redecl" note is pointless.
3399 DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3400 }
3401
3402 if (DiagOld)
3403 Diag(DiagOld->getLocation(),
3404 diag::note_attribute_overloadable_prev_overload)
3405 << OldOvl;
3406
3407 if (OldOvl)
3408 New->addAttr(OverloadableAttr::CreateImplicit(Context));
3409 else
3410 New->dropAttr<OverloadableAttr>();
3411 }
3412 }
3413
3414 // If a function is first declared with a calling convention, but is later
3415 // declared or defined without one, all following decls assume the calling
3416 // convention of the first.
3417 //
3418 // It's OK if a function is first declared without a calling convention,
3419 // but is later declared or defined with the default calling convention.
3420 //
3421 // To test if either decl has an explicit calling convention, we look for
3422 // AttributedType sugar nodes on the type as written. If they are missing or
3423 // were canonicalized away, we assume the calling convention was implicit.
3424 //
3425 // Note also that we DO NOT return at this point, because we still have
3426 // other tests to run.
3427 QualType OldQType = Context.getCanonicalType(Old->getType());
3428 QualType NewQType = Context.getCanonicalType(New->getType());
3429 const FunctionType *OldType = cast<FunctionType>(OldQType);
3430 const FunctionType *NewType = cast<FunctionType>(NewQType);
3431 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3432 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3433 bool RequiresAdjustment = false;
3434
3435 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3436 FunctionDecl *First = Old->getFirstDecl();
3437 const FunctionType *FT =
3438 First->getType().getCanonicalType()->castAs<FunctionType>();
3439 FunctionType::ExtInfo FI = FT->getExtInfo();
3440 bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3441 if (!NewCCExplicit) {
3442 // Inherit the CC from the previous declaration if it was specified
3443 // there but not here.
3444 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3445 RequiresAdjustment = true;
3446 } else if (Old->getBuiltinID()) {
3447 // Builtin attribute isn't propagated to the new one yet at this point,
3448 // so we check if the old one is a builtin.
3449
3450 // Calling Conventions on a Builtin aren't really useful and setting a
3451 // default calling convention and cdecl'ing some builtin redeclarations is
3452 // common, so warn and ignore the calling convention on the redeclaration.
3453 Diag(New->getLocation(), diag::warn_cconv_unsupported)
3454 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3455 << (int)CallingConventionIgnoredReason::BuiltinFunction;
3456 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3457 RequiresAdjustment = true;
3458 } else {
3459 // Calling conventions aren't compatible, so complain.
3460 bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3461 Diag(New->getLocation(), diag::err_cconv_change)
3462 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3463 << !FirstCCExplicit
3464 << (!FirstCCExplicit ? "" :
3465 FunctionType::getNameForCallConv(FI.getCC()));
3466
3467 // Put the note on the first decl, since it is the one that matters.
3468 Diag(First->getLocation(), diag::note_previous_declaration);
3469 return true;
3470 }
3471 }
3472
3473 // FIXME: diagnose the other way around?
3474 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3475 NewTypeInfo = NewTypeInfo.withNoReturn(true);
3476 RequiresAdjustment = true;
3477 }
3478
3479 // Merge regparm attribute.
3480 if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3481 OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3482 if (NewTypeInfo.getHasRegParm()) {
3483 Diag(New->getLocation(), diag::err_regparm_mismatch)
3484 << NewType->getRegParmType()
3485 << OldType->getRegParmType();
3486 Diag(OldLocation, diag::note_previous_declaration);
3487 return true;
3488 }
3489
3490 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3491 RequiresAdjustment = true;
3492 }
3493
3494 // Merge ns_returns_retained attribute.
3495 if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3496 if (NewTypeInfo.getProducesResult()) {
3497 Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3498 << "'ns_returns_retained'";
3499 Diag(OldLocation, diag::note_previous_declaration);
3500 return true;
3501 }
3502
3503 NewTypeInfo = NewTypeInfo.withProducesResult(true);
3504 RequiresAdjustment = true;
3505 }
3506
3507 if (OldTypeInfo.getNoCallerSavedRegs() !=
3508 NewTypeInfo.getNoCallerSavedRegs()) {
3509 if (NewTypeInfo.getNoCallerSavedRegs()) {
3510 AnyX86NoCallerSavedRegistersAttr *Attr =
3511 New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3512 Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3513 Diag(OldLocation, diag::note_previous_declaration);
3514 return true;
3515 }
3516
3517 NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3518 RequiresAdjustment = true;
3519 }
3520
3521 if (RequiresAdjustment) {
3522 const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3523 AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3524 New->setType(QualType(AdjustedType, 0));
3525 NewQType = Context.getCanonicalType(New->getType());
3526 }
3527
3528 // If this redeclaration makes the function inline, we may need to add it to
3529 // UndefinedButUsed.
3530 if (!Old->isInlined() && New->isInlined() &&
3531 !New->hasAttr<GNUInlineAttr>() &&
3532 !getLangOpts().GNUInline &&
3533 Old->isUsed(false) &&
3534 !Old->isDefined() && !New->isThisDeclarationADefinition())
3535 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3536 SourceLocation()));
3537
3538 // If this redeclaration makes it newly gnu_inline, we don't want to warn
3539 // about it.
3540 if (New->hasAttr<GNUInlineAttr>() &&
3541 Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3542 UndefinedButUsed.erase(Old->getCanonicalDecl());
3543 }
3544
3545 // If pass_object_size params don't match up perfectly, this isn't a valid
3546 // redeclaration.
3547 if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3548 !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3549 Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3550 << New->getDeclName();
3551 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3552 return true;
3553 }
3554
3555 if (getLangOpts().CPlusPlus) {
3556 // C++1z [over.load]p2
3557 // Certain function declarations cannot be overloaded:
3558 // -- Function declarations that differ only in the return type,
3559 // the exception specification, or both cannot be overloaded.
3560
3561 // Check the exception specifications match. This may recompute the type of
3562 // both Old and New if it resolved exception specifications, so grab the
3563 // types again after this. Because this updates the type, we do this before
3564 // any of the other checks below, which may update the "de facto" NewQType
3565 // but do not necessarily update the type of New.
3566 if (CheckEquivalentExceptionSpec(Old, New))
3567 return true;
3568 OldQType = Context.getCanonicalType(Old->getType());
3569 NewQType = Context.getCanonicalType(New->getType());
3570
3571 // Go back to the type source info to compare the declared return types,
3572 // per C++1y [dcl.type.auto]p13:
3573 // Redeclarations or specializations of a function or function template
3574 // with a declared return type that uses a placeholder type shall also
3575 // use that placeholder, not a deduced type.
3576 QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
3577 QualType NewDeclaredReturnType = New->getDeclaredReturnType();
3578 if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3579 canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
3580 OldDeclaredReturnType)) {
3581 QualType ResQT;
3582 if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3583 OldDeclaredReturnType->isObjCObjectPointerType())
3584 // FIXME: This does the wrong thing for a deduced return type.
3585 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3586 if (ResQT.isNull()) {
3587 if (New->isCXXClassMember() && New->isOutOfLine())
3588 Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3589 << New << New->getReturnTypeSourceRange();
3590 else
3591 Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3592 << New->getReturnTypeSourceRange();
3593 Diag(OldLocation, PrevDiag) << Old << Old->getType()
3594 << Old->getReturnTypeSourceRange();
3595 return true;
3596 }
3597 else
3598 NewQType = ResQT;
3599 }
3600
3601 QualType OldReturnType = OldType->getReturnType();
3602 QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
3603 if (OldReturnType != NewReturnType) {
3604 // If this function has a deduced return type and has already been
3605 // defined, copy the deduced value from the old declaration.
3606 AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
3607 if (OldAT && OldAT->isDeduced()) {
3608 New->setType(
3609 SubstAutoType(New->getType(),
3610 OldAT->isDependentType() ? Context.DependentTy
3611 : OldAT->getDeducedType()));
3612 NewQType = Context.getCanonicalType(
3613 SubstAutoType(NewQType,
3614 OldAT->isDependentType() ? Context.DependentTy
3615 : OldAT->getDeducedType()));
3616 }
3617 }
3618
3619 const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
3620 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
3621 if (OldMethod && NewMethod) {
3622 // Preserve triviality.
3623 NewMethod->setTrivial(OldMethod->isTrivial());
3624
3625 // MSVC allows explicit template specialization at class scope:
3626 // 2 CXXMethodDecls referring to the same function will be injected.
3627 // We don't want a redeclaration error.
3628 bool IsClassScopeExplicitSpecialization =
3629 OldMethod->isFunctionTemplateSpecialization() &&
3630 NewMethod->isFunctionTemplateSpecialization();
3631 bool isFriend = NewMethod->getFriendObjectKind();
3632
3633 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
3634 !IsClassScopeExplicitSpecialization) {
3635 // -- Member function declarations with the same name and the
3636 // same parameter types cannot be overloaded if any of them
3637 // is a static member function declaration.
3638 if (OldMethod->isStatic() != NewMethod->isStatic()) {
3639 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
3640 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3641 return true;
3642 }
3643
3644 // C++ [class.mem]p1:
3645 // [...] A member shall not be declared twice in the
3646 // member-specification, except that a nested class or member
3647 // class template can be declared and then later defined.
3648 if (!inTemplateInstantiation()) {
3649 unsigned NewDiag;
3650 if (isa<CXXConstructorDecl>(OldMethod))
3651 NewDiag = diag::err_constructor_redeclared;
3652 else if (isa<CXXDestructorDecl>(NewMethod))
3653 NewDiag = diag::err_destructor_redeclared;
3654 else if (isa<CXXConversionDecl>(NewMethod))
3655 NewDiag = diag::err_conv_function_redeclared;
3656 else
3657 NewDiag = diag::err_member_redeclared;
3658
3659 Diag(New->getLocation(), NewDiag);
3660 } else {
3661 Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
3662 << New << New->getType();
3663 }
3664 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3665 return true;
3666
3667 // Complain if this is an explicit declaration of a special
3668 // member that was initially declared implicitly.
3669 //
3670 // As an exception, it's okay to befriend such methods in order
3671 // to permit the implicit constructor/destructor/operator calls.
3672 } else if (OldMethod->isImplicit()) {
3673 if (isFriend) {
3674 NewMethod->setImplicit();
3675 } else {
3676 Diag(NewMethod->getLocation(),
3677 diag::err_definition_of_implicitly_declared_member)
3678 << New << getSpecialMember(OldMethod);
3679 return true;
3680 }
3681 } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
3682 Diag(NewMethod->getLocation(),
3683 diag::err_definition_of_explicitly_defaulted_member)
3684 << getSpecialMember(OldMethod);
3685 return true;
3686 }
3687 }
3688
3689 // C++11 [dcl.attr.noreturn]p1:
3690 // The first declaration of a function shall specify the noreturn
3691 // attribute if any declaration of that function specifies the noreturn
3692 // attribute.
3693 if (const auto *NRA = New->getAttr<CXX11NoReturnAttr>())
3694 if (!Old->hasAttr<CXX11NoReturnAttr>()) {
3695 Diag(NRA->getLocation(), diag::err_attribute_missing_on_first_decl)
3696 << NRA;
3697 Diag(Old->getLocation(), diag::note_previous_declaration);
3698 }
3699
3700 // C++11 [dcl.attr.depend]p2:
3701 // The first declaration of a function shall specify the
3702 // carries_dependency attribute for its declarator-id if any declaration
3703 // of the function specifies the carries_dependency attribute.
3704 const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
3705 if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
3706 Diag(CDA->getLocation(),
3707 diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
3708 Diag(Old->getFirstDecl()->getLocation(),
3709 diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
3710 }
3711
3712 // (C++98 8.3.5p3):
3713 // All declarations for a function shall agree exactly in both the
3714 // return type and the parameter-type-list.
3715 // We also want to respect all the extended bits except noreturn.
3716
3717 // noreturn should now match unless the old type info didn't have it.
3718 QualType OldQTypeForComparison = OldQType;
3719 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
3720 auto *OldType = OldQType->castAs<FunctionProtoType>();
3721 const FunctionType *OldTypeForComparison
3722 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
3723 OldQTypeForComparison = QualType(OldTypeForComparison, 0);
3724 assert(OldQTypeForComparison.isCanonical())(static_cast<void> (0));
3725 }
3726
3727 if (haveIncompatibleLanguageLinkages(Old, New)) {
3728 // As a special case, retain the language linkage from previous
3729 // declarations of a friend function as an extension.
3730 //
3731 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
3732 // and is useful because there's otherwise no way to specify language
3733 // linkage within class scope.
3734 //
3735 // Check cautiously as the friend object kind isn't yet complete.
3736 if (New->getFriendObjectKind() != Decl::FOK_None) {
3737 Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
3738 Diag(OldLocation, PrevDiag);
3739 } else {
3740 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3741 Diag(OldLocation, PrevDiag);
3742 return true;
3743 }
3744 }
3745
3746 // If the function types are compatible, merge the declarations. Ignore the
3747 // exception specifier because it was already checked above in
3748 // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics
3749 // about incompatible types under -fms-compatibility.
3750 if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison,
3751 NewQType))
3752 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3753
3754 // If the types are imprecise (due to dependent constructs in friends or
3755 // local extern declarations), it's OK if they differ. We'll check again
3756 // during instantiation.
3757 if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
3758 return false;
3759
3760 // Fall through for conflicting redeclarations and redefinitions.
3761 }
3762
3763 // C: Function types need to be compatible, not identical. This handles
3764 // duplicate function decls like "void f(int); void f(enum X);" properly.
3765 if (!getLangOpts().CPlusPlus &&
3766 Context.typesAreCompatible(OldQType, NewQType)) {
3767 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
3768 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
3769 const FunctionProtoType *OldProto = nullptr;
3770 if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
3771 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
3772 // The old declaration provided a function prototype, but the
3773 // new declaration does not. Merge in the prototype.
3774 assert(!OldProto->hasExceptionSpec() && "Exception spec in C")(static_cast<void> (0));
3775 SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
3776 NewQType =
3777 Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
3778 OldProto->getExtProtoInfo());
3779 New->setType(NewQType);
3780 New->setHasInheritedPrototype();
3781
3782 // Synthesize parameters with the same types.
3783 SmallVector<ParmVarDecl*, 16> Params;
3784 for (const auto &ParamType : OldProto->param_types()) {
3785 ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
3786 SourceLocation(), nullptr,
3787 ParamType, /*TInfo=*/nullptr,
3788 SC_None, nullptr);
3789 Param->setScopeInfo(0, Params.size());
3790 Param->setImplicit();
3791 Params.push_back(Param);
3792 }
3793
3794 New->setParams(Params);
3795 }
3796
3797 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3798 }
3799
3800 // Check if the function types are compatible when pointer size address
3801 // spaces are ignored.
3802 if (Context.hasSameFunctionTypeIgnoringPtrSizes(OldQType, NewQType))
3803 return false;
3804
3805 // GNU C permits a K&R definition to follow a prototype declaration
3806 // if the declared types of the parameters in the K&R definition
3807 // match the types in the prototype declaration, even when the
3808 // promoted types of the parameters from the K&R definition differ
3809 // from the types in the prototype. GCC then keeps the types from
3810 // the prototype.
3811 //
3812 // If a variadic prototype is followed by a non-variadic K&R definition,
3813 // the K&R definition becomes variadic. This is sort of an edge case, but
3814 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
3815 // C99 6.9.1p8.
3816 if (!getLangOpts().CPlusPlus &&
3817 Old->hasPrototype() && !New->hasPrototype() &&
3818 New->getType()->getAs<FunctionProtoType>() &&
3819 Old->getNumParams() == New->getNumParams()) {
3820 SmallVector<QualType, 16> ArgTypes;
3821 SmallVector<GNUCompatibleParamWarning, 16> Warnings;
3822 const FunctionProtoType *OldProto
3823 = Old->getType()->getAs<FunctionProtoType>();
3824 const FunctionProtoType *NewProto
3825 = New->getType()->getAs<FunctionProtoType>();
3826
3827 // Determine whether this is the GNU C extension.
3828 QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
3829 NewProto->getReturnType());
3830 bool LooseCompatible = !MergedReturn.isNull();
3831 for (unsigned Idx = 0, End = Old->getNumParams();
3832 LooseCompatible && Idx != End; ++Idx) {
3833 ParmVarDecl *OldParm = Old->getParamDecl(Idx);
3834 ParmVarDecl *NewParm = New->getParamDecl(Idx);
3835 if (Context.typesAreCompatible(OldParm->getType(),
3836 NewProto->getParamType(Idx))) {
3837 ArgTypes.push_back(NewParm->getType());
3838 } else if (Context.typesAreCompatible(OldParm->getType(),
3839 NewParm->getType(),
3840 /*CompareUnqualified=*/true)) {
3841 GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3842 NewProto->getParamType(Idx) };
3843 Warnings.push_back(Warn);
3844 ArgTypes.push_back(NewParm->getType());
3845 } else
3846 LooseCompatible = false;
3847 }
3848
3849 if (LooseCompatible) {
3850 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3851 Diag(Warnings[Warn].NewParm->getLocation(),
3852 diag::ext_param_promoted_not_compatible_with_prototype)
3853 << Warnings[Warn].PromotedType
3854 << Warnings[Warn].OldParm->getType();
3855 if (Warnings[Warn].OldParm->getLocation().isValid())
3856 Diag(Warnings[Warn].OldParm->getLocation(),
3857 diag::note_previous_declaration);
3858 }
3859
3860 if (MergeTypeWithOld)
3861 New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3862 OldProto->getExtProtoInfo()));
3863 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3864 }
3865
3866 // Fall through to diagnose conflicting types.
3867 }
3868
3869 // A function that has already been declared has been redeclared or
3870 // defined with a different type; show an appropriate diagnostic.
3871
3872 // If the previous declaration was an implicitly-generated builtin
3873 // declaration, then at the very least we should use a specialized note.
3874 unsigned BuiltinID;
3875 if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3876 // If it's actually a library-defined builtin function like 'malloc'
3877 // or 'printf', just warn about the incompatible redeclaration.
3878 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3879 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3880 Diag(OldLocation, diag::note_previous_builtin_declaration)
3881 << Old << Old->getType();
3882 return false;
3883 }
3884
3885 PrevDiag = diag::note_previous_builtin_declaration;
3886 }
3887
3888 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3889 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3890 return true;
3891}
3892
3893/// Completes the merge of two function declarations that are
3894/// known to be compatible.
3895///
3896/// This routine handles the merging of attributes and other
3897/// properties of function declarations from the old declaration to
3898/// the new declaration, once we know that New is in fact a
3899/// redeclaration of Old.
3900///
3901/// \returns false
3902bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3903 Scope *S, bool MergeTypeWithOld) {
3904 // Merge the attributes
3905 mergeDeclAttributes(New, Old);
3906
3907 // Merge "pure" flag.
3908 if (Old->isPure())
3909 New->setPure();
3910
3911 // Merge "used" flag.
3912 if (Old->getMostRecentDecl()->isUsed(false))
3913 New->setIsUsed();
3914
3915 // Merge attributes from the parameters. These can mismatch with K&R
3916 // declarations.
3917 if (New->getNumParams() == Old->getNumParams())
3918 for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
3919 ParmVarDecl *NewParam = New->getParamDecl(i);
3920 ParmVarDecl *OldParam = Old->getParamDecl(i);
3921 mergeParamDeclAttributes(NewParam, OldParam, *this);
3922 mergeParamDeclTypes(NewParam, OldParam, *this);
3923 }
3924
3925 if (getLangOpts().CPlusPlus)
3926 return MergeCXXFunctionDecl(New, Old, S);
3927
3928 // Merge the function types so the we get the composite types for the return
3929 // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3930 // was visible.
3931 QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3932 if (!Merged.isNull() && MergeTypeWithOld)
3933 New->setType(Merged);
3934
3935 return false;
3936}
3937
3938void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3939 ObjCMethodDecl *oldMethod) {
3940 // Merge the attributes, including deprecated/unavailable
3941 AvailabilityMergeKind MergeKind =
3942 isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
3943 ? (oldMethod->isOptional() ? AMK_OptionalProtocolImplementation
3944 : AMK_ProtocolImplementation)
3945 : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3946 : AMK_Override;
3947
3948 mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3949
3950 // Merge attributes from the parameters.
3951 ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3952 oe = oldMethod->param_end();
3953 for (ObjCMethodDecl::param_iterator
3954 ni = newMethod->param_begin(), ne = newMethod->param_end();
3955 ni != ne && oi != oe; ++ni, ++oi)
3956 mergeParamDeclAttributes(*ni, *oi, *this);
3957
3958 CheckObjCMethodOverride(newMethod, oldMethod);
3959}
3960
3961static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
3962 assert(!S.Context.hasSameType(New->getType(), Old->getType()))(static_cast<void> (0));
3963
3964 S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
3965 ? diag::err_redefinition_different_type
3966 : diag::err_redeclaration_different_type)
3967 << New->getDeclName() << New->getType() << Old->getType();
3968
3969 diag::kind PrevDiag;
3970 SourceLocation OldLocation;
3971 std::tie(PrevDiag, OldLocation)
3972 = getNoteDiagForInvalidRedeclaration(Old, New);
3973 S.Diag(OldLocation, PrevDiag);
3974 New->setInvalidDecl();
3975}
3976
3977/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3978/// scope as a previous declaration 'Old'. Figure out how to merge their types,
3979/// emitting diagnostics as appropriate.
3980///
3981/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3982/// to here in AddInitializerToDecl. We can't check them before the initializer
3983/// is attached.
3984void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3985 bool MergeTypeWithOld) {
3986 if (New->isInvalidDecl() || Old->isInvalidDecl())
3987 return;
3988
3989 QualType MergedT;
3990 if (getLangOpts().CPlusPlus) {
3991 if (New->getType()->isUndeducedType()) {
3992 // We don't know what the new type is until the initializer is attached.
3993 return;
3994 } else if (Context.hasSameType(New->getType(), Old->getType())) {
3995 // These could still be something that needs exception specs checked.
3996 return MergeVarDeclExceptionSpecs(New, Old);
3997 }
3998 // C++ [basic.link]p10:
3999 // [...] the types specified by all declarations referring to a given
4000 // object or function shall be identical, except that declarations for an
4001 // array object can specify array types that differ by the presence or
4002 // absence of a major array bound (8.3.4).
4003 else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
4004 const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
4005 const ArrayType *NewArray = Context.getAsArrayType(New->getType());
4006
4007 // We are merging a variable declaration New into Old. If it has an array
4008 // bound, and that bound differs from Old's bound, we should diagnose the
4009 // mismatch.
4010 if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
4011 for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
4012 PrevVD = PrevVD->getPreviousDecl()) {
4013 QualType PrevVDTy = PrevVD->getType();
4014 if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
4015 continue;
4016
4017 if (!Context.hasSameType(New->getType(), PrevVDTy))
4018 return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
4019 }
4020 }
4021
4022 if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
4023 if (Context.hasSameType(OldArray->getElementType(),
4024 NewArray->getElementType()))
4025 MergedT = New->getType();
4026 }
4027 // FIXME: Check visibility. New is hidden but has a complete type. If New
4028 // has no array bound, it should not inherit one from Old, if Old is not
4029 // visible.
4030 else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
4031 if (Context.hasSameType(OldArray->getElementType(),
4032 NewArray->getElementType()))
4033 MergedT = Old->getType();
4034 }
4035 }
4036 else if (New->getType()->isObjCObjectPointerType() &&
4037 Old->getType()->isObjCObjectPointerType()) {
4038 MergedT = Context.mergeObjCGCQualifiers(New->getType(),
4039 Old->getType());
4040 }
4041 } else {
4042 // C 6.2.7p2:
4043 // All declarations that refer to the same object or function shall have
4044 // compatible type.
4045 MergedT = Context.mergeTypes(New->getType(), Old->getType());
4046 }
4047 if (MergedT.isNull()) {
4048 // It's OK if we couldn't merge types if either type is dependent, for a
4049 // block-scope variable. In other cases (static data members of class
4050 // templates, variable templates, ...), we require the types to be
4051 // equivalent.
4052 // FIXME: The C++ standard doesn't say anything about this.
4053 if ((New->getType()->isDependentType() ||
4054 Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
4055 // If the old type was dependent, we can't merge with it, so the new type
4056 // becomes dependent for now. We'll reproduce the original type when we
4057 // instantiate the TypeSourceInfo for the variable.
4058 if (!New->getType()->isDependentType() && MergeTypeWithOld)
4059 New->setType(Context.DependentTy);
4060 return;
4061 }
4062 return diagnoseVarDeclTypeMismatch(*this, New, Old);
4063 }
4064
4065 // Don't actually update the type on the new declaration if the old
4066 // declaration was an extern declaration in a different scope.
4067 if (MergeTypeWithOld)
4068 New->setType(MergedT);
4069}
4070
4071static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
4072 LookupResult &Previous) {
4073 // C11 6.2.7p4:
4074 // For an identifier with internal or external linkage declared
4075 // in a scope in which a prior declaration of that identifier is
4076 // visible, if the prior declaration specifies internal or
4077 // external linkage, the type of the identifier at the later
4078 // declaration becomes the composite type.
4079 //
4080 // If the variable isn't visible, we do not merge with its type.
4081 if (Previous.isShadowed())
4082 return false;
4083
4084 if (S.getLangOpts().CPlusPlus) {
4085 // C++11 [dcl.array]p3:
4086 // If there is a preceding declaration of the entity in the same
4087 // scope in which the bound was specified, an omitted array bound
4088 // is taken to be the same as in that earlier declaration.
4089 return NewVD->isPreviousDeclInSameBlockScope() ||
4090 (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
4091 !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
4092 } else {
4093 // If the old declaration was function-local, don't merge with its
4094 // type unless we're in the same function.
4095 return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
4096 OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
4097 }
4098}
4099
4100/// MergeVarDecl - We just parsed a variable 'New' which has the same name
4101/// and scope as a previous declaration 'Old'. Figure out how to resolve this
4102/// situation, merging decls or emitting diagnostics as appropriate.
4103///
4104/// Tentative definition rules (C99 6.9.2p2) are checked by
4105/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
4106/// definitions here, since the initializer hasn't been attached.
4107///
4108void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
4109 // If the new decl is already invalid, don't do any other checking.
4110 if (New->isInvalidDecl())
4111 return;
4112
4113 if (!shouldLinkPossiblyHiddenDecl(Previous, New))
4114 return;
4115
4116 VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
4117
4118 // Verify the old decl was also a variable or variable template.
4119 VarDecl *Old = nullptr;
4120 VarTemplateDecl *OldTemplate = nullptr;
4121 if (Previous.isSingleResult()) {
4122 if (NewTemplate) {
4123 OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
4124 Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
4125
4126 if (auto *Shadow =
4127 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4128 if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
4129 return New->setInvalidDecl();
4130 } else {
4131 Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
4132
4133 if (auto *Shadow =
4134 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4135 if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
4136 return New->setInvalidDecl();
4137 }
4138 }
4139 if (!Old) {
4140 Diag(New->getLocation(), diag::err_redefinition_different_kind)
4141 << New->getDeclName();
4142 notePreviousDefinition(Previous.getRepresentativeDecl(),
4143 New->getLocation());
4144 return New->setInvalidDecl();
4145 }
4146
4147 // If the old declaration was found in an inline namespace and the new
4148 // declaration was qualified, update the DeclContext to match.
4149 adjustDeclContextForDeclaratorDecl(New, Old);
4150
4151 // Ensure the template parameters are compatible.
4152 if (NewTemplate &&
4153 !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
4154 OldTemplate->getTemplateParameters(),
4155 /*Complain=*/true, TPL_TemplateMatch))
4156 return New->setInvalidDecl();
4157
4158 // C++ [class.mem]p1:
4159 // A member shall not be declared twice in the member-specification [...]
4160 //
4161 // Here, we need only consider static data members.
4162 if (Old->isStaticDataMember() && !New->isOutOfLine()) {
4163 Diag(New->getLocation(), diag::err_duplicate_member)
4164 << New->getIdentifier();
4165 Diag(Old->getLocation(), diag::note_previous_declaration);
4166 New->setInvalidDecl();
4167 }
4168
4169 mergeDeclAttributes(New, Old);
4170 // Warn if an already-declared variable is made a weak_import in a subsequent
4171 // declaration
4172 if (New->hasAttr<WeakImportAttr>() &&
4173 Old->getStorageClass() == SC_None &&
4174 !Old->hasAttr<WeakImportAttr>()) {
4175 Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
4176 Diag(Old->getLocation(), diag::note_previous_declaration);
4177 // Remove weak_import attribute on new declaration.
4178 New->dropAttr<WeakImportAttr>();
4179 }
4180
4181 if (const auto *ILA = New->getAttr<InternalLinkageAttr>())
4182 if (!Old->hasAttr<InternalLinkageAttr>()) {
4183 Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl)
4184 << ILA;
4185 Diag(Old->getLocation(), diag::note_previous_declaration);
4186 New->dropAttr<InternalLinkageAttr>();
4187 }
4188
4189 // Merge the types.
4190 VarDecl *MostRecent = Old->getMostRecentDecl();
4191 if (MostRecent != Old) {
4192 MergeVarDeclTypes(New, MostRecent,
4193 mergeTypeWithPrevious(*this, New, MostRecent, Previous));
4194 if (New->isInvalidDecl())
4195 return;
4196 }
4197
4198 MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
4199 if (New->isInvalidDecl())
4200 return;
4201
4202 diag::kind PrevDiag;
4203 SourceLocation OldLocation;
4204 std::tie(PrevDiag, OldLocation) =
4205 getNoteDiagForInvalidRedeclaration(Old, New);
4206
4207 // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
4208 if (New->getStorageClass() == SC_Static &&
4209 !New->isStaticDataMember() &&
4210 Old->hasExternalFormalLinkage()) {
4211 if (getLangOpts().MicrosoftExt) {
4212 Diag(New->getLocation(), diag::ext_static_non_static)
4213 << New->getDeclName();
4214 Diag(OldLocation, PrevDiag);
4215 } else {
4216 Diag(New->getLocation(), diag::err_static_non_static)
4217 << New->getDeclName();
4218 Diag(OldLocation, PrevDiag);
4219 return New->setInvalidDecl();
4220 }
4221 }
4222 // C99 6.2.2p4:
4223 // For an identifier declared with the storage-class specifier
4224 // extern in a scope in which a prior declaration of that
4225 // identifier is visible,23) if the prior declaration specifies
4226 // internal or external linkage, the linkage of the identifier at
4227 // the later declaration is the same as the linkage specified at
4228 // the prior declaration. If no prior declaration is visible, or
4229 // if the prior declaration specifies no linkage, then the
4230 // identifier has external linkage.
4231 if (New->hasExternalStorage() && Old->hasLinkage())
4232 /* Okay */;
4233 else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
4234 !New->isStaticDataMember() &&
4235 Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
4236 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
4237 Diag(OldLocation, PrevDiag);
4238 return New->setInvalidDecl();
4239 }
4240
4241 // Check if extern is followed by non-extern and vice-versa.
4242 if (New->hasExternalStorage() &&
4243 !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
4244 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
4245 Diag(OldLocation, PrevDiag);
4246 return New->setInvalidDecl();
4247 }
4248 if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
4249 !New->hasExternalStorage()) {
4250 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
4251 Diag(OldLocation, PrevDiag);
4252 return New->setInvalidDecl();
4253 }
4254
4255 if (CheckRedeclarationModuleOwnership(New, Old))
4256 return;
4257
4258 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
4259
4260 // FIXME: The test for external storage here seems wrong? We still
4261 // need to check for mismatches.
4262 if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
4263 // Don't complain about out-of-line definitions of static members.
4264 !(Old->getLexicalDeclContext()->isRecord() &&
4265 !New->getLexicalDeclContext()->isRecord())) {
4266 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
4267 Diag(OldLocation, PrevDiag);
4268 return New->setInvalidDecl();
4269 }
4270
4271 if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
4272 if (VarDecl *Def = Old->getDefinition()) {
4273 // C++1z [dcl.fcn.spec]p4:
4274 // If the definition of a variable appears in a translation unit before
4275 // its first declaration as inline, the program is ill-formed.
4276 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
4277 Diag(Def->getLocation(), diag::note_previous_definition);
4278 }
4279 }
4280
4281 // If this redeclaration makes the variable inline, we may need to add it to
4282 // UndefinedButUsed.
4283 if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
4284 !Old->getDefinition() && !New->isThisDeclarationADefinition())
4285 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
4286 SourceLocation()));
4287
4288 if (New->getTLSKind() != Old->getTLSKind()) {
4289 if (!Old->getTLSKind()) {
4290 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
4291 Diag(OldLocation, PrevDiag);
4292 } else if (!New->getTLSKind()) {
4293 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
4294 Diag(OldLocation, PrevDiag);
4295 } else {
4296 // Do not allow redeclaration to change the variable between requiring
4297 // static and dynamic initialization.
4298 // FIXME: GCC allows this, but uses the TLS keyword on the first
4299 // declaration to determine the kind. Do we need to be compatible here?
4300 Diag(New->getLocation(), diag::err_thread_thread_different_kind)
4301 << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
4302 Diag(OldLocation, PrevDiag);
4303 }
4304 }
4305
4306 // C++ doesn't have tentative definitions, so go right ahead and check here.
4307 if (getLangOpts().CPlusPlus &&
4308 New->isThisDeclarationADefinition() == VarDecl::Definition) {
4309 if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
4310 Old->getCanonicalDecl()->isConstexpr()) {
4311 // This definition won't be a definition any more once it's been merged.
4312 Diag(New->getLocation(),
4313 diag::warn_deprecated_redundant_constexpr_static_def);
4314 } else if (VarDecl *Def = Old->getDefinition()) {
4315 if (checkVarDeclRedefinition(Def, New))
4316 return;
4317 }
4318 }
4319
4320 if (haveIncompatibleLanguageLinkages(Old, New)) {
4321 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4322 Diag(OldLocation, PrevDiag);
4323 New->setInvalidDecl();
4324 return;
4325 }
4326
4327 // Merge "used" flag.
4328 if (Old->getMostRecentDecl()->isUsed(false))
4329 New->setIsUsed();
4330
4331 // Keep a chain of previous declarations.
4332 New->setPreviousDecl(Old);
4333 if (NewTemplate)
4334 NewTemplate->setPreviousDecl(OldTemplate);
4335
4336 // Inherit access appropriately.
4337 New->setAccess(Old->getAccess());
4338 if (NewTemplate)
4339 NewTemplate->setAccess(New->getAccess());
4340
4341 if (Old->isInline())
4342 New->setImplicitlyInline();
4343}
4344
4345void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4346 SourceManager &SrcMgr = getSourceManager();
4347 auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4348 auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4349 auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4350 auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first);
4351 auto &HSI = PP.getHeaderSearchInfo();
4352 StringRef HdrFilename =
4353 SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4354
4355 auto noteFromModuleOrInclude = [&](Module *Mod,
4356 SourceLocation IncLoc) -> bool {
4357 // Redefinition errors with modules are common with non modular mapped
4358 // headers, example: a non-modular header H in module A that also gets
4359 // included directly in a TU. Pointing twice to the same header/definition
4360 // is confusing, try to get better diagnostics when modules is on.
4361 if (IncLoc.isValid()) {
4362 if (Mod) {
4363 Diag(IncLoc, diag::note_redefinition_modules_same_file)
4364 << HdrFilename.str() << Mod->getFullModuleName();
4365 if (!Mod->DefinitionLoc.isInvalid())
4366 Diag(Mod->DefinitionLoc, diag::note_defined_here)
4367 << Mod->getFullModuleName();
4368 } else {
4369 Diag(IncLoc, diag::note_redefinition_include_same_file)
4370 << HdrFilename.str();
4371 }
4372 return true;
4373 }
4374
4375 return false;
4376 };
4377
4378 // Is it the same file and same offset? Provide more information on why
4379 // this leads to a redefinition error.
4380 if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4381 SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4382 SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4383 bool EmittedDiag =
4384 noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4385 EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4386
4387 // If the header has no guards, emit a note suggesting one.
4388 if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld))
4389 Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4390
4391 if (EmittedDiag)
4392 return;
4393 }
4394
4395 // Redefinition coming from different files or couldn't do better above.
4396 if (Old->getLocation().isValid())
4397 Diag(Old->getLocation(), diag::note_previous_definition);
4398}
4399
4400/// We've just determined that \p Old and \p New both appear to be definitions
4401/// of the same variable. Either diagnose or fix the problem.
4402bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4403 if (!hasVisibleDefinition(Old) &&
4404 (New->getFormalLinkage() == InternalLinkage ||
4405 New->isInline() ||
4406 New->getDescribedVarTemplate() ||
4407 New->getNumTemplateParameterLists() ||
4408 New->getDeclContext()->isDependentContext())) {
4409 // The previous definition is hidden, and multiple definitions are
4410 // permitted (in separate TUs). Demote this to a declaration.
4411 New->demoteThisDefinitionToDeclaration();
4412
4413 // Make the canonical definition visible.
4414 if (auto *OldTD = Old->getDescribedVarTemplate())
4415 makeMergedDefinitionVisible(OldTD);
4416 makeMergedDefinitionVisible(Old);
4417 return false;
4418 } else {
4419 Diag(New->getLocation(), diag::err_redefinition) << New;
4420 notePreviousDefinition(Old, New->getLocation());
4421 New->setInvalidDecl();
4422 return true;
4423 }
4424}
4425
4426/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4427/// no declarator (e.g. "struct foo;") is parsed.
4428Decl *
4429Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4430 RecordDecl *&AnonRecord) {
4431 return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false,
4432 AnonRecord);
4433}
4434
4435// The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4436// disambiguate entities defined in different scopes.
4437// While the VS2015 ABI fixes potential miscompiles, it is also breaks
4438// compatibility.
4439// We will pick our mangling number depending on which version of MSVC is being
4440// targeted.
4441static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4442 return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4443 ? S->getMSCurManglingNumber()
4444 : S->getMSLastManglingNumber();
4445}
4446
4447void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4448 if (!Context.getLangOpts().CPlusPlus)
4449 return;
4450
4451 if (isa<CXXRecordDecl>(Tag->getParent())) {
4452 // If this tag is the direct child of a class, number it if
4453 // it is anonymous.
4454 if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4455 return;
4456 MangleNumberingContext &MCtx =
4457 Context.getManglingNumberContext(Tag->getParent());
4458 Context.setManglingNumber(
4459 Tag, MCtx.getManglingNumber(
4460 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4461 return;
4462 }
4463
4464 // If this tag isn't a direct child of a class, number it if it is local.
4465 MangleNumberingContext *MCtx;
4466 Decl *ManglingContextDecl;
4467 std::tie(MCtx, ManglingContextDecl) =
4468 getCurrentMangleNumberContext(Tag->getDeclContext());
4469 if (MCtx) {
4470 Context.setManglingNumber(
4471 Tag, MCtx->getManglingNumber(
4472 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4473 }
4474}
4475
4476namespace {
4477struct NonCLikeKind {
4478 enum {
4479 None,
4480 BaseClass,
4481 DefaultMemberInit,
4482 Lambda,
4483 Friend,
4484 OtherMember,
4485 Invalid,
4486 } Kind = None;
4487 SourceRange Range;
4488
4489 explicit operator bool() { return Kind != None; }
4490};
4491}
4492
4493/// Determine whether a class is C-like, according to the rules of C++
4494/// [dcl.typedef] for anonymous classes with typedef names for linkage.
4495static NonCLikeKind getNonCLikeKindForAnonymousStruct(const CXXRecordDecl *RD) {
4496 if (RD->isInvalidDecl())
4497 return {NonCLikeKind::Invalid, {}};
4498
4499 // C++ [dcl.typedef]p9: [P1766R1]
4500 // An unnamed class with a typedef name for linkage purposes shall not
4501 //
4502 // -- have any base classes
4503 if (RD->getNumBases())
4504 return {NonCLikeKind::BaseClass,
4505 SourceRange(RD->bases_begin()->getBeginLoc(),
4506 RD->bases_end()[-1].getEndLoc())};
4507 bool Invalid = false;
4508 for (Decl *D : RD->decls()) {
4509 // Don't complain about things we already diagnosed.
4510 if (D->isInvalidDecl()) {
4511 Invalid = true;
4512 continue;
4513 }
4514
4515 // -- have any [...] default member initializers
4516 if (auto *FD = dyn_cast<FieldDecl>(D)) {
4517 if (FD->hasInClassInitializer()) {
4518 auto *Init = FD->getInClassInitializer();
4519 return {NonCLikeKind::DefaultMemberInit,
4520 Init ? Init->getSourceRange() : D->getSourceRange()};
4521 }
4522 continue;
4523 }
4524
4525 // FIXME: We don't allow friend declarations. This violates the wording of
4526 // P1766, but not the intent.
4527 if (isa<FriendDecl>(D))
4528 return {NonCLikeKind::Friend, D->getSourceRange()};
4529
4530 // -- declare any members other than non-static data members, member
4531 // enumerations, or member classes,
4532 if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D) ||
4533 isa<EnumDecl>(D))
4534 continue;
4535 auto *MemberRD = dyn_cast<CXXRecordDecl>(D);
4536 if (!MemberRD) {
4537 if (D->isImplicit())
4538 continue;
4539 return {NonCLikeKind::OtherMember, D->getSourceRange()};
4540 }
4541
4542 // -- contain a lambda-expression,
4543 if (MemberRD->isLambda())
4544 return {NonCLikeKind::Lambda, MemberRD->getSourceRange()};
4545
4546 // and all member classes shall also satisfy these requirements
4547 // (recursively).
4548 if (MemberRD->isThisDeclarationADefinition()) {
4549 if (auto Kind = getNonCLikeKindForAnonymousStruct(MemberRD))
4550 return Kind;
4551 }
4552 }
4553
4554 return {Invalid ? NonCLikeKind::Invalid : NonCLikeKind::None, {}};
4555}
4556
4557void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
4558 TypedefNameDecl *NewTD) {
4559 if (TagFromDeclSpec->isInvalidDecl())
4560 return;
4561
4562 // Do nothing if the tag already has a name for linkage purposes.
4563 if (TagFromDeclSpec->hasNameForLinkage())
4564 return;
4565
4566 // A well-formed anonymous tag must always be a TUK_Definition.
4567 assert(TagFromDeclSpec->isThisDeclarationADefinition())(static_cast<void> (0));
4568
4569 // The type must match the tag exactly; no qualifiers allowed.
4570 if (!Context.hasSameType(NewTD->getUnderlyingType(),
4571 Context.getTagDeclType(TagFromDeclSpec))) {
4572 if (getLangOpts().CPlusPlus)
4573 Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
4574 return;
4575 }
4576
4577 // C++ [dcl.typedef]p9: [P1766R1, applied as DR]
4578 // An unnamed class with a typedef name for linkage purposes shall [be
4579 // C-like].
4580 //
4581 // FIXME: Also diagnose if we've already computed the linkage. That ideally
4582 // shouldn't happen, but there are constructs that the language rule doesn't
4583 // disallow for which we can't reasonably avoid computing linkage early.
4584 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TagFromDeclSpec);
4585 NonCLikeKind NonCLike = RD ? getNonCLikeKindForAnonymousStruct(RD)
4586 : NonCLikeKind();
4587 bool ChangesLinkage = TagFromDeclSpec->hasLinkageBeenComputed();
4588 if (NonCLike || ChangesLinkage) {
4589 if (NonCLike.Kind == NonCLikeKind::Invalid)
4590 return;
4591
4592 unsigned DiagID = diag::ext_non_c_like_anon_struct_in_typedef;
4593 if (ChangesLinkage) {
4594 // If the linkage changes, we can't accept this as an extension.
4595 if (NonCLike.Kind == NonCLikeKind::None)
4596 DiagID = diag::err_typedef_changes_linkage;
4597 else
4598 DiagID = diag::err_non_c_like_anon_struct_in_typedef;
4599 }
4600
4601 SourceLocation FixitLoc =
4602 getLocForEndOfToken(TagFromDeclSpec->getInnerLocStart());
4603 llvm::SmallString<40> TextToInsert;
4604 TextToInsert += ' ';
4605 TextToInsert += NewTD->getIdentifier()->getName();
4606
4607 Diag(FixitLoc, DiagID)
4608 << isa<TypeAliasDecl>(NewTD)
4609 << FixItHint::CreateInsertion(FixitLoc, TextToInsert);
4610 if (NonCLike.Kind != NonCLikeKind::None) {
4611 Diag(NonCLike.Range.getBegin(), diag::note_non_c_like_anon_struct)
4612 << NonCLike.Kind - 1 << NonCLike.Range;
4613 }
4614 Diag(NewTD->getLocation(), diag::note_typedef_for_linkage_here)
4615 << NewTD << isa<TypeAliasDecl>(NewTD);
4616
4617 if (ChangesLinkage)
4618 return;
4619 }
4620
4621 // Otherwise, set this as the anon-decl typedef for the tag.
4622 TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
4623}
4624
4625static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
4626 switch (T) {
4627 case DeclSpec::TST_class:
4628 return 0;
4629 case DeclSpec::TST_struct:
4630 return 1;
4631 case DeclSpec::TST_interface:
4632 return 2;
4633 case DeclSpec::TST_union:
4634 return 3;
4635 case DeclSpec::TST_enum:
4636 return 4;
4637 default:
4638 llvm_unreachable("unexpected type specifier")__builtin_unreachable();
4639 }
4640}
4641
4642/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4643/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
4644/// parameters to cope with template friend declarations.
4645Decl *
4646Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4647 MultiTemplateParamsArg TemplateParams,
4648 bool IsExplicitInstantiation,
4649 RecordDecl *&AnonRecord) {
4650 Decl *TagD = nullptr;
4651 TagDecl *Tag = nullptr;
4652 if (DS.getTypeSpecType() == DeclSpec::TST_class ||
4653 DS.getTypeSpecType() == DeclSpec::TST_struct ||
4654 DS.getTypeSpecType() == DeclSpec::TST_interface ||
4655 DS.getTypeSpecType() == DeclSpec::TST_union ||
4656 DS.getTypeSpecType() == DeclSpec::TST_enum) {
4657 TagD = DS.getRepAsDecl();
4658
4659 if (!TagD) // We probably had an error
4660 return nullptr;
4661
4662 // Note that the above type specs guarantee that the
4663 // type rep is a Decl, whereas in many of the others
4664 // it's a Type.
4665 if (isa<TagDecl>(TagD))
4666 Tag = cast<TagDecl>(TagD);
4667 else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
4668 Tag = CTD->getTemplatedDecl();
4669 }
4670
4671 if (Tag) {
4672 handleTagNumbering(Tag, S);
4673 Tag->setFreeStanding();
4674 if (Tag->isInvalidDecl())
4675 return Tag;
4676 }
4677
4678 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
4679 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
4680 // or incomplete types shall not be restrict-qualified."
4681 if (TypeQuals & DeclSpec::TQ_restrict)
4682 Diag(DS.getRestrictSpecLoc(),
4683 diag::err_typecheck_invalid_restrict_not_pointer_noarg)
4684 << DS.getSourceRange();
4685 }
4686
4687 if (DS.isInlineSpecified())
4688 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4689 << getLangOpts().CPlusPlus17;
4690
4691 if (DS.hasConstexprSpecifier()) {
4692 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
4693 // and definitions of functions and variables.
4694 // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to
4695 // the declaration of a function or function template
4696 if (Tag)
4697 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
4698 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType())
4699 << static_cast<int>(DS.getConstexprSpecifier());
4700 else
4701 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind)
4702 << static_cast<int>(DS.getConstexprSpecifier());
4703 // Don't emit warnings after this error.
4704 return TagD;
4705 }
4706
4707 DiagnoseFunctionSpecifiers(DS);
4708
4709 if (DS.isFriendSpecified()) {
4710 // If we're dealing with a decl but not a TagDecl, assume that
4711 // whatever routines created it handled the friendship aspect.
4712 if (TagD && !Tag)
4713 return nullptr;
4714 return ActOnFriendTypeDecl(S, DS, TemplateParams);
4715 }
4716
4717 const CXXScopeSpec &SS = DS.getTypeSpecScope();
4718 bool IsExplicitSpecialization =
4719 !TemplateParams.empty() && TemplateParams.back()->size() == 0;
4720 if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
4721 !IsExplicitInstantiation && !IsExplicitSpecialization &&
4722 !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
4723 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
4724 // nested-name-specifier unless it is an explicit instantiation
4725 // or an explicit specialization.
4726 //
4727 // FIXME: We allow class template partial specializations here too, per the
4728 // obvious intent of DR1819.
4729 //
4730 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
4731 Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
4732 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
4733 return nullptr;
4734 }
4735
4736 // Track whether this decl-specifier declares anything.
4737 bool DeclaresAnything = true;
4738
4739 // Handle anonymous struct definitions.
4740 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
4741 if (!Record->getDeclName() && Record->isCompleteDefinition() &&
4742 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
4743 if (getLangOpts().CPlusPlus ||
4744 Record->getDeclContext()->isRecord()) {
4745 // If CurContext is a DeclContext that can contain statements,
4746 // RecursiveASTVisitor won't visit the decls that
4747 // BuildAnonymousStructOrUnion() will put into CurContext.
4748 // Also store them here so that they can be part of the
4749 // DeclStmt that gets created in this case.
4750 // FIXME: Also return the IndirectFieldDecls created by
4751 // BuildAnonymousStructOr union, for the same reason?
4752 if (CurContext->isFunctionOrMethod())
4753 AnonRecord = Record;
4754 return BuildAnonymousStructOrUnion(S, DS, AS, Record,
4755 Context.getPrintingPolicy());
4756 }
4757
4758 DeclaresAnything = false;
4759 }
4760 }
4761
4762 // C11 6.7.2.1p2:
4763 // A struct-declaration that does not declare an anonymous structure or
4764 // anonymous union shall contain a struct-declarator-list.
4765 //
4766 // This rule also existed in C89 and C99; the grammar for struct-declaration
4767 // did not permit a struct-declaration without a struct-declarator-list.
4768 if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
4769 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
4770 // Check for Microsoft C extension: anonymous struct/union member.
4771 // Handle 2 kinds of anonymous struct/union:
4772 // struct STRUCT;
4773 // union UNION;
4774 // and
4775 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
4776 // UNION_TYPE; <- where UNION_TYPE is a typedef union.
4777 if ((Tag && Tag->getDeclName()) ||
4778 DS.getTypeSpecType() == DeclSpec::TST_typename) {
4779 RecordDecl *Record = nullptr;
4780 if (Tag)
4781 Record = dyn_cast<RecordDecl>(Tag);
4782 else if (const RecordType *RT =
4783 DS.getRepAsType().get()->getAsStructureType())
4784 Record = RT->getDecl();
4785 else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
4786 Record = UT->getDecl();
4787
4788 if (Record && getLangOpts().MicrosoftExt) {
4789 Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
4790 << Record->isUnion() << DS.getSourceRange();
4791 return BuildMicrosoftCAnonymousStruct(S, DS, Record);
4792 }
4793
4794 DeclaresAnything = false;
4795 }
4796 }
4797
4798 // Skip all the checks below if we have a type error.
4799 if (DS.getTypeSpecType() == DeclSpec::TST_error ||
4800 (TagD && TagD->isInvalidDecl()))
4801 return TagD;
4802
4803 if (getLangOpts().CPlusPlus &&
4804 DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
4805 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
4806 if (Enum->enumerator_begin() == Enum->enumerator_end() &&
4807 !Enum->getIdentifier() && !Enum->isInvalidDecl())
4808 DeclaresAnything = false;
4809
4810 if (!DS.isMissingDeclaratorOk()) {
4811 // Customize diagnostic for a typedef missing a name.
4812 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
4813 Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
4814 << DS.getSourceRange();
4815 else
4816 DeclaresAnything = false;
4817 }
4818
4819 if (DS.isModulePrivateSpecified() &&
4820 Tag && Tag->getDeclContext()->isFunctionOrMethod())
4821 Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
4822 << Tag->getTagKind()
4823 << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
4824
4825 ActOnDocumentableDecl(TagD);
4826
4827 // C 6.7/2:
4828 // A declaration [...] shall declare at least a declarator [...], a tag,
4829 // or the members of an enumeration.
4830 // C++ [dcl.dcl]p3:
4831 // [If there are no declarators], and except for the declaration of an
4832 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
4833 // names into the program, or shall redeclare a name introduced by a
4834 // previous declaration.
4835 if (!DeclaresAnything) {
4836 // In C, we allow this as a (popular) extension / bug. Don't bother
4837 // producing further diagnostics for redundant qualifiers after this.
4838 Diag(DS.getBeginLoc(), (IsExplicitInstantiation || !TemplateParams.empty())
4839 ? diag::err_no_declarators
4840 : diag::ext_no_declarators)
4841 << DS.getSourceRange();
4842 return TagD;
4843 }
4844
4845 // C++ [dcl.stc]p1:
4846 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the
4847 // init-declarator-list of the declaration shall not be empty.
4848 // C++ [dcl.fct.spec]p1:
4849 // If a cv-qualifier appears in a decl-specifier-seq, the
4850 // init-declarator-list of the declaration shall not be empty.
4851 //
4852 // Spurious qualifiers here appear to be valid in C.
4853 unsigned DiagID = diag::warn_standalone_specifier;
4854 if (getLangOpts().CPlusPlus)
4855 DiagID = diag::ext_standalone_specifier;
4856
4857 // Note that a linkage-specification sets a storage class, but
4858 // 'extern "C" struct foo;' is actually valid and not theoretically
4859 // useless.
4860 if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4861 if (SCS == DeclSpec::SCS_mutable)
4862 // Since mutable is not a viable storage class specifier in C, there is
4863 // no reason to treat it as an extension. Instead, diagnose as an error.
4864 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
4865 else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
4866 Diag(DS.getStorageClassSpecLoc(), DiagID)
4867 << DeclSpec::getSpecifierName(SCS);
4868 }
4869
4870 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
4871 Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
4872 << DeclSpec::getSpecifierName(TSCS);
4873 if (DS.getTypeQualifiers()) {
4874 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4875 Diag(DS.getConstSpecLoc(), DiagID) << "const";
4876 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4877 Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
4878 // Restrict is covered above.
4879 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4880 Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
4881 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4882 Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
4883 }
4884
4885 // Warn about ignored type attributes, for example:
4886 // __attribute__((aligned)) struct A;
4887 // Attributes should be placed after tag to apply to type declaration.
4888 if (!DS.getAttributes().empty()) {
4889 DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
4890 if (TypeSpecType == DeclSpec::TST_class ||
4891 TypeSpecType == DeclSpec::TST_struct ||
4892 TypeSpecType == DeclSpec::TST_interface ||
4893 TypeSpecType == DeclSpec::TST_union ||
4894 TypeSpecType == DeclSpec::TST_enum) {
4895 for (const ParsedAttr &AL : DS.getAttributes())
4896 Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored)
4897 << AL << GetDiagnosticTypeSpecifierID(TypeSpecType);
4898 }
4899 }
4900
4901 return TagD;
4902}
4903
4904/// We are trying to inject an anonymous member into the given scope;
4905/// check if there's an existing declaration that can't be overloaded.
4906///
4907/// \return true if this is a forbidden redeclaration
4908static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
4909 Scope *S,
4910 DeclContext *Owner,
4911 DeclarationName Name,
4912 SourceLocation NameLoc,
4913 bool IsUnion) {
4914 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
4915 Sema::ForVisibleRedeclaration);
4916 if (!SemaRef.LookupName(R, S)) return false;
4917
4918 // Pick a representative declaration.
4919 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
4920 assert(PrevDecl && "Expected a non-null Decl")(static_cast<void> (0));
4921
4922 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
4923 return false;
4924
4925 SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
4926 << IsUnion << Name;
4927 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4928
4929 return true;
4930}
4931
4932/// InjectAnonymousStructOrUnionMembers - Inject the members of the
4933/// anonymous struct or union AnonRecord into the owning context Owner
4934/// and scope S. This routine will be invoked just after we realize
4935/// that an unnamed union or struct is actually an anonymous union or
4936/// struct, e.g.,
4937///
4938/// @code
4939/// union {
4940/// int i;
4941/// float f;
4942/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
4943/// // f into the surrounding scope.x
4944/// @endcode
4945///
4946/// This routine is recursive, injecting the names of nested anonymous
4947/// structs/unions into the owning context and scope as well.
4948static bool
4949InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
4950 RecordDecl *AnonRecord, AccessSpecifier AS,
4951 SmallVectorImpl<NamedDecl *> &Chaining) {
4952 bool Invalid = false;
4953
4954 // Look every FieldDecl and IndirectFieldDecl with a name.
4955 for (auto *D : AnonRecord->decls()) {
4956 if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
4957 cast<NamedDecl>(D)->getDeclName()) {
4958 ValueDecl *VD = cast<ValueDecl>(D);
4959 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
4960 VD->getLocation(),
4961 AnonRecord->isUnion())) {
4962 // C++ [class.union]p2:
4963 // The names of the members of an anonymous union shall be
4964 // distinct from the names of any other entity in the
4965 // scope in which the anonymous union is declared.
4966 Invalid = true;
4967 } else {
4968 // C++ [class.union]p2:
4969 // For the purpose of name lookup, after the anonymous union
4970 // definition, the members of the anonymous union are
4971 // considered to have been defined in the scope in which the
4972 // anonymous union is declared.
4973 unsigned OldChainingSize = Chaining.size();
4974 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
4975 Chaining.append(IF->chain_begin(), IF->chain_end());
4976 else
4977 Chaining.push_back(VD);
4978
4979 assert(Chaining.size() >= 2)(static_cast<void> (0));
4980 NamedDecl **NamedChain =
4981 new (SemaRef.Context)NamedDecl*[Chaining.size()];
4982 for (unsigned i = 0; i < Chaining.size(); i++)
4983 NamedChain[i] = Chaining[i];
4984
4985 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
4986 SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
4987 VD->getType(), {NamedChain, Chaining.size()});
4988
4989 for (const auto *Attr : VD->attrs())
4990 IndirectField->addAttr(Attr->clone(SemaRef.Context));
4991
4992 IndirectField->setAccess(AS);
4993 IndirectField->setImplicit();
4994 SemaRef.PushOnScopeChains(IndirectField, S);
4995
4996 // That includes picking up the appropriate access specifier.
4997 if (AS != AS_none) IndirectField->setAccess(AS);
4998
4999 Chaining.resize(OldChainingSize);
5000 }
5001 }
5002 }
5003
5004 return Invalid;
5005}
5006
5007/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
5008/// a VarDecl::StorageClass. Any error reporting is up to the caller:
5009/// illegal input values are mapped to SC_None.
5010static StorageClass
5011StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
5012 DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
5013 assert(StorageClassSpec != DeclSpec::SCS_typedef &&(static_cast<void> (0))
5014 "Parser allowed 'typedef' as storage class VarDecl.")(static_cast<void> (0));
5015 switch (StorageClassSpec) {
5016 case DeclSpec::SCS_unspecified: return SC_None;
5017 case DeclSpec::SCS_extern:
5018 if (DS.isExternInLinkageSpec())
5019 return SC_None;
5020 return SC_Extern;
5021 case DeclSpec::SCS_static: return SC_Static;
5022 case DeclSpec::SCS_auto: return SC_Auto;
5023 case DeclSpec::SCS_register: return SC_Register;
5024 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5025 // Illegal SCSs map to None: error reporting is up to the caller.
5026 case DeclSpec::SCS_mutable: // Fall through.
5027 case DeclSpec::SCS_typedef: return SC_None;
5028 }
5029 llvm_unreachable("unknown storage class specifier")__builtin_unreachable();
5030}
5031
5032static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
5033 assert(Record->hasInClassInitializer())(static_cast<void> (0));
5034
5035 for (const auto *I : Record->decls()) {
5036 const auto *FD = dyn_cast<FieldDecl>(I);
5037 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
5038 FD = IFD->getAnonField();
5039 if (FD && FD->hasInClassInitializer())
5040 return FD->getLocation();
5041 }
5042
5043 llvm_unreachable("couldn't find in-class initializer")__builtin_unreachable();
5044}
5045
5046static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
5047 SourceLocation DefaultInitLoc) {
5048 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
5049 return;
5050
5051 S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
5052 S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
5053}
5054
5055static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
5056 CXXRecordDecl *AnonUnion) {
5057 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
5058 return;
5059
5060 checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
5061}
5062
5063/// BuildAnonymousStructOrUnion - Handle the declaration of an
5064/// anonymous structure or union. Anonymous unions are a C++ feature
5065/// (C++ [class.union]) and a C11 feature; anonymous structures
5066/// are a C11 feature and GNU C++ extension.
5067Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
5068 AccessSpecifier AS,
5069 RecordDecl *Record,
5070 const PrintingPolicy &Policy) {
5071 DeclContext *Owner = Record->getDeclContext();
5072
5073 // Diagnose whether this anonymous struct/union is an extension.
5074 if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
5075 Diag(Record->getLocation(), diag::ext_anonymous_union);
5076 else if (!Record->isUnion() && getLangOpts().CPlusPlus)
5077 Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
5078 else if (!Record->isUnion() && !getLangOpts().C11)
5079 Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
5080
5081 // C and C++ require different kinds of checks for anonymous
5082 // structs/unions.
5083 bool Invalid = false;
5084 if (getLangOpts().CPlusPlus) {
5085 const char *PrevSpec = nullptr;
5086 if (Record->isUnion()) {
5087 // C++ [class.union]p6:
5088 // C++17 [class.union.anon]p2:
5089 // Anonymous unions declared in a named namespace or in the
5090 // global namespace shall be declared static.
5091 unsigned DiagID;
5092 DeclContext *OwnerScope = Owner->getRedeclContext();
5093 if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
5094 (OwnerScope->isTranslationUnit() ||
5095 (OwnerScope->isNamespace() &&
5096 !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
5097 Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
5098 << FixItHint::CreateInsertion(Record->getLocation(), "static ");
5099
5100 // Recover by adding 'static'.
5101 DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
5102 PrevSpec, DiagID, Policy);
5103 }
5104 // C++ [class.union]p6:
5105 // A storage class is not allowed in a declaration of an
5106 // anonymous union in a class scope.
5107 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
5108 isa<RecordDecl>(Owner)) {
5109 Diag(DS.getStorageClassSpecLoc(),
5110 diag::err_anonymous_union_with_storage_spec)
5111 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5112
5113 // Recover by removing the storage specifier.
5114 DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
5115 SourceLocation(),
5116 PrevSpec, DiagID, Context.getPrintingPolicy());
5117 }
5118 }
5119
5120 // Ignore const/volatile/restrict qualifiers.
5121 if (DS.getTypeQualifiers()) {
5122 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5123 Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
5124 << Record->isUnion() << "const"
5125 << FixItHint::CreateRemoval(DS.getConstSpecLoc());
5126 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5127 Diag(DS.getVolatileSpecLoc(),
5128 diag::ext_anonymous_struct_union_qualified)
5129 << Record->isUnion() << "volatile"
5130 << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
5131 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
5132 Diag(DS.getRestrictSpecLoc(),
5133 diag::ext_anonymous_struct_union_qualified)
5134 << Record->isUnion() << "restrict"
5135 << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
5136 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5137 Diag(DS.getAtomicSpecLoc(),
5138 diag::ext_anonymous_struct_union_qualified)
5139 << Record->isUnion() << "_Atomic"
5140 << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
5141 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
5142 Diag(DS.getUnalignedSpecLoc(),
5143 diag::ext_anonymous_struct_union_qualified)
5144 << Record->isUnion() << "__unaligned"
5145 << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
5146
5147 DS.ClearTypeQualifiers();
5148 }
5149
5150 // C++ [class.union]p2:
5151 // The member-specification of an anonymous union shall only
5152 // define non-static data members. [Note: nested types and
5153 // functions cannot be declared within an anonymous union. ]
5154 for (auto *Mem : Record->decls()) {
5155 // Ignore invalid declarations; we already diagnosed them.
5156 if (Mem->isInvalidDecl())
5157 continue;
5158
5159 if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
5160 // C++ [class.union]p3:
5161 // An anonymous union shall not have private or protected
5162 // members (clause 11).
5163 assert(FD->getAccess() != AS_none)(static_cast<void> (0));
5164 if (FD->getAccess() != AS_public) {
5165 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
5166 << Record->isUnion() << (FD->getAccess() == AS_protected);
5167 Invalid = true;
5168 }
5169
5170 // C++ [class.union]p1
5171 // An object of a class with a non-trivial constructor, a non-trivial
5172 // copy constructor, a non-trivial destructor, or a non-trivial copy
5173 // assignment operator cannot be a member of a union, nor can an
5174 // array of such objects.
5175 if (CheckNontrivialField(FD))
5176 Invalid = true;
5177 } else if (Mem->isImplicit()) {
5178 // Any implicit members are fine.
5179 } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
5180 // This is a type that showed up in an
5181 // elaborated-type-specifier inside the anonymous struct or
5182 // union, but which actually declares a type outside of the
5183 // anonymous struct or union. It's okay.
5184 } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
5185 if (!MemRecord->isAnonymousStructOrUnion() &&
5186 MemRecord->getDeclName()) {
5187 // Visual C++ allows type definition in anonymous struct or union.
5188 if (getLangOpts().MicrosoftExt)
5189 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
5190 << Record->isUnion();
5191 else {
5192 // This is a nested type declaration.
5193 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
5194 << Record->isUnion();
5195 Invalid = true;
5196 }
5197 } else {
5198 // This is an anonymous type definition within another anonymous type.
5199 // This is a popular extension, provided by Plan9, MSVC and GCC, but
5200 // not part of standard C++.
5201 Diag(MemRecord->getLocation(),
5202 diag::ext_anonymous_record_with_anonymous_type)
5203 << Record->isUnion();
5204 }
5205 } else if (isa<AccessSpecDecl>(Mem)) {
5206 // Any access specifier is fine.
5207 } else if (isa<StaticAssertDecl>(Mem)) {
5208 // In C++1z, static_assert declarations are also fine.
5209 } else {
5210 // We have something that isn't a non-static data
5211 // member. Complain about it.
5212 unsigned DK = diag::err_anonymous_record_bad_member;
5213 if (isa<TypeDecl>(Mem))
5214 DK = diag::err_anonymous_record_with_type;
5215 else if (isa<FunctionDecl>(Mem))
5216 DK = diag::err_anonymous_record_with_function;
5217 else if (isa<VarDecl>(Mem))
5218 DK = diag::err_anonymous_record_with_static;
5219
5220 // Visual C++ allows type definition in anonymous struct or union.
5221 if (getLangOpts().MicrosoftExt &&
5222 DK == diag::err_anonymous_record_with_type)
5223 Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
5224 << Record->isUnion();
5225 else {
5226 Diag(Mem->getLocation(), DK) << Record->isUnion();
5227 Invalid = true;
5228 }
5229 }
5230 }
5231
5232 // C++11 [class.union]p8 (DR1460):
5233 // At most one variant member of a union may have a
5234 // brace-or-equal-initializer.
5235 if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
5236 Owner->isRecord())
5237 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
5238 cast<CXXRecordDecl>(Record));
5239 }
5240
5241 if (!Record->isUnion() && !Owner->isRecord()) {
5242 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
5243 << getLangOpts().CPlusPlus;
5244 Invalid = true;
5245 }
5246
5247 // C++ [dcl.dcl]p3:
5248 // [If there are no declarators], and except for the declaration of an
5249 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
5250 // names into the program
5251 // C++ [class.mem]p2:
5252 // each such member-declaration shall either declare at least one member
5253 // name of the class or declare at least one unnamed bit-field
5254 //
5255 // For C this is an error even for a named struct, and is diagnosed elsewhere.
5256 if (getLangOpts().CPlusPlus && Record->field_empty())
5257 Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
5258
5259 // Mock up a declarator.
5260 Declarator Dc(DS, DeclaratorContext::Member);
5261 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5262 assert(TInfo && "couldn't build declarator info for anonymous struct/union")(static_cast<void> (0));
5263
5264 // Create a declaration for this anonymous struct/union.
5265 NamedDecl *Anon = nullptr;
5266 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
5267 Anon = FieldDecl::Create(
5268 Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
5269 /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
5270 /*BitWidth=*/nullptr, /*Mutable=*/false,
5271 /*InitStyle=*/ICIS_NoInit);
5272 Anon->setAccess(AS);
5273 ProcessDeclAttributes(S, Anon, Dc);
5274
5275 if (getLangOpts().CPlusPlus)
5276 FieldCollector->Add(cast<FieldDecl>(Anon));
5277 } else {
5278 DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
5279 StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
5280 if (SCSpec == DeclSpec::SCS_mutable) {
5281 // mutable can only appear on non-static class members, so it's always
5282 // an error here
5283 Diag(Record->getLocation(), diag::err_mutable_nonmember);
5284 Invalid = true;
5285 SC = SC_None;
5286 }
5287
5288 assert(DS.getAttributes().empty() && "No attribute expected")(static_cast<void> (0));
5289 Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
5290 Record->getLocation(), /*IdentifierInfo=*/nullptr,
5291 Context.getTypeDeclType(Record), TInfo, SC);
5292
5293 // Default-initialize the implicit variable. This initialization will be
5294 // trivial in almost all cases, except if a union member has an in-class
5295 // initializer:
5296 // union { int n = 0; };
5297 if (!Invalid)
5298 ActOnUninitializedDecl(Anon);
5299 }
5300 Anon->setImplicit();
5301
5302 // Mark this as an anonymous struct/union type.
5303 Record->setAnonymousStructOrUnion(true);
5304
5305 // Add the anonymous struct/union object to the current
5306 // context. We'll be referencing this object when we refer to one of
5307 // its members.
5308 Owner->addDecl(Anon);
5309
5310 // Inject the members of the anonymous struct/union into the owning
5311 // context and into the identifier resolver chain for name lookup
5312 // purposes.
5313 SmallVector<NamedDecl*, 2> Chain;
5314 Chain.push_back(Anon);
5315
5316 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
5317 Invalid = true;
5318
5319 if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
5320 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5321 MangleNumberingContext *MCtx;
5322 Decl *ManglingContextDecl;
5323 std::tie(MCtx, ManglingContextDecl) =
5324 getCurrentMangleNumberContext(NewVD->getDeclContext());
5325 if (MCtx) {
5326 Context.setManglingNumber(
5327 NewVD, MCtx->getManglingNumber(
5328 NewVD, getMSManglingNumber(getLangOpts(), S)));
5329 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
5330 }
5331 }
5332 }
5333
5334 if (Invalid)
5335 Anon->setInvalidDecl();
5336
5337 return Anon;
5338}
5339
5340/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
5341/// Microsoft C anonymous structure.
5342/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
5343/// Example:
5344///
5345/// struct A { int a; };
5346/// struct B { struct A; int b; };
5347///
5348/// void foo() {
5349/// B var;
5350/// var.a = 3;
5351/// }
5352///
5353Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
5354 RecordDecl *Record) {
5355 assert(Record && "expected a record!")(static_cast<void> (0));
5356
5357 // Mock up a declarator.
5358 Declarator Dc(DS, DeclaratorContext::TypeName);
5359 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5360 assert(TInfo && "couldn't build declarator info for anonymous struct")(static_cast<void> (0));
5361
5362 auto *ParentDecl = cast<RecordDecl>(CurContext);
5363 QualType RecTy = Context.getTypeDeclType(Record);
5364
5365 // Create a declaration for this anonymous struct.
5366 NamedDecl *Anon =
5367 FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
5368 /*IdentifierInfo=*/nullptr, RecTy, TInfo,
5369 /*BitWidth=*/nullptr, /*Mutable=*/false,
5370 /*InitStyle=*/ICIS_NoInit);
5371 Anon->setImplicit();
5372
5373 // Add the anonymous struct object to the current context.
5374 CurContext->addDecl(Anon);
5375
5376 // Inject the members of the anonymous struct into the current
5377 // context and into the identifier resolver chain for name lookup
5378 // purposes.
5379 SmallVector<NamedDecl*, 2> Chain;
5380 Chain.push_back(Anon);
5381
5382 RecordDecl *RecordDef = Record->getDefinition();
5383 if (RequireCompleteSizedType(Anon->getLocation(), RecTy,
5384 diag::err_field_incomplete_or_sizeless) ||
5385 InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
5386 AS_none, Chain)) {
5387 Anon->setInvalidDecl();
5388 ParentDecl->setInvalidDecl();
5389 }
5390
5391 return Anon;
5392}
5393
5394/// GetNameForDeclarator - Determine the full declaration name for the
5395/// given Declarator.
5396DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
5397 return GetNameFromUnqualifiedId(D.getName());
5398}
5399
5400/// Retrieves the declaration name from a parsed unqualified-id.
5401DeclarationNameInfo
5402Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
5403 DeclarationNameInfo NameInfo;
5404 NameInfo.setLoc(Name.StartLocation);
5405
5406 switch (Name.getKind()) {
5407
5408 case UnqualifiedIdKind::IK_ImplicitSelfParam:
5409 case UnqualifiedIdKind::IK_Identifier:
5410 NameInfo.setName(Name.Identifier);
5411 return NameInfo;
5412
5413 case UnqualifiedIdKind::IK_DeductionGuideName: {
5414 // C++ [temp.deduct.guide]p3:
5415 // The simple-template-id shall name a class template specialization.
5416 // The template-name shall be the same identifier as the template-name
5417 // of the simple-template-id.
5418 // These together intend to imply that the template-name shall name a
5419 // class template.
5420 // FIXME: template<typename T> struct X {};
5421 // template<typename T> using Y = X<T>;
5422 // Y(int) -> Y<int>;
5423 // satisfies these rules but does not name a class template.
5424 TemplateName TN = Name.TemplateName.get().get();
5425 auto *Template = TN.getAsTemplateDecl();
5426 if (!Template || !isa<ClassTemplateDecl>(Template)) {
5427 Diag(Name.StartLocation,
5428 diag::err_deduction_guide_name_not_class_template)
5429 << (int)getTemplateNameKindForDiagnostics(TN) << TN;
5430 if (Template)
5431 Diag(Template->getLocation(), diag::note_template_decl_here);
5432 return DeclarationNameInfo();
5433 }
5434
5435 NameInfo.setName(
5436 Context.DeclarationNames.getCXXDeductionGuideName(Template));
5437 return NameInfo;
5438 }
5439
5440 case UnqualifiedIdKind::IK_OperatorFunctionId:
5441 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
5442 Name.OperatorFunctionId.Operator));
5443 NameInfo.setCXXOperatorNameRange(SourceRange(
5444 Name.OperatorFunctionId.SymbolLocations[0], Name.EndLocation));
5445 return NameInfo;
5446
5447 case UnqualifiedIdKind::IK_LiteralOperatorId:
5448 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
5449 Name.Identifier));
5450 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
5451 return NameInfo;
5452
5453 case UnqualifiedIdKind::IK_ConversionFunctionId: {
5454 TypeSourceInfo *TInfo;
5455 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
5456 if (Ty.isNull())
5457 return DeclarationNameInfo();
5458 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
5459 Context.getCanonicalType(Ty)));
5460 NameInfo.setNamedTypeInfo(TInfo);
5461 return NameInfo;
5462 }
5463
5464 case UnqualifiedIdKind::IK_ConstructorName: {
5465 TypeSourceInfo *TInfo;
5466 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
5467 if (Ty.isNull())
5468 return DeclarationNameInfo();
5469 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5470 Context.getCanonicalType(Ty)));
5471 NameInfo.setNamedTypeInfo(TInfo);
5472 return NameInfo;
5473 }
5474
5475 case UnqualifiedIdKind::IK_ConstructorTemplateId: {
5476 // In well-formed code, we can only have a constructor
5477 // template-id that refers to the current context, so go there
5478 // to find the actual type being constructed.
5479 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
5480 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
5481 return DeclarationNameInfo();
5482
5483 // Determine the type of the class being constructed.
5484 QualType CurClassType = Context.getTypeDeclType(CurClass);
5485
5486 // FIXME: Check two things: that the template-id names the same type as
5487 // CurClassType, and that the template-id does not occur when the name
5488 // was qualified.
5489
5490 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5491 Context.getCanonicalType(CurClassType)));
5492 // FIXME: should we retrieve TypeSourceInfo?
5493 NameInfo.setNamedTypeInfo(nullptr);
5494 return NameInfo;
5495 }
5496
5497 case UnqualifiedIdKind::IK_DestructorName: {
5498 TypeSourceInfo *TInfo;
5499 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
5500 if (Ty.isNull())
5501 return DeclarationNameInfo();
5502 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
5503 Context.getCanonicalType(Ty)));
5504 NameInfo.setNamedTypeInfo(TInfo);
5505 return NameInfo;
5506 }
5507
5508 case UnqualifiedIdKind::IK_TemplateId: {
5509 TemplateName TName = Name.TemplateId->Template.get();
5510 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
5511 return Context.getNameForTemplate(TName, TNameLoc);
5512 }
5513
5514 } // switch (Name.getKind())
5515
5516 llvm_unreachable("Unknown name kind")__builtin_unreachable();
5517}
5518
5519static QualType getCoreType(QualType Ty) {
5520 do {
5521 if (Ty->isPointerType() || Ty->isReferenceType())
5522 Ty = Ty->getPointeeType();
5523 else if (Ty->isArrayType())
5524 Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
5525 else
5526 return Ty.withoutLocalFastQualifiers();
5527 } while (true);
5528}
5529
5530/// hasSimilarParameters - Determine whether the C++ functions Declaration
5531/// and Definition have "nearly" matching parameters. This heuristic is
5532/// used to improve diagnostics in the case where an out-of-line function
5533/// definition doesn't match any declaration within the class or namespace.
5534/// Also sets Params to the list of indices to the parameters that differ
5535/// between the declaration and the definition. If hasSimilarParameters
5536/// returns true and Params is empty, then all of the parameters match.
5537static bool hasSimilarParameters(ASTContext &Context,
5538 FunctionDecl *Declaration,
5539 FunctionDecl *Definition,
5540 SmallVectorImpl<unsigned> &Params) {
5541 Params.clear();
5542 if (Declaration->param_size() != Definition->param_size())
5543 return false;
5544 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
5545 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
5546 QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
5547
5548 // The parameter types are identical
5549 if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy))
5550 continue;
5551
5552 QualType DeclParamBaseTy = getCoreType(DeclParamTy);
5553 QualType DefParamBaseTy = getCoreType(DefParamTy);
5554 const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
5555 const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
5556
5557 if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
5558 (DeclTyName && DeclTyName == DefTyName))
5559 Params.push_back(Idx);
5560 else // The two parameters aren't even close
5561 return false;
5562 }
5563
5564 return true;
5565}
5566
5567/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
5568/// declarator needs to be rebuilt in the current instantiation.
5569/// Any bits of declarator which appear before the name are valid for
5570/// consideration here. That's specifically the type in the decl spec
5571/// and the base type in any member-pointer chunks.
5572static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
5573 DeclarationName Name) {
5574 // The types we specifically need to rebuild are:
5575 // - typenames, typeofs, and decltypes
5576 // - types which will become injected class names
5577 // Of course, we also need to rebuild any type referencing such a
5578 // type. It's safest to just say "dependent", but we call out a
5579 // few cases here.
5580
5581 DeclSpec &DS = D.getMutableDeclSpec();
5582 switch (DS.getTypeSpecType()) {
5583 case DeclSpec::TST_typename:
5584 case DeclSpec::TST_typeofType:
5585 case DeclSpec::TST_underlyingType:
5586 case DeclSpec::TST_atomic: {
5587 // Grab the type from the parser.
5588 TypeSourceInfo *TSI = nullptr;
5589 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
5590 if (T.isNull() || !T->isInstantiationDependentType()) break;
5591
5592 // Make sure there's a type source info. This isn't really much
5593 // of a waste; most dependent types should have type source info
5594 // attached already.
5595 if (!TSI)
5596 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
5597
5598 // Rebuild the type in the current instantiation.
5599 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
5600 if (!TSI) return true;
5601
5602 // Store the new type back in the decl spec.
5603 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
5604 DS.UpdateTypeRep(LocType);
5605 break;
5606 }
5607
5608 case DeclSpec::TST_decltype:
5609 case DeclSpec::TST_typeofExpr: {
5610 Expr *E = DS.getRepAsExpr();
5611 ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
5612 if (Result.isInvalid()) return true;
5613 DS.UpdateExprRep(Result.get());
5614 break;
5615 }
5616
5617 default:
5618 // Nothing to do for these decl specs.
5619 break;
5620 }
5621
5622 // It doesn't matter what order we do this in.
5623 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
5624 DeclaratorChunk &Chunk = D.getTypeObject(I);
5625
5626 // The only type information in the declarator which can come
5627 // before the declaration name is the base type of a member
5628 // pointer.
5629 if (Chunk.Kind != DeclaratorChunk::MemberPointer)
5630 continue;
5631
5632 // Rebuild the scope specifier in-place.
5633 CXXScopeSpec &SS = Chunk.Mem.Scope();
5634 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
5635 return true;
5636 }
5637
5638 return false;
5639}
5640
5641void Sema::warnOnReservedIdentifier(const NamedDecl *D) {
5642 // Avoid warning twice on the same identifier, and don't warn on redeclaration
5643 // of system decl.
5644 if (D->getPreviousDecl() || D->isImplicit())
5645 return;
5646 ReservedIdentifierStatus Status = D->isReserved(getLangOpts());
5647 if (Status != ReservedIdentifierStatus::NotReserved &&
5648 !Context.getSourceManager().isInSystemHeader(D->getLocation()))
5649 Diag(D->getLocation(), diag::warn_reserved_extern_symbol)
5650 << D << static_cast<int>(Status);
5651}
5652
5653Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
5654 D.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration);
5655 Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
5656
5657 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
5658 Dcl && Dcl->getDeclContext()->isFileContext())
5659 Dcl->setTopLevelDeclInObjCContainer();
5660
5661 return Dcl;
5662}
5663
5664/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
5665/// If T is the name of a class, then each of the following shall have a
5666/// name different from T:
5667/// - every static data member of class T;
5668/// - every member function of class T
5669/// - every member of class T that is itself a type;
5670/// \returns true if the declaration name violates these rules.
5671bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
5672 DeclarationNameInfo NameInfo) {
5673 DeclarationName Name = NameInfo.getName();
5674
5675 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
5676 while (Record && Record->isAnonymousStructOrUnion())
5677 Record = dyn_cast<CXXRecordDecl>(Record->getParent());
5678 if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
5679 Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
5680 return true;
5681 }
5682
5683 return false;
5684}
5685
5686/// Diagnose a declaration whose declarator-id has the given
5687/// nested-name-specifier.
5688///
5689/// \param SS The nested-name-specifier of the declarator-id.
5690///
5691/// \param DC The declaration context to which the nested-name-specifier
5692/// resolves.
5693///
5694/// \param Name The name of the entity being declared.
5695///
5696/// \param Loc The location of the name of the entity being declared.
5697///
5698/// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
5699/// we're declaring an explicit / partial specialization / instantiation.
5700///
5701/// \returns true if we cannot safely recover from this error, false otherwise.
5702bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
5703 DeclarationName Name,
5704 SourceLocation Loc, bool IsTemplateId) {
5705 DeclContext *Cur = CurContext;
5706 while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
5707 Cur = Cur->getParent();
5708
5709 // If the user provided a superfluous scope specifier that refers back to the
5710 // class in which the entity is already declared, diagnose and ignore it.
5711 //
5712 // class X {
5713 // void X::f();
5714 // };
5715 //
5716 // Note, it was once ill-formed to give redundant qualification in all
5717 // contexts, but that rule was removed by DR482.
5718 if (Cur->Equals(DC)) {
5719 if (Cur->isRecord()) {
5720 Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
5721 : diag::err_member_extra_qualification)
5722 << Name << FixItHint::CreateRemoval(SS.getRange());
5723 SS.clear();
5724 } else {
5725 Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
5726 }
5727 return false;
5728 }
5729
5730 // Check whether the qualifying scope encloses the scope of the original
5731 // declaration. For a template-id, we perform the checks in
5732 // CheckTemplateSpecializationScope.
5733 if (!Cur->Encloses(DC) && !IsTemplateId) {
5734 if (Cur->isRecord())
5735 Diag(Loc, diag::err_member_qualification)
5736 << Name << SS.getRange();
5737 else if (isa<TranslationUnitDecl>(DC))
5738 Diag(Loc, diag::err_invalid_declarator_global_scope)
5739 << Name << SS.getRange();
5740 else if (isa<FunctionDecl>(Cur))
5741 Diag(Loc, diag::err_invalid_declarator_in_function)
5742 << Name << SS.getRange();
5743 else if (isa<BlockDecl>(Cur))
5744 Diag(Loc, diag::err_invalid_declarator_in_block)
5745 << Name << SS.getRange();
5746 else
5747 Diag(Loc, diag::err_invalid_declarator_scope)
5748 << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
5749
5750 return true;
5751 }
5752
5753 if (Cur->isRecord()) {
5754 // Cannot qualify members within a class.
5755 Diag(Loc, diag::err_member_qualification)
5756 << Name << SS.getRange();
5757 SS.clear();
5758
5759 // C++ constructors and destructors with incorrect scopes can break
5760 // our AST invariants by having the wrong underlying types. If
5761 // that's the case, then drop this declaration entirely.
5762 if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
5763 Name.getNameKind() == DeclarationName::CXXDestructorName) &&
5764 !Context.hasSameType(Name.getCXXNameType(),
5765 Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
5766 return true;
5767
5768 return false;
5769 }
5770
5771 // C++11 [dcl.meaning]p1:
5772 // [...] "The nested-name-specifier of the qualified declarator-id shall
5773 // not begin with a decltype-specifer"
5774 NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
5775 while (SpecLoc.getPrefix())
5776 SpecLoc = SpecLoc.getPrefix();
5777 if (dyn_cast_or_null<DecltypeType>(
5778 SpecLoc.getNestedNameSpecifier()->getAsType()))
5779 Diag(Loc, diag::err_decltype_in_declarator)
5780 << SpecLoc.getTypeLoc().getSourceRange();
5781
5782 return false;
5783}
5784
5785NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
5786 MultiTemplateParamsArg TemplateParamLists) {
5787 // TODO: consider using NameInfo for diagnostic.
5788 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5789 DeclarationName Name = NameInfo.getName();
5790
5791 // All of these full declarators require an identifier. If it doesn't have
5792 // one, the ParsedFreeStandingDeclSpec action should be used.
5793 if (D.isDecompositionDeclarator()) {
5794 return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
5795 } else if (!Name) {
5796 if (!D.isInvalidType()) // Reject this if we think it is valid.
5797 Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
5798 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
5799 return nullptr;
5800 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
5801 return nullptr;
5802
5803 // The scope passed in may not be a decl scope. Zip up the scope tree until
5804 // we find one that is.
5805 while ((S->getFlags() & Scope::DeclScope) == 0 ||
5806 (S->getFlags() & Scope::TemplateParamScope) != 0)
5807 S = S->getParent();
5808
5809 DeclContext *DC = CurContext;
5810 if (D.getCXXScopeSpec().isInvalid())
5811 D.setInvalidType();
5812 else if (D.getCXXScopeSpec().isSet()) {
5813 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
5814 UPPC_DeclarationQualifier))
5815 return nullptr;
5816
5817 bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
5818 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
5819 if (!DC || isa<EnumDecl>(DC)) {
5820 // If we could not compute the declaration context, it's because the
5821 // declaration context is dependent but does not refer to a class,
5822 // class template, or class template partial specialization. Complain
5823 // and return early, to avoid the coming semantic disaster.
5824 Diag(D.getIdentifierLoc(),
5825 diag::err_template_qualified_declarator_no_match)
5826 << D.getCXXScopeSpec().getScopeRep()
5827 << D.getCXXScopeSpec().getRange();
5828 return nullptr;
5829 }
5830 bool IsDependentContext = DC->isDependentContext();
5831
5832 if (!IsDependentContext &&
5833 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
5834 return nullptr;
5835
5836 // If a class is incomplete, do not parse entities inside it.
5837 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
5838 Diag(D.getIdentifierLoc(),
5839 diag::err_member_def_undefined_record)
5840 << Name << DC << D.getCXXScopeSpec().getRange();
5841 return nullptr;
5842 }
5843 if (!D.getDeclSpec().isFriendSpecified()) {
5844 if (diagnoseQualifiedDeclaration(
5845 D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
5846 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
5847 if (DC->isRecord())
5848 return nullptr;
5849
5850 D.setInvalidType();
5851 }
5852 }
5853
5854 // Check whether we need to rebuild the type of the given
5855 // declaration in the current instantiation.
5856 if (EnteringContext && IsDependentContext &&
5857 TemplateParamLists.size() != 0) {
5858 ContextRAII SavedContext(*this, DC);
5859 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
5860 D.setInvalidType();
5861 }
5862 }
5863
5864 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5865 QualType R = TInfo->getType();
5866
5867 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
5868 UPPC_DeclarationType))
5869 D.setInvalidType();
5870
5871 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5872 forRedeclarationInCurContext());
5873
5874 // See if this is a redefinition of a variable in the same scope.
5875 if (!D.getCXXScopeSpec().isSet()) {
5876 bool IsLinkageLookup = false;
5877 bool CreateBuiltins = false;
5878
5879 // If the declaration we're planning to build will be a function
5880 // or object with linkage, then look for another declaration with
5881 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
5882 //
5883 // If the declaration we're planning to build will be declared with
5884 // external linkage in the translation unit, create any builtin with
5885 // the same name.
5886 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
5887 /* Do nothing*/;
5888 else if (CurContext->isFunctionOrMethod() &&
5889 (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
5890 R->isFunctionType())) {
5891 IsLinkageLookup = true;
5892 CreateBuiltins =
5893 CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
5894 } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
5895 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
5896 CreateBuiltins = true;
5897
5898 if (IsLinkageLookup) {
5899 Previous.clear(LookupRedeclarationWithLinkage);
5900 Previous.setRedeclarationKind(ForExternalRedeclaration);
5901 }
5902
5903 LookupName(Previous, S, CreateBuiltins);
5904 } else { // Something like "int foo::x;"
5905 LookupQualifiedName(Previous, DC);
5906
5907 // C++ [dcl.meaning]p1:
5908 // When the declarator-id is qualified, the declaration shall refer to a
5909 // previously declared member of the class or namespace to which the
5910 // qualifier refers (or, in the case of a namespace, of an element of the
5911 // inline namespace set of that namespace (7.3.1)) or to a specialization
5912 // thereof; [...]
5913 //
5914 // Note that we already checked the context above, and that we do not have
5915 // enough information to make sure that Previous contains the declaration
5916 // we want to match. For example, given:
5917 //
5918 // class X {
5919 // void f();
5920 // void f(float);
5921 // };
5922 //
5923 // void X::f(int) { } // ill-formed
5924 //
5925 // In this case, Previous will point to the overload set
5926 // containing the two f's declared in X, but neither of them
5927 // matches.
5928
5929 // C++ [dcl.meaning]p1:
5930 // [...] the member shall not merely have been introduced by a
5931 // using-declaration in the scope of the class or namespace nominated by
5932 // the nested-name-specifier of the declarator-id.
5933 RemoveUsingDecls(Previous);
5934 }
5935
5936 if (Previous.isSingleResult() &&
5937 Previous.getFoundDecl()->isTemplateParameter()) {
5938 // Maybe we will complain about the shadowed template parameter.
5939 if (!D.isInvalidType())
5940 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
5941 Previous.getFoundDecl());
5942
5943 // Just pretend that we didn't see the previous declaration.
5944 Previous.clear();
5945 }
5946
5947 if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
5948 // Forget that the previous declaration is the injected-class-name.
5949 Previous.clear();
5950
5951 // In C++, the previous declaration we find might be a tag type
5952 // (class or enum). In this case, the new declaration will hide the
5953 // tag type. Note that this applies to functions, function templates, and
5954 // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
5955 if (Previous.isSingleTagDecl() &&
5956 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5957 (TemplateParamLists.size() == 0 || R->isFunctionType()))
5958 Previous.clear();
5959
5960 // Check that there are no default arguments other than in the parameters
5961 // of a function declaration (C++ only).
5962 if (getLangOpts().CPlusPlus)
5963 CheckExtraCXXDefaultArguments(D);
5964
5965 NamedDecl *New;
5966
5967 bool AddToScope = true;
5968 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5969 if (TemplateParamLists.size()) {
5970 Diag(D.getIdentifierLoc(), diag::err_template_typedef);
5971 return nullptr;
5972 }
5973
5974 New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
5975 } else if (R->isFunctionType()) {
5976 New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
5977 TemplateParamLists,
5978 AddToScope);
5979 } else {
5980 New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
5981 AddToScope);
5982 }
5983
5984 if (!New)
5985 return nullptr;
5986
5987 // If this has an identifier and is not a function template specialization,
5988 // add it to the scope stack.
5989 if (New->getDeclName() && AddToScope)
5990 PushOnScopeChains(New, S);
5991
5992 if (isInOpenMPDeclareTargetContext())
5993 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
5994
5995 return New;
5996}
5997
5998/// Helper method to turn variable array types into constant array
5999/// types in certain situations which would otherwise be errors (for
6000/// GCC compatibility).
6001static QualType TryToFixInvalidVariablyModifiedType(QualType T,
6002 ASTContext &Context,
6003 bool &SizeIsNegative,
6004 llvm::APSInt &Oversized) {
6005 // This method tries to turn a variable array into a constant
6006 // array even when the size isn't an ICE. This is necessary
6007 // for compatibility with code that depends on gcc's buggy
6008 // constant expression folding, like struct {char x[(int)(char*)2];}
6009 SizeIsNegative = false;
6010 Oversized = 0;
6011
6012 if (T->isDependentType())
6013 return QualType();
6014
6015 QualifierCollector Qs;
6016 const Type *Ty = Qs.strip(T);
6017
6018 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
6019 QualType Pointee = PTy->getPointeeType();
6020 QualType FixedType =
6021 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
6022 Oversized);
6023 if (FixedType.isNull()) return FixedType;
6024 FixedType = Context.getPointerType(FixedType);
6025 return Qs.apply(Context, FixedType);
6026 }
6027 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
6028 QualType Inner = PTy->getInnerType();
6029 QualType FixedType =
6030 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
6031 Oversized);
6032 if (FixedType.isNull()) return FixedType;
6033 FixedType = Context.getParenType(FixedType);
6034 return Qs.apply(Context, FixedType);
6035 }
6036
6037 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
6038 if (!VLATy)
6039 return QualType();
6040
6041 QualType ElemTy = VLATy->getElementType();
6042 if (ElemTy->isVariablyModifiedType()) {
6043 ElemTy = TryToFixInvalidVariablyModifiedType(ElemTy, Context,
6044 SizeIsNegative, Oversized);
6045 if (ElemTy.isNull())
6046 return QualType();
6047 }
6048
6049 Expr::EvalResult Result;
6050 if (!VLATy->getSizeExpr() ||
6051 !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
6052 return QualType();
6053
6054 llvm::APSInt Res = Result.Val.getInt();
6055
6056 // Check whether the array size is negative.
6057 if (Res.isSigned() && Res.isNegative()) {
6058 SizeIsNegative = true;
6059 return QualType();
6060 }
6061
6062 // Check whether the array is too large to be addressed.
6063 unsigned ActiveSizeBits =
6064 (!ElemTy->isDependentType() && !ElemTy->isVariablyModifiedType() &&
6065 !ElemTy->isIncompleteType() && !ElemTy->isUndeducedType())
6066 ? ConstantArrayType::getNumAddressingBits(Context, ElemTy, Res)
6067 : Res.getActiveBits();
6068 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
6069 Oversized = Res;
6070 return QualType();
6071 }
6072
6073 QualType FoldedArrayType = Context.getConstantArrayType(
6074 ElemTy, Res, VLATy->getSizeExpr(), ArrayType::Normal, 0);
6075 return Qs.apply(Context, FoldedArrayType);
6076}
6077
6078static void
6079FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
6080 SrcTL = SrcTL.getUnqualifiedLoc();
6081 DstTL = DstTL.getUnqualifiedLoc();
6082 if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
6083 PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
6084 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
6085 DstPTL.getPointeeLoc());
6086 DstPTL.setStarLoc(SrcPTL.getStarLoc());
6087 return;
6088 }
6089 if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
6090 ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
6091 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
6092 DstPTL.getInnerLoc());
6093 DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
6094 DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
6095 return;
6096 }
6097 ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
6098 ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
6099 TypeLoc SrcElemTL = SrcATL.getElementLoc();
6100 TypeLoc DstElemTL = DstATL.getElementLoc();
6101 if (VariableArrayTypeLoc SrcElemATL =
6102 SrcElemTL.getAs<VariableArrayTypeLoc>()) {
6103 ConstantArrayTypeLoc DstElemATL = DstElemTL.castAs<ConstantArrayTypeLoc>();
6104 FixInvalidVariablyModifiedTypeLoc(SrcElemATL, DstElemATL);
6105 } else {
6106 DstElemTL.initializeFullCopy(SrcElemTL);
6107 }
6108 DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
6109 DstATL.setSizeExpr(SrcATL.getSizeExpr());
6110 DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
6111}
6112
6113/// Helper method to turn variable array types into constant array
6114/// types in certain situations which would otherwise be errors (for
6115/// GCC compatibility).
6116static TypeSourceInfo*
6117TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
6118 ASTContext &Context,
6119 bool &SizeIsNegative,
6120 llvm::APSInt &Oversized) {
6121 QualType FixedTy
6122 = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
6123 SizeIsNegative, Oversized);
6124 if (FixedTy.isNull())
6125 return nullptr;
6126 TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
6127 FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
6128 FixedTInfo->getTypeLoc());
6129 return FixedTInfo;
6130}
6131
6132/// Attempt to fold a variable-sized type to a constant-sized type, returning
6133/// true if we were successful.
6134bool Sema::tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo,
6135 QualType &T, SourceLocation Loc,
6136 unsigned FailedFoldDiagID) {
6137 bool SizeIsNegative;
6138 llvm::APSInt Oversized;
6139 TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
6140 TInfo, Context, SizeIsNegative, Oversized);
6141 if (FixedTInfo) {
6142 Diag(Loc, diag::ext_vla_folded_to_constant);
6143 TInfo = FixedTInfo;
6144 T = FixedTInfo->getType();
6145 return true;
6146 }
6147
6148 if (SizeIsNegative)
6149 Diag(Loc, diag::err_typecheck_negative_array_size);
6150 else if (Oversized.getBoolValue())
6151 Diag(Loc, diag::err_array_too_large) << toString(Oversized, 10);
6152 else if (FailedFoldDiagID)
6153 Diag(Loc, FailedFoldDiagID);
6154 return false;
6155}
6156
6157/// Register the given locally-scoped extern "C" declaration so
6158/// that it can be found later for redeclarations. We include any extern "C"
6159/// declaration that is not visible in the translation unit here, not just
6160/// function-scope declarations.
6161void
6162Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
6163 if (!getLangOpts().CPlusPlus &&
6164 ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
6165 // Don't need to track declarations in the TU in C.
6166 return;
6167
6168 // Note that we have a locally-scoped external with this name.
6169 Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
6170}
6171
6172NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
6173 // FIXME: We can have multiple results via __attribute__((overloadable)).
6174 auto Result = Context.getExternCContextDecl()->lookup(Name);
6175 return Result.empty() ? nullptr : *Result.begin();
6176}
6177
6178/// Diagnose function specifiers on a declaration of an identifier that
6179/// does not identify a function.
6180void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
6181 // FIXME: We should probably indicate the identifier in question to avoid
6182 // confusion for constructs like "virtual int a(), b;"
6183 if (DS.isVirtualSpecified())
6184 Diag(DS.getVirtualSpecLoc(),
6185 diag::err_virtual_non_function);
6186
6187 if (DS.hasExplicitSpecifier())
6188 Diag(DS.getExplicitSpecLoc(),
6189 diag::err_explicit_non_function);
6190
6191 if (DS.isNoreturnSpecified())
6192 Diag(DS.getNoreturnSpecLoc(),
6193 diag::err_noreturn_non_function);
6194}
6195
6196NamedDecl*
6197Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
6198 TypeSourceInfo *TInfo, LookupResult &Previous) {
6199 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
6200 if (D.getCXXScopeSpec().isSet()) {
6201 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
6202 << D.getCXXScopeSpec().getRange();
6203 D.setInvalidType();
6204 // Pretend we didn't see the scope specifier.
6205 DC = CurContext;
6206 Previous.clear();
6207 }
6208
6209 DiagnoseFunctionSpecifiers(D.getDeclSpec());
6210
6211 if (D.getDeclSpec().isInlineSpecified())
6212 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
6213 << getLangOpts().CPlusPlus17;
6214 if (D.getDeclSpec().hasConstexprSpecifier())
6215 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6216 << 1 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
6217
6218 if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) {
6219 if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName)
6220 Diag(D.getName().StartLocation,
6221 diag::err_deduction_guide_invalid_specifier)
6222 << "typedef";
6223 else
6224 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
6225 << D.getName().getSourceRange();
6226 return nullptr;
6227 }
6228
6229 TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
6230 if (!NewTD) return nullptr;
6231
6232 // Handle attributes prior to checking for duplicates in MergeVarDecl
6233 ProcessDeclAttributes(S, NewTD, D);
6234
6235 CheckTypedefForVariablyModifiedType(S, NewTD);
6236
6237 bool Redeclaration = D.isRedeclaration();
6238 NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
6239 D.setRedeclaration(Redeclaration);
6240 return ND;
6241}
6242
6243void
6244Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
6245 // C99 6.7.7p2: If a typedef name specifies a variably modified type
6246 // then it shall have block scope.
6247 // Note that variably modified types must be fixed before merging the decl so
6248 // that redeclarations will match.
6249 TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
6250 QualType T = TInfo->getType();
6251 if (T->isVariablyModifiedType()) {
6252 setFunctionHasBranchProtectedScope();
6253
6254 if (S->getFnParent() == nullptr) {
6255 bool SizeIsNegative;
6256 llvm::APSInt Oversized;
6257 TypeSourceInfo *FixedTInfo =
6258 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
6259 SizeIsNegative,
6260 Oversized);
6261 if (FixedTInfo) {
6262 Diag(NewTD->getLocation(), diag::ext_vla_folded_to_constant);
6263 NewTD->setTypeSourceInfo(FixedTInfo);
6264 } else {
6265 if (SizeIsNegative)
6266 Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
6267 else if (T->isVariableArrayType())
6268 Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
6269 else if (Oversized.getBoolValue())
6270 Diag(NewTD->getLocation(), diag::err_array_too_large)
6271 << toString(Oversized, 10);
6272 else
6273 Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
6274 NewTD->setInvalidDecl();
6275 }
6276 }
6277 }
6278}
6279
6280/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
6281/// declares a typedef-name, either using the 'typedef' type specifier or via
6282/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
6283NamedDecl*
6284Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
6285 LookupResult &Previous, bool &Redeclaration) {
6286
6287 // Find the shadowed declaration before filtering for scope.
6288 NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
6289
6290 // Merge the decl with the existing one if appropriate. If the decl is
6291 // in an outer scope, it isn't the same thing.
6292 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
6293 /*AllowInlineNamespace*/false);
6294 filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
6295 if (!Previous.empty()) {
6296 Redeclaration = true;
6297 MergeTypedefNameDecl(S, NewTD, Previous);
6298 } else {
6299 inferGslPointerAttribute(NewTD);
6300 }
6301
6302 if (ShadowedDecl && !Redeclaration)
6303 CheckShadow(NewTD, ShadowedDecl, Previous);
6304
6305 // If this is the C FILE type, notify the AST context.
6306 if (IdentifierInfo *II = NewTD->getIdentifier())
6307 if (!NewTD->isInvalidDecl() &&
6308 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6309 if (II->isStr("FILE"))
6310 Context.setFILEDecl(NewTD);
6311 else if (II->isStr("jmp_buf"))
6312 Context.setjmp_bufDecl(NewTD);
6313 else if (II->isStr("sigjmp_buf"))
6314 Context.setsigjmp_bufDecl(NewTD);
6315 else if (II->isStr("ucontext_t"))
6316 Context.setucontext_tDecl(NewTD);
6317 }
6318
6319 return NewTD;
6320}
6321
6322/// Determines whether the given declaration is an out-of-scope
6323/// previous declaration.
6324///
6325/// This routine should be invoked when name lookup has found a
6326/// previous declaration (PrevDecl) that is not in the scope where a
6327/// new declaration by the same name is being introduced. If the new
6328/// declaration occurs in a local scope, previous declarations with
6329/// linkage may still be considered previous declarations (C99
6330/// 6.2.2p4-5, C++ [basic.link]p6).
6331///
6332/// \param PrevDecl the previous declaration found by name
6333/// lookup
6334///
6335/// \param DC the context in which the new declaration is being
6336/// declared.
6337///
6338/// \returns true if PrevDecl is an out-of-scope previous declaration
6339/// for a new delcaration with the same name.
6340static bool
6341isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
6342 ASTContext &Context) {
6343 if (!PrevDecl)
6344 return false;
6345
6346 if (!PrevDecl->hasLinkage())
6347 return false;
6348
6349 if (Context.getLangOpts().CPlusPlus) {
6350 // C++ [basic.link]p6:
6351 // If there is a visible declaration of an entity with linkage
6352 // having the same name and type, ignoring entities declared
6353 // outside the innermost enclosing namespace scope, the block
6354 // scope declaration declares that same entity and receives the
6355 // linkage of the previous declaration.
6356 DeclContext *OuterContext = DC->getRedeclContext();
6357 if (!OuterContext->isFunctionOrMethod())
6358 // This rule only applies to block-scope declarations.
6359 return false;
6360
6361 DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
6362 if (PrevOuterContext->isRecord())
6363 // We found a member function: ignore it.
6364 return false;
6365
6366 // Find the innermost enclosing namespace for the new and
6367 // previous declarations.
6368 OuterContext = OuterContext->getEnclosingNamespaceContext();
6369 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
6370
6371 // The previous declaration is in a different namespace, so it
6372 // isn't the same function.
6373 if (!OuterContext->Equals(PrevOuterContext))
6374 return false;
6375 }
6376
6377 return true;
6378}
6379
6380static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) {
6381 CXXScopeSpec &SS = D.getCXXScopeSpec();
6382 if (!SS.isSet()) return;
6383 DD->setQualifierInfo(SS.getWithLocInContext(S.Context));
6384}
6385
6386bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
6387 QualType type = decl->getType();
6388 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
6389 if (lifetime == Qualifiers::OCL_Autoreleasing) {
6390 // Various kinds of declaration aren't allowed to be __autoreleasing.
6391 unsigned kind = -1U;
6392 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6393 if (var->hasAttr<BlocksAttr>())
6394 kind = 0; // __block
6395 else if (!var->hasLocalStorage())
6396 kind = 1; // global
6397 } else if (isa<ObjCIvarDecl>(decl)) {
6398 kind = 3; // ivar
6399 } else if (isa<FieldDecl>(decl)) {
6400 kind = 2; // field
6401 }
6402
6403 if (kind != -1U) {
6404 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
6405 << kind;
6406 }
6407 } else if (lifetime == Qualifiers::OCL_None) {
6408 // Try to infer lifetime.
6409 if (!type->isObjCLifetimeType())
6410 return false;
6411
6412 lifetime = type->getObjCARCImplicitLifetime();
6413 type = Context.getLifetimeQualifiedType(type, lifetime);
6414 decl->setType(type);
6415 }
6416
6417 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6418 // Thread-local variables cannot have lifetime.
6419 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
6420 var->getTLSKind()) {
6421 Diag(var->getLocation(), diag::err_arc_thread_ownership)
6422 << var->getType();
6423 return true;
6424 }
6425 }
6426
6427 return false;
6428}
6429
6430void Sema::deduceOpenCLAddressSpace(ValueDecl *Decl) {
6431 if (Decl->getType().hasAddressSpace())
6432 return;
6433 if (Decl->getType()->isDependentType())
6434 return;
6435 if (VarDecl *Var = dyn_cast<VarDecl>(Decl)) {
6436 QualType Type = Var->getType();
6437 if (Type->isSamplerT() || Type->isVoidType())
6438 return;
6439 LangAS ImplAS = LangAS::opencl_private;
6440 // OpenCL C v3.0 s6.7.8 - For OpenCL C 2.0 or with the
6441 // __opencl_c_program_scope_global_variables feature, the address space
6442 // for a variable at program scope or a static or extern variable inside
6443 // a function are inferred to be __global.
6444 if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()) &&
6445 Var->hasGlobalStorage())
6446 ImplAS = LangAS::opencl_global;
6447 // If the original type from a decayed type is an array type and that array
6448 // type has no address space yet, deduce it now.
6449 if (auto DT = dyn_cast<DecayedType>(Type)) {
6450 auto OrigTy = DT->getOriginalType();
6451 if (!OrigTy.hasAddressSpace() && OrigTy->isArrayType()) {
6452 // Add the address space to the original array type and then propagate
6453 // that to the element type through `getAsArrayType`.
6454 OrigTy = Context.getAddrSpaceQualType(OrigTy, ImplAS);
6455 OrigTy = QualType(Context.getAsArrayType(OrigTy), 0);
6456 // Re-generate the decayed type.
6457 Type = Context.getDecayedType(OrigTy);
6458 }
6459 }
6460 Type = Context.getAddrSpaceQualType(Type, ImplAS);
6461 // Apply any qualifiers (including address space) from the array type to
6462 // the element type. This implements C99 6.7.3p8: "If the specification of
6463 // an array type includes any type qualifiers, the element type is so
6464 // qualified, not the array type."
6465 if (Type->isArrayType())
6466 Type = QualType(Context.getAsArrayType(Type), 0);
6467 Decl->setType(Type);
6468 }
6469}
6470
6471static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
6472 // Ensure that an auto decl is deduced otherwise the checks below might cache
6473 // the wrong linkage.
6474 assert(S.ParsingInitForAutoVars.count(&ND) == 0)(static_cast<void> (0));
6475
6476 // 'weak' only applies to declarations with external linkage.
6477 if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
6478 if (!ND.isExternallyVisible()) {
6479 S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
6480 ND.dropAttr<WeakAttr>();
6481 }
6482 }
6483 if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
6484 if (ND.isExternallyVisible()) {
6485 S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
6486 ND.dropAttr<WeakRefAttr>();
6487 ND.dropAttr<AliasAttr>();
6488 }
6489 }
6490
6491 if (auto *VD = dyn_cast<VarDecl>(&ND)) {
6492 if (VD->hasInit()) {
6493 if (const auto *Attr = VD->getAttr<AliasAttr>()) {
6494 assert(VD->isThisDeclarationADefinition() &&(static_cast<void> (0))
6495 !VD->isExternallyVisible() && "Broken AliasAttr handled late!")(static_cast<void> (0));
6496 S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
6497 VD->dropAttr<AliasAttr>();
6498 }
6499 }
6500 }
6501
6502 // 'selectany' only applies to externally visible variable declarations.
6503 // It does not apply to functions.
6504 if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
6505 if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
6506 S.Diag(Attr->getLocation(),
6507 diag::err_attribute_selectany_non_extern_data);
6508 ND.dropAttr<SelectAnyAttr>();
6509 }
6510 }
6511
6512 if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
6513 auto *VD = dyn_cast<VarDecl>(&ND);
6514 bool IsAnonymousNS = false;
6515 bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6516 if (VD) {
6517 const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext());
6518 while (NS && !IsAnonymousNS) {
6519 IsAnonymousNS = NS->isAnonymousNamespace();
6520 NS = dyn_cast<NamespaceDecl>(NS->getParent());
6521 }
6522 }
6523 // dll attributes require external linkage. Static locals may have external
6524 // linkage but still cannot be explicitly imported or exported.
6525 // In Microsoft mode, a variable defined in anonymous namespace must have
6526 // external linkage in order to be exported.
6527 bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft;
6528 if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) ||
6529 (!AnonNSInMicrosoftMode &&
6530 (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) {
6531 S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
6532 << &ND << Attr;
6533 ND.setInvalidDecl();
6534 }
6535 }
6536
6537 // Check the attributes on the function type, if any.
6538 if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
6539 // Don't declare this variable in the second operand of the for-statement;
6540 // GCC miscompiles that by ending its lifetime before evaluating the
6541 // third operand. See gcc.gnu.org/PR86769.
6542 AttributedTypeLoc ATL;
6543 for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc();
6544 (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6545 TL = ATL.getModifiedLoc()) {
6546 // The [[lifetimebound]] attribute can be applied to the implicit object
6547 // parameter of a non-static member function (other than a ctor or dtor)
6548 // by applying it to the function type.
6549 if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) {
6550 const auto *MD = dyn_cast<CXXMethodDecl>(FD);
6551 if (!MD || MD->isStatic()) {
6552 S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param)
6553 << !MD << A->getRange();
6554 } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) {
6555 S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor)
6556 << isa<CXXDestructorDecl>(MD) << A->getRange();
6557 }
6558 }
6559 }
6560 }
6561}
6562
6563static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
6564 NamedDecl *NewDecl,
6565 bool IsSpecialization,
6566 bool IsDefinition) {
6567 if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
6568 return;
6569
6570 bool IsTemplate = false;
6571 if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
6572 OldDecl = OldTD->getTemplatedDecl();
6573 IsTemplate = true;
6574 if (!IsSpecialization)
6575 IsDefinition = false;
6576 }
6577 if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
6578 NewDecl = NewTD->getTemplatedDecl();
6579 IsTemplate = true;
6580 }
6581
6582 if (!OldDecl || !NewDecl)
6583 return;
6584
6585 const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
6586 const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
6587 const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
6588 const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
6589
6590 // dllimport and dllexport are inheritable attributes so we have to exclude
6591 // inherited attribute instances.
6592 bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
6593 (NewExportAttr && !NewExportAttr->isInherited());
6594
6595 // A redeclaration is not allowed to add a dllimport or dllexport attribute,
6596 // the only exception being explicit specializations.
6597 // Implicitly generated declarations are also excluded for now because there
6598 // is no other way to switch these to use dllimport or dllexport.
6599 bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
6600
6601 if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
6602 // Allow with a warning for free functions and global variables.
6603 bool JustWarn = false;
6604 if (!OldDecl->isCXXClassMember()) {
6605 auto *VD = dyn_cast<VarDecl>(OldDecl);
6606 if (VD && !VD->getDescribedVarTemplate())
6607 JustWarn = true;
6608 auto *FD = dyn_cast<FunctionDecl>(OldDecl);
6609 if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
6610 JustWarn = true;
6611 }
6612
6613 // We cannot change a declaration that's been used because IR has already
6614 // been emitted. Dllimported functions will still work though (modulo
6615 // address equality) as they can use the thunk.
6616 if (OldDecl->isUsed())
6617 if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
6618 JustWarn = false;
6619
6620 unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
6621 : diag::err_attribute_dll_redeclaration;
6622 S.Diag(NewDecl->getLocation(), DiagID)
6623 << NewDecl
6624 << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
6625 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6626 if (!JustWarn) {
6627 NewDecl->setInvalidDecl();
6628 return;
6629 }
6630 }
6631
6632 // A redeclaration is not allowed to drop a dllimport attribute, the only
6633 // exceptions being inline function definitions (except for function
6634 // templates), local extern declarations, qualified friend declarations or
6635 // special MSVC extension: in the last case, the declaration is treated as if
6636 // it were marked dllexport.
6637 bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
6638 bool IsMicrosoftABI = S.Context.getTargetInfo().shouldDLLImportComdatSymbols();
6639 if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
6640 // Ignore static data because out-of-line definitions are diagnosed
6641 // separately.
6642 IsStaticDataMember = VD->isStaticDataMember();
6643 IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
6644 VarDecl::DeclarationOnly;
6645 } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
6646 IsInline = FD->isInlined();
6647 IsQualifiedFriend = FD->getQualifier() &&
6648 FD->getFriendObjectKind() == Decl::FOK_Declared;
6649 }
6650
6651 if (OldImportAttr && !HasNewAttr &&
6652 (!IsInline || (IsMicrosoftABI && IsTemplate)) && !IsStaticDataMember &&
6653 !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
6654 if (IsMicrosoftABI && IsDefinition) {
6655 S.Diag(NewDecl->getLocation(),
6656 diag::warn_redeclaration_without_import_attribute)
6657 << NewDecl;
6658 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6659 NewDecl->dropAttr<DLLImportAttr>();
6660 NewDecl->addAttr(
6661 DLLExportAttr::CreateImplicit(S.Context, NewImportAttr->getRange()));
6662 } else {
6663 S.Diag(NewDecl->getLocation(),
6664 diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6665 << NewDecl << OldImportAttr;
6666 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6667 S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
6668 OldDecl->dropAttr<DLLImportAttr>();
6669 NewDecl->dropAttr<DLLImportAttr>();
6670 }
6671 } else if (IsInline && OldImportAttr && !IsMicrosoftABI) {
6672 // In MinGW, seeing a function declared inline drops the dllimport
6673 // attribute.
6674 OldDecl->dropAttr<DLLImportAttr>();
6675 NewDecl->dropAttr<DLLImportAttr>();
6676 S.Diag(NewDecl->getLocation(),
6677 diag::warn_dllimport_dropped_from_inline_function)
6678 << NewDecl << OldImportAttr;
6679 }
6680
6681 // A specialization of a class template member function is processed here
6682 // since it's a redeclaration. If the parent class is dllexport, the
6683 // specialization inherits that attribute. This doesn't happen automatically
6684 // since the parent class isn't instantiated until later.
6685 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
6686 if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
6687 !NewImportAttr && !NewExportAttr) {
6688 if (const DLLExportAttr *ParentExportAttr =
6689 MD->getParent()->getAttr<DLLExportAttr>()) {
6690 DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
6691 NewAttr->setInherited(true);
6692 NewDecl->addAttr(NewAttr);
6693 }
6694 }
6695 }
6696}
6697
6698/// Given that we are within the definition of the given function,
6699/// will that definition behave like C99's 'inline', where the
6700/// definition is discarded except for optimization purposes?
6701static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
6702 // Try to avoid calling GetGVALinkageForFunction.
6703
6704 // All cases of this require the 'inline' keyword.
6705 if (!FD->isInlined()) return false;
6706
6707 // This is only possible in C++ with the gnu_inline attribute.
6708 if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
6709 return false;
6710
6711 // Okay, go ahead and call the relatively-more-expensive function.
6712 return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
6713}
6714
6715/// Determine whether a variable is extern "C" prior to attaching
6716/// an initializer. We can't just call isExternC() here, because that
6717/// will also compute and cache whether the declaration is externally
6718/// visible, which might change when we attach the initializer.
6719///
6720/// This can only be used if the declaration is known to not be a
6721/// redeclaration of an internal linkage declaration.
6722///
6723/// For instance:
6724///
6725/// auto x = []{};
6726///
6727/// Attaching the initializer here makes this declaration not externally
6728/// visible, because its type has internal linkage.
6729///
6730/// FIXME: This is a hack.
6731template<typename T>
6732static bool isIncompleteDeclExternC(Sema &S, const T *D) {
6733 if (S.getLangOpts().CPlusPlus) {
6734 // In C++, the overloadable attribute negates the effects of extern "C".
6735 if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
6736 return false;
6737
6738 // So do CUDA's host/device attributes.
6739 if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
6740 D->template hasAttr<CUDAHostAttr>()))
6741 return false;
6742 }
6743 return D->isExternC();
6744}
6745
6746static bool shouldConsiderLinkage(const VarDecl *VD) {
6747 const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
6748 if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) ||
6749 isa<OMPDeclareMapperDecl>(DC))
6750 return VD->hasExternalStorage();
6751 if (DC->isFileContext())
6752 return true;
6753 if (DC->isRecord())
6754 return false;
6755 if (isa<RequiresExprBodyDecl>(DC))
6756 return false;
6757 llvm_unreachable("Unexpected context")__builtin_unreachable();
6758}
6759
6760static bool shouldConsiderLinkage(const FunctionDecl *FD) {
6761 const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
6762 if (DC->isFileContext() || DC->isFunctionOrMethod() ||
6763 isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC))
6764 return true;
6765 if (DC->isRecord())
6766 return false;
6767 llvm_unreachable("Unexpected context")__builtin_unreachable();
6768}
6769
6770static bool hasParsedAttr(Scope *S, const Declarator &PD,
6771 ParsedAttr::Kind Kind) {
6772 // Check decl attributes on the DeclSpec.
6773 if (PD.getDeclSpec().getAttributes().hasAttribute(Kind))
6774 return true;
6775
6776 // Walk the declarator structure, checking decl attributes that were in a type
6777 // position to the decl itself.
6778 for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
6779 if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind))
6780 return true;
6781 }
6782
6783 // Finally, check attributes on the decl itself.
6784 return PD.getAttributes().hasAttribute(Kind);
6785}
6786
6787/// Adjust the \c DeclContext for a function or variable that might be a
6788/// function-local external declaration.
6789bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
6790 if (!DC->isFunctionOrMethod())
6791 return false;
6792
6793 // If this is a local extern function or variable declared within a function
6794 // template, don't add it into the enclosing namespace scope until it is
6795 // instantiated; it might have a dependent type right now.
6796 if (DC->isDependentContext())
6797 return true;
6798
6799 // C++11 [basic.link]p7:
6800 // When a block scope declaration of an entity with linkage is not found to
6801 // refer to some other declaration, then that entity is a member of the
6802 // innermost enclosing namespace.
6803 //
6804 // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
6805 // semantically-enclosing namespace, not a lexically-enclosing one.
6806 while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
6807 DC = DC->getParent();
6808 return true;
6809}
6810
6811/// Returns true if given declaration has external C language linkage.
6812static bool isDeclExternC(const Decl *D) {
6813 if (const auto *FD = dyn_cast<FunctionDecl>(D))
6814 return FD->isExternC();
6815 if (const auto *VD = dyn_cast<VarDecl>(D))
6816 return VD->isExternC();
6817
6818 llvm_unreachable("Unknown type of decl!")__builtin_unreachable();
6819}
6820
6821/// Returns true if there hasn't been any invalid type diagnosed.
6822static bool diagnoseOpenCLTypes(Sema &Se, VarDecl *NewVD) {
6823 DeclContext *DC = NewVD->getDeclContext();
6824 QualType R = NewVD->getType();
6825
6826 // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
6827 // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
6828 // argument.
6829 if (R->isImageType() || R->isPipeType()) {
6830 Se.Diag(NewVD->getLocation(),
6831 diag::err_opencl_type_can_only_be_used_as_function_parameter)
6832 << R;
6833 NewVD->setInvalidDecl();
6834 return false;
6835 }
6836
6837 // OpenCL v1.2 s6.9.r:
6838 // The event type cannot be used to declare a program scope variable.
6839 // OpenCL v2.0 s6.9.q:
6840 // The clk_event_t and reserve_id_t types cannot be declared in program
6841 // scope.
6842 if (NewVD->hasGlobalStorage() && !NewVD->isStaticLocal()) {
6843 if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
6844 Se.Diag(NewVD->getLocation(),
6845 diag::err_invalid_type_for_program_scope_var)
6846 << R;
6847 NewVD->setInvalidDecl();
6848 return false;
6849 }
6850 }
6851
6852 // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
6853 if (!Se.getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
6854 Se.getLangOpts())) {
6855 QualType NR = R.getCanonicalType();
6856 while (NR->isPointerType() || NR->isMemberFunctionPointerType() ||
6857 NR->isReferenceType()) {
6858 if (NR->isFunctionPointerType() || NR->isMemberFunctionPointerType() ||
6859 NR->isFunctionReferenceType()) {
6860 Se.Diag(NewVD->getLocation(), diag::err_opencl_function_pointer)
6861 << NR->isReferenceType();
6862 NewVD->setInvalidDecl();
6863 return false;
6864 }
6865 NR = NR->getPointeeType();
6866 }
6867 }
6868
6869 if (!Se.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
6870 Se.getLangOpts())) {
6871 // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
6872 // half array type (unless the cl_khr_fp16 extension is enabled).
6873 if (Se.Context.getBaseElementType(R)->isHalfType()) {
6874 Se.Diag(NewVD->getLocation(), diag::err_opencl_half_declaration) << R;
6875 NewVD->setInvalidDecl();
6876 return false;
6877 }
6878 }
6879
6880 // OpenCL v1.2 s6.9.r:
6881 // The event type cannot be used with the __local, __constant and __global
6882 // address space qualifiers.
6883 if (R->isEventT()) {
6884 if (R.getAddressSpace() != LangAS::opencl_private) {
6885 Se.Diag(NewVD->getBeginLoc(), diag::err_event_t_addr_space_qual);
6886 NewVD->setInvalidDecl();
6887 return false;
6888 }
6889 }
6890
6891 if (R->isSamplerT()) {
6892 // OpenCL v1.2 s6.9.b p4:
6893 // The sampler type cannot be used with the __local and __global address
6894 // space qualifiers.
6895 if (R.getAddressSpace() == LangAS::opencl_local ||
6896 R.getAddressSpace() == LangAS::opencl_global) {
6897 Se.Diag(NewVD->getLocation(), diag::err_wrong_sampler_addressspace);
6898 NewVD->setInvalidDecl();
6899 }
6900
6901 // OpenCL v1.2 s6.12.14.1:
6902 // A global sampler must be declared with either the constant address
6903 // space qualifier or with the const qualifier.
6904 if (DC->isTranslationUnit() &&
6905 !(R.getAddressSpace() == LangAS::opencl_constant ||
6906 R.isConstQualified())) {
6907 Se.Diag(NewVD->getLocation(), diag::err_opencl_nonconst_global_sampler);
6908 NewVD->setInvalidDecl();
6909 }
6910 if (NewVD->isInvalidDecl())
6911 return false;
6912 }
6913
6914 return true;
6915}
6916
6917template <typename AttrTy>
6918static void copyAttrFromTypedefToDecl(Sema &S, Decl *D, const TypedefType *TT) {
6919 const TypedefNameDecl *TND = TT->getDecl();
6920 if (const auto *Attribute = TND->getAttr<AttrTy>()) {
6921 AttrTy *Clone = Attribute->clone(S.Context);
6922 Clone->setInherited(true);
6923 D->addAttr(Clone);
6924 }
6925}
6926
6927NamedDecl *Sema::ActOnVariableDeclarator(
6928 Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
6929 LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
6930 bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
6931 QualType R = TInfo->getType();
6932 DeclarationName Name = GetNameForDeclarator(D).getName();
6933
6934 IdentifierInfo *II = Name.getAsIdentifierInfo();
6935
6936 if (D.isDecompositionDeclarator()) {
6937 // Take the name of the first declarator as our name for diagnostic
6938 // purposes.
6939 auto &Decomp = D.getDecompositionDeclarator();
6940 if (!Decomp.bindings().empty()) {
6941 II = Decomp.bindings()[0].Name;
6942 Name = II;
6943 }
6944 } else if (!II) {
6945 Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
6946 return nullptr;
6947 }
6948
6949
6950 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
6951 StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
6952
6953 // dllimport globals without explicit storage class are treated as extern. We
6954 // have to change the storage class this early to get the right DeclContext.
6955 if (SC == SC_None && !DC->isRecord() &&
6956 hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) &&
6957 !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport))
6958 SC = SC_Extern;
6959
6960 DeclContext *OriginalDC = DC;
6961 bool IsLocalExternDecl = SC == SC_Extern &&
6962 adjustContextForLocalExternDecl(DC);
6963
6964 if (SCSpec == DeclSpec::SCS_mutable) {
6965 // mutable can only appear on non-static class members, so it's always
6966 // an error here
6967 Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
6968 D.setInvalidType();
6969 SC = SC_None;
6970 }
6971
6972 if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
6973 !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
6974 D.getDeclSpec().getStorageClassSpecLoc())) {
6975 // In C++11, the 'register' storage class specifier is deprecated.
6976 // Suppress the warning in system macros, it's used in macros in some
6977 // popular C system headers, such as in glibc's htonl() macro.
6978 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6979 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
6980 : diag::warn_deprecated_register)
6981 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6982 }
6983
6984 DiagnoseFunctionSpecifiers(D.getDeclSpec());
6985
6986 if (!DC->isRecord() && S->getFnParent() == nullptr) {
6987 // C99 6.9p2: The storage-class specifiers auto and register shall not
6988 // appear in the declaration specifiers in an external declaration.
6989 // Global Register+Asm is a GNU extension we support.
6990 if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
6991 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
6992 D.setInvalidType();
6993 }
6994 }
6995
6996 // If this variable has a VLA type and an initializer, try to
6997 // fold to a constant-sized type. This is otherwise invalid.
6998 if (D.hasInitializer() && R->isVariableArrayType())
6999 tryToFixVariablyModifiedVarType(TInfo, R, D.getIdentifierLoc(),
7000 /*DiagID=*/0);
7001
7002 bool IsMemberSpecialization = false;
7003 bool IsVariableTemplateSpecialization = false;
7004 bool IsPartialSpecialization = false;
7005 bool IsVariableTemplate = false;
7006 VarDecl *NewVD = nullptr;
7007 VarTemplateDecl *NewTemplate = nullptr;
7008 TemplateParameterList *TemplateParams = nullptr;
7009 if (!getLangOpts().CPlusPlus) {
7010 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(),
7011 II, R, TInfo, SC);
7012
7013 if (R->getContainedDeducedType())
7014 ParsingInitForAutoVars.insert(NewVD);
7015
7016 if (D.isInvalidType())
7017 NewVD->setInvalidDecl();
7018
7019 if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() &&
7020 NewVD->hasLocalStorage())
7021 checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(),
7022 NTCUC_AutoVar, NTCUK_Destruct);
7023 } else {
7024 bool Invalid = false;
7025
7026 if (DC->isRecord() && !CurContext->isRecord()) {
7027 // This is an out-of-line definition of a static data member.
7028 switch (SC) {
7029 case SC_None:
7030 break;
7031 case SC_Static:
7032 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7033 diag::err_static_out_of_line)
7034 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7035 break;
7036 case SC_Auto:
7037 case SC_Register:
7038 case SC_Extern:
7039 // [dcl.stc] p2: The auto or register specifiers shall be applied only
7040 // to names of variables declared in a block or to function parameters.
7041 // [dcl.stc] p6: The extern specifier cannot be used in the declaration
7042 // of class members
7043
7044 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7045 diag::err_storage_class_for_static_member)
7046 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7047 break;
7048 case SC_PrivateExtern:
7049 llvm_unreachable("C storage class in c++!")__builtin_unreachable();
7050 }
7051 }
7052
7053 if (SC == SC_Static && CurContext->isRecord()) {
7054 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
7055 // Walk up the enclosing DeclContexts to check for any that are
7056 // incompatible with static data members.
7057 const DeclContext *FunctionOrMethod = nullptr;
7058 const CXXRecordDecl *AnonStruct = nullptr;
7059 for (DeclContext *Ctxt = DC; Ctxt; Ctxt = Ctxt->getParent()) {
7060 if (Ctxt->isFunctionOrMethod()) {
7061 FunctionOrMethod = Ctxt;
7062 break;
7063 }
7064 const CXXRecordDecl *ParentDecl = dyn_cast<CXXRecordDecl>(Ctxt);
7065 if (ParentDecl && !ParentDecl->getDeclName()) {
7066 AnonStruct = ParentDecl;
7067 break;
7068 }
7069 }
7070 if (FunctionOrMethod) {
7071 // C++ [class.static.data]p5: A local class shall not have static data
7072 // members.
7073 Diag(D.getIdentifierLoc(),
7074 diag::err_static_data_member_not_allowed_in_local_class)
7075 << Name << RD->getDeclName() << RD->getTagKind();
7076 } else if (AnonStruct) {
7077 // C++ [class.static.data]p4: Unnamed classes and classes contained
7078 // directly or indirectly within unnamed classes shall not contain
7079 // static data members.
7080 Diag(D.getIdentifierLoc(),
7081 diag::err_static_data_member_not_allowed_in_anon_struct)
7082 << Name << AnonStruct->getTagKind();
7083 Invalid = true;
7084 } else if (RD->isUnion()) {
7085 // C++98 [class.union]p1: If a union contains a static data member,
7086 // the program is ill-formed. C++11 drops this restriction.
7087 Diag(D.getIdentifierLoc(),
7088 getLangOpts().CPlusPlus11
7089 ? diag::warn_cxx98_compat_static_data_member_in_union
7090 : diag::ext_static_data_member_in_union) << Name;
7091 }
7092 }
7093 }
7094
7095 // Match up the template parameter lists with the scope specifier, then
7096 // determine whether we have a template or a template specialization.
7097 bool InvalidScope = false;
7098 TemplateParams = MatchTemplateParametersToScopeSpecifier(
7099 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
7100 D.getCXXScopeSpec(),
7101 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
7102 ? D.getName().TemplateId
7103 : nullptr,
7104 TemplateParamLists,
7105 /*never a friend*/ false, IsMemberSpecialization, InvalidScope);
7106 Invalid |= InvalidScope;
7107
7108 if (TemplateParams) {
7109 if (!TemplateParams->size() &&
7110 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
7111 // There is an extraneous 'template<>' for this variable. Complain
7112 // about it, but allow the declaration of the variable.
7113 Diag(TemplateParams->getTemplateLoc(),
7114 diag::err_template_variable_noparams)
7115 << II
7116 << SourceRange(TemplateParams->getTemplateLoc(),
7117 TemplateParams->getRAngleLoc());
7118 TemplateParams = nullptr;
7119 } else {
7120 // Check that we can declare a template here.
7121 if (CheckTemplateDeclScope(S, TemplateParams))
7122 return nullptr;
7123
7124 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
7125 // This is an explicit specialization or a partial specialization.
7126 IsVariableTemplateSpecialization = true;
7127 IsPartialSpecialization = TemplateParams->size() > 0;
7128 } else { // if (TemplateParams->size() > 0)
7129 // This is a template declaration.
7130 IsVariableTemplate = true;
7131
7132 // Only C++1y supports variable templates (N3651).
7133 Diag(D.getIdentifierLoc(),
7134 getLangOpts().CPlusPlus14
7135 ? diag::warn_cxx11_compat_variable_template
7136 : diag::ext_variable_template);
7137 }
7138 }
7139 } else {
7140 // Check that we can declare a member specialization here.
7141 if (!TemplateParamLists.empty() && IsMemberSpecialization &&
7142 CheckTemplateDeclScope(S, TemplateParamLists.back()))
7143 return nullptr;
7144 assert((Invalid ||(static_cast<void> (0))
7145 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&(static_cast<void> (0))
7146 "should have a 'template<>' for this decl")(static_cast<void> (0));
7147 }
7148
7149 if (IsVariableTemplateSpecialization) {
7150 SourceLocation TemplateKWLoc =
7151 TemplateParamLists.size() > 0
7152 ? TemplateParamLists[0]->getTemplateLoc()
7153 : SourceLocation();
7154 DeclResult Res = ActOnVarTemplateSpecialization(
7155 S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
7156 IsPartialSpecialization);
7157 if (Res.isInvalid())
7158 return nullptr;
7159 NewVD = cast<VarDecl>(Res.get());
7160 AddToScope = false;
7161 } else if (D.isDecompositionDeclarator()) {
7162 NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(),
7163 D.getIdentifierLoc(), R, TInfo, SC,
7164 Bindings);
7165 } else
7166 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(),
7167 D.getIdentifierLoc(), II, R, TInfo, SC);
7168
7169 // If this is supposed to be a variable template, create it as such.
7170 if (IsVariableTemplate) {
7171 NewTemplate =
7172 VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
7173 TemplateParams, NewVD);
7174 NewVD->setDescribedVarTemplate(NewTemplate);
7175 }
7176
7177 // If this decl has an auto type in need of deduction, make a note of the
7178 // Decl so we can diagnose uses of it in its own initializer.
7179 if (R->getContainedDeducedType())
7180 ParsingInitForAutoVars.insert(NewVD);
7181
7182 if (D.isInvalidType() || Invalid) {
7183 NewVD->setInvalidDecl();
7184 if (NewTemplate)
7185 NewTemplate->setInvalidDecl();
7186 }
7187
7188 SetNestedNameSpecifier(*this, NewVD, D);
7189
7190 // If we have any template parameter lists that don't directly belong to
7191 // the variable (matching the scope specifier), store them.
7192 unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
7193 if (TemplateParamLists.size() > VDTemplateParamLists)
7194 NewVD->setTemplateParameterListsInfo(
7195 Context, TemplateParamLists.drop_back(VDTemplateParamLists));
7196 }
7197
7198 if (D.getDeclSpec().isInlineSpecified()) {
7199 if (!getLangOpts().CPlusPlus) {
7200 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
7201 << 0;
7202 } else if (CurContext->isFunctionOrMethod()) {
7203 // 'inline' is not allowed on block scope variable declaration.
7204 Diag(D.getDeclSpec().getInlineSpecLoc(),
7205 diag::err_inline_declaration_block_scope) << Name
7206 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7207 } else {
7208 Diag(D.getDeclSpec().getInlineSpecLoc(),
7209 getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
7210 : diag::ext_inline_variable);
7211 NewVD->setInlineSpecified();
7212 }
7213 }
7214
7215 // Set the lexical context. If the declarator has a C++ scope specifier, the
7216 // lexical context will be different from the semantic context.
7217 NewVD->setLexicalDeclContext(CurContext);
7218 if (NewTemplate)
7219 NewTemplate->setLexicalDeclContext(CurContext);
7220
7221 if (IsLocalExternDecl) {
7222 if (D.isDecompositionDeclarator())
7223 for (auto *B : Bindings)
7224 B->setLocalExternDecl();
7225 else
7226 NewVD->setLocalExternDecl();
7227 }
7228
7229 bool EmitTLSUnsupportedError = false;
7230 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
7231 // C++11 [dcl.stc]p4:
7232 // When thread_local is applied to a variable of block scope the
7233 // storage-class-specifier static is implied if it does not appear
7234 // explicitly.
7235 // Core issue: 'static' is not implied if the variable is declared
7236 // 'extern'.
7237 if (NewVD->hasLocalStorage() &&
7238 (SCSpec != DeclSpec::SCS_unspecified ||
7239 TSCS != DeclSpec::TSCS_thread_local ||
7240 !DC->isFunctionOrMethod()))
7241 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7242 diag::err_thread_non_global)
7243 << DeclSpec::getSpecifierName(TSCS);
7244 else if (!Context.getTargetInfo().isTLSSupported()) {
7245 if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice ||
7246 getLangOpts().SYCLIsDevice) {
7247 // Postpone error emission until we've collected attributes required to
7248 // figure out whether it's a host or device variable and whether the
7249 // error should be ignored.
7250 EmitTLSUnsupportedError = true;
7251 // We still need to mark the variable as TLS so it shows up in AST with
7252 // proper storage class for other tools to use even if we're not going
7253 // to emit any code for it.
7254 NewVD->setTSCSpec(TSCS);
7255 } else
7256 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7257 diag::err_thread_unsupported);
7258 } else
7259 NewVD->setTSCSpec(TSCS);
7260 }
7261
7262 switch (D.getDeclSpec().getConstexprSpecifier()) {
7263 case ConstexprSpecKind::Unspecified:
7264 break;
7265
7266 case ConstexprSpecKind::Consteval:
7267 Diag(D.getDeclSpec().getConstexprSpecLoc(),
7268 diag::err_constexpr_wrong_decl_kind)
7269 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
7270 LLVM_FALLTHROUGH[[gnu::fallthrough]];
7271
7272 case ConstexprSpecKind::Constexpr:
7273 NewVD->setConstexpr(true);
7274 // C++1z [dcl.spec.constexpr]p1:
7275 // A static data member declared with the constexpr specifier is
7276 // implicitly an inline variable.
7277 if (NewVD->isStaticDataMember() &&
7278 (getLangOpts().CPlusPlus17 ||
7279 Context.getTargetInfo().getCXXABI().isMicrosoft()))
7280 NewVD->setImplicitlyInline();
7281 break;
7282
7283 case ConstexprSpecKind::Constinit:
7284 if (!NewVD->hasGlobalStorage())
7285 Diag(D.getDeclSpec().getConstexprSpecLoc(),
7286 diag::err_constinit_local_variable);
7287 else
7288 NewVD->addAttr(ConstInitAttr::Create(
7289 Context, D.getDeclSpec().getConstexprSpecLoc(),
7290 AttributeCommonInfo::AS_Keyword, ConstInitAttr::Keyword_constinit));
7291 break;
7292 }
7293
7294 // C99 6.7.4p3
7295 // An inline definition of a function with external linkage shall
7296 // not contain a definition of a modifiable object with static or
7297 // thread storage duration...
7298 // We only apply this when the function is required to be defined
7299 // elsewhere, i.e. when the function is not 'extern inline'. Note
7300 // that a local variable with thread storage duration still has to
7301 // be marked 'static'. Also note that it's possible to get these
7302 // semantics in C++ using __attribute__((gnu_inline)).
7303 if (SC == SC_Static && S->getFnParent() != nullptr &&
7304 !NewVD->getType().isConstQualified()) {
7305 FunctionDecl *CurFD = getCurFunctionDecl();
7306 if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
7307 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7308 diag::warn_static_local_in_extern_inline);
7309 MaybeSuggestAddingStaticToDecl(CurFD);
7310 }
7311 }
7312
7313 if (D.getDeclSpec().isModulePrivateSpecified()) {
7314 if (IsVariableTemplateSpecialization)
7315 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7316 << (IsPartialSpecialization ? 1 : 0)
7317 << FixItHint::CreateRemoval(
7318 D.getDeclSpec().getModulePrivateSpecLoc());
7319 else if (IsMemberSpecialization)
7320 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7321 << 2
7322 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7323 else if (NewVD->hasLocalStorage())
7324 Diag(NewVD->getLocation(), diag::err_module_private_local)
7325 << 0 << NewVD
7326 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7327 << FixItHint::CreateRemoval(
7328 D.getDeclSpec().getModulePrivateSpecLoc());
7329 else {
7330 NewVD->setModulePrivate();
7331 if (NewTemplate)
7332 NewTemplate->setModulePrivate();
7333 for (auto *B : Bindings)
7334 B->setModulePrivate();
7335 }
7336 }
7337
7338 if (getLangOpts().OpenCL) {
7339 deduceOpenCLAddressSpace(NewVD);
7340
7341 DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec();
7342 if (TSC != TSCS_unspecified) {
7343 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7344 diag::err_opencl_unknown_type_specifier)
7345 << getLangOpts().getOpenCLVersionString()
7346 << DeclSpec::getSpecifierName(TSC) << 1;
7347 NewVD->setInvalidDecl();
7348 }
7349 }
7350
7351 // Handle attributes prior to checking for duplicates in MergeVarDecl
7352 ProcessDeclAttributes(S, NewVD, D);
7353
7354 // FIXME: This is probably the wrong location to be doing this and we should
7355 // probably be doing this for more attributes (especially for function
7356 // pointer attributes such as format, warn_unused_result, etc.). Ideally
7357 // the code to copy attributes would be generated by TableGen.
7358 if (R->isFunctionPointerType())
7359 if (const auto *TT = R->getAs<TypedefType>())
7360 copyAttrFromTypedefToDecl<AllocSizeAttr>(*this, NewVD, TT);
7361
7362 if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice ||
7363 getLangOpts().SYCLIsDevice) {
7364 if (EmitTLSUnsupportedError &&
7365 ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
7366 (getLangOpts().OpenMPIsDevice &&
7367 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD))))
7368 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7369 diag::err_thread_unsupported);
7370
7371 if (EmitTLSUnsupportedError &&
7372 (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)))
7373 targetDiag(D.getIdentifierLoc(), diag::err_thread_unsupported);
7374 // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
7375 // storage [duration]."
7376 if (SC == SC_None && S->getFnParent() != nullptr &&
7377 (NewVD->hasAttr<CUDASharedAttr>() ||
7378 NewVD->hasAttr<CUDAConstantAttr>())) {
7379 NewVD->setStorageClass(SC_Static);
7380 }
7381 }
7382
7383 // Ensure that dllimport globals without explicit storage class are treated as
7384 // extern. The storage class is set above using parsed attributes. Now we can
7385 // check the VarDecl itself.
7386 assert(!NewVD->hasAttr<DLLImportAttr>() ||(static_cast<void> (0))
7387 NewVD->getAttr<DLLImportAttr>()->isInherited() ||(static_cast<void> (0))
7388 NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None)(static_cast<void> (0));
7389
7390 // In auto-retain/release, infer strong retension for variables of
7391 // retainable type.
7392 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
7393 NewVD->setInvalidDecl();
7394
7395 // Handle GNU asm-label extension (encoded as an attribute).
7396 if (Expr *E = (Expr*)D.getAsmLabel()) {
7397 // The parser guarantees this is a string.
7398 StringLiteral *SE = cast<StringLiteral>(E);
7399 StringRef Label = SE->getString();
7400 if (S->getFnParent() != nullptr) {
7401 switch (SC) {
7402 case SC_None:
7403 case SC_Auto:
7404 Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
7405 break;
7406 case SC_Register:
7407 // Local Named register
7408 if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
7409 DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
7410 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
7411 break;
7412 case SC_Static:
7413 case SC_Extern:
7414 case SC_PrivateExtern:
7415 break;
7416 }
7417 } else if (SC == SC_Register) {
7418 // Global Named register
7419 if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
7420 const auto &TI = Context.getTargetInfo();
7421 bool HasSizeMismatch;
7422
7423 if (!TI.isValidGCCRegisterName(Label))
7424 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
7425 else if (!TI.validateGlobalRegisterVariable(Label,
7426 Context.getTypeSize(R),
7427 HasSizeMismatch))
7428 Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
7429 else if (HasSizeMismatch)
7430 Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
7431 }
7432
7433 if (!R->isIntegralType(Context) && !R->isPointerType()) {
7434 Diag(D.getBeginLoc(), diag::err_asm_bad_register_type);
7435 NewVD->setInvalidDecl(true);
7436 }
7437 }
7438
7439 NewVD->addAttr(AsmLabelAttr::Create(Context, Label,
7440 /*IsLiteralLabel=*/true,
7441 SE->getStrTokenLoc(0)));
7442 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
7443 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
7444 ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
7445 if (I != ExtnameUndeclaredIdentifiers.end()) {
7446 if (isDeclExternC(NewVD)) {
7447 NewVD->addAttr(I->second);
7448 ExtnameUndeclaredIdentifiers.erase(I);
7449 } else
7450 Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
7451 << /*Variable*/1 << NewVD;
7452 }
7453 }
7454
7455 // Find the shadowed declaration before filtering for scope.
7456 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
7457 ? getShadowedDeclaration(NewVD, Previous)
7458 : nullptr;
7459
7460 // Don't consider existing declarations that are in a different
7461 // scope and are out-of-semantic-context declarations (if the new
7462 // declaration has linkage).
7463 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
7464 D.getCXXScopeSpec().isNotEmpty() ||
7465 IsMemberSpecialization ||
7466 IsVariableTemplateSpecialization);
7467
7468 // Check whether the previous declaration is in the same block scope. This
7469 // affects whether we merge types with it, per C++11 [dcl.array]p3.
7470 if (getLangOpts().CPlusPlus &&
7471 NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
7472 NewVD->setPreviousDeclInSameBlockScope(
7473 Previous.isSingleResult() && !Previous.isShadowed() &&
7474 isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
7475
7476 if (!getLangOpts().CPlusPlus) {
7477 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
7478 } else {
7479 // If this is an explicit specialization of a static data member, check it.
7480 if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
7481 CheckMemberSpecialization(NewVD, Previous))
7482 NewVD->setInvalidDecl();
7483
7484 // Merge the decl with the existing one if appropriate.
7485 if (!Previous.empty()) {
7486 if (Previous.isSingleResult() &&
7487 isa<FieldDecl>(Previous.getFoundDecl()) &&
7488 D.getCXXScopeSpec().isSet()) {
7489 // The user tried to define a non-static data member
7490 // out-of-line (C++ [dcl.meaning]p1).
7491 Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
7492 << D.getCXXScopeSpec().getRange();
7493 Previous.clear();
7494 NewVD->setInvalidDecl();
7495 }
7496 } else if (D.getCXXScopeSpec().isSet()) {
7497 // No previous declaration in the qualifying scope.
7498 Diag(D.getIdentifierLoc(), diag::err_no_member)
7499 << Name << computeDeclContext(D.getCXXScopeSpec(), true)
7500 << D.getCXXScopeSpec().getRange();
7501 NewVD->setInvalidDecl();
7502 }
7503
7504 if (!IsVariableTemplateSpecialization)
7505 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
7506
7507 if (NewTemplate) {
7508 VarTemplateDecl *PrevVarTemplate =
7509 NewVD->getPreviousDecl()
7510 ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
7511 : nullptr;
7512
7513 // Check the template parameter list of this declaration, possibly
7514 // merging in the template parameter list from the previous variable
7515 // template declaration.
7516 if (CheckTemplateParameterList(
7517 TemplateParams,
7518 PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
7519 : nullptr,
7520 (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
7521 DC->isDependentContext())
7522 ? TPC_ClassTemplateMember
7523 : TPC_VarTemplate))
7524 NewVD->setInvalidDecl();
7525
7526 // If we are providing an explicit specialization of a static variable
7527 // template, make a note of that.
7528 if (PrevVarTemplate &&
7529 PrevVarTemplate->getInstantiatedFromMemberTemplate())
7530 PrevVarTemplate->setMemberSpecialization();
7531 }
7532 }
7533
7534 // Diagnose shadowed variables iff this isn't a redeclaration.
7535 if (ShadowedDecl && !D.isRedeclaration())
7536 CheckShadow(NewVD, ShadowedDecl, Previous);
7537
7538 ProcessPragmaWeak(S, NewVD);
7539
7540 // If this is the first declaration of an extern C variable, update
7541 // the map of such variables.
7542 if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
7543 isIncompleteDeclExternC(*this, NewVD))
7544 RegisterLocallyScopedExternCDecl(NewVD, S);
7545
7546 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
7547 MangleNumberingContext *MCtx;
7548 Decl *ManglingContextDecl;
7549 std::tie(MCtx, ManglingContextDecl) =
7550 getCurrentMangleNumberContext(NewVD->getDeclContext());
7551 if (MCtx) {
7552 Context.setManglingNumber(
7553 NewVD, MCtx->getManglingNumber(
7554 NewVD, getMSManglingNumber(getLangOpts(), S)));
7555 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
7556 }
7557 }
7558
7559 // Special handling of variable named 'main'.
7560 if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
7561 NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7562 !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
7563
7564 // C++ [basic.start.main]p3
7565 // A program that declares a variable main at global scope is ill-formed.
7566 if (getLangOpts().CPlusPlus)
7567 Diag(D.getBeginLoc(), diag::err_main_global_variable);
7568
7569 // In C, and external-linkage variable named main results in undefined
7570 // behavior.
7571 else if (NewVD->hasExternalFormalLinkage())
7572 Diag(D.getBeginLoc(), diag::warn_main_redefined);
7573 }
7574
7575 if (D.isRedeclaration() && !Previous.empty()) {
7576 NamedDecl *Prev = Previous.getRepresentativeDecl();
7577 checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
7578 D.isFunctionDefinition());
7579 }
7580
7581 if (NewTemplate) {
7582 if (NewVD->isInvalidDecl())
7583 NewTemplate->setInvalidDecl();
7584 ActOnDocumentableDecl(NewTemplate);
7585 return NewTemplate;
7586 }
7587
7588 if (IsMemberSpecialization && !NewVD->isInvalidDecl())
7589 CompleteMemberSpecialization(NewVD, Previous);
7590
7591 return NewVD;
7592}
7593
7594/// Enum describing the %select options in diag::warn_decl_shadow.
7595enum ShadowedDeclKind {
7596 SDK_Local,
7597 SDK_Global,
7598 SDK_StaticMember,
7599 SDK_Field,
7600 SDK_Typedef,
7601 SDK_Using,
7602 SDK_StructuredBinding
7603};
7604
7605/// Determine what kind of declaration we're shadowing.
7606static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
7607 const DeclContext *OldDC) {
7608 if (isa<TypeAliasDecl>(ShadowedDecl))
7609 return SDK_Using;
7610 else if (isa<TypedefDecl>(ShadowedDecl))
7611 return SDK_Typedef;
7612 else if (isa<BindingDecl>(ShadowedDecl))
7613 return SDK_StructuredBinding;
7614 else if (isa<RecordDecl>(OldDC))
7615 return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
7616
7617 return OldDC->isFileContext() ? SDK_Global : SDK_Local;
7618}
7619
7620/// Return the location of the capture if the given lambda captures the given
7621/// variable \p VD, or an invalid source location otherwise.
7622static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
7623 const VarDecl *VD) {
7624 for (const Capture &Capture : LSI->Captures) {
7625 if (Capture.isVariableCapture() && Capture.getVariable() == VD)
7626 return Capture.getLocation();
7627 }
7628 return SourceLocation();
7629}
7630
7631static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
7632 const LookupResult &R) {
7633 // Only diagnose if we're shadowing an unambiguous field or variable.
7634 if (R.getResultKind() != LookupResult::Found)
7635 return false;
7636
7637 // Return false if warning is ignored.
7638 return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
7639}
7640
7641/// Return the declaration shadowed by the given variable \p D, or null
7642/// if it doesn't shadow any declaration or shadowing warnings are disabled.
7643NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
7644 const LookupResult &R) {
7645 if (!shouldWarnIfShadowedDecl(Diags, R))
7646 return nullptr;
7647
7648 // Don't diagnose declarations at file scope.
7649 if (D->hasGlobalStorage())
7650 return nullptr;
7651
7652 NamedDecl *ShadowedDecl = R.getFoundDecl();
7653 return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl
7654 : nullptr;
7655}
7656
7657/// Return the declaration shadowed by the given typedef \p D, or null
7658/// if it doesn't shadow any declaration or shadowing warnings are disabled.
7659NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
7660 const LookupResult &R) {
7661 // Don't warn if typedef declaration is part of a class
7662 if (D->getDeclContext()->isRecord())
7663 return nullptr;
7664
7665 if (!shouldWarnIfShadowedDecl(Diags, R))
7666 return nullptr;
7667
7668 NamedDecl *ShadowedDecl = R.getFoundDecl();
7669 return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
7670}
7671
7672/// Return the declaration shadowed by the given variable \p D, or null
7673/// if it doesn't shadow any declaration or shadowing warnings are disabled.
7674NamedDecl *Sema::getShadowedDeclaration(const BindingDecl *D,
7675 const LookupResult &R) {
7676 if (!shouldWarnIfShadowedDecl(Diags, R))
7677 return nullptr;
7678
7679 NamedDecl *ShadowedDecl = R.getFoundDecl();
7680 return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl
7681 : nullptr;
7682}
7683
7684/// Diagnose variable or built-in function shadowing. Implements
7685/// -Wshadow.
7686///
7687/// This method is called whenever a VarDecl is added to a "useful"
7688/// scope.
7689///
7690/// \param ShadowedDecl the declaration that is shadowed by the given variable
7691/// \param R the lookup of the name
7692///
7693void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
7694 const LookupResult &R) {
7695 DeclContext *NewDC = D->getDeclContext();
7696
7697 if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
7698 // Fields are not shadowed by variables in C++ static methods.
7699 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
7700 if (MD->isStatic())
7701 return;
7702
7703 // Fields shadowed by constructor parameters are a special case. Usually
7704 // the constructor initializes the field with the parameter.
7705 if (isa<CXXConstructorDecl>(NewDC))
7706 if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
7707 // Remember that this was shadowed so we can either warn about its
7708 // modification or its existence depending on warning settings.
7709 ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
7710 return;
7711 }
7712 }
7713
7714 if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
7715 if (shadowedVar->isExternC()) {
7716 // For shadowing external vars, make sure that we point to the global
7717 // declaration, not a locally scoped extern declaration.
7718 for (auto I : shadowedVar->redecls())
7719 if (I->isFileVarDecl()) {
7720 ShadowedDecl = I;
7721 break;
7722 }
7723 }
7724
7725 DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
7726
7727 unsigned WarningDiag = diag::warn_decl_shadow;
7728 SourceLocation CaptureLoc;
7729 if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC &&
7730 isa<CXXMethodDecl>(NewDC)) {
7731 if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
7732 if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
7733 if (RD->getLambdaCaptureDefault() == LCD_None) {
7734 // Try to avoid warnings for lambdas with an explicit capture list.
7735 const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
7736 // Warn only when the lambda captures the shadowed decl explicitly.
7737 CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl));
7738 if (CaptureLoc.isInvalid())
7739 WarningDiag = diag::warn_decl_shadow_uncaptured_local;
7740 } else {
7741 // Remember that this was shadowed so we can avoid the warning if the
7742 // shadowed decl isn't captured and the warning settings allow it.
7743 cast<LambdaScopeInfo>(getCurFunction())
7744 ->ShadowingDecls.push_back(
7745 {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)});
7746 return;
7747 }
7748 }
7749
7750 if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) {
7751 // A variable can't shadow a local variable in an enclosing scope, if
7752 // they are separated by a non-capturing declaration context.
7753 for (DeclContext *ParentDC = NewDC;
7754 ParentDC && !ParentDC->Equals(OldDC);
7755 ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
7756 // Only block literals, captured statements, and lambda expressions
7757 // can capture; other scopes don't.
7758 if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
7759 !isLambdaCallOperator(ParentDC)) {
7760 return;
7761 }
7762 }
7763 }
7764 }
7765 }
7766
7767 // Only warn about certain kinds of shadowing for class members.
7768 if (NewDC && NewDC->isRecord()) {
7769 // In particular, don't warn about shadowing non-class members.
7770 if (!OldDC->isRecord())
7771 return;
7772
7773 // TODO: should we warn about static data members shadowing
7774 // static data members from base classes?
7775
7776 // TODO: don't diagnose for inaccessible shadowed members.
7777 // This is hard to do perfectly because we might friend the
7778 // shadowing context, but that's just a false negative.
7779 }
7780
7781
7782 DeclarationName Name = R.getLookupName();
7783
7784 // Emit warning and note.
7785 if (getSourceManager().isInSystemMacro(R.getNameLoc()))
7786 return;
7787 ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
7788 Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
7789 if (!CaptureLoc.isInvalid())
7790 Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7791 << Name << /*explicitly*/ 1;
7792 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7793}
7794
7795/// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
7796/// when these variables are captured by the lambda.
7797void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
7798 for (const auto &Shadow : LSI->ShadowingDecls) {
7799 const VarDecl *ShadowedDecl = Shadow.ShadowedDecl;
7800 // Try to avoid the warning when the shadowed decl isn't captured.
7801 SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl);
7802 const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7803 Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid()
7804 ? diag::warn_decl_shadow_uncaptured_local
7805 : diag::warn_decl_shadow)
7806 << Shadow.VD->getDeclName()
7807 << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
7808 if (!CaptureLoc.isInvalid())
7809 Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7810 << Shadow.VD->getDeclName() << /*explicitly*/ 0;
7811 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7812 }
7813}
7814
7815/// Check -Wshadow without the advantage of a previous lookup.
7816void Sema::CheckShadow(Scope *S, VarDecl *D) {
7817 if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
7818 return;
7819
7820 LookupResult R(*this, D->getDeclName(), D->getLocation(),
7821 Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
7822 LookupName(R, S);
7823 if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
7824 CheckShadow(D, ShadowedDecl, R);
7825}
7826
7827/// Check if 'E', which is an expression that is about to be modified, refers
7828/// to a constructor parameter that shadows a field.
7829void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
7830 // Quickly ignore expressions that can't be shadowing ctor parameters.
7831 if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
7832 return;
7833 E = E->IgnoreParenImpCasts();
7834 auto *DRE = dyn_cast<DeclRefExpr>(E);
7835 if (!DRE)
7836 return;
7837 const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
7838 auto I = ShadowingDecls.find(D);
7839 if (I == ShadowingDecls.end())
7840 return;
7841 const NamedDecl *ShadowedDecl = I->second;
7842 const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7843 Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
7844 Diag(D->getLocation(), diag::note_var_declared_here) << D;
7845 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7846
7847 // Avoid issuing multiple warnings about the same decl.
7848 ShadowingDecls.erase(I);
7849}
7850
7851/// Check for conflict between this global or extern "C" declaration and
7852/// previous global or extern "C" declarations. This is only used in C++.
7853template<typename T>
7854static bool checkGlobalOrExternCConflict(
7855 Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
7856 assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"")(static_cast<void> (0));
7857 NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
7858
7859 if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
7860 // The common case: this global doesn't conflict with any extern "C"
7861 // declaration.
7862 return false;
7863 }
7864
7865 if (Prev) {
7866 if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
7867 // Both the old and new declarations have C language linkage. This is a
7868 // redeclaration.
7869 Previous.clear();
7870 Previous.addDecl(Prev);
7871 return true;
7872 }
7873
7874 // This is a global, non-extern "C" declaration, and there is a previous
7875 // non-global extern "C" declaration. Diagnose if this is a variable
7876 // declaration.
7877 if (!isa<VarDecl>(ND))
7878 return false;
7879 } else {
7880 // The declaration is extern "C". Check for any declaration in the
7881 // translation unit which might conflict.
7882 if (IsGlobal) {
7883 // We have already performed the lookup into the translation unit.
7884 IsGlobal = false;
7885 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7886 I != E; ++I) {
7887 if (isa<VarDecl>(*I)) {
7888 Prev = *I;
7889 break;
7890 }
7891 }
7892 } else {
7893 DeclContext::lookup_result R =
7894 S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
7895 for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
7896 I != E; ++I) {
7897 if (isa<VarDecl>(*I)) {
7898 Prev = *I;
7899 break;
7900 }
7901 // FIXME: If we have any other entity with this name in global scope,
7902 // the declaration is ill-formed, but that is a defect: it breaks the
7903 // 'stat' hack, for instance. Only variables can have mangled name
7904 // clashes with extern "C" declarations, so only they deserve a
7905 // diagnostic.
7906 }
7907 }
7908
7909 if (!Prev)
7910 return false;
7911 }
7912
7913 // Use the first declaration's location to ensure we point at something which
7914 // is lexically inside an extern "C" linkage-spec.
7915 assert(Prev && "should have found a previous declaration to diagnose")(static_cast<void> (0));
7916 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
7917 Prev = FD->getFirstDecl();
7918 else
7919 Prev = cast<VarDecl>(Prev)->getFirstDecl();
7920
7921 S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
7922 << IsGlobal << ND;
7923 S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
7924 << IsGlobal;
7925 return false;
7926}
7927
7928/// Apply special rules for handling extern "C" declarations. Returns \c true
7929/// if we have found that this is a redeclaration of some prior entity.
7930///
7931/// Per C++ [dcl.link]p6:
7932/// Two declarations [for a function or variable] with C language linkage
7933/// with the same name that appear in different scopes refer to the same
7934/// [entity]. An entity with C language linkage shall not be declared with
7935/// the same name as an entity in global scope.
7936template<typename T>
7937static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
7938 LookupResult &Previous) {
7939 if (!S.getLangOpts().CPlusPlus) {
7940 // In C, when declaring a global variable, look for a corresponding 'extern'
7941 // variable declared in function scope. We don't need this in C++, because
7942 // we find local extern decls in the surrounding file-scope DeclContext.
7943 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7944 if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
7945 Previous.clear();
7946 Previous.addDecl(Prev);
7947 return true;
7948 }
7949 }
7950 return false;
7951 }
7952
7953 // A declaration in the translation unit can conflict with an extern "C"
7954 // declaration.
7955 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
7956 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
7957
7958 // An extern "C" declaration can conflict with a declaration in the
7959 // translation unit or can be a redeclaration of an extern "C" declaration
7960 // in another scope.
7961 if (isIncompleteDeclExternC(S,ND))
7962 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
7963
7964 // Neither global nor extern "C": nothing to do.
7965 return false;
7966}
7967
7968void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
7969 // If the decl is already known invalid, don't check it.
7970 if (NewVD->isInvalidDecl())
7971 return;
7972
7973 QualType T = NewVD->getType();
7974
7975 // Defer checking an 'auto' type until its initializer is attached.
7976 if (T->isUndeducedType())
7977 return;
7978
7979 if (NewVD->hasAttrs())
7980 CheckAlignasUnderalignment(NewVD);
7981
7982 if (T->isObjCObjectType()) {
7983 Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
7984 << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
7985 T = Context.getObjCObjectPointerType(T);
7986 NewVD->setType(T);
7987 }
7988
7989 // Emit an error if an address space was applied to decl with local storage.
7990 // This includes arrays of objects with address space qualifiers, but not
7991 // automatic variables that point to other address spaces.
7992 // ISO/IEC TR 18037 S5.1.2
7993 if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
7994 T.getAddressSpace() != LangAS::Default) {
7995 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
7996 NewVD->setInvalidDecl();
7997 return;
7998 }
7999
8000 // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
8001 // scope.
8002 if (getLangOpts().OpenCLVersion == 120 &&
8003 !getOpenCLOptions().isAvailableOption("cl_clang_storage_class_specifiers",
8004 getLangOpts()) &&
8005 NewVD->isStaticLocal()) {
8006 Diag(NewVD->getLocation(), diag::err_static_function_scope);
8007 NewVD->setInvalidDecl();
8008 return;
8009 }
8010
8011 if (getLangOpts().OpenCL) {
8012 if (!diagnoseOpenCLTypes(*this, NewVD))
8013 return;
8014
8015 // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
8016 if (NewVD->hasAttr<BlocksAttr>()) {
8017 Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
8018 return;
8019 }
8020
8021 if (T->isBlockPointerType()) {
8022 // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
8023 // can't use 'extern' storage class.
8024 if (!T.isConstQualified()) {
8025 Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
8026 << 0 /*const*/;
8027 NewVD->setInvalidDecl();
8028 return;
8029 }
8030 if (NewVD->hasExternalStorage()) {
8031 Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
8032 NewVD->setInvalidDecl();
8033 return;
8034 }
8035 }
8036
8037 // FIXME: Adding local AS in C++ for OpenCL might make sense.
8038 if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
8039 NewVD->hasExternalStorage()) {
8040 if (!T->isSamplerT() && !T->isDependentType() &&
8041 !(T.getAddressSpace() == LangAS::opencl_constant ||
8042 (T.getAddressSpace() == LangAS::opencl_global &&
8043 getOpenCLOptions().areProgramScopeVariablesSupported(
8044 getLangOpts())))) {
8045 int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
8046 if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()))
8047 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
8048 << Scope << "global or constant";
8049 else
8050 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
8051 << Scope << "constant";
8052 NewVD->setInvalidDecl();
8053 return;
8054 }
8055 } else {
8056 if (T.getAddressSpace() == LangAS::opencl_global) {
8057 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8058 << 1 /*is any function*/ << "global";
8059 NewVD->setInvalidDecl();
8060 return;
8061 }
8062 if (T.getAddressSpace() == LangAS::opencl_constant ||
8063 T.getAddressSpace() == LangAS::opencl_local) {
8064 FunctionDecl *FD = getCurFunctionDecl();
8065 // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
8066 // in functions.
8067 if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
8068 if (T.getAddressSpace() == LangAS::opencl_constant)
8069 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8070 << 0 /*non-kernel only*/ << "constant";
8071 else
8072 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8073 << 0 /*non-kernel only*/ << "local";
8074 NewVD->setInvalidDecl();
8075 return;
8076 }
8077 // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
8078 // in the outermost scope of a kernel function.
8079 if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
8080 if (!getCurScope()->isFunctionScope()) {
8081 if (T.getAddressSpace() == LangAS::opencl_constant)
8082 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
8083 << "constant";
8084 else
8085 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
8086 << "local";
8087 NewVD->setInvalidDecl();
8088 return;
8089 }
8090 }
8091 } else if (T.getAddressSpace() != LangAS::opencl_private &&
8092 // If we are parsing a template we didn't deduce an addr
8093 // space yet.
8094 T.getAddressSpace() != LangAS::Default) {
8095 // Do not allow other address spaces on automatic variable.
8096 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
8097 NewVD->setInvalidDecl();
8098 return;
8099 }
8100 }
8101 }
8102
8103 if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
8104 && !NewVD->hasAttr<BlocksAttr>()) {
8105 if (getLangOpts().getGC() != LangOptions::NonGC)
8106 Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
8107 else {
8108 assert(!getLangOpts().ObjCAutoRefCount)(static_cast<void> (0));
8109 Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
8110 }
8111 }
8112
8113 bool isVM = T->isVariablyModifiedType();
8114 if (isVM || NewVD->hasAttr<CleanupAttr>() ||
8115 NewVD->hasAttr<BlocksAttr>())
8116 setFunctionHasBranchProtectedScope();
8117
8118 if ((isVM && NewVD->hasLinkage()) ||
8119 (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
8120 bool SizeIsNegative;
8121 llvm::APSInt Oversized;
8122 TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
8123 NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized);
8124 QualType FixedT;
8125 if (FixedTInfo && T == NewVD->getTypeSourceInfo()->getType())
8126 FixedT = FixedTInfo->getType();
8127 else if (FixedTInfo) {
8128 // Type and type-as-written are canonically different. We need to fix up
8129 // both types separately.
8130 FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
8131 Oversized);
8132 }
8133 if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) {
8134 const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
8135 // FIXME: This won't give the correct result for
8136 // int a[10][n];
8137 SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
8138
8139 if (NewVD->isFileVarDecl())
8140 Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
8141 << SizeRange;
8142 else if (NewVD->isStaticLocal())
8143 Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
8144 << SizeRange;
8145 else
8146 Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
8147 << SizeRange;
8148 NewVD->setInvalidDecl();
8149 return;
8150 }
8151
8152 if (!FixedTInfo) {
8153 if (NewVD->isFileVarDecl())
8154 Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
8155 else
8156 Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
8157 NewVD->setInvalidDecl();
8158 return;
8159 }
8160
8161 Diag(NewVD->getLocation(), diag::ext_vla_folded_to_constant);
8162 NewVD->setType(FixedT);
8163 NewVD->setTypeSourceInfo(FixedTInfo);
8164 }
8165
8166 if (T->isVoidType()) {
8167 // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
8168 // of objects and functions.
8169 if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
8170 Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
8171 << T;
8172 NewVD->setInvalidDecl();
8173 return;
8174 }
8175 }
8176
8177 if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
8178 Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
8179 NewVD->setInvalidDecl();
8180 return;
8181 }
8182
8183 if (!NewVD->hasLocalStorage() && T->isSizelessType()) {
8184 Diag(NewVD->getLocation(), diag::err_sizeless_nonlocal) << T;
8185 NewVD->setInvalidDecl();
8186 return;
8187 }
8188
8189 if (isVM && NewVD->hasAttr<BlocksAttr>()) {
8190 Diag(NewVD->getLocation(), diag::err_block_on_vm);
8191 NewVD->setInvalidDecl();
8192 return;
8193 }
8194
8195 if (NewVD->isConstexpr() && !T->isDependentType() &&
8196 RequireLiteralType(NewVD->getLocation(), T,
8197 diag::err_constexpr_var_non_literal)) {
8198 NewVD->setInvalidDecl();
8199 return;
8200 }
8201
8202 // PPC MMA non-pointer types are not allowed as non-local variable types.
8203 if (Context.getTargetInfo().getTriple().isPPC64() &&
8204 !NewVD->isLocalVarDecl() &&
8205 CheckPPCMMAType(T, NewVD->getLocation())) {
8206 NewVD->setInvalidDecl();
8207 return;
8208 }
8209}
8210
8211/// Perform semantic checking on a newly-created variable
8212/// declaration.
8213///
8214/// This routine performs all of the type-checking required for a
8215/// variable declaration once it has been built. It is used both to
8216/// check variables after they have been parsed and their declarators
8217/// have been translated into a declaration, and to check variables
8218/// that have been instantiated from a template.
8219///
8220/// Sets NewVD->isInvalidDecl() if an error was encountered.
8221///
8222/// Returns true if the variable declaration is a redeclaration.
8223bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
8224 CheckVariableDeclarationType(NewVD);
8225
8226 // If the decl is already known invalid, don't check it.
8227 if (NewVD->isInvalidDecl())
8228 return false;
8229
8230 // If we did not find anything by this name, look for a non-visible
8231 // extern "C" declaration with the same name.
8232 if (Previous.empty() &&
8233 checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
8234 Previous.setShadowed();
8235
8236 if (!Previous.empty()) {
8237 MergeVarDecl(NewVD, Previous);
8238 return true;
8239 }
8240 return false;
8241}
8242
8243/// AddOverriddenMethods - See if a method overrides any in the base classes,
8244/// and if so, check that it's a valid override and remember it.
8245bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
8246 llvm::SmallPtrSet<const CXXMethodDecl*, 4> Overridden;
8247
8248 // Look for methods in base classes that this method might override.
8249 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
8250 /*DetectVirtual=*/false);
8251 auto VisitBase = [&] (const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
8252 CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
8253 DeclarationName Name = MD->getDeclName();
8254
8255 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8256 // We really want to find the base class destructor here.
8257 QualType T = Context.getTypeDeclType(BaseRecord);
8258 CanQualType CT = Context.getCanonicalType(T);
8259 Name = Context.DeclarationNames.getCXXDestructorName(CT);
8260 }
8261
8262 for (NamedDecl *BaseND : BaseRecord->lookup(Name)) {
8263 CXXMethodDecl *BaseMD =
8264 dyn_cast<CXXMethodDecl>(BaseND->getCanonicalDecl());
8265 if (!BaseMD || !BaseMD->isVirtual() ||
8266 IsOverload(MD, BaseMD, /*UseMemberUsingDeclRules=*/false,
8267 /*ConsiderCudaAttrs=*/true,
8268 // C++2a [class.virtual]p2 does not consider requires
8269 // clauses when overriding.
8270 /*ConsiderRequiresClauses=*/false))
8271 continue;
8272
8273 if (Overridden.insert(BaseMD).second) {
8274 MD->addOverriddenMethod(BaseMD);
8275 CheckOverridingFunctionReturnType(MD, BaseMD);
8276 CheckOverridingFunctionAttributes(MD, BaseMD);
8277 CheckOverridingFunctionExceptionSpec(MD, BaseMD);
8278 CheckIfOverriddenFunctionIsMarkedFinal(MD, BaseMD);
8279 }
8280
8281 // A method can only override one function from each base class. We
8282 // don't track indirectly overridden methods from bases of bases.
8283 return true;
8284 }
8285
8286 return false;
8287 };
8288
8289 DC->lookupInBases(VisitBase, Paths);
8290 return !Overridden.empty();
8291}
8292
8293namespace {
8294 // Struct for holding all of the extra arguments needed by
8295 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
8296 struct ActOnFDArgs {
8297 Scope *S;
8298 Declarator &D;
8299 MultiTemplateParamsArg TemplateParamLists;
8300 bool AddToScope;
8301 };
8302} // end anonymous namespace
8303
8304namespace {
8305
8306// Callback to only accept typo corrections that have a non-zero edit distance.
8307// Also only accept corrections that have the same parent decl.
8308class DifferentNameValidatorCCC final : public CorrectionCandidateCallback {
8309 public:
8310 DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
8311 CXXRecordDecl *Parent)
8312 : Context(Context), OriginalFD(TypoFD),
8313 ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
8314
8315 bool ValidateCandidate(const TypoCorrection &candidate) override {
8316 if (candidate.getEditDistance() == 0)
8317 return false;
8318
8319 SmallVector<unsigned, 1> MismatchedParams;
8320 for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
8321 CDeclEnd = candidate.end();
8322 CDecl != CDeclEnd; ++CDecl) {
8323 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
8324
8325 if (FD && !FD->hasBody() &&
8326 hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
8327 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
8328 CXXRecordDecl *Parent = MD->getParent();
8329 if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
8330 return true;
8331 } else if (!ExpectedParent) {
8332 return true;
8333 }
8334 }
8335 }
8336
8337 return false;
8338 }
8339
8340 std::unique_ptr<CorrectionCandidateCallback> clone() override {
8341 return std::make_unique<DifferentNameValidatorCCC>(*this);
8342 }
8343
8344 private:
8345 ASTContext &Context;
8346 FunctionDecl *OriginalFD;
8347 CXXRecordDecl *ExpectedParent;
8348};
8349
8350} // end anonymous namespace
8351
8352void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
8353 TypoCorrectedFunctionDefinitions.insert(F);
8354}
8355
8356/// Generate diagnostics for an invalid function redeclaration.
8357///
8358/// This routine handles generating the diagnostic messages for an invalid
8359/// function redeclaration, including finding possible similar declarations
8360/// or performing typo correction if there are no previous declarations with
8361/// the same name.
8362///
8363/// Returns a NamedDecl iff typo correction was performed and substituting in
8364/// the new declaration name does not cause new errors.
8365static NamedDecl *DiagnoseInvalidRedeclaration(
8366 Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
8367 ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
8368 DeclarationName Name = NewFD->getDeclName();
8369 DeclContext *NewDC = NewFD->getDeclContext();
8370 SmallVector<unsigned, 1> MismatchedParams;
8371 SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
8372 TypoCorrection Correction;
8373 bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
8374 unsigned DiagMsg =
8375 IsLocalFriend ? diag::err_no_matching_local_friend :
8376 NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match :
8377 diag::err_member_decl_does_not_match;
8378 LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
8379 IsLocalFriend ? Sema::LookupLocalFriendName
8380 : Sema::LookupOrdinaryName,
8381 Sema::ForVisibleRedeclaration);
8382
8383 NewFD->setInvalidDecl();
8384 if (IsLocalFriend)
8385 SemaRef.LookupName(Prev, S);
8386 else
8387 SemaRef.LookupQualifiedName(Prev, NewDC);
8388 assert(!Prev.isAmbiguous() &&(static_cast<void> (0))
8389 "Cannot have an ambiguity in previous-declaration lookup")(static_cast<void> (0));
8390 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
8391 DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD,
8392 MD ? MD->getParent() : nullptr);
8393 if (!Prev.empty()) {
8394 for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
8395 Func != FuncEnd; ++Func) {
8396 FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
8397 if (FD &&
8398 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
8399 // Add 1 to the index so that 0 can mean the mismatch didn't
8400 // involve a parameter
8401 unsigned ParamNum =
8402 MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
8403 NearMatches.push_back(std::make_pair(FD, ParamNum));
8404 }
8405 }
8406 // If the qualified name lookup yielded nothing, try typo correction
8407 } else if ((Correction = SemaRef.CorrectTypo(
8408 Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
8409 &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery,
8410 IsLocalFriend ? nullptr : NewDC))) {
8411 // Set up everything for the call to ActOnFunctionDeclarator
8412 ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
8413 ExtraArgs.D.getIdentifierLoc());
8414 Previous.clear();
8415 Previous.setLookupName(Correction.getCorrection());
8416 for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
8417 CDeclEnd = Correction.end();
8418 CDecl != CDeclEnd; ++CDecl) {
8419 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
8420 if (FD && !FD->hasBody() &&
8421 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
8422 Previous.addDecl(FD);
8423 }
8424 }
8425 bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
8426
8427 NamedDecl *Result;
8428 // Retry building the function declaration with the new previous
8429 // declarations, and with errors suppressed.
8430 {
8431 // Trap errors.
8432 Sema::SFINAETrap Trap(SemaRef);
8433
8434 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
8435 // pieces need to verify the typo-corrected C++ declaration and hopefully
8436 // eliminate the need for the parameter pack ExtraArgs.
8437 Result = SemaRef.ActOnFunctionDeclarator(
8438 ExtraArgs.S, ExtraArgs.D,
8439 Correction.getCorrectionDecl()->getDeclContext(),
8440 NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
8441 ExtraArgs.AddToScope);
8442
8443 if (Trap.hasErrorOccurred())
8444 Result = nullptr;
8445 }
8446
8447 if (Result) {
8448 // Determine which correction we picked.
8449 Decl *Canonical = Result->getCanonicalDecl();
8450 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8451 I != E; ++I)
8452 if ((*I)->getCanonicalDecl() == Canonical)
8453 Correction.setCorrectionDecl(*I);
8454
8455 // Let Sema know about the correction.
8456 SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
8457 SemaRef.diagnoseTypo(
8458 Correction,
8459 SemaRef.PDiag(IsLocalFriend
8460 ? diag::err_no_matching_local_friend_suggest
8461 : diag::err_member_decl_does_not_match_suggest)
8462 << Name << NewDC << IsDefinition);
8463 return Result;
8464 }
8465
8466 // Pretend the typo correction never occurred
8467 ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
8468 ExtraArgs.D.getIdentifierLoc());
8469 ExtraArgs.D.setRedeclaration(wasRedeclaration);
8470 Previous.clear();
8471 Previous.setLookupName(Name);
8472 }
8473
8474 SemaRef.Diag(NewFD->getLocation(), DiagMsg)
8475 << Name << NewDC << IsDefinition << NewFD->getLocation();
8476
8477 bool NewFDisConst = false;
8478 if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
8479 NewFDisConst = NewMD->isConst();
8480
8481 for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
8482 NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
8483 NearMatch != NearMatchEnd; ++NearMatch) {
8484 FunctionDecl *FD = NearMatch->first;
8485 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
8486 bool FDisConst = MD && MD->isConst();
8487 bool IsMember = MD || !IsLocalFriend;
8488
8489 // FIXME: These notes are poorly worded for the local friend case.
8490 if (unsigned Idx = NearMatch->second) {
8491 ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
8492 SourceLocation Loc = FDParam->getTypeSpecStartLoc();
8493 if (Loc.isInvalid()) Loc = FD->getLocation();
8494 SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
8495 : diag::note_local_decl_close_param_match)
8496 << Idx << FDParam->getType()
8497 << NewFD->getParamDecl(Idx - 1)->getType();
8498 } else if (FDisConst != NewFDisConst) {
8499 SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
8500 << NewFDisConst << FD->getSourceRange().getEnd();
8501 } else
8502 SemaRef.Diag(FD->getLocation(),
8503 IsMember ? diag::note_member_def_close_match
8504 : diag::note_local_decl_close_match);
8505 }
8506 return nullptr;
8507}
8508
8509static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
8510 switch (D.getDeclSpec().getStorageClassSpec()) {
8511 default: llvm_unreachable("Unknown storage class!")__builtin_unreachable();
8512 case DeclSpec::SCS_auto:
8513 case DeclSpec::SCS_register:
8514 case DeclSpec::SCS_mutable:
8515 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8516 diag::err_typecheck_sclass_func);
8517 D.getMutableDeclSpec().ClearStorageClassSpecs();
8518 D.setInvalidType();
8519 break;
8520 case DeclSpec::SCS_unspecified: break;
8521 case DeclSpec::SCS_extern:
8522 if (D.getDeclSpec().isExternInLinkageSpec())
8523 return SC_None;
8524 return SC_Extern;
8525 case DeclSpec::SCS_static: {
8526 if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
8527 // C99 6.7.1p5:
8528 // The declaration of an identifier for a function that has
8529 // block scope shall have no explicit storage-class specifier
8530 // other than extern
8531 // See also (C++ [dcl.stc]p4).
8532 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8533 diag::err_static_block_func);
8534 break;
8535 } else
8536 return SC_Static;
8537 }
8538 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
8539 }
8540
8541 // No explicit storage class has already been returned
8542 return SC_None;
8543}
8544
8545static FunctionDecl *CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
8546 DeclContext *DC, QualType &R,
8547 TypeSourceInfo *TInfo,
8548 StorageClass SC,
8549 bool &IsVirtualOkay) {
8550 DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
8551 DeclarationName Name = NameInfo.getName();
8552
8553 FunctionDecl *NewFD = nullptr;
8554 bool isInline = D.getDeclSpec().isInlineSpecified();
8555
8556 if (!SemaRef.getLangOpts().CPlusPlus) {
8557 // Determine whether the function was written with a
8558 // prototype. This true when:
8559 // - there is a prototype in the declarator, or
8560 // - the type R of the function is some kind of typedef or other non-
8561 // attributed reference to a type name (which eventually refers to a
8562 // function type).
8563 bool HasPrototype =
8564 (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
8565 (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());
8566
8567 NewFD = FunctionDecl::Create(
8568 SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC,
8569 SemaRef.getCurFPFeatures().isFPConstrained(), isInline, HasPrototype,
8570 ConstexprSpecKind::Unspecified,
8571 /*TrailingRequiresClause=*/nullptr);
8572 if (D.isInvalidType())
8573 NewFD->setInvalidDecl();
8574
8575 return NewFD;
8576 }
8577
8578 ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier();
8579
8580 ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
8581 if (ConstexprKind == ConstexprSpecKind::Constinit) {
8582 SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(),
8583 diag::err_constexpr_wrong_decl_kind)
8584 << static_cast<int>(ConstexprKind);
8585 ConstexprKind = ConstexprSpecKind::Unspecified;
8586 D.getMutableDeclSpec().ClearConstexprSpec();
8587 }
8588 Expr *TrailingRequiresClause = D.getTrailingRequiresClause();
8589
8590 // Check that the return type is not an abstract class type.
8591 // For record types, this is done by the AbstractClassUsageDiagnoser once
8592 // the class has been completely parsed.
8593 if (!DC->isRecord() &&
8594 SemaRef.RequireNonAbstractType(
8595 D.getIdentifierLoc(), R->castAs<FunctionType>()->getReturnType(),
8596 diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
8597 D.setInvalidType();
8598
8599 if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
8600 // This is a C++ constructor declaration.
8601 assert(DC->isRecord() &&(static_cast<void> (0))
8602 "Constructors can only be declared in a member context")(static_cast<void> (0));
8603
8604 R = SemaRef.CheckConstructorDeclarator(D, R, SC);
8605 return CXXConstructorDecl::Create(
8606 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8607 TInfo, ExplicitSpecifier, SemaRef.getCurFPFeatures().isFPConstrained(),
8608 isInline, /*isImplicitlyDeclared=*/false, ConstexprKind,
8609 InheritedConstructor(), TrailingRequiresClause);
8610
8611 } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8612 // This is a C++ destructor declaration.
8613 if (DC->isRecord()) {
8614 R = SemaRef.CheckDestructorDeclarator(D, R, SC);
8615 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
8616 CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
8617 SemaRef.Context, Record, D.getBeginLoc(), NameInfo, R, TInfo,
8618 SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
8619 /*isImplicitlyDeclared=*/false, ConstexprKind,
8620 TrailingRequiresClause);
8621
8622 // If the destructor needs an implicit exception specification, set it
8623 // now. FIXME: It'd be nice to be able to create the right type to start
8624 // with, but the type needs to reference the destructor declaration.
8625 if (SemaRef.getLangOpts().CPlusPlus11)
8626 SemaRef.AdjustDestructorExceptionSpec(NewDD);
8627
8628 IsVirtualOkay = true;
8629 return NewDD;
8630
8631 } else {
8632 SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
8633 D.setInvalidType();
8634
8635 // Create a FunctionDecl to satisfy the function definition parsing
8636 // code path.
8637 return FunctionDecl::Create(
8638 SemaRef.Context, DC, D.getBeginLoc(), D.getIdentifierLoc(), Name, R,
8639 TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
8640 /*hasPrototype=*/true, ConstexprKind, TrailingRequiresClause);
8641 }
8642
8643 } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
8644 if (!DC->isRecord()) {
8645 SemaRef.Diag(D.getIdentifierLoc(),
8646 diag::err_conv_function_not_member);
8647 return nullptr;
8648 }
8649
8650 SemaRef.CheckConversionDeclarator(D, R, SC);
8651 if (D.isInvalidType())
8652 return nullptr;
8653
8654 IsVirtualOkay = true;
8655 return CXXConversionDecl::Create(
8656 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8657 TInfo, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
8658 ExplicitSpecifier, ConstexprKind, SourceLocation(),
8659 TrailingRequiresClause);
8660
8661 } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
8662 if (TrailingRequiresClause)
8663 SemaRef.Diag(TrailingRequiresClause->getBeginLoc(),
8664 diag::err_trailing_requires_clause_on_deduction_guide)
8665 << TrailingRequiresClause->getSourceRange();
8666 SemaRef.CheckDeductionGuideDeclarator(D, R, SC);
8667
8668 return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
8669 ExplicitSpecifier, NameInfo, R, TInfo,
8670 D.getEndLoc());
8671 } else if (DC->isRecord()) {
8672 // If the name of the function is the same as the name of the record,
8673 // then this must be an invalid constructor that has a return type.
8674 // (The parser checks for a return type and makes the declarator a
8675 // constructor if it has no return type).
8676 if (Name.getAsIdentifierInfo() &&
8677 Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
8678 SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
8679 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
8680 << SourceRange(D.getIdentifierLoc());
8681 return nullptr;
8682 }
8683
8684 // This is a C++ method declaration.
8685 CXXMethodDecl *Ret = CXXMethodDecl::Create(
8686 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8687 TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
8688 ConstexprKind, SourceLocation(), TrailingRequiresClause);
8689 IsVirtualOkay = !Ret->isStatic();
8690 return Ret;
8691 } else {
8692 bool isFriend =
8693 SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
8694 if (!isFriend && SemaRef.CurContext->isRecord())
8695 return nullptr;
8696
8697 // Determine whether the function was written with a
8698 // prototype. This true when:
8699 // - we're in C++ (where every function has a prototype),
8700 return FunctionDecl::Create(
8701 SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC,
8702 SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
8703 true /*HasPrototype*/, ConstexprKind, TrailingRequiresClause);
8704 }
8705}
8706
8707enum OpenCLParamType {
8708 ValidKernelParam,
8709 PtrPtrKernelParam,
8710 PtrKernelParam,
8711 InvalidAddrSpacePtrKernelParam,
8712 InvalidKernelParam,
8713 RecordKernelParam
8714};
8715
8716static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) {
8717 // Size dependent types are just typedefs to normal integer types
8718 // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
8719 // integers other than by their names.
8720 StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
8721
8722 // Remove typedefs one by one until we reach a typedef
8723 // for a size dependent type.
8724 QualType DesugaredTy = Ty;
8725 do {
8726 ArrayRef<StringRef> Names(SizeTypeNames);
8727 auto Match = llvm::find(Names, DesugaredTy.getUnqualifiedType().getAsString());
8728 if (Names.end() != Match)
8729 return true;
8730
8731 Ty = DesugaredTy;
8732 DesugaredTy = Ty.getSingleStepDesugaredType(C);
8733 } while (DesugaredTy != Ty);
8734
8735 return false;
8736}
8737
8738static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
8739 if (PT->isDependentType())
8740 return InvalidKernelParam;
8741
8742 if (PT->isPointerType() || PT->isReferenceType()) {
8743 QualType PointeeType = PT->getPointeeType();
8744 if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
8745 PointeeType.getAddressSpace() == LangAS::opencl_private ||
8746 PointeeType.getAddressSpace() == LangAS::Default)
8747 return InvalidAddrSpacePtrKernelParam;
8748
8749 if (PointeeType->isPointerType()) {
8750 // This is a pointer to pointer parameter.
8751 // Recursively check inner type.
8752 OpenCLParamType ParamKind = getOpenCLKernelParameterType(S, PointeeType);
8753 if (ParamKind == InvalidAddrSpacePtrKernelParam ||
8754 ParamKind == InvalidKernelParam)
8755 return ParamKind;
8756
8757 return PtrPtrKernelParam;
8758 }
8759
8760 // C++ for OpenCL v1.0 s2.4:
8761 // Moreover the types used in parameters of the kernel functions must be:
8762 // Standard layout types for pointer parameters. The same applies to
8763 // reference if an implementation supports them in kernel parameters.
8764 if (S.getLangOpts().OpenCLCPlusPlus &&
8765 !S.getOpenCLOptions().isAvailableOption(
8766 "__cl_clang_non_portable_kernel_param_types", S.getLangOpts()) &&
8767 !PointeeType->isAtomicType() && !PointeeType->isVoidType() &&
8768 !PointeeType->isStandardLayoutType())
8769 return InvalidKernelParam;
8770
8771 return PtrKernelParam;
8772 }
8773
8774 // OpenCL v1.2 s6.9.k:
8775 // Arguments to kernel functions in a program cannot be declared with the
8776 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8777 // uintptr_t or a struct and/or union that contain fields declared to be one
8778 // of these built-in scalar types.
8779 if (isOpenCLSizeDependentType(S.getASTContext(), PT))
8780 return InvalidKernelParam;
8781
8782 if (PT->isImageType())
8783 return PtrKernelParam;
8784
8785 if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
8786 return InvalidKernelParam;
8787
8788 // OpenCL extension spec v1.2 s9.5:
8789 // This extension adds support for half scalar and vector types as built-in
8790 // types that can be used for arithmetic operations, conversions etc.
8791 if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16", S.getLangOpts()) &&
8792 PT->isHalfType())
8793 return InvalidKernelParam;
8794
8795 // Look into an array argument to check if it has a forbidden type.
8796 if (PT->isArrayType()) {
8797 const Type *UnderlyingTy = PT->getPointeeOrArrayElementType();
8798 // Call ourself to check an underlying type of an array. Since the
8799 // getPointeeOrArrayElementType returns an innermost type which is not an
8800 // array, this recursive call only happens once.
8801 return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0));
8802 }
8803
8804 // C++ for OpenCL v1.0 s2.4:
8805 // Moreover the types used in parameters of the kernel functions must be:
8806 // Trivial and standard-layout types C++17 [basic.types] (plain old data
8807 // types) for parameters passed by value;
8808 if (S.getLangOpts().OpenCLCPlusPlus &&
8809 !S.getOpenCLOptions().isAvailableOption(
8810 "__cl_clang_non_portable_kernel_param_types", S.getLangOpts()) &&
8811 !PT->isOpenCLSpecificType() && !PT.isPODType(S.Context))
8812 return InvalidKernelParam;
8813
8814 if (PT->isRecordType())
8815 return RecordKernelParam;
8816
8817 return ValidKernelParam;
8818}
8819
8820static void checkIsValidOpenCLKernelParameter(
8821 Sema &S,
8822 Declarator &D,
8823 ParmVarDecl *Param,
8824 llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
8825 QualType PT = Param->getType();
8826
8827 // Cache the valid types we encounter to avoid rechecking structs that are
8828 // used again
8829 if (ValidTypes.count(PT.getTypePtr()))
8830 return;
8831
8832 switch (getOpenCLKernelParameterType(S, PT)) {
8833 case PtrPtrKernelParam:
8834 // OpenCL v3.0 s6.11.a:
8835 // A kernel function argument cannot be declared as a pointer to a pointer
8836 // type. [...] This restriction only applies to OpenCL C 1.2 or below.
8837 if (S.getLangOpts().getOpenCLCompatibleVersion() <= 120) {
8838 S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
8839 D.setInvalidType();
8840 return;
8841 }
8842
8843 ValidTypes.insert(PT.getTypePtr());
8844 return;
8845
8846 case InvalidAddrSpacePtrKernelParam:
8847 // OpenCL v1.0 s6.5:
8848 // __kernel function arguments declared to be a pointer of a type can point
8849 // to one of the following address spaces only : __global, __local or
8850 // __constant.
8851 S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
8852 D.setInvalidType();
8853 return;
8854
8855 // OpenCL v1.2 s6.9.k:
8856 // Arguments to kernel functions in a program cannot be declared with the
8857 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8858 // uintptr_t or a struct and/or union that contain fields declared to be
8859 // one of these built-in scalar types.
8860
8861 case InvalidKernelParam:
8862 // OpenCL v1.2 s6.8 n:
8863 // A kernel function argument cannot be declared
8864 // of event_t type.
8865 // Do not diagnose half type since it is diagnosed as invalid argument
8866 // type for any function elsewhere.
8867 if (!PT->isHalfType()) {
8868 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8869
8870 // Explain what typedefs are involved.
8871 const TypedefType *Typedef = nullptr;
8872 while ((Typedef = PT->getAs<TypedefType>())) {
8873 SourceLocation Loc = Typedef->getDecl()->getLocation();
8874 // SourceLocation may be invalid for a built-in type.
8875 if (Loc.isValid())
8876 S.Diag(Loc, diag::note_entity_declared_at) << PT;
8877 PT = Typedef->desugar();
8878 }
8879 }
8880
8881 D.setInvalidType();
8882 return;
8883
8884 case PtrKernelParam:
8885 case ValidKernelParam:
8886 ValidTypes.insert(PT.getTypePtr());
8887 return;
8888
8889 case RecordKernelParam:
8890 break;
8891 }
8892
8893 // Track nested structs we will inspect
8894 SmallVector<const Decl *, 4> VisitStack;
8895
8896 // Track where we are in the nested structs. Items will migrate from
8897 // VisitStack to HistoryStack as we do the DFS for bad field.
8898 SmallVector<const FieldDecl *, 4> HistoryStack;
8899 HistoryStack.push_back(nullptr);
8900
8901 // At this point we already handled everything except of a RecordType or
8902 // an ArrayType of a RecordType.
8903 assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type.")(static_cast<void> (0));
8904 const RecordType *RecTy =
8905 PT->getPointeeOrArrayElementType()->getAs<RecordType>();
8906 const RecordDecl *OrigRecDecl = RecTy->getDecl();
8907
8908 VisitStack.push_back(RecTy->getDecl());
8909 assert(VisitStack.back() && "First decl null?")(static_cast<void> (0));
8910
8911 do {
8912 const Decl *Next = VisitStack.pop_back_val();
8913 if (!Next) {
8914 assert(!HistoryStack.empty())(static_cast<void> (0));
8915 // Found a marker, we have gone up a level
8916 if (const FieldDecl *Hist = HistoryStack.pop_back_val())
8917 ValidTypes.insert(Hist->getType().getTypePtr());
8918
8919 continue;
8920 }
8921
8922 // Adds everything except the original parameter declaration (which is not a
8923 // field itself) to the history stack.
8924 const RecordDecl *RD;
8925 if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
8926 HistoryStack.push_back(Field);
8927
8928 QualType FieldTy = Field->getType();
8929 // Other field types (known to be valid or invalid) are handled while we
8930 // walk around RecordDecl::fields().
8931 assert((FieldTy->isArrayType() || FieldTy->isRecordType()) &&(static_cast<void> (0))
8932 "Unexpected type.")(static_cast<void> (0));
8933 const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType();
8934
8935 RD = FieldRecTy->castAs<RecordType>()->getDecl();
8936 } else {
8937 RD = cast<RecordDecl>(Next);
8938 }
8939
8940 // Add a null marker so we know when we've gone back up a level
8941 VisitStack.push_back(nullptr);
8942
8943 for (const auto *FD : RD->fields()) {
8944 QualType QT = FD->getType();
8945
8946 if (ValidTypes.count(QT.getTypePtr()))
8947 continue;
8948
8949 OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
8950 if (ParamType == ValidKernelParam)
8951 continue;
8952
8953 if (ParamType == RecordKernelParam) {
8954 VisitStack.push_back(FD);
8955 continue;
8956 }
8957
8958 // OpenCL v1.2 s6.9.p:
8959 // Arguments to kernel functions that are declared to be a struct or union
8960 // do not allow OpenCL objects to be passed as elements of the struct or
8961 // union.
8962 if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
8963 ParamType == InvalidAddrSpacePtrKernelParam) {
8964 S.Diag(Param->getLocation(),
8965 diag::err_record_with_pointers_kernel_param)
8966 << PT->isUnionType()
8967 << PT;
8968 } else {
8969 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8970 }
8971
8972 S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type)
8973 << OrigRecDecl->getDeclName();
8974
8975 // We have an error, now let's go back up through history and show where
8976 // the offending field came from
8977 for (ArrayRef<const FieldDecl *>::const_iterator
8978 I = HistoryStack.begin() + 1,
8979 E = HistoryStack.end();
8980 I != E; ++I) {
8981 const FieldDecl *OuterField = *I;
8982 S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
8983 << OuterField->getType();
8984 }
8985
8986 S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
8987 << QT->isPointerType()
8988 << QT;
8989 D.setInvalidType();
8990 return;
8991 }
8992 } while (!VisitStack.empty());
8993}
8994
8995/// Find the DeclContext in which a tag is implicitly declared if we see an
8996/// elaborated type specifier in the specified context, and lookup finds
8997/// nothing.
8998static DeclContext *getTagInjectionContext(DeclContext *DC) {
8999 while (!DC->isFileContext() && !DC->isFunctionOrMethod())
9000 DC = DC->getParent();
9001 return DC;
9002}
9003
9004/// Find the Scope in which a tag is implicitly declared if we see an
9005/// elaborated type specifier in the specified context, and lookup finds
9006/// nothing.
9007static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
9008 while (S->isClassScope() ||
9009 (LangOpts.CPlusPlus &&
9010 S->isFunctionPrototypeScope()) ||
9011 ((S->getFlags() & Scope::DeclScope) == 0) ||
9012 (S->getEntity() && S->getEntity()->isTransparentContext()))
9013 S = S->getParent();
9014 return S;
9015}
9016
9017NamedDecl*
9018Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
9019 TypeSourceInfo *TInfo, LookupResult &Previous,
9020 MultiTemplateParamsArg TemplateParamListsRef,
9021 bool &AddToScope) {
9022 QualType R = TInfo->getType();
9023
9024 assert(R->isFunctionType())(static_cast<void> (0));
9025 if (R.getCanonicalType()->castAs<FunctionType>()->getCmseNSCallAttr())
9026 Diag(D.getIdentifierLoc(), diag::err_function_decl_cmse_ns_call);
9027
9028 SmallVector<TemplateParameterList *, 4> TemplateParamLists;
9029 for (TemplateParameterList *TPL : TemplateParamListsRef)
9030 TemplateParamLists.push_back(TPL);
9031 if (TemplateParameterList *Invented = D.getInventedTemplateParameterList()) {
9032 if (!TemplateParamLists.empty() &&
9033 Invented->getDepth() == TemplateParamLists.back()->getDepth())
9034 TemplateParamLists.back() = Invented;
9035 else
9036 TemplateParamLists.push_back(Invented);
9037 }
9038
9039 // TODO: consider using NameInfo for diagnostic.
9040 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
9041 DeclarationName Name = NameInfo.getName();
9042 StorageClass SC = getFunctionStorageClass(*this, D);
9043
9044 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
9045 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
9046 diag::err_invalid_thread)
9047 << DeclSpec::getSpecifierName(TSCS);
9048
9049 if (D.isFirstDeclarationOfMember())
9050 adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
9051 D.getIdentifierLoc());
9052
9053 bool isFriend = false;
9054 FunctionTemplateDecl *FunctionTemplate = nullptr;
9055 bool isMemberSpecialization = false;
9056 bool isFunctionTemplateSpecialization = false;
9057
9058 bool isDependentClassScopeExplicitSpecialization = false;
9059 bool HasExplicitTemplateArgs = false;
9060 TemplateArgumentListInfo TemplateArgs;
9061
9062 bool isVirtualOkay = false;
9063
9064 DeclContext *OriginalDC = DC;
9065 bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
9066
9067 FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
9068 isVirtualOkay);
9069 if (!NewFD) return nullptr;
9070
9071 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
9072 NewFD->setTopLevelDeclInObjCContainer();
9073
9074 // Set the lexical context. If this is a function-scope declaration, or has a
9075 // C++ scope specifier, or is the object of a friend declaration, the lexical
9076 // context will be different from the semantic context.
9077 NewFD->setLexicalDeclContext(CurContext);
9078
9079 if (IsLocalExternDecl)
9080 NewFD->setLocalExternDecl();
9081
9082 if (getLangOpts().CPlusPlus) {
9083 bool isInline = D.getDeclSpec().isInlineSpecified();
9084 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
9085 bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier();
9086 isFriend = D.getDeclSpec().isFriendSpecified();
9087 if (isFriend && !isInline && D.isFunctionDefinition()) {
9088 // C++ [class.friend]p5
9089 // A function can be defined in a friend declaration of a
9090 // class . . . . Such a function is implicitly inline.
9091 NewFD->setImplicitlyInline();
9092 }
9093
9094 // If this is a method defined in an __interface, and is not a constructor
9095 // or an overloaded operator, then set the pure flag (isVirtual will already
9096 // return true).
9097 if (const CXXRecordDecl *Parent =
9098 dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
9099 if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
9100 NewFD->setPure(true);
9101
9102 // C++ [class.union]p2
9103 // A union can have member functions, but not virtual functions.
9104 if (isVirtual && Parent->isUnion())
9105 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
9106 }
9107
9108 SetNestedNameSpecifier(*this, NewFD, D);
9109 isMemberSpecialization = false;
9110 isFunctionTemplateSpecialization = false;
9111 if (D.isInvalidType())
9112 NewFD->setInvalidDecl();
9113
9114 // Match up the template parameter lists with the scope specifier, then
9115 // determine whether we have a template or a template specialization.
9116 bool Invalid = false;
9117 TemplateParameterList *TemplateParams =
9118 MatchTemplateParametersToScopeSpecifier(
9119 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
9120 D.getCXXScopeSpec(),
9121 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
9122 ? D.getName().TemplateId
9123 : nullptr,
9124 TemplateParamLists, isFriend, isMemberSpecialization,
9125 Invalid);
9126 if (TemplateParams) {
9127 // Check that we can declare a template here.
9128 if (CheckTemplateDeclScope(S, TemplateParams))
9129 NewFD->setInvalidDecl();
9130
9131 if (TemplateParams->size() > 0) {
9132 // This is a function template
9133
9134 // A destructor cannot be a template.
9135 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
9136 Diag(NewFD->getLocation(), diag::err_destructor_template);
9137 NewFD->setInvalidDecl();
9138 }
9139
9140 // If we're adding a template to a dependent context, we may need to
9141 // rebuilding some of the types used within the template parameter list,
9142 // now that we know what the current instantiation is.
9143 if (DC->isDependentContext()) {
9144 ContextRAII SavedContext(*this, DC);
9145 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
9146 Invalid = true;
9147 }
9148
9149 FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
9150 NewFD->getLocation(),
9151 Name, TemplateParams,
9152 NewFD);
9153 FunctionTemplate->setLexicalDeclContext(CurContext);
9154 NewFD->setDescribedFunctionTemplate(FunctionTemplate);
9155
9156 // For source fidelity, store the other template param lists.
9157 if (TemplateParamLists.size() > 1) {
9158 NewFD->setTemplateParameterListsInfo(Context,
9159 ArrayRef<TemplateParameterList *>(TemplateParamLists)
9160 .drop_back(1));
9161 }
9162 } else {
9163 // This is a function template specialization.
9164 isFunctionTemplateSpecialization = true;
9165 // For source fidelity, store all the template param lists.
9166 if (TemplateParamLists.size() > 0)
9167 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
9168
9169 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
9170 if (isFriend) {
9171 // We want to remove the "template<>", found here.
9172 SourceRange RemoveRange = TemplateParams->getSourceRange();
9173
9174 // If we remove the template<> and the name is not a
9175 // template-id, we're actually silently creating a problem:
9176 // the friend declaration will refer to an untemplated decl,
9177 // and clearly the user wants a template specialization. So
9178 // we need to insert '<>' after the name.
9179 SourceLocation InsertLoc;
9180 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
9181 InsertLoc = D.getName().getSourceRange().getEnd();
9182 InsertLoc = getLocForEndOfToken(InsertLoc);
9183 }
9184
9185 Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
9186 << Name << RemoveRange
9187 << FixItHint::CreateRemoval(RemoveRange)
9188 << FixItHint::CreateInsertion(InsertLoc, "<>");
9189 }
9190 }
9191 } else {
9192 // Check that we can declare a template here.
9193 if (!TemplateParamLists.empty() && isMemberSpecialization &&
9194 CheckTemplateDeclScope(S, TemplateParamLists.back()))
9195 NewFD->setInvalidDecl();
9196
9197 // All template param lists were matched against the scope specifier:
9198 // this is NOT (an explicit specialization of) a template.
9199 if (TemplateParamLists.size() > 0)
9200 // For source fidelity, store all the template param lists.
9201 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
9202 }
9203
9204 if (Invalid) {
9205 NewFD->setInvalidDecl();
9206 if (FunctionTemplate)
9207 FunctionTemplate->setInvalidDecl();
9208 }
9209
9210 // C++ [dcl.fct.spec]p5:
9211 // The virtual specifier shall only be used in declarations of
9212 // nonstatic class member functions that appear within a
9213 // member-specification of a class declaration; see 10.3.
9214 //
9215 if (isVirtual && !NewFD->isInvalidDecl()) {
9216 if (!isVirtualOkay) {
9217 Diag(D.getDeclSpec().getVirtualSpecLoc(),
9218 diag::err_virtual_non_function);
9219 } else if (!CurContext->isRecord()) {
9220 // 'virtual' was specified outside of the class.
9221 Diag(D.getDeclSpec().getVirtualSpecLoc(),
9222 diag::err_virtual_out_of_class)
9223 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
9224 } else if (NewFD->getDescribedFunctionTemplate()) {
9225 // C++ [temp.mem]p3:
9226 // A member function template shall not be virtual.
9227 Diag(D.getDeclSpec().getVirtualSpecLoc(),
9228 diag::err_virtual_member_function_template)
9229 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
9230 } else {
9231 // Okay: Add virtual to the method.
9232 NewFD->setVirtualAsWritten(true);
9233 }
9234
9235 if (getLangOpts().CPlusPlus14 &&
9236 NewFD->getReturnType()->isUndeducedType())
9237 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
9238 }
9239
9240 if (getLangOpts().CPlusPlus14 &&
9241 (NewFD->isDependentContext() ||
9242 (isFriend && CurContext->isDependentContext())) &&
9243 NewFD->getReturnType()->isUndeducedType()) {
9244 // If the function template is referenced directly (for instance, as a
9245 // member of the current instantiation), pretend it has a dependent type.
9246 // This is not really justified by the standard, but is the only sane
9247 // thing to do.
9248 // FIXME: For a friend function, we have not marked the function as being
9249 // a friend yet, so 'isDependentContext' on the FD doesn't work.
9250 const FunctionProtoType *FPT =
9251 NewFD->getType()->castAs<FunctionProtoType>();
9252 QualType Result =
9253 SubstAutoType(FPT->getReturnType(), Context.DependentTy);
9254 NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
9255 FPT->getExtProtoInfo()));
9256 }
9257
9258 // C++ [dcl.fct.spec]p3:
9259 // The inline specifier shall not appear on a block scope function
9260 // declaration.
9261 if (isInline && !NewFD->isInvalidDecl()) {
9262 if (CurContext->isFunctionOrMethod()) {
9263 // 'inline' is not allowed on block scope function declaration.
9264 Diag(D.getDeclSpec().getInlineSpecLoc(),
9265 diag::err_inline_declaration_block_scope) << Name
9266 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
9267 }
9268 }
9269
9270 // C++ [dcl.fct.spec]p6:
9271 // The explicit specifier shall be used only in the declaration of a
9272 // constructor or conversion function within its class definition;
9273 // see 12.3.1 and 12.3.2.
9274 if (hasExplicit && !NewFD->isInvalidDecl() &&
9275 !isa<CXXDeductionGuideDecl>(NewFD)) {
9276 if (!CurContext->isRecord()) {
9277 // 'explicit' was specified outside of the class.
9278 Diag(D.getDeclSpec().getExplicitSpecLoc(),
9279 diag::err_explicit_out_of_class)
9280 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
9281 } else if (!isa<CXXConstructorDecl>(NewFD) &&
9282 !isa<CXXConversionDecl>(NewFD)) {
9283 // 'explicit' was specified on a function that wasn't a constructor
9284 // or conversion function.
9285 Diag(D.getDeclSpec().getExplicitSpecLoc(),
9286 diag::err_explicit_non_ctor_or_conv_function)
9287 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
9288 }
9289 }
9290
9291 ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
9292 if (ConstexprKind != ConstexprSpecKind::Unspecified) {
9293 // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
9294 // are implicitly inline.
9295 NewFD->setImplicitlyInline();
9296
9297 // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
9298 // be either constructors or to return a literal type. Therefore,
9299 // destructors cannot be declared constexpr.
9300 if (isa<CXXDestructorDecl>(NewFD) &&
9301 (!getLangOpts().CPlusPlus20 ||
9302 ConstexprKind == ConstexprSpecKind::Consteval)) {
9303 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor)
9304 << static_cast<int>(ConstexprKind);
9305 NewFD->setConstexprKind(getLangOpts().CPlusPlus20
9306 ? ConstexprSpecKind::Unspecified
9307 : ConstexprSpecKind::Constexpr);
9308 }
9309 // C++20 [dcl.constexpr]p2: An allocation function, or a
9310 // deallocation function shall not be declared with the consteval
9311 // specifier.
9312 if (ConstexprKind == ConstexprSpecKind::Consteval &&
9313 (NewFD->getOverloadedOperator() == OO_New ||
9314 NewFD->getOverloadedOperator() == OO_Array_New ||
9315 NewFD->getOverloadedOperator() == OO_Delete ||
9316 NewFD->getOverloadedOperator() == OO_Array_Delete)) {
9317 Diag(D.getDeclSpec().getConstexprSpecLoc(),
9318 diag::err_invalid_consteval_decl_kind)
9319 << NewFD;
9320 NewFD->setConstexprKind(ConstexprSpecKind::Constexpr);
9321 }
9322 }
9323
9324 // If __module_private__ was specified, mark the function accordingly.
9325 if (D.getDeclSpec().isModulePrivateSpecified()) {
9326 if (isFunctionTemplateSpecialization) {
9327 SourceLocation ModulePrivateLoc
9328 = D.getDeclSpec().getModulePrivateSpecLoc();
9329 Diag(ModulePrivateLoc, diag::err_module_private_specialization)
9330 << 0
9331 << FixItHint::CreateRemoval(ModulePrivateLoc);
9332 } else {
9333 NewFD->setModulePrivate();
9334 if (FunctionTemplate)
9335 FunctionTemplate->setModulePrivate();
9336 }
9337 }
9338
9339 if (isFriend) {
9340 if (FunctionTemplate) {
9341 FunctionTemplate->setObjectOfFriendDecl();
9342 FunctionTemplate->setAccess(AS_public);
9343 }
9344 NewFD->setObjectOfFriendDecl();
9345 NewFD->setAccess(AS_public);
9346 }
9347
9348 // If a function is defined as defaulted or deleted, mark it as such now.
9349 // We'll do the relevant checks on defaulted / deleted functions later.
9350 switch (D.getFunctionDefinitionKind()) {
9351 case FunctionDefinitionKind::Declaration:
9352 case FunctionDefinitionKind::Definition:
9353 break;
9354
9355 case FunctionDefinitionKind::Defaulted:
9356 NewFD->setDefaulted();
9357 break;
9358
9359 case FunctionDefinitionKind::Deleted:
9360 NewFD->setDeletedAsWritten();
9361 break;
9362 }
9363
9364 if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
9365 D.isFunctionDefinition()) {
9366 // C++ [class.mfct]p2:
9367 // A member function may be defined (8.4) in its class definition, in
9368 // which case it is an inline member function (7.1.2)
9369 NewFD->setImplicitlyInline();
9370 }
9371
9372 if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
9373 !CurContext->isRecord()) {
9374 // C++ [class.static]p1:
9375 // A data or function member of a class may be declared static
9376 // in a class definition, in which case it is a static member of
9377 // the class.
9378
9379 // Complain about the 'static' specifier if it's on an out-of-line
9380 // member function definition.
9381
9382 // MSVC permits the use of a 'static' storage specifier on an out-of-line
9383 // member function template declaration and class member template
9384 // declaration (MSVC versions before 2015), warn about this.
9385 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
9386 ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
9387 cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) ||
9388 (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate()))
9389 ? diag::ext_static_out_of_line : diag::err_static_out_of_line)
9390 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
9391 }
9392
9393 // C++11 [except.spec]p15:
9394 // A deallocation function with no exception-specification is treated
9395 // as if it were specified with noexcept(true).
9396 const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
9397 if ((Name.getCXXOverloadedOperator() == OO_Delete ||
9398 Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
9399 getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
9400 NewFD->setType(Context.getFunctionType(
9401 FPT->getReturnType(), FPT->getParamTypes(),
9402 FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
9403 }
9404
9405 // Filter out previous declarations that don't match the scope.
9406 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
9407 D.getCXXScopeSpec().isNotEmpty() ||
9408 isMemberSpecialization ||
9409 isFunctionTemplateSpecialization);
9410
9411 // Handle GNU asm-label extension (encoded as an attribute).
9412 if (Expr *E = (Expr*) D.getAsmLabel()) {
9413 // The parser guarantees this is a string.
9414 StringLiteral *SE = cast<StringLiteral>(E);
9415 NewFD->addAttr(AsmLabelAttr::Create(Context, SE->getString(),
9416 /*IsLiteralLabel=*/true,
9417 SE->getStrTokenLoc(0)));
9418 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
9419 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
9420 ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
9421 if (I != ExtnameUndeclaredIdentifiers.end()) {
9422 if (isDeclExternC(NewFD)) {
9423 NewFD->addAttr(I->second);
9424 ExtnameUndeclaredIdentifiers.erase(I);
9425 } else
9426 Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
9427 << /*Variable*/0 << NewFD;
9428 }
9429 }
9430
9431 // Copy the parameter declarations from the declarator D to the function
9432 // declaration NewFD, if they are available. First scavenge them into Params.
9433 SmallVector<ParmVarDecl*, 16> Params;
9434 unsigned FTIIdx;
9435 if (D.isFunctionDeclarator(FTIIdx)) {
9436 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;
9437
9438 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
9439 // function that takes no arguments, not a function that takes a
9440 // single void argument.
9441 // We let through "const void" here because Sema::GetTypeForDeclarator
9442 // already checks for that case.
9443 if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
9444 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
9445 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
9446 assert(Param->getDeclContext() != NewFD && "Was set before ?")(static_cast<void> (0));
9447 Param->setDeclContext(NewFD);
9448 Params.push_back(Param);
9449
9450 if (Param->isInvalidDecl())
9451 NewFD->setInvalidDecl();
9452 }
9453 }
9454
9455 if (!getLangOpts().CPlusPlus) {
9456 // In C, find all the tag declarations from the prototype and move them
9457 // into the function DeclContext. Remove them from the surrounding tag
9458 // injection context of the function, which is typically but not always
9459 // the TU.
9460 DeclContext *PrototypeTagContext =
9461 getTagInjectionContext(NewFD->getLexicalDeclContext());
9462 for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
9463 auto *TD = dyn_cast<TagDecl>(NonParmDecl);
9464
9465 // We don't want to reparent enumerators. Look at their parent enum
9466 // instead.
9467 if (!TD) {
9468 if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
9469 TD = cast<EnumDecl>(ECD->getDeclContext());
9470 }
9471 if (!TD)
9472 continue;
9473 DeclContext *TagDC = TD->getLexicalDeclContext();
9474 if (!TagDC->containsDecl(TD))
9475 continue;
9476 TagDC->removeDecl(TD);
9477 TD->setDeclContext(NewFD);
9478 NewFD->addDecl(TD);
9479
9480 // Preserve the lexical DeclContext if it is not the surrounding tag
9481 // injection context of the FD. In this example, the semantic context of
9482 // E will be f and the lexical context will be S, while both the
9483 // semantic and lexical contexts of S will be f:
9484 // void f(struct S { enum E { a } f; } s);
9485 if (TagDC != PrototypeTagContext)
9486 TD->setLexicalDeclContext(TagDC);
9487 }
9488 }
9489 } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
9490 // When we're declaring a function with a typedef, typeof, etc as in the
9491 // following example, we'll need to synthesize (unnamed)
9492 // parameters for use in the declaration.
9493 //
9494 // @code
9495 // typedef void fn(int);
9496 // fn f;
9497 // @endcode
9498
9499 // Synthesize a parameter for each argument type.
9500 for (const auto &AI : FT->param_types()) {
9501 ParmVarDecl *Param =
9502 BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
9503 Param->setScopeInfo(0, Params.size());
9504 Params.push_back(Param);
9505 }
9506 } else {
9507 assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&(static_cast<void> (0))
9508 "Should not need args for typedef of non-prototype fn")(static_cast<void> (0));
9509 }
9510
9511 // Finally, we know we have the right number of parameters, install them.
9512 NewFD->setParams(Params);
9513
9514 if (D.getDeclSpec().isNoreturnSpecified())
9515 NewFD->addAttr(C11NoReturnAttr::Create(Context,
9516 D.getDeclSpec().getNoreturnSpecLoc(),
9517 AttributeCommonInfo::AS_Keyword));
9518
9519 // Functions returning a variably modified type violate C99 6.7.5.2p2
9520 // because all functions have linkage.
9521 if (!NewFD->isInvalidDecl() &&
9522 NewFD->getReturnType()->isVariablyModifiedType()) {
9523 Diag(NewFD->getLocation(), diag::err_vm_func_decl);
9524 NewFD->setInvalidDecl();
9525 }
9526
9527 // Apply an implicit SectionAttr if '#pragma clang section text' is active
9528 if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
9529 !NewFD->hasAttr<SectionAttr>())
9530 NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(
9531 Context, PragmaClangTextSection.SectionName,
9532 PragmaClangTextSection.PragmaLocation, AttributeCommonInfo::AS_Pragma));
9533
9534 // Apply an implicit SectionAttr if #pragma code_seg is active.
9535 if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
9536 !NewFD->hasAttr<SectionAttr>()) {
9537 NewFD->addAttr(SectionAttr::CreateImplicit(
9538 Context, CodeSegStack.CurrentValue->getString(),
9539 CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
9540 SectionAttr::Declspec_allocate));
9541 if (UnifySection(CodeSegStack.CurrentValue->getString(),
9542 ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
9543 ASTContext::PSF_Read,
9544 NewFD))
9545 NewFD->dropAttr<SectionAttr>();
9546 }
9547
9548 // Apply an implicit CodeSegAttr from class declspec or
9549 // apply an implicit SectionAttr from #pragma code_seg if active.
9550 if (!NewFD->hasAttr<CodeSegAttr>()) {
9551 if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD,
9552 D.isFunctionDefinition())) {
9553 NewFD->addAttr(SAttr);
9554 }
9555 }
9556
9557 // Handle attributes.
9558 ProcessDeclAttributes(S, NewFD, D);
9559
9560 if (getLangOpts().OpenCL) {
9561 // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
9562 // type declaration will generate a compilation error.
9563 LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
9564 if (AddressSpace != LangAS::Default) {
9565 Diag(NewFD->getLocation(),
9566 diag::err_opencl_return_value_with_address_space);
9567 NewFD->setInvalidDecl();
9568 }
9569 }
9570
9571 if (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice))
9572 checkDeviceDecl(NewFD, D.getBeginLoc());
9573
9574 if (!getLangOpts().CPlusPlus) {
9575 // Perform semantic checking on the function declaration.
9576 if (!NewFD->isInvalidDecl() && NewFD->isMain())
9577 CheckMain(NewFD, D.getDeclSpec());
9578
9579 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
9580 CheckMSVCRTEntryPoint(NewFD);
9581
9582 if (!NewFD->isInvalidDecl())
9583 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
9584 isMemberSpecialization));
9585 else if (!Previous.empty())
9586 // Recover gracefully from an invalid redeclaration.
9587 D.setRedeclaration(true);
9588 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||(static_cast<void> (0))
9589 Previous.getResultKind() != LookupResult::FoundOverloaded) &&(static_cast<void> (0))
9590 "previous declaration set still overloaded")(static_cast<void> (0));
9591
9592 // Diagnose no-prototype function declarations with calling conventions that
9593 // don't support variadic calls. Only do this in C and do it after merging
9594 // possibly prototyped redeclarations.
9595 const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
9596 if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
9597 CallingConv CC = FT->getExtInfo().getCC();
9598 if (!supportsVariadicCall(CC)) {
9599 // Windows system headers sometimes accidentally use stdcall without
9600 // (void) parameters, so we relax this to a warning.
9601 int DiagID =
9602 CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
9603 Diag(NewFD->getLocation(), DiagID)
9604 << FunctionType::getNameForCallConv(CC);
9605 }
9606 }
9607
9608 if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() ||
9609 NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion())
9610 checkNonTrivialCUnion(NewFD->getReturnType(),
9611 NewFD->getReturnTypeSourceRange().getBegin(),
9612 NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy);
9613 } else {
9614 // C++11 [replacement.functions]p3:
9615 // The program's definitions shall not be specified as inline.
9616 //
9617 // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
9618 //
9619 // Suppress the diagnostic if the function is __attribute__((used)), since
9620 // that forces an external definition to be emitted.
9621 if (D.getDeclSpec().isInlineSpecified() &&
9622 NewFD->isReplaceableGlobalAllocationFunction() &&
9623 !NewFD->hasAttr<UsedAttr>())
9624 Diag(D.getDeclSpec().getInlineSpecLoc(),
9625 diag::ext_operator_new_delete_declared_inline)
9626 << NewFD->getDeclName();
9627
9628 // If the declarator is a template-id, translate the parser's template
9629 // argument list into our AST format.
9630 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
9631 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
9632 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
9633 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
9634 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
9635 TemplateId->NumArgs);
9636 translateTemplateArguments(TemplateArgsPtr,
9637 TemplateArgs);
9638
9639 HasExplicitTemplateArgs = true;
9640
9641 if (NewFD->isInvalidDecl()) {
9642 HasExplicitTemplateArgs = false;
9643 } else if (FunctionTemplate) {
9644 // Function template with explicit template arguments.
9645 Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
9646 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
9647
9648 HasExplicitTemplateArgs = false;
9649 } else {
9650 assert((isFunctionTemplateSpecialization ||(static_cast<void> (0))
9651 D.getDeclSpec().isFriendSpecified()) &&(static_cast<void> (0))
9652 "should have a 'template<>' for this decl")(static_cast<void> (0));
9653 // "friend void foo<>(int);" is an implicit specialization decl.
9654 isFunctionTemplateSpecialization = true;
9655 }
9656 } else if (isFriend && isFunctionTemplateSpecialization) {
9657 // This combination is only possible in a recovery case; the user
9658 // wrote something like:
9659 // template <> friend void foo(int);
9660 // which we're recovering from as if the user had written:
9661 // friend void foo<>(int);
9662 // Go ahead and fake up a template id.
9663 HasExplicitTemplateArgs = true;
9664 TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
9665 TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
9666 }
9667
9668 // We do not add HD attributes to specializations here because
9669 // they may have different constexpr-ness compared to their
9670 // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
9671 // may end up with different effective targets. Instead, a
9672 // specialization inherits its target attributes from its template
9673 // in the CheckFunctionTemplateSpecialization() call below.
9674 if (getLangOpts().CUDA && !isFunctionTemplateSpecialization)
9675 maybeAddCUDAHostDeviceAttrs(NewFD, Previous);
9676
9677 // If it's a friend (and only if it's a friend), it's possible
9678 // that either the specialized function type or the specialized
9679 // template is dependent, and therefore matching will fail. In
9680 // this case, don't check the specialization yet.
9681 if (isFunctionTemplateSpecialization && isFriend &&
9682 (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
9683 TemplateSpecializationType::anyInstantiationDependentTemplateArguments(
9684 TemplateArgs.arguments()))) {
9685 assert(HasExplicitTemplateArgs &&(static_cast<void> (0))
9686 "friend function specialization without template args")(static_cast<void> (0));
9687 if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
9688 Previous))
9689 NewFD->setInvalidDecl();
9690 } else if (isFunctionTemplateSpecialization) {
9691 if (CurContext->isDependentContext() && CurContext->isRecord()
9692 && !isFriend) {
9693 isDependentClassScopeExplicitSpecialization = true;
9694 } else if (!NewFD->isInvalidDecl() &&
9695 CheckFunctionTemplateSpecialization(
9696 NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr),
9697 Previous))
9698 NewFD->setInvalidDecl();
9699
9700 // C++ [dcl.stc]p1:
9701 // A storage-class-specifier shall not be specified in an explicit
9702 // specialization (14.7.3)
9703 FunctionTemplateSpecializationInfo *Info =
9704 NewFD->getTemplateSpecializationInfo();
9705 if (Info && SC != SC_None) {
9706 if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
9707 Diag(NewFD->getLocation(),
9708 diag::err_explicit_specialization_inconsistent_storage_class)
9709 << SC
9710 << FixItHint::CreateRemoval(
9711 D.getDeclSpec().getStorageClassSpecLoc());
9712
9713 else
9714 Diag(NewFD->getLocation(),
9715 diag::ext_explicit_specialization_storage_class)
9716 << FixItHint::CreateRemoval(
9717 D.getDeclSpec().getStorageClassSpecLoc());
9718 }
9719 } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
9720 if (CheckMemberSpecialization(NewFD, Previous))
9721 NewFD->setInvalidDecl();
9722 }
9723
9724 // Perform semantic checking on the function declaration.
9725 if (!isDependentClassScopeExplicitSpecialization) {
9726 if (!NewFD->isInvalidDecl() && NewFD->isMain())
9727 CheckMain(NewFD, D.getDeclSpec());
9728
9729 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
9730 CheckMSVCRTEntryPoint(NewFD);
9731
9732 if (!NewFD->isInvalidDecl())
9733 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
9734 isMemberSpecialization));
9735 else if (!Previous.empty())
9736 // Recover gracefully from an invalid redeclaration.
9737 D.setRedeclaration(true);
9738 }
9739
9740 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||(static_cast<void> (0))
9741 Previous.getResultKind() != LookupResult::FoundOverloaded) &&(static_cast<void> (0))
9742 "previous declaration set still overloaded")(static_cast<void> (0));
9743
9744 NamedDecl *PrincipalDecl = (FunctionTemplate
9745 ? cast<NamedDecl>(FunctionTemplate)
9746 : NewFD);
9747
9748 if (isFriend && NewFD->getPreviousDecl()) {
9749 AccessSpecifier Access = AS_public;
9750 if (!NewFD->isInvalidDecl())
9751 Access = NewFD->getPreviousDecl()->getAccess();
9752
9753 NewFD->setAccess(Access);
9754 if (FunctionTemplate) FunctionTemplate->setAccess(Access);
9755 }
9756
9757 if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
9758 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
9759 PrincipalDecl->setNonMemberOperator();
9760
9761 // If we have a function template, check the template parameter
9762 // list. This will check and merge default template arguments.
9763 if (FunctionTemplate) {
9764 FunctionTemplateDecl *PrevTemplate =
9765 FunctionTemplate->getPreviousDecl();
9766 CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
9767 PrevTemplate ? PrevTemplate->getTemplateParameters()
9768 : nullptr,
9769 D.getDeclSpec().isFriendSpecified()
9770 ? (D.isFunctionDefinition()
9771 ? TPC_FriendFunctionTemplateDefinition
9772 : TPC_FriendFunctionTemplate)
9773 : (D.getCXXScopeSpec().isSet() &&
9774 DC && DC->isRecord() &&
9775 DC->isDependentContext())
9776 ? TPC_ClassTemplateMember
9777 : TPC_FunctionTemplate);
9778 }
9779
9780 if (NewFD->isInvalidDecl()) {
9781 // Ignore all the rest of this.
9782 } else if (!D.isRedeclaration()) {
9783 struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
9784 AddToScope };
9785 // Fake up an access specifier if it's supposed to be a class member.
9786 if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
9787 NewFD->setAccess(AS_public);
9788
9789 // Qualified decls generally require a previous declaration.
9790 if (D.getCXXScopeSpec().isSet()) {
9791 // ...with the major exception of templated-scope or
9792 // dependent-scope friend declarations.
9793
9794 // TODO: we currently also suppress this check in dependent
9795 // contexts because (1) the parameter depth will be off when
9796 // matching friend templates and (2) we might actually be
9797 // selecting a friend based on a dependent factor. But there
9798 // are situations where these conditions don't apply and we
9799 // can actually do this check immediately.
9800 //
9801 // Unless the scope is dependent, it's always an error if qualified
9802 // redeclaration lookup found nothing at all. Diagnose that now;
9803 // nothing will diagnose that error later.
9804 if (isFriend &&
9805 (D.getCXXScopeSpec().getScopeRep()->isDependent() ||
9806 (!Previous.empty() && CurContext->isDependentContext()))) {
9807 // ignore these
9808 } else if (NewFD->isCPUDispatchMultiVersion() ||
9809 NewFD->isCPUSpecificMultiVersion()) {
9810 // ignore this, we allow the redeclaration behavior here to create new
9811 // versions of the function.
9812 } else {
9813 // The user tried to provide an out-of-line definition for a
9814 // function that is a member of a class or namespace, but there
9815 // was no such member function declared (C++ [class.mfct]p2,
9816 // C++ [namespace.memdef]p2). For example:
9817 //
9818 // class X {
9819 // void f() const;
9820 // };
9821 //
9822 // void X::f() { } // ill-formed
9823 //
9824 // Complain about this problem, and attempt to suggest close
9825 // matches (e.g., those that differ only in cv-qualifiers and
9826 // whether the parameter types are references).
9827
9828 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9829 *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
9830 AddToScope = ExtraArgs.AddToScope;
9831 return Result;
9832 }
9833 }
9834
9835 // Unqualified local friend declarations are required to resolve
9836 // to something.
9837 } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
9838 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9839 *this, Previous, NewFD, ExtraArgs, true, S)) {
9840 AddToScope = ExtraArgs.AddToScope;
9841 return Result;
9842 }
9843 }
9844 } else if (!D.isFunctionDefinition() &&
9845 isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
9846 !isFriend && !isFunctionTemplateSpecialization &&
9847 !isMemberSpecialization) {
9848 // An out-of-line member function declaration must also be a
9849 // definition (C++ [class.mfct]p2).
9850 // Note that this is not the case for explicit specializations of
9851 // function templates or member functions of class templates, per
9852 // C++ [temp.expl.spec]p2. We also allow these declarations as an
9853 // extension for compatibility with old SWIG code which likes to
9854 // generate them.
9855 Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
9856 << D.getCXXScopeSpec().getRange();
9857 }
9858 }
9859
9860 // If this is the first declaration of a library builtin function, add
9861 // attributes as appropriate.
9862 if (!D.isRedeclaration() &&
9863 NewFD->getDeclContext()->getRedeclContext()->isFileContext()) {
9864 if (IdentifierInfo *II = Previous.getLookupName().getAsIdentifierInfo()) {
9865 if (unsigned BuiltinID = II->getBuiltinID()) {
9866 if (NewFD->getLanguageLinkage() == CLanguageLinkage) {
9867 // Validate the type matches unless this builtin is specified as
9868 // matching regardless of its declared type.
9869 if (Context.BuiltinInfo.allowTypeMismatch(BuiltinID)) {
9870 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
9871 } else {
9872 ASTContext::GetBuiltinTypeError Error;
9873 LookupNecessaryTypesForBuiltin(S, BuiltinID);
9874 QualType BuiltinType = Context.GetBuiltinType(BuiltinID, Error);
9875
9876 if (!Error && !BuiltinType.isNull() &&
9877 Context.hasSameFunctionTypeIgnoringExceptionSpec(
9878 NewFD->getType(), BuiltinType))
9879 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
9880 }
9881 } else if (BuiltinID == Builtin::BI__GetExceptionInfo &&
9882 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
9883 // FIXME: We should consider this a builtin only in the std namespace.
9884 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
9885 }
9886 }
9887 }
9888 }
9889
9890 ProcessPragmaWeak(S, NewFD);
9891 checkAttributesAfterMerging(*this, *NewFD);
9892
9893 AddKnownFunctionAttributes(NewFD);
9894
9895 if (NewFD->hasAttr<OverloadableAttr>() &&
9896 !NewFD->getType()->getAs<FunctionProtoType>()) {
9897 Diag(NewFD->getLocation(),
9898 diag::err_attribute_overloadable_no_prototype)
9899 << NewFD;
9900
9901 // Turn this into a variadic function with no parameters.
9902 const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
9903 FunctionProtoType::ExtProtoInfo EPI(
9904 Context.getDefaultCallingConvention(true, false));
9905 EPI.Variadic = true;
9906 EPI.ExtInfo = FT->getExtInfo();
9907
9908 QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
9909 NewFD->setType(R);
9910 }
9911
9912 // If there's a #pragma GCC visibility in scope, and this isn't a class
9913 // member, set the visibility of this function.
9914 if (!DC->isRecord() && NewFD->isExternallyVisible())
9915 AddPushedVisibilityAttribute(NewFD);
9916
9917 // If there's a #pragma clang arc_cf_code_audited in scope, consider
9918 // marking the function.
9919 AddCFAuditedAttribute(NewFD);
9920
9921 // If this is a function definition, check if we have to apply optnone due to
9922 // a pragma.
9923 if(D.isFunctionDefinition())
9924 AddRangeBasedOptnone(NewFD);
9925
9926 // If this is the first declaration of an extern C variable, update
9927 // the map of such variables.
9928 if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
9929 isIncompleteDeclExternC(*this, NewFD))
9930 RegisterLocallyScopedExternCDecl(NewFD, S);
9931
9932 // Set this FunctionDecl's range up to the right paren.
9933 NewFD->setRangeEnd(D.getSourceRange().getEnd());
9934
9935 if (D.isRedeclaration() && !Previous.empty()) {
9936 NamedDecl *Prev = Previous.getRepresentativeDecl();
9937 checkDLLAttributeRedeclaration(*this, Prev, NewFD,
9938 isMemberSpecialization ||
9939 isFunctionTemplateSpecialization,
9940 D.isFunctionDefinition());
9941 }
9942
9943 if (getLangOpts().CUDA) {
9944 IdentifierInfo *II = NewFD->getIdentifier();
9945 if (II && II->isStr(getCudaConfigureFuncName()) &&
9946 !NewFD->isInvalidDecl() &&
9947 NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
9948 if (!R->castAs<FunctionType>()->getReturnType()->isScalarType())
9949 Diag(NewFD->getLocation(), diag::err_config_scalar_return)
9950 << getCudaConfigureFuncName();
9951 Context.setcudaConfigureCallDecl(NewFD);
9952 }
9953
9954 // Variadic functions, other than a *declaration* of printf, are not allowed
9955 // in device-side CUDA code, unless someone passed
9956 // -fcuda-allow-variadic-functions.
9957 if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
9958 (NewFD->hasAttr<CUDADeviceAttr>() ||
9959 NewFD->hasAttr<CUDAGlobalAttr>()) &&
9960 !(II && II->isStr("printf") && NewFD->isExternC() &&
9961 !D.isFunctionDefinition())) {
9962 Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
9963 }
9964 }
9965
9966 MarkUnusedFileScopedDecl(NewFD);
9967
9968
9969
9970 if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) {
9971 // OpenCL v1.2 s6.8 static is invalid for kernel functions.
9972 if ((getLangOpts().OpenCLVersion >= 120)
9973 && (SC == SC_Static)) {
9974 Diag(D.getIdentifierLoc(), diag::err_static_kernel);
9975 D.setInvalidType();
9976 }
9977
9978 // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
9979 if (!NewFD->getReturnType()->isVoidType()) {
9980 SourceRange RTRange = NewFD->getReturnTypeSourceRange();
9981 Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
9982 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
9983 : FixItHint());
9984 D.setInvalidType();
9985 }
9986
9987 llvm::SmallPtrSet<const Type *, 16> ValidTypes;
9988 for (auto Param : NewFD->parameters())
9989 checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
9990
9991 if (getLangOpts().OpenCLCPlusPlus) {
9992 if (DC->isRecord()) {
9993 Diag(D.getIdentifierLoc(), diag::err_method_kernel);
9994 D.setInvalidType();
9995 }
9996 if (FunctionTemplate) {
9997 Diag(D.getIdentifierLoc(), diag::err_template_kernel);
9998 D.setInvalidType();
9999 }
10000 }
10001 }
10002
10003 if (getLangOpts().CPlusPlus) {
10004 if (FunctionTemplate) {
10005 if (NewFD->isInvalidDecl())
10006 FunctionTemplate->setInvalidDecl();
10007 return FunctionTemplate;
10008 }
10009
10010 if (isMemberSpecialization && !NewFD->isInvalidDecl())
10011 CompleteMemberSpecialization(NewFD, Previous);
10012 }
10013
10014 for (const ParmVarDecl *Param : NewFD->parameters()) {
10015 QualType PT = Param->getType();
10016
10017 // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
10018 // types.
10019 if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
10020 if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
10021 QualType ElemTy = PipeTy->getElementType();
10022 if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
10023 Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
10024 D.setInvalidType();
10025 }
10026 }
10027 }
10028 }
10029
10030 // Here we have an function template explicit specialization at class scope.
10031 // The actual specialization will be postponed to template instatiation
10032 // time via the ClassScopeFunctionSpecializationDecl node.
10033 if (isDependentClassScopeExplicitSpecialization) {
10034 ClassScopeFunctionSpecializationDecl *NewSpec =
10035 ClassScopeFunctionSpecializationDecl::Create(
10036 Context, CurContext, NewFD->getLocation(),
10037 cast<CXXMethodDecl>(NewFD),
10038 HasExplicitTemplateArgs, TemplateArgs);
10039 CurContext->addDecl(NewSpec);
10040 AddToScope = false;
10041 }
10042
10043 // Diagnose availability attributes. Availability cannot be used on functions
10044 // that are run during load/unload.
10045 if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) {
10046 if (NewFD->hasAttr<ConstructorAttr>()) {
10047 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
10048 << 1;
10049 NewFD->dropAttr<AvailabilityAttr>();
10050 }
10051 if (NewFD->hasAttr<DestructorAttr>()) {
10052 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
10053 << 2;
10054 NewFD->dropAttr<AvailabilityAttr>();
10055 }
10056 }
10057
10058 // Diagnose no_builtin attribute on function declaration that are not a
10059 // definition.
10060 // FIXME: We should really be doing this in
10061 // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to
10062 // the FunctionDecl and at this point of the code
10063 // FunctionDecl::isThisDeclarationADefinition() which always returns `false`
10064 // because Sema::ActOnStartOfFunctionDef has not been called yet.
10065 if (const auto *NBA = NewFD->getAttr<NoBuiltinAttr>())
10066 switch (D.getFunctionDefinitionKind()) {
10067 case FunctionDefinitionKind::Defaulted:
10068 case FunctionDefinitionKind::Deleted:
10069 Diag(NBA->getLocation(),
10070 diag::err_attribute_no_builtin_on_defaulted_deleted_function)
10071 << NBA->getSpelling();
10072 break;
10073 case FunctionDefinitionKind::Declaration:
10074 Diag(NBA->getLocation(), diag::err_attribute_no_builtin_on_non_definition)
10075 << NBA->getSpelling();
10076 break;
10077 case FunctionDefinitionKind::Definition:
10078 break;
10079 }
10080
10081 return NewFD;
10082}
10083
10084/// Return a CodeSegAttr from a containing class. The Microsoft docs say
10085/// when __declspec(code_seg) "is applied to a class, all member functions of
10086/// the class and nested classes -- this includes compiler-generated special
10087/// member functions -- are put in the specified segment."
10088/// The actual behavior is a little more complicated. The Microsoft compiler
10089/// won't check outer classes if there is an active value from #pragma code_seg.
10090/// The CodeSeg is always applied from the direct parent but only from outer
10091/// classes when the #pragma code_seg stack is empty. See:
10092/// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
10093/// available since MS has removed the page.
10094static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) {
10095 const auto *Method = dyn_cast<CXXMethodDecl>(FD);
10096 if (!Method)
10097 return nullptr;
10098 const CXXRecordDecl *Parent = Method->getParent();
10099 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
10100 Attr *NewAttr = SAttr->clone(S.getASTContext());
10101 NewAttr->setImplicit(true);
10102 return NewAttr;
10103 }
10104
10105 // The Microsoft compiler won't check outer classes for the CodeSeg
10106 // when the #pragma code_seg stack is active.
10107 if (S.CodeSegStack.CurrentValue)
10108 return nullptr;
10109
10110 while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) {
10111 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
10112 Attr *NewAttr = SAttr->clone(S.getASTContext());
10113 NewAttr->setImplicit(true);
10114 return NewAttr;
10115 }
10116 }
10117 return nullptr;
10118}
10119
10120/// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
10121/// containing class. Otherwise it will return implicit SectionAttr if the
10122/// function is a definition and there is an active value on CodeSegStack
10123/// (from the current #pragma code-seg value).
10124///
10125/// \param FD Function being declared.
10126/// \param IsDefinition Whether it is a definition or just a declarartion.
10127/// \returns A CodeSegAttr or SectionAttr to apply to the function or
10128/// nullptr if no attribute should be added.
10129Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
10130 bool IsDefinition) {
10131 if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD))
10132 return A;
10133 if (!FD->hasAttr<SectionAttr>() && IsDefinition &&
10134 CodeSegStack.CurrentValue)
10135 return SectionAttr::CreateImplicit(
10136 getASTContext(), CodeSegStack.CurrentValue->getString(),
10137 CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
10138 SectionAttr::Declspec_allocate);
10139 return nullptr;
10140}
10141
10142/// Determines if we can perform a correct type check for \p D as a
10143/// redeclaration of \p PrevDecl. If not, we can generally still perform a
10144/// best-effort check.
10145///
10146/// \param NewD The new declaration.
10147/// \param OldD The old declaration.
10148/// \param NewT The portion of the type of the new declaration to check.
10149/// \param OldT The portion of the type of the old declaration to check.
10150bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
10151 QualType NewT, QualType OldT) {
10152 if (!NewD->getLexicalDeclContext()->isDependentContext())
10153 return true;
10154
10155 // For dependently-typed local extern declarations and friends, we can't
10156 // perform a correct type check in general until instantiation:
10157 //
10158 // int f();
10159 // template<typename T> void g() { T f(); }
10160 //
10161 // (valid if g() is only instantiated with T = int).
10162 if (NewT->isDependentType() &&
10163 (NewD->isLocalExternDecl() || NewD->getFriendObjectKind()))
10164 return false;
10165
10166 // Similarly, if the previous declaration was a dependent local extern
10167 // declaration, we don't really know its type yet.
10168 if (OldT->isDependentType() && OldD->isLocalExternDecl())
10169 return false;
10170
10171 return true;
10172}
10173
10174/// Checks if the new declaration declared in dependent context must be
10175/// put in the same redeclaration chain as the specified declaration.
10176///
10177/// \param D Declaration that is checked.
10178/// \param PrevDecl Previous declaration found with proper lookup method for the
10179/// same declaration name.
10180/// \returns True if D must be added to the redeclaration chain which PrevDecl
10181/// belongs to.
10182///
10183bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
10184 if (!D->getLexicalDeclContext()->isDependentContext())
10185 return true;
10186
10187 // Don't chain dependent friend function definitions until instantiation, to
10188 // permit cases like
10189 //
10190 // void func();
10191 // template<typename T> class C1 { friend void func() {} };
10192 // template<typename T> class C2 { friend void func() {} };
10193 //
10194 // ... which is valid if only one of C1 and C2 is ever instantiated.
10195 //
10196 // FIXME: This need only apply to function definitions. For now, we proxy
10197 // this by checking for a file-scope function. We do not want this to apply
10198 // to friend declarations nominating member functions, because that gets in
10199 // the way of access checks.
10200 if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext())
10201 return false;
10202
10203 auto *VD = dyn_cast<ValueDecl>(D);
10204 auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl);
10205 return !VD || !PrevVD ||
10206 canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(),
10207 PrevVD->getType());
10208}
10209
10210/// Check the target attribute of the function for MultiVersion
10211/// validity.
10212///
10213/// Returns true if there was an error, false otherwise.
10214static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
10215 const auto *TA = FD->getAttr<TargetAttr>();
10216 assert(TA && "MultiVersion Candidate requires a target attribute")(static_cast<void> (0));
10217 ParsedTargetAttr ParseInfo = TA->parse();
10218 const TargetInfo &TargetInfo = S.Context.getTargetInfo();
10219 enum ErrType { Feature = 0, Architecture = 1 };
10220
10221 if (!ParseInfo.Architecture.empty() &&
10222 !TargetInfo.validateCpuIs(ParseInfo.Architecture)) {
10223 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
10224 << Architecture << ParseInfo.Architecture;
10225 return true;
10226 }
10227
10228 for (const auto &Feat : ParseInfo.Features) {
10229 auto BareFeat = StringRef{Feat}.substr(1);
10230 if (Feat[0] == '-') {
10231 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
10232 << Feature << ("no-" + BareFeat).str();
10233 return true;
10234 }
10235
10236 if (!TargetInfo.validateCpuSupports(BareFeat) ||
10237 !TargetInfo.isValidFeatureName(BareFeat)) {
10238 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
10239 << Feature << BareFeat;
10240 return true;
10241 }
10242 }
10243 return false;
10244}
10245
10246// Provide a white-list of attributes that are allowed to be combined with
10247// multiversion functions.
10248static bool AttrCompatibleWithMultiVersion(attr::Kind Kind,
10249 MultiVersionKind MVType) {
10250 // Note: this list/diagnosis must match the list in
10251 // checkMultiversionAttributesAllSame.
10252 switch (Kind) {
10253 default:
10254 return false;
10255 case attr::Used:
10256 return MVType == MultiVersionKind::Target;
10257 case attr::NonNull:
10258 case attr::NoThrow:
10259 return true;
10260 }
10261}
10262
10263static bool checkNonMultiVersionCompatAttributes(Sema &S,
10264 const FunctionDecl *FD,
10265 const FunctionDecl *CausedFD,
10266 MultiVersionKind MVType) {
10267 bool IsCPUSpecificCPUDispatchMVType =
10268 MVType == MultiVersionKind::CPUDispatch ||
10269 MVType == MultiVersionKind::CPUSpecific;
10270 const auto Diagnose = [FD, CausedFD, IsCPUSpecificCPUDispatchMVType](
10271 Sema &S, const Attr *A) {
10272 S.Diag(FD->getLocation(), diag::err_multiversion_disallowed_other_attr)
10273 << IsCPUSpecificCPUDispatchMVType << A;
10274 if (CausedFD)
10275 S.Diag(CausedFD->getLocation(), diag::note_multiversioning_caused_here);
10276 return true;
10277 };
10278
10279 for (const Attr *A : FD->attrs()) {
10280 switch (A->getKind()) {
10281 case attr::CPUDispatch:
10282 case attr::CPUSpecific:
10283 if (MVType != MultiVersionKind::CPUDispatch &&
10284 MVType != MultiVersionKind::CPUSpecific)
10285 return Diagnose(S, A);
10286 break;
10287 case attr::Target:
10288 if (MVType != MultiVersionKind::Target)
10289 return Diagnose(S, A);
10290 break;
10291 default:
10292 if (!AttrCompatibleWithMultiVersion(A->getKind(), MVType))
10293 return Diagnose(S, A);
10294 break;
10295 }
10296 }
10297 return false;
10298}
10299
10300bool Sema::areMultiversionVariantFunctionsCompatible(
10301 const FunctionDecl *OldFD, const FunctionDecl *NewFD,
10302 const PartialDiagnostic &NoProtoDiagID,
10303 const PartialDiagnosticAt &NoteCausedDiagIDAt,
10304 const PartialDiagnosticAt &NoSupportDiagIDAt,
10305 const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
10306 bool ConstexprSupported, bool CLinkageMayDiffer) {
10307 enum DoesntSupport {
10308 FuncTemplates = 0,
10309 VirtFuncs = 1,
10310 DeducedReturn = 2,
10311 Constructors = 3,
10312 Destructors = 4,
10313 DeletedFuncs = 5,
10314 DefaultedFuncs = 6,
10315 ConstexprFuncs = 7,
10316 ConstevalFuncs = 8,
10317 };
10318 enum Different {
10319 CallingConv = 0,
10320 ReturnType = 1,
10321 ConstexprSpec = 2,
10322 InlineSpec = 3,
10323 StorageClass = 4,
10324 Linkage = 5,
10325 };
10326
10327 if (NoProtoDiagID.getDiagID() != 0 && OldFD &&
10328 !OldFD->getType()->getAs<FunctionProtoType>()) {
10329 Diag(OldFD->getLocation(), NoProtoDiagID);
10330 Diag(NoteCausedDiagIDAt.first, NoteCausedDiagIDAt.second);
10331 return true;
10332 }
10333
10334 if (NoProtoDiagID.getDiagID() != 0 &&
10335 !NewFD->getType()->getAs<FunctionProtoType>())
10336 return Diag(NewFD->getLocation(), NoProtoDiagID);
10337
10338 if (!TemplatesSupported &&
10339 NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
10340 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10341 << FuncTemplates;
10342
10343 if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
10344 if (NewCXXFD->isVirtual())
10345 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10346 << VirtFuncs;
10347
10348 if (isa<CXXConstructorDecl>(NewCXXFD))
10349 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10350 << Constructors;
10351
10352 if (isa<CXXDestructorDecl>(NewCXXFD))
10353 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10354 << Destructors;
10355 }
10356
10357 if (NewFD->isDeleted())
10358 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10359 << DeletedFuncs;
10360
10361 if (NewFD->isDefaulted())
10362 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10363 << DefaultedFuncs;
10364
10365 if (!ConstexprSupported && NewFD->isConstexpr())
10366 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10367 << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs);
10368
10369 QualType NewQType = Context.getCanonicalType(NewFD->getType());
10370 const auto *NewType = cast<FunctionType>(NewQType);
10371 QualType NewReturnType = NewType->getReturnType();
10372
10373 if (NewReturnType->isUndeducedType())
10374 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10375 << DeducedReturn;
10376
10377 // Ensure the return type is identical.
10378 if (OldFD) {
10379 QualType OldQType = Context.getCanonicalType(OldFD->getType());
10380 const auto *OldType = cast<FunctionType>(OldQType);
10381 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
10382 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
10383
10384 if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
10385 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << CallingConv;
10386
10387 QualType OldReturnType = OldType->getReturnType();
10388
10389 if (OldReturnType != NewReturnType)
10390 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ReturnType;
10391
10392 if (OldFD->getConstexprKind() != NewFD->getConstexprKind())
10393 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ConstexprSpec;
10394
10395 if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
10396 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << InlineSpec;
10397
10398 if (OldFD->getStorageClass() != NewFD->getStorageClass())
10399 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << StorageClass;
10400
10401 if (!CLinkageMayDiffer && OldFD->isExternC() != NewFD->isExternC())
10402 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << Linkage;
10403
10404 if (CheckEquivalentExceptionSpec(
10405 OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
10406 NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
10407 return true;
10408 }
10409 return false;
10410}
10411
10412static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
10413 const FunctionDecl *NewFD,
10414 bool CausesMV,
10415 MultiVersionKind MVType) {
10416 if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
10417 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
10418 if (OldFD)
10419 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10420 return true;
10421 }
10422
10423 bool IsCPUSpecificCPUDispatchMVType =
10424 MVType == MultiVersionKind::CPUDispatch ||
10425 MVType == MultiVersionKind::CPUSpecific;
10426
10427 if (CausesMV && OldFD &&
10428 checkNonMultiVersionCompatAttributes(S, OldFD, NewFD, MVType))
10429 return true;
10430
10431 if (checkNonMultiVersionCompatAttributes(S, NewFD, nullptr, MVType))
10432 return true;
10433
10434 // Only allow transition to MultiVersion if it hasn't been used.
10435 if (OldFD && CausesMV && OldFD->isUsed(false))
10436 return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
10437
10438 return S.areMultiversionVariantFunctionsCompatible(
10439 OldFD, NewFD, S.PDiag(diag::err_multiversion_noproto),
10440 PartialDiagnosticAt(NewFD->getLocation(),
10441 S.PDiag(diag::note_multiversioning_caused_here)),
10442 PartialDiagnosticAt(NewFD->getLocation(),
10443 S.PDiag(diag::err_multiversion_doesnt_support)
10444 << IsCPUSpecificCPUDispatchMVType),
10445 PartialDiagnosticAt(NewFD->getLocation(),
10446 S.PDiag(diag::err_multiversion_diff)),
10447 /*TemplatesSupported=*/false,
10448 /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVType,
10449 /*CLinkageMayDiffer=*/false);
10450}
10451
10452/// Check the validity of a multiversion function declaration that is the
10453/// first of its kind. Also sets the multiversion'ness' of the function itself.
10454///
10455/// This sets NewFD->isInvalidDecl() to true if there was an error.
10456///
10457/// Returns true if there was an error, false otherwise.
10458static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD,
10459 MultiVersionKind MVType,
10460 const TargetAttr *TA) {
10461 assert(MVType != MultiVersionKind::None &&(static_cast<void> (0))
10462 "Function lacks multiversion attribute")(static_cast<void> (0));
10463
10464 // Target only causes MV if it is default, otherwise this is a normal
10465 // function.
10466 if (MVType == MultiVersionKind::Target && !TA->isDefaultVersion())
10467 return false;
10468
10469 if (MVType == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) {
10470 FD->setInvalidDecl();
10471 return true;
10472 }
10473
10474 if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVType)) {
10475 FD->setInvalidDecl();
10476 return true;
10477 }
10478
10479 FD->setIsMultiVersion();
10480 return false;
10481}
10482
10483static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) {
10484 for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) {
10485 if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None)
10486 return true;
10487 }
10488
10489 return false;
10490}
10491
10492static bool CheckTargetCausesMultiVersioning(
10493 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA,
10494 bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
10495 LookupResult &Previous) {
10496 const auto *OldTA = OldFD->getAttr<TargetAttr>();
10497 ParsedTargetAttr NewParsed = NewTA->parse();
10498 // Sort order doesn't matter, it just needs to be consistent.
10499 llvm::sort(NewParsed.Features);
10500
10501 // If the old decl is NOT MultiVersioned yet, and we don't cause that
10502 // to change, this is a simple redeclaration.
10503 if (!NewTA->isDefaultVersion() &&
10504 (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr()))
10505 return false;
10506
10507 // Otherwise, this decl causes MultiVersioning.
10508 if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
10509 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
10510 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10511 NewFD->setInvalidDecl();
10512 return true;
10513 }
10514
10515 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true,
10516 MultiVersionKind::Target)) {
10517 NewFD->setInvalidDecl();
10518 return true;
10519 }
10520
10521 if (CheckMultiVersionValue(S, NewFD)) {
10522 NewFD->setInvalidDecl();
10523 return true;
10524 }
10525
10526 // If this is 'default', permit the forward declaration.
10527 if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) {
10528 Redeclaration = true;
10529 OldDecl = OldFD;
10530 OldFD->setIsMultiVersion();
10531 NewFD->setIsMultiVersion();
10532 return false;
10533 }
10534
10535 if (CheckMultiVersionValue(S, OldFD)) {
10536 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
10537 NewFD->setInvalidDecl();
10538 return true;
10539 }
10540
10541 ParsedTargetAttr OldParsed = OldTA->parse(std::less<std::string>());
10542
10543 if (OldParsed == NewParsed) {
10544 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
10545 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10546 NewFD->setInvalidDecl();
10547 return true;
10548 }
10549
10550 for (const auto *FD : OldFD->redecls()) {
10551 const auto *CurTA = FD->getAttr<TargetAttr>();
10552 // We allow forward declarations before ANY multiversioning attributes, but
10553 // nothing after the fact.
10554 if (PreviousDeclsHaveMultiVersionAttribute(FD) &&
10555 (!CurTA || CurTA->isInherited())) {
10556 S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl)
10557 << 0;
10558 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
10559 NewFD->setInvalidDecl();
10560 return true;
10561 }
10562 }
10563
10564 OldFD->setIsMultiVersion();
10565 NewFD->setIsMultiVersion();
10566 Redeclaration = false;
10567 MergeTypeWithPrevious = false;
10568 OldDecl = nullptr;
10569 Previous.clear();
10570 return false;
10571}
10572
10573/// Check the validity of a new function declaration being added to an existing
10574/// multiversioned declaration collection.
10575static bool CheckMultiVersionAdditionalDecl(
10576 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD,
10577 MultiVersionKind NewMVType, const TargetAttr *NewTA,
10578 const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec,
10579 bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
10580 LookupResult &Previous) {
10581
10582 MultiVersionKind OldMVType = OldFD->getMultiVersionKind();
10583 // Disallow mixing of multiversioning types.
10584 if ((OldMVType == MultiVersionKind::Target &&
10585 NewMVType != MultiVersionKind::Target) ||
10586 (NewMVType == MultiVersionKind::Target &&
10587 OldMVType != MultiVersionKind::Target)) {
10588 S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
10589 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10590 NewFD->setInvalidDecl();
10591 return true;
10592 }
10593
10594 ParsedTargetAttr NewParsed;
10595 if (NewTA) {
10596 NewParsed = NewTA->parse();
10597 llvm::sort(NewParsed.Features);
10598 }
10599
10600 bool UseMemberUsingDeclRules =
10601 S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
10602
10603 // Next, check ALL non-overloads to see if this is a redeclaration of a
10604 // previous member of the MultiVersion set.
10605 for (NamedDecl *ND : Previous) {
10606 FunctionDecl *CurFD = ND->getAsFunction();
10607 if (!CurFD)
10608 continue;
10609 if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
10610 continue;
10611
10612 if (NewMVType == MultiVersionKind::Target) {
10613 const auto *CurTA = CurFD->getAttr<TargetAttr>();
10614 if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
10615 NewFD->setIsMultiVersion();
10616 Redeclaration = true;
10617 OldDecl = ND;
10618 return false;
10619 }
10620
10621 ParsedTargetAttr CurParsed = CurTA->parse(std::less<std::string>());
10622 if (CurParsed == NewParsed) {
10623 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
10624 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10625 NewFD->setInvalidDecl();
10626 return true;
10627 }
10628 } else {
10629 const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>();
10630 const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>();
10631 // Handle CPUDispatch/CPUSpecific versions.
10632 // Only 1 CPUDispatch function is allowed, this will make it go through
10633 // the redeclaration errors.
10634 if (NewMVType == MultiVersionKind::CPUDispatch &&
10635 CurFD->hasAttr<CPUDispatchAttr>()) {
10636 if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() &&
10637 std::equal(
10638 CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(),
10639 NewCPUDisp->cpus_begin(),
10640 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
10641 return Cur->getName() == New->getName();
10642 })) {
10643 NewFD->setIsMultiVersion();
10644 Redeclaration = true;
10645 OldDecl = ND;
10646 return false;
10647 }
10648
10649 // If the declarations don't match, this is an error condition.
10650 S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch);
10651 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10652 NewFD->setInvalidDecl();
10653 return true;
10654 }
10655 if (NewMVType == MultiVersionKind::CPUSpecific && CurCPUSpec) {
10656
10657 if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() &&
10658 std::equal(
10659 CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(),
10660 NewCPUSpec->cpus_begin(),
10661 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
10662 return Cur->getName() == New->getName();
10663 })) {
10664 NewFD->setIsMultiVersion();
10665 Redeclaration = true;
10666 OldDecl = ND;
10667 return false;
10668 }
10669
10670 // Only 1 version of CPUSpecific is allowed for each CPU.
10671 for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) {
10672 for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) {
10673 if (CurII == NewII) {
10674 S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs)
10675 << NewII;
10676 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10677 NewFD->setInvalidDecl();
10678 return true;
10679 }
10680 }
10681 }
10682 }
10683 // If the two decls aren't the same MVType, there is no possible error
10684 // condition.
10685 }
10686 }
10687
10688 // Else, this is simply a non-redecl case. Checking the 'value' is only
10689 // necessary in the Target case, since The CPUSpecific/Dispatch cases are
10690 // handled in the attribute adding step.
10691 if (NewMVType == MultiVersionKind::Target &&
10692 CheckMultiVersionValue(S, NewFD)) {
10693 NewFD->setInvalidDecl();
10694 return true;
10695 }
10696
10697 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD,
10698 !OldFD->isMultiVersion(), NewMVType)) {
10699 NewFD->setInvalidDecl();
10700 return true;
10701 }
10702
10703 // Permit forward declarations in the case where these two are compatible.
10704 if (!OldFD->isMultiVersion()) {
10705 OldFD->setIsMultiVersion();
10706 NewFD->setIsMultiVersion();
10707 Redeclaration = true;
10708 OldDecl = OldFD;
10709 return false;
10710 }
10711
10712 NewFD->setIsMultiVersion();
10713 Redeclaration = false;
10714 MergeTypeWithPrevious = false;
10715 OldDecl = nullptr;
10716 Previous.clear();
10717 return false;
10718}
10719
10720
10721/// Check the validity of a mulitversion function declaration.
10722/// Also sets the multiversion'ness' of the function itself.
10723///
10724/// This sets NewFD->isInvalidDecl() to true if there was an error.
10725///
10726/// Returns true if there was an error, false otherwise.
10727static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
10728 bool &Redeclaration, NamedDecl *&OldDecl,
10729 bool &MergeTypeWithPrevious,
10730 LookupResult &Previous) {
10731 const auto *NewTA = NewFD->getAttr<TargetAttr>();
10732 const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>();
10733 const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>();
10734
10735 // Mixing Multiversioning types is prohibited.
10736 if ((NewTA && NewCPUDisp) || (NewTA && NewCPUSpec) ||
10737 (NewCPUDisp && NewCPUSpec)) {
10738 S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
10739 NewFD->setInvalidDecl();
10740 return true;
10741 }
10742
10743 MultiVersionKind MVType = NewFD->getMultiVersionKind();
10744
10745 // Main isn't allowed to become a multiversion function, however it IS
10746 // permitted to have 'main' be marked with the 'target' optimization hint.
10747 if (NewFD->isMain()) {
10748 if ((MVType == MultiVersionKind::Target && NewTA->isDefaultVersion()) ||
10749 MVType == MultiVersionKind::CPUDispatch ||
10750 MVType == MultiVersionKind::CPUSpecific) {
10751 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
10752 NewFD->setInvalidDecl();
10753 return true;
10754 }
10755 return false;
10756 }
10757
10758 if (!OldDecl || !OldDecl->getAsFunction() ||
10759 OldDecl->getDeclContext()->getRedeclContext() !=
10760 NewFD->getDeclContext()->getRedeclContext()) {
10761 // If there's no previous declaration, AND this isn't attempting to cause
10762 // multiversioning, this isn't an error condition.
10763 if (MVType == MultiVersionKind::None)
10764 return false;
10765 return CheckMultiVersionFirstFunction(S, NewFD, MVType, NewTA);
10766 }
10767
10768 FunctionDecl *OldFD = OldDecl->getAsFunction();
10769
10770 if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::None)
10771 return false;
10772
10773 if (OldFD->isMultiVersion() && MVType == MultiVersionKind::None) {
10774 S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl)
10775 << (OldFD->getMultiVersionKind() != MultiVersionKind::Target);
10776 NewFD->setInvalidDecl();
10777 return true;
10778 }
10779
10780 // Handle the target potentially causes multiversioning case.
10781 if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::Target)
10782 return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA,
10783 Redeclaration, OldDecl,
10784 MergeTypeWithPrevious, Previous);
10785
10786 // At this point, we have a multiversion function decl (in OldFD) AND an
10787 // appropriate attribute in the current function decl. Resolve that these are
10788 // still compatible with previous declarations.
10789 return CheckMultiVersionAdditionalDecl(
10790 S, OldFD, NewFD, MVType, NewTA, NewCPUDisp, NewCPUSpec, Redeclaration,
10791 OldDecl, MergeTypeWithPrevious, Previous);
10792}
10793
10794/// Perform semantic checking of a new function declaration.
10795///
10796/// Performs semantic analysis of the new function declaration
10797/// NewFD. This routine performs all semantic checking that does not
10798/// require the actual declarator involved in the declaration, and is
10799/// used both for the declaration of functions as they are parsed
10800/// (called via ActOnDeclarator) and for the declaration of functions
10801/// that have been instantiated via C++ template instantiation (called
10802/// via InstantiateDecl).
10803///
10804/// \param IsMemberSpecialization whether this new function declaration is
10805/// a member specialization (that replaces any definition provided by the
10806/// previous declaration).
10807///
10808/// This sets NewFD->isInvalidDecl() to true if there was an error.
10809///
10810/// \returns true if the function declaration is a redeclaration.
10811bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
10812 LookupResult &Previous,
10813 bool IsMemberSpecialization) {
10814 assert(!NewFD->getReturnType()->isVariablyModifiedType() &&(static_cast<void> (0))
10815 "Variably modified return types are not handled here")(static_cast<void> (0));
10816
10817 // Determine whether the type of this function should be merged with
10818 // a previous visible declaration. This never happens for functions in C++,
10819 // and always happens in C if the previous declaration was visible.
10820 bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
10821 !Previous.isShadowed();
10822
10823 bool Redeclaration = false;
10824 NamedDecl *OldDecl = nullptr;
10825 bool MayNeedOverloadableChecks = false;
10826
10827 // Merge or overload the declaration with an existing declaration of
10828 // the same name, if appropriate.
10829 if (!Previous.empty()) {
10830 // Determine whether NewFD is an overload of PrevDecl or
10831 // a declaration that requires merging. If it's an overload,
10832 // there's no more work to do here; we'll just add the new
10833 // function to the scope.
10834 if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
10835 NamedDecl *Candidate = Previous.getRepresentativeDecl();
10836 if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
10837 Redeclaration = true;
10838 OldDecl = Candidate;
10839 }
10840 } else {
10841 MayNeedOverloadableChecks = true;
10842 switch (CheckOverload(S, NewFD, Previous, OldDecl,
10843 /*NewIsUsingDecl*/ false)) {
10844 case Ovl_Match:
10845 Redeclaration = true;
10846 break;
10847
10848 case Ovl_NonFunction:
10849 Redeclaration = true;
10850 break;
10851
10852 case Ovl_Overload:
10853 Redeclaration = false;
10854 break;
10855 }
10856 }
10857 }
10858
10859 // Check for a previous extern "C" declaration with this name.
10860 if (!Redeclaration &&
10861 checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
10862 if (!Previous.empty()) {
10863 // This is an extern "C" declaration with the same name as a previous
10864 // declaration, and thus redeclares that entity...
10865 Redeclaration = true;
10866 OldDecl = Previous.getFoundDecl();
10867 MergeTypeWithPrevious = false;
10868
10869 // ... except in the presence of __attribute__((overloadable)).
10870 if (OldDecl->hasAttr<OverloadableAttr>() ||
10871 NewFD->hasAttr<OverloadableAttr>()) {
10872 if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
10873 MayNeedOverloadableChecks = true;
10874 Redeclaration = false;
10875 OldDecl = nullptr;
10876 }
10877 }
10878 }
10879 }
10880
10881 if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl,
10882 MergeTypeWithPrevious, Previous))
10883 return Redeclaration;
10884
10885 // PPC MMA non-pointer types are not allowed as function return types.
10886 if (Context.getTargetInfo().getTriple().isPPC64() &&
10887 CheckPPCMMAType(NewFD->getReturnType(), NewFD->getLocation())) {
10888 NewFD->setInvalidDecl();
10889 }
10890
10891 // C++11 [dcl.constexpr]p8:
10892 // A constexpr specifier for a non-static member function that is not
10893 // a constructor declares that member function to be const.
10894 //
10895 // This needs to be delayed until we know whether this is an out-of-line
10896 // definition of a static member function.
10897 //
10898 // This rule is not present in C++1y, so we produce a backwards
10899 // compatibility warning whenever it happens in C++11.
10900 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
10901 if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
10902 !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
10903 !isa<CXXDestructorDecl>(MD) && !MD->getMethodQualifiers().hasConst()) {
10904 CXXMethodDecl *OldMD = nullptr;
10905 if (OldDecl)
10906 OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
10907 if (!OldMD || !OldMD->isStatic()) {
10908 const FunctionProtoType *FPT =
10909 MD->getType()->castAs<FunctionProtoType>();
10910 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10911 EPI.TypeQuals.addConst();
10912 MD->setType(Context.getFunctionType(FPT->getReturnType(),
10913 FPT->getParamTypes(), EPI));
10914
10915 // Warn that we did this, if we're not performing template instantiation.
10916 // In that case, we'll have warned already when the template was defined.
10917 if (!inTemplateInstantiation()) {
10918 SourceLocation AddConstLoc;
10919 if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
10920 .IgnoreParens().getAs<FunctionTypeLoc>())
10921 AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
10922
10923 Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
10924 << FixItHint::CreateInsertion(AddConstLoc, " const");
10925 }
10926 }
10927 }
10928
10929 if (Redeclaration) {
10930 // NewFD and OldDecl represent declarations that need to be
10931 // merged.
10932 if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
10933 NewFD->setInvalidDecl();
10934 return Redeclaration;
10935 }
10936
10937 Previous.clear();
10938 Previous.addDecl(OldDecl);
10939
10940 if (FunctionTemplateDecl *OldTemplateDecl =
10941 dyn_cast<FunctionTemplateDecl>(OldDecl)) {
10942 auto *OldFD = OldTemplateDecl->getTemplatedDecl();
10943 FunctionTemplateDecl *NewTemplateDecl
10944 = NewFD->getDescribedFunctionTemplate();
10945 assert(NewTemplateDecl && "Template/non-template mismatch")(static_cast<void> (0));
10946
10947 // The call to MergeFunctionDecl above may have created some state in
10948 // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
10949 // can add it as a redeclaration.
10950 NewTemplateDecl->mergePrevDecl(OldTemplateDecl);
10951
10952 NewFD->setPreviousDeclaration(OldFD);
10953 if (NewFD->isCXXClassMember()) {
10954 NewFD->setAccess(OldTemplateDecl->getAccess());
10955 NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
10956 }
10957
10958 // If this is an explicit specialization of a member that is a function
10959 // template, mark it as a member specialization.
10960 if (IsMemberSpecialization &&
10961 NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
10962 NewTemplateDecl->setMemberSpecialization();
10963 assert(OldTemplateDecl->isMemberSpecialization())(static_cast<void> (0));
10964 // Explicit specializations of a member template do not inherit deleted
10965 // status from the parent member template that they are specializing.
10966 if (OldFD->isDeleted()) {
10967 // FIXME: This assert will not hold in the presence of modules.
10968 assert(OldFD->getCanonicalDecl() == OldFD)(static_cast<void> (0));
10969 // FIXME: We need an update record for this AST mutation.
10970 OldFD->setDeletedAsWritten(false);
10971 }
10972 }
10973
10974 } else {
10975 if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
10976 auto *OldFD = cast<FunctionDecl>(OldDecl);
10977 // This needs to happen first so that 'inline' propagates.
10978 NewFD->setPreviousDeclaration(OldFD);
10979 if (NewFD->isCXXClassMember())
10980 NewFD->setAccess(OldFD->getAccess());
10981 }
10982 }
10983 } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
10984 !NewFD->getAttr<OverloadableAttr>()) {
10985 assert((Previous.empty() ||(static_cast<void> (0))
10986 llvm::any_of(Previous,(static_cast<void> (0))
10987 [](const NamedDecl *ND) {(static_cast<void> (0))
10988 return ND->hasAttr<OverloadableAttr>();(static_cast<void> (0))
10989 })) &&(static_cast<void> (0))
10990 "Non-redecls shouldn't happen without overloadable present")(static_cast<void> (0));
10991
10992 auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
10993 const auto *FD = dyn_cast<FunctionDecl>(ND);
10994 return FD && !FD->hasAttr<OverloadableAttr>();
10995 });
10996
10997 if (OtherUnmarkedIter != Previous.end()) {
10998 Diag(NewFD->getLocation(),
10999 diag::err_attribute_overloadable_multiple_unmarked_overloads);
11000 Diag((*OtherUnmarkedIter)->getLocation(),
11001 diag::note_attribute_overloadable_prev_overload)
11002 << false;
11003
11004 NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
11005 }
11006 }
11007
11008 if (LangOpts.OpenMP)
11009 ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(NewFD);
11010
11011 // Semantic checking for this function declaration (in isolation).
11012
11013 if (getLangOpts().CPlusPlus) {
11014 // C++-specific checks.
11015 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
11016 CheckConstructor(Constructor);
11017 } else if (CXXDestructorDecl *Destructor =
11018 dyn_cast<CXXDestructorDecl>(NewFD)) {
11019 CXXRecordDecl *Record = Destructor->getParent();
11020 QualType ClassType = Context.getTypeDeclType(Record);
11021
11022 // FIXME: Shouldn't we be able to perform this check even when the class
11023 // type is dependent? Both gcc and edg can handle that.
11024 if (!ClassType->isDependentType()) {
11025 DeclarationName Name
11026 = Context.DeclarationNames.getCXXDestructorName(
11027 Context.getCanonicalType(ClassType));
11028 if (NewFD->getDeclName() != Name) {
11029 Diag(NewFD->getLocation(), diag::err_destructor_name);
11030 NewFD->setInvalidDecl();
11031 return Redeclaration;
11032 }
11033 }
11034 } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
11035 if (auto *TD = Guide->getDescribedFunctionTemplate())
11036 CheckDeductionGuideTemplate(TD);
11037
11038 // A deduction guide is not on the list of entities that can be
11039 // explicitly specialized.
11040 if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
11041 Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized)
11042 << /*explicit specialization*/ 1;
11043 }
11044
11045 // Find any virtual functions that this function overrides.
11046 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
11047 if (!Method->isFunctionTemplateSpecialization() &&
11048 !Method->getDescribedFunctionTemplate() &&
11049 Method->isCanonicalDecl()) {
11050 AddOverriddenMethods(Method->getParent(), Method);
11051 }
11052 if (Method->isVirtual() && NewFD->getTrailingRequiresClause())
11053 // C++2a [class.virtual]p6
11054 // A virtual method shall not have a requires-clause.
11055 Diag(NewFD->getTrailingRequiresClause()->getBeginLoc(),
11056 diag::err_constrained_virtual_method);
11057
11058 if (Method->isStatic())
11059 checkThisInStaticMemberFunctionType(Method);
11060 }
11061
11062 if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
11063 ActOnConversionDeclarator(Conversion);
11064
11065 // Extra checking for C++ overloaded operators (C++ [over.oper]).
11066 if (NewFD->isOverloadedOperator() &&
11067 CheckOverloadedOperatorDeclaration(NewFD)) {
11068 NewFD->setInvalidDecl();
11069 return Redeclaration;
11070 }
11071
11072 // Extra checking for C++0x literal operators (C++0x [over.literal]).
11073 if (NewFD->getLiteralIdentifier() &&
11074 CheckLiteralOperatorDeclaration(NewFD)) {
11075 NewFD->setInvalidDecl();
11076 return Redeclaration;
11077 }
11078
11079 // In C++, check default arguments now that we have merged decls. Unless
11080 // the lexical context is the class, because in this case this is done
11081 // during delayed parsing anyway.
11082 if (!CurContext->isRecord())
11083 CheckCXXDefaultArguments(NewFD);
11084
11085 // If this function is declared as being extern "C", then check to see if
11086 // the function returns a UDT (class, struct, or union type) that is not C
11087 // compatible, and if it does, warn the user.
11088 // But, issue any diagnostic on the first declaration only.
11089 if (Previous.empty() && NewFD->isExternC()) {
11090 QualType R = NewFD->getReturnType();
11091 if (R->isIncompleteType() && !R->isVoidType())
11092 Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
11093 << NewFD << R;
11094 else if (!R.isPODType(Context) && !R->isVoidType() &&
11095 !R->isObjCObjectPointerType())
11096 Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
11097 }
11098
11099 // C++1z [dcl.fct]p6:
11100 // [...] whether the function has a non-throwing exception-specification
11101 // [is] part of the function type
11102 //
11103 // This results in an ABI break between C++14 and C++17 for functions whose
11104 // declared type includes an exception-specification in a parameter or
11105 // return type. (Exception specifications on the function itself are OK in
11106 // most cases, and exception specifications are not permitted in most other
11107 // contexts where they could make it into a mangling.)
11108 if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
11109 auto HasNoexcept = [&](QualType T) -> bool {
11110 // Strip off declarator chunks that could be between us and a function
11111 // type. We don't need to look far, exception specifications are very
11112 // restricted prior to C++17.
11113 if (auto *RT = T->getAs<ReferenceType>())
11114 T = RT->getPointeeType();
11115 else if (T->isAnyPointerType())
11116 T = T->getPointeeType();
11117 else if (auto *MPT = T->getAs<MemberPointerType>())
11118 T = MPT->getPointeeType();
11119 if (auto *FPT = T->getAs<FunctionProtoType>())
11120 if (FPT->isNothrow())
11121 return true;
11122 return false;
11123 };
11124
11125 auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
11126 bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
11127 for (QualType T : FPT->param_types())
11128 AnyNoexcept |= HasNoexcept(T);
11129 if (AnyNoexcept)
11130 Diag(NewFD->getLocation(),
11131 diag::warn_cxx17_compat_exception_spec_in_signature)
11132 << NewFD;
11133 }
11134
11135 if (!Redeclaration && LangOpts.CUDA)
11136 checkCUDATargetOverload(NewFD, Previous);
11137 }
11138 return Redeclaration;
11139}
11140
11141void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
11142 // C++11 [basic.start.main]p3:
11143 // A program that [...] declares main to be inline, static or
11144 // constexpr is ill-formed.
11145 // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall
11146 // appear in a declaration of main.
11147 // static main is not an error under C99, but we should warn about it.
11148 // We accept _Noreturn main as an extension.
11149 if (FD->getStorageClass() == SC_Static)
11150 Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
11151 ? diag::err_static_main : diag::warn_static_main)
11152 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
11153 if (FD->isInlineSpecified())
11154 Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
11155 << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
11156 if (DS.isNoreturnSpecified()) {
11157 SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
11158 SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
11159 Diag(NoreturnLoc, diag::ext_noreturn_main);
11160 Diag(NoreturnLoc, diag::note_main_remove_noreturn)
11161 << FixItHint::CreateRemoval(NoreturnRange);
11162 }
11163 if (FD->isConstexpr()) {
11164 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
11165 << FD->isConsteval()
11166 << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
11167 FD->setConstexprKind(ConstexprSpecKind::Unspecified);
11168 }
11169
11170 if (getLangOpts().OpenCL) {
11171 Diag(FD->getLocation(), diag::err_opencl_no_main)
11172 << FD->hasAttr<OpenCLKernelAttr>();
11173 FD->setInvalidDecl();
11174 return;
11175 }
11176
11177 QualType T = FD->getType();
11178 assert(T->isFunctionType() && "function decl is not of function type")(static_cast<void> (0));
11179 const FunctionType* FT = T->castAs<FunctionType>();
11180
11181 // Set default calling convention for main()
11182 if (FT->getCallConv() != CC_C) {
11183 FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
11184 FD->setType(QualType(FT, 0));
11185 T = Context.getCanonicalType(FD->getType());
11186 }
11187
11188 if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
11189 // In C with GNU extensions we allow main() to have non-integer return
11190 // type, but we should warn about the extension, and we disable the
11191 // implicit-return-zero rule.
11192
11193 // GCC in C mode accepts qualified 'int'.
11194 if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
11195 FD->setHasImplicitReturnZero(true);
11196 else {
11197 Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
11198 SourceRange RTRange = FD->getReturnTypeSourceRange();
11199 if (RTRange.isValid())
11200 Diag(RTRange.getBegin(), diag::note_main_change_return_type)
11201 << FixItHint::CreateReplacement(RTRange, "int");
11202 }
11203 } else {
11204 // In C and C++, main magically returns 0 if you fall off the end;
11205 // set the flag which tells us that.
11206 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
11207
11208 // All the standards say that main() should return 'int'.
11209 if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
11210 FD->setHasImplicitReturnZero(true);
11211 else {
11212 // Otherwise, this is just a flat-out error.
11213 SourceRange RTRange = FD->getReturnTypeSourceRange();
11214 Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
11215 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
11216 : FixItHint());
11217 FD->setInvalidDecl(true);
11218 }
11219 }
11220
11221 // Treat protoless main() as nullary.
11222 if (isa<FunctionNoProtoType>(FT)) return;
11223
11224 const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
11225 unsigned nparams = FTP->getNumParams();
11226 assert(FD->getNumParams() == nparams)(static_cast<void> (0));
11227
11228 bool HasExtraParameters = (nparams > 3);
11229
11230 if (FTP->isVariadic()) {
11231 Diag(FD->getLocation(), diag::ext_variadic_main);
11232 // FIXME: if we had information about the location of the ellipsis, we
11233 // could add a FixIt hint to remove it as a parameter.
11234 }
11235
11236 // Darwin passes an undocumented fourth argument of type char**. If
11237 // other platforms start sprouting these, the logic below will start
11238 // getting shifty.
11239 if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
11240 HasExtraParameters = false;
11241
11242 if (HasExtraParameters) {
11243 Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
11244 FD->setInvalidDecl(true);
11245 nparams = 3;
11246 }
11247
11248 // FIXME: a lot of the following diagnostics would be improved
11249 // if we had some location information about types.
11250
11251 QualType CharPP =
11252 Context.getPointerType(Context.getPointerType(Context.CharTy));
11253 QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
11254
11255 for (unsigned i = 0; i < nparams; ++i) {
11256 QualType AT = FTP->getParamType(i);
11257
11258 bool mismatch = true;
11259
11260 if (Context.hasSameUnqualifiedType(AT, Expected[i]))
11261 mismatch = false;
11262 else if (Expected[i] == CharPP) {
11263 // As an extension, the following forms are okay:
11264 // char const **
11265 // char const * const *
11266 // char * const *
11267
11268 QualifierCollector qs;
11269 const PointerType* PT;
11270 if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
11271 (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
11272 Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
11273 Context.CharTy)) {
11274 qs.removeConst();
11275 mismatch = !qs.empty();
11276 }
11277 }
11278
11279 if (mismatch) {
11280 Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
11281 // TODO: suggest replacing given type with expected type
11282 FD->setInvalidDecl(true);
11283 }
11284 }
11285
11286 if (nparams == 1 && !FD->isInvalidDecl()) {
11287 Diag(FD->getLocation(), diag::warn_main_one_arg);
11288 }
11289
11290 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
11291 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
11292 FD->setInvalidDecl();
11293 }
11294}
11295
11296static bool isDefaultStdCall(FunctionDecl *FD, Sema &S) {
11297
11298 // Default calling convention for main and wmain is __cdecl
11299 if (FD->getName() == "main" || FD->getName() == "wmain")
11300 return false;
11301
11302 // Default calling convention for MinGW is __cdecl
11303 const llvm::Triple &T = S.Context.getTargetInfo().getTriple();
11304 if (T.isWindowsGNUEnvironment())
11305 return false;
11306
11307 // Default calling convention for WinMain, wWinMain and DllMain
11308 // is __stdcall on 32 bit Windows
11309 if (T.isOSWindows() && T.getArch() == llvm::Triple::x86)
11310 return true;
11311
11312 return false;
11313}
11314
11315void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
11316 QualType T = FD->getType();
11317 assert(T->isFunctionType() && "function decl is not of function type")(static_cast<void> (0));
11318 const FunctionType *FT = T->castAs<FunctionType>();
11319
11320 // Set an implicit return of 'zero' if the function can return some integral,
11321 // enumeration, pointer or nullptr type.
11322 if (FT->getReturnType()->isIntegralOrEnumerationType() ||
11323 FT->getReturnType()->isAnyPointerType() ||
11324 FT->getReturnType()->isNullPtrType())
11325 // DllMain is exempt because a return value of zero means it failed.
11326 if (FD->getName() != "DllMain")
11327 FD->setHasImplicitReturnZero(true);
11328
11329 // Explicity specified calling conventions are applied to MSVC entry points
11330 if (!hasExplicitCallingConv(T)) {
11331 if (isDefaultStdCall(FD, *this)) {
11332 if (FT->getCallConv() != CC_X86StdCall) {
11333 FT = Context.adjustFunctionType(
11334 FT, FT->getExtInfo().withCallingConv(CC_X86StdCall));
11335 FD->setType(QualType(FT, 0));
11336 }
11337 } else if (FT->getCallConv() != CC_C) {
11338 FT = Context.adjustFunctionType(FT,
11339 FT->getExtInfo().withCallingConv(CC_C));
11340 FD->setType(QualType(FT, 0));
11341 }
11342 }
11343
11344 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
11345 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
11346 FD->setInvalidDecl();
11347 }
11348}
11349
11350bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
11351 // FIXME: Need strict checking. In C89, we need to check for
11352 // any assignment, increment, decrement, function-calls, or
11353 // commas outside of a sizeof. In C99, it's the same list,
11354 // except that the aforementioned are allowed in unevaluated
11355 // expressions. Everything else falls under the
11356 // "may accept other forms of constant expressions" exception.
11357 //
11358 // Regular C++ code will not end up here (exceptions: language extensions,
11359 // OpenCL C++ etc), so the constant expression rules there don't matter.
11360 if (Init->isValueDependent()) {
11361 assert(Init->containsErrors() &&(static_cast<void> (0))
11362 "Dependent code should only occur in error-recovery path.")(static_cast<void> (0));
11363 return true;
11364 }
11365 const Expr *Culprit;
11366 if (Init->isConstantInitializer(Context, false, &Culprit))
11367 return false;
11368 Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
11369 << Culprit->getSourceRange();
11370 return true;
11371}
11372
11373namespace {
11374 // Visits an initialization expression to see if OrigDecl is evaluated in
11375 // its own initialization and throws a warning if it does.
11376 class SelfReferenceChecker
11377 : public EvaluatedExprVisitor<SelfReferenceChecker> {
11378 Sema &S;
11379 Decl *OrigDecl;
11380 bool isRecordType;
11381 bool isPODType;
11382 bool isReferenceType;
11383
11384 bool isInitList;
11385 llvm::SmallVector<unsigned, 4> InitFieldIndex;
11386
11387 public:
11388 typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
11389
11390 SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
11391 S(S), OrigDecl(OrigDecl) {
11392 isPODType = false;
11393 isRecordType = false;
11394 isReferenceType = false;
11395 isInitList = false;
11396 if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
11397 isPODType = VD->getType().isPODType(S.Context);
11398 isRecordType = VD->getType()->isRecordType();
11399 isReferenceType = VD->getType()->isReferenceType();
11400 }
11401 }
11402
11403 // For most expressions, just call the visitor. For initializer lists,
11404 // track the index of the field being initialized since fields are
11405 // initialized in order allowing use of previously initialized fields.
11406 void CheckExpr(Expr *E) {
11407 InitListExpr *InitList = dyn_cast<InitListExpr>(E);
11408 if (!InitList) {
11409 Visit(E);
11410 return;
11411 }
11412
11413 // Track and increment the index here.
11414 isInitList = true;
11415 InitFieldIndex.push_back(0);
11416 for (auto Child : InitList->children()) {
11417 CheckExpr(cast<Expr>(Child));
11418 ++InitFieldIndex.back();
11419 }
11420 InitFieldIndex.pop_back();
11421 }
11422
11423 // Returns true if MemberExpr is checked and no further checking is needed.
11424 // Returns false if additional checking is required.
11425 bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
11426 llvm::SmallVector<FieldDecl*, 4> Fields;
11427 Expr *Base = E;
11428 bool ReferenceField = false;
11429
11430 // Get the field members used.
11431 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11432 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
11433 if (!FD)
11434 return false;
11435 Fields.push_back(FD);
11436 if (FD->getType()->isReferenceType())
11437 ReferenceField = true;
11438 Base = ME->getBase()->IgnoreParenImpCasts();
11439 }
11440
11441 // Keep checking only if the base Decl is the same.
11442 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
11443 if (!DRE || DRE->getDecl() != OrigDecl)
11444 return false;
11445
11446 // A reference field can be bound to an unininitialized field.
11447 if (CheckReference && !ReferenceField)
11448 return true;
11449
11450 // Convert FieldDecls to their index number.
11451 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
11452 for (const FieldDecl *I : llvm::reverse(Fields))
11453 UsedFieldIndex.push_back(I->getFieldIndex());
11454
11455 // See if a warning is needed by checking the first difference in index
11456 // numbers. If field being used has index less than the field being
11457 // initialized, then the use is safe.
11458 for (auto UsedIter = UsedFieldIndex.begin(),
11459 UsedEnd = UsedFieldIndex.end(),
11460 OrigIter = InitFieldIndex.begin(),
11461 OrigEnd = InitFieldIndex.end();
11462 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
11463 if (*UsedIter < *OrigIter)
11464 return true;
11465 if (*UsedIter > *OrigIter)
11466 break;
11467 }
11468
11469 // TODO: Add a different warning which will print the field names.
11470 HandleDeclRefExpr(DRE);
11471 return true;
11472 }
11473
11474 // For most expressions, the cast is directly above the DeclRefExpr.
11475 // For conditional operators, the cast can be outside the conditional
11476 // operator if both expressions are DeclRefExpr's.
11477 void HandleValue(Expr *E) {
11478 E = E->IgnoreParens();
11479 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
11480 HandleDeclRefExpr(DRE);
11481 return;
11482 }
11483
11484 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
11485 Visit(CO->getCond());
11486 HandleValue(CO->getTrueExpr());
11487 HandleValue(CO->getFalseExpr());
11488 return;
11489 }
11490
11491 if (BinaryConditionalOperator *BCO =
11492 dyn_cast<BinaryConditionalOperator>(E)) {
11493 Visit(BCO->getCond());
11494 HandleValue(BCO->getFalseExpr());
11495 return;
11496 }
11497
11498 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
11499 HandleValue(OVE->getSourceExpr());
11500 return;
11501 }
11502
11503 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
11504 if (BO->getOpcode() == BO_Comma) {
11505 Visit(BO->getLHS());
11506 HandleValue(BO->getRHS());
11507 return;
11508 }
11509 }
11510
11511 if (isa<MemberExpr>(E)) {
11512 if (isInitList) {
11513 if (CheckInitListMemberExpr(cast<MemberExpr>(E),
11514 false /*CheckReference*/))
11515 return;
11516 }
11517
11518 Expr *Base = E->IgnoreParenImpCasts();
11519 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11520 // Check for static member variables and don't warn on them.
11521 if (!isa<FieldDecl>(ME->getMemberDecl()))
11522 return;
11523 Base = ME->getBase()->IgnoreParenImpCasts();
11524 }
11525 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
11526 HandleDeclRefExpr(DRE);
11527 return;
11528 }
11529
11530 Visit(E);
11531 }
11532
11533 // Reference types not handled in HandleValue are handled here since all
11534 // uses of references are bad, not just r-value uses.
11535 void VisitDeclRefExpr(DeclRefExpr *E) {
11536 if (isReferenceType)
11537 HandleDeclRefExpr(E);
11538 }
11539
11540 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
11541 if (E->getCastKind() == CK_LValueToRValue) {
11542 HandleValue(E->getSubExpr());
11543 return;
11544 }
11545
11546 Inherited::VisitImplicitCastExpr(E);
11547 }
11548
11549 void VisitMemberExpr(MemberExpr *E) {
11550 if (isInitList) {
11551 if (CheckInitListMemberExpr(E, true /*CheckReference*/))
11552 return;
11553 }
11554
11555 // Don't warn on arrays since they can be treated as pointers.
11556 if (E->getType()->canDecayToPointerType()) return;
11557
11558 // Warn when a non-static method call is followed by non-static member
11559 // field accesses, which is followed by a DeclRefExpr.
11560 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
11561 bool Warn = (MD && !MD->isStatic());
11562 Expr *Base = E->getBase()->IgnoreParenImpCasts();
11563 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11564 if (!isa<FieldDecl>(ME->getMemberDecl()))
11565 Warn = false;
11566 Base = ME->getBase()->IgnoreParenImpCasts();
11567 }
11568
11569 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
11570 if (Warn)
11571 HandleDeclRefExpr(DRE);
11572 return;
11573 }
11574
11575 // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
11576 // Visit that expression.
11577 Visit(Base);
11578 }
11579
11580 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
11581 Expr *Callee = E->getCallee();
11582
11583 if (isa<UnresolvedLookupExpr>(Callee))
11584 return Inherited::VisitCXXOperatorCallExpr(E);
11585
11586 Visit(Callee);
11587 for (auto Arg: E->arguments())
11588 HandleValue(Arg->IgnoreParenImpCasts());
11589 }
11590
11591 void VisitUnaryOperator(UnaryOperator *E) {
11592 // For POD record types, addresses of its own members are well-defined.
11593 if (E->getOpcode() == UO_AddrOf && isRecordType &&
11594 isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
11595 if (!isPODType)
11596 HandleValue(E->getSubExpr());
11597 return;
11598 }
11599
11600 if (E->isIncrementDecrementOp()) {
11601 HandleValue(E->getSubExpr());
11602 return;
11603 }
11604
11605 Inherited::VisitUnaryOperator(E);
11606 }
11607
11608 void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
11609
11610 void VisitCXXConstructExpr(CXXConstructExpr *E) {
11611 if (E->getConstructor()->isCopyConstructor()) {
11612 Expr *ArgExpr = E->getArg(0);
11613 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
11614 if (ILE->getNumInits() == 1)
11615 ArgExpr = ILE->getInit(0);
11616 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
11617 if (ICE->getCastKind() == CK_NoOp)
11618 ArgExpr = ICE->getSubExpr();
11619 HandleValue(ArgExpr);
11620 return;
11621 }
11622 Inherited::VisitCXXConstructExpr(E);
11623 }
11624
11625 void VisitCallExpr(CallExpr *E) {
11626 // Treat std::move as a use.
11627 if (E->isCallToStdMove()) {
11628 HandleValue(E->getArg(0));
11629 return;
11630 }
11631
11632 Inherited::VisitCallExpr(E);
11633 }
11634
11635 void VisitBinaryOperator(BinaryOperator *E) {
11636 if (E->isCompoundAssignmentOp()) {
11637 HandleValue(E->getLHS());
11638 Visit(E->getRHS());
11639 return;
11640 }
11641
11642 Inherited::VisitBinaryOperator(E);
11643 }
11644
11645 // A custom visitor for BinaryConditionalOperator is needed because the
11646 // regular visitor would check the condition and true expression separately
11647 // but both point to the same place giving duplicate diagnostics.
11648 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
11649 Visit(E->getCond());
11650 Visit(E->getFalseExpr());
11651 }
11652
11653 void HandleDeclRefExpr(DeclRefExpr *DRE) {
11654 Decl* ReferenceDecl = DRE->getDecl();
11655 if (OrigDecl != ReferenceDecl) return;
11656 unsigned diag;
11657 if (isReferenceType) {
11658 diag = diag::warn_uninit_self_reference_in_reference_init;
11659 } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
11660 diag = diag::warn_static_self_reference_in_init;
11661 } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
11662 isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
11663 DRE->getDecl()->getType()->isRecordType()) {
11664 diag = diag::warn_uninit_self_reference_in_init;
11665 } else {
11666 // Local variables will be handled by the CFG analysis.
11667 return;
11668 }
11669
11670 S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE,
11671 S.PDiag(diag)
11672 << DRE->getDecl() << OrigDecl->getLocation()
11673 << DRE->getSourceRange());
11674 }
11675 };
11676
11677 /// CheckSelfReference - Warns if OrigDecl is used in expression E.
11678 static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
11679 bool DirectInit) {
11680 // Parameters arguments are occassionially constructed with itself,
11681 // for instance, in recursive functions. Skip them.
11682 if (isa<ParmVarDecl>(OrigDecl))
11683 return;
11684
11685 E = E->IgnoreParens();
11686
11687 // Skip checking T a = a where T is not a record or reference type.
11688 // Doing so is a way to silence uninitialized warnings.
11689 if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
11690 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
11691 if (ICE->getCastKind() == CK_LValueToRValue)
11692 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
11693 if (DRE->getDecl() == OrigDecl)
11694 return;
11695
11696 SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
11697 }
11698} // end anonymous namespace
11699
11700namespace {
11701 // Simple wrapper to add the name of a variable or (if no variable is
11702 // available) a DeclarationName into a diagnostic.
11703 struct VarDeclOrName {
11704 VarDecl *VDecl;
11705 DeclarationName Name;
11706
11707 friend const Sema::SemaDiagnosticBuilder &
11708 operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
11709 return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
11710 }
11711 };
11712} // end anonymous namespace
11713
11714QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
11715 DeclarationName Name, QualType Type,
11716 TypeSourceInfo *TSI,
11717 SourceRange Range, bool DirectInit,
11718 Expr *Init) {
11719 bool IsInitCapture = !VDecl;
11720 assert((!VDecl || !VDecl->isInitCapture()) &&(static_cast<void> (0))
11721 "init captures are expected to be deduced prior to initialization")(static_cast<void> (0));
11722
11723 VarDeclOrName VN{VDecl, Name};
11724
11725 DeducedType *Deduced = Type->getContainedDeducedType();
11726 assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type")(static_cast<void> (0));
11727
11728 // C++11 [dcl.spec.auto]p3
11729 if (!Init) {
11730 assert(VDecl && "no init for init capture deduction?")(static_cast<void> (0));
11731
11732 // Except for class argument deduction, and then for an initializing
11733 // declaration only, i.e. no static at class scope or extern.
11734 if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
11735 VDecl->hasExternalStorage() ||
11736 VDecl->isStaticDataMember()) {
11737 Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
11738 << VDecl->getDeclName() << Type;
11739 return QualType();
11740 }
11741 }
11742
11743 ArrayRef<Expr*> DeduceInits;
11744 if (Init)
11745 DeduceInits = Init;
11746
11747 if (DirectInit) {
11748 if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init))
11749 DeduceInits = PL->exprs();
11750 }
11751
11752 if (isa<DeducedTemplateSpecializationType>(Deduced)) {
11753 assert(VDecl && "non-auto type for init capture deduction?")(static_cast<void> (0));
11754 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
11755 InitializationKind Kind = InitializationKind::CreateForInit(
11756 VDecl->getLocation(), DirectInit, Init);
11757 // FIXME: Initialization should not be taking a mutable list of inits.
11758 SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
11759 return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
11760 InitsCopy);
11761 }
11762
11763 if (DirectInit) {
11764 if (auto *IL = dyn_cast<InitListExpr>(Init))
11765 DeduceInits = IL->inits();
11766 }
11767
11768 // Deduction only works if we have exactly one source expression.
11769 if (DeduceInits.empty()) {
11770 // It isn't possible to write this directly, but it is possible to
11771 // end up in this situation with "auto x(some_pack...);"
11772 Diag(Init->getBeginLoc(), IsInitCapture
11773 ? diag::err_init_capture_no_expression
11774 : diag::err_auto_var_init_no_expression)
11775 << VN << Type << Range;
11776 return QualType();
11777 }
11778
11779 if (DeduceInits.size() > 1) {
11780 Diag(DeduceInits[1]->getBeginLoc(),
11781 IsInitCapture ? diag::err_init_capture_multiple_expressions
11782 : diag::err_auto_var_init_multiple_expressions)
11783 << VN << Type << Range;
11784 return QualType();
11785 }
11786
11787 Expr *DeduceInit = DeduceInits[0];
11788 if (DirectInit && isa<InitListExpr>(DeduceInit)) {
11789 Diag(Init->getBeginLoc(), IsInitCapture
11790 ? diag::err_init_capture_paren_braces
11791 : diag::err_auto_var_init_paren_braces)
11792 << isa<InitListExpr>(Init) << VN << Type << Range;
11793 return QualType();
11794 }
11795
11796 // Expressions default to 'id' when we're in a debugger.
11797 bool DefaultedAnyToId = false;
11798 if (getLangOpts().DebuggerCastResultToId &&
11799 Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
11800 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
11801 if (Result.isInvalid()) {
11802 return QualType();
11803 }
11804 Init = Result.get();
11805 DefaultedAnyToId = true;
11806 }
11807
11808 // C++ [dcl.decomp]p1:
11809 // If the assignment-expression [...] has array type A and no ref-qualifier
11810 // is present, e has type cv A
11811 if (VDecl && isa<DecompositionDecl>(VDecl) &&
11812 Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
11813 DeduceInit->getType()->isConstantArrayType())
11814 return Context.getQualifiedType(DeduceInit->getType(),
11815 Type.getQualifiers());
11816
11817 QualType DeducedType;
11818 if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
11819 if (!IsInitCapture)
11820 DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
11821 else if (isa<InitListExpr>(Init))
11822 Diag(Range.getBegin(),
11823 diag::err_init_capture_deduction_failure_from_init_list)
11824 << VN
11825 << (DeduceInit->getType().isNull() ? TSI->getType()
11826 : DeduceInit->getType())
11827 << DeduceInit->getSourceRange();
11828 else
11829 Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
11830 << VN << TSI->getType()
11831 << (DeduceInit->getType().isNull() ? TSI->getType()
11832 : DeduceInit->getType())
11833 << DeduceInit->getSourceRange();
11834 }
11835
11836 // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
11837 // 'id' instead of a specific object type prevents most of our usual
11838 // checks.
11839 // We only want to warn outside of template instantiations, though:
11840 // inside a template, the 'id' could have come from a parameter.
11841 if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
11842 !DeducedType.isNull() && DeducedType->isObjCIdType()) {
11843 SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
11844 Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
11845 }
11846
11847 return DeducedType;
11848}
11849
11850bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
11851 Expr *Init) {
11852 assert(!Init || !Init->containsErrors())(static_cast<void> (0));
11853 QualType DeducedType = deduceVarTypeFromInitializer(
11854 VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
11855 VDecl->getSourceRange(), DirectInit, Init);
11856 if (DeducedType.isNull()) {
11857 VDecl->setInvalidDecl();
11858 return true;
11859 }
11860
11861 VDecl->setType(DeducedType);
11862 assert(VDecl->isLinkageValid())(static_cast<void> (0));
11863
11864 // In ARC, infer lifetime.
11865 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
11866 VDecl->setInvalidDecl();
11867
11868 if (getLangOpts().OpenCL)
11869 deduceOpenCLAddressSpace(VDecl);
11870
11871 // If this is a redeclaration, check that the type we just deduced matches
11872 // the previously declared type.
11873 if (VarDecl *Old = VDecl->getPreviousDecl()) {
11874 // We never need to merge the type, because we cannot form an incomplete
11875 // array of auto, nor deduce such a type.
11876 MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
11877 }
11878
11879 // Check the deduced type is valid for a variable declaration.
11880 CheckVariableDeclarationType(VDecl);
11881 return VDecl->isInvalidDecl();
11882}
11883
11884void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init,
11885 SourceLocation Loc) {
11886 if (auto *EWC = dyn_cast<ExprWithCleanups>(Init))
11887 Init = EWC->getSubExpr();
11888
11889 if (auto *CE = dyn_cast<ConstantExpr>(Init))
11890 Init = CE->getSubExpr();
11891
11892 QualType InitType = Init->getType();
11893 assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||(static_cast<void> (0))
11894 InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&(static_cast<void> (0))
11895 "shouldn't be called if type doesn't have a non-trivial C struct")(static_cast<void> (0));
11896 if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
11897 for (auto I : ILE->inits()) {
11898 if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() &&
11899 !I->getType().hasNonTrivialToPrimitiveCopyCUnion())
11900 continue;
11901 SourceLocation SL = I->getExprLoc();
11902 checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc);
11903 }
11904 return;
11905 }
11906
11907 if (isa<ImplicitValueInitExpr>(Init)) {
11908 if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
11909 checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject,
11910 NTCUK_Init);
11911 } else {
11912 // Assume all other explicit initializers involving copying some existing
11913 // object.
11914 // TODO: ignore any explicit initializers where we can guarantee
11915 // copy-elision.
11916 if (InitType.hasNonTrivialToPrimitiveCopyCUnion())
11917 checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy);
11918 }
11919}
11920
11921namespace {
11922
11923bool shouldIgnoreForRecordTriviality(const FieldDecl *FD) {
11924 // Ignore unavailable fields. A field can be marked as unavailable explicitly
11925 // in the source code or implicitly by the compiler if it is in a union
11926 // defined in a system header and has non-trivial ObjC ownership
11927 // qualifications. We don't want those fields to participate in determining
11928 // whether the containing union is non-trivial.
11929 return FD->hasAttr<UnavailableAttr>();
11930}
11931
11932struct DiagNonTrivalCUnionDefaultInitializeVisitor
11933 : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
11934 void> {
11935 using Super =
11936 DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
11937 void>;
11938
11939 DiagNonTrivalCUnionDefaultInitializeVisitor(
11940 QualType OrigTy, SourceLocation OrigLoc,
11941 Sema::NonTrivialCUnionContext UseContext, Sema &S)
11942 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11943
11944 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT,
11945 const FieldDecl *FD, bool InNonTrivialUnion) {
11946 if (const auto *AT = S.Context.getAsArrayType(QT))
11947 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
11948 InNonTrivialUnion);
11949 return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion);
11950 }
11951
11952 void visitARCStrong(QualType QT, const FieldDecl *FD,
11953 bool InNonTrivialUnion) {
11954 if (InNonTrivialUnion)
11955 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11956 << 1 << 0 << QT << FD->getName();
11957 }
11958
11959 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11960 if (InNonTrivialUnion)
11961 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11962 << 1 << 0 << QT << FD->getName();
11963 }
11964
11965 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11966 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
11967 if (RD->isUnion()) {
11968 if (OrigLoc.isValid()) {
11969 bool IsUnion = false;
11970 if (auto *OrigRD = OrigTy->getAsRecordDecl())
11971 IsUnion = OrigRD->isUnion();
11972 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
11973 << 0 << OrigTy << IsUnion << UseContext;
11974 // Reset OrigLoc so that this diagnostic is emitted only once.
11975 OrigLoc = SourceLocation();
11976 }
11977 InNonTrivialUnion = true;
11978 }
11979
11980 if (InNonTrivialUnion)
11981 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
11982 << 0 << 0 << QT.getUnqualifiedType() << "";
11983
11984 for (const FieldDecl *FD : RD->fields())
11985 if (!shouldIgnoreForRecordTriviality(FD))
11986 asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
11987 }
11988
11989 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
11990
11991 // The non-trivial C union type or the struct/union type that contains a
11992 // non-trivial C union.
11993 QualType OrigTy;
11994 SourceLocation OrigLoc;
11995 Sema::NonTrivialCUnionContext UseContext;
11996 Sema &S;
11997};
11998
11999struct DiagNonTrivalCUnionDestructedTypeVisitor
12000 : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> {
12001 using Super =
12002 DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>;
12003
12004 DiagNonTrivalCUnionDestructedTypeVisitor(
12005 QualType OrigTy, SourceLocation OrigLoc,
12006 Sema::NonTrivialCUnionContext UseContext, Sema &S)
12007 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
12008
12009 void visitWithKind(QualType::DestructionKind DK, QualType QT,
12010 const FieldDecl *FD, bool InNonTrivialUnion) {
12011 if (const auto *AT = S.Context.getAsArrayType(QT))
12012 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
12013 InNonTrivialUnion);
12014 return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion);
12015 }
12016
12017 void visitARCStrong(QualType QT, const FieldDecl *FD,
12018 bool InNonTrivialUnion) {
12019 if (InNonTrivialUnion)
12020 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
12021 << 1 << 1 << QT << FD->getName();
12022 }
12023
12024 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
12025 if (InNonTrivialUnion)
12026 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
12027 << 1 << 1 << QT << FD->getName();
12028 }
12029
12030 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
12031 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
12032 if (RD->isUnion()) {
12033 if (OrigLoc.isValid()) {
12034 bool IsUnion = false;
12035 if (auto *OrigRD = OrigTy->getAsRecordDecl())
12036 IsUnion = OrigRD->isUnion();
12037 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
12038 << 1 << OrigTy << IsUnion << UseContext;
12039 // Reset OrigLoc so that this diagnostic is emitted only once.
12040 OrigLoc = SourceLocation();
12041 }
12042 InNonTrivialUnion = true;
12043 }
12044
12045 if (InNonTrivialUnion)
12046 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
12047 << 0 << 1 << QT.getUnqualifiedType() << "";
12048
12049 for (const FieldDecl *FD : RD->fields())
12050 if (!shouldIgnoreForRecordTriviality(FD))
12051 asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
12052 }
12053
12054 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
12055 void visitCXXDestructor(QualType QT, const FieldDecl *FD,
12056 bool InNonTrivialUnion) {}
12057
12058 // The non-trivial C union type or the struct/union type that contains a
12059 // non-trivial C union.
12060 QualType OrigTy;
12061 SourceLocation OrigLoc;
12062 Sema::NonTrivialCUnionContext UseContext;
12063 Sema &S;
12064};
12065
12066struct DiagNonTrivalCUnionCopyVisitor
12067 : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> {
12068 using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>;
12069
12070 DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc,
12071 Sema::NonTrivialCUnionContext UseContext,
12072 Sema &S)
12073 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
12074
12075 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT,
12076 const FieldDecl *FD, bool InNonTrivialUnion) {
12077 if (const auto *AT = S.Context.getAsArrayType(QT))
12078 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
12079 InNonTrivialUnion);
12080 return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion);
12081 }
12082
12083 void visitARCStrong(QualType QT, const FieldDecl *FD,
12084 bool InNonTrivialUnion) {
12085 if (InNonTrivialUnion)
12086 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
12087 << 1 << 2 << QT << FD->getName();
12088 }
12089
12090 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
12091 if (InNonTrivialUnion)
12092 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
12093 << 1 << 2 << QT << FD->getName();
12094 }
12095
12096 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
12097 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
12098 if (RD->isUnion()) {
12099 if (OrigLoc.isValid()) {
12100 bool IsUnion = false;
12101 if (auto *OrigRD = OrigTy->getAsRecordDecl())
12102 IsUnion = OrigRD->isUnion();
12103 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
12104 << 2 << OrigTy << IsUnion << UseContext;
12105 // Reset OrigLoc so that this diagnostic is emitted only once.
12106 OrigLoc = SourceLocation();
12107 }
12108 InNonTrivialUnion = true;
12109 }
12110
12111 if (InNonTrivialUnion)
12112 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
12113 << 0 << 2 << QT.getUnqualifiedType() << "";
12114
12115 for (const FieldDecl *FD : RD->fields())
12116 if (!shouldIgnoreForRecordTriviality(FD))
12117 asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
12118 }
12119
12120 void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT,
12121 const FieldDecl *FD, bool InNonTrivialUnion) {}
12122 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
12123 void visitVolatileTrivial(QualType QT, const FieldDecl *FD,
12124 bool InNonTrivialUnion) {}
12125
12126 // The non-trivial C union type or the struct/union type that contains a
12127 // non-trivial C union.
12128 QualType OrigTy;
12129 SourceLocation OrigLoc;
12130 Sema::NonTrivialCUnionContext UseContext;
12131 Sema &S;
12132};
12133
12134} // namespace
12135
12136void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
12137 NonTrivialCUnionContext UseContext,
12138 unsigned NonTrivialKind) {
12139 assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||(static_cast<void> (0))
12140 QT.hasNonTrivialToPrimitiveDestructCUnion() ||(static_cast<void> (0))
12141 QT.hasNonTrivialToPrimitiveCopyCUnion()) &&(static_cast<void> (0))
12142 "shouldn't be called if type doesn't have a non-trivial C union")(static_cast<void> (0));
12143
12144 if ((NonTrivialKind & NTCUK_Init) &&
12145 QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
12146 DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this)
12147 .visit(QT, nullptr, false);
12148 if ((NonTrivialKind & NTCUK_Destruct) &&
12149 QT.hasNonTrivialToPrimitiveDestructCUnion())
12150 DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this)
12151 .visit(QT, nullptr, false);
12152 if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion())
12153 DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this)
12154 .visit(QT, nullptr, false);
12155}
12156
12157/// AddInitializerToDecl - Adds the initializer Init to the
12158/// declaration dcl. If DirectInit is true, this is C++ direct
12159/// initialization rather than copy initialization.
12160void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
12161 // If there is no declaration, there was an error parsing it. Just ignore
12162 // the initializer.
12163 if (!RealDecl || RealDecl->isInvalidDecl()) {
12164 CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
12165 return;
12166 }
12167
12168 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
12169 // Pure-specifiers are handled in ActOnPureSpecifier.
12170 Diag(Method->getLocation(), diag::err_member_function_initialization)
12171 << Method->getDeclName() << Init->getSourceRange();
12172 Method->setInvalidDecl();
12173 return;
12174 }
12175
12176 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
12177 if (!VDecl) {
12178 assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here")(static_cast<void> (0));
12179 Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
12180 RealDecl->setInvalidDecl();
12181 return;
12182 }
12183
12184 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
12185 if (VDecl->getType()->isUndeducedType()) {
12186 // Attempt typo correction early so that the type of the init expression can
12187 // be deduced based on the chosen correction if the original init contains a
12188 // TypoExpr.
12189 ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
12190 if (!Res.isUsable()) {
12191 // There are unresolved typos in Init, just drop them.
12192 // FIXME: improve the recovery strategy to preserve the Init.
12193 RealDecl->setInvalidDecl();
12194 return;
12195 }
12196 if (Res.get()->containsErrors()) {
12197 // Invalidate the decl as we don't know the type for recovery-expr yet.
12198 RealDecl->setInvalidDecl();
12199 VDecl->setInit(Res.get());
12200 return;
12201 }
12202 Init = Res.get();
12203
12204 if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
12205 return;
12206 }
12207
12208 // dllimport cannot be used on variable definitions.
12209 if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
12210 Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
12211 VDecl->setInvalidDecl();
12212 return;
12213 }
12214
12215 if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
12216 // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
12217 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
12218 VDecl->setInvalidDecl();
12219 return;
12220 }
12221
12222 if (!VDecl->getType()->isDependentType()) {
12223 // A definition must end up with a complete type, which means it must be
12224 // complete with the restriction that an array type might be completed by
12225 // the initializer; note that later code assumes this restriction.
12226 QualType BaseDeclType = VDecl->getType();
12227 if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
12228 BaseDeclType = Array->getElementType();
12229 if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
12230 diag::err_typecheck_decl_incomplete_type)) {
12231 RealDecl->setInvalidDecl();
12232 return;
12233 }
12234
12235 // The variable can not have an abstract class type.
12236 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
12237 diag::err_abstract_type_in_decl,
12238 AbstractVariableType))
12239 VDecl->setInvalidDecl();
12240 }
12241
12242 // If adding the initializer will turn this declaration into a definition,
12243 // and we already have a definition for this variable, diagnose or otherwise
12244 // handle the situation.
12245 if (VarDecl *Def = VDecl->getDefinition())
12246 if (Def != VDecl &&
12247 (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
12248 !VDecl->isThisDeclarationADemotedDefinition() &&
12249 checkVarDeclRedefinition(Def, VDecl))
12250 return;
12251
12252 if (getLangOpts().CPlusPlus) {
12253 // C++ [class.static.data]p4
12254 // If a static data member is of const integral or const
12255 // enumeration type, its declaration in the class definition can
12256 // specify a constant-initializer which shall be an integral
12257 // constant expression (5.19). In that case, the member can appear
12258 // in integral constant expressions. The member shall still be
12259 // defined in a namespace scope if it is used in the program and the
12260 // namespace scope definition shall not contain an initializer.
12261 //
12262 // We already performed a redefinition check above, but for static
12263 // data members we also need to check whether there was an in-class
12264 // declaration with an initializer.
12265 if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
12266 Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
12267 << VDecl->getDeclName();
12268 Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
12269 diag::note_previous_initializer)
12270 << 0;
12271 return;
12272 }
12273
12274 if (VDecl->hasLocalStorage())
12275 setFunctionHasBranchProtectedScope();
12276
12277 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
12278 VDecl->setInvalidDecl();
12279 return;
12280 }
12281 }
12282
12283 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
12284 // a kernel function cannot be initialized."
12285 if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
12286 Diag(VDecl->getLocation(), diag::err_local_cant_init);
12287 VDecl->setInvalidDecl();
12288 return;
12289 }
12290
12291 // The LoaderUninitialized attribute acts as a definition (of undef).
12292 if (VDecl->hasAttr<LoaderUninitializedAttr>()) {
12293 Diag(VDecl->getLocation(), diag::err_loader_uninitialized_cant_init);
12294 VDecl->setInvalidDecl();
12295 return;
12296 }
12297
12298 // Get the decls type and save a reference for later, since
12299 // CheckInitializerTypes may change it.
12300 QualType DclT = VDecl->getType(), SavT = DclT;
12301
12302 // Expressions default to 'id' when we're in a debugger
12303 // and we are assigning it to a variable of Objective-C pointer type.
12304 if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
12305 Init->getType() == Context.UnknownAnyTy) {
12306 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
12307 if (Result.isInvalid()) {
12308 VDecl->setInvalidDecl();
12309 return;
12310 }
12311 Init = Result.get();
12312 }
12313
12314 // Perform the initialization.
12315 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
12316 if (!VDecl->isInvalidDecl()) {
12317 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
12318 InitializationKind Kind = InitializationKind::CreateForInit(
12319 VDecl->getLocation(), DirectInit, Init);
12320
12321 MultiExprArg Args = Init;
12322 if (CXXDirectInit)
12323 Args = MultiExprArg(CXXDirectInit->getExprs(),
12324 CXXDirectInit->getNumExprs());
12325
12326 // Try to correct any TypoExprs in the initialization arguments.
12327 for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
12328 ExprResult Res = CorrectDelayedTyposInExpr(
12329 Args[Idx], VDecl, /*RecoverUncorrectedTypos=*/true,
12330 [this, Entity, Kind](Expr *E) {
12331 InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
12332 return Init.Failed() ? ExprError() : E;
12333 });
12334 if (Res.isInvalid()) {
12335 VDecl->setInvalidDecl();
12336 } else if (Res.get() != Args[Idx]) {
12337 Args[Idx] = Res.get();
12338 }
12339 }
12340 if (VDecl->isInvalidDecl())
12341 return;
12342
12343 InitializationSequence InitSeq(*this, Entity, Kind, Args,
12344 /*TopLevelOfInitList=*/false,
12345 /*TreatUnavailableAsInvalid=*/false);
12346 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
12347 if (Result.isInvalid()) {
12348 // If the provied initializer fails to initialize the var decl,
12349 // we attach a recovery expr for better recovery.
12350 auto RecoveryExpr =
12351 CreateRecoveryExpr(Init->getBeginLoc(), Init->getEndLoc(), Args);
12352 if (RecoveryExpr.get())
12353 VDecl->setInit(RecoveryExpr.get());
12354 return;
12355 }
12356
12357 Init = Result.getAs<Expr>();
12358 }
12359
12360 // Check for self-references within variable initializers.
12361 // Variables declared within a function/method body (except for references)
12362 // are handled by a dataflow analysis.
12363 // This is undefined behavior in C++, but valid in C.
12364 if (getLangOpts().CPlusPlus)
12365 if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
12366 VDecl->getType()->isReferenceType())
12367 CheckSelfReference(*this, RealDecl, Init, DirectInit);
12368
12369 // If the type changed, it means we had an incomplete type that was
12370 // completed by the initializer. For example:
12371 // int ary[] = { 1, 3, 5 };
12372 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
12373 if (!VDecl->isInvalidDecl() && (DclT != SavT))
12374 VDecl->setType(DclT);
12375
12376 if (!VDecl->isInvalidDecl()) {
12377 checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
12378
12379 if (VDecl->hasAttr<BlocksAttr>())
12380 checkRetainCycles(VDecl, Init);
12381
12382 // It is safe to assign a weak reference into a strong variable.
12383 // Although this code can still have problems:
12384 // id x = self.weakProp;
12385 // id y = self.weakProp;
12386 // we do not warn to warn spuriously when 'x' and 'y' are on separate
12387 // paths through the function. This should be revisited if
12388 // -Wrepeated-use-of-weak is made flow-sensitive.
12389 if (FunctionScopeInfo *FSI = getCurFunction())
12390 if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
12391 VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
12392 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
12393 Init->getBeginLoc()))
12394 FSI->markSafeWeakUse(Init);
12395 }
12396
12397 // The initialization is usually a full-expression.
12398 //
12399 // FIXME: If this is a braced initialization of an aggregate, it is not
12400 // an expression, and each individual field initializer is a separate
12401 // full-expression. For instance, in:
12402 //
12403 // struct Temp { ~Temp(); };
12404 // struct S { S(Temp); };
12405 // struct T { S a, b; } t = { Temp(), Temp() }
12406 //
12407 // we should destroy the first Temp before constructing the second.
12408 ExprResult Result =
12409 ActOnFinishFullExpr(Init, VDecl->getLocation(),
12410 /*DiscardedValue*/ false, VDecl->isConstexpr());
12411 if (Result.isInvalid()) {
12412 VDecl->setInvalidDecl();
12413 return;
12414 }
12415 Init = Result.get();
12416
12417 // Attach the initializer to the decl.
12418 VDecl->setInit(Init);
12419
12420 if (VDecl->isLocalVarDecl()) {
12421 // Don't check the initializer if the declaration is malformed.
12422 if (VDecl->isInvalidDecl()) {
12423 // do nothing
12424
12425 // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
12426 // This is true even in C++ for OpenCL.
12427 } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
12428 CheckForConstantInitializer(Init, DclT);
12429
12430 // Otherwise, C++ does not restrict the initializer.
12431 } else if (getLangOpts().CPlusPlus) {
12432 // do nothing
12433
12434 // C99 6.7.8p4: All the expressions in an initializer for an object that has
12435 // static storage duration shall be constant expressions or string literals.
12436 } else if (VDecl->getStorageClass() == SC_Static) {
12437 CheckForConstantInitializer(Init, DclT);
12438
12439 // C89 is stricter than C99 for aggregate initializers.
12440 // C89 6.5.7p3: All the expressions [...] in an initializer list
12441 // for an object that has aggregate or union type shall be
12442 // constant expressions.
12443 } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
12444 isa<InitListExpr>(Init)) {
12445 const Expr *Culprit;
12446 if (!Init->isConstantInitializer(Context, false, &Culprit)) {
12447 Diag(Culprit->getExprLoc(),
12448 diag::ext_aggregate_init_not_constant)
12449 << Culprit->getSourceRange();
12450 }
12451 }
12452
12453 if (auto *E = dyn_cast<ExprWithCleanups>(Init))
12454 if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens()))
12455 if (VDecl->hasLocalStorage())
12456 BE->getBlockDecl()->setCanAvoidCopyToHeap();
12457 } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
12458 VDecl->getLexicalDeclContext()->isRecord()) {
12459 // This is an in-class initialization for a static data member, e.g.,
12460 //
12461 // struct S {
12462 // static const int value = 17;
12463 // };
12464
12465 // C++ [class.mem]p4:
12466 // A member-declarator can contain a constant-initializer only
12467 // if it declares a static member (9.4) of const integral or
12468 // const enumeration type, see 9.4.2.
12469 //
12470 // C++11 [class.static.data]p3:
12471 // If a non-volatile non-inline const static data member is of integral
12472 // or enumeration type, its declaration in the class definition can
12473 // specify a brace-or-equal-initializer in which every initializer-clause
12474 // that is an assignment-expression is a constant expression. A static
12475 // data member of literal type can be declared in the class definition
12476 // with the constexpr specifier; if so, its declaration shall specify a
12477 // brace-or-equal-initializer in which every initializer-clause that is
12478 // an assignment-expression is a constant expression.
12479
12480 // Do nothing on dependent types.
12481 if (DclT->isDependentType()) {
12482
12483 // Allow any 'static constexpr' members, whether or not they are of literal
12484 // type. We separately check that every constexpr variable is of literal
12485 // type.
12486 } else if (VDecl->isConstexpr()) {
12487
12488 // Require constness.
12489 } else if (!DclT.isConstQualified()) {
12490 Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
12491 << Init->getSourceRange();
12492 VDecl->setInvalidDecl();
12493
12494 // We allow integer constant expressions in all cases.
12495 } else if (DclT->isIntegralOrEnumerationType()) {
12496 // Check whether the expression is a constant expression.
12497 SourceLocation Loc;
12498 if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
12499 // In C++11, a non-constexpr const static data member with an
12500 // in-class initializer cannot be volatile.
12501 Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
12502 else if (Init->isValueDependent())
12503 ; // Nothing to check.
12504 else if (Init->isIntegerConstantExpr(Context, &Loc))
12505 ; // Ok, it's an ICE!
12506 else if (Init->getType()->isScopedEnumeralType() &&
12507 Init->isCXX11ConstantExpr(Context))
12508 ; // Ok, it is a scoped-enum constant expression.
12509 else if (Init->isEvaluatable(Context)) {
12510 // If we can constant fold the initializer through heroics, accept it,
12511 // but report this as a use of an extension for -pedantic.
12512 Diag(Loc, diag::ext_in_class_initializer_non_constant)
12513 << Init->getSourceRange();
12514 } else {
12515 // Otherwise, this is some crazy unknown case. Report the issue at the
12516 // location provided by the isIntegerConstantExpr failed check.
12517 Diag(Loc, diag::err_in_class_initializer_non_constant)
12518 << Init->getSourceRange();
12519 VDecl->setInvalidDecl();
12520 }
12521
12522 // We allow foldable floating-point constants as an extension.
12523 } else if (DclT->isFloatingType()) { // also permits complex, which is ok
12524 // In C++98, this is a GNU extension. In C++11, it is not, but we support
12525 // it anyway and provide a fixit to add the 'constexpr'.
12526 if (getLangOpts().CPlusPlus11) {
12527 Diag(VDecl->getLocation(),
12528 diag::ext_in_class_initializer_float_type_cxx11)
12529 << DclT << Init->getSourceRange();
12530 Diag(VDecl->getBeginLoc(),
12531 diag::note_in_class_initializer_float_type_cxx11)
12532 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
12533 } else {
12534 Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
12535 << DclT << Init->getSourceRange();
12536
12537 if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
12538 Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
12539 << Init->getSourceRange();
12540 VDecl->setInvalidDecl();
12541 }
12542 }
12543
12544 // Suggest adding 'constexpr' in C++11 for literal types.
12545 } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
12546 Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
12547 << DclT << Init->getSourceRange()
12548 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
12549 VDecl->setConstexpr(true);
12550
12551 } else {
12552 Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
12553 << DclT << Init->getSourceRange();
12554 VDecl->setInvalidDecl();
12555 }
12556 } else if (VDecl->isFileVarDecl()) {
12557 // In C, extern is typically used to avoid tentative definitions when
12558 // declaring variables in headers, but adding an intializer makes it a
12559 // definition. This is somewhat confusing, so GCC and Clang both warn on it.
12560 // In C++, extern is often used to give implictly static const variables
12561 // external linkage, so don't warn in that case. If selectany is present,
12562 // this might be header code intended for C and C++ inclusion, so apply the
12563 // C++ rules.
12564 if (VDecl->getStorageClass() == SC_Extern &&
12565 ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
12566 !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
12567 !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
12568 !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
12569 Diag(VDecl->getLocation(), diag::warn_extern_init);
12570
12571 // In Microsoft C++ mode, a const variable defined in namespace scope has
12572 // external linkage by default if the variable is declared with
12573 // __declspec(dllexport).
12574 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
12575 getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() &&
12576 VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition())
12577 VDecl->setStorageClass(SC_Extern);
12578
12579 // C99 6.7.8p4. All file scoped initializers need to be constant.
12580 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
12581 CheckForConstantInitializer(Init, DclT);
12582 }
12583
12584 QualType InitType = Init->getType();
12585 if (!InitType.isNull() &&
12586 (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
12587 InitType.hasNonTrivialToPrimitiveCopyCUnion()))
12588 checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc());
12589
12590 // We will represent direct-initialization similarly to copy-initialization:
12591 // int x(1); -as-> int x = 1;
12592 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
12593 //
12594 // Clients that want to distinguish between the two forms, can check for
12595 // direct initializer using VarDecl::getInitStyle().
12596 // A major benefit is that clients that don't particularly care about which
12597 // exactly form was it (like the CodeGen) can handle both cases without
12598 // special case code.
12599
12600 // C++ 8.5p11:
12601 // The form of initialization (using parentheses or '=') is generally
12602 // insignificant, but does matter when the entity being initialized has a
12603 // class type.
12604 if (CXXDirectInit) {
12605 assert(DirectInit && "Call-style initializer must be direct init.")(static_cast<void> (0));
12606 VDecl->setInitStyle(VarDecl::CallInit);
12607 } else if (DirectInit) {
12608 // This must be list-initialization. No other way is direct-initialization.
12609 VDecl->setInitStyle(VarDecl::ListInit);
12610 }
12611
12612 if (LangOpts.OpenMP && VDecl->isFileVarDecl())
12613 DeclsToCheckForDeferredDiags.insert(VDecl);
12614 CheckCompleteVariableDeclaration(VDecl);
12615}
12616
12617/// ActOnInitializerError - Given that there was an error parsing an
12618/// initializer for the given declaration, try to return to some form
12619/// of sanity.
12620void Sema::ActOnInitializerError(Decl *D) {
12621 // Our main concern here is re-establishing invariants like "a
12622 // variable's type is either dependent or complete".
12623 if (!D || D->isInvalidDecl()) return;
12624
12625 VarDecl *VD = dyn_cast<VarDecl>(D);
12626 if (!VD) return;
12627
12628 // Bindings are not usable if we can't make sense of the initializer.
12629 if (auto *DD = dyn_cast<DecompositionDecl>(D))
12630 for (auto *BD : DD->bindings())
12631 BD->setInvalidDecl();
12632
12633 // Auto types are meaningless if we can't make sense of the initializer.
12634 if (VD->getType()->isUndeducedType()) {
12635 D->setInvalidDecl();
12636 return;
12637 }
12638
12639 QualType Ty = VD->getType();
12640 if (Ty->isDependentType()) return;
12641
12642 // Require a complete type.
12643 if (RequireCompleteType(VD->getLocation(),
12644 Context.getBaseElementType(Ty),
12645 diag::err_typecheck_decl_incomplete_type)) {
12646 VD->setInvalidDecl();
12647 return;
12648 }
12649
12650 // Require a non-abstract type.
12651 if (RequireNonAbstractType(VD->getLocation(), Ty,
12652 diag::err_abstract_type_in_decl,
12653 AbstractVariableType)) {
12654 VD->setInvalidDecl();
12655 return;
12656 }
12657
12658 // Don't bother complaining about constructors or destructors,
12659 // though.
12660}
12661
12662void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
12663 // If there is no declaration, there was an error parsing it. Just ignore it.
12664 if (!RealDecl)
12665 return;
12666
12667 if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
12668 QualType Type = Var->getType();
12669
12670 // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
12671 if (isa<DecompositionDecl>(RealDecl)) {
12672 Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
12673 Var->setInvalidDecl();
12674 return;
12675 }
12676
12677 if (Type->isUndeducedType() &&
12678 DeduceVariableDeclarationType(Var, false, nullptr))
12679 return;
12680
12681 // C++11 [class.static.data]p3: A static data member can be declared with
12682 // the constexpr specifier; if so, its declaration shall specify
12683 // a brace-or-equal-initializer.
12684 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
12685 // the definition of a variable [...] or the declaration of a static data
12686 // member.
12687 if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
12688 !Var->isThisDeclarationADemotedDefinition()) {
12689 if (Var->isStaticDataMember()) {
12690 // C++1z removes the relevant rule; the in-class declaration is always
12691 // a definition there.
12692 if (!getLangOpts().CPlusPlus17 &&
12693 !Context.getTargetInfo().getCXXABI().isMicrosoft()) {
12694 Diag(Var->getLocation(),
12695 diag::err_constexpr_static_mem_var_requires_init)
12696 << Var;
12697 Var->setInvalidDecl();
12698 return;
12699 }
12700 } else {
12701 Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
12702 Var->setInvalidDecl();
12703 return;
12704 }
12705 }
12706
12707 // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
12708 // be initialized.
12709 if (!Var->isInvalidDecl() &&
12710 Var->getType().getAddressSpace() == LangAS::opencl_constant &&
12711 Var->getStorageClass() != SC_Extern && !Var->getInit()) {
12712 bool HasConstExprDefaultConstructor = false;
12713 if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) {
12714 for (auto *Ctor : RD->ctors()) {
12715 if (Ctor->isConstexpr() && Ctor->getNumParams() == 0 &&
12716 Ctor->getMethodQualifiers().getAddressSpace() ==
12717 LangAS::opencl_constant) {
12718 HasConstExprDefaultConstructor = true;
12719 }
12720 }
12721 }
12722 if (!HasConstExprDefaultConstructor) {
12723 Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
12724 Var->setInvalidDecl();
12725 return;
12726 }
12727 }
12728
12729 if (!Var->isInvalidDecl() && RealDecl->hasAttr<LoaderUninitializedAttr>()) {
12730 if (Var->getStorageClass() == SC_Extern) {
12731 Diag(Var->getLocation(), diag::err_loader_uninitialized_extern_decl)
12732 << Var;
12733 Var->setInvalidDecl();
12734 return;
12735 }
12736 if (RequireCompleteType(Var->getLocation(), Var->getType(),
12737 diag::err_typecheck_decl_incomplete_type)) {
12738 Var->setInvalidDecl();
12739 return;
12740 }
12741 if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) {
12742 if (!RD->hasTrivialDefaultConstructor()) {
12743 Diag(Var->getLocation(), diag::err_loader_uninitialized_trivial_ctor);
12744 Var->setInvalidDecl();
12745 return;
12746 }
12747 }
12748 // The declaration is unitialized, no need for further checks.
12749 return;
12750 }
12751
12752 VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition();
12753 if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly &&
12754 Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion())
12755 checkNonTrivialCUnion(Var->getType(), Var->getLocation(),
12756 NTCUC_DefaultInitializedObject, NTCUK_Init);
12757
12758
12759 switch (DefKind) {
12760 case VarDecl::Definition:
12761 if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
12762 break;
12763
12764 // We have an out-of-line definition of a static data member
12765 // that has an in-class initializer, so we type-check this like
12766 // a declaration.
12767 //
12768 LLVM_FALLTHROUGH[[gnu::fallthrough]];
12769
12770 case VarDecl::DeclarationOnly:
12771 // It's only a declaration.
12772
12773 // Block scope. C99 6.7p7: If an identifier for an object is
12774 // declared with no linkage (C99 6.2.2p6), the type for the
12775 // object shall be complete.
12776 if (!Type->isDependentType() && Var->isLocalVarDecl() &&
12777 !Var->hasLinkage() && !Var->isInvalidDecl() &&
12778 RequireCompleteType(Var->getLocation(), Type,
12779 diag::err_typecheck_decl_incomplete_type))
12780 Var->setInvalidDecl();
12781
12782 // Make sure that the type is not abstract.
12783 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
12784 RequireNonAbstractType(Var->getLocation(), Type,
12785 diag::err_abstract_type_in_decl,
12786 AbstractVariableType))
12787 Var->setInvalidDecl();
12788 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
12789 Var->getStorageClass() == SC_PrivateExtern) {
12790 Diag(Var->getLocation(), diag::warn_private_extern);
12791 Diag(Var->getLocation(), diag::note_private_extern);
12792 }
12793
12794 if (Context.getTargetInfo().allowDebugInfoForExternalRef() &&
12795 !Var->isInvalidDecl() && !getLangOpts().CPlusPlus)
12796 ExternalDeclarations.push_back(Var);
12797
12798 return;
12799
12800 case VarDecl::TentativeDefinition:
12801 // File scope. C99 6.9.2p2: A declaration of an identifier for an
12802 // object that has file scope without an initializer, and without a
12803 // storage-class specifier or with the storage-class specifier "static",
12804 // constitutes a tentative definition. Note: A tentative definition with
12805 // external linkage is valid (C99 6.2.2p5).
12806 if (!Var->isInvalidDecl()) {
12807 if (const IncompleteArrayType *ArrayT
12808 = Context.getAsIncompleteArrayType(Type)) {
12809 if (RequireCompleteSizedType(
12810 Var->getLocation(), ArrayT->getElementType(),
12811 diag::err_array_incomplete_or_sizeless_type))
12812 Var->setInvalidDecl();
12813 } else if (Var->getStorageClass() == SC_Static) {
12814 // C99 6.9.2p3: If the declaration of an identifier for an object is
12815 // a tentative definition and has internal linkage (C99 6.2.2p3), the
12816 // declared type shall not be an incomplete type.
12817 // NOTE: code such as the following
12818 // static struct s;
12819 // struct s { int a; };
12820 // is accepted by gcc. Hence here we issue a warning instead of
12821 // an error and we do not invalidate the static declaration.
12822 // NOTE: to avoid multiple warnings, only check the first declaration.
12823 if (Var->isFirstDecl())
12824 RequireCompleteType(Var->getLocation(), Type,
12825 diag::ext_typecheck_decl_incomplete_type);
12826 }
12827 }
12828
12829 // Record the tentative definition; we're done.
12830 if (!Var->isInvalidDecl())
12831 TentativeDefinitions.push_back(Var);
12832 return;
12833 }
12834
12835 // Provide a specific diagnostic for uninitialized variable
12836 // definitions with incomplete array type.
12837 if (Type->isIncompleteArrayType()) {
12838 Diag(Var->getLocation(),
12839 diag::err_typecheck_incomplete_array_needs_initializer);
12840 Var->setInvalidDecl();
12841 return;
12842 }
12843
12844 // Provide a specific diagnostic for uninitialized variable
12845 // definitions with reference type.
12846 if (Type->isReferenceType()) {
12847 Diag(Var->getLocation(), diag::err_reference_var_requires_init)
12848 << Var << SourceRange(Var->getLocation(), Var->getLocation());
12849 Var->setInvalidDecl();
12850 return;
12851 }
12852
12853 // Do not attempt to type-check the default initializer for a
12854 // variable with dependent type.
12855 if (Type->isDependentType())
12856 return;
12857
12858 if (Var->isInvalidDecl())
12859 return;
12860
12861 if (!Var->hasAttr<AliasAttr>()) {
12862 if (RequireCompleteType(Var->getLocation(),
12863 Context.getBaseElementType(Type),
12864 diag::err_typecheck_decl_incomplete_type)) {
12865 Var->setInvalidDecl();
12866 return;
12867 }
12868 } else {
12869 return;
12870 }
12871
12872 // The variable can not have an abstract class type.
12873 if (RequireNonAbstractType(Var->getLocation(), Type,
12874 diag::err_abstract_type_in_decl,
12875 AbstractVariableType)) {
12876 Var->setInvalidDecl();
12877 return;
12878 }
12879
12880 // Check for jumps past the implicit initializer. C++0x
12881 // clarifies that this applies to a "variable with automatic
12882 // storage duration", not a "local variable".
12883 // C++11 [stmt.dcl]p3
12884 // A program that jumps from a point where a variable with automatic
12885 // storage duration is not in scope to a point where it is in scope is
12886 // ill-formed unless the variable has scalar type, class type with a
12887 // trivial default constructor and a trivial destructor, a cv-qualified
12888 // version of one of these types, or an array of one of the preceding
12889 // types and is declared without an initializer.
12890 if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
12891 if (const RecordType *Record
12892 = Context.getBaseElementType(Type)->getAs<RecordType>()) {
12893 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
12894 // Mark the function (if we're in one) for further checking even if the
12895 // looser rules of C++11 do not require such checks, so that we can
12896 // diagnose incompatibilities with C++98.
12897 if (!CXXRecord->isPOD())
12898 setFunctionHasBranchProtectedScope();
12899 }
12900 }
12901 // In OpenCL, we can't initialize objects in the __local address space,
12902 // even implicitly, so don't synthesize an implicit initializer.
12903 if (getLangOpts().OpenCL &&
12904 Var->getType().getAddressSpace() == LangAS::opencl_local)
12905 return;
12906 // C++03 [dcl.init]p9:
12907 // If no initializer is specified for an object, and the
12908 // object is of (possibly cv-qualified) non-POD class type (or
12909 // array thereof), the object shall be default-initialized; if
12910 // the object is of const-qualified type, the underlying class
12911 // type shall have a user-declared default
12912 // constructor. Otherwise, if no initializer is specified for
12913 // a non- static object, the object and its subobjects, if
12914 // any, have an indeterminate initial value); if the object
12915 // or any of its subobjects are of const-qualified type, the
12916 // program is ill-formed.
12917 // C++0x [dcl.init]p11:
12918 // If no initializer is specified for an object, the object is
12919 // default-initialized; [...].
12920 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
12921 InitializationKind Kind
12922 = InitializationKind::CreateDefault(Var->getLocation());
12923
12924 InitializationSequence InitSeq(*this, Entity, Kind, None);
12925 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
12926
12927 if (Init.get()) {
12928 Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
12929 // This is important for template substitution.
12930 Var->setInitStyle(VarDecl::CallInit);
12931 } else if (Init.isInvalid()) {
12932 // If default-init fails, attach a recovery-expr initializer to track
12933 // that initialization was attempted and failed.
12934 auto RecoveryExpr =
12935 CreateRecoveryExpr(Var->getLocation(), Var->getLocation(), {});
12936 if (RecoveryExpr.get())
12937 Var->setInit(RecoveryExpr.get());
12938 }
12939
12940 CheckCompleteVariableDeclaration(Var);
12941 }
12942}
12943
12944void Sema::ActOnCXXForRangeDecl(Decl *D) {
12945 // If there is no declaration, there was an error parsing it. Ignore it.
12946 if (!D)
12947 return;
12948
12949 VarDecl *VD = dyn_cast<VarDecl>(D);
12950 if (!VD) {
12951 Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
12952 D->setInvalidDecl();
12953 return;
12954 }
12955
12956 VD->setCXXForRangeDecl(true);
12957
12958 // for-range-declaration cannot be given a storage class specifier.
12959 int Error = -1;
12960 switch (VD->getStorageClass()) {
12961 case SC_None:
12962 break;
12963 case SC_Extern:
12964 Error = 0;
12965 break;
12966 case SC_Static:
12967 Error = 1;
12968 break;
12969 case SC_PrivateExtern:
12970 Error = 2;
12971 break;
12972 case SC_Auto:
12973 Error = 3;
12974 break;
12975 case SC_Register:
12976 Error = 4;
12977 break;
12978 }
12979
12980 // for-range-declaration cannot be given a storage class specifier con't.
12981 switch (VD->getTSCSpec()) {
12982 case TSCS_thread_local:
12983 Error = 6;
12984 break;
12985 case TSCS___thread:
12986 case TSCS__Thread_local:
12987 case TSCS_unspecified:
12988 break;
12989 }
12990
12991 if (Error != -1) {
12992 Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
12993 << VD << Error;
12994 D->setInvalidDecl();
12995 }
12996}
12997
12998StmtResult
12999Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
13000 IdentifierInfo *Ident,
13001 ParsedAttributes &Attrs,
13002 SourceLocation AttrEnd) {
13003 // C++1y [stmt.iter]p1:
13004 // A range-based for statement of the form
13005 // for ( for-range-identifier : for-range-initializer ) statement
13006 // is equivalent to
13007 // for ( auto&& for-range-identifier : for-range-initializer ) statement
13008 DeclSpec DS(Attrs.getPool().getFactory());
13009
13010 const char *PrevSpec;
13011 unsigned DiagID;
13012 DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
13013 getPrintingPolicy());
13014
13015 Declarator D(DS, DeclaratorContext::ForInit);
13016 D.SetIdentifier(Ident, IdentLoc);
13017 D.takeAttributes(Attrs, AttrEnd);
13018
13019 D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false),
13020 IdentLoc);
13021 Decl *Var = ActOnDeclarator(S, D);
13022 cast<VarDecl>(Var)->setCXXForRangeDecl(true);
13023 FinalizeDeclaration(Var);
13024 return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
13025 AttrEnd.isValid() ? AttrEnd : IdentLoc);
13026}
13027
13028void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
13029 if (var->isInvalidDecl()) return;
13030
13031 MaybeAddCUDAConstantAttr(var);
13032
13033 if (getLangOpts().OpenCL) {
13034 // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
13035 // initialiser
13036 if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
13037 !var->hasInit()) {
13038 Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
13039 << 1 /*Init*/;
13040 var->setInvalidDecl();
13041 return;
13042 }
13043 }
13044
13045 // In Objective-C, don't allow jumps past the implicit initialization of a
13046 // local retaining variable.
13047 if (getLangOpts().ObjC &&
13048 var->hasLocalStorage()) {
13049 switch (var->getType().getObjCLifetime()) {
13050 case Qualifiers::OCL_None:
13051 case Qualifiers::OCL_ExplicitNone:
13052 case Qualifiers::OCL_Autoreleasing:
13053 break;
13054
13055 case Qualifiers::OCL_Weak:
13056 case Qualifiers::OCL_Strong:
13057 setFunctionHasBranchProtectedScope();
13058 break;
13059 }
13060 }
13061
13062 if (var->hasLocalStorage() &&
13063 var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
13064 setFunctionHasBranchProtectedScope();
13065
13066 // Warn about externally-visible variables being defined without a
13067 // prior declaration. We only want to do this for global
13068 // declarations, but we also specifically need to avoid doing it for
13069 // class members because the linkage of an anonymous class can
13070 // change if it's later given a typedef name.
13071 if (var->isThisDeclarationADefinition() &&
13072 var->getDeclContext()->getRedeclContext()->isFileContext() &&
13073 var->isExternallyVisible() && var->hasLinkage() &&
13074 !var->isInline() && !var->getDescribedVarTemplate() &&
13075 !isa<VarTemplatePartialSpecializationDecl>(var) &&
13076 !isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
13077 !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
13078 var->getLocation())) {
13079 // Find a previous declaration that's not a definition.
13080 VarDecl *prev = var->getPreviousDecl();
13081 while (prev && prev->isThisDeclarationADefinition())
13082 prev = prev->getPreviousDecl();
13083
13084 if (!prev) {
13085 Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
13086 Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
13087 << /* variable */ 0;
13088 }
13089 }
13090
13091 // Cache the result of checking for constant initialization.
13092 Optional<bool> CacheHasConstInit;
13093 const Expr *CacheCulprit = nullptr;
13094 auto checkConstInit = [&]() mutable {
13095 if (!CacheHasConstInit)
13096 CacheHasConstInit = var->getInit()->isConstantInitializer(
13097 Context, var->getType()->isReferenceType(), &CacheCulprit);
13098 return *CacheHasConstInit;
13099 };
13100
13101 if (var->getTLSKind() == VarDecl::TLS_Static) {
13102 if (var->getType().isDestructedType()) {
13103 // GNU C++98 edits for __thread, [basic.start.term]p3:
13104 // The type of an object with thread storage duration shall not
13105 // have a non-trivial destructor.
13106 Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
13107 if (getLangOpts().CPlusPlus11)
13108 Diag(var->getLocation(), diag::note_use_thread_local);
13109 } else if (getLangOpts().CPlusPlus && var->hasInit()) {
13110 if (!checkConstInit()) {
13111 // GNU C++98 edits for __thread, [basic.start.init]p4:
13112 // An object of thread storage duration shall not require dynamic
13113 // initialization.
13114 // FIXME: Need strict checking here.
13115 Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
13116 << CacheCulprit->getSourceRange();
13117 if (getLangOpts().CPlusPlus11)
13118 Diag(var->getLocation(), diag::note_use_thread_local);
13119 }
13120 }
13121 }
13122
13123
13124 if (!var->getType()->isStructureType() && var->hasInit() &&
13125 isa<InitListExpr>(var->getInit())) {
13126 const auto *ILE = cast<InitListExpr>(var->getInit());
13127 unsigned NumInits = ILE->getNumInits();
13128 if (NumInits > 2)
13129 for (unsigned I = 0; I < NumInits; ++I) {
13130 const auto *Init = ILE->getInit(I);
13131 if (!Init)
13132 break;
13133 const auto *SL = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
13134 if (!SL)
13135 break;
13136
13137 unsigned NumConcat = SL->getNumConcatenated();
13138 // Diagnose missing comma in string array initialization.
13139 // Do not warn when all the elements in the initializer are concatenated
13140 // together. Do not warn for macros too.
13141 if (NumConcat == 2 && !SL->getBeginLoc().isMacroID()) {
13142 bool OnlyOneMissingComma = true;
13143 for (unsigned J = I + 1; J < NumInits; ++J) {
13144 const auto *Init = ILE->getInit(J);
13145 if (!Init)
13146 break;
13147 const auto *SLJ = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
13148 if (!SLJ || SLJ->getNumConcatenated() > 1) {
13149 OnlyOneMissingComma = false;
13150 break;
13151 }
13152 }
13153
13154 if (OnlyOneMissingComma) {
13155 SmallVector<FixItHint, 1> Hints;
13156 for (unsigned i = 0; i < NumConcat - 1; ++i)
13157 Hints.push_back(FixItHint::CreateInsertion(
13158 PP.getLocForEndOfToken(SL->getStrTokenLoc(i)), ","));
13159
13160 Diag(SL->getStrTokenLoc(1),
13161 diag::warn_concatenated_literal_array_init)
13162 << Hints;
13163 Diag(SL->getBeginLoc(),
13164 diag::note_concatenated_string_literal_silence);
13165 }
13166 // In any case, stop now.
13167 break;
13168 }
13169 }
13170 }
13171
13172
13173 QualType type = var->getType();
13174
13175 if (var->hasAttr<BlocksAttr>())
13176 getCurFunction()->addByrefBlockVar(var);
13177
13178 Expr *Init = var->getInit();
13179 bool GlobalStorage = var->hasGlobalStorage();
13180 bool IsGlobal = GlobalStorage && !var->isStaticLocal();
13181 QualType baseType = Context.getBaseElementType(type);
13182 bool HasConstInit = true;
13183
13184 // Check whether the initializer is sufficiently constant.
13185 if (getLangOpts().CPlusPlus && !type->isDependentType() && Init &&
13186 !Init->isValueDependent() &&
13187 (GlobalStorage || var->isConstexpr() ||
13188 var->mightBeUsableInConstantExpressions(Context))) {
13189 // If this variable might have a constant initializer or might be usable in
13190 // constant expressions, check whether or not it actually is now. We can't
13191 // do this lazily, because the result might depend on things that change
13192 // later, such as which constexpr functions happen to be defined.
13193 SmallVector<PartialDiagnosticAt, 8> Notes;
13194 if (!getLangOpts().CPlusPlus11) {
13195 // Prior to C++11, in contexts where a constant initializer is required,
13196 // the set of valid constant initializers is described by syntactic rules
13197 // in [expr.const]p2-6.
13198 // FIXME: Stricter checking for these rules would be useful for constinit /
13199 // -Wglobal-constructors.
13200 HasConstInit = checkConstInit();
13201
13202 // Compute and cache the constant value, and remember that we have a
13203 // constant initializer.
13204 if (HasConstInit) {
13205 (void)var->checkForConstantInitialization(Notes);
13206 Notes.clear();
13207 } else if (CacheCulprit) {
13208 Notes.emplace_back(CacheCulprit->getExprLoc(),
13209 PDiag(diag::note_invalid_subexpr_in_const_expr));
13210 Notes.back().second << CacheCulprit->getSourceRange();
13211 }
13212 } else {
13213 // Evaluate the initializer to see if it's a constant initializer.
13214 HasConstInit = var->checkForConstantInitialization(Notes);
13215 }
13216
13217 if (HasConstInit) {
13218 // FIXME: Consider replacing the initializer with a ConstantExpr.
13219 } else if (var->isConstexpr()) {
13220 SourceLocation DiagLoc = var->getLocation();
13221 // If the note doesn't add any useful information other than a source
13222 // location, fold it into the primary diagnostic.
13223 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
13224 diag::note_invalid_subexpr_in_const_expr) {
13225 DiagLoc = Notes[0].first;
13226 Notes.clear();
13227 }
13228 Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
13229 << var << Init->getSourceRange();
13230 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
13231 Diag(Notes[I].first, Notes[I].second);
13232 } else if (GlobalStorage && var->hasAttr<ConstInitAttr>()) {
13233 auto *Attr = var->getAttr<ConstInitAttr>();
13234 Diag(var->getLocation(), diag::err_require_constant_init_failed)
13235 << Init->getSourceRange();
13236 Diag(Attr->getLocation(), diag::note_declared_required_constant_init_here)
13237 << Attr->getRange() << Attr->isConstinit();
13238 for (auto &it : Notes)
13239 Diag(it.first, it.second);
13240 } else if (IsGlobal &&
13241 !getDiagnostics().isIgnored(diag::warn_global_constructor,
13242 var->getLocation())) {
13243 // Warn about globals which don't have a constant initializer. Don't
13244 // warn about globals with a non-trivial destructor because we already
13245 // warned about them.
13246 CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
13247 if (!(RD && !RD->hasTrivialDestructor())) {
13248 // checkConstInit() here permits trivial default initialization even in
13249 // C++11 onwards, where such an initializer is not a constant initializer
13250 // but nonetheless doesn't require a global constructor.
13251 if (!checkConstInit())
13252 Diag(var->getLocation(), diag::warn_global_constructor)
13253 << Init->getSourceRange();
13254 }
13255 }
13256 }
13257
13258 // Apply section attributes and pragmas to global variables.
13259 if (GlobalStorage && var->isThisDeclarationADefinition() &&
13260 !inTemplateInstantiation()) {
13261 PragmaStack<StringLiteral *> *Stack = nullptr;
13262 int SectionFlags = ASTContext::PSF_Read;
13263 if (var->getType().isConstQualified()) {
13264 if (HasConstInit)
13265 Stack = &ConstSegStack;
13266 else {
13267 Stack = &BSSSegStack;
13268 SectionFlags |= ASTContext::PSF_Write;
13269 }
13270 } else if (var->hasInit() && HasConstInit) {
13271 Stack = &DataSegStack;
13272 SectionFlags |= ASTContext::PSF_Write;
13273 } else {
13274 Stack = &BSSSegStack;
13275 SectionFlags |= ASTContext::PSF_Write;
13276 }
13277 if (const SectionAttr *SA = var->getAttr<SectionAttr>()) {
13278 if (SA->getSyntax() == AttributeCommonInfo::AS_Declspec)
13279 SectionFlags |= ASTContext::PSF_Implicit;
13280 UnifySection(SA->getName(), SectionFlags, var);
13281 } else if (Stack->CurrentValue) {
13282 SectionFlags |= ASTContext::PSF_Implicit;
13283 auto SectionName = Stack->CurrentValue->getString();
13284 var->addAttr(SectionAttr::CreateImplicit(
13285 Context, SectionName, Stack->CurrentPragmaLocation,
13286 AttributeCommonInfo::AS_Pragma, SectionAttr::Declspec_allocate));
13287 if (UnifySection(SectionName, SectionFlags, var))
13288 var->dropAttr<SectionAttr>();
13289 }
13290
13291 // Apply the init_seg attribute if this has an initializer. If the
13292 // initializer turns out to not be dynamic, we'll end up ignoring this
13293 // attribute.
13294 if (CurInitSeg && var->getInit())
13295 var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
13296 CurInitSegLoc,
13297 AttributeCommonInfo::AS_Pragma));
13298 }
13299
13300 // All the following checks are C++ only.
13301 if (!getLangOpts().CPlusPlus) {
13302 // If this variable must be emitted, add it as an initializer for the
13303 // current module.
13304 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
13305 Context.addModuleInitializer(ModuleScopes.back().Module, var);
13306 return;
13307 }
13308
13309 // Require the destructor.
13310 if (!type->isDependentType())
13311 if (const RecordType *recordType = baseType->getAs<RecordType>())
13312 FinalizeVarWithDestructor(var, recordType);
13313
13314 // If this variable must be emitted, add it as an initializer for the current
13315 // module.
13316 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
13317 Context.addModuleInitializer(ModuleScopes.back().Module, var);
13318
13319 // Build the bindings if this is a structured binding declaration.
13320 if (auto *DD = dyn_cast<DecompositionDecl>(var))
13321 CheckCompleteDecompositionDeclaration(DD);
13322}
13323
13324/// Check if VD needs to be dllexport/dllimport due to being in a
13325/// dllexport/import function.
13326void Sema::CheckStaticLocalForDllExport(VarDecl *VD) {
13327 assert(VD->isStaticLocal())(static_cast<void> (0));
13328
13329 auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
13330
13331 // Find outermost function when VD is in lambda function.
13332 while (FD && !getDLLAttr(FD) &&
13333 !FD->hasAttr<DLLExportStaticLocalAttr>() &&
13334 !FD->hasAttr<DLLImportStaticLocalAttr>()) {
13335 FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod());
13336 }
13337
13338 if (!FD)
13339 return;
13340
13341 // Static locals inherit dll attributes from their function.
13342 if (Attr *A = getDLLAttr(FD)) {
13343 auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
13344 NewAttr->setInherited(true);
13345 VD->addAttr(NewAttr);
13346 } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) {
13347 auto *NewAttr = DLLExportAttr::CreateImplicit(getASTContext(), *A);
13348 NewAttr->setInherited(true);
13349 VD->addAttr(NewAttr);
13350
13351 // Export this function to enforce exporting this static variable even
13352 // if it is not used in this compilation unit.
13353 if (!FD->hasAttr<DLLExportAttr>())
13354 FD->addAttr(NewAttr);
13355
13356 } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) {
13357 auto *NewAttr = DLLImportAttr::CreateImplicit(getASTContext(), *A);
13358 NewAttr->setInherited(true);
13359 VD->addAttr(NewAttr);
13360 }
13361}
13362
13363/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
13364/// any semantic actions necessary after any initializer has been attached.
13365void Sema::FinalizeDeclaration(Decl *ThisDecl) {
13366 // Note that we are no longer parsing the initializer for this declaration.
13367 ParsingInitForAutoVars.erase(ThisDecl);
13368
13369 VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
13370 if (!VD)
13371 return;
13372
13373 // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
13374 if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
13375 !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
13376 if (PragmaClangBSSSection.Valid)
13377 VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(
13378 Context, PragmaClangBSSSection.SectionName,
13379 PragmaClangBSSSection.PragmaLocation,
13380 AttributeCommonInfo::AS_Pragma));
13381 if (PragmaClangDataSection.Valid)
13382 VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(
13383 Context, PragmaClangDataSection.SectionName,
13384 PragmaClangDataSection.PragmaLocation,
13385 AttributeCommonInfo::AS_Pragma));
13386 if (PragmaClangRodataSection.Valid)
13387 VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(
13388 Context, PragmaClangRodataSection.SectionName,
13389 PragmaClangRodataSection.PragmaLocation,
13390 AttributeCommonInfo::AS_Pragma));
13391 if (PragmaClangRelroSection.Valid)
13392 VD->addAttr(PragmaClangRelroSectionAttr::CreateImplicit(
13393 Context, PragmaClangRelroSection.SectionName,
13394 PragmaClangRelroSection.PragmaLocation,
13395 AttributeCommonInfo::AS_Pragma));
13396 }
13397
13398 if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
13399 for (auto *BD : DD->bindings()) {
13400 FinalizeDeclaration(BD);
13401 }
13402 }
13403
13404 checkAttributesAfterMerging(*this, *VD);
13405
13406 // Perform TLS alignment check here after attributes attached to the variable
13407 // which may affect the alignment have been processed. Only perform the check
13408 // if the target has a maximum TLS alignment (zero means no constraints).
13409 if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
13410 // Protect the check so that it's not performed on dependent types and
13411 // dependent alignments (we can't determine the alignment in that case).
13412 if (VD->getTLSKind() && !VD->hasDependentAlignment()) {
13413 CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
13414 if (Context.getDeclAlign(VD) > MaxAlignChars) {
13415 Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
13416 << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
13417 << (unsigned)MaxAlignChars.getQuantity();
13418 }
13419 }
13420 }
13421
13422 if (VD->isStaticLocal())
13423 CheckStaticLocalForDllExport(VD);
13424
13425 // Perform check for initializers of device-side global variables.
13426 // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
13427 // 7.5). We must also apply the same checks to all __shared__
13428 // variables whether they are local or not. CUDA also allows
13429 // constant initializers for __constant__ and __device__ variables.
13430 if (getLangOpts().CUDA)
13431 checkAllowedCUDAInitializer(VD);
13432
13433 // Grab the dllimport or dllexport attribute off of the VarDecl.
13434 const InheritableAttr *DLLAttr = getDLLAttr(VD);
13435
13436 // Imported static data members cannot be defined out-of-line.
13437 if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
13438 if (VD->isStaticDataMember() && VD->isOutOfLine() &&
13439 VD->isThisDeclarationADefinition()) {
13440 // We allow definitions of dllimport class template static data members
13441 // with a warning.
13442 CXXRecordDecl *Context =
13443 cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
13444 bool IsClassTemplateMember =
13445 isa<ClassTemplatePartialSpecializationDecl>(Context) ||
13446 Context->getDescribedClassTemplate();
13447
13448 Diag(VD->getLocation(),
13449 IsClassTemplateMember
13450 ? diag::warn_attribute_dllimport_static_field_definition
13451 : diag::err_attribute_dllimport_static_field_definition);
13452 Diag(IA->getLocation(), diag::note_attribute);
13453 if (!IsClassTemplateMember)
13454 VD->setInvalidDecl();
13455 }
13456 }
13457
13458 // dllimport/dllexport variables cannot be thread local, their TLS index
13459 // isn't exported with the variable.
13460 if (DLLAttr && VD->getTLSKind()) {
13461 auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
13462 if (F && getDLLAttr(F)) {
13463 assert(VD->isStaticLocal())(static_cast<void> (0));
13464 // But if this is a static local in a dlimport/dllexport function, the
13465 // function will never be inlined, which means the var would never be
13466 // imported, so having it marked import/export is safe.
13467 } else {
13468 Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
13469 << DLLAttr;
13470 VD->setInvalidDecl();
13471 }
13472 }
13473
13474 if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
13475 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
13476 Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition)
13477 << Attr;
13478 VD->dropAttr<UsedAttr>();
13479 }
13480 }
13481 if (RetainAttr *Attr = VD->getAttr<RetainAttr>()) {
13482 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
13483 Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition)
13484 << Attr;
13485 VD->dropAttr<RetainAttr>();
13486 }
13487 }
13488
13489 const DeclContext *DC = VD->getDeclContext();
13490 // If there's a #pragma GCC visibility in scope, and this isn't a class
13491 // member, set the visibility of this variable.
13492 if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
13493 AddPushedVisibilityAttribute(VD);
13494
13495 // FIXME: Warn on unused var template partial specializations.
13496 if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
13497 MarkUnusedFileScopedDecl(VD);
13498
13499 // Now we have parsed the initializer and can update the table of magic
13500 // tag values.
13501 if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
13502 !VD->getType()->isIntegralOrEnumerationType())
13503 return;
13504
13505 for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
13506 const Expr *MagicValueExpr = VD->getInit();
13507 if (!MagicValueExpr) {
13508 continue;
13509 }
13510 Optional<llvm::APSInt> MagicValueInt;
13511 if (!(MagicValueInt = MagicValueExpr->getIntegerConstantExpr(Context))) {
13512 Diag(I->getRange().getBegin(),
13513 diag::err_type_tag_for_datatype_not_ice)
13514 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
13515 continue;
13516 }
13517 if (MagicValueInt->getActiveBits() > 64) {
13518 Diag(I->getRange().getBegin(),
13519 diag::err_type_tag_for_datatype_too_large)
13520 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
13521 continue;
13522 }
13523 uint64_t MagicValue = MagicValueInt->getZExtValue();
13524 RegisterTypeTagForDatatype(I->getArgumentKind(),
13525 MagicValue,
13526 I->getMatchingCType(),
13527 I->getLayoutCompatible(),
13528 I->getMustBeNull());
13529 }
13530}
13531
13532static bool hasDeducedAuto(DeclaratorDecl *DD) {
13533 auto *VD = dyn_cast<VarDecl>(DD);
13534 return VD && !VD->getType()->hasAutoForTrailingReturnType();
13535}
13536
13537Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
13538 ArrayRef<Decl *> Group) {
13539 SmallVector<Decl*, 8> Decls;
13540
13541 if (DS.isTypeSpecOwned())
13542 Decls.push_back(DS.getRepAsDecl());
13543
13544 DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
13545 DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
13546 bool DiagnosedMultipleDecomps = false;
13547 DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
13548 bool DiagnosedNonDeducedAuto = false;
13549
13550 for (unsigned i = 0, e = Group.size(); i != e; ++i) {
13551 if (Decl *D = Group[i]) {
13552 // For declarators, there are some additional syntactic-ish checks we need
13553 // to perform.
13554 if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
13555 if (!FirstDeclaratorInGroup)
13556 FirstDeclaratorInGroup = DD;
13557 if (!FirstDecompDeclaratorInGroup)
13558 FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
13559 if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
13560 !hasDeducedAuto(DD))
13561 FirstNonDeducedAutoInGroup = DD;
13562
13563 if (FirstDeclaratorInGroup != DD) {
13564 // A decomposition declaration cannot be combined with any other
13565 // declaration in the same group.
13566 if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
13567 Diag(FirstDecompDeclaratorInGroup->getLocation(),
13568 diag::err_decomp_decl_not_alone)
13569 << FirstDeclaratorInGroup->getSourceRange()
13570 << DD->getSourceRange();
13571 DiagnosedMultipleDecomps = true;
13572 }
13573
13574 // A declarator that uses 'auto' in any way other than to declare a
13575 // variable with a deduced type cannot be combined with any other
13576 // declarator in the same group.
13577 if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
13578 Diag(FirstNonDeducedAutoInGroup->getLocation(),
13579 diag::err_auto_non_deduced_not_alone)
13580 << FirstNonDeducedAutoInGroup->getType()
13581 ->hasAutoForTrailingReturnType()
13582 << FirstDeclaratorInGroup->getSourceRange()
13583 << DD->getSourceRange();
13584 DiagnosedNonDeducedAuto = true;
13585 }
13586 }
13587 }
13588
13589 Decls.push_back(D);
13590 }
13591 }
13592
13593 if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
13594 if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
13595 handleTagNumbering(Tag, S);
13596 if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
13597 getLangOpts().CPlusPlus)
13598 Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
13599 }
13600 }
13601
13602 return BuildDeclaratorGroup(Decls);
13603}
13604
13605/// BuildDeclaratorGroup - convert a list of declarations into a declaration
13606/// group, performing any necessary semantic checking.
13607Sema::DeclGroupPtrTy
13608Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
13609 // C++14 [dcl.spec.auto]p7: (DR1347)
13610 // If the type that replaces the placeholder type is not the same in each
13611 // deduction, the program is ill-formed.
13612 if (Group.size() > 1) {
13613 QualType Deduced;
13614 VarDecl *DeducedDecl = nullptr;
13615 for (unsigned i = 0, e = Group.size(); i != e; ++i) {
13616 VarDecl *D = dyn_cast<VarDecl>(Group[i]);
13617 if (!D || D->isInvalidDecl())
13618 break;
13619 DeducedType *DT = D->getType()->getContainedDeducedType();
13620 if (!DT || DT->getDeducedType().isNull())
13621 continue;
13622 if (Deduced.isNull()) {
13623 Deduced = DT->getDeducedType();
13624 DeducedDecl = D;
13625 } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
13626 auto *AT = dyn_cast<AutoType>(DT);
13627 auto Dia = Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
13628 diag::err_auto_different_deductions)
13629 << (AT ? (unsigned)AT->getKeyword() : 3) << Deduced
13630 << DeducedDecl->getDeclName() << DT->getDeducedType()
13631 << D->getDeclName();
13632 if (DeducedDecl->hasInit())
13633 Dia << DeducedDecl->getInit()->getSourceRange();
13634 if (D->getInit())
13635 Dia << D->getInit()->getSourceRange();
13636 D->setInvalidDecl();
13637 break;
13638 }
13639 }
13640 }
13641
13642 ActOnDocumentableDecls(Group);
13643
13644 return DeclGroupPtrTy::make(
13645 DeclGroupRef::Create(Context, Group.data(), Group.size()));
13646}
13647
13648void Sema::ActOnDocumentableDecl(Decl *D) {
13649 ActOnDocumentableDecls(D);
13650}
13651
13652void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
13653 // Don't parse the comment if Doxygen diagnostics are ignored.
13654 if (Group.empty() || !Group[0])
13655 return;
13656
13657 if (Diags.isIgnored(diag::warn_doc_param_not_found,
13658 Group[0]->getLocation()) &&
13659 Diags.isIgnored(diag::warn_unknown_comment_command_name,
13660 Group[0]->getLocation()))
13661 return;
13662
13663 if (Group.size() >= 2) {
13664 // This is a decl group. Normally it will contain only declarations
13665 // produced from declarator list. But in case we have any definitions or
13666 // additional declaration references:
13667 // 'typedef struct S {} S;'
13668 // 'typedef struct S *S;'
13669 // 'struct S *pS;'
13670 // FinalizeDeclaratorGroup adds these as separate declarations.
13671 Decl *MaybeTagDecl = Group[0];
13672 if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
13673 Group = Group.slice(1);
13674 }
13675 }
13676
13677 // FIMXE: We assume every Decl in the group is in the same file.
13678 // This is false when preprocessor constructs the group from decls in
13679 // different files (e. g. macros or #include).
13680 Context.attachCommentsToJustParsedDecls(Group, &getPreprocessor());
13681}
13682
13683/// Common checks for a parameter-declaration that should apply to both function
13684/// parameters and non-type template parameters.
13685void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) {
13686 // Check that there are no default arguments inside the type of this
13687 // parameter.
13688 if (getLangOpts().CPlusPlus)
13689 CheckExtraCXXDefaultArguments(D);
13690
13691 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
13692 if (D.getCXXScopeSpec().isSet()) {
13693 Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
13694 << D.getCXXScopeSpec().getRange();
13695 }
13696
13697 // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a
13698 // simple identifier except [...irrelevant cases...].
13699 switch (D.getName().getKind()) {
13700 case UnqualifiedIdKind::IK_Identifier:
13701 break;
13702
13703 case UnqualifiedIdKind::IK_OperatorFunctionId:
13704 case UnqualifiedIdKind::IK_ConversionFunctionId:
13705 case UnqualifiedIdKind::IK_LiteralOperatorId:
13706 case UnqualifiedIdKind::IK_ConstructorName:
13707 case UnqualifiedIdKind::IK_DestructorName:
13708 case UnqualifiedIdKind::IK_ImplicitSelfParam:
13709 case UnqualifiedIdKind::IK_DeductionGuideName:
13710 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
13711 << GetNameForDeclarator(D).getName();
13712 break;
13713
13714 case UnqualifiedIdKind::IK_TemplateId:
13715 case UnqualifiedIdKind::IK_ConstructorTemplateId:
13716 // GetNameForDeclarator would not produce a useful name in this case.
13717 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id);
13718 break;
13719 }
13720}
13721
13722/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
13723/// to introduce parameters into function prototype scope.
13724Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
13725 const DeclSpec &DS = D.getDeclSpec();
13726
13727 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
13728
13729 // C++03 [dcl.stc]p2 also permits 'auto'.
13730 StorageClass SC = SC_None;
13731 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
13732 SC = SC_Register;
13733 // In C++11, the 'register' storage class specifier is deprecated.
13734 // In C++17, it is not allowed, but we tolerate it as an extension.
13735 if (getLangOpts().CPlusPlus11) {
13736 Diag(DS.getStorageClassSpecLoc(),
13737 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
13738 : diag::warn_deprecated_register)
13739 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
13740 }
13741 } else if (getLangOpts().CPlusPlus &&
13742 DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
13743 SC = SC_Auto;
13744 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
13745 Diag(DS.getStorageClassSpecLoc(),
13746 diag::err_invalid_storage_class_in_func_decl);
13747 D.getMutableDeclSpec().ClearStorageClassSpecs();
13748 }
13749
13750 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
13751 Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
13752 << DeclSpec::getSpecifierName(TSCS);
13753 if (DS.isInlineSpecified())
13754 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
13755 << getLangOpts().CPlusPlus17;
13756 if (DS.hasConstexprSpecifier())
13757 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
13758 << 0 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
13759
13760 DiagnoseFunctionSpecifiers(DS);
13761
13762 CheckFunctionOrTemplateParamDeclarator(S, D);
13763
13764 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
13765 QualType parmDeclType = TInfo->getType();
13766
13767 // Check for redeclaration of parameters, e.g. int foo(int x, int x);
13768 IdentifierInfo *II = D.getIdentifier();
13769 if (II) {
13770 LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
13771 ForVisibleRedeclaration);
13772 LookupName(R, S);
13773 if (R.isSingleResult()) {
13774 NamedDecl *PrevDecl = R.getFoundDecl();
13775 if (PrevDecl->isTemplateParameter()) {
13776 // Maybe we will complain about the shadowed template parameter.
13777 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
13778 // Just pretend that we didn't see the previous declaration.
13779 PrevDecl = nullptr;
13780 } else if (S->isDeclScope(PrevDecl)) {
13781 Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
13782 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
13783
13784 // Recover by removing the name
13785 II = nullptr;
13786 D.SetIdentifier(nullptr, D.getIdentifierLoc());
13787 D.setInvalidType(true);
13788 }
13789 }
13790 }
13791
13792 // Temporarily put parameter variables in the translation unit, not
13793 // the enclosing context. This prevents them from accidentally
13794 // looking like class members in C++.
13795 ParmVarDecl *New =
13796 CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(),
13797 D.getIdentifierLoc(), II, parmDeclType, TInfo, SC);
13798
13799 if (D.isInvalidType())
13800 New->setInvalidDecl();
13801
13802 assert(S->isFunctionPrototypeScope())(static_cast<void> (0));
13803 assert(S->getFunctionPrototypeDepth() >= 1)(static_cast<void> (0));
13804 New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
13805 S->getNextFunctionPrototypeIndex());
13806
13807 // Add the parameter declaration into this scope.
13808 S->AddDecl(New);
13809 if (II)
13810 IdResolver.AddDecl(New);
13811
13812 ProcessDeclAttributes(S, New, D);
13813
13814 if (D.getDeclSpec().isModulePrivateSpecified())
13815 Diag(New->getLocation(), diag::err_module_private_local)
13816 << 1 << New << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
13817 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
13818
13819 if (New->hasAttr<BlocksAttr>()) {
13820 Diag(New->getLocation(), diag::err_block_on_nonlocal);
13821 }
13822
13823 if (getLangOpts().OpenCL)
13824 deduceOpenCLAddressSpace(New);
13825
13826 return New;
13827}
13828
13829/// Synthesizes a variable for a parameter arising from a
13830/// typedef.
13831ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
13832 SourceLocation Loc,
13833 QualType T) {
13834 /* FIXME: setting StartLoc == Loc.
13835 Would it be worth to modify callers so as to provide proper source
13836 location for the unnamed parameters, embedding the parameter's type? */
13837 ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
13838 T, Context.getTrivialTypeSourceInfo(T, Loc),
13839 SC_None, nullptr);
13840 Param->setImplicit();
13841 return Param;
13842}
13843
13844void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
13845 // Don't diagnose unused-parameter errors in template instantiations; we
13846 // will already have done so in the template itself.
13847 if (inTemplateInstantiation())
13848 return;
13849
13850 for (const ParmVarDecl *Parameter : Parameters) {
13851 if (!Parameter->isReferenced() && Parameter->getDeclName() &&
13852 !Parameter->hasAttr<UnusedAttr>()) {
13853 Diag(Parameter->getLocation(), diag::warn_unused_parameter)
13854 << Parameter->getDeclName();
13855 }
13856 }
13857}
13858
13859void Sema::DiagnoseSizeOfParametersAndReturnValue(
13860 ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
13861 if (LangOpts.NumLargeByValueCopy == 0) // No check.
13862 return;
13863
13864 // Warn if the return value is pass-by-value and larger than the specified
13865 // threshold.
13866 if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
13867 unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
13868 if (Size > LangOpts.NumLargeByValueCopy)
13869 Diag(D->getLocation(), diag::warn_return_value_size) << D << Size;
13870 }
13871
13872 // Warn if any parameter is pass-by-value and larger than the specified
13873 // threshold.
13874 for (const ParmVarDecl *Parameter : Parameters) {
13875 QualType T = Parameter->getType();
13876 if (T->isDependentType() || !T.isPODType(Context))
13877 continue;
13878 unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
13879 if (Size > LangOpts.NumLargeByValueCopy)
13880 Diag(Parameter->getLocation(), diag::warn_parameter_size)
13881 << Parameter << Size;
13882 }
13883}
13884
13885ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
13886 SourceLocation NameLoc, IdentifierInfo *Name,
13887 QualType T, TypeSourceInfo *TSInfo,
13888 StorageClass SC) {
13889 // In ARC, infer a lifetime qualifier for appropriate parameter types.
13890 if (getLangOpts().ObjCAutoRefCount &&
13891 T.getObjCLifetime() == Qualifiers::OCL_None &&
13892 T->isObjCLifetimeType()) {
13893
13894 Qualifiers::ObjCLifetime lifetime;
13895
13896 // Special cases for arrays:
13897 // - if it's const, use __unsafe_unretained
13898 // - otherwise, it's an error
13899 if (T->isArrayType()) {
13900 if (!T.isConstQualified()) {
13901 if (DelayedDiagnostics.shouldDelayDiagnostics())
13902 DelayedDiagnostics.add(
13903 sema::DelayedDiagnostic::makeForbiddenType(
13904 NameLoc, diag::err_arc_array_param_no_ownership, T, false));
13905 else
13906 Diag(NameLoc, diag::err_arc_array_param_no_ownership)
13907 << TSInfo->getTypeLoc().getSourceRange();
13908 }
13909 lifetime = Qualifiers::OCL_ExplicitNone;
13910 } else {
13911 lifetime = T->getObjCARCImplicitLifetime();
13912 }
13913 T = Context.getLifetimeQualifiedType(T, lifetime);
13914 }
13915
13916 ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
13917 Context.getAdjustedParameterType(T),
13918 TSInfo, SC, nullptr);
13919
13920 // Make a note if we created a new pack in the scope of a lambda, so that
13921 // we know that references to that pack must also be expanded within the
13922 // lambda scope.
13923 if (New->isParameterPack())
13924 if (auto *LSI = getEnclosingLambda())
13925 LSI->LocalPacks.push_back(New);
13926
13927 if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
13928 New->getType().hasNonTrivialToPrimitiveCopyCUnion())
13929 checkNonTrivialCUnion(New->getType(), New->getLocation(),
13930 NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy);
13931
13932 // Parameters can not be abstract class types.
13933 // For record types, this is done by the AbstractClassUsageDiagnoser once
13934 // the class has been completely parsed.
13935 if (!CurContext->isRecord() &&
13936 RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
13937 AbstractParamType))
13938 New->setInvalidDecl();
13939
13940 // Parameter declarators cannot be interface types. All ObjC objects are
13941 // passed by reference.
13942 if (T->isObjCObjectType()) {
13943 SourceLocation TypeEndLoc =
13944 getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc());
13945 Diag(NameLoc,
13946 diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
13947 << FixItHint::CreateInsertion(TypeEndLoc, "*");
13948 T = Context.getObjCObjectPointerType(T);
13949 New->setType(T);
13950 }
13951
13952 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
13953 // duration shall not be qualified by an address-space qualifier."
13954 // Since all parameters have automatic store duration, they can not have
13955 // an address space.
13956 if (T.getAddressSpace() != LangAS::Default &&
13957 // OpenCL allows function arguments declared to be an array of a type
13958 // to be qualified with an address space.
13959 !(getLangOpts().OpenCL &&
13960 (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) {
13961 Diag(NameLoc, diag::err_arg_with_address_space);
13962 New->setInvalidDecl();
13963 }
13964
13965 // PPC MMA non-pointer types are not allowed as function argument types.
13966 if (Context.getTargetInfo().getTriple().isPPC64() &&
13967 CheckPPCMMAType(New->getOriginalType(), New->getLocation())) {
13968 New->setInvalidDecl();
13969 }
13970
13971 return New;
13972}
13973
13974void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
13975 SourceLocation LocAfterDecls) {
13976 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
13977
13978 // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
13979 // for a K&R function.
13980 if (!FTI.hasPrototype) {
13981 for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
13982 --i;
13983 if (FTI.Params[i].Param == nullptr) {
13984 SmallString<256> Code;
13985 llvm::raw_svector_ostream(Code)
13986 << " int " << FTI.Params[i].Ident->getName() << ";\n";
13987 Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
13988 << FTI.Params[i].Ident
13989 << FixItHint::CreateInsertion(LocAfterDecls, Code);
13990
13991 // Implicitly declare the argument as type 'int' for lack of a better
13992 // type.
13993 AttributeFactory attrs;
13994 DeclSpec DS(attrs);
13995 const char* PrevSpec; // unused
13996 unsigned DiagID; // unused
13997 DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
13998 DiagID, Context.getPrintingPolicy());
13999 // Use the identifier location for the type source range.
14000 DS.SetRangeStart(FTI.Params[i].IdentLoc);
14001 DS.SetRangeEnd(FTI.Params[i].IdentLoc);
14002 Declarator ParamD(DS, DeclaratorContext::KNRTypeList);
14003 ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
14004 FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
14005 }
14006 }
14007 }
14008}
14009
14010Decl *
14011Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
14012 MultiTemplateParamsArg TemplateParameterLists,
14013 SkipBodyInfo *SkipBody) {
14014 assert(getCurFunctionDecl() == nullptr && "Function parsing confused")(static_cast<void> (0));
14015 assert(D.isFunctionDeclarator() && "Not a function declarator!")(static_cast<void> (0));
14016 Scope *ParentScope = FnBodyScope->getParent();
14017
14018 // Check if we are in an `omp begin/end declare variant` scope. If we are, and
14019 // we define a non-templated function definition, we will create a declaration
14020 // instead (=BaseFD), and emit the definition with a mangled name afterwards.
14021 // The base function declaration will have the equivalent of an `omp declare
14022 // variant` annotation which specifies the mangled definition as a
14023 // specialization function under the OpenMP context defined as part of the
14024 // `omp begin declare variant`.
14025 SmallVector<FunctionDecl *, 4> Bases;
14026 if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope())
14027 ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
14028 ParentScope, D, TemplateParameterLists, Bases);
14029
14030 D.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
14031 Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
14032 Decl *Dcl = ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody);
14033
14034 if (!Bases.empty())
14035 ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl, Bases);
14036
14037 return Dcl;
14038}
14039
14040void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
14041 Consumer.HandleInlineFunctionDefinition(D);
14042}
14043
14044static bool
14045ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
14046 const FunctionDecl *&PossiblePrototype) {
14047 // Don't warn about invalid declarations.
14048 if (FD->isInvalidDecl())
14049 return false;
14050
14051 // Or declarations that aren't global.
14052 if (!FD->isGlobal())
14053 return false;
14054
14055 // Don't warn about C++ member functions.
14056 if (isa<CXXMethodDecl>(FD))
14057 return false;
14058
14059 // Don't warn about 'main'.
14060 if (isa<TranslationUnitDecl>(FD->getDeclContext()->getRedeclContext()))
14061 if (IdentifierInfo *II = FD->getIdentifier())
14062 if (II->isStr("main") || II->isStr("efi_main"))
14063 return false;
14064
14065 // Don't warn about inline functions.
14066 if (FD->isInlined())
14067 return false;
14068
14069 // Don't warn about function templates.
14070 if (FD->getDescribedFunctionTemplate())
14071 return false;
14072
14073 // Don't warn about function template specializations.
14074 if (FD->isFunctionTemplateSpecialization())
14075 return false;
14076
14077 // Don't warn for OpenCL kernels.
14078 if (FD->hasAttr<OpenCLKernelAttr>())
14079 return false;
14080
14081 // Don't warn on explicitly deleted functions.
14082 if (FD->isDeleted())
14083 return false;
14084
14085 for (const FunctionDecl *Prev = FD->getPreviousDecl();
14086 Prev; Prev = Prev->getPreviousDecl()) {
14087 // Ignore any declarations that occur in function or method
14088 // scope, because they aren't visible from the header.
14089 if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
14090 continue;
14091
14092 PossiblePrototype = Prev;
14093 return Prev->getType()->isFunctionNoProtoType();
14094 }
14095
14096 return true;
14097}
14098
14099void
14100Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
14101 const FunctionDecl *EffectiveDefinition,
14102 SkipBodyInfo *SkipBody) {
14103 const FunctionDecl *Definition = EffectiveDefinition;
14104 if (!Definition &&
14105 !FD->isDefined(Definition, /*CheckForPendingFriendDefinition*/ true))
14106 return;
14107
14108 if (Definition->getFriendObjectKind() != Decl::FOK_None) {
14109 if (FunctionDecl *OrigDef = Definition->getInstantiatedFromMemberFunction()) {
14110 if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
14111 // A merged copy of the same function, instantiated as a member of
14112 // the same class, is OK.
14113 if (declaresSameEntity(OrigFD, OrigDef) &&
14114 declaresSameEntity(cast<Decl>(Definition->getLexicalDeclContext()),
14115 cast<Decl>(FD->getLexicalDeclContext())))
14116 return;
14117 }
14118 }
14119 }
14120
14121 if (canRedefineFunction(Definition, getLangOpts()))
14122 return;
14123
14124 // Don't emit an error when this is redefinition of a typo-corrected
14125 // definition.
14126 if (TypoCorrectedFunctionDefinitions.count(Definition))
14127 return;
14128
14129 // If we don't have a visible definition of the function, and it's inline or
14130 // a template, skip the new definition.
14131 if (SkipBody && !hasVisibleDefinition(Definition) &&
14132 (Definition->getFormalLinkage() == InternalLinkage ||
14133 Definition->isInlined() ||
14134 Definition->getDescribedFunctionTemplate() ||
14135 Definition->getNumTemplateParameterLists())) {
14136 SkipBody->ShouldSkip = true;
14137 SkipBody->Previous = const_cast<FunctionDecl*>(Definition);
14138 if (auto *TD = Definition->getDescribedFunctionTemplate())
14139 makeMergedDefinitionVisible(TD);
14140 makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
14141 return;
14142 }
14143
14144 if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
14145 Definition->getStorageClass() == SC_Extern)
14146 Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
14147 << FD << getLangOpts().CPlusPlus;
14148 else
14149 Diag(FD->getLocation(), diag::err_redefinition) << FD;
14150
14151 Diag(Definition->getLocation(), diag::note_previous_definition);
14152 FD->setInvalidDecl();
14153}
14154
14155static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
14156 Sema &S) {
14157 CXXRecordDecl *const LambdaClass = CallOperator->getParent();
14158
14159 LambdaScopeInfo *LSI = S.PushLambdaScope();
14160 LSI->CallOperator = CallOperator;
14161 LSI->Lambda = LambdaClass;
14162 LSI->ReturnType = CallOperator->getReturnType();
14163 const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
14164
14165 if (LCD == LCD_None)
14166 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
14167 else if (LCD == LCD_ByCopy)
14168 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
14169 else if (LCD == LCD_ByRef)
14170 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
14171 DeclarationNameInfo DNI = CallOperator->getNameInfo();
14172
14173 LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
14174 LSI->Mutable = !CallOperator->isConst();
14175
14176 // Add the captures to the LSI so they can be noted as already
14177 // captured within tryCaptureVar.
14178 auto I = LambdaClass->field_begin();
14179 for (const auto &C : LambdaClass->captures()) {
14180 if (C.capturesVariable()) {
14181 VarDecl *VD = C.getCapturedVar();
14182 if (VD->isInitCapture())
14183 S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
14184 const bool ByRef = C.getCaptureKind() == LCK_ByRef;
14185 LSI->addCapture(VD, /*IsBlock*/false, ByRef,
14186 /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
14187 /*EllipsisLoc*/C.isPackExpansion()
14188 ? C.getEllipsisLoc() : SourceLocation(),
14189 I->getType(), /*Invalid*/false);
14190
14191 } else if (C.capturesThis()) {
14192 LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(),
14193 C.getCaptureKind() == LCK_StarThis);
14194 } else {
14195 LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(),
14196 I->getType());
14197 }
14198 ++I;
14199 }
14200}
14201
14202Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
14203 SkipBodyInfo *SkipBody) {
14204 if (!D) {
14205 // Parsing the function declaration failed in some way. Push on a fake scope
14206 // anyway so we can try to parse the function body.
14207 PushFunctionScope();
14208 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
14209 return D;
14210 }
14211
14212 FunctionDecl *FD = nullptr;
14213
14214 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
14215 FD = FunTmpl->getTemplatedDecl();
14216 else
14217 FD = cast<FunctionDecl>(D);
14218
14219 // Do not push if it is a lambda because one is already pushed when building
14220 // the lambda in ActOnStartOfLambdaDefinition().
14221 if (!isLambdaCallOperator(FD))
14222 PushExpressionEvaluationContext(
14223 FD->isConsteval() ? ExpressionEvaluationContext::ConstantEvaluated
14224 : ExprEvalContexts.back().Context);
14225
14226 // Check for defining attributes before the check for redefinition.
14227 if (const auto *Attr = FD->getAttr<AliasAttr>()) {
14228 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
14229 FD->dropAttr<AliasAttr>();
14230 FD->setInvalidDecl();
14231 }
14232 if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
14233 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
14234 FD->dropAttr<IFuncAttr>();
14235 FD->setInvalidDecl();
14236 }
14237
14238 if (auto *Ctor = dyn_cast<CXXConstructorDecl>(FD)) {
14239 if (Ctor->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
14240 Ctor->isDefaultConstructor() &&
14241 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
14242 // If this is an MS ABI dllexport default constructor, instantiate any
14243 // default arguments.
14244 InstantiateDefaultCtorDefaultArgs(Ctor);
14245 }
14246 }
14247
14248 // See if this is a redefinition. If 'will have body' (or similar) is already
14249 // set, then these checks were already performed when it was set.
14250 if (!FD->willHaveBody() && !FD->isLateTemplateParsed() &&
14251 !FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
14252 CheckForFunctionRedefinition(FD, nullptr, SkipBody);
14253
14254 // If we're skipping the body, we're done. Don't enter the scope.
14255 if (SkipBody && SkipBody->ShouldSkip)
14256 return D;
14257 }
14258
14259 // Mark this function as "will have a body eventually". This lets users to
14260 // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
14261 // this function.
14262 FD->setWillHaveBody();
14263
14264 // If we are instantiating a generic lambda call operator, push
14265 // a LambdaScopeInfo onto the function stack. But use the information
14266 // that's already been calculated (ActOnLambdaExpr) to prime the current
14267 // LambdaScopeInfo.
14268 // When the template operator is being specialized, the LambdaScopeInfo,
14269 // has to be properly restored so that tryCaptureVariable doesn't try
14270 // and capture any new variables. In addition when calculating potential
14271 // captures during transformation of nested lambdas, it is necessary to
14272 // have the LSI properly restored.
14273 if (isGenericLambdaCallOperatorSpecialization(FD)) {
14274 assert(inTemplateInstantiation() &&(static_cast<void> (0))
14275 "There should be an active template instantiation on the stack "(static_cast<void> (0))
14276 "when instantiating a generic lambda!")(static_cast<void> (0));
14277 RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
14278 } else {
14279 // Enter a new function scope
14280 PushFunctionScope();
14281 }
14282
14283 // Builtin functions cannot be defined.
14284 if (unsigned BuiltinID = FD->getBuiltinID()) {
14285 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
14286 !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
14287 Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
14288 FD->setInvalidDecl();
14289 }
14290 }
14291
14292 // The return type of a function definition must be complete
14293 // (C99 6.9.1p3, C++ [dcl.fct]p6).
14294 QualType ResultType = FD->getReturnType();
14295 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
14296 !FD->isInvalidDecl() &&
14297 RequireCompleteType(FD->getLocation(), ResultType,
14298 diag::err_func_def_incomplete_result))
14299 FD->setInvalidDecl();
14300
14301 if (FnBodyScope)
14302 PushDeclContext(FnBodyScope, FD);
14303
14304 // Check the validity of our function parameters
14305 CheckParmsForFunctionDef(FD->parameters(),
14306 /*CheckParameterNames=*/true);
14307
14308 // Add non-parameter declarations already in the function to the current
14309 // scope.
14310 if (FnBodyScope) {
14311 for (Decl *NPD : FD->decls()) {
14312 auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
14313 if (!NonParmDecl)
14314 continue;
14315 assert(!isa<ParmVarDecl>(NonParmDecl) &&(static_cast<void> (0))
14316 "parameters should not be in newly created FD yet")(static_cast<void> (0));
14317
14318 // If the decl has a name, make it accessible in the current scope.
14319 if (NonParmDecl->getDeclName())
14320 PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
14321
14322 // Similarly, dive into enums and fish their constants out, making them
14323 // accessible in this scope.
14324 if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
14325 for (auto *EI : ED->enumerators())
14326 PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
14327 }
14328 }
14329 }
14330
14331 // Introduce our parameters into the function scope
14332 for (auto Param : FD->parameters()) {
14333 Param->setOwningFunction(FD);
14334
14335 // If this has an identifier, add it to the scope stack.
14336 if (Param->getIdentifier() && FnBodyScope) {
14337 CheckShadow(FnBodyScope, Param);
14338
14339 PushOnScopeChains(Param, FnBodyScope);
14340 }
14341 }
14342
14343 // Ensure that the function's exception specification is instantiated.
14344 if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
14345 ResolveExceptionSpec(D->getLocation(), FPT);
14346
14347 // dllimport cannot be applied to non-inline function definitions.
14348 if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
14349 !FD->isTemplateInstantiation()) {
14350 assert(!FD->hasAttr<DLLExportAttr>())(static_cast<void> (0));
14351 Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
14352 FD->setInvalidDecl();
14353 return D;
14354 }
14355 // We want to attach documentation to original Decl (which might be
14356 // a function template).
14357 ActOnDocumentableDecl(D);
14358 if (getCurLexicalContext()->isObjCContainer() &&
14359 getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
14360 getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
14361 Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
14362
14363 return D;
14364}
14365
14366/// Given the set of return statements within a function body,
14367/// compute the variables that are subject to the named return value
14368/// optimization.
14369///
14370/// Each of the variables that is subject to the named return value
14371/// optimization will be marked as NRVO variables in the AST, and any
14372/// return statement that has a marked NRVO variable as its NRVO candidate can
14373/// use the named return value optimization.
14374///
14375/// This function applies a very simplistic algorithm for NRVO: if every return
14376/// statement in the scope of a variable has the same NRVO candidate, that
14377/// candidate is an NRVO variable.
14378void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
14379 ReturnStmt **Returns = Scope->Returns.data();
14380
14381 for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
14382 if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
14383 if (!NRVOCandidate->isNRVOVariable())
14384 Returns[I]->setNRVOCandidate(nullptr);
14385 }
14386 }
14387}
14388
14389bool Sema::canDelayFunctionBody(const Declarator &D) {
14390 // We can't delay parsing the body of a constexpr function template (yet).
14391 if (D.getDeclSpec().hasConstexprSpecifier())
14392 return false;
14393
14394 // We can't delay parsing the body of a function template with a deduced
14395 // return type (yet).
14396 if (D.getDeclSpec().hasAutoTypeSpec()) {
14397 // If the placeholder introduces a non-deduced trailing return type,
14398 // we can still delay parsing it.
14399 if (D.getNumTypeObjects()) {
14400 const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
14401 if (Outer.Kind == DeclaratorChunk::Function &&
14402 Outer.Fun.hasTrailingReturnType()) {
14403 QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
14404 return Ty.isNull() || !Ty->isUndeducedType();
14405 }
14406 }
14407 return false;
14408 }
14409
14410 return true;
14411}
14412
14413bool Sema::canSkipFunctionBody(Decl *D) {
14414 // We cannot skip the body of a function (or function template) which is
14415 // constexpr, since we may need to evaluate its body in order to parse the
14416 // rest of the file.
14417 // We cannot skip the body of a function with an undeduced return type,
14418 // because any callers of that function need to know the type.
14419 if (const FunctionDecl *FD = D->getAsFunction()) {
14420 if (FD->isConstexpr())
14421 return false;
14422 // We can't simply call Type::isUndeducedType here, because inside template
14423 // auto can be deduced to a dependent type, which is not considered
14424 // "undeduced".
14425 if (FD->getReturnType()->getContainedDeducedType())
14426 return false;
14427 }
14428 return Consumer.shouldSkipFunctionBody(D);
14429}
14430
14431Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
14432 if (!Decl)
14433 return nullptr;
14434 if (FunctionDecl *FD = Decl->getAsFunction())
14435 FD->setHasSkippedBody();
14436 else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
14437 MD->setHasSkippedBody();
14438 return Decl;
14439}
14440
14441Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
14442 return ActOnFinishFunctionBody(D, BodyArg, false);
14443}
14444
14445/// RAII object that pops an ExpressionEvaluationContext when exiting a function
14446/// body.
14447class ExitFunctionBodyRAII {
14448public:
14449 ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {}
14450 ~ExitFunctionBodyRAII() {
14451 if (!IsLambda)
14452 S.PopExpressionEvaluationContext();
14453 }
14454
14455private:
14456 Sema &S;
14457 bool IsLambda = false;
14458};
14459
14460static void diagnoseImplicitlyRetainedSelf(Sema &S) {
14461 llvm::DenseMap<const BlockDecl *, bool> EscapeInfo;
14462
14463 auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) {
14464 if (EscapeInfo.count(BD))
14465 return EscapeInfo[BD];
14466
14467 bool R = false;
14468 const BlockDecl *CurBD = BD;
14469
14470 do {
14471 R = !CurBD->doesNotEscape();
14472 if (R)
14473 break;
14474 CurBD = CurBD->getParent()->getInnermostBlockDecl();
14475 } while (CurBD);
14476
14477 return EscapeInfo[BD] = R;
14478 };
14479
14480 // If the location where 'self' is implicitly retained is inside a escaping
14481 // block, emit a diagnostic.
14482 for (const std::pair<SourceLocation, const BlockDecl *> &P :
14483 S.ImplicitlyRetainedSelfLocs)
14484 if (IsOrNestedInEscapingBlock(P.second))
14485 S.Diag(P.first, diag::warn_implicitly_retains_self)
14486 << FixItHint::CreateInsertion(P.first, "self->");
14487}
14488
14489Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
14490 bool IsInstantiation) {
14491 FunctionScopeInfo *FSI = getCurFunction();
14492 FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
14493
14494 if (FSI->UsesFPIntrin && !FD->hasAttr<StrictFPAttr>())
14495 FD->addAttr(StrictFPAttr::CreateImplicit(Context));
14496
14497 sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
14498 sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
14499
14500 if (getLangOpts().Coroutines && FSI->isCoroutine())
14501 CheckCompletedCoroutineBody(FD, Body);
14502
14503 // Do not call PopExpressionEvaluationContext() if it is a lambda because one
14504 // is already popped when finishing the lambda in BuildLambdaExpr(). This is
14505 // meant to pop the context added in ActOnStartOfFunctionDef().
14506 ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD));
14507
14508 if (FD) {
14509 FD->setBody(Body);
14510 FD->setWillHaveBody(false);
14511
14512 if (getLangOpts().CPlusPlus14) {
14513 if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
14514 FD->getReturnType()->isUndeducedType()) {
14515 // If the function has a deduced result type but contains no 'return'
14516 // statements, the result type as written must be exactly 'auto', and
14517 // the deduced result type is 'void'.
14518 if (!FD->getReturnType()->getAs<AutoType>()) {
14519 Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
14520 << FD->getReturnType();
14521 FD->setInvalidDecl();
14522 } else {
14523 // Substitute 'void' for the 'auto' in the type.
14524 TypeLoc ResultType = getReturnTypeLoc(FD);
14525 Context.adjustDeducedFunctionResultType(
14526 FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
14527 }
14528 }
14529 } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
14530 // In C++11, we don't use 'auto' deduction rules for lambda call
14531 // operators because we don't support return type deduction.
14532 auto *LSI = getCurLambda();
14533 if (LSI->HasImplicitReturnType) {
14534 deduceClosureReturnType(*LSI);
14535
14536 // C++11 [expr.prim.lambda]p4:
14537 // [...] if there are no return statements in the compound-statement
14538 // [the deduced type is] the type void
14539 QualType RetType =
14540 LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
14541
14542 // Update the return type to the deduced type.
14543 const auto *Proto = FD->getType()->castAs<FunctionProtoType>();
14544 FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
14545 Proto->getExtProtoInfo()));
14546 }
14547 }
14548
14549 // If the function implicitly returns zero (like 'main') or is naked,
14550 // don't complain about missing return statements.
14551 if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
14552 WP.disableCheckFallThrough();
14553
14554 // MSVC permits the use of pure specifier (=0) on function definition,
14555 // defined at class scope, warn about this non-standard construct.
14556 if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine())
14557 Diag(FD->getLocation(), diag::ext_pure_function_definition);
14558
14559 if (!FD->isInvalidDecl()) {
14560 // Don't diagnose unused parameters of defaulted or deleted functions.
14561 if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody())
14562 DiagnoseUnusedParameters(FD->parameters());
14563 DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
14564 FD->getReturnType(), FD);
14565
14566 // If this is a structor, we need a vtable.
14567 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
14568 MarkVTableUsed(FD->getLocation(), Constructor->getParent());
14569 else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
14570 MarkVTableUsed(FD->getLocation(), Destructor->getParent());
14571
14572 // Try to apply the named return value optimization. We have to check
14573 // if we can do this here because lambdas keep return statements around
14574 // to deduce an implicit return type.
14575 if (FD->getReturnType()->isRecordType() &&
14576 (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
14577 computeNRVO(Body, FSI);
14578 }
14579
14580 // GNU warning -Wmissing-prototypes:
14581 // Warn if a global function is defined without a previous
14582 // prototype declaration. This warning is issued even if the
14583 // definition itself provides a prototype. The aim is to detect
14584 // global functions that fail to be declared in header files.
14585 const FunctionDecl *PossiblePrototype = nullptr;
14586 if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) {
14587 Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
14588
14589 if (PossiblePrototype) {
14590 // We found a declaration that is not a prototype,
14591 // but that could be a zero-parameter prototype
14592 if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) {
14593 TypeLoc TL = TI->getTypeLoc();
14594 if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
14595 Diag(PossiblePrototype->getLocation(),
14596 diag::note_declaration_not_a_prototype)
14597 << (FD->getNumParams() != 0)
14598 << (FD->getNumParams() == 0
14599 ? FixItHint::CreateInsertion(FTL.getRParenLoc(), "void")
14600 : FixItHint{});
14601 }
14602 } else {
14603 // Returns true if the token beginning at this Loc is `const`.
14604 auto isLocAtConst = [&](SourceLocation Loc, const SourceManager &SM,
14605 const LangOptions &LangOpts) {
14606 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
14607 if (LocInfo.first.isInvalid())
14608 return false;
14609
14610 bool Invalid = false;
14611 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
14612 if (Invalid)
14613 return false;
14614
14615 if (LocInfo.second > Buffer.size())
14616 return false;
14617
14618 const char *LexStart = Buffer.data() + LocInfo.second;
14619 StringRef StartTok(LexStart, Buffer.size() - LocInfo.second);
14620
14621 return StartTok.consume_front("const") &&
14622 (StartTok.empty() || isWhitespace(StartTok[0]) ||
14623 StartTok.startswith("/*") || StartTok.startswith("//"));
14624 };
14625
14626 auto findBeginLoc = [&]() {
14627 // If the return type has `const` qualifier, we want to insert
14628 // `static` before `const` (and not before the typename).
14629 if ((FD->getReturnType()->isAnyPointerType() &&
14630 FD->getReturnType()->getPointeeType().isConstQualified()) ||
14631 FD->getReturnType().isConstQualified()) {
14632 // But only do this if we can determine where the `const` is.
14633
14634 if (isLocAtConst(FD->getBeginLoc(), getSourceManager(),
14635 getLangOpts()))
14636
14637 return FD->getBeginLoc();
14638 }
14639 return FD->getTypeSpecStartLoc();
14640 };
14641 Diag(FD->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
14642 << /* function */ 1
14643 << (FD->getStorageClass() == SC_None
14644 ? FixItHint::CreateInsertion(findBeginLoc(), "static ")
14645 : FixItHint{});
14646 }
14647
14648 // GNU warning -Wstrict-prototypes
14649 // Warn if K&R function is defined without a previous declaration.
14650 // This warning is issued only if the definition itself does not provide
14651 // a prototype. Only K&R definitions do not provide a prototype.
14652 if (!FD->hasWrittenPrototype()) {
14653 TypeSourceInfo *TI = FD->getTypeSourceInfo();
14654 TypeLoc TL = TI->getTypeLoc();
14655 FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>();
14656 Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2;
14657 }
14658 }
14659
14660 // Warn on CPUDispatch with an actual body.
14661 if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body)
14662 if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body))
14663 if (!CmpndBody->body_empty())
14664 Diag(CmpndBody->body_front()->getBeginLoc(),
14665 diag::warn_dispatch_body_ignored);
14666
14667 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
14668 const CXXMethodDecl *KeyFunction;
14669 if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
14670 MD->isVirtual() &&
14671 (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
14672 MD == KeyFunction->getCanonicalDecl()) {
14673 // Update the key-function state if necessary for this ABI.
14674 if (FD->isInlined() &&
14675 !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
14676 Context.setNonKeyFunction(MD);
14677
14678 // If the newly-chosen key function is already defined, then we
14679 // need to mark the vtable as used retroactively.
14680 KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
14681 const FunctionDecl *Definition;
14682 if (KeyFunction && KeyFunction->isDefined(Definition))
14683 MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
14684 } else {
14685 // We just defined they key function; mark the vtable as used.
14686 MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
14687 }
14688 }
14689 }
14690
14691 assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&(static_cast<void> (0))
14692 "Function parsing confused")(static_cast<void> (0));
14693 } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
14694 assert(MD == getCurMethodDecl() && "Method parsing confused")(static_cast<void> (0));
14695 MD->setBody(Body);
14696 if (!MD->isInvalidDecl()) {
14697 DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
14698 MD->getReturnType(), MD);
14699
14700 if (Body)
14701 computeNRVO(Body, FSI);
14702 }
14703 if (FSI->ObjCShouldCallSuper) {
14704 Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call)
14705 << MD->getSelector().getAsString();
14706 FSI->ObjCShouldCallSuper = false;
14707 }
14708 if (FSI->ObjCWarnForNoDesignatedInitChain) {
14709 const ObjCMethodDecl *InitMethod = nullptr;
14710 bool isDesignated =
14711 MD->isDesignatedInitializerForTheInterface(&InitMethod);
14712 assert(isDesignated && InitMethod)(static_cast<void> (0));
14713 (void)isDesignated;
14714
14715 auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
14716 auto IFace = MD->getClassInterface();
14717 if (!IFace)
14718 return false;
14719 auto SuperD = IFace->getSuperClass();
14720 if (!SuperD)
14721 return false;
14722 return SuperD->getIdentifier() ==
14723 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
14724 };
14725 // Don't issue this warning for unavailable inits or direct subclasses
14726 // of NSObject.
14727 if (!MD->isUnavailable() && !superIsNSObject(MD)) {
14728 Diag(MD->getLocation(),
14729 diag::warn_objc_designated_init_missing_super_call);
14730 Diag(InitMethod->getLocation(),
14731 diag::note_objc_designated_init_marked_here);
14732 }
14733 FSI->ObjCWarnForNoDesignatedInitChain = false;
14734 }
14735 if (FSI->ObjCWarnForNoInitDelegation) {
14736 // Don't issue this warning for unavaialable inits.
14737 if (!MD->isUnavailable())
14738 Diag(MD->getLocation(),
14739 diag::warn_objc_secondary_init_missing_init_call);
14740 FSI->ObjCWarnForNoInitDelegation = false;
14741 }
14742
14743 diagnoseImplicitlyRetainedSelf(*this);
14744 } else {
14745 // Parsing the function declaration failed in some way. Pop the fake scope
14746 // we pushed on.
14747 PopFunctionScopeInfo(ActivePolicy, dcl);
14748 return nullptr;
14749 }
14750
14751 if (Body && FSI->HasPotentialAvailabilityViolations)
14752 DiagnoseUnguardedAvailabilityViolations(dcl);
14753
14754 assert(!FSI->ObjCShouldCallSuper &&(static_cast<void> (0))
14755 "This should only be set for ObjC methods, which should have been "(static_cast<void> (0))
14756 "handled in the block above.")(static_cast<void> (0));
14757
14758 // Verify and clean out per-function state.
14759 if (Body && (!FD || !FD->isDefaulted())) {
14760 // C++ constructors that have function-try-blocks can't have return
14761 // statements in the handlers of that block. (C++ [except.handle]p14)
14762 // Verify this.
14763 if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
14764 DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
14765
14766 // Verify that gotos and switch cases don't jump into scopes illegally.
14767 if (FSI->NeedsScopeChecking() &&
14768 !PP.isCodeCompletionEnabled())
14769 DiagnoseInvalidJumps(Body);
14770
14771 if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
14772 if (!Destructor->getParent()->isDependentType())
14773 CheckDestructor(Destructor);
14774
14775 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
14776 Destructor->getParent());
14777 }
14778
14779 // If any errors have occurred, clear out any temporaries that may have
14780 // been leftover. This ensures that these temporaries won't be picked up for
14781 // deletion in some later function.
14782 if (hasUncompilableErrorOccurred() ||
14783 getDiagnostics().getSuppressAllDiagnostics()) {
14784 DiscardCleanupsInEvaluationContext();
14785 }
14786 if (!hasUncompilableErrorOccurred() &&
14787 !isa<FunctionTemplateDecl>(dcl)) {
14788 // Since the body is valid, issue any analysis-based warnings that are
14789 // enabled.
14790 ActivePolicy = &WP;
14791 }
14792
14793 if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
14794 !CheckConstexprFunctionDefinition(FD, CheckConstexprKind::Diagnose))
14795 FD->setInvalidDecl();
14796
14797 if (FD && FD->hasAttr<NakedAttr>()) {
14798 for (const Stmt *S : Body->children()) {
14799 // Allow local register variables without initializer as they don't
14800 // require prologue.
14801 bool RegisterVariables = false;
14802 if (auto *DS = dyn_cast<DeclStmt>(S)) {
14803 for (const auto *Decl : DS->decls()) {
14804 if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
14805 RegisterVariables =
14806 Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
14807 if (!RegisterVariables)
14808 break;
14809 }
14810 }
14811 }
14812 if (RegisterVariables)
14813 continue;
14814 if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
14815 Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function);
14816 Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
14817 FD->setInvalidDecl();
14818 break;
14819 }
14820 }
14821 }
14822
14823 assert(ExprCleanupObjects.size() ==(static_cast<void> (0))
14824 ExprEvalContexts.back().NumCleanupObjects &&(static_cast<void> (0))
14825 "Leftover temporaries in function")(static_cast<void> (0));
14826 assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function")(static_cast<void> (0));
14827 assert(MaybeODRUseExprs.empty() &&(static_cast<void> (0))
14828 "Leftover expressions for odr-use checking")(static_cast<void> (0));
14829 }
14830
14831 if (!IsInstantiation)
14832 PopDeclContext();
14833
14834 PopFunctionScopeInfo(ActivePolicy, dcl);
14835 // If any errors have occurred, clear out any temporaries that may have
14836 // been leftover. This ensures that these temporaries won't be picked up for
14837 // deletion in some later function.
14838 if (hasUncompilableErrorOccurred()) {
14839 DiscardCleanupsInEvaluationContext();
14840 }
14841
14842 if (FD && (LangOpts.OpenMP || LangOpts.CUDA || LangOpts.SYCLIsDevice)) {
14843 auto ES = getEmissionStatus(FD);
14844 if (ES == Sema::FunctionEmissionStatus::Emitted ||
14845 ES == Sema::FunctionEmissionStatus::Unknown)
14846 DeclsToCheckForDeferredDiags.insert(FD);
14847 }
14848
14849 return dcl;
14850}
14851
14852/// When we finish delayed parsing of an attribute, we must attach it to the
14853/// relevant Decl.
14854void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
14855 ParsedAttributes &Attrs) {
14856 // Always attach attributes to the underlying decl.
14857 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
14858 D = TD->getTemplatedDecl();
14859 ProcessDeclAttributeList(S, D, Attrs);
14860
14861 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
14862 if (Method->isStatic())
14863 checkThisInStaticMemberFunctionAttributes(Method);
14864}
14865
14866/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
14867/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
14868NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
14869 IdentifierInfo &II, Scope *S) {
14870 // Find the scope in which the identifier is injected and the corresponding
14871 // DeclContext.
14872 // FIXME: C89 does not say what happens if there is no enclosing block scope.
14873 // In that case, we inject the declaration into the translation unit scope
14874 // instead.
14875 Scope *BlockScope = S;
14876 while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
14877 BlockScope = BlockScope->getParent();
14878
14879 Scope *ContextScope = BlockScope;
14880 while (!ContextScope->getEntity())
14881 ContextScope = ContextScope->getParent();
14882 ContextRAII SavedContext(*this, ContextScope->getEntity());
14883
14884 // Before we produce a declaration for an implicitly defined
14885 // function, see whether there was a locally-scoped declaration of
14886 // this name as a function or variable. If so, use that
14887 // (non-visible) declaration, and complain about it.
14888 NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
14889 if (ExternCPrev) {
14890 // We still need to inject the function into the enclosing block scope so
14891 // that later (non-call) uses can see it.
14892 PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
14893
14894 // C89 footnote 38:
14895 // If in fact it is not defined as having type "function returning int",
14896 // the behavior is undefined.
14897 if (!isa<FunctionDecl>(ExternCPrev) ||
14898 !Context.typesAreCompatible(
14899 cast<FunctionDecl>(ExternCPrev)->getType(),
14900 Context.getFunctionNoProtoType(Context.IntTy))) {
14901 Diag(Loc, diag::ext_use_out_of_scope_declaration)
14902 << ExternCPrev << !getLangOpts().C99;
14903 Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
14904 return ExternCPrev;
14905 }
14906 }
14907
14908 // Extension in C99. Legal in C90, but warn about it.
14909 unsigned diag_id;
14910 if (II.getName().startswith("__builtin_"))
14911 diag_id = diag::warn_builtin_unknown;
14912 // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
14913 else if (getLangOpts().OpenCL)
14914 diag_id = diag::err_opencl_implicit_function_decl;
14915 else if (getLangOpts().C99)
14916 diag_id = diag::ext_implicit_function_decl;
14917 else
14918 diag_id = diag::warn_implicit_function_decl;
14919 Diag(Loc, diag_id) << &II;
14920
14921 // If we found a prior declaration of this function, don't bother building
14922 // another one. We've already pushed that one into scope, so there's nothing
14923 // more to do.
14924 if (ExternCPrev)
14925 return ExternCPrev;
14926
14927 // Because typo correction is expensive, only do it if the implicit
14928 // function declaration is going to be treated as an error.
14929 if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
14930 TypoCorrection Corrected;
14931 DeclFilterCCC<FunctionDecl> CCC{};
14932 if (S && (Corrected =
14933 CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName,
14934 S, nullptr, CCC, CTK_NonError)))
14935 diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
14936 /*ErrorRecovery*/false);
14937 }
14938
14939 // Set a Declarator for the implicit definition: int foo();
14940 const char *Dummy;
14941 AttributeFactory attrFactory;
14942 DeclSpec DS(attrFactory);
14943 unsigned DiagID;
14944 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
14945 Context.getPrintingPolicy());
14946 (void)Error; // Silence warning.
14947 assert(!Error && "Error setting up implicit decl!")(static_cast<void> (0));
14948 SourceLocation NoLoc;
14949 Declarator D(DS, DeclaratorContext::Block);
14950 D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
14951 /*IsAmbiguous=*/false,
14952 /*LParenLoc=*/NoLoc,
14953 /*Params=*/nullptr,
14954 /*NumParams=*/0,
14955 /*EllipsisLoc=*/NoLoc,
14956 /*RParenLoc=*/NoLoc,
14957 /*RefQualifierIsLvalueRef=*/true,
14958 /*RefQualifierLoc=*/NoLoc,
14959 /*MutableLoc=*/NoLoc, EST_None,
14960 /*ESpecRange=*/SourceRange(),
14961 /*Exceptions=*/nullptr,
14962 /*ExceptionRanges=*/nullptr,
14963 /*NumExceptions=*/0,
14964 /*NoexceptExpr=*/nullptr,
14965 /*ExceptionSpecTokens=*/nullptr,
14966 /*DeclsInPrototype=*/None, Loc,
14967 Loc, D),
14968 std::move(DS.getAttributes()), SourceLocation());
14969 D.SetIdentifier(&II, Loc);
14970
14971 // Insert this function into the enclosing block scope.
14972 FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
14973 FD->setImplicit();
14974
14975 AddKnownFunctionAttributes(FD);
14976
14977 return FD;
14978}
14979
14980/// If this function is a C++ replaceable global allocation function
14981/// (C++2a [basic.stc.dynamic.allocation], C++2a [new.delete]),
14982/// adds any function attributes that we know a priori based on the standard.
14983///
14984/// We need to check for duplicate attributes both here and where user-written
14985/// attributes are applied to declarations.
14986void Sema::AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
14987 FunctionDecl *FD) {
14988 if (FD->isInvalidDecl())
14989 return;
14990
14991 if (FD->getDeclName().getCXXOverloadedOperator() != OO_New &&
14992 FD->getDeclName().getCXXOverloadedOperator() != OO_Array_New)
14993 return;
14994
14995 Optional<unsigned> AlignmentParam;
14996 bool IsNothrow = false;
14997 if (!FD->isReplaceableGlobalAllocationFunction(&AlignmentParam, &IsNothrow))
14998 return;
14999
15000 // C++2a [basic.stc.dynamic.allocation]p4:
15001 // An allocation function that has a non-throwing exception specification
15002 // indicates failure by returning a null pointer value. Any other allocation
15003 // function never returns a null pointer value and indicates failure only by
15004 // throwing an exception [...]
15005 if (!IsNothrow && !FD->hasAttr<ReturnsNonNullAttr>())
15006 FD->addAttr(ReturnsNonNullAttr::CreateImplicit(Context, FD->getLocation()));
15007
15008 // C++2a [basic.stc.dynamic.allocation]p2:
15009 // An allocation function attempts to allocate the requested amount of
15010 // storage. [...] If the request succeeds, the value returned by a
15011 // replaceable allocation function is a [...] pointer value p0 different
15012 // from any previously returned value p1 [...]
15013 //
15014 // However, this particular information is being added in codegen,
15015 // because there is an opt-out switch for it (-fno-assume-sane-operator-new)
15016
15017 // C++2a [basic.stc.dynamic.allocation]p2:
15018 // An allocation function attempts to allocate the requested amount of
15019 // storage. If it is successful, it returns the address of the start of a
15020 // block of storage whose length in bytes is at least as large as the
15021 // requested size.
15022 if (!FD->hasAttr<AllocSizeAttr>()) {
15023 FD->addAttr(AllocSizeAttr::CreateImplicit(
15024 Context, /*ElemSizeParam=*/ParamIdx(1, FD),
15025 /*NumElemsParam=*/ParamIdx(), FD->getLocation()));
15026 }
15027
15028 // C++2a [basic.stc.dynamic.allocation]p3:
15029 // For an allocation function [...], the pointer returned on a successful
15030 // call shall represent the address of storage that is aligned as follows:
15031 // (3.1) If the allocation function takes an argument of type
15032 // std​::​align_­val_­t, the storage will have the alignment
15033 // specified by the value of this argument.
15034 if (AlignmentParam.hasValue() && !FD->hasAttr<AllocAlignAttr>()) {
15035 FD->addAttr(AllocAlignAttr::CreateImplicit(
15036 Context, ParamIdx(AlignmentParam.getValue(), FD), FD->getLocation()));
15037 }
15038
15039 // FIXME:
15040 // C++2a [basic.stc.dynamic.allocation]p3:
15041 // For an allocation function [...], the pointer returned on a successful
15042 // call shall represent the address of storage that is aligned as follows:
15043 // (3.2) Otherwise, if the allocation function is named operator new[],
15044 // the storage is aligned for any object that does not have
15045 // new-extended alignment ([basic.align]) and is no larger than the
15046 // requested size.
15047 // (3.3) Otherwise, the storage is aligned for any object that does not
15048 // have new-extended alignment and is of the requested size.
15049}
15050
15051/// Adds any function attributes that we know a priori based on
15052/// the declaration of this function.
15053///
15054/// These attributes can apply both to implicitly-declared builtins
15055/// (like __builtin___printf_chk) or to library-declared functions
15056/// like NSLog or printf.
15057///
15058/// We need to check for duplicate attributes both here and where user-written
15059/// attributes are applied to declarations.
15060void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
15061 if (FD->isInvalidDecl())
15062 return;
15063
15064 // If this is a built-in function, map its builtin attributes to
15065 // actual attributes.
15066 if (unsigned BuiltinID = FD->getBuiltinID()) {
15067 // Handle printf-formatting attributes.
15068 unsigned FormatIdx;
15069 bool HasVAListArg;
15070 if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
15071 if (!FD->hasAttr<FormatAttr>()) {
15072 const char *fmt = "printf";
15073 unsigned int NumParams = FD->getNumParams();
15074 if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
15075 FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
15076 fmt = "NSString";
15077 FD->addAttr(FormatAttr::CreateImplicit(Context,
15078 &Context.Idents.get(fmt),
15079 FormatIdx+1,
15080 HasVAListArg ? 0 : FormatIdx+2,
15081 FD->getLocation()));
15082 }
15083 }
15084 if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
15085 HasVAListArg)) {
15086 if (!FD->hasAttr<FormatAttr>())
15087 FD->addAttr(FormatAttr::CreateImplicit(Context,
15088 &Context.Idents.get("scanf"),
15089 FormatIdx+1,
15090 HasVAListArg ? 0 : FormatIdx+2,
15091 FD->getLocation()));
15092 }
15093
15094 // Handle automatically recognized callbacks.
15095 SmallVector<int, 4> Encoding;
15096 if (!FD->hasAttr<CallbackAttr>() &&
15097 Context.BuiltinInfo.performsCallback(BuiltinID, Encoding))
15098 FD->addAttr(CallbackAttr::CreateImplicit(
15099 Context, Encoding.data(), Encoding.size(), FD->getLocation()));
15100
15101 // Mark const if we don't care about errno and that is the only thing
15102 // preventing the function from being const. This allows IRgen to use LLVM
15103 // intrinsics for such functions.
15104 if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() &&
15105 Context.BuiltinInfo.isConstWithoutErrno(BuiltinID))
15106 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
15107
15108 // We make "fma" on some platforms const because we know it does not set
15109 // errno in those environments even though it could set errno based on the
15110 // C standard.
15111 const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
15112 if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) &&
15113 !FD->hasAttr<ConstAttr>()) {
15114 switch (BuiltinID) {
15115 case Builtin::BI__builtin_fma:
15116 case Builtin::BI__builtin_fmaf:
15117 case Builtin::BI__builtin_fmal:
15118 case Builtin::BIfma:
15119 case Builtin::BIfmaf:
15120 case Builtin::BIfmal:
15121 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
15122 break;
15123 default:
15124 break;
15125 }
15126 }
15127
15128 if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
15129 !FD->hasAttr<ReturnsTwiceAttr>())
15130 FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
15131 FD->getLocation()));
15132 if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
15133 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
15134 if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
15135 FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
15136 if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
15137 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
15138 if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
15139 !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
15140 // Add the appropriate attribute, depending on the CUDA compilation mode
15141 // and which target the builtin belongs to. For example, during host
15142 // compilation, aux builtins are __device__, while the rest are __host__.
15143 if (getLangOpts().CUDAIsDevice !=
15144 Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
15145 FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
15146 else
15147 FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
15148 }
15149 }
15150
15151 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD);
15152
15153 // If C++ exceptions are enabled but we are told extern "C" functions cannot
15154 // throw, add an implicit nothrow attribute to any extern "C" function we come
15155 // across.
15156 if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
15157 FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
15158 const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
15159 if (!FPT || FPT->getExceptionSpecType() == EST_None)
15160 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
15161 }
15162
15163 IdentifierInfo *Name = FD->getIdentifier();
15164 if (!Name)
15165 return;
15166 if ((!getLangOpts().CPlusPlus &&
15167 FD->getDeclContext()->isTranslationUnit()) ||
15168 (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
15169 cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
15170 LinkageSpecDecl::lang_c)) {
15171 // Okay: this could be a libc/libm/Objective-C function we know
15172 // about.
15173 } else
15174 return;
15175
15176 if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
15177 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
15178 // target-specific builtins, perhaps?
15179 if (!FD->hasAttr<FormatAttr>())
15180 FD->addAttr(FormatAttr::CreateImplicit(Context,
15181 &Context.Idents.get("printf"), 2,
15182 Name->isStr("vasprintf") ? 0 : 3,
15183 FD->getLocation()));
15184 }
15185
15186 if (Name->isStr("__CFStringMakeConstantString")) {
15187 // We already have a __builtin___CFStringMakeConstantString,
15188 // but builds that use -fno-constant-cfstrings don't go through that.
15189 if (!FD->hasAttr<FormatArgAttr>())
15190 FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
15191 FD->getLocation()));
15192 }
15193}
15194
15195TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
15196 TypeSourceInfo *TInfo) {
15197 assert(D.getIdentifier() && "Wrong callback for declspec without declarator")(static_cast<void> (0));
15198 assert(!T.isNull() && "GetTypeForDeclarator() returned null type")(static_cast<void> (0));
15199
15200 if (!TInfo) {
15201 assert(D.isInvalidType() && "no declarator info for valid type")(static_cast<void> (0));
15202 TInfo = Context.getTrivialTypeSourceInfo(T);
15203 }
15204
15205 // Scope manipulation handled by caller.
15206 TypedefDecl *NewTD =
15207 TypedefDecl::Create(Context, CurContext, D.getBeginLoc(),
15208 D.getIdentifierLoc(), D.getIdentifier(), TInfo);
15209
15210 // Bail out immediately if we have an invalid declaration.
15211 if (D.isInvalidType()) {
15212 NewTD->setInvalidDecl();
15213 return NewTD;
15214 }
15215
15216 if (D.getDeclSpec().isModulePrivateSpecified()) {
15217 if (CurContext->isFunctionOrMethod())
15218 Diag(NewTD->getLocation(), diag::err_module_private_local)
15219 << 2 << NewTD
15220 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
15221 << FixItHint::CreateRemoval(
15222 D.getDeclSpec().getModulePrivateSpecLoc());
15223 else
15224 NewTD->setModulePrivate();
15225 }
15226
15227 // C++ [dcl.typedef]p8:
15228 // If the typedef declaration defines an unnamed class (or
15229 // enum), the first typedef-name declared by the declaration
15230 // to be that class type (or enum type) is used to denote the
15231 // class type (or enum type) for linkage purposes only.
15232 // We need to check whether the type was declared in the declaration.
15233 switch (D.getDeclSpec().getTypeSpecType()) {
15234 case TST_enum:
15235 case TST_struct:
15236 case TST_interface:
15237 case TST_union:
15238 case TST_class: {
15239 TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
15240 setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
15241 break;
15242 }
15243
15244 default:
15245 break;
15246 }
15247
15248 return NewTD;
15249}
15250
15251/// Check that this is a valid underlying type for an enum declaration.
15252bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
15253 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
15254 QualType T = TI->getType();
15255
15256 if (T->isDependentType())
15257 return false;
15258
15259 // This doesn't use 'isIntegralType' despite the error message mentioning
15260 // integral type because isIntegralType would also allow enum types in C.
15261 if (const BuiltinType *BT = T->getAs<BuiltinType>())
15262 if (BT->isInteger())
15263 return false;
15264
15265 if (T->isExtIntType())
15266 return false;
15267
15268 return Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
15269}
15270
15271/// Check whether this is a valid redeclaration of a previous enumeration.
15272/// \return true if the redeclaration was invalid.
15273bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
15274 QualType EnumUnderlyingTy, bool IsFixed,
15275 const EnumDecl *Prev) {
15276 if (IsScoped != Prev->isScoped()) {
15277 Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
15278 << Prev->isScoped();
15279 Diag(Prev->getLocation(), diag::note_previous_declaration);
15280 return true;
15281 }
15282
15283 if (IsFixed && Prev->isFixed()) {
15284 if (!EnumUnderlyingTy->isDependentType() &&
15285 !Prev->getIntegerType()->isDependentType() &&
15286 !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
15287 Prev->getIntegerType())) {
15288 // TODO: Highlight the underlying type of the redeclaration.
15289 Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
15290 << EnumUnderlyingTy << Prev->getIntegerType();
15291 Diag(Prev->getLocation(), diag::note_previous_declaration)
15292 << Prev->getIntegerTypeRange();
15293 return true;
15294 }
15295 } else if (IsFixed != Prev->isFixed()) {
15296 Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
15297 << Prev->isFixed();
15298 Diag(Prev->getLocation(), diag::note_previous_declaration);
15299 return true;
15300 }
15301
15302 return false;
15303}
15304
15305/// Get diagnostic %select index for tag kind for
15306/// redeclaration diagnostic message.
15307/// WARNING: Indexes apply to particular diagnostics only!
15308///
15309/// \returns diagnostic %select index.
15310static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
15311 switch (Tag) {
15312 case TTK_Struct: return 0;
15313 case TTK_Interface: return 1;
15314 case TTK_Class: return 2;
15315 default: llvm_unreachable("Invalid tag kind for redecl diagnostic!")__builtin_unreachable();
15316 }
15317}
15318
15319/// Determine if tag kind is a class-key compatible with
15320/// class for redeclaration (class, struct, or __interface).
15321///
15322/// \returns true iff the tag kind is compatible.
15323static bool isClassCompatTagKind(TagTypeKind Tag)
15324{
15325 return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
15326}
15327
15328Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
15329 TagTypeKind TTK) {
15330 if (isa<TypedefDecl>(PrevDecl))
15331 return NTK_Typedef;
15332 else if (isa<TypeAliasDecl>(PrevDecl))
15333 return NTK_TypeAlias;
15334 else if (isa<ClassTemplateDecl>(PrevDecl))
15335 return NTK_Template;
15336 else if (isa<TypeAliasTemplateDecl>(PrevDecl))
15337 return NTK_TypeAliasTemplate;
15338 else if (isa<TemplateTemplateParmDecl>(PrevDecl))
15339 return NTK_TemplateTemplateArgument;
15340 switch (TTK) {
15341 case TTK_Struct:
15342 case TTK_Interface:
15343 case TTK_Class:
15344 return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
15345 case TTK_Union:
15346 return NTK_NonUnion;
15347 case TTK_Enum:
15348 return NTK_NonEnum;
15349 }
15350 llvm_unreachable("invalid TTK")__builtin_unreachable();
15351}
15352
15353/// Determine whether a tag with a given kind is acceptable
15354/// as a redeclaration of the given tag declaration.
15355///
15356/// \returns true if the new tag kind is acceptable, false otherwise.
15357bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
15358 TagTypeKind NewTag, bool isDefinition,
15359 SourceLocation NewTagLoc,
15360 const IdentifierInfo *Name) {
15361 // C++ [dcl.type.elab]p3:
15362 // The class-key or enum keyword present in the
15363 // elaborated-type-specifier shall agree in kind with the
15364 // declaration to which the name in the elaborated-type-specifier
15365 // refers. This rule also applies to the form of
15366 // elaborated-type-specifier that declares a class-name or
15367 // friend class since it can be construed as referring to the
15368 // definition of the class. Thus, in any
15369 // elaborated-type-specifier, the enum keyword shall be used to
15370 // refer to an enumeration (7.2), the union class-key shall be
15371 // used to refer to a union (clause 9), and either the class or
15372 // struct class-key shall be used to refer to a class (clause 9)
15373 // declared using the class or struct class-key.
15374 TagTypeKind OldTag = Previous->getTagKind();
15375 if (OldTag != NewTag &&
15376 !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)))
15377 return false;
15378
15379 // Tags are compatible, but we might still want to warn on mismatched tags.
15380 // Non-class tags can't be mismatched at this point.
15381 if (!isClassCompatTagKind(NewTag))
15382 return true;
15383
15384 // Declarations for which -Wmismatched-tags is disabled are entirely ignored
15385 // by our warning analysis. We don't want to warn about mismatches with (eg)
15386 // declarations in system headers that are designed to be specialized, but if
15387 // a user asks us to warn, we should warn if their code contains mismatched
15388 // declarations.
15389 auto IsIgnoredLoc = [&](SourceLocation Loc) {
15390 return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch,
15391 Loc);
15392 };
15393 if (IsIgnoredLoc(NewTagLoc))
15394 return true;
15395
15396 auto IsIgnored = [&](const TagDecl *Tag) {
15397 return IsIgnoredLoc(Tag->getLocation());
15398 };
15399 while (IsIgnored(Previous)) {
15400 Previous = Previous->getPreviousDecl();
15401 if (!Previous)
15402 return true;
15403 OldTag = Previous->getTagKind();
15404 }
15405
15406 bool isTemplate = false;
15407 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
15408 isTemplate = Record->getDescribedClassTemplate();
15409
15410 if (inTemplateInstantiation()) {
15411 if (OldTag != NewTag) {
15412 // In a template instantiation, do not offer fix-its for tag mismatches
15413 // since they usually mess up the template instead of fixing the problem.
15414 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
15415 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
15416 << getRedeclDiagFromTagKind(OldTag);
15417 // FIXME: Note previous location?
15418 }
15419 return true;
15420 }
15421
15422 if (isDefinition) {
15423 // On definitions, check all previous tags and issue a fix-it for each
15424 // one that doesn't match the current tag.
15425 if (Previous->getDefinition()) {
15426 // Don't suggest fix-its for redefinitions.
15427 return true;
15428 }
15429
15430 bool previousMismatch = false;
15431 for (const TagDecl *I : Previous->redecls()) {
15432 if (I->getTagKind() != NewTag) {
15433 // Ignore previous declarations for which the warning was disabled.
15434 if (IsIgnored(I))
15435 continue;
15436
15437 if (!previousMismatch) {
15438 previousMismatch = true;
15439 Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
15440 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
15441 << getRedeclDiagFromTagKind(I->getTagKind());
15442 }
15443 Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
15444 << getRedeclDiagFromTagKind(NewTag)
15445 << FixItHint::CreateReplacement(I->getInnerLocStart(),
15446 TypeWithKeyword::getTagTypeKindName(NewTag));
15447 }
15448 }
15449 return true;
15450 }
15451
15452 // Identify the prevailing tag kind: this is the kind of the definition (if
15453 // there is a non-ignored definition), or otherwise the kind of the prior
15454 // (non-ignored) declaration.
15455 const TagDecl *PrevDef = Previous->getDefinition();
15456 if (PrevDef && IsIgnored(PrevDef))
15457 PrevDef = nullptr;
15458 const TagDecl *Redecl = PrevDef ? PrevDef : Previous;
15459 if (Redecl->getTagKind() != NewTag) {
15460 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
15461 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
15462 << getRedeclDiagFromTagKind(OldTag);
15463 Diag(Redecl->getLocation(), diag::note_previous_use);
15464
15465 // If there is a previous definition, suggest a fix-it.
15466 if (PrevDef) {
15467 Diag(NewTagLoc, diag::note_struct_class_suggestion)
15468 << getRedeclDiagFromTagKind(Redecl->getTagKind())
15469 << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
15470 TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
15471 }
15472 }
15473
15474 return true;
15475}
15476
15477/// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
15478/// from an outer enclosing namespace or file scope inside a friend declaration.
15479/// This should provide the commented out code in the following snippet:
15480/// namespace N {
15481/// struct X;
15482/// namespace M {
15483/// struct Y { friend struct /*N::*/ X; };
15484/// }
15485/// }
15486static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
15487 SourceLocation NameLoc) {
15488 // While the decl is in a namespace, do repeated lookup of that name and see
15489 // if we get the same namespace back. If we do not, continue until
15490 // translation unit scope, at which point we have a fully qualified NNS.
15491 SmallVector<IdentifierInfo *, 4> Namespaces;
15492 DeclContext *DC = ND->getDeclContext()->getRedeclContext();
15493 for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
15494 // This tag should be declared in a namespace, which can only be enclosed by
15495 // other namespaces. Bail if there's an anonymous namespace in the chain.
15496 NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
15497 if (!Namespace || Namespace->isAnonymousNamespace())
15498 return FixItHint();
15499 IdentifierInfo *II = Namespace->getIdentifier();
15500 Namespaces.push_back(II);
15501 NamedDecl *Lookup = SemaRef.LookupSingleName(
15502 S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
15503 if (Lookup == Namespace)
15504 break;
15505 }
15506
15507 // Once we have all the namespaces, reverse them to go outermost first, and
15508 // build an NNS.
15509 SmallString<64> Insertion;
15510 llvm::raw_svector_ostream OS(Insertion);
15511 if (DC->isTranslationUnit())
15512 OS << "::";
15513 std::reverse(Namespaces.begin(), Namespaces.end());
15514 for (auto *II : Namespaces)
15515 OS << II->getName() << "::";
15516 return FixItHint::CreateInsertion(NameLoc, Insertion);
15517}
15518
15519/// Determine whether a tag originally declared in context \p OldDC can
15520/// be redeclared with an unqualified name in \p NewDC (assuming name lookup
15521/// found a declaration in \p OldDC as a previous decl, perhaps through a
15522/// using-declaration).
15523static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
15524 DeclContext *NewDC) {
15525 OldDC = OldDC->getRedeclContext();
15526 NewDC = NewDC->getRedeclContext();
15527
15528 if (OldDC->Equals(NewDC))
15529 return true;
15530
15531 // In MSVC mode, we allow a redeclaration if the contexts are related (either
15532 // encloses the other).
15533 if (S.getLangOpts().MSVCCompat &&
15534 (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
15535 return true;
15536
15537 return false;
15538}
15539
15540/// This is invoked when we see 'struct foo' or 'struct {'. In the
15541/// former case, Name will be non-null. In the later case, Name will be null.
15542/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
15543/// reference/declaration/definition of a tag.
15544///
15545/// \param IsTypeSpecifier \c true if this is a type-specifier (or
15546/// trailing-type-specifier) other than one in an alias-declaration.
15547///
15548/// \param SkipBody If non-null, will be set to indicate if the caller should
15549/// skip the definition of this tag and treat it as if it were a declaration.
15550Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
15551 SourceLocation KWLoc, CXXScopeSpec &SS,
15552 IdentifierInfo *Name, SourceLocation NameLoc,
15553 const ParsedAttributesView &Attrs, AccessSpecifier AS,
15554 SourceLocation ModulePrivateLoc,
15555 MultiTemplateParamsArg TemplateParameterLists,
15556 bool &OwnedDecl, bool &IsDependent,
15557 SourceLocation ScopedEnumKWLoc,
15558 bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
15559 bool IsTypeSpecifier, bool IsTemplateParamOrArg,
15560 SkipBodyInfo *SkipBody) {
15561 // If this is not a definition, it must have a name.
15562 IdentifierInfo *OrigName = Name;
15563 assert((Name != nullptr || TUK == TUK_Definition) &&(static_cast<void> (0))
15564 "Nameless record must be a definition!")(static_cast<void> (0));
15565 assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference)(static_cast<void> (0));
15566
15567 OwnedDecl = false;
15568 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
15569 bool ScopedEnum = ScopedEnumKWLoc.isValid();
15570
15571 // FIXME: Check member specializations more carefully.
15572 bool isMemberSpecialization = false;
15573 bool Invalid = false;
15574
15575 // We only need to do this matching if we have template parameters
15576 // or a scope specifier, which also conveniently avoids this work
15577 // for non-C++ cases.
15578 if (TemplateParameterLists.size() > 0 ||
15579 (SS.isNotEmpty() && TUK != TUK_Reference)) {
15580 if (TemplateParameterList *TemplateParams =
15581 MatchTemplateParametersToScopeSpecifier(
15582 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
15583 TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
15584 if (Kind == TTK_Enum) {
15585 Diag(KWLoc, diag::err_enum_template);
15586 return nullptr;
15587 }
15588
15589 if (TemplateParams->size() > 0) {
15590 // This is a declaration or definition of a class template (which may
15591 // be a member of another template).
15592
15593 if (Invalid)
15594 return nullptr;
15595
15596 OwnedDecl = false;
15597 DeclResult Result = CheckClassTemplate(
15598 S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams,
15599 AS, ModulePrivateLoc,
15600 /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1,
15601 TemplateParameterLists.data(), SkipBody);
15602 return Result.get();
15603 } else {
15604 // The "template<>" header is extraneous.
15605 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
15606 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
15607 isMemberSpecialization = true;
15608 }
15609 }
15610
15611 if (!TemplateParameterLists.empty() && isMemberSpecialization &&
15612 CheckTemplateDeclScope(S, TemplateParameterLists.back()))
15613 return nullptr;
15614 }
15615
15616 // Figure out the underlying type if this a enum declaration. We need to do
15617 // this early, because it's needed to detect if this is an incompatible
15618 // redeclaration.
15619 llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
15620 bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
15621
15622 if (Kind == TTK_Enum) {
15623 if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
15624 // No underlying type explicitly specified, or we failed to parse the
15625 // type, default to int.
15626 EnumUnderlying = Context.IntTy.getTypePtr();
15627 } else if (UnderlyingType.get()) {
15628 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
15629 // integral type; any cv-qualification is ignored.
15630 TypeSourceInfo *TI = nullptr;
15631 GetTypeFromParser(UnderlyingType.get(), &TI);
15632 EnumUnderlying = TI;
15633
15634 if (CheckEnumUnderlyingType(TI))
15635 // Recover by falling back to int.
15636 EnumUnderlying = Context.IntTy.getTypePtr();
15637
15638 if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
15639 UPPC_FixedUnderlyingType))
15640 EnumUnderlying = Context.IntTy.getTypePtr();
15641
15642 } else if (Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) {
15643 // For MSVC ABI compatibility, unfixed enums must use an underlying type
15644 // of 'int'. However, if this is an unfixed forward declaration, don't set
15645 // the underlying type unless the user enables -fms-compatibility. This
15646 // makes unfixed forward declared enums incomplete and is more conforming.
15647 if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
15648 EnumUnderlying = Context.IntTy.getTypePtr();
15649 }
15650 }
15651
15652 DeclContext *SearchDC = CurContext;
15653 DeclContext *DC = CurContext;
15654 bool isStdBadAlloc = false;
15655 bool isStdAlignValT = false;
15656
15657 RedeclarationKind Redecl = forRedeclarationInCurContext();
15658 if (TUK == TUK_Friend || TUK == TUK_Reference)
15659 Redecl = NotForRedeclaration;
15660
15661 /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
15662 /// implemented asks for structural equivalence checking, the returned decl
15663 /// here is passed back to the parser, allowing the tag body to be parsed.
15664 auto createTagFromNewDecl = [&]() -> TagDecl * {
15665 assert(!getLangOpts().CPlusPlus && "not meant for C++ usage")(static_cast<void> (0));
15666 // If there is an identifier, use the location of the identifier as the
15667 // location of the decl, otherwise use the location of the struct/union
15668 // keyword.
15669 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
15670 TagDecl *New = nullptr;
15671
15672 if (Kind == TTK_Enum) {
15673 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
15674 ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
15675 // If this is an undefined enum, bail.
15676 if (TUK != TUK_Definition && !Invalid)
15677 return nullptr;
15678 if (EnumUnderlying) {
15679 EnumDecl *ED = cast<EnumDecl>(New);
15680 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
15681 ED->setIntegerTypeSourceInfo(TI);
15682 else
15683 ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
15684 ED->setPromotionType(ED->getIntegerType());
15685 }
15686 } else { // struct/union
15687 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
15688 nullptr);
15689 }
15690
15691 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
15692 // Add alignment attributes if necessary; these attributes are checked
15693 // when the ASTContext lays out the structure.
15694 //
15695 // It is important for implementing the correct semantics that this
15696 // happen here (in ActOnTag). The #pragma pack stack is
15697 // maintained as a result of parser callbacks which can occur at
15698 // many points during the parsing of a struct declaration (because
15699 // the #pragma tokens are effectively skipped over during the
15700 // parsing of the struct).
15701 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
15702 AddAlignmentAttributesForRecord(RD);
15703 AddMsStructLayoutForRecord(RD);
15704 }
15705 }
15706 New->setLexicalDeclContext(CurContext);
15707 return New;
15708 };
15709
15710 LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
15711 if (Name && SS.isNotEmpty()) {
15712 // We have a nested-name tag ('struct foo::bar').
15713
15714 // Check for invalid 'foo::'.
15715 if (SS.isInvalid()) {
15716 Name = nullptr;
15717 goto CreateNewDecl;
15718 }
15719
15720 // If this is a friend or a reference to a class in a dependent
15721 // context, don't try to make a decl for it.
15722 if (TUK == TUK_Friend || TUK == TUK_Reference) {
15723 DC = computeDeclContext(SS, false);
15724 if (!DC) {
15725 IsDependent = true;
15726 return nullptr;
15727 }
15728 } else {
15729 DC = computeDeclContext(SS, true);
15730 if (!DC) {
15731 Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
15732 << SS.getRange();
15733 return nullptr;
15734 }
15735 }
15736
15737 if (RequireCompleteDeclContext(SS, DC))
15738 return nullptr;
15739
15740 SearchDC = DC;
15741 // Look-up name inside 'foo::'.
15742 LookupQualifiedName(Previous, DC);
15743
15744 if (Previous.isAmbiguous())
15745 return nullptr;
15746
15747 if (Previous.empty()) {
15748 // Name lookup did not find anything. However, if the
15749 // nested-name-specifier refers to the current instantiation,
15750 // and that current instantiation has any dependent base
15751 // classes, we might find something at instantiation time: treat
15752 // this as a dependent elaborated-type-specifier.
15753 // But this only makes any sense for reference-like lookups.
15754 if (Previous.wasNotFoundInCurrentInstantiation() &&
15755 (TUK == TUK_Reference || TUK == TUK_Friend)) {
15756 IsDependent = true;
15757 return nullptr;
15758 }
15759
15760 // A tag 'foo::bar' must already exist.
15761 Diag(NameLoc, diag::err_not_tag_in_scope)
15762 << Kind << Name << DC << SS.getRange();
15763 Name = nullptr;
15764 Invalid = true;
15765 goto CreateNewDecl;
15766 }
15767 } else if (Name) {
15768 // C++14 [class.mem]p14:
15769 // If T is the name of a class, then each of the following shall have a
15770 // name different from T:
15771 // -- every member of class T that is itself a type
15772 if (TUK != TUK_Reference && TUK != TUK_Friend &&
15773 DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
15774 return nullptr;
15775
15776 // If this is a named struct, check to see if there was a previous forward
15777 // declaration or definition.
15778 // FIXME: We're looking into outer scopes here, even when we
15779 // shouldn't be. Doing so can result in ambiguities that we
15780 // shouldn't be diagnosing.
15781 LookupName(Previous, S);
15782
15783 // When declaring or defining a tag, ignore ambiguities introduced
15784 // by types using'ed into this scope.
15785 if (Previous.isAmbiguous() &&
15786 (TUK == TUK_Definition || TUK == TUK_Declaration)) {
15787 LookupResult::Filter F = Previous.makeFilter();
15788 while (F.hasNext()) {
15789 NamedDecl *ND = F.next();
15790 if (!ND->getDeclContext()->getRedeclContext()->Equals(
15791 SearchDC->getRedeclContext()))
15792 F.erase();
15793 }
15794 F.done();
15795 }
15796
15797 // C++11 [namespace.memdef]p3:
15798 // If the name in a friend declaration is neither qualified nor
15799 // a template-id and the declaration is a function or an
15800 // elaborated-type-specifier, the lookup to determine whether
15801 // the entity has been previously declared shall not consider
15802 // any scopes outside the innermost enclosing namespace.
15803 //
15804 // MSVC doesn't implement the above rule for types, so a friend tag
15805 // declaration may be a redeclaration of a type declared in an enclosing
15806 // scope. They do implement this rule for friend functions.
15807 //
15808 // Does it matter that this should be by scope instead of by
15809 // semantic context?
15810 if (!Previous.empty() && TUK == TUK_Friend) {
15811 DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
15812 LookupResult::Filter F = Previous.makeFilter();
15813 bool FriendSawTagOutsideEnclosingNamespace = false;
15814 while (F.hasNext()) {
15815 NamedDecl *ND = F.next();
15816 DeclContext *DC = ND->getDeclContext()->getRedeclContext();
15817 if (DC->isFileContext() &&
15818 !EnclosingNS->Encloses(ND->getDeclContext())) {
15819 if (getLangOpts().MSVCCompat)
15820 FriendSawTagOutsideEnclosingNamespace = true;
15821 else
15822 F.erase();
15823 }
15824 }
15825 F.done();
15826
15827 // Diagnose this MSVC extension in the easy case where lookup would have
15828 // unambiguously found something outside the enclosing namespace.
15829 if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
15830 NamedDecl *ND = Previous.getFoundDecl();
15831 Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
15832 << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
15833 }
15834 }
15835
15836 // Note: there used to be some attempt at recovery here.
15837 if (Previous.isAmbiguous())
15838 return nullptr;
15839
15840 if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
15841 // FIXME: This makes sure that we ignore the contexts associated
15842 // with C structs, unions, and enums when looking for a matching
15843 // tag declaration or definition. See the similar lookup tweak
15844 // in Sema::LookupName; is there a better way to deal with this?
15845 while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
15846 SearchDC = SearchDC->getParent();
15847 }
15848 }
15849
15850 if (Previous.isSingleResult() &&
15851 Previous.getFoundDecl()->isTemplateParameter()) {
15852 // Maybe we will complain about the shadowed template parameter.
15853 DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
15854 // Just pretend that we didn't see the previous declaration.
15855 Previous.clear();
15856 }
15857
15858 if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
15859 DC->Equals(getStdNamespace())) {
15860 if (Name->isStr("bad_alloc")) {
15861 // This is a declaration of or a reference to "std::bad_alloc".
15862 isStdBadAlloc = true;
15863
15864 // If std::bad_alloc has been implicitly declared (but made invisible to
15865 // name lookup), fill in this implicit declaration as the previous
15866 // declaration, so that the declarations get chained appropriately.
15867 if (Previous.empty() && StdBadAlloc)
15868 Previous.addDecl(getStdBadAlloc());
15869 } else if (Name->isStr("align_val_t")) {
15870 isStdAlignValT = true;
15871 if (Previous.empty() && StdAlignValT)
15872 Previous.addDecl(getStdAlignValT());
15873 }
15874 }
15875
15876 // If we didn't find a previous declaration, and this is a reference
15877 // (or friend reference), move to the correct scope. In C++, we
15878 // also need to do a redeclaration lookup there, just in case
15879 // there's a shadow friend decl.
15880 if (Name && Previous.empty() &&
15881 (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
15882 if (Invalid) goto CreateNewDecl;
15883 assert(SS.isEmpty())(static_cast<void> (0));
15884
15885 if (TUK == TUK_Reference || IsTemplateParamOrArg) {
15886 // C++ [basic.scope.pdecl]p5:
15887 // -- for an elaborated-type-specifier of the form
15888 //
15889 // class-key identifier
15890 //
15891 // if the elaborated-type-specifier is used in the
15892 // decl-specifier-seq or parameter-declaration-clause of a
15893 // function defined in namespace scope, the identifier is
15894 // declared as a class-name in the namespace that contains
15895 // the declaration; otherwise, except as a friend
15896 // declaration, the identifier is declared in the smallest
15897 // non-class, non-function-prototype scope that contains the
15898 // declaration.
15899 //
15900 // C99 6.7.2.3p8 has a similar (but not identical!) provision for
15901 // C structs and unions.
15902 //
15903 // It is an error in C++ to declare (rather than define) an enum
15904 // type, including via an elaborated type specifier. We'll
15905 // diagnose that later; for now, declare the enum in the same
15906 // scope as we would have picked for any other tag type.
15907 //
15908 // GNU C also supports this behavior as part of its incomplete
15909 // enum types extension, while GNU C++ does not.
15910 //
15911 // Find the context where we'll be declaring the tag.
15912 // FIXME: We would like to maintain the current DeclContext as the
15913 // lexical context,
15914 SearchDC = getTagInjectionContext(SearchDC);
15915
15916 // Find the scope where we'll be declaring the tag.
15917 S = getTagInjectionScope(S, getLangOpts());
15918 } else {
15919 assert(TUK == TUK_Friend)(static_cast<void> (0));
15920 // C++ [namespace.memdef]p3:
15921 // If a friend declaration in a non-local class first declares a
15922 // class or function, the friend class or function is a member of
15923 // the innermost enclosing namespace.
15924 SearchDC = SearchDC->getEnclosingNamespaceContext();
15925 }
15926
15927 // In C++, we need to do a redeclaration lookup to properly
15928 // diagnose some problems.
15929 // FIXME: redeclaration lookup is also used (with and without C++) to find a
15930 // hidden declaration so that we don't get ambiguity errors when using a
15931 // type declared by an elaborated-type-specifier. In C that is not correct
15932 // and we should instead merge compatible types found by lookup.
15933 if (getLangOpts().CPlusPlus) {
15934 // FIXME: This can perform qualified lookups into function contexts,
15935 // which are meaningless.
15936 Previous.setRedeclarationKind(forRedeclarationInCurContext());
15937 LookupQualifiedName(Previous, SearchDC);
15938 } else {
15939 Previous.setRedeclarationKind(forRedeclarationInCurContext());
15940 LookupName(Previous, S);
15941 }
15942 }
15943
15944 // If we have a known previous declaration to use, then use it.
15945 if (Previous.empty() && SkipBody && SkipBody->Previous)
15946 Previous.addDecl(SkipBody->Previous);
15947
15948 if (!Previous.empty()) {
15949 NamedDecl *PrevDecl = Previous.getFoundDecl();
15950 NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
15951
15952 // It's okay to have a tag decl in the same scope as a typedef
15953 // which hides a tag decl in the same scope. Finding this
15954 // insanity with a redeclaration lookup can only actually happen
15955 // in C++.
15956 //
15957 // This is also okay for elaborated-type-specifiers, which is
15958 // technically forbidden by the current standard but which is
15959 // okay according to the likely resolution of an open issue;
15960 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
15961 if (getLangOpts().CPlusPlus) {
15962 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
15963 if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
15964 TagDecl *Tag = TT->getDecl();
15965 if (Tag->getDeclName() == Name &&
15966 Tag->getDeclContext()->getRedeclContext()
15967 ->Equals(TD->getDeclContext()->getRedeclContext())) {
15968 PrevDecl = Tag;
15969 Previous.clear();
15970 Previous.addDecl(Tag);
15971 Previous.resolveKind();
15972 }
15973 }
15974 }
15975 }
15976
15977 // If this is a redeclaration of a using shadow declaration, it must
15978 // declare a tag in the same context. In MSVC mode, we allow a
15979 // redefinition if either context is within the other.
15980 if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
15981 auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
15982 if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
15983 isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
15984 !(OldTag && isAcceptableTagRedeclContext(
15985 *this, OldTag->getDeclContext(), SearchDC))) {
15986 Diag(KWLoc, diag::err_using_decl_conflict_reverse);
15987 Diag(Shadow->getTargetDecl()->getLocation(),
15988 diag::note_using_decl_target);
15989 Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl)
15990 << 0;
15991 // Recover by ignoring the old declaration.
15992 Previous.clear();
15993 goto CreateNewDecl;
15994 }
15995 }
15996
15997 if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
15998 // If this is a use of a previous tag, or if the tag is already declared
15999 // in the same scope (so that the definition/declaration completes or
16000 // rementions the tag), reuse the decl.
16001 if (TUK == TUK_Reference || TUK == TUK_Friend ||
16002 isDeclInScope(DirectPrevDecl, SearchDC, S,
16003 SS.isNotEmpty() || isMemberSpecialization)) {
16004 // Make sure that this wasn't declared as an enum and now used as a
16005 // struct or something similar.
16006 if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
16007 TUK == TUK_Definition, KWLoc,
16008 Name)) {
16009 bool SafeToContinue
16010 = (PrevTagDecl->getTagKind() != TTK_Enum &&
16011 Kind != TTK_Enum);
16012 if (SafeToContinue)
16013 Diag(KWLoc, diag::err_use_with_wrong_tag)
16014 << Name
16015 << FixItHint::CreateReplacement(SourceRange(KWLoc),
16016 PrevTagDecl->getKindName());
16017 else
16018 Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
16019 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
16020
16021 if (SafeToContinue)
16022 Kind = PrevTagDecl->getTagKind();
16023 else {
16024 // Recover by making this an anonymous redefinition.
16025 Name = nullptr;
16026 Previous.clear();
16027 Invalid = true;
16028 }
16029 }
16030
16031 if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
16032 const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
16033 if (TUK == TUK_Reference || TUK == TUK_Friend)
16034 return PrevTagDecl;
16035
16036 QualType EnumUnderlyingTy;
16037 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
16038 EnumUnderlyingTy = TI->getType().getUnqualifiedType();
16039 else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
16040 EnumUnderlyingTy = QualType(T, 0);
16041
16042 // All conflicts with previous declarations are recovered by
16043 // returning the previous declaration, unless this is a definition,
16044 // in which case we want the caller to bail out.
16045 if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
16046 ScopedEnum, EnumUnderlyingTy,
16047 IsFixed, PrevEnum))
16048 return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
16049 }
16050
16051 // C++11 [class.mem]p1:
16052 // A member shall not be declared twice in the member-specification,
16053 // except that a nested class or member class template can be declared
16054 // and then later defined.
16055 if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
16056 S->isDeclScope(PrevDecl)) {
16057 Diag(NameLoc, diag::ext_member_redeclared);
16058 Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
16059 }
16060
16061 if (!Invalid) {
16062 // If this is a use, just return the declaration we found, unless
16063 // we have attributes.
16064 if (TUK == TUK_Reference || TUK == TUK_Friend) {
16065 if (!Attrs.empty()) {
16066 // FIXME: Diagnose these attributes. For now, we create a new
16067 // declaration to hold them.
16068 } else if (TUK == TUK_Reference &&
16069 (PrevTagDecl->getFriendObjectKind() ==
16070 Decl::FOK_Undeclared ||
16071 PrevDecl->getOwningModule() != getCurrentModule()) &&
16072 SS.isEmpty()) {
16073 // This declaration is a reference to an existing entity, but
16074 // has different visibility from that entity: it either makes
16075 // a friend visible or it makes a type visible in a new module.
16076 // In either case, create a new declaration. We only do this if
16077 // the declaration would have meant the same thing if no prior
16078 // declaration were found, that is, if it was found in the same
16079 // scope where we would have injected a declaration.
16080 if (!getTagInjectionContext(CurContext)->getRedeclContext()
16081 ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
16082 return PrevTagDecl;
16083 // This is in the injected scope, create a new declaration in
16084 // that scope.
16085 S = getTagInjectionScope(S, getLangOpts());
16086 } else {
16087 return PrevTagDecl;
16088 }
16089 }
16090
16091 // Diagnose attempts to redefine a tag.
16092 if (TUK == TUK_Definition) {
16093 if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
16094 // If we're defining a specialization and the previous definition
16095 // is from an implicit instantiation, don't emit an error
16096 // here; we'll catch this in the general case below.
16097 bool IsExplicitSpecializationAfterInstantiation = false;
16098 if (isMemberSpecialization) {
16099 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
16100 IsExplicitSpecializationAfterInstantiation =
16101 RD->getTemplateSpecializationKind() !=
16102 TSK_ExplicitSpecialization;
16103 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
16104 IsExplicitSpecializationAfterInstantiation =
16105 ED->getTemplateSpecializationKind() !=
16106 TSK_ExplicitSpecialization;
16107 }
16108
16109 // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
16110 // not keep more that one definition around (merge them). However,
16111 // ensure the decl passes the structural compatibility check in
16112 // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
16113 NamedDecl *Hidden = nullptr;
16114 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
16115 // There is a definition of this tag, but it is not visible. We
16116 // explicitly make use of C++'s one definition rule here, and
16117 // assume that this definition is identical to the hidden one
16118 // we already have. Make the existing definition visible and
16119 // use it in place of this one.
16120 if (!getLangOpts().CPlusPlus) {
16121 // Postpone making the old definition visible until after we
16122 // complete parsing the new one and do the structural
16123 // comparison.
16124 SkipBody->CheckSameAsPrevious = true;
16125 SkipBody->New = createTagFromNewDecl();
16126 SkipBody->Previous = Def;
16127 return Def;
16128 } else {
16129 SkipBody->ShouldSkip = true;
16130 SkipBody->Previous = Def;
16131 makeMergedDefinitionVisible(Hidden);
16132 // Carry on and handle it like a normal definition. We'll
16133 // skip starting the definitiion later.
16134 }
16135 } else if (!IsExplicitSpecializationAfterInstantiation) {
16136 // A redeclaration in function prototype scope in C isn't
16137 // visible elsewhere, so merely issue a warning.
16138 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
16139 Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
16140 else
16141 Diag(NameLoc, diag::err_redefinition) << Name;
16142 notePreviousDefinition(Def,
16143 NameLoc.isValid() ? NameLoc : KWLoc);
16144 // If this is a redefinition, recover by making this
16145 // struct be anonymous, which will make any later
16146 // references get the previous definition.
16147 Name = nullptr;
16148 Previous.clear();
16149 Invalid = true;
16150 }
16151 } else {
16152 // If the type is currently being defined, complain
16153 // about a nested redefinition.
16154 auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
16155 if (TD->isBeingDefined()) {
16156 Diag(NameLoc, diag::err_nested_redefinition) << Name;
16157 Diag(PrevTagDecl->getLocation(),
16158 diag::note_previous_definition);
16159 Name = nullptr;
16160 Previous.clear();
16161 Invalid = true;
16162 }
16163 }
16164
16165 // Okay, this is definition of a previously declared or referenced
16166 // tag. We're going to create a new Decl for it.
16167 }
16168
16169 // Okay, we're going to make a redeclaration. If this is some kind
16170 // of reference, make sure we build the redeclaration in the same DC
16171 // as the original, and ignore the current access specifier.
16172 if (TUK == TUK_Friend || TUK == TUK_Reference) {
16173 SearchDC = PrevTagDecl->getDeclContext();
16174 AS = AS_none;
16175 }
16176 }
16177 // If we get here we have (another) forward declaration or we
16178 // have a definition. Just create a new decl.
16179
16180 } else {
16181 // If we get here, this is a definition of a new tag type in a nested
16182 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
16183 // new decl/type. We set PrevDecl to NULL so that the entities
16184 // have distinct types.
16185 Previous.clear();
16186 }
16187 // If we get here, we're going to create a new Decl. If PrevDecl
16188 // is non-NULL, it's a definition of the tag declared by
16189 // PrevDecl. If it's NULL, we have a new definition.
16190
16191 // Otherwise, PrevDecl is not a tag, but was found with tag
16192 // lookup. This is only actually possible in C++, where a few
16193 // things like templates still live in the tag namespace.
16194 } else {
16195 // Use a better diagnostic if an elaborated-type-specifier
16196 // found the wrong kind of type on the first
16197 // (non-redeclaration) lookup.
16198 if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
16199 !Previous.isForRedeclaration()) {
16200 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
16201 Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK
16202 << Kind;
16203 Diag(PrevDecl->getLocation(), diag::note_declared_at);
16204 Invalid = true;
16205
16206 // Otherwise, only diagnose if the declaration is in scope.
16207 } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
16208 SS.isNotEmpty() || isMemberSpecialization)) {
16209 // do nothing
16210
16211 // Diagnose implicit declarations introduced by elaborated types.
16212 } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
16213 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
16214 Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
16215 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
16216 Invalid = true;
16217
16218 // Otherwise it's a declaration. Call out a particularly common
16219 // case here.
16220 } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
16221 unsigned Kind = 0;
16222 if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
16223 Diag(NameLoc, diag::err_tag_definition_of_typedef)
16224 << Name << Kind << TND->getUnderlyingType();
16225 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
16226 Invalid = true;
16227
16228 // Otherwise, diagnose.
16229 } else {
16230 // The tag name clashes with something else in the target scope,
16231 // issue an error and recover by making this tag be anonymous.
16232 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
16233 notePreviousDefinition(PrevDecl, NameLoc);
16234 Name = nullptr;
16235 Invalid = true;
16236 }
16237
16238 // The existing declaration isn't relevant to us; we're in a
16239 // new scope, so clear out the previous declaration.
16240 Previous.clear();
16241 }
16242 }
16243
16244CreateNewDecl:
16245
16246 TagDecl *PrevDecl = nullptr;
16247 if (Previous.isSingleResult())
16248 PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
16249
16250 // If there is an identifier, use the location of the identifier as the
16251 // location of the decl, otherwise use the location of the struct/union
16252 // keyword.
16253 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
16254
16255 // Otherwise, create a new declaration. If there is a previous
16256 // declaration of the same entity, the two will be linked via
16257 // PrevDecl.
16258 TagDecl *New;
16259
16260 if (Kind == TTK_Enum) {
16261 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
16262 // enum X { A, B, C } D; D should chain to X.
16263 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
16264 cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
16265 ScopedEnumUsesClassTag, IsFixed);
16266
16267 if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
16268 StdAlignValT = cast<EnumDecl>(New);
16269
16270 // If this is an undefined enum, warn.
16271 if (TUK != TUK_Definition && !Invalid) {
16272 TagDecl *Def;
16273 if (IsFixed && cast<EnumDecl>(New)->isFixed()) {
16274 // C++0x: 7.2p2: opaque-enum-declaration.
16275 // Conflicts are diagnosed above. Do nothing.
16276 }
16277 else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
16278 Diag(Loc, diag::ext_forward_ref_enum_def)
16279 << New;
16280 Diag(Def->getLocation(), diag::note_previous_definition);
16281 } else {
16282 unsigned DiagID = diag::ext_forward_ref_enum;
16283 if (getLangOpts().MSVCCompat)
16284 DiagID = diag::ext_ms_forward_ref_enum;
16285 else if (getLangOpts().CPlusPlus)
16286 DiagID = diag::err_forward_ref_enum;
16287 Diag(Loc, DiagID);
16288 }
16289 }
16290
16291 if (EnumUnderlying) {
16292 EnumDecl *ED = cast<EnumDecl>(New);
16293 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
16294 ED->setIntegerTypeSourceInfo(TI);
16295 else
16296 ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
16297 ED->setPromotionType(ED->getIntegerType());
16298 assert(ED->isComplete() && "enum with type should be complete")(static_cast<void> (0));
16299 }
16300 } else {
16301 // struct/union/class
16302
16303 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
16304 // struct X { int A; } D; D should chain to X.
16305 if (getLangOpts().CPlusPlus) {
16306 // FIXME: Look for a way to use RecordDecl for simple structs.
16307 New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
16308 cast_or_null<CXXRecordDecl>(PrevDecl));
16309
16310 if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
16311 StdBadAlloc = cast<CXXRecordDecl>(New);
16312 } else
16313 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
16314 cast_or_null<RecordDecl>(PrevDecl));
16315 }
16316
16317 // C++11 [dcl.type]p3:
16318 // A type-specifier-seq shall not define a class or enumeration [...].
16319 if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) &&
16320 TUK == TUK_Definition) {
16321 Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
16322 << Context.getTagDeclType(New);
16323 Invalid = true;
16324 }
16325
16326 if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
16327 DC->getDeclKind() == Decl::Enum) {
16328 Diag(New->getLocation(), diag::err_type_defined_in_enum)
16329 << Context.getTagDeclType(New);
16330 Invalid = true;
16331 }
16332
16333 // Maybe add qualifier info.
16334 if (SS.isNotEmpty()) {
16335 if (SS.isSet()) {
16336 // If this is either a declaration or a definition, check the
16337 // nested-name-specifier against the current context.
16338 if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
16339 diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
16340 isMemberSpecialization))
16341 Invalid = true;
16342
16343 New->setQualifierInfo(SS.getWithLocInContext(Context));
16344 if (TemplateParameterLists.size() > 0) {
16345 New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
16346 }
16347 }
16348 else
16349 Invalid = true;
16350 }
16351
16352 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
16353 // Add alignment attributes if necessary; these attributes are checked when
16354 // the ASTContext lays out the structure.
16355 //
16356 // It is important for implementing the correct semantics that this
16357 // happen here (in ActOnTag). The #pragma pack stack is
16358 // maintained as a result of parser callbacks which can occur at
16359 // many points during the parsing of a struct declaration (because
16360 // the #pragma tokens are effectively skipped over during the
16361 // parsing of the struct).
16362 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
16363 AddAlignmentAttributesForRecord(RD);
16364 AddMsStructLayoutForRecord(RD);
16365 }
16366 }
16367
16368 if (ModulePrivateLoc.isValid()) {
16369 if (isMemberSpecialization)
16370 Diag(New->getLocation(), diag::err_module_private_specialization)
16371 << 2
16372 << FixItHint::CreateRemoval(ModulePrivateLoc);
16373 // __module_private__ does not apply to local classes. However, we only
16374 // diagnose this as an error when the declaration specifiers are
16375 // freestanding. Here, we just ignore the __module_private__.
16376 else if (!SearchDC->isFunctionOrMethod())
16377 New->setModulePrivate();
16378 }
16379
16380 // If this is a specialization of a member class (of a class template),
16381 // check the specialization.
16382 if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
16383 Invalid = true;
16384
16385 // If we're declaring or defining a tag in function prototype scope in C,
16386 // note that this type can only be used within the function and add it to
16387 // the list of decls to inject into the function definition scope.
16388 if ((Name || Kind == TTK_Enum) &&
16389 getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
16390 if (getLangOpts().CPlusPlus) {
16391 // C++ [dcl.fct]p6:
16392 // Types shall not be defined in return or parameter types.
16393 if (TUK == TUK_Definition && !IsTypeSpecifier) {
16394 Diag(Loc, diag::err_type_defined_in_param_type)
16395 << Name;
16396 Invalid = true;
16397 }
16398 } else if (!PrevDecl) {
16399 Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
16400 }
16401 }
16402
16403 if (Invalid)
16404 New->setInvalidDecl();
16405
16406 // Set the lexical context. If the tag has a C++ scope specifier, the
16407 // lexical context will be different from the semantic context.
16408 New->setLexicalDeclContext(CurContext);
16409
16410 // Mark this as a friend decl if applicable.
16411 // In Microsoft mode, a friend declaration also acts as a forward
16412 // declaration so we always pass true to setObjectOfFriendDecl to make
16413 // the tag name visible.
16414 if (TUK == TUK_Friend)
16415 New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
16416
16417 // Set the access specifier.
16418 if (!Invalid && SearchDC->isRecord())
16419 SetMemberAccessSpecifier(New, PrevDecl, AS);
16420
16421 if (PrevDecl)
16422 CheckRedeclarationModuleOwnership(New, PrevDecl);
16423
16424 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
16425 New->startDefinition();
16426
16427 ProcessDeclAttributeList(S, New, Attrs);
16428 AddPragmaAttributes(S, New);
16429
16430 // If this has an identifier, add it to the scope stack.
16431 if (TUK == TUK_Friend) {
16432 // We might be replacing an existing declaration in the lookup tables;
16433 // if so, borrow its access specifier.
16434 if (PrevDecl)
16435 New->setAccess(PrevDecl->getAccess());
16436
16437 DeclContext *DC = New->getDeclContext()->getRedeclContext();
16438 DC->makeDeclVisibleInContext(New);
16439 if (Name) // can be null along some error paths
16440 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
16441 PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
16442 } else if (Name) {
16443 S = getNonFieldDeclScope(S);
16444 PushOnScopeChains(New, S, true);
16445 } else {
16446 CurContext->addDecl(New);
16447 }
16448
16449 // If this is the C FILE type, notify the AST context.
16450 if (IdentifierInfo *II = New->getIdentifier())
16451 if (!New->isInvalidDecl() &&
16452 New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
16453 II->isStr("FILE"))
16454 Context.setFILEDecl(New);
16455
16456 if (PrevDecl)
16457 mergeDeclAttributes(New, PrevDecl);
16458
16459 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(New))
16460 inferGslOwnerPointerAttribute(CXXRD);
16461
16462 // If there's a #pragma GCC visibility in scope, set the visibility of this
16463 // record.
16464 AddPushedVisibilityAttribute(New);
16465
16466 if (isMemberSpecialization && !New->isInvalidDecl())
16467 CompleteMemberSpecialization(New, Previous);
16468
16469 OwnedDecl = true;
16470 // In C++, don't return an invalid declaration. We can't recover well from
16471 // the cases where we make the type anonymous.
16472 if (Invalid && getLangOpts().CPlusPlus) {
16473 if (New->isBeingDefined())
16474 if (auto RD = dyn_cast<RecordDecl>(New))
16475 RD->completeDefinition();
16476 return nullptr;
16477 } else if (SkipBody && SkipBody->ShouldSkip) {
16478 return SkipBody->Previous;
16479 } else {
16480 return New;
16481 }
16482}
16483
16484void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
16485 AdjustDeclIfTemplate(TagD);
16486 TagDecl *Tag = cast<TagDecl>(TagD);
16487
16488 // Enter the tag context.
16489 PushDeclContext(S, Tag);
16490
16491 ActOnDocumentableDecl(TagD);
16492
16493 // If there's a #pragma GCC visibility in scope, set the visibility of this
16494 // record.
16495 AddPushedVisibilityAttribute(Tag);
16496}
16497
16498bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
16499 SkipBodyInfo &SkipBody) {
16500 if (!hasStructuralCompatLayout(Prev, SkipBody.New))
16501 return false;
16502
16503 // Make the previous decl visible.
16504 makeMergedDefinitionVisible(SkipBody.Previous);
16505 return true;
16506}
16507
16508Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
16509 assert(isa<ObjCContainerDecl>(IDecl) &&(static_cast<void> (0))
16510 "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl")(static_cast<void> (0));
16511 DeclContext *OCD = cast<DeclContext>(IDecl);
16512 assert(OCD->getLexicalParent() == CurContext &&(static_cast<void> (0))
16513 "The next DeclContext should be lexically contained in the current one.")(static_cast<void> (0));
16514 CurContext = OCD;
16515 return IDecl;
16516}
16517
16518void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
16519 SourceLocation FinalLoc,
16520 bool IsFinalSpelledSealed,
16521 bool IsAbstract,
16522 SourceLocation LBraceLoc) {
16523 AdjustDeclIfTemplate(TagD);
16524 CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
16525
16526 FieldCollector->StartClass();
16527
16528 if (!Record->getIdentifier())
16529 return;
16530
16531 if (IsAbstract)
16532 Record->markAbstract();
16533
16534 if (FinalLoc.isValid()) {
16535 Record->addAttr(FinalAttr::Create(
16536 Context, FinalLoc, AttributeCommonInfo::AS_Keyword,
16537 static_cast<FinalAttr::Spelling>(IsFinalSpelledSealed)));
16538 }
16539 // C++ [class]p2:
16540 // [...] The class-name is also inserted into the scope of the
16541 // class itself; this is known as the injected-class-name. For
16542 // purposes of access checking, the injected-class-name is treated
16543 // as if it were a public member name.
16544 CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create(
16545 Context, Record->getTagKind(), CurContext, Record->getBeginLoc(),
16546 Record->getLocation(), Record->getIdentifier(),
16547 /*PrevDecl=*/nullptr,
16548 /*DelayTypeCreation=*/true);
16549 Context.getTypeDeclType(InjectedClassName, Record);
16550 InjectedClassName->setImplicit();
16551 InjectedClassName->setAccess(AS_public);
16552 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
16553 InjectedClassName->setDescribedClassTemplate(Template);
16554 PushOnScopeChains(InjectedClassName, S);
16555 assert(InjectedClassName->isInjectedClassName() &&(static_cast<void> (0))
16556 "Broken injected-class-name")(static_cast<void> (0));
16557}
16558
16559void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
16560 SourceRange BraceRange) {
16561 AdjustDeclIfTemplate(TagD);
16562 TagDecl *Tag = cast<TagDecl>(TagD);
16563 Tag->setBraceRange(BraceRange);
16564
16565 // Make sure we "complete" the definition even it is invalid.
16566 if (Tag->isBeingDefined()) {
16567 assert(Tag->isInvalidDecl() && "We should already have completed it")(static_cast<void> (0));
16568 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
16569 RD->completeDefinition();
16570 }
16571
16572 if (isa<CXXRecordDecl>(Tag)) {
16573 FieldCollector->FinishClass();
16574 }
16575
16576 // Exit this scope of this tag's definition.
16577 PopDeclContext();
16578
16579 if (getCurLexicalContext()->isObjCContainer() &&
16580 Tag->getDeclContext()->isFileContext())
16581 Tag->setTopLevelDeclInObjCContainer();
16582
16583 // Notify the consumer that we've defined a tag.
16584 if (!Tag->isInvalidDecl())
16585 Consumer.HandleTagDeclDefinition(Tag);
16586}
16587
16588void Sema::ActOnObjCContainerFinishDefinition() {
16589 // Exit this scope of this interface definition.
16590 PopDeclContext();
16591}
16592
16593void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
16594 assert(DC == CurContext && "Mismatch of container contexts")(static_cast<void> (0));
16595 OriginalLexicalContext = DC;
16596 ActOnObjCContainerFinishDefinition();
16597}
16598
16599void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
16600 ActOnObjCContainerStartDefinition(cast<Decl>(DC));
16601 OriginalLexicalContext = nullptr;
16602}
16603
16604void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
16605 AdjustDeclIfTemplate(TagD);
16606 TagDecl *Tag = cast<TagDecl>(TagD);
16607 Tag->setInvalidDecl();
16608
16609 // Make sure we "complete" the definition even it is invalid.
16610 if (Tag->isBeingDefined()) {
16611 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
16612 RD->completeDefinition();
16613 }
16614
16615 // We're undoing ActOnTagStartDefinition here, not
16616 // ActOnStartCXXMemberDeclarations, so we don't have to mess with
16617 // the FieldCollector.
16618
16619 PopDeclContext();
16620}
16621
16622// Note that FieldName may be null for anonymous bitfields.
16623ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
16624 IdentifierInfo *FieldName,
16625 QualType FieldTy, bool IsMsStruct,
16626 Expr *BitWidth, bool *ZeroWidth) {
16627 assert(BitWidth)(static_cast<void> (0));
16628 if (BitWidth->containsErrors())
16629 return ExprError();
16630
16631 // Default to true; that shouldn't confuse checks for emptiness
16632 if (ZeroWidth)
16633 *ZeroWidth = true;
16634
16635 // C99 6.7.2.1p4 - verify the field type.
16636 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
16637 if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
16638 // Handle incomplete and sizeless types with a specific error.
16639 if (RequireCompleteSizedType(FieldLoc, FieldTy,
16640 diag::err_field_incomplete_or_sizeless))
16641 return ExprError();
16642 if (FieldName)
16643 return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
16644 << FieldName << FieldTy << BitWidth->getSourceRange();
16645 return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
16646 << FieldTy << BitWidth->getSourceRange();
16647 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
16648 UPPC_BitFieldWidth))
16649 return ExprError();
16650
16651 // If the bit-width is type- or value-dependent, don't try to check
16652 // it now.
16653 if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
16654 return BitWidth;
16655
16656 llvm::APSInt Value;
16657 ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value, AllowFold);
16658 if (ICE.isInvalid())
16659 return ICE;
16660 BitWidth = ICE.get();
16661
16662 if (Value != 0 && ZeroWidth)
16663 *ZeroWidth = false;
16664
16665 // Zero-width bitfield is ok for anonymous field.
16666 if (Value == 0 && FieldName)
16667 return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
16668
16669 if (Value.isSigned() && Value.isNegative()) {
16670 if (FieldName)
16671 return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
16672 << FieldName << toString(Value, 10);
16673 return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
16674 << toString(Value, 10);
16675 }
16676
16677 // The size of the bit-field must not exceed our maximum permitted object
16678 // size.
16679 if (Value.getActiveBits() > ConstantArrayType::getMaxSizeBits(Context)) {
16680 return Diag(FieldLoc, diag::err_bitfield_too_wide)
16681 << !FieldName << FieldName << toString(Value, 10);
16682 }
16683
16684 if (!FieldTy->isDependentType()) {
16685 uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
16686 uint64_t TypeWidth = Context.getIntWidth(FieldTy);
16687 bool BitfieldIsOverwide = Value.ugt(TypeWidth);
16688
16689 // Over-wide bitfields are an error in C or when using the MSVC bitfield
16690 // ABI.
16691 bool CStdConstraintViolation =
16692 BitfieldIsOverwide && !getLangOpts().CPlusPlus;
16693 bool MSBitfieldViolation =
16694 Value.ugt(TypeStorageSize) &&
16695 (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
16696 if (CStdConstraintViolation || MSBitfieldViolation) {
16697 unsigned DiagWidth =
16698 CStdConstraintViolation ? TypeWidth : TypeStorageSize;
16699 return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
16700 << (bool)FieldName << FieldName << toString(Value, 10)
16701 << !CStdConstraintViolation << DiagWidth;
16702 }
16703
16704 // Warn on types where the user might conceivably expect to get all
16705 // specified bits as value bits: that's all integral types other than
16706 // 'bool'.
16707 if (BitfieldIsOverwide && !FieldTy->isBooleanType() && FieldName) {
16708 Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
16709 << FieldName << toString(Value, 10)
16710 << (unsigned)TypeWidth;
16711 }
16712 }
16713
16714 return BitWidth;
16715}
16716
16717/// ActOnField - Each field of a C struct/union is passed into this in order
16718/// to create a FieldDecl object for it.
16719Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
16720 Declarator &D, Expr *BitfieldWidth) {
16721 FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
1
Assuming null pointer is passed into cast
2
Passing null pointer value via 2nd parameter 'Record'
3
Calling 'Sema::HandleField'
16722 DeclStart, D, static_cast<Expr*>(BitfieldWidth),
16723 /*InitStyle=*/ICIS_NoInit, AS_public);
16724 return Res;
16725}
16726
16727/// HandleField - Analyze a field of a C struct or a C++ data member.
16728///
16729FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
16730 SourceLocation DeclStart,
16731 Declarator &D, Expr *BitWidth,
16732 InClassInitStyle InitStyle,
16733 AccessSpecifier AS) {
16734 if (D.isDecompositionDeclarator()) {
4
Calling 'Declarator::isDecompositionDeclarator'
13
Returning from 'Declarator::isDecompositionDeclarator'
14
Taking false branch
16735 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
16736 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
16737 << Decomp.getSourceRange();
16738 return nullptr;
16739 }
16740
16741 IdentifierInfo *II = D.getIdentifier();
16742 SourceLocation Loc = DeclStart;
16743 if (II
14.1
'II' is null
14.1
'II' is null
14.1
'II' is null
) Loc = D.getIdentifierLoc();
15
Taking false branch
16744
16745 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16746 QualType T = TInfo->getType();
16747 if (getLangOpts().CPlusPlus) {
16
Assuming field 'CPlusPlus' is 0
17
Taking false branch
16748 CheckExtraCXXDefaultArguments(D);
16749
16750 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
16751 UPPC_DataMemberType)) {
16752 D.setInvalidType();
16753 T = Context.IntTy;
16754 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
16755 }
16756 }
16757
16758 DiagnoseFunctionSpecifiers(D.getDeclSpec());
16759
16760 if (D.getDeclSpec().isInlineSpecified())
18
Assuming the condition is false
19
Taking false branch
16761 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
16762 << getLangOpts().CPlusPlus17;
16763 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
20
Assuming 'TSCS' is 0
21
Taking false branch
16764 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
16765 diag::err_invalid_thread)
16766 << DeclSpec::getSpecifierName(TSCS);
16767
16768 // Check to see if this name was declared as a member previously
16769 NamedDecl *PrevDecl = nullptr;
16770 LookupResult Previous(*this, II, Loc, LookupMemberName,
16771 ForVisibleRedeclaration);
16772 LookupName(Previous, S);
16773 switch (Previous.getResultKind()) {
22
Control jumps to 'case Ambiguous:' at line 16785
16774 case LookupResult::Found:
16775 case LookupResult::FoundUnresolvedValue:
16776 PrevDecl = Previous.getAsSingle<NamedDecl>();
16777 break;
16778
16779 case LookupResult::FoundOverloaded:
16780 PrevDecl = Previous.getRepresentativeDecl();
16781 break;
16782
16783 case LookupResult::NotFound:
16784 case LookupResult::NotFoundInCurrentInstantiation:
16785 case LookupResult::Ambiguous:
16786 break;
23
Execution continues on line 16788
16787 }
16788 Previous.suppressDiagnostics();
16789
16790 if (PrevDecl
23.1
'PrevDecl' is null
23.1
'PrevDecl' is null
23.1
'PrevDecl' is null
&& PrevDecl->isTemplateParameter()) {
16791 // Maybe we will complain about the shadowed template parameter.
16792 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
16793 // Just pretend that we didn't see the previous declaration.
16794 PrevDecl = nullptr;
16795 }
16796
16797 if (PrevDecl
23.2
'PrevDecl' is null
23.2
'PrevDecl' is null
23.2
'PrevDecl' is null
&& !isDeclInScope(PrevDecl, Record, S))
16798 PrevDecl = nullptr;
16799
16800 bool Mutable
16801 = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
24
Assuming the condition is false
16802 SourceLocation TSSL = D.getBeginLoc();
16803 FieldDecl *NewFD
16804 = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
25
Passing null pointer value via 4th parameter 'Record'
26
Calling 'Sema::CheckFieldDecl'
16805 TSSL, AS, PrevDecl, &D);
16806
16807 if (NewFD->isInvalidDecl())
16808 Record->setInvalidDecl();
16809
16810 if (D.getDeclSpec().isModulePrivateSpecified())
16811 NewFD->setModulePrivate();
16812
16813 if (NewFD->isInvalidDecl() && PrevDecl) {
16814 // Don't introduce NewFD into scope; there's already something
16815 // with the same name in the same scope.
16816 } else if (II) {
16817 PushOnScopeChains(NewFD, S);
16818 } else
16819 Record->addDecl(NewFD);
16820
16821 return NewFD;
16822}
16823
16824/// Build a new FieldDecl and check its well-formedness.
16825///
16826/// This routine builds a new FieldDecl given the fields name, type,
16827/// record, etc. \p PrevDecl should refer to any previous declaration
16828/// with the same name and in the same scope as the field to be
16829/// created.
16830///
16831/// \returns a new FieldDecl.
16832///
16833/// \todo The Declarator argument is a hack. It will be removed once
16834FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
16835 TypeSourceInfo *TInfo,
16836 RecordDecl *Record, SourceLocation Loc,
16837 bool Mutable, Expr *BitWidth,
16838 InClassInitStyle InitStyle,
16839 SourceLocation TSSL,
16840 AccessSpecifier AS, NamedDecl *PrevDecl,
16841 Declarator *D) {
16842 IdentifierInfo *II = Name.getAsIdentifierInfo();
16843 bool InvalidDecl = false;
16844 if (D
26.1
'D' is non-null
26.1
'D' is non-null
26.1
'D' is non-null
) InvalidDecl = D->isInvalidType();
27
Taking true branch
16845
16846 // If we receive a broken type, recover by assuming 'int' and
16847 // marking this declaration as invalid.
16848 if (T.isNull() || T->containsErrors()) {
28
Assuming the condition is false
29
Taking false branch
16849 InvalidDecl = true;
16850 T = Context.IntTy;
16851 }
16852
16853 QualType EltTy = Context.getBaseElementType(T);
16854 if (!EltTy->isDependentType() && !EltTy->containsErrors()) {
30
Assuming the condition is false
16855 if (RequireCompleteSizedType(Loc, EltTy,
16856 diag::err_field_incomplete_or_sizeless)) {
16857 // Fields of incomplete type force their record to be invalid.
16858 Record->setInvalidDecl();
16859 InvalidDecl = true;
16860 } else {
16861 NamedDecl *Def;
16862 EltTy->isIncompleteType(&Def);
16863 if (Def && Def->isInvalidDecl()) {
16864 Record->setInvalidDecl();
16865 InvalidDecl = true;
16866 }
16867 }
16868 }
16869
16870 // TR 18037 does not allow fields to be declared with address space
16871 if (T.hasAddressSpace() || T->isDependentAddressSpaceType() ||
31
Assuming the condition is false
32
Taking false branch
16872 T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
16873 Diag(Loc, diag::err_field_with_address_space);
16874 Record->setInvalidDecl();
16875 InvalidDecl = true;
16876 }
16877
16878 if (LangOpts.OpenCL) {
33
Assuming field 'OpenCL' is 0
16879 // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
16880 // used as structure or union field: image, sampler, event or block types.
16881 if (T->isEventT() || T->isImageType() || T->isSamplerT() ||
16882 T->isBlockPointerType()) {
16883 Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
16884 Record->setInvalidDecl();
16885 InvalidDecl = true;
16886 }
16887 // OpenCL v1.2 s6.9.c: bitfields are not supported, unless Clang extension
16888 // is enabled.
16889 if (BitWidth && !getOpenCLOptions().isAvailableOption(
16890 "__cl_clang_bitfields", LangOpts)) {
16891 Diag(Loc, diag::err_opencl_bitfields);
16892 InvalidDecl = true;
16893 }
16894 }
16895
16896 // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
16897 if (!InvalidDecl
33.1
'InvalidDecl' is false
33.1
'InvalidDecl' is false
33.1
'InvalidDecl' is false
&& getLangOpts().CPlusPlus && !II && BitWidth &&
34
Assuming field 'CPlusPlus' is 0
16898 T.hasQualifiers()) {
16899 InvalidDecl = true;
16900 Diag(Loc, diag::err_anon_bitfield_qualifiers);
16901 }
16902
16903 // C99 6.7.2.1p8: A member of a structure or union may have any type other
16904 // than a variably modified type.
16905 if (!InvalidDecl
34.1
'InvalidDecl' is false
34.1
'InvalidDecl' is false
34.1
'InvalidDecl' is false
&& T->isVariablyModifiedType()) {
35
Assuming the condition is false
16906 if (!tryToFixVariablyModifiedVarType(
16907 TInfo, T, Loc, diag::err_typecheck_field_variable_size))
16908 InvalidDecl = true;
16909 }
16910
16911 // Fields can not have abstract class types
16912 if (!InvalidDecl
35.1
'InvalidDecl' is false
35.1
'InvalidDecl' is false
35.1
'InvalidDecl' is false
&& RequireNonAbstractType(Loc, T,
36
Assuming the condition is false
37
Taking false branch
16913 diag::err_abstract_type_in_decl,
16914 AbstractFieldType))
16915 InvalidDecl = true;
16916
16917 bool ZeroWidth = false;
16918 if (InvalidDecl
37.1
'InvalidDecl' is false
37.1
'InvalidDecl' is false
37.1
'InvalidDecl' is false
)
38
Taking false branch
16919 BitWidth = nullptr;
16920 // If this is declared as a bit-field, check the bit-field.
16921 if (BitWidth) {
39
Assuming 'BitWidth' is non-null
40
Taking true branch
16922 BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
41
Called C++ object pointer is null
16923 &ZeroWidth).get();
16924 if (!BitWidth) {
16925 InvalidDecl = true;
16926 BitWidth = nullptr;
16927 ZeroWidth = false;
16928 }
16929 }
16930
16931 // Check that 'mutable' is consistent with the type of the declaration.
16932 if (!InvalidDecl && Mutable) {
16933 unsigned DiagID = 0;
16934 if (T->isReferenceType())
16935 DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
16936 : diag::err_mutable_reference;
16937 else if (T.isConstQualified())
16938 DiagID = diag::err_mutable_const;
16939
16940 if (DiagID) {
16941 SourceLocation ErrLoc = Loc;
16942 if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
16943 ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
16944 Diag(ErrLoc, DiagID);
16945 if (DiagID != diag::ext_mutable_reference) {
16946 Mutable = false;
16947 InvalidDecl = true;
16948 }
16949 }
16950 }
16951
16952 // C++11 [class.union]p8 (DR1460):
16953 // At most one variant member of a union may have a
16954 // brace-or-equal-initializer.
16955 if (InitStyle != ICIS_NoInit)
16956 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
16957
16958 FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
16959 BitWidth, Mutable, InitStyle);
16960 if (InvalidDecl)
16961 NewFD->setInvalidDecl();
16962
16963 if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
16964 Diag(Loc, diag::err_duplicate_member) << II;
16965 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
16966 NewFD->setInvalidDecl();
16967 }
16968
16969 if (!InvalidDecl && getLangOpts().CPlusPlus) {
16970 if (Record->isUnion()) {
16971 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
16972 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
16973 if (RDecl->getDefinition()) {
16974 // C++ [class.union]p1: An object of a class with a non-trivial
16975 // constructor, a non-trivial copy constructor, a non-trivial
16976 // destructor, or a non-trivial copy assignment operator
16977 // cannot be a member of a union, nor can an array of such
16978 // objects.
16979 if (CheckNontrivialField(NewFD))
16980 NewFD->setInvalidDecl();
16981 }
16982 }
16983
16984 // C++ [class.union]p1: If a union contains a member of reference type,
16985 // the program is ill-formed, except when compiling with MSVC extensions
16986 // enabled.
16987 if (EltTy->isReferenceType()) {
16988 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
16989 diag::ext_union_member_of_reference_type :
16990 diag::err_union_member_of_reference_type)
16991 << NewFD->getDeclName() << EltTy;
16992 if (!getLangOpts().MicrosoftExt)
16993 NewFD->setInvalidDecl();
16994 }
16995 }
16996 }
16997
16998 // FIXME: We need to pass in the attributes given an AST
16999 // representation, not a parser representation.
17000 if (D) {
17001 // FIXME: The current scope is almost... but not entirely... correct here.
17002 ProcessDeclAttributes(getCurScope(), NewFD, *D);
17003
17004 if (NewFD->hasAttrs())
17005 CheckAlignasUnderalignment(NewFD);
17006 }
17007
17008 // In auto-retain/release, infer strong retension for fields of
17009 // retainable type.
17010 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
17011 NewFD->setInvalidDecl();
17012
17013 if (T.isObjCGCWeak())
17014 Diag(Loc, diag::warn_attribute_weak_on_field);
17015
17016 // PPC MMA non-pointer types are not allowed as field types.
17017 if (Context.getTargetInfo().getTriple().isPPC64() &&
17018 CheckPPCMMAType(T, NewFD->getLocation()))
17019 NewFD->setInvalidDecl();
17020
17021 NewFD->setAccess(AS);
17022 return NewFD;
17023}
17024
17025bool Sema::CheckNontrivialField(FieldDecl *FD) {
17026 assert(FD)(static_cast<void> (0));
17027 assert(getLangOpts().CPlusPlus && "valid check only for C++")(static_cast<void> (0));
17028
17029 if (FD->isInvalidDecl() || FD->getType()->isDependentType())
17030 return false;
17031
17032 QualType EltTy = Context.getBaseElementType(FD->getType());
17033 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
17034 CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
17035 if (RDecl->getDefinition()) {
17036 // We check for copy constructors before constructors
17037 // because otherwise we'll never get complaints about
17038 // copy constructors.
17039
17040 CXXSpecialMember member = CXXInvalid;
17041 // We're required to check for any non-trivial constructors. Since the
17042 // implicit default constructor is suppressed if there are any
17043 // user-declared constructors, we just need to check that there is a
17044 // trivial default constructor and a trivial copy constructor. (We don't
17045 // worry about move constructors here, since this is a C++98 check.)
17046 if (RDecl->hasNonTrivialCopyConstructor())
17047 member = CXXCopyConstructor;
17048 else if (!RDecl->hasTrivialDefaultConstructor())
17049 member = CXXDefaultConstructor;
17050 else if (RDecl->hasNonTrivialCopyAssignment())
17051 member = CXXCopyAssignment;
17052 else if (RDecl->hasNonTrivialDestructor())
17053 member = CXXDestructor;
17054
17055 if (member != CXXInvalid) {
17056 if (!getLangOpts().CPlusPlus11 &&
17057 getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
17058 // Objective-C++ ARC: it is an error to have a non-trivial field of
17059 // a union. However, system headers in Objective-C programs
17060 // occasionally have Objective-C lifetime objects within unions,
17061 // and rather than cause the program to fail, we make those
17062 // members unavailable.
17063 SourceLocation Loc = FD->getLocation();
17064 if (getSourceManager().isInSystemHeader(Loc)) {
17065 if (!FD->hasAttr<UnavailableAttr>())
17066 FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
17067 UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
17068 return false;
17069 }
17070 }
17071
17072 Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
17073 diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
17074 diag::err_illegal_union_or_anon_struct_member)
17075 << FD->getParent()->isUnion() << FD->getDeclName() << member;
17076 DiagnoseNontrivial(RDecl, member);
17077 return !getLangOpts().CPlusPlus11;
17078 }
17079 }
17080 }
17081
17082 return false;
17083}
17084
17085/// TranslateIvarVisibility - Translate visibility from a token ID to an
17086/// AST enum value.
17087static ObjCIvarDecl::AccessControl
17088TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
17089 switch (ivarVisibility) {
17090 default: llvm_unreachable("Unknown visitibility kind")__builtin_unreachable();
17091 case tok::objc_private: return ObjCIvarDecl::Private;
17092 case tok::objc_public: return ObjCIvarDecl::Public;
17093 case tok::objc_protected: return ObjCIvarDecl::Protected;
17094 case tok::objc_package: return ObjCIvarDecl::Package;
17095 }
17096}
17097
17098/// ActOnIvar - Each ivar field of an objective-c class is passed into this
17099/// in order to create an IvarDecl object for it.
17100Decl *Sema::ActOnIvar(Scope *S,
17101 SourceLocation DeclStart,
17102 Declarator &D, Expr *BitfieldWidth,
17103 tok::ObjCKeywordKind Visibility) {
17104
17105 IdentifierInfo *II = D.getIdentifier();
17106 Expr *BitWidth = (Expr*)BitfieldWidth;
17107 SourceLocation Loc = DeclStart;
17108 if (II) Loc = D.getIdentifierLoc();
17109
17110 // FIXME: Unnamed fields can be handled in various different ways, for
17111 // example, unnamed unions inject all members into the struct namespace!
17112
17113 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
17114 QualType T = TInfo->getType();
17115
17116 if (BitWidth) {
17117 // 6.7.2.1p3, 6.7.2.1p4
17118 BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
17119 if (!BitWidth)
17120 D.setInvalidType();
17121 } else {
17122 // Not a bitfield.
17123
17124 // validate II.
17125
17126 }
17127 if (T->isReferenceType()) {
17128 Diag(Loc, diag::err_ivar_reference_type);
17129 D.setInvalidType();
17130 }
17131 // C99 6.7.2.1p8: A member of a structure or union may have any type other
17132 // than a variably modified type.
17133 else if (T->isVariablyModifiedType()) {
17134 if (!tryToFixVariablyModifiedVarType(
17135 TInfo, T, Loc, diag::err_typecheck_ivar_variable_size))
17136 D.setInvalidType();
17137 }
17138
17139 // Get the visibility (access control) for this ivar.
17140 ObjCIvarDecl::AccessControl ac =
17141 Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
17142 : ObjCIvarDecl::None;
17143 // Must set ivar's DeclContext to its enclosing interface.
17144 ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
17145 if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
17146 return nullptr;
17147 ObjCContainerDecl *EnclosingContext;
17148 if (ObjCImplementationDecl *IMPDecl =
17149 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
17150 if (LangOpts.ObjCRuntime.isFragile()) {
17151 // Case of ivar declared in an implementation. Context is that of its class.
17152 EnclosingContext = IMPDecl->getClassInterface();
17153 assert(EnclosingContext && "Implementation has no class interface!")(static_cast<void> (0));
17154 }
17155 else
17156 EnclosingContext = EnclosingDecl;
17157 } else {
17158 if (ObjCCategoryDecl *CDecl =
17159 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
17160 if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
17161 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
17162 return nullptr;
17163 }
17164 }
17165 EnclosingContext = EnclosingDecl;
17166 }
17167
17168 // Construct the decl.
17169 ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
17170 DeclStart, Loc, II, T,
17171 TInfo, ac, (Expr *)BitfieldWidth);
17172
17173 if (II) {
17174 NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
17175 ForVisibleRedeclaration);
17176 if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
17177 && !isa<TagDecl>(PrevDecl)) {
17178 Diag(Loc, diag::err_duplicate_member) << II;
17179 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
17180 NewID->setInvalidDecl();
17181 }
17182 }
17183
17184 // Process attributes attached to the ivar.
17185 ProcessDeclAttributes(S, NewID, D);
17186
17187 if (D.isInvalidType())
17188 NewID->setInvalidDecl();
17189
17190 // In ARC, infer 'retaining' for ivars of retainable type.
17191 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
17192 NewID->setInvalidDecl();
17193
17194 if (D.getDeclSpec().isModulePrivateSpecified())
17195 NewID->setModulePrivate();
17196
17197 if (II) {
17198 // FIXME: When interfaces are DeclContexts, we'll need to add
17199 // these to the interface.
17200 S->AddDecl(NewID);
17201 IdResolver.AddDecl(NewID);
17202 }
17203
17204 if (LangOpts.ObjCRuntime.isNonFragile() &&
17205 !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
17206 Diag(Loc, diag::warn_ivars_in_interface);
17207
17208 return NewID;
17209}
17210
17211/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
17212/// class and class extensions. For every class \@interface and class
17213/// extension \@interface, if the last ivar is a bitfield of any type,
17214/// then add an implicit `char :0` ivar to the end of that interface.
17215void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
17216 SmallVectorImpl<Decl *> &AllIvarDecls) {
17217 if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
17218 return;
17219
17220 Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
17221 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
17222
17223 if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
17224 return;
17225 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
17226 if (!ID) {
17227 if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
17228 if (!CD->IsClassExtension())
17229 return;
17230 }
17231 // No need to add this to end of @implementation.
17232 else
17233 return;
17234 }
17235 // All conditions are met. Add a new bitfield to the tail end of ivars.
17236 llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
17237 Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
17238
17239 Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
17240 DeclLoc, DeclLoc, nullptr,
17241 Context.CharTy,
17242 Context.getTrivialTypeSourceInfo(Context.CharTy,
17243 DeclLoc),
17244 ObjCIvarDecl::Private, BW,
17245 true);
17246 AllIvarDecls.push_back(Ivar);
17247}
17248
17249void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
17250 ArrayRef<Decl *> Fields, SourceLocation LBrac,
17251 SourceLocation RBrac,
17252 const ParsedAttributesView &Attrs) {
17253 assert(EnclosingDecl && "missing record or interface decl")(static_cast<void> (0));
17254
17255 // If this is an Objective-C @implementation or category and we have
17256 // new fields here we should reset the layout of the interface since
17257 // it will now change.
17258 if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
17259 ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
17260 switch (DC->getKind()) {
17261 default: break;
17262 case Decl::ObjCCategory:
17263 Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
17264 break;
17265 case Decl::ObjCImplementation:
17266 Context.
17267 ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
17268 break;
17269 }
17270 }
17271
17272 RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
17273 CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl);
17274
17275 // Start counting up the number of named members; make sure to include
17276 // members of anonymous structs and unions in the total.
17277 unsigned NumNamedMembers = 0;
17278 if (Record) {
17279 for (const auto *I : Record->decls()) {
17280 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
17281 if (IFD->getDeclName())
17282 ++NumNamedMembers;
17283 }
17284 }
17285
17286 // Verify that all the fields are okay.
17287 SmallVector<FieldDecl*, 32> RecFields;
17288
17289 for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
17290 i != end; ++i) {
17291 FieldDecl *FD = cast<FieldDecl>(*i);
17292
17293 // Get the type for the field.
17294 const Type *FDTy = FD->getType().getTypePtr();
17295
17296 if (!FD->isAnonymousStructOrUnion()) {
17297 // Remember all fields written by the user.
17298 RecFields.push_back(FD);
17299 }
17300
17301 // If the field is already invalid for some reason, don't emit more
17302 // diagnostics about it.
17303 if (FD->isInvalidDecl()) {
17304 EnclosingDecl->setInvalidDecl();
17305 continue;
17306 }
17307
17308 // C99 6.7.2.1p2:
17309 // A structure or union shall not contain a member with
17310 // incomplete or function type (hence, a structure shall not
17311 // contain an instance of itself, but may contain a pointer to
17312 // an instance of itself), except that the last member of a
17313 // structure with more than one named member may have incomplete
17314 // array type; such a structure (and any union containing,
17315 // possibly recursively, a member that is such a structure)
17316 // shall not be a member of a structure or an element of an
17317 // array.
17318 bool IsLastField = (i + 1 == Fields.end());
17319 if (FDTy->isFunctionType()) {
17320 // Field declared as a function.
17321 Diag(FD->getLocation(), diag::err_field_declared_as_function)
17322 << FD->getDeclName();
17323 FD->setInvalidDecl();
17324 EnclosingDecl->setInvalidDecl();
17325 continue;
17326 } else if (FDTy->isIncompleteArrayType() &&
17327 (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
17328 if (Record) {
17329 // Flexible array member.
17330 // Microsoft and g++ is more permissive regarding flexible array.
17331 // It will accept flexible array in union and also
17332 // as the sole element of a struct/class.
17333 unsigned DiagID = 0;
17334 if (!Record->isUnion() && !IsLastField) {
17335 Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
17336 << FD->getDeclName() << FD->getType() << Record->getTagKind();
17337 Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
17338 FD->setInvalidDecl();
17339 EnclosingDecl->setInvalidDecl();
17340 continue;
17341 } else if (Record->isUnion())
17342 DiagID = getLangOpts().MicrosoftExt
17343 ? diag::ext_flexible_array_union_ms
17344 : getLangOpts().CPlusPlus
17345 ? diag::ext_flexible_array_union_gnu
17346 : diag::err_flexible_array_union;
17347 else if (NumNamedMembers < 1)
17348 DiagID = getLangOpts().MicrosoftExt
17349 ? diag::ext_flexible_array_empty_aggregate_ms
17350 : getLangOpts().CPlusPlus
17351 ? diag::ext_flexible_array_empty_aggregate_gnu
17352 : diag::err_flexible_array_empty_aggregate;
17353
17354 if (DiagID)
17355 Diag(FD->getLocation(), DiagID) << FD->getDeclName()
17356 << Record->getTagKind();
17357 // While the layout of types that contain virtual bases is not specified
17358 // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
17359 // virtual bases after the derived members. This would make a flexible
17360 // array member declared at the end of an object not adjacent to the end
17361 // of the type.
17362 if (CXXRecord && CXXRecord->getNumVBases() != 0)
17363 Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
17364 << FD->getDeclName() << Record->getTagKind();
17365 if (!getLangOpts().C99)
17366 Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
17367 << FD->getDeclName() << Record->getTagKind();
17368
17369 // If the element type has a non-trivial destructor, we would not
17370 // implicitly destroy the elements, so disallow it for now.
17371 //
17372 // FIXME: GCC allows this. We should probably either implicitly delete
17373 // the destructor of the containing class, or just allow this.
17374 QualType BaseElem = Context.getBaseElementType(FD->getType());
17375 if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
17376 Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
17377 << FD->getDeclName() << FD->getType();
17378 FD->setInvalidDecl();
17379 EnclosingDecl->setInvalidDecl();
17380 continue;
17381 }
17382 // Okay, we have a legal flexible array member at the end of the struct.
17383 Record->setHasFlexibleArrayMember(true);
17384 } else {
17385 // In ObjCContainerDecl ivars with incomplete array type are accepted,
17386 // unless they are followed by another ivar. That check is done
17387 // elsewhere, after synthesized ivars are known.
17388 }
17389 } else if (!FDTy->isDependentType() &&
17390 RequireCompleteSizedType(
17391 FD->getLocation(), FD->getType(),
17392 diag::err_field_incomplete_or_sizeless)) {
17393 // Incomplete type
17394 FD->setInvalidDecl();
17395 EnclosingDecl->setInvalidDecl();
17396 continue;
17397 } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
17398 if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
17399 // A type which contains a flexible array member is considered to be a
17400 // flexible array member.
17401 Record->setHasFlexibleArrayMember(true);
17402 if (!Record->isUnion()) {
17403 // If this is a struct/class and this is not the last element, reject
17404 // it. Note that GCC supports variable sized arrays in the middle of
17405 // structures.
17406 if (!IsLastField)
17407 Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
17408 << FD->getDeclName() << FD->getType();
17409 else {
17410 // We support flexible arrays at the end of structs in
17411 // other structs as an extension.
17412 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
17413 << FD->getDeclName();
17414 }
17415 }
17416 }
17417 if (isa<ObjCContainerDecl>(EnclosingDecl) &&
17418 RequireNonAbstractType(FD->getLocation(), FD->getType(),
17419 diag::err_abstract_type_in_decl,
17420 AbstractIvarType)) {
17421 // Ivars can not have abstract class types
17422 FD->setInvalidDecl();
17423 }
17424 if (Record && FDTTy->getDecl()->hasObjectMember())
17425 Record->setHasObjectMember(true);
17426 if (Record && FDTTy->getDecl()->hasVolatileMember())
17427 Record->setHasVolatileMember(true);
17428 } else if (FDTy->isObjCObjectType()) {
17429 /// A field cannot be an Objective-c object
17430 Diag(FD->getLocation(), diag::err_statically_allocated_object)
17431 << FixItHint::CreateInsertion(FD->getLocation(), "*");
17432 QualType T = Context.getObjCObjectPointerType(FD->getType());
17433 FD->setType(T);
17434 } else if (Record && Record->isUnion() &&
17435 FD->getType().hasNonTrivialObjCLifetime() &&
17436 getSourceManager().isInSystemHeader(FD->getLocation()) &&
17437 !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>() &&
17438 (FD->getType().getObjCLifetime() != Qualifiers::OCL_Strong ||
17439 !Context.hasDirectOwnershipQualifier(FD->getType()))) {
17440 // For backward compatibility, fields of C unions declared in system
17441 // headers that have non-trivial ObjC ownership qualifications are marked
17442 // as unavailable unless the qualifier is explicit and __strong. This can
17443 // break ABI compatibility between programs compiled with ARC and MRR, but
17444 // is a better option than rejecting programs using those unions under
17445 // ARC.
17446 FD->addAttr(UnavailableAttr::CreateImplicit(
17447 Context, "", UnavailableAttr::IR_ARCFieldWithOwnership,
17448 FD->getLocation()));
17449 } else if (getLangOpts().ObjC &&
17450 getLangOpts().getGC() != LangOptions::NonGC && Record &&
17451 !Record->hasObjectMember()) {
17452 if (FD->getType()->isObjCObjectPointerType() ||
17453 FD->getType().isObjCGCStrong())
17454 Record->setHasObjectMember(true);
17455 else if (Context.getAsArrayType(FD->getType())) {
17456 QualType BaseType = Context.getBaseElementType(FD->getType());
17457 if (BaseType->isRecordType() &&
17458 BaseType->castAs<RecordType>()->getDecl()->hasObjectMember())
17459 Record->setHasObjectMember(true);
17460 else if (BaseType->isObjCObjectPointerType() ||
17461 BaseType.isObjCGCStrong())
17462 Record->setHasObjectMember(true);
17463 }
17464 }
17465
17466 if (Record && !getLangOpts().CPlusPlus &&
17467 !shouldIgnoreForRecordTriviality(FD)) {
17468 QualType FT = FD->getType();
17469 if (FT.isNonTrivialToPrimitiveDefaultInitialize()) {
17470 Record->setNonTrivialToPrimitiveDefaultInitialize(true);
17471 if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
17472 Record->isUnion())
17473 Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true);
17474 }
17475 QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
17476 if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) {
17477 Record->setNonTrivialToPrimitiveCopy(true);
17478 if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion())
17479 Record->setHasNonTrivialToPrimitiveCopyCUnion(true);
17480 }
17481 if (FT.isDestructedType()) {
17482 Record->setNonTrivialToPrimitiveDestroy(true);
17483 Record->setParamDestroyedInCallee(true);
17484 if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion())
17485 Record->setHasNonTrivialToPrimitiveDestructCUnion(true);
17486 }
17487
17488 if (const auto *RT = FT->getAs<RecordType>()) {
17489 if (RT->getDecl()->getArgPassingRestrictions() ==
17490 RecordDecl::APK_CanNeverPassInRegs)
17491 Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
17492 } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
17493 Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
17494 }
17495
17496 if (Record && FD->getType().isVolatileQualified())
17497 Record->setHasVolatileMember(true);
17498 // Keep track of the number of named members.
17499 if (FD->getIdentifier())
17500 ++NumNamedMembers;
17501 }
17502
17503 // Okay, we successfully defined 'Record'.
17504 if (Record) {
17505 bool Completed = false;
17506 if (CXXRecord) {
17507 if (!CXXRecord->isInvalidDecl()) {
17508 // Set access bits correctly on the directly-declared conversions.
17509 for (CXXRecordDecl::conversion_iterator
17510 I = CXXRecord->conversion_begin(),
17511 E = CXXRecord->conversion_end(); I != E; ++I)
17512 I.setAccess((*I)->getAccess());
17513 }
17514
17515 // Add any implicitly-declared members to this class.
17516 AddImplicitlyDeclaredMembersToClass(CXXRecord);
17517
17518 if (!CXXRecord->isDependentType()) {
17519 if (!CXXRecord->isInvalidDecl()) {
17520 // If we have virtual base classes, we may end up finding multiple
17521 // final overriders for a given virtual function. Check for this
17522 // problem now.
17523 if (CXXRecord->getNumVBases()) {
17524 CXXFinalOverriderMap FinalOverriders;
17525 CXXRecord->getFinalOverriders(FinalOverriders);
17526
17527 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
17528 MEnd = FinalOverriders.end();
17529 M != MEnd; ++M) {
17530 for (OverridingMethods::iterator SO = M->second.begin(),
17531 SOEnd = M->second.end();
17532 SO != SOEnd; ++SO) {
17533 assert(SO->second.size() > 0 &&(static_cast<void> (0))
17534 "Virtual function without overriding functions?")(static_cast<void> (0));
17535 if (SO->second.size() == 1)
17536 continue;
17537
17538 // C++ [class.virtual]p2:
17539 // In a derived class, if a virtual member function of a base
17540 // class subobject has more than one final overrider the
17541 // program is ill-formed.
17542 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
17543 << (const NamedDecl *)M->first << Record;
17544 Diag(M->first->getLocation(),
17545 diag::note_overridden_virtual_function);
17546 for (OverridingMethods::overriding_iterator
17547 OM = SO->second.begin(),
17548 OMEnd = SO->second.end();
17549 OM != OMEnd; ++OM)
17550 Diag(OM->Method->getLocation(), diag::note_final_overrider)
17551 << (const NamedDecl *)M->first << OM->Method->getParent();
17552
17553 Record->setInvalidDecl();
17554 }
17555 }
17556 CXXRecord->completeDefinition(&FinalOverriders);
17557 Completed = true;
17558 }
17559 }
17560 }
17561 }
17562
17563 if (!Completed)
17564 Record->completeDefinition();
17565
17566 // Handle attributes before checking the layout.
17567 ProcessDeclAttributeList(S, Record, Attrs);
17568
17569 // We may have deferred checking for a deleted destructor. Check now.
17570 if (CXXRecord) {
17571 auto *Dtor = CXXRecord->getDestructor();
17572 if (Dtor && Dtor->isImplicit() &&
17573 ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
17574 CXXRecord->setImplicitDestructorIsDeleted();
17575 SetDeclDeleted(Dtor, CXXRecord->getLocation());
17576 }
17577 }
17578
17579 if (Record->hasAttrs()) {
17580 CheckAlignasUnderalignment(Record);
17581
17582 if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
17583 checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
17584 IA->getRange(), IA->getBestCase(),
17585 IA->getInheritanceModel());
17586 }
17587
17588 // Check if the structure/union declaration is a type that can have zero
17589 // size in C. For C this is a language extension, for C++ it may cause
17590 // compatibility problems.
17591 bool CheckForZeroSize;
17592 if (!getLangOpts().CPlusPlus) {
17593 CheckForZeroSize = true;
17594 } else {
17595 // For C++ filter out types that cannot be referenced in C code.
17596 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
17597 CheckForZeroSize =
17598 CXXRecord->getLexicalDeclContext()->isExternCContext() &&
17599 !CXXRecord->isDependentType() && !inTemplateInstantiation() &&
17600 CXXRecord->isCLike();
17601 }
17602 if (CheckForZeroSize) {
17603 bool ZeroSize = true;
17604 bool IsEmpty = true;
17605 unsigned NonBitFields = 0;
17606 for (RecordDecl::field_iterator I = Record->field_begin(),
17607 E = Record->field_end();
17608 (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
17609 IsEmpty = false;
17610 if (I->isUnnamedBitfield()) {
17611 if (!I->isZeroLengthBitField(Context))
17612 ZeroSize = false;
17613 } else {
17614 ++NonBitFields;
17615 QualType FieldType = I->getType();
17616 if (FieldType->isIncompleteType() ||
17617 !Context.getTypeSizeInChars(FieldType).isZero())
17618 ZeroSize = false;
17619 }
17620 }
17621
17622 // Empty structs are an extension in C (C99 6.7.2.1p7). They are
17623 // allowed in C++, but warn if its declaration is inside
17624 // extern "C" block.
17625 if (ZeroSize) {
17626 Diag(RecLoc, getLangOpts().CPlusPlus ?
17627 diag::warn_zero_size_struct_union_in_extern_c :
17628 diag::warn_zero_size_struct_union_compat)
17629 << IsEmpty << Record->isUnion() << (NonBitFields > 1);
17630 }
17631
17632 // Structs without named members are extension in C (C99 6.7.2.1p7),
17633 // but are accepted by GCC.
17634 if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
17635 Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
17636 diag::ext_no_named_members_in_struct_union)
17637 << Record->isUnion();
17638 }
17639 }
17640 } else {
17641 ObjCIvarDecl **ClsFields =
17642 reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
17643 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
17644 ID->setEndOfDefinitionLoc(RBrac);
17645 // Add ivar's to class's DeclContext.
17646 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
17647 ClsFields[i]->setLexicalDeclContext(ID);
17648 ID->addDecl(ClsFields[i]);
17649 }
17650 // Must enforce the rule that ivars in the base classes may not be
17651 // duplicates.
17652 if (ID->getSuperClass())
17653 DiagnoseDuplicateIvars(ID, ID->getSuperClass());
17654 } else if (ObjCImplementationDecl *IMPDecl =
17655 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
17656 assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl")(static_cast<void> (0));
17657 for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
17658 // Ivar declared in @implementation never belongs to the implementation.
17659 // Only it is in implementation's lexical context.
17660 ClsFields[I]->setLexicalDeclContext(IMPDecl);
17661 CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
17662 IMPDecl->setIvarLBraceLoc(LBrac);
17663 IMPDecl->setIvarRBraceLoc(RBrac);
17664 } else if (ObjCCategoryDecl *CDecl =
17665 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
17666 // case of ivars in class extension; all other cases have been
17667 // reported as errors elsewhere.
17668 // FIXME. Class extension does not have a LocEnd field.
17669 // CDecl->setLocEnd(RBrac);
17670 // Add ivar's to class extension's DeclContext.
17671 // Diagnose redeclaration of private ivars.
17672 ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
17673 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
17674 if (IDecl) {
17675 if (const ObjCIvarDecl *ClsIvar =
17676 IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
17677 Diag(ClsFields[i]->getLocation(),
17678 diag::err_duplicate_ivar_declaration);
17679 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
17680 continue;
17681 }
17682 for (const auto *Ext : IDecl->known_extensions()) {
17683 if (const ObjCIvarDecl *ClsExtIvar
17684 = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
17685 Diag(ClsFields[i]->getLocation(),
17686 diag::err_duplicate_ivar_declaration);
17687 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
17688 continue;
17689 }
17690 }
17691 }
17692 ClsFields[i]->setLexicalDeclContext(CDecl);
17693 CDecl->addDecl(ClsFields[i]);
17694 }
17695 CDecl->setIvarLBraceLoc(LBrac);
17696 CDecl->setIvarRBraceLoc(RBrac);
17697 }
17698 }
17699}
17700
17701/// Determine whether the given integral value is representable within
17702/// the given type T.
17703static bool isRepresentableIntegerValue(ASTContext &Context,
17704 llvm::APSInt &Value,
17705 QualType T) {
17706 assert((T->isIntegralType(Context) || T->isEnumeralType()) &&(static_cast<void> (0))
17707 "Integral type required!")(static_cast<void> (0));
17708 unsigned BitWidth = Context.getIntWidth(T);
17709
17710 if (Value.isUnsigned() || Value.isNonNegative()) {
17711 if (T->isSignedIntegerOrEnumerationType())
17712 --BitWidth;
17713 return Value.getActiveBits() <= BitWidth;
17714 }
17715 return Value.getMinSignedBits() <= BitWidth;
17716}
17717
17718// Given an integral type, return the next larger integral type
17719// (or a NULL type of no such type exists).
17720static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
17721 // FIXME: Int128/UInt128 support, which also needs to be introduced into
17722 // enum checking below.
17723 assert((T->isIntegralType(Context) ||(static_cast<void> (0))
17724 T->isEnumeralType()) && "Integral type required!")(static_cast<void> (0));
17725 const unsigned NumTypes = 4;
17726 QualType SignedIntegralTypes[NumTypes] = {
17727 Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
17728 };
17729 QualType UnsignedIntegralTypes[NumTypes] = {
17730 Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
17731 Context.UnsignedLongLongTy
17732 };
17733
17734 unsigned BitWidth = Context.getTypeSize(T);
17735 QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
17736 : UnsignedIntegralTypes;
17737 for (unsigned I = 0; I != NumTypes; ++I)
17738 if (Context.getTypeSize(Types[I]) > BitWidth)
17739 return Types[I];
17740
17741 return QualType();
17742}
17743
17744EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
17745 EnumConstantDecl *LastEnumConst,
17746 SourceLocation IdLoc,
17747 IdentifierInfo *Id,
17748 Expr *Val) {
17749 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
17750 llvm::APSInt EnumVal(IntWidth);
17751 QualType EltTy;
17752
17753 if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
17754 Val = nullptr;
17755
17756 if (Val)
17757 Val = DefaultLvalueConversion(Val).get();
17758
17759 if (Val) {
17760 if (Enum->isDependentType() || Val->isTypeDependent())
17761 EltTy = Context.DependentTy;
17762 else {
17763 // FIXME: We don't allow folding in C++11 mode for an enum with a fixed
17764 // underlying type, but do allow it in all other contexts.
17765 if (getLangOpts().CPlusPlus11 && Enum->isFixed()) {
17766 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
17767 // constant-expression in the enumerator-definition shall be a converted
17768 // constant expression of the underlying type.
17769 EltTy = Enum->getIntegerType();
17770 ExprResult Converted =
17771 CheckConvertedConstantExpression(Val, EltTy, EnumVal,
17772 CCEK_Enumerator);
17773 if (Converted.isInvalid())
17774 Val = nullptr;
17775 else
17776 Val = Converted.get();
17777 } else if (!Val->isValueDependent() &&
17778 !(Val =
17779 VerifyIntegerConstantExpression(Val, &EnumVal, AllowFold)
17780 .get())) {
17781 // C99 6.7.2.2p2: Make sure we have an integer constant expression.
17782 } else {
17783 if (Enum->isComplete()) {
17784 EltTy = Enum->getIntegerType();
17785
17786 // In Obj-C and Microsoft mode, require the enumeration value to be
17787 // representable in the underlying type of the enumeration. In C++11,
17788 // we perform a non-narrowing conversion as part of converted constant
17789 // expression checking.
17790 if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
17791 if (Context.getTargetInfo()
17792 .getTriple()
17793 .isWindowsMSVCEnvironment()) {
17794 Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
17795 } else {
17796 Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
17797 }
17798 }
17799
17800 // Cast to the underlying type.
17801 Val = ImpCastExprToType(Val, EltTy,
17802 EltTy->isBooleanType() ? CK_IntegralToBoolean
17803 : CK_IntegralCast)
17804 .get();
17805 } else if (getLangOpts().CPlusPlus) {
17806 // C++11 [dcl.enum]p5:
17807 // If the underlying type is not fixed, the type of each enumerator
17808 // is the type of its initializing value:
17809 // - If an initializer is specified for an enumerator, the
17810 // initializing value has the same type as the expression.
17811 EltTy = Val->getType();
17812 } else {
17813 // C99 6.7.2.2p2:
17814 // The expression that defines the value of an enumeration constant
17815 // shall be an integer constant expression that has a value
17816 // representable as an int.
17817
17818 // Complain if the value is not representable in an int.
17819 if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
17820 Diag(IdLoc, diag::ext_enum_value_not_int)
17821 << toString(EnumVal, 10) << Val->getSourceRange()
17822 << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
17823 else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
17824 // Force the type of the expression to 'int'.
17825 Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
17826 }
17827 EltTy = Val->getType();
17828 }
17829 }
17830 }
17831 }
17832
17833 if (!Val) {
17834 if (Enum->isDependentType())
17835 EltTy = Context.DependentTy;
17836 else if (!LastEnumConst) {
17837 // C++0x [dcl.enum]p5:
17838 // If the underlying type is not fixed, the type of each enumerator
17839 // is the type of its initializing value:
17840 // - If no initializer is specified for the first enumerator, the
17841 // initializing value has an unspecified integral type.
17842 //
17843 // GCC uses 'int' for its unspecified integral type, as does
17844 // C99 6.7.2.2p3.
17845 if (Enum->isFixed()) {
17846 EltTy = Enum->getIntegerType();
17847 }
17848 else {
17849 EltTy = Context.IntTy;
17850 }
17851 } else {
17852 // Assign the last value + 1.
17853 EnumVal = LastEnumConst->getInitVal();
17854 ++EnumVal;
17855 EltTy = LastEnumConst->getType();
17856
17857 // Check for overflow on increment.
17858 if (EnumVal < LastEnumConst->getInitVal()) {
17859 // C++0x [dcl.enum]p5:
17860 // If the underlying type is not fixed, the type of each enumerator
17861 // is the type of its initializing value:
17862 //
17863 // - Otherwise the type of the initializing value is the same as
17864 // the type of the initializing value of the preceding enumerator
17865 // unless the incremented value is not representable in that type,
17866 // in which case the type is an unspecified integral type
17867 // sufficient to contain the incremented value. If no such type
17868 // exists, the program is ill-formed.
17869 QualType T = getNextLargerIntegralType(Context, EltTy);
17870 if (T.isNull() || Enum->isFixed()) {
17871 // There is no integral type larger enough to represent this
17872 // value. Complain, then allow the value to wrap around.
17873 EnumVal = LastEnumConst->getInitVal();
17874 EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
17875 ++EnumVal;
17876 if (Enum->isFixed())
17877 // When the underlying type is fixed, this is ill-formed.
17878 Diag(IdLoc, diag::err_enumerator_wrapped)
17879 << toString(EnumVal, 10)
17880 << EltTy;
17881 else
17882 Diag(IdLoc, diag::ext_enumerator_increment_too_large)
17883 << toString(EnumVal, 10);
17884 } else {
17885 EltTy = T;
17886 }
17887
17888 // Retrieve the last enumerator's value, extent that type to the
17889 // type that is supposed to be large enough to represent the incremented
17890 // value, then increment.
17891 EnumVal = LastEnumConst->getInitVal();
17892 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
17893 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
17894 ++EnumVal;
17895
17896 // If we're not in C++, diagnose the overflow of enumerator values,
17897 // which in C99 means that the enumerator value is not representable in
17898 // an int (C99 6.7.2.2p2). However, we support GCC's extension that
17899 // permits enumerator values that are representable in some larger
17900 // integral type.
17901 if (!getLangOpts().CPlusPlus && !T.isNull())
17902 Diag(IdLoc, diag::warn_enum_value_overflow);
17903 } else if (!getLangOpts().CPlusPlus &&
17904 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
17905 // Enforce C99 6.7.2.2p2 even when we compute the next value.
17906 Diag(IdLoc, diag::ext_enum_value_not_int)
17907 << toString(EnumVal, 10) << 1;
17908 }
17909 }
17910 }
17911
17912 if (!EltTy->isDependentType()) {
17913 // Make the enumerator value match the signedness and size of the
17914 // enumerator's type.
17915 EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
17916 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
17917 }
17918
17919 return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
17920 Val, EnumVal);
17921}
17922
17923Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
17924 SourceLocation IILoc) {
17925 if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
17926 !getLangOpts().CPlusPlus)
17927 return SkipBodyInfo();
17928
17929 // We have an anonymous enum definition. Look up the first enumerator to
17930 // determine if we should merge the definition with an existing one and
17931 // skip the body.
17932 NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
17933 forRedeclarationInCurContext());
17934 auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
17935 if (!PrevECD)
17936 return SkipBodyInfo();
17937
17938 EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
17939 NamedDecl *Hidden;
17940 if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
17941 SkipBodyInfo Skip;
17942 Skip.Previous = Hidden;
17943 return Skip;
17944 }
17945
17946 return SkipBodyInfo();
17947}
17948
17949Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
17950 SourceLocation IdLoc, IdentifierInfo *Id,
17951 const ParsedAttributesView &Attrs,
17952 SourceLocation EqualLoc, Expr *Val) {
17953 EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
17954 EnumConstantDecl *LastEnumConst =
17955 cast_or_null<EnumConstantDecl>(lastEnumConst);
17956
17957 // The scope passed in may not be a decl scope. Zip up the scope tree until
17958 // we find one that is.
17959 S = getNonFieldDeclScope(S);
17960
17961 // Verify that there isn't already something declared with this name in this
17962 // scope.
17963 LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration);
17964 LookupName(R, S);
17965 NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();
17966
17967 if (PrevDecl && PrevDecl->isTemplateParameter()) {
17968 // Maybe we will complain about the shadowed template parameter.
17969 DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
17970 // Just pretend that we didn't see the previous declaration.
17971 PrevDecl = nullptr;
17972 }
17973
17974 // C++ [class.mem]p15:
17975 // If T is the name of a class, then each of the following shall have a name
17976 // different from T:
17977 // - every enumerator of every member of class T that is an unscoped
17978 // enumerated type
17979 if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
17980 DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
17981 DeclarationNameInfo(Id, IdLoc));
17982
17983 EnumConstantDecl *New =
17984 CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
17985 if (!New)
17986 return nullptr;
17987
17988 if (PrevDecl) {
17989 if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) {
17990 // Check for other kinds of shadowing not already handled.
17991 CheckShadow(New, PrevDecl, R);
17992 }
17993
17994 // When in C++, we may get a TagDecl with the same name; in this case the
17995 // enum constant will 'hide' the tag.
17996 assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&(static_cast<void> (0))
17997 "Received TagDecl when not in C++!")(static_cast<void> (0));
17998 if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
17999 if (isa<EnumConstantDecl>(PrevDecl))
18000 Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
18001 else
18002 Diag(IdLoc, diag::err_redefinition) << Id;
18003 notePreviousDefinition(PrevDecl, IdLoc);
18004 return nullptr;
18005 }
18006 }
18007
18008 // Process attributes.
18009 ProcessDeclAttributeList(S, New, Attrs);
18010 AddPragmaAttributes(S, New);
18011
18012 // Register this decl in the current scope stack.
18013 New->setAccess(TheEnumDecl->getAccess());
18014 PushOnScopeChains(New, S);
18015
18016 ActOnDocumentableDecl(New);
18017
18018 return New;
18019}
18020
18021// Returns true when the enum initial expression does not trigger the
18022// duplicate enum warning. A few common cases are exempted as follows:
18023// Element2 = Element1
18024// Element2 = Element1 + 1
18025// Element2 = Element1 - 1
18026// Where Element2 and Element1 are from the same enum.
18027static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
18028 Expr *InitExpr = ECD->getInitExpr();
18029 if (!InitExpr)
18030 return true;
18031 InitExpr = InitExpr->IgnoreImpCasts();
18032
18033 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
18034 if (!BO->isAdditiveOp())
18035 return true;
18036 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
18037 if (!IL)
18038 return true;
18039 if (IL->getValue() != 1)
18040 return true;
18041
18042 InitExpr = BO->getLHS();
18043 }
18044
18045 // This checks if the elements are from the same enum.
18046 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
18047 if (!DRE)
18048 return true;
18049
18050 EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
18051 if (!EnumConstant)
18052 return true;
18053
18054 if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
18055 Enum)
18056 return true;
18057
18058 return false;
18059}
18060
18061// Emits a warning when an element is implicitly set a value that
18062// a previous element has already been set to.
18063static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
18064 EnumDecl *Enum, QualType EnumType) {
18065 // Avoid anonymous enums
18066 if (!Enum->getIdentifier())
18067 return;
18068
18069 // Only check for small enums.
18070 if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
18071 return;
18072
18073 if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
18074 return;
18075
18076 typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
18077 typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
18078
18079 typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
18080
18081 // DenseMaps cannot contain the all ones int64_t value, so use unordered_map.
18082 typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap;
18083
18084 // Use int64_t as a key to avoid needing special handling for map keys.
18085 auto EnumConstantToKey = [](const EnumConstantDecl *D) {
18086 llvm::APSInt Val = D->getInitVal();
18087 return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
18088 };
18089
18090 DuplicatesVector DupVector;
18091 ValueToVectorMap EnumMap;
18092
18093 // Populate the EnumMap with all values represented by enum constants without
18094 // an initializer.
18095 for (auto *Element : Elements) {
18096 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
18097
18098 // Null EnumConstantDecl means a previous diagnostic has been emitted for
18099 // this constant. Skip this enum since it may be ill-formed.
18100 if (!ECD) {
18101 return;
18102 }
18103
18104 // Constants with initalizers are handled in the next loop.
18105 if (ECD->getInitExpr())
18106 continue;
18107
18108 // Duplicate values are handled in the next loop.
18109 EnumMap.insert({EnumConstantToKey(ECD), ECD});
18110 }
18111
18112 if (EnumMap.size() == 0)
18113 return;
18114
18115 // Create vectors for any values that has duplicates.
18116 for (auto *Element : Elements) {
18117 // The last loop returned if any constant was null.
18118 EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
18119 if (!ValidDuplicateEnum(ECD, Enum))
18120 continue;
18121
18122 auto Iter = EnumMap.find(EnumConstantToKey(ECD));
18123 if (Iter == EnumMap.end())
18124 continue;
18125
18126 DeclOrVector& Entry = Iter->second;
18127 if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
18128 // Ensure constants are different.
18129 if (D == ECD)
18130 continue;
18131
18132 // Create new vector and push values onto it.
18133 auto Vec = std::make_unique<ECDVector>();
18134 Vec->push_back(D);
18135 Vec->push_back(ECD);
18136
18137 // Update entry to point to the duplicates vector.
18138 Entry = Vec.get();
18139
18140 // Store the vector somewhere we can consult later for quick emission of
18141 // diagnostics.
18142 DupVector.emplace_back(std::move(Vec));
18143 continue;
18144 }
18145
18146 ECDVector *Vec = Entry.get<ECDVector*>();
18147 // Make sure constants are not added more than once.
18148 if (*Vec->begin() == ECD)
18149 continue;
18150
18151 Vec->push_back(ECD);
18152 }
18153
18154 // Emit diagnostics.
18155 for (const auto &Vec : DupVector) {
18156 assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.")(static_cast<void> (0));
18157
18158 // Emit warning for one enum constant.
18159 auto *FirstECD = Vec->front();
18160 S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
18161 << FirstECD << toString(FirstECD->getInitVal(), 10)
18162 << FirstECD->getSourceRange();
18163
18164 // Emit one note for each of the remaining enum constants with
18165 // the same value.
18166 for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end()))
18167 S.Diag(ECD->getLocation(), diag::note_duplicate_element)
18168 << ECD << toString(ECD->getInitVal(), 10)
18169 << ECD->getSourceRange();
18170 }
18171}
18172
18173bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
18174 bool AllowMask) const {
18175 assert(ED->isClosedFlag() && "looking for value in non-flag or open enum")(static_cast<void> (0));
18176 assert(ED->isCompleteDefinition() && "expected enum definition")(static_cast<void> (0));
18177
18178 auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
18179 llvm::APInt &FlagBits = R.first->second;
18180
18181 if (R.second) {
18182 for (auto *E : ED->enumerators()) {
18183 const auto &EVal = E->getInitVal();
18184 // Only single-bit enumerators introduce new flag values.
18185 if (EVal.isPowerOf2())
18186 FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
18187 }
18188 }
18189
18190 // A value is in a flag enum if either its bits are a subset of the enum's
18191 // flag bits (the first condition) or we are allowing masks and the same is
18192 // true of its complement (the second condition). When masks are allowed, we
18193 // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
18194 //
18195 // While it's true that any value could be used as a mask, the assumption is
18196 // that a mask will have all of the insignificant bits set. Anything else is
18197 // likely a logic error.
18198 llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
18199 return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
18200}
18201
18202void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
18203 Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S,
18204 const ParsedAttributesView &Attrs) {
18205 EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
18206 QualType EnumType = Context.getTypeDeclType(Enum);
18207
18208 ProcessDeclAttributeList(S, Enum, Attrs);
18209
18210 if (Enum->isDependentType()) {
18211 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
18212 EnumConstantDecl *ECD =
18213 cast_or_null<EnumConstantDecl>(Elements[i]);
18214 if (!ECD) continue;
18215
18216 ECD->setType(EnumType);
18217 }
18218
18219 Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
18220 return;
18221 }
18222
18223 // TODO: If the result value doesn't fit in an int, it must be a long or long
18224 // long value. ISO C does not support this, but GCC does as an extension,
18225 // emit a warning.
18226 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
18227 unsigned CharWidth = Context.getTargetInfo().getCharWidth();
18228 unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
18229
18230 // Verify that all the values are okay, compute the size of the values, and
18231 // reverse the list.
18232 unsigned NumNegativeBits = 0;
18233 unsigned NumPositiveBits = 0;
18234
18235 // Keep track of whether all elements have type int.
18236 bool AllElementsInt = true;
18237
18238 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
18239 EnumConstantDecl *ECD =
18240 cast_or_null<EnumConstantDecl>(Elements[i]);
18241 if (!ECD) continue; // Already issued a diagnostic.
18242
18243 const llvm::APSInt &InitVal = ECD->getInitVal();
18244
18245 // Keep track of the size of positive and negative values.
18246 if (InitVal.isUnsigned() || InitVal.isNonNegative())
18247 NumPositiveBits = std::max(NumPositiveBits,
18248 (unsigned)InitVal.getActiveBits());
18249 else
18250 NumNegativeBits = std::max(NumNegativeBits,
18251 (unsigned)InitVal.getMinSignedBits());
18252
18253 // Keep track of whether every enum element has type int (very common).
18254 if (AllElementsInt)
18255 AllElementsInt = ECD->getType() == Context.IntTy;
18256 }
18257
18258 // Figure out the type that should be used for this enum.
18259 QualType BestType;
18260 unsigned BestWidth;
18261
18262 // C++0x N3000 [conv.prom]p3:
18263 // An rvalue of an unscoped enumeration type whose underlying
18264 // type is not fixed can be converted to an rvalue of the first
18265 // of the following types that can represent all the values of
18266 // the enumeration: int, unsigned int, long int, unsigned long
18267 // int, long long int, or unsigned long long int.
18268 // C99 6.4.4.3p2:
18269 // An identifier declared as an enumeration constant has type int.
18270 // The C99 rule is modified by a gcc extension
18271 QualType BestPromotionType;
18272
18273 bool Packed = Enum->hasAttr<PackedAttr>();
18274 // -fshort-enums is the equivalent to specifying the packed attribute on all
18275 // enum definitions.
18276 if (LangOpts.ShortEnums)
18277 Packed = true;
18278
18279 // If the enum already has a type because it is fixed or dictated by the
18280 // target, promote that type instead of analyzing the enumerators.
18281 if (Enum->isComplete()) {
18282 BestType = Enum->getIntegerType();
18283 if (BestType->isPromotableIntegerType())
18284 BestPromotionType = Context.getPromotedIntegerType(BestType);
18285 else
18286 BestPromotionType = BestType;
18287
18288 BestWidth = Context.getIntWidth(BestType);
18289 }
18290 else if (NumNegativeBits) {
18291 // If there is a negative value, figure out the smallest integer type (of
18292 // int/long/longlong) that fits.
18293 // If it's packed, check also if it fits a char or a short.
18294 if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
18295 BestType = Context.SignedCharTy;
18296 BestWidth = CharWidth;
18297 } else if (Packed && NumNegativeBits <= ShortWidth &&
18298 NumPositiveBits < ShortWidth) {
18299 BestType = Context.ShortTy;
18300 BestWidth = ShortWidth;
18301 } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
18302 BestType = Context.IntTy;
18303 BestWidth = IntWidth;
18304 } else {
18305 BestWidth = Context.getTargetInfo().getLongWidth();
18306
18307 if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
18308 BestType = Context.LongTy;
18309 } else {
18310 BestWidth = Context.getTargetInfo().getLongLongWidth();
18311
18312 if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
18313 Diag(Enum->getLocation(), diag::ext_enum_too_large);
18314 BestType = Context.LongLongTy;
18315 }
18316 }
18317 BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
18318 } else {
18319 // If there is no negative value, figure out the smallest type that fits
18320 // all of the enumerator values.
18321 // If it's packed, check also if it fits a char or a short.
18322 if (Packed && NumPositiveBits <= CharWidth) {
18323 BestType = Context.UnsignedCharTy;
18324 BestPromotionType = Context.IntTy;
18325 BestWidth = CharWidth;
18326 } else if (Packed && NumPositiveBits <= ShortWidth) {
18327 BestType = Context.UnsignedShortTy;
18328 BestPromotionType = Context.IntTy;
18329 BestWidth = ShortWidth;
18330 } else if (NumPositiveBits <= IntWidth) {
18331 BestType = Context.UnsignedIntTy;
18332 BestWidth = IntWidth;
18333 BestPromotionType
18334 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
18335 ? Context.UnsignedIntTy : Context.IntTy;
18336 } else if (NumPositiveBits <=
18337 (BestWidth = Context.getTargetInfo().getLongWidth())) {
18338 BestType = Context.UnsignedLongTy;
18339 BestPromotionType
18340 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
18341 ? Context.UnsignedLongTy : Context.LongTy;
18342 } else {
18343 BestWidth = Context.getTargetInfo().getLongLongWidth();
18344 assert(NumPositiveBits <= BestWidth &&(static_cast<void> (0))
18345 "How could an initializer get larger than ULL?")(static_cast<void> (0));
18346 BestType = Context.UnsignedLongLongTy;
18347 BestPromotionType
18348 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
18349 ? Context.UnsignedLongLongTy : Context.LongLongTy;
18350 }
18351 }
18352
18353 // Loop over all of the enumerator constants, changing their types to match
18354 // the type of the enum if needed.
18355 for (auto *D : Elements) {
18356 auto *ECD = cast_or_null<EnumConstantDecl>(D);
18357 if (!ECD) continue; // Already issued a diagnostic.
18358
18359 // Standard C says the enumerators have int type, but we allow, as an
18360 // extension, the enumerators to be larger than int size. If each
18361 // enumerator value fits in an int, type it as an int, otherwise type it the
18362 // same as the enumerator decl itself. This means that in "enum { X = 1U }"
18363 // that X has type 'int', not 'unsigned'.
18364
18365 // Determine whether the value fits into an int.
18366 llvm::APSInt InitVal = ECD->getInitVal();
18367
18368 // If it fits into an integer type, force it. Otherwise force it to match
18369 // the enum decl type.
18370 QualType NewTy;
18371 unsigned NewWidth;
18372 bool NewSign;
18373 if (!getLangOpts().CPlusPlus &&
18374 !Enum->isFixed() &&
18375 isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
18376 NewTy = Context.IntTy;
18377 NewWidth = IntWidth;
18378 NewSign = true;
18379 } else if (ECD->getType() == BestType) {
18380 // Already the right type!
18381 if (getLangOpts().CPlusPlus)
18382 // C++ [dcl.enum]p4: Following the closing brace of an
18383 // enum-specifier, each enumerator has the type of its
18384 // enumeration.
18385 ECD->setType(EnumType);
18386 continue;
18387 } else {
18388 NewTy = BestType;
18389 NewWidth = BestWidth;
18390 NewSign = BestType->isSignedIntegerOrEnumerationType();
18391 }
18392
18393 // Adjust the APSInt value.
18394 InitVal = InitVal.extOrTrunc(NewWidth);
18395 InitVal.setIsSigned(NewSign);
18396 ECD->setInitVal(InitVal);
18397
18398 // Adjust the Expr initializer and type.
18399 if (ECD->getInitExpr() &&
18400 !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
18401 ECD->setInitExpr(ImplicitCastExpr::Create(
18402 Context, NewTy, CK_IntegralCast, ECD->getInitExpr(),
18403 /*base paths*/ nullptr, VK_PRValue, FPOptionsOverride()));
18404 if (getLangOpts().CPlusPlus)
18405 // C++ [dcl.enum]p4: Following the closing brace of an
18406 // enum-specifier, each enumerator has the type of its
18407 // enumeration.
18408 ECD->setType(EnumType);
18409 else
18410 ECD->setType(NewTy);
18411 }
18412
18413 Enum->completeDefinition(BestType, BestPromotionType,
18414 NumPositiveBits, NumNegativeBits);
18415
18416 CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
18417
18418 if (Enum->isClosedFlag()) {
18419 for (Decl *D : Elements) {
18420 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
18421 if (!ECD) continue; // Already issued a diagnostic.
18422
18423 llvm::APSInt InitVal = ECD->getInitVal();
18424 if (InitVal != 0 && !InitVal.isPowerOf2() &&
18425 !IsValueInFlagEnum(Enum, InitVal, true))
18426 Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
18427 << ECD << Enum;
18428 }
18429 }
18430
18431 // Now that the enum type is defined, ensure it's not been underaligned.
18432 if (Enum->hasAttrs())
18433 CheckAlignasUnderalignment(Enum);
18434}
18435
18436Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
18437 SourceLocation StartLoc,
18438 SourceLocation EndLoc) {
18439 StringLiteral *AsmString = cast<StringLiteral>(expr);
18440
18441 FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
18442 AsmString, StartLoc,
18443 EndLoc);
18444 CurContext->addDecl(New);
18445 return New;
18446}
18447
18448void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
18449 IdentifierInfo* AliasName,
18450 SourceLocation PragmaLoc,
18451 SourceLocation NameLoc,
18452 SourceLocation AliasNameLoc) {
18453 NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
18454 LookupOrdinaryName);
18455 AttributeCommonInfo Info(AliasName, SourceRange(AliasNameLoc),
18456 AttributeCommonInfo::AS_Pragma);
18457 AsmLabelAttr *Attr = AsmLabelAttr::CreateImplicit(
18458 Context, AliasName->getName(), /*LiteralLabel=*/true, Info);
18459
18460 // If a declaration that:
18461 // 1) declares a function or a variable
18462 // 2) has external linkage
18463 // already exists, add a label attribute to it.
18464 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
18465 if (isDeclExternC(PrevDecl))
18466 PrevDecl->addAttr(Attr);
18467 else
18468 Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
18469 << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
18470 // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
18471 } else
18472 (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
18473}
18474
18475void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
18476 SourceLocation PragmaLoc,
18477 SourceLocation NameLoc) {
18478 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
18479
18480 if (PrevDecl) {
18481 PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc, AttributeCommonInfo::AS_Pragma));
18482 } else {
18483 (void)WeakUndeclaredIdentifiers.insert(
18484 std::pair<IdentifierInfo*,WeakInfo>
18485 (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
18486 }
18487}
18488
18489void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
18490 IdentifierInfo* AliasName,
18491 SourceLocation PragmaLoc,
18492 SourceLocation NameLoc,
18493 SourceLocation AliasNameLoc) {
18494 Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
18495 LookupOrdinaryName);
18496 WeakInfo W = WeakInfo(Name, NameLoc);
18497
18498 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
18499 if (!PrevDecl->hasAttr<AliasAttr>())
18500 if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
18501 DeclApplyPragmaWeak(TUScope, ND, W);
18502 } else {
18503 (void)WeakUndeclaredIdentifiers.insert(
18504 std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
18505 }
18506}
18507
18508Decl *Sema::getObjCDeclContext() const {
18509 return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
18510}
18511
18512Sema::FunctionEmissionStatus Sema::getEmissionStatus(FunctionDecl *FD,
18513 bool Final) {
18514 assert(FD && "Expected non-null FunctionDecl")(static_cast<void> (0));
18515
18516 // SYCL functions can be template, so we check if they have appropriate
18517 // attribute prior to checking if it is a template.
18518 if (LangOpts.SYCLIsDevice && FD->hasAttr<SYCLKernelAttr>())
18519 return FunctionEmissionStatus::Emitted;
18520
18521 // Templates are emitted when they're instantiated.
18522 if (FD->isDependentContext())
18523 return FunctionEmissionStatus::TemplateDiscarded;
18524
18525 // Check whether this function is an externally visible definition.
18526 auto IsEmittedForExternalSymbol = [this, FD]() {
18527 // We have to check the GVA linkage of the function's *definition* -- if we
18528 // only have a declaration, we don't know whether or not the function will
18529 // be emitted, because (say) the definition could include "inline".
18530 FunctionDecl *Def = FD->getDefinition();
18531
18532 return Def && !isDiscardableGVALinkage(
18533 getASTContext().GetGVALinkageForFunction(Def));
18534 };
18535
18536 if (LangOpts.OpenMPIsDevice) {
18537 // In OpenMP device mode we will not emit host only functions, or functions
18538 // we don't need due to their linkage.
18539 Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
18540 OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
18541 // DevTy may be changed later by
18542 // #pragma omp declare target to(*) device_type(*).
18543 // Therefore DevTy having no value does not imply host. The emission status
18544 // will be checked again at the end of compilation unit with Final = true.
18545 if (DevTy.hasValue())
18546 if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host)
18547 return FunctionEmissionStatus::OMPDiscarded;
18548 // If we have an explicit value for the device type, or we are in a target
18549 // declare context, we need to emit all extern and used symbols.
18550 if (isInOpenMPDeclareTargetContext() || DevTy.hasValue())
18551 if (IsEmittedForExternalSymbol())
18552 return FunctionEmissionStatus::Emitted;
18553 // Device mode only emits what it must, if it wasn't tagged yet and needed,
18554 // we'll omit it.
18555 if (Final)
18556 return FunctionEmissionStatus::OMPDiscarded;
18557 } else if (LangOpts.OpenMP > 45) {
18558 // In OpenMP host compilation prior to 5.0 everything was an emitted host
18559 // function. In 5.0, no_host was introduced which might cause a function to
18560 // be ommitted.
18561 Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
18562 OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
18563 if (DevTy.hasValue())
18564 if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost)
18565 return FunctionEmissionStatus::OMPDiscarded;
18566 }
18567
18568 if (Final && LangOpts.OpenMP && !LangOpts.CUDA)
18569 return FunctionEmissionStatus::Emitted;
18570
18571 if (LangOpts.CUDA) {
18572 // When compiling for device, host functions are never emitted. Similarly,
18573 // when compiling for host, device and global functions are never emitted.
18574 // (Technically, we do emit a host-side stub for global functions, but this
18575 // doesn't count for our purposes here.)
18576 Sema::CUDAFunctionTarget T = IdentifyCUDATarget(FD);
18577 if (LangOpts.CUDAIsDevice && T == Sema::CFT_Host)
18578 return FunctionEmissionStatus::CUDADiscarded;
18579 if (!LangOpts.CUDAIsDevice &&
18580 (T == Sema::CFT_Device || T == Sema::CFT_Global))
18581 return FunctionEmissionStatus::CUDADiscarded;
18582
18583 if (IsEmittedForExternalSymbol())
18584 return FunctionEmissionStatus::Emitted;
18585 }
18586
18587 // Otherwise, the function is known-emitted if it's in our set of
18588 // known-emitted functions.
18589 return FunctionEmissionStatus::Unknown;
18590}
18591
18592bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee) {
18593 // Host-side references to a __global__ function refer to the stub, so the
18594 // function itself is never emitted and therefore should not be marked.
18595 // If we have host fn calls kernel fn calls host+device, the HD function
18596 // does not get instantiated on the host. We model this by omitting at the
18597 // call to the kernel from the callgraph. This ensures that, when compiling
18598 // for host, only HD functions actually called from the host get marked as
18599 // known-emitted.
18600 return LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
18601 IdentifyCUDATarget(Callee) == CFT_Global;
18602}

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/include/clang/Sema/DeclSpec.h

1//===--- DeclSpec.h - Parsed declaration specifiers -------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file defines the classes used to store parsed information about
11/// declaration-specifiers and declarators.
12///
13/// \verbatim
14/// static const int volatile x, *y, *(*(*z)[10])(const void *x);
15/// ------------------------- - -- ---------------------------
16/// declaration-specifiers \ | /
17/// declarators
18/// \endverbatim
19///
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_CLANG_SEMA_DECLSPEC_H
23#define LLVM_CLANG_SEMA_DECLSPEC_H
24
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjCCommon.h"
27#include "clang/AST/NestedNameSpecifier.h"
28#include "clang/Basic/ExceptionSpecificationType.h"
29#include "clang/Basic/Lambda.h"
30#include "clang/Basic/OperatorKinds.h"
31#include "clang/Basic/Specifiers.h"
32#include "clang/Lex/Token.h"
33#include "clang/Sema/Ownership.h"
34#include "clang/Sema/ParsedAttr.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/Support/ErrorHandling.h"
38
39namespace clang {
40 class ASTContext;
41 class CXXRecordDecl;
42 class TypeLoc;
43 class LangOptions;
44 class IdentifierInfo;
45 class NamespaceAliasDecl;
46 class NamespaceDecl;
47 class ObjCDeclSpec;
48 class Sema;
49 class Declarator;
50 struct TemplateIdAnnotation;
51
52/// Represents a C++ nested-name-specifier or a global scope specifier.
53///
54/// These can be in 3 states:
55/// 1) Not present, identified by isEmpty()
56/// 2) Present, identified by isNotEmpty()
57/// 2.a) Valid, identified by isValid()
58/// 2.b) Invalid, identified by isInvalid().
59///
60/// isSet() is deprecated because it mostly corresponded to "valid" but was
61/// often used as if it meant "present".
62///
63/// The actual scope is described by getScopeRep().
64class CXXScopeSpec {
65 SourceRange Range;
66 NestedNameSpecifierLocBuilder Builder;
67
68public:
69 SourceRange getRange() const { return Range; }
70 void setRange(SourceRange R) { Range = R; }
71 void setBeginLoc(SourceLocation Loc) { Range.setBegin(Loc); }
72 void setEndLoc(SourceLocation Loc) { Range.setEnd(Loc); }
73 SourceLocation getBeginLoc() const { return Range.getBegin(); }
74 SourceLocation getEndLoc() const { return Range.getEnd(); }
75
76 /// Retrieve the representation of the nested-name-specifier.
77 NestedNameSpecifier *getScopeRep() const {
78 return Builder.getRepresentation();
79 }
80
81 /// Extend the current nested-name-specifier by another
82 /// nested-name-specifier component of the form 'type::'.
83 ///
84 /// \param Context The AST context in which this nested-name-specifier
85 /// resides.
86 ///
87 /// \param TemplateKWLoc The location of the 'template' keyword, if present.
88 ///
89 /// \param TL The TypeLoc that describes the type preceding the '::'.
90 ///
91 /// \param ColonColonLoc The location of the trailing '::'.
92 void Extend(ASTContext &Context, SourceLocation TemplateKWLoc, TypeLoc TL,
93 SourceLocation ColonColonLoc);
94
95 /// Extend the current nested-name-specifier by another
96 /// nested-name-specifier component of the form 'identifier::'.
97 ///
98 /// \param Context The AST context in which this nested-name-specifier
99 /// resides.
100 ///
101 /// \param Identifier The identifier.
102 ///
103 /// \param IdentifierLoc The location of the identifier.
104 ///
105 /// \param ColonColonLoc The location of the trailing '::'.
106 void Extend(ASTContext &Context, IdentifierInfo *Identifier,
107 SourceLocation IdentifierLoc, SourceLocation ColonColonLoc);
108
109 /// Extend the current nested-name-specifier by another
110 /// nested-name-specifier component of the form 'namespace::'.
111 ///
112 /// \param Context The AST context in which this nested-name-specifier
113 /// resides.
114 ///
115 /// \param Namespace The namespace.
116 ///
117 /// \param NamespaceLoc The location of the namespace name.
118 ///
119 /// \param ColonColonLoc The location of the trailing '::'.
120 void Extend(ASTContext &Context, NamespaceDecl *Namespace,
121 SourceLocation NamespaceLoc, SourceLocation ColonColonLoc);
122
123 /// Extend the current nested-name-specifier by another
124 /// nested-name-specifier component of the form 'namespace-alias::'.
125 ///
126 /// \param Context The AST context in which this nested-name-specifier
127 /// resides.
128 ///
129 /// \param Alias The namespace alias.
130 ///
131 /// \param AliasLoc The location of the namespace alias
132 /// name.
133 ///
134 /// \param ColonColonLoc The location of the trailing '::'.
135 void Extend(ASTContext &Context, NamespaceAliasDecl *Alias,
136 SourceLocation AliasLoc, SourceLocation ColonColonLoc);
137
138 /// Turn this (empty) nested-name-specifier into the global
139 /// nested-name-specifier '::'.
140 void MakeGlobal(ASTContext &Context, SourceLocation ColonColonLoc);
141
142 /// Turns this (empty) nested-name-specifier into '__super'
143 /// nested-name-specifier.
144 ///
145 /// \param Context The AST context in which this nested-name-specifier
146 /// resides.
147 ///
148 /// \param RD The declaration of the class in which nested-name-specifier
149 /// appeared.
150 ///
151 /// \param SuperLoc The location of the '__super' keyword.
152 /// name.
153 ///
154 /// \param ColonColonLoc The location of the trailing '::'.
155 void MakeSuper(ASTContext &Context, CXXRecordDecl *RD,
156 SourceLocation SuperLoc, SourceLocation ColonColonLoc);
157
158 /// Make a new nested-name-specifier from incomplete source-location
159 /// information.
160 ///
161 /// FIXME: This routine should be used very, very rarely, in cases where we
162 /// need to synthesize a nested-name-specifier. Most code should instead use
163 /// \c Adopt() with a proper \c NestedNameSpecifierLoc.
164 void MakeTrivial(ASTContext &Context, NestedNameSpecifier *Qualifier,
165 SourceRange R);
166
167 /// Adopt an existing nested-name-specifier (with source-range
168 /// information).
169 void Adopt(NestedNameSpecifierLoc Other);
170
171 /// Retrieve a nested-name-specifier with location information, copied
172 /// into the given AST context.
173 ///
174 /// \param Context The context into which this nested-name-specifier will be
175 /// copied.
176 NestedNameSpecifierLoc getWithLocInContext(ASTContext &Context) const;
177
178 /// Retrieve the location of the name in the last qualifier
179 /// in this nested name specifier.
180 ///
181 /// For example, the location of \c bar
182 /// in
183 /// \verbatim
184 /// \::foo::bar<0>::
185 /// ^~~
186 /// \endverbatim
187 SourceLocation getLastQualifierNameLoc() const;
188
189 /// No scope specifier.
190 bool isEmpty() const { return Range.isInvalid() && getScopeRep() == nullptr; }
191 /// A scope specifier is present, but may be valid or invalid.
192 bool isNotEmpty() const { return !isEmpty(); }
193
194 /// An error occurred during parsing of the scope specifier.
195 bool isInvalid() const { return Range.isValid() && getScopeRep() == nullptr; }
196 /// A scope specifier is present, and it refers to a real scope.
197 bool isValid() const { return getScopeRep() != nullptr; }
198
199 /// Indicate that this nested-name-specifier is invalid.
200 void SetInvalid(SourceRange R) {
201 assert(R.isValid() && "Must have a valid source range")(static_cast<void> (0));
202 if (Range.getBegin().isInvalid())
203 Range.setBegin(R.getBegin());
204 Range.setEnd(R.getEnd());
205 Builder.Clear();
206 }
207
208 /// Deprecated. Some call sites intend isNotEmpty() while others intend
209 /// isValid().
210 bool isSet() const { return getScopeRep() != nullptr; }
211
212 void clear() {
213 Range = SourceRange();
214 Builder.Clear();
215 }
216
217 /// Retrieve the data associated with the source-location information.
218 char *location_data() const { return Builder.getBuffer().first; }
219
220 /// Retrieve the size of the data associated with source-location
221 /// information.
222 unsigned location_size() const { return Builder.getBuffer().second; }
223};
224
225/// Captures information about "declaration specifiers".
226///
227/// "Declaration specifiers" encompasses storage-class-specifiers,
228/// type-specifiers, type-qualifiers, and function-specifiers.
229class DeclSpec {
230public:
231 /// storage-class-specifier
232 /// \note The order of these enumerators is important for diagnostics.
233 enum SCS {
234 SCS_unspecified = 0,
235 SCS_typedef,
236 SCS_extern,
237 SCS_static,
238 SCS_auto,
239 SCS_register,
240 SCS_private_extern,
241 SCS_mutable
242 };
243
244 // Import thread storage class specifier enumeration and constants.
245 // These can be combined with SCS_extern and SCS_static.
246 typedef ThreadStorageClassSpecifier TSCS;
247 static const TSCS TSCS_unspecified = clang::TSCS_unspecified;
248 static const TSCS TSCS___thread = clang::TSCS___thread;
249 static const TSCS TSCS_thread_local = clang::TSCS_thread_local;
250 static const TSCS TSCS__Thread_local = clang::TSCS__Thread_local;
251
252 enum TSC {
253 TSC_unspecified,
254 TSC_imaginary,
255 TSC_complex
256 };
257
258 // Import type specifier type enumeration and constants.
259 typedef TypeSpecifierType TST;
260 static const TST TST_unspecified = clang::TST_unspecified;
261 static const TST TST_void = clang::TST_void;
262 static const TST TST_char = clang::TST_char;
263 static const TST TST_wchar = clang::TST_wchar;
264 static const TST TST_char8 = clang::TST_char8;
265 static const TST TST_char16 = clang::TST_char16;
266 static const TST TST_char32 = clang::TST_char32;
267 static const TST TST_int = clang::TST_int;
268 static const TST TST_int128 = clang::TST_int128;
269 static const TST TST_extint = clang::TST_extint;
270 static const TST TST_half = clang::TST_half;
271 static const TST TST_BFloat16 = clang::TST_BFloat16;
272 static const TST TST_float = clang::TST_float;
273 static const TST TST_double = clang::TST_double;
274 static const TST TST_float16 = clang::TST_Float16;
275 static const TST TST_accum = clang::TST_Accum;
276 static const TST TST_fract = clang::TST_Fract;
277 static const TST TST_float128 = clang::TST_float128;
278 static const TST TST_bool = clang::TST_bool;
279 static const TST TST_decimal32 = clang::TST_decimal32;
280 static const TST TST_decimal64 = clang::TST_decimal64;
281 static const TST TST_decimal128 = clang::TST_decimal128;
282 static const TST TST_enum = clang::TST_enum;
283 static const TST TST_union = clang::TST_union;
284 static const TST TST_struct = clang::TST_struct;
285 static const TST TST_interface = clang::TST_interface;
286 static const TST TST_class = clang::TST_class;
287 static const TST TST_typename = clang::TST_typename;
288 static const TST TST_typeofType = clang::TST_typeofType;
289 static const TST TST_typeofExpr = clang::TST_typeofExpr;
290 static const TST TST_decltype = clang::TST_decltype;
291 static const TST TST_decltype_auto = clang::TST_decltype_auto;
292 static const TST TST_underlyingType = clang::TST_underlyingType;
293 static const TST TST_auto = clang::TST_auto;
294 static const TST TST_auto_type = clang::TST_auto_type;
295 static const TST TST_unknown_anytype = clang::TST_unknown_anytype;
296 static const TST TST_atomic = clang::TST_atomic;
297#define GENERIC_IMAGE_TYPE(ImgType, Id) \
298 static const TST TST_##ImgType##_t = clang::TST_##ImgType##_t;
299#include "clang/Basic/OpenCLImageTypes.def"
300 static const TST TST_error = clang::TST_error;
301
302 // type-qualifiers
303 enum TQ { // NOTE: These flags must be kept in sync with Qualifiers::TQ.
304 TQ_unspecified = 0,
305 TQ_const = 1,
306 TQ_restrict = 2,
307 TQ_volatile = 4,
308 TQ_unaligned = 8,
309 // This has no corresponding Qualifiers::TQ value, because it's not treated
310 // as a qualifier in our type system.
311 TQ_atomic = 16
312 };
313
314 /// ParsedSpecifiers - Flags to query which specifiers were applied. This is
315 /// returned by getParsedSpecifiers.
316 enum ParsedSpecifiers {
317 PQ_None = 0,
318 PQ_StorageClassSpecifier = 1,
319 PQ_TypeSpecifier = 2,
320 PQ_TypeQualifier = 4,
321 PQ_FunctionSpecifier = 8
322 // FIXME: Attributes should be included here.
323 };
324
325private:
326 // storage-class-specifier
327 /*SCS*/unsigned StorageClassSpec : 3;
328 /*TSCS*/unsigned ThreadStorageClassSpec : 2;
329 unsigned SCS_extern_in_linkage_spec : 1;
330
331 // type-specifier
332 /*TypeSpecifierWidth*/ unsigned TypeSpecWidth : 2;
333 /*TSC*/unsigned TypeSpecComplex : 2;
334 /*TSS*/unsigned TypeSpecSign : 2;
335 /*TST*/unsigned TypeSpecType : 6;
336 unsigned TypeAltiVecVector : 1;
337 unsigned TypeAltiVecPixel : 1;
338 unsigned TypeAltiVecBool : 1;
339 unsigned TypeSpecOwned : 1;
340 unsigned TypeSpecPipe : 1;
341 unsigned TypeSpecSat : 1;
342 unsigned ConstrainedAuto : 1;
343
344 // type-qualifiers
345 unsigned TypeQualifiers : 5; // Bitwise OR of TQ.
346
347 // function-specifier
348 unsigned FS_inline_specified : 1;
349 unsigned FS_forceinline_specified: 1;
350 unsigned FS_virtual_specified : 1;
351 unsigned FS_noreturn_specified : 1;
352
353 // friend-specifier
354 unsigned Friend_specified : 1;
355
356 // constexpr-specifier
357 unsigned ConstexprSpecifier : 2;
358
359 union {
360 UnionParsedType TypeRep;
361 Decl *DeclRep;
362 Expr *ExprRep;
363 TemplateIdAnnotation *TemplateIdRep;
364 };
365
366 /// ExplicitSpecifier - Store information about explicit spicifer.
367 ExplicitSpecifier FS_explicit_specifier;
368
369 // attributes.
370 ParsedAttributes Attrs;
371
372 // Scope specifier for the type spec, if applicable.
373 CXXScopeSpec TypeScope;
374
375 // SourceLocation info. These are null if the item wasn't specified or if
376 // the setting was synthesized.
377 SourceRange Range;
378
379 SourceLocation StorageClassSpecLoc, ThreadStorageClassSpecLoc;
380 SourceRange TSWRange;
381 SourceLocation TSCLoc, TSSLoc, TSTLoc, AltiVecLoc, TSSatLoc;
382 /// TSTNameLoc - If TypeSpecType is any of class, enum, struct, union,
383 /// typename, then this is the location of the named type (if present);
384 /// otherwise, it is the same as TSTLoc. Hence, the pair TSTLoc and
385 /// TSTNameLoc provides source range info for tag types.
386 SourceLocation TSTNameLoc;
387 SourceRange TypeofParensRange;
388 SourceLocation TQ_constLoc, TQ_restrictLoc, TQ_volatileLoc, TQ_atomicLoc,
389 TQ_unalignedLoc;
390 SourceLocation FS_inlineLoc, FS_virtualLoc, FS_explicitLoc, FS_noreturnLoc;
391 SourceLocation FS_explicitCloseParenLoc;
392 SourceLocation FS_forceinlineLoc;
393 SourceLocation FriendLoc, ModulePrivateLoc, ConstexprLoc;
394 SourceLocation TQ_pipeLoc;
395
396 WrittenBuiltinSpecs writtenBS;
397 void SaveWrittenBuiltinSpecs();
398
399 ObjCDeclSpec *ObjCQualifiers;
400
401 static bool isTypeRep(TST T) {
402 return (T == TST_typename || T == TST_typeofType ||
403 T == TST_underlyingType || T == TST_atomic);
404 }
405 static bool isExprRep(TST T) {
406 return (T == TST_typeofExpr || T == TST_decltype || T == TST_extint);
407 }
408 static bool isTemplateIdRep(TST T) {
409 return (T == TST_auto || T == TST_decltype_auto);
410 }
411
412 DeclSpec(const DeclSpec &) = delete;
413 void operator=(const DeclSpec &) = delete;
414public:
415 static bool isDeclRep(TST T) {
416 return (T == TST_enum || T == TST_struct ||
417 T == TST_interface || T == TST_union ||
418 T == TST_class);
419 }
420
421 DeclSpec(AttributeFactory &attrFactory)
422 : StorageClassSpec(SCS_unspecified),
423 ThreadStorageClassSpec(TSCS_unspecified),
424 SCS_extern_in_linkage_spec(false),
425 TypeSpecWidth(static_cast<unsigned>(TypeSpecifierWidth::Unspecified)),
426 TypeSpecComplex(TSC_unspecified),
427 TypeSpecSign(static_cast<unsigned>(TypeSpecifierSign::Unspecified)),
428 TypeSpecType(TST_unspecified), TypeAltiVecVector(false),
429 TypeAltiVecPixel(false), TypeAltiVecBool(false), TypeSpecOwned(false),
430 TypeSpecPipe(false), TypeSpecSat(false), ConstrainedAuto(false),
431 TypeQualifiers(TQ_unspecified), FS_inline_specified(false),
432 FS_forceinline_specified(false), FS_virtual_specified(false),
433 FS_noreturn_specified(false), Friend_specified(false),
434 ConstexprSpecifier(
435 static_cast<unsigned>(ConstexprSpecKind::Unspecified)),
436 FS_explicit_specifier(), Attrs(attrFactory), writtenBS(),
437 ObjCQualifiers(nullptr) {}
438
439 // storage-class-specifier
440 SCS getStorageClassSpec() const { return (SCS)StorageClassSpec; }
441 TSCS getThreadStorageClassSpec() const {
442 return (TSCS)ThreadStorageClassSpec;
443 }
444 bool isExternInLinkageSpec() const { return SCS_extern_in_linkage_spec; }
445 void setExternInLinkageSpec(bool Value) {
446 SCS_extern_in_linkage_spec = Value;
447 }
448
449 SourceLocation getStorageClassSpecLoc() const { return StorageClassSpecLoc; }
450 SourceLocation getThreadStorageClassSpecLoc() const {
451 return ThreadStorageClassSpecLoc;
452 }
453
454 void ClearStorageClassSpecs() {
455 StorageClassSpec = DeclSpec::SCS_unspecified;
456 ThreadStorageClassSpec = DeclSpec::TSCS_unspecified;
457 SCS_extern_in_linkage_spec = false;
458 StorageClassSpecLoc = SourceLocation();
459 ThreadStorageClassSpecLoc = SourceLocation();
460 }
461
462 void ClearTypeSpecType() {
463 TypeSpecType = DeclSpec::TST_unspecified;
464 TypeSpecOwned = false;
465 TSTLoc = SourceLocation();
466 }
467
468 // type-specifier
469 TypeSpecifierWidth getTypeSpecWidth() const {
470 return static_cast<TypeSpecifierWidth>(TypeSpecWidth);
471 }
472 TSC getTypeSpecComplex() const { return (TSC)TypeSpecComplex; }
473 TypeSpecifierSign getTypeSpecSign() const {
474 return static_cast<TypeSpecifierSign>(TypeSpecSign);
475 }
476 TST getTypeSpecType() const { return (TST)TypeSpecType; }
477 bool isTypeAltiVecVector() const { return TypeAltiVecVector; }
478 bool isTypeAltiVecPixel() const { return TypeAltiVecPixel; }
479 bool isTypeAltiVecBool() const { return TypeAltiVecBool; }
480 bool isTypeSpecOwned() const { return TypeSpecOwned; }
481 bool isTypeRep() const { return isTypeRep((TST) TypeSpecType); }
482 bool isTypeSpecPipe() const { return TypeSpecPipe; }
483 bool isTypeSpecSat() const { return TypeSpecSat; }
484 bool isConstrainedAuto() const { return ConstrainedAuto; }
485
486 ParsedType getRepAsType() const {
487 assert(isTypeRep((TST) TypeSpecType) && "DeclSpec does not store a type")(static_cast<void> (0));
488 return TypeRep;
489 }
490 Decl *getRepAsDecl() const {
491 assert(isDeclRep((TST) TypeSpecType) && "DeclSpec does not store a decl")(static_cast<void> (0));
492 return DeclRep;
493 }
494 Expr *getRepAsExpr() const {
495 assert(isExprRep((TST) TypeSpecType) && "DeclSpec does not store an expr")(static_cast<void> (0));
496 return ExprRep;
497 }
498 TemplateIdAnnotation *getRepAsTemplateId() const {
499 assert(isTemplateIdRep((TST) TypeSpecType) &&(static_cast<void> (0))
500 "DeclSpec does not store a template id")(static_cast<void> (0));
501 return TemplateIdRep;
502 }
503 CXXScopeSpec &getTypeSpecScope() { return TypeScope; }
504 const CXXScopeSpec &getTypeSpecScope() const { return TypeScope; }
505
506 SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) { return Range; }
507 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return Range.getBegin(); }
508 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return Range.getEnd(); }
509
510 SourceLocation getTypeSpecWidthLoc() const { return TSWRange.getBegin(); }
511 SourceRange getTypeSpecWidthRange() const { return TSWRange; }
512 SourceLocation getTypeSpecComplexLoc() const { return TSCLoc; }
513 SourceLocation getTypeSpecSignLoc() const { return TSSLoc; }
514 SourceLocation getTypeSpecTypeLoc() const { return TSTLoc; }
515 SourceLocation getAltiVecLoc() const { return AltiVecLoc; }
516 SourceLocation getTypeSpecSatLoc() const { return TSSatLoc; }
517
518 SourceLocation getTypeSpecTypeNameLoc() const {
519 assert(isDeclRep((TST) TypeSpecType) || TypeSpecType == TST_typename)(static_cast<void> (0));
520 return TSTNameLoc;
521 }
522
523 SourceRange getTypeofParensRange() const { return TypeofParensRange; }
524 void setTypeofParensRange(SourceRange range) { TypeofParensRange = range; }
525
526 bool hasAutoTypeSpec() const {
527 return (TypeSpecType == TST_auto || TypeSpecType == TST_auto_type ||
528 TypeSpecType == TST_decltype_auto);
529 }
530
531 bool hasTagDefinition() const;
532
533 /// Turn a type-specifier-type into a string like "_Bool" or "union".
534 static const char *getSpecifierName(DeclSpec::TST T,
535 const PrintingPolicy &Policy);
536 static const char *getSpecifierName(DeclSpec::TQ Q);
537 static const char *getSpecifierName(TypeSpecifierSign S);
538 static const char *getSpecifierName(DeclSpec::TSC C);
539 static const char *getSpecifierName(TypeSpecifierWidth W);
540 static const char *getSpecifierName(DeclSpec::SCS S);
541 static const char *getSpecifierName(DeclSpec::TSCS S);
542 static const char *getSpecifierName(ConstexprSpecKind C);
543
544 // type-qualifiers
545
546 /// getTypeQualifiers - Return a set of TQs.
547 unsigned getTypeQualifiers() const { return TypeQualifiers; }
548 SourceLocation getConstSpecLoc() const { return TQ_constLoc; }
549 SourceLocation getRestrictSpecLoc() const { return TQ_restrictLoc; }
550 SourceLocation getVolatileSpecLoc() const { return TQ_volatileLoc; }
551 SourceLocation getAtomicSpecLoc() const { return TQ_atomicLoc; }
552 SourceLocation getUnalignedSpecLoc() const { return TQ_unalignedLoc; }
553 SourceLocation getPipeLoc() const { return TQ_pipeLoc; }
554
555 /// Clear out all of the type qualifiers.
556 void ClearTypeQualifiers() {
557 TypeQualifiers = 0;
558 TQ_constLoc = SourceLocation();
559 TQ_restrictLoc = SourceLocation();
560 TQ_volatileLoc = SourceLocation();
561 TQ_atomicLoc = SourceLocation();
562 TQ_unalignedLoc = SourceLocation();
563 TQ_pipeLoc = SourceLocation();
564 }
565
566 // function-specifier
567 bool isInlineSpecified() const {
568 return FS_inline_specified | FS_forceinline_specified;
569 }
570 SourceLocation getInlineSpecLoc() const {
571 return FS_inline_specified ? FS_inlineLoc : FS_forceinlineLoc;
572 }
573
574 ExplicitSpecifier getExplicitSpecifier() const {
575 return FS_explicit_specifier;
576 }
577
578 bool isVirtualSpecified() const { return FS_virtual_specified; }
579 SourceLocation getVirtualSpecLoc() const { return FS_virtualLoc; }
580
581 bool hasExplicitSpecifier() const {
582 return FS_explicit_specifier.isSpecified();
583 }
584 SourceLocation getExplicitSpecLoc() const { return FS_explicitLoc; }
585 SourceRange getExplicitSpecRange() const {
586 return FS_explicit_specifier.getExpr()
587 ? SourceRange(FS_explicitLoc, FS_explicitCloseParenLoc)
588 : SourceRange(FS_explicitLoc);
589 }
590
591 bool isNoreturnSpecified() const { return FS_noreturn_specified; }
592 SourceLocation getNoreturnSpecLoc() const { return FS_noreturnLoc; }
593
594 void ClearFunctionSpecs() {
595 FS_inline_specified = false;
596 FS_inlineLoc = SourceLocation();
597 FS_forceinline_specified = false;
598 FS_forceinlineLoc = SourceLocation();
599 FS_virtual_specified = false;
600 FS_virtualLoc = SourceLocation();
601 FS_explicit_specifier = ExplicitSpecifier();
602 FS_explicitLoc = SourceLocation();
603 FS_explicitCloseParenLoc = SourceLocation();
604 FS_noreturn_specified = false;
605 FS_noreturnLoc = SourceLocation();
606 }
607
608 /// This method calls the passed in handler on each CVRU qual being
609 /// set.
610 /// Handle - a handler to be invoked.
611 void forEachCVRUQualifier(
612 llvm::function_ref<void(TQ, StringRef, SourceLocation)> Handle);
613
614 /// This method calls the passed in handler on each qual being
615 /// set.
616 /// Handle - a handler to be invoked.
617 void forEachQualifier(
618 llvm::function_ref<void(TQ, StringRef, SourceLocation)> Handle);
619
620 /// Return true if any type-specifier has been found.
621 bool hasTypeSpecifier() const {
622 return getTypeSpecType() != DeclSpec::TST_unspecified ||
623 getTypeSpecWidth() != TypeSpecifierWidth::Unspecified ||
624 getTypeSpecComplex() != DeclSpec::TSC_unspecified ||
625 getTypeSpecSign() != TypeSpecifierSign::Unspecified;
626 }
627
628 /// Return a bitmask of which flavors of specifiers this
629 /// DeclSpec includes.
630 unsigned getParsedSpecifiers() const;
631
632 /// isEmpty - Return true if this declaration specifier is completely empty:
633 /// no tokens were parsed in the production of it.
634 bool isEmpty() const {
635 return getParsedSpecifiers() == DeclSpec::PQ_None;
636 }
637
638 void SetRangeStart(SourceLocation Loc) { Range.setBegin(Loc); }
639 void SetRangeEnd(SourceLocation Loc) { Range.setEnd(Loc); }
640
641 /// These methods set the specified attribute of the DeclSpec and
642 /// return false if there was no error. If an error occurs (for
643 /// example, if we tried to set "auto" on a spec with "extern"
644 /// already set), they return true and set PrevSpec and DiagID
645 /// such that
646 /// Diag(Loc, DiagID) << PrevSpec;
647 /// will yield a useful result.
648 ///
649 /// TODO: use a more general approach that still allows these
650 /// diagnostics to be ignored when desired.
651 bool SetStorageClassSpec(Sema &S, SCS SC, SourceLocation Loc,
652 const char *&PrevSpec, unsigned &DiagID,
653 const PrintingPolicy &Policy);
654 bool SetStorageClassSpecThread(TSCS TSC, SourceLocation Loc,
655 const char *&PrevSpec, unsigned &DiagID);
656 bool SetTypeSpecWidth(TypeSpecifierWidth W, SourceLocation Loc,
657 const char *&PrevSpec, unsigned &DiagID,
658 const PrintingPolicy &Policy);
659 bool SetTypeSpecComplex(TSC C, SourceLocation Loc, const char *&PrevSpec,
660 unsigned &DiagID);
661 bool SetTypeSpecSign(TypeSpecifierSign S, SourceLocation Loc,
662 const char *&PrevSpec, unsigned &DiagID);
663 bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
664 unsigned &DiagID, const PrintingPolicy &Policy);
665 bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
666 unsigned &DiagID, ParsedType Rep,
667 const PrintingPolicy &Policy);
668 bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
669 unsigned &DiagID, TypeResult Rep,
670 const PrintingPolicy &Policy) {
671 if (Rep.isInvalid())
672 return SetTypeSpecError();
673 return SetTypeSpecType(T, Loc, PrevSpec, DiagID, Rep.get(), Policy);
674 }
675 bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
676 unsigned &DiagID, Decl *Rep, bool Owned,
677 const PrintingPolicy &Policy);
678 bool SetTypeSpecType(TST T, SourceLocation TagKwLoc,
679 SourceLocation TagNameLoc, const char *&PrevSpec,
680 unsigned &DiagID, ParsedType Rep,
681 const PrintingPolicy &Policy);
682 bool SetTypeSpecType(TST T, SourceLocation TagKwLoc,
683 SourceLocation TagNameLoc, const char *&PrevSpec,
684 unsigned &DiagID, Decl *Rep, bool Owned,
685 const PrintingPolicy &Policy);
686 bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
687 unsigned &DiagID, TemplateIdAnnotation *Rep,
688 const PrintingPolicy &Policy);
689
690 bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
691 unsigned &DiagID, Expr *Rep,
692 const PrintingPolicy &policy);
693 bool SetTypeAltiVecVector(bool isAltiVecVector, SourceLocation Loc,
694 const char *&PrevSpec, unsigned &DiagID,
695 const PrintingPolicy &Policy);
696 bool SetTypeAltiVecPixel(bool isAltiVecPixel, SourceLocation Loc,
697 const char *&PrevSpec, unsigned &DiagID,
698 const PrintingPolicy &Policy);
699 bool SetTypeAltiVecBool(bool isAltiVecBool, SourceLocation Loc,
700 const char *&PrevSpec, unsigned &DiagID,
701 const PrintingPolicy &Policy);
702 bool SetTypePipe(bool isPipe, SourceLocation Loc,
703 const char *&PrevSpec, unsigned &DiagID,
704 const PrintingPolicy &Policy);
705 bool SetExtIntType(SourceLocation KWLoc, Expr *BitWidth,
706 const char *&PrevSpec, unsigned &DiagID,
707 const PrintingPolicy &Policy);
708 bool SetTypeSpecSat(SourceLocation Loc, const char *&PrevSpec,
709 unsigned &DiagID);
710 bool SetTypeSpecError();
711 void UpdateDeclRep(Decl *Rep) {
712 assert(isDeclRep((TST) TypeSpecType))(static_cast<void> (0));
713 DeclRep = Rep;
714 }
715 void UpdateTypeRep(ParsedType Rep) {
716 assert(isTypeRep((TST) TypeSpecType))(static_cast<void> (0));
717 TypeRep = Rep;
718 }
719 void UpdateExprRep(Expr *Rep) {
720 assert(isExprRep((TST) TypeSpecType))(static_cast<void> (0));
721 ExprRep = Rep;
722 }
723
724 bool SetTypeQual(TQ T, SourceLocation Loc);
725
726 bool SetTypeQual(TQ T, SourceLocation Loc, const char *&PrevSpec,
727 unsigned &DiagID, const LangOptions &Lang);
728
729 bool setFunctionSpecInline(SourceLocation Loc, const char *&PrevSpec,
730 unsigned &DiagID);
731 bool setFunctionSpecForceInline(SourceLocation Loc, const char *&PrevSpec,
732 unsigned &DiagID);
733 bool setFunctionSpecVirtual(SourceLocation Loc, const char *&PrevSpec,
734 unsigned &DiagID);
735 bool setFunctionSpecExplicit(SourceLocation Loc, const char *&PrevSpec,
736 unsigned &DiagID, ExplicitSpecifier ExplicitSpec,
737 SourceLocation CloseParenLoc);
738 bool setFunctionSpecNoreturn(SourceLocation Loc, const char *&PrevSpec,
739 unsigned &DiagID);
740
741 bool SetFriendSpec(SourceLocation Loc, const char *&PrevSpec,
742 unsigned &DiagID);
743 bool setModulePrivateSpec(SourceLocation Loc, const char *&PrevSpec,
744 unsigned &DiagID);
745 bool SetConstexprSpec(ConstexprSpecKind ConstexprKind, SourceLocation Loc,
746 const char *&PrevSpec, unsigned &DiagID);
747
748 bool isFriendSpecified() const { return Friend_specified; }
749 SourceLocation getFriendSpecLoc() const { return FriendLoc; }
750
751 bool isModulePrivateSpecified() const { return ModulePrivateLoc.isValid(); }
752 SourceLocation getModulePrivateSpecLoc() const { return ModulePrivateLoc; }
753
754 ConstexprSpecKind getConstexprSpecifier() const {
755 return ConstexprSpecKind(ConstexprSpecifier);
756 }
757
758 SourceLocation getConstexprSpecLoc() const { return ConstexprLoc; }
759 bool hasConstexprSpecifier() const {
760 return getConstexprSpecifier() != ConstexprSpecKind::Unspecified;
761 }
762
763 void ClearConstexprSpec() {
764 ConstexprSpecifier = static_cast<unsigned>(ConstexprSpecKind::Unspecified);
765 ConstexprLoc = SourceLocation();
766 }
767
768 AttributePool &getAttributePool() const {
769 return Attrs.getPool();
770 }
771
772 /// Concatenates two attribute lists.
773 ///
774 /// The GCC attribute syntax allows for the following:
775 ///
776 /// \code
777 /// short __attribute__(( unused, deprecated ))
778 /// int __attribute__(( may_alias, aligned(16) )) var;
779 /// \endcode
780 ///
781 /// This declares 4 attributes using 2 lists. The following syntax is
782 /// also allowed and equivalent to the previous declaration.
783 ///
784 /// \code
785 /// short __attribute__((unused)) __attribute__((deprecated))
786 /// int __attribute__((may_alias)) __attribute__((aligned(16))) var;
787 /// \endcode
788 ///
789 void addAttributes(ParsedAttributesView &AL) {
790 Attrs.addAll(AL.begin(), AL.end());
791 }
792
793 bool hasAttributes() const { return !Attrs.empty(); }
794
795 ParsedAttributes &getAttributes() { return Attrs; }
796 const ParsedAttributes &getAttributes() const { return Attrs; }
797
798 void takeAttributesFrom(ParsedAttributes &attrs) {
799 Attrs.takeAllFrom(attrs);
800 }
801
802 /// Finish - This does final analysis of the declspec, issuing diagnostics for
803 /// things like "_Imaginary" (lacking an FP type). After calling this method,
804 /// DeclSpec is guaranteed self-consistent, even if an error occurred.
805 void Finish(Sema &S, const PrintingPolicy &Policy);
806
807 const WrittenBuiltinSpecs& getWrittenBuiltinSpecs() const {
808 return writtenBS;
809 }
810
811 ObjCDeclSpec *getObjCQualifiers() const { return ObjCQualifiers; }
812 void setObjCQualifiers(ObjCDeclSpec *quals) { ObjCQualifiers = quals; }
813
814 /// Checks if this DeclSpec can stand alone, without a Declarator.
815 ///
816 /// Only tag declspecs can stand alone.
817 bool isMissingDeclaratorOk();
818};
819
820/// Captures information about "declaration specifiers" specific to
821/// Objective-C.
822class ObjCDeclSpec {
823public:
824 /// ObjCDeclQualifier - Qualifier used on types in method
825 /// declarations. Not all combinations are sensible. Parameters
826 /// can be one of { in, out, inout } with one of { bycopy, byref }.
827 /// Returns can either be { oneway } or not.
828 ///
829 /// This should be kept in sync with Decl::ObjCDeclQualifier.
830 enum ObjCDeclQualifier {
831 DQ_None = 0x0,
832 DQ_In = 0x1,
833 DQ_Inout = 0x2,
834 DQ_Out = 0x4,
835 DQ_Bycopy = 0x8,
836 DQ_Byref = 0x10,
837 DQ_Oneway = 0x20,
838 DQ_CSNullability = 0x40
839 };
840
841 ObjCDeclSpec()
842 : objcDeclQualifier(DQ_None),
843 PropertyAttributes(ObjCPropertyAttribute::kind_noattr), Nullability(0),
844 GetterName(nullptr), SetterName(nullptr) {}
845
846 ObjCDeclQualifier getObjCDeclQualifier() const {
847 return (ObjCDeclQualifier)objcDeclQualifier;
848 }
849 void setObjCDeclQualifier(ObjCDeclQualifier DQVal) {
850 objcDeclQualifier = (ObjCDeclQualifier) (objcDeclQualifier | DQVal);
851 }
852 void clearObjCDeclQualifier(ObjCDeclQualifier DQVal) {
853 objcDeclQualifier = (ObjCDeclQualifier) (objcDeclQualifier & ~DQVal);
854 }
855
856 ObjCPropertyAttribute::Kind getPropertyAttributes() const {
857 return ObjCPropertyAttribute::Kind(PropertyAttributes);
858 }
859 void setPropertyAttributes(ObjCPropertyAttribute::Kind PRVal) {
860 PropertyAttributes =
861 (ObjCPropertyAttribute::Kind)(PropertyAttributes | PRVal);
862 }
863
864 NullabilityKind getNullability() const {
865 assert((static_cast<void> (0))
866 ((getObjCDeclQualifier() & DQ_CSNullability) ||(static_cast<void> (0))
867 (getPropertyAttributes() & ObjCPropertyAttribute::kind_nullability)) &&(static_cast<void> (0))
868 "Objective-C declspec doesn't have nullability")(static_cast<void> (0));
869 return static_cast<NullabilityKind>(Nullability);
870 }
871
872 SourceLocation getNullabilityLoc() const {
873 assert((static_cast<void> (0))
874 ((getObjCDeclQualifier() & DQ_CSNullability) ||(static_cast<void> (0))
875 (getPropertyAttributes() & ObjCPropertyAttribute::kind_nullability)) &&(static_cast<void> (0))
876 "Objective-C declspec doesn't have nullability")(static_cast<void> (0));
877 return NullabilityLoc;
878 }
879
880 void setNullability(SourceLocation loc, NullabilityKind kind) {
881 assert((static_cast<void> (0))
882 ((getObjCDeclQualifier() & DQ_CSNullability) ||(static_cast<void> (0))
883 (getPropertyAttributes() & ObjCPropertyAttribute::kind_nullability)) &&(static_cast<void> (0))
884 "Set the nullability declspec or property attribute first")(static_cast<void> (0));
885 Nullability = static_cast<unsigned>(kind);
886 NullabilityLoc = loc;
887 }
888
889 const IdentifierInfo *getGetterName() const { return GetterName; }
890 IdentifierInfo *getGetterName() { return GetterName; }
891 SourceLocation getGetterNameLoc() const { return GetterNameLoc; }
892 void setGetterName(IdentifierInfo *name, SourceLocation loc) {
893 GetterName = name;
894 GetterNameLoc = loc;
895 }
896
897 const IdentifierInfo *getSetterName() const { return SetterName; }
898 IdentifierInfo *getSetterName() { return SetterName; }
899 SourceLocation getSetterNameLoc() const { return SetterNameLoc; }
900 void setSetterName(IdentifierInfo *name, SourceLocation loc) {
901 SetterName = name;
902 SetterNameLoc = loc;
903 }
904
905private:
906 // FIXME: These two are unrelated and mutually exclusive. So perhaps
907 // we can put them in a union to reflect their mutual exclusivity
908 // (space saving is negligible).
909 unsigned objcDeclQualifier : 7;
910
911 // NOTE: VC++ treats enums as signed, avoid using ObjCPropertyAttribute::Kind
912 unsigned PropertyAttributes : NumObjCPropertyAttrsBits;
913
914 unsigned Nullability : 2;
915
916 SourceLocation NullabilityLoc;
917
918 IdentifierInfo *GetterName; // getter name or NULL if no getter
919 IdentifierInfo *SetterName; // setter name or NULL if no setter
920 SourceLocation GetterNameLoc; // location of the getter attribute's value
921 SourceLocation SetterNameLoc; // location of the setter attribute's value
922
923};
924
925/// Describes the kind of unqualified-id parsed.
926enum class UnqualifiedIdKind {
927 /// An identifier.
928 IK_Identifier,
929 /// An overloaded operator name, e.g., operator+.
930 IK_OperatorFunctionId,
931 /// A conversion function name, e.g., operator int.
932 IK_ConversionFunctionId,
933 /// A user-defined literal name, e.g., operator "" _i.
934 IK_LiteralOperatorId,
935 /// A constructor name.
936 IK_ConstructorName,
937 /// A constructor named via a template-id.
938 IK_ConstructorTemplateId,
939 /// A destructor name.
940 IK_DestructorName,
941 /// A template-id, e.g., f<int>.
942 IK_TemplateId,
943 /// An implicit 'self' parameter
944 IK_ImplicitSelfParam,
945 /// A deduction-guide name (a template-name)
946 IK_DeductionGuideName
947};
948
949/// Represents a C++ unqualified-id that has been parsed.
950class UnqualifiedId {
951private:
952 UnqualifiedId(const UnqualifiedId &Other) = delete;
953 const UnqualifiedId &operator=(const UnqualifiedId &) = delete;
954
955public:
956 /// Describes the kind of unqualified-id parsed.
957 UnqualifiedIdKind Kind;
958
959 struct OFI {
960 /// The kind of overloaded operator.
961 OverloadedOperatorKind Operator;
962
963 /// The source locations of the individual tokens that name
964 /// the operator, e.g., the "new", "[", and "]" tokens in
965 /// operator new [].
966 ///
967 /// Different operators have different numbers of tokens in their name,
968 /// up to three. Any remaining source locations in this array will be
969 /// set to an invalid value for operators with fewer than three tokens.
970 SourceLocation SymbolLocations[3];
971 };
972
973 /// Anonymous union that holds extra data associated with the
974 /// parsed unqualified-id.
975 union {
976 /// When Kind == IK_Identifier, the parsed identifier, or when
977 /// Kind == IK_UserLiteralId, the identifier suffix.
978 IdentifierInfo *Identifier;
979
980 /// When Kind == IK_OperatorFunctionId, the overloaded operator
981 /// that we parsed.
982 struct OFI OperatorFunctionId;
983
984 /// When Kind == IK_ConversionFunctionId, the type that the
985 /// conversion function names.
986 UnionParsedType ConversionFunctionId;
987
988 /// When Kind == IK_ConstructorName, the class-name of the type
989 /// whose constructor is being referenced.
990 UnionParsedType ConstructorName;
991
992 /// When Kind == IK_DestructorName, the type referred to by the
993 /// class-name.
994 UnionParsedType DestructorName;
995
996 /// When Kind == IK_DeductionGuideName, the parsed template-name.
997 UnionParsedTemplateTy TemplateName;
998
999 /// When Kind == IK_TemplateId or IK_ConstructorTemplateId,
1000 /// the template-id annotation that contains the template name and
1001 /// template arguments.
1002 TemplateIdAnnotation *TemplateId;
1003 };
1004
1005 /// The location of the first token that describes this unqualified-id,
1006 /// which will be the location of the identifier, "operator" keyword,
1007 /// tilde (for a destructor), or the template name of a template-id.
1008 SourceLocation StartLocation;
1009
1010 /// The location of the last token that describes this unqualified-id.
1011 SourceLocation EndLocation;
1012
1013 UnqualifiedId()
1014 : Kind(UnqualifiedIdKind::IK_Identifier), Identifier(nullptr) {}
1015
1016 /// Clear out this unqualified-id, setting it to default (invalid)
1017 /// state.
1018 void clear() {
1019 Kind = UnqualifiedIdKind::IK_Identifier;
1020 Identifier = nullptr;
1021 StartLocation = SourceLocation();
1022 EndLocation = SourceLocation();
1023 }
1024
1025 /// Determine whether this unqualified-id refers to a valid name.
1026 bool isValid() const { return StartLocation.isValid(); }
1027
1028 /// Determine whether this unqualified-id refers to an invalid name.
1029 bool isInvalid() const { return !isValid(); }
1030
1031 /// Determine what kind of name we have.
1032 UnqualifiedIdKind getKind() const { return Kind; }
1033
1034 /// Specify that this unqualified-id was parsed as an identifier.
1035 ///
1036 /// \param Id the parsed identifier.
1037 /// \param IdLoc the location of the parsed identifier.
1038 void setIdentifier(const IdentifierInfo *Id, SourceLocation IdLoc) {
1039 Kind = UnqualifiedIdKind::IK_Identifier;
1040 Identifier = const_cast<IdentifierInfo *>(Id);
1041 StartLocation = EndLocation = IdLoc;
1042 }
1043
1044 /// Specify that this unqualified-id was parsed as an
1045 /// operator-function-id.
1046 ///
1047 /// \param OperatorLoc the location of the 'operator' keyword.
1048 ///
1049 /// \param Op the overloaded operator.
1050 ///
1051 /// \param SymbolLocations the locations of the individual operator symbols
1052 /// in the operator.
1053 void setOperatorFunctionId(SourceLocation OperatorLoc,
1054 OverloadedOperatorKind Op,
1055 SourceLocation SymbolLocations[3]);
1056
1057 /// Specify that this unqualified-id was parsed as a
1058 /// conversion-function-id.
1059 ///
1060 /// \param OperatorLoc the location of the 'operator' keyword.
1061 ///
1062 /// \param Ty the type to which this conversion function is converting.
1063 ///
1064 /// \param EndLoc the location of the last token that makes up the type name.
1065 void setConversionFunctionId(SourceLocation OperatorLoc,
1066 ParsedType Ty,
1067 SourceLocation EndLoc) {
1068 Kind = UnqualifiedIdKind::IK_ConversionFunctionId;
1069 StartLocation = OperatorLoc;
1070 EndLocation = EndLoc;
1071 ConversionFunctionId = Ty;
1072 }
1073
1074 /// Specific that this unqualified-id was parsed as a
1075 /// literal-operator-id.
1076 ///
1077 /// \param Id the parsed identifier.
1078 ///
1079 /// \param OpLoc the location of the 'operator' keyword.
1080 ///
1081 /// \param IdLoc the location of the identifier.
1082 void setLiteralOperatorId(const IdentifierInfo *Id, SourceLocation OpLoc,
1083 SourceLocation IdLoc) {
1084 Kind = UnqualifiedIdKind::IK_LiteralOperatorId;
1085 Identifier = const_cast<IdentifierInfo *>(Id);
1086 StartLocation = OpLoc;
1087 EndLocation = IdLoc;
1088 }
1089
1090 /// Specify that this unqualified-id was parsed as a constructor name.
1091 ///
1092 /// \param ClassType the class type referred to by the constructor name.
1093 ///
1094 /// \param ClassNameLoc the location of the class name.
1095 ///
1096 /// \param EndLoc the location of the last token that makes up the type name.
1097 void setConstructorName(ParsedType ClassType,
1098 SourceLocation ClassNameLoc,
1099 SourceLocation EndLoc) {
1100 Kind = UnqualifiedIdKind::IK_ConstructorName;
1101 StartLocation = ClassNameLoc;
1102 EndLocation = EndLoc;
1103 ConstructorName = ClassType;
1104 }
1105
1106 /// Specify that this unqualified-id was parsed as a
1107 /// template-id that names a constructor.
1108 ///
1109 /// \param TemplateId the template-id annotation that describes the parsed
1110 /// template-id. This UnqualifiedId instance will take ownership of the
1111 /// \p TemplateId and will free it on destruction.
1112 void setConstructorTemplateId(TemplateIdAnnotation *TemplateId);
1113
1114 /// Specify that this unqualified-id was parsed as a destructor name.
1115 ///
1116 /// \param TildeLoc the location of the '~' that introduces the destructor
1117 /// name.
1118 ///
1119 /// \param ClassType the name of the class referred to by the destructor name.
1120 void setDestructorName(SourceLocation TildeLoc,
1121 ParsedType ClassType,
1122 SourceLocation EndLoc) {
1123 Kind = UnqualifiedIdKind::IK_DestructorName;
1124 StartLocation = TildeLoc;
1125 EndLocation = EndLoc;
1126 DestructorName = ClassType;
1127 }
1128
1129 /// Specify that this unqualified-id was parsed as a template-id.
1130 ///
1131 /// \param TemplateId the template-id annotation that describes the parsed
1132 /// template-id. This UnqualifiedId instance will take ownership of the
1133 /// \p TemplateId and will free it on destruction.
1134 void setTemplateId(TemplateIdAnnotation *TemplateId);
1135
1136 /// Specify that this unqualified-id was parsed as a template-name for
1137 /// a deduction-guide.
1138 ///
1139 /// \param Template The parsed template-name.
1140 /// \param TemplateLoc The location of the parsed template-name.
1141 void setDeductionGuideName(ParsedTemplateTy Template,
1142 SourceLocation TemplateLoc) {
1143 Kind = UnqualifiedIdKind::IK_DeductionGuideName;
1144 TemplateName = Template;
1145 StartLocation = EndLocation = TemplateLoc;
1146 }
1147
1148 /// Specify that this unqualified-id is an implicit 'self'
1149 /// parameter.
1150 ///
1151 /// \param Id the identifier.
1152 void setImplicitSelfParam(const IdentifierInfo *Id) {
1153 Kind = UnqualifiedIdKind::IK_ImplicitSelfParam;
1154 Identifier = const_cast<IdentifierInfo *>(Id);
1155 StartLocation = EndLocation = SourceLocation();
1156 }
1157
1158 /// Return the source range that covers this unqualified-id.
1159 SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) {
1160 return SourceRange(StartLocation, EndLocation);
1161 }
1162 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return StartLocation; }
1163 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return EndLocation; }
1164};
1165
1166/// A set of tokens that has been cached for later parsing.
1167typedef SmallVector<Token, 4> CachedTokens;
1168
1169/// One instance of this struct is used for each type in a
1170/// declarator that is parsed.
1171///
1172/// This is intended to be a small value object.
1173struct DeclaratorChunk {
1174 DeclaratorChunk() {};
1175
1176 enum {
1177 Pointer, Reference, Array, Function, BlockPointer, MemberPointer, Paren, Pipe
1178 } Kind;
1179
1180 /// Loc - The place where this type was defined.
1181 SourceLocation Loc;
1182 /// EndLoc - If valid, the place where this chunck ends.
1183 SourceLocation EndLoc;
1184
1185 SourceRange getSourceRange() const {
1186 if (EndLoc.isInvalid())
1187 return SourceRange(Loc, Loc);
1188 return SourceRange(Loc, EndLoc);
1189 }
1190
1191 ParsedAttributesView AttrList;
1192
1193 struct PointerTypeInfo {
1194 /// The type qualifiers: const/volatile/restrict/unaligned/atomic.
1195 unsigned TypeQuals : 5;
1196
1197 /// The location of the const-qualifier, if any.
1198 SourceLocation ConstQualLoc;
1199
1200 /// The location of the volatile-qualifier, if any.
1201 SourceLocation VolatileQualLoc;
1202
1203 /// The location of the restrict-qualifier, if any.
1204 SourceLocation RestrictQualLoc;
1205
1206 /// The location of the _Atomic-qualifier, if any.
1207 SourceLocation AtomicQualLoc;
1208
1209 /// The location of the __unaligned-qualifier, if any.
1210 SourceLocation UnalignedQualLoc;
1211
1212 void destroy() {
1213 }
1214 };
1215
1216 struct ReferenceTypeInfo {
1217 /// The type qualifier: restrict. [GNU] C++ extension
1218 bool HasRestrict : 1;
1219 /// True if this is an lvalue reference, false if it's an rvalue reference.
1220 bool LValueRef : 1;
1221 void destroy() {
1222 }
1223 };
1224
1225 struct ArrayTypeInfo {
1226 /// The type qualifiers for the array:
1227 /// const/volatile/restrict/__unaligned/_Atomic.
1228 unsigned TypeQuals : 5;
1229
1230 /// True if this dimension included the 'static' keyword.
1231 unsigned hasStatic : 1;
1232
1233 /// True if this dimension was [*]. In this case, NumElts is null.
1234 unsigned isStar : 1;
1235
1236 /// This is the size of the array, or null if [] or [*] was specified.
1237 /// Since the parser is multi-purpose, and we don't want to impose a root
1238 /// expression class on all clients, NumElts is untyped.
1239 Expr *NumElts;
1240
1241 void destroy() {}
1242 };
1243
1244 /// ParamInfo - An array of paraminfo objects is allocated whenever a function
1245 /// declarator is parsed. There are two interesting styles of parameters
1246 /// here:
1247 /// K&R-style identifier lists and parameter type lists. K&R-style identifier
1248 /// lists will have information about the identifier, but no type information.
1249 /// Parameter type lists will have type info (if the actions module provides
1250 /// it), but may have null identifier info: e.g. for 'void foo(int X, int)'.
1251 struct ParamInfo {
1252 IdentifierInfo *Ident;
1253 SourceLocation IdentLoc;
1254 Decl *Param;
1255
1256 /// DefaultArgTokens - When the parameter's default argument
1257 /// cannot be parsed immediately (because it occurs within the
1258 /// declaration of a member function), it will be stored here as a
1259 /// sequence of tokens to be parsed once the class definition is
1260 /// complete. Non-NULL indicates that there is a default argument.
1261 std::unique_ptr<CachedTokens> DefaultArgTokens;
1262
1263 ParamInfo() = default;
1264 ParamInfo(IdentifierInfo *ident, SourceLocation iloc,
1265 Decl *param,
1266 std::unique_ptr<CachedTokens> DefArgTokens = nullptr)
1267 : Ident(ident), IdentLoc(iloc), Param(param),
1268 DefaultArgTokens(std::move(DefArgTokens)) {}
1269 };
1270
1271 struct TypeAndRange {
1272 ParsedType Ty;
1273 SourceRange Range;
1274 };
1275
1276 struct FunctionTypeInfo {
1277 /// hasPrototype - This is true if the function had at least one typed
1278 /// parameter. If the function is () or (a,b,c), then it has no prototype,
1279 /// and is treated as a K&R-style function.
1280 unsigned hasPrototype : 1;
1281
1282 /// isVariadic - If this function has a prototype, and if that
1283 /// proto ends with ',...)', this is true. When true, EllipsisLoc
1284 /// contains the location of the ellipsis.
1285 unsigned isVariadic : 1;
1286
1287 /// Can this declaration be a constructor-style initializer?
1288 unsigned isAmbiguous : 1;
1289
1290 /// Whether the ref-qualifier (if any) is an lvalue reference.
1291 /// Otherwise, it's an rvalue reference.
1292 unsigned RefQualifierIsLValueRef : 1;
1293
1294 /// ExceptionSpecType - An ExceptionSpecificationType value.
1295 unsigned ExceptionSpecType : 4;
1296
1297 /// DeleteParams - If this is true, we need to delete[] Params.
1298 unsigned DeleteParams : 1;
1299
1300 /// HasTrailingReturnType - If this is true, a trailing return type was
1301 /// specified.
1302 unsigned HasTrailingReturnType : 1;
1303
1304 /// The location of the left parenthesis in the source.
1305 SourceLocation LParenLoc;
1306
1307 /// When isVariadic is true, the location of the ellipsis in the source.
1308 SourceLocation EllipsisLoc;
1309
1310 /// The location of the right parenthesis in the source.
1311 SourceLocation RParenLoc;
1312
1313 /// NumParams - This is the number of formal parameters specified by the
1314 /// declarator.
1315 unsigned NumParams;
1316
1317 /// NumExceptionsOrDecls - This is the number of types in the
1318 /// dynamic-exception-decl, if the function has one. In C, this is the
1319 /// number of declarations in the function prototype.
1320 unsigned NumExceptionsOrDecls;
1321
1322 /// The location of the ref-qualifier, if any.
1323 ///
1324 /// If this is an invalid location, there is no ref-qualifier.
1325 SourceLocation RefQualifierLoc;
1326
1327 /// The location of the 'mutable' qualifer in a lambda-declarator, if
1328 /// any.
1329 SourceLocation MutableLoc;
1330
1331 /// The beginning location of the exception specification, if any.
1332 SourceLocation ExceptionSpecLocBeg;
1333
1334 /// The end location of the exception specification, if any.
1335 SourceLocation ExceptionSpecLocEnd;
1336
1337 /// Params - This is a pointer to a new[]'d array of ParamInfo objects that
1338 /// describe the parameters specified by this function declarator. null if
1339 /// there are no parameters specified.
1340 ParamInfo *Params;
1341
1342 /// DeclSpec for the function with the qualifier related info.
1343 DeclSpec *MethodQualifiers;
1344
1345 /// AtttibuteFactory for the MethodQualifiers.
1346 AttributeFactory *QualAttrFactory;
1347
1348 union {
1349 /// Pointer to a new[]'d array of TypeAndRange objects that
1350 /// contain the types in the function's dynamic exception specification
1351 /// and their locations, if there is one.
1352 TypeAndRange *Exceptions;
1353
1354 /// Pointer to the expression in the noexcept-specifier of this
1355 /// function, if it has one.
1356 Expr *NoexceptExpr;
1357
1358 /// Pointer to the cached tokens for an exception-specification
1359 /// that has not yet been parsed.
1360 CachedTokens *ExceptionSpecTokens;
1361
1362 /// Pointer to a new[]'d array of declarations that need to be available
1363 /// for lookup inside the function body, if one exists. Does not exist in
1364 /// C++.
1365 NamedDecl **DeclsInPrototype;
1366 };
1367
1368 /// If HasTrailingReturnType is true, this is the trailing return
1369 /// type specified.
1370 UnionParsedType TrailingReturnType;
1371
1372 /// If HasTrailingReturnType is true, this is the location of the trailing
1373 /// return type.
1374 SourceLocation TrailingReturnTypeLoc;
1375
1376 /// Reset the parameter list to having zero parameters.
1377 ///
1378 /// This is used in various places for error recovery.
1379 void freeParams() {
1380 for (unsigned I = 0; I < NumParams; ++I)
1381 Params[I].DefaultArgTokens.reset();
1382 if (DeleteParams) {
1383 delete[] Params;
1384 DeleteParams = false;
1385 }
1386 NumParams = 0;
1387 }
1388
1389 void destroy() {
1390 freeParams();
1391 delete QualAttrFactory;
1392 delete MethodQualifiers;
1393 switch (getExceptionSpecType()) {
1394 default:
1395 break;
1396 case EST_Dynamic:
1397 delete[] Exceptions;
1398 break;
1399 case EST_Unparsed:
1400 delete ExceptionSpecTokens;
1401 break;
1402 case EST_None:
1403 if (NumExceptionsOrDecls != 0)
1404 delete[] DeclsInPrototype;
1405 break;
1406 }
1407 }
1408
1409 DeclSpec &getOrCreateMethodQualifiers() {
1410 if (!MethodQualifiers) {
1411 QualAttrFactory = new AttributeFactory();
1412 MethodQualifiers = new DeclSpec(*QualAttrFactory);
1413 }
1414 return *MethodQualifiers;
1415 }
1416
1417 /// isKNRPrototype - Return true if this is a K&R style identifier list,
1418 /// like "void foo(a,b,c)". In a function definition, this will be followed
1419 /// by the parameter type definitions.
1420 bool isKNRPrototype() const { return !hasPrototype && NumParams != 0; }
1421
1422 SourceLocation getLParenLoc() const { return LParenLoc; }
1423
1424 SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
1425
1426 SourceLocation getRParenLoc() const { return RParenLoc; }
1427
1428 SourceLocation getExceptionSpecLocBeg() const {
1429 return ExceptionSpecLocBeg;
1430 }
1431
1432 SourceLocation getExceptionSpecLocEnd() const {
1433 return ExceptionSpecLocEnd;
1434 }
1435
1436 SourceRange getExceptionSpecRange() const {
1437 return SourceRange(getExceptionSpecLocBeg(), getExceptionSpecLocEnd());
1438 }
1439
1440 /// Retrieve the location of the ref-qualifier, if any.
1441 SourceLocation getRefQualifierLoc() const { return RefQualifierLoc; }
1442
1443 /// Retrieve the location of the 'const' qualifier.
1444 SourceLocation getConstQualifierLoc() const {
1445 assert(MethodQualifiers)(static_cast<void> (0));
1446 return MethodQualifiers->getConstSpecLoc();
1447 }
1448
1449 /// Retrieve the location of the 'volatile' qualifier.
1450 SourceLocation getVolatileQualifierLoc() const {
1451 assert(MethodQualifiers)(static_cast<void> (0));
1452 return MethodQualifiers->getVolatileSpecLoc();
1453 }
1454
1455 /// Retrieve the location of the 'restrict' qualifier.
1456 SourceLocation getRestrictQualifierLoc() const {
1457 assert(MethodQualifiers)(static_cast<void> (0));
1458 return MethodQualifiers->getRestrictSpecLoc();
1459 }
1460
1461 /// Retrieve the location of the 'mutable' qualifier, if any.
1462 SourceLocation getMutableLoc() const { return MutableLoc; }
1463
1464 /// Determine whether this function declaration contains a
1465 /// ref-qualifier.
1466 bool hasRefQualifier() const { return getRefQualifierLoc().isValid(); }
1467
1468 /// Determine whether this lambda-declarator contains a 'mutable'
1469 /// qualifier.
1470 bool hasMutableQualifier() const { return getMutableLoc().isValid(); }
1471
1472 /// Determine whether this method has qualifiers.
1473 bool hasMethodTypeQualifiers() const {
1474 return MethodQualifiers && (MethodQualifiers->getTypeQualifiers() ||
1475 MethodQualifiers->getAttributes().size());
1476 }
1477
1478 /// Get the type of exception specification this function has.
1479 ExceptionSpecificationType getExceptionSpecType() const {
1480 return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
1481 }
1482
1483 /// Get the number of dynamic exception specifications.
1484 unsigned getNumExceptions() const {
1485 assert(ExceptionSpecType != EST_None)(static_cast<void> (0));
1486 return NumExceptionsOrDecls;
1487 }
1488
1489 /// Get the non-parameter decls defined within this function
1490 /// prototype. Typically these are tag declarations.
1491 ArrayRef<NamedDecl *> getDeclsInPrototype() const {
1492 assert(ExceptionSpecType == EST_None)(static_cast<void> (0));
1493 return llvm::makeArrayRef(DeclsInPrototype, NumExceptionsOrDecls);
1494 }
1495
1496 /// Determine whether this function declarator had a
1497 /// trailing-return-type.
1498 bool hasTrailingReturnType() const { return HasTrailingReturnType; }
1499
1500 /// Get the trailing-return-type for this function declarator.
1501 ParsedType getTrailingReturnType() const {
1502 assert(HasTrailingReturnType)(static_cast<void> (0));
1503 return TrailingReturnType;
1504 }
1505
1506 /// Get the trailing-return-type location for this function declarator.
1507 SourceLocation getTrailingReturnTypeLoc() const {
1508 assert(HasTrailingReturnType)(static_cast<void> (0));
1509 return TrailingReturnTypeLoc;
1510 }
1511 };
1512
1513 struct BlockPointerTypeInfo {
1514 /// For now, sema will catch these as invalid.
1515 /// The type qualifiers: const/volatile/restrict/__unaligned/_Atomic.
1516 unsigned TypeQuals : 5;
1517
1518 void destroy() {
1519 }
1520 };
1521
1522 struct MemberPointerTypeInfo {
1523 /// The type qualifiers: const/volatile/restrict/__unaligned/_Atomic.
1524 unsigned TypeQuals : 5;
1525 /// Location of the '*' token.
1526 SourceLocation StarLoc;
1527 // CXXScopeSpec has a constructor, so it can't be a direct member.
1528 // So we need some pointer-aligned storage and a bit of trickery.
1529 alignas(CXXScopeSpec) char ScopeMem[sizeof(CXXScopeSpec)];
1530 CXXScopeSpec &Scope() {
1531 return *reinterpret_cast<CXXScopeSpec *>(ScopeMem);
1532 }
1533 const CXXScopeSpec &Scope() const {
1534 return *reinterpret_cast<const CXXScopeSpec *>(ScopeMem);
1535 }
1536 void destroy() {
1537 Scope().~CXXScopeSpec();
1538 }
1539 };
1540
1541 struct PipeTypeInfo {
1542 /// The access writes.
1543 unsigned AccessWrites : 3;
1544
1545 void destroy() {}
1546 };
1547
1548 union {
1549 PointerTypeInfo Ptr;
1550 ReferenceTypeInfo Ref;
1551 ArrayTypeInfo Arr;
1552 FunctionTypeInfo Fun;
1553 BlockPointerTypeInfo Cls;
1554 MemberPointerTypeInfo Mem;
1555 PipeTypeInfo PipeInfo;
1556 };
1557
1558 void destroy() {
1559 switch (Kind) {
1560 case DeclaratorChunk::Function: return Fun.destroy();
1561 case DeclaratorChunk::Pointer: return Ptr.destroy();
1562 case DeclaratorChunk::BlockPointer: return Cls.destroy();
1563 case DeclaratorChunk::Reference: return Ref.destroy();
1564 case DeclaratorChunk::Array: return Arr.destroy();
1565 case DeclaratorChunk::MemberPointer: return Mem.destroy();
1566 case DeclaratorChunk::Paren: return;
1567 case DeclaratorChunk::Pipe: return PipeInfo.destroy();
1568 }
1569 }
1570
1571 /// If there are attributes applied to this declaratorchunk, return
1572 /// them.
1573 const ParsedAttributesView &getAttrs() const { return AttrList; }
1574 ParsedAttributesView &getAttrs() { return AttrList; }
1575
1576 /// Return a DeclaratorChunk for a pointer.
1577 static DeclaratorChunk getPointer(unsigned TypeQuals, SourceLocation Loc,
1578 SourceLocation ConstQualLoc,
1579 SourceLocation VolatileQualLoc,
1580 SourceLocation RestrictQualLoc,
1581 SourceLocation AtomicQualLoc,
1582 SourceLocation UnalignedQualLoc) {
1583 DeclaratorChunk I;
1584 I.Kind = Pointer;
1585 I.Loc = Loc;
1586 new (&I.Ptr) PointerTypeInfo;
1587 I.Ptr.TypeQuals = TypeQuals;
1588 I.Ptr.ConstQualLoc = ConstQualLoc;
1589 I.Ptr.VolatileQualLoc = VolatileQualLoc;
1590 I.Ptr.RestrictQualLoc = RestrictQualLoc;
1591 I.Ptr.AtomicQualLoc = AtomicQualLoc;
1592 I.Ptr.UnalignedQualLoc = UnalignedQualLoc;
1593 return I;
1594 }
1595
1596 /// Return a DeclaratorChunk for a reference.
1597 static DeclaratorChunk getReference(unsigned TypeQuals, SourceLocation Loc,
1598 bool lvalue) {
1599 DeclaratorChunk I;
1600 I.Kind = Reference;
1601 I.Loc = Loc;
1602 I.Ref.HasRestrict = (TypeQuals & DeclSpec::TQ_restrict) != 0;
1603 I.Ref.LValueRef = lvalue;
1604 return I;
1605 }
1606
1607 /// Return a DeclaratorChunk for an array.
1608 static DeclaratorChunk getArray(unsigned TypeQuals,
1609 bool isStatic, bool isStar, Expr *NumElts,
1610 SourceLocation LBLoc, SourceLocation RBLoc) {
1611 DeclaratorChunk I;
1612 I.Kind = Array;
1613 I.Loc = LBLoc;
1614 I.EndLoc = RBLoc;
1615 I.Arr.TypeQuals = TypeQuals;
1616 I.Arr.hasStatic = isStatic;
1617 I.Arr.isStar = isStar;
1618 I.Arr.NumElts = NumElts;
1619 return I;
1620 }
1621
1622 /// DeclaratorChunk::getFunction - Return a DeclaratorChunk for a function.
1623 /// "TheDeclarator" is the declarator that this will be added to.
1624 static DeclaratorChunk getFunction(bool HasProto,
1625 bool IsAmbiguous,
1626 SourceLocation LParenLoc,
1627 ParamInfo *Params, unsigned NumParams,
1628 SourceLocation EllipsisLoc,
1629 SourceLocation RParenLoc,
1630 bool RefQualifierIsLvalueRef,
1631 SourceLocation RefQualifierLoc,
1632 SourceLocation MutableLoc,
1633 ExceptionSpecificationType ESpecType,
1634 SourceRange ESpecRange,
1635 ParsedType *Exceptions,
1636 SourceRange *ExceptionRanges,
1637 unsigned NumExceptions,
1638 Expr *NoexceptExpr,
1639 CachedTokens *ExceptionSpecTokens,
1640 ArrayRef<NamedDecl *> DeclsInPrototype,
1641 SourceLocation LocalRangeBegin,
1642 SourceLocation LocalRangeEnd,
1643 Declarator &TheDeclarator,
1644 TypeResult TrailingReturnType =
1645 TypeResult(),
1646 SourceLocation TrailingReturnTypeLoc =
1647 SourceLocation(),
1648 DeclSpec *MethodQualifiers = nullptr);
1649
1650 /// Return a DeclaratorChunk for a block.
1651 static DeclaratorChunk getBlockPointer(unsigned TypeQuals,
1652 SourceLocation Loc) {
1653 DeclaratorChunk I;
1654 I.Kind = BlockPointer;
1655 I.Loc = Loc;
1656 I.Cls.TypeQuals = TypeQuals;
1657 return I;
1658 }
1659
1660 /// Return a DeclaratorChunk for a block.
1661 static DeclaratorChunk getPipe(unsigned TypeQuals,
1662 SourceLocation Loc) {
1663 DeclaratorChunk I;
1664 I.Kind = Pipe;
1665 I.Loc = Loc;
1666 I.Cls.TypeQuals = TypeQuals;
1667 return I;
1668 }
1669
1670 static DeclaratorChunk getMemberPointer(const CXXScopeSpec &SS,
1671 unsigned TypeQuals,
1672 SourceLocation StarLoc,
1673 SourceLocation EndLoc) {
1674 DeclaratorChunk I;
1675 I.Kind = MemberPointer;
1676 I.Loc = SS.getBeginLoc();
1677 I.EndLoc = EndLoc;
1678 new (&I.Mem) MemberPointerTypeInfo;
1679 I.Mem.StarLoc = StarLoc;
1680 I.Mem.TypeQuals = TypeQuals;
1681 new (I.Mem.ScopeMem) CXXScopeSpec(SS);
1682 return I;
1683 }
1684
1685 /// Return a DeclaratorChunk for a paren.
1686 static DeclaratorChunk getParen(SourceLocation LParenLoc,
1687 SourceLocation RParenLoc) {
1688 DeclaratorChunk I;
1689 I.Kind = Paren;
1690 I.Loc = LParenLoc;
1691 I.EndLoc = RParenLoc;
1692 return I;
1693 }
1694
1695 bool isParen() const {
1696 return Kind == Paren;
1697 }
1698};
1699
1700/// A parsed C++17 decomposition declarator of the form
1701/// '[' identifier-list ']'
1702class DecompositionDeclarator {
1703public:
1704 struct Binding {
1705 IdentifierInfo *Name;
1706 SourceLocation NameLoc;
1707 };
1708
1709private:
1710 /// The locations of the '[' and ']' tokens.
1711 SourceLocation LSquareLoc, RSquareLoc;
1712
1713 /// The bindings.
1714 Binding *Bindings;
1715 unsigned NumBindings : 31;
1716 unsigned DeleteBindings : 1;
1717
1718 friend class Declarator;
1719
1720public:
1721 DecompositionDeclarator()
1722 : Bindings(nullptr), NumBindings(0), DeleteBindings(false) {}
1723 DecompositionDeclarator(const DecompositionDeclarator &G) = delete;
1724 DecompositionDeclarator &operator=(const DecompositionDeclarator &G) = delete;
1725 ~DecompositionDeclarator() {
1726 if (DeleteBindings)
1727 delete[] Bindings;
1728 }
1729
1730 void clear() {
1731 LSquareLoc = RSquareLoc = SourceLocation();
1732 if (DeleteBindings)
1733 delete[] Bindings;
1734 Bindings = nullptr;
1735 NumBindings = 0;
1736 DeleteBindings = false;
1737 }
1738
1739 ArrayRef<Binding> bindings() const {
1740 return llvm::makeArrayRef(Bindings, NumBindings);
1741 }
1742
1743 bool isSet() const { return LSquareLoc.isValid(); }
6
Calling 'SourceLocation::isValid'
9
Returning from 'SourceLocation::isValid'
10
Returning zero, which participates in a condition later
1744
1745 SourceLocation getLSquareLoc() const { return LSquareLoc; }
1746 SourceLocation getRSquareLoc() const { return RSquareLoc; }
1747 SourceRange getSourceRange() const {
1748 return SourceRange(LSquareLoc, RSquareLoc);
1749 }
1750};
1751
1752/// Described the kind of function definition (if any) provided for
1753/// a function.
1754enum class FunctionDefinitionKind {
1755 Declaration,
1756 Definition,
1757 Defaulted,
1758 Deleted
1759};
1760
1761enum class DeclaratorContext {
1762 File, // File scope declaration.
1763 Prototype, // Within a function prototype.
1764 ObjCResult, // An ObjC method result type.
1765 ObjCParameter, // An ObjC method parameter type.
1766 KNRTypeList, // K&R type definition list for formals.
1767 TypeName, // Abstract declarator for types.
1768 FunctionalCast, // Type in a C++ functional cast expression.
1769 Member, // Struct/Union field.
1770 Block, // Declaration within a block in a function.
1771 ForInit, // Declaration within first part of a for loop.
1772 SelectionInit, // Declaration within optional init stmt of if/switch.
1773 Condition, // Condition declaration in a C++ if/switch/while/for.
1774 TemplateParam, // Within a template parameter list.
1775 CXXNew, // C++ new-expression.
1776 CXXCatch, // C++ catch exception-declaration
1777 ObjCCatch, // Objective-C catch exception-declaration
1778 BlockLiteral, // Block literal declarator.
1779 LambdaExpr, // Lambda-expression declarator.
1780 LambdaExprParameter, // Lambda-expression parameter declarator.
1781 ConversionId, // C++ conversion-type-id.
1782 TrailingReturn, // C++11 trailing-type-specifier.
1783 TrailingReturnVar, // C++11 trailing-type-specifier for variable.
1784 TemplateArg, // Any template argument (in template argument list).
1785 TemplateTypeArg, // Template type argument (in default argument).
1786 AliasDecl, // C++11 alias-declaration.
1787 AliasTemplate, // C++11 alias-declaration template.
1788 RequiresExpr // C++2a requires-expression.
1789};
1790
1791/// Information about one declarator, including the parsed type
1792/// information and the identifier.
1793///
1794/// When the declarator is fully formed, this is turned into the appropriate
1795/// Decl object.
1796///
1797/// Declarators come in two types: normal declarators and abstract declarators.
1798/// Abstract declarators are used when parsing types, and don't have an
1799/// identifier. Normal declarators do have ID's.
1800///
1801/// Instances of this class should be a transient object that lives on the
1802/// stack, not objects that are allocated in large quantities on the heap.
1803class Declarator {
1804
1805private:
1806 const DeclSpec &DS;
1807 CXXScopeSpec SS;
1808 UnqualifiedId Name;
1809 SourceRange Range;
1810
1811 /// Where we are parsing this declarator.
1812 DeclaratorContext Context;
1813
1814 /// The C++17 structured binding, if any. This is an alternative to a Name.
1815 DecompositionDeclarator BindingGroup;
1816
1817 /// DeclTypeInfo - This holds each type that the declarator includes as it is
1818 /// parsed. This is pushed from the identifier out, which means that element
1819 /// #0 will be the most closely bound to the identifier, and
1820 /// DeclTypeInfo.back() will be the least closely bound.
1821 SmallVector<DeclaratorChunk, 8> DeclTypeInfo;
1822
1823 /// InvalidType - Set by Sema::GetTypeForDeclarator().
1824 unsigned InvalidType : 1;
1825
1826 /// GroupingParens - Set by Parser::ParseParenDeclarator().
1827 unsigned GroupingParens : 1;
1828
1829 /// FunctionDefinition - Is this Declarator for a function or member
1830 /// definition and, if so, what kind?
1831 ///
1832 /// Actually a FunctionDefinitionKind.
1833 unsigned FunctionDefinition : 2;
1834
1835 /// Is this Declarator a redeclaration?
1836 unsigned Redeclaration : 1;
1837
1838 /// true if the declaration is preceded by \c __extension__.
1839 unsigned Extension : 1;
1840
1841 /// Indicates whether this is an Objective-C instance variable.
1842 unsigned ObjCIvar : 1;
1843
1844 /// Indicates whether this is an Objective-C 'weak' property.
1845 unsigned ObjCWeakProperty : 1;
1846
1847 /// Indicates whether the InlineParams / InlineBindings storage has been used.
1848 unsigned InlineStorageUsed : 1;
1849
1850 /// Indicates whether this declarator has an initializer.
1851 unsigned HasInitializer : 1;
1852
1853 /// Attrs - Attributes.
1854 ParsedAttributes Attrs;
1855
1856 /// The asm label, if specified.
1857 Expr *AsmLabel;
1858
1859 /// \brief The constraint-expression specified by the trailing
1860 /// requires-clause, or null if no such clause was specified.
1861 Expr *TrailingRequiresClause;
1862
1863 /// If this declarator declares a template, its template parameter lists.
1864 ArrayRef<TemplateParameterList *> TemplateParameterLists;
1865
1866 /// If the declarator declares an abbreviated function template, the innermost
1867 /// template parameter list containing the invented and explicit template
1868 /// parameters (if any).
1869 TemplateParameterList *InventedTemplateParameterList;
1870
1871#ifndef _MSC_VER
1872 union {
1873#endif
1874 /// InlineParams - This is a local array used for the first function decl
1875 /// chunk to avoid going to the heap for the common case when we have one
1876 /// function chunk in the declarator.
1877 DeclaratorChunk::ParamInfo InlineParams[16];
1878 DecompositionDeclarator::Binding InlineBindings[16];
1879#ifndef _MSC_VER
1880 };
1881#endif
1882
1883 /// If this is the second or subsequent declarator in this declaration,
1884 /// the location of the comma before this declarator.
1885 SourceLocation CommaLoc;
1886
1887 /// If provided, the source location of the ellipsis used to describe
1888 /// this declarator as a parameter pack.
1889 SourceLocation EllipsisLoc;
1890
1891 friend struct DeclaratorChunk;
1892
1893public:
1894 Declarator(const DeclSpec &ds, DeclaratorContext C)
1895 : DS(ds), Range(ds.getSourceRange()), Context(C),
1896 InvalidType(DS.getTypeSpecType() == DeclSpec::TST_error),
1897 GroupingParens(false), FunctionDefinition(static_cast<unsigned>(
1898 FunctionDefinitionKind::Declaration)),
1899 Redeclaration(false), Extension(false), ObjCIvar(false),
1900 ObjCWeakProperty(false), InlineStorageUsed(false),
1901 HasInitializer(false), Attrs(ds.getAttributePool().getFactory()),
1902 AsmLabel(nullptr), TrailingRequiresClause(nullptr),
1903 InventedTemplateParameterList(nullptr) {}
1904
1905 ~Declarator() {
1906 clear();
1907 }
1908 /// getDeclSpec - Return the declaration-specifier that this declarator was
1909 /// declared with.
1910 const DeclSpec &getDeclSpec() const { return DS; }
1911
1912 /// getMutableDeclSpec - Return a non-const version of the DeclSpec. This
1913 /// should be used with extreme care: declspecs can often be shared between
1914 /// multiple declarators, so mutating the DeclSpec affects all of the
1915 /// Declarators. This should only be done when the declspec is known to not
1916 /// be shared or when in error recovery etc.
1917 DeclSpec &getMutableDeclSpec() { return const_cast<DeclSpec &>(DS); }
1918
1919 AttributePool &getAttributePool() const {
1920 return Attrs.getPool();
1921 }
1922
1923 /// getCXXScopeSpec - Return the C++ scope specifier (global scope or
1924 /// nested-name-specifier) that is part of the declarator-id.
1925 const CXXScopeSpec &getCXXScopeSpec() const { return SS; }
1926 CXXScopeSpec &getCXXScopeSpec() { return SS; }
1927
1928 /// Retrieve the name specified by this declarator.
1929 UnqualifiedId &getName() { return Name; }
1930
1931 const DecompositionDeclarator &getDecompositionDeclarator() const {
1932 return BindingGroup;
1933 }
1934
1935 DeclaratorContext getContext() const { return Context; }
1936
1937 bool isPrototypeContext() const {
1938 return (Context == DeclaratorContext::Prototype ||
1939 Context == DeclaratorContext::ObjCParameter ||
1940 Context == DeclaratorContext::ObjCResult ||
1941 Context == DeclaratorContext::LambdaExprParameter);
1942 }
1943
1944 /// Get the source range that spans this declarator.
1945 SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) { return Range; }
1946 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return Range.getBegin(); }
1947 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return Range.getEnd(); }
1948
1949 void SetSourceRange(SourceRange R) { Range = R; }
1950 /// SetRangeBegin - Set the start of the source range to Loc, unless it's
1951 /// invalid.
1952 void SetRangeBegin(SourceLocation Loc) {
1953 if (!Loc.isInvalid())
1954 Range.setBegin(Loc);
1955 }
1956 /// SetRangeEnd - Set the end of the source range to Loc, unless it's invalid.
1957 void SetRangeEnd(SourceLocation Loc) {
1958 if (!Loc.isInvalid())
1959 Range.setEnd(Loc);
1960 }
1961 /// ExtendWithDeclSpec - Extend the declarator source range to include the
1962 /// given declspec, unless its location is invalid. Adopts the range start if
1963 /// the current range start is invalid.
1964 void ExtendWithDeclSpec(const DeclSpec &DS) {
1965 SourceRange SR = DS.getSourceRange();
1966 if (Range.getBegin().isInvalid())
1967 Range.setBegin(SR.getBegin());
1968 if (!SR.getEnd().isInvalid())
1969 Range.setEnd(SR.getEnd());
1970 }
1971
1972 /// Reset the contents of this Declarator.
1973 void clear() {
1974 SS.clear();
1975 Name.clear();
1976 Range = DS.getSourceRange();
1977 BindingGroup.clear();
1978
1979 for (unsigned i = 0, e = DeclTypeInfo.size(); i != e; ++i)
1980 DeclTypeInfo[i].destroy();
1981 DeclTypeInfo.clear();
1982 Attrs.clear();
1983 AsmLabel = nullptr;
1984 InlineStorageUsed = false;
1985 HasInitializer = false;
1986 ObjCIvar = false;
1987 ObjCWeakProperty = false;
1988 CommaLoc = SourceLocation();
1989 EllipsisLoc = SourceLocation();
1990 }
1991
1992 /// mayOmitIdentifier - Return true if the identifier is either optional or
1993 /// not allowed. This is true for typenames, prototypes, and template
1994 /// parameter lists.
1995 bool mayOmitIdentifier() const {
1996 switch (Context) {
1997 case DeclaratorContext::File:
1998 case DeclaratorContext::KNRTypeList:
1999 case DeclaratorContext::Member:
2000 case DeclaratorContext::Block:
2001 case DeclaratorContext::ForInit:
2002 case DeclaratorContext::SelectionInit:
2003 case DeclaratorContext::Condition:
2004 return false;
2005
2006 case DeclaratorContext::TypeName:
2007 case DeclaratorContext::FunctionalCast:
2008 case DeclaratorContext::AliasDecl:
2009 case DeclaratorContext::AliasTemplate:
2010 case DeclaratorContext::Prototype:
2011 case DeclaratorContext::LambdaExprParameter:
2012 case DeclaratorContext::ObjCParameter:
2013 case DeclaratorContext::ObjCResult:
2014 case DeclaratorContext::TemplateParam:
2015 case DeclaratorContext::CXXNew:
2016 case DeclaratorContext::CXXCatch:
2017 case DeclaratorContext::ObjCCatch:
2018 case DeclaratorContext::BlockLiteral:
2019 case DeclaratorContext::LambdaExpr:
2020 case DeclaratorContext::ConversionId:
2021 case DeclaratorContext::TemplateArg:
2022 case DeclaratorContext::TemplateTypeArg:
2023 case DeclaratorContext::TrailingReturn:
2024 case DeclaratorContext::TrailingReturnVar:
2025 case DeclaratorContext::RequiresExpr:
2026 return true;
2027 }
2028 llvm_unreachable("unknown context kind!")__builtin_unreachable();
2029 }
2030
2031 /// mayHaveIdentifier - Return true if the identifier is either optional or
2032 /// required. This is true for normal declarators and prototypes, but not
2033 /// typenames.
2034 bool mayHaveIdentifier() const {
2035 switch (Context) {
2036 case DeclaratorContext::File:
2037 case DeclaratorContext::KNRTypeList:
2038 case DeclaratorContext::Member:
2039 case DeclaratorContext::Block:
2040 case DeclaratorContext::ForInit:
2041 case DeclaratorContext::SelectionInit:
2042 case DeclaratorContext::Condition:
2043 case DeclaratorContext::Prototype:
2044 case DeclaratorContext::LambdaExprParameter:
2045 case DeclaratorContext::TemplateParam:
2046 case DeclaratorContext::CXXCatch:
2047 case DeclaratorContext::ObjCCatch:
2048 case DeclaratorContext::RequiresExpr:
2049 return true;
2050
2051 case DeclaratorContext::TypeName:
2052 case DeclaratorContext::FunctionalCast:
2053 case DeclaratorContext::CXXNew:
2054 case DeclaratorContext::AliasDecl:
2055 case DeclaratorContext::AliasTemplate:
2056 case DeclaratorContext::ObjCParameter:
2057 case DeclaratorContext::ObjCResult:
2058 case DeclaratorContext::BlockLiteral:
2059 case DeclaratorContext::LambdaExpr:
2060 case DeclaratorContext::ConversionId:
2061 case DeclaratorContext::TemplateArg:
2062 case DeclaratorContext::TemplateTypeArg:
2063 case DeclaratorContext::TrailingReturn:
2064 case DeclaratorContext::TrailingReturnVar:
2065 return false;
2066 }
2067 llvm_unreachable("unknown context kind!")__builtin_unreachable();
2068 }
2069
2070 /// Return true if the context permits a C++17 decomposition declarator.
2071 bool mayHaveDecompositionDeclarator() const {
2072 switch (Context) {
2073 case DeclaratorContext::File:
2074 // FIXME: It's not clear that the proposal meant to allow file-scope
2075 // structured bindings, but it does.
2076 case DeclaratorContext::Block:
2077 case DeclaratorContext::ForInit:
2078 case DeclaratorContext::SelectionInit:
2079 case DeclaratorContext::Condition:
2080 return true;
2081
2082 case DeclaratorContext::Member:
2083 case DeclaratorContext::Prototype:
2084 case DeclaratorContext::TemplateParam:
2085 case DeclaratorContext::RequiresExpr:
2086 // Maybe one day...
2087 return false;
2088
2089 // These contexts don't allow any kind of non-abstract declarator.
2090 case DeclaratorContext::KNRTypeList:
2091 case DeclaratorContext::TypeName:
2092 case DeclaratorContext::FunctionalCast:
2093 case DeclaratorContext::AliasDecl:
2094 case DeclaratorContext::AliasTemplate:
2095 case DeclaratorContext::LambdaExprParameter:
2096 case DeclaratorContext::ObjCParameter:
2097 case DeclaratorContext::ObjCResult:
2098 case DeclaratorContext::CXXNew:
2099 case DeclaratorContext::CXXCatch:
2100 case DeclaratorContext::ObjCCatch:
2101 case DeclaratorContext::BlockLiteral:
2102 case DeclaratorContext::LambdaExpr:
2103 case DeclaratorContext::ConversionId:
2104 case DeclaratorContext::TemplateArg:
2105 case DeclaratorContext::TemplateTypeArg:
2106 case DeclaratorContext::TrailingReturn:
2107 case DeclaratorContext::TrailingReturnVar:
2108 return false;
2109 }
2110 llvm_unreachable("unknown context kind!")__builtin_unreachable();
2111 }
2112
2113 /// mayBeFollowedByCXXDirectInit - Return true if the declarator can be
2114 /// followed by a C++ direct initializer, e.g. "int x(1);".
2115 bool mayBeFollowedByCXXDirectInit() const {
2116 if (hasGroupingParens()) return false;
2117
2118 if (getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2119 return false;
2120
2121 if (getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern &&
2122 Context != DeclaratorContext::File)
2123 return false;
2124
2125 // Special names can't have direct initializers.
2126 if (Name.getKind() != UnqualifiedIdKind::IK_Identifier)
2127 return false;
2128
2129 switch (Context) {
2130 case DeclaratorContext::File:
2131 case DeclaratorContext::Block:
2132 case DeclaratorContext::ForInit:
2133 case DeclaratorContext::SelectionInit:
2134 case DeclaratorContext::TrailingReturnVar:
2135 return true;
2136
2137 case DeclaratorContext::Condition:
2138 // This may not be followed by a direct initializer, but it can't be a
2139 // function declaration either, and we'd prefer to perform a tentative
2140 // parse in order to produce the right diagnostic.
2141 return true;
2142
2143 case DeclaratorContext::KNRTypeList:
2144 case DeclaratorContext::Member:
2145 case DeclaratorContext::Prototype:
2146 case DeclaratorContext::LambdaExprParameter:
2147 case DeclaratorContext::ObjCParameter:
2148 case DeclaratorContext::ObjCResult:
2149 case DeclaratorContext::TemplateParam:
2150 case DeclaratorContext::CXXCatch:
2151 case DeclaratorContext::ObjCCatch:
2152 case DeclaratorContext::TypeName:
2153 case DeclaratorContext::FunctionalCast: // FIXME
2154 case DeclaratorContext::CXXNew:
2155 case DeclaratorContext::AliasDecl:
2156 case DeclaratorContext::AliasTemplate:
2157 case DeclaratorContext::BlockLiteral:
2158 case DeclaratorContext::LambdaExpr:
2159 case DeclaratorContext::ConversionId:
2160 case DeclaratorContext::TemplateArg:
2161 case DeclaratorContext::TemplateTypeArg:
2162 case DeclaratorContext::TrailingReturn:
2163 case DeclaratorContext::RequiresExpr:
2164 return false;
2165 }
2166 llvm_unreachable("unknown context kind!")__builtin_unreachable();
2167 }
2168
2169 /// isPastIdentifier - Return true if we have parsed beyond the point where
2170 /// the name would appear. (This may happen even if we haven't actually parsed
2171 /// a name, perhaps because this context doesn't require one.)
2172 bool isPastIdentifier() const { return Name.isValid(); }
2173
2174 /// hasName - Whether this declarator has a name, which might be an
2175 /// identifier (accessible via getIdentifier()) or some kind of
2176 /// special C++ name (constructor, destructor, etc.), or a structured
2177 /// binding (which is not exactly a name, but occupies the same position).
2178 bool hasName() const {
2179 return Name.getKind() != UnqualifiedIdKind::IK_Identifier ||
2180 Name.Identifier || isDecompositionDeclarator();
2181 }
2182
2183 /// Return whether this declarator is a decomposition declarator.
2184 bool isDecompositionDeclarator() const {
2185 return BindingGroup.isSet();
5
Calling 'DecompositionDeclarator::isSet'
11
Returning from 'DecompositionDeclarator::isSet'
12
Returning zero, which participates in a condition later
2186 }
2187
2188 IdentifierInfo *getIdentifier() const {
2189 if (Name.getKind() == UnqualifiedIdKind::IK_Identifier)
2190 return Name.Identifier;
2191
2192 return nullptr;
2193 }
2194 SourceLocation getIdentifierLoc() const { return Name.StartLocation; }
2195
2196 /// Set the name of this declarator to be the given identifier.
2197 void SetIdentifier(IdentifierInfo *Id, SourceLocation IdLoc) {
2198 Name.setIdentifier(Id, IdLoc);
2199 }
2200
2201 /// Set the decomposition bindings for this declarator.
2202 void
2203 setDecompositionBindings(SourceLocation LSquareLoc,
2204 ArrayRef<DecompositionDeclarator::Binding> Bindings,
2205 SourceLocation RSquareLoc);
2206
2207 /// AddTypeInfo - Add a chunk to this declarator. Also extend the range to
2208 /// EndLoc, which should be the last token of the chunk.
2209 /// This function takes attrs by R-Value reference because it takes ownership
2210 /// of those attributes from the parameter.
2211 void AddTypeInfo(const DeclaratorChunk &TI, ParsedAttributes &&attrs,
2212 SourceLocation EndLoc) {
2213 DeclTypeInfo.push_back(TI);
2214 DeclTypeInfo.back().getAttrs().addAll(attrs.begin(), attrs.end());
2215 getAttributePool().takeAllFrom(attrs.getPool());
2216
2217 if (!EndLoc.isInvalid())
2218 SetRangeEnd(EndLoc);
2219 }
2220
2221 /// AddTypeInfo - Add a chunk to this declarator. Also extend the range to
2222 /// EndLoc, which should be the last token of the chunk.
2223 void AddTypeInfo(const DeclaratorChunk &TI, SourceLocation EndLoc) {
2224 DeclTypeInfo.push_back(TI);
2225
2226 if (!EndLoc.isInvalid())
2227 SetRangeEnd(EndLoc);
2228 }
2229
2230 /// Add a new innermost chunk to this declarator.
2231 void AddInnermostTypeInfo(const DeclaratorChunk &TI) {
2232 DeclTypeInfo.insert(DeclTypeInfo.begin(), TI);
2233 }
2234
2235 /// Return the number of types applied to this declarator.
2236 unsigned getNumTypeObjects() const { return DeclTypeInfo.size(); }
2237
2238 /// Return the specified TypeInfo from this declarator. TypeInfo #0 is
2239 /// closest to the identifier.
2240 const DeclaratorChunk &getTypeObject(unsigned i) const {
2241 assert(i < DeclTypeInfo.size() && "Invalid type chunk")(static_cast<void> (0));
2242 return DeclTypeInfo[i];
2243 }
2244 DeclaratorChunk &getTypeObject(unsigned i) {
2245 assert(i < DeclTypeInfo.size() && "Invalid type chunk")(static_cast<void> (0));
2246 return DeclTypeInfo[i];
2247 }
2248
2249 typedef SmallVectorImpl<DeclaratorChunk>::const_iterator type_object_iterator;
2250 typedef llvm::iterator_range<type_object_iterator> type_object_range;
2251
2252 /// Returns the range of type objects, from the identifier outwards.
2253 type_object_range type_objects() const {
2254 return type_object_range(DeclTypeInfo.begin(), DeclTypeInfo.end());
2255 }
2256
2257 void DropFirstTypeObject() {
2258 assert(!DeclTypeInfo.empty() && "No type chunks to drop.")(static_cast<void> (0));
2259 DeclTypeInfo.front().destroy();
2260 DeclTypeInfo.erase(DeclTypeInfo.begin());
2261 }
2262
2263 /// Return the innermost (closest to the declarator) chunk of this
2264 /// declarator that is not a parens chunk, or null if there are no
2265 /// non-parens chunks.
2266 const DeclaratorChunk *getInnermostNonParenChunk() const {
2267 for (unsigned i = 0, i_end = DeclTypeInfo.size(); i < i_end; ++i) {
2268 if (!DeclTypeInfo[i].isParen())
2269 return &DeclTypeInfo[i];
2270 }
2271 return nullptr;
2272 }
2273
2274 /// Return the outermost (furthest from the declarator) chunk of
2275 /// this declarator that is not a parens chunk, or null if there are
2276 /// no non-parens chunks.
2277 const DeclaratorChunk *getOutermostNonParenChunk() const {
2278 for (unsigned i = DeclTypeInfo.size(), i_end = 0; i != i_end; --i) {
2279 if (!DeclTypeInfo[i-1].isParen())
2280 return &DeclTypeInfo[i-1];
2281 }
2282 return nullptr;
2283 }
2284
2285 /// isArrayOfUnknownBound - This method returns true if the declarator
2286 /// is a declarator for an array of unknown bound (looking through
2287 /// parentheses).
2288 bool isArrayOfUnknownBound() const {
2289 const DeclaratorChunk *chunk = getInnermostNonParenChunk();
2290 return (chunk && chunk->Kind == DeclaratorChunk::Array &&
2291 !chunk->Arr.NumElts);
2292 }
2293
2294 /// isFunctionDeclarator - This method returns true if the declarator
2295 /// is a function declarator (looking through parentheses).
2296 /// If true is returned, then the reference type parameter idx is
2297 /// assigned with the index of the declaration chunk.
2298 bool isFunctionDeclarator(unsigned& idx) const {
2299 for (unsigned i = 0, i_end = DeclTypeInfo.size(); i < i_end; ++i) {
2300 switch (DeclTypeInfo[i].Kind) {
2301 case DeclaratorChunk::Function:
2302 idx = i;
2303 return true;
2304 case DeclaratorChunk::Paren:
2305 continue;
2306 case DeclaratorChunk::Pointer:
2307 case DeclaratorChunk::Reference:
2308 case DeclaratorChunk::Array:
2309 case DeclaratorChunk::BlockPointer:
2310 case DeclaratorChunk::MemberPointer:
2311 case DeclaratorChunk::Pipe:
2312 return false;
2313 }
2314 llvm_unreachable("Invalid type chunk")__builtin_unreachable();
2315 }
2316 return false;
2317 }
2318
2319 /// isFunctionDeclarator - Once this declarator is fully parsed and formed,
2320 /// this method returns true if the identifier is a function declarator
2321 /// (looking through parentheses).
2322 bool isFunctionDeclarator() const {
2323 unsigned index;
2324 return isFunctionDeclarator(index);
2325 }
2326
2327 /// getFunctionTypeInfo - Retrieves the function type info object
2328 /// (looking through parentheses).
2329 DeclaratorChunk::FunctionTypeInfo &getFunctionTypeInfo() {
2330 assert(isFunctionDeclarator() && "Not a function declarator!")(static_cast<void> (0));
2331 unsigned index = 0;
2332 isFunctionDeclarator(index);
2333 return DeclTypeInfo[index].Fun;
2334 }
2335
2336 /// getFunctionTypeInfo - Retrieves the function type info object
2337 /// (looking through parentheses).
2338 const DeclaratorChunk::FunctionTypeInfo &getFunctionTypeInfo() const {
2339 return const_cast<Declarator*>(this)->getFunctionTypeInfo();
2340 }
2341
2342 /// Determine whether the declaration that will be produced from
2343 /// this declaration will be a function.
2344 ///
2345 /// A declaration can declare a function even if the declarator itself
2346 /// isn't a function declarator, if the type specifier refers to a function
2347 /// type. This routine checks for both cases.
2348 bool isDeclarationOfFunction() const;
2349
2350 /// Return true if this declaration appears in a context where a
2351 /// function declarator would be a function declaration.
2352 bool isFunctionDeclarationContext() const {
2353 if (getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2354 return false;
2355
2356 switch (Context) {
2357 case DeclaratorContext::File:
2358 case DeclaratorContext::Member:
2359 case DeclaratorContext::Block:
2360 case DeclaratorContext::ForInit:
2361 case DeclaratorContext::SelectionInit:
2362 return true;
2363
2364 case DeclaratorContext::Condition:
2365 case DeclaratorContext::KNRTypeList:
2366 case DeclaratorContext::TypeName:
2367 case DeclaratorContext::FunctionalCast:
2368 case DeclaratorContext::AliasDecl:
2369 case DeclaratorContext::AliasTemplate:
2370 case DeclaratorContext::Prototype:
2371 case DeclaratorContext::LambdaExprParameter:
2372 case DeclaratorContext::ObjCParameter:
2373 case DeclaratorContext::ObjCResult:
2374 case DeclaratorContext::TemplateParam:
2375 case DeclaratorContext::CXXNew:
2376 case DeclaratorContext::CXXCatch:
2377 case DeclaratorContext::ObjCCatch:
2378 case DeclaratorContext::BlockLiteral:
2379 case DeclaratorContext::LambdaExpr:
2380 case DeclaratorContext::ConversionId:
2381 case DeclaratorContext::TemplateArg:
2382 case DeclaratorContext::TemplateTypeArg:
2383 case DeclaratorContext::TrailingReturn:
2384 case DeclaratorContext::TrailingReturnVar:
2385 case DeclaratorContext::RequiresExpr:
2386 return false;
2387 }
2388 llvm_unreachable("unknown context kind!")__builtin_unreachable();
2389 }
2390
2391 /// Determine whether this declaration appears in a context where an
2392 /// expression could appear.
2393 bool isExpressionContext() const {
2394 switch (Context) {
2395 case DeclaratorContext::File:
2396 case DeclaratorContext::KNRTypeList:
2397 case DeclaratorContext::Member:
2398
2399 // FIXME: sizeof(...) permits an expression.
2400 case DeclaratorContext::TypeName:
2401
2402 case DeclaratorContext::FunctionalCast:
2403 case DeclaratorContext::AliasDecl:
2404 case DeclaratorContext::AliasTemplate:
2405 case DeclaratorContext::Prototype:
2406 case DeclaratorContext::LambdaExprParameter:
2407 case DeclaratorContext::ObjCParameter:
2408 case DeclaratorContext::ObjCResult:
2409 case DeclaratorContext::TemplateParam:
2410 case DeclaratorContext::CXXNew:
2411 case DeclaratorContext::CXXCatch:
2412 case DeclaratorContext::ObjCCatch:
2413 case DeclaratorContext::BlockLiteral:
2414 case DeclaratorContext::LambdaExpr:
2415 case DeclaratorContext::ConversionId:
2416 case DeclaratorContext::TrailingReturn:
2417 case DeclaratorContext::TrailingReturnVar:
2418 case DeclaratorContext::TemplateTypeArg:
2419 case DeclaratorContext::RequiresExpr:
2420 return false;
2421
2422 case DeclaratorContext::Block:
2423 case DeclaratorContext::ForInit:
2424 case DeclaratorContext::SelectionInit:
2425 case DeclaratorContext::Condition:
2426 case DeclaratorContext::TemplateArg:
2427 return true;
2428 }
2429
2430 llvm_unreachable("unknown context kind!")__builtin_unreachable();
2431 }
2432
2433 /// Return true if a function declarator at this position would be a
2434 /// function declaration.
2435 bool isFunctionDeclaratorAFunctionDeclaration() const {
2436 if (!isFunctionDeclarationContext())
2437 return false;
2438
2439 for (unsigned I = 0, N = getNumTypeObjects(); I != N; ++I)
2440 if (getTypeObject(I).Kind != DeclaratorChunk::Paren)
2441 return false;
2442
2443 return true;
2444 }
2445
2446 /// Determine whether a trailing return type was written (at any
2447 /// level) within this declarator.
2448 bool hasTrailingReturnType() const {
2449 for (const auto &Chunk : type_objects())
2450 if (Chunk.Kind == DeclaratorChunk::Function &&
2451 Chunk.Fun.hasTrailingReturnType())
2452 return true;
2453 return false;
2454 }
2455 /// Get the trailing return type appearing (at any level) within this
2456 /// declarator.
2457 ParsedType getTrailingReturnType() const {
2458 for (const auto &Chunk : type_objects())
2459 if (Chunk.Kind == DeclaratorChunk::Function &&
2460 Chunk.Fun.hasTrailingReturnType())
2461 return Chunk.Fun.getTrailingReturnType();
2462 return ParsedType();
2463 }
2464
2465 /// \brief Sets a trailing requires clause for this declarator.
2466 void setTrailingRequiresClause(Expr *TRC) {
2467 TrailingRequiresClause = TRC;
2468
2469 SetRangeEnd(TRC->getEndLoc());
2470 }
2471
2472 /// \brief Sets a trailing requires clause for this declarator.
2473 Expr *getTrailingRequiresClause() {
2474 return TrailingRequiresClause;
2475 }
2476
2477 /// \brief Determine whether a trailing requires clause was written in this
2478 /// declarator.
2479 bool hasTrailingRequiresClause() const {
2480 return TrailingRequiresClause != nullptr;
2481 }
2482
2483 /// Sets the template parameter lists that preceded the declarator.
2484 void setTemplateParameterLists(ArrayRef<TemplateParameterList *> TPLs) {
2485 TemplateParameterLists = TPLs;
2486 }
2487
2488 /// The template parameter lists that preceded the declarator.
2489 ArrayRef<TemplateParameterList *> getTemplateParameterLists() const {
2490 return TemplateParameterLists;
2491 }
2492
2493 /// Sets the template parameter list generated from the explicit template
2494 /// parameters along with any invented template parameters from
2495 /// placeholder-typed parameters.
2496 void setInventedTemplateParameterList(TemplateParameterList *Invented) {
2497 InventedTemplateParameterList = Invented;
2498 }
2499
2500 /// The template parameter list generated from the explicit template
2501 /// parameters along with any invented template parameters from
2502 /// placeholder-typed parameters, if there were any such parameters.
2503 TemplateParameterList * getInventedTemplateParameterList() const {
2504 return InventedTemplateParameterList;
2505 }
2506
2507 /// takeAttributes - Takes attributes from the given parsed-attributes
2508 /// set and add them to this declarator.
2509 ///
2510 /// These examples both add 3 attributes to "var":
2511 /// short int var __attribute__((aligned(16),common,deprecated));
2512 /// short int x, __attribute__((aligned(16)) var
2513 /// __attribute__((common,deprecated));
2514 ///
2515 /// Also extends the range of the declarator.
2516 void takeAttributes(ParsedAttributes &attrs, SourceLocation lastLoc) {
2517 Attrs.takeAllFrom(attrs);
2518
2519 if (!lastLoc.isInvalid())
2520 SetRangeEnd(lastLoc);
2521 }
2522
2523 const ParsedAttributes &getAttributes() const { return Attrs; }
2524 ParsedAttributes &getAttributes() { return Attrs; }
2525
2526 /// hasAttributes - do we contain any attributes?
2527 bool hasAttributes() const {
2528 if (!getAttributes().empty() || getDeclSpec().hasAttributes())
2529 return true;
2530 for (unsigned i = 0, e = getNumTypeObjects(); i != e; ++i)
2531 if (!getTypeObject(i).getAttrs().empty())
2532 return true;
2533 return false;
2534 }
2535
2536 /// Return a source range list of C++11 attributes associated
2537 /// with the declarator.
2538 void getCXX11AttributeRanges(SmallVectorImpl<SourceRange> &Ranges) {
2539 for (const ParsedAttr &AL : Attrs)
2540 if (AL.isCXX11Attribute())
2541 Ranges.push_back(AL.getRange());
2542 }
2543
2544 void setAsmLabel(Expr *E) { AsmLabel = E; }
2545 Expr *getAsmLabel() const { return AsmLabel; }
2546
2547 void setExtension(bool Val = true) { Extension = Val; }
2548 bool getExtension() const { return Extension; }
2549
2550 void setObjCIvar(bool Val = true) { ObjCIvar = Val; }
2551 bool isObjCIvar() const { return ObjCIvar; }
2552
2553 void setObjCWeakProperty(bool Val = true) { ObjCWeakProperty = Val; }
2554 bool isObjCWeakProperty() const { return ObjCWeakProperty; }
2555
2556 void setInvalidType(bool Val = true) { InvalidType = Val; }
2557 bool isInvalidType() const {
2558 return InvalidType || DS.getTypeSpecType() == DeclSpec::TST_error;
2559 }
2560
2561 void setGroupingParens(bool flag) { GroupingParens = flag; }
2562 bool hasGroupingParens() const { return GroupingParens; }
2563
2564 bool isFirstDeclarator() const { return !CommaLoc.isValid(); }
2565 SourceLocation getCommaLoc() const { return CommaLoc; }
2566 void setCommaLoc(SourceLocation CL) { CommaLoc = CL; }
2567
2568 bool hasEllipsis() const { return EllipsisLoc.isValid(); }
2569 SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
2570 void setEllipsisLoc(SourceLocation EL) { EllipsisLoc = EL; }
2571
2572 void setFunctionDefinitionKind(FunctionDefinitionKind Val) {
2573 FunctionDefinition = static_cast<unsigned>(Val);
2574 }
2575
2576 bool isFunctionDefinition() const {
2577 return getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration;
2578 }
2579
2580 FunctionDefinitionKind getFunctionDefinitionKind() const {
2581 return (FunctionDefinitionKind)FunctionDefinition;
2582 }
2583
2584 void setHasInitializer(bool Val = true) { HasInitializer = Val; }
2585 bool hasInitializer() const { return HasInitializer; }
2586
2587 /// Returns true if this declares a real member and not a friend.
2588 bool isFirstDeclarationOfMember() {
2589 return getContext() == DeclaratorContext::Member &&
2590 !getDeclSpec().isFriendSpecified();
2591 }
2592
2593 /// Returns true if this declares a static member. This cannot be called on a
2594 /// declarator outside of a MemberContext because we won't know until
2595 /// redeclaration time if the decl is static.
2596 bool isStaticMember();
2597
2598 /// Returns true if this declares a constructor or a destructor.
2599 bool isCtorOrDtor();
2600
2601 void setRedeclaration(bool Val) { Redeclaration = Val; }
2602 bool isRedeclaration() const { return Redeclaration; }
2603};
2604
2605/// This little struct is used to capture information about
2606/// structure field declarators, which is basically just a bitfield size.
2607struct FieldDeclarator {
2608 Declarator D;
2609 Expr *BitfieldSize;
2610 explicit FieldDeclarator(const DeclSpec &DS)
2611 : D(DS, DeclaratorContext::Member), BitfieldSize(nullptr) {}
2612};
2613
2614/// Represents a C++11 virt-specifier-seq.
2615class VirtSpecifiers {
2616public:
2617 enum Specifier {
2618 VS_None = 0,
2619 VS_Override = 1,
2620 VS_Final = 2,
2621 VS_Sealed = 4,
2622 // Represents the __final keyword, which is legal for gcc in pre-C++11 mode.
2623 VS_GNU_Final = 8,
2624 VS_Abstract = 16
2625 };
2626
2627 VirtSpecifiers() : Specifiers(0), LastSpecifier(VS_None) { }
2628
2629 bool SetSpecifier(Specifier VS, SourceLocation Loc,
2630 const char *&PrevSpec);
2631
2632 bool isUnset() const { return Specifiers == 0; }
2633
2634 bool isOverrideSpecified() const { return Specifiers & VS_Override; }
2635 SourceLocation getOverrideLoc() const { return VS_overrideLoc; }
2636
2637 bool isFinalSpecified() const { return Specifiers & (VS_Final | VS_Sealed | VS_GNU_Final); }
2638 bool isFinalSpelledSealed() const { return Specifiers & VS_Sealed; }
2639 SourceLocation getFinalLoc() const { return VS_finalLoc; }
2640 SourceLocation getAbstractLoc() const { return VS_abstractLoc; }
2641
2642 void clear() { Specifiers = 0; }
2643
2644 static const char *getSpecifierName(Specifier VS);
2645
2646 SourceLocation getFirstLocation() const { return FirstLocation; }
2647 SourceLocation getLastLocation() const { return LastLocation; }
2648 Specifier getLastSpecifier() const { return LastSpecifier; }
2649
2650private:
2651 unsigned Specifiers;
2652 Specifier LastSpecifier;
2653
2654 SourceLocation VS_overrideLoc, VS_finalLoc, VS_abstractLoc;
2655 SourceLocation FirstLocation;
2656 SourceLocation LastLocation;
2657};
2658
2659enum class LambdaCaptureInitKind {
2660 NoInit, //!< [a]
2661 CopyInit, //!< [a = b], [a = {b}]
2662 DirectInit, //!< [a(b)]
2663 ListInit //!< [a{b}]
2664};
2665
2666/// Represents a complete lambda introducer.
2667struct LambdaIntroducer {
2668 /// An individual capture in a lambda introducer.
2669 struct LambdaCapture {
2670 LambdaCaptureKind Kind;
2671 SourceLocation Loc;
2672 IdentifierInfo *Id;
2673 SourceLocation EllipsisLoc;
2674 LambdaCaptureInitKind InitKind;
2675 ExprResult Init;
2676 ParsedType InitCaptureType;
2677 SourceRange ExplicitRange;
2678
2679 LambdaCapture(LambdaCaptureKind Kind, SourceLocation Loc,
2680 IdentifierInfo *Id, SourceLocation EllipsisLoc,
2681 LambdaCaptureInitKind InitKind, ExprResult Init,
2682 ParsedType InitCaptureType,
2683 SourceRange ExplicitRange)
2684 : Kind(Kind), Loc(Loc), Id(Id), EllipsisLoc(EllipsisLoc),
2685 InitKind(InitKind), Init(Init), InitCaptureType(InitCaptureType),
2686 ExplicitRange(ExplicitRange) {}
2687 };
2688
2689 SourceRange Range;
2690 SourceLocation DefaultLoc;
2691 LambdaCaptureDefault Default;
2692 SmallVector<LambdaCapture, 4> Captures;
2693
2694 LambdaIntroducer()
2695 : Default(LCD_None) {}
2696
2697 /// Append a capture in a lambda introducer.
2698 void addCapture(LambdaCaptureKind Kind,
2699 SourceLocation Loc,
2700 IdentifierInfo* Id,
2701 SourceLocation EllipsisLoc,
2702 LambdaCaptureInitKind InitKind,
2703 ExprResult Init,
2704 ParsedType InitCaptureType,
2705 SourceRange ExplicitRange) {
2706 Captures.push_back(LambdaCapture(Kind, Loc, Id, EllipsisLoc, InitKind, Init,
2707 InitCaptureType, ExplicitRange));
2708 }
2709};
2710
2711struct InventedTemplateParameterInfo {
2712 /// The number of parameters in the template parameter list that were
2713 /// explicitly specified by the user, as opposed to being invented by use
2714 /// of an auto parameter.
2715 unsigned NumExplicitTemplateParams = 0;
2716
2717 /// If this is a generic lambda or abbreviated function template, use this
2718 /// as the depth of each 'auto' parameter, during initial AST construction.
2719 unsigned AutoTemplateParameterDepth = 0;
2720
2721 /// Store the list of the template parameters for a generic lambda or an
2722 /// abbreviated function template.
2723 /// If this is a generic lambda or abbreviated function template, this holds
2724 /// the explicit template parameters followed by the auto parameters
2725 /// converted into TemplateTypeParmDecls.
2726 /// It can be used to construct the generic lambda or abbreviated template's
2727 /// template parameter list during initial AST construction.
2728 SmallVector<NamedDecl*, 4> TemplateParams;
2729};
2730
2731} // end namespace clang
2732
2733#endif // LLVM_CLANG_SEMA_DECLSPEC_H

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/include/clang/Basic/SourceLocation.h

1//===- SourceLocation.h - Compact identifier for Source Files ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Defines the clang::SourceLocation class and associated facilities.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_BASIC_SOURCELOCATION_H
15#define LLVM_CLANG_BASIC_SOURCELOCATION_H
16
17#include "clang/Basic/LLVM.h"
18#include "llvm/ADT/StringRef.h"
19#include <cassert>
20#include <cstdint>
21#include <string>
22#include <utility>
23
24namespace llvm {
25
26template <typename T> struct DenseMapInfo;
27
28class FoldingSetNodeID;
29template <typename T> struct FoldingSetTrait;
30
31} // namespace llvm
32
33namespace clang {
34
35class SourceManager;
36
37/// An opaque identifier used by SourceManager which refers to a
38/// source file (MemoryBuffer) along with its \#include path and \#line data.
39///
40class FileID {
41 /// A mostly-opaque identifier, where 0 is "invalid", >0 is
42 /// this module, and <-1 is something loaded from another module.
43 int ID = 0;
44
45public:
46 bool isValid() const { return ID != 0; }
47 bool isInvalid() const { return ID == 0; }
48
49 bool operator==(const FileID &RHS) const { return ID == RHS.ID; }
50 bool operator<(const FileID &RHS) const { return ID < RHS.ID; }
51 bool operator<=(const FileID &RHS) const { return ID <= RHS.ID; }
52 bool operator!=(const FileID &RHS) const { return !(*this == RHS); }
53 bool operator>(const FileID &RHS) const { return RHS < *this; }
54 bool operator>=(const FileID &RHS) const { return RHS <= *this; }
55
56 static FileID getSentinel() { return get(-1); }
57 unsigned getHashValue() const { return static_cast<unsigned>(ID); }
58
59private:
60 friend class ASTWriter;
61 friend class ASTReader;
62 friend class SourceManager;
63
64 static FileID get(int V) {
65 FileID F;
66 F.ID = V;
67 return F;
68 }
69
70 int getOpaqueValue() const { return ID; }
71};
72
73/// Encodes a location in the source. The SourceManager can decode this
74/// to get at the full include stack, line and column information.
75///
76/// Technically, a source location is simply an offset into the manager's view
77/// of the input source, which is all input buffers (including macro
78/// expansions) concatenated in an effectively arbitrary order. The manager
79/// actually maintains two blocks of input buffers. One, starting at offset
80/// 0 and growing upwards, contains all buffers from this module. The other,
81/// starting at the highest possible offset and growing downwards, contains
82/// buffers of loaded modules.
83///
84/// In addition, one bit of SourceLocation is used for quick access to the
85/// information whether the location is in a file or a macro expansion.
86///
87/// It is important that this type remains small. It is currently 32 bits wide.
88class SourceLocation {
89 friend class ASTReader;
90 friend class ASTWriter;
91 friend class SourceManager;
92 friend struct llvm::FoldingSetTrait<SourceLocation>;
93
94public:
95 using UIntTy = uint32_t;
96 using IntTy = int32_t;
97
98private:
99 UIntTy ID = 0;
100
101 enum : UIntTy { MacroIDBit = 1ULL << (8 * sizeof(UIntTy) - 1) };
102
103public:
104 bool isFileID() const { return (ID & MacroIDBit) == 0; }
105 bool isMacroID() const { return (ID & MacroIDBit) != 0; }
106
107 /// Return true if this is a valid SourceLocation object.
108 ///
109 /// Invalid SourceLocations are often used when events have no corresponding
110 /// location in the source (e.g. a diagnostic is required for a command line
111 /// option).
112 bool isValid() const { return ID != 0; }
7
Assuming field 'ID' is equal to 0
8
Returning zero, which participates in a condition later
113 bool isInvalid() const { return ID == 0; }
114
115private:
116 /// Return the offset into the manager's global input view.
117 UIntTy getOffset() const { return ID & ~MacroIDBit; }
118
119 static SourceLocation getFileLoc(UIntTy ID) {
120 assert((ID & MacroIDBit) == 0 && "Ran out of source locations!")(static_cast<void> (0));
121 SourceLocation L;
122 L.ID = ID;
123 return L;
124 }
125
126 static SourceLocation getMacroLoc(UIntTy ID) {
127 assert((ID & MacroIDBit) == 0 && "Ran out of source locations!")(static_cast<void> (0));
128 SourceLocation L;
129 L.ID = MacroIDBit | ID;
130 return L;
131 }
132
133public:
134 /// Return a source location with the specified offset from this
135 /// SourceLocation.
136 SourceLocation getLocWithOffset(IntTy Offset) const {
137 assert(((getOffset()+Offset) & MacroIDBit) == 0 && "offset overflow")(static_cast<void> (0));
138 SourceLocation L;
139 L.ID = ID+Offset;
140 return L;
141 }
142
143 /// When a SourceLocation itself cannot be used, this returns
144 /// an (opaque) 32-bit integer encoding for it.
145 ///
146 /// This should only be passed to SourceLocation::getFromRawEncoding, it
147 /// should not be inspected directly.
148 UIntTy getRawEncoding() const { return ID; }
149
150 /// Turn a raw encoding of a SourceLocation object into
151 /// a real SourceLocation.
152 ///
153 /// \see getRawEncoding.
154 static SourceLocation getFromRawEncoding(UIntTy Encoding) {
155 SourceLocation X;
156 X.ID = Encoding;
157 return X;
158 }
159
160 /// When a SourceLocation itself cannot be used, this returns
161 /// an (opaque) pointer encoding for it.
162 ///
163 /// This should only be passed to SourceLocation::getFromPtrEncoding, it
164 /// should not be inspected directly.
165 void* getPtrEncoding() const {
166 // Double cast to avoid a warning "cast to pointer from integer of different
167 // size".
168 return (void*)(uintptr_t)getRawEncoding();
169 }
170
171 /// Turn a pointer encoding of a SourceLocation object back
172 /// into a real SourceLocation.
173 static SourceLocation getFromPtrEncoding(const void *Encoding) {
174 return getFromRawEncoding((SourceLocation::UIntTy)(uintptr_t)Encoding);
175 }
176
177 static bool isPairOfFileLocations(SourceLocation Start, SourceLocation End) {
178 return Start.isValid() && Start.isFileID() && End.isValid() &&
179 End.isFileID();
180 }
181
182 unsigned getHashValue() const;
183 void print(raw_ostream &OS, const SourceManager &SM) const;
184 std::string printToString(const SourceManager &SM) const;
185 void dump(const SourceManager &SM) const;
186};
187
188inline bool operator==(const SourceLocation &LHS, const SourceLocation &RHS) {
189 return LHS.getRawEncoding() == RHS.getRawEncoding();
190}
191
192inline bool operator!=(const SourceLocation &LHS, const SourceLocation &RHS) {
193 return !(LHS == RHS);
194}
195
196// Ordering is meaningful only if LHS and RHS have the same FileID!
197// Otherwise use SourceManager::isBeforeInTranslationUnit().
198inline bool operator<(const SourceLocation &LHS, const SourceLocation &RHS) {
199 return LHS.getRawEncoding() < RHS.getRawEncoding();
200}
201inline bool operator>(const SourceLocation &LHS, const SourceLocation &RHS) {
202 return LHS.getRawEncoding() > RHS.getRawEncoding();
203}
204inline bool operator<=(const SourceLocation &LHS, const SourceLocation &RHS) {
205 return LHS.getRawEncoding() <= RHS.getRawEncoding();
206}
207inline bool operator>=(const SourceLocation &LHS, const SourceLocation &RHS) {
208 return LHS.getRawEncoding() >= RHS.getRawEncoding();
209}
210
211/// A trivial tuple used to represent a source range.
212class SourceRange {
213 SourceLocation B;
214 SourceLocation E;
215
216public:
217 SourceRange() = default;
218 SourceRange(SourceLocation loc) : B(loc), E(loc) {}
219 SourceRange(SourceLocation begin, SourceLocation end) : B(begin), E(end) {}
220
221 SourceLocation getBegin() const { return B; }
222 SourceLocation getEnd() const { return E; }
223
224 void setBegin(SourceLocation b) { B = b; }
225 void setEnd(SourceLocation e) { E = e; }
226
227 bool isValid() const { return B.isValid() && E.isValid(); }
228 bool isInvalid() const { return !isValid(); }
229
230 bool operator==(const SourceRange &X) const {
231 return B == X.B && E == X.E;
232 }
233
234 bool operator!=(const SourceRange &X) const {
235 return B != X.B || E != X.E;
236 }
237
238 // Returns true iff other is wholly contained within this range.
239 bool fullyContains(const SourceRange &other) const {
240 return B <= other.B && E >= other.E;
241 }
242
243 void print(raw_ostream &OS, const SourceManager &SM) const;
244 std::string printToString(const SourceManager &SM) const;
245 void dump(const SourceManager &SM) const;
246};
247
248/// Represents a character-granular source range.
249///
250/// The underlying SourceRange can either specify the starting/ending character
251/// of the range, or it can specify the start of the range and the start of the
252/// last token of the range (a "token range"). In the token range case, the
253/// size of the last token must be measured to determine the actual end of the
254/// range.
255class CharSourceRange {
256 SourceRange Range;
257 bool IsTokenRange = false;
258
259public:
260 CharSourceRange() = default;
261 CharSourceRange(SourceRange R, bool ITR) : Range(R), IsTokenRange(ITR) {}
262
263 static CharSourceRange getTokenRange(SourceRange R) {
264 return CharSourceRange(R, true);
265 }
266
267 static CharSourceRange getCharRange(SourceRange R) {
268 return CharSourceRange(R, false);
269 }
270
271 static CharSourceRange getTokenRange(SourceLocation B, SourceLocation E) {
272 return getTokenRange(SourceRange(B, E));
273 }
274
275 static CharSourceRange getCharRange(SourceLocation B, SourceLocation E) {
276 return getCharRange(SourceRange(B, E));
277 }
278
279 /// Return true if the end of this range specifies the start of
280 /// the last token. Return false if the end of this range specifies the last
281 /// character in the range.
282 bool isTokenRange() const { return IsTokenRange; }
283 bool isCharRange() const { return !IsTokenRange; }
284
285 SourceLocation getBegin() const { return Range.getBegin(); }
286 SourceLocation getEnd() const { return Range.getEnd(); }
287 SourceRange getAsRange() const { return Range; }
288
289 void setBegin(SourceLocation b) { Range.setBegin(b); }
290 void setEnd(SourceLocation e) { Range.setEnd(e); }
291 void setTokenRange(bool TR) { IsTokenRange = TR; }
292
293 bool isValid() const { return Range.isValid(); }
294 bool isInvalid() const { return !isValid(); }
295};
296
297/// Represents an unpacked "presumed" location which can be presented
298/// to the user.
299///
300/// A 'presumed' location can be modified by \#line and GNU line marker
301/// directives and is always the expansion point of a normal location.
302///
303/// You can get a PresumedLoc from a SourceLocation with SourceManager.
304class PresumedLoc {
305 const char *Filename = nullptr;
306 FileID ID;
307 unsigned Line, Col;
308 SourceLocation IncludeLoc;
309
310public:
311 PresumedLoc() = default;
312 PresumedLoc(const char *FN, FileID FID, unsigned Ln, unsigned Co,
313 SourceLocation IL)
314 : Filename(FN), ID(FID), Line(Ln), Col(Co), IncludeLoc(IL) {}
315
316 /// Return true if this object is invalid or uninitialized.
317 ///
318 /// This occurs when created with invalid source locations or when walking
319 /// off the top of a \#include stack.
320 bool isInvalid() const { return Filename == nullptr; }
321 bool isValid() const { return Filename != nullptr; }
322
323 /// Return the presumed filename of this location.
324 ///
325 /// This can be affected by \#line etc.
326 const char *getFilename() const {
327 assert(isValid())(static_cast<void> (0));
328 return Filename;
329 }
330
331 FileID getFileID() const {
332 assert(isValid())(static_cast<void> (0));
333 return ID;
334 }
335
336 /// Return the presumed line number of this location.
337 ///
338 /// This can be affected by \#line etc.
339 unsigned getLine() const {
340 assert(isValid())(static_cast<void> (0));
341 return Line;
342 }
343
344 /// Return the presumed column number of this location.
345 ///
346 /// This cannot be affected by \#line, but is packaged here for convenience.
347 unsigned getColumn() const {
348 assert(isValid())(static_cast<void> (0));
349 return Col;
350 }
351
352 /// Return the presumed include location of this location.
353 ///
354 /// This can be affected by GNU linemarker directives.
355 SourceLocation getIncludeLoc() const {
356 assert(isValid())(static_cast<void> (0));
357 return IncludeLoc;
358 }
359};
360
361class FileEntry;
362
363/// A SourceLocation and its associated SourceManager.
364///
365/// This is useful for argument passing to functions that expect both objects.
366///
367/// This class does not guarantee the presence of either the SourceManager or
368/// a valid SourceLocation. Clients should use `isValid()` and `hasManager()`
369/// before calling the member functions.
370class FullSourceLoc : public SourceLocation {
371 const SourceManager *SrcMgr = nullptr;
372
373public:
374 /// Creates a FullSourceLoc where isValid() returns \c false.
375 FullSourceLoc() = default;
376
377 explicit FullSourceLoc(SourceLocation Loc, const SourceManager &SM)
378 : SourceLocation(Loc), SrcMgr(&SM) {}
379
380 /// Checks whether the SourceManager is present.
381 bool hasManager() const { return SrcMgr != nullptr; }
382
383 /// \pre hasManager()
384 const SourceManager &getManager() const {
385 assert(SrcMgr && "SourceManager is NULL.")(static_cast<void> (0));
386 return *SrcMgr;
387 }
388
389 FileID getFileID() const;
390
391 FullSourceLoc getExpansionLoc() const;
392 FullSourceLoc getSpellingLoc() const;
393 FullSourceLoc getFileLoc() const;
394 PresumedLoc getPresumedLoc(bool UseLineDirectives = true) const;
395 bool isMacroArgExpansion(FullSourceLoc *StartLoc = nullptr) const;
396 FullSourceLoc getImmediateMacroCallerLoc() const;
397 std::pair<FullSourceLoc, StringRef> getModuleImportLoc() const;
398 unsigned getFileOffset() const;
399
400 unsigned getExpansionLineNumber(bool *Invalid = nullptr) const;
401 unsigned getExpansionColumnNumber(bool *Invalid = nullptr) const;
402
403 unsigned getSpellingLineNumber(bool *Invalid = nullptr) const;
404 unsigned getSpellingColumnNumber(bool *Invalid = nullptr) const;
405
406 const char *getCharacterData(bool *Invalid = nullptr) const;
407
408 unsigned getLineNumber(bool *Invalid = nullptr) const;
409 unsigned getColumnNumber(bool *Invalid = nullptr) const;
410
411 const FileEntry *getFileEntry() const;
412
413 /// Return a StringRef to the source buffer data for the
414 /// specified FileID.
415 StringRef getBufferData(bool *Invalid = nullptr) const;
416
417 /// Decompose the specified location into a raw FileID + Offset pair.
418 ///
419 /// The first element is the FileID, the second is the offset from the
420 /// start of the buffer of the location.
421 std::pair<FileID, unsigned> getDecomposedLoc() const;
422
423 bool isInSystemHeader() const;
424
425 /// Determines the order of 2 source locations in the translation unit.
426 ///
427 /// \returns true if this source location comes before 'Loc', false otherwise.
428 bool isBeforeInTranslationUnitThan(SourceLocation Loc) const;
429
430 /// Determines the order of 2 source locations in the translation unit.
431 ///
432 /// \returns true if this source location comes before 'Loc', false otherwise.
433 bool isBeforeInTranslationUnitThan(FullSourceLoc Loc) const {
434 assert(Loc.isValid())(static_cast<void> (0));
435 assert(SrcMgr == Loc.SrcMgr && "Loc comes from another SourceManager!")(static_cast<void> (0));
436 return isBeforeInTranslationUnitThan((SourceLocation)Loc);
437 }
438
439 /// Comparison function class, useful for sorting FullSourceLocs.
440 struct BeforeThanCompare {
441 bool operator()(const FullSourceLoc& lhs, const FullSourceLoc& rhs) const {
442 return lhs.isBeforeInTranslationUnitThan(rhs);
443 }
444 };
445
446 /// Prints information about this FullSourceLoc to stderr.
447 ///
448 /// This is useful for debugging.
449 void dump() const;
450
451 friend bool
452 operator==(const FullSourceLoc &LHS, const FullSourceLoc &RHS) {
453 return LHS.getRawEncoding() == RHS.getRawEncoding() &&
454 LHS.SrcMgr == RHS.SrcMgr;
455 }
456
457 friend bool
458 operator!=(const FullSourceLoc &LHS, const FullSourceLoc &RHS) {
459 return !(LHS == RHS);
460 }
461};
462
463} // namespace clang
464
465namespace llvm {
466
467 /// Define DenseMapInfo so that FileID's can be used as keys in DenseMap and
468 /// DenseSets.
469 template <>
470 struct DenseMapInfo<clang::FileID> {
471 static clang::FileID getEmptyKey() {
472 return {};
473 }
474
475 static clang::FileID getTombstoneKey() {
476 return clang::FileID::getSentinel();
477 }
478
479 static unsigned getHashValue(clang::FileID S) {
480 return S.getHashValue();
481 }
482
483 static bool isEqual(clang::FileID LHS, clang::FileID RHS) {
484 return LHS == RHS;
485 }
486 };
487
488 /// Define DenseMapInfo so that SourceLocation's can be used as keys in
489 /// DenseMap and DenseSet. This trait class is eqivalent to
490 /// DenseMapInfo<unsigned> which uses SourceLocation::ID is used as a key.
491 template <> struct DenseMapInfo<clang::SourceLocation> {
492 static clang::SourceLocation getEmptyKey() {
493 constexpr clang::SourceLocation::UIntTy Zero = 0;
494 return clang::SourceLocation::getFromRawEncoding(~Zero);
495 }
496
497 static clang::SourceLocation getTombstoneKey() {
498 constexpr clang::SourceLocation::UIntTy Zero = 0;
499 return clang::SourceLocation::getFromRawEncoding(~Zero - 1);
500 }
501
502 static unsigned getHashValue(clang::SourceLocation Loc) {
503 return Loc.getHashValue();
504 }
505
506 static bool isEqual(clang::SourceLocation LHS, clang::SourceLocation RHS) {
507 return LHS == RHS;
508 }
509 };
510
511 // Allow calling FoldingSetNodeID::Add with SourceLocation object as parameter
512 template <> struct FoldingSetTrait<clang::SourceLocation> {
513 static void Profile(const clang::SourceLocation &X, FoldingSetNodeID &ID);
514 };
515
516} // namespace llvm
517
518#endif // LLVM_CLANG_BASIC_SOURCELOCATION_H