Bug Summary

File:clang/lib/Sema/SemaDecl.cpp
Warning:line 10632, column 48
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaDecl.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/tools/clang/lib/Sema -resource-dir /usr/lib/llvm-13/lib/clang/13.0.0 -D CLANG_ROUND_TRIP_CC1_ARGS=ON -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/include -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/lib/llvm-13/lib/clang/13.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-04-14-063029-18377-1 -x c++ /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp

/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp

1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for declarations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TypeLocBuilder.h"
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTLambda.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/CommentDiagnostic.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/EvaluatedExprVisitor.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/NonTrivialTypeVisitor.h"
27#include "clang/AST/StmtCXX.h"
28#include "clang/Basic/Builtins.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
33#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
34#include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
35#include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
36#include "clang/Sema/CXXFieldCollector.h"
37#include "clang/Sema/DeclSpec.h"
38#include "clang/Sema/DelayedDiagnostic.h"
39#include "clang/Sema/Initialization.h"
40#include "clang/Sema/Lookup.h"
41#include "clang/Sema/ParsedTemplate.h"
42#include "clang/Sema/Scope.h"
43#include "clang/Sema/ScopeInfo.h"
44#include "clang/Sema/SemaInternal.h"
45#include "clang/Sema/Template.h"
46#include "llvm/ADT/SmallString.h"
47#include "llvm/ADT/Triple.h"
48#include <algorithm>
49#include <cstring>
50#include <functional>
51#include <unordered_map>
52
53using namespace clang;
54using namespace sema;
55
56Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
57 if (OwnedType) {
58 Decl *Group[2] = { OwnedType, Ptr };
59 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
60 }
61
62 return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
63}
64
65namespace {
66
67class TypeNameValidatorCCC final : public CorrectionCandidateCallback {
68 public:
69 TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
70 bool AllowTemplates = false,
71 bool AllowNonTemplates = true)
72 : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
73 AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
74 WantExpressionKeywords = false;
75 WantCXXNamedCasts = false;
76 WantRemainingKeywords = false;
77 }
78
79 bool ValidateCandidate(const TypoCorrection &candidate) override {
80 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
81 if (!AllowInvalidDecl && ND->isInvalidDecl())
82 return false;
83
84 if (getAsTypeTemplateDecl(ND))
85 return AllowTemplates;
86
87 bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
88 if (!IsType)
89 return false;
90
91 if (AllowNonTemplates)
92 return true;
93
94 // An injected-class-name of a class template (specialization) is valid
95 // as a template or as a non-template.
96 if (AllowTemplates) {
97 auto *RD = dyn_cast<CXXRecordDecl>(ND);
98 if (!RD || !RD->isInjectedClassName())
99 return false;
100 RD = cast<CXXRecordDecl>(RD->getDeclContext());
101 return RD->getDescribedClassTemplate() ||
102 isa<ClassTemplateSpecializationDecl>(RD);
103 }
104
105 return false;
106 }
107
108 return !WantClassName && candidate.isKeyword();
109 }
110
111 std::unique_ptr<CorrectionCandidateCallback> clone() override {
112 return std::make_unique<TypeNameValidatorCCC>(*this);
113 }
114
115 private:
116 bool AllowInvalidDecl;
117 bool WantClassName;
118 bool AllowTemplates;
119 bool AllowNonTemplates;
120};
121
122} // end anonymous namespace
123
124/// Determine whether the token kind starts a simple-type-specifier.
125bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
126 switch (Kind) {
127 // FIXME: Take into account the current language when deciding whether a
128 // token kind is a valid type specifier
129 case tok::kw_short:
130 case tok::kw_long:
131 case tok::kw___int64:
132 case tok::kw___int128:
133 case tok::kw_signed:
134 case tok::kw_unsigned:
135 case tok::kw_void:
136 case tok::kw_char:
137 case tok::kw_int:
138 case tok::kw_half:
139 case tok::kw_float:
140 case tok::kw_double:
141 case tok::kw___bf16:
142 case tok::kw__Float16:
143 case tok::kw___float128:
144 case tok::kw_wchar_t:
145 case tok::kw_bool:
146 case tok::kw___underlying_type:
147 case tok::kw___auto_type:
148 return true;
149
150 case tok::annot_typename:
151 case tok::kw_char16_t:
152 case tok::kw_char32_t:
153 case tok::kw_typeof:
154 case tok::annot_decltype:
155 case tok::kw_decltype:
156 return getLangOpts().CPlusPlus;
157
158 case tok::kw_char8_t:
159 return getLangOpts().Char8;
160
161 default:
162 break;
163 }
164
165 return false;
166}
167
168namespace {
169enum class UnqualifiedTypeNameLookupResult {
170 NotFound,
171 FoundNonType,
172 FoundType
173};
174} // end anonymous namespace
175
176/// Tries to perform unqualified lookup of the type decls in bases for
177/// dependent class.
178/// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
179/// type decl, \a FoundType if only type decls are found.
180static UnqualifiedTypeNameLookupResult
181lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
182 SourceLocation NameLoc,
183 const CXXRecordDecl *RD) {
184 if (!RD->hasDefinition())
185 return UnqualifiedTypeNameLookupResult::NotFound;
186 // Look for type decls in base classes.
187 UnqualifiedTypeNameLookupResult FoundTypeDecl =
188 UnqualifiedTypeNameLookupResult::NotFound;
189 for (const auto &Base : RD->bases()) {
190 const CXXRecordDecl *BaseRD = nullptr;
191 if (auto *BaseTT = Base.getType()->getAs<TagType>())
192 BaseRD = BaseTT->getAsCXXRecordDecl();
193 else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
194 // Look for type decls in dependent base classes that have known primary
195 // templates.
196 if (!TST || !TST->isDependentType())
197 continue;
198 auto *TD = TST->getTemplateName().getAsTemplateDecl();
199 if (!TD)
200 continue;
201 if (auto *BasePrimaryTemplate =
202 dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
203 if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
204 BaseRD = BasePrimaryTemplate;
205 else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
206 if (const ClassTemplatePartialSpecializationDecl *PS =
207 CTD->findPartialSpecialization(Base.getType()))
208 if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
209 BaseRD = PS;
210 }
211 }
212 }
213 if (BaseRD) {
214 for (NamedDecl *ND : BaseRD->lookup(&II)) {
215 if (!isa<TypeDecl>(ND))
216 return UnqualifiedTypeNameLookupResult::FoundNonType;
217 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
218 }
219 if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
220 switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
221 case UnqualifiedTypeNameLookupResult::FoundNonType:
222 return UnqualifiedTypeNameLookupResult::FoundNonType;
223 case UnqualifiedTypeNameLookupResult::FoundType:
224 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
225 break;
226 case UnqualifiedTypeNameLookupResult::NotFound:
227 break;
228 }
229 }
230 }
231 }
232
233 return FoundTypeDecl;
234}
235
236static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
237 const IdentifierInfo &II,
238 SourceLocation NameLoc) {
239 // Lookup in the parent class template context, if any.
240 const CXXRecordDecl *RD = nullptr;
241 UnqualifiedTypeNameLookupResult FoundTypeDecl =
242 UnqualifiedTypeNameLookupResult::NotFound;
243 for (DeclContext *DC = S.CurContext;
244 DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
245 DC = DC->getParent()) {
246 // Look for type decls in dependent base classes that have known primary
247 // templates.
248 RD = dyn_cast<CXXRecordDecl>(DC);
249 if (RD && RD->getDescribedClassTemplate())
250 FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
251 }
252 if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
253 return nullptr;
254
255 // We found some types in dependent base classes. Recover as if the user
256 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the
257 // lookup during template instantiation.
258 S.Diag(NameLoc, diag::ext_found_in_dependent_base) << &II;
259
260 ASTContext &Context = S.Context;
261 auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
262 cast<Type>(Context.getRecordType(RD)));
263 QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
264
265 CXXScopeSpec SS;
266 SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
267
268 TypeLocBuilder Builder;
269 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
270 DepTL.setNameLoc(NameLoc);
271 DepTL.setElaboratedKeywordLoc(SourceLocation());
272 DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
273 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
274}
275
276/// If the identifier refers to a type name within this scope,
277/// return the declaration of that type.
278///
279/// This routine performs ordinary name lookup of the identifier II
280/// within the given scope, with optional C++ scope specifier SS, to
281/// determine whether the name refers to a type. If so, returns an
282/// opaque pointer (actually a QualType) corresponding to that
283/// type. Otherwise, returns NULL.
284ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
285 Scope *S, CXXScopeSpec *SS,
286 bool isClassName, bool HasTrailingDot,
287 ParsedType ObjectTypePtr,
288 bool IsCtorOrDtorName,
289 bool WantNontrivialTypeSourceInfo,
290 bool IsClassTemplateDeductionContext,
291 IdentifierInfo **CorrectedII) {
292 // FIXME: Consider allowing this outside C++1z mode as an extension.
293 bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
294 getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
295 !isClassName && !HasTrailingDot;
296
297 // Determine where we will perform name lookup.
298 DeclContext *LookupCtx = nullptr;
299 if (ObjectTypePtr) {
300 QualType ObjectType = ObjectTypePtr.get();
301 if (ObjectType->isRecordType())
302 LookupCtx = computeDeclContext(ObjectType);
303 } else if (SS && SS->isNotEmpty()) {
304 LookupCtx = computeDeclContext(*SS, false);
305
306 if (!LookupCtx) {
307 if (isDependentScopeSpecifier(*SS)) {
308 // C++ [temp.res]p3:
309 // A qualified-id that refers to a type and in which the
310 // nested-name-specifier depends on a template-parameter (14.6.2)
311 // shall be prefixed by the keyword typename to indicate that the
312 // qualified-id denotes a type, forming an
313 // elaborated-type-specifier (7.1.5.3).
314 //
315 // We therefore do not perform any name lookup if the result would
316 // refer to a member of an unknown specialization.
317 if (!isClassName && !IsCtorOrDtorName)
318 return nullptr;
319
320 // We know from the grammar that this name refers to a type,
321 // so build a dependent node to describe the type.
322 if (WantNontrivialTypeSourceInfo)
323 return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
324
325 NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
326 QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
327 II, NameLoc);
328 return ParsedType::make(T);
329 }
330
331 return nullptr;
332 }
333
334 if (!LookupCtx->isDependentContext() &&
335 RequireCompleteDeclContext(*SS, LookupCtx))
336 return nullptr;
337 }
338
339 // FIXME: LookupNestedNameSpecifierName isn't the right kind of
340 // lookup for class-names.
341 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
342 LookupOrdinaryName;
343 LookupResult Result(*this, &II, NameLoc, Kind);
344 if (LookupCtx) {
345 // Perform "qualified" name lookup into the declaration context we
346 // computed, which is either the type of the base of a member access
347 // expression or the declaration context associated with a prior
348 // nested-name-specifier.
349 LookupQualifiedName(Result, LookupCtx);
350
351 if (ObjectTypePtr && Result.empty()) {
352 // C++ [basic.lookup.classref]p3:
353 // If the unqualified-id is ~type-name, the type-name is looked up
354 // in the context of the entire postfix-expression. If the type T of
355 // the object expression is of a class type C, the type-name is also
356 // looked up in the scope of class C. At least one of the lookups shall
357 // find a name that refers to (possibly cv-qualified) T.
358 LookupName(Result, S);
359 }
360 } else {
361 // Perform unqualified name lookup.
362 LookupName(Result, S);
363
364 // For unqualified lookup in a class template in MSVC mode, look into
365 // dependent base classes where the primary class template is known.
366 if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
367 if (ParsedType TypeInBase =
368 recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
369 return TypeInBase;
370 }
371 }
372
373 NamedDecl *IIDecl = nullptr;
374 switch (Result.getResultKind()) {
375 case LookupResult::NotFound:
376 case LookupResult::NotFoundInCurrentInstantiation:
377 if (CorrectedII) {
378 TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName,
379 AllowDeducedTemplate);
380 TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind,
381 S, SS, CCC, CTK_ErrorRecovery);
382 IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
383 TemplateTy Template;
384 bool MemberOfUnknownSpecialization;
385 UnqualifiedId TemplateName;
386 TemplateName.setIdentifier(NewII, NameLoc);
387 NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
388 CXXScopeSpec NewSS, *NewSSPtr = SS;
389 if (SS && NNS) {
390 NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
391 NewSSPtr = &NewSS;
392 }
393 if (Correction && (NNS || NewII != &II) &&
394 // Ignore a correction to a template type as the to-be-corrected
395 // identifier is not a template (typo correction for template names
396 // is handled elsewhere).
397 !(getLangOpts().CPlusPlus && NewSSPtr &&
398 isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
399 Template, MemberOfUnknownSpecialization))) {
400 ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
401 isClassName, HasTrailingDot, ObjectTypePtr,
402 IsCtorOrDtorName,
403 WantNontrivialTypeSourceInfo,
404 IsClassTemplateDeductionContext);
405 if (Ty) {
406 diagnoseTypo(Correction,
407 PDiag(diag::err_unknown_type_or_class_name_suggest)
408 << Result.getLookupName() << isClassName);
409 if (SS && NNS)
410 SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
411 *CorrectedII = NewII;
412 return Ty;
413 }
414 }
415 }
416 // If typo correction failed or was not performed, fall through
417 LLVM_FALLTHROUGH[[gnu::fallthrough]];
418 case LookupResult::FoundOverloaded:
419 case LookupResult::FoundUnresolvedValue:
420 Result.suppressDiagnostics();
421 return nullptr;
422
423 case LookupResult::Ambiguous:
424 // Recover from type-hiding ambiguities by hiding the type. We'll
425 // do the lookup again when looking for an object, and we can
426 // diagnose the error then. If we don't do this, then the error
427 // about hiding the type will be immediately followed by an error
428 // that only makes sense if the identifier was treated like a type.
429 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
430 Result.suppressDiagnostics();
431 return nullptr;
432 }
433
434 // Look to see if we have a type anywhere in the list of results.
435 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
436 Res != ResEnd; ++Res) {
437 if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) ||
438 (AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) {
439 if (!IIDecl || (*Res)->getLocation() < IIDecl->getLocation())
440 IIDecl = *Res;
441 }
442 }
443
444 if (!IIDecl) {
445 // None of the entities we found is a type, so there is no way
446 // to even assume that the result is a type. In this case, don't
447 // complain about the ambiguity. The parser will either try to
448 // perform this lookup again (e.g., as an object name), which
449 // will produce the ambiguity, or will complain that it expected
450 // a type name.
451 Result.suppressDiagnostics();
452 return nullptr;
453 }
454
455 // We found a type within the ambiguous lookup; diagnose the
456 // ambiguity and then return that type. This might be the right
457 // answer, or it might not be, but it suppresses any attempt to
458 // perform the name lookup again.
459 break;
460
461 case LookupResult::Found:
462 IIDecl = Result.getFoundDecl();
463 break;
464 }
465
466 assert(IIDecl && "Didn't find decl")((IIDecl && "Didn't find decl") ? static_cast<void
> (0) : __assert_fail ("IIDecl && \"Didn't find decl\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 466, __PRETTY_FUNCTION__))
;
467
468 QualType T;
469 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
470 // C++ [class.qual]p2: A lookup that would find the injected-class-name
471 // instead names the constructors of the class, except when naming a class.
472 // This is ill-formed when we're not actually forming a ctor or dtor name.
473 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
474 auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
475 if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
476 FoundRD->isInjectedClassName() &&
477 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
478 Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
479 << &II << /*Type*/1;
480
481 DiagnoseUseOfDecl(IIDecl, NameLoc);
482
483 T = Context.getTypeDeclType(TD);
484 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
485 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
486 (void)DiagnoseUseOfDecl(IDecl, NameLoc);
487 if (!HasTrailingDot)
488 T = Context.getObjCInterfaceType(IDecl);
489 } else if (AllowDeducedTemplate) {
490 if (auto *TD = getAsTypeTemplateDecl(IIDecl))
491 T = Context.getDeducedTemplateSpecializationType(TemplateName(TD),
492 QualType(), false);
493 }
494
495 if (T.isNull()) {
496 // If it's not plausibly a type, suppress diagnostics.
497 Result.suppressDiagnostics();
498 return nullptr;
499 }
500
501 // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
502 // constructor or destructor name (in such a case, the scope specifier
503 // will be attached to the enclosing Expr or Decl node).
504 if (SS && SS->isNotEmpty() && !IsCtorOrDtorName &&
505 !isa<ObjCInterfaceDecl>(IIDecl)) {
506 if (WantNontrivialTypeSourceInfo) {
507 // Construct a type with type-source information.
508 TypeLocBuilder Builder;
509 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
510
511 T = getElaboratedType(ETK_None, *SS, T);
512 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
513 ElabTL.setElaboratedKeywordLoc(SourceLocation());
514 ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
515 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
516 } else {
517 T = getElaboratedType(ETK_None, *SS, T);
518 }
519 }
520
521 return ParsedType::make(T);
522}
523
524// Builds a fake NNS for the given decl context.
525static NestedNameSpecifier *
526synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
527 for (;; DC = DC->getLookupParent()) {
528 DC = DC->getPrimaryContext();
529 auto *ND = dyn_cast<NamespaceDecl>(DC);
530 if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
531 return NestedNameSpecifier::Create(Context, nullptr, ND);
532 else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
533 return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
534 RD->getTypeForDecl());
535 else if (isa<TranslationUnitDecl>(DC))
536 return NestedNameSpecifier::GlobalSpecifier(Context);
537 }
538 llvm_unreachable("something isn't in TU scope?")::llvm::llvm_unreachable_internal("something isn't in TU scope?"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 538)
;
539}
540
541/// Find the parent class with dependent bases of the innermost enclosing method
542/// context. Do not look for enclosing CXXRecordDecls directly, or we will end
543/// up allowing unqualified dependent type names at class-level, which MSVC
544/// correctly rejects.
545static const CXXRecordDecl *
546findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
547 for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
548 DC = DC->getPrimaryContext();
549 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
550 if (MD->getParent()->hasAnyDependentBases())
551 return MD->getParent();
552 }
553 return nullptr;
554}
555
556ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
557 SourceLocation NameLoc,
558 bool IsTemplateTypeArg) {
559 assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode")((getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"shouldn't be called in non-MSVC mode\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 559, __PRETTY_FUNCTION__))
;
560
561 NestedNameSpecifier *NNS = nullptr;
562 if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
563 // If we weren't able to parse a default template argument, delay lookup
564 // until instantiation time by making a non-dependent DependentTypeName. We
565 // pretend we saw a NestedNameSpecifier referring to the current scope, and
566 // lookup is retried.
567 // FIXME: This hurts our diagnostic quality, since we get errors like "no
568 // type named 'Foo' in 'current_namespace'" when the user didn't write any
569 // name specifiers.
570 NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
571 Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
572 } else if (const CXXRecordDecl *RD =
573 findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
574 // Build a DependentNameType that will perform lookup into RD at
575 // instantiation time.
576 NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
577 RD->getTypeForDecl());
578
579 // Diagnose that this identifier was undeclared, and retry the lookup during
580 // template instantiation.
581 Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
582 << RD;
583 } else {
584 // This is not a situation that we should recover from.
585 return ParsedType();
586 }
587
588 QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
589
590 // Build type location information. We synthesized the qualifier, so we have
591 // to build a fake NestedNameSpecifierLoc.
592 NestedNameSpecifierLocBuilder NNSLocBuilder;
593 NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
594 NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
595
596 TypeLocBuilder Builder;
597 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
598 DepTL.setNameLoc(NameLoc);
599 DepTL.setElaboratedKeywordLoc(SourceLocation());
600 DepTL.setQualifierLoc(QualifierLoc);
601 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
602}
603
604/// isTagName() - This method is called *for error recovery purposes only*
605/// to determine if the specified name is a valid tag name ("struct foo"). If
606/// so, this returns the TST for the tag corresponding to it (TST_enum,
607/// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose
608/// cases in C where the user forgot to specify the tag.
609DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
610 // Do a tag name lookup in this scope.
611 LookupResult R(*this, &II, SourceLocation(), LookupTagName);
612 LookupName(R, S, false);
613 R.suppressDiagnostics();
614 if (R.getResultKind() == LookupResult::Found)
615 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
616 switch (TD->getTagKind()) {
617 case TTK_Struct: return DeclSpec::TST_struct;
618 case TTK_Interface: return DeclSpec::TST_interface;
619 case TTK_Union: return DeclSpec::TST_union;
620 case TTK_Class: return DeclSpec::TST_class;
621 case TTK_Enum: return DeclSpec::TST_enum;
622 }
623 }
624
625 return DeclSpec::TST_unspecified;
626}
627
628/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
629/// if a CXXScopeSpec's type is equal to the type of one of the base classes
630/// then downgrade the missing typename error to a warning.
631/// This is needed for MSVC compatibility; Example:
632/// @code
633/// template<class T> class A {
634/// public:
635/// typedef int TYPE;
636/// };
637/// template<class T> class B : public A<T> {
638/// public:
639/// A<T>::TYPE a; // no typename required because A<T> is a base class.
640/// };
641/// @endcode
642bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
643 if (CurContext->isRecord()) {
644 if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
645 return true;
646
647 const Type *Ty = SS->getScopeRep()->getAsType();
648
649 CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
650 for (const auto &Base : RD->bases())
651 if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
652 return true;
653 return S->isFunctionPrototypeScope();
654 }
655 return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
656}
657
658void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
659 SourceLocation IILoc,
660 Scope *S,
661 CXXScopeSpec *SS,
662 ParsedType &SuggestedType,
663 bool IsTemplateName) {
664 // Don't report typename errors for editor placeholders.
665 if (II->isEditorPlaceholder())
666 return;
667 // We don't have anything to suggest (yet).
668 SuggestedType = nullptr;
669
670 // There may have been a typo in the name of the type. Look up typo
671 // results, in case we have something that we can suggest.
672 TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
673 /*AllowTemplates=*/IsTemplateName,
674 /*AllowNonTemplates=*/!IsTemplateName);
675 if (TypoCorrection Corrected =
676 CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
677 CCC, CTK_ErrorRecovery)) {
678 // FIXME: Support error recovery for the template-name case.
679 bool CanRecover = !IsTemplateName;
680 if (Corrected.isKeyword()) {
681 // We corrected to a keyword.
682 diagnoseTypo(Corrected,
683 PDiag(IsTemplateName ? diag::err_no_template_suggest
684 : diag::err_unknown_typename_suggest)
685 << II);
686 II = Corrected.getCorrectionAsIdentifierInfo();
687 } else {
688 // We found a similarly-named type or interface; suggest that.
689 if (!SS || !SS->isSet()) {
690 diagnoseTypo(Corrected,
691 PDiag(IsTemplateName ? diag::err_no_template_suggest
692 : diag::err_unknown_typename_suggest)
693 << II, CanRecover);
694 } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
695 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
696 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
697 II->getName().equals(CorrectedStr);
698 diagnoseTypo(Corrected,
699 PDiag(IsTemplateName
700 ? diag::err_no_member_template_suggest
701 : diag::err_unknown_nested_typename_suggest)
702 << II << DC << DroppedSpecifier << SS->getRange(),
703 CanRecover);
704 } else {
705 llvm_unreachable("could not have corrected a typo here")::llvm::llvm_unreachable_internal("could not have corrected a typo here"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 705)
;
706 }
707
708 if (!CanRecover)
709 return;
710
711 CXXScopeSpec tmpSS;
712 if (Corrected.getCorrectionSpecifier())
713 tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
714 SourceRange(IILoc));
715 // FIXME: Support class template argument deduction here.
716 SuggestedType =
717 getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
718 tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
719 /*IsCtorOrDtorName=*/false,
720 /*WantNontrivialTypeSourceInfo=*/true);
721 }
722 return;
723 }
724
725 if (getLangOpts().CPlusPlus && !IsTemplateName) {
726 // See if II is a class template that the user forgot to pass arguments to.
727 UnqualifiedId Name;
728 Name.setIdentifier(II, IILoc);
729 CXXScopeSpec EmptySS;
730 TemplateTy TemplateResult;
731 bool MemberOfUnknownSpecialization;
732 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
733 Name, nullptr, true, TemplateResult,
734 MemberOfUnknownSpecialization) == TNK_Type_template) {
735 diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
736 return;
737 }
738 }
739
740 // FIXME: Should we move the logic that tries to recover from a missing tag
741 // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
742
743 if (!SS || (!SS->isSet() && !SS->isInvalid()))
744 Diag(IILoc, IsTemplateName ? diag::err_no_template
745 : diag::err_unknown_typename)
746 << II;
747 else if (DeclContext *DC = computeDeclContext(*SS, false))
748 Diag(IILoc, IsTemplateName ? diag::err_no_member_template
749 : diag::err_typename_nested_not_found)
750 << II << DC << SS->getRange();
751 else if (SS->isValid() && SS->getScopeRep()->containsErrors()) {
752 SuggestedType =
753 ActOnTypenameType(S, SourceLocation(), *SS, *II, IILoc).get();
754 } else if (isDependentScopeSpecifier(*SS)) {
755 unsigned DiagID = diag::err_typename_missing;
756 if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
757 DiagID = diag::ext_typename_missing;
758
759 Diag(SS->getRange().getBegin(), DiagID)
760 << SS->getScopeRep() << II->getName()
761 << SourceRange(SS->getRange().getBegin(), IILoc)
762 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
763 SuggestedType = ActOnTypenameType(S, SourceLocation(),
764 *SS, *II, IILoc).get();
765 } else {
766 assert(SS && SS->isInvalid() &&((SS && SS->isInvalid() && "Invalid scope specifier has already been diagnosed"
) ? static_cast<void> (0) : __assert_fail ("SS && SS->isInvalid() && \"Invalid scope specifier has already been diagnosed\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 767, __PRETTY_FUNCTION__))
767 "Invalid scope specifier has already been diagnosed")((SS && SS->isInvalid() && "Invalid scope specifier has already been diagnosed"
) ? static_cast<void> (0) : __assert_fail ("SS && SS->isInvalid() && \"Invalid scope specifier has already been diagnosed\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 767, __PRETTY_FUNCTION__))
;
768 }
769}
770
771/// Determine whether the given result set contains either a type name
772/// or
773static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
774 bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
775 NextToken.is(tok::less);
776
777 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
778 if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
779 return true;
780
781 if (CheckTemplate && isa<TemplateDecl>(*I))
782 return true;
783 }
784
785 return false;
786}
787
788static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
789 Scope *S, CXXScopeSpec &SS,
790 IdentifierInfo *&Name,
791 SourceLocation NameLoc) {
792 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
793 SemaRef.LookupParsedName(R, S, &SS);
794 if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
795 StringRef FixItTagName;
796 switch (Tag->getTagKind()) {
797 case TTK_Class:
798 FixItTagName = "class ";
799 break;
800
801 case TTK_Enum:
802 FixItTagName = "enum ";
803 break;
804
805 case TTK_Struct:
806 FixItTagName = "struct ";
807 break;
808
809 case TTK_Interface:
810 FixItTagName = "__interface ";
811 break;
812
813 case TTK_Union:
814 FixItTagName = "union ";
815 break;
816 }
817
818 StringRef TagName = FixItTagName.drop_back();
819 SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
820 << Name << TagName << SemaRef.getLangOpts().CPlusPlus
821 << FixItHint::CreateInsertion(NameLoc, FixItTagName);
822
823 for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
824 I != IEnd; ++I)
825 SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
826 << Name << TagName;
827
828 // Replace lookup results with just the tag decl.
829 Result.clear(Sema::LookupTagName);
830 SemaRef.LookupParsedName(Result, S, &SS);
831 return true;
832 }
833
834 return false;
835}
836
837/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
838static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
839 QualType T, SourceLocation NameLoc) {
840 ASTContext &Context = S.Context;
841
842 TypeLocBuilder Builder;
843 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
844
845 T = S.getElaboratedType(ETK_None, SS, T);
846 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
847 ElabTL.setElaboratedKeywordLoc(SourceLocation());
848 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
849 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
850}
851
852Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS,
853 IdentifierInfo *&Name,
854 SourceLocation NameLoc,
855 const Token &NextToken,
856 CorrectionCandidateCallback *CCC) {
857 DeclarationNameInfo NameInfo(Name, NameLoc);
858 ObjCMethodDecl *CurMethod = getCurMethodDecl();
859
860 assert(NextToken.isNot(tok::coloncolon) &&((NextToken.isNot(tok::coloncolon) && "parse nested name specifiers before calling ClassifyName"
) ? static_cast<void> (0) : __assert_fail ("NextToken.isNot(tok::coloncolon) && \"parse nested name specifiers before calling ClassifyName\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 861, __PRETTY_FUNCTION__))
861 "parse nested name specifiers before calling ClassifyName")((NextToken.isNot(tok::coloncolon) && "parse nested name specifiers before calling ClassifyName"
) ? static_cast<void> (0) : __assert_fail ("NextToken.isNot(tok::coloncolon) && \"parse nested name specifiers before calling ClassifyName\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 861, __PRETTY_FUNCTION__))
;
862 if (getLangOpts().CPlusPlus && SS.isSet() &&
863 isCurrentClassName(*Name, S, &SS)) {
864 // Per [class.qual]p2, this names the constructors of SS, not the
865 // injected-class-name. We don't have a classification for that.
866 // There's not much point caching this result, since the parser
867 // will reject it later.
868 return NameClassification::Unknown();
869 }
870
871 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
872 LookupParsedName(Result, S, &SS, !CurMethod);
873
874 if (SS.isInvalid())
875 return NameClassification::Error();
876
877 // For unqualified lookup in a class template in MSVC mode, look into
878 // dependent base classes where the primary class template is known.
879 if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
880 if (ParsedType TypeInBase =
881 recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
882 return TypeInBase;
883 }
884
885 // Perform lookup for Objective-C instance variables (including automatically
886 // synthesized instance variables), if we're in an Objective-C method.
887 // FIXME: This lookup really, really needs to be folded in to the normal
888 // unqualified lookup mechanism.
889 if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
890 DeclResult Ivar = LookupIvarInObjCMethod(Result, S, Name);
891 if (Ivar.isInvalid())
892 return NameClassification::Error();
893 if (Ivar.isUsable())
894 return NameClassification::NonType(cast<NamedDecl>(Ivar.get()));
895
896 // We defer builtin creation until after ivar lookup inside ObjC methods.
897 if (Result.empty())
898 LookupBuiltin(Result);
899 }
900
901 bool SecondTry = false;
902 bool IsFilteredTemplateName = false;
903
904Corrected:
905 switch (Result.getResultKind()) {
906 case LookupResult::NotFound:
907 // If an unqualified-id is followed by a '(', then we have a function
908 // call.
909 if (SS.isEmpty() && NextToken.is(tok::l_paren)) {
910 // In C++, this is an ADL-only call.
911 // FIXME: Reference?
912 if (getLangOpts().CPlusPlus)
913 return NameClassification::UndeclaredNonType();
914
915 // C90 6.3.2.2:
916 // If the expression that precedes the parenthesized argument list in a
917 // function call consists solely of an identifier, and if no
918 // declaration is visible for this identifier, the identifier is
919 // implicitly declared exactly as if, in the innermost block containing
920 // the function call, the declaration
921 //
922 // extern int identifier ();
923 //
924 // appeared.
925 //
926 // We also allow this in C99 as an extension.
927 if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S))
928 return NameClassification::NonType(D);
929 }
930
931 if (getLangOpts().CPlusPlus20 && SS.isEmpty() && NextToken.is(tok::less)) {
932 // In C++20 onwards, this could be an ADL-only call to a function
933 // template, and we're required to assume that this is a template name.
934 //
935 // FIXME: Find a way to still do typo correction in this case.
936 TemplateName Template =
937 Context.getAssumedTemplateName(NameInfo.getName());
938 return NameClassification::UndeclaredTemplate(Template);
939 }
940
941 // In C, we first see whether there is a tag type by the same name, in
942 // which case it's likely that the user just forgot to write "enum",
943 // "struct", or "union".
944 if (!getLangOpts().CPlusPlus && !SecondTry &&
945 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
946 break;
947 }
948
949 // Perform typo correction to determine if there is another name that is
950 // close to this name.
951 if (!SecondTry && CCC) {
952 SecondTry = true;
953 if (TypoCorrection Corrected =
954 CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S,
955 &SS, *CCC, CTK_ErrorRecovery)) {
956 unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
957 unsigned QualifiedDiag = diag::err_no_member_suggest;
958
959 NamedDecl *FirstDecl = Corrected.getFoundDecl();
960 NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
961 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
962 UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
963 UnqualifiedDiag = diag::err_no_template_suggest;
964 QualifiedDiag = diag::err_no_member_template_suggest;
965 } else if (UnderlyingFirstDecl &&
966 (isa<TypeDecl>(UnderlyingFirstDecl) ||
967 isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
968 isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
969 UnqualifiedDiag = diag::err_unknown_typename_suggest;
970 QualifiedDiag = diag::err_unknown_nested_typename_suggest;
971 }
972
973 if (SS.isEmpty()) {
974 diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
975 } else {// FIXME: is this even reachable? Test it.
976 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
977 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
978 Name->getName().equals(CorrectedStr);
979 diagnoseTypo(Corrected, PDiag(QualifiedDiag)
980 << Name << computeDeclContext(SS, false)
981 << DroppedSpecifier << SS.getRange());
982 }
983
984 // Update the name, so that the caller has the new name.
985 Name = Corrected.getCorrectionAsIdentifierInfo();
986
987 // Typo correction corrected to a keyword.
988 if (Corrected.isKeyword())
989 return Name;
990
991 // Also update the LookupResult...
992 // FIXME: This should probably go away at some point
993 Result.clear();
994 Result.setLookupName(Corrected.getCorrection());
995 if (FirstDecl)
996 Result.addDecl(FirstDecl);
997
998 // If we found an Objective-C instance variable, let
999 // LookupInObjCMethod build the appropriate expression to
1000 // reference the ivar.
1001 // FIXME: This is a gross hack.
1002 if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
1003 DeclResult R =
1004 LookupIvarInObjCMethod(Result, S, Ivar->getIdentifier());
1005 if (R.isInvalid())
1006 return NameClassification::Error();
1007 if (R.isUsable())
1008 return NameClassification::NonType(Ivar);
1009 }
1010
1011 goto Corrected;
1012 }
1013 }
1014
1015 // We failed to correct; just fall through and let the parser deal with it.
1016 Result.suppressDiagnostics();
1017 return NameClassification::Unknown();
1018
1019 case LookupResult::NotFoundInCurrentInstantiation: {
1020 // We performed name lookup into the current instantiation, and there were
1021 // dependent bases, so we treat this result the same way as any other
1022 // dependent nested-name-specifier.
1023
1024 // C++ [temp.res]p2:
1025 // A name used in a template declaration or definition and that is
1026 // dependent on a template-parameter is assumed not to name a type
1027 // unless the applicable name lookup finds a type name or the name is
1028 // qualified by the keyword typename.
1029 //
1030 // FIXME: If the next token is '<', we might want to ask the parser to
1031 // perform some heroics to see if we actually have a
1032 // template-argument-list, which would indicate a missing 'template'
1033 // keyword here.
1034 return NameClassification::DependentNonType();
1035 }
1036
1037 case LookupResult::Found:
1038 case LookupResult::FoundOverloaded:
1039 case LookupResult::FoundUnresolvedValue:
1040 break;
1041
1042 case LookupResult::Ambiguous:
1043 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1044 hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true,
1045 /*AllowDependent=*/false)) {
1046 // C++ [temp.local]p3:
1047 // A lookup that finds an injected-class-name (10.2) can result in an
1048 // ambiguity in certain cases (for example, if it is found in more than
1049 // one base class). If all of the injected-class-names that are found
1050 // refer to specializations of the same class template, and if the name
1051 // is followed by a template-argument-list, the reference refers to the
1052 // class template itself and not a specialization thereof, and is not
1053 // ambiguous.
1054 //
1055 // This filtering can make an ambiguous result into an unambiguous one,
1056 // so try again after filtering out template names.
1057 FilterAcceptableTemplateNames(Result);
1058 if (!Result.isAmbiguous()) {
1059 IsFilteredTemplateName = true;
1060 break;
1061 }
1062 }
1063
1064 // Diagnose the ambiguity and return an error.
1065 return NameClassification::Error();
1066 }
1067
1068 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1069 (IsFilteredTemplateName ||
1070 hasAnyAcceptableTemplateNames(
1071 Result, /*AllowFunctionTemplates=*/true,
1072 /*AllowDependent=*/false,
1073 /*AllowNonTemplateFunctions*/ SS.isEmpty() &&
1074 getLangOpts().CPlusPlus20))) {
1075 // C++ [temp.names]p3:
1076 // After name lookup (3.4) finds that a name is a template-name or that
1077 // an operator-function-id or a literal- operator-id refers to a set of
1078 // overloaded functions any member of which is a function template if
1079 // this is followed by a <, the < is always taken as the delimiter of a
1080 // template-argument-list and never as the less-than operator.
1081 // C++2a [temp.names]p2:
1082 // A name is also considered to refer to a template if it is an
1083 // unqualified-id followed by a < and name lookup finds either one
1084 // or more functions or finds nothing.
1085 if (!IsFilteredTemplateName)
1086 FilterAcceptableTemplateNames(Result);
1087
1088 bool IsFunctionTemplate;
1089 bool IsVarTemplate;
1090 TemplateName Template;
1091 if (Result.end() - Result.begin() > 1) {
1092 IsFunctionTemplate = true;
1093 Template = Context.getOverloadedTemplateName(Result.begin(),
1094 Result.end());
1095 } else if (!Result.empty()) {
1096 auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl(
1097 *Result.begin(), /*AllowFunctionTemplates=*/true,
1098 /*AllowDependent=*/false));
1099 IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1100 IsVarTemplate = isa<VarTemplateDecl>(TD);
1101
1102 if (SS.isNotEmpty())
1103 Template =
1104 Context.getQualifiedTemplateName(SS.getScopeRep(),
1105 /*TemplateKeyword=*/false, TD);
1106 else
1107 Template = TemplateName(TD);
1108 } else {
1109 // All results were non-template functions. This is a function template
1110 // name.
1111 IsFunctionTemplate = true;
1112 Template = Context.getAssumedTemplateName(NameInfo.getName());
1113 }
1114
1115 if (IsFunctionTemplate) {
1116 // Function templates always go through overload resolution, at which
1117 // point we'll perform the various checks (e.g., accessibility) we need
1118 // to based on which function we selected.
1119 Result.suppressDiagnostics();
1120
1121 return NameClassification::FunctionTemplate(Template);
1122 }
1123
1124 return IsVarTemplate ? NameClassification::VarTemplate(Template)
1125 : NameClassification::TypeTemplate(Template);
1126 }
1127
1128 NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1129 if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1130 DiagnoseUseOfDecl(Type, NameLoc);
1131 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1132 QualType T = Context.getTypeDeclType(Type);
1133 if (SS.isNotEmpty())
1134 return buildNestedType(*this, SS, T, NameLoc);
1135 return ParsedType::make(T);
1136 }
1137
1138 ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1139 if (!Class) {
1140 // FIXME: It's unfortunate that we don't have a Type node for handling this.
1141 if (ObjCCompatibleAliasDecl *Alias =
1142 dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1143 Class = Alias->getClassInterface();
1144 }
1145
1146 if (Class) {
1147 DiagnoseUseOfDecl(Class, NameLoc);
1148
1149 if (NextToken.is(tok::period)) {
1150 // Interface. <something> is parsed as a property reference expression.
1151 // Just return "unknown" as a fall-through for now.
1152 Result.suppressDiagnostics();
1153 return NameClassification::Unknown();
1154 }
1155
1156 QualType T = Context.getObjCInterfaceType(Class);
1157 return ParsedType::make(T);
1158 }
1159
1160 if (isa<ConceptDecl>(FirstDecl))
1161 return NameClassification::Concept(
1162 TemplateName(cast<TemplateDecl>(FirstDecl)));
1163
1164 // We can have a type template here if we're classifying a template argument.
1165 if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1166 !isa<VarTemplateDecl>(FirstDecl))
1167 return NameClassification::TypeTemplate(
1168 TemplateName(cast<TemplateDecl>(FirstDecl)));
1169
1170 // Check for a tag type hidden by a non-type decl in a few cases where it
1171 // seems likely a type is wanted instead of the non-type that was found.
1172 bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1173 if ((NextToken.is(tok::identifier) ||
1174 (NextIsOp &&
1175 FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1176 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1177 TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1178 DiagnoseUseOfDecl(Type, NameLoc);
1179 QualType T = Context.getTypeDeclType(Type);
1180 if (SS.isNotEmpty())
1181 return buildNestedType(*this, SS, T, NameLoc);
1182 return ParsedType::make(T);
1183 }
1184
1185 // If we already know which single declaration is referenced, just annotate
1186 // that declaration directly. Defer resolving even non-overloaded class
1187 // member accesses, as we need to defer certain access checks until we know
1188 // the context.
1189 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1190 if (Result.isSingleResult() && !ADL && !FirstDecl->isCXXClassMember())
1191 return NameClassification::NonType(Result.getRepresentativeDecl());
1192
1193 // Otherwise, this is an overload set that we will need to resolve later.
1194 Result.suppressDiagnostics();
1195 return NameClassification::OverloadSet(UnresolvedLookupExpr::Create(
1196 Context, Result.getNamingClass(), SS.getWithLocInContext(Context),
1197 Result.getLookupNameInfo(), ADL, Result.isOverloadedResult(),
1198 Result.begin(), Result.end()));
1199}
1200
1201ExprResult
1202Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
1203 SourceLocation NameLoc) {
1204 assert(getLangOpts().CPlusPlus && "ADL-only call in C?")((getLangOpts().CPlusPlus && "ADL-only call in C?") ?
static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"ADL-only call in C?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 1204, __PRETTY_FUNCTION__))
;
1205 CXXScopeSpec SS;
1206 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
1207 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
1208}
1209
1210ExprResult
1211Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
1212 IdentifierInfo *Name,
1213 SourceLocation NameLoc,
1214 bool IsAddressOfOperand) {
1215 DeclarationNameInfo NameInfo(Name, NameLoc);
1216 return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1217 NameInfo, IsAddressOfOperand,
1218 /*TemplateArgs=*/nullptr);
1219}
1220
1221ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
1222 NamedDecl *Found,
1223 SourceLocation NameLoc,
1224 const Token &NextToken) {
1225 if (getCurMethodDecl() && SS.isEmpty())
1226 if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Found->getUnderlyingDecl()))
1227 return BuildIvarRefExpr(S, NameLoc, Ivar);
1228
1229 // Reconstruct the lookup result.
1230 LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName);
1231 Result.addDecl(Found);
1232 Result.resolveKind();
1233
1234 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1235 return BuildDeclarationNameExpr(SS, Result, ADL);
1236}
1237
1238ExprResult Sema::ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *E) {
1239 // For an implicit class member access, transform the result into a member
1240 // access expression if necessary.
1241 auto *ULE = cast<UnresolvedLookupExpr>(E);
1242 if ((*ULE->decls_begin())->isCXXClassMember()) {
1243 CXXScopeSpec SS;
1244 SS.Adopt(ULE->getQualifierLoc());
1245
1246 // Reconstruct the lookup result.
1247 LookupResult Result(*this, ULE->getName(), ULE->getNameLoc(),
1248 LookupOrdinaryName);
1249 Result.setNamingClass(ULE->getNamingClass());
1250 for (auto I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I)
1251 Result.addDecl(*I, I.getAccess());
1252 Result.resolveKind();
1253 return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1254 nullptr, S);
1255 }
1256
1257 // Otherwise, this is already in the form we needed, and no further checks
1258 // are necessary.
1259 return ULE;
1260}
1261
1262Sema::TemplateNameKindForDiagnostics
1263Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1264 auto *TD = Name.getAsTemplateDecl();
1265 if (!TD)
1266 return TemplateNameKindForDiagnostics::DependentTemplate;
1267 if (isa<ClassTemplateDecl>(TD))
1268 return TemplateNameKindForDiagnostics::ClassTemplate;
1269 if (isa<FunctionTemplateDecl>(TD))
1270 return TemplateNameKindForDiagnostics::FunctionTemplate;
1271 if (isa<VarTemplateDecl>(TD))
1272 return TemplateNameKindForDiagnostics::VarTemplate;
1273 if (isa<TypeAliasTemplateDecl>(TD))
1274 return TemplateNameKindForDiagnostics::AliasTemplate;
1275 if (isa<TemplateTemplateParmDecl>(TD))
1276 return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1277 if (isa<ConceptDecl>(TD))
1278 return TemplateNameKindForDiagnostics::Concept;
1279 return TemplateNameKindForDiagnostics::DependentTemplate;
1280}
1281
1282void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1283 assert(DC->getLexicalParent() == CurContext &&((DC->getLexicalParent() == CurContext && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("DC->getLexicalParent() == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 1284, __PRETTY_FUNCTION__))
1284 "The next DeclContext should be lexically contained in the current one.")((DC->getLexicalParent() == CurContext && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("DC->getLexicalParent() == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 1284, __PRETTY_FUNCTION__))
;
1285 CurContext = DC;
1286 S->setEntity(DC);
1287}
1288
1289void Sema::PopDeclContext() {
1290 assert(CurContext && "DeclContext imbalance!")((CurContext && "DeclContext imbalance!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 1290, __PRETTY_FUNCTION__))
;
1291
1292 CurContext = CurContext->getLexicalParent();
1293 assert(CurContext && "Popped translation unit!")((CurContext && "Popped translation unit!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"Popped translation unit!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 1293, __PRETTY_FUNCTION__))
;
1294}
1295
1296Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1297 Decl *D) {
1298 // Unlike PushDeclContext, the context to which we return is not necessarily
1299 // the containing DC of TD, because the new context will be some pre-existing
1300 // TagDecl definition instead of a fresh one.
1301 auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1302 CurContext = cast<TagDecl>(D)->getDefinition();
1303 assert(CurContext && "skipping definition of undefined tag")((CurContext && "skipping definition of undefined tag"
) ? static_cast<void> (0) : __assert_fail ("CurContext && \"skipping definition of undefined tag\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 1303, __PRETTY_FUNCTION__))
;
1304 // Start lookups from the parent of the current context; we don't want to look
1305 // into the pre-existing complete definition.
1306 S->setEntity(CurContext->getLookupParent());
1307 return Result;
1308}
1309
1310void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1311 CurContext = static_cast<decltype(CurContext)>(Context);
1312}
1313
1314/// EnterDeclaratorContext - Used when we must lookup names in the context
1315/// of a declarator's nested name specifier.
1316///
1317void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1318 // C++0x [basic.lookup.unqual]p13:
1319 // A name used in the definition of a static data member of class
1320 // X (after the qualified-id of the static member) is looked up as
1321 // if the name was used in a member function of X.
1322 // C++0x [basic.lookup.unqual]p14:
1323 // If a variable member of a namespace is defined outside of the
1324 // scope of its namespace then any name used in the definition of
1325 // the variable member (after the declarator-id) is looked up as
1326 // if the definition of the variable member occurred in its
1327 // namespace.
1328 // Both of these imply that we should push a scope whose context
1329 // is the semantic context of the declaration. We can't use
1330 // PushDeclContext here because that context is not necessarily
1331 // lexically contained in the current context. Fortunately,
1332 // the containing scope should have the appropriate information.
1333
1334 assert(!S->getEntity() && "scope already has entity")((!S->getEntity() && "scope already has entity") ?
static_cast<void> (0) : __assert_fail ("!S->getEntity() && \"scope already has entity\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 1334, __PRETTY_FUNCTION__))
;
1335
1336#ifndef NDEBUG
1337 Scope *Ancestor = S->getParent();
1338 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1339 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch")((Ancestor->getEntity() == CurContext && "ancestor context mismatch"
) ? static_cast<void> (0) : __assert_fail ("Ancestor->getEntity() == CurContext && \"ancestor context mismatch\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 1339, __PRETTY_FUNCTION__))
;
1340#endif
1341
1342 CurContext = DC;
1343 S->setEntity(DC);
1344
1345 if (S->getParent()->isTemplateParamScope()) {
1346 // Also set the corresponding entities for all immediately-enclosing
1347 // template parameter scopes.
1348 EnterTemplatedContext(S->getParent(), DC);
1349 }
1350}
1351
1352void Sema::ExitDeclaratorContext(Scope *S) {
1353 assert(S->getEntity() == CurContext && "Context imbalance!")((S->getEntity() == CurContext && "Context imbalance!"
) ? static_cast<void> (0) : __assert_fail ("S->getEntity() == CurContext && \"Context imbalance!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 1353, __PRETTY_FUNCTION__))
;
1354
1355 // Switch back to the lexical context. The safety of this is
1356 // enforced by an assert in EnterDeclaratorContext.
1357 Scope *Ancestor = S->getParent();
1358 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1359 CurContext = Ancestor->getEntity();
1360
1361 // We don't need to do anything with the scope, which is going to
1362 // disappear.
1363}
1364
1365void Sema::EnterTemplatedContext(Scope *S, DeclContext *DC) {
1366 assert(S->isTemplateParamScope() &&((S->isTemplateParamScope() && "expected to be initializing a template parameter scope"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"expected to be initializing a template parameter scope\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 1367, __PRETTY_FUNCTION__))
1367 "expected to be initializing a template parameter scope")((S->isTemplateParamScope() && "expected to be initializing a template parameter scope"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"expected to be initializing a template parameter scope\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 1367, __PRETTY_FUNCTION__))
;
1368
1369 // C++20 [temp.local]p7:
1370 // In the definition of a member of a class template that appears outside
1371 // of the class template definition, the name of a member of the class
1372 // template hides the name of a template-parameter of any enclosing class
1373 // templates (but not a template-parameter of the member if the member is a
1374 // class or function template).
1375 // C++20 [temp.local]p9:
1376 // In the definition of a class template or in the definition of a member
1377 // of such a template that appears outside of the template definition, for
1378 // each non-dependent base class (13.8.2.1), if the name of the base class
1379 // or the name of a member of the base class is the same as the name of a
1380 // template-parameter, the base class name or member name hides the
1381 // template-parameter name (6.4.10).
1382 //
1383 // This means that a template parameter scope should be searched immediately
1384 // after searching the DeclContext for which it is a template parameter
1385 // scope. For example, for
1386 // template<typename T> template<typename U> template<typename V>
1387 // void N::A<T>::B<U>::f(...)
1388 // we search V then B<U> (and base classes) then U then A<T> (and base
1389 // classes) then T then N then ::.
1390 unsigned ScopeDepth = getTemplateDepth(S);
1391 for (; S && S->isTemplateParamScope(); S = S->getParent(), --ScopeDepth) {
1392 DeclContext *SearchDCAfterScope = DC;
1393 for (; DC; DC = DC->getLookupParent()) {
1394 if (const TemplateParameterList *TPL =
1395 cast<Decl>(DC)->getDescribedTemplateParams()) {
1396 unsigned DCDepth = TPL->getDepth() + 1;
1397 if (DCDepth > ScopeDepth)
1398 continue;
1399 if (ScopeDepth == DCDepth)
1400 SearchDCAfterScope = DC = DC->getLookupParent();
1401 break;
1402 }
1403 }
1404 S->setLookupEntity(SearchDCAfterScope);
1405 }
1406}
1407
1408void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1409 // We assume that the caller has already called
1410 // ActOnReenterTemplateScope so getTemplatedDecl() works.
1411 FunctionDecl *FD = D->getAsFunction();
1412 if (!FD)
1413 return;
1414
1415 // Same implementation as PushDeclContext, but enters the context
1416 // from the lexical parent, rather than the top-level class.
1417 assert(CurContext == FD->getLexicalParent() &&((CurContext == FD->getLexicalParent() && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("CurContext == FD->getLexicalParent() && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 1418, __PRETTY_FUNCTION__))
1418 "The next DeclContext should be lexically contained in the current one.")((CurContext == FD->getLexicalParent() && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("CurContext == FD->getLexicalParent() && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 1418, __PRETTY_FUNCTION__))
;
1419 CurContext = FD;
1420 S->setEntity(CurContext);
1421
1422 for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1423 ParmVarDecl *Param = FD->getParamDecl(P);
1424 // If the parameter has an identifier, then add it to the scope
1425 if (Param->getIdentifier()) {
1426 S->AddDecl(Param);
1427 IdResolver.AddDecl(Param);
1428 }
1429 }
1430}
1431
1432void Sema::ActOnExitFunctionContext() {
1433 // Same implementation as PopDeclContext, but returns to the lexical parent,
1434 // rather than the top-level class.
1435 assert(CurContext && "DeclContext imbalance!")((CurContext && "DeclContext imbalance!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 1435, __PRETTY_FUNCTION__))
;
1436 CurContext = CurContext->getLexicalParent();
1437 assert(CurContext && "Popped translation unit!")((CurContext && "Popped translation unit!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"Popped translation unit!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 1437, __PRETTY_FUNCTION__))
;
1438}
1439
1440/// Determine whether we allow overloading of the function
1441/// PrevDecl with another declaration.
1442///
1443/// This routine determines whether overloading is possible, not
1444/// whether some new function is actually an overload. It will return
1445/// true in C++ (where we can always provide overloads) or, as an
1446/// extension, in C when the previous function is already an
1447/// overloaded function declaration or has the "overloadable"
1448/// attribute.
1449static bool AllowOverloadingOfFunction(LookupResult &Previous,
1450 ASTContext &Context,
1451 const FunctionDecl *New) {
1452 if (Context.getLangOpts().CPlusPlus)
1453 return true;
1454
1455 if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1456 return true;
1457
1458 return Previous.getResultKind() == LookupResult::Found &&
1459 (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() ||
1460 New->hasAttr<OverloadableAttr>());
1461}
1462
1463/// Add this decl to the scope shadowed decl chains.
1464void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1465 // Move up the scope chain until we find the nearest enclosing
1466 // non-transparent context. The declaration will be introduced into this
1467 // scope.
1468 while (S->getEntity() && S->getEntity()->isTransparentContext())
1469 S = S->getParent();
1470
1471 // Add scoped declarations into their context, so that they can be
1472 // found later. Declarations without a context won't be inserted
1473 // into any context.
1474 if (AddToContext)
1475 CurContext->addDecl(D);
1476
1477 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1478 // are function-local declarations.
1479 if (getLangOpts().CPlusPlus && D->isOutOfLine() && !S->getFnParent())
1480 return;
1481
1482 // Template instantiations should also not be pushed into scope.
1483 if (isa<FunctionDecl>(D) &&
1484 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1485 return;
1486
1487 // If this replaces anything in the current scope,
1488 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1489 IEnd = IdResolver.end();
1490 for (; I != IEnd; ++I) {
1491 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1492 S->RemoveDecl(*I);
1493 IdResolver.RemoveDecl(*I);
1494
1495 // Should only need to replace one decl.
1496 break;
1497 }
1498 }
1499
1500 S->AddDecl(D);
1501
1502 if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1503 // Implicitly-generated labels may end up getting generated in an order that
1504 // isn't strictly lexical, which breaks name lookup. Be careful to insert
1505 // the label at the appropriate place in the identifier chain.
1506 for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1507 DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1508 if (IDC == CurContext) {
1509 if (!S->isDeclScope(*I))
1510 continue;
1511 } else if (IDC->Encloses(CurContext))
1512 break;
1513 }
1514
1515 IdResolver.InsertDeclAfter(I, D);
1516 } else {
1517 IdResolver.AddDecl(D);
1518 }
1519}
1520
1521bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1522 bool AllowInlineNamespace) {
1523 return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1524}
1525
1526Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1527 DeclContext *TargetDC = DC->getPrimaryContext();
1528 do {
1529 if (DeclContext *ScopeDC = S->getEntity())
1530 if (ScopeDC->getPrimaryContext() == TargetDC)
1531 return S;
1532 } while ((S = S->getParent()));
1533
1534 return nullptr;
1535}
1536
1537static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1538 DeclContext*,
1539 ASTContext&);
1540
1541/// Filters out lookup results that don't fall within the given scope
1542/// as determined by isDeclInScope.
1543void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1544 bool ConsiderLinkage,
1545 bool AllowInlineNamespace) {
1546 LookupResult::Filter F = R.makeFilter();
1547 while (F.hasNext()) {
1548 NamedDecl *D = F.next();
1549
1550 if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1551 continue;
1552
1553 if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1554 continue;
1555
1556 F.erase();
1557 }
1558
1559 F.done();
1560}
1561
1562/// We've determined that \p New is a redeclaration of \p Old. Check that they
1563/// have compatible owning modules.
1564bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1565 // FIXME: The Modules TS is not clear about how friend declarations are
1566 // to be treated. It's not meaningful to have different owning modules for
1567 // linkage in redeclarations of the same entity, so for now allow the
1568 // redeclaration and change the owning modules to match.
1569 if (New->getFriendObjectKind() &&
1570 Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
1571 New->setLocalOwningModule(Old->getOwningModule());
1572 makeMergedDefinitionVisible(New);
1573 return false;
1574 }
1575
1576 Module *NewM = New->getOwningModule();
1577 Module *OldM = Old->getOwningModule();
1578
1579 if (NewM && NewM->Kind == Module::PrivateModuleFragment)
1580 NewM = NewM->Parent;
1581 if (OldM && OldM->Kind == Module::PrivateModuleFragment)
1582 OldM = OldM->Parent;
1583
1584 if (NewM == OldM)
1585 return false;
1586
1587 bool NewIsModuleInterface = NewM && NewM->isModulePurview();
1588 bool OldIsModuleInterface = OldM && OldM->isModulePurview();
1589 if (NewIsModuleInterface || OldIsModuleInterface) {
1590 // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1591 // if a declaration of D [...] appears in the purview of a module, all
1592 // other such declarations shall appear in the purview of the same module
1593 Diag(New->getLocation(), diag::err_mismatched_owning_module)
1594 << New
1595 << NewIsModuleInterface
1596 << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1597 << OldIsModuleInterface
1598 << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1599 Diag(Old->getLocation(), diag::note_previous_declaration);
1600 New->setInvalidDecl();
1601 return true;
1602 }
1603
1604 return false;
1605}
1606
1607static bool isUsingDecl(NamedDecl *D) {
1608 return isa<UsingShadowDecl>(D) ||
1609 isa<UnresolvedUsingTypenameDecl>(D) ||
1610 isa<UnresolvedUsingValueDecl>(D);
1611}
1612
1613/// Removes using shadow declarations from the lookup results.
1614static void RemoveUsingDecls(LookupResult &R) {
1615 LookupResult::Filter F = R.makeFilter();
1616 while (F.hasNext())
1617 if (isUsingDecl(F.next()))
1618 F.erase();
1619
1620 F.done();
1621}
1622
1623/// Check for this common pattern:
1624/// @code
1625/// class S {
1626/// S(const S&); // DO NOT IMPLEMENT
1627/// void operator=(const S&); // DO NOT IMPLEMENT
1628/// };
1629/// @endcode
1630static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1631 // FIXME: Should check for private access too but access is set after we get
1632 // the decl here.
1633 if (D->doesThisDeclarationHaveABody())
1634 return false;
1635
1636 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1637 return CD->isCopyConstructor();
1638 return D->isCopyAssignmentOperator();
1639}
1640
1641// We need this to handle
1642//
1643// typedef struct {
1644// void *foo() { return 0; }
1645// } A;
1646//
1647// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1648// for example. If 'A', foo will have external linkage. If we have '*A',
1649// foo will have no linkage. Since we can't know until we get to the end
1650// of the typedef, this function finds out if D might have non-external linkage.
1651// Callers should verify at the end of the TU if it D has external linkage or
1652// not.
1653bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1654 const DeclContext *DC = D->getDeclContext();
1655 while (!DC->isTranslationUnit()) {
1656 if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1657 if (!RD->hasNameForLinkage())
1658 return true;
1659 }
1660 DC = DC->getParent();
1661 }
1662
1663 return !D->isExternallyVisible();
1664}
1665
1666// FIXME: This needs to be refactored; some other isInMainFile users want
1667// these semantics.
1668static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1669 if (S.TUKind != TU_Complete)
1670 return false;
1671 return S.SourceMgr.isInMainFile(Loc);
1672}
1673
1674bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1675 assert(D)((D) ? static_cast<void> (0) : __assert_fail ("D", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 1675, __PRETTY_FUNCTION__))
;
1676
1677 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1678 return false;
1679
1680 // Ignore all entities declared within templates, and out-of-line definitions
1681 // of members of class templates.
1682 if (D->getDeclContext()->isDependentContext() ||
1683 D->getLexicalDeclContext()->isDependentContext())
1684 return false;
1685
1686 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1687 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1688 return false;
1689 // A non-out-of-line declaration of a member specialization was implicitly
1690 // instantiated; it's the out-of-line declaration that we're interested in.
1691 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1692 FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1693 return false;
1694
1695 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1696 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1697 return false;
1698 } else {
1699 // 'static inline' functions are defined in headers; don't warn.
1700 if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1701 return false;
1702 }
1703
1704 if (FD->doesThisDeclarationHaveABody() &&
1705 Context.DeclMustBeEmitted(FD))
1706 return false;
1707 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1708 // Constants and utility variables are defined in headers with internal
1709 // linkage; don't warn. (Unlike functions, there isn't a convenient marker
1710 // like "inline".)
1711 if (!isMainFileLoc(*this, VD->getLocation()))
1712 return false;
1713
1714 if (Context.DeclMustBeEmitted(VD))
1715 return false;
1716
1717 if (VD->isStaticDataMember() &&
1718 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1719 return false;
1720 if (VD->isStaticDataMember() &&
1721 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1722 VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1723 return false;
1724
1725 if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1726 return false;
1727 } else {
1728 return false;
1729 }
1730
1731 // Only warn for unused decls internal to the translation unit.
1732 // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1733 // for inline functions defined in the main source file, for instance.
1734 return mightHaveNonExternalLinkage(D);
1735}
1736
1737void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1738 if (!D)
1739 return;
1740
1741 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1742 const FunctionDecl *First = FD->getFirstDecl();
1743 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1744 return; // First should already be in the vector.
1745 }
1746
1747 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1748 const VarDecl *First = VD->getFirstDecl();
1749 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1750 return; // First should already be in the vector.
1751 }
1752
1753 if (ShouldWarnIfUnusedFileScopedDecl(D))
1754 UnusedFileScopedDecls.push_back(D);
1755}
1756
1757static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1758 if (D->isInvalidDecl())
1759 return false;
1760
1761 if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
1762 // For a decomposition declaration, warn if none of the bindings are
1763 // referenced, instead of if the variable itself is referenced (which
1764 // it is, by the bindings' expressions).
1765 for (auto *BD : DD->bindings())
1766 if (BD->isReferenced())
1767 return false;
1768 } else if (!D->getDeclName()) {
1769 return false;
1770 } else if (D->isReferenced() || D->isUsed()) {
1771 return false;
1772 }
1773
1774 if (D->hasAttr<UnusedAttr>() || D->hasAttr<ObjCPreciseLifetimeAttr>())
1775 return false;
1776
1777 if (isa<LabelDecl>(D))
1778 return true;
1779
1780 // Except for labels, we only care about unused decls that are local to
1781 // functions.
1782 bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1783 if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1784 // For dependent types, the diagnostic is deferred.
1785 WithinFunction =
1786 WithinFunction || (R->isLocalClass() && !R->isDependentType());
1787 if (!WithinFunction)
1788 return false;
1789
1790 if (isa<TypedefNameDecl>(D))
1791 return true;
1792
1793 // White-list anything that isn't a local variable.
1794 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1795 return false;
1796
1797 // Types of valid local variables should be complete, so this should succeed.
1798 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1799
1800 // White-list anything with an __attribute__((unused)) type.
1801 const auto *Ty = VD->getType().getTypePtr();
1802
1803 // Only look at the outermost level of typedef.
1804 if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1805 if (TT->getDecl()->hasAttr<UnusedAttr>())
1806 return false;
1807 }
1808
1809 // If we failed to complete the type for some reason, or if the type is
1810 // dependent, don't diagnose the variable.
1811 if (Ty->isIncompleteType() || Ty->isDependentType())
1812 return false;
1813
1814 // Look at the element type to ensure that the warning behaviour is
1815 // consistent for both scalars and arrays.
1816 Ty = Ty->getBaseElementTypeUnsafe();
1817
1818 if (const TagType *TT = Ty->getAs<TagType>()) {
1819 const TagDecl *Tag = TT->getDecl();
1820 if (Tag->hasAttr<UnusedAttr>())
1821 return false;
1822
1823 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1824 if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1825 return false;
1826
1827 if (const Expr *Init = VD->getInit()) {
1828 if (const ExprWithCleanups *Cleanups =
1829 dyn_cast<ExprWithCleanups>(Init))
1830 Init = Cleanups->getSubExpr();
1831 const CXXConstructExpr *Construct =
1832 dyn_cast<CXXConstructExpr>(Init);
1833 if (Construct && !Construct->isElidable()) {
1834 CXXConstructorDecl *CD = Construct->getConstructor();
1835 if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
1836 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
1837 return false;
1838 }
1839
1840 // Suppress the warning if we don't know how this is constructed, and
1841 // it could possibly be non-trivial constructor.
1842 if (Init->isTypeDependent())
1843 for (const CXXConstructorDecl *Ctor : RD->ctors())
1844 if (!Ctor->isTrivial())
1845 return false;
1846 }
1847 }
1848 }
1849
1850 // TODO: __attribute__((unused)) templates?
1851 }
1852
1853 return true;
1854}
1855
1856static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1857 FixItHint &Hint) {
1858 if (isa<LabelDecl>(D)) {
1859 SourceLocation AfterColon = Lexer::findLocationAfterToken(
1860 D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
1861 true);
1862 if (AfterColon.isInvalid())
1863 return;
1864 Hint = FixItHint::CreateRemoval(
1865 CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
1866 }
1867}
1868
1869void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1870 if (D->getTypeForDecl()->isDependentType())
1871 return;
1872
1873 for (auto *TmpD : D->decls()) {
1874 if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1875 DiagnoseUnusedDecl(T);
1876 else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1877 DiagnoseUnusedNestedTypedefs(R);
1878 }
1879}
1880
1881/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1882/// unless they are marked attr(unused).
1883void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1884 if (!ShouldDiagnoseUnusedDecl(D))
1885 return;
1886
1887 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1888 // typedefs can be referenced later on, so the diagnostics are emitted
1889 // at end-of-translation-unit.
1890 UnusedLocalTypedefNameCandidates.insert(TD);
1891 return;
1892 }
1893
1894 FixItHint Hint;
1895 GenerateFixForUnusedDecl(D, Context, Hint);
1896
1897 unsigned DiagID;
1898 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1899 DiagID = diag::warn_unused_exception_param;
1900 else if (isa<LabelDecl>(D))
1901 DiagID = diag::warn_unused_label;
1902 else
1903 DiagID = diag::warn_unused_variable;
1904
1905 Diag(D->getLocation(), DiagID) << D << Hint;
1906}
1907
1908static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1909 // Verify that we have no forward references left. If so, there was a goto
1910 // or address of a label taken, but no definition of it. Label fwd
1911 // definitions are indicated with a null substmt which is also not a resolved
1912 // MS inline assembly label name.
1913 bool Diagnose = false;
1914 if (L->isMSAsmLabel())
1915 Diagnose = !L->isResolvedMSAsmLabel();
1916 else
1917 Diagnose = L->getStmt() == nullptr;
1918 if (Diagnose)
1919 S.Diag(L->getLocation(), diag::err_undeclared_label_use) << L;
1920}
1921
1922void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1923 S->mergeNRVOIntoParent();
1924
1925 if (S->decl_empty()) return;
1926 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&(((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope
)) && "Scope shouldn't contain decls!") ? static_cast
<void> (0) : __assert_fail ("(S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && \"Scope shouldn't contain decls!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 1927, __PRETTY_FUNCTION__))
1927 "Scope shouldn't contain decls!")(((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope
)) && "Scope shouldn't contain decls!") ? static_cast
<void> (0) : __assert_fail ("(S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && \"Scope shouldn't contain decls!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 1927, __PRETTY_FUNCTION__))
;
1928
1929 for (auto *TmpD : S->decls()) {
1930 assert(TmpD && "This decl didn't get pushed??")((TmpD && "This decl didn't get pushed??") ? static_cast
<void> (0) : __assert_fail ("TmpD && \"This decl didn't get pushed??\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 1930, __PRETTY_FUNCTION__))
;
1931
1932 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?")((isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?"
) ? static_cast<void> (0) : __assert_fail ("isa<NamedDecl>(TmpD) && \"Decl isn't NamedDecl?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 1932, __PRETTY_FUNCTION__))
;
1933 NamedDecl *D = cast<NamedDecl>(TmpD);
1934
1935 // Diagnose unused variables in this scope.
1936 if (!S->hasUnrecoverableErrorOccurred()) {
1937 DiagnoseUnusedDecl(D);
1938 if (const auto *RD = dyn_cast<RecordDecl>(D))
1939 DiagnoseUnusedNestedTypedefs(RD);
1940 }
1941
1942 if (!D->getDeclName()) continue;
1943
1944 // If this was a forward reference to a label, verify it was defined.
1945 if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1946 CheckPoppedLabel(LD, *this);
1947
1948 // Remove this name from our lexical scope, and warn on it if we haven't
1949 // already.
1950 IdResolver.RemoveDecl(D);
1951 auto ShadowI = ShadowingDecls.find(D);
1952 if (ShadowI != ShadowingDecls.end()) {
1953 if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
1954 Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
1955 << D << FD << FD->getParent();
1956 Diag(FD->getLocation(), diag::note_previous_declaration);
1957 }
1958 ShadowingDecls.erase(ShadowI);
1959 }
1960 }
1961}
1962
1963/// Look for an Objective-C class in the translation unit.
1964///
1965/// \param Id The name of the Objective-C class we're looking for. If
1966/// typo-correction fixes this name, the Id will be updated
1967/// to the fixed name.
1968///
1969/// \param IdLoc The location of the name in the translation unit.
1970///
1971/// \param DoTypoCorrection If true, this routine will attempt typo correction
1972/// if there is no class with the given name.
1973///
1974/// \returns The declaration of the named Objective-C class, or NULL if the
1975/// class could not be found.
1976ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1977 SourceLocation IdLoc,
1978 bool DoTypoCorrection) {
1979 // The third "scope" argument is 0 since we aren't enabling lazy built-in
1980 // creation from this context.
1981 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1982
1983 if (!IDecl && DoTypoCorrection) {
1984 // Perform typo correction at the given location, but only if we
1985 // find an Objective-C class name.
1986 DeclFilterCCC<ObjCInterfaceDecl> CCC{};
1987 if (TypoCorrection C =
1988 CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1989 TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
1990 diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1991 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1992 Id = IDecl->getIdentifier();
1993 }
1994 }
1995 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1996 // This routine must always return a class definition, if any.
1997 if (Def && Def->getDefinition())
1998 Def = Def->getDefinition();
1999 return Def;
2000}
2001
2002/// getNonFieldDeclScope - Retrieves the innermost scope, starting
2003/// from S, where a non-field would be declared. This routine copes
2004/// with the difference between C and C++ scoping rules in structs and
2005/// unions. For example, the following code is well-formed in C but
2006/// ill-formed in C++:
2007/// @code
2008/// struct S6 {
2009/// enum { BAR } e;
2010/// };
2011///
2012/// void test_S6() {
2013/// struct S6 a;
2014/// a.e = BAR;
2015/// }
2016/// @endcode
2017/// For the declaration of BAR, this routine will return a different
2018/// scope. The scope S will be the scope of the unnamed enumeration
2019/// within S6. In C++, this routine will return the scope associated
2020/// with S6, because the enumeration's scope is a transparent
2021/// context but structures can contain non-field names. In C, this
2022/// routine will return the translation unit scope, since the
2023/// enumeration's scope is a transparent context and structures cannot
2024/// contain non-field names.
2025Scope *Sema::getNonFieldDeclScope(Scope *S) {
2026 while (((S->getFlags() & Scope::DeclScope) == 0) ||
2027 (S->getEntity() && S->getEntity()->isTransparentContext()) ||
2028 (S->isClassScope() && !getLangOpts().CPlusPlus))
2029 S = S->getParent();
2030 return S;
2031}
2032
2033static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID,
2034 ASTContext::GetBuiltinTypeError Error) {
2035 switch (Error) {
2036 case ASTContext::GE_None:
2037 return "";
2038 case ASTContext::GE_Missing_type:
2039 return BuiltinInfo.getHeaderName(ID);
2040 case ASTContext::GE_Missing_stdio:
2041 return "stdio.h";
2042 case ASTContext::GE_Missing_setjmp:
2043 return "setjmp.h";
2044 case ASTContext::GE_Missing_ucontext:
2045 return "ucontext.h";
2046 }
2047 llvm_unreachable("unhandled error kind")::llvm::llvm_unreachable_internal("unhandled error kind", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 2047)
;
2048}
2049
2050FunctionDecl *Sema::CreateBuiltin(IdentifierInfo *II, QualType Type,
2051 unsigned ID, SourceLocation Loc) {
2052 DeclContext *Parent = Context.getTranslationUnitDecl();
2053
2054 if (getLangOpts().CPlusPlus) {
2055 LinkageSpecDecl *CLinkageDecl = LinkageSpecDecl::Create(
2056 Context, Parent, Loc, Loc, LinkageSpecDecl::lang_c, false);
2057 CLinkageDecl->setImplicit();
2058 Parent->addDecl(CLinkageDecl);
2059 Parent = CLinkageDecl;
2060 }
2061
2062 FunctionDecl *New = FunctionDecl::Create(Context, Parent, Loc, Loc, II, Type,
2063 /*TInfo=*/nullptr, SC_Extern, false,
2064 Type->isFunctionProtoType());
2065 New->setImplicit();
2066 New->addAttr(BuiltinAttr::CreateImplicit(Context, ID));
2067
2068 // Create Decl objects for each parameter, adding them to the
2069 // FunctionDecl.
2070 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(Type)) {
2071 SmallVector<ParmVarDecl *, 16> Params;
2072 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2073 ParmVarDecl *parm = ParmVarDecl::Create(
2074 Context, New, SourceLocation(), SourceLocation(), nullptr,
2075 FT->getParamType(i), /*TInfo=*/nullptr, SC_None, nullptr);
2076 parm->setScopeInfo(0, i);
2077 Params.push_back(parm);
2078 }
2079 New->setParams(Params);
2080 }
2081
2082 AddKnownFunctionAttributes(New);
2083 return New;
2084}
2085
2086/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
2087/// file scope. lazily create a decl for it. ForRedeclaration is true
2088/// if we're creating this built-in in anticipation of redeclaring the
2089/// built-in.
2090NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
2091 Scope *S, bool ForRedeclaration,
2092 SourceLocation Loc) {
2093 LookupNecessaryTypesForBuiltin(S, ID);
2094
2095 ASTContext::GetBuiltinTypeError Error;
2096 QualType R = Context.GetBuiltinType(ID, Error);
2097 if (Error) {
2098 if (!ForRedeclaration)
2099 return nullptr;
2100
2101 // If we have a builtin without an associated type we should not emit a
2102 // warning when we were not able to find a type for it.
2103 if (Error == ASTContext::GE_Missing_type ||
2104 Context.BuiltinInfo.allowTypeMismatch(ID))
2105 return nullptr;
2106
2107 // If we could not find a type for setjmp it is because the jmp_buf type was
2108 // not defined prior to the setjmp declaration.
2109 if (Error == ASTContext::GE_Missing_setjmp) {
2110 Diag(Loc, diag::warn_implicit_decl_no_jmp_buf)
2111 << Context.BuiltinInfo.getName(ID);
2112 return nullptr;
2113 }
2114
2115 // Generally, we emit a warning that the declaration requires the
2116 // appropriate header.
2117 Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
2118 << getHeaderName(Context.BuiltinInfo, ID, Error)
2119 << Context.BuiltinInfo.getName(ID);
2120 return nullptr;
2121 }
2122
2123 if (!ForRedeclaration &&
2124 (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
2125 Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
2126 Diag(Loc, diag::ext_implicit_lib_function_decl)
2127 << Context.BuiltinInfo.getName(ID) << R;
2128 if (const char *Header = Context.BuiltinInfo.getHeaderName(ID))
2129 Diag(Loc, diag::note_include_header_or_declare)
2130 << Header << Context.BuiltinInfo.getName(ID);
2131 }
2132
2133 if (R.isNull())
2134 return nullptr;
2135
2136 FunctionDecl *New = CreateBuiltin(II, R, ID, Loc);
2137 RegisterLocallyScopedExternCDecl(New, S);
2138
2139 // TUScope is the translation-unit scope to insert this function into.
2140 // FIXME: This is hideous. We need to teach PushOnScopeChains to
2141 // relate Scopes to DeclContexts, and probably eliminate CurContext
2142 // entirely, but we're not there yet.
2143 DeclContext *SavedContext = CurContext;
2144 CurContext = New->getDeclContext();
2145 PushOnScopeChains(New, TUScope);
2146 CurContext = SavedContext;
2147 return New;
2148}
2149
2150/// Typedef declarations don't have linkage, but they still denote the same
2151/// entity if their types are the same.
2152/// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2153/// isSameEntity.
2154static void filterNonConflictingPreviousTypedefDecls(Sema &S,
2155 TypedefNameDecl *Decl,
2156 LookupResult &Previous) {
2157 // This is only interesting when modules are enabled.
2158 if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2159 return;
2160
2161 // Empty sets are uninteresting.
2162 if (Previous.empty())
2163 return;
2164
2165 LookupResult::Filter Filter = Previous.makeFilter();
2166 while (Filter.hasNext()) {
2167 NamedDecl *Old = Filter.next();
2168
2169 // Non-hidden declarations are never ignored.
2170 if (S.isVisible(Old))
2171 continue;
2172
2173 // Declarations of the same entity are not ignored, even if they have
2174 // different linkages.
2175 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2176 if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2177 Decl->getUnderlyingType()))
2178 continue;
2179
2180 // If both declarations give a tag declaration a typedef name for linkage
2181 // purposes, then they declare the same entity.
2182 if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2183 Decl->getAnonDeclWithTypedefName())
2184 continue;
2185 }
2186
2187 Filter.erase();
2188 }
2189
2190 Filter.done();
2191}
2192
2193bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
2194 QualType OldType;
2195 if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2196 OldType = OldTypedef->getUnderlyingType();
2197 else
2198 OldType = Context.getTypeDeclType(Old);
2199 QualType NewType = New->getUnderlyingType();
2200
2201 if (NewType->isVariablyModifiedType()) {
2202 // Must not redefine a typedef with a variably-modified type.
2203 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2204 Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2205 << Kind << NewType;
2206 if (Old->getLocation().isValid())
2207 notePreviousDefinition(Old, New->getLocation());
2208 New->setInvalidDecl();
2209 return true;
2210 }
2211
2212 if (OldType != NewType &&
2213 !OldType->isDependentType() &&
2214 !NewType->isDependentType() &&
2215 !Context.hasSameType(OldType, NewType)) {
2216 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2217 Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2218 << Kind << NewType << OldType;
2219 if (Old->getLocation().isValid())
2220 notePreviousDefinition(Old, New->getLocation());
2221 New->setInvalidDecl();
2222 return true;
2223 }
2224 return false;
2225}
2226
2227/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2228/// same name and scope as a previous declaration 'Old'. Figure out
2229/// how to resolve this situation, merging decls or emitting
2230/// diagnostics as appropriate. If there was an error, set New to be invalid.
2231///
2232void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2233 LookupResult &OldDecls) {
2234 // If the new decl is known invalid already, don't bother doing any
2235 // merging checks.
2236 if (New->isInvalidDecl()) return;
2237
2238 // Allow multiple definitions for ObjC built-in typedefs.
2239 // FIXME: Verify the underlying types are equivalent!
2240 if (getLangOpts().ObjC) {
2241 const IdentifierInfo *TypeID = New->getIdentifier();
2242 switch (TypeID->getLength()) {
2243 default: break;
2244 case 2:
2245 {
2246 if (!TypeID->isStr("id"))
2247 break;
2248 QualType T = New->getUnderlyingType();
2249 if (!T->isPointerType())
2250 break;
2251 if (!T->isVoidPointerType()) {
2252 QualType PT = T->castAs<PointerType>()->getPointeeType();
2253 if (!PT->isStructureType())
2254 break;
2255 }
2256 Context.setObjCIdRedefinitionType(T);
2257 // Install the built-in type for 'id', ignoring the current definition.
2258 New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2259 return;
2260 }
2261 case 5:
2262 if (!TypeID->isStr("Class"))
2263 break;
2264 Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2265 // Install the built-in type for 'Class', ignoring the current definition.
2266 New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2267 return;
2268 case 3:
2269 if (!TypeID->isStr("SEL"))
2270 break;
2271 Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2272 // Install the built-in type for 'SEL', ignoring the current definition.
2273 New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2274 return;
2275 }
2276 // Fall through - the typedef name was not a builtin type.
2277 }
2278
2279 // Verify the old decl was also a type.
2280 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2281 if (!Old) {
2282 Diag(New->getLocation(), diag::err_redefinition_different_kind)
2283 << New->getDeclName();
2284
2285 NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2286 if (OldD->getLocation().isValid())
2287 notePreviousDefinition(OldD, New->getLocation());
2288
2289 return New->setInvalidDecl();
2290 }
2291
2292 // If the old declaration is invalid, just give up here.
2293 if (Old->isInvalidDecl())
2294 return New->setInvalidDecl();
2295
2296 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2297 auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2298 auto *NewTag = New->getAnonDeclWithTypedefName();
2299 NamedDecl *Hidden = nullptr;
2300 if (OldTag && NewTag &&
2301 OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2302 !hasVisibleDefinition(OldTag, &Hidden)) {
2303 // There is a definition of this tag, but it is not visible. Use it
2304 // instead of our tag.
2305 New->setTypeForDecl(OldTD->getTypeForDecl());
2306 if (OldTD->isModed())
2307 New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2308 OldTD->getUnderlyingType());
2309 else
2310 New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2311
2312 // Make the old tag definition visible.
2313 makeMergedDefinitionVisible(Hidden);
2314
2315 // If this was an unscoped enumeration, yank all of its enumerators
2316 // out of the scope.
2317 if (isa<EnumDecl>(NewTag)) {
2318 Scope *EnumScope = getNonFieldDeclScope(S);
2319 for (auto *D : NewTag->decls()) {
2320 auto *ED = cast<EnumConstantDecl>(D);
2321 assert(EnumScope->isDeclScope(ED))((EnumScope->isDeclScope(ED)) ? static_cast<void> (0
) : __assert_fail ("EnumScope->isDeclScope(ED)", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 2321, __PRETTY_FUNCTION__))
;
2322 EnumScope->RemoveDecl(ED);
2323 IdResolver.RemoveDecl(ED);
2324 ED->getLexicalDeclContext()->removeDecl(ED);
2325 }
2326 }
2327 }
2328 }
2329
2330 // If the typedef types are not identical, reject them in all languages and
2331 // with any extensions enabled.
2332 if (isIncompatibleTypedef(Old, New))
2333 return;
2334
2335 // The types match. Link up the redeclaration chain and merge attributes if
2336 // the old declaration was a typedef.
2337 if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2338 New->setPreviousDecl(Typedef);
2339 mergeDeclAttributes(New, Old);
2340 }
2341
2342 if (getLangOpts().MicrosoftExt)
2343 return;
2344
2345 if (getLangOpts().CPlusPlus) {
2346 // C++ [dcl.typedef]p2:
2347 // In a given non-class scope, a typedef specifier can be used to
2348 // redefine the name of any type declared in that scope to refer
2349 // to the type to which it already refers.
2350 if (!isa<CXXRecordDecl>(CurContext))
2351 return;
2352
2353 // C++0x [dcl.typedef]p4:
2354 // In a given class scope, a typedef specifier can be used to redefine
2355 // any class-name declared in that scope that is not also a typedef-name
2356 // to refer to the type to which it already refers.
2357 //
2358 // This wording came in via DR424, which was a correction to the
2359 // wording in DR56, which accidentally banned code like:
2360 //
2361 // struct S {
2362 // typedef struct A { } A;
2363 // };
2364 //
2365 // in the C++03 standard. We implement the C++0x semantics, which
2366 // allow the above but disallow
2367 //
2368 // struct S {
2369 // typedef int I;
2370 // typedef int I;
2371 // };
2372 //
2373 // since that was the intent of DR56.
2374 if (!isa<TypedefNameDecl>(Old))
2375 return;
2376
2377 Diag(New->getLocation(), diag::err_redefinition)
2378 << New->getDeclName();
2379 notePreviousDefinition(Old, New->getLocation());
2380 return New->setInvalidDecl();
2381 }
2382
2383 // Modules always permit redefinition of typedefs, as does C11.
2384 if (getLangOpts().Modules || getLangOpts().C11)
2385 return;
2386
2387 // If we have a redefinition of a typedef in C, emit a warning. This warning
2388 // is normally mapped to an error, but can be controlled with
2389 // -Wtypedef-redefinition. If either the original or the redefinition is
2390 // in a system header, don't emit this for compatibility with GCC.
2391 if (getDiagnostics().getSuppressSystemWarnings() &&
2392 // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2393 (Old->isImplicit() ||
2394 Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2395 Context.getSourceManager().isInSystemHeader(New->getLocation())))
2396 return;
2397
2398 Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2399 << New->getDeclName();
2400 notePreviousDefinition(Old, New->getLocation());
2401}
2402
2403/// DeclhasAttr - returns true if decl Declaration already has the target
2404/// attribute.
2405static bool DeclHasAttr(const Decl *D, const Attr *A) {
2406 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2407 const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2408 for (const auto *i : D->attrs())
2409 if (i->getKind() == A->getKind()) {
2410 if (Ann) {
2411 if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2412 return true;
2413 continue;
2414 }
2415 // FIXME: Don't hardcode this check
2416 if (OA && isa<OwnershipAttr>(i))
2417 return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2418 return true;
2419 }
2420
2421 return false;
2422}
2423
2424static bool isAttributeTargetADefinition(Decl *D) {
2425 if (VarDecl *VD = dyn_cast<VarDecl>(D))
2426 return VD->isThisDeclarationADefinition();
2427 if (TagDecl *TD = dyn_cast<TagDecl>(D))
2428 return TD->isCompleteDefinition() || TD->isBeingDefined();
2429 return true;
2430}
2431
2432/// Merge alignment attributes from \p Old to \p New, taking into account the
2433/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2434///
2435/// \return \c true if any attributes were added to \p New.
2436static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2437 // Look for alignas attributes on Old, and pick out whichever attribute
2438 // specifies the strictest alignment requirement.
2439 AlignedAttr *OldAlignasAttr = nullptr;
2440 AlignedAttr *OldStrictestAlignAttr = nullptr;
2441 unsigned OldAlign = 0;
2442 for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2443 // FIXME: We have no way of representing inherited dependent alignments
2444 // in a case like:
2445 // template<int A, int B> struct alignas(A) X;
2446 // template<int A, int B> struct alignas(B) X {};
2447 // For now, we just ignore any alignas attributes which are not on the
2448 // definition in such a case.
2449 if (I->isAlignmentDependent())
2450 return false;
2451
2452 if (I->isAlignas())
2453 OldAlignasAttr = I;
2454
2455 unsigned Align = I->getAlignment(S.Context);
2456 if (Align > OldAlign) {
2457 OldAlign = Align;
2458 OldStrictestAlignAttr = I;
2459 }
2460 }
2461
2462 // Look for alignas attributes on New.
2463 AlignedAttr *NewAlignasAttr = nullptr;
2464 unsigned NewAlign = 0;
2465 for (auto *I : New->specific_attrs<AlignedAttr>()) {
2466 if (I->isAlignmentDependent())
2467 return false;
2468
2469 if (I->isAlignas())
2470 NewAlignasAttr = I;
2471
2472 unsigned Align = I->getAlignment(S.Context);
2473 if (Align > NewAlign)
2474 NewAlign = Align;
2475 }
2476
2477 if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2478 // Both declarations have 'alignas' attributes. We require them to match.
2479 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2480 // fall short. (If two declarations both have alignas, they must both match
2481 // every definition, and so must match each other if there is a definition.)
2482
2483 // If either declaration only contains 'alignas(0)' specifiers, then it
2484 // specifies the natural alignment for the type.
2485 if (OldAlign == 0 || NewAlign == 0) {
2486 QualType Ty;
2487 if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2488 Ty = VD->getType();
2489 else
2490 Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2491
2492 if (OldAlign == 0)
2493 OldAlign = S.Context.getTypeAlign(Ty);
2494 if (NewAlign == 0)
2495 NewAlign = S.Context.getTypeAlign(Ty);
2496 }
2497
2498 if (OldAlign != NewAlign) {
2499 S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2500 << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2501 << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2502 S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2503 }
2504 }
2505
2506 if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2507 // C++11 [dcl.align]p6:
2508 // if any declaration of an entity has an alignment-specifier,
2509 // every defining declaration of that entity shall specify an
2510 // equivalent alignment.
2511 // C11 6.7.5/7:
2512 // If the definition of an object does not have an alignment
2513 // specifier, any other declaration of that object shall also
2514 // have no alignment specifier.
2515 S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2516 << OldAlignasAttr;
2517 S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2518 << OldAlignasAttr;
2519 }
2520
2521 bool AnyAdded = false;
2522
2523 // Ensure we have an attribute representing the strictest alignment.
2524 if (OldAlign > NewAlign) {
2525 AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2526 Clone->setInherited(true);
2527 New->addAttr(Clone);
2528 AnyAdded = true;
2529 }
2530
2531 // Ensure we have an alignas attribute if the old declaration had one.
2532 if (OldAlignasAttr && !NewAlignasAttr &&
2533 !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2534 AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2535 Clone->setInherited(true);
2536 New->addAttr(Clone);
2537 AnyAdded = true;
2538 }
2539
2540 return AnyAdded;
2541}
2542
2543#define WANT_DECL_MERGE_LOGIC
2544#include "clang/Sema/AttrParsedAttrImpl.inc"
2545#undef WANT_DECL_MERGE_LOGIC
2546
2547static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2548 const InheritableAttr *Attr,
2549 Sema::AvailabilityMergeKind AMK) {
2550 // Diagnose any mutual exclusions between the attribute that we want to add
2551 // and attributes that already exist on the declaration.
2552 if (!DiagnoseMutualExclusions(S, D, Attr))
2553 return false;
2554
2555 // This function copies an attribute Attr from a previous declaration to the
2556 // new declaration D if the new declaration doesn't itself have that attribute
2557 // yet or if that attribute allows duplicates.
2558 // If you're adding a new attribute that requires logic different from
2559 // "use explicit attribute on decl if present, else use attribute from
2560 // previous decl", for example if the attribute needs to be consistent
2561 // between redeclarations, you need to call a custom merge function here.
2562 InheritableAttr *NewAttr = nullptr;
2563 if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2564 NewAttr = S.mergeAvailabilityAttr(
2565 D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(),
2566 AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(),
2567 AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK,
2568 AA->getPriority());
2569 else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2570 NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility());
2571 else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2572 NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility());
2573 else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2574 NewAttr = S.mergeDLLImportAttr(D, *ImportA);
2575 else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2576 NewAttr = S.mergeDLLExportAttr(D, *ExportA);
2577 else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2578 NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(),
2579 FA->getFirstArg());
2580 else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2581 NewAttr = S.mergeSectionAttr(D, *SA, SA->getName());
2582 else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
2583 NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName());
2584 else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2585 NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(),
2586 IA->getInheritanceModel());
2587 else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2588 NewAttr = S.mergeAlwaysInlineAttr(D, *AA,
2589 &S.Context.Idents.get(AA->getSpelling()));
2590 else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2591 (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2592 isa<CUDAGlobalAttr>(Attr))) {
2593 // CUDA target attributes are part of function signature for
2594 // overloading purposes and must not be merged.
2595 return false;
2596 } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2597 NewAttr = S.mergeMinSizeAttr(D, *MA);
2598 else if (const auto *SNA = dyn_cast<SwiftNameAttr>(Attr))
2599 NewAttr = S.mergeSwiftNameAttr(D, *SNA, SNA->getName());
2600 else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2601 NewAttr = S.mergeOptimizeNoneAttr(D, *OA);
2602 else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2603 NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
2604 else if (isa<AlignedAttr>(Attr))
2605 // AlignedAttrs are handled separately, because we need to handle all
2606 // such attributes on a declaration at the same time.
2607 NewAttr = nullptr;
2608 else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2609 (AMK == Sema::AMK_Override ||
2610 AMK == Sema::AMK_ProtocolImplementation))
2611 NewAttr = nullptr;
2612 else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2613 NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid(), UA->getGuidDecl());
2614 else if (const auto *IMA = dyn_cast<WebAssemblyImportModuleAttr>(Attr))
2615 NewAttr = S.mergeImportModuleAttr(D, *IMA);
2616 else if (const auto *INA = dyn_cast<WebAssemblyImportNameAttr>(Attr))
2617 NewAttr = S.mergeImportNameAttr(D, *INA);
2618 else if (const auto *TCBA = dyn_cast<EnforceTCBAttr>(Attr))
2619 NewAttr = S.mergeEnforceTCBAttr(D, *TCBA);
2620 else if (const auto *TCBLA = dyn_cast<EnforceTCBLeafAttr>(Attr))
2621 NewAttr = S.mergeEnforceTCBLeafAttr(D, *TCBLA);
2622 else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
2623 NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2624
2625 if (NewAttr) {
2626 NewAttr->setInherited(true);
2627 D->addAttr(NewAttr);
2628 if (isa<MSInheritanceAttr>(NewAttr))
2629 S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
2630 return true;
2631 }
2632
2633 return false;
2634}
2635
2636static const NamedDecl *getDefinition(const Decl *D) {
2637 if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2638 return TD->getDefinition();
2639 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2640 const VarDecl *Def = VD->getDefinition();
2641 if (Def)
2642 return Def;
2643 return VD->getActingDefinition();
2644 }
2645 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2646 const FunctionDecl *Def = nullptr;
2647 if (FD->isDefined(Def, true))
2648 return Def;
2649 }
2650 return nullptr;
2651}
2652
2653static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2654 for (const auto *Attribute : D->attrs())
2655 if (Attribute->getKind() == Kind)
2656 return true;
2657 return false;
2658}
2659
2660/// checkNewAttributesAfterDef - If we already have a definition, check that
2661/// there are no new attributes in this declaration.
2662static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2663 if (!New->hasAttrs())
2664 return;
2665
2666 const NamedDecl *Def = getDefinition(Old);
2667 if (!Def || Def == New)
2668 return;
2669
2670 AttrVec &NewAttributes = New->getAttrs();
2671 for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2672 const Attr *NewAttribute = NewAttributes[I];
2673
2674 if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
2675 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2676 Sema::SkipBodyInfo SkipBody;
2677 S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2678
2679 // If we're skipping this definition, drop the "alias" attribute.
2680 if (SkipBody.ShouldSkip) {
2681 NewAttributes.erase(NewAttributes.begin() + I);
2682 --E;
2683 continue;
2684 }
2685 } else {
2686 VarDecl *VD = cast<VarDecl>(New);
2687 unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2688 VarDecl::TentativeDefinition
2689 ? diag::err_alias_after_tentative
2690 : diag::err_redefinition;
2691 S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2692 if (Diag == diag::err_redefinition)
2693 S.notePreviousDefinition(Def, VD->getLocation());
2694 else
2695 S.Diag(Def->getLocation(), diag::note_previous_definition);
2696 VD->setInvalidDecl();
2697 }
2698 ++I;
2699 continue;
2700 }
2701
2702 if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2703 // Tentative definitions are only interesting for the alias check above.
2704 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2705 ++I;
2706 continue;
2707 }
2708 }
2709
2710 if (hasAttribute(Def, NewAttribute->getKind())) {
2711 ++I;
2712 continue; // regular attr merging will take care of validating this.
2713 }
2714
2715 if (isa<C11NoReturnAttr>(NewAttribute)) {
2716 // C's _Noreturn is allowed to be added to a function after it is defined.
2717 ++I;
2718 continue;
2719 } else if (isa<UuidAttr>(NewAttribute)) {
2720 // msvc will allow a subsequent definition to add an uuid to a class
2721 ++I;
2722 continue;
2723 } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2724 if (AA->isAlignas()) {
2725 // C++11 [dcl.align]p6:
2726 // if any declaration of an entity has an alignment-specifier,
2727 // every defining declaration of that entity shall specify an
2728 // equivalent alignment.
2729 // C11 6.7.5/7:
2730 // If the definition of an object does not have an alignment
2731 // specifier, any other declaration of that object shall also
2732 // have no alignment specifier.
2733 S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2734 << AA;
2735 S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2736 << AA;
2737 NewAttributes.erase(NewAttributes.begin() + I);
2738 --E;
2739 continue;
2740 }
2741 } else if (isa<LoaderUninitializedAttr>(NewAttribute)) {
2742 // If there is a C definition followed by a redeclaration with this
2743 // attribute then there are two different definitions. In C++, prefer the
2744 // standard diagnostics.
2745 if (!S.getLangOpts().CPlusPlus) {
2746 S.Diag(NewAttribute->getLocation(),
2747 diag::err_loader_uninitialized_redeclaration);
2748 S.Diag(Def->getLocation(), diag::note_previous_definition);
2749 NewAttributes.erase(NewAttributes.begin() + I);
2750 --E;
2751 continue;
2752 }
2753 } else if (isa<SelectAnyAttr>(NewAttribute) &&
2754 cast<VarDecl>(New)->isInline() &&
2755 !cast<VarDecl>(New)->isInlineSpecified()) {
2756 // Don't warn about applying selectany to implicitly inline variables.
2757 // Older compilers and language modes would require the use of selectany
2758 // to make such variables inline, and it would have no effect if we
2759 // honored it.
2760 ++I;
2761 continue;
2762 } else if (isa<OMPDeclareVariantAttr>(NewAttribute)) {
2763 // We allow to add OMP[Begin]DeclareVariantAttr to be added to
2764 // declarations after defintions.
2765 ++I;
2766 continue;
2767 }
2768
2769 S.Diag(NewAttribute->getLocation(),
2770 diag::warn_attribute_precede_definition);
2771 S.Diag(Def->getLocation(), diag::note_previous_definition);
2772 NewAttributes.erase(NewAttributes.begin() + I);
2773 --E;
2774 }
2775}
2776
2777static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl,
2778 const ConstInitAttr *CIAttr,
2779 bool AttrBeforeInit) {
2780 SourceLocation InsertLoc = InitDecl->getInnerLocStart();
2781
2782 // Figure out a good way to write this specifier on the old declaration.
2783 // FIXME: We should just use the spelling of CIAttr, but we don't preserve
2784 // enough of the attribute list spelling information to extract that without
2785 // heroics.
2786 std::string SuitableSpelling;
2787 if (S.getLangOpts().CPlusPlus20)
2788 SuitableSpelling = std::string(
2789 S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit}));
2790 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
2791 SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
2792 InsertLoc, {tok::l_square, tok::l_square,
2793 S.PP.getIdentifierInfo("clang"), tok::coloncolon,
2794 S.PP.getIdentifierInfo("require_constant_initialization"),
2795 tok::r_square, tok::r_square}));
2796 if (SuitableSpelling.empty())
2797 SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
2798 InsertLoc, {tok::kw___attribute, tok::l_paren, tok::r_paren,
2799 S.PP.getIdentifierInfo("require_constant_initialization"),
2800 tok::r_paren, tok::r_paren}));
2801 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus20)
2802 SuitableSpelling = "constinit";
2803 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
2804 SuitableSpelling = "[[clang::require_constant_initialization]]";
2805 if (SuitableSpelling.empty())
2806 SuitableSpelling = "__attribute__((require_constant_initialization))";
2807 SuitableSpelling += " ";
2808
2809 if (AttrBeforeInit) {
2810 // extern constinit int a;
2811 // int a = 0; // error (missing 'constinit'), accepted as extension
2812 assert(CIAttr->isConstinit() && "should not diagnose this for attribute")((CIAttr->isConstinit() && "should not diagnose this for attribute"
) ? static_cast<void> (0) : __assert_fail ("CIAttr->isConstinit() && \"should not diagnose this for attribute\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 2812, __PRETTY_FUNCTION__))
;
2813 S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing)
2814 << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
2815 S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here);
2816 } else {
2817 // int a = 0;
2818 // constinit extern int a; // error (missing 'constinit')
2819 S.Diag(CIAttr->getLocation(),
2820 CIAttr->isConstinit() ? diag::err_constinit_added_too_late
2821 : diag::warn_require_const_init_added_too_late)
2822 << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation()));
2823 S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here)
2824 << CIAttr->isConstinit()
2825 << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
2826 }
2827}
2828
2829/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2830void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2831 AvailabilityMergeKind AMK) {
2832 if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2833 UsedAttr *NewAttr = OldAttr->clone(Context);
2834 NewAttr->setInherited(true);
2835 New->addAttr(NewAttr);
2836 }
2837 if (RetainAttr *OldAttr = Old->getMostRecentDecl()->getAttr<RetainAttr>()) {
2838 RetainAttr *NewAttr = OldAttr->clone(Context);
2839 NewAttr->setInherited(true);
2840 New->addAttr(NewAttr);
2841 }
2842
2843 if (!Old->hasAttrs() && !New->hasAttrs())
2844 return;
2845
2846 // [dcl.constinit]p1:
2847 // If the [constinit] specifier is applied to any declaration of a
2848 // variable, it shall be applied to the initializing declaration.
2849 const auto *OldConstInit = Old->getAttr<ConstInitAttr>();
2850 const auto *NewConstInit = New->getAttr<ConstInitAttr>();
2851 if (bool(OldConstInit) != bool(NewConstInit)) {
2852 const auto *OldVD = cast<VarDecl>(Old);
2853 auto *NewVD = cast<VarDecl>(New);
2854
2855 // Find the initializing declaration. Note that we might not have linked
2856 // the new declaration into the redeclaration chain yet.
2857 const VarDecl *InitDecl = OldVD->getInitializingDeclaration();
2858 if (!InitDecl &&
2859 (NewVD->hasInit() || NewVD->isThisDeclarationADefinition()))
2860 InitDecl = NewVD;
2861
2862 if (InitDecl == NewVD) {
2863 // This is the initializing declaration. If it would inherit 'constinit',
2864 // that's ill-formed. (Note that we do not apply this to the attribute
2865 // form).
2866 if (OldConstInit && OldConstInit->isConstinit())
2867 diagnoseMissingConstinit(*this, NewVD, OldConstInit,
2868 /*AttrBeforeInit=*/true);
2869 } else if (NewConstInit) {
2870 // This is the first time we've been told that this declaration should
2871 // have a constant initializer. If we already saw the initializing
2872 // declaration, this is too late.
2873 if (InitDecl && InitDecl != NewVD) {
2874 diagnoseMissingConstinit(*this, InitDecl, NewConstInit,
2875 /*AttrBeforeInit=*/false);
2876 NewVD->dropAttr<ConstInitAttr>();
2877 }
2878 }
2879 }
2880
2881 // Attributes declared post-definition are currently ignored.
2882 checkNewAttributesAfterDef(*this, New, Old);
2883
2884 if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
2885 if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
2886 if (!OldA->isEquivalent(NewA)) {
2887 // This redeclaration changes __asm__ label.
2888 Diag(New->getLocation(), diag::err_different_asm_label);
2889 Diag(OldA->getLocation(), diag::note_previous_declaration);
2890 }
2891 } else if (Old->isUsed()) {
2892 // This redeclaration adds an __asm__ label to a declaration that has
2893 // already been ODR-used.
2894 Diag(New->getLocation(), diag::err_late_asm_label_name)
2895 << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
2896 }
2897 }
2898
2899 // Re-declaration cannot add abi_tag's.
2900 if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
2901 if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
2902 for (const auto &NewTag : NewAbiTagAttr->tags()) {
2903 if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(),
2904 NewTag) == OldAbiTagAttr->tags_end()) {
2905 Diag(NewAbiTagAttr->getLocation(),
2906 diag::err_new_abi_tag_on_redeclaration)
2907 << NewTag;
2908 Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
2909 }
2910 }
2911 } else {
2912 Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
2913 Diag(Old->getLocation(), diag::note_previous_declaration);
2914 }
2915 }
2916
2917 // This redeclaration adds a section attribute.
2918 if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
2919 if (auto *VD = dyn_cast<VarDecl>(New)) {
2920 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
2921 Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
2922 Diag(Old->getLocation(), diag::note_previous_declaration);
2923 }
2924 }
2925 }
2926
2927 // Redeclaration adds code-seg attribute.
2928 const auto *NewCSA = New->getAttr<CodeSegAttr>();
2929 if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
2930 !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
2931 Diag(New->getLocation(), diag::warn_mismatched_section)
2932 << 0 /*codeseg*/;
2933 Diag(Old->getLocation(), diag::note_previous_declaration);
2934 }
2935
2936 if (!Old->hasAttrs())
2937 return;
2938
2939 bool foundAny = New->hasAttrs();
2940
2941 // Ensure that any moving of objects within the allocated map is done before
2942 // we process them.
2943 if (!foundAny) New->setAttrs(AttrVec());
2944
2945 for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2946 // Ignore deprecated/unavailable/availability attributes if requested.
2947 AvailabilityMergeKind LocalAMK = AMK_None;
2948 if (isa<DeprecatedAttr>(I) ||
2949 isa<UnavailableAttr>(I) ||
2950 isa<AvailabilityAttr>(I)) {
2951 switch (AMK) {
2952 case AMK_None:
2953 continue;
2954
2955 case AMK_Redeclaration:
2956 case AMK_Override:
2957 case AMK_ProtocolImplementation:
2958 LocalAMK = AMK;
2959 break;
2960 }
2961 }
2962
2963 // Already handled.
2964 if (isa<UsedAttr>(I) || isa<RetainAttr>(I))
2965 continue;
2966
2967 if (mergeDeclAttribute(*this, New, I, LocalAMK))
2968 foundAny = true;
2969 }
2970
2971 if (mergeAlignedAttrs(*this, New, Old))
2972 foundAny = true;
2973
2974 if (!foundAny) New->dropAttrs();
2975}
2976
2977/// mergeParamDeclAttributes - Copy attributes from the old parameter
2978/// to the new one.
2979static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2980 const ParmVarDecl *oldDecl,
2981 Sema &S) {
2982 // C++11 [dcl.attr.depend]p2:
2983 // The first declaration of a function shall specify the
2984 // carries_dependency attribute for its declarator-id if any declaration
2985 // of the function specifies the carries_dependency attribute.
2986 const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2987 if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2988 S.Diag(CDA->getLocation(),
2989 diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2990 // Find the first declaration of the parameter.
2991 // FIXME: Should we build redeclaration chains for function parameters?
2992 const FunctionDecl *FirstFD =
2993 cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2994 const ParmVarDecl *FirstVD =
2995 FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2996 S.Diag(FirstVD->getLocation(),
2997 diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2998 }
2999
3000 if (!oldDecl->hasAttrs())
3001 return;
3002
3003 bool foundAny = newDecl->hasAttrs();
3004
3005 // Ensure that any moving of objects within the allocated map is
3006 // done before we process them.
3007 if (!foundAny) newDecl->setAttrs(AttrVec());
3008
3009 for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
3010 if (!DeclHasAttr(newDecl, I)) {
3011 InheritableAttr *newAttr =
3012 cast<InheritableParamAttr>(I->clone(S.Context));
3013 newAttr->setInherited(true);
3014 newDecl->addAttr(newAttr);
3015 foundAny = true;
3016 }
3017 }
3018
3019 if (!foundAny) newDecl->dropAttrs();
3020}
3021
3022static void mergeParamDeclTypes(ParmVarDecl *NewParam,
3023 const ParmVarDecl *OldParam,
3024 Sema &S) {
3025 if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
3026 if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
3027 if (*Oldnullability != *Newnullability) {
3028 S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
3029 << DiagNullabilityKind(
3030 *Newnullability,
3031 ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3032 != 0))
3033 << DiagNullabilityKind(
3034 *Oldnullability,
3035 ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3036 != 0));
3037 S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
3038 }
3039 } else {
3040 QualType NewT = NewParam->getType();
3041 NewT = S.Context.getAttributedType(
3042 AttributedType::getNullabilityAttrKind(*Oldnullability),
3043 NewT, NewT);
3044 NewParam->setType(NewT);
3045 }
3046 }
3047}
3048
3049namespace {
3050
3051/// Used in MergeFunctionDecl to keep track of function parameters in
3052/// C.
3053struct GNUCompatibleParamWarning {
3054 ParmVarDecl *OldParm;
3055 ParmVarDecl *NewParm;
3056 QualType PromotedType;
3057};
3058
3059} // end anonymous namespace
3060
3061// Determine whether the previous declaration was a definition, implicit
3062// declaration, or a declaration.
3063template <typename T>
3064static std::pair<diag::kind, SourceLocation>
3065getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
3066 diag::kind PrevDiag;
3067 SourceLocation OldLocation = Old->getLocation();
3068 if (Old->isThisDeclarationADefinition())
3069 PrevDiag = diag::note_previous_definition;
3070 else if (Old->isImplicit()) {
3071 PrevDiag = diag::note_previous_implicit_declaration;
3072 if (OldLocation.isInvalid())
3073 OldLocation = New->getLocation();
3074 } else
3075 PrevDiag = diag::note_previous_declaration;
3076 return std::make_pair(PrevDiag, OldLocation);
3077}
3078
3079/// canRedefineFunction - checks if a function can be redefined. Currently,
3080/// only extern inline functions can be redefined, and even then only in
3081/// GNU89 mode.
3082static bool canRedefineFunction(const FunctionDecl *FD,
3083 const LangOptions& LangOpts) {
3084 return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
3085 !LangOpts.CPlusPlus &&
3086 FD->isInlineSpecified() &&
3087 FD->getStorageClass() == SC_Extern);
3088}
3089
3090const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
3091 const AttributedType *AT = T->getAs<AttributedType>();
3092 while (AT && !AT->isCallingConv())
3093 AT = AT->getModifiedType()->getAs<AttributedType>();
3094 return AT;
3095}
3096
3097template <typename T>
3098static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
3099 const DeclContext *DC = Old->getDeclContext();
3100 if (DC->isRecord())
3101 return false;
3102
3103 LanguageLinkage OldLinkage = Old->getLanguageLinkage();
3104 if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
3105 return true;
3106 if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
3107 return true;
3108 return false;
3109}
3110
3111template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
3112static bool isExternC(VarTemplateDecl *) { return false; }
3113
3114/// Check whether a redeclaration of an entity introduced by a
3115/// using-declaration is valid, given that we know it's not an overload
3116/// (nor a hidden tag declaration).
3117template<typename ExpectedDecl>
3118static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
3119 ExpectedDecl *New) {
3120 // C++11 [basic.scope.declarative]p4:
3121 // Given a set of declarations in a single declarative region, each of
3122 // which specifies the same unqualified name,
3123 // -- they shall all refer to the same entity, or all refer to functions
3124 // and function templates; or
3125 // -- exactly one declaration shall declare a class name or enumeration
3126 // name that is not a typedef name and the other declarations shall all
3127 // refer to the same variable or enumerator, or all refer to functions
3128 // and function templates; in this case the class name or enumeration
3129 // name is hidden (3.3.10).
3130
3131 // C++11 [namespace.udecl]p14:
3132 // If a function declaration in namespace scope or block scope has the
3133 // same name and the same parameter-type-list as a function introduced
3134 // by a using-declaration, and the declarations do not declare the same
3135 // function, the program is ill-formed.
3136
3137 auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
3138 if (Old &&
3139 !Old->getDeclContext()->getRedeclContext()->Equals(
3140 New->getDeclContext()->getRedeclContext()) &&
3141 !(isExternC(Old) && isExternC(New)))
3142 Old = nullptr;
3143
3144 if (!Old) {
3145 S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
3146 S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
3147 S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
3148 return true;
3149 }
3150 return false;
3151}
3152
3153static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
3154 const FunctionDecl *B) {
3155 assert(A->getNumParams() == B->getNumParams())((A->getNumParams() == B->getNumParams()) ? static_cast
<void> (0) : __assert_fail ("A->getNumParams() == B->getNumParams()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 3155, __PRETTY_FUNCTION__))
;
3156
3157 auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
3158 const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
3159 const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
3160 if (AttrA == AttrB)
3161 return true;
3162 return AttrA && AttrB && AttrA->getType() == AttrB->getType() &&
3163 AttrA->isDynamic() == AttrB->isDynamic();
3164 };
3165
3166 return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
3167}
3168
3169/// If necessary, adjust the semantic declaration context for a qualified
3170/// declaration to name the correct inline namespace within the qualifier.
3171static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
3172 DeclaratorDecl *OldD) {
3173 // The only case where we need to update the DeclContext is when
3174 // redeclaration lookup for a qualified name finds a declaration
3175 // in an inline namespace within the context named by the qualifier:
3176 //
3177 // inline namespace N { int f(); }
3178 // int ::f(); // Sema DC needs adjusting from :: to N::.
3179 //
3180 // For unqualified declarations, the semantic context *can* change
3181 // along the redeclaration chain (for local extern declarations,
3182 // extern "C" declarations, and friend declarations in particular).
3183 if (!NewD->getQualifier())
3184 return;
3185
3186 // NewD is probably already in the right context.
3187 auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
3188 auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
3189 if (NamedDC->Equals(SemaDC))
3190 return;
3191
3192 assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||(((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->
isInvalidDecl() || OldD->isInvalidDecl()) && "unexpected context for redeclaration"
) ? static_cast<void> (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 3194, __PRETTY_FUNCTION__))
3193 NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&(((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->
isInvalidDecl() || OldD->isInvalidDecl()) && "unexpected context for redeclaration"
) ? static_cast<void> (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 3194, __PRETTY_FUNCTION__))
3194 "unexpected context for redeclaration")(((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->
isInvalidDecl() || OldD->isInvalidDecl()) && "unexpected context for redeclaration"
) ? static_cast<void> (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 3194, __PRETTY_FUNCTION__))
;
3195
3196 auto *LexDC = NewD->getLexicalDeclContext();
3197 auto FixSemaDC = [=](NamedDecl *D) {
3198 if (!D)
3199 return;
3200 D->setDeclContext(SemaDC);
3201 D->setLexicalDeclContext(LexDC);
3202 };
3203
3204 FixSemaDC(NewD);
3205 if (auto *FD = dyn_cast<FunctionDecl>(NewD))
3206 FixSemaDC(FD->getDescribedFunctionTemplate());
3207 else if (auto *VD = dyn_cast<VarDecl>(NewD))
3208 FixSemaDC(VD->getDescribedVarTemplate());
3209}
3210
3211/// MergeFunctionDecl - We just parsed a function 'New' from
3212/// declarator D which has the same name and scope as a previous
3213/// declaration 'Old'. Figure out how to resolve this situation,
3214/// merging decls or emitting diagnostics as appropriate.
3215///
3216/// In C++, New and Old must be declarations that are not
3217/// overloaded. Use IsOverload to determine whether New and Old are
3218/// overloaded, and to select the Old declaration that New should be
3219/// merged with.
3220///
3221/// Returns true if there was an error, false otherwise.
3222bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
3223 Scope *S, bool MergeTypeWithOld) {
3224 // Verify the old decl was also a function.
3225 FunctionDecl *Old = OldD->getAsFunction();
3226 if (!Old) {
3227 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
3228 if (New->getFriendObjectKind()) {
3229 Diag(New->getLocation(), diag::err_using_decl_friend);
3230 Diag(Shadow->getTargetDecl()->getLocation(),
3231 diag::note_using_decl_target);
3232 Diag(Shadow->getUsingDecl()->getLocation(),
3233 diag::note_using_decl) << 0;
3234 return true;
3235 }
3236
3237 // Check whether the two declarations might declare the same function.
3238 if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3239 return true;
3240 OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3241 } else {
3242 Diag(New->getLocation(), diag::err_redefinition_different_kind)
3243 << New->getDeclName();
3244 notePreviousDefinition(OldD, New->getLocation());
3245 return true;
3246 }
3247 }
3248
3249 // If the old declaration was found in an inline namespace and the new
3250 // declaration was qualified, update the DeclContext to match.
3251 adjustDeclContextForDeclaratorDecl(New, Old);
3252
3253 // If the old declaration is invalid, just give up here.
3254 if (Old->isInvalidDecl())
3255 return true;
3256
3257 // Disallow redeclaration of some builtins.
3258 if (!getASTContext().canBuiltinBeRedeclared(Old)) {
3259 Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
3260 Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
3261 << Old << Old->getType();
3262 return true;
3263 }
3264
3265 diag::kind PrevDiag;
3266 SourceLocation OldLocation;
3267 std::tie(PrevDiag, OldLocation) =
3268 getNoteDiagForInvalidRedeclaration(Old, New);
3269
3270 // Don't complain about this if we're in GNU89 mode and the old function
3271 // is an extern inline function.
3272 // Don't complain about specializations. They are not supposed to have
3273 // storage classes.
3274 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3275 New->getStorageClass() == SC_Static &&
3276 Old->hasExternalFormalLinkage() &&
3277 !New->getTemplateSpecializationInfo() &&
3278 !canRedefineFunction(Old, getLangOpts())) {
3279 if (getLangOpts().MicrosoftExt) {
3280 Diag(New->getLocation(), diag::ext_static_non_static) << New;
3281 Diag(OldLocation, PrevDiag);
3282 } else {
3283 Diag(New->getLocation(), diag::err_static_non_static) << New;
3284 Diag(OldLocation, PrevDiag);
3285 return true;
3286 }
3287 }
3288
3289 if (New->hasAttr<InternalLinkageAttr>() &&
3290 !Old->hasAttr<InternalLinkageAttr>()) {
3291 Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3292 << New->getDeclName();
3293 notePreviousDefinition(Old, New->getLocation());
3294 New->dropAttr<InternalLinkageAttr>();
3295 }
3296
3297 if (CheckRedeclarationModuleOwnership(New, Old))
3298 return true;
3299
3300 if (!getLangOpts().CPlusPlus) {
3301 bool OldOvl = Old->hasAttr<OverloadableAttr>();
3302 if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3303 Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3304 << New << OldOvl;
3305
3306 // Try our best to find a decl that actually has the overloadable
3307 // attribute for the note. In most cases (e.g. programs with only one
3308 // broken declaration/definition), this won't matter.
3309 //
3310 // FIXME: We could do this if we juggled some extra state in
3311 // OverloadableAttr, rather than just removing it.
3312 const Decl *DiagOld = Old;
3313 if (OldOvl) {
3314 auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3315 const auto *A = D->getAttr<OverloadableAttr>();
3316 return A && !A->isImplicit();
3317 });
3318 // If we've implicitly added *all* of the overloadable attrs to this
3319 // chain, emitting a "previous redecl" note is pointless.
3320 DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3321 }
3322
3323 if (DiagOld)
3324 Diag(DiagOld->getLocation(),
3325 diag::note_attribute_overloadable_prev_overload)
3326 << OldOvl;
3327
3328 if (OldOvl)
3329 New->addAttr(OverloadableAttr::CreateImplicit(Context));
3330 else
3331 New->dropAttr<OverloadableAttr>();
3332 }
3333 }
3334
3335 // If a function is first declared with a calling convention, but is later
3336 // declared or defined without one, all following decls assume the calling
3337 // convention of the first.
3338 //
3339 // It's OK if a function is first declared without a calling convention,
3340 // but is later declared or defined with the default calling convention.
3341 //
3342 // To test if either decl has an explicit calling convention, we look for
3343 // AttributedType sugar nodes on the type as written. If they are missing or
3344 // were canonicalized away, we assume the calling convention was implicit.
3345 //
3346 // Note also that we DO NOT return at this point, because we still have
3347 // other tests to run.
3348 QualType OldQType = Context.getCanonicalType(Old->getType());
3349 QualType NewQType = Context.getCanonicalType(New->getType());
3350 const FunctionType *OldType = cast<FunctionType>(OldQType);
3351 const FunctionType *NewType = cast<FunctionType>(NewQType);
3352 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3353 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3354 bool RequiresAdjustment = false;
3355
3356 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3357 FunctionDecl *First = Old->getFirstDecl();
3358 const FunctionType *FT =
3359 First->getType().getCanonicalType()->castAs<FunctionType>();
3360 FunctionType::ExtInfo FI = FT->getExtInfo();
3361 bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3362 if (!NewCCExplicit) {
3363 // Inherit the CC from the previous declaration if it was specified
3364 // there but not here.
3365 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3366 RequiresAdjustment = true;
3367 } else if (Old->getBuiltinID()) {
3368 // Builtin attribute isn't propagated to the new one yet at this point,
3369 // so we check if the old one is a builtin.
3370
3371 // Calling Conventions on a Builtin aren't really useful and setting a
3372 // default calling convention and cdecl'ing some builtin redeclarations is
3373 // common, so warn and ignore the calling convention on the redeclaration.
3374 Diag(New->getLocation(), diag::warn_cconv_unsupported)
3375 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3376 << (int)CallingConventionIgnoredReason::BuiltinFunction;
3377 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3378 RequiresAdjustment = true;
3379 } else {
3380 // Calling conventions aren't compatible, so complain.
3381 bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3382 Diag(New->getLocation(), diag::err_cconv_change)
3383 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3384 << !FirstCCExplicit
3385 << (!FirstCCExplicit ? "" :
3386 FunctionType::getNameForCallConv(FI.getCC()));
3387
3388 // Put the note on the first decl, since it is the one that matters.
3389 Diag(First->getLocation(), diag::note_previous_declaration);
3390 return true;
3391 }
3392 }
3393
3394 // FIXME: diagnose the other way around?
3395 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3396 NewTypeInfo = NewTypeInfo.withNoReturn(true);
3397 RequiresAdjustment = true;
3398 }
3399
3400 // Merge regparm attribute.
3401 if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3402 OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3403 if (NewTypeInfo.getHasRegParm()) {
3404 Diag(New->getLocation(), diag::err_regparm_mismatch)
3405 << NewType->getRegParmType()
3406 << OldType->getRegParmType();
3407 Diag(OldLocation, diag::note_previous_declaration);
3408 return true;
3409 }
3410
3411 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3412 RequiresAdjustment = true;
3413 }
3414
3415 // Merge ns_returns_retained attribute.
3416 if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3417 if (NewTypeInfo.getProducesResult()) {
3418 Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3419 << "'ns_returns_retained'";
3420 Diag(OldLocation, diag::note_previous_declaration);
3421 return true;
3422 }
3423
3424 NewTypeInfo = NewTypeInfo.withProducesResult(true);
3425 RequiresAdjustment = true;
3426 }
3427
3428 if (OldTypeInfo.getNoCallerSavedRegs() !=
3429 NewTypeInfo.getNoCallerSavedRegs()) {
3430 if (NewTypeInfo.getNoCallerSavedRegs()) {
3431 AnyX86NoCallerSavedRegistersAttr *Attr =
3432 New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3433 Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3434 Diag(OldLocation, diag::note_previous_declaration);
3435 return true;
3436 }
3437
3438 NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3439 RequiresAdjustment = true;
3440 }
3441
3442 if (RequiresAdjustment) {
3443 const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3444 AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3445 New->setType(QualType(AdjustedType, 0));
3446 NewQType = Context.getCanonicalType(New->getType());
3447 }
3448
3449 // If this redeclaration makes the function inline, we may need to add it to
3450 // UndefinedButUsed.
3451 if (!Old->isInlined() && New->isInlined() &&
3452 !New->hasAttr<GNUInlineAttr>() &&
3453 !getLangOpts().GNUInline &&
3454 Old->isUsed(false) &&
3455 !Old->isDefined() && !New->isThisDeclarationADefinition())
3456 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3457 SourceLocation()));
3458
3459 // If this redeclaration makes it newly gnu_inline, we don't want to warn
3460 // about it.
3461 if (New->hasAttr<GNUInlineAttr>() &&
3462 Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3463 UndefinedButUsed.erase(Old->getCanonicalDecl());
3464 }
3465
3466 // If pass_object_size params don't match up perfectly, this isn't a valid
3467 // redeclaration.
3468 if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3469 !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3470 Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3471 << New->getDeclName();
3472 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3473 return true;
3474 }
3475
3476 if (getLangOpts().CPlusPlus) {
3477 // C++1z [over.load]p2
3478 // Certain function declarations cannot be overloaded:
3479 // -- Function declarations that differ only in the return type,
3480 // the exception specification, or both cannot be overloaded.
3481
3482 // Check the exception specifications match. This may recompute the type of
3483 // both Old and New if it resolved exception specifications, so grab the
3484 // types again after this. Because this updates the type, we do this before
3485 // any of the other checks below, which may update the "de facto" NewQType
3486 // but do not necessarily update the type of New.
3487 if (CheckEquivalentExceptionSpec(Old, New))
3488 return true;
3489 OldQType = Context.getCanonicalType(Old->getType());
3490 NewQType = Context.getCanonicalType(New->getType());
3491
3492 // Go back to the type source info to compare the declared return types,
3493 // per C++1y [dcl.type.auto]p13:
3494 // Redeclarations or specializations of a function or function template
3495 // with a declared return type that uses a placeholder type shall also
3496 // use that placeholder, not a deduced type.
3497 QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
3498 QualType NewDeclaredReturnType = New->getDeclaredReturnType();
3499 if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3500 canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
3501 OldDeclaredReturnType)) {
3502 QualType ResQT;
3503 if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3504 OldDeclaredReturnType->isObjCObjectPointerType())
3505 // FIXME: This does the wrong thing for a deduced return type.
3506 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3507 if (ResQT.isNull()) {
3508 if (New->isCXXClassMember() && New->isOutOfLine())
3509 Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3510 << New << New->getReturnTypeSourceRange();
3511 else
3512 Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3513 << New->getReturnTypeSourceRange();
3514 Diag(OldLocation, PrevDiag) << Old << Old->getType()
3515 << Old->getReturnTypeSourceRange();
3516 return true;
3517 }
3518 else
3519 NewQType = ResQT;
3520 }
3521
3522 QualType OldReturnType = OldType->getReturnType();
3523 QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
3524 if (OldReturnType != NewReturnType) {
3525 // If this function has a deduced return type and has already been
3526 // defined, copy the deduced value from the old declaration.
3527 AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
3528 if (OldAT && OldAT->isDeduced()) {
3529 New->setType(
3530 SubstAutoType(New->getType(),
3531 OldAT->isDependentType() ? Context.DependentTy
3532 : OldAT->getDeducedType()));
3533 NewQType = Context.getCanonicalType(
3534 SubstAutoType(NewQType,
3535 OldAT->isDependentType() ? Context.DependentTy
3536 : OldAT->getDeducedType()));
3537 }
3538 }
3539
3540 const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
3541 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
3542 if (OldMethod && NewMethod) {
3543 // Preserve triviality.
3544 NewMethod->setTrivial(OldMethod->isTrivial());
3545
3546 // MSVC allows explicit template specialization at class scope:
3547 // 2 CXXMethodDecls referring to the same function will be injected.
3548 // We don't want a redeclaration error.
3549 bool IsClassScopeExplicitSpecialization =
3550 OldMethod->isFunctionTemplateSpecialization() &&
3551 NewMethod->isFunctionTemplateSpecialization();
3552 bool isFriend = NewMethod->getFriendObjectKind();
3553
3554 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
3555 !IsClassScopeExplicitSpecialization) {
3556 // -- Member function declarations with the same name and the
3557 // same parameter types cannot be overloaded if any of them
3558 // is a static member function declaration.
3559 if (OldMethod->isStatic() != NewMethod->isStatic()) {
3560 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
3561 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3562 return true;
3563 }
3564
3565 // C++ [class.mem]p1:
3566 // [...] A member shall not be declared twice in the
3567 // member-specification, except that a nested class or member
3568 // class template can be declared and then later defined.
3569 if (!inTemplateInstantiation()) {
3570 unsigned NewDiag;
3571 if (isa<CXXConstructorDecl>(OldMethod))
3572 NewDiag = diag::err_constructor_redeclared;
3573 else if (isa<CXXDestructorDecl>(NewMethod))
3574 NewDiag = diag::err_destructor_redeclared;
3575 else if (isa<CXXConversionDecl>(NewMethod))
3576 NewDiag = diag::err_conv_function_redeclared;
3577 else
3578 NewDiag = diag::err_member_redeclared;
3579
3580 Diag(New->getLocation(), NewDiag);
3581 } else {
3582 Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
3583 << New << New->getType();
3584 }
3585 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3586 return true;
3587
3588 // Complain if this is an explicit declaration of a special
3589 // member that was initially declared implicitly.
3590 //
3591 // As an exception, it's okay to befriend such methods in order
3592 // to permit the implicit constructor/destructor/operator calls.
3593 } else if (OldMethod->isImplicit()) {
3594 if (isFriend) {
3595 NewMethod->setImplicit();
3596 } else {
3597 Diag(NewMethod->getLocation(),
3598 diag::err_definition_of_implicitly_declared_member)
3599 << New << getSpecialMember(OldMethod);
3600 return true;
3601 }
3602 } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
3603 Diag(NewMethod->getLocation(),
3604 diag::err_definition_of_explicitly_defaulted_member)
3605 << getSpecialMember(OldMethod);
3606 return true;
3607 }
3608 }
3609
3610 // C++11 [dcl.attr.noreturn]p1:
3611 // The first declaration of a function shall specify the noreturn
3612 // attribute if any declaration of that function specifies the noreturn
3613 // attribute.
3614 const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
3615 if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
3616 Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
3617 Diag(Old->getFirstDecl()->getLocation(),
3618 diag::note_noreturn_missing_first_decl);
3619 }
3620
3621 // C++11 [dcl.attr.depend]p2:
3622 // The first declaration of a function shall specify the
3623 // carries_dependency attribute for its declarator-id if any declaration
3624 // of the function specifies the carries_dependency attribute.
3625 const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
3626 if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
3627 Diag(CDA->getLocation(),
3628 diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
3629 Diag(Old->getFirstDecl()->getLocation(),
3630 diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
3631 }
3632
3633 // (C++98 8.3.5p3):
3634 // All declarations for a function shall agree exactly in both the
3635 // return type and the parameter-type-list.
3636 // We also want to respect all the extended bits except noreturn.
3637
3638 // noreturn should now match unless the old type info didn't have it.
3639 QualType OldQTypeForComparison = OldQType;
3640 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
3641 auto *OldType = OldQType->castAs<FunctionProtoType>();
3642 const FunctionType *OldTypeForComparison
3643 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
3644 OldQTypeForComparison = QualType(OldTypeForComparison, 0);
3645 assert(OldQTypeForComparison.isCanonical())((OldQTypeForComparison.isCanonical()) ? static_cast<void>
(0) : __assert_fail ("OldQTypeForComparison.isCanonical()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 3645, __PRETTY_FUNCTION__))
;
3646 }
3647
3648 if (haveIncompatibleLanguageLinkages(Old, New)) {
3649 // As a special case, retain the language linkage from previous
3650 // declarations of a friend function as an extension.
3651 //
3652 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
3653 // and is useful because there's otherwise no way to specify language
3654 // linkage within class scope.
3655 //
3656 // Check cautiously as the friend object kind isn't yet complete.
3657 if (New->getFriendObjectKind() != Decl::FOK_None) {
3658 Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
3659 Diag(OldLocation, PrevDiag);
3660 } else {
3661 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3662 Diag(OldLocation, PrevDiag);
3663 return true;
3664 }
3665 }
3666
3667 // If the function types are compatible, merge the declarations. Ignore the
3668 // exception specifier because it was already checked above in
3669 // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics
3670 // about incompatible types under -fms-compatibility.
3671 if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison,
3672 NewQType))
3673 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3674
3675 // If the types are imprecise (due to dependent constructs in friends or
3676 // local extern declarations), it's OK if they differ. We'll check again
3677 // during instantiation.
3678 if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
3679 return false;
3680
3681 // Fall through for conflicting redeclarations and redefinitions.
3682 }
3683
3684 // C: Function types need to be compatible, not identical. This handles
3685 // duplicate function decls like "void f(int); void f(enum X);" properly.
3686 if (!getLangOpts().CPlusPlus &&
3687 Context.typesAreCompatible(OldQType, NewQType)) {
3688 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
3689 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
3690 const FunctionProtoType *OldProto = nullptr;
3691 if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
3692 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
3693 // The old declaration provided a function prototype, but the
3694 // new declaration does not. Merge in the prototype.
3695 assert(!OldProto->hasExceptionSpec() && "Exception spec in C")((!OldProto->hasExceptionSpec() && "Exception spec in C"
) ? static_cast<void> (0) : __assert_fail ("!OldProto->hasExceptionSpec() && \"Exception spec in C\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 3695, __PRETTY_FUNCTION__))
;
3696 SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
3697 NewQType =
3698 Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
3699 OldProto->getExtProtoInfo());
3700 New->setType(NewQType);
3701 New->setHasInheritedPrototype();
3702
3703 // Synthesize parameters with the same types.
3704 SmallVector<ParmVarDecl*, 16> Params;
3705 for (const auto &ParamType : OldProto->param_types()) {
3706 ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
3707 SourceLocation(), nullptr,
3708 ParamType, /*TInfo=*/nullptr,
3709 SC_None, nullptr);
3710 Param->setScopeInfo(0, Params.size());
3711 Param->setImplicit();
3712 Params.push_back(Param);
3713 }
3714
3715 New->setParams(Params);
3716 }
3717
3718 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3719 }
3720
3721 // Check if the function types are compatible when pointer size address
3722 // spaces are ignored.
3723 if (Context.hasSameFunctionTypeIgnoringPtrSizes(OldQType, NewQType))
3724 return false;
3725
3726 // GNU C permits a K&R definition to follow a prototype declaration
3727 // if the declared types of the parameters in the K&R definition
3728 // match the types in the prototype declaration, even when the
3729 // promoted types of the parameters from the K&R definition differ
3730 // from the types in the prototype. GCC then keeps the types from
3731 // the prototype.
3732 //
3733 // If a variadic prototype is followed by a non-variadic K&R definition,
3734 // the K&R definition becomes variadic. This is sort of an edge case, but
3735 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
3736 // C99 6.9.1p8.
3737 if (!getLangOpts().CPlusPlus &&
3738 Old->hasPrototype() && !New->hasPrototype() &&
3739 New->getType()->getAs<FunctionProtoType>() &&
3740 Old->getNumParams() == New->getNumParams()) {
3741 SmallVector<QualType, 16> ArgTypes;
3742 SmallVector<GNUCompatibleParamWarning, 16> Warnings;
3743 const FunctionProtoType *OldProto
3744 = Old->getType()->getAs<FunctionProtoType>();
3745 const FunctionProtoType *NewProto
3746 = New->getType()->getAs<FunctionProtoType>();
3747
3748 // Determine whether this is the GNU C extension.
3749 QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
3750 NewProto->getReturnType());
3751 bool LooseCompatible = !MergedReturn.isNull();
3752 for (unsigned Idx = 0, End = Old->getNumParams();
3753 LooseCompatible && Idx != End; ++Idx) {
3754 ParmVarDecl *OldParm = Old->getParamDecl(Idx);
3755 ParmVarDecl *NewParm = New->getParamDecl(Idx);
3756 if (Context.typesAreCompatible(OldParm->getType(),
3757 NewProto->getParamType(Idx))) {
3758 ArgTypes.push_back(NewParm->getType());
3759 } else if (Context.typesAreCompatible(OldParm->getType(),
3760 NewParm->getType(),
3761 /*CompareUnqualified=*/true)) {
3762 GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3763 NewProto->getParamType(Idx) };
3764 Warnings.push_back(Warn);
3765 ArgTypes.push_back(NewParm->getType());
3766 } else
3767 LooseCompatible = false;
3768 }
3769
3770 if (LooseCompatible) {
3771 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3772 Diag(Warnings[Warn].NewParm->getLocation(),
3773 diag::ext_param_promoted_not_compatible_with_prototype)
3774 << Warnings[Warn].PromotedType
3775 << Warnings[Warn].OldParm->getType();
3776 if (Warnings[Warn].OldParm->getLocation().isValid())
3777 Diag(Warnings[Warn].OldParm->getLocation(),
3778 diag::note_previous_declaration);
3779 }
3780
3781 if (MergeTypeWithOld)
3782 New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3783 OldProto->getExtProtoInfo()));
3784 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3785 }
3786
3787 // Fall through to diagnose conflicting types.
3788 }
3789
3790 // A function that has already been declared has been redeclared or
3791 // defined with a different type; show an appropriate diagnostic.
3792
3793 // If the previous declaration was an implicitly-generated builtin
3794 // declaration, then at the very least we should use a specialized note.
3795 unsigned BuiltinID;
3796 if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3797 // If it's actually a library-defined builtin function like 'malloc'
3798 // or 'printf', just warn about the incompatible redeclaration.
3799 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3800 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3801 Diag(OldLocation, diag::note_previous_builtin_declaration)
3802 << Old << Old->getType();
3803 return false;
3804 }
3805
3806 PrevDiag = diag::note_previous_builtin_declaration;
3807 }
3808
3809 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3810 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3811 return true;
3812}
3813
3814/// Completes the merge of two function declarations that are
3815/// known to be compatible.
3816///
3817/// This routine handles the merging of attributes and other
3818/// properties of function declarations from the old declaration to
3819/// the new declaration, once we know that New is in fact a
3820/// redeclaration of Old.
3821///
3822/// \returns false
3823bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3824 Scope *S, bool MergeTypeWithOld) {
3825 // Merge the attributes
3826 mergeDeclAttributes(New, Old);
3827
3828 // Merge "pure" flag.
3829 if (Old->isPure())
3830 New->setPure();
3831
3832 // Merge "used" flag.
3833 if (Old->getMostRecentDecl()->isUsed(false))
3834 New->setIsUsed();
3835
3836 // Merge attributes from the parameters. These can mismatch with K&R
3837 // declarations.
3838 if (New->getNumParams() == Old->getNumParams())
3839 for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
3840 ParmVarDecl *NewParam = New->getParamDecl(i);
3841 ParmVarDecl *OldParam = Old->getParamDecl(i);
3842 mergeParamDeclAttributes(NewParam, OldParam, *this);
3843 mergeParamDeclTypes(NewParam, OldParam, *this);
3844 }
3845
3846 if (getLangOpts().CPlusPlus)
3847 return MergeCXXFunctionDecl(New, Old, S);
3848
3849 // Merge the function types so the we get the composite types for the return
3850 // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3851 // was visible.
3852 QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3853 if (!Merged.isNull() && MergeTypeWithOld)
3854 New->setType(Merged);
3855
3856 return false;
3857}
3858
3859void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3860 ObjCMethodDecl *oldMethod) {
3861 // Merge the attributes, including deprecated/unavailable
3862 AvailabilityMergeKind MergeKind =
3863 isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
3864 ? AMK_ProtocolImplementation
3865 : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3866 : AMK_Override;
3867
3868 mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3869
3870 // Merge attributes from the parameters.
3871 ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3872 oe = oldMethod->param_end();
3873 for (ObjCMethodDecl::param_iterator
3874 ni = newMethod->param_begin(), ne = newMethod->param_end();
3875 ni != ne && oi != oe; ++ni, ++oi)
3876 mergeParamDeclAttributes(*ni, *oi, *this);
3877
3878 CheckObjCMethodOverride(newMethod, oldMethod);
3879}
3880
3881static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
3882 assert(!S.Context.hasSameType(New->getType(), Old->getType()))((!S.Context.hasSameType(New->getType(), Old->getType()
)) ? static_cast<void> (0) : __assert_fail ("!S.Context.hasSameType(New->getType(), Old->getType())"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 3882, __PRETTY_FUNCTION__))
;
3883
3884 S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
3885 ? diag::err_redefinition_different_type
3886 : diag::err_redeclaration_different_type)
3887 << New->getDeclName() << New->getType() << Old->getType();
3888
3889 diag::kind PrevDiag;
3890 SourceLocation OldLocation;
3891 std::tie(PrevDiag, OldLocation)
3892 = getNoteDiagForInvalidRedeclaration(Old, New);
3893 S.Diag(OldLocation, PrevDiag);
3894 New->setInvalidDecl();
3895}
3896
3897/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3898/// scope as a previous declaration 'Old'. Figure out how to merge their types,
3899/// emitting diagnostics as appropriate.
3900///
3901/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3902/// to here in AddInitializerToDecl. We can't check them before the initializer
3903/// is attached.
3904void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3905 bool MergeTypeWithOld) {
3906 if (New->isInvalidDecl() || Old->isInvalidDecl())
3907 return;
3908
3909 QualType MergedT;
3910 if (getLangOpts().CPlusPlus) {
3911 if (New->getType()->isUndeducedType()) {
3912 // We don't know what the new type is until the initializer is attached.
3913 return;
3914 } else if (Context.hasSameType(New->getType(), Old->getType())) {
3915 // These could still be something that needs exception specs checked.
3916 return MergeVarDeclExceptionSpecs(New, Old);
3917 }
3918 // C++ [basic.link]p10:
3919 // [...] the types specified by all declarations referring to a given
3920 // object or function shall be identical, except that declarations for an
3921 // array object can specify array types that differ by the presence or
3922 // absence of a major array bound (8.3.4).
3923 else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
3924 const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3925 const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3926
3927 // We are merging a variable declaration New into Old. If it has an array
3928 // bound, and that bound differs from Old's bound, we should diagnose the
3929 // mismatch.
3930 if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
3931 for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
3932 PrevVD = PrevVD->getPreviousDecl()) {
3933 QualType PrevVDTy = PrevVD->getType();
3934 if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
3935 continue;
3936
3937 if (!Context.hasSameType(New->getType(), PrevVDTy))
3938 return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
3939 }
3940 }
3941
3942 if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
3943 if (Context.hasSameType(OldArray->getElementType(),
3944 NewArray->getElementType()))
3945 MergedT = New->getType();
3946 }
3947 // FIXME: Check visibility. New is hidden but has a complete type. If New
3948 // has no array bound, it should not inherit one from Old, if Old is not
3949 // visible.
3950 else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
3951 if (Context.hasSameType(OldArray->getElementType(),
3952 NewArray->getElementType()))
3953 MergedT = Old->getType();
3954 }
3955 }
3956 else if (New->getType()->isObjCObjectPointerType() &&
3957 Old->getType()->isObjCObjectPointerType()) {
3958 MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3959 Old->getType());
3960 }
3961 } else {
3962 // C 6.2.7p2:
3963 // All declarations that refer to the same object or function shall have
3964 // compatible type.
3965 MergedT = Context.mergeTypes(New->getType(), Old->getType());
3966 }
3967 if (MergedT.isNull()) {
3968 // It's OK if we couldn't merge types if either type is dependent, for a
3969 // block-scope variable. In other cases (static data members of class
3970 // templates, variable templates, ...), we require the types to be
3971 // equivalent.
3972 // FIXME: The C++ standard doesn't say anything about this.
3973 if ((New->getType()->isDependentType() ||
3974 Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3975 // If the old type was dependent, we can't merge with it, so the new type
3976 // becomes dependent for now. We'll reproduce the original type when we
3977 // instantiate the TypeSourceInfo for the variable.
3978 if (!New->getType()->isDependentType() && MergeTypeWithOld)
3979 New->setType(Context.DependentTy);
3980 return;
3981 }
3982 return diagnoseVarDeclTypeMismatch(*this, New, Old);
3983 }
3984
3985 // Don't actually update the type on the new declaration if the old
3986 // declaration was an extern declaration in a different scope.
3987 if (MergeTypeWithOld)
3988 New->setType(MergedT);
3989}
3990
3991static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3992 LookupResult &Previous) {
3993 // C11 6.2.7p4:
3994 // For an identifier with internal or external linkage declared
3995 // in a scope in which a prior declaration of that identifier is
3996 // visible, if the prior declaration specifies internal or
3997 // external linkage, the type of the identifier at the later
3998 // declaration becomes the composite type.
3999 //
4000 // If the variable isn't visible, we do not merge with its type.
4001 if (Previous.isShadowed())
4002 return false;
4003
4004 if (S.getLangOpts().CPlusPlus) {
4005 // C++11 [dcl.array]p3:
4006 // If there is a preceding declaration of the entity in the same
4007 // scope in which the bound was specified, an omitted array bound
4008 // is taken to be the same as in that earlier declaration.
4009 return NewVD->isPreviousDeclInSameBlockScope() ||
4010 (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
4011 !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
4012 } else {
4013 // If the old declaration was function-local, don't merge with its
4014 // type unless we're in the same function.
4015 return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
4016 OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
4017 }
4018}
4019
4020/// MergeVarDecl - We just parsed a variable 'New' which has the same name
4021/// and scope as a previous declaration 'Old'. Figure out how to resolve this
4022/// situation, merging decls or emitting diagnostics as appropriate.
4023///
4024/// Tentative definition rules (C99 6.9.2p2) are checked by
4025/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
4026/// definitions here, since the initializer hasn't been attached.
4027///
4028void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
4029 // If the new decl is already invalid, don't do any other checking.
4030 if (New->isInvalidDecl())
4031 return;
4032
4033 if (!shouldLinkPossiblyHiddenDecl(Previous, New))
4034 return;
4035
4036 VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
4037
4038 // Verify the old decl was also a variable or variable template.
4039 VarDecl *Old = nullptr;
4040 VarTemplateDecl *OldTemplate = nullptr;
4041 if (Previous.isSingleResult()) {
4042 if (NewTemplate) {
4043 OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
4044 Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
4045
4046 if (auto *Shadow =
4047 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4048 if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
4049 return New->setInvalidDecl();
4050 } else {
4051 Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
4052
4053 if (auto *Shadow =
4054 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4055 if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
4056 return New->setInvalidDecl();
4057 }
4058 }
4059 if (!Old) {
4060 Diag(New->getLocation(), diag::err_redefinition_different_kind)
4061 << New->getDeclName();
4062 notePreviousDefinition(Previous.getRepresentativeDecl(),
4063 New->getLocation());
4064 return New->setInvalidDecl();
4065 }
4066
4067 // If the old declaration was found in an inline namespace and the new
4068 // declaration was qualified, update the DeclContext to match.
4069 adjustDeclContextForDeclaratorDecl(New, Old);
4070
4071 // Ensure the template parameters are compatible.
4072 if (NewTemplate &&
4073 !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
4074 OldTemplate->getTemplateParameters(),
4075 /*Complain=*/true, TPL_TemplateMatch))
4076 return New->setInvalidDecl();
4077
4078 // C++ [class.mem]p1:
4079 // A member shall not be declared twice in the member-specification [...]
4080 //
4081 // Here, we need only consider static data members.
4082 if (Old->isStaticDataMember() && !New->isOutOfLine()) {
4083 Diag(New->getLocation(), diag::err_duplicate_member)
4084 << New->getIdentifier();
4085 Diag(Old->getLocation(), diag::note_previous_declaration);
4086 New->setInvalidDecl();
4087 }
4088
4089 mergeDeclAttributes(New, Old);
4090 // Warn if an already-declared variable is made a weak_import in a subsequent
4091 // declaration
4092 if (New->hasAttr<WeakImportAttr>() &&
4093 Old->getStorageClass() == SC_None &&
4094 !Old->hasAttr<WeakImportAttr>()) {
4095 Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
4096 notePreviousDefinition(Old, New->getLocation());
4097 // Remove weak_import attribute on new declaration.
4098 New->dropAttr<WeakImportAttr>();
4099 }
4100
4101 if (New->hasAttr<InternalLinkageAttr>() &&
4102 !Old->hasAttr<InternalLinkageAttr>()) {
4103 Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
4104 << New->getDeclName();
4105 notePreviousDefinition(Old, New->getLocation());
4106 New->dropAttr<InternalLinkageAttr>();
4107 }
4108
4109 // Merge the types.
4110 VarDecl *MostRecent = Old->getMostRecentDecl();
4111 if (MostRecent != Old) {
4112 MergeVarDeclTypes(New, MostRecent,
4113 mergeTypeWithPrevious(*this, New, MostRecent, Previous));
4114 if (New->isInvalidDecl())
4115 return;
4116 }
4117
4118 MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
4119 if (New->isInvalidDecl())
4120 return;
4121
4122 diag::kind PrevDiag;
4123 SourceLocation OldLocation;
4124 std::tie(PrevDiag, OldLocation) =
4125 getNoteDiagForInvalidRedeclaration(Old, New);
4126
4127 // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
4128 if (New->getStorageClass() == SC_Static &&
4129 !New->isStaticDataMember() &&
4130 Old->hasExternalFormalLinkage()) {
4131 if (getLangOpts().MicrosoftExt) {
4132 Diag(New->getLocation(), diag::ext_static_non_static)
4133 << New->getDeclName();
4134 Diag(OldLocation, PrevDiag);
4135 } else {
4136 Diag(New->getLocation(), diag::err_static_non_static)
4137 << New->getDeclName();
4138 Diag(OldLocation, PrevDiag);
4139 return New->setInvalidDecl();
4140 }
4141 }
4142 // C99 6.2.2p4:
4143 // For an identifier declared with the storage-class specifier
4144 // extern in a scope in which a prior declaration of that
4145 // identifier is visible,23) if the prior declaration specifies
4146 // internal or external linkage, the linkage of the identifier at
4147 // the later declaration is the same as the linkage specified at
4148 // the prior declaration. If no prior declaration is visible, or
4149 // if the prior declaration specifies no linkage, then the
4150 // identifier has external linkage.
4151 if (New->hasExternalStorage() && Old->hasLinkage())
4152 /* Okay */;
4153 else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
4154 !New->isStaticDataMember() &&
4155 Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
4156 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
4157 Diag(OldLocation, PrevDiag);
4158 return New->setInvalidDecl();
4159 }
4160
4161 // Check if extern is followed by non-extern and vice-versa.
4162 if (New->hasExternalStorage() &&
4163 !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
4164 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
4165 Diag(OldLocation, PrevDiag);
4166 return New->setInvalidDecl();
4167 }
4168 if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
4169 !New->hasExternalStorage()) {
4170 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
4171 Diag(OldLocation, PrevDiag);
4172 return New->setInvalidDecl();
4173 }
4174
4175 if (CheckRedeclarationModuleOwnership(New, Old))
4176 return;
4177
4178 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
4179
4180 // FIXME: The test for external storage here seems wrong? We still
4181 // need to check for mismatches.
4182 if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
4183 // Don't complain about out-of-line definitions of static members.
4184 !(Old->getLexicalDeclContext()->isRecord() &&
4185 !New->getLexicalDeclContext()->isRecord())) {
4186 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
4187 Diag(OldLocation, PrevDiag);
4188 return New->setInvalidDecl();
4189 }
4190
4191 if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
4192 if (VarDecl *Def = Old->getDefinition()) {
4193 // C++1z [dcl.fcn.spec]p4:
4194 // If the definition of a variable appears in a translation unit before
4195 // its first declaration as inline, the program is ill-formed.
4196 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
4197 Diag(Def->getLocation(), diag::note_previous_definition);
4198 }
4199 }
4200
4201 // If this redeclaration makes the variable inline, we may need to add it to
4202 // UndefinedButUsed.
4203 if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
4204 !Old->getDefinition() && !New->isThisDeclarationADefinition())
4205 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
4206 SourceLocation()));
4207
4208 if (New->getTLSKind() != Old->getTLSKind()) {
4209 if (!Old->getTLSKind()) {
4210 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
4211 Diag(OldLocation, PrevDiag);
4212 } else if (!New->getTLSKind()) {
4213 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
4214 Diag(OldLocation, PrevDiag);
4215 } else {
4216 // Do not allow redeclaration to change the variable between requiring
4217 // static and dynamic initialization.
4218 // FIXME: GCC allows this, but uses the TLS keyword on the first
4219 // declaration to determine the kind. Do we need to be compatible here?
4220 Diag(New->getLocation(), diag::err_thread_thread_different_kind)
4221 << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
4222 Diag(OldLocation, PrevDiag);
4223 }
4224 }
4225
4226 // C++ doesn't have tentative definitions, so go right ahead and check here.
4227 if (getLangOpts().CPlusPlus &&
4228 New->isThisDeclarationADefinition() == VarDecl::Definition) {
4229 if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
4230 Old->getCanonicalDecl()->isConstexpr()) {
4231 // This definition won't be a definition any more once it's been merged.
4232 Diag(New->getLocation(),
4233 diag::warn_deprecated_redundant_constexpr_static_def);
4234 } else if (VarDecl *Def = Old->getDefinition()) {
4235 if (checkVarDeclRedefinition(Def, New))
4236 return;
4237 }
4238 }
4239
4240 if (haveIncompatibleLanguageLinkages(Old, New)) {
4241 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4242 Diag(OldLocation, PrevDiag);
4243 New->setInvalidDecl();
4244 return;
4245 }
4246
4247 // Merge "used" flag.
4248 if (Old->getMostRecentDecl()->isUsed(false))
4249 New->setIsUsed();
4250
4251 // Keep a chain of previous declarations.
4252 New->setPreviousDecl(Old);
4253 if (NewTemplate)
4254 NewTemplate->setPreviousDecl(OldTemplate);
4255
4256 // Inherit access appropriately.
4257 New->setAccess(Old->getAccess());
4258 if (NewTemplate)
4259 NewTemplate->setAccess(New->getAccess());
4260
4261 if (Old->isInline())
4262 New->setImplicitlyInline();
4263}
4264
4265void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4266 SourceManager &SrcMgr = getSourceManager();
4267 auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4268 auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4269 auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4270 auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first);
4271 auto &HSI = PP.getHeaderSearchInfo();
4272 StringRef HdrFilename =
4273 SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4274
4275 auto noteFromModuleOrInclude = [&](Module *Mod,
4276 SourceLocation IncLoc) -> bool {
4277 // Redefinition errors with modules are common with non modular mapped
4278 // headers, example: a non-modular header H in module A that also gets
4279 // included directly in a TU. Pointing twice to the same header/definition
4280 // is confusing, try to get better diagnostics when modules is on.
4281 if (IncLoc.isValid()) {
4282 if (Mod) {
4283 Diag(IncLoc, diag::note_redefinition_modules_same_file)
4284 << HdrFilename.str() << Mod->getFullModuleName();
4285 if (!Mod->DefinitionLoc.isInvalid())
4286 Diag(Mod->DefinitionLoc, diag::note_defined_here)
4287 << Mod->getFullModuleName();
4288 } else {
4289 Diag(IncLoc, diag::note_redefinition_include_same_file)
4290 << HdrFilename.str();
4291 }
4292 return true;
4293 }
4294
4295 return false;
4296 };
4297
4298 // Is it the same file and same offset? Provide more information on why
4299 // this leads to a redefinition error.
4300 if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4301 SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4302 SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4303 bool EmittedDiag =
4304 noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4305 EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4306
4307 // If the header has no guards, emit a note suggesting one.
4308 if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld))
4309 Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4310
4311 if (EmittedDiag)
4312 return;
4313 }
4314
4315 // Redefinition coming from different files or couldn't do better above.
4316 if (Old->getLocation().isValid())
4317 Diag(Old->getLocation(), diag::note_previous_definition);
4318}
4319
4320/// We've just determined that \p Old and \p New both appear to be definitions
4321/// of the same variable. Either diagnose or fix the problem.
4322bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4323 if (!hasVisibleDefinition(Old) &&
4324 (New->getFormalLinkage() == InternalLinkage ||
4325 New->isInline() ||
4326 New->getDescribedVarTemplate() ||
4327 New->getNumTemplateParameterLists() ||
4328 New->getDeclContext()->isDependentContext())) {
4329 // The previous definition is hidden, and multiple definitions are
4330 // permitted (in separate TUs). Demote this to a declaration.
4331 New->demoteThisDefinitionToDeclaration();
4332
4333 // Make the canonical definition visible.
4334 if (auto *OldTD = Old->getDescribedVarTemplate())
4335 makeMergedDefinitionVisible(OldTD);
4336 makeMergedDefinitionVisible(Old);
4337 return false;
4338 } else {
4339 Diag(New->getLocation(), diag::err_redefinition) << New;
4340 notePreviousDefinition(Old, New->getLocation());
4341 New->setInvalidDecl();
4342 return true;
4343 }
4344}
4345
4346/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4347/// no declarator (e.g. "struct foo;") is parsed.
4348Decl *
4349Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4350 RecordDecl *&AnonRecord) {
4351 return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false,
4352 AnonRecord);
4353}
4354
4355// The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4356// disambiguate entities defined in different scopes.
4357// While the VS2015 ABI fixes potential miscompiles, it is also breaks
4358// compatibility.
4359// We will pick our mangling number depending on which version of MSVC is being
4360// targeted.
4361static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4362 return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4363 ? S->getMSCurManglingNumber()
4364 : S->getMSLastManglingNumber();
4365}
4366
4367void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4368 if (!Context.getLangOpts().CPlusPlus)
4369 return;
4370
4371 if (isa<CXXRecordDecl>(Tag->getParent())) {
4372 // If this tag is the direct child of a class, number it if
4373 // it is anonymous.
4374 if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4375 return;
4376 MangleNumberingContext &MCtx =
4377 Context.getManglingNumberContext(Tag->getParent());
4378 Context.setManglingNumber(
4379 Tag, MCtx.getManglingNumber(
4380 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4381 return;
4382 }
4383
4384 // If this tag isn't a direct child of a class, number it if it is local.
4385 MangleNumberingContext *MCtx;
4386 Decl *ManglingContextDecl;
4387 std::tie(MCtx, ManglingContextDecl) =
4388 getCurrentMangleNumberContext(Tag->getDeclContext());
4389 if (MCtx) {
4390 Context.setManglingNumber(
4391 Tag, MCtx->getManglingNumber(
4392 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4393 }
4394}
4395
4396namespace {
4397struct NonCLikeKind {
4398 enum {
4399 None,
4400 BaseClass,
4401 DefaultMemberInit,
4402 Lambda,
4403 Friend,
4404 OtherMember,
4405 Invalid,
4406 } Kind = None;
4407 SourceRange Range;
4408
4409 explicit operator bool() { return Kind != None; }
4410};
4411}
4412
4413/// Determine whether a class is C-like, according to the rules of C++
4414/// [dcl.typedef] for anonymous classes with typedef names for linkage.
4415static NonCLikeKind getNonCLikeKindForAnonymousStruct(const CXXRecordDecl *RD) {
4416 if (RD->isInvalidDecl())
4417 return {NonCLikeKind::Invalid, {}};
4418
4419 // C++ [dcl.typedef]p9: [P1766R1]
4420 // An unnamed class with a typedef name for linkage purposes shall not
4421 //
4422 // -- have any base classes
4423 if (RD->getNumBases())
4424 return {NonCLikeKind::BaseClass,
4425 SourceRange(RD->bases_begin()->getBeginLoc(),
4426 RD->bases_end()[-1].getEndLoc())};
4427 bool Invalid = false;
4428 for (Decl *D : RD->decls()) {
4429 // Don't complain about things we already diagnosed.
4430 if (D->isInvalidDecl()) {
4431 Invalid = true;
4432 continue;
4433 }
4434
4435 // -- have any [...] default member initializers
4436 if (auto *FD = dyn_cast<FieldDecl>(D)) {
4437 if (FD->hasInClassInitializer()) {
4438 auto *Init = FD->getInClassInitializer();
4439 return {NonCLikeKind::DefaultMemberInit,
4440 Init ? Init->getSourceRange() : D->getSourceRange()};
4441 }
4442 continue;
4443 }
4444
4445 // FIXME: We don't allow friend declarations. This violates the wording of
4446 // P1766, but not the intent.
4447 if (isa<FriendDecl>(D))
4448 return {NonCLikeKind::Friend, D->getSourceRange()};
4449
4450 // -- declare any members other than non-static data members, member
4451 // enumerations, or member classes,
4452 if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D) ||
4453 isa<EnumDecl>(D))
4454 continue;
4455 auto *MemberRD = dyn_cast<CXXRecordDecl>(D);
4456 if (!MemberRD) {
4457 if (D->isImplicit())
4458 continue;
4459 return {NonCLikeKind::OtherMember, D->getSourceRange()};
4460 }
4461
4462 // -- contain a lambda-expression,
4463 if (MemberRD->isLambda())
4464 return {NonCLikeKind::Lambda, MemberRD->getSourceRange()};
4465
4466 // and all member classes shall also satisfy these requirements
4467 // (recursively).
4468 if (MemberRD->isThisDeclarationADefinition()) {
4469 if (auto Kind = getNonCLikeKindForAnonymousStruct(MemberRD))
4470 return Kind;
4471 }
4472 }
4473
4474 return {Invalid ? NonCLikeKind::Invalid : NonCLikeKind::None, {}};
4475}
4476
4477void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
4478 TypedefNameDecl *NewTD) {
4479 if (TagFromDeclSpec->isInvalidDecl())
4480 return;
4481
4482 // Do nothing if the tag already has a name for linkage purposes.
4483 if (TagFromDeclSpec->hasNameForLinkage())
4484 return;
4485
4486 // A well-formed anonymous tag must always be a TUK_Definition.
4487 assert(TagFromDeclSpec->isThisDeclarationADefinition())((TagFromDeclSpec->isThisDeclarationADefinition()) ? static_cast
<void> (0) : __assert_fail ("TagFromDeclSpec->isThisDeclarationADefinition()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 4487, __PRETTY_FUNCTION__))
;
4488
4489 // The type must match the tag exactly; no qualifiers allowed.
4490 if (!Context.hasSameType(NewTD->getUnderlyingType(),
4491 Context.getTagDeclType(TagFromDeclSpec))) {
4492 if (getLangOpts().CPlusPlus)
4493 Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
4494 return;
4495 }
4496
4497 // C++ [dcl.typedef]p9: [P1766R1, applied as DR]
4498 // An unnamed class with a typedef name for linkage purposes shall [be
4499 // C-like].
4500 //
4501 // FIXME: Also diagnose if we've already computed the linkage. That ideally
4502 // shouldn't happen, but there are constructs that the language rule doesn't
4503 // disallow for which we can't reasonably avoid computing linkage early.
4504 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TagFromDeclSpec);
4505 NonCLikeKind NonCLike = RD ? getNonCLikeKindForAnonymousStruct(RD)
4506 : NonCLikeKind();
4507 bool ChangesLinkage = TagFromDeclSpec->hasLinkageBeenComputed();
4508 if (NonCLike || ChangesLinkage) {
4509 if (NonCLike.Kind == NonCLikeKind::Invalid)
4510 return;
4511
4512 unsigned DiagID = diag::ext_non_c_like_anon_struct_in_typedef;
4513 if (ChangesLinkage) {
4514 // If the linkage changes, we can't accept this as an extension.
4515 if (NonCLike.Kind == NonCLikeKind::None)
4516 DiagID = diag::err_typedef_changes_linkage;
4517 else
4518 DiagID = diag::err_non_c_like_anon_struct_in_typedef;
4519 }
4520
4521 SourceLocation FixitLoc =
4522 getLocForEndOfToken(TagFromDeclSpec->getInnerLocStart());
4523 llvm::SmallString<40> TextToInsert;
4524 TextToInsert += ' ';
4525 TextToInsert += NewTD->getIdentifier()->getName();
4526
4527 Diag(FixitLoc, DiagID)
4528 << isa<TypeAliasDecl>(NewTD)
4529 << FixItHint::CreateInsertion(FixitLoc, TextToInsert);
4530 if (NonCLike.Kind != NonCLikeKind::None) {
4531 Diag(NonCLike.Range.getBegin(), diag::note_non_c_like_anon_struct)
4532 << NonCLike.Kind - 1 << NonCLike.Range;
4533 }
4534 Diag(NewTD->getLocation(), diag::note_typedef_for_linkage_here)
4535 << NewTD << isa<TypeAliasDecl>(NewTD);
4536
4537 if (ChangesLinkage)
4538 return;
4539 }
4540
4541 // Otherwise, set this as the anon-decl typedef for the tag.
4542 TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
4543}
4544
4545static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
4546 switch (T) {
4547 case DeclSpec::TST_class:
4548 return 0;
4549 case DeclSpec::TST_struct:
4550 return 1;
4551 case DeclSpec::TST_interface:
4552 return 2;
4553 case DeclSpec::TST_union:
4554 return 3;
4555 case DeclSpec::TST_enum:
4556 return 4;
4557 default:
4558 llvm_unreachable("unexpected type specifier")::llvm::llvm_unreachable_internal("unexpected type specifier"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 4558)
;
4559 }
4560}
4561
4562/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4563/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
4564/// parameters to cope with template friend declarations.
4565Decl *
4566Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4567 MultiTemplateParamsArg TemplateParams,
4568 bool IsExplicitInstantiation,
4569 RecordDecl *&AnonRecord) {
4570 Decl *TagD = nullptr;
4571 TagDecl *Tag = nullptr;
4572 if (DS.getTypeSpecType() == DeclSpec::TST_class ||
4573 DS.getTypeSpecType() == DeclSpec::TST_struct ||
4574 DS.getTypeSpecType() == DeclSpec::TST_interface ||
4575 DS.getTypeSpecType() == DeclSpec::TST_union ||
4576 DS.getTypeSpecType() == DeclSpec::TST_enum) {
4577 TagD = DS.getRepAsDecl();
4578
4579 if (!TagD) // We probably had an error
4580 return nullptr;
4581
4582 // Note that the above type specs guarantee that the
4583 // type rep is a Decl, whereas in many of the others
4584 // it's a Type.
4585 if (isa<TagDecl>(TagD))
4586 Tag = cast<TagDecl>(TagD);
4587 else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
4588 Tag = CTD->getTemplatedDecl();
4589 }
4590
4591 if (Tag) {
4592 handleTagNumbering(Tag, S);
4593 Tag->setFreeStanding();
4594 if (Tag->isInvalidDecl())
4595 return Tag;
4596 }
4597
4598 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
4599 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
4600 // or incomplete types shall not be restrict-qualified."
4601 if (TypeQuals & DeclSpec::TQ_restrict)
4602 Diag(DS.getRestrictSpecLoc(),
4603 diag::err_typecheck_invalid_restrict_not_pointer_noarg)
4604 << DS.getSourceRange();
4605 }
4606
4607 if (DS.isInlineSpecified())
4608 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4609 << getLangOpts().CPlusPlus17;
4610
4611 if (DS.hasConstexprSpecifier()) {
4612 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
4613 // and definitions of functions and variables.
4614 // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to
4615 // the declaration of a function or function template
4616 if (Tag)
4617 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
4618 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType())
4619 << static_cast<int>(DS.getConstexprSpecifier());
4620 else
4621 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind)
4622 << static_cast<int>(DS.getConstexprSpecifier());
4623 // Don't emit warnings after this error.
4624 return TagD;
4625 }
4626
4627 DiagnoseFunctionSpecifiers(DS);
4628
4629 if (DS.isFriendSpecified()) {
4630 // If we're dealing with a decl but not a TagDecl, assume that
4631 // whatever routines created it handled the friendship aspect.
4632 if (TagD && !Tag)
4633 return nullptr;
4634 return ActOnFriendTypeDecl(S, DS, TemplateParams);
4635 }
4636
4637 const CXXScopeSpec &SS = DS.getTypeSpecScope();
4638 bool IsExplicitSpecialization =
4639 !TemplateParams.empty() && TemplateParams.back()->size() == 0;
4640 if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
4641 !IsExplicitInstantiation && !IsExplicitSpecialization &&
4642 !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
4643 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
4644 // nested-name-specifier unless it is an explicit instantiation
4645 // or an explicit specialization.
4646 //
4647 // FIXME: We allow class template partial specializations here too, per the
4648 // obvious intent of DR1819.
4649 //
4650 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
4651 Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
4652 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
4653 return nullptr;
4654 }
4655
4656 // Track whether this decl-specifier declares anything.
4657 bool DeclaresAnything = true;
4658
4659 // Handle anonymous struct definitions.
4660 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
4661 if (!Record->getDeclName() && Record->isCompleteDefinition() &&
4662 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
4663 if (getLangOpts().CPlusPlus ||
4664 Record->getDeclContext()->isRecord()) {
4665 // If CurContext is a DeclContext that can contain statements,
4666 // RecursiveASTVisitor won't visit the decls that
4667 // BuildAnonymousStructOrUnion() will put into CurContext.
4668 // Also store them here so that they can be part of the
4669 // DeclStmt that gets created in this case.
4670 // FIXME: Also return the IndirectFieldDecls created by
4671 // BuildAnonymousStructOr union, for the same reason?
4672 if (CurContext->isFunctionOrMethod())
4673 AnonRecord = Record;
4674 return BuildAnonymousStructOrUnion(S, DS, AS, Record,
4675 Context.getPrintingPolicy());
4676 }
4677
4678 DeclaresAnything = false;
4679 }
4680 }
4681
4682 // C11 6.7.2.1p2:
4683 // A struct-declaration that does not declare an anonymous structure or
4684 // anonymous union shall contain a struct-declarator-list.
4685 //
4686 // This rule also existed in C89 and C99; the grammar for struct-declaration
4687 // did not permit a struct-declaration without a struct-declarator-list.
4688 if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
4689 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
4690 // Check for Microsoft C extension: anonymous struct/union member.
4691 // Handle 2 kinds of anonymous struct/union:
4692 // struct STRUCT;
4693 // union UNION;
4694 // and
4695 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
4696 // UNION_TYPE; <- where UNION_TYPE is a typedef union.
4697 if ((Tag && Tag->getDeclName()) ||
4698 DS.getTypeSpecType() == DeclSpec::TST_typename) {
4699 RecordDecl *Record = nullptr;
4700 if (Tag)
4701 Record = dyn_cast<RecordDecl>(Tag);
4702 else if (const RecordType *RT =
4703 DS.getRepAsType().get()->getAsStructureType())
4704 Record = RT->getDecl();
4705 else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
4706 Record = UT->getDecl();
4707
4708 if (Record && getLangOpts().MicrosoftExt) {
4709 Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
4710 << Record->isUnion() << DS.getSourceRange();
4711 return BuildMicrosoftCAnonymousStruct(S, DS, Record);
4712 }
4713
4714 DeclaresAnything = false;
4715 }
4716 }
4717
4718 // Skip all the checks below if we have a type error.
4719 if (DS.getTypeSpecType() == DeclSpec::TST_error ||
4720 (TagD && TagD->isInvalidDecl()))
4721 return TagD;
4722
4723 if (getLangOpts().CPlusPlus &&
4724 DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
4725 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
4726 if (Enum->enumerator_begin() == Enum->enumerator_end() &&
4727 !Enum->getIdentifier() && !Enum->isInvalidDecl())
4728 DeclaresAnything = false;
4729
4730 if (!DS.isMissingDeclaratorOk()) {
4731 // Customize diagnostic for a typedef missing a name.
4732 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
4733 Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
4734 << DS.getSourceRange();
4735 else
4736 DeclaresAnything = false;
4737 }
4738
4739 if (DS.isModulePrivateSpecified() &&
4740 Tag && Tag->getDeclContext()->isFunctionOrMethod())
4741 Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
4742 << Tag->getTagKind()
4743 << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
4744
4745 ActOnDocumentableDecl(TagD);
4746
4747 // C 6.7/2:
4748 // A declaration [...] shall declare at least a declarator [...], a tag,
4749 // or the members of an enumeration.
4750 // C++ [dcl.dcl]p3:
4751 // [If there are no declarators], and except for the declaration of an
4752 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
4753 // names into the program, or shall redeclare a name introduced by a
4754 // previous declaration.
4755 if (!DeclaresAnything) {
4756 // In C, we allow this as a (popular) extension / bug. Don't bother
4757 // producing further diagnostics for redundant qualifiers after this.
4758 Diag(DS.getBeginLoc(), (IsExplicitInstantiation || !TemplateParams.empty())
4759 ? diag::err_no_declarators
4760 : diag::ext_no_declarators)
4761 << DS.getSourceRange();
4762 return TagD;
4763 }
4764
4765 // C++ [dcl.stc]p1:
4766 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the
4767 // init-declarator-list of the declaration shall not be empty.
4768 // C++ [dcl.fct.spec]p1:
4769 // If a cv-qualifier appears in a decl-specifier-seq, the
4770 // init-declarator-list of the declaration shall not be empty.
4771 //
4772 // Spurious qualifiers here appear to be valid in C.
4773 unsigned DiagID = diag::warn_standalone_specifier;
4774 if (getLangOpts().CPlusPlus)
4775 DiagID = diag::ext_standalone_specifier;
4776
4777 // Note that a linkage-specification sets a storage class, but
4778 // 'extern "C" struct foo;' is actually valid and not theoretically
4779 // useless.
4780 if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4781 if (SCS == DeclSpec::SCS_mutable)
4782 // Since mutable is not a viable storage class specifier in C, there is
4783 // no reason to treat it as an extension. Instead, diagnose as an error.
4784 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
4785 else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
4786 Diag(DS.getStorageClassSpecLoc(), DiagID)
4787 << DeclSpec::getSpecifierName(SCS);
4788 }
4789
4790 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
4791 Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
4792 << DeclSpec::getSpecifierName(TSCS);
4793 if (DS.getTypeQualifiers()) {
4794 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4795 Diag(DS.getConstSpecLoc(), DiagID) << "const";
4796 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4797 Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
4798 // Restrict is covered above.
4799 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4800 Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
4801 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4802 Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
4803 }
4804
4805 // Warn about ignored type attributes, for example:
4806 // __attribute__((aligned)) struct A;
4807 // Attributes should be placed after tag to apply to type declaration.
4808 if (!DS.getAttributes().empty()) {
4809 DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
4810 if (TypeSpecType == DeclSpec::TST_class ||
4811 TypeSpecType == DeclSpec::TST_struct ||
4812 TypeSpecType == DeclSpec::TST_interface ||
4813 TypeSpecType == DeclSpec::TST_union ||
4814 TypeSpecType == DeclSpec::TST_enum) {
4815 for (const ParsedAttr &AL : DS.getAttributes())
4816 Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored)
4817 << AL << GetDiagnosticTypeSpecifierID(TypeSpecType);
4818 }
4819 }
4820
4821 return TagD;
4822}
4823
4824/// We are trying to inject an anonymous member into the given scope;
4825/// check if there's an existing declaration that can't be overloaded.
4826///
4827/// \return true if this is a forbidden redeclaration
4828static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
4829 Scope *S,
4830 DeclContext *Owner,
4831 DeclarationName Name,
4832 SourceLocation NameLoc,
4833 bool IsUnion) {
4834 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
4835 Sema::ForVisibleRedeclaration);
4836 if (!SemaRef.LookupName(R, S)) return false;
4837
4838 // Pick a representative declaration.
4839 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
4840 assert(PrevDecl && "Expected a non-null Decl")((PrevDecl && "Expected a non-null Decl") ? static_cast
<void> (0) : __assert_fail ("PrevDecl && \"Expected a non-null Decl\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 4840, __PRETTY_FUNCTION__))
;
4841
4842 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
4843 return false;
4844
4845 SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
4846 << IsUnion << Name;
4847 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4848
4849 return true;
4850}
4851
4852/// InjectAnonymousStructOrUnionMembers - Inject the members of the
4853/// anonymous struct or union AnonRecord into the owning context Owner
4854/// and scope S. This routine will be invoked just after we realize
4855/// that an unnamed union or struct is actually an anonymous union or
4856/// struct, e.g.,
4857///
4858/// @code
4859/// union {
4860/// int i;
4861/// float f;
4862/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
4863/// // f into the surrounding scope.x
4864/// @endcode
4865///
4866/// This routine is recursive, injecting the names of nested anonymous
4867/// structs/unions into the owning context and scope as well.
4868static bool
4869InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
4870 RecordDecl *AnonRecord, AccessSpecifier AS,
4871 SmallVectorImpl<NamedDecl *> &Chaining) {
4872 bool Invalid = false;
4873
4874 // Look every FieldDecl and IndirectFieldDecl with a name.
4875 for (auto *D : AnonRecord->decls()) {
4876 if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
4877 cast<NamedDecl>(D)->getDeclName()) {
4878 ValueDecl *VD = cast<ValueDecl>(D);
4879 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
4880 VD->getLocation(),
4881 AnonRecord->isUnion())) {
4882 // C++ [class.union]p2:
4883 // The names of the members of an anonymous union shall be
4884 // distinct from the names of any other entity in the
4885 // scope in which the anonymous union is declared.
4886 Invalid = true;
4887 } else {
4888 // C++ [class.union]p2:
4889 // For the purpose of name lookup, after the anonymous union
4890 // definition, the members of the anonymous union are
4891 // considered to have been defined in the scope in which the
4892 // anonymous union is declared.
4893 unsigned OldChainingSize = Chaining.size();
4894 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
4895 Chaining.append(IF->chain_begin(), IF->chain_end());
4896 else
4897 Chaining.push_back(VD);
4898
4899 assert(Chaining.size() >= 2)((Chaining.size() >= 2) ? static_cast<void> (0) : __assert_fail
("Chaining.size() >= 2", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 4899, __PRETTY_FUNCTION__))
;
4900 NamedDecl **NamedChain =
4901 new (SemaRef.Context)NamedDecl*[Chaining.size()];
4902 for (unsigned i = 0; i < Chaining.size(); i++)
4903 NamedChain[i] = Chaining[i];
4904
4905 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
4906 SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
4907 VD->getType(), {NamedChain, Chaining.size()});
4908
4909 for (const auto *Attr : VD->attrs())
4910 IndirectField->addAttr(Attr->clone(SemaRef.Context));
4911
4912 IndirectField->setAccess(AS);
4913 IndirectField->setImplicit();
4914 SemaRef.PushOnScopeChains(IndirectField, S);
4915
4916 // That includes picking up the appropriate access specifier.
4917 if (AS != AS_none) IndirectField->setAccess(AS);
4918
4919 Chaining.resize(OldChainingSize);
4920 }
4921 }
4922 }
4923
4924 return Invalid;
4925}
4926
4927/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
4928/// a VarDecl::StorageClass. Any error reporting is up to the caller:
4929/// illegal input values are mapped to SC_None.
4930static StorageClass
4931StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
4932 DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
4933 assert(StorageClassSpec != DeclSpec::SCS_typedef &&((StorageClassSpec != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class VarDecl."
) ? static_cast<void> (0) : __assert_fail ("StorageClassSpec != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class VarDecl.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 4934, __PRETTY_FUNCTION__))
4934 "Parser allowed 'typedef' as storage class VarDecl.")((StorageClassSpec != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class VarDecl."
) ? static_cast<void> (0) : __assert_fail ("StorageClassSpec != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class VarDecl.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 4934, __PRETTY_FUNCTION__))
;
4935 switch (StorageClassSpec) {
4936 case DeclSpec::SCS_unspecified: return SC_None;
4937 case DeclSpec::SCS_extern:
4938 if (DS.isExternInLinkageSpec())
4939 return SC_None;
4940 return SC_Extern;
4941 case DeclSpec::SCS_static: return SC_Static;
4942 case DeclSpec::SCS_auto: return SC_Auto;
4943 case DeclSpec::SCS_register: return SC_Register;
4944 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4945 // Illegal SCSs map to None: error reporting is up to the caller.
4946 case DeclSpec::SCS_mutable: // Fall through.
4947 case DeclSpec::SCS_typedef: return SC_None;
4948 }
4949 llvm_unreachable("unknown storage class specifier")::llvm::llvm_unreachable_internal("unknown storage class specifier"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 4949)
;
4950}
4951
4952static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
4953 assert(Record->hasInClassInitializer())((Record->hasInClassInitializer()) ? static_cast<void>
(0) : __assert_fail ("Record->hasInClassInitializer()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 4953, __PRETTY_FUNCTION__))
;
4954
4955 for (const auto *I : Record->decls()) {
4956 const auto *FD = dyn_cast<FieldDecl>(I);
4957 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
4958 FD = IFD->getAnonField();
4959 if (FD && FD->hasInClassInitializer())
4960 return FD->getLocation();
4961 }
4962
4963 llvm_unreachable("couldn't find in-class initializer")::llvm::llvm_unreachable_internal("couldn't find in-class initializer"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 4963)
;
4964}
4965
4966static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4967 SourceLocation DefaultInitLoc) {
4968 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4969 return;
4970
4971 S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
4972 S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
4973}
4974
4975static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4976 CXXRecordDecl *AnonUnion) {
4977 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4978 return;
4979
4980 checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
4981}
4982
4983/// BuildAnonymousStructOrUnion - Handle the declaration of an
4984/// anonymous structure or union. Anonymous unions are a C++ feature
4985/// (C++ [class.union]) and a C11 feature; anonymous structures
4986/// are a C11 feature and GNU C++ extension.
4987Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
4988 AccessSpecifier AS,
4989 RecordDecl *Record,
4990 const PrintingPolicy &Policy) {
4991 DeclContext *Owner = Record->getDeclContext();
4992
4993 // Diagnose whether this anonymous struct/union is an extension.
4994 if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
4995 Diag(Record->getLocation(), diag::ext_anonymous_union);
4996 else if (!Record->isUnion() && getLangOpts().CPlusPlus)
4997 Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
4998 else if (!Record->isUnion() && !getLangOpts().C11)
4999 Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
5000
5001 // C and C++ require different kinds of checks for anonymous
5002 // structs/unions.
5003 bool Invalid = false;
5004 if (getLangOpts().CPlusPlus) {
5005 const char *PrevSpec = nullptr;
5006 if (Record->isUnion()) {
5007 // C++ [class.union]p6:
5008 // C++17 [class.union.anon]p2:
5009 // Anonymous unions declared in a named namespace or in the
5010 // global namespace shall be declared static.
5011 unsigned DiagID;
5012 DeclContext *OwnerScope = Owner->getRedeclContext();
5013 if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
5014 (OwnerScope->isTranslationUnit() ||
5015 (OwnerScope->isNamespace() &&
5016 !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
5017 Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
5018 << FixItHint::CreateInsertion(Record->getLocation(), "static ");
5019
5020 // Recover by adding 'static'.
5021 DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
5022 PrevSpec, DiagID, Policy);
5023 }
5024 // C++ [class.union]p6:
5025 // A storage class is not allowed in a declaration of an
5026 // anonymous union in a class scope.
5027 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
5028 isa<RecordDecl>(Owner)) {
5029 Diag(DS.getStorageClassSpecLoc(),
5030 diag::err_anonymous_union_with_storage_spec)
5031 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5032
5033 // Recover by removing the storage specifier.
5034 DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
5035 SourceLocation(),
5036 PrevSpec, DiagID, Context.getPrintingPolicy());
5037 }
5038 }
5039
5040 // Ignore const/volatile/restrict qualifiers.
5041 if (DS.getTypeQualifiers()) {
5042 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5043 Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
5044 << Record->isUnion() << "const"
5045 << FixItHint::CreateRemoval(DS.getConstSpecLoc());
5046 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5047 Diag(DS.getVolatileSpecLoc(),
5048 diag::ext_anonymous_struct_union_qualified)
5049 << Record->isUnion() << "volatile"
5050 << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
5051 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
5052 Diag(DS.getRestrictSpecLoc(),
5053 diag::ext_anonymous_struct_union_qualified)
5054 << Record->isUnion() << "restrict"
5055 << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
5056 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5057 Diag(DS.getAtomicSpecLoc(),
5058 diag::ext_anonymous_struct_union_qualified)
5059 << Record->isUnion() << "_Atomic"
5060 << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
5061 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
5062 Diag(DS.getUnalignedSpecLoc(),
5063 diag::ext_anonymous_struct_union_qualified)
5064 << Record->isUnion() << "__unaligned"
5065 << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
5066
5067 DS.ClearTypeQualifiers();
5068 }
5069
5070 // C++ [class.union]p2:
5071 // The member-specification of an anonymous union shall only
5072 // define non-static data members. [Note: nested types and
5073 // functions cannot be declared within an anonymous union. ]
5074 for (auto *Mem : Record->decls()) {
5075 // Ignore invalid declarations; we already diagnosed them.
5076 if (Mem->isInvalidDecl())
5077 continue;
5078
5079 if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
5080 // C++ [class.union]p3:
5081 // An anonymous union shall not have private or protected
5082 // members (clause 11).
5083 assert(FD->getAccess() != AS_none)((FD->getAccess() != AS_none) ? static_cast<void> (0
) : __assert_fail ("FD->getAccess() != AS_none", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 5083, __PRETTY_FUNCTION__))
;
5084 if (FD->getAccess() != AS_public) {
5085 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
5086 << Record->isUnion() << (FD->getAccess() == AS_protected);
5087 Invalid = true;
5088 }
5089
5090 // C++ [class.union]p1
5091 // An object of a class with a non-trivial constructor, a non-trivial
5092 // copy constructor, a non-trivial destructor, or a non-trivial copy
5093 // assignment operator cannot be a member of a union, nor can an
5094 // array of such objects.
5095 if (CheckNontrivialField(FD))
5096 Invalid = true;
5097 } else if (Mem->isImplicit()) {
5098 // Any implicit members are fine.
5099 } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
5100 // This is a type that showed up in an
5101 // elaborated-type-specifier inside the anonymous struct or
5102 // union, but which actually declares a type outside of the
5103 // anonymous struct or union. It's okay.
5104 } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
5105 if (!MemRecord->isAnonymousStructOrUnion() &&
5106 MemRecord->getDeclName()) {
5107 // Visual C++ allows type definition in anonymous struct or union.
5108 if (getLangOpts().MicrosoftExt)
5109 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
5110 << Record->isUnion();
5111 else {
5112 // This is a nested type declaration.
5113 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
5114 << Record->isUnion();
5115 Invalid = true;
5116 }
5117 } else {
5118 // This is an anonymous type definition within another anonymous type.
5119 // This is a popular extension, provided by Plan9, MSVC and GCC, but
5120 // not part of standard C++.
5121 Diag(MemRecord->getLocation(),
5122 diag::ext_anonymous_record_with_anonymous_type)
5123 << Record->isUnion();
5124 }
5125 } else if (isa<AccessSpecDecl>(Mem)) {
5126 // Any access specifier is fine.
5127 } else if (isa<StaticAssertDecl>(Mem)) {
5128 // In C++1z, static_assert declarations are also fine.
5129 } else {
5130 // We have something that isn't a non-static data
5131 // member. Complain about it.
5132 unsigned DK = diag::err_anonymous_record_bad_member;
5133 if (isa<TypeDecl>(Mem))
5134 DK = diag::err_anonymous_record_with_type;
5135 else if (isa<FunctionDecl>(Mem))
5136 DK = diag::err_anonymous_record_with_function;
5137 else if (isa<VarDecl>(Mem))
5138 DK = diag::err_anonymous_record_with_static;
5139
5140 // Visual C++ allows type definition in anonymous struct or union.
5141 if (getLangOpts().MicrosoftExt &&
5142 DK == diag::err_anonymous_record_with_type)
5143 Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
5144 << Record->isUnion();
5145 else {
5146 Diag(Mem->getLocation(), DK) << Record->isUnion();
5147 Invalid = true;
5148 }
5149 }
5150 }
5151
5152 // C++11 [class.union]p8 (DR1460):
5153 // At most one variant member of a union may have a
5154 // brace-or-equal-initializer.
5155 if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
5156 Owner->isRecord())
5157 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
5158 cast<CXXRecordDecl>(Record));
5159 }
5160
5161 if (!Record->isUnion() && !Owner->isRecord()) {
5162 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
5163 << getLangOpts().CPlusPlus;
5164 Invalid = true;
5165 }
5166
5167 // C++ [dcl.dcl]p3:
5168 // [If there are no declarators], and except for the declaration of an
5169 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
5170 // names into the program
5171 // C++ [class.mem]p2:
5172 // each such member-declaration shall either declare at least one member
5173 // name of the class or declare at least one unnamed bit-field
5174 //
5175 // For C this is an error even for a named struct, and is diagnosed elsewhere.
5176 if (getLangOpts().CPlusPlus && Record->field_empty())
5177 Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
5178
5179 // Mock up a declarator.
5180 Declarator Dc(DS, DeclaratorContext::Member);
5181 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5182 assert(TInfo && "couldn't build declarator info for anonymous struct/union")((TInfo && "couldn't build declarator info for anonymous struct/union"
) ? static_cast<void> (0) : __assert_fail ("TInfo && \"couldn't build declarator info for anonymous struct/union\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 5182, __PRETTY_FUNCTION__))
;
5183
5184 // Create a declaration for this anonymous struct/union.
5185 NamedDecl *Anon = nullptr;
5186 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
5187 Anon = FieldDecl::Create(
5188 Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
5189 /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
5190 /*BitWidth=*/nullptr, /*Mutable=*/false,
5191 /*InitStyle=*/ICIS_NoInit);
5192 Anon->setAccess(AS);
5193 ProcessDeclAttributes(S, Anon, Dc);
5194
5195 if (getLangOpts().CPlusPlus)
5196 FieldCollector->Add(cast<FieldDecl>(Anon));
5197 } else {
5198 DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
5199 StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
5200 if (SCSpec == DeclSpec::SCS_mutable) {
5201 // mutable can only appear on non-static class members, so it's always
5202 // an error here
5203 Diag(Record->getLocation(), diag::err_mutable_nonmember);
5204 Invalid = true;
5205 SC = SC_None;
5206 }
5207
5208 assert(DS.getAttributes().empty() && "No attribute expected")((DS.getAttributes().empty() && "No attribute expected"
) ? static_cast<void> (0) : __assert_fail ("DS.getAttributes().empty() && \"No attribute expected\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 5208, __PRETTY_FUNCTION__))
;
5209 Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
5210 Record->getLocation(), /*IdentifierInfo=*/nullptr,
5211 Context.getTypeDeclType(Record), TInfo, SC);
5212
5213 // Default-initialize the implicit variable. This initialization will be
5214 // trivial in almost all cases, except if a union member has an in-class
5215 // initializer:
5216 // union { int n = 0; };
5217 if (!Invalid)
5218 ActOnUninitializedDecl(Anon);
5219 }
5220 Anon->setImplicit();
5221
5222 // Mark this as an anonymous struct/union type.
5223 Record->setAnonymousStructOrUnion(true);
5224
5225 // Add the anonymous struct/union object to the current
5226 // context. We'll be referencing this object when we refer to one of
5227 // its members.
5228 Owner->addDecl(Anon);
5229
5230 // Inject the members of the anonymous struct/union into the owning
5231 // context and into the identifier resolver chain for name lookup
5232 // purposes.
5233 SmallVector<NamedDecl*, 2> Chain;
5234 Chain.push_back(Anon);
5235
5236 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
5237 Invalid = true;
5238
5239 if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
5240 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5241 MangleNumberingContext *MCtx;
5242 Decl *ManglingContextDecl;
5243 std::tie(MCtx, ManglingContextDecl) =
5244 getCurrentMangleNumberContext(NewVD->getDeclContext());
5245 if (MCtx) {
5246 Context.setManglingNumber(
5247 NewVD, MCtx->getManglingNumber(
5248 NewVD, getMSManglingNumber(getLangOpts(), S)));
5249 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
5250 }
5251 }
5252 }
5253
5254 if (Invalid)
5255 Anon->setInvalidDecl();
5256
5257 return Anon;
5258}
5259
5260/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
5261/// Microsoft C anonymous structure.
5262/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
5263/// Example:
5264///
5265/// struct A { int a; };
5266/// struct B { struct A; int b; };
5267///
5268/// void foo() {
5269/// B var;
5270/// var.a = 3;
5271/// }
5272///
5273Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
5274 RecordDecl *Record) {
5275 assert(Record && "expected a record!")((Record && "expected a record!") ? static_cast<void
> (0) : __assert_fail ("Record && \"expected a record!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 5275, __PRETTY_FUNCTION__))
;
5276
5277 // Mock up a declarator.
5278 Declarator Dc(DS, DeclaratorContext::TypeName);
5279 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5280 assert(TInfo && "couldn't build declarator info for anonymous struct")((TInfo && "couldn't build declarator info for anonymous struct"
) ? static_cast<void> (0) : __assert_fail ("TInfo && \"couldn't build declarator info for anonymous struct\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 5280, __PRETTY_FUNCTION__))
;
5281
5282 auto *ParentDecl = cast<RecordDecl>(CurContext);
5283 QualType RecTy = Context.getTypeDeclType(Record);
5284
5285 // Create a declaration for this anonymous struct.
5286 NamedDecl *Anon =
5287 FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
5288 /*IdentifierInfo=*/nullptr, RecTy, TInfo,
5289 /*BitWidth=*/nullptr, /*Mutable=*/false,
5290 /*InitStyle=*/ICIS_NoInit);
5291 Anon->setImplicit();
5292
5293 // Add the anonymous struct object to the current context.
5294 CurContext->addDecl(Anon);
5295
5296 // Inject the members of the anonymous struct into the current
5297 // context and into the identifier resolver chain for name lookup
5298 // purposes.
5299 SmallVector<NamedDecl*, 2> Chain;
5300 Chain.push_back(Anon);
5301
5302 RecordDecl *RecordDef = Record->getDefinition();
5303 if (RequireCompleteSizedType(Anon->getLocation(), RecTy,
5304 diag::err_field_incomplete_or_sizeless) ||
5305 InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
5306 AS_none, Chain)) {
5307 Anon->setInvalidDecl();
5308 ParentDecl->setInvalidDecl();
5309 }
5310
5311 return Anon;
5312}
5313
5314/// GetNameForDeclarator - Determine the full declaration name for the
5315/// given Declarator.
5316DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
5317 return GetNameFromUnqualifiedId(D.getName());
5318}
5319
5320/// Retrieves the declaration name from a parsed unqualified-id.
5321DeclarationNameInfo
5322Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
5323 DeclarationNameInfo NameInfo;
5324 NameInfo.setLoc(Name.StartLocation);
5325
5326 switch (Name.getKind()) {
5327
5328 case UnqualifiedIdKind::IK_ImplicitSelfParam:
5329 case UnqualifiedIdKind::IK_Identifier:
5330 NameInfo.setName(Name.Identifier);
5331 return NameInfo;
5332
5333 case UnqualifiedIdKind::IK_DeductionGuideName: {
5334 // C++ [temp.deduct.guide]p3:
5335 // The simple-template-id shall name a class template specialization.
5336 // The template-name shall be the same identifier as the template-name
5337 // of the simple-template-id.
5338 // These together intend to imply that the template-name shall name a
5339 // class template.
5340 // FIXME: template<typename T> struct X {};
5341 // template<typename T> using Y = X<T>;
5342 // Y(int) -> Y<int>;
5343 // satisfies these rules but does not name a class template.
5344 TemplateName TN = Name.TemplateName.get().get();
5345 auto *Template = TN.getAsTemplateDecl();
5346 if (!Template || !isa<ClassTemplateDecl>(Template)) {
5347 Diag(Name.StartLocation,
5348 diag::err_deduction_guide_name_not_class_template)
5349 << (int)getTemplateNameKindForDiagnostics(TN) << TN;
5350 if (Template)
5351 Diag(Template->getLocation(), diag::note_template_decl_here);
5352 return DeclarationNameInfo();
5353 }
5354
5355 NameInfo.setName(
5356 Context.DeclarationNames.getCXXDeductionGuideName(Template));
5357 return NameInfo;
5358 }
5359
5360 case UnqualifiedIdKind::IK_OperatorFunctionId:
5361 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
5362 Name.OperatorFunctionId.Operator));
5363 NameInfo.setCXXOperatorNameRange(SourceRange(
5364 Name.OperatorFunctionId.SymbolLocations[0], Name.EndLocation));
5365 return NameInfo;
5366
5367 case UnqualifiedIdKind::IK_LiteralOperatorId:
5368 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
5369 Name.Identifier));
5370 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
5371 return NameInfo;
5372
5373 case UnqualifiedIdKind::IK_ConversionFunctionId: {
5374 TypeSourceInfo *TInfo;
5375 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
5376 if (Ty.isNull())
5377 return DeclarationNameInfo();
5378 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
5379 Context.getCanonicalType(Ty)));
5380 NameInfo.setNamedTypeInfo(TInfo);
5381 return NameInfo;
5382 }
5383
5384 case UnqualifiedIdKind::IK_ConstructorName: {
5385 TypeSourceInfo *TInfo;
5386 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
5387 if (Ty.isNull())
5388 return DeclarationNameInfo();
5389 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5390 Context.getCanonicalType(Ty)));
5391 NameInfo.setNamedTypeInfo(TInfo);
5392 return NameInfo;
5393 }
5394
5395 case UnqualifiedIdKind::IK_ConstructorTemplateId: {
5396 // In well-formed code, we can only have a constructor
5397 // template-id that refers to the current context, so go there
5398 // to find the actual type being constructed.
5399 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
5400 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
5401 return DeclarationNameInfo();
5402
5403 // Determine the type of the class being constructed.
5404 QualType CurClassType = Context.getTypeDeclType(CurClass);
5405
5406 // FIXME: Check two things: that the template-id names the same type as
5407 // CurClassType, and that the template-id does not occur when the name
5408 // was qualified.
5409
5410 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5411 Context.getCanonicalType(CurClassType)));
5412 // FIXME: should we retrieve TypeSourceInfo?
5413 NameInfo.setNamedTypeInfo(nullptr);
5414 return NameInfo;
5415 }
5416
5417 case UnqualifiedIdKind::IK_DestructorName: {
5418 TypeSourceInfo *TInfo;
5419 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
5420 if (Ty.isNull())
5421 return DeclarationNameInfo();
5422 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
5423 Context.getCanonicalType(Ty)));
5424 NameInfo.setNamedTypeInfo(TInfo);
5425 return NameInfo;
5426 }
5427
5428 case UnqualifiedIdKind::IK_TemplateId: {
5429 TemplateName TName = Name.TemplateId->Template.get();
5430 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
5431 return Context.getNameForTemplate(TName, TNameLoc);
5432 }
5433
5434 } // switch (Name.getKind())
5435
5436 llvm_unreachable("Unknown name kind")::llvm::llvm_unreachable_internal("Unknown name kind", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaDecl.cpp"
, 5436)
;
5437}
5438
5439static QualType getCoreType(QualType Ty) {
5440 do {
5441 if (Ty->isPointerType() || Ty->isReferenceType())
5442 Ty = Ty->getPointeeType();
5443 else if (Ty->isArrayType())
5444 Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
5445 else
5446 return Ty.withoutLocalFastQualifiers();
5447 } while (true);
5448}
5449
5450/// hasSimilarParameters - Determine whether the C++ functions Declaration
5451/// and Definition have "nearly" matching parameters. This heuristic is
5452/// used to improve diagnostics in the case where an out-of-line function
5453/// definition doesn't match any declaration within the class or namespace.
5454/// Also sets Params to the list of indices to the parameters that differ
5455/// between the declaration and the definition. If hasSimilarParameters
5456/// returns true and Params is empty, then all of the parameters match.
5457static bool hasSimilarParameters(ASTContext &Context,
5458 FunctionDecl *Declaration,
5459 FunctionDecl *Definition,
5460 SmallVectorImpl<unsigned> &Params) {
5461 Params.clear();
5462 if (Declaration->param_size() != Definition->param_size())
5463 return false;
5464 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
5465 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
5466 QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
5467
5468 // The parameter types are identical
5469 if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy))
5470 continue;
5471
5472 QualType DeclParamBaseTy = getCoreType(DeclParamTy);
5473 QualType DefParamBaseTy = getCoreType(DefParamTy);
5474 const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
5475 const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
5476
5477 if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
5478 (DeclTyName && DeclTyName == DefTyName))
5479 Params.push_back(Idx);
5480 else // The two parameters aren't even close
5481 return false;
5482 }
5483
5484 return true;
5485}
5486
5487/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
5488/// declarator needs to be rebuilt in the current instantiation.
5489/// Any bits of declarator which appear before the name are valid for
5490/// consideration here. That's specifically the type in the decl spec
5491/// and the base type in any member-pointer chunks.
5492static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
5493 DeclarationName Name) {
5494 // The types we specifically need to rebuild are:
5495 // - typenames, typeofs, and decltypes
5496 // - types which will become injected class names
5497 // Of course, we also need to rebuild any type referencing such a
5498 // type. It's safest to just say "dependent", but we call out a
5499 // few cases here.
5500
5501 DeclSpec &DS = D.getMutableDeclSpec();
5502 switch (DS.getTypeSpecType()) {
5503 case DeclSpec::TST_typename:
5504 case DeclSpec::TST_typeofType:
5505 case DeclSpec::TST_underlyingType:
5506 case DeclSpec::TST_atomic: {
5507 // Grab the type from the parser.
5508 TypeSourceInfo *TSI = nullptr;
5509 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
5510 if (T.isNull() || !T->isInstantiationDependentType()) break;
5511
5512 // Make sure there's a type source info. This isn't really much
5513 // of a waste; most dependent types should have type source info
5514 // attached already.
5515 if (!TSI)
5516 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
5517
5518 // Rebuild the type in the current instantiation.
5519 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
5520 if (!TSI) return true;
5521
5522 // Store the new type back in the decl spec.
5523 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
5524 DS.UpdateTypeRep(LocType);
5525 break;
5526 }
5527
5528 case DeclSpec::TST_decltype:
5529 case DeclSpec::TST_typeofExpr: {
5530 Expr *E = DS.getRepAsExpr();
5531 ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
5532 if (Result.isInvalid()) return true;
5533 DS.UpdateExprRep(Result.get());
5534 break;
5535 }
5536
5537 default:
5538 // Nothing to do for these decl specs.
5539 break;
5540 }
5541
5542 // It doesn't matter what order we do this in.
5543 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
5544 DeclaratorChunk &Chunk = D.getTypeObject(I);
5545
5546 // The only type information in the declarator which can come
5547 // before the declaration name is the base type of a member
5548 // pointer.
5549 if (Chunk.Kind != DeclaratorChunk::MemberPointer)
5550 continue;
5551
5552 // Rebuild the scope specifier in-place.
5553 CXXScopeSpec &SS = Chunk.Mem.Scope();
5554 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
5555 return true;
5556 }
5557
5558 return false;
5559}
5560
5561Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
5562 D.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration);
5563 Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
5564
5565 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
5566 Dcl && Dcl->getDeclContext()->isFileContext())
5567 Dcl->setTopLevelDeclInObjCContainer();
5568
5569 if (getLangOpts().OpenCL)
5570 setCurrentOpenCLExtensionForDecl(Dcl);
5571
5572 return Dcl;
5573}
5574
5575/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
5576/// If T is the name of a class, then each of the following shall have a
5577/// name different from T:
5578/// - every static data member of class T;
5579/// - every member function of class T
5580/// - every member of class T that is itself a type;
5581/// \returns true if the declaration name violates these rules.
5582bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
5583 DeclarationNameInfo NameInfo) {
5584 DeclarationName Name = NameInfo.getName();
5585
5586 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
5587 while (Record && Record->isAnonymousStructOrUnion())
5588 Record = dyn_cast<CXXRecordDecl>(Record->getParent());
5589 if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
5590 Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
5591 return true;
5592 }
5593
5594 return false;
5595}
5596
5597/// Diagnose a declaration whose declarator-id has the given
5598/// nested-name-specifier.
5599///
5600/// \param SS The nested-name-specifier of the declarator-id.
5601///
5602/// \param DC The declaration context to which the nested-name-specifier
5603/// resolves.
5604///
5605/// \param Name The name of the entity being declared.
5606///
5607/// \param Loc The location of the name of the entity being declared.
5608///
5609/// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
5610/// we're declaring an explicit / partial specialization / instantiation.
5611///
5612/// \returns true if we cannot safely recover from this error, false otherwise.
5613bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
5614 DeclarationName Name,
5615 SourceLocation Loc, bool IsTemplateId) {
5616 DeclContext *Cur = CurContext;
5617 while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
5618 Cur = Cur->getParent();
5619
5620 // If the user provided a superfluous scope specifier that refers back to the
5621 // class in which the entity is already declared, diagnose and ignore it.
5622 //
5623 // class X {
5624 // void X::f();
5625 // };
5626 //
5627 // Note, it was once ill-formed to give redundant qualification in all
5628 // contexts, but that rule was removed by DR482.
5629 if (Cur->Equals(DC)) {
5630 if (Cur->isRecord()) {
5631 Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
5632 : diag::err_member_extra_qualification)
5633 << Name << FixItHint::CreateRemoval(SS.getRange());
5634 SS.clear();
5635 } else {
5636 Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
5637 }
5638 return false;
5639 }
5640
5641 // Check whether the qualifying scope encloses the scope of the original
5642 // declaration. For a template-id, we perform the checks in
5643 // CheckTemplateSpecializationScope.
5644 if (!Cur->Encloses(DC) && !IsTemplateId) {
5645 if (Cur->isRecord())
5646 Diag(Loc, diag::err_member_qualification)
5647 << Name << SS.getRange();
5648 else if (isa<TranslationUnitDecl>(DC))
5649 Diag(Loc, diag::err_invalid_declarator_global_scope)
5650 << Name << SS.getRange();
5651 else if (isa<FunctionDecl>(Cur))
5652 Diag(Loc, diag::err_invalid_declarator_in_function)
5653 << Name << SS.getRange();
5654 else if (isa<BlockDecl>(Cur))
5655 Diag(Loc, diag::err_invalid_declarator_in_block)
5656 << Name << SS.getRange();
5657 else
5658 Diag(Loc, diag::err_invalid_declarator_scope)
5659 << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
5660
5661 return true;
5662 }
5663
5664 if (Cur->isRecord()) {
5665 // Cannot qualify members within a class.
5666 Diag(Loc, diag::err_member_qualification)
5667 << Name << SS.getRange();
5668 SS.clear();
5669
5670 // C++ constructors and destructors with incorrect scopes can break
5671 // our AST invariants by having the wrong underlying types. If
5672 // that's the case, then drop this declaration entirely.
5673 if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
5674 Name.getNameKind() == DeclarationName::CXXDestructorName) &&
5675 !Context.hasSameType(Name.getCXXNameType(),
5676 Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
5677 return true;
5678
5679 return false;
5680 }
5681
5682 // C++11 [dcl.meaning]p1:
5683 // [...] "The nested-name-specifier of the qualified declarator-id shall
5684 // not begin with a decltype-specifer"
5685 NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
5686 while (SpecLoc.getPrefix())
5687 SpecLoc = SpecLoc.getPrefix();
5688 if (dyn_cast_or_null<DecltypeType>(
5689 SpecLoc.getNestedNameSpecifier()->getAsType()))
5690 Diag(Loc, diag::err_decltype_in_declarator)
5691 << SpecLoc.getTypeLoc().getSourceRange();
5692
5693 return false;
5694}
5695
5696NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
5697 MultiTemplateParamsArg TemplateParamLists) {
5698 // TODO: consider using NameInfo for diagnostic.
5699 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5700 DeclarationName Name = NameInfo.getName();
5701
5702 // All of these full declarators require an identifier. If it doesn't have
5703 // one, the ParsedFreeStandingDeclSpec action should be used.
5704 if (D.isDecompositionDeclarator()) {
5705 return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
5706 } else if (!Name) {
5707 if (!D.isInvalidType()) // Reject this if we think it is valid.
5708 Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
5709 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
5710 return nullptr;
5711 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
5712 return nullptr;
5713
5714 // The scope passed in may not be a decl scope. Zip up the scope tree until
5715 // we find one that is.
5716 while ((S->getFlags() & Scope::DeclScope) == 0 ||
5717 (S->getFlags() & Scope::TemplateParamScope) != 0)
5718 S = S->getParent();
5719
5720 DeclContext *DC = CurContext;
5721 if (D.getCXXScopeSpec().isInvalid())
5722 D.setInvalidType();
5723 else if (D.getCXXScopeSpec().isSet()) {
5724 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
5725 UPPC_DeclarationQualifier))
5726 return nullptr;
5727
5728 bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
5729 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
5730 if (!DC || isa<EnumDecl>(DC)) {
5731 // If we could not compute the declaration context, it's because the
5732 // declaration context is dependent but does not refer to a class,
5733 // class template, or class template partial specialization. Complain
5734 // and return early, to avoid the coming semantic disaster.
5735 Diag(D.getIdentifierLoc(),
5736 diag::err_template_qualified_declarator_no_match)
5737 << D.getCXXScopeSpec().getScopeRep()
5738 << D.getCXXScopeSpec().getRange();
5739 return nullptr;
5740 }
5741 bool IsDependentContext = DC->isDependentContext();
5742
5743 if (!IsDependentContext &&
5744 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
5745 return nullptr;
5746
5747 // If a class is incomplete, do not parse entities inside it.
5748 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
5749 Diag(D.getIdentifierLoc(),
5750 diag::err_member_def_undefined_record)
5751 << Name << DC << D.getCXXScopeSpec().getRange();
5752 return nullptr;
5753 }
5754 if (!D.getDeclSpec().isFriendSpecified()) {
5755 if (diagnoseQualifiedDeclaration(
5756 D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
5757 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
5758 if (DC->isRecord())
5759 return nullptr;
5760
5761 D.setInvalidType();
5762 }
5763 }
5764
5765 // Check whether we need to rebuild the type of the given
5766 // declaration in the current instantiation.
5767 if (EnteringContext && IsDependentContext &&
5768 TemplateParamLists.size() != 0) {
5769 ContextRAII SavedContext(*this, DC);
5770 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
5771 D.setInvalidType();
5772 }
5773 }
5774
5775 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5776 QualType R = TInfo->getType();
5777
5778 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
5779 UPPC_DeclarationType))
5780 D.setInvalidType();
5781
5782 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5783 forRedeclarationInCurContext());
5784
5785 // See if this is a redefinition of a variable in the same scope.
5786 if (!D.getCXXScopeSpec().isSet()) {
5787 bool IsLinkageLookup = false;
5788 bool CreateBuiltins = false;
5789
5790 // If the declaration we're planning to build will be a function
5791 // or object with linkage, then look for another declaration with
5792 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
5793 //
5794 // If the declaration we're planning to build will be declared with
5795 // external linkage in the translation unit, create any builtin with
5796 // the same name.
5797 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
5798 /* Do nothing*/;
5799 else if (CurContext->isFunctionOrMethod() &&
5800 (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
5801 R->isFunctionType())) {
5802 IsLinkageLookup = true;
5803 CreateBuiltins =
5804 CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
5805 } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
5806 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
5807 CreateBuiltins = true;
5808
5809 if (IsLinkageLookup) {
5810 Previous.clear(LookupRedeclarationWithLinkage);
5811 Previous.setRedeclarationKind(ForExternalRedeclaration);
5812 }
5813
5814 LookupName(Previous, S, CreateBuiltins);
5815 } else { // Something like "int foo::x;"
5816 LookupQualifiedName(Previous, DC);
5817
5818 // C++ [dcl.meaning]p1:
5819 // When the declarator-id is qualified, the declaration shall refer to a
5820 // previously declared member of the class or namespace to which the
5821 // qualifier refers (or, in the case of a namespace, of an element of the
5822 // inline namespace set of that namespace (7.3.1)) or to a specialization
5823 // thereof; [...]
5824 //
5825 // Note that we already checked the context above, and that we do not have
5826 // enough information to make sure that Previous contains the declaration
5827 // we want to match. For example, given:
5828 //
5829 // class X {
5830 // void f();
5831 // void f(float);
5832 // };
5833 //
5834 // void X::f(int) { } // ill-formed
5835 //
5836 // In this case, Previous will point to the overload set
5837 // containing the two f's declared in X, but neither of them
5838 // matches.
5839
5840 // C++ [dcl.meaning]p1:
5841 // [...] the member shall not merely have been introduced by a
5842 // using-declaration in the scope of the class or namespace nominated by
5843 // the nested-name-specifier of the declarator-id.
5844 RemoveUsingDecls(Previous);
5845 }
5846
5847 if (Previous.isSingleResult() &&
5848 Previous.getFoundDecl()->isTemplateParameter()) {
5849 // Maybe we will complain about the shadowed template parameter.
5850 if (!D.isInvalidType())
5851 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
5852 Previous.getFoundDecl());
5853
5854 // Just pretend that we didn't see the previous declaration.
5855 Previous.clear();
5856 }
5857
5858 if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
5859 // Forget that the previous declaration is the injected-class-name.
5860 Previous.clear();
5861
5862 // In C++, the previous declaration we find might be a tag type
5863 // (class or enum). In this case, the new declaration will hide the
5864 // tag type. Note that this applies to functions, function templates, and
5865 // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
5866 if (Previous.isSingleTagDecl() &&
5867 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5868 (TemplateParamLists.size() == 0 || R->isFunctionType()))
5869 Previous.clear();
5870
5871 // Check that there are no default arguments other than in the parameters
5872 // of a function declaration (C++ only).
5873 if (getLangOpts().CPlusPlus)
5874 CheckExtraCXXDefaultArguments(D);
5875
5876 NamedDecl *New;
5877
5878 bool AddToScope = true;
5879 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5880 if (TemplateParamLists.size()) {
5881 Diag(D.getIdentifierLoc(), diag::err_template_typedef);
5882 return nullptr;
5883 }
5884
5885 New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
5886 } else if (R->isFunctionType()) {
5887 New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
5888 TemplateParamLists,
5889 AddToScope);
5890 } else {
5891 New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
5892 AddToScope);
5893 }
5894
5895 if (!New)
5896 return nullptr;
5897
5898 // If this has an identifier and is not a function template specialization,
5899 // add it to the scope stack.
5900 if (New->getDeclName() && AddToScope)
5901 PushOnScopeChains(New, S);
5902
5903 if (isInOpenMPDeclareTargetContext())
5904 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
5905
5906 return New;
5907}
5908
5909/// Helper method to turn variable array types into constant array
5910/// types in certain situations which would otherwise be errors (for
5911/// GCC compatibility).
5912static QualType TryToFixInvalidVariablyModifiedType(QualType T,
5913 ASTContext &Context,
5914 bool &SizeIsNegative,
5915 llvm::APSInt &Oversized) {
5916 // This method tries to turn a variable array into a constant
5917 // array even when the size isn't an ICE. This is necessary
5918 // for compatibility with code that depends on gcc's buggy
5919 // constant expression folding, like struct {char x[(int)(char*)2];}
5920 SizeIsNegative = false;
5921 Oversized = 0;
5922
5923 if (T->isDependentType())
5924 return QualType();
5925
5926 QualifierCollector Qs;
5927 const Type *Ty = Qs.strip(T);
5928
5929 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
5930 QualType Pointee = PTy->getPointeeType();
5931 QualType FixedType =
5932 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
5933 Oversized);
5934 if (FixedType.isNull()) return FixedType;
5935 FixedType = Context.getPointerType(FixedType);
5936 return Qs.apply(Context, FixedType);
5937 }
5938 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
5939 QualType Inner = PTy->getInnerType();
5940 QualType FixedType =
5941 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
5942 Oversized);
5943 if (FixedType.isNull()) return FixedType;
5944 FixedType = Context.getParenType(FixedType);
5945 return Qs.apply(Context, FixedType);
5946 }
5947
5948 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
5949 if (!VLATy)
5950 return QualType();
5951
5952 QualType ElemTy = VLATy->getElementType();
5953 if (ElemTy->isVariablyModifiedType()) {
5954 ElemTy = TryToFixInvalidVariablyModifiedType(ElemTy, Context,
5955 SizeIsNegative, Oversized);
5956 if (ElemTy.isNull())
5957 return QualType();
5958 }
5959
5960 Expr::EvalResult Result;
5961 if (!VLATy->getSizeExpr() ||
5962 !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
5963 return QualType();
5964
5965 llvm::APSInt Res = Result.Val.getInt();
5966
5967 // Check whether the array size is negative.
5968 if (Res.isSigned() && Res.isNegative()) {
5969 SizeIsNegative = true;
5970 return QualType();
5971 }
5972
5973 // Check whether the array is too large to be addressed.
5974 unsigned ActiveSizeBits =
5975 (!ElemTy->isDependentType() && !ElemTy->isVariablyModifiedType() &&
5976 !ElemTy->isIncompleteType() && !ElemTy->isUndeducedType())
5977 ? ConstantArrayType::getNumAddressingBits(Context, ElemTy, Res)
5978 : Res.getActiveBits();
5979 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
5980 Oversized = Res;
5981 return QualType();
5982 }
5983
5984 QualType FoldedArrayType = Context.getConstantArrayType(
5985 ElemTy, Res, VLATy->getSizeExpr(), ArrayType::Normal, 0);
5986 return Qs.apply(Context, FoldedArrayType);
5987}
5988
5989static void
5990FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
5991 SrcTL = SrcTL.getUnqualifiedLoc();
5992 DstTL = DstTL.getUnqualifiedLoc();
5993 if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
5994 PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
5995 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
5996 DstPTL.getPointeeLoc());
5997 DstPTL.setStarLoc(SrcPTL.getStarLoc());
5998 return;
5999 }
6000 if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
6001 ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
6002 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
6003 DstPTL.getInnerLoc());
6004 DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
6005 DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
6006 return;
6007 }
6008 ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
6009 ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
6010 TypeLoc SrcElemTL = SrcATL.getElementLoc();
6011 TypeLoc DstElemTL = DstATL.getElementLoc();
6012 if (VariableArrayTypeLoc SrcElemATL =
6013 SrcElemTL.getAs<VariableArrayTypeLoc>()) {
6014 ConstantArrayTypeLoc DstElemATL = DstElemTL.castAs<ConstantArrayTypeLoc>();
6015 FixInvalidVariablyModifiedTypeLoc(SrcElemATL, DstElemATL);
6016 } else {
6017 DstElemTL.initializeFullCopy(SrcElemTL);
6018 }
6019 DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
6020 DstATL.setSizeExpr(SrcATL.getSizeExpr());
6021 DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
6022}
6023
6024/// Helper method to turn variable array types into constant array
6025/// types in certain situations which would otherwise be errors (for
6026/// GCC compatibility).
6027static TypeSourceInfo*
6028TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
6029 ASTContext &Context,
6030 bool &SizeIsNegative,
6031