| File: | build/source/clang/lib/Sema/SemaDecl.cpp |
| Warning: | line 4185, column 44 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | // | |||
| 9 | // This file implements semantic analysis for declarations. | |||
| 10 | // | |||
| 11 | //===----------------------------------------------------------------------===// | |||
| 12 | ||||
| 13 | #include "TypeLocBuilder.h" | |||
| 14 | #include "clang/AST/ASTConsumer.h" | |||
| 15 | #include "clang/AST/ASTContext.h" | |||
| 16 | #include "clang/AST/ASTLambda.h" | |||
| 17 | #include "clang/AST/CXXInheritance.h" | |||
| 18 | #include "clang/AST/CharUnits.h" | |||
| 19 | #include "clang/AST/CommentDiagnostic.h" | |||
| 20 | #include "clang/AST/DeclCXX.h" | |||
| 21 | #include "clang/AST/DeclObjC.h" | |||
| 22 | #include "clang/AST/DeclTemplate.h" | |||
| 23 | #include "clang/AST/EvaluatedExprVisitor.h" | |||
| 24 | #include "clang/AST/Expr.h" | |||
| 25 | #include "clang/AST/ExprCXX.h" | |||
| 26 | #include "clang/AST/NonTrivialTypeVisitor.h" | |||
| 27 | #include "clang/AST/Randstruct.h" | |||
| 28 | #include "clang/AST/StmtCXX.h" | |||
| 29 | #include "clang/Basic/Builtins.h" | |||
| 30 | #include "clang/Basic/HLSLRuntime.h" | |||
| 31 | #include "clang/Basic/PartialDiagnostic.h" | |||
| 32 | #include "clang/Basic/SourceManager.h" | |||
| 33 | #include "clang/Basic/TargetInfo.h" | |||
| 34 | #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex | |||
| 35 | #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. | |||
| 36 | #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex | |||
| 37 | #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled() | |||
| 38 | #include "clang/Sema/CXXFieldCollector.h" | |||
| 39 | #include "clang/Sema/DeclSpec.h" | |||
| 40 | #include "clang/Sema/DelayedDiagnostic.h" | |||
| 41 | #include "clang/Sema/Initialization.h" | |||
| 42 | #include "clang/Sema/Lookup.h" | |||
| 43 | #include "clang/Sema/ParsedTemplate.h" | |||
| 44 | #include "clang/Sema/Scope.h" | |||
| 45 | #include "clang/Sema/ScopeInfo.h" | |||
| 46 | #include "clang/Sema/SemaInternal.h" | |||
| 47 | #include "clang/Sema/Template.h" | |||
| 48 | #include "llvm/ADT/SmallString.h" | |||
| 49 | #include "llvm/TargetParser/Triple.h" | |||
| 50 | #include <algorithm> | |||
| 51 | #include <cstring> | |||
| 52 | #include <functional> | |||
| 53 | #include <optional> | |||
| 54 | #include <unordered_map> | |||
| 55 | ||||
| 56 | using namespace clang; | |||
| 57 | using namespace sema; | |||
| 58 | ||||
| 59 | Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) { | |||
| 60 | if (OwnedType) { | |||
| 61 | Decl *Group[2] = { OwnedType, Ptr }; | |||
| 62 | return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2)); | |||
| 63 | } | |||
| 64 | ||||
| 65 | return DeclGroupPtrTy::make(DeclGroupRef(Ptr)); | |||
| 66 | } | |||
| 67 | ||||
| 68 | namespace { | |||
| 69 | ||||
| 70 | class TypeNameValidatorCCC final : public CorrectionCandidateCallback { | |||
| 71 | public: | |||
| 72 | TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false, | |||
| 73 | bool AllowTemplates = false, | |||
| 74 | bool AllowNonTemplates = true) | |||
| 75 | : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass), | |||
| 76 | AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) { | |||
| 77 | WantExpressionKeywords = false; | |||
| 78 | WantCXXNamedCasts = false; | |||
| 79 | WantRemainingKeywords = false; | |||
| 80 | } | |||
| 81 | ||||
| 82 | bool ValidateCandidate(const TypoCorrection &candidate) override { | |||
| 83 | if (NamedDecl *ND = candidate.getCorrectionDecl()) { | |||
| 84 | if (!AllowInvalidDecl && ND->isInvalidDecl()) | |||
| 85 | return false; | |||
| 86 | ||||
| 87 | if (getAsTypeTemplateDecl(ND)) | |||
| 88 | return AllowTemplates; | |||
| 89 | ||||
| 90 | bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND); | |||
| 91 | if (!IsType) | |||
| 92 | return false; | |||
| 93 | ||||
| 94 | if (AllowNonTemplates) | |||
| 95 | return true; | |||
| 96 | ||||
| 97 | // An injected-class-name of a class template (specialization) is valid | |||
| 98 | // as a template or as a non-template. | |||
| 99 | if (AllowTemplates) { | |||
| 100 | auto *RD = dyn_cast<CXXRecordDecl>(ND); | |||
| 101 | if (!RD || !RD->isInjectedClassName()) | |||
| 102 | return false; | |||
| 103 | RD = cast<CXXRecordDecl>(RD->getDeclContext()); | |||
| 104 | return RD->getDescribedClassTemplate() || | |||
| 105 | isa<ClassTemplateSpecializationDecl>(RD); | |||
| 106 | } | |||
| 107 | ||||
| 108 | return false; | |||
| 109 | } | |||
| 110 | ||||
| 111 | return !WantClassName && candidate.isKeyword(); | |||
| 112 | } | |||
| 113 | ||||
| 114 | std::unique_ptr<CorrectionCandidateCallback> clone() override { | |||
| 115 | return std::make_unique<TypeNameValidatorCCC>(*this); | |||
| 116 | } | |||
| 117 | ||||
| 118 | private: | |||
| 119 | bool AllowInvalidDecl; | |||
| 120 | bool WantClassName; | |||
| 121 | bool AllowTemplates; | |||
| 122 | bool AllowNonTemplates; | |||
| 123 | }; | |||
| 124 | ||||
| 125 | } // end anonymous namespace | |||
| 126 | ||||
| 127 | /// Determine whether the token kind starts a simple-type-specifier. | |||
| 128 | bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const { | |||
| 129 | switch (Kind) { | |||
| 130 | // FIXME: Take into account the current language when deciding whether a | |||
| 131 | // token kind is a valid type specifier | |||
| 132 | case tok::kw_short: | |||
| 133 | case tok::kw_long: | |||
| 134 | case tok::kw___int64: | |||
| 135 | case tok::kw___int128: | |||
| 136 | case tok::kw_signed: | |||
| 137 | case tok::kw_unsigned: | |||
| 138 | case tok::kw_void: | |||
| 139 | case tok::kw_char: | |||
| 140 | case tok::kw_int: | |||
| 141 | case tok::kw_half: | |||
| 142 | case tok::kw_float: | |||
| 143 | case tok::kw_double: | |||
| 144 | case tok::kw___bf16: | |||
| 145 | case tok::kw__Float16: | |||
| 146 | case tok::kw___float128: | |||
| 147 | case tok::kw___ibm128: | |||
| 148 | case tok::kw_wchar_t: | |||
| 149 | case tok::kw_bool: | |||
| 150 | #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait: | |||
| 151 | #include "clang/Basic/TransformTypeTraits.def" | |||
| 152 | case tok::kw___auto_type: | |||
| 153 | return true; | |||
| 154 | ||||
| 155 | case tok::annot_typename: | |||
| 156 | case tok::kw_char16_t: | |||
| 157 | case tok::kw_char32_t: | |||
| 158 | case tok::kw_typeof: | |||
| 159 | case tok::annot_decltype: | |||
| 160 | case tok::kw_decltype: | |||
| 161 | return getLangOpts().CPlusPlus; | |||
| 162 | ||||
| 163 | case tok::kw_char8_t: | |||
| 164 | return getLangOpts().Char8; | |||
| 165 | ||||
| 166 | default: | |||
| 167 | break; | |||
| 168 | } | |||
| 169 | ||||
| 170 | return false; | |||
| 171 | } | |||
| 172 | ||||
| 173 | namespace { | |||
| 174 | enum class UnqualifiedTypeNameLookupResult { | |||
| 175 | NotFound, | |||
| 176 | FoundNonType, | |||
| 177 | FoundType | |||
| 178 | }; | |||
| 179 | } // end anonymous namespace | |||
| 180 | ||||
| 181 | /// Tries to perform unqualified lookup of the type decls in bases for | |||
| 182 | /// dependent class. | |||
| 183 | /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a | |||
| 184 | /// type decl, \a FoundType if only type decls are found. | |||
| 185 | static UnqualifiedTypeNameLookupResult | |||
| 186 | lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II, | |||
| 187 | SourceLocation NameLoc, | |||
| 188 | const CXXRecordDecl *RD) { | |||
| 189 | if (!RD->hasDefinition()) | |||
| 190 | return UnqualifiedTypeNameLookupResult::NotFound; | |||
| 191 | // Look for type decls in base classes. | |||
| 192 | UnqualifiedTypeNameLookupResult FoundTypeDecl = | |||
| 193 | UnqualifiedTypeNameLookupResult::NotFound; | |||
| 194 | for (const auto &Base : RD->bases()) { | |||
| 195 | const CXXRecordDecl *BaseRD = nullptr; | |||
| 196 | if (auto *BaseTT = Base.getType()->getAs<TagType>()) | |||
| 197 | BaseRD = BaseTT->getAsCXXRecordDecl(); | |||
| 198 | else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) { | |||
| 199 | // Look for type decls in dependent base classes that have known primary | |||
| 200 | // templates. | |||
| 201 | if (!TST || !TST->isDependentType()) | |||
| 202 | continue; | |||
| 203 | auto *TD = TST->getTemplateName().getAsTemplateDecl(); | |||
| 204 | if (!TD) | |||
| 205 | continue; | |||
| 206 | if (auto *BasePrimaryTemplate = | |||
| 207 | dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) { | |||
| 208 | if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl()) | |||
| 209 | BaseRD = BasePrimaryTemplate; | |||
| 210 | else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) { | |||
| 211 | if (const ClassTemplatePartialSpecializationDecl *PS = | |||
| 212 | CTD->findPartialSpecialization(Base.getType())) | |||
| 213 | if (PS->getCanonicalDecl() != RD->getCanonicalDecl()) | |||
| 214 | BaseRD = PS; | |||
| 215 | } | |||
| 216 | } | |||
| 217 | } | |||
| 218 | if (BaseRD) { | |||
| 219 | for (NamedDecl *ND : BaseRD->lookup(&II)) { | |||
| 220 | if (!isa<TypeDecl>(ND)) | |||
| 221 | return UnqualifiedTypeNameLookupResult::FoundNonType; | |||
| 222 | FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType; | |||
| 223 | } | |||
| 224 | if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) { | |||
| 225 | switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) { | |||
| 226 | case UnqualifiedTypeNameLookupResult::FoundNonType: | |||
| 227 | return UnqualifiedTypeNameLookupResult::FoundNonType; | |||
| 228 | case UnqualifiedTypeNameLookupResult::FoundType: | |||
| 229 | FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType; | |||
| 230 | break; | |||
| 231 | case UnqualifiedTypeNameLookupResult::NotFound: | |||
| 232 | break; | |||
| 233 | } | |||
| 234 | } | |||
| 235 | } | |||
| 236 | } | |||
| 237 | ||||
| 238 | return FoundTypeDecl; | |||
| 239 | } | |||
| 240 | ||||
| 241 | static ParsedType recoverFromTypeInKnownDependentBase(Sema &S, | |||
| 242 | const IdentifierInfo &II, | |||
| 243 | SourceLocation NameLoc) { | |||
| 244 | // Lookup in the parent class template context, if any. | |||
| 245 | const CXXRecordDecl *RD = nullptr; | |||
| 246 | UnqualifiedTypeNameLookupResult FoundTypeDecl = | |||
| 247 | UnqualifiedTypeNameLookupResult::NotFound; | |||
| 248 | for (DeclContext *DC = S.CurContext; | |||
| 249 | DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound; | |||
| 250 | DC = DC->getParent()) { | |||
| 251 | // Look for type decls in dependent base classes that have known primary | |||
| 252 | // templates. | |||
| 253 | RD = dyn_cast<CXXRecordDecl>(DC); | |||
| 254 | if (RD && RD->getDescribedClassTemplate()) | |||
| 255 | FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD); | |||
| 256 | } | |||
| 257 | if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType) | |||
| 258 | return nullptr; | |||
| 259 | ||||
| 260 | // We found some types in dependent base classes. Recover as if the user | |||
| 261 | // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the | |||
| 262 | // lookup during template instantiation. | |||
| 263 | S.Diag(NameLoc, diag::ext_found_in_dependent_base) << &II; | |||
| 264 | ||||
| 265 | ASTContext &Context = S.Context; | |||
| 266 | auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false, | |||
| 267 | cast<Type>(Context.getRecordType(RD))); | |||
| 268 | QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II); | |||
| 269 | ||||
| 270 | CXXScopeSpec SS; | |||
| 271 | SS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); | |||
| 272 | ||||
| 273 | TypeLocBuilder Builder; | |||
| 274 | DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); | |||
| 275 | DepTL.setNameLoc(NameLoc); | |||
| 276 | DepTL.setElaboratedKeywordLoc(SourceLocation()); | |||
| 277 | DepTL.setQualifierLoc(SS.getWithLocInContext(Context)); | |||
| 278 | return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); | |||
| 279 | } | |||
| 280 | ||||
| 281 | /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier. | |||
| 282 | static ParsedType buildNamedType(Sema &S, const CXXScopeSpec *SS, QualType T, | |||
| 283 | SourceLocation NameLoc, | |||
| 284 | bool WantNontrivialTypeSourceInfo = true) { | |||
| 285 | switch (T->getTypeClass()) { | |||
| 286 | case Type::DeducedTemplateSpecialization: | |||
| 287 | case Type::Enum: | |||
| 288 | case Type::InjectedClassName: | |||
| 289 | case Type::Record: | |||
| 290 | case Type::Typedef: | |||
| 291 | case Type::UnresolvedUsing: | |||
| 292 | case Type::Using: | |||
| 293 | break; | |||
| 294 | // These can never be qualified so an ElaboratedType node | |||
| 295 | // would carry no additional meaning. | |||
| 296 | case Type::ObjCInterface: | |||
| 297 | case Type::ObjCTypeParam: | |||
| 298 | case Type::TemplateTypeParm: | |||
| 299 | return ParsedType::make(T); | |||
| 300 | default: | |||
| 301 | llvm_unreachable("Unexpected Type Class")::llvm::llvm_unreachable_internal("Unexpected Type Class", "clang/lib/Sema/SemaDecl.cpp" , 301); | |||
| 302 | } | |||
| 303 | ||||
| 304 | if (!SS || SS->isEmpty()) | |||
| 305 | return ParsedType::make( | |||
| 306 | S.Context.getElaboratedType(ETK_None, nullptr, T, nullptr)); | |||
| 307 | ||||
| 308 | QualType ElTy = S.getElaboratedType(ETK_None, *SS, T); | |||
| 309 | if (!WantNontrivialTypeSourceInfo) | |||
| 310 | return ParsedType::make(ElTy); | |||
| 311 | ||||
| 312 | TypeLocBuilder Builder; | |||
| 313 | Builder.pushTypeSpec(T).setNameLoc(NameLoc); | |||
| 314 | ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(ElTy); | |||
| 315 | ElabTL.setElaboratedKeywordLoc(SourceLocation()); | |||
| 316 | ElabTL.setQualifierLoc(SS->getWithLocInContext(S.Context)); | |||
| 317 | return S.CreateParsedType(ElTy, Builder.getTypeSourceInfo(S.Context, ElTy)); | |||
| 318 | } | |||
| 319 | ||||
| 320 | /// If the identifier refers to a type name within this scope, | |||
| 321 | /// return the declaration of that type. | |||
| 322 | /// | |||
| 323 | /// This routine performs ordinary name lookup of the identifier II | |||
| 324 | /// within the given scope, with optional C++ scope specifier SS, to | |||
| 325 | /// determine whether the name refers to a type. If so, returns an | |||
| 326 | /// opaque pointer (actually a QualType) corresponding to that | |||
| 327 | /// type. Otherwise, returns NULL. | |||
| 328 | ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc, | |||
| 329 | Scope *S, CXXScopeSpec *SS, bool isClassName, | |||
| 330 | bool HasTrailingDot, ParsedType ObjectTypePtr, | |||
| 331 | bool IsCtorOrDtorName, | |||
| 332 | bool WantNontrivialTypeSourceInfo, | |||
| 333 | bool IsClassTemplateDeductionContext, | |||
| 334 | ImplicitTypenameContext AllowImplicitTypename, | |||
| 335 | IdentifierInfo **CorrectedII) { | |||
| 336 | // FIXME: Consider allowing this outside C++1z mode as an extension. | |||
| 337 | bool AllowDeducedTemplate = IsClassTemplateDeductionContext && | |||
| 338 | getLangOpts().CPlusPlus17 && !IsCtorOrDtorName && | |||
| 339 | !isClassName && !HasTrailingDot; | |||
| 340 | ||||
| 341 | // Determine where we will perform name lookup. | |||
| 342 | DeclContext *LookupCtx = nullptr; | |||
| 343 | if (ObjectTypePtr) { | |||
| 344 | QualType ObjectType = ObjectTypePtr.get(); | |||
| 345 | if (ObjectType->isRecordType()) | |||
| 346 | LookupCtx = computeDeclContext(ObjectType); | |||
| 347 | } else if (SS && SS->isNotEmpty()) { | |||
| 348 | LookupCtx = computeDeclContext(*SS, false); | |||
| 349 | ||||
| 350 | if (!LookupCtx) { | |||
| 351 | if (isDependentScopeSpecifier(*SS)) { | |||
| 352 | // C++ [temp.res]p3: | |||
| 353 | // A qualified-id that refers to a type and in which the | |||
| 354 | // nested-name-specifier depends on a template-parameter (14.6.2) | |||
| 355 | // shall be prefixed by the keyword typename to indicate that the | |||
| 356 | // qualified-id denotes a type, forming an | |||
| 357 | // elaborated-type-specifier (7.1.5.3). | |||
| 358 | // | |||
| 359 | // We therefore do not perform any name lookup if the result would | |||
| 360 | // refer to a member of an unknown specialization. | |||
| 361 | // In C++2a, in several contexts a 'typename' is not required. Also | |||
| 362 | // allow this as an extension. | |||
| 363 | if (AllowImplicitTypename == ImplicitTypenameContext::No && | |||
| 364 | !isClassName && !IsCtorOrDtorName) | |||
| 365 | return nullptr; | |||
| 366 | bool IsImplicitTypename = !isClassName && !IsCtorOrDtorName; | |||
| 367 | if (IsImplicitTypename) { | |||
| 368 | SourceLocation QualifiedLoc = SS->getRange().getBegin(); | |||
| 369 | if (getLangOpts().CPlusPlus20) | |||
| 370 | Diag(QualifiedLoc, diag::warn_cxx17_compat_implicit_typename); | |||
| 371 | else | |||
| 372 | Diag(QualifiedLoc, diag::ext_implicit_typename) | |||
| 373 | << SS->getScopeRep() << II.getName() | |||
| 374 | << FixItHint::CreateInsertion(QualifiedLoc, "typename "); | |||
| 375 | } | |||
| 376 | ||||
| 377 | // We know from the grammar that this name refers to a type, | |||
| 378 | // so build a dependent node to describe the type. | |||
| 379 | if (WantNontrivialTypeSourceInfo) | |||
| 380 | return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc, | |||
| 381 | (ImplicitTypenameContext)IsImplicitTypename) | |||
| 382 | .get(); | |||
| 383 | ||||
| 384 | NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context); | |||
| 385 | QualType T = | |||
| 386 | CheckTypenameType(IsImplicitTypename ? ETK_Typename : ETK_None, | |||
| 387 | SourceLocation(), QualifierLoc, II, NameLoc); | |||
| 388 | return ParsedType::make(T); | |||
| 389 | } | |||
| 390 | ||||
| 391 | return nullptr; | |||
| 392 | } | |||
| 393 | ||||
| 394 | if (!LookupCtx->isDependentContext() && | |||
| 395 | RequireCompleteDeclContext(*SS, LookupCtx)) | |||
| 396 | return nullptr; | |||
| 397 | } | |||
| 398 | ||||
| 399 | // FIXME: LookupNestedNameSpecifierName isn't the right kind of | |||
| 400 | // lookup for class-names. | |||
| 401 | LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName : | |||
| 402 | LookupOrdinaryName; | |||
| 403 | LookupResult Result(*this, &II, NameLoc, Kind); | |||
| 404 | if (LookupCtx) { | |||
| 405 | // Perform "qualified" name lookup into the declaration context we | |||
| 406 | // computed, which is either the type of the base of a member access | |||
| 407 | // expression or the declaration context associated with a prior | |||
| 408 | // nested-name-specifier. | |||
| 409 | LookupQualifiedName(Result, LookupCtx); | |||
| 410 | ||||
| 411 | if (ObjectTypePtr && Result.empty()) { | |||
| 412 | // C++ [basic.lookup.classref]p3: | |||
| 413 | // If the unqualified-id is ~type-name, the type-name is looked up | |||
| 414 | // in the context of the entire postfix-expression. If the type T of | |||
| 415 | // the object expression is of a class type C, the type-name is also | |||
| 416 | // looked up in the scope of class C. At least one of the lookups shall | |||
| 417 | // find a name that refers to (possibly cv-qualified) T. | |||
| 418 | LookupName(Result, S); | |||
| 419 | } | |||
| 420 | } else { | |||
| 421 | // Perform unqualified name lookup. | |||
| 422 | LookupName(Result, S); | |||
| 423 | ||||
| 424 | // For unqualified lookup in a class template in MSVC mode, look into | |||
| 425 | // dependent base classes where the primary class template is known. | |||
| 426 | if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) { | |||
| 427 | if (ParsedType TypeInBase = | |||
| 428 | recoverFromTypeInKnownDependentBase(*this, II, NameLoc)) | |||
| 429 | return TypeInBase; | |||
| 430 | } | |||
| 431 | } | |||
| 432 | ||||
| 433 | NamedDecl *IIDecl = nullptr; | |||
| 434 | UsingShadowDecl *FoundUsingShadow = nullptr; | |||
| 435 | switch (Result.getResultKind()) { | |||
| 436 | case LookupResult::NotFound: | |||
| 437 | case LookupResult::NotFoundInCurrentInstantiation: | |||
| 438 | if (CorrectedII) { | |||
| 439 | TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName, | |||
| 440 | AllowDeducedTemplate); | |||
| 441 | TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind, | |||
| 442 | S, SS, CCC, CTK_ErrorRecovery); | |||
| 443 | IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo(); | |||
| 444 | TemplateTy Template; | |||
| 445 | bool MemberOfUnknownSpecialization; | |||
| 446 | UnqualifiedId TemplateName; | |||
| 447 | TemplateName.setIdentifier(NewII, NameLoc); | |||
| 448 | NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier(); | |||
| 449 | CXXScopeSpec NewSS, *NewSSPtr = SS; | |||
| 450 | if (SS && NNS) { | |||
| 451 | NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); | |||
| 452 | NewSSPtr = &NewSS; | |||
| 453 | } | |||
| 454 | if (Correction && (NNS || NewII != &II) && | |||
| 455 | // Ignore a correction to a template type as the to-be-corrected | |||
| 456 | // identifier is not a template (typo correction for template names | |||
| 457 | // is handled elsewhere). | |||
| 458 | !(getLangOpts().CPlusPlus && NewSSPtr && | |||
| 459 | isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false, | |||
| 460 | Template, MemberOfUnknownSpecialization))) { | |||
| 461 | ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr, | |||
| 462 | isClassName, HasTrailingDot, ObjectTypePtr, | |||
| 463 | IsCtorOrDtorName, | |||
| 464 | WantNontrivialTypeSourceInfo, | |||
| 465 | IsClassTemplateDeductionContext); | |||
| 466 | if (Ty) { | |||
| 467 | diagnoseTypo(Correction, | |||
| 468 | PDiag(diag::err_unknown_type_or_class_name_suggest) | |||
| 469 | << Result.getLookupName() << isClassName); | |||
| 470 | if (SS && NNS) | |||
| 471 | SS->MakeTrivial(Context, NNS, SourceRange(NameLoc)); | |||
| 472 | *CorrectedII = NewII; | |||
| 473 | return Ty; | |||
| 474 | } | |||
| 475 | } | |||
| 476 | } | |||
| 477 | // If typo correction failed or was not performed, fall through | |||
| 478 | [[fallthrough]]; | |||
| 479 | case LookupResult::FoundOverloaded: | |||
| 480 | case LookupResult::FoundUnresolvedValue: | |||
| 481 | Result.suppressDiagnostics(); | |||
| 482 | return nullptr; | |||
| 483 | ||||
| 484 | case LookupResult::Ambiguous: | |||
| 485 | // Recover from type-hiding ambiguities by hiding the type. We'll | |||
| 486 | // do the lookup again when looking for an object, and we can | |||
| 487 | // diagnose the error then. If we don't do this, then the error | |||
| 488 | // about hiding the type will be immediately followed by an error | |||
| 489 | // that only makes sense if the identifier was treated like a type. | |||
| 490 | if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) { | |||
| 491 | Result.suppressDiagnostics(); | |||
| 492 | return nullptr; | |||
| 493 | } | |||
| 494 | ||||
| 495 | // Look to see if we have a type anywhere in the list of results. | |||
| 496 | for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end(); | |||
| 497 | Res != ResEnd; ++Res) { | |||
| 498 | NamedDecl *RealRes = (*Res)->getUnderlyingDecl(); | |||
| 499 | if (isa<TypeDecl, ObjCInterfaceDecl, UnresolvedUsingIfExistsDecl>( | |||
| 500 | RealRes) || | |||
| 501 | (AllowDeducedTemplate && getAsTypeTemplateDecl(RealRes))) { | |||
| 502 | if (!IIDecl || | |||
| 503 | // Make the selection of the recovery decl deterministic. | |||
| 504 | RealRes->getLocation() < IIDecl->getLocation()) { | |||
| 505 | IIDecl = RealRes; | |||
| 506 | FoundUsingShadow = dyn_cast<UsingShadowDecl>(*Res); | |||
| 507 | } | |||
| 508 | } | |||
| 509 | } | |||
| 510 | ||||
| 511 | if (!IIDecl) { | |||
| 512 | // None of the entities we found is a type, so there is no way | |||
| 513 | // to even assume that the result is a type. In this case, don't | |||
| 514 | // complain about the ambiguity. The parser will either try to | |||
| 515 | // perform this lookup again (e.g., as an object name), which | |||
| 516 | // will produce the ambiguity, or will complain that it expected | |||
| 517 | // a type name. | |||
| 518 | Result.suppressDiagnostics(); | |||
| 519 | return nullptr; | |||
| 520 | } | |||
| 521 | ||||
| 522 | // We found a type within the ambiguous lookup; diagnose the | |||
| 523 | // ambiguity and then return that type. This might be the right | |||
| 524 | // answer, or it might not be, but it suppresses any attempt to | |||
| 525 | // perform the name lookup again. | |||
| 526 | break; | |||
| 527 | ||||
| 528 | case LookupResult::Found: | |||
| 529 | IIDecl = Result.getFoundDecl(); | |||
| 530 | FoundUsingShadow = dyn_cast<UsingShadowDecl>(*Result.begin()); | |||
| 531 | break; | |||
| 532 | } | |||
| 533 | ||||
| 534 | assert(IIDecl && "Didn't find decl")(static_cast <bool> (IIDecl && "Didn't find decl" ) ? void (0) : __assert_fail ("IIDecl && \"Didn't find decl\"" , "clang/lib/Sema/SemaDecl.cpp", 534, __extension__ __PRETTY_FUNCTION__ )); | |||
| 535 | ||||
| 536 | QualType T; | |||
| 537 | if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) { | |||
| 538 | // C++ [class.qual]p2: A lookup that would find the injected-class-name | |||
| 539 | // instead names the constructors of the class, except when naming a class. | |||
| 540 | // This is ill-formed when we're not actually forming a ctor or dtor name. | |||
| 541 | auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); | |||
| 542 | auto *FoundRD = dyn_cast<CXXRecordDecl>(TD); | |||
| 543 | if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD && | |||
| 544 | FoundRD->isInjectedClassName() && | |||
| 545 | declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent()))) | |||
| 546 | Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor) | |||
| 547 | << &II << /*Type*/1; | |||
| 548 | ||||
| 549 | DiagnoseUseOfDecl(IIDecl, NameLoc); | |||
| 550 | ||||
| 551 | T = Context.getTypeDeclType(TD); | |||
| 552 | MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); | |||
| 553 | } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) { | |||
| 554 | (void)DiagnoseUseOfDecl(IDecl, NameLoc); | |||
| 555 | if (!HasTrailingDot) | |||
| 556 | T = Context.getObjCInterfaceType(IDecl); | |||
| 557 | FoundUsingShadow = nullptr; // FIXME: Target must be a TypeDecl. | |||
| 558 | } else if (auto *UD = dyn_cast<UnresolvedUsingIfExistsDecl>(IIDecl)) { | |||
| 559 | (void)DiagnoseUseOfDecl(UD, NameLoc); | |||
| 560 | // Recover with 'int' | |||
| 561 | return ParsedType::make(Context.IntTy); | |||
| 562 | } else if (AllowDeducedTemplate) { | |||
| 563 | if (auto *TD = getAsTypeTemplateDecl(IIDecl)) { | |||
| 564 | assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD)(static_cast <bool> (!FoundUsingShadow || FoundUsingShadow ->getTargetDecl() == TD) ? void (0) : __assert_fail ("!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD" , "clang/lib/Sema/SemaDecl.cpp", 564, __extension__ __PRETTY_FUNCTION__ )); | |||
| 565 | TemplateName Template = | |||
| 566 | FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD); | |||
| 567 | T = Context.getDeducedTemplateSpecializationType(Template, QualType(), | |||
| 568 | false); | |||
| 569 | // Don't wrap in a further UsingType. | |||
| 570 | FoundUsingShadow = nullptr; | |||
| 571 | } | |||
| 572 | } | |||
| 573 | ||||
| 574 | if (T.isNull()) { | |||
| 575 | // If it's not plausibly a type, suppress diagnostics. | |||
| 576 | Result.suppressDiagnostics(); | |||
| 577 | return nullptr; | |||
| 578 | } | |||
| 579 | ||||
| 580 | if (FoundUsingShadow) | |||
| 581 | T = Context.getUsingType(FoundUsingShadow, T); | |||
| 582 | ||||
| 583 | return buildNamedType(*this, SS, T, NameLoc, WantNontrivialTypeSourceInfo); | |||
| 584 | } | |||
| 585 | ||||
| 586 | // Builds a fake NNS for the given decl context. | |||
| 587 | static NestedNameSpecifier * | |||
| 588 | synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) { | |||
| 589 | for (;; DC = DC->getLookupParent()) { | |||
| 590 | DC = DC->getPrimaryContext(); | |||
| 591 | auto *ND = dyn_cast<NamespaceDecl>(DC); | |||
| 592 | if (ND && !ND->isInline() && !ND->isAnonymousNamespace()) | |||
| 593 | return NestedNameSpecifier::Create(Context, nullptr, ND); | |||
| 594 | else if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) | |||
| 595 | return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(), | |||
| 596 | RD->getTypeForDecl()); | |||
| 597 | else if (isa<TranslationUnitDecl>(DC)) | |||
| 598 | return NestedNameSpecifier::GlobalSpecifier(Context); | |||
| 599 | } | |||
| 600 | llvm_unreachable("something isn't in TU scope?")::llvm::llvm_unreachable_internal("something isn't in TU scope?" , "clang/lib/Sema/SemaDecl.cpp", 600); | |||
| 601 | } | |||
| 602 | ||||
| 603 | /// Find the parent class with dependent bases of the innermost enclosing method | |||
| 604 | /// context. Do not look for enclosing CXXRecordDecls directly, or we will end | |||
| 605 | /// up allowing unqualified dependent type names at class-level, which MSVC | |||
| 606 | /// correctly rejects. | |||
| 607 | static const CXXRecordDecl * | |||
| 608 | findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) { | |||
| 609 | for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) { | |||
| 610 | DC = DC->getPrimaryContext(); | |||
| 611 | if (const auto *MD = dyn_cast<CXXMethodDecl>(DC)) | |||
| 612 | if (MD->getParent()->hasAnyDependentBases()) | |||
| 613 | return MD->getParent(); | |||
| 614 | } | |||
| 615 | return nullptr; | |||
| 616 | } | |||
| 617 | ||||
| 618 | ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II, | |||
| 619 | SourceLocation NameLoc, | |||
| 620 | bool IsTemplateTypeArg) { | |||
| 621 | assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode")(static_cast <bool> (getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode") ? void (0) : __assert_fail ("getLangOpts().MSVCCompat && \"shouldn't be called in non-MSVC mode\"" , "clang/lib/Sema/SemaDecl.cpp", 621, __extension__ __PRETTY_FUNCTION__ )); | |||
| 622 | ||||
| 623 | NestedNameSpecifier *NNS = nullptr; | |||
| 624 | if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) { | |||
| 625 | // If we weren't able to parse a default template argument, delay lookup | |||
| 626 | // until instantiation time by making a non-dependent DependentTypeName. We | |||
| 627 | // pretend we saw a NestedNameSpecifier referring to the current scope, and | |||
| 628 | // lookup is retried. | |||
| 629 | // FIXME: This hurts our diagnostic quality, since we get errors like "no | |||
| 630 | // type named 'Foo' in 'current_namespace'" when the user didn't write any | |||
| 631 | // name specifiers. | |||
| 632 | NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext); | |||
| 633 | Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II; | |||
| 634 | } else if (const CXXRecordDecl *RD = | |||
| 635 | findRecordWithDependentBasesOfEnclosingMethod(CurContext)) { | |||
| 636 | // Build a DependentNameType that will perform lookup into RD at | |||
| 637 | // instantiation time. | |||
| 638 | NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(), | |||
| 639 | RD->getTypeForDecl()); | |||
| 640 | ||||
| 641 | // Diagnose that this identifier was undeclared, and retry the lookup during | |||
| 642 | // template instantiation. | |||
| 643 | Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II | |||
| 644 | << RD; | |||
| 645 | } else { | |||
| 646 | // This is not a situation that we should recover from. | |||
| 647 | return ParsedType(); | |||
| 648 | } | |||
| 649 | ||||
| 650 | QualType T = Context.getDependentNameType(ETK_None, NNS, &II); | |||
| 651 | ||||
| 652 | // Build type location information. We synthesized the qualifier, so we have | |||
| 653 | // to build a fake NestedNameSpecifierLoc. | |||
| 654 | NestedNameSpecifierLocBuilder NNSLocBuilder; | |||
| 655 | NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc)); | |||
| 656 | NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context); | |||
| 657 | ||||
| 658 | TypeLocBuilder Builder; | |||
| 659 | DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); | |||
| 660 | DepTL.setNameLoc(NameLoc); | |||
| 661 | DepTL.setElaboratedKeywordLoc(SourceLocation()); | |||
| 662 | DepTL.setQualifierLoc(QualifierLoc); | |||
| 663 | return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); | |||
| 664 | } | |||
| 665 | ||||
| 666 | /// isTagName() - This method is called *for error recovery purposes only* | |||
| 667 | /// to determine if the specified name is a valid tag name ("struct foo"). If | |||
| 668 | /// so, this returns the TST for the tag corresponding to it (TST_enum, | |||
| 669 | /// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose | |||
| 670 | /// cases in C where the user forgot to specify the tag. | |||
| 671 | DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) { | |||
| 672 | // Do a tag name lookup in this scope. | |||
| 673 | LookupResult R(*this, &II, SourceLocation(), LookupTagName); | |||
| 674 | LookupName(R, S, false); | |||
| 675 | R.suppressDiagnostics(); | |||
| 676 | if (R.getResultKind() == LookupResult::Found) | |||
| 677 | if (const TagDecl *TD = R.getAsSingle<TagDecl>()) { | |||
| 678 | switch (TD->getTagKind()) { | |||
| 679 | case TTK_Struct: return DeclSpec::TST_struct; | |||
| 680 | case TTK_Interface: return DeclSpec::TST_interface; | |||
| 681 | case TTK_Union: return DeclSpec::TST_union; | |||
| 682 | case TTK_Class: return DeclSpec::TST_class; | |||
| 683 | case TTK_Enum: return DeclSpec::TST_enum; | |||
| 684 | } | |||
| 685 | } | |||
| 686 | ||||
| 687 | return DeclSpec::TST_unspecified; | |||
| 688 | } | |||
| 689 | ||||
| 690 | /// isMicrosoftMissingTypename - In Microsoft mode, within class scope, | |||
| 691 | /// if a CXXScopeSpec's type is equal to the type of one of the base classes | |||
| 692 | /// then downgrade the missing typename error to a warning. | |||
| 693 | /// This is needed for MSVC compatibility; Example: | |||
| 694 | /// @code | |||
| 695 | /// template<class T> class A { | |||
| 696 | /// public: | |||
| 697 | /// typedef int TYPE; | |||
| 698 | /// }; | |||
| 699 | /// template<class T> class B : public A<T> { | |||
| 700 | /// public: | |||
| 701 | /// A<T>::TYPE a; // no typename required because A<T> is a base class. | |||
| 702 | /// }; | |||
| 703 | /// @endcode | |||
| 704 | bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) { | |||
| 705 | if (CurContext->isRecord()) { | |||
| 706 | if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super) | |||
| 707 | return true; | |||
| 708 | ||||
| 709 | const Type *Ty = SS->getScopeRep()->getAsType(); | |||
| 710 | ||||
| 711 | CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext); | |||
| 712 | for (const auto &Base : RD->bases()) | |||
| 713 | if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType())) | |||
| 714 | return true; | |||
| 715 | return S->isFunctionPrototypeScope(); | |||
| 716 | } | |||
| 717 | return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope(); | |||
| 718 | } | |||
| 719 | ||||
| 720 | void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II, | |||
| 721 | SourceLocation IILoc, | |||
| 722 | Scope *S, | |||
| 723 | CXXScopeSpec *SS, | |||
| 724 | ParsedType &SuggestedType, | |||
| 725 | bool IsTemplateName) { | |||
| 726 | // Don't report typename errors for editor placeholders. | |||
| 727 | if (II->isEditorPlaceholder()) | |||
| 728 | return; | |||
| 729 | // We don't have anything to suggest (yet). | |||
| 730 | SuggestedType = nullptr; | |||
| 731 | ||||
| 732 | // There may have been a typo in the name of the type. Look up typo | |||
| 733 | // results, in case we have something that we can suggest. | |||
| 734 | TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false, | |||
| 735 | /*AllowTemplates=*/IsTemplateName, | |||
| 736 | /*AllowNonTemplates=*/!IsTemplateName); | |||
| 737 | if (TypoCorrection Corrected = | |||
| 738 | CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS, | |||
| 739 | CCC, CTK_ErrorRecovery)) { | |||
| 740 | // FIXME: Support error recovery for the template-name case. | |||
| 741 | bool CanRecover = !IsTemplateName; | |||
| 742 | if (Corrected.isKeyword()) { | |||
| 743 | // We corrected to a keyword. | |||
| 744 | diagnoseTypo(Corrected, | |||
| 745 | PDiag(IsTemplateName ? diag::err_no_template_suggest | |||
| 746 | : diag::err_unknown_typename_suggest) | |||
| 747 | << II); | |||
| 748 | II = Corrected.getCorrectionAsIdentifierInfo(); | |||
| 749 | } else { | |||
| 750 | // We found a similarly-named type or interface; suggest that. | |||
| 751 | if (!SS || !SS->isSet()) { | |||
| 752 | diagnoseTypo(Corrected, | |||
| 753 | PDiag(IsTemplateName ? diag::err_no_template_suggest | |||
| 754 | : diag::err_unknown_typename_suggest) | |||
| 755 | << II, CanRecover); | |||
| 756 | } else if (DeclContext *DC = computeDeclContext(*SS, false)) { | |||
| 757 | std::string CorrectedStr(Corrected.getAsString(getLangOpts())); | |||
| 758 | bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && | |||
| 759 | II->getName().equals(CorrectedStr); | |||
| 760 | diagnoseTypo(Corrected, | |||
| 761 | PDiag(IsTemplateName | |||
| 762 | ? diag::err_no_member_template_suggest | |||
| 763 | : diag::err_unknown_nested_typename_suggest) | |||
| 764 | << II << DC << DroppedSpecifier << SS->getRange(), | |||
| 765 | CanRecover); | |||
| 766 | } else { | |||
| 767 | llvm_unreachable("could not have corrected a typo here")::llvm::llvm_unreachable_internal("could not have corrected a typo here" , "clang/lib/Sema/SemaDecl.cpp", 767); | |||
| 768 | } | |||
| 769 | ||||
| 770 | if (!CanRecover) | |||
| 771 | return; | |||
| 772 | ||||
| 773 | CXXScopeSpec tmpSS; | |||
| 774 | if (Corrected.getCorrectionSpecifier()) | |||
| 775 | tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), | |||
| 776 | SourceRange(IILoc)); | |||
| 777 | // FIXME: Support class template argument deduction here. | |||
| 778 | SuggestedType = | |||
| 779 | getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S, | |||
| 780 | tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr, | |||
| 781 | /*IsCtorOrDtorName=*/false, | |||
| 782 | /*WantNontrivialTypeSourceInfo=*/true); | |||
| 783 | } | |||
| 784 | return; | |||
| 785 | } | |||
| 786 | ||||
| 787 | if (getLangOpts().CPlusPlus && !IsTemplateName) { | |||
| 788 | // See if II is a class template that the user forgot to pass arguments to. | |||
| 789 | UnqualifiedId Name; | |||
| 790 | Name.setIdentifier(II, IILoc); | |||
| 791 | CXXScopeSpec EmptySS; | |||
| 792 | TemplateTy TemplateResult; | |||
| 793 | bool MemberOfUnknownSpecialization; | |||
| 794 | if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false, | |||
| 795 | Name, nullptr, true, TemplateResult, | |||
| 796 | MemberOfUnknownSpecialization) == TNK_Type_template) { | |||
| 797 | diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc); | |||
| 798 | return; | |||
| 799 | } | |||
| 800 | } | |||
| 801 | ||||
| 802 | // FIXME: Should we move the logic that tries to recover from a missing tag | |||
| 803 | // (struct, union, enum) from Parser::ParseImplicitInt here, instead? | |||
| 804 | ||||
| 805 | if (!SS || (!SS->isSet() && !SS->isInvalid())) | |||
| 806 | Diag(IILoc, IsTemplateName ? diag::err_no_template | |||
| 807 | : diag::err_unknown_typename) | |||
| 808 | << II; | |||
| 809 | else if (DeclContext *DC = computeDeclContext(*SS, false)) | |||
| 810 | Diag(IILoc, IsTemplateName ? diag::err_no_member_template | |||
| 811 | : diag::err_typename_nested_not_found) | |||
| 812 | << II << DC << SS->getRange(); | |||
| 813 | else if (SS->isValid() && SS->getScopeRep()->containsErrors()) { | |||
| 814 | SuggestedType = | |||
| 815 | ActOnTypenameType(S, SourceLocation(), *SS, *II, IILoc).get(); | |||
| 816 | } else if (isDependentScopeSpecifier(*SS)) { | |||
| 817 | unsigned DiagID = diag::err_typename_missing; | |||
| 818 | if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S)) | |||
| 819 | DiagID = diag::ext_typename_missing; | |||
| 820 | ||||
| 821 | Diag(SS->getRange().getBegin(), DiagID) | |||
| 822 | << SS->getScopeRep() << II->getName() | |||
| 823 | << SourceRange(SS->getRange().getBegin(), IILoc) | |||
| 824 | << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename "); | |||
| 825 | SuggestedType = ActOnTypenameType(S, SourceLocation(), | |||
| 826 | *SS, *II, IILoc).get(); | |||
| 827 | } else { | |||
| 828 | assert(SS && SS->isInvalid() &&(static_cast <bool> (SS && SS->isInvalid() && "Invalid scope specifier has already been diagnosed") ? void (0) : __assert_fail ("SS && SS->isInvalid() && \"Invalid scope specifier has already been diagnosed\"" , "clang/lib/Sema/SemaDecl.cpp", 829, __extension__ __PRETTY_FUNCTION__ )) | |||
| 829 | "Invalid scope specifier has already been diagnosed")(static_cast <bool> (SS && SS->isInvalid() && "Invalid scope specifier has already been diagnosed") ? void (0) : __assert_fail ("SS && SS->isInvalid() && \"Invalid scope specifier has already been diagnosed\"" , "clang/lib/Sema/SemaDecl.cpp", 829, __extension__ __PRETTY_FUNCTION__ )); | |||
| 830 | } | |||
| 831 | } | |||
| 832 | ||||
| 833 | /// Determine whether the given result set contains either a type name | |||
| 834 | /// or | |||
| 835 | static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) { | |||
| 836 | bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus && | |||
| 837 | NextToken.is(tok::less); | |||
| 838 | ||||
| 839 | for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { | |||
| 840 | if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I)) | |||
| 841 | return true; | |||
| 842 | ||||
| 843 | if (CheckTemplate && isa<TemplateDecl>(*I)) | |||
| 844 | return true; | |||
| 845 | } | |||
| 846 | ||||
| 847 | return false; | |||
| 848 | } | |||
| 849 | ||||
| 850 | static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result, | |||
| 851 | Scope *S, CXXScopeSpec &SS, | |||
| 852 | IdentifierInfo *&Name, | |||
| 853 | SourceLocation NameLoc) { | |||
| 854 | LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName); | |||
| 855 | SemaRef.LookupParsedName(R, S, &SS); | |||
| 856 | if (TagDecl *Tag = R.getAsSingle<TagDecl>()) { | |||
| 857 | StringRef FixItTagName; | |||
| 858 | switch (Tag->getTagKind()) { | |||
| 859 | case TTK_Class: | |||
| 860 | FixItTagName = "class "; | |||
| 861 | break; | |||
| 862 | ||||
| 863 | case TTK_Enum: | |||
| 864 | FixItTagName = "enum "; | |||
| 865 | break; | |||
| 866 | ||||
| 867 | case TTK_Struct: | |||
| 868 | FixItTagName = "struct "; | |||
| 869 | break; | |||
| 870 | ||||
| 871 | case TTK_Interface: | |||
| 872 | FixItTagName = "__interface "; | |||
| 873 | break; | |||
| 874 | ||||
| 875 | case TTK_Union: | |||
| 876 | FixItTagName = "union "; | |||
| 877 | break; | |||
| 878 | } | |||
| 879 | ||||
| 880 | StringRef TagName = FixItTagName.drop_back(); | |||
| 881 | SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag) | |||
| 882 | << Name << TagName << SemaRef.getLangOpts().CPlusPlus | |||
| 883 | << FixItHint::CreateInsertion(NameLoc, FixItTagName); | |||
| 884 | ||||
| 885 | for (LookupResult::iterator I = Result.begin(), IEnd = Result.end(); | |||
| 886 | I != IEnd; ++I) | |||
| 887 | SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type) | |||
| 888 | << Name << TagName; | |||
| 889 | ||||
| 890 | // Replace lookup results with just the tag decl. | |||
| 891 | Result.clear(Sema::LookupTagName); | |||
| 892 | SemaRef.LookupParsedName(Result, S, &SS); | |||
| 893 | return true; | |||
| 894 | } | |||
| 895 | ||||
| 896 | return false; | |||
| 897 | } | |||
| 898 | ||||
| 899 | Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, | |||
| 900 | IdentifierInfo *&Name, | |||
| 901 | SourceLocation NameLoc, | |||
| 902 | const Token &NextToken, | |||
| 903 | CorrectionCandidateCallback *CCC) { | |||
| 904 | DeclarationNameInfo NameInfo(Name, NameLoc); | |||
| 905 | ObjCMethodDecl *CurMethod = getCurMethodDecl(); | |||
| 906 | ||||
| 907 | assert(NextToken.isNot(tok::coloncolon) &&(static_cast <bool> (NextToken.isNot(tok::coloncolon) && "parse nested name specifiers before calling ClassifyName") ? void (0) : __assert_fail ("NextToken.isNot(tok::coloncolon) && \"parse nested name specifiers before calling ClassifyName\"" , "clang/lib/Sema/SemaDecl.cpp", 908, __extension__ __PRETTY_FUNCTION__ )) | |||
| 908 | "parse nested name specifiers before calling ClassifyName")(static_cast <bool> (NextToken.isNot(tok::coloncolon) && "parse nested name specifiers before calling ClassifyName") ? void (0) : __assert_fail ("NextToken.isNot(tok::coloncolon) && \"parse nested name specifiers before calling ClassifyName\"" , "clang/lib/Sema/SemaDecl.cpp", 908, __extension__ __PRETTY_FUNCTION__ )); | |||
| 909 | if (getLangOpts().CPlusPlus && SS.isSet() && | |||
| 910 | isCurrentClassName(*Name, S, &SS)) { | |||
| 911 | // Per [class.qual]p2, this names the constructors of SS, not the | |||
| 912 | // injected-class-name. We don't have a classification for that. | |||
| 913 | // There's not much point caching this result, since the parser | |||
| 914 | // will reject it later. | |||
| 915 | return NameClassification::Unknown(); | |||
| 916 | } | |||
| 917 | ||||
| 918 | LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); | |||
| 919 | LookupParsedName(Result, S, &SS, !CurMethod); | |||
| 920 | ||||
| 921 | if (SS.isInvalid()) | |||
| 922 | return NameClassification::Error(); | |||
| 923 | ||||
| 924 | // For unqualified lookup in a class template in MSVC mode, look into | |||
| 925 | // dependent base classes where the primary class template is known. | |||
| 926 | if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) { | |||
| 927 | if (ParsedType TypeInBase = | |||
| 928 | recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc)) | |||
| 929 | return TypeInBase; | |||
| 930 | } | |||
| 931 | ||||
| 932 | // Perform lookup for Objective-C instance variables (including automatically | |||
| 933 | // synthesized instance variables), if we're in an Objective-C method. | |||
| 934 | // FIXME: This lookup really, really needs to be folded in to the normal | |||
| 935 | // unqualified lookup mechanism. | |||
| 936 | if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) { | |||
| 937 | DeclResult Ivar = LookupIvarInObjCMethod(Result, S, Name); | |||
| 938 | if (Ivar.isInvalid()) | |||
| 939 | return NameClassification::Error(); | |||
| 940 | if (Ivar.isUsable()) | |||
| 941 | return NameClassification::NonType(cast<NamedDecl>(Ivar.get())); | |||
| 942 | ||||
| 943 | // We defer builtin creation until after ivar lookup inside ObjC methods. | |||
| 944 | if (Result.empty()) | |||
| 945 | LookupBuiltin(Result); | |||
| 946 | } | |||
| 947 | ||||
| 948 | bool SecondTry = false; | |||
| 949 | bool IsFilteredTemplateName = false; | |||
| 950 | ||||
| 951 | Corrected: | |||
| 952 | switch (Result.getResultKind()) { | |||
| 953 | case LookupResult::NotFound: | |||
| 954 | // If an unqualified-id is followed by a '(', then we have a function | |||
| 955 | // call. | |||
| 956 | if (SS.isEmpty() && NextToken.is(tok::l_paren)) { | |||
| 957 | // In C++, this is an ADL-only call. | |||
| 958 | // FIXME: Reference? | |||
| 959 | if (getLangOpts().CPlusPlus) | |||
| 960 | return NameClassification::UndeclaredNonType(); | |||
| 961 | ||||
| 962 | // C90 6.3.2.2: | |||
| 963 | // If the expression that precedes the parenthesized argument list in a | |||
| 964 | // function call consists solely of an identifier, and if no | |||
| 965 | // declaration is visible for this identifier, the identifier is | |||
| 966 | // implicitly declared exactly as if, in the innermost block containing | |||
| 967 | // the function call, the declaration | |||
| 968 | // | |||
| 969 | // extern int identifier (); | |||
| 970 | // | |||
| 971 | // appeared. | |||
| 972 | // | |||
| 973 | // We also allow this in C99 as an extension. However, this is not | |||
| 974 | // allowed in all language modes as functions without prototypes may not | |||
| 975 | // be supported. | |||
| 976 | if (getLangOpts().implicitFunctionsAllowed()) { | |||
| 977 | if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) | |||
| 978 | return NameClassification::NonType(D); | |||
| 979 | } | |||
| 980 | } | |||
| 981 | ||||
| 982 | if (getLangOpts().CPlusPlus20 && SS.isEmpty() && NextToken.is(tok::less)) { | |||
| 983 | // In C++20 onwards, this could be an ADL-only call to a function | |||
| 984 | // template, and we're required to assume that this is a template name. | |||
| 985 | // | |||
| 986 | // FIXME: Find a way to still do typo correction in this case. | |||
| 987 | TemplateName Template = | |||
| 988 | Context.getAssumedTemplateName(NameInfo.getName()); | |||
| 989 | return NameClassification::UndeclaredTemplate(Template); | |||
| 990 | } | |||
| 991 | ||||
| 992 | // In C, we first see whether there is a tag type by the same name, in | |||
| 993 | // which case it's likely that the user just forgot to write "enum", | |||
| 994 | // "struct", or "union". | |||
| 995 | if (!getLangOpts().CPlusPlus && !SecondTry && | |||
| 996 | isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { | |||
| 997 | break; | |||
| 998 | } | |||
| 999 | ||||
| 1000 | // Perform typo correction to determine if there is another name that is | |||
| 1001 | // close to this name. | |||
| 1002 | if (!SecondTry && CCC) { | |||
| 1003 | SecondTry = true; | |||
| 1004 | if (TypoCorrection Corrected = | |||
| 1005 | CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S, | |||
| 1006 | &SS, *CCC, CTK_ErrorRecovery)) { | |||
| 1007 | unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest; | |||
| 1008 | unsigned QualifiedDiag = diag::err_no_member_suggest; | |||
| 1009 | ||||
| 1010 | NamedDecl *FirstDecl = Corrected.getFoundDecl(); | |||
| 1011 | NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl(); | |||
| 1012 | if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && | |||
| 1013 | UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) { | |||
| 1014 | UnqualifiedDiag = diag::err_no_template_suggest; | |||
| 1015 | QualifiedDiag = diag::err_no_member_template_suggest; | |||
| 1016 | } else if (UnderlyingFirstDecl && | |||
| 1017 | (isa<TypeDecl>(UnderlyingFirstDecl) || | |||
| 1018 | isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) || | |||
| 1019 | isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) { | |||
| 1020 | UnqualifiedDiag = diag::err_unknown_typename_suggest; | |||
| 1021 | QualifiedDiag = diag::err_unknown_nested_typename_suggest; | |||
| 1022 | } | |||
| 1023 | ||||
| 1024 | if (SS.isEmpty()) { | |||
| 1025 | diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name); | |||
| 1026 | } else {// FIXME: is this even reachable? Test it. | |||
| 1027 | std::string CorrectedStr(Corrected.getAsString(getLangOpts())); | |||
| 1028 | bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && | |||
| 1029 | Name->getName().equals(CorrectedStr); | |||
| 1030 | diagnoseTypo(Corrected, PDiag(QualifiedDiag) | |||
| 1031 | << Name << computeDeclContext(SS, false) | |||
| 1032 | << DroppedSpecifier << SS.getRange()); | |||
| 1033 | } | |||
| 1034 | ||||
| 1035 | // Update the name, so that the caller has the new name. | |||
| 1036 | Name = Corrected.getCorrectionAsIdentifierInfo(); | |||
| 1037 | ||||
| 1038 | // Typo correction corrected to a keyword. | |||
| 1039 | if (Corrected.isKeyword()) | |||
| 1040 | return Name; | |||
| 1041 | ||||
| 1042 | // Also update the LookupResult... | |||
| 1043 | // FIXME: This should probably go away at some point | |||
| 1044 | Result.clear(); | |||
| 1045 | Result.setLookupName(Corrected.getCorrection()); | |||
| 1046 | if (FirstDecl) | |||
| 1047 | Result.addDecl(FirstDecl); | |||
| 1048 | ||||
| 1049 | // If we found an Objective-C instance variable, let | |||
| 1050 | // LookupInObjCMethod build the appropriate expression to | |||
| 1051 | // reference the ivar. | |||
| 1052 | // FIXME: This is a gross hack. | |||
| 1053 | if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) { | |||
| 1054 | DeclResult R = | |||
| 1055 | LookupIvarInObjCMethod(Result, S, Ivar->getIdentifier()); | |||
| 1056 | if (R.isInvalid()) | |||
| 1057 | return NameClassification::Error(); | |||
| 1058 | if (R.isUsable()) | |||
| 1059 | return NameClassification::NonType(Ivar); | |||
| 1060 | } | |||
| 1061 | ||||
| 1062 | goto Corrected; | |||
| 1063 | } | |||
| 1064 | } | |||
| 1065 | ||||
| 1066 | // We failed to correct; just fall through and let the parser deal with it. | |||
| 1067 | Result.suppressDiagnostics(); | |||
| 1068 | return NameClassification::Unknown(); | |||
| 1069 | ||||
| 1070 | case LookupResult::NotFoundInCurrentInstantiation: { | |||
| 1071 | // We performed name lookup into the current instantiation, and there were | |||
| 1072 | // dependent bases, so we treat this result the same way as any other | |||
| 1073 | // dependent nested-name-specifier. | |||
| 1074 | ||||
| 1075 | // C++ [temp.res]p2: | |||
| 1076 | // A name used in a template declaration or definition and that is | |||
| 1077 | // dependent on a template-parameter is assumed not to name a type | |||
| 1078 | // unless the applicable name lookup finds a type name or the name is | |||
| 1079 | // qualified by the keyword typename. | |||
| 1080 | // | |||
| 1081 | // FIXME: If the next token is '<', we might want to ask the parser to | |||
| 1082 | // perform some heroics to see if we actually have a | |||
| 1083 | // template-argument-list, which would indicate a missing 'template' | |||
| 1084 | // keyword here. | |||
| 1085 | return NameClassification::DependentNonType(); | |||
| 1086 | } | |||
| 1087 | ||||
| 1088 | case LookupResult::Found: | |||
| 1089 | case LookupResult::FoundOverloaded: | |||
| 1090 | case LookupResult::FoundUnresolvedValue: | |||
| 1091 | break; | |||
| 1092 | ||||
| 1093 | case LookupResult::Ambiguous: | |||
| 1094 | if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && | |||
| 1095 | hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true, | |||
| 1096 | /*AllowDependent=*/false)) { | |||
| 1097 | // C++ [temp.local]p3: | |||
| 1098 | // A lookup that finds an injected-class-name (10.2) can result in an | |||
| 1099 | // ambiguity in certain cases (for example, if it is found in more than | |||
| 1100 | // one base class). If all of the injected-class-names that are found | |||
| 1101 | // refer to specializations of the same class template, and if the name | |||
| 1102 | // is followed by a template-argument-list, the reference refers to the | |||
| 1103 | // class template itself and not a specialization thereof, and is not | |||
| 1104 | // ambiguous. | |||
| 1105 | // | |||
| 1106 | // This filtering can make an ambiguous result into an unambiguous one, | |||
| 1107 | // so try again after filtering out template names. | |||
| 1108 | FilterAcceptableTemplateNames(Result); | |||
| 1109 | if (!Result.isAmbiguous()) { | |||
| 1110 | IsFilteredTemplateName = true; | |||
| 1111 | break; | |||
| 1112 | } | |||
| 1113 | } | |||
| 1114 | ||||
| 1115 | // Diagnose the ambiguity and return an error. | |||
| 1116 | return NameClassification::Error(); | |||
| 1117 | } | |||
| 1118 | ||||
| 1119 | if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && | |||
| 1120 | (IsFilteredTemplateName || | |||
| 1121 | hasAnyAcceptableTemplateNames( | |||
| 1122 | Result, /*AllowFunctionTemplates=*/true, | |||
| 1123 | /*AllowDependent=*/false, | |||
| 1124 | /*AllowNonTemplateFunctions*/ SS.isEmpty() && | |||
| 1125 | getLangOpts().CPlusPlus20))) { | |||
| 1126 | // C++ [temp.names]p3: | |||
| 1127 | // After name lookup (3.4) finds that a name is a template-name or that | |||
| 1128 | // an operator-function-id or a literal- operator-id refers to a set of | |||
| 1129 | // overloaded functions any member of which is a function template if | |||
| 1130 | // this is followed by a <, the < is always taken as the delimiter of a | |||
| 1131 | // template-argument-list and never as the less-than operator. | |||
| 1132 | // C++2a [temp.names]p2: | |||
| 1133 | // A name is also considered to refer to a template if it is an | |||
| 1134 | // unqualified-id followed by a < and name lookup finds either one | |||
| 1135 | // or more functions or finds nothing. | |||
| 1136 | if (!IsFilteredTemplateName) | |||
| 1137 | FilterAcceptableTemplateNames(Result); | |||
| 1138 | ||||
| 1139 | bool IsFunctionTemplate; | |||
| 1140 | bool IsVarTemplate; | |||
| 1141 | TemplateName Template; | |||
| 1142 | if (Result.end() - Result.begin() > 1) { | |||
| 1143 | IsFunctionTemplate = true; | |||
| 1144 | Template = Context.getOverloadedTemplateName(Result.begin(), | |||
| 1145 | Result.end()); | |||
| 1146 | } else if (!Result.empty()) { | |||
| 1147 | auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl( | |||
| 1148 | *Result.begin(), /*AllowFunctionTemplates=*/true, | |||
| 1149 | /*AllowDependent=*/false)); | |||
| 1150 | IsFunctionTemplate = isa<FunctionTemplateDecl>(TD); | |||
| 1151 | IsVarTemplate = isa<VarTemplateDecl>(TD); | |||
| 1152 | ||||
| 1153 | UsingShadowDecl *FoundUsingShadow = | |||
| 1154 | dyn_cast<UsingShadowDecl>(*Result.begin()); | |||
| 1155 | assert(!FoundUsingShadow ||(static_cast <bool> (!FoundUsingShadow || TD == cast< TemplateDecl>(FoundUsingShadow->getTargetDecl())) ? void (0) : __assert_fail ("!FoundUsingShadow || TD == cast<TemplateDecl>(FoundUsingShadow->getTargetDecl())" , "clang/lib/Sema/SemaDecl.cpp", 1156, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1156 | TD == cast<TemplateDecl>(FoundUsingShadow->getTargetDecl()))(static_cast <bool> (!FoundUsingShadow || TD == cast< TemplateDecl>(FoundUsingShadow->getTargetDecl())) ? void (0) : __assert_fail ("!FoundUsingShadow || TD == cast<TemplateDecl>(FoundUsingShadow->getTargetDecl())" , "clang/lib/Sema/SemaDecl.cpp", 1156, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1157 | Template = | |||
| 1158 | FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD); | |||
| 1159 | if (SS.isNotEmpty()) | |||
| 1160 | Template = Context.getQualifiedTemplateName(SS.getScopeRep(), | |||
| 1161 | /*TemplateKeyword=*/false, | |||
| 1162 | Template); | |||
| 1163 | } else { | |||
| 1164 | // All results were non-template functions. This is a function template | |||
| 1165 | // name. | |||
| 1166 | IsFunctionTemplate = true; | |||
| 1167 | Template = Context.getAssumedTemplateName(NameInfo.getName()); | |||
| 1168 | } | |||
| 1169 | ||||
| 1170 | if (IsFunctionTemplate) { | |||
| 1171 | // Function templates always go through overload resolution, at which | |||
| 1172 | // point we'll perform the various checks (e.g., accessibility) we need | |||
| 1173 | // to based on which function we selected. | |||
| 1174 | Result.suppressDiagnostics(); | |||
| 1175 | ||||
| 1176 | return NameClassification::FunctionTemplate(Template); | |||
| 1177 | } | |||
| 1178 | ||||
| 1179 | return IsVarTemplate ? NameClassification::VarTemplate(Template) | |||
| 1180 | : NameClassification::TypeTemplate(Template); | |||
| 1181 | } | |||
| 1182 | ||||
| 1183 | auto BuildTypeFor = [&](TypeDecl *Type, NamedDecl *Found) { | |||
| 1184 | QualType T = Context.getTypeDeclType(Type); | |||
| 1185 | if (const auto *USD = dyn_cast<UsingShadowDecl>(Found)) | |||
| 1186 | T = Context.getUsingType(USD, T); | |||
| 1187 | return buildNamedType(*this, &SS, T, NameLoc); | |||
| 1188 | }; | |||
| 1189 | ||||
| 1190 | NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl(); | |||
| 1191 | if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) { | |||
| 1192 | DiagnoseUseOfDecl(Type, NameLoc); | |||
| 1193 | MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); | |||
| 1194 | return BuildTypeFor(Type, *Result.begin()); | |||
| 1195 | } | |||
| 1196 | ||||
| 1197 | ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl); | |||
| 1198 | if (!Class) { | |||
| 1199 | // FIXME: It's unfortunate that we don't have a Type node for handling this. | |||
| 1200 | if (ObjCCompatibleAliasDecl *Alias = | |||
| 1201 | dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl)) | |||
| 1202 | Class = Alias->getClassInterface(); | |||
| 1203 | } | |||
| 1204 | ||||
| 1205 | if (Class) { | |||
| 1206 | DiagnoseUseOfDecl(Class, NameLoc); | |||
| 1207 | ||||
| 1208 | if (NextToken.is(tok::period)) { | |||
| 1209 | // Interface. <something> is parsed as a property reference expression. | |||
| 1210 | // Just return "unknown" as a fall-through for now. | |||
| 1211 | Result.suppressDiagnostics(); | |||
| 1212 | return NameClassification::Unknown(); | |||
| 1213 | } | |||
| 1214 | ||||
| 1215 | QualType T = Context.getObjCInterfaceType(Class); | |||
| 1216 | return ParsedType::make(T); | |||
| 1217 | } | |||
| 1218 | ||||
| 1219 | if (isa<ConceptDecl>(FirstDecl)) | |||
| 1220 | return NameClassification::Concept( | |||
| 1221 | TemplateName(cast<TemplateDecl>(FirstDecl))); | |||
| 1222 | ||||
| 1223 | if (auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(FirstDecl)) { | |||
| 1224 | (void)DiagnoseUseOfDecl(EmptyD, NameLoc); | |||
| 1225 | return NameClassification::Error(); | |||
| 1226 | } | |||
| 1227 | ||||
| 1228 | // We can have a type template here if we're classifying a template argument. | |||
| 1229 | if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) && | |||
| 1230 | !isa<VarTemplateDecl>(FirstDecl)) | |||
| 1231 | return NameClassification::TypeTemplate( | |||
| 1232 | TemplateName(cast<TemplateDecl>(FirstDecl))); | |||
| 1233 | ||||
| 1234 | // Check for a tag type hidden by a non-type decl in a few cases where it | |||
| 1235 | // seems likely a type is wanted instead of the non-type that was found. | |||
| 1236 | bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star); | |||
| 1237 | if ((NextToken.is(tok::identifier) || | |||
| 1238 | (NextIsOp && | |||
| 1239 | FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) && | |||
| 1240 | isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { | |||
| 1241 | TypeDecl *Type = Result.getAsSingle<TypeDecl>(); | |||
| 1242 | DiagnoseUseOfDecl(Type, NameLoc); | |||
| 1243 | return BuildTypeFor(Type, *Result.begin()); | |||
| 1244 | } | |||
| 1245 | ||||
| 1246 | // If we already know which single declaration is referenced, just annotate | |||
| 1247 | // that declaration directly. Defer resolving even non-overloaded class | |||
| 1248 | // member accesses, as we need to defer certain access checks until we know | |||
| 1249 | // the context. | |||
| 1250 | bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren)); | |||
| 1251 | if (Result.isSingleResult() && !ADL && | |||
| 1252 | (!FirstDecl->isCXXClassMember() || isa<EnumConstantDecl>(FirstDecl))) | |||
| 1253 | return NameClassification::NonType(Result.getRepresentativeDecl()); | |||
| 1254 | ||||
| 1255 | // Otherwise, this is an overload set that we will need to resolve later. | |||
| 1256 | Result.suppressDiagnostics(); | |||
| 1257 | return NameClassification::OverloadSet(UnresolvedLookupExpr::Create( | |||
| 1258 | Context, Result.getNamingClass(), SS.getWithLocInContext(Context), | |||
| 1259 | Result.getLookupNameInfo(), ADL, Result.isOverloadedResult(), | |||
| 1260 | Result.begin(), Result.end())); | |||
| 1261 | } | |||
| 1262 | ||||
| 1263 | ExprResult | |||
| 1264 | Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name, | |||
| 1265 | SourceLocation NameLoc) { | |||
| 1266 | assert(getLangOpts().CPlusPlus && "ADL-only call in C?")(static_cast <bool> (getLangOpts().CPlusPlus && "ADL-only call in C?") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"ADL-only call in C?\"" , "clang/lib/Sema/SemaDecl.cpp", 1266, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1267 | CXXScopeSpec SS; | |||
| 1268 | LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); | |||
| 1269 | return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true); | |||
| 1270 | } | |||
| 1271 | ||||
| 1272 | ExprResult | |||
| 1273 | Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS, | |||
| 1274 | IdentifierInfo *Name, | |||
| 1275 | SourceLocation NameLoc, | |||
| 1276 | bool IsAddressOfOperand) { | |||
| 1277 | DeclarationNameInfo NameInfo(Name, NameLoc); | |||
| 1278 | return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(), | |||
| 1279 | NameInfo, IsAddressOfOperand, | |||
| 1280 | /*TemplateArgs=*/nullptr); | |||
| 1281 | } | |||
| 1282 | ||||
| 1283 | ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS, | |||
| 1284 | NamedDecl *Found, | |||
| 1285 | SourceLocation NameLoc, | |||
| 1286 | const Token &NextToken) { | |||
| 1287 | if (getCurMethodDecl() && SS.isEmpty()) | |||
| 1288 | if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Found->getUnderlyingDecl())) | |||
| 1289 | return BuildIvarRefExpr(S, NameLoc, Ivar); | |||
| 1290 | ||||
| 1291 | // Reconstruct the lookup result. | |||
| 1292 | LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName); | |||
| 1293 | Result.addDecl(Found); | |||
| 1294 | Result.resolveKind(); | |||
| 1295 | ||||
| 1296 | bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren)); | |||
| 1297 | return BuildDeclarationNameExpr(SS, Result, ADL, /*AcceptInvalidDecl=*/true); | |||
| 1298 | } | |||
| 1299 | ||||
| 1300 | ExprResult Sema::ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *E) { | |||
| 1301 | // For an implicit class member access, transform the result into a member | |||
| 1302 | // access expression if necessary. | |||
| 1303 | auto *ULE = cast<UnresolvedLookupExpr>(E); | |||
| 1304 | if ((*ULE->decls_begin())->isCXXClassMember()) { | |||
| 1305 | CXXScopeSpec SS; | |||
| 1306 | SS.Adopt(ULE->getQualifierLoc()); | |||
| 1307 | ||||
| 1308 | // Reconstruct the lookup result. | |||
| 1309 | LookupResult Result(*this, ULE->getName(), ULE->getNameLoc(), | |||
| 1310 | LookupOrdinaryName); | |||
| 1311 | Result.setNamingClass(ULE->getNamingClass()); | |||
| 1312 | for (auto I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I) | |||
| 1313 | Result.addDecl(*I, I.getAccess()); | |||
| 1314 | Result.resolveKind(); | |||
| 1315 | return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, | |||
| 1316 | nullptr, S); | |||
| 1317 | } | |||
| 1318 | ||||
| 1319 | // Otherwise, this is already in the form we needed, and no further checks | |||
| 1320 | // are necessary. | |||
| 1321 | return ULE; | |||
| 1322 | } | |||
| 1323 | ||||
| 1324 | Sema::TemplateNameKindForDiagnostics | |||
| 1325 | Sema::getTemplateNameKindForDiagnostics(TemplateName Name) { | |||
| 1326 | auto *TD = Name.getAsTemplateDecl(); | |||
| 1327 | if (!TD) | |||
| 1328 | return TemplateNameKindForDiagnostics::DependentTemplate; | |||
| 1329 | if (isa<ClassTemplateDecl>(TD)) | |||
| 1330 | return TemplateNameKindForDiagnostics::ClassTemplate; | |||
| 1331 | if (isa<FunctionTemplateDecl>(TD)) | |||
| 1332 | return TemplateNameKindForDiagnostics::FunctionTemplate; | |||
| 1333 | if (isa<VarTemplateDecl>(TD)) | |||
| 1334 | return TemplateNameKindForDiagnostics::VarTemplate; | |||
| 1335 | if (isa<TypeAliasTemplateDecl>(TD)) | |||
| 1336 | return TemplateNameKindForDiagnostics::AliasTemplate; | |||
| 1337 | if (isa<TemplateTemplateParmDecl>(TD)) | |||
| 1338 | return TemplateNameKindForDiagnostics::TemplateTemplateParam; | |||
| 1339 | if (isa<ConceptDecl>(TD)) | |||
| 1340 | return TemplateNameKindForDiagnostics::Concept; | |||
| 1341 | return TemplateNameKindForDiagnostics::DependentTemplate; | |||
| 1342 | } | |||
| 1343 | ||||
| 1344 | void Sema::PushDeclContext(Scope *S, DeclContext *DC) { | |||
| 1345 | assert(DC->getLexicalParent() == CurContext &&(static_cast <bool> (DC->getLexicalParent() == CurContext && "The next DeclContext should be lexically contained in the current one." ) ? void (0) : __assert_fail ("DC->getLexicalParent() == CurContext && \"The next DeclContext should be lexically contained in the current one.\"" , "clang/lib/Sema/SemaDecl.cpp", 1346, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1346 | "The next DeclContext should be lexically contained in the current one.")(static_cast <bool> (DC->getLexicalParent() == CurContext && "The next DeclContext should be lexically contained in the current one." ) ? void (0) : __assert_fail ("DC->getLexicalParent() == CurContext && \"The next DeclContext should be lexically contained in the current one.\"" , "clang/lib/Sema/SemaDecl.cpp", 1346, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1347 | CurContext = DC; | |||
| 1348 | S->setEntity(DC); | |||
| 1349 | } | |||
| 1350 | ||||
| 1351 | void Sema::PopDeclContext() { | |||
| 1352 | assert(CurContext && "DeclContext imbalance!")(static_cast <bool> (CurContext && "DeclContext imbalance!" ) ? void (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\"" , "clang/lib/Sema/SemaDecl.cpp", 1352, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1353 | ||||
| 1354 | CurContext = CurContext->getLexicalParent(); | |||
| 1355 | assert(CurContext && "Popped translation unit!")(static_cast <bool> (CurContext && "Popped translation unit!" ) ? void (0) : __assert_fail ("CurContext && \"Popped translation unit!\"" , "clang/lib/Sema/SemaDecl.cpp", 1355, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1356 | } | |||
| 1357 | ||||
| 1358 | Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S, | |||
| 1359 | Decl *D) { | |||
| 1360 | // Unlike PushDeclContext, the context to which we return is not necessarily | |||
| 1361 | // the containing DC of TD, because the new context will be some pre-existing | |||
| 1362 | // TagDecl definition instead of a fresh one. | |||
| 1363 | auto Result = static_cast<SkippedDefinitionContext>(CurContext); | |||
| 1364 | CurContext = cast<TagDecl>(D)->getDefinition(); | |||
| 1365 | assert(CurContext && "skipping definition of undefined tag")(static_cast <bool> (CurContext && "skipping definition of undefined tag" ) ? void (0) : __assert_fail ("CurContext && \"skipping definition of undefined tag\"" , "clang/lib/Sema/SemaDecl.cpp", 1365, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1366 | // Start lookups from the parent of the current context; we don't want to look | |||
| 1367 | // into the pre-existing complete definition. | |||
| 1368 | S->setEntity(CurContext->getLookupParent()); | |||
| 1369 | return Result; | |||
| 1370 | } | |||
| 1371 | ||||
| 1372 | void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) { | |||
| 1373 | CurContext = static_cast<decltype(CurContext)>(Context); | |||
| 1374 | } | |||
| 1375 | ||||
| 1376 | /// EnterDeclaratorContext - Used when we must lookup names in the context | |||
| 1377 | /// of a declarator's nested name specifier. | |||
| 1378 | /// | |||
| 1379 | void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) { | |||
| 1380 | // C++0x [basic.lookup.unqual]p13: | |||
| 1381 | // A name used in the definition of a static data member of class | |||
| 1382 | // X (after the qualified-id of the static member) is looked up as | |||
| 1383 | // if the name was used in a member function of X. | |||
| 1384 | // C++0x [basic.lookup.unqual]p14: | |||
| 1385 | // If a variable member of a namespace is defined outside of the | |||
| 1386 | // scope of its namespace then any name used in the definition of | |||
| 1387 | // the variable member (after the declarator-id) is looked up as | |||
| 1388 | // if the definition of the variable member occurred in its | |||
| 1389 | // namespace. | |||
| 1390 | // Both of these imply that we should push a scope whose context | |||
| 1391 | // is the semantic context of the declaration. We can't use | |||
| 1392 | // PushDeclContext here because that context is not necessarily | |||
| 1393 | // lexically contained in the current context. Fortunately, | |||
| 1394 | // the containing scope should have the appropriate information. | |||
| 1395 | ||||
| 1396 | assert(!S->getEntity() && "scope already has entity")(static_cast <bool> (!S->getEntity() && "scope already has entity" ) ? void (0) : __assert_fail ("!S->getEntity() && \"scope already has entity\"" , "clang/lib/Sema/SemaDecl.cpp", 1396, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1397 | ||||
| 1398 | #ifndef NDEBUG | |||
| 1399 | Scope *Ancestor = S->getParent(); | |||
| 1400 | while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); | |||
| 1401 | assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch")(static_cast <bool> (Ancestor->getEntity() == CurContext && "ancestor context mismatch") ? void (0) : __assert_fail ("Ancestor->getEntity() == CurContext && \"ancestor context mismatch\"" , "clang/lib/Sema/SemaDecl.cpp", 1401, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1402 | #endif | |||
| 1403 | ||||
| 1404 | CurContext = DC; | |||
| 1405 | S->setEntity(DC); | |||
| 1406 | ||||
| 1407 | if (S->getParent()->isTemplateParamScope()) { | |||
| 1408 | // Also set the corresponding entities for all immediately-enclosing | |||
| 1409 | // template parameter scopes. | |||
| 1410 | EnterTemplatedContext(S->getParent(), DC); | |||
| 1411 | } | |||
| 1412 | } | |||
| 1413 | ||||
| 1414 | void Sema::ExitDeclaratorContext(Scope *S) { | |||
| 1415 | assert(S->getEntity() == CurContext && "Context imbalance!")(static_cast <bool> (S->getEntity() == CurContext && "Context imbalance!") ? void (0) : __assert_fail ("S->getEntity() == CurContext && \"Context imbalance!\"" , "clang/lib/Sema/SemaDecl.cpp", 1415, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1416 | ||||
| 1417 | // Switch back to the lexical context. The safety of this is | |||
| 1418 | // enforced by an assert in EnterDeclaratorContext. | |||
| 1419 | Scope *Ancestor = S->getParent(); | |||
| 1420 | while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); | |||
| 1421 | CurContext = Ancestor->getEntity(); | |||
| 1422 | ||||
| 1423 | // We don't need to do anything with the scope, which is going to | |||
| 1424 | // disappear. | |||
| 1425 | } | |||
| 1426 | ||||
| 1427 | void Sema::EnterTemplatedContext(Scope *S, DeclContext *DC) { | |||
| 1428 | assert(S->isTemplateParamScope() &&(static_cast <bool> (S->isTemplateParamScope() && "expected to be initializing a template parameter scope") ? void (0) : __assert_fail ("S->isTemplateParamScope() && \"expected to be initializing a template parameter scope\"" , "clang/lib/Sema/SemaDecl.cpp", 1429, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1429 | "expected to be initializing a template parameter scope")(static_cast <bool> (S->isTemplateParamScope() && "expected to be initializing a template parameter scope") ? void (0) : __assert_fail ("S->isTemplateParamScope() && \"expected to be initializing a template parameter scope\"" , "clang/lib/Sema/SemaDecl.cpp", 1429, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1430 | ||||
| 1431 | // C++20 [temp.local]p7: | |||
| 1432 | // In the definition of a member of a class template that appears outside | |||
| 1433 | // of the class template definition, the name of a member of the class | |||
| 1434 | // template hides the name of a template-parameter of any enclosing class | |||
| 1435 | // templates (but not a template-parameter of the member if the member is a | |||
| 1436 | // class or function template). | |||
| 1437 | // C++20 [temp.local]p9: | |||
| 1438 | // In the definition of a class template or in the definition of a member | |||
| 1439 | // of such a template that appears outside of the template definition, for | |||
| 1440 | // each non-dependent base class (13.8.2.1), if the name of the base class | |||
| 1441 | // or the name of a member of the base class is the same as the name of a | |||
| 1442 | // template-parameter, the base class name or member name hides the | |||
| 1443 | // template-parameter name (6.4.10). | |||
| 1444 | // | |||
| 1445 | // This means that a template parameter scope should be searched immediately | |||
| 1446 | // after searching the DeclContext for which it is a template parameter | |||
| 1447 | // scope. For example, for | |||
| 1448 | // template<typename T> template<typename U> template<typename V> | |||
| 1449 | // void N::A<T>::B<U>::f(...) | |||
| 1450 | // we search V then B<U> (and base classes) then U then A<T> (and base | |||
| 1451 | // classes) then T then N then ::. | |||
| 1452 | unsigned ScopeDepth = getTemplateDepth(S); | |||
| 1453 | for (; S && S->isTemplateParamScope(); S = S->getParent(), --ScopeDepth) { | |||
| 1454 | DeclContext *SearchDCAfterScope = DC; | |||
| 1455 | for (; DC; DC = DC->getLookupParent()) { | |||
| 1456 | if (const TemplateParameterList *TPL = | |||
| 1457 | cast<Decl>(DC)->getDescribedTemplateParams()) { | |||
| 1458 | unsigned DCDepth = TPL->getDepth() + 1; | |||
| 1459 | if (DCDepth > ScopeDepth) | |||
| 1460 | continue; | |||
| 1461 | if (ScopeDepth == DCDepth) | |||
| 1462 | SearchDCAfterScope = DC = DC->getLookupParent(); | |||
| 1463 | break; | |||
| 1464 | } | |||
| 1465 | } | |||
| 1466 | S->setLookupEntity(SearchDCAfterScope); | |||
| 1467 | } | |||
| 1468 | } | |||
| 1469 | ||||
| 1470 | void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) { | |||
| 1471 | // We assume that the caller has already called | |||
| 1472 | // ActOnReenterTemplateScope so getTemplatedDecl() works. | |||
| 1473 | FunctionDecl *FD = D->getAsFunction(); | |||
| 1474 | if (!FD) | |||
| 1475 | return; | |||
| 1476 | ||||
| 1477 | // Same implementation as PushDeclContext, but enters the context | |||
| 1478 | // from the lexical parent, rather than the top-level class. | |||
| 1479 | assert(CurContext == FD->getLexicalParent() &&(static_cast <bool> (CurContext == FD->getLexicalParent () && "The next DeclContext should be lexically contained in the current one." ) ? void (0) : __assert_fail ("CurContext == FD->getLexicalParent() && \"The next DeclContext should be lexically contained in the current one.\"" , "clang/lib/Sema/SemaDecl.cpp", 1480, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1480 | "The next DeclContext should be lexically contained in the current one.")(static_cast <bool> (CurContext == FD->getLexicalParent () && "The next DeclContext should be lexically contained in the current one." ) ? void (0) : __assert_fail ("CurContext == FD->getLexicalParent() && \"The next DeclContext should be lexically contained in the current one.\"" , "clang/lib/Sema/SemaDecl.cpp", 1480, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1481 | CurContext = FD; | |||
| 1482 | S->setEntity(CurContext); | |||
| 1483 | ||||
| 1484 | for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) { | |||
| 1485 | ParmVarDecl *Param = FD->getParamDecl(P); | |||
| 1486 | // If the parameter has an identifier, then add it to the scope | |||
| 1487 | if (Param->getIdentifier()) { | |||
| 1488 | S->AddDecl(Param); | |||
| 1489 | IdResolver.AddDecl(Param); | |||
| 1490 | } | |||
| 1491 | } | |||
| 1492 | } | |||
| 1493 | ||||
| 1494 | void Sema::ActOnExitFunctionContext() { | |||
| 1495 | // Same implementation as PopDeclContext, but returns to the lexical parent, | |||
| 1496 | // rather than the top-level class. | |||
| 1497 | assert(CurContext && "DeclContext imbalance!")(static_cast <bool> (CurContext && "DeclContext imbalance!" ) ? void (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\"" , "clang/lib/Sema/SemaDecl.cpp", 1497, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1498 | CurContext = CurContext->getLexicalParent(); | |||
| 1499 | assert(CurContext && "Popped translation unit!")(static_cast <bool> (CurContext && "Popped translation unit!" ) ? void (0) : __assert_fail ("CurContext && \"Popped translation unit!\"" , "clang/lib/Sema/SemaDecl.cpp", 1499, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1500 | } | |||
| 1501 | ||||
| 1502 | /// Determine whether overloading is allowed for a new function | |||
| 1503 | /// declaration considering prior declarations of the same name. | |||
| 1504 | /// | |||
| 1505 | /// This routine determines whether overloading is possible, not | |||
| 1506 | /// whether a new declaration actually overloads a previous one. | |||
| 1507 | /// It will return true in C++ (where overloads are alway permitted) | |||
| 1508 | /// or, as a C extension, when either the new declaration or a | |||
| 1509 | /// previous one is declared with the 'overloadable' attribute. | |||
| 1510 | static bool AllowOverloadingOfFunction(const LookupResult &Previous, | |||
| 1511 | ASTContext &Context, | |||
| 1512 | const FunctionDecl *New) { | |||
| 1513 | if (Context.getLangOpts().CPlusPlus || New->hasAttr<OverloadableAttr>()) | |||
| 1514 | return true; | |||
| 1515 | ||||
| 1516 | // Multiversion function declarations are not overloads in the | |||
| 1517 | // usual sense of that term, but lookup will report that an | |||
| 1518 | // overload set was found if more than one multiversion function | |||
| 1519 | // declaration is present for the same name. It is therefore | |||
| 1520 | // inadequate to assume that some prior declaration(s) had | |||
| 1521 | // the overloadable attribute; checking is required. Since one | |||
| 1522 | // declaration is permitted to omit the attribute, it is necessary | |||
| 1523 | // to check at least two; hence the 'any_of' check below. Note that | |||
| 1524 | // the overloadable attribute is implicitly added to declarations | |||
| 1525 | // that were required to have it but did not. | |||
| 1526 | if (Previous.getResultKind() == LookupResult::FoundOverloaded) { | |||
| 1527 | return llvm::any_of(Previous, [](const NamedDecl *ND) { | |||
| 1528 | return ND->hasAttr<OverloadableAttr>(); | |||
| 1529 | }); | |||
| 1530 | } else if (Previous.getResultKind() == LookupResult::Found) | |||
| 1531 | return Previous.getFoundDecl()->hasAttr<OverloadableAttr>(); | |||
| 1532 | ||||
| 1533 | return false; | |||
| 1534 | } | |||
| 1535 | ||||
| 1536 | /// Add this decl to the scope shadowed decl chains. | |||
| 1537 | void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) { | |||
| 1538 | // Move up the scope chain until we find the nearest enclosing | |||
| 1539 | // non-transparent context. The declaration will be introduced into this | |||
| 1540 | // scope. | |||
| 1541 | while (S->getEntity() && S->getEntity()->isTransparentContext()) | |||
| 1542 | S = S->getParent(); | |||
| 1543 | ||||
| 1544 | // Add scoped declarations into their context, so that they can be | |||
| 1545 | // found later. Declarations without a context won't be inserted | |||
| 1546 | // into any context. | |||
| 1547 | if (AddToContext) | |||
| 1548 | CurContext->addDecl(D); | |||
| 1549 | ||||
| 1550 | // Out-of-line definitions shouldn't be pushed into scope in C++, unless they | |||
| 1551 | // are function-local declarations. | |||
| 1552 | if (getLangOpts().CPlusPlus && D->isOutOfLine() && !S->getFnParent()) | |||
| 1553 | return; | |||
| 1554 | ||||
| 1555 | // Template instantiations should also not be pushed into scope. | |||
| 1556 | if (isa<FunctionDecl>(D) && | |||
| 1557 | cast<FunctionDecl>(D)->isFunctionTemplateSpecialization()) | |||
| 1558 | return; | |||
| 1559 | ||||
| 1560 | // If this replaces anything in the current scope, | |||
| 1561 | IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()), | |||
| 1562 | IEnd = IdResolver.end(); | |||
| 1563 | for (; I != IEnd; ++I) { | |||
| 1564 | if (S->isDeclScope(*I) && D->declarationReplaces(*I)) { | |||
| 1565 | S->RemoveDecl(*I); | |||
| 1566 | IdResolver.RemoveDecl(*I); | |||
| 1567 | ||||
| 1568 | // Should only need to replace one decl. | |||
| 1569 | break; | |||
| 1570 | } | |||
| 1571 | } | |||
| 1572 | ||||
| 1573 | S->AddDecl(D); | |||
| 1574 | ||||
| 1575 | if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) { | |||
| 1576 | // Implicitly-generated labels may end up getting generated in an order that | |||
| 1577 | // isn't strictly lexical, which breaks name lookup. Be careful to insert | |||
| 1578 | // the label at the appropriate place in the identifier chain. | |||
| 1579 | for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) { | |||
| 1580 | DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext(); | |||
| 1581 | if (IDC == CurContext) { | |||
| 1582 | if (!S->isDeclScope(*I)) | |||
| 1583 | continue; | |||
| 1584 | } else if (IDC->Encloses(CurContext)) | |||
| 1585 | break; | |||
| 1586 | } | |||
| 1587 | ||||
| 1588 | IdResolver.InsertDeclAfter(I, D); | |||
| 1589 | } else { | |||
| 1590 | IdResolver.AddDecl(D); | |||
| 1591 | } | |||
| 1592 | warnOnReservedIdentifier(D); | |||
| 1593 | } | |||
| 1594 | ||||
| 1595 | bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S, | |||
| 1596 | bool AllowInlineNamespace) const { | |||
| 1597 | return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace); | |||
| 1598 | } | |||
| 1599 | ||||
| 1600 | Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) { | |||
| 1601 | DeclContext *TargetDC = DC->getPrimaryContext(); | |||
| 1602 | do { | |||
| 1603 | if (DeclContext *ScopeDC = S->getEntity()) | |||
| 1604 | if (ScopeDC->getPrimaryContext() == TargetDC) | |||
| 1605 | return S; | |||
| 1606 | } while ((S = S->getParent())); | |||
| 1607 | ||||
| 1608 | return nullptr; | |||
| 1609 | } | |||
| 1610 | ||||
| 1611 | static bool isOutOfScopePreviousDeclaration(NamedDecl *, | |||
| 1612 | DeclContext*, | |||
| 1613 | ASTContext&); | |||
| 1614 | ||||
| 1615 | /// Filters out lookup results that don't fall within the given scope | |||
| 1616 | /// as determined by isDeclInScope. | |||
| 1617 | void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S, | |||
| 1618 | bool ConsiderLinkage, | |||
| 1619 | bool AllowInlineNamespace) { | |||
| 1620 | LookupResult::Filter F = R.makeFilter(); | |||
| 1621 | while (F.hasNext()) { | |||
| 1622 | NamedDecl *D = F.next(); | |||
| 1623 | ||||
| 1624 | if (isDeclInScope(D, Ctx, S, AllowInlineNamespace)) | |||
| 1625 | continue; | |||
| 1626 | ||||
| 1627 | if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context)) | |||
| 1628 | continue; | |||
| 1629 | ||||
| 1630 | F.erase(); | |||
| 1631 | } | |||
| 1632 | ||||
| 1633 | F.done(); | |||
| 1634 | } | |||
| 1635 | ||||
| 1636 | /// We've determined that \p New is a redeclaration of \p Old. Check that they | |||
| 1637 | /// have compatible owning modules. | |||
| 1638 | bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) { | |||
| 1639 | // [module.interface]p7: | |||
| 1640 | // A declaration is attached to a module as follows: | |||
| 1641 | // - If the declaration is a non-dependent friend declaration that nominates a | |||
| 1642 | // function with a declarator-id that is a qualified-id or template-id or that | |||
| 1643 | // nominates a class other than with an elaborated-type-specifier with neither | |||
| 1644 | // a nested-name-specifier nor a simple-template-id, it is attached to the | |||
| 1645 | // module to which the friend is attached ([basic.link]). | |||
| 1646 | if (New->getFriendObjectKind() && | |||
| 1647 | Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) { | |||
| 1648 | New->setLocalOwningModule(Old->getOwningModule()); | |||
| 1649 | makeMergedDefinitionVisible(New); | |||
| 1650 | return false; | |||
| 1651 | } | |||
| 1652 | ||||
| 1653 | Module *NewM = New->getOwningModule(); | |||
| 1654 | Module *OldM = Old->getOwningModule(); | |||
| 1655 | ||||
| 1656 | if (NewM && NewM->isPrivateModule()) | |||
| 1657 | NewM = NewM->Parent; | |||
| 1658 | if (OldM && OldM->isPrivateModule()) | |||
| 1659 | OldM = OldM->Parent; | |||
| 1660 | ||||
| 1661 | if (NewM == OldM) | |||
| 1662 | return false; | |||
| 1663 | ||||
| 1664 | if (NewM && OldM) { | |||
| 1665 | // A module implementation unit has visibility of the decls in its | |||
| 1666 | // implicitly imported interface. | |||
| 1667 | if (NewM->isModuleImplementation() && OldM == ThePrimaryInterface) | |||
| 1668 | return false; | |||
| 1669 | ||||
| 1670 | // Partitions are part of the module, but a partition could import another | |||
| 1671 | // module, so verify that the PMIs agree. | |||
| 1672 | if ((NewM->isModulePartition() || OldM->isModulePartition()) && | |||
| 1673 | NewM->getPrimaryModuleInterfaceName() == | |||
| 1674 | OldM->getPrimaryModuleInterfaceName()) | |||
| 1675 | return false; | |||
| 1676 | } | |||
| 1677 | ||||
| 1678 | bool NewIsModuleInterface = NewM && NewM->isModulePurview(); | |||
| 1679 | bool OldIsModuleInterface = OldM && OldM->isModulePurview(); | |||
| 1680 | if (NewIsModuleInterface || OldIsModuleInterface) { | |||
| 1681 | // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]: | |||
| 1682 | // if a declaration of D [...] appears in the purview of a module, all | |||
| 1683 | // other such declarations shall appear in the purview of the same module | |||
| 1684 | Diag(New->getLocation(), diag::err_mismatched_owning_module) | |||
| 1685 | << New | |||
| 1686 | << NewIsModuleInterface | |||
| 1687 | << (NewIsModuleInterface ? NewM->getFullModuleName() : "") | |||
| 1688 | << OldIsModuleInterface | |||
| 1689 | << (OldIsModuleInterface ? OldM->getFullModuleName() : ""); | |||
| 1690 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
| 1691 | New->setInvalidDecl(); | |||
| 1692 | return true; | |||
| 1693 | } | |||
| 1694 | ||||
| 1695 | return false; | |||
| 1696 | } | |||
| 1697 | ||||
| 1698 | // [module.interface]p6: | |||
| 1699 | // A redeclaration of an entity X is implicitly exported if X was introduced by | |||
| 1700 | // an exported declaration; otherwise it shall not be exported. | |||
| 1701 | bool Sema::CheckRedeclarationExported(NamedDecl *New, NamedDecl *Old) { | |||
| 1702 | // [module.interface]p1: | |||
| 1703 | // An export-declaration shall inhabit a namespace scope. | |||
| 1704 | // | |||
| 1705 | // So it is meaningless to talk about redeclaration which is not at namespace | |||
| 1706 | // scope. | |||
| 1707 | if (!New->getLexicalDeclContext() | |||
| 1708 | ->getNonTransparentContext() | |||
| 1709 | ->isFileContext() || | |||
| 1710 | !Old->getLexicalDeclContext() | |||
| 1711 | ->getNonTransparentContext() | |||
| 1712 | ->isFileContext()) | |||
| 1713 | return false; | |||
| 1714 | ||||
| 1715 | bool IsNewExported = New->isInExportDeclContext(); | |||
| 1716 | bool IsOldExported = Old->isInExportDeclContext(); | |||
| 1717 | ||||
| 1718 | // It should be irrevelant if both of them are not exported. | |||
| 1719 | if (!IsNewExported && !IsOldExported) | |||
| 1720 | return false; | |||
| 1721 | ||||
| 1722 | if (IsOldExported) | |||
| 1723 | return false; | |||
| 1724 | ||||
| 1725 | assert(IsNewExported)(static_cast <bool> (IsNewExported) ? void (0) : __assert_fail ("IsNewExported", "clang/lib/Sema/SemaDecl.cpp", 1725, __extension__ __PRETTY_FUNCTION__)); | |||
| 1726 | ||||
| 1727 | auto Lk = Old->getFormalLinkage(); | |||
| 1728 | int S = 0; | |||
| 1729 | if (Lk == Linkage::InternalLinkage) | |||
| 1730 | S = 1; | |||
| 1731 | else if (Lk == Linkage::ModuleLinkage) | |||
| 1732 | S = 2; | |||
| 1733 | Diag(New->getLocation(), diag::err_redeclaration_non_exported) << New << S; | |||
| 1734 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
| 1735 | return true; | |||
| 1736 | } | |||
| 1737 | ||||
| 1738 | // A wrapper function for checking the semantic restrictions of | |||
| 1739 | // a redeclaration within a module. | |||
| 1740 | bool Sema::CheckRedeclarationInModule(NamedDecl *New, NamedDecl *Old) { | |||
| 1741 | if (CheckRedeclarationModuleOwnership(New, Old)) | |||
| 1742 | return true; | |||
| 1743 | ||||
| 1744 | if (CheckRedeclarationExported(New, Old)) | |||
| 1745 | return true; | |||
| 1746 | ||||
| 1747 | return false; | |||
| 1748 | } | |||
| 1749 | ||||
| 1750 | // Check the redefinition in C++20 Modules. | |||
| 1751 | // | |||
| 1752 | // [basic.def.odr]p14: | |||
| 1753 | // For any definable item D with definitions in multiple translation units, | |||
| 1754 | // - if D is a non-inline non-templated function or variable, or | |||
| 1755 | // - if the definitions in different translation units do not satisfy the | |||
| 1756 | // following requirements, | |||
| 1757 | // the program is ill-formed; a diagnostic is required only if the definable | |||
| 1758 | // item is attached to a named module and a prior definition is reachable at | |||
| 1759 | // the point where a later definition occurs. | |||
| 1760 | // - Each such definition shall not be attached to a named module | |||
| 1761 | // ([module.unit]). | |||
| 1762 | // - Each such definition shall consist of the same sequence of tokens, ... | |||
| 1763 | // ... | |||
| 1764 | // | |||
| 1765 | // Return true if the redefinition is not allowed. Return false otherwise. | |||
| 1766 | bool Sema::IsRedefinitionInModule(const NamedDecl *New, | |||
| 1767 | const NamedDecl *Old) const { | |||
| 1768 | assert(getASTContext().isSameEntity(New, Old) &&(static_cast <bool> (getASTContext().isSameEntity(New, Old ) && "New and Old are not the same definition, we should diagnostic it " "immediately instead of checking it.") ? void (0) : __assert_fail ("getASTContext().isSameEntity(New, Old) && \"New and Old are not the same definition, we should diagnostic it \" \"immediately instead of checking it.\"" , "clang/lib/Sema/SemaDecl.cpp", 1770, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1769 | "New and Old are not the same definition, we should diagnostic it "(static_cast <bool> (getASTContext().isSameEntity(New, Old ) && "New and Old are not the same definition, we should diagnostic it " "immediately instead of checking it.") ? void (0) : __assert_fail ("getASTContext().isSameEntity(New, Old) && \"New and Old are not the same definition, we should diagnostic it \" \"immediately instead of checking it.\"" , "clang/lib/Sema/SemaDecl.cpp", 1770, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1770 | "immediately instead of checking it.")(static_cast <bool> (getASTContext().isSameEntity(New, Old ) && "New and Old are not the same definition, we should diagnostic it " "immediately instead of checking it.") ? void (0) : __assert_fail ("getASTContext().isSameEntity(New, Old) && \"New and Old are not the same definition, we should diagnostic it \" \"immediately instead of checking it.\"" , "clang/lib/Sema/SemaDecl.cpp", 1770, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1771 | assert(const_cast<Sema *>(this)->isReachable(New) &&(static_cast <bool> (const_cast<Sema *>(this)-> isReachable(New) && const_cast<Sema *>(this)-> isReachable(Old) && "We shouldn't see unreachable definitions here." ) ? void (0) : __assert_fail ("const_cast<Sema *>(this)->isReachable(New) && const_cast<Sema *>(this)->isReachable(Old) && \"We shouldn't see unreachable definitions here.\"" , "clang/lib/Sema/SemaDecl.cpp", 1773, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1772 | const_cast<Sema *>(this)->isReachable(Old) &&(static_cast <bool> (const_cast<Sema *>(this)-> isReachable(New) && const_cast<Sema *>(this)-> isReachable(Old) && "We shouldn't see unreachable definitions here." ) ? void (0) : __assert_fail ("const_cast<Sema *>(this)->isReachable(New) && const_cast<Sema *>(this)->isReachable(Old) && \"We shouldn't see unreachable definitions here.\"" , "clang/lib/Sema/SemaDecl.cpp", 1773, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1773 | "We shouldn't see unreachable definitions here.")(static_cast <bool> (const_cast<Sema *>(this)-> isReachable(New) && const_cast<Sema *>(this)-> isReachable(Old) && "We shouldn't see unreachable definitions here." ) ? void (0) : __assert_fail ("const_cast<Sema *>(this)->isReachable(New) && const_cast<Sema *>(this)->isReachable(Old) && \"We shouldn't see unreachable definitions here.\"" , "clang/lib/Sema/SemaDecl.cpp", 1773, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1774 | ||||
| 1775 | Module *NewM = New->getOwningModule(); | |||
| 1776 | Module *OldM = Old->getOwningModule(); | |||
| 1777 | ||||
| 1778 | // We only checks for named modules here. The header like modules is skipped. | |||
| 1779 | // FIXME: This is not right if we import the header like modules in the module | |||
| 1780 | // purview. | |||
| 1781 | // | |||
| 1782 | // For example, assuming "header.h" provides definition for `D`. | |||
| 1783 | // ```C++ | |||
| 1784 | // //--- M.cppm | |||
| 1785 | // export module M; | |||
| 1786 | // import "header.h"; // or #include "header.h" but import it by clang modules | |||
| 1787 | // actually. | |||
| 1788 | // | |||
| 1789 | // //--- Use.cpp | |||
| 1790 | // import M; | |||
| 1791 | // import "header.h"; // or uses clang modules. | |||
| 1792 | // ``` | |||
| 1793 | // | |||
| 1794 | // In this case, `D` has multiple definitions in multiple TU (M.cppm and | |||
| 1795 | // Use.cpp) and `D` is attached to a named module `M`. The compiler should | |||
| 1796 | // reject it. But the current implementation couldn't detect the case since we | |||
| 1797 | // don't record the information about the importee modules. | |||
| 1798 | // | |||
| 1799 | // But this might not be painful in practice. Since the design of C++20 Named | |||
| 1800 | // Modules suggests us to use headers in global module fragment instead of | |||
| 1801 | // module purview. | |||
| 1802 | if (NewM && NewM->isHeaderLikeModule()) | |||
| 1803 | NewM = nullptr; | |||
| 1804 | if (OldM && OldM->isHeaderLikeModule()) | |||
| 1805 | OldM = nullptr; | |||
| 1806 | ||||
| 1807 | if (!NewM && !OldM) | |||
| 1808 | return true; | |||
| 1809 | ||||
| 1810 | // [basic.def.odr]p14.3 | |||
| 1811 | // Each such definition shall not be attached to a named module | |||
| 1812 | // ([module.unit]). | |||
| 1813 | if ((NewM && NewM->isModulePurview()) || (OldM && OldM->isModulePurview())) | |||
| 1814 | return true; | |||
| 1815 | ||||
| 1816 | // Then New and Old lives in the same TU if their share one same module unit. | |||
| 1817 | if (NewM) | |||
| 1818 | NewM = NewM->getTopLevelModule(); | |||
| 1819 | if (OldM) | |||
| 1820 | OldM = OldM->getTopLevelModule(); | |||
| 1821 | return OldM == NewM; | |||
| 1822 | } | |||
| 1823 | ||||
| 1824 | static bool isUsingDecl(NamedDecl *D) { | |||
| 1825 | return isa<UsingShadowDecl>(D) || | |||
| 1826 | isa<UnresolvedUsingTypenameDecl>(D) || | |||
| 1827 | isa<UnresolvedUsingValueDecl>(D); | |||
| 1828 | } | |||
| 1829 | ||||
| 1830 | /// Removes using shadow declarations from the lookup results. | |||
| 1831 | static void RemoveUsingDecls(LookupResult &R) { | |||
| 1832 | LookupResult::Filter F = R.makeFilter(); | |||
| 1833 | while (F.hasNext()) | |||
| 1834 | if (isUsingDecl(F.next())) | |||
| 1835 | F.erase(); | |||
| 1836 | ||||
| 1837 | F.done(); | |||
| 1838 | } | |||
| 1839 | ||||
| 1840 | /// Check for this common pattern: | |||
| 1841 | /// @code | |||
| 1842 | /// class S { | |||
| 1843 | /// S(const S&); // DO NOT IMPLEMENT | |||
| 1844 | /// void operator=(const S&); // DO NOT IMPLEMENT | |||
| 1845 | /// }; | |||
| 1846 | /// @endcode | |||
| 1847 | static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) { | |||
| 1848 | // FIXME: Should check for private access too but access is set after we get | |||
| 1849 | // the decl here. | |||
| 1850 | if (D->doesThisDeclarationHaveABody()) | |||
| 1851 | return false; | |||
| 1852 | ||||
| 1853 | if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) | |||
| 1854 | return CD->isCopyConstructor(); | |||
| 1855 | return D->isCopyAssignmentOperator(); | |||
| 1856 | } | |||
| 1857 | ||||
| 1858 | // We need this to handle | |||
| 1859 | // | |||
| 1860 | // typedef struct { | |||
| 1861 | // void *foo() { return 0; } | |||
| 1862 | // } A; | |||
| 1863 | // | |||
| 1864 | // When we see foo we don't know if after the typedef we will get 'A' or '*A' | |||
| 1865 | // for example. If 'A', foo will have external linkage. If we have '*A', | |||
| 1866 | // foo will have no linkage. Since we can't know until we get to the end | |||
| 1867 | // of the typedef, this function finds out if D might have non-external linkage. | |||
| 1868 | // Callers should verify at the end of the TU if it D has external linkage or | |||
| 1869 | // not. | |||
| 1870 | bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) { | |||
| 1871 | const DeclContext *DC = D->getDeclContext(); | |||
| 1872 | while (!DC->isTranslationUnit()) { | |||
| 1873 | if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){ | |||
| 1874 | if (!RD->hasNameForLinkage()) | |||
| 1875 | return true; | |||
| 1876 | } | |||
| 1877 | DC = DC->getParent(); | |||
| 1878 | } | |||
| 1879 | ||||
| 1880 | return !D->isExternallyVisible(); | |||
| 1881 | } | |||
| 1882 | ||||
| 1883 | // FIXME: This needs to be refactored; some other isInMainFile users want | |||
| 1884 | // these semantics. | |||
| 1885 | static bool isMainFileLoc(const Sema &S, SourceLocation Loc) { | |||
| 1886 | if (S.TUKind != TU_Complete || S.getLangOpts().IsHeaderFile) | |||
| 1887 | return false; | |||
| 1888 | return S.SourceMgr.isInMainFile(Loc); | |||
| 1889 | } | |||
| 1890 | ||||
| 1891 | bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const { | |||
| 1892 | assert(D)(static_cast <bool> (D) ? void (0) : __assert_fail ("D" , "clang/lib/Sema/SemaDecl.cpp", 1892, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1893 | ||||
| 1894 | if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>()) | |||
| 1895 | return false; | |||
| 1896 | ||||
| 1897 | // Ignore all entities declared within templates, and out-of-line definitions | |||
| 1898 | // of members of class templates. | |||
| 1899 | if (D->getDeclContext()->isDependentContext() || | |||
| 1900 | D->getLexicalDeclContext()->isDependentContext()) | |||
| 1901 | return false; | |||
| 1902 | ||||
| 1903 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | |||
| 1904 | if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | |||
| 1905 | return false; | |||
| 1906 | // A non-out-of-line declaration of a member specialization was implicitly | |||
| 1907 | // instantiated; it's the out-of-line declaration that we're interested in. | |||
| 1908 | if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && | |||
| 1909 | FD->getMemberSpecializationInfo() && !FD->isOutOfLine()) | |||
| 1910 | return false; | |||
| 1911 | ||||
| 1912 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { | |||
| 1913 | if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD)) | |||
| 1914 | return false; | |||
| 1915 | } else { | |||
| 1916 | // 'static inline' functions are defined in headers; don't warn. | |||
| 1917 | if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation())) | |||
| 1918 | return false; | |||
| 1919 | } | |||
| 1920 | ||||
| 1921 | if (FD->doesThisDeclarationHaveABody() && | |||
| 1922 | Context.DeclMustBeEmitted(FD)) | |||
| 1923 | return false; | |||
| 1924 | } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | |||
| 1925 | // Constants and utility variables are defined in headers with internal | |||
| 1926 | // linkage; don't warn. (Unlike functions, there isn't a convenient marker | |||
| 1927 | // like "inline".) | |||
| 1928 | if (!isMainFileLoc(*this, VD->getLocation())) | |||
| 1929 | return false; | |||
| 1930 | ||||
| 1931 | if (Context.DeclMustBeEmitted(VD)) | |||
| 1932 | return false; | |||
| 1933 | ||||
| 1934 | if (VD->isStaticDataMember() && | |||
| 1935 | VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | |||
| 1936 | return false; | |||
| 1937 | if (VD->isStaticDataMember() && | |||
| 1938 | VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && | |||
| 1939 | VD->getMemberSpecializationInfo() && !VD->isOutOfLine()) | |||
| 1940 | return false; | |||
| 1941 | ||||
| 1942 | if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation())) | |||
| 1943 | return false; | |||
| 1944 | } else { | |||
| 1945 | return false; | |||
| 1946 | } | |||
| 1947 | ||||
| 1948 | // Only warn for unused decls internal to the translation unit. | |||
| 1949 | // FIXME: This seems like a bogus check; it suppresses -Wunused-function | |||
| 1950 | // for inline functions defined in the main source file, for instance. | |||
| 1951 | return mightHaveNonExternalLinkage(D); | |||
| 1952 | } | |||
| 1953 | ||||
| 1954 | void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) { | |||
| 1955 | if (!D) | |||
| 1956 | return; | |||
| 1957 | ||||
| 1958 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | |||
| 1959 | const FunctionDecl *First = FD->getFirstDecl(); | |||
| 1960 | if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First)) | |||
| 1961 | return; // First should already be in the vector. | |||
| 1962 | } | |||
| 1963 | ||||
| 1964 | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | |||
| 1965 | const VarDecl *First = VD->getFirstDecl(); | |||
| 1966 | if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First)) | |||
| 1967 | return; // First should already be in the vector. | |||
| 1968 | } | |||
| 1969 | ||||
| 1970 | if (ShouldWarnIfUnusedFileScopedDecl(D)) | |||
| 1971 | UnusedFileScopedDecls.push_back(D); | |||
| 1972 | } | |||
| 1973 | ||||
| 1974 | static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) { | |||
| 1975 | if (D->isInvalidDecl()) | |||
| 1976 | return false; | |||
| 1977 | ||||
| 1978 | if (auto *DD = dyn_cast<DecompositionDecl>(D)) { | |||
| 1979 | // For a decomposition declaration, warn if none of the bindings are | |||
| 1980 | // referenced, instead of if the variable itself is referenced (which | |||
| 1981 | // it is, by the bindings' expressions). | |||
| 1982 | for (auto *BD : DD->bindings()) | |||
| 1983 | if (BD->isReferenced()) | |||
| 1984 | return false; | |||
| 1985 | } else if (!D->getDeclName()) { | |||
| 1986 | return false; | |||
| 1987 | } else if (D->isReferenced() || D->isUsed()) { | |||
| 1988 | return false; | |||
| 1989 | } | |||
| 1990 | ||||
| 1991 | if (D->hasAttr<UnusedAttr>() || D->hasAttr<ObjCPreciseLifetimeAttr>()) | |||
| 1992 | return false; | |||
| 1993 | ||||
| 1994 | if (isa<LabelDecl>(D)) | |||
| 1995 | return true; | |||
| 1996 | ||||
| 1997 | // Except for labels, we only care about unused decls that are local to | |||
| 1998 | // functions. | |||
| 1999 | bool WithinFunction = D->getDeclContext()->isFunctionOrMethod(); | |||
| 2000 | if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext())) | |||
| 2001 | // For dependent types, the diagnostic is deferred. | |||
| 2002 | WithinFunction = | |||
| 2003 | WithinFunction || (R->isLocalClass() && !R->isDependentType()); | |||
| 2004 | if (!WithinFunction) | |||
| 2005 | return false; | |||
| 2006 | ||||
| 2007 | if (isa<TypedefNameDecl>(D)) | |||
| 2008 | return true; | |||
| 2009 | ||||
| 2010 | // White-list anything that isn't a local variable. | |||
| 2011 | if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) | |||
| 2012 | return false; | |||
| 2013 | ||||
| 2014 | // Types of valid local variables should be complete, so this should succeed. | |||
| 2015 | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | |||
| 2016 | ||||
| 2017 | const Expr *Init = VD->getInit(); | |||
| 2018 | if (const auto *Cleanups = dyn_cast_or_null<ExprWithCleanups>(Init)) | |||
| 2019 | Init = Cleanups->getSubExpr(); | |||
| 2020 | ||||
| 2021 | const auto *Ty = VD->getType().getTypePtr(); | |||
| 2022 | ||||
| 2023 | // Only look at the outermost level of typedef. | |||
| 2024 | if (const TypedefType *TT = Ty->getAs<TypedefType>()) { | |||
| 2025 | // Allow anything marked with __attribute__((unused)). | |||
| 2026 | if (TT->getDecl()->hasAttr<UnusedAttr>()) | |||
| 2027 | return false; | |||
| 2028 | } | |||
| 2029 | ||||
| 2030 | // Warn for reference variables whose initializtion performs lifetime | |||
| 2031 | // extension. | |||
| 2032 | if (const auto *MTE = dyn_cast_or_null<MaterializeTemporaryExpr>(Init)) { | |||
| 2033 | if (MTE->getExtendingDecl()) { | |||
| 2034 | Ty = VD->getType().getNonReferenceType().getTypePtr(); | |||
| 2035 | Init = MTE->getSubExpr()->IgnoreImplicitAsWritten(); | |||
| 2036 | } | |||
| 2037 | } | |||
| 2038 | ||||
| 2039 | // If we failed to complete the type for some reason, or if the type is | |||
| 2040 | // dependent, don't diagnose the variable. | |||
| 2041 | if (Ty->isIncompleteType() || Ty->isDependentType()) | |||
| 2042 | return false; | |||
| 2043 | ||||
| 2044 | // Look at the element type to ensure that the warning behaviour is | |||
| 2045 | // consistent for both scalars and arrays. | |||
| 2046 | Ty = Ty->getBaseElementTypeUnsafe(); | |||
| 2047 | ||||
| 2048 | if (const TagType *TT = Ty->getAs<TagType>()) { | |||
| 2049 | const TagDecl *Tag = TT->getDecl(); | |||
| 2050 | if (Tag->hasAttr<UnusedAttr>()) | |||
| 2051 | return false; | |||
| 2052 | ||||
| 2053 | if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) { | |||
| 2054 | if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>()) | |||
| 2055 | return false; | |||
| 2056 | ||||
| 2057 | if (Init) { | |||
| 2058 | const CXXConstructExpr *Construct = | |||
| 2059 | dyn_cast<CXXConstructExpr>(Init); | |||
| 2060 | if (Construct && !Construct->isElidable()) { | |||
| 2061 | CXXConstructorDecl *CD = Construct->getConstructor(); | |||
| 2062 | if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() && | |||
| 2063 | (VD->getInit()->isValueDependent() || !VD->evaluateValue())) | |||
| 2064 | return false; | |||
| 2065 | } | |||
| 2066 | ||||
| 2067 | // Suppress the warning if we don't know how this is constructed, and | |||
| 2068 | // it could possibly be non-trivial constructor. | |||
| 2069 | if (Init->isTypeDependent()) { | |||
| 2070 | for (const CXXConstructorDecl *Ctor : RD->ctors()) | |||
| 2071 | if (!Ctor->isTrivial()) | |||
| 2072 | return false; | |||
| 2073 | } | |||
| 2074 | ||||
| 2075 | // Suppress the warning if the constructor is unresolved because | |||
| 2076 | // its arguments are dependent. | |||
| 2077 | if (isa<CXXUnresolvedConstructExpr>(Init)) | |||
| 2078 | return false; | |||
| 2079 | } | |||
| 2080 | } | |||
| 2081 | } | |||
| 2082 | ||||
| 2083 | // TODO: __attribute__((unused)) templates? | |||
| 2084 | } | |||
| 2085 | ||||
| 2086 | return true; | |||
| 2087 | } | |||
| 2088 | ||||
| 2089 | static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx, | |||
| 2090 | FixItHint &Hint) { | |||
| 2091 | if (isa<LabelDecl>(D)) { | |||
| 2092 | SourceLocation AfterColon = Lexer::findLocationAfterToken( | |||
| 2093 | D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), | |||
| 2094 | true); | |||
| 2095 | if (AfterColon.isInvalid()) | |||
| 2096 | return; | |||
| 2097 | Hint = FixItHint::CreateRemoval( | |||
| 2098 | CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon)); | |||
| 2099 | } | |||
| 2100 | } | |||
| 2101 | ||||
| 2102 | void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) { | |||
| 2103 | DiagnoseUnusedNestedTypedefs( | |||
| 2104 | D, [this](SourceLocation Loc, PartialDiagnostic PD) { Diag(Loc, PD); }); | |||
| 2105 | } | |||
| 2106 | ||||
| 2107 | void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D, | |||
| 2108 | DiagReceiverTy DiagReceiver) { | |||
| 2109 | if (D->getTypeForDecl()->isDependentType()) | |||
| 2110 | return; | |||
| 2111 | ||||
| 2112 | for (auto *TmpD : D->decls()) { | |||
| 2113 | if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD)) | |||
| 2114 | DiagnoseUnusedDecl(T, DiagReceiver); | |||
| 2115 | else if(const auto *R = dyn_cast<RecordDecl>(TmpD)) | |||
| 2116 | DiagnoseUnusedNestedTypedefs(R, DiagReceiver); | |||
| 2117 | } | |||
| 2118 | } | |||
| 2119 | ||||
| 2120 | void Sema::DiagnoseUnusedDecl(const NamedDecl *D) { | |||
| 2121 | DiagnoseUnusedDecl( | |||
| 2122 | D, [this](SourceLocation Loc, PartialDiagnostic PD) { Diag(Loc, PD); }); | |||
| 2123 | } | |||
| 2124 | ||||
| 2125 | /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used | |||
| 2126 | /// unless they are marked attr(unused). | |||
| 2127 | void Sema::DiagnoseUnusedDecl(const NamedDecl *D, DiagReceiverTy DiagReceiver) { | |||
| 2128 | if (!ShouldDiagnoseUnusedDecl(D)) | |||
| 2129 | return; | |||
| 2130 | ||||
| 2131 | if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { | |||
| 2132 | // typedefs can be referenced later on, so the diagnostics are emitted | |||
| 2133 | // at end-of-translation-unit. | |||
| 2134 | UnusedLocalTypedefNameCandidates.insert(TD); | |||
| 2135 | return; | |||
| 2136 | } | |||
| 2137 | ||||
| 2138 | FixItHint Hint; | |||
| 2139 | GenerateFixForUnusedDecl(D, Context, Hint); | |||
| 2140 | ||||
| 2141 | unsigned DiagID; | |||
| 2142 | if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable()) | |||
| 2143 | DiagID = diag::warn_unused_exception_param; | |||
| 2144 | else if (isa<LabelDecl>(D)) | |||
| 2145 | DiagID = diag::warn_unused_label; | |||
| 2146 | else | |||
| 2147 | DiagID = diag::warn_unused_variable; | |||
| 2148 | ||||
| 2149 | DiagReceiver(D->getLocation(), PDiag(DiagID) << D << Hint); | |||
| 2150 | } | |||
| 2151 | ||||
| 2152 | void Sema::DiagnoseUnusedButSetDecl(const VarDecl *VD, | |||
| 2153 | DiagReceiverTy DiagReceiver) { | |||
| 2154 | // If it's not referenced, it can't be set. If it has the Cleanup attribute, | |||
| 2155 | // it's not really unused. | |||
| 2156 | if (!VD->isReferenced() || !VD->getDeclName() || VD->hasAttr<UnusedAttr>() || | |||
| 2157 | VD->hasAttr<CleanupAttr>()) | |||
| 2158 | return; | |||
| 2159 | ||||
| 2160 | const auto *Ty = VD->getType().getTypePtr()->getBaseElementTypeUnsafe(); | |||
| 2161 | ||||
| 2162 | if (Ty->isReferenceType() || Ty->isDependentType()) | |||
| 2163 | return; | |||
| 2164 | ||||
| 2165 | if (const TagType *TT = Ty->getAs<TagType>()) { | |||
| 2166 | const TagDecl *Tag = TT->getDecl(); | |||
| 2167 | if (Tag->hasAttr<UnusedAttr>()) | |||
| 2168 | return; | |||
| 2169 | // In C++, don't warn for record types that don't have WarnUnusedAttr, to | |||
| 2170 | // mimic gcc's behavior. | |||
| 2171 | if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) { | |||
| 2172 | if (!RD->hasAttr<WarnUnusedAttr>()) | |||
| 2173 | return; | |||
| 2174 | } | |||
| 2175 | } | |||
| 2176 | ||||
| 2177 | // Don't warn about __block Objective-C pointer variables, as they might | |||
| 2178 | // be assigned in the block but not used elsewhere for the purpose of lifetime | |||
| 2179 | // extension. | |||
| 2180 | if (VD->hasAttr<BlocksAttr>() && Ty->isObjCObjectPointerType()) | |||
| 2181 | return; | |||
| 2182 | ||||
| 2183 | // Don't warn about Objective-C pointer variables with precise lifetime | |||
| 2184 | // semantics; they can be used to ensure ARC releases the object at a known | |||
| 2185 | // time, which may mean assignment but no other references. | |||
| 2186 | if (VD->hasAttr<ObjCPreciseLifetimeAttr>() && Ty->isObjCObjectPointerType()) | |||
| 2187 | return; | |||
| 2188 | ||||
| 2189 | auto iter = RefsMinusAssignments.find(VD); | |||
| 2190 | if (iter == RefsMinusAssignments.end()) | |||
| 2191 | return; | |||
| 2192 | ||||
| 2193 | assert(iter->getSecond() >= 0 &&(static_cast <bool> (iter->getSecond() >= 0 && "Found a negative number of references to a VarDecl") ? void (0) : __assert_fail ("iter->getSecond() >= 0 && \"Found a negative number of references to a VarDecl\"" , "clang/lib/Sema/SemaDecl.cpp", 2194, __extension__ __PRETTY_FUNCTION__ )) | |||
| 2194 | "Found a negative number of references to a VarDecl")(static_cast <bool> (iter->getSecond() >= 0 && "Found a negative number of references to a VarDecl") ? void (0) : __assert_fail ("iter->getSecond() >= 0 && \"Found a negative number of references to a VarDecl\"" , "clang/lib/Sema/SemaDecl.cpp", 2194, __extension__ __PRETTY_FUNCTION__ )); | |||
| 2195 | if (iter->getSecond() != 0) | |||
| 2196 | return; | |||
| 2197 | unsigned DiagID = isa<ParmVarDecl>(VD) ? diag::warn_unused_but_set_parameter | |||
| 2198 | : diag::warn_unused_but_set_variable; | |||
| 2199 | DiagReceiver(VD->getLocation(), PDiag(DiagID) << VD); | |||
| 2200 | } | |||
| 2201 | ||||
| 2202 | static void CheckPoppedLabel(LabelDecl *L, Sema &S, | |||
| 2203 | Sema::DiagReceiverTy DiagReceiver) { | |||
| 2204 | // Verify that we have no forward references left. If so, there was a goto | |||
| 2205 | // or address of a label taken, but no definition of it. Label fwd | |||
| 2206 | // definitions are indicated with a null substmt which is also not a resolved | |||
| 2207 | // MS inline assembly label name. | |||
| 2208 | bool Diagnose = false; | |||
| 2209 | if (L->isMSAsmLabel()) | |||
| 2210 | Diagnose = !L->isResolvedMSAsmLabel(); | |||
| 2211 | else | |||
| 2212 | Diagnose = L->getStmt() == nullptr; | |||
| 2213 | if (Diagnose) | |||
| 2214 | DiagReceiver(L->getLocation(), S.PDiag(diag::err_undeclared_label_use) | |||
| 2215 | << L); | |||
| 2216 | } | |||
| 2217 | ||||
| 2218 | void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) { | |||
| 2219 | S->applyNRVO(); | |||
| 2220 | ||||
| 2221 | if (S->decl_empty()) return; | |||
| 2222 | assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&(static_cast <bool> ((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && "Scope shouldn't contain decls!" ) ? void (0) : __assert_fail ("(S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && \"Scope shouldn't contain decls!\"" , "clang/lib/Sema/SemaDecl.cpp", 2223, __extension__ __PRETTY_FUNCTION__ )) | |||
| 2223 | "Scope shouldn't contain decls!")(static_cast <bool> ((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && "Scope shouldn't contain decls!" ) ? void (0) : __assert_fail ("(S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && \"Scope shouldn't contain decls!\"" , "clang/lib/Sema/SemaDecl.cpp", 2223, __extension__ __PRETTY_FUNCTION__ )); | |||
| 2224 | ||||
| 2225 | /// We visit the decls in non-deterministic order, but we want diagnostics | |||
| 2226 | /// emitted in deterministic order. Collect any diagnostic that may be emitted | |||
| 2227 | /// and sort the diagnostics before emitting them, after we visited all decls. | |||
| 2228 | struct LocAndDiag { | |||
| 2229 | SourceLocation Loc; | |||
| 2230 | std::optional<SourceLocation> PreviousDeclLoc; | |||
| 2231 | PartialDiagnostic PD; | |||
| 2232 | }; | |||
| 2233 | SmallVector<LocAndDiag, 16> DeclDiags; | |||
| 2234 | auto addDiag = [&DeclDiags](SourceLocation Loc, PartialDiagnostic PD) { | |||
| 2235 | DeclDiags.push_back(LocAndDiag{Loc, std::nullopt, std::move(PD)}); | |||
| 2236 | }; | |||
| 2237 | auto addDiagWithPrev = [&DeclDiags](SourceLocation Loc, | |||
| 2238 | SourceLocation PreviousDeclLoc, | |||
| 2239 | PartialDiagnostic PD) { | |||
| 2240 | DeclDiags.push_back(LocAndDiag{Loc, PreviousDeclLoc, std::move(PD)}); | |||
| 2241 | }; | |||
| 2242 | ||||
| 2243 | for (auto *TmpD : S->decls()) { | |||
| 2244 | assert(TmpD && "This decl didn't get pushed??")(static_cast <bool> (TmpD && "This decl didn't get pushed??" ) ? void (0) : __assert_fail ("TmpD && \"This decl didn't get pushed??\"" , "clang/lib/Sema/SemaDecl.cpp", 2244, __extension__ __PRETTY_FUNCTION__ )); | |||
| 2245 | ||||
| 2246 | assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?")(static_cast <bool> (isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?") ? void (0) : __assert_fail ("isa<NamedDecl>(TmpD) && \"Decl isn't NamedDecl?\"" , "clang/lib/Sema/SemaDecl.cpp", 2246, __extension__ __PRETTY_FUNCTION__ )); | |||
| 2247 | NamedDecl *D = cast<NamedDecl>(TmpD); | |||
| 2248 | ||||
| 2249 | // Diagnose unused variables in this scope. | |||
| 2250 | if (!S->hasUnrecoverableErrorOccurred()) { | |||
| 2251 | DiagnoseUnusedDecl(D, addDiag); | |||
| 2252 | if (const auto *RD = dyn_cast<RecordDecl>(D)) | |||
| 2253 | DiagnoseUnusedNestedTypedefs(RD, addDiag); | |||
| 2254 | if (VarDecl *VD = dyn_cast<VarDecl>(D)) { | |||
| 2255 | DiagnoseUnusedButSetDecl(VD, addDiag); | |||
| 2256 | RefsMinusAssignments.erase(VD); | |||
| 2257 | } | |||
| 2258 | } | |||
| 2259 | ||||
| 2260 | if (!D->getDeclName()) continue; | |||
| 2261 | ||||
| 2262 | // If this was a forward reference to a label, verify it was defined. | |||
| 2263 | if (LabelDecl *LD = dyn_cast<LabelDecl>(D)) | |||
| 2264 | CheckPoppedLabel(LD, *this, addDiag); | |||
| 2265 | ||||
| 2266 | // Remove this name from our lexical scope, and warn on it if we haven't | |||
| 2267 | // already. | |||
| 2268 | IdResolver.RemoveDecl(D); | |||
| 2269 | auto ShadowI = ShadowingDecls.find(D); | |||
| 2270 | if (ShadowI != ShadowingDecls.end()) { | |||
| 2271 | if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) { | |||
| 2272 | addDiagWithPrev(D->getLocation(), FD->getLocation(), | |||
| 2273 | PDiag(diag::warn_ctor_parm_shadows_field) | |||
| 2274 | << D << FD << FD->getParent()); | |||
| 2275 | } | |||
| 2276 | ShadowingDecls.erase(ShadowI); | |||
| 2277 | } | |||
| 2278 | } | |||
| 2279 | ||||
| 2280 | llvm::sort(DeclDiags, | |||
| 2281 | [](const LocAndDiag &LHS, const LocAndDiag &RHS) -> bool { | |||
| 2282 | // The particular order for diagnostics is not important, as long | |||
| 2283 | // as the order is deterministic. Using the raw location is going | |||
| 2284 | // to generally be in source order unless there are macro | |||
| 2285 | // expansions involved. | |||
| 2286 | return LHS.Loc.getRawEncoding() < RHS.Loc.getRawEncoding(); | |||
| 2287 | }); | |||
| 2288 | for (const LocAndDiag &D : DeclDiags) { | |||
| 2289 | Diag(D.Loc, D.PD); | |||
| 2290 | if (D.PreviousDeclLoc) | |||
| 2291 | Diag(*D.PreviousDeclLoc, diag::note_previous_declaration); | |||
| 2292 | } | |||
| 2293 | } | |||
| 2294 | ||||
| 2295 | /// Look for an Objective-C class in the translation unit. | |||
| 2296 | /// | |||
| 2297 | /// \param Id The name of the Objective-C class we're looking for. If | |||
| 2298 | /// typo-correction fixes this name, the Id will be updated | |||
| 2299 | /// to the fixed name. | |||
| 2300 | /// | |||
| 2301 | /// \param IdLoc The location of the name in the translation unit. | |||
| 2302 | /// | |||
| 2303 | /// \param DoTypoCorrection If true, this routine will attempt typo correction | |||
| 2304 | /// if there is no class with the given name. | |||
| 2305 | /// | |||
| 2306 | /// \returns The declaration of the named Objective-C class, or NULL if the | |||
| 2307 | /// class could not be found. | |||
| 2308 | ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id, | |||
| 2309 | SourceLocation IdLoc, | |||
| 2310 | bool DoTypoCorrection) { | |||
| 2311 | // The third "scope" argument is 0 since we aren't enabling lazy built-in | |||
| 2312 | // creation from this context. | |||
| 2313 | NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName); | |||
| 2314 | ||||
| 2315 | if (!IDecl && DoTypoCorrection) { | |||
| 2316 | // Perform typo correction at the given location, but only if we | |||
| 2317 | // find an Objective-C class name. | |||
| 2318 | DeclFilterCCC<ObjCInterfaceDecl> CCC{}; | |||
| 2319 | if (TypoCorrection C = | |||
| 2320 | CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, | |||
| 2321 | TUScope, nullptr, CCC, CTK_ErrorRecovery)) { | |||
| 2322 | diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id); | |||
| 2323 | IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>(); | |||
| 2324 | Id = IDecl->getIdentifier(); | |||
| 2325 | } | |||
| 2326 | } | |||
| 2327 | ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl); | |||
| 2328 | // This routine must always return a class definition, if any. | |||
| 2329 | if (Def && Def->getDefinition()) | |||
| 2330 | Def = Def->getDefinition(); | |||
| 2331 | return Def; | |||
| 2332 | } | |||
| 2333 | ||||
| 2334 | /// getNonFieldDeclScope - Retrieves the innermost scope, starting | |||
| 2335 | /// from S, where a non-field would be declared. This routine copes | |||
| 2336 | /// with the difference between C and C++ scoping rules in structs and | |||
| 2337 | /// unions. For example, the following code is well-formed in C but | |||
| 2338 | /// ill-formed in C++: | |||
| 2339 | /// @code | |||
| 2340 | /// struct S6 { | |||
| 2341 | /// enum { BAR } e; | |||
| 2342 | /// }; | |||
| 2343 | /// | |||
| 2344 | /// void test_S6() { | |||
| 2345 | /// struct S6 a; | |||
| 2346 | /// a.e = BAR; | |||
| 2347 | /// } | |||
| 2348 | /// @endcode | |||
| 2349 | /// For the declaration of BAR, this routine will return a different | |||
| 2350 | /// scope. The scope S will be the scope of the unnamed enumeration | |||
| 2351 | /// within S6. In C++, this routine will return the scope associated | |||
| 2352 | /// with S6, because the enumeration's scope is a transparent | |||
| 2353 | /// context but structures can contain non-field names. In C, this | |||
| 2354 | /// routine will return the translation unit scope, since the | |||
| 2355 | /// enumeration's scope is a transparent context and structures cannot | |||
| 2356 | /// contain non-field names. | |||
| 2357 | Scope *Sema::getNonFieldDeclScope(Scope *S) { | |||
| 2358 | while (((S->getFlags() & Scope::DeclScope) == 0) || | |||
| 2359 | (S->getEntity() && S->getEntity()->isTransparentContext()) || | |||
| 2360 | (S->isClassScope() && !getLangOpts().CPlusPlus)) | |||
| 2361 | S = S->getParent(); | |||
| 2362 | return S; | |||
| 2363 | } | |||
| 2364 | ||||
| 2365 | static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID, | |||
| 2366 | ASTContext::GetBuiltinTypeError Error) { | |||
| 2367 | switch (Error) { | |||
| 2368 | case ASTContext::GE_None: | |||
| 2369 | return ""; | |||
| 2370 | case ASTContext::GE_Missing_type: | |||
| 2371 | return BuiltinInfo.getHeaderName(ID); | |||
| 2372 | case ASTContext::GE_Missing_stdio: | |||
| 2373 | return "stdio.h"; | |||
| 2374 | case ASTContext::GE_Missing_setjmp: | |||
| 2375 | return "setjmp.h"; | |||
| 2376 | case ASTContext::GE_Missing_ucontext: | |||
| 2377 | return "ucontext.h"; | |||
| 2378 | } | |||
| 2379 | llvm_unreachable("unhandled error kind")::llvm::llvm_unreachable_internal("unhandled error kind", "clang/lib/Sema/SemaDecl.cpp" , 2379); | |||
| 2380 | } | |||
| 2381 | ||||
| 2382 | FunctionDecl *Sema::CreateBuiltin(IdentifierInfo *II, QualType Type, | |||
| 2383 | unsigned ID, SourceLocation Loc) { | |||
| 2384 | DeclContext *Parent = Context.getTranslationUnitDecl(); | |||
| 2385 | ||||
| 2386 | if (getLangOpts().CPlusPlus) { | |||
| 2387 | LinkageSpecDecl *CLinkageDecl = LinkageSpecDecl::Create( | |||
| 2388 | Context, Parent, Loc, Loc, LinkageSpecDecl::lang_c, false); | |||
| 2389 | CLinkageDecl->setImplicit(); | |||
| 2390 | Parent->addDecl(CLinkageDecl); | |||
| 2391 | Parent = CLinkageDecl; | |||
| 2392 | } | |||
| 2393 | ||||
| 2394 | FunctionDecl *New = FunctionDecl::Create(Context, Parent, Loc, Loc, II, Type, | |||
| 2395 | /*TInfo=*/nullptr, SC_Extern, | |||
| 2396 | getCurFPFeatures().isFPConstrained(), | |||
| 2397 | false, Type->isFunctionProtoType()); | |||
| 2398 | New->setImplicit(); | |||
| 2399 | New->addAttr(BuiltinAttr::CreateImplicit(Context, ID)); | |||
| 2400 | ||||
| 2401 | // Create Decl objects for each parameter, adding them to the | |||
| 2402 | // FunctionDecl. | |||
| 2403 | if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(Type)) { | |||
| 2404 | SmallVector<ParmVarDecl *, 16> Params; | |||
| 2405 | for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { | |||
| 2406 | ParmVarDecl *parm = ParmVarDecl::Create( | |||
| 2407 | Context, New, SourceLocation(), SourceLocation(), nullptr, | |||
| 2408 | FT->getParamType(i), /*TInfo=*/nullptr, SC_None, nullptr); | |||
| 2409 | parm->setScopeInfo(0, i); | |||
| 2410 | Params.push_back(parm); | |||
| 2411 | } | |||
| 2412 | New->setParams(Params); | |||
| 2413 | } | |||
| 2414 | ||||
| 2415 | AddKnownFunctionAttributes(New); | |||
| 2416 | return New; | |||
| 2417 | } | |||
| 2418 | ||||
| 2419 | /// LazilyCreateBuiltin - The specified Builtin-ID was first used at | |||
| 2420 | /// file scope. lazily create a decl for it. ForRedeclaration is true | |||
| 2421 | /// if we're creating this built-in in anticipation of redeclaring the | |||
| 2422 | /// built-in. | |||
| 2423 | NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, | |||
| 2424 | Scope *S, bool ForRedeclaration, | |||
| 2425 | SourceLocation Loc) { | |||
| 2426 | LookupNecessaryTypesForBuiltin(S, ID); | |||
| 2427 | ||||
| 2428 | ASTContext::GetBuiltinTypeError Error; | |||
| 2429 | QualType R = Context.GetBuiltinType(ID, Error); | |||
| 2430 | if (Error) { | |||
| 2431 | if (!ForRedeclaration) | |||
| 2432 | return nullptr; | |||
| 2433 | ||||
| 2434 | // If we have a builtin without an associated type we should not emit a | |||
| 2435 | // warning when we were not able to find a type for it. | |||
| 2436 | if (Error == ASTContext::GE_Missing_type || | |||
| 2437 | Context.BuiltinInfo.allowTypeMismatch(ID)) | |||
| 2438 | return nullptr; | |||
| 2439 | ||||
| 2440 | // If we could not find a type for setjmp it is because the jmp_buf type was | |||
| 2441 | // not defined prior to the setjmp declaration. | |||
| 2442 | if (Error == ASTContext::GE_Missing_setjmp) { | |||
| 2443 | Diag(Loc, diag::warn_implicit_decl_no_jmp_buf) | |||
| 2444 | << Context.BuiltinInfo.getName(ID); | |||
| 2445 | return nullptr; | |||
| 2446 | } | |||
| 2447 | ||||
| 2448 | // Generally, we emit a warning that the declaration requires the | |||
| 2449 | // appropriate header. | |||
| 2450 | Diag(Loc, diag::warn_implicit_decl_requires_sysheader) | |||
| 2451 | << getHeaderName(Context.BuiltinInfo, ID, Error) | |||
| 2452 | << Context.BuiltinInfo.getName(ID); | |||
| 2453 | return nullptr; | |||
| 2454 | } | |||
| 2455 | ||||
| 2456 | if (!ForRedeclaration && | |||
| 2457 | (Context.BuiltinInfo.isPredefinedLibFunction(ID) || | |||
| 2458 | Context.BuiltinInfo.isHeaderDependentFunction(ID))) { | |||
| 2459 | Diag(Loc, LangOpts.C99 ? diag::ext_implicit_lib_function_decl_c99 | |||
| 2460 | : diag::ext_implicit_lib_function_decl) | |||
| 2461 | << Context.BuiltinInfo.getName(ID) << R; | |||
| 2462 | if (const char *Header = Context.BuiltinInfo.getHeaderName(ID)) | |||
| 2463 | Diag(Loc, diag::note_include_header_or_declare) | |||
| 2464 | << Header << Context.BuiltinInfo.getName(ID); | |||
| 2465 | } | |||
| 2466 | ||||
| 2467 | if (R.isNull()) | |||
| 2468 | return nullptr; | |||
| 2469 | ||||
| 2470 | FunctionDecl *New = CreateBuiltin(II, R, ID, Loc); | |||
| 2471 | RegisterLocallyScopedExternCDecl(New, S); | |||
| 2472 | ||||
| 2473 | // TUScope is the translation-unit scope to insert this function into. | |||
| 2474 | // FIXME: This is hideous. We need to teach PushOnScopeChains to | |||
| 2475 | // relate Scopes to DeclContexts, and probably eliminate CurContext | |||
| 2476 | // entirely, but we're not there yet. | |||
| 2477 | DeclContext *SavedContext = CurContext; | |||
| 2478 | CurContext = New->getDeclContext(); | |||
| 2479 | PushOnScopeChains(New, TUScope); | |||
| 2480 | CurContext = SavedContext; | |||
| 2481 | return New; | |||
| 2482 | } | |||
| 2483 | ||||
| 2484 | /// Typedef declarations don't have linkage, but they still denote the same | |||
| 2485 | /// entity if their types are the same. | |||
| 2486 | /// FIXME: This is notionally doing the same thing as ASTReaderDecl's | |||
| 2487 | /// isSameEntity. | |||
| 2488 | static void filterNonConflictingPreviousTypedefDecls(Sema &S, | |||
| 2489 | TypedefNameDecl *Decl, | |||
| 2490 | LookupResult &Previous) { | |||
| 2491 | // This is only interesting when modules are enabled. | |||
| 2492 | if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility) | |||
| 2493 | return; | |||
| 2494 | ||||
| 2495 | // Empty sets are uninteresting. | |||
| 2496 | if (Previous.empty()) | |||
| 2497 | return; | |||
| 2498 | ||||
| 2499 | LookupResult::Filter Filter = Previous.makeFilter(); | |||
| 2500 | while (Filter.hasNext()) { | |||
| 2501 | NamedDecl *Old = Filter.next(); | |||
| 2502 | ||||
| 2503 | // Non-hidden declarations are never ignored. | |||
| 2504 | if (S.isVisible(Old)) | |||
| 2505 | continue; | |||
| 2506 | ||||
| 2507 | // Declarations of the same entity are not ignored, even if they have | |||
| 2508 | // different linkages. | |||
| 2509 | if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) { | |||
| 2510 | if (S.Context.hasSameType(OldTD->getUnderlyingType(), | |||
| 2511 | Decl->getUnderlyingType())) | |||
| 2512 | continue; | |||
| 2513 | ||||
| 2514 | // If both declarations give a tag declaration a typedef name for linkage | |||
| 2515 | // purposes, then they declare the same entity. | |||
| 2516 | if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) && | |||
| 2517 | Decl->getAnonDeclWithTypedefName()) | |||
| 2518 | continue; | |||
| 2519 | } | |||
| 2520 | ||||
| 2521 | Filter.erase(); | |||
| 2522 | } | |||
| 2523 | ||||
| 2524 | Filter.done(); | |||
| 2525 | } | |||
| 2526 | ||||
| 2527 | bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) { | |||
| 2528 | QualType OldType; | |||
| 2529 | if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old)) | |||
| 2530 | OldType = OldTypedef->getUnderlyingType(); | |||
| 2531 | else | |||
| 2532 | OldType = Context.getTypeDeclType(Old); | |||
| 2533 | QualType NewType = New->getUnderlyingType(); | |||
| 2534 | ||||
| 2535 | if (NewType->isVariablyModifiedType()) { | |||
| 2536 | // Must not redefine a typedef with a variably-modified type. | |||
| 2537 | int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; | |||
| 2538 | Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef) | |||
| 2539 | << Kind << NewType; | |||
| 2540 | if (Old->getLocation().isValid()) | |||
| 2541 | notePreviousDefinition(Old, New->getLocation()); | |||
| 2542 | New->setInvalidDecl(); | |||
| 2543 | return true; | |||
| 2544 | } | |||
| 2545 | ||||
| 2546 | if (OldType != NewType && | |||
| 2547 | !OldType->isDependentType() && | |||
| 2548 | !NewType->isDependentType() && | |||
| 2549 | !Context.hasSameType(OldType, NewType)) { | |||
| 2550 | int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; | |||
| 2551 | Diag(New->getLocation(), diag::err_redefinition_different_typedef) | |||
| 2552 | << Kind << NewType << OldType; | |||
| 2553 | if (Old->getLocation().isValid()) | |||
| 2554 | notePreviousDefinition(Old, New->getLocation()); | |||
| 2555 | New->setInvalidDecl(); | |||
| 2556 | return true; | |||
| 2557 | } | |||
| 2558 | return false; | |||
| 2559 | } | |||
| 2560 | ||||
| 2561 | /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the | |||
| 2562 | /// same name and scope as a previous declaration 'Old'. Figure out | |||
| 2563 | /// how to resolve this situation, merging decls or emitting | |||
| 2564 | /// diagnostics as appropriate. If there was an error, set New to be invalid. | |||
| 2565 | /// | |||
| 2566 | void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New, | |||
| 2567 | LookupResult &OldDecls) { | |||
| 2568 | // If the new decl is known invalid already, don't bother doing any | |||
| 2569 | // merging checks. | |||
| 2570 | if (New->isInvalidDecl()) return; | |||
| 2571 | ||||
| 2572 | // Allow multiple definitions for ObjC built-in typedefs. | |||
| 2573 | // FIXME: Verify the underlying types are equivalent! | |||
| 2574 | if (getLangOpts().ObjC) { | |||
| 2575 | const IdentifierInfo *TypeID = New->getIdentifier(); | |||
| 2576 | switch (TypeID->getLength()) { | |||
| 2577 | default: break; | |||
| 2578 | case 2: | |||
| 2579 | { | |||
| 2580 | if (!TypeID->isStr("id")) | |||
| 2581 | break; | |||
| 2582 | QualType T = New->getUnderlyingType(); | |||
| 2583 | if (!T->isPointerType()) | |||
| 2584 | break; | |||
| 2585 | if (!T->isVoidPointerType()) { | |||
| 2586 | QualType PT = T->castAs<PointerType>()->getPointeeType(); | |||
| 2587 | if (!PT->isStructureType()) | |||
| 2588 | break; | |||
| 2589 | } | |||
| 2590 | Context.setObjCIdRedefinitionType(T); | |||
| 2591 | // Install the built-in type for 'id', ignoring the current definition. | |||
| 2592 | New->setTypeForDecl(Context.getObjCIdType().getTypePtr()); | |||
| 2593 | return; | |||
| 2594 | } | |||
| 2595 | case 5: | |||
| 2596 | if (!TypeID->isStr("Class")) | |||
| 2597 | break; | |||
| 2598 | Context.setObjCClassRedefinitionType(New->getUnderlyingType()); | |||
| 2599 | // Install the built-in type for 'Class', ignoring the current definition. | |||
| 2600 | New->setTypeForDecl(Context.getObjCClassType().getTypePtr()); | |||
| 2601 | return; | |||
| 2602 | case 3: | |||
| 2603 | if (!TypeID->isStr("SEL")) | |||
| 2604 | break; | |||
| 2605 | Context.setObjCSelRedefinitionType(New->getUnderlyingType()); | |||
| 2606 | // Install the built-in type for 'SEL', ignoring the current definition. | |||
| 2607 | New->setTypeForDecl(Context.getObjCSelType().getTypePtr()); | |||
| 2608 | return; | |||
| 2609 | } | |||
| 2610 | // Fall through - the typedef name was not a builtin type. | |||
| 2611 | } | |||
| 2612 | ||||
| 2613 | // Verify the old decl was also a type. | |||
| 2614 | TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>(); | |||
| 2615 | if (!Old) { | |||
| 2616 | Diag(New->getLocation(), diag::err_redefinition_different_kind) | |||
| 2617 | << New->getDeclName(); | |||
| 2618 | ||||
| 2619 | NamedDecl *OldD = OldDecls.getRepresentativeDecl(); | |||
| 2620 | if (OldD->getLocation().isValid()) | |||
| 2621 | notePreviousDefinition(OldD, New->getLocation()); | |||
| 2622 | ||||
| 2623 | return New->setInvalidDecl(); | |||
| 2624 | } | |||
| 2625 | ||||
| 2626 | // If the old declaration is invalid, just give up here. | |||
| 2627 | if (Old->isInvalidDecl()) | |||
| 2628 | return New->setInvalidDecl(); | |||
| 2629 | ||||
| 2630 | if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) { | |||
| 2631 | auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true); | |||
| 2632 | auto *NewTag = New->getAnonDeclWithTypedefName(); | |||
| 2633 | NamedDecl *Hidden = nullptr; | |||
| 2634 | if (OldTag && NewTag && | |||
| 2635 | OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() && | |||
| 2636 | !hasVisibleDefinition(OldTag, &Hidden)) { | |||
| 2637 | // There is a definition of this tag, but it is not visible. Use it | |||
| 2638 | // instead of our tag. | |||
| 2639 | New->setTypeForDecl(OldTD->getTypeForDecl()); | |||
| 2640 | if (OldTD->isModed()) | |||
| 2641 | New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(), | |||
| 2642 | OldTD->getUnderlyingType()); | |||
| 2643 | else | |||
| 2644 | New->setTypeSourceInfo(OldTD->getTypeSourceInfo()); | |||
| 2645 | ||||
| 2646 | // Make the old tag definition visible. | |||
| 2647 | makeMergedDefinitionVisible(Hidden); | |||
| 2648 | ||||
| 2649 | // If this was an unscoped enumeration, yank all of its enumerators | |||
| 2650 | // out of the scope. | |||
| 2651 | if (isa<EnumDecl>(NewTag)) { | |||
| 2652 | Scope *EnumScope = getNonFieldDeclScope(S); | |||
| 2653 | for (auto *D : NewTag->decls()) { | |||
| 2654 | auto *ED = cast<EnumConstantDecl>(D); | |||
| 2655 | assert(EnumScope->isDeclScope(ED))(static_cast <bool> (EnumScope->isDeclScope(ED)) ? void (0) : __assert_fail ("EnumScope->isDeclScope(ED)", "clang/lib/Sema/SemaDecl.cpp" , 2655, __extension__ __PRETTY_FUNCTION__)); | |||
| 2656 | EnumScope->RemoveDecl(ED); | |||
| 2657 | IdResolver.RemoveDecl(ED); | |||
| 2658 | ED->getLexicalDeclContext()->removeDecl(ED); | |||
| 2659 | } | |||
| 2660 | } | |||
| 2661 | } | |||
| 2662 | } | |||
| 2663 | ||||
| 2664 | // If the typedef types are not identical, reject them in all languages and | |||
| 2665 | // with any extensions enabled. | |||
| 2666 | if (isIncompatibleTypedef(Old, New)) | |||
| 2667 | return; | |||
| 2668 | ||||
| 2669 | // The types match. Link up the redeclaration chain and merge attributes if | |||
| 2670 | // the old declaration was a typedef. | |||
| 2671 | if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) { | |||
| 2672 | New->setPreviousDecl(Typedef); | |||
| 2673 | mergeDeclAttributes(New, Old); | |||
| 2674 | } | |||
| 2675 | ||||
| 2676 | if (getLangOpts().MicrosoftExt) | |||
| 2677 | return; | |||
| 2678 | ||||
| 2679 | if (getLangOpts().CPlusPlus) { | |||
| 2680 | // C++ [dcl.typedef]p2: | |||
| 2681 | // In a given non-class scope, a typedef specifier can be used to | |||
| 2682 | // redefine the name of any type declared in that scope to refer | |||
| 2683 | // to the type to which it already refers. | |||
| 2684 | if (!isa<CXXRecordDecl>(CurContext)) | |||
| 2685 | return; | |||
| 2686 | ||||
| 2687 | // C++0x [dcl.typedef]p4: | |||
| 2688 | // In a given class scope, a typedef specifier can be used to redefine | |||
| 2689 | // any class-name declared in that scope that is not also a typedef-name | |||
| 2690 | // to refer to the type to which it already refers. | |||
| 2691 | // | |||
| 2692 | // This wording came in via DR424, which was a correction to the | |||
| 2693 | // wording in DR56, which accidentally banned code like: | |||
| 2694 | // | |||
| 2695 | // struct S { | |||
| 2696 | // typedef struct A { } A; | |||
| 2697 | // }; | |||
| 2698 | // | |||
| 2699 | // in the C++03 standard. We implement the C++0x semantics, which | |||
| 2700 | // allow the above but disallow | |||
| 2701 | // | |||
| 2702 | // struct S { | |||
| 2703 | // typedef int I; | |||
| 2704 | // typedef int I; | |||
| 2705 | // }; | |||
| 2706 | // | |||
| 2707 | // since that was the intent of DR56. | |||
| 2708 | if (!isa<TypedefNameDecl>(Old)) | |||
| 2709 | return; | |||
| 2710 | ||||
| 2711 | Diag(New->getLocation(), diag::err_redefinition) | |||
| 2712 | << New->getDeclName(); | |||
| 2713 | notePreviousDefinition(Old, New->getLocation()); | |||
| 2714 | return New->setInvalidDecl(); | |||
| 2715 | } | |||
| 2716 | ||||
| 2717 | // Modules always permit redefinition of typedefs, as does C11. | |||
| 2718 | if (getLangOpts().Modules || getLangOpts().C11) | |||
| 2719 | return; | |||
| 2720 | ||||
| 2721 | // If we have a redefinition of a typedef in C, emit a warning. This warning | |||
| 2722 | // is normally mapped to an error, but can be controlled with | |||
| 2723 | // -Wtypedef-redefinition. If either the original or the redefinition is | |||
| 2724 | // in a system header, don't emit this for compatibility with GCC. | |||
| 2725 | if (getDiagnostics().getSuppressSystemWarnings() && | |||
| 2726 | // Some standard types are defined implicitly in Clang (e.g. OpenCL). | |||
| 2727 | (Old->isImplicit() || | |||
| 2728 | Context.getSourceManager().isInSystemHeader(Old->getLocation()) || | |||
| 2729 | Context.getSourceManager().isInSystemHeader(New->getLocation()))) | |||
| 2730 | return; | |||
| 2731 | ||||
| 2732 | Diag(New->getLocation(), diag::ext_redefinition_of_typedef) | |||
| 2733 | << New->getDeclName(); | |||
| 2734 | notePreviousDefinition(Old, New->getLocation()); | |||
| 2735 | } | |||
| 2736 | ||||
| 2737 | /// DeclhasAttr - returns true if decl Declaration already has the target | |||
| 2738 | /// attribute. | |||
| 2739 | static bool DeclHasAttr(const Decl *D, const Attr *A) { | |||
| 2740 | const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A); | |||
| 2741 | const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A); | |||
| 2742 | for (const auto *i : D->attrs()) | |||
| 2743 | if (i->getKind() == A->getKind()) { | |||
| 2744 | if (Ann) { | |||
| 2745 | if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation()) | |||
| 2746 | return true; | |||
| 2747 | continue; | |||
| 2748 | } | |||
| 2749 | // FIXME: Don't hardcode this check | |||
| 2750 | if (OA && isa<OwnershipAttr>(i)) | |||
| 2751 | return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind(); | |||
| 2752 | return true; | |||
| 2753 | } | |||
| 2754 | ||||
| 2755 | return false; | |||
| 2756 | } | |||
| 2757 | ||||
| 2758 | static bool isAttributeTargetADefinition(Decl *D) { | |||
| 2759 | if (VarDecl *VD = dyn_cast<VarDecl>(D)) | |||
| 2760 | return VD->isThisDeclarationADefinition(); | |||
| 2761 | if (TagDecl *TD = dyn_cast<TagDecl>(D)) | |||
| 2762 | return TD->isCompleteDefinition() || TD->isBeingDefined(); | |||
| 2763 | return true; | |||
| 2764 | } | |||
| 2765 | ||||
| 2766 | /// Merge alignment attributes from \p Old to \p New, taking into account the | |||
| 2767 | /// special semantics of C11's _Alignas specifier and C++11's alignas attribute. | |||
| 2768 | /// | |||
| 2769 | /// \return \c true if any attributes were added to \p New. | |||
| 2770 | static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) { | |||
| 2771 | // Look for alignas attributes on Old, and pick out whichever attribute | |||
| 2772 | // specifies the strictest alignment requirement. | |||
| 2773 | AlignedAttr *OldAlignasAttr = nullptr; | |||
| 2774 | AlignedAttr *OldStrictestAlignAttr = nullptr; | |||
| 2775 | unsigned OldAlign = 0; | |||
| 2776 | for (auto *I : Old->specific_attrs<AlignedAttr>()) { | |||
| 2777 | // FIXME: We have no way of representing inherited dependent alignments | |||
| 2778 | // in a case like: | |||
| 2779 | // template<int A, int B> struct alignas(A) X; | |||
| 2780 | // template<int A, int B> struct alignas(B) X {}; | |||
| 2781 | // For now, we just ignore any alignas attributes which are not on the | |||
| 2782 | // definition in such a case. | |||
| 2783 | if (I->isAlignmentDependent()) | |||
| 2784 | return false; | |||
| 2785 | ||||
| 2786 | if (I->isAlignas()) | |||
| 2787 | OldAlignasAttr = I; | |||
| 2788 | ||||
| 2789 | unsigned Align = I->getAlignment(S.Context); | |||
| 2790 | if (Align > OldAlign) { | |||
| 2791 | OldAlign = Align; | |||
| 2792 | OldStrictestAlignAttr = I; | |||
| 2793 | } | |||
| 2794 | } | |||
| 2795 | ||||
| 2796 | // Look for alignas attributes on New. | |||
| 2797 | AlignedAttr *NewAlignasAttr = nullptr; | |||
| 2798 | unsigned NewAlign = 0; | |||
| 2799 | for (auto *I : New->specific_attrs<AlignedAttr>()) { | |||
| 2800 | if (I->isAlignmentDependent()) | |||
| 2801 | return false; | |||
| 2802 | ||||
| 2803 | if (I->isAlignas()) | |||
| 2804 | NewAlignasAttr = I; | |||
| 2805 | ||||
| 2806 | unsigned Align = I->getAlignment(S.Context); | |||
| 2807 | if (Align > NewAlign) | |||
| 2808 | NewAlign = Align; | |||
| 2809 | } | |||
| 2810 | ||||
| 2811 | if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) { | |||
| 2812 | // Both declarations have 'alignas' attributes. We require them to match. | |||
| 2813 | // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but | |||
| 2814 | // fall short. (If two declarations both have alignas, they must both match | |||
| 2815 | // every definition, and so must match each other if there is a definition.) | |||
| 2816 | ||||
| 2817 | // If either declaration only contains 'alignas(0)' specifiers, then it | |||
| 2818 | // specifies the natural alignment for the type. | |||
| 2819 | if (OldAlign == 0 || NewAlign == 0) { | |||
| 2820 | QualType Ty; | |||
| 2821 | if (ValueDecl *VD = dyn_cast<ValueDecl>(New)) | |||
| 2822 | Ty = VD->getType(); | |||
| 2823 | else | |||
| 2824 | Ty = S.Context.getTagDeclType(cast<TagDecl>(New)); | |||
| 2825 | ||||
| 2826 | if (OldAlign == 0) | |||
| 2827 | OldAlign = S.Context.getTypeAlign(Ty); | |||
| 2828 | if (NewAlign == 0) | |||
| 2829 | NewAlign = S.Context.getTypeAlign(Ty); | |||
| 2830 | } | |||
| 2831 | ||||
| 2832 | if (OldAlign != NewAlign) { | |||
| 2833 | S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch) | |||
| 2834 | << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity() | |||
| 2835 | << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity(); | |||
| 2836 | S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration); | |||
| 2837 | } | |||
| 2838 | } | |||
| 2839 | ||||
| 2840 | if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) { | |||
| 2841 | // C++11 [dcl.align]p6: | |||
| 2842 | // if any declaration of an entity has an alignment-specifier, | |||
| 2843 | // every defining declaration of that entity shall specify an | |||
| 2844 | // equivalent alignment. | |||
| 2845 | // C11 6.7.5/7: | |||
| 2846 | // If the definition of an object does not have an alignment | |||
| 2847 | // specifier, any other declaration of that object shall also | |||
| 2848 | // have no alignment specifier. | |||
| 2849 | S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition) | |||
| 2850 | << OldAlignasAttr; | |||
| 2851 | S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration) | |||
| 2852 | << OldAlignasAttr; | |||
| 2853 | } | |||
| 2854 | ||||
| 2855 | bool AnyAdded = false; | |||
| 2856 | ||||
| 2857 | // Ensure we have an attribute representing the strictest alignment. | |||
| 2858 | if (OldAlign > NewAlign) { | |||
| 2859 | AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context); | |||
| 2860 | Clone->setInherited(true); | |||
| 2861 | New->addAttr(Clone); | |||
| 2862 | AnyAdded = true; | |||
| 2863 | } | |||
| 2864 | ||||
| 2865 | // Ensure we have an alignas attribute if the old declaration had one. | |||
| 2866 | if (OldAlignasAttr && !NewAlignasAttr && | |||
| 2867 | !(AnyAdded && OldStrictestAlignAttr->isAlignas())) { | |||
| 2868 | AlignedAttr *Clone = OldAlignasAttr->clone(S.Context); | |||
| 2869 | Clone->setInherited(true); | |||
| 2870 | New->addAttr(Clone); | |||
| 2871 | AnyAdded = true; | |||
| 2872 | } | |||
| 2873 | ||||
| 2874 | return AnyAdded; | |||
| 2875 | } | |||
| 2876 | ||||
| 2877 | #define WANT_DECL_MERGE_LOGIC | |||
| 2878 | #include "clang/Sema/AttrParsedAttrImpl.inc" | |||
| 2879 | #undef WANT_DECL_MERGE_LOGIC | |||
| 2880 | ||||
| 2881 | static bool mergeDeclAttribute(Sema &S, NamedDecl *D, | |||
| 2882 | const InheritableAttr *Attr, | |||
| 2883 | Sema::AvailabilityMergeKind AMK) { | |||
| 2884 | // Diagnose any mutual exclusions between the attribute that we want to add | |||
| 2885 | // and attributes that already exist on the declaration. | |||
| 2886 | if (!DiagnoseMutualExclusions(S, D, Attr)) | |||
| 2887 | return false; | |||
| 2888 | ||||
| 2889 | // This function copies an attribute Attr from a previous declaration to the | |||
| 2890 | // new declaration D if the new declaration doesn't itself have that attribute | |||
| 2891 | // yet or if that attribute allows duplicates. | |||
| 2892 | // If you're adding a new attribute that requires logic different from | |||
| 2893 | // "use explicit attribute on decl if present, else use attribute from | |||
| 2894 | // previous decl", for example if the attribute needs to be consistent | |||
| 2895 | // between redeclarations, you need to call a custom merge function here. | |||
| 2896 | InheritableAttr *NewAttr = nullptr; | |||
| 2897 | if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr)) | |||
| 2898 | NewAttr = S.mergeAvailabilityAttr( | |||
| 2899 | D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(), | |||
| 2900 | AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(), | |||
| 2901 | AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK, | |||
| 2902 | AA->getPriority()); | |||
| 2903 | else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr)) | |||
| 2904 | NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility()); | |||
| 2905 | else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr)) | |||
| 2906 | NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility()); | |||
| 2907 | else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr)) | |||
| 2908 | NewAttr = S.mergeDLLImportAttr(D, *ImportA); | |||
| 2909 | else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr)) | |||
| 2910 | NewAttr = S.mergeDLLExportAttr(D, *ExportA); | |||
| 2911 | else if (const auto *EA = dyn_cast<ErrorAttr>(Attr)) | |||
| 2912 | NewAttr = S.mergeErrorAttr(D, *EA, EA->getUserDiagnostic()); | |||
| 2913 | else if (const auto *FA = dyn_cast<FormatAttr>(Attr)) | |||
| 2914 | NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(), | |||
| 2915 | FA->getFirstArg()); | |||
| 2916 | else if (const auto *SA = dyn_cast<SectionAttr>(Attr)) | |||
| 2917 | NewAttr = S.mergeSectionAttr(D, *SA, SA->getName()); | |||
| 2918 | else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr)) | |||
| 2919 | NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName()); | |||
| 2920 | else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr)) | |||
| 2921 | NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(), | |||
| 2922 | IA->getInheritanceModel()); | |||
| 2923 | else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr)) | |||
| 2924 | NewAttr = S.mergeAlwaysInlineAttr(D, *AA, | |||
| 2925 | &S.Context.Idents.get(AA->getSpelling())); | |||
| 2926 | else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) && | |||
| 2927 | (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) || | |||
| 2928 | isa<CUDAGlobalAttr>(Attr))) { | |||
| 2929 | // CUDA target attributes are part of function signature for | |||
| 2930 | // overloading purposes and must not be merged. | |||
| 2931 | return false; | |||
| 2932 | } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr)) | |||
| 2933 | NewAttr = S.mergeMinSizeAttr(D, *MA); | |||
| 2934 | else if (const auto *SNA = dyn_cast<SwiftNameAttr>(Attr)) | |||
| 2935 | NewAttr = S.mergeSwiftNameAttr(D, *SNA, SNA->getName()); | |||
| 2936 | else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr)) | |||
| 2937 | NewAttr = S.mergeOptimizeNoneAttr(D, *OA); | |||
| 2938 | else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr)) | |||
| 2939 | NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA); | |||
| 2940 | else if (isa<AlignedAttr>(Attr)) | |||
| 2941 | // AlignedAttrs are handled separately, because we need to handle all | |||
| 2942 | // such attributes on a declaration at the same time. | |||
| 2943 | NewAttr = nullptr; | |||
| 2944 | else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) && | |||
| 2945 | (AMK == Sema::AMK_Override || | |||
| 2946 | AMK == Sema::AMK_ProtocolImplementation || | |||
| 2947 | AMK == Sema::AMK_OptionalProtocolImplementation)) | |||
| 2948 | NewAttr = nullptr; | |||
| 2949 | else if (const auto *UA = dyn_cast<UuidAttr>(Attr)) | |||
| 2950 | NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid(), UA->getGuidDecl()); | |||
| 2951 | else if (const auto *IMA = dyn_cast<WebAssemblyImportModuleAttr>(Attr)) | |||
| 2952 | NewAttr = S.mergeImportModuleAttr(D, *IMA); | |||
| 2953 | else if (const auto *INA = dyn_cast<WebAssemblyImportNameAttr>(Attr)) | |||
| 2954 | NewAttr = S.mergeImportNameAttr(D, *INA); | |||
| 2955 | else if (const auto *TCBA = dyn_cast<EnforceTCBAttr>(Attr)) | |||
| 2956 | NewAttr = S.mergeEnforceTCBAttr(D, *TCBA); | |||
| 2957 | else if (const auto *TCBLA = dyn_cast<EnforceTCBLeafAttr>(Attr)) | |||
| 2958 | NewAttr = S.mergeEnforceTCBLeafAttr(D, *TCBLA); | |||
| 2959 | else if (const auto *BTFA = dyn_cast<BTFDeclTagAttr>(Attr)) | |||
| 2960 | NewAttr = S.mergeBTFDeclTagAttr(D, *BTFA); | |||
| 2961 | else if (const auto *NT = dyn_cast<HLSLNumThreadsAttr>(Attr)) | |||
| 2962 | NewAttr = | |||
| 2963 | S.mergeHLSLNumThreadsAttr(D, *NT, NT->getX(), NT->getY(), NT->getZ()); | |||
| 2964 | else if (const auto *SA = dyn_cast<HLSLShaderAttr>(Attr)) | |||
| 2965 | NewAttr = S.mergeHLSLShaderAttr(D, *SA, SA->getType()); | |||
| 2966 | else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr)) | |||
| 2967 | NewAttr = cast<InheritableAttr>(Attr->clone(S.Context)); | |||
| 2968 | ||||
| 2969 | if (NewAttr) { | |||
| 2970 | NewAttr->setInherited(true); | |||
| 2971 | D->addAttr(NewAttr); | |||
| 2972 | if (isa<MSInheritanceAttr>(NewAttr)) | |||
| 2973 | S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D)); | |||
| 2974 | return true; | |||
| 2975 | } | |||
| 2976 | ||||
| 2977 | return false; | |||
| 2978 | } | |||
| 2979 | ||||
| 2980 | static const NamedDecl *getDefinition(const Decl *D) { | |||
| 2981 | if (const TagDecl *TD = dyn_cast<TagDecl>(D)) | |||
| 2982 | return TD->getDefinition(); | |||
| 2983 | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | |||
| 2984 | const VarDecl *Def = VD->getDefinition(); | |||
| 2985 | if (Def) | |||
| 2986 | return Def; | |||
| 2987 | return VD->getActingDefinition(); | |||
| 2988 | } | |||
| 2989 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | |||
| 2990 | const FunctionDecl *Def = nullptr; | |||
| 2991 | if (FD->isDefined(Def, true)) | |||
| 2992 | return Def; | |||
| 2993 | } | |||
| 2994 | return nullptr; | |||
| 2995 | } | |||
| 2996 | ||||
| 2997 | static bool hasAttribute(const Decl *D, attr::Kind Kind) { | |||
| 2998 | for (const auto *Attribute : D->attrs()) | |||
| 2999 | if (Attribute->getKind() == Kind) | |||
| 3000 | return true; | |||
| 3001 | return false; | |||
| 3002 | } | |||
| 3003 | ||||
| 3004 | /// checkNewAttributesAfterDef - If we already have a definition, check that | |||
| 3005 | /// there are no new attributes in this declaration. | |||
| 3006 | static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) { | |||
| 3007 | if (!New->hasAttrs()) | |||
| 3008 | return; | |||
| 3009 | ||||
| 3010 | const NamedDecl *Def = getDefinition(Old); | |||
| 3011 | if (!Def || Def == New) | |||
| 3012 | return; | |||
| 3013 | ||||
| 3014 | AttrVec &NewAttributes = New->getAttrs(); | |||
| 3015 | for (unsigned I = 0, E = NewAttributes.size(); I != E;) { | |||
| 3016 | const Attr *NewAttribute = NewAttributes[I]; | |||
| 3017 | ||||
| 3018 | if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) { | |||
| 3019 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) { | |||
| 3020 | Sema::SkipBodyInfo SkipBody; | |||
| 3021 | S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody); | |||
| 3022 | ||||
| 3023 | // If we're skipping this definition, drop the "alias" attribute. | |||
| 3024 | if (SkipBody.ShouldSkip) { | |||
| 3025 | NewAttributes.erase(NewAttributes.begin() + I); | |||
| 3026 | --E; | |||
| 3027 | continue; | |||
| 3028 | } | |||
| 3029 | } else { | |||
| 3030 | VarDecl *VD = cast<VarDecl>(New); | |||
| 3031 | unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() == | |||
| 3032 | VarDecl::TentativeDefinition | |||
| 3033 | ? diag::err_alias_after_tentative | |||
| 3034 | : diag::err_redefinition; | |||
| 3035 | S.Diag(VD->getLocation(), Diag) << VD->getDeclName(); | |||
| 3036 | if (Diag == diag::err_redefinition) | |||
| 3037 | S.notePreviousDefinition(Def, VD->getLocation()); | |||
| 3038 | else | |||
| 3039 | S.Diag(Def->getLocation(), diag::note_previous_definition); | |||
| 3040 | VD->setInvalidDecl(); | |||
| 3041 | } | |||
| 3042 | ++I; | |||
| 3043 | continue; | |||
| 3044 | } | |||
| 3045 | ||||
| 3046 | if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) { | |||
| 3047 | // Tentative definitions are only interesting for the alias check above. | |||
| 3048 | if (VD->isThisDeclarationADefinition() != VarDecl::Definition) { | |||
| 3049 | ++I; | |||
| 3050 | continue; | |||
| 3051 | } | |||
| 3052 | } | |||
| 3053 | ||||
| 3054 | if (hasAttribute(Def, NewAttribute->getKind())) { | |||
| 3055 | ++I; | |||
| 3056 | continue; // regular attr merging will take care of validating this. | |||
| 3057 | } | |||
| 3058 | ||||
| 3059 | if (isa<C11NoReturnAttr>(NewAttribute)) { | |||
| 3060 | // C's _Noreturn is allowed to be added to a function after it is defined. | |||
| 3061 | ++I; | |||
| 3062 | continue; | |||
| 3063 | } else if (isa<UuidAttr>(NewAttribute)) { | |||
| 3064 | // msvc will allow a subsequent definition to add an uuid to a class | |||
| 3065 | ++I; | |||
| 3066 | continue; | |||
| 3067 | } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) { | |||
| 3068 | if (AA->isAlignas()) { | |||
| 3069 | // C++11 [dcl.align]p6: | |||
| 3070 | // if any declaration of an entity has an alignment-specifier, | |||
| 3071 | // every defining declaration of that entity shall specify an | |||
| 3072 | // equivalent alignment. | |||
| 3073 | // C11 6.7.5/7: | |||
| 3074 | // If the definition of an object does not have an alignment | |||
| 3075 | // specifier, any other declaration of that object shall also | |||
| 3076 | // have no alignment specifier. | |||
| 3077 | S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition) | |||
| 3078 | << AA; | |||
| 3079 | S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration) | |||
| 3080 | << AA; | |||
| 3081 | NewAttributes.erase(NewAttributes.begin() + I); | |||
| 3082 | --E; | |||
| 3083 | continue; | |||
| 3084 | } | |||
| 3085 | } else if (isa<LoaderUninitializedAttr>(NewAttribute)) { | |||
| 3086 | // If there is a C definition followed by a redeclaration with this | |||
| 3087 | // attribute then there are two different definitions. In C++, prefer the | |||
| 3088 | // standard diagnostics. | |||
| 3089 | if (!S.getLangOpts().CPlusPlus) { | |||
| 3090 | S.Diag(NewAttribute->getLocation(), | |||
| 3091 | diag::err_loader_uninitialized_redeclaration); | |||
| 3092 | S.Diag(Def->getLocation(), diag::note_previous_definition); | |||
| 3093 | NewAttributes.erase(NewAttributes.begin() + I); | |||
| 3094 | --E; | |||
| 3095 | continue; | |||
| 3096 | } | |||
| 3097 | } else if (isa<SelectAnyAttr>(NewAttribute) && | |||
| 3098 | cast<VarDecl>(New)->isInline() && | |||
| 3099 | !cast<VarDecl>(New)->isInlineSpecified()) { | |||
| 3100 | // Don't warn about applying selectany to implicitly inline variables. | |||
| 3101 | // Older compilers and language modes would require the use of selectany | |||
| 3102 | // to make such variables inline, and it would have no effect if we | |||
| 3103 | // honored it. | |||
| 3104 | ++I; | |||
| 3105 | continue; | |||
| 3106 | } else if (isa<OMPDeclareVariantAttr>(NewAttribute)) { | |||
| 3107 | // We allow to add OMP[Begin]DeclareVariantAttr to be added to | |||
| 3108 | // declarations after definitions. | |||
| 3109 | ++I; | |||
| 3110 | continue; | |||
| 3111 | } | |||
| 3112 | ||||
| 3113 | S.Diag(NewAttribute->getLocation(), | |||
| 3114 | diag::warn_attribute_precede_definition); | |||
| 3115 | S.Diag(Def->getLocation(), diag::note_previous_definition); | |||
| 3116 | NewAttributes.erase(NewAttributes.begin() + I); | |||
| 3117 | --E; | |||
| 3118 | } | |||
| 3119 | } | |||
| 3120 | ||||
| 3121 | static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl, | |||
| 3122 | const ConstInitAttr *CIAttr, | |||
| 3123 | bool AttrBeforeInit) { | |||
| 3124 | SourceLocation InsertLoc = InitDecl->getInnerLocStart(); | |||
| 3125 | ||||
| 3126 | // Figure out a good way to write this specifier on the old declaration. | |||
| 3127 | // FIXME: We should just use the spelling of CIAttr, but we don't preserve | |||
| 3128 | // enough of the attribute list spelling information to extract that without | |||
| 3129 | // heroics. | |||
| 3130 | std::string SuitableSpelling; | |||
| 3131 | if (S.getLangOpts().CPlusPlus20) | |||
| 3132 | SuitableSpelling = std::string( | |||
| 3133 | S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit})); | |||
| 3134 | if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11) | |||
| 3135 | SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling( | |||
| 3136 | InsertLoc, {tok::l_square, tok::l_square, | |||
| 3137 | S.PP.getIdentifierInfo("clang"), tok::coloncolon, | |||
| 3138 | S.PP.getIdentifierInfo("require_constant_initialization"), | |||
| 3139 | tok::r_square, tok::r_square})); | |||
| 3140 | if (SuitableSpelling.empty()) | |||
| 3141 | SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling( | |||
| 3142 | InsertLoc, {tok::kw___attribute, tok::l_paren, tok::r_paren, | |||
| 3143 | S.PP.getIdentifierInfo("require_constant_initialization"), | |||
| 3144 | tok::r_paren, tok::r_paren})); | |||
| 3145 | if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus20) | |||
| 3146 | SuitableSpelling = "constinit"; | |||
| 3147 | if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11) | |||
| 3148 | SuitableSpelling = "[[clang::require_constant_initialization]]"; | |||
| 3149 | if (SuitableSpelling.empty()) | |||
| 3150 | SuitableSpelling = "__attribute__((require_constant_initialization))"; | |||
| 3151 | SuitableSpelling += " "; | |||
| 3152 | ||||
| 3153 | if (AttrBeforeInit) { | |||
| 3154 | // extern constinit int a; | |||
| 3155 | // int a = 0; // error (missing 'constinit'), accepted as extension | |||
| 3156 | assert(CIAttr->isConstinit() && "should not diagnose this for attribute")(static_cast <bool> (CIAttr->isConstinit() && "should not diagnose this for attribute") ? void (0) : __assert_fail ("CIAttr->isConstinit() && \"should not diagnose this for attribute\"" , "clang/lib/Sema/SemaDecl.cpp", 3156, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3157 | S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing) | |||
| 3158 | << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling); | |||
| 3159 | S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here); | |||
| 3160 | } else { | |||
| 3161 | // int a = 0; | |||
| 3162 | // constinit extern int a; // error (missing 'constinit') | |||
| 3163 | S.Diag(CIAttr->getLocation(), | |||
| 3164 | CIAttr->isConstinit() ? diag::err_constinit_added_too_late | |||
| 3165 | : diag::warn_require_const_init_added_too_late) | |||
| 3166 | << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation())); | |||
| 3167 | S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here) | |||
| 3168 | << CIAttr->isConstinit() | |||
| 3169 | << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling); | |||
| 3170 | } | |||
| 3171 | } | |||
| 3172 | ||||
| 3173 | /// mergeDeclAttributes - Copy attributes from the Old decl to the New one. | |||
| 3174 | void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old, | |||
| 3175 | AvailabilityMergeKind AMK) { | |||
| 3176 | if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) { | |||
| 3177 | UsedAttr *NewAttr = OldAttr->clone(Context); | |||
| 3178 | NewAttr->setInherited(true); | |||
| 3179 | New->addAttr(NewAttr); | |||
| 3180 | } | |||
| 3181 | if (RetainAttr *OldAttr = Old->getMostRecentDecl()->getAttr<RetainAttr>()) { | |||
| 3182 | RetainAttr *NewAttr = OldAttr->clone(Context); | |||
| 3183 | NewAttr->setInherited(true); | |||
| 3184 | New->addAttr(NewAttr); | |||
| 3185 | } | |||
| 3186 | ||||
| 3187 | if (!Old->hasAttrs() && !New->hasAttrs()) | |||
| 3188 | return; | |||
| 3189 | ||||
| 3190 | // [dcl.constinit]p1: | |||
| 3191 | // If the [constinit] specifier is applied to any declaration of a | |||
| 3192 | // variable, it shall be applied to the initializing declaration. | |||
| 3193 | const auto *OldConstInit = Old->getAttr<ConstInitAttr>(); | |||
| 3194 | const auto *NewConstInit = New->getAttr<ConstInitAttr>(); | |||
| 3195 | if (bool(OldConstInit) != bool(NewConstInit)) { | |||
| 3196 | const auto *OldVD = cast<VarDecl>(Old); | |||
| 3197 | auto *NewVD = cast<VarDecl>(New); | |||
| 3198 | ||||
| 3199 | // Find the initializing declaration. Note that we might not have linked | |||
| 3200 | // the new declaration into the redeclaration chain yet. | |||
| 3201 | const VarDecl *InitDecl = OldVD->getInitializingDeclaration(); | |||
| 3202 | if (!InitDecl && | |||
| 3203 | (NewVD->hasInit() || NewVD->isThisDeclarationADefinition())) | |||
| 3204 | InitDecl = NewVD; | |||
| 3205 | ||||
| 3206 | if (InitDecl == NewVD) { | |||
| 3207 | // This is the initializing declaration. If it would inherit 'constinit', | |||
| 3208 | // that's ill-formed. (Note that we do not apply this to the attribute | |||
| 3209 | // form). | |||
| 3210 | if (OldConstInit && OldConstInit->isConstinit()) | |||
| 3211 | diagnoseMissingConstinit(*this, NewVD, OldConstInit, | |||
| 3212 | /*AttrBeforeInit=*/true); | |||
| 3213 | } else if (NewConstInit) { | |||
| 3214 | // This is the first time we've been told that this declaration should | |||
| 3215 | // have a constant initializer. If we already saw the initializing | |||
| 3216 | // declaration, this is too late. | |||
| 3217 | if (InitDecl && InitDecl != NewVD) { | |||
| 3218 | diagnoseMissingConstinit(*this, InitDecl, NewConstInit, | |||
| 3219 | /*AttrBeforeInit=*/false); | |||
| 3220 | NewVD->dropAttr<ConstInitAttr>(); | |||
| 3221 | } | |||
| 3222 | } | |||
| 3223 | } | |||
| 3224 | ||||
| 3225 | // Attributes declared post-definition are currently ignored. | |||
| 3226 | checkNewAttributesAfterDef(*this, New, Old); | |||
| 3227 | ||||
| 3228 | if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) { | |||
| 3229 | if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) { | |||
| 3230 | if (!OldA->isEquivalent(NewA)) { | |||
| 3231 | // This redeclaration changes __asm__ label. | |||
| 3232 | Diag(New->getLocation(), diag::err_different_asm_label); | |||
| 3233 | Diag(OldA->getLocation(), diag::note_previous_declaration); | |||
| 3234 | } | |||
| 3235 | } else if (Old->isUsed()) { | |||
| 3236 | // This redeclaration adds an __asm__ label to a declaration that has | |||
| 3237 | // already been ODR-used. | |||
| 3238 | Diag(New->getLocation(), diag::err_late_asm_label_name) | |||
| 3239 | << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange(); | |||
| 3240 | } | |||
| 3241 | } | |||
| 3242 | ||||
| 3243 | // Re-declaration cannot add abi_tag's. | |||
| 3244 | if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) { | |||
| 3245 | if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) { | |||
| 3246 | for (const auto &NewTag : NewAbiTagAttr->tags()) { | |||
| 3247 | if (!llvm::is_contained(OldAbiTagAttr->tags(), NewTag)) { | |||
| 3248 | Diag(NewAbiTagAttr->getLocation(), | |||
| 3249 | diag::err_new_abi_tag_on_redeclaration) | |||
| 3250 | << NewTag; | |||
| 3251 | Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration); | |||
| 3252 | } | |||
| 3253 | } | |||
| 3254 | } else { | |||
| 3255 | Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration); | |||
| 3256 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
| 3257 | } | |||
| 3258 | } | |||
| 3259 | ||||
| 3260 | // This redeclaration adds a section attribute. | |||
| 3261 | if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) { | |||
| 3262 | if (auto *VD = dyn_cast<VarDecl>(New)) { | |||
| 3263 | if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) { | |||
| 3264 | Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration); | |||
| 3265 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
| 3266 | } | |||
| 3267 | } | |||
| 3268 | } | |||
| 3269 | ||||
| 3270 | // Redeclaration adds code-seg attribute. | |||
| 3271 | const auto *NewCSA = New->getAttr<CodeSegAttr>(); | |||
| 3272 | if (NewCSA && !Old->hasAttr<CodeSegAttr>() && | |||
| 3273 | !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) { | |||
| 3274 | Diag(New->getLocation(), diag::warn_mismatched_section) | |||
| 3275 | << 0 /*codeseg*/; | |||
| 3276 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
| 3277 | } | |||
| 3278 | ||||
| 3279 | if (!Old->hasAttrs()) | |||
| 3280 | return; | |||
| 3281 | ||||
| 3282 | bool foundAny = New->hasAttrs(); | |||
| 3283 | ||||
| 3284 | // Ensure that any moving of objects within the allocated map is done before | |||
| 3285 | // we process them. | |||
| 3286 | if (!foundAny) New->setAttrs(AttrVec()); | |||
| 3287 | ||||
| 3288 | for (auto *I : Old->specific_attrs<InheritableAttr>()) { | |||
| 3289 | // Ignore deprecated/unavailable/availability attributes if requested. | |||
| 3290 | AvailabilityMergeKind LocalAMK = AMK_None; | |||
| 3291 | if (isa<DeprecatedAttr>(I) || | |||
| 3292 | isa<UnavailableAttr>(I) || | |||
| 3293 | isa<AvailabilityAttr>(I)) { | |||
| 3294 | switch (AMK) { | |||
| 3295 | case AMK_None: | |||
| 3296 | continue; | |||
| 3297 | ||||
| 3298 | case AMK_Redeclaration: | |||
| 3299 | case AMK_Override: | |||
| 3300 | case AMK_ProtocolImplementation: | |||
| 3301 | case AMK_OptionalProtocolImplementation: | |||
| 3302 | LocalAMK = AMK; | |||
| 3303 | break; | |||
| 3304 | } | |||
| 3305 | } | |||
| 3306 | ||||
| 3307 | // Already handled. | |||
| 3308 | if (isa<UsedAttr>(I) || isa<RetainAttr>(I)) | |||
| 3309 | continue; | |||
| 3310 | ||||
| 3311 | if (mergeDeclAttribute(*this, New, I, LocalAMK)) | |||
| 3312 | foundAny = true; | |||
| 3313 | } | |||
| 3314 | ||||
| 3315 | if (mergeAlignedAttrs(*this, New, Old)) | |||
| 3316 | foundAny = true; | |||
| 3317 | ||||
| 3318 | if (!foundAny) New->dropAttrs(); | |||
| 3319 | } | |||
| 3320 | ||||
| 3321 | /// mergeParamDeclAttributes - Copy attributes from the old parameter | |||
| 3322 | /// to the new one. | |||
| 3323 | static void mergeParamDeclAttributes(ParmVarDecl *newDecl, | |||
| 3324 | const ParmVarDecl *oldDecl, | |||
| 3325 | Sema &S) { | |||
| 3326 | // C++11 [dcl.attr.depend]p2: | |||
| 3327 | // The first declaration of a function shall specify the | |||
| 3328 | // carries_dependency attribute for its declarator-id if any declaration | |||
| 3329 | // of the function specifies the carries_dependency attribute. | |||
| 3330 | const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>(); | |||
| 3331 | if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) { | |||
| 3332 | S.Diag(CDA->getLocation(), | |||
| 3333 | diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/; | |||
| 3334 | // Find the first declaration of the parameter. | |||
| 3335 | // FIXME: Should we build redeclaration chains for function parameters? | |||
| 3336 | const FunctionDecl *FirstFD = | |||
| 3337 | cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl(); | |||
| 3338 | const ParmVarDecl *FirstVD = | |||
| 3339 | FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex()); | |||
| 3340 | S.Diag(FirstVD->getLocation(), | |||
| 3341 | diag::note_carries_dependency_missing_first_decl) << 1/*Param*/; | |||
| 3342 | } | |||
| 3343 | ||||
| 3344 | if (!oldDecl->hasAttrs()) | |||
| 3345 | return; | |||
| 3346 | ||||
| 3347 | bool foundAny = newDecl->hasAttrs(); | |||
| 3348 | ||||
| 3349 | // Ensure that any moving of objects within the allocated map is | |||
| 3350 | // done before we process them. | |||
| 3351 | if (!foundAny) newDecl->setAttrs(AttrVec()); | |||
| 3352 | ||||
| 3353 | for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) { | |||
| 3354 | if (!DeclHasAttr(newDecl, I)) { | |||
| 3355 | InheritableAttr *newAttr = | |||
| 3356 | cast<InheritableParamAttr>(I->clone(S.Context)); | |||
| 3357 | newAttr->setInherited(true); | |||
| 3358 | newDecl->addAttr(newAttr); | |||
| 3359 | foundAny = true; | |||
| 3360 | } | |||
| 3361 | } | |||
| 3362 | ||||
| 3363 | if (!foundAny) newDecl->dropAttrs(); | |||
| 3364 | } | |||
| 3365 | ||||
| 3366 | static bool EquivalentArrayTypes(QualType Old, QualType New, | |||
| 3367 | const ASTContext &Ctx) { | |||
| 3368 | ||||
| 3369 | auto NoSizeInfo = [&Ctx](QualType Ty) { | |||
| 3370 | if (Ty->isIncompleteArrayType() || Ty->isPointerType()) | |||
| 3371 | return true; | |||
| 3372 | if (const auto *VAT = Ctx.getAsVariableArrayType(Ty)) | |||
| 3373 | return VAT->getSizeModifier() == ArrayType::ArraySizeModifier::Star; | |||
| 3374 | return false; | |||
| 3375 | }; | |||
| 3376 | ||||
| 3377 | // `type[]` is equivalent to `type *` and `type[*]`. | |||
| 3378 | if (NoSizeInfo(Old) && NoSizeInfo(New)) | |||
| 3379 | return true; | |||
| 3380 | ||||
| 3381 | // Don't try to compare VLA sizes, unless one of them has the star modifier. | |||
| 3382 | if (Old->isVariableArrayType() && New->isVariableArrayType()) { | |||
| 3383 | const auto *OldVAT = Ctx.getAsVariableArrayType(Old); | |||
| 3384 | const auto *NewVAT = Ctx.getAsVariableArrayType(New); | |||
| 3385 | if ((OldVAT->getSizeModifier() == ArrayType::ArraySizeModifier::Star) ^ | |||
| 3386 | (NewVAT->getSizeModifier() == ArrayType::ArraySizeModifier::Star)) | |||
| 3387 | return false; | |||
| 3388 | return true; | |||
| 3389 | } | |||
| 3390 | ||||
| 3391 | // Only compare size, ignore Size modifiers and CVR. | |||
| 3392 | if (Old->isConstantArrayType() && New->isConstantArrayType()) { | |||
| 3393 | return Ctx.getAsConstantArrayType(Old)->getSize() == | |||
| 3394 | Ctx.getAsConstantArrayType(New)->getSize(); | |||
| 3395 | } | |||
| 3396 | ||||
| 3397 | // Don't try to compare dependent sized array | |||
| 3398 | if (Old->isDependentSizedArrayType() && New->isDependentSizedArrayType()) { | |||
| 3399 | return true; | |||
| 3400 | } | |||
| 3401 | ||||
| 3402 | return Old == New; | |||
| 3403 | } | |||
| 3404 | ||||
| 3405 | static void mergeParamDeclTypes(ParmVarDecl *NewParam, | |||
| 3406 | const ParmVarDecl *OldParam, | |||
| 3407 | Sema &S) { | |||
| 3408 | if (auto Oldnullability = OldParam->getType()->getNullability()) { | |||
| 3409 | if (auto Newnullability = NewParam->getType()->getNullability()) { | |||
| 3410 | if (*Oldnullability != *Newnullability) { | |||
| 3411 | S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr) | |||
| 3412 | << DiagNullabilityKind( | |||
| 3413 | *Newnullability, | |||
| 3414 | ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) | |||
| 3415 | != 0)) | |||
| 3416 | << DiagNullabilityKind( | |||
| 3417 | *Oldnullability, | |||
| 3418 | ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) | |||
| 3419 | != 0)); | |||
| 3420 | S.Diag(OldParam->getLocation(), diag::note_previous_declaration); | |||
| 3421 | } | |||
| 3422 | } else { | |||
| 3423 | QualType NewT = NewParam->getType(); | |||
| 3424 | NewT = S.Context.getAttributedType( | |||
| 3425 | AttributedType::getNullabilityAttrKind(*Oldnullability), | |||
| 3426 | NewT, NewT); | |||
| 3427 | NewParam->setType(NewT); | |||
| 3428 | } | |||
| 3429 | } | |||
| 3430 | const auto *OldParamDT = dyn_cast<DecayedType>(OldParam->getType()); | |||
| 3431 | const auto *NewParamDT = dyn_cast<DecayedType>(NewParam->getType()); | |||
| 3432 | if (OldParamDT && NewParamDT && | |||
| 3433 | OldParamDT->getPointeeType() == NewParamDT->getPointeeType()) { | |||
| 3434 | QualType OldParamOT = OldParamDT->getOriginalType(); | |||
| 3435 | QualType NewParamOT = NewParamDT->getOriginalType(); | |||
| 3436 | if (!EquivalentArrayTypes(OldParamOT, NewParamOT, S.getASTContext())) { | |||
| 3437 | S.Diag(NewParam->getLocation(), diag::warn_inconsistent_array_form) | |||
| 3438 | << NewParam << NewParamOT; | |||
| 3439 | S.Diag(OldParam->getLocation(), diag::note_previous_declaration_as) | |||
| 3440 | << OldParamOT; | |||
| 3441 | } | |||
| 3442 | } | |||
| 3443 | } | |||
| 3444 | ||||
| 3445 | namespace { | |||
| 3446 | ||||
| 3447 | /// Used in MergeFunctionDecl to keep track of function parameters in | |||
| 3448 | /// C. | |||
| 3449 | struct GNUCompatibleParamWarning { | |||
| 3450 | ParmVarDecl *OldParm; | |||
| 3451 | ParmVarDecl *NewParm; | |||
| 3452 | QualType PromotedType; | |||
| 3453 | }; | |||
| 3454 | ||||
| 3455 | } // end anonymous namespace | |||
| 3456 | ||||
| 3457 | // Determine whether the previous declaration was a definition, implicit | |||
| 3458 | // declaration, or a declaration. | |||
| 3459 | template <typename T> | |||
| 3460 | static std::pair<diag::kind, SourceLocation> | |||
| 3461 | getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) { | |||
| 3462 | diag::kind PrevDiag; | |||
| 3463 | SourceLocation OldLocation = Old->getLocation(); | |||
| 3464 | if (Old->isThisDeclarationADefinition()) | |||
| 3465 | PrevDiag = diag::note_previous_definition; | |||
| 3466 | else if (Old->isImplicit()) { | |||
| 3467 | PrevDiag = diag::note_previous_implicit_declaration; | |||
| 3468 | if (const auto *FD = dyn_cast<FunctionDecl>(Old)) { | |||
| 3469 | if (FD->getBuiltinID()) | |||
| 3470 | PrevDiag = diag::note_previous_builtin_declaration; | |||
| 3471 | } | |||
| 3472 | if (OldLocation.isInvalid()) | |||
| 3473 | OldLocation = New->getLocation(); | |||
| 3474 | } else | |||
| 3475 | PrevDiag = diag::note_previous_declaration; | |||
| 3476 | return std::make_pair(PrevDiag, OldLocation); | |||
| 3477 | } | |||
| 3478 | ||||
| 3479 | /// canRedefineFunction - checks if a function can be redefined. Currently, | |||
| 3480 | /// only extern inline functions can be redefined, and even then only in | |||
| 3481 | /// GNU89 mode. | |||
| 3482 | static bool canRedefineFunction(const FunctionDecl *FD, | |||
| 3483 | const LangOptions& LangOpts) { | |||
| 3484 | return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) && | |||
| 3485 | !LangOpts.CPlusPlus && | |||
| 3486 | FD->isInlineSpecified() && | |||
| 3487 | FD->getStorageClass() == SC_Extern); | |||
| 3488 | } | |||
| 3489 | ||||
| 3490 | const AttributedType *Sema::getCallingConvAttributedType(QualType T) const { | |||
| 3491 | const AttributedType *AT = T->getAs<AttributedType>(); | |||
| 3492 | while (AT && !AT->isCallingConv()) | |||
| 3493 | AT = AT->getModifiedType()->getAs<AttributedType>(); | |||
| 3494 | return AT; | |||
| 3495 | } | |||
| 3496 | ||||
| 3497 | template <typename T> | |||
| 3498 | static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) { | |||
| 3499 | const DeclContext *DC = Old->getDeclContext(); | |||
| 3500 | if (DC->isRecord()) | |||
| 3501 | return false; | |||
| 3502 | ||||
| 3503 | LanguageLinkage OldLinkage = Old->getLanguageLinkage(); | |||
| 3504 | if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext()) | |||
| 3505 | return true; | |||
| 3506 | if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext()) | |||
| 3507 | return true; | |||
| 3508 | return false; | |||
| 3509 | } | |||
| 3510 | ||||
| 3511 | template<typename T> static bool isExternC(T *D) { return D->isExternC(); } | |||
| 3512 | static bool isExternC(VarTemplateDecl *) { return false; } | |||
| 3513 | static bool isExternC(FunctionTemplateDecl *) { return false; } | |||
| 3514 | ||||
| 3515 | /// Check whether a redeclaration of an entity introduced by a | |||
| 3516 | /// using-declaration is valid, given that we know it's not an overload | |||
| 3517 | /// (nor a hidden tag declaration). | |||
| 3518 | template<typename ExpectedDecl> | |||
| 3519 | static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS, | |||
| 3520 | ExpectedDecl *New) { | |||
| 3521 | // C++11 [basic.scope.declarative]p4: | |||
| 3522 | // Given a set of declarations in a single declarative region, each of | |||
| 3523 | // which specifies the same unqualified name, | |||
| 3524 | // -- they shall all refer to the same entity, or all refer to functions | |||
| 3525 | // and function templates; or | |||
| 3526 | // -- exactly one declaration shall declare a class name or enumeration | |||
| 3527 | // name that is not a typedef name and the other declarations shall all | |||
| 3528 | // refer to the same variable or enumerator, or all refer to functions | |||
| 3529 | // and function templates; in this case the class name or enumeration | |||
| 3530 | // name is hidden (3.3.10). | |||
| 3531 | ||||
| 3532 | // C++11 [namespace.udecl]p14: | |||
| 3533 | // If a function declaration in namespace scope or block scope has the | |||
| 3534 | // same name and the same parameter-type-list as a function introduced | |||
| 3535 | // by a using-declaration, and the declarations do not declare the same | |||
| 3536 | // function, the program is ill-formed. | |||
| 3537 | ||||
| 3538 | auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl()); | |||
| 3539 | if (Old && | |||
| 3540 | !Old->getDeclContext()->getRedeclContext()->Equals( | |||
| 3541 | New->getDeclContext()->getRedeclContext()) && | |||
| 3542 | !(isExternC(Old) && isExternC(New))) | |||
| 3543 | Old = nullptr; | |||
| 3544 | ||||
| 3545 | if (!Old) { | |||
| 3546 | S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse); | |||
| 3547 | S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target); | |||
| 3548 | S.Diag(OldS->getIntroducer()->getLocation(), diag::note_using_decl) << 0; | |||
| 3549 | return true; | |||
| 3550 | } | |||
| 3551 | return false; | |||
| 3552 | } | |||
| 3553 | ||||
| 3554 | static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A, | |||
| 3555 | const FunctionDecl *B) { | |||
| 3556 | assert(A->getNumParams() == B->getNumParams())(static_cast <bool> (A->getNumParams() == B->getNumParams ()) ? void (0) : __assert_fail ("A->getNumParams() == B->getNumParams()" , "clang/lib/Sema/SemaDecl.cpp", 3556, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3557 | ||||
| 3558 | auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) { | |||
| 3559 | const auto *AttrA = A->getAttr<PassObjectSizeAttr>(); | |||
| 3560 | const auto *AttrB = B->getAttr<PassObjectSizeAttr>(); | |||
| 3561 | if (AttrA == AttrB) | |||
| 3562 | return true; | |||
| 3563 | return AttrA && AttrB && AttrA->getType() == AttrB->getType() && | |||
| 3564 | AttrA->isDynamic() == AttrB->isDynamic(); | |||
| 3565 | }; | |||
| 3566 | ||||
| 3567 | return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq); | |||
| 3568 | } | |||
| 3569 | ||||
| 3570 | /// If necessary, adjust the semantic declaration context for a qualified | |||
| 3571 | /// declaration to name the correct inline namespace within the qualifier. | |||
| 3572 | static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD, | |||
| 3573 | DeclaratorDecl *OldD) { | |||
| 3574 | // The only case where we need to update the DeclContext is when | |||
| 3575 | // redeclaration lookup for a qualified name finds a declaration | |||
| 3576 | // in an inline namespace within the context named by the qualifier: | |||
| 3577 | // | |||
| 3578 | // inline namespace N { int f(); } | |||
| 3579 | // int ::f(); // Sema DC needs adjusting from :: to N::. | |||
| 3580 | // | |||
| 3581 | // For unqualified declarations, the semantic context *can* change | |||
| 3582 | // along the redeclaration chain (for local extern declarations, | |||
| 3583 | // extern "C" declarations, and friend declarations in particular). | |||
| 3584 | if (!NewD->getQualifier()) | |||
| 3585 | return; | |||
| 3586 | ||||
| 3587 | // NewD is probably already in the right context. | |||
| 3588 | auto *NamedDC = NewD->getDeclContext()->getRedeclContext(); | |||
| 3589 | auto *SemaDC = OldD->getDeclContext()->getRedeclContext(); | |||
| 3590 | if (NamedDC->Equals(SemaDC)) | |||
| 3591 | return; | |||
| 3592 | ||||
| 3593 | assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||(static_cast <bool> ((NamedDC->InEnclosingNamespaceSetOf (SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl ()) && "unexpected context for redeclaration") ? void (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\"" , "clang/lib/Sema/SemaDecl.cpp", 3595, __extension__ __PRETTY_FUNCTION__ )) | |||
| 3594 | NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&(static_cast <bool> ((NamedDC->InEnclosingNamespaceSetOf (SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl ()) && "unexpected context for redeclaration") ? void (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\"" , "clang/lib/Sema/SemaDecl.cpp", 3595, __extension__ __PRETTY_FUNCTION__ )) | |||
| 3595 | "unexpected context for redeclaration")(static_cast <bool> ((NamedDC->InEnclosingNamespaceSetOf (SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl ()) && "unexpected context for redeclaration") ? void (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\"" , "clang/lib/Sema/SemaDecl.cpp", 3595, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3596 | ||||
| 3597 | auto *LexDC = NewD->getLexicalDeclContext(); | |||
| 3598 | auto FixSemaDC = [=](NamedDecl *D) { | |||
| 3599 | if (!D) | |||
| 3600 | return; | |||
| 3601 | D->setDeclContext(SemaDC); | |||
| 3602 | D->setLexicalDeclContext(LexDC); | |||
| 3603 | }; | |||
| 3604 | ||||
| 3605 | FixSemaDC(NewD); | |||
| 3606 | if (auto *FD = dyn_cast<FunctionDecl>(NewD)) | |||
| 3607 | FixSemaDC(FD->getDescribedFunctionTemplate()); | |||
| 3608 | else if (auto *VD = dyn_cast<VarDecl>(NewD)) | |||
| 3609 | FixSemaDC(VD->getDescribedVarTemplate()); | |||
| 3610 | } | |||
| 3611 | ||||
| 3612 | /// MergeFunctionDecl - We just parsed a function 'New' from | |||
| 3613 | /// declarator D which has the same name and scope as a previous | |||
| 3614 | /// declaration 'Old'. Figure out how to resolve this situation, | |||
| 3615 | /// merging decls or emitting diagnostics as appropriate. | |||
| 3616 | /// | |||
| 3617 | /// In C++, New and Old must be declarations that are not | |||
| 3618 | /// overloaded. Use IsOverload to determine whether New and Old are | |||
| 3619 | /// overloaded, and to select the Old declaration that New should be | |||
| 3620 | /// merged with. | |||
| 3621 | /// | |||
| 3622 | /// Returns true if there was an error, false otherwise. | |||
| 3623 | bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD, Scope *S, | |||
| 3624 | bool MergeTypeWithOld, bool NewDeclIsDefn) { | |||
| 3625 | // Verify the old decl was also a function. | |||
| 3626 | FunctionDecl *Old = OldD->getAsFunction(); | |||
| 3627 | if (!Old) { | |||
| ||||
| 3628 | if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) { | |||
| 3629 | if (New->getFriendObjectKind()) { | |||
| 3630 | Diag(New->getLocation(), diag::err_using_decl_friend); | |||
| 3631 | Diag(Shadow->getTargetDecl()->getLocation(), | |||
| 3632 | diag::note_using_decl_target); | |||
| 3633 | Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) | |||
| 3634 | << 0; | |||
| 3635 | return true; | |||
| 3636 | } | |||
| 3637 | ||||
| 3638 | // Check whether the two declarations might declare the same function or | |||
| 3639 | // function template. | |||
| 3640 | if (FunctionTemplateDecl *NewTemplate = | |||
| 3641 | New->getDescribedFunctionTemplate()) { | |||
| 3642 | if (checkUsingShadowRedecl<FunctionTemplateDecl>(*this, Shadow, | |||
| 3643 | NewTemplate)) | |||
| 3644 | return true; | |||
| 3645 | OldD = Old = cast<FunctionTemplateDecl>(Shadow->getTargetDecl()) | |||
| 3646 | ->getAsFunction(); | |||
| 3647 | } else { | |||
| 3648 | if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New)) | |||
| 3649 | return true; | |||
| 3650 | OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl()); | |||
| 3651 | } | |||
| 3652 | } else { | |||
| 3653 | Diag(New->getLocation(), diag::err_redefinition_different_kind) | |||
| 3654 | << New->getDeclName(); | |||
| 3655 | notePreviousDefinition(OldD, New->getLocation()); | |||
| 3656 | return true; | |||
| 3657 | } | |||
| 3658 | } | |||
| 3659 | ||||
| 3660 | // If the old declaration was found in an inline namespace and the new | |||
| 3661 | // declaration was qualified, update the DeclContext to match. | |||
| 3662 | adjustDeclContextForDeclaratorDecl(New, Old); | |||
| 3663 | ||||
| 3664 | // If the old declaration is invalid, just give up here. | |||
| 3665 | if (Old->isInvalidDecl()) | |||
| 3666 | return true; | |||
| 3667 | ||||
| 3668 | // Disallow redeclaration of some builtins. | |||
| 3669 | if (!getASTContext().canBuiltinBeRedeclared(Old)) { | |||
| 3670 | Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName(); | |||
| 3671 | Diag(Old->getLocation(), diag::note_previous_builtin_declaration) | |||
| 3672 | << Old << Old->getType(); | |||
| 3673 | return true; | |||
| 3674 | } | |||
| 3675 | ||||
| 3676 | diag::kind PrevDiag; | |||
| 3677 | SourceLocation OldLocation; | |||
| 3678 | std::tie(PrevDiag, OldLocation) = | |||
| 3679 | getNoteDiagForInvalidRedeclaration(Old, New); | |||
| 3680 | ||||
| 3681 | // Don't complain about this if we're in GNU89 mode and the old function | |||
| 3682 | // is an extern inline function. | |||
| 3683 | // Don't complain about specializations. They are not supposed to have | |||
| 3684 | // storage classes. | |||
| 3685 | if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) && | |||
| 3686 | New->getStorageClass() == SC_Static && | |||
| 3687 | Old->hasExternalFormalLinkage() && | |||
| 3688 | !New->getTemplateSpecializationInfo() && | |||
| 3689 | !canRedefineFunction(Old, getLangOpts())) { | |||
| 3690 | if (getLangOpts().MicrosoftExt) { | |||
| 3691 | Diag(New->getLocation(), diag::ext_static_non_static) << New; | |||
| 3692 | Diag(OldLocation, PrevDiag); | |||
| 3693 | } else { | |||
| 3694 | Diag(New->getLocation(), diag::err_static_non_static) << New; | |||
| 3695 | Diag(OldLocation, PrevDiag); | |||
| 3696 | return true; | |||
| 3697 | } | |||
| 3698 | } | |||
| 3699 | ||||
| 3700 | if (const auto *ILA
| |||
| 3701 | if (!Old->hasAttr<InternalLinkageAttr>()) { | |||
| 3702 | Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl) | |||
| 3703 | << ILA; | |||
| 3704 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
| 3705 | New->dropAttr<InternalLinkageAttr>(); | |||
| 3706 | } | |||
| 3707 | ||||
| 3708 | if (auto *EA
| |||
| 3709 | if (!Old->hasAttr<ErrorAttr>()) { | |||
| 3710 | Diag(EA->getLocation(), diag::err_attribute_missing_on_first_decl) << EA; | |||
| 3711 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
| 3712 | New->dropAttr<ErrorAttr>(); | |||
| 3713 | } | |||
| 3714 | } | |||
| 3715 | ||||
| 3716 | if (CheckRedeclarationInModule(New, Old)) | |||
| 3717 | return true; | |||
| 3718 | ||||
| 3719 | if (!getLangOpts().CPlusPlus) { | |||
| 3720 | bool OldOvl = Old->hasAttr<OverloadableAttr>(); | |||
| 3721 | if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) { | |||
| 3722 | Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch) | |||
| 3723 | << New << OldOvl; | |||
| 3724 | ||||
| 3725 | // Try our best to find a decl that actually has the overloadable | |||
| 3726 | // attribute for the note. In most cases (e.g. programs with only one | |||
| 3727 | // broken declaration/definition), this won't matter. | |||
| 3728 | // | |||
| 3729 | // FIXME: We could do this if we juggled some extra state in | |||
| 3730 | // OverloadableAttr, rather than just removing it. | |||
| 3731 | const Decl *DiagOld = Old; | |||
| 3732 | if (OldOvl) { | |||
| 3733 | auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) { | |||
| 3734 | const auto *A = D->getAttr<OverloadableAttr>(); | |||
| 3735 | return A && !A->isImplicit(); | |||
| 3736 | }); | |||
| 3737 | // If we've implicitly added *all* of the overloadable attrs to this | |||
| 3738 | // chain, emitting a "previous redecl" note is pointless. | |||
| 3739 | DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter; | |||
| 3740 | } | |||
| 3741 | ||||
| 3742 | if (DiagOld) | |||
| 3743 | Diag(DiagOld->getLocation(), | |||
| 3744 | diag::note_attribute_overloadable_prev_overload) | |||
| 3745 | << OldOvl; | |||
| 3746 | ||||
| 3747 | if (OldOvl) | |||
| 3748 | New->addAttr(OverloadableAttr::CreateImplicit(Context)); | |||
| 3749 | else | |||
| 3750 | New->dropAttr<OverloadableAttr>(); | |||
| 3751 | } | |||
| 3752 | } | |||
| 3753 | ||||
| 3754 | // If a function is first declared with a calling convention, but is later | |||
| 3755 | // declared or defined without one, all following decls assume the calling | |||
| 3756 | // convention of the first. | |||
| 3757 | // | |||
| 3758 | // It's OK if a function is first declared without a calling convention, | |||
| 3759 | // but is later declared or defined with the default calling convention. | |||
| 3760 | // | |||
| 3761 | // To test if either decl has an explicit calling convention, we look for | |||
| 3762 | // AttributedType sugar nodes on the type as written. If they are missing or | |||
| 3763 | // were canonicalized away, we assume the calling convention was implicit. | |||
| 3764 | // | |||
| 3765 | // Note also that we DO NOT return at this point, because we still have | |||
| 3766 | // other tests to run. | |||
| 3767 | QualType OldQType = Context.getCanonicalType(Old->getType()); | |||
| 3768 | QualType NewQType = Context.getCanonicalType(New->getType()); | |||
| 3769 | const FunctionType *OldType = cast<FunctionType>(OldQType); | |||
| 3770 | const FunctionType *NewType = cast<FunctionType>(NewQType); | |||
| 3771 | FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); | |||
| 3772 | FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); | |||
| 3773 | bool RequiresAdjustment = false; | |||
| 3774 | ||||
| 3775 | if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) { | |||
| 3776 | FunctionDecl *First = Old->getFirstDecl(); | |||
| 3777 | const FunctionType *FT = | |||
| 3778 | First->getType().getCanonicalType()->castAs<FunctionType>(); | |||
| 3779 | FunctionType::ExtInfo FI = FT->getExtInfo(); | |||
| 3780 | bool NewCCExplicit = getCallingConvAttributedType(New->getType()); | |||
| 3781 | if (!NewCCExplicit) { | |||
| 3782 | // Inherit the CC from the previous declaration if it was specified | |||
| 3783 | // there but not here. | |||
| 3784 | NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); | |||
| 3785 | RequiresAdjustment = true; | |||
| 3786 | } else if (Old->getBuiltinID()) { | |||
| 3787 | // Builtin attribute isn't propagated to the new one yet at this point, | |||
| 3788 | // so we check if the old one is a builtin. | |||
| 3789 | ||||
| 3790 | // Calling Conventions on a Builtin aren't really useful and setting a | |||
| 3791 | // default calling convention and cdecl'ing some builtin redeclarations is | |||
| 3792 | // common, so warn and ignore the calling convention on the redeclaration. | |||
| 3793 | Diag(New->getLocation(), diag::warn_cconv_unsupported) | |||
| 3794 | << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) | |||
| 3795 | << (int)CallingConventionIgnoredReason::BuiltinFunction; | |||
| 3796 | NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); | |||
| 3797 | RequiresAdjustment = true; | |||
| 3798 | } else { | |||
| 3799 | // Calling conventions aren't compatible, so complain. | |||
| 3800 | bool FirstCCExplicit = getCallingConvAttributedType(First->getType()); | |||
| 3801 | Diag(New->getLocation(), diag::err_cconv_change) | |||
| 3802 | << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) | |||
| 3803 | << !FirstCCExplicit | |||
| 3804 | << (!FirstCCExplicit ? "" : | |||
| 3805 | FunctionType::getNameForCallConv(FI.getCC())); | |||
| 3806 | ||||
| 3807 | // Put the note on the first decl, since it is the one that matters. | |||
| 3808 | Diag(First->getLocation(), diag::note_previous_declaration); | |||
| 3809 | return true; | |||
| 3810 | } | |||
| 3811 | } | |||
| 3812 | ||||
| 3813 | // FIXME: diagnose the other way around? | |||
| 3814 | if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) { | |||
| 3815 | NewTypeInfo = NewTypeInfo.withNoReturn(true); | |||
| 3816 | RequiresAdjustment = true; | |||
| 3817 | } | |||
| 3818 | ||||
| 3819 | // Merge regparm attribute. | |||
| 3820 | if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() || | |||
| 3821 | OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) { | |||
| 3822 | if (NewTypeInfo.getHasRegParm()) { | |||
| 3823 | Diag(New->getLocation(), diag::err_regparm_mismatch) | |||
| 3824 | << NewType->getRegParmType() | |||
| 3825 | << OldType->getRegParmType(); | |||
| 3826 | Diag(OldLocation, diag::note_previous_declaration); | |||
| 3827 | return true; | |||
| 3828 | } | |||
| 3829 | ||||
| 3830 | NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm()); | |||
| 3831 | RequiresAdjustment = true; | |||
| 3832 | } | |||
| 3833 | ||||
| 3834 | // Merge ns_returns_retained attribute. | |||
| 3835 | if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) { | |||
| 3836 | if (NewTypeInfo.getProducesResult()) { | |||
| 3837 | Diag(New->getLocation(), diag::err_function_attribute_mismatch) | |||
| 3838 | << "'ns_returns_retained'"; | |||
| 3839 | Diag(OldLocation, diag::note_previous_declaration); | |||
| 3840 | return true; | |||
| 3841 | } | |||
| 3842 | ||||
| 3843 | NewTypeInfo = NewTypeInfo.withProducesResult(true); | |||
| 3844 | RequiresAdjustment = true; | |||
| 3845 | } | |||
| 3846 | ||||
| 3847 | if (OldTypeInfo.getNoCallerSavedRegs() != | |||
| 3848 | NewTypeInfo.getNoCallerSavedRegs()) { | |||
| 3849 | if (NewTypeInfo.getNoCallerSavedRegs()) { | |||
| 3850 | AnyX86NoCallerSavedRegistersAttr *Attr = | |||
| 3851 | New->getAttr<AnyX86NoCallerSavedRegistersAttr>(); | |||
| 3852 | Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr; | |||
| 3853 | Diag(OldLocation, diag::note_previous_declaration); | |||
| 3854 | return true; | |||
| 3855 | } | |||
| 3856 | ||||
| 3857 | NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true); | |||
| 3858 | RequiresAdjustment = true; | |||
| 3859 | } | |||
| 3860 | ||||
| 3861 | if (RequiresAdjustment
| |||
| 3862 | const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>(); | |||
| 3863 | AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo); | |||
| 3864 | New->setType(QualType(AdjustedType, 0)); | |||
| 3865 | NewQType = Context.getCanonicalType(New->getType()); | |||
| 3866 | } | |||
| 3867 | ||||
| 3868 | // If this redeclaration makes the function inline, we may need to add it to | |||
| 3869 | // UndefinedButUsed. | |||
| 3870 | if (!Old->isInlined() && New->isInlined() && | |||
| 3871 | !New->hasAttr<GNUInlineAttr>() && | |||
| 3872 | !getLangOpts().GNUInline && | |||
| 3873 | Old->isUsed(false) && | |||
| 3874 | !Old->isDefined() && !New->isThisDeclarationADefinition()) | |||
| 3875 | UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(), | |||
| 3876 | SourceLocation())); | |||
| 3877 | ||||
| 3878 | // If this redeclaration makes it newly gnu_inline, we don't want to warn | |||
| 3879 | // about it. | |||
| 3880 | if (New->hasAttr<GNUInlineAttr>() && | |||
| 3881 | Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) { | |||
| 3882 | UndefinedButUsed.erase(Old->getCanonicalDecl()); | |||
| 3883 | } | |||
| 3884 | ||||
| 3885 | // If pass_object_size params don't match up perfectly, this isn't a valid | |||
| 3886 | // redeclaration. | |||
| 3887 | if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() && | |||
| 3888 | !hasIdenticalPassObjectSizeAttrs(Old, New)) { | |||
| 3889 | Diag(New->getLocation(), diag::err_different_pass_object_size_params) | |||
| 3890 | << New->getDeclName(); | |||
| 3891 | Diag(OldLocation, PrevDiag) << Old << Old->getType(); | |||
| 3892 | return true; | |||
| 3893 | } | |||
| 3894 | ||||
| 3895 | if (getLangOpts().CPlusPlus
| |||
| 3896 | // C++1z [over.load]p2 | |||
| 3897 | // Certain function declarations cannot be overloaded: | |||
| 3898 | // -- Function declarations that differ only in the return type, | |||
| 3899 | // the exception specification, or both cannot be overloaded. | |||
| 3900 | ||||
| 3901 | // Check the exception specifications match. This may recompute the type of | |||
| 3902 | // both Old and New if it resolved exception specifications, so grab the | |||
| 3903 | // types again after this. Because this updates the type, we do this before | |||
| 3904 | // any of the other checks below, which may update the "de facto" NewQType | |||
| 3905 | // but do not necessarily update the type of New. | |||
| 3906 | if (CheckEquivalentExceptionSpec(Old, New)) | |||
| 3907 | return true; | |||
| 3908 | OldQType = Context.getCanonicalType(Old->getType()); | |||
| 3909 | NewQType = Context.getCanonicalType(New->getType()); | |||
| 3910 | ||||
| 3911 | // Go back to the type source info to compare the declared return types, | |||
| 3912 | // per C++1y [dcl.type.auto]p13: | |||
| 3913 | // Redeclarations or specializations of a function or function template | |||
| 3914 | // with a declared return type that uses a placeholder type shall also | |||
| 3915 | // use that placeholder, not a deduced type. | |||
| 3916 | QualType OldDeclaredReturnType = Old->getDeclaredReturnType(); | |||
| 3917 | QualType NewDeclaredReturnType = New->getDeclaredReturnType(); | |||
| 3918 | if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) && | |||
| 3919 | canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType, | |||
| 3920 | OldDeclaredReturnType)) { | |||
| 3921 | QualType ResQT; | |||
| 3922 | if (NewDeclaredReturnType->isObjCObjectPointerType() && | |||
| 3923 | OldDeclaredReturnType->isObjCObjectPointerType()) | |||
| 3924 | // FIXME: This does the wrong thing for a deduced return type. | |||
| 3925 | ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType); | |||
| 3926 | if (ResQT.isNull()) { | |||
| 3927 | if (New->isCXXClassMember() && New->isOutOfLine()) | |||
| 3928 | Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type) | |||
| 3929 | << New << New->getReturnTypeSourceRange(); | |||
| 3930 | else | |||
| 3931 | Diag(New->getLocation(), diag::err_ovl_diff_return_type) | |||
| 3932 | << New->getReturnTypeSourceRange(); | |||
| 3933 | Diag(OldLocation, PrevDiag) << Old << Old->getType() | |||
| 3934 | << Old->getReturnTypeSourceRange(); | |||
| 3935 | return true; | |||
| 3936 | } | |||
| 3937 | else | |||
| 3938 | NewQType = ResQT; | |||
| 3939 | } | |||
| 3940 | ||||
| 3941 | QualType OldReturnType = OldType->getReturnType(); | |||
| 3942 | QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType(); | |||
| 3943 | if (OldReturnType != NewReturnType) { | |||
| 3944 | // If this function has a deduced return type and has already been | |||
| 3945 | // defined, copy the deduced value from the old declaration. | |||
| 3946 | AutoType *OldAT = Old->getReturnType()->getContainedAutoType(); | |||
| 3947 | if (OldAT && OldAT->isDeduced()) { | |||
| 3948 | QualType DT = OldAT->getDeducedType(); | |||
| 3949 | if (DT.isNull()) { | |||
| 3950 | New->setType(SubstAutoTypeDependent(New->getType())); | |||
| 3951 | NewQType = Context.getCanonicalType(SubstAutoTypeDependent(NewQType)); | |||
| 3952 | } else { | |||
| 3953 | New->setType(SubstAutoType(New->getType(), DT)); | |||
| 3954 | NewQType = Context.getCanonicalType(SubstAutoType(NewQType, DT)); | |||
| 3955 | } | |||
| 3956 | } | |||
| 3957 | } | |||
| 3958 | ||||
| 3959 | const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); | |||
| 3960 | CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); | |||
| 3961 | if (OldMethod
| |||
| 3962 | // Preserve triviality. | |||
| 3963 | NewMethod->setTrivial(OldMethod->isTrivial()); | |||
| 3964 | ||||
| 3965 | // MSVC allows explicit template specialization at class scope: | |||
| 3966 | // 2 CXXMethodDecls referring to the same function will be injected. | |||
| 3967 | // We don't want a redeclaration error. | |||
| 3968 | bool IsClassScopeExplicitSpecialization = | |||
| 3969 | OldMethod->isFunctionTemplateSpecialization() && | |||
| 3970 | NewMethod->isFunctionTemplateSpecialization(); | |||
| 3971 | bool isFriend = NewMethod->getFriendObjectKind(); | |||
| 3972 | ||||
| 3973 | if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() && | |||
| 3974 | !IsClassScopeExplicitSpecialization) { | |||
| 3975 | // -- Member function declarations with the same name and the | |||
| 3976 | // same parameter types cannot be overloaded if any of them | |||
| 3977 | // is a static member function declaration. | |||
| 3978 | if (OldMethod->isStatic() != NewMethod->isStatic()) { | |||
| 3979 | Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member); | |||
| 3980 | Diag(OldLocation, PrevDiag) << Old << Old->getType(); | |||
| 3981 | return true; | |||
| 3982 | } | |||
| 3983 | ||||
| 3984 | // C++ [class.mem]p1: | |||
| 3985 | // [...] A member shall not be declared twice in the | |||
| 3986 | // member-specification, except that a nested class or member | |||
| 3987 | // class template can be declared and then later defined. | |||
| 3988 | if (!inTemplateInstantiation()) { | |||
| 3989 | unsigned NewDiag; | |||
| 3990 | if (isa<CXXConstructorDecl>(OldMethod)) | |||
| 3991 | NewDiag = diag::err_constructor_redeclared; | |||
| 3992 | else if (isa<CXXDestructorDecl>(NewMethod)) | |||
| 3993 | NewDiag = diag::err_destructor_redeclared; | |||
| 3994 | else if (isa<CXXConversionDecl>(NewMethod)) | |||
| 3995 | NewDiag = diag::err_conv_function_redeclared; | |||
| 3996 | else | |||
| 3997 | NewDiag = diag::err_member_redeclared; | |||
| 3998 | ||||
| 3999 | Diag(New->getLocation(), NewDiag); | |||
| 4000 | } else { | |||
| 4001 | Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation) | |||
| 4002 | << New << New->getType(); | |||
| 4003 | } | |||
| 4004 | Diag(OldLocation, PrevDiag) << Old << Old->getType(); | |||
| 4005 | return true; | |||
| 4006 | ||||
| 4007 | // Complain if this is an explicit declaration of a special | |||
| 4008 | // member that was initially declared implicitly. | |||
| 4009 | // | |||
| 4010 | // As an exception, it's okay to befriend such methods in order | |||
| 4011 | // to permit the implicit constructor/destructor/operator calls. | |||
| 4012 | } else if (OldMethod->isImplicit()) { | |||
| 4013 | if (isFriend) { | |||
| 4014 | NewMethod->setImplicit(); | |||
| 4015 | } else { | |||
| 4016 | Diag(NewMethod->getLocation(), | |||
| 4017 | diag::err_definition_of_implicitly_declared_member) | |||
| 4018 | << New << getSpecialMember(OldMethod); | |||
| 4019 | return true; | |||
| 4020 | } | |||
| 4021 | } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) { | |||
| 4022 | Diag(NewMethod->getLocation(), | |||
| 4023 | diag::err_definition_of_explicitly_defaulted_member) | |||
| 4024 | << getSpecialMember(OldMethod); | |||
| 4025 | return true; | |||
| 4026 | } | |||
| 4027 | } | |||
| 4028 | ||||
| 4029 | // C++11 [dcl.attr.noreturn]p1: | |||
| 4030 | // The first declaration of a function shall specify the noreturn | |||
| 4031 | // attribute if any declaration of that function specifies the noreturn | |||
| 4032 | // attribute. | |||
| 4033 | if (const auto *NRA
| |||
| 4034 | if (!Old->hasAttr<CXX11NoReturnAttr>()) { | |||
| 4035 | Diag(NRA->getLocation(), diag::err_attribute_missing_on_first_decl) | |||
| 4036 | << NRA; | |||
| 4037 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
| 4038 | } | |||
| 4039 | ||||
| 4040 | // C++11 [dcl.attr.depend]p2: | |||
| 4041 | // The first declaration of a function shall specify the | |||
| 4042 | // carries_dependency attribute for its declarator-id if any declaration | |||
| 4043 | // of the function specifies the carries_dependency attribute. | |||
| 4044 | const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>(); | |||
| 4045 | if (CDA
| |||
| 4046 | Diag(CDA->getLocation(), | |||
| 4047 | diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/; | |||
| 4048 | Diag(Old->getFirstDecl()->getLocation(), | |||
| 4049 | diag::note_carries_dependency_missing_first_decl) << 0/*Function*/; | |||
| 4050 | } | |||
| 4051 | ||||
| 4052 | // (C++98 8.3.5p3): | |||
| 4053 | // All declarations for a function shall agree exactly in both the | |||
| 4054 | // return type and the parameter-type-list. | |||
| 4055 | // We also want to respect all the extended bits except noreturn. | |||
| 4056 | ||||
| 4057 | // noreturn should now match unless the old type info didn't have it. | |||
| 4058 | QualType OldQTypeForComparison = OldQType; | |||
| 4059 | if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) { | |||
| 4060 | auto *OldType = OldQType->castAs<FunctionProtoType>(); | |||
| 4061 | const FunctionType *OldTypeForComparison | |||
| 4062 | = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true)); | |||
| 4063 | OldQTypeForComparison = QualType(OldTypeForComparison, 0); | |||
| 4064 | assert(OldQTypeForComparison.isCanonical())(static_cast <bool> (OldQTypeForComparison.isCanonical( )) ? void (0) : __assert_fail ("OldQTypeForComparison.isCanonical()" , "clang/lib/Sema/SemaDecl.cpp", 4064, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4065 | } | |||
| 4066 | ||||
| 4067 | if (haveIncompatibleLanguageLinkages(Old, New)) { | |||
| 4068 | // As a special case, retain the language linkage from previous | |||
| 4069 | // declarations of a friend function as an extension. | |||
| 4070 | // | |||
| 4071 | // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC | |||
| 4072 | // and is useful because there's otherwise no way to specify language | |||
| 4073 | // linkage within class scope. | |||
| 4074 | // | |||
| 4075 | // Check cautiously as the friend object kind isn't yet complete. | |||
| 4076 | if (New->getFriendObjectKind() != Decl::FOK_None) { | |||
| 4077 | Diag(New->getLocation(), diag::ext_retained_language_linkage) << New; | |||
| 4078 | Diag(OldLocation, PrevDiag); | |||
| 4079 | } else { | |||
| 4080 | Diag(New->getLocation(), diag::err_different_language_linkage) << New; | |||
| 4081 | Diag(OldLocation, PrevDiag); | |||
| 4082 | return true; | |||
| 4083 | } | |||
| 4084 | } | |||
| 4085 | ||||
| 4086 | // If the function types are compatible, merge the declarations. Ignore the | |||
| 4087 | // exception specifier because it was already checked above in | |||
| 4088 | // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics | |||
| 4089 | // about incompatible types under -fms-compatibility. | |||
| 4090 | if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison, | |||
| 4091 | NewQType)) | |||
| 4092 | return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); | |||
| 4093 | ||||
| 4094 | // If the types are imprecise (due to dependent constructs in friends or | |||
| 4095 | // local extern declarations), it's OK if they differ. We'll check again | |||
| 4096 | // during instantiation. | |||
| 4097 | if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType)) | |||
| 4098 | return false; | |||
| 4099 | ||||
| 4100 | // Fall through for conflicting redeclarations and redefinitions. | |||
| 4101 | } | |||
| 4102 | ||||
| 4103 | // C: Function types need to be compatible, not identical. This handles | |||
| 4104 | // duplicate function decls like "void f(int); void f(enum X);" properly. | |||
| 4105 | if (!getLangOpts().CPlusPlus) { | |||
| 4106 | // C99 6.7.5.3p15: ...If one type has a parameter type list and the other | |||
| 4107 | // type is specified by a function definition that contains a (possibly | |||
| 4108 | // empty) identifier list, both shall agree in the number of parameters | |||
| 4109 | // and the type of each parameter shall be compatible with the type that | |||
| 4110 | // results from the application of default argument promotions to the | |||
| 4111 | // type of the corresponding identifier. ... | |||
| 4112 | // This cannot be handled by ASTContext::typesAreCompatible() because that | |||
| 4113 | // doesn't know whether the function type is for a definition or not when | |||
| 4114 | // eventually calling ASTContext::mergeFunctionTypes(). The only situation | |||
| 4115 | // we need to cover here is that the number of arguments agree as the | |||
| 4116 | // default argument promotion rules were already checked by | |||
| 4117 | // ASTContext::typesAreCompatible(). | |||
| 4118 | if (Old->hasPrototype() && !New->hasWrittenPrototype() && NewDeclIsDefn && | |||
| 4119 | Old->getNumParams() != New->getNumParams() && !Old->isImplicit()) { | |||
| 4120 | if (Old->hasInheritedPrototype()) | |||
| 4121 | Old = Old->getCanonicalDecl(); | |||
| 4122 | Diag(New->getLocation(), diag::err_conflicting_types) << New; | |||
| 4123 | Diag(Old->getLocation(), PrevDiag) << Old << Old->getType(); | |||
| 4124 | return true; | |||
| 4125 | } | |||
| 4126 | ||||
| 4127 | // If we are merging two functions where only one of them has a prototype, | |||
| 4128 | // we may have enough information to decide to issue a diagnostic that the | |||
| 4129 | // function without a protoype will change behavior in C2x. This handles | |||
| 4130 | // cases like: | |||
| 4131 | // void i(); void i(int j); | |||
| 4132 | // void i(int j); void i(); | |||
| 4133 | // void i(); void i(int j) {} | |||
| 4134 | // See ActOnFinishFunctionBody() for other cases of the behavior change | |||
| 4135 | // diagnostic. See GetFullTypeForDeclarator() for handling of a function | |||
| 4136 | // type without a prototype. | |||
| 4137 | if (New->hasWrittenPrototype() != Old->hasWrittenPrototype() && | |||
| 4138 | !New->isImplicit() && !Old->isImplicit()) { | |||
| 4139 | const FunctionDecl *WithProto, *WithoutProto; | |||
| 4140 | if (New->hasWrittenPrototype()) { | |||
| 4141 | WithProto = New; | |||
| 4142 | WithoutProto = Old; | |||
| 4143 | } else { | |||
| 4144 | WithProto = Old; | |||
| 4145 | WithoutProto = New; | |||
| 4146 | } | |||
| 4147 | ||||
| 4148 | if (WithProto->getNumParams() != 0) { | |||
| 4149 | if (WithoutProto->getBuiltinID() == 0 && !WithoutProto->isImplicit()) { | |||
| 4150 | // The one without the prototype will be changing behavior in C2x, so | |||
| 4151 | // warn about that one so long as it's a user-visible declaration. | |||
| 4152 | bool IsWithoutProtoADef = false, IsWithProtoADef = false; | |||
| 4153 | if (WithoutProto == New) | |||
| 4154 | IsWithoutProtoADef = NewDeclIsDefn; | |||
| 4155 | else | |||
| 4156 | IsWithProtoADef = NewDeclIsDefn; | |||
| 4157 | Diag(WithoutProto->getLocation(), | |||
| 4158 | diag::warn_non_prototype_changes_behavior) | |||
| 4159 | << IsWithoutProtoADef << (WithoutProto->getNumParams() ? 0 : 1) | |||
| 4160 | << (WithoutProto == Old) << IsWithProtoADef; | |||
| 4161 | ||||
| 4162 | // The reason the one without the prototype will be changing behavior | |||
| 4163 | // is because of the one with the prototype, so note that so long as | |||
| 4164 | // it's a user-visible declaration. There is one exception to this: | |||
| 4165 | // when the new declaration is a definition without a prototype, the | |||
| 4166 | // old declaration with a prototype is not the cause of the issue, | |||
| 4167 | // and that does not need to be noted because the one with a | |||
| 4168 | // prototype will not change behavior in C2x. | |||
| 4169 | if (WithProto->getBuiltinID() == 0 && !WithProto->isImplicit() && | |||
| 4170 | !IsWithoutProtoADef) | |||
| 4171 | Diag(WithProto->getLocation(), diag::note_conflicting_prototype); | |||
| 4172 | } | |||
| 4173 | } | |||
| 4174 | } | |||
| 4175 | ||||
| 4176 | if (Context.typesAreCompatible(OldQType, NewQType)) { | |||
| 4177 | const FunctionType *OldFuncType = OldQType->getAs<FunctionType>(); | |||
| 4178 | const FunctionType *NewFuncType = NewQType->getAs<FunctionType>(); | |||
| 4179 | const FunctionProtoType *OldProto = nullptr; | |||
| 4180 | if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) && | |||
| 4181 | (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) { | |||
| 4182 | // The old declaration provided a function prototype, but the | |||
| 4183 | // new declaration does not. Merge in the prototype. | |||
| 4184 | assert(!OldProto->hasExceptionSpec() && "Exception spec in C")(static_cast <bool> (!OldProto->hasExceptionSpec() && "Exception spec in C") ? void (0) : __assert_fail ("!OldProto->hasExceptionSpec() && \"Exception spec in C\"" , "clang/lib/Sema/SemaDecl.cpp", 4184, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4185 | NewQType = Context.getFunctionType(NewFuncType->getReturnType(), | |||
| ||||
| 4186 | OldProto->getParamTypes(), | |||
| 4187 | OldProto->getExtProtoInfo()); | |||
| 4188 | New->setType(NewQType); | |||
| 4189 | New->setHasInheritedPrototype(); | |||
| 4190 | ||||
| 4191 | // Synthesize parameters with the same types. | |||
| 4192 | SmallVector<ParmVarDecl *, 16> Params; | |||
| 4193 | for (const auto &ParamType : OldProto->param_types()) { | |||
| 4194 | ParmVarDecl *Param = ParmVarDecl::Create( | |||
| 4195 | Context, New, SourceLocation(), SourceLocation(), nullptr, | |||
| 4196 | ParamType, /*TInfo=*/nullptr, SC_None, nullptr); | |||
| 4197 | Param->setScopeInfo(0, Params.size()); | |||
| 4198 | Param->setImplicit(); | |||
| 4199 | Params.push_back(Param); | |||
| 4200 | } | |||
| 4201 | ||||
| 4202 | New->setParams(Params); | |||
| 4203 | } | |||
| 4204 | ||||
| 4205 | return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); | |||
| 4206 | } | |||
| 4207 | } | |||
| 4208 | ||||
| 4209 | // Check if the function types are compatible when pointer size address | |||
| 4210 | // spaces are ignored. | |||
| 4211 | if (Context.hasSameFunctionTypeIgnoringPtrSizes(OldQType, NewQType)) | |||
| 4212 | return false; | |||
| 4213 | ||||
| 4214 | // GNU C permits a K&R definition to follow a prototype declaration | |||
| 4215 | // if the declared types of the parameters in the K&R definition | |||
| 4216 | // match the types in the prototype declaration, even when the | |||
| 4217 | // promoted types of the parameters from the K&R definition differ | |||
| 4218 | // from the types in the prototype. GCC then keeps the types from | |||
| 4219 | // the prototype. | |||
| 4220 | // | |||
| 4221 | // If a variadic prototype is followed by a non-variadic K&R definition, | |||
| 4222 | // the K&R definition becomes variadic. This is sort of an edge case, but | |||
| 4223 | // it's legal per the standard depending on how you read C99 6.7.5.3p15 and | |||
| 4224 | // C99 6.9.1p8. | |||
| 4225 | if (!getLangOpts().CPlusPlus && | |||
| 4226 | Old->hasPrototype() && !New->hasPrototype() && | |||
| 4227 | New->getType()->getAs<FunctionProtoType>() && | |||
| 4228 | Old->getNumParams() == New->getNumParams()) { | |||
| 4229 | SmallVector<QualType, 16> ArgTypes; | |||
| 4230 | SmallVector<GNUCompatibleParamWarning, 16> Warnings; | |||
| 4231 | const FunctionProtoType *OldProto | |||
| 4232 | = Old->getType()->getAs<FunctionProtoType>(); | |||
| 4233 | const FunctionProtoType *NewProto | |||
| 4234 | = New->getType()->getAs<FunctionProtoType>(); | |||
| 4235 | ||||
| 4236 | // Determine whether this is the GNU C extension. | |||
| 4237 | QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(), | |||
| 4238 | NewProto->getReturnType()); | |||
| 4239 | bool LooseCompatible = !MergedReturn.isNull(); | |||
| 4240 | for (unsigned Idx = 0, End = Old->getNumParams(); | |||
| 4241 | LooseCompatible && Idx != End; ++Idx) { | |||
| 4242 | ParmVarDecl *OldParm = Old->getParamDecl(Idx); | |||
| 4243 | ParmVarDecl *NewParm = New->getParamDecl(Idx); | |||
| 4244 | if (Context.typesAreCompatible(OldParm->getType(), | |||
| 4245 | NewProto->getParamType(Idx))) { | |||
| 4246 | ArgTypes.push_back(NewParm->getType()); | |||
| 4247 | } else if (Context.typesAreCompatible(OldParm->getType(), | |||
| 4248 | NewParm->getType(), | |||
| 4249 | /*CompareUnqualified=*/true)) { | |||
| 4250 | GNUCompatibleParamWarning Warn = { OldParm, NewParm, | |||
| 4251 | NewProto->getParamType(Idx) }; | |||
| 4252 | Warnings.push_back(Warn); | |||
| 4253 | ArgTypes.push_back(NewParm->getType()); | |||
| 4254 | } else | |||
| 4255 | LooseCompatible = false; | |||
| 4256 | } | |||
| 4257 | ||||
| 4258 | if (LooseCompatible) { | |||
| 4259 | for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) { | |||
| 4260 | Diag(Warnings[Warn].NewParm->getLocation(), | |||
| 4261 | diag::ext_param_promoted_not_compatible_with_prototype) | |||
| 4262 | << Warnings[Warn].PromotedType | |||
| 4263 | << Warnings[Warn].OldParm->getType(); | |||
| 4264 | if (Warnings[Warn].OldParm->getLocation().isValid()) | |||
| 4265 | Diag(Warnings[Warn].OldParm->getLocation(), | |||
| 4266 | diag::note_previous_declaration); | |||
| 4267 | } | |||
| 4268 | ||||
| 4269 | if (MergeTypeWithOld) | |||
| 4270 | New->setType(Context.getFunctionType(MergedReturn, ArgTypes, | |||
| 4271 | OldProto->getExtProtoInfo())); | |||
| 4272 | return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); | |||
| 4273 | } | |||
| 4274 | ||||
| 4275 | // Fall through to diagnose conflicting types. | |||
| 4276 | } | |||
| 4277 | ||||
| 4278 | // A function that has already been declared has been redeclared or | |||
| 4279 | // defined with a different type; show an appropriate diagnostic. | |||
| 4280 | ||||
| 4281 | // If the previous declaration was an implicitly-generated builtin | |||
| 4282 | // declaration, then at the very least we should use a specialized note. | |||
| 4283 | unsigned BuiltinID; | |||
| 4284 | if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) { | |||
| 4285 | // If it's actually a library-defined builtin function like 'malloc' | |||
| 4286 | // or 'printf', just warn about the incompatible redeclaration. | |||
| 4287 | if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) { | |||
| 4288 | Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New; | |||
| 4289 | Diag(OldLocation, diag::note_previous_builtin_declaration) | |||
| 4290 | << Old << Old->getType(); | |||
| 4291 | return false; | |||
| 4292 | } | |||
| 4293 | ||||
| 4294 | PrevDiag = diag::note_previous_builtin_declaration; | |||
| 4295 | } | |||
| 4296 | ||||
| 4297 | Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName(); | |||
| 4298 | Diag(OldLocation, PrevDiag) << Old << Old->getType(); | |||
| 4299 | return true; | |||
| 4300 | } | |||
| 4301 | ||||
| 4302 | /// Completes the merge of two function declarations that are | |||
| 4303 | /// known to be compatible. | |||
| 4304 | /// | |||
| 4305 | /// This routine handles the merging of attributes and other | |||
| 4306 | /// properties of function declarations from the old declaration to | |||
| 4307 | /// the new declaration, once we know that New is in fact a | |||
| 4308 | /// redeclaration of Old. | |||
| 4309 | /// | |||
| 4310 | /// \returns false | |||
| 4311 | bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old, | |||
| 4312 | Scope *S, bool MergeTypeWithOld) { | |||
| 4313 | // Merge the attributes | |||
| 4314 | mergeDeclAttributes(New, Old); | |||
| 4315 | ||||
| 4316 | // Merge "pure" flag. | |||
| 4317 | if (Old->isPure()) | |||
| 4318 | New->setPure(); | |||
| 4319 | ||||
| 4320 | // Merge "used" flag. | |||
| 4321 | if (Old->getMostRecentDecl()->isUsed(false)) | |||
| 4322 | New->setIsUsed(); | |||
| 4323 | ||||
| 4324 | // Merge attributes from the parameters. These can mismatch with K&R | |||
| 4325 | // declarations. | |||
| 4326 | if (New->getNumParams() == Old->getNumParams()) | |||
| 4327 | for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) { | |||
| 4328 | ParmVarDecl *NewParam = New->getParamDecl(i); | |||
| 4329 | ParmVarDecl *OldParam = Old->getParamDecl(i); | |||
| 4330 | mergeParamDeclAttributes(NewParam, OldParam, *this); | |||
| 4331 | mergeParamDeclTypes(NewParam, OldParam, *this); | |||
| 4332 | } | |||
| 4333 | ||||
| 4334 | if (getLangOpts().CPlusPlus) | |||
| 4335 | return MergeCXXFunctionDecl(New, Old, S); | |||
| 4336 | ||||
| 4337 | // Merge the function types so the we get the composite types for the return | |||
| 4338 | // and argument types. Per C11 6.2.7/4, only update the type if the old decl | |||
| 4339 | // was visible. | |||
| 4340 | QualType Merged = Context.mergeTypes(Old->getType(), New->getType()); | |||
| 4341 | if (!Merged.isNull() && MergeTypeWithOld) | |||
| 4342 | New->setType(Merged); | |||
| 4343 | ||||
| 4344 | return false; | |||
| 4345 | } | |||
| 4346 | ||||
| 4347 | void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod, | |||
| 4348 | ObjCMethodDecl *oldMethod) { | |||
| 4349 | // Merge the attributes, including deprecated/unavailable | |||
| 4350 | AvailabilityMergeKind MergeKind = | |||
| 4351 | isa<ObjCProtocolDecl>(oldMethod->getDeclContext()) | |||
| 4352 | ? (oldMethod->isOptional() ? AMK_OptionalProtocolImplementation | |||
| 4353 | : AMK_ProtocolImplementation) | |||
| 4354 | : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration | |||
| 4355 | : AMK_Override; | |||
| 4356 | ||||
| 4357 | mergeDeclAttributes(newMethod, oldMethod, MergeKind); | |||
| 4358 | ||||
| 4359 | // Merge attributes from the parameters. | |||
| 4360 | ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(), | |||
| 4361 | oe = oldMethod->param_end(); | |||
| 4362 | for (ObjCMethodDecl::param_iterator | |||
| 4363 | ni = newMethod->param_begin(), ne = newMethod->param_end(); | |||
| 4364 | ni != ne && oi != oe; ++ni, ++oi) | |||
| 4365 | mergeParamDeclAttributes(*ni, *oi, *this); | |||
| 4366 | ||||
| 4367 | CheckObjCMethodOverride(newMethod, oldMethod); | |||
| 4368 | } | |||
| 4369 | ||||
| 4370 | static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) { | |||
| 4371 | assert(!S.Context.hasSameType(New->getType(), Old->getType()))(static_cast <bool> (!S.Context.hasSameType(New->getType (), Old->getType())) ? void (0) : __assert_fail ("!S.Context.hasSameType(New->getType(), Old->getType())" , "clang/lib/Sema/SemaDecl.cpp", 4371, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4372 | ||||
| 4373 | S.Diag(New->getLocation(), New->isThisDeclarationADefinition() | |||
| 4374 | ? diag::err_redefinition_different_type | |||
| 4375 | : diag::err_redeclaration_different_type) | |||
| 4376 | << New->getDeclName() << New->getType() << Old->getType(); | |||
| 4377 | ||||
| 4378 | diag::kind PrevDiag; | |||
| 4379 | SourceLocation OldLocation; | |||
| 4380 | std::tie(PrevDiag, OldLocation) | |||
| 4381 | = getNoteDiagForInvalidRedeclaration(Old, New); | |||
| 4382 | S.Diag(OldLocation, PrevDiag); | |||
| 4383 | New->setInvalidDecl(); | |||
| 4384 | } | |||
| 4385 | ||||
| 4386 | /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and | |||
| 4387 | /// scope as a previous declaration 'Old'. Figure out how to merge their types, | |||
| 4388 | /// emitting diagnostics as appropriate. | |||
| 4389 | /// | |||
| 4390 | /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back | |||
| 4391 | /// to here in AddInitializerToDecl. We can't check them before the initializer | |||
| 4392 | /// is attached. | |||
| 4393 | void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, | |||
| 4394 | bool MergeTypeWithOld) { | |||
| 4395 | if (New->isInvalidDecl() || Old->isInvalidDecl()) | |||
| 4396 | return; | |||
| 4397 | ||||
| 4398 | QualType MergedT; | |||
| 4399 | if (getLangOpts().CPlusPlus) { | |||
| 4400 | if (New->getType()->isUndeducedType()) { | |||
| 4401 | // We don't know what the new type is until the initializer is attached. | |||
| 4402 | return; | |||
| 4403 | } else if (Context.hasSameType(New->getType(), Old->getType())) { | |||
| 4404 | // These could still be something that needs exception specs checked. | |||
| 4405 | return MergeVarDeclExceptionSpecs(New, Old); | |||
| 4406 | } | |||
| 4407 | // C++ [basic.link]p10: | |||
| 4408 | // [...] the types specified by all declarations referring to a given | |||
| 4409 | // object or function shall be identical, except that declarations for an | |||
| 4410 | // array object can specify array types that differ by the presence or | |||
| 4411 | // absence of a major array bound (8.3.4). | |||
| 4412 | else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) { | |||
| 4413 | const ArrayType *OldArray = Context.getAsArrayType(Old->getType()); | |||
| 4414 | const ArrayType *NewArray = Context.getAsArrayType(New->getType()); | |||
| 4415 | ||||
| 4416 | // We are merging a variable declaration New into Old. If it has an array | |||
| 4417 | // bound, and that bound differs from Old's bound, we should diagnose the | |||
| 4418 | // mismatch. | |||
| 4419 | if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) { | |||
| 4420 | for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD; | |||
| 4421 | PrevVD = PrevVD->getPreviousDecl()) { | |||
| 4422 | QualType PrevVDTy = PrevVD->getType(); | |||
| 4423 | if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType()) | |||
| 4424 | continue; | |||
| 4425 | ||||
| 4426 | if (!Context.hasSameType(New->getType(), PrevVDTy)) | |||
| 4427 | return diagnoseVarDeclTypeMismatch(*this, New, PrevVD); | |||
| 4428 | } | |||
| 4429 | } | |||
| 4430 | ||||
| 4431 | if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) { | |||
| 4432 | if (Context.hasSameType(OldArray->getElementType(), | |||
| 4433 | NewArray->getElementType())) | |||
| 4434 | MergedT = New->getType(); | |||
| 4435 | } | |||
| 4436 | // FIXME: Check visibility. New is hidden but has a complete type. If New | |||
| 4437 | // has no array bound, it should not inherit one from Old, if Old is not | |||
| 4438 | // visible. | |||
| 4439 | else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) { | |||
| 4440 | if (Context.hasSameType(OldArray->getElementType(), | |||
| 4441 | NewArray->getElementType())) | |||
| 4442 | MergedT = Old->getType(); | |||
| 4443 | } | |||
| 4444 | } | |||
| 4445 | else if (New->getType()->isObjCObjectPointerType() && | |||
| 4446 | Old->getType()->isObjCObjectPointerType()) { | |||
| 4447 | MergedT = Context.mergeObjCGCQualifiers(New->getType(), | |||
| 4448 | Old->getType()); | |||
| 4449 | } | |||
| 4450 | } else { | |||
| 4451 | // C 6.2.7p2: | |||
| 4452 | // All declarations that refer to the same object or function shall have | |||
| 4453 | // compatible type. | |||
| 4454 | MergedT = Context.mergeTypes(New->getType(), Old->getType()); | |||
| 4455 | } | |||
| 4456 | if (MergedT.isNull()) { | |||
| 4457 | // It's OK if we couldn't merge types if either type is dependent, for a | |||
| 4458 | // block-scope variable. In other cases (static data members of class | |||
| 4459 | // templates, variable templates, ...), we require the types to be | |||
| 4460 | // equivalent. | |||
| 4461 | // FIXME: The C++ standard doesn't say anything about this. | |||
| 4462 | if ((New->getType()->isDependentType() || | |||
| 4463 | Old->getType()->isDependentType()) && New->isLocalVarDecl()) { | |||
| 4464 | // If the old type was dependent, we can't merge with it, so the new type | |||
| 4465 | // becomes dependent for now. We'll reproduce the original type when we | |||
| 4466 | // instantiate the TypeSourceInfo for the variable. | |||
| 4467 | if (!New->getType()->isDependentType() && MergeTypeWithOld) | |||
| 4468 | New->setType(Context.DependentTy); | |||
| 4469 | return; | |||
| 4470 | } | |||
| 4471 | return diagnoseVarDeclTypeMismatch(*this, New, Old); | |||
| 4472 | } | |||
| 4473 | ||||
| 4474 | // Don't actually update the type on the new declaration if the old | |||
| 4475 | // declaration was an extern declaration in a different scope. | |||
| 4476 | if (MergeTypeWithOld) | |||
| 4477 | New->setType(MergedT); | |||
| 4478 | } | |||
| 4479 | ||||
| 4480 | static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD, | |||
| 4481 | LookupResult &Previous) { | |||
| 4482 | // C11 6.2.7p4: | |||
| 4483 | // For an identifier with internal or external linkage declared | |||
| 4484 | // in a scope in which a prior declaration of that identifier is | |||
| 4485 | // visible, if the prior declaration specifies internal or | |||
| 4486 | // external linkage, the type of the identifier at the later | |||
| 4487 | // declaration becomes the composite type. | |||
| 4488 | // | |||
| 4489 | // If the variable isn't visible, we do not merge with its type. | |||
| 4490 | if (Previous.isShadowed()) | |||
| 4491 | return false; | |||
| 4492 | ||||
| 4493 | if (S.getLangOpts().CPlusPlus) { | |||
| 4494 | // C++11 [dcl.array]p3: | |||
| 4495 | // If there is a preceding declaration of the entity in the same | |||
| 4496 | // scope in which the bound was specified, an omitted array bound | |||
| 4497 | // is taken to be the same as in that earlier declaration. | |||
| 4498 | return NewVD->isPreviousDeclInSameBlockScope() || | |||
| 4499 | (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() && | |||
| 4500 | !NewVD->getLexicalDeclContext()->isFunctionOrMethod()); | |||
| 4501 | } else { | |||
| 4502 | // If the old declaration was function-local, don't merge with its | |||
| 4503 | // type unless we're in the same function. | |||
| 4504 | return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() || | |||
| 4505 | OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext(); | |||
| 4506 | } | |||
| 4507 | } | |||
| 4508 | ||||
| 4509 | /// MergeVarDecl - We just parsed a variable 'New' which has the same name | |||
| 4510 | /// and scope as a previous declaration 'Old'. Figure out how to resolve this | |||
| 4511 | /// situation, merging decls or emitting diagnostics as appropriate. | |||
| 4512 | /// | |||
| 4513 | /// Tentative definition rules (C99 6.9.2p2) are checked by | |||
| 4514 | /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative | |||
| 4515 | /// definitions here, since the initializer hasn't been attached. | |||
| 4516 | /// | |||
| 4517 | void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) { | |||
| 4518 | // If the new decl is already invalid, don't do any other checking. | |||
| 4519 | if (New->isInvalidDecl()) | |||
| 4520 | return; | |||
| 4521 | ||||
| 4522 | if (!shouldLinkPossiblyHiddenDecl(Previous, New)) | |||
| 4523 | return; | |||
| 4524 | ||||
| 4525 | VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate(); | |||
| 4526 | ||||
| 4527 | // Verify the old decl was also a variable or variable template. | |||
| 4528 | VarDecl *Old = nullptr; | |||
| 4529 | VarTemplateDecl *OldTemplate = nullptr; | |||
| 4530 | if (Previous.isSingleResult()) { | |||
| 4531 | if (NewTemplate) { | |||
| 4532 | OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl()); | |||
| 4533 | Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr; | |||
| 4534 | ||||
| 4535 | if (auto *Shadow = | |||
| 4536 | dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl())) | |||
| 4537 | if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate)) | |||
| 4538 | return New->setInvalidDecl(); | |||
| 4539 | } else { | |||
| 4540 | Old = dyn_cast<VarDecl>(Previous.getFoundDecl()); | |||
| 4541 | ||||
| 4542 | if (auto *Shadow = | |||
| 4543 | dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl())) | |||
| 4544 | if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New)) | |||
| 4545 | return New->setInvalidDecl(); | |||
| 4546 | } | |||
| 4547 | } | |||
| 4548 | if (!Old) { | |||
| 4549 | Diag(New->getLocation(), diag::err_redefinition_different_kind) | |||
| 4550 | << New->getDeclName(); | |||
| 4551 | notePreviousDefinition(Previous.getRepresentativeDecl(), | |||
| 4552 | New->getLocation()); | |||
| 4553 | return New->setInvalidDecl(); | |||
| 4554 | } | |||
| 4555 | ||||
| 4556 | // If the old declaration was found in an inline namespace and the new | |||
| 4557 | // declaration was qualified, update the DeclContext to match. | |||
| 4558 | adjustDeclContextForDeclaratorDecl(New, Old); | |||
| 4559 | ||||
| 4560 | // Ensure the template parameters are compatible. | |||
| 4561 | if (NewTemplate && | |||
| 4562 | !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), | |||
| 4563 | OldTemplate->getTemplateParameters(), | |||
| 4564 | /*Complain=*/true, TPL_TemplateMatch)) | |||
| 4565 | return New->setInvalidDecl(); | |||
| 4566 | ||||
| 4567 | // C++ [class.mem]p1: | |||
| 4568 | // A member shall not be declared twice in the member-specification [...] | |||
| 4569 | // | |||
| 4570 | // Here, we need only consider static data members. | |||
| 4571 | if (Old->isStaticDataMember() && !New->isOutOfLine()) { | |||
| 4572 | Diag(New->getLocation(), diag::err_duplicate_member) | |||
| 4573 | << New->getIdentifier(); | |||
| 4574 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
| 4575 | New->setInvalidDecl(); | |||
| 4576 | } | |||
| 4577 | ||||
| 4578 | mergeDeclAttributes(New, Old); | |||
| 4579 | // Warn if an already-declared variable is made a weak_import in a subsequent | |||
| 4580 | // declaration | |||
| 4581 | if (New->hasAttr<WeakImportAttr>() && | |||
| 4582 | Old->getStorageClass() == SC_None && | |||
| 4583 | !Old->hasAttr<WeakImportAttr>()) { | |||
| 4584 | Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName(); | |||
| 4585 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
| 4586 | // Remove weak_import attribute on new declaration. | |||
| 4587 | New->dropAttr<WeakImportAttr>(); | |||
| 4588 | } | |||
| 4589 | ||||
| 4590 | if (const auto *ILA = New->getAttr<InternalLinkageAttr>()) | |||
| 4591 | if (!Old->hasAttr<InternalLinkageAttr>()) { | |||
| 4592 | Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl) | |||
| 4593 | << ILA; | |||
| 4594 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
| 4595 | New->dropAttr<InternalLinkageAttr>(); | |||
| 4596 | } | |||
| 4597 | ||||
| 4598 | // Merge the types. | |||
| 4599 | VarDecl *MostRecent = Old->getMostRecentDecl(); | |||
| 4600 | if (MostRecent != Old) { | |||
| 4601 | MergeVarDeclTypes(New, MostRecent, | |||
| 4602 | mergeTypeWithPrevious(*this, New, MostRecent, Previous)); | |||
| 4603 | if (New->isInvalidDecl()) | |||
| 4604 | return; | |||
| 4605 | } | |||
| 4606 | ||||
| 4607 | MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous)); | |||
| 4608 | if (New->isInvalidDecl()) | |||
| 4609 | return; | |||
| 4610 | ||||
| 4611 | diag::kind PrevDiag; | |||
| 4612 | SourceLocation OldLocation; | |||
| 4613 | std::tie(PrevDiag, OldLocation) = | |||
| 4614 | getNoteDiagForInvalidRedeclaration(Old, New); | |||
| 4615 | ||||
| 4616 | // [dcl.stc]p8: Check if we have a non-static decl followed by a static. | |||
| 4617 | if (New->getStorageClass() == SC_Static && | |||
| 4618 | !New->isStaticDataMember() && | |||
| 4619 | Old->hasExternalFormalLinkage()) { | |||
| 4620 | if (getLangOpts().MicrosoftExt) { | |||
| 4621 | Diag(New->getLocation(), diag::ext_static_non_static) | |||
| 4622 | << New->getDeclName(); | |||
| 4623 | Diag(OldLocation, PrevDiag); | |||
| 4624 | } else { | |||
| 4625 | Diag(New->getLocation(), diag::err_static_non_static) | |||
| 4626 | << New->getDeclName(); | |||
| 4627 | Diag(OldLocation, PrevDiag); | |||
| 4628 | return New->setInvalidDecl(); | |||
| 4629 | } | |||
| 4630 | } | |||
| 4631 | // C99 6.2.2p4: | |||
| 4632 | // For an identifier declared with the storage-class specifier | |||
| 4633 | // extern in a scope in which a prior declaration of that | |||
| 4634 | // identifier is visible,23) if the prior declaration specifies | |||
| 4635 | // internal or external linkage, the linkage of the identifier at | |||
| 4636 | // the later declaration is the same as the linkage specified at | |||
| 4637 | // the prior declaration. If no prior declaration is visible, or | |||
| 4638 | // if the prior declaration specifies no linkage, then the | |||
| 4639 | // identifier has external linkage. | |||
| 4640 | if (New->hasExternalStorage() && Old->hasLinkage()) | |||
| 4641 | /* Okay */; | |||
| 4642 | else if (New->getCanonicalDecl()->getStorageClass() != SC_Static && | |||
| 4643 | !New->isStaticDataMember() && | |||
| 4644 | Old->getCanonicalDecl()->getStorageClass() == SC_Static) { | |||
| 4645 | Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName(); | |||
| 4646 | Diag(OldLocation, PrevDiag); | |||
| 4647 | return New->setInvalidDecl(); | |||
| 4648 | } | |||
| 4649 | ||||
| 4650 | // Check if extern is followed by non-extern and vice-versa. | |||
| 4651 | if (New->hasExternalStorage() && | |||
| 4652 | !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) { | |||
| 4653 | Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName(); | |||
| 4654 | Diag(OldLocation, PrevDiag); | |||
| 4655 | return New->setInvalidDecl(); | |||
| 4656 | } | |||
| 4657 | if (Old->hasLinkage() && New->isLocalVarDeclOrParm() && | |||
| 4658 | !New->hasExternalStorage()) { | |||
| 4659 | Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName(); | |||
| 4660 | Diag(OldLocation, PrevDiag); | |||
| 4661 | return New->setInvalidDecl(); | |||
| 4662 | } | |||
| 4663 | ||||
| 4664 | if (CheckRedeclarationInModule(New, Old)) | |||
| 4665 | return; | |||
| 4666 | ||||
| 4667 | // Variables with external linkage are analyzed in FinalizeDeclaratorGroup. | |||
| 4668 | ||||
| 4669 | // FIXME: The test for external storage here seems wrong? We still | |||
| 4670 | // need to check for mismatches. | |||
| 4671 | if (!New->hasExternalStorage() && !New->isFileVarDecl() && | |||
| 4672 | // Don't complain about out-of-line definitions of static members. | |||
| 4673 | !(Old->getLexicalDeclContext()->isRecord() && | |||
| 4674 | !New->getLexicalDeclContext()->isRecord())) { | |||
| 4675 | Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName(); | |||
| 4676 | Diag(OldLocation, PrevDiag); | |||
| 4677 | return New->setInvalidDecl(); | |||
| 4678 | } | |||
| 4679 | ||||
| 4680 | if (New->isInline() && !Old->getMostRecentDecl()->isInline()) { | |||
| 4681 | if (VarDecl *Def = Old->getDefinition()) { | |||
| 4682 | // C++1z [dcl.fcn.spec]p4: | |||
| 4683 | // If the definition of a variable appears in a translation unit before | |||
| 4684 | // its first declaration as inline, the program is ill-formed. | |||
| 4685 | Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; | |||
| 4686 | Diag(Def->getLocation(), diag::note_previous_definition); | |||
| 4687 | } | |||
| 4688 | } | |||
| 4689 | ||||
| 4690 | // If this redeclaration makes the variable inline, we may need to add it to | |||
| 4691 | // UndefinedButUsed. | |||
| 4692 | if (!Old->isInline() && New->isInline() && Old->isUsed(false) && | |||
| 4693 | !Old->getDefinition() && !New->isThisDeclarationADefinition()) | |||
| 4694 | UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(), | |||
| 4695 | SourceLocation())); | |||
| 4696 | ||||
| 4697 | if (New->getTLSKind() != Old->getTLSKind()) { | |||
| 4698 | if (!Old->getTLSKind()) { | |||
| 4699 | Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName(); | |||
| 4700 | Diag(OldLocation, PrevDiag); | |||
| 4701 | } else if (!New->getTLSKind()) { | |||
| 4702 | Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName(); | |||
| 4703 | Diag(OldLocation, PrevDiag); | |||
| 4704 | } else { | |||
| 4705 | // Do not allow redeclaration to change the variable between requiring | |||
| 4706 | // static and dynamic initialization. | |||
| 4707 | // FIXME: GCC allows this, but uses the TLS keyword on the first | |||
| 4708 | // declaration to determine the kind. Do we need to be compatible here? | |||
| 4709 | Diag(New->getLocation(), diag::err_thread_thread_different_kind) | |||
| 4710 | << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic); | |||
| 4711 | Diag(OldLocation, PrevDiag); | |||
| 4712 | } | |||
| 4713 | } | |||
| 4714 | ||||
| 4715 | // C++ doesn't have tentative definitions, so go right ahead and check here. | |||
| 4716 | if (getLangOpts().CPlusPlus) { | |||
| 4717 | if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() && | |||
| 4718 | Old->getCanonicalDecl()->isConstexpr()) { | |||
| 4719 | // This definition won't be a definition any more once it's been merged. | |||
| 4720 | Diag(New->getLocation(), | |||
| 4721 | diag::warn_deprecated_redundant_constexpr_static_def); | |||
| 4722 | } else if (New->isThisDeclarationADefinition() == VarDecl::Definition) { | |||
| 4723 | VarDecl *Def = Old->getDefinition(); | |||
| 4724 | if (Def && checkVarDeclRedefinition(Def, New)) | |||
| 4725 | return; | |||
| 4726 | } | |||
| 4727 | } | |||
| 4728 | ||||
| 4729 | if (haveIncompatibleLanguageLinkages(Old, New)) { | |||
| 4730 | Diag(New->getLocation(), diag::err_different_language_linkage) << New; | |||
| 4731 | Diag(OldLocation, PrevDiag); | |||
| 4732 | New->setInvalidDecl(); | |||
| 4733 | return; | |||
| 4734 | } | |||
| 4735 | ||||
| 4736 | // Merge "used" flag. | |||
| 4737 | if (Old->getMostRecentDecl()->isUsed(false)) | |||
| 4738 | New->setIsUsed(); | |||
| 4739 | ||||
| 4740 | // Keep a chain of previous declarations. | |||
| 4741 | New->setPreviousDecl(Old); | |||
| 4742 | if (NewTemplate) | |||
| 4743 | NewTemplate->setPreviousDecl(OldTemplate); | |||
| 4744 | ||||
| 4745 | // Inherit access appropriately. | |||
| 4746 | New->setAccess(Old->getAccess()); | |||
| 4747 | if (NewTemplate) | |||
| 4748 | NewTemplate->setAccess(New->getAccess()); | |||
| 4749 | ||||
| 4750 | if (Old->isInline()) | |||
| 4751 | New->setImplicitlyInline(); | |||
| 4752 | } | |||
| 4753 | ||||
| 4754 | void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) { | |||
| 4755 | SourceManager &SrcMgr = getSourceManager(); | |||
| 4756 | auto FNewDecLoc = SrcMgr.getDecomposedLoc(New); | |||
| 4757 | auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation()); | |||
| 4758 | auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first); | |||
| 4759 | auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first); | |||
| 4760 | auto &HSI = PP.getHeaderSearchInfo(); | |||
| 4761 | StringRef HdrFilename = | |||
| 4762 | SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation())); | |||
| 4763 | ||||
| 4764 | auto noteFromModuleOrInclude = [&](Module *Mod, | |||
| 4765 | SourceLocation IncLoc) -> bool { | |||
| 4766 | // Redefinition errors with modules are common with non modular mapped | |||
| 4767 | // headers, example: a non-modular header H in module A that also gets | |||
| 4768 | // included directly in a TU. Pointing twice to the same header/definition | |||
| 4769 | // is confusing, try to get better diagnostics when modules is on. | |||
| 4770 | if (IncLoc.isValid()) { | |||
| 4771 | if (Mod) { | |||
| 4772 | Diag(IncLoc, diag::note_redefinition_modules_same_file) | |||
| 4773 | << HdrFilename.str() << Mod->getFullModuleName(); | |||
| 4774 | if (!Mod->DefinitionLoc.isInvalid()) | |||
| 4775 | Diag(Mod->DefinitionLoc, diag::note_defined_here) | |||
| 4776 | << Mod->getFullModuleName(); | |||
| 4777 | } else { | |||
| 4778 | Diag(IncLoc, diag::note_redefinition_include_same_file) | |||
| 4779 | << HdrFilename.str(); | |||
| 4780 | } | |||
| 4781 | return true; | |||
| 4782 | } | |||
| 4783 | ||||
| 4784 | return false; | |||
| 4785 | }; | |||
| 4786 | ||||
| 4787 | // Is it the same file and same offset? Provide more information on why | |||
| 4788 | // this leads to a redefinition error. | |||
| 4789 | if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) { | |||
| 4790 | SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first); | |||
| 4791 | SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first); | |||
| 4792 | bool EmittedDiag = | |||
| 4793 | noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc); | |||
| 4794 | EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc); | |||
| 4795 | ||||
| 4796 | // If the header has no guards, emit a note suggesting one. | |||
| 4797 | if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld)) | |||
| 4798 | Diag(Old->getLocation(), diag::note_use_ifdef_guards); | |||
| 4799 | ||||
| 4800 | if (EmittedDiag) | |||
| 4801 | return; | |||
| 4802 | } | |||
| 4803 | ||||
| 4804 | // Redefinition coming from different files or couldn't do better above. | |||
| 4805 | if (Old->getLocation().isValid()) | |||
| 4806 | Diag(Old->getLocation(), diag::note_previous_definition); | |||
| 4807 | } | |||
| 4808 | ||||
| 4809 | /// We've just determined that \p Old and \p New both appear to be definitions | |||
| 4810 | /// of the same variable. Either diagnose or fix the problem. | |||
| 4811 | bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) { | |||
| 4812 | if (!hasVisibleDefinition(Old) && | |||
| 4813 | (New->getFormalLinkage() == InternalLinkage || | |||
| 4814 | New->isInline() || | |||
| 4815 | isa<VarTemplateSpecializationDecl>(New) || | |||
| 4816 | New->getDescribedVarTemplate() || | |||
| 4817 | New->getNumTemplateParameterLists() || | |||
| 4818 | New->getDeclContext()->isDependentContext())) { | |||
| 4819 | // The previous definition is hidden, and multiple definitions are | |||
| 4820 | // permitted (in separate TUs). Demote this to a declaration. | |||
| 4821 | New->demoteThisDefinitionToDeclaration(); | |||
| 4822 | ||||
| 4823 | // Make the canonical definition visible. | |||
| 4824 | if (auto *OldTD = Old->getDescribedVarTemplate()) | |||
| 4825 | makeMergedDefinitionVisible(OldTD); | |||
| 4826 | makeMergedDefinitionVisible(Old); | |||
| 4827 | return false; | |||
| 4828 | } else { | |||
| 4829 | Diag(New->getLocation(), diag::err_redefinition) << New; | |||
| 4830 | notePreviousDefinition(Old, New->getLocation()); | |||
| 4831 | New->setInvalidDecl(); | |||
| 4832 | return true; | |||
| 4833 | } | |||
| 4834 | } | |||
| 4835 | ||||
| 4836 | /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with | |||
| 4837 | /// no declarator (e.g. "struct foo;") is parsed. | |||
| 4838 | Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, | |||
| 4839 | DeclSpec &DS, | |||
| 4840 | const ParsedAttributesView &DeclAttrs, | |||
| 4841 | RecordDecl *&AnonRecord) { | |||
| 4842 | return ParsedFreeStandingDeclSpec( | |||
| 4843 | S, AS, DS, DeclAttrs, MultiTemplateParamsArg(), false, AnonRecord); | |||
| 4844 | } | |||
| 4845 | ||||
| 4846 | // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to | |||
| 4847 | // disambiguate entities defined in different scopes. | |||
| 4848 | // While the VS2015 ABI fixes potential miscompiles, it is also breaks | |||
| 4849 | // compatibility. | |||
| 4850 | // We will pick our mangling number depending on which version of MSVC is being | |||
| 4851 | // targeted. | |||
| 4852 | static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) { | |||
| 4853 | return LO.isCompatibleWithMSVC(LangOptions::MSVC2015) | |||
| 4854 | ? S->getMSCurManglingNumber() | |||
| 4855 | : S->getMSLastManglingNumber(); | |||
| 4856 | } | |||
| 4857 | ||||
| 4858 | void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) { | |||
| 4859 | if (!Context.getLangOpts().CPlusPlus) | |||
| 4860 | return; | |||
| 4861 | ||||
| 4862 | if (isa<CXXRecordDecl>(Tag->getParent())) { | |||
| 4863 | // If this tag is the direct child of a class, number it if | |||
| 4864 | // it is anonymous. | |||
| 4865 | if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl()) | |||
| 4866 | return; | |||
| 4867 | MangleNumberingContext &MCtx = | |||
| 4868 | Context.getManglingNumberContext(Tag->getParent()); | |||
| 4869 | Context.setManglingNumber( | |||
| 4870 | Tag, MCtx.getManglingNumber( | |||
| 4871 | Tag, getMSManglingNumber(getLangOpts(), TagScope))); | |||
| 4872 | return; | |||
| 4873 | } | |||
| 4874 | ||||
| 4875 | // If this tag isn't a direct child of a class, number it if it is local. | |||
| 4876 | MangleNumberingContext *MCtx; | |||
| 4877 | Decl *ManglingContextDecl; | |||
| 4878 | std::tie(MCtx, ManglingContextDecl) = | |||
| 4879 | getCurrentMangleNumberContext(Tag->getDeclContext()); | |||
| 4880 | if (MCtx) { | |||
| 4881 | Context.setManglingNumber( | |||
| 4882 | Tag, MCtx->getManglingNumber( | |||
| 4883 | Tag, getMSManglingNumber(getLangOpts(), TagScope))); | |||
| 4884 | } | |||
| 4885 | } | |||
| 4886 | ||||
| 4887 | namespace { | |||
| 4888 | struct NonCLikeKind { | |||
| 4889 | enum { | |||
| 4890 | None, | |||
| 4891 | BaseClass, | |||
| 4892 | DefaultMemberInit, | |||
| 4893 | Lambda, | |||
| 4894 | Friend, | |||
| 4895 | OtherMember, | |||
| 4896 | Invalid, | |||
| 4897 | } Kind = None; | |||
| 4898 | SourceRange Range; | |||
| 4899 | ||||
| 4900 | explicit operator bool() { return Kind != None; } | |||
| 4901 | }; | |||
| 4902 | } | |||
| 4903 | ||||
| 4904 | /// Determine whether a class is C-like, according to the rules of C++ | |||
| 4905 | /// [dcl.typedef] for anonymous classes with typedef names for linkage. | |||
| 4906 | static NonCLikeKind getNonCLikeKindForAnonymousStruct(const CXXRecordDecl *RD) { | |||
| 4907 | if (RD->isInvalidDecl()) | |||
| 4908 | return {NonCLikeKind::Invalid, {}}; | |||
| 4909 | ||||
| 4910 | // C++ [dcl.typedef]p9: [P1766R1] | |||
| 4911 | // An unnamed class with a typedef name for linkage purposes shall not | |||
| 4912 | // | |||
| 4913 | // -- have any base classes | |||
| 4914 | if (RD->getNumBases()) | |||
| 4915 | return {NonCLikeKind::BaseClass, | |||
| 4916 | SourceRange(RD->bases_begin()->getBeginLoc(), | |||
| 4917 | RD->bases_end()[-1].getEndLoc())}; | |||
| 4918 | bool Invalid = false; | |||
| 4919 | for (Decl *D : RD->decls()) { | |||
| 4920 | // Don't complain about things we already diagnosed. | |||
| 4921 | if (D->isInvalidDecl()) { | |||
| 4922 | Invalid = true; | |||
| 4923 | continue; | |||
| 4924 | } | |||
| 4925 | ||||
| 4926 | // -- have any [...] default member initializers | |||
| 4927 | if (auto *FD = dyn_cast<FieldDecl>(D)) { | |||
| 4928 | if (FD->hasInClassInitializer()) { | |||
| 4929 | auto *Init = FD->getInClassInitializer(); | |||
| 4930 | return {NonCLikeKind::DefaultMemberInit, | |||
| 4931 | Init ? Init->getSourceRange() : D->getSourceRange()}; | |||
| 4932 | } | |||
| 4933 | continue; | |||
| 4934 | } | |||
| 4935 | ||||
| 4936 | // FIXME: We don't allow friend declarations. This violates the wording of | |||
| 4937 | // P1766, but not the intent. | |||
| 4938 | if (isa<FriendDecl>(D)) | |||
| 4939 | return {NonCLikeKind::Friend, D->getSourceRange()}; | |||
| 4940 | ||||
| 4941 | // -- declare any members other than non-static data members, member | |||
| 4942 | // enumerations, or member classes, | |||
| 4943 | if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D) || | |||
| 4944 | isa<EnumDecl>(D)) | |||
| 4945 | continue; | |||
| 4946 | auto *MemberRD = dyn_cast<CXXRecordDecl>(D); | |||
| 4947 | if (!MemberRD) { | |||
| 4948 | if (D->isImplicit()) | |||
| 4949 | continue; | |||
| 4950 | return {NonCLikeKind::OtherMember, D->getSourceRange()}; | |||
| 4951 | } | |||
| 4952 | ||||
| 4953 | // -- contain a lambda-expression, | |||
| 4954 | if (MemberRD->isLambda()) | |||
| 4955 | return {NonCLikeKind::Lambda, MemberRD->getSourceRange()}; | |||
| 4956 | ||||
| 4957 | // and all member classes shall also satisfy these requirements | |||
| 4958 | // (recursively). | |||
| 4959 | if (MemberRD->isThisDeclarationADefinition()) { | |||
| 4960 | if (auto Kind = getNonCLikeKindForAnonymousStruct(MemberRD)) | |||
| 4961 | return Kind; | |||
| 4962 | } | |||
| 4963 | } | |||
| 4964 | ||||
| 4965 | return {Invalid ? NonCLikeKind::Invalid : NonCLikeKind::None, {}}; | |||
| 4966 | } | |||
| 4967 | ||||
| 4968 | void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec, | |||
| 4969 | TypedefNameDecl *NewTD) { | |||
| 4970 | if (TagFromDeclSpec->isInvalidDecl()) | |||
| 4971 | return; | |||
| 4972 | ||||
| 4973 | // Do nothing if the tag already has a name for linkage purposes. | |||
| 4974 | if (TagFromDeclSpec->hasNameForLinkage()) | |||
| 4975 | return; | |||
| 4976 | ||||
| 4977 | // A well-formed anonymous tag must always be a TUK_Definition. | |||
| 4978 | assert(TagFromDeclSpec->isThisDeclarationADefinition())(static_cast <bool> (TagFromDeclSpec->isThisDeclarationADefinition ()) ? void (0) : __assert_fail ("TagFromDeclSpec->isThisDeclarationADefinition()" , "clang/lib/Sema/SemaDecl.cpp", 4978, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4979 | ||||
| 4980 | // The type must match the tag exactly; no qualifiers allowed. | |||
| 4981 | if (!Context.hasSameType(NewTD->getUnderlyingType(), | |||
| 4982 | Context.getTagDeclType(TagFromDeclSpec))) { | |||
| 4983 | if (getLangOpts().CPlusPlus) | |||
| 4984 | Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD); | |||
| 4985 | return; | |||
| 4986 | } | |||
| 4987 | ||||
| 4988 | // C++ [dcl.typedef]p9: [P1766R1, applied as DR] | |||
| 4989 | // An unnamed class with a typedef name for linkage purposes shall [be | |||
| 4990 | // C-like]. | |||
| 4991 | // | |||
| 4992 | // FIXME: Also diagnose if we've already computed the linkage. That ideally | |||
| 4993 | // shouldn't happen, but there are constructs that the language rule doesn't | |||
| 4994 | // disallow for which we can't reasonably avoid computing linkage early. | |||
| 4995 | const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TagFromDeclSpec); | |||
| 4996 | NonCLikeKind NonCLike = RD ? getNonCLikeKindForAnonymousStruct(RD) | |||
| 4997 | : NonCLikeKind(); | |||
| 4998 | bool ChangesLinkage = TagFromDeclSpec->hasLinkageBeenComputed(); | |||
| 4999 | if (NonCLike || ChangesLinkage) { | |||
| 5000 | if (NonCLike.Kind == NonCLikeKind::Invalid) | |||
| 5001 | return; | |||
| 5002 | ||||
| 5003 | unsigned DiagID = diag::ext_non_c_like_anon_struct_in_typedef; | |||
| 5004 | if (ChangesLinkage) { | |||
| 5005 | // If the linkage changes, we can't accept this as an extension. | |||
| 5006 | if (NonCLike.Kind == NonCLikeKind::None) | |||
| 5007 | DiagID = diag::err_typedef_changes_linkage; | |||
| 5008 | else | |||
| 5009 | DiagID = diag::err_non_c_like_anon_struct_in_typedef; | |||
| 5010 | } | |||
| 5011 | ||||
| 5012 | SourceLocation FixitLoc = | |||
| 5013 | getLocForEndOfToken(TagFromDeclSpec->getInnerLocStart()); | |||
| 5014 | llvm::SmallString<40> TextToInsert; | |||
| 5015 | TextToInsert += ' '; | |||
| 5016 | TextToInsert += NewTD->getIdentifier()->getName(); | |||
| 5017 | ||||
| 5018 | Diag(FixitLoc, DiagID) | |||
| 5019 | << isa<TypeAliasDecl>(NewTD) | |||
| 5020 | << FixItHint::CreateInsertion(FixitLoc, TextToInsert); | |||
| 5021 | if (NonCLike.Kind != NonCLikeKind::None) { | |||
| 5022 | Diag(NonCLike.Range.getBegin(), diag::note_non_c_like_anon_struct) | |||
| 5023 | << NonCLike.Kind - 1 << NonCLike.Range; | |||
| 5024 | } | |||
| 5025 | Diag(NewTD->getLocation(), diag::note_typedef_for_linkage_here) | |||
| 5026 | << NewTD << isa<TypeAliasDecl>(NewTD); | |||
| 5027 | ||||
| 5028 | if (ChangesLinkage) | |||
| 5029 | return; | |||
| 5030 | } | |||
| 5031 | ||||
| 5032 | // Otherwise, set this as the anon-decl typedef for the tag. | |||
| 5033 | TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD); | |||
| 5034 | } | |||
| 5035 | ||||
| 5036 | static unsigned GetDiagnosticTypeSpecifierID(const DeclSpec &DS) { | |||
| 5037 | DeclSpec::TST T = DS.getTypeSpecType(); | |||
| 5038 | switch (T) { | |||
| 5039 | case DeclSpec::TST_class: | |||
| 5040 | return 0; | |||
| 5041 | case DeclSpec::TST_struct: | |||
| 5042 | return 1; | |||
| 5043 | case DeclSpec::TST_interface: | |||
| 5044 | return 2; | |||
| 5045 | case DeclSpec::TST_union: | |||
| 5046 | return 3; | |||
| 5047 | case DeclSpec::TST_enum: | |||
| 5048 | if (const auto *ED = dyn_cast<EnumDecl>(DS.getRepAsDecl())) { | |||
| 5049 | if (ED->isScopedUsingClassTag()) | |||
| 5050 | return 5; | |||
| 5051 | if (ED->isScoped()) | |||
| 5052 | return 6; | |||
| 5053 | } | |||
| 5054 | return 4; | |||
| 5055 | default: | |||
| 5056 | llvm_unreachable("unexpected type specifier")::llvm::llvm_unreachable_internal("unexpected type specifier" , "clang/lib/Sema/SemaDecl.cpp", 5056); | |||
| 5057 | } | |||
| 5058 | } | |||
| 5059 | /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with | |||
| 5060 | /// no declarator (e.g. "struct foo;") is parsed. It also accepts template | |||
| 5061 | /// parameters to cope with template friend declarations. | |||
| 5062 | Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, | |||
| 5063 | DeclSpec &DS, | |||
| 5064 | const ParsedAttributesView &DeclAttrs, | |||
| 5065 | MultiTemplateParamsArg TemplateParams, | |||
| 5066 | bool IsExplicitInstantiation, | |||
| 5067 | RecordDecl *&AnonRecord) { | |||
| 5068 | Decl *TagD = nullptr; | |||
| 5069 | TagDecl *Tag = nullptr; | |||
| 5070 | if (DS.getTypeSpecType() == DeclSpec::TST_class || | |||
| 5071 | DS.getTypeSpecType() == DeclSpec::TST_struct || | |||
| 5072 | DS.getTypeSpecType() == DeclSpec::TST_interface || | |||
| 5073 | DS.getTypeSpecType() == DeclSpec::TST_union || | |||
| 5074 | DS.getTypeSpecType() == DeclSpec::TST_enum) { | |||
| 5075 | TagD = DS.getRepAsDecl(); | |||
| 5076 | ||||
| 5077 | if (!TagD) // We probably had an error | |||
| 5078 | return nullptr; | |||
| 5079 | ||||
| 5080 | // Note that the above type specs guarantee that the | |||
| 5081 | // type rep is a Decl, whereas in many of the others | |||
| 5082 | // it's a Type. | |||
| 5083 | if (isa<TagDecl>(TagD)) | |||
| 5084 | Tag = cast<TagDecl>(TagD); | |||
| 5085 | else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD)) | |||
| 5086 | Tag = CTD->getTemplatedDecl(); | |||
| 5087 | } | |||
| 5088 | ||||
| 5089 | if (Tag) { | |||
| 5090 | handleTagNumbering(Tag, S); | |||
| 5091 | Tag->setFreeStanding(); | |||
| 5092 | if (Tag->isInvalidDecl()) | |||
| 5093 | return Tag; | |||
| 5094 | } | |||
| 5095 | ||||
| 5096 | if (unsigned TypeQuals = DS.getTypeQualifiers()) { | |||
| 5097 | // Enforce C99 6.7.3p2: "Types other than pointer types derived from object | |||
| 5098 | // or incomplete types shall not be restrict-qualified." | |||
| 5099 | if (TypeQuals & DeclSpec::TQ_restrict) | |||
| 5100 | Diag(DS.getRestrictSpecLoc(), | |||
| 5101 | diag::err_typecheck_invalid_restrict_not_pointer_noarg) | |||
| 5102 | << DS.getSourceRange(); | |||
| 5103 | } | |||
| 5104 | ||||
| 5105 | if (DS.isInlineSpecified()) | |||
| 5106 | Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) | |||
| 5107 | << getLangOpts().CPlusPlus17; | |||
| 5108 | ||||
| 5109 | if (DS.hasConstexprSpecifier()) { | |||
| 5110 | // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations | |||
| 5111 | // and definitions of functions and variables. | |||
| 5112 | // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to | |||
| 5113 | // the declaration of a function or function template | |||
| 5114 | if (Tag) | |||
| 5115 | Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag) | |||
| 5116 | << GetDiagnosticTypeSpecifierID(DS) | |||
| 5117 | << static_cast<int>(DS.getConstexprSpecifier()); | |||
| 5118 | else | |||
| 5119 | Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind) | |||
| 5120 | << static_cast<int>(DS.getConstexprSpecifier()); | |||
| 5121 | // Don't emit warnings after this error. | |||
| 5122 | return TagD; | |||
| 5123 | } | |||
| 5124 | ||||
| 5125 | DiagnoseFunctionSpecifiers(DS); | |||
| 5126 | ||||
| 5127 | if (DS.isFriendSpecified()) { | |||
| 5128 | // If we're dealing with a decl but not a TagDecl, assume that | |||
| 5129 | // whatever routines created it handled the friendship aspect. | |||
| 5130 | if (TagD && !Tag) | |||
| 5131 | return nullptr; | |||
| 5132 | return ActOnFriendTypeDecl(S, DS, TemplateParams); | |||
| 5133 | } | |||
| 5134 | ||||
| 5135 | const CXXScopeSpec &SS = DS.getTypeSpecScope(); | |||
| 5136 | bool IsExplicitSpecialization = | |||
| 5137 | !TemplateParams.empty() && TemplateParams.back()->size() == 0; | |||
| 5138 | if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() && | |||
| 5139 | !IsExplicitInstantiation && !IsExplicitSpecialization && | |||
| 5140 | !isa<ClassTemplatePartialSpecializationDecl>(Tag)) { | |||
| 5141 | // Per C++ [dcl.type.elab]p1, a class declaration cannot have a | |||
| 5142 | // nested-name-specifier unless it is an explicit instantiation | |||
| 5143 | // or an explicit specialization. | |||
| 5144 | // | |||
| 5145 | // FIXME: We allow class template partial specializations here too, per the | |||
| 5146 | // obvious intent of DR1819. | |||
| 5147 | // | |||
| 5148 | // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either. | |||
| 5149 | Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier) | |||
| 5150 | << GetDiagnosticTypeSpecifierID(DS) << SS.getRange(); | |||
| 5151 | return nullptr; | |||
| 5152 | } | |||
| 5153 | ||||
| 5154 | // Track whether this decl-specifier declares anything. | |||
| 5155 | bool DeclaresAnything = true; | |||
| 5156 | ||||
| 5157 | // Handle anonymous struct definitions. | |||
| 5158 | if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) { | |||
| 5159 | if (!Record->getDeclName() && Record->isCompleteDefinition() && | |||
| 5160 | DS.getStorageClassSpec() != DeclSpec::SCS_typedef) { | |||
| 5161 | if (getLangOpts().CPlusPlus || | |||
| 5162 | Record->getDeclContext()->isRecord()) { | |||
| 5163 | // If CurContext is a DeclContext that can contain statements, | |||
| 5164 | // RecursiveASTVisitor won't visit the decls that | |||
| 5165 | // BuildAnonymousStructOrUnion() will put into CurContext. | |||
| 5166 | // Also store them here so that they can be part of the | |||
| 5167 | // DeclStmt that gets created in this case. | |||
| 5168 | // FIXME: Also return the IndirectFieldDecls created by | |||
| 5169 | // BuildAnonymousStructOr union, for the same reason? | |||
| 5170 | if (CurContext->isFunctionOrMethod()) | |||
| 5171 | AnonRecord = Record; | |||
| 5172 | return BuildAnonymousStructOrUnion(S, DS, AS, Record, | |||
| 5173 | Context.getPrintingPolicy()); | |||
| 5174 | } | |||
| 5175 | ||||
| 5176 | DeclaresAnything = false; | |||
| 5177 | } | |||
| 5178 | } | |||
| 5179 | ||||
| 5180 | // C11 6.7.2.1p2: | |||
| 5181 | // A struct-declaration that does not declare an anonymous structure or | |||
| 5182 | // anonymous union shall contain a struct-declarator-list. | |||
| 5183 | // | |||
| 5184 | // This rule also existed in C89 and C99; the grammar for struct-declaration | |||
| 5185 | // did not permit a struct-declaration without a struct-declarator-list. | |||
| 5186 | if (!getLangOpts().CPlusPlus && CurContext->isRecord() && | |||
| 5187 | DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) { | |||
| 5188 | // Check for Microsoft C extension: anonymous struct/union member. | |||
| 5189 | // Handle 2 kinds of anonymous struct/union: | |||
| 5190 | // struct STRUCT; | |||
| 5191 | // union UNION; | |||
| 5192 | // and | |||
| 5193 | // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct. | |||
| 5194 | // UNION_TYPE; <- where UNION_TYPE is a typedef union. | |||
| 5195 | if ((Tag && Tag->getDeclName()) || | |||
| 5196 | DS.getTypeSpecType() == DeclSpec::TST_typename) { | |||
| 5197 | RecordDecl *Record = nullptr; | |||
| 5198 | if (Tag) | |||
| 5199 | Record = dyn_cast<RecordDecl>(Tag); | |||
| 5200 | else if (const RecordType *RT = | |||
| 5201 | DS.getRepAsType().get()->getAsStructureType()) | |||
| 5202 | Record = RT->getDecl(); | |||
| 5203 | else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType()) | |||
| 5204 | Record = UT->getDecl(); | |||
| 5205 | ||||
| 5206 | if (Record && getLangOpts().MicrosoftExt) { | |||
| 5207 | Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record) | |||
| 5208 | << Record->isUnion() << DS.getSourceRange(); | |||
| 5209 | return BuildMicrosoftCAnonymousStruct(S, DS, Record); | |||
| 5210 | } | |||
| 5211 | ||||
| 5212 | DeclaresAnything = false; | |||
| 5213 | } | |||
| 5214 | } | |||
| 5215 | ||||
| 5216 | // Skip all the checks below if we have a type error. | |||
| 5217 | if (DS.getTypeSpecType() == DeclSpec::TST_error || | |||
| 5218 | (TagD && TagD->isInvalidDecl())) | |||
| 5219 | return TagD; | |||
| 5220 | ||||
| 5221 | if (getLangOpts().CPlusPlus && | |||
| 5222 | DS.getStorageClassSpec() != DeclSpec::SCS_typedef) | |||
| 5223 | if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag)) | |||
| 5224 | if (Enum->enumerator_begin() == Enum->enumerator_end() && | |||
| 5225 | !Enum->getIdentifier() && !Enum->isInvalidDecl()) | |||
| 5226 | DeclaresAnything = false; | |||
| 5227 | ||||
| 5228 | if (!DS.isMissingDeclaratorOk()) { | |||
| 5229 | // Customize diagnostic for a typedef missing a name. | |||
| 5230 | if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) | |||
| 5231 | Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name) | |||
| 5232 | << DS.getSourceRange(); | |||
| 5233 | else | |||
| 5234 | DeclaresAnything = false; | |||
| 5235 | } | |||
| 5236 | ||||
| 5237 | if (DS.isModulePrivateSpecified() && | |||
| 5238 | Tag && Tag->getDeclContext()->isFunctionOrMethod()) | |||
| 5239 | Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class) | |||
| 5240 | << Tag->getTagKind() | |||
| 5241 | << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc()); | |||
| 5242 | ||||
| 5243 | ActOnDocumentableDecl(TagD); | |||
| 5244 | ||||
| 5245 | // C 6.7/2: | |||
| 5246 | // A declaration [...] shall declare at least a declarator [...], a tag, | |||
| 5247 | // or the members of an enumeration. | |||
| 5248 | // C++ [dcl.dcl]p3: | |||
| 5249 | // [If there are no declarators], and except for the declaration of an | |||
| 5250 | // unnamed bit-field, the decl-specifier-seq shall introduce one or more | |||
| 5251 | // names into the program, or shall redeclare a name introduced by a | |||
| 5252 | // previous declaration. | |||
| 5253 | if (!DeclaresAnything) { | |||
| 5254 | // In C, we allow this as a (popular) extension / bug. Don't bother | |||
| 5255 | // producing further diagnostics for redundant qualifiers after this. | |||
| 5256 | Diag(DS.getBeginLoc(), (IsExplicitInstantiation || !TemplateParams.empty()) | |||
| 5257 | ? diag::err_no_declarators | |||
| 5258 | : diag::ext_no_declarators) | |||
| 5259 | << DS.getSourceRange(); | |||
| 5260 | return TagD; | |||
| 5261 | } | |||
| 5262 | ||||
| 5263 | // C++ [dcl.stc]p1: | |||
| 5264 | // If a storage-class-specifier appears in a decl-specifier-seq, [...] the | |||
| 5265 | // init-declarator-list of the declaration shall not be empty. | |||
| 5266 | // C++ [dcl.fct.spec]p1: | |||
| 5267 | // If a cv-qualifier appears in a decl-specifier-seq, the | |||
| 5268 | // init-declarator-list of the declaration shall not be empty. | |||
| 5269 | // | |||
| 5270 | // Spurious qualifiers here appear to be valid in C. | |||
| 5271 | unsigned DiagID = diag::warn_standalone_specifier; | |||
| 5272 | if (getLangOpts().CPlusPlus) | |||
| 5273 | DiagID = diag::ext_standalone_specifier; | |||
| 5274 | ||||
| 5275 | // Note that a linkage-specification sets a storage class, but | |||
| 5276 | // 'extern "C" struct foo;' is actually valid and not theoretically | |||
| 5277 | // useless. | |||
| 5278 | if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { | |||
| 5279 | if (SCS == DeclSpec::SCS_mutable) | |||
| 5280 | // Since mutable is not a viable storage class specifier in C, there is | |||
| 5281 | // no reason to treat it as an extension. Instead, diagnose as an error. | |||
| 5282 | Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember); | |||
| 5283 | else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef) | |||
| 5284 | Diag(DS.getStorageClassSpecLoc(), DiagID) | |||
| 5285 | << DeclSpec::getSpecifierName(SCS); | |||
| 5286 | } | |||
| 5287 | ||||
| 5288 | if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) | |||
| 5289 | Diag(DS.getThreadStorageClassSpecLoc(), DiagID) | |||
| 5290 | << DeclSpec::getSpecifierName(TSCS); | |||
| 5291 | if (DS.getTypeQualifiers()) { | |||
| 5292 | if (DS.getTypeQualifiers() & DeclSpec::TQ_const) | |||
| 5293 | Diag(DS.getConstSpecLoc(), DiagID) << "const"; | |||
| 5294 | if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) | |||
| 5295 | Diag(DS.getConstSpecLoc(), DiagID) << "volatile"; | |||
| 5296 | // Restrict is covered above. | |||
| 5297 | if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) | |||
| 5298 | Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic"; | |||
| 5299 | if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) | |||
| 5300 | Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned"; | |||
| 5301 | } | |||
| 5302 | ||||
| 5303 | // Warn about ignored type attributes, for example: | |||
| 5304 | // __attribute__((aligned)) struct A; | |||
| 5305 | // Attributes should be placed after tag to apply to type declaration. | |||
| 5306 | if (!DS.getAttributes().empty() || !DeclAttrs.empty()) { | |||
| 5307 | DeclSpec::TST TypeSpecType = DS.getTypeSpecType(); | |||
| 5308 | if (TypeSpecType == DeclSpec::TST_class || | |||
| 5309 | TypeSpecType == DeclSpec::TST_struct || | |||
| 5310 | TypeSpecType == DeclSpec::TST_interface || | |||
| 5311 | TypeSpecType == DeclSpec::TST_union || | |||
| 5312 | TypeSpecType == DeclSpec::TST_enum) { | |||
| 5313 | for (const ParsedAttr &AL : DS.getAttributes()) | |||
| 5314 | Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored) | |||
| 5315 | << AL << GetDiagnosticTypeSpecifierID(DS); | |||
| 5316 | for (const ParsedAttr &AL : DeclAttrs) | |||
| 5317 | Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored) | |||
| 5318 | << AL << GetDiagnosticTypeSpecifierID(DS); | |||
| 5319 | } | |||
| 5320 | } | |||
| 5321 | ||||
| 5322 | return TagD; | |||
| 5323 | } | |||
| 5324 | ||||
| 5325 | /// We are trying to inject an anonymous member into the given scope; | |||
| 5326 | /// check if there's an existing declaration that can't be overloaded. | |||
| 5327 | /// | |||
| 5328 | /// \return true if this is a forbidden redeclaration | |||
| 5329 | static bool CheckAnonMemberRedeclaration(Sema &SemaRef, | |||
| 5330 | Scope *S, | |||
| 5331 | DeclContext *Owner, | |||
| 5332 | DeclarationName Name, | |||
| 5333 | SourceLocation NameLoc, | |||
| 5334 | bool IsUnion) { | |||
| 5335 | LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName, | |||
| 5336 | Sema::ForVisibleRedeclaration); | |||
| 5337 | if (!SemaRef.LookupName(R, S)) return false; | |||
| 5338 | ||||
| 5339 | // Pick a representative declaration. | |||
| 5340 | NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl(); | |||
| 5341 | assert(PrevDecl && "Expected a non-null Decl")(static_cast <bool> (PrevDecl && "Expected a non-null Decl" ) ? void (0) : __assert_fail ("PrevDecl && \"Expected a non-null Decl\"" , "clang/lib/Sema/SemaDecl.cpp", 5341, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5342 | ||||
| 5343 | if (!SemaRef.isDeclInScope(PrevDecl, Owner, S)) | |||
| 5344 | return false; | |||
| 5345 | ||||
| 5346 | SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl) | |||
| 5347 | << IsUnion << Name; | |||
| 5348 | SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration); | |||
| 5349 | ||||
| 5350 | return true; | |||
| 5351 | } | |||
| 5352 | ||||
| 5353 | /// InjectAnonymousStructOrUnionMembers - Inject the members of the | |||
| 5354 | /// anonymous struct or union AnonRecord into the owning context Owner | |||
| 5355 | /// and scope S. This routine will be invoked just after we realize | |||
| 5356 | /// that an unnamed union or struct is actually an anonymous union or | |||
| 5357 | /// struct, e.g., | |||
| 5358 | /// | |||
| 5359 | /// @code | |||
| 5360 | /// union { | |||
| 5361 | /// int i; | |||
| 5362 | /// float f; | |||
| 5363 | /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and | |||
| 5364 | /// // f into the surrounding scope.x | |||
| 5365 | /// @endcode | |||
| 5366 | /// | |||
| 5367 | /// This routine is recursive, injecting the names of nested anonymous | |||
| 5368 | /// structs/unions into the owning context and scope as well. | |||
| 5369 | static bool | |||
| 5370 | InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner, | |||
| 5371 | RecordDecl *AnonRecord, AccessSpecifier AS, | |||
| 5372 | SmallVectorImpl<NamedDecl *> &Chaining) { | |||
| 5373 | bool Invalid = false; | |||
| 5374 | ||||
| 5375 | // Look every FieldDecl and IndirectFieldDecl with a name. | |||
| 5376 | for (auto *D : AnonRecord->decls()) { | |||
| 5377 | if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) && | |||
| 5378 | cast<NamedDecl>(D)->getDeclName()) { | |||
| 5379 | ValueDecl *VD = cast<ValueDecl>(D); | |||
| 5380 | if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(), | |||
| 5381 | VD->getLocation(), | |||
| 5382 | AnonRecord->isUnion())) { | |||
| 5383 | // C++ [class.union]p2: | |||
| 5384 | // The names of the members of an anonymous union shall be | |||
| 5385 | // distinct from the names of any other entity in the | |||
| 5386 | // scope in which the anonymous union is declared. | |||
| 5387 | Invalid = true; | |||
| 5388 | } else { | |||
| 5389 | // C++ [class.union]p2: | |||
| 5390 | // For the purpose of name lookup, after the anonymous union | |||
| 5391 | // definition, the members of the anonymous union are | |||
| 5392 | // considered to have been defined in the scope in which the | |||
| 5393 | // anonymous union is declared. | |||
| 5394 | unsigned OldChainingSize = Chaining.size(); | |||
| 5395 | if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD)) | |||
| 5396 | Chaining.append(IF->chain_begin(), IF->chain_end()); | |||
| 5397 | else | |||
| 5398 | Chaining.push_back(VD); | |||
| 5399 | ||||
| 5400 | assert(Chaining.size() >= 2)(static_cast <bool> (Chaining.size() >= 2) ? void (0 ) : __assert_fail ("Chaining.size() >= 2", "clang/lib/Sema/SemaDecl.cpp" , 5400, __extension__ __PRETTY_FUNCTION__)); | |||
| 5401 | NamedDecl **NamedChain = | |||
| 5402 | new (SemaRef.Context)NamedDecl*[Chaining.size()]; | |||
| 5403 | for (unsigned i = 0; i < Chaining.size(); i++) | |||
| 5404 | NamedChain[i] = Chaining[i]; | |||
| 5405 | ||||
| 5406 | IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create( | |||
| 5407 | SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(), | |||
| 5408 | VD->getType(), {NamedChain, Chaining.size()}); | |||
| 5409 | ||||
| 5410 | for (const auto *Attr : VD->attrs()) | |||
| 5411 | IndirectField->addAttr(Attr->clone(SemaRef.Context)); | |||
| 5412 | ||||
| 5413 | IndirectField->setAccess(AS); | |||
| 5414 | IndirectField->setImplicit(); | |||
| 5415 | SemaRef.PushOnScopeChains(IndirectField, S); | |||
| 5416 | ||||
| 5417 | // That includes picking up the appropriate access specifier. | |||
| 5418 | if (AS != AS_none) IndirectField->setAccess(AS); | |||
| 5419 | ||||
| 5420 | Chaining.resize(OldChainingSize); | |||
| 5421 | } | |||
| 5422 | } | |||
| 5423 | } | |||
| 5424 | ||||
| 5425 | return Invalid; | |||
| 5426 | } | |||
| 5427 | ||||
| 5428 | /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to | |||
| 5429 | /// a VarDecl::StorageClass. Any error reporting is up to the caller: | |||
| 5430 | /// illegal input values are mapped to SC_None. | |||
| 5431 | static StorageClass | |||
| 5432 | StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) { | |||
| 5433 | DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec(); | |||
| 5434 | assert(StorageClassSpec != DeclSpec::SCS_typedef &&(static_cast <bool> (StorageClassSpec != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class VarDecl." ) ? void (0) : __assert_fail ("StorageClassSpec != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class VarDecl.\"" , "clang/lib/Sema/SemaDecl.cpp", 5435, __extension__ __PRETTY_FUNCTION__ )) | |||
| 5435 | "Parser allowed 'typedef' as storage class VarDecl.")(static_cast <bool> (StorageClassSpec != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class VarDecl." ) ? void (0) : __assert_fail ("StorageClassSpec != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class VarDecl.\"" , "clang/lib/Sema/SemaDecl.cpp", 5435, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5436 | switch (StorageClassSpec) { | |||
| 5437 | case DeclSpec::SCS_unspecified: return SC_None; | |||
| 5438 | case DeclSpec::SCS_extern: | |||
| 5439 | if (DS.isExternInLinkageSpec()) | |||
| 5440 | return SC_None; | |||
| 5441 | return SC_Extern; | |||
| 5442 | case DeclSpec::SCS_static: return SC_Static; | |||
| 5443 | case DeclSpec::SCS_auto: return SC_Auto; | |||
| 5444 | case DeclSpec::SCS_register: return SC_Register; | |||
| 5445 | case DeclSpec::SCS_private_extern: return SC_PrivateExtern; | |||
| 5446 | // Illegal SCSs map to None: error reporting is up to the caller. | |||
| 5447 | case DeclSpec::SCS_mutable: // Fall through. | |||
| 5448 | case DeclSpec::SCS_typedef: return SC_None; | |||
| 5449 | } | |||
| 5450 | llvm_unreachable("unknown storage class specifier")::llvm::llvm_unreachable_internal("unknown storage class specifier" , "clang/lib/Sema/SemaDecl.cpp", 5450); | |||
| 5451 | } | |||
| 5452 | ||||
| 5453 | static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) { | |||
| 5454 | assert(Record->hasInClassInitializer())(static_cast <bool> (Record->hasInClassInitializer() ) ? void (0) : __assert_fail ("Record->hasInClassInitializer()" , "clang/lib/Sema/SemaDecl.cpp", 5454, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5455 | ||||
| 5456 | for (const auto *I : Record->decls()) { | |||
| 5457 | const auto *FD = dyn_cast<FieldDecl>(I); | |||
| 5458 | if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) | |||
| 5459 | FD = IFD->getAnonField(); | |||
| 5460 | if (FD && FD->hasInClassInitializer()) | |||
| 5461 | return FD->getLocation(); | |||
| 5462 | } | |||
| 5463 | ||||
| 5464 | llvm_unreachable("couldn't find in-class initializer")::llvm::llvm_unreachable_internal("couldn't find in-class initializer" , "clang/lib/Sema/SemaDecl.cpp", 5464); | |||
| 5465 | } | |||
| 5466 | ||||
| 5467 | static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, | |||
| 5468 | SourceLocation DefaultInitLoc) { | |||
| 5469 | if (!Parent->isUnion() || !Parent->hasInClassInitializer()) | |||
| 5470 | return; | |||
| 5471 | ||||
| 5472 | S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization); | |||
| 5473 | S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0; | |||
| 5474 | } | |||
| 5475 | ||||
| 5476 | static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, | |||
| 5477 | CXXRecordDecl *AnonUnion) { | |||
| 5478 | if (!Parent->isUnion() || !Parent->hasInClassInitializer()) | |||
| 5479 | return; | |||
| 5480 | ||||
| 5481 | checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion)); | |||
| 5482 | } | |||
| 5483 | ||||
| 5484 | /// BuildAnonymousStructOrUnion - Handle the declaration of an | |||
| 5485 | /// anonymous structure or union. Anonymous unions are a C++ feature | |||
| 5486 | /// (C++ [class.union]) and a C11 feature; anonymous structures | |||
| 5487 | /// are a C11 feature and GNU C++ extension. | |||
| 5488 | Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, | |||
| 5489 | AccessSpecifier AS, | |||
| 5490 | RecordDecl *Record, | |||
| 5491 | const PrintingPolicy &Policy) { | |||
| 5492 | DeclContext *Owner = Record->getDeclContext(); | |||
| 5493 | ||||
| 5494 | // Diagnose whether this anonymous struct/union is an extension. | |||
| 5495 | if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11) | |||
| 5496 | Diag(Record->getLocation(), diag::ext_anonymous_union); | |||
| 5497 | else if (!Record->isUnion() && getLangOpts().CPlusPlus) | |||
| 5498 | Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct); | |||
| 5499 | else if (!Record->isUnion() && !getLangOpts().C11) | |||
| 5500 | Diag(Record->getLocation(), diag::ext_c11_anonymous_struct); | |||
| 5501 | ||||
| 5502 | // C and C++ require different kinds of checks for anonymous | |||
| 5503 | // structs/unions. | |||
| 5504 | bool Invalid = false; | |||
| 5505 | if (getLangOpts().CPlusPlus) { | |||
| 5506 | const char *PrevSpec = nullptr; | |||
| 5507 | if (Record->isUnion()) { | |||
| 5508 | // C++ [class.union]p6: | |||
| 5509 | // C++17 [class.union.anon]p2: | |||
| 5510 | // Anonymous unions declared in a named namespace or in the | |||
| 5511 | // global namespace shall be declared static. | |||
| 5512 | unsigned DiagID; | |||
| 5513 | DeclContext *OwnerScope = Owner->getRedeclContext(); | |||
| 5514 | if (DS.getStorageClassSpec() != DeclSpec::SCS_static && | |||
| 5515 | (OwnerScope->isTranslationUnit() || | |||
| 5516 | (OwnerScope->isNamespace() && | |||
| 5517 | !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) { | |||
| 5518 | Diag(Record->getLocation(), diag::err_anonymous_union_not_static) | |||
| 5519 | << FixItHint::CreateInsertion(Record->getLocation(), "static "); | |||
| 5520 | ||||
| 5521 | // Recover by adding 'static'. | |||
| 5522 | DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(), | |||
| 5523 | PrevSpec, DiagID, Policy); | |||
| 5524 | } | |||
| 5525 | // C++ [class.union]p6: | |||
| 5526 | // A storage class is not allowed in a declaration of an | |||
| 5527 | // anonymous union in a class scope. | |||
| 5528 | else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && | |||
| 5529 | isa<RecordDecl>(Owner)) { | |||
| 5530 | Diag(DS.getStorageClassSpecLoc(), | |||
| 5531 | diag::err_anonymous_union_with_storage_spec) | |||
| 5532 | << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); | |||
| 5533 | ||||
| 5534 | // Recover by removing the storage specifier. | |||
| 5535 | DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified, | |||
| 5536 | SourceLocation(), | |||
| 5537 | PrevSpec, DiagID, Context.getPrintingPolicy()); | |||
| 5538 | } | |||
| 5539 | } | |||
| 5540 | ||||
| 5541 | // Ignore const/volatile/restrict qualifiers. | |||
| 5542 | if (DS.getTypeQualifiers()) { | |||
| 5543 | if (DS.getTypeQualifiers() & DeclSpec::TQ_const) | |||
| 5544 | Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified) | |||
| 5545 | << Record->isUnion() << "const" | |||
| 5546 | << FixItHint::CreateRemoval(DS.getConstSpecLoc()); | |||
| 5547 | if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) | |||
| 5548 | Diag(DS.getVolatileSpecLoc(), | |||
| 5549 | diag::ext_anonymous_struct_union_qualified) | |||
| 5550 | << Record->isUnion() << "volatile" | |||
| 5551 | << FixItHint::CreateRemoval(DS.getVolatileSpecLoc()); | |||
| 5552 | if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) | |||
| 5553 | Diag(DS.getRestrictSpecLoc(), | |||
| 5554 | diag::ext_anonymous_struct_union_qualified) | |||
| 5555 | << Record->isUnion() << "restrict" | |||
| 5556 | << FixItHint::CreateRemoval(DS.getRestrictSpecLoc()); | |||
| 5557 | if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) | |||
| 5558 | Diag(DS.getAtomicSpecLoc(), | |||
| 5559 | diag::ext_anonymous_struct_union_qualified) | |||
| 5560 | << Record->isUnion() << "_Atomic" | |||
| 5561 | << FixItHint::CreateRemoval(DS.getAtomicSpecLoc()); | |||
| 5562 | if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) | |||
| 5563 | Diag(DS.getUnalignedSpecLoc(), | |||
| 5564 | diag::ext_anonymous_struct_union_qualified) | |||
| 5565 | << Record->isUnion() << "__unaligned" | |||
| 5566 | << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc()); | |||
| 5567 | ||||
| 5568 | DS.ClearTypeQualifiers(); | |||
| 5569 | } | |||
| 5570 | ||||
| 5571 | // C++ [class.union]p2: | |||
| 5572 | // The member-specification of an anonymous union shall only | |||
| 5573 | // define non-static data members. [Note: nested types and | |||
| 5574 | // functions cannot be declared within an anonymous union. ] | |||
| 5575 | for (auto *Mem : Record->decls()) { | |||
| 5576 | // Ignore invalid declarations; we already diagnosed them. | |||
| 5577 | if (Mem->isInvalidDecl()) | |||
| 5578 | continue; | |||
| 5579 | ||||
| 5580 | if (auto *FD = dyn_cast<FieldDecl>(Mem)) { | |||
| 5581 | // C++ [class.union]p3: | |||
| 5582 | // An anonymous union shall not have private or protected | |||
| 5583 | // members (clause 11). | |||
| 5584 | assert(FD->getAccess() != AS_none)(static_cast <bool> (FD->getAccess() != AS_none) ? void (0) : __assert_fail ("FD->getAccess() != AS_none", "clang/lib/Sema/SemaDecl.cpp" , 5584, __extension__ __PRETTY_FUNCTION__)); | |||
| 5585 | if (FD->getAccess() != AS_public) { | |||
| 5586 | Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member) | |||
| 5587 | << Record->isUnion() << (FD->getAccess() == AS_protected); | |||
| 5588 | Invalid = true; | |||
| 5589 | } | |||
| 5590 | ||||
| 5591 | // C++ [class.union]p1 | |||
| 5592 | // An object of a class with a non-trivial constructor, a non-trivial | |||
| 5593 | // copy constructor, a non-trivial destructor, or a non-trivial copy | |||
| 5594 | // assignment operator cannot be a member of a union, nor can an | |||
| 5595 | // array of such objects. | |||
| 5596 | if (CheckNontrivialField(FD)) | |||
| 5597 | Invalid = true; | |||
| 5598 | } else if (Mem->isImplicit()) { | |||
| 5599 | // Any implicit members are fine. | |||
| 5600 | } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) { | |||
| 5601 | // This is a type that showed up in an | |||
| 5602 | // elaborated-type-specifier inside the anonymous struct or | |||
| 5603 | // union, but which actually declares a type outside of the | |||
| 5604 | // anonymous struct or union. It's okay. | |||
| 5605 | } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) { | |||
| 5606 | if (!MemRecord->isAnonymousStructOrUnion() && | |||
| 5607 | MemRecord->getDeclName()) { | |||
| 5608 | // Visual C++ allows type definition in anonymous struct or union. | |||
| 5609 | if (getLangOpts().MicrosoftExt) | |||
| 5610 | Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type) | |||
| 5611 | << Record->isUnion(); | |||
| 5612 | else { | |||
| 5613 | // This is a nested type declaration. | |||
| 5614 | Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type) | |||
| 5615 | << Record->isUnion(); | |||
| 5616 | Invalid = true; | |||
| 5617 | } | |||
| 5618 | } else { | |||
| 5619 | // This is an anonymous type definition within another anonymous type. | |||
| 5620 | // This is a popular extension, provided by Plan9, MSVC and GCC, but | |||
| 5621 | // not part of standard C++. | |||
| 5622 | Diag(MemRecord->getLocation(), | |||
| 5623 | diag::ext_anonymous_record_with_anonymous_type) | |||
| 5624 | << Record->isUnion(); | |||
| 5625 | } | |||
| 5626 | } else if (isa<AccessSpecDecl>(Mem)) { | |||
| 5627 | // Any access specifier is fine. | |||
| 5628 | } else if (isa<StaticAssertDecl>(Mem)) { | |||
| 5629 | // In C++1z, static_assert declarations are also fine. | |||
| 5630 | } else { | |||
| 5631 | // We have something that isn't a non-static data | |||
| 5632 | // member. Complain about it. | |||
| 5633 | unsigned DK = diag::err_anonymous_record_bad_member; | |||
| 5634 | if (isa<TypeDecl>(Mem)) | |||
| 5635 | DK = diag::err_anonymous_record_with_type; | |||
| 5636 | else if (isa<FunctionDecl>(Mem)) | |||
| 5637 | DK = diag::err_anonymous_record_with_function; | |||
| 5638 | else if (isa<VarDecl>(Mem)) | |||
| 5639 | DK = diag::err_anonymous_record_with_static; | |||
| 5640 | ||||
| 5641 | // Visual C++ allows type definition in anonymous struct or union. | |||
| 5642 | if (getLangOpts().MicrosoftExt && | |||
| 5643 | DK == diag::err_anonymous_record_with_type) | |||
| 5644 | Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type) | |||
| 5645 | << Record->isUnion(); | |||
| 5646 | else { | |||
| 5647 | Diag(Mem->getLocation(), DK) << Record->isUnion(); | |||
| 5648 | Invalid = true; | |||
| 5649 | } | |||
| 5650 | } | |||
| 5651 | } | |||
| 5652 | ||||
| 5653 | // C++11 [class.union]p8 (DR1460): | |||
| 5654 | // At most one variant member of a union may have a | |||
| 5655 | // brace-or-equal-initializer. | |||
| 5656 | if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() && | |||
| 5657 | Owner->isRecord()) | |||
| 5658 | checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner), | |||
| 5659 | cast<CXXRecordDecl>(Record)); | |||
| 5660 | } | |||
| 5661 | ||||
| 5662 | if (!Record->isUnion() && !Owner->isRecord()) { | |||
| 5663 | Diag(Record->getLocation(), diag::err_anonymous_struct_not_member) | |||
| 5664 | << getLangOpts().CPlusPlus; | |||
| 5665 | Invalid = true; | |||
| 5666 | } | |||
| 5667 | ||||
| 5668 | // C++ [dcl.dcl]p3: | |||
| 5669 | // [If there are no declarators], and except for the declaration of an | |||
| 5670 | // unnamed bit-field, the decl-specifier-seq shall introduce one or more | |||
| 5671 | // names into the program | |||
| 5672 | // C++ [class.mem]p2: | |||
| 5673 | // each such member-declaration shall either declare at least one member | |||
| 5674 | // name of the class or declare at least one unnamed bit-field | |||
| 5675 | // | |||
| 5676 | // For C this is an error even for a named struct, and is diagnosed elsewhere. | |||
| 5677 | if (getLangOpts().CPlusPlus && Record->field_empty()) | |||
| 5678 | Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange(); | |||
| 5679 | ||||
| 5680 | // Mock up a declarator. | |||
| 5681 | Declarator Dc(DS, ParsedAttributesView::none(), DeclaratorContext::Member); | |||
| 5682 | TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); | |||
| 5683 | assert(TInfo && "couldn't build declarator info for anonymous struct/union")(static_cast <bool> (TInfo && "couldn't build declarator info for anonymous struct/union" ) ? void (0) : __assert_fail ("TInfo && \"couldn't build declarator info for anonymous struct/union\"" , "clang/lib/Sema/SemaDecl.cpp", 5683, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5684 | ||||
| 5685 | // Create a declaration for this anonymous struct/union. | |||
| 5686 | NamedDecl *Anon = nullptr; | |||
| 5687 | if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) { | |||
| 5688 | Anon = FieldDecl::Create( | |||
| 5689 | Context, OwningClass, DS.getBeginLoc(), Record->getLocation(), | |||
| 5690 | /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo, | |||
| 5691 | /*BitWidth=*/nullptr, /*Mutable=*/false, | |||
| 5692 | /*InitStyle=*/ICIS_NoInit); | |||
| 5693 | Anon->setAccess(AS); | |||
| 5694 | ProcessDeclAttributes(S, Anon, Dc); | |||
| 5695 | ||||
| 5696 | if (getLangOpts().CPlusPlus) | |||
| 5697 | FieldCollector->Add(cast<FieldDecl>(Anon)); | |||
| 5698 | } else { | |||
| 5699 | DeclSpec::SCS SCSpec = DS.getStorageClassSpec(); | |||
| 5700 | StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS); | |||
| 5701 | if (SCSpec == DeclSpec::SCS_mutable) { | |||
| 5702 | // mutable can only appear on non-static class members, so it's always | |||
| 5703 | // an error here | |||
| 5704 | Diag(Record->getLocation(), diag::err_mutable_nonmember); | |||
| 5705 | Invalid = true; | |||
| 5706 | SC = SC_None; | |||
| 5707 | } | |||
| 5708 | ||||
| 5709 | assert(DS.getAttributes().empty() && "No attribute expected")(static_cast <bool> (DS.getAttributes().empty() && "No attribute expected") ? void (0) : __assert_fail ("DS.getAttributes().empty() && \"No attribute expected\"" , "clang/lib/Sema/SemaDecl.cpp", 5709, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5710 | Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(), | |||
| 5711 | Record->getLocation(), /*IdentifierInfo=*/nullptr, | |||
| 5712 | Context.getTypeDeclType(Record), TInfo, SC); | |||
| 5713 | ||||
| 5714 | // Default-initialize the implicit variable. This initialization will be | |||
| 5715 | // trivial in almost all cases, except if a union member has an in-class | |||
| 5716 | // initializer: | |||
| 5717 | // union { int n = 0; }; | |||
| 5718 | ActOnUninitializedDecl(Anon); | |||
| 5719 | } | |||
| 5720 | Anon->setImplicit(); | |||
| 5721 | ||||
| 5722 | // Mark this as an anonymous struct/union type. | |||
| 5723 | Record->setAnonymousStructOrUnion(true); | |||
| 5724 | ||||
| 5725 | // Add the anonymous struct/union object to the current | |||
| 5726 | // context. We'll be referencing this object when we refer to one of | |||
| 5727 | // its members. | |||
| 5728 | Owner->addDecl(Anon); | |||
| 5729 | ||||
| 5730 | // Inject the members of the anonymous struct/union into the owning | |||
| 5731 | // context and into the identifier resolver chain for name lookup | |||
| 5732 | // purposes. | |||
| 5733 | SmallVector<NamedDecl*, 2> Chain; | |||
| 5734 | Chain.push_back(Anon); | |||
| 5735 | ||||
| 5736 | if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain)) | |||
| 5737 | Invalid = true; | |||
| 5738 | ||||
| 5739 | if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) { | |||
| 5740 | if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { | |||
| 5741 | MangleNumberingContext *MCtx; | |||
| 5742 | Decl *ManglingContextDecl; | |||
| 5743 | std::tie(MCtx, ManglingContextDecl) = | |||
| 5744 | getCurrentMangleNumberContext(NewVD->getDeclContext()); | |||
| 5745 | if (MCtx) { | |||
| 5746 | Context.setManglingNumber( | |||
| 5747 | NewVD, MCtx->getManglingNumber( | |||
| 5748 | NewVD, getMSManglingNumber(getLangOpts(), S))); | |||
| 5749 | Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD)); | |||
| 5750 | } | |||
| 5751 | } | |||
| 5752 | } | |||
| 5753 | ||||
| 5754 | if (Invalid) | |||
| 5755 | Anon->setInvalidDecl(); | |||
| 5756 | ||||
| 5757 | return Anon; | |||
| 5758 | } | |||
| 5759 | ||||
| 5760 | /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an | |||
| 5761 | /// Microsoft C anonymous structure. | |||
| 5762 | /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx | |||
| 5763 | /// Example: | |||
| 5764 | /// | |||
| 5765 | /// struct A { int a; }; | |||
| 5766 | /// struct B { struct A; int b; }; | |||
| 5767 | /// | |||
| 5768 | /// void foo() { | |||
| 5769 | /// B var; | |||
| 5770 | /// var.a = 3; | |||
| 5771 | /// } | |||
| 5772 | /// | |||
| 5773 | Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS, | |||
| 5774 | RecordDecl *Record) { | |||
| 5775 | assert(Record && "expected a record!")(static_cast <bool> (Record && "expected a record!" ) ? void (0) : __assert_fail ("Record && \"expected a record!\"" , "clang/lib/Sema/SemaDecl.cpp", 5775, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5776 | ||||
| 5777 | // Mock up a declarator. | |||
| 5778 | Declarator Dc(DS, ParsedAttributesView::none(), DeclaratorContext::TypeName); | |||
| 5779 | TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); | |||
| 5780 | assert(TInfo && "couldn't build declarator info for anonymous struct")(static_cast <bool> (TInfo && "couldn't build declarator info for anonymous struct" ) ? void (0) : __assert_fail ("TInfo && \"couldn't build declarator info for anonymous struct\"" , "clang/lib/Sema/SemaDecl.cpp", 5780, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5781 | ||||
| 5782 | auto *ParentDecl = cast<RecordDecl>(CurContext); | |||
| 5783 | QualType RecTy = Context.getTypeDeclType(Record); | |||
| 5784 | ||||
| 5785 | // Create a declaration for this anonymous struct. | |||
| 5786 | NamedDecl *Anon = | |||
| 5787 | FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(), | |||
| 5788 | /*IdentifierInfo=*/nullptr, RecTy, TInfo, | |||
| 5789 | /*BitWidth=*/nullptr, /*Mutable=*/false, | |||
| 5790 | /*InitStyle=*/ICIS_NoInit); | |||
| 5791 | Anon->setImplicit(); | |||
| 5792 | ||||
| 5793 | // Add the anonymous struct object to the current context. | |||
| 5794 | CurContext->addDecl(Anon); | |||
| 5795 | ||||
| 5796 | // Inject the members of the anonymous struct into the current | |||
| 5797 | // context and into the identifier resolver chain for name lookup | |||
| 5798 | // purposes. | |||
| 5799 | SmallVector<NamedDecl*, 2> Chain; | |||
| 5800 | Chain.push_back(Anon); | |||
| 5801 | ||||
| 5802 | RecordDecl *RecordDef = Record->getDefinition(); | |||
| 5803 | if (RequireCompleteSizedType(Anon->getLocation(), RecTy, | |||
| 5804 | diag::err_field_incomplete_or_sizeless) || | |||
| 5805 | InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef, | |||
| 5806 | AS_none, Chain)) { | |||
| 5807 | Anon->setInvalidDecl(); | |||
| 5808 | ParentDecl->setInvalidDecl(); | |||
| 5809 | } | |||
| 5810 | ||||
| 5811 | return Anon; | |||
| 5812 | } | |||
| 5813 | ||||
| 5814 | /// GetNameForDeclarator - Determine the full declaration name for the | |||
| 5815 | /// given Declarator. | |||
| 5816 | DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) { | |||
| 5817 | return GetNameFromUnqualifiedId(D.getName()); | |||
| 5818 | } | |||
| 5819 | ||||
| 5820 | /// Retrieves the declaration name from a parsed unqualified-id. | |||
| 5821 | DeclarationNameInfo | |||
| 5822 | Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) { | |||
| 5823 | DeclarationNameInfo NameInfo; | |||
| 5824 | NameInfo.setLoc(Name.StartLocation); | |||
| 5825 | ||||
| 5826 | switch (Name.getKind()) { | |||
| 5827 | ||||
| 5828 | case UnqualifiedIdKind::IK_ImplicitSelfParam: | |||
| 5829 | case UnqualifiedIdKind::IK_Identifier: | |||
| 5830 | NameInfo.setName(Name.Identifier); | |||
| 5831 | return NameInfo; | |||
| 5832 | ||||
| 5833 | case UnqualifiedIdKind::IK_DeductionGuideName: { | |||
| 5834 | // C++ [temp.deduct.guide]p3: | |||
| 5835 | // The simple-template-id shall name a class template specialization. | |||
| 5836 | // The template-name shall be the same identifier as the template-name | |||
| 5837 | // of the simple-template-id. | |||
| 5838 | // These together intend to imply that the template-name shall name a | |||
| 5839 | // class template. | |||
| 5840 | // FIXME: template<typename T> struct X {}; | |||
| 5841 | // template<typename T> using Y = X<T>; | |||
| 5842 | // Y(int) -> Y<int>; | |||
| 5843 | // satisfies these rules but does not name a class template. | |||
| 5844 | TemplateName TN = Name.TemplateName.get().get(); | |||
| 5845 | auto *Template = TN.getAsTemplateDecl(); | |||
| 5846 | if (!Template || !isa<ClassTemplateDecl>(Template)) { | |||
| 5847 | Diag(Name.StartLocation, | |||
| 5848 | diag::err_deduction_guide_name_not_class_template) | |||
| 5849 | << (int)getTemplateNameKindForDiagnostics(TN) << TN; | |||
| 5850 | if (Template) | |||
| 5851 | Diag(Template->getLocation(), diag::note_template_decl_here); | |||
| 5852 | return DeclarationNameInfo(); | |||
| 5853 | } | |||
| 5854 | ||||
| 5855 | NameInfo.setName( | |||
| 5856 | Context.DeclarationNames.getCXXDeductionGuideName(Template)); | |||
| 5857 | return NameInfo; | |||
| 5858 | } | |||
| 5859 | ||||
| 5860 | case UnqualifiedIdKind::IK_OperatorFunctionId: | |||
| 5861 | NameInfo.setName(Context.DeclarationNames.getCXXOperatorName( | |||
| 5862 | Name.OperatorFunctionId.Operator)); | |||
| 5863 | NameInfo.setCXXOperatorNameRange(SourceRange( | |||
| 5864 | Name.OperatorFunctionId.SymbolLocations[0], Name.EndLocation)); | |||
| 5865 | return NameInfo; | |||
| 5866 | ||||
| 5867 | case UnqualifiedIdKind::IK_LiteralOperatorId: | |||
| 5868 | NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName( | |||
| 5869 | Name.Identifier)); | |||
| 5870 | NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation); | |||
| 5871 | return NameInfo; | |||
| 5872 | ||||
| 5873 | case UnqualifiedIdKind::IK_ConversionFunctionId: { | |||
| 5874 | TypeSourceInfo *TInfo; | |||
| 5875 | QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo); | |||
| 5876 | if (Ty.isNull()) | |||
| 5877 | return DeclarationNameInfo(); | |||
| 5878 | NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName( | |||
| 5879 | Context.getCanonicalType(Ty))); | |||
| 5880 | NameInfo.setNamedTypeInfo(TInfo); | |||
| 5881 | return NameInfo; | |||
| 5882 | } | |||
| 5883 | ||||
| 5884 | case UnqualifiedIdKind::IK_ConstructorName: { | |||
| 5885 | TypeSourceInfo *TInfo; | |||
| 5886 | QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo); | |||
| 5887 | if (Ty.isNull()) | |||
| 5888 | return DeclarationNameInfo(); | |||
| 5889 | NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( | |||
| 5890 | Context.getCanonicalType(Ty))); | |||
| 5891 | NameInfo.setNamedTypeInfo(TInfo); | |||
| 5892 | return NameInfo; | |||
| 5893 | } | |||
| 5894 | ||||
| 5895 | case UnqualifiedIdKind::IK_ConstructorTemplateId: { | |||
| 5896 | // In well-formed code, we can only have a constructor | |||
| 5897 | // template-id that refers to the current context, so go there | |||
| 5898 | // to find the actual type being constructed. | |||
| 5899 | CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext); | |||
| 5900 | if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name) | |||
| 5901 | return DeclarationNameInfo(); | |||
| 5902 | ||||
| 5903 | // Determine the type of the class being constructed. | |||
| 5904 | QualType CurClassType = Context.getTypeDeclType(CurClass); | |||
| 5905 | ||||
| 5906 | // FIXME: Check two things: that the template-id names the same type as | |||
| 5907 | // CurClassType, and that the template-id does not occur when the name | |||
| 5908 | // was qualified. | |||
| 5909 | ||||
| 5910 | NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( | |||
| 5911 | Context.getCanonicalType(CurClassType))); | |||
| 5912 | // FIXME: should we retrieve TypeSourceInfo? | |||
| 5913 | NameInfo.setNamedTypeInfo(nullptr); | |||
| 5914 | return NameInfo; | |||
| 5915 | } | |||
| 5916 | ||||
| 5917 | case UnqualifiedIdKind::IK_DestructorName: { | |||
| 5918 | TypeSourceInfo *TInfo; | |||
| 5919 | QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo); | |||
| 5920 | if (Ty.isNull()) | |||
| 5921 | return DeclarationNameInfo(); | |||
| 5922 | NameInfo.setName(Context.DeclarationNames.getCXXDestructorName( | |||
| 5923 | Context.getCanonicalType(Ty))); | |||
| 5924 | NameInfo.setNamedTypeInfo(TInfo); | |||
| 5925 | return NameInfo; | |||
| 5926 | } | |||
| 5927 | ||||
| 5928 | case UnqualifiedIdKind::IK_TemplateId: { | |||
| 5929 | TemplateName TName = Name.TemplateId->Template.get(); | |||
| 5930 | SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc; | |||
| 5931 | return Context.getNameForTemplate(TName, TNameLoc); | |||
| 5932 | } | |||
| 5933 | ||||
| 5934 | } // switch (Name.getKind()) | |||
| 5935 | ||||
| 5936 | llvm_unreachable("Unknown name kind")::llvm::llvm_unreachable_internal("Unknown name kind", "clang/lib/Sema/SemaDecl.cpp" , 5936); | |||
| 5937 | } | |||
| 5938 | ||||
| 5939 | static QualType getCoreType(QualType Ty) { | |||
| 5940 | do { | |||
| 5941 | if (Ty->isPointerType() || Ty->isReferenceType()) | |||
| 5942 | Ty = Ty->getPointeeType(); | |||
| 5943 | else if (Ty->isArrayType()) | |||
| 5944 | Ty = Ty->castAsArrayTypeUnsafe()->getElementType(); | |||
| 5945 | else | |||
| 5946 | return Ty.withoutLocalFastQualifiers(); | |||
| 5947 | } while (true); | |||
| 5948 | } | |||
| 5949 | ||||
| 5950 | /// hasSimilarParameters - Determine whether the C++ functions Declaration | |||
| 5951 | /// and Definition have "nearly" matching parameters. This heuristic is | |||
| 5952 | /// used to improve diagnostics in the case where an out-of-line function | |||
| 5953 | /// definition doesn't match any declaration within the class or namespace. | |||
| 5954 | /// Also sets Params to the list of indices to the parameters that differ | |||
| 5955 | /// between the declaration and the definition. If hasSimilarParameters | |||
| 5956 | /// returns true and Params is empty, then all of the parameters match. | |||
| 5957 | static bool hasSimilarParameters(ASTContext &Context, | |||
| 5958 | FunctionDecl *Declaration, | |||
| 5959 | FunctionDecl *Definition, | |||
| 5960 | SmallVectorImpl<unsigned> &Params) { | |||
| 5961 | Params.clear(); | |||
| 5962 | if (Declaration->param_size() != Definition->param_size()) | |||
| 5963 | return false; | |||
| 5964 | for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) { | |||
| 5965 | QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType(); | |||
| 5966 | QualType DefParamTy = Definition->getParamDecl(Idx)->getType(); | |||
| 5967 | ||||
| 5968 | // The parameter types are identical | |||
| 5969 | if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy)) | |||
| 5970 | continue; | |||
| 5971 | ||||
| 5972 | QualType DeclParamBaseTy = getCoreType(DeclParamTy); | |||
| 5973 | QualType DefParamBaseTy = getCoreType(DefParamTy); | |||
| 5974 | const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier(); | |||
| 5975 | const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier(); | |||
| 5976 | ||||
| 5977 | if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) || | |||
| 5978 | (DeclTyName && DeclTyName == DefTyName)) | |||
| 5979 | Params.push_back(Idx); | |||
| 5980 | else // The two parameters aren't even close | |||
| 5981 | return false; | |||
| 5982 | } | |||
| 5983 | ||||
| 5984 | return true; | |||
| 5985 | } | |||
| 5986 | ||||
| 5987 | /// RebuildDeclaratorInCurrentInstantiation - Checks whether the given | |||
| 5988 | /// declarator needs to be rebuilt in the current instantiation. | |||
| 5989 | /// Any bits of declarator which appear before the name are valid for | |||
| 5990 | /// consideration here. That's specifically the type in the decl spec | |||
| 5991 | /// and the base type in any member-pointer chunks. | |||
| 5992 | static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D, | |||
| 5993 | DeclarationName Name) { | |||
| 5994 | // The types we specifically need to rebuild are: | |||
| 5995 | // - typenames, typeofs, and decltypes | |||
| 5996 | // - types which will become injected class names | |||
| 5997 | // Of course, we also need to rebuild any type referencing such a | |||
| 5998 | // type. It's safest to just say "dependent", but we call out a | |||
| 5999 | // few cases here. | |||
| 6000 | ||||
| 6001 | DeclSpec &DS = D.getMutableDeclSpec(); | |||
| 6002 | switch (DS.getTypeSpecType()) { | |||
| 6003 | case DeclSpec::TST_typename: | |||
| 6004 | case DeclSpec::TST_typeofType: | |||
| 6005 | case DeclSpec::TST_typeof_unqualType: | |||
| 6006 | #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait: | |||
| 6007 | #include "clang/Basic/TransformTypeTraits.def" | |||
| 6008 | case DeclSpec::TST_atomic: { | |||
| 6009 | // Grab the type from the parser. | |||
| 6010 | TypeSourceInfo *TSI = nullptr; | |||
| 6011 | QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI); | |||
| 6012 | if (T.isNull() || !T->isInstantiationDependentType()) break; | |||
| 6013 | ||||
| 6014 | // Make sure there's a type source info. This isn't really much | |||
| 6015 | // of a waste; most dependent types should have type source info | |||
| 6016 | // attached already. | |||
| 6017 | if (!TSI) | |||
| 6018 | TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc()); | |||
| 6019 | ||||
| 6020 | // Rebuild the type in the current instantiation. | |||
| 6021 | TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name); | |||
| 6022 | if (!TSI) return true; | |||
| 6023 | ||||
| 6024 | // Store the new type back in the decl spec. | |||
| 6025 | ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI); | |||
| 6026 | DS.UpdateTypeRep(LocType); | |||
| 6027 | break; | |||
| 6028 | } | |||
| 6029 | ||||
| 6030 | case DeclSpec::TST_decltype: | |||
| 6031 | case DeclSpec::TST_typeof_unqualExpr: | |||
| 6032 | case DeclSpec::TST_typeofExpr: { | |||
| 6033 | Expr *E = DS.getRepAsExpr(); | |||
| 6034 | ExprResult Result = S.RebuildExprInCurrentInstantiation(E); | |||
| 6035 | if (Result.isInvalid()) return true; | |||
| 6036 | DS.UpdateExprRep(Result.get()); | |||
| 6037 | break; | |||
| 6038 | } | |||
| 6039 | ||||
| 6040 | default: | |||
| 6041 | // Nothing to do for these decl specs. | |||
| 6042 | break; | |||
| 6043 | } | |||
| 6044 | ||||
| 6045 | // It doesn't matter what order we do this in. | |||
| 6046 | for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) { | |||
| 6047 | DeclaratorChunk &Chunk = D.getTypeObject(I); | |||
| 6048 | ||||
| 6049 | // The only type information in the declarator which can come | |||
| 6050 | // before the declaration name is the base type of a member | |||
| 6051 | // pointer. | |||
| 6052 | if (Chunk.Kind != DeclaratorChunk::MemberPointer) | |||
| 6053 | continue; | |||
| 6054 | ||||
| 6055 | // Rebuild the scope specifier in-place. | |||
| 6056 | CXXScopeSpec &SS = Chunk.Mem.Scope(); | |||
| 6057 | if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS)) | |||
| 6058 | return true; | |||
| 6059 | } | |||
| 6060 | ||||
| 6061 | return false; | |||
| 6062 | } | |||
| 6063 | ||||
| 6064 | /// Returns true if the declaration is declared in a system header or from a | |||
| 6065 | /// system macro. | |||
| 6066 | static bool isFromSystemHeader(SourceManager &SM, const Decl *D) { | |||
| 6067 | return SM.isInSystemHeader(D->getLocation()) || | |||
| 6068 | SM.isInSystemMacro(D->getLocation()); | |||
| 6069 | } | |||
| 6070 | ||||
| 6071 | void Sema::warnOnReservedIdentifier(const NamedDecl *D) { | |||
| 6072 | // Avoid warning twice on the same identifier, and don't warn on redeclaration | |||
| 6073 | // of system decl. | |||
| 6074 | if (D->getPreviousDecl() || D->isImplicit()) | |||
| 6075 | return; | |||
| 6076 | ReservedIdentifierStatus Status = D->isReserved(getLangOpts()); | |||
| 6077 | if (Status != ReservedIdentifierStatus::NotReserved && | |||
| 6078 | !isFromSystemHeader(Context.getSourceManager(), D)) { | |||
| 6079 | Diag(D->getLocation(), diag::warn_reserved_extern_symbol) | |||
| 6080 | << D << static_cast<int>(Status); | |||
| 6081 | } | |||
| 6082 | } | |||
| 6083 | ||||
| 6084 | Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) { | |||
| 6085 | D.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration); | |||
| 6086 | ||||
| 6087 | // Check if we are in an `omp begin/end declare variant` scope. Handle this | |||
| 6088 | // declaration only if the `bind_to_declaration` extension is set. | |||
| 6089 | SmallVector<FunctionDecl *, 4> Bases; | |||
| 6090 | if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope()) | |||
| 6091 | if (getOMPTraitInfoForSurroundingScope()->isExtensionActive(llvm::omp::TraitProperty:: | |||
| 6092 | implementation_extension_bind_to_declaration)) | |||
| 6093 | ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope( | |||
| 6094 | S, D, MultiTemplateParamsArg(), Bases); | |||
| 6095 | ||||
| 6096 | Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg()); | |||
| 6097 | ||||
| 6098 | if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() && | |||
| 6099 | Dcl && Dcl->getDeclContext()->isFileContext()) | |||
| 6100 | Dcl->setTopLevelDeclInObjCContainer(); | |||
| 6101 | ||||
| 6102 | if (!Bases.empty()) | |||
| 6103 | ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl, Bases); | |||
| 6104 | ||||
| 6105 | return Dcl; | |||
| 6106 | } | |||
| 6107 | ||||
| 6108 | /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13: | |||
| 6109 | /// If T is the name of a class, then each of the following shall have a | |||
| 6110 | /// name different from T: | |||
| 6111 | /// - every static data member of class T; | |||
| 6112 | /// - every member function of class T | |||
| 6113 | /// - every member of class T that is itself a type; | |||
| 6114 | /// \returns true if the declaration name violates these rules. | |||
| 6115 | bool Sema::DiagnoseClassNameShadow(DeclContext *DC, | |||
| 6116 | DeclarationNameInfo NameInfo) { | |||
| 6117 | DeclarationName Name = NameInfo.getName(); | |||
| 6118 | ||||
| 6119 | CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC); | |||
| 6120 | while (Record && Record->isAnonymousStructOrUnion()) | |||
| 6121 | Record = dyn_cast<CXXRecordDecl>(Record->getParent()); | |||
| 6122 | if (Record && Record->getIdentifier() && Record->getDeclName() == Name) { | |||
| 6123 | Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name; | |||
| 6124 | return true; | |||
| 6125 | } | |||
| 6126 | ||||
| 6127 | return false; | |||
| 6128 | } | |||
| 6129 | ||||
| 6130 | /// Diagnose a declaration whose declarator-id has the given | |||
| 6131 | /// nested-name-specifier. | |||
| 6132 | /// | |||
| 6133 | /// \param SS The nested-name-specifier of the declarator-id. | |||
| 6134 | /// | |||
| 6135 | /// \param DC The declaration context to which the nested-name-specifier | |||
| 6136 | /// resolves. | |||
| 6137 | /// | |||
| 6138 | /// \param Name The name of the entity being declared. | |||
| 6139 | /// | |||
| 6140 | /// \param Loc The location of the name of the entity being declared. | |||
| 6141 | /// | |||
| 6142 | /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus | |||
| 6143 | /// we're declaring an explicit / partial specialization / instantiation. | |||
| 6144 | /// | |||
| 6145 | /// \returns true if we cannot safely recover from this error, false otherwise. | |||
| 6146 | bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC, | |||
| 6147 | DeclarationName Name, | |||
| 6148 | SourceLocation Loc, bool IsTemplateId) { | |||
| 6149 | DeclContext *Cur = CurContext; | |||
| 6150 | while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur)) | |||
| 6151 | Cur = Cur->getParent(); | |||
| 6152 | ||||
| 6153 | // If the user provided a superfluous scope specifier that refers back to the | |||
| 6154 | // class in which the entity is already declared, diagnose and ignore it. | |||
| 6155 | // | |||
| 6156 | // class X { | |||
| 6157 | // void X::f(); | |||
| 6158 | // }; | |||
| 6159 | // | |||
| 6160 | // Note, it was once ill-formed to give redundant qualification in all | |||
| 6161 | // contexts, but that rule was removed by DR482. | |||
| 6162 | if (Cur->Equals(DC)) { | |||
| 6163 | if (Cur->isRecord()) { | |||
| 6164 | Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification | |||
| 6165 | : diag::err_member_extra_qualification) | |||
| 6166 | << Name << FixItHint::CreateRemoval(SS.getRange()); | |||
| 6167 | SS.clear(); | |||
| 6168 | } else { | |||
| 6169 | Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name; | |||
| 6170 | } | |||
| 6171 | return false; | |||
| 6172 | } | |||
| 6173 | ||||
| 6174 | // Check whether the qualifying scope encloses the scope of the original | |||
| 6175 | // declaration. For a template-id, we perform the checks in | |||
| 6176 | // CheckTemplateSpecializationScope. | |||
| 6177 | if (!Cur->Encloses(DC) && !IsTemplateId) { | |||
| 6178 | if (Cur->isRecord()) | |||
| 6179 | Diag(Loc, diag::err_member_qualification) | |||
| 6180 | << Name << SS.getRange(); | |||
| 6181 | else if (isa<TranslationUnitDecl>(DC)) | |||
| 6182 | Diag(Loc, diag::err_invalid_declarator_global_scope) | |||
| 6183 | << Name << SS.getRange(); | |||
| 6184 | else if (isa<FunctionDecl>(Cur)) | |||
| 6185 | Diag(Loc, diag::err_invalid_declarator_in_function) | |||
| 6186 | << Name << SS.getRange(); | |||
| 6187 | else if (isa<BlockDecl>(Cur)) | |||
| 6188 | Diag(Loc, diag::err_invalid_declarator_in_block) | |||
| 6189 | << Name << SS.getRange(); | |||
| 6190 | else if (isa<ExportDecl>(Cur)) { | |||
| 6191 | if (!isa<NamespaceDecl>(DC)) | |||
| 6192 | Diag(Loc, diag::err_export_non_namespace_scope_name) | |||
| 6193 | << Name << SS.getRange(); | |||
| 6194 | else | |||
| 6195 | // The cases that DC is not NamespaceDecl should be handled in | |||
| 6196 | // CheckRedeclarationExported. | |||
| 6197 | return false; | |||
| 6198 | } else | |||
| 6199 | Diag(Loc, diag::err_invalid_declarator_scope) | |||
| 6200 | << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange(); | |||
| 6201 | ||||
| 6202 | return true; | |||
| 6203 | } | |||
| 6204 | ||||
| 6205 | if (Cur->isRecord()) { | |||
| 6206 | // Cannot qualify members within a class. | |||
| 6207 | Diag(Loc, diag::err_member_qualification) | |||
| 6208 | << Name << SS.getRange(); | |||
| 6209 | SS.clear(); | |||
| 6210 | ||||
| 6211 | // C++ constructors and destructors with incorrect scopes can break | |||
| 6212 | // our AST invariants by having the wrong underlying types. If | |||
| 6213 | // that's the case, then drop this declaration entirely. | |||
| 6214 | if ((Name.getNameKind() == DeclarationName::CXXConstructorName || | |||
| 6215 | Name.getNameKind() == DeclarationName::CXXDestructorName) && | |||
| 6216 | !Context.hasSameType(Name.getCXXNameType(), | |||
| 6217 | Context.getTypeDeclType(cast<CXXRecordDecl>(Cur)))) | |||
| 6218 | return true; | |||
| 6219 | ||||
| 6220 | return false; | |||
| 6221 | } | |||
| 6222 | ||||
| 6223 | // C++11 [dcl.meaning]p1: | |||
| 6224 | // [...] "The nested-name-specifier of the qualified declarator-id shall | |||
| 6225 | // not begin with a decltype-specifer" | |||
| 6226 | NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data()); | |||
| 6227 | while (SpecLoc.getPrefix()) | |||
| 6228 | SpecLoc = SpecLoc.getPrefix(); | |||
| 6229 | if (isa_and_nonnull<DecltypeType>( | |||
| 6230 | SpecLoc.getNestedNameSpecifier()->getAsType())) | |||
| 6231 | Diag(Loc, diag::err_decltype_in_declarator) | |||
| 6232 | << SpecLoc.getTypeLoc().getSourceRange(); | |||
| 6233 | ||||
| 6234 | return false; | |||
| 6235 | } | |||
| 6236 | ||||
| 6237 | NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D, | |||
| 6238 | MultiTemplateParamsArg TemplateParamLists) { | |||
| 6239 | // TODO: consider using NameInfo for diagnostic. | |||
| 6240 | DeclarationNameInfo NameInfo = GetNameForDeclarator(D); | |||
| 6241 | DeclarationName Name = NameInfo.getName(); | |||
| 6242 | ||||
| 6243 | // All of these full declarators require an identifier. If it doesn't have | |||
| 6244 | // one, the ParsedFreeStandingDeclSpec action should be used. | |||
| 6245 | if (D.isDecompositionDeclarator()) { | |||
| 6246 | return ActOnDecompositionDeclarator(S, D, TemplateParamLists); | |||
| 6247 | } else if (!Name) { | |||
| 6248 | if (!D.isInvalidType()) // Reject this if we think it is valid. | |||
| 6249 | Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident) | |||
| 6250 | << D.getDeclSpec().getSourceRange() << D.getSourceRange(); | |||
| 6251 | return nullptr; | |||
| 6252 | } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType)) | |||
| 6253 | return nullptr; | |||
| 6254 | ||||
| 6255 | // The scope passed in may not be a decl scope. Zip up the scope tree until | |||
| 6256 | // we find one that is. | |||
| 6257 | while ((S->getFlags() & Scope::DeclScope) == 0 || | |||
| 6258 | (S->getFlags() & Scope::TemplateParamScope) != 0) | |||
| 6259 | S = S->getParent(); | |||
| 6260 | ||||
| 6261 | DeclContext *DC = CurContext; | |||
| 6262 | if (D.getCXXScopeSpec().isInvalid()) | |||
| 6263 | D.setInvalidType(); | |||
| 6264 | else if (D.getCXXScopeSpec().isSet()) { | |||
| 6265 | if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(), | |||
| 6266 | UPPC_DeclarationQualifier)) | |||
| 6267 | return nullptr; | |||
| 6268 | ||||
| 6269 | bool EnteringContext = !D.getDeclSpec().isFriendSpecified(); | |||
| 6270 | DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext); | |||
| 6271 | if (!DC || isa<EnumDecl>(DC)) { | |||
| 6272 | // If we could not compute the declaration context, it's because the | |||
| 6273 | // declaration context is dependent but does not refer to a class, | |||
| 6274 | // class template, or class template partial specialization. Complain | |||
| 6275 | // and return early, to avoid the coming semantic disaster. | |||
| 6276 | Diag(D.getIdentifierLoc(), | |||
| 6277 | diag::err_template_qualified_declarator_no_match) | |||
| 6278 | << D.getCXXScopeSpec().getScopeRep() | |||
| 6279 | << D.getCXXScopeSpec().getRange(); | |||
| 6280 | return nullptr; | |||
| 6281 | } | |||
| 6282 | bool IsDependentContext = DC->isDependentContext(); | |||
| 6283 | ||||
| 6284 | if (!IsDependentContext && | |||
| 6285 | RequireCompleteDeclContext(D.getCXXScopeSpec(), DC)) | |||
| 6286 | return nullptr; | |||
| 6287 | ||||
| 6288 | // If a class is incomplete, do not parse entities inside it. | |||
| 6289 | if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) { | |||
| 6290 | Diag(D.getIdentifierLoc(), | |||
| 6291 | diag::err_member_def_undefined_record) | |||
| 6292 | << Name << DC << D.getCXXScopeSpec().getRange(); | |||
| 6293 | return nullptr; | |||
| 6294 | } | |||
| 6295 | if (!D.getDeclSpec().isFriendSpecified()) { | |||
| 6296 | if (diagnoseQualifiedDeclaration( | |||
| 6297 | D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(), | |||
| 6298 | D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) { | |||
| 6299 | if (DC->isRecord()) | |||
| 6300 | return nullptr; | |||
| 6301 | ||||
| 6302 | D.setInvalidType(); | |||
| 6303 | } | |||
| 6304 | } | |||
| 6305 | ||||
| 6306 | // Check whether we need to rebuild the type of the given | |||
| 6307 | // declaration in the current instantiation. | |||
| 6308 | if (EnteringContext && IsDependentContext && | |||
| 6309 | TemplateParamLists.size() != 0) { | |||
| 6310 | ContextRAII SavedContext(*this, DC); | |||
| 6311 | if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name)) | |||
| 6312 | D.setInvalidType(); | |||
| 6313 | } | |||
| 6314 | } | |||
| 6315 | ||||
| 6316 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | |||
| 6317 | QualType R = TInfo->getType(); | |||
| 6318 | ||||
| 6319 | if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, | |||
| 6320 | UPPC_DeclarationType)) | |||
| 6321 | D.setInvalidType(); | |||
| 6322 | ||||
| 6323 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, | |||
| 6324 | forRedeclarationInCurContext()); | |||
| 6325 | ||||
| 6326 | // See if this is a redefinition of a variable in the same scope. | |||
| 6327 | if (!D.getCXXScopeSpec().isSet()) { | |||
| 6328 | bool IsLinkageLookup = false; | |||
| 6329 | bool CreateBuiltins = false; | |||
| 6330 | ||||
| 6331 | // If the declaration we're planning to build will be a function | |||
| 6332 | // or object with linkage, then look for another declaration with | |||
| 6333 | // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6). | |||
| 6334 | // | |||
| 6335 | // If the declaration we're planning to build will be declared with | |||
| 6336 | // external linkage in the translation unit, create any builtin with | |||
| 6337 | // the same name. | |||
| 6338 | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) | |||
| 6339 | /* Do nothing*/; | |||
| 6340 | else if (CurContext->isFunctionOrMethod() && | |||
| 6341 | (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern || | |||
| 6342 | R->isFunctionType())) { | |||
| 6343 | IsLinkageLookup = true; | |||
| 6344 | CreateBuiltins = | |||
| 6345 | CurContext->getEnclosingNamespaceContext()->isTranslationUnit(); | |||
| 6346 | } else if (CurContext->getRedeclContext()->isTranslationUnit() && | |||
| 6347 | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) | |||
| 6348 | CreateBuiltins = true; | |||
| 6349 | ||||
| 6350 | if (IsLinkageLookup) { | |||
| 6351 | Previous.clear(LookupRedeclarationWithLinkage); | |||
| 6352 | Previous.setRedeclarationKind(ForExternalRedeclaration); | |||
| 6353 | } | |||
| 6354 | ||||
| 6355 | LookupName(Previous, S, CreateBuiltins); | |||
| 6356 | } else { // Something like "int foo::x;" | |||
| 6357 | LookupQualifiedName(Previous, DC); | |||
| 6358 | ||||
| 6359 | // C++ [dcl.meaning]p1: | |||
| 6360 | // When the declarator-id is qualified, the declaration shall refer to a | |||
| 6361 | // previously declared member of the class or namespace to which the | |||
| 6362 | // qualifier refers (or, in the case of a namespace, of an element of the | |||
| 6363 | // inline namespace set of that namespace (7.3.1)) or to a specialization | |||
| 6364 | // thereof; [...] | |||
| 6365 | // | |||
| 6366 | // Note that we already checked the context above, and that we do not have | |||
| 6367 | // enough information to make sure that Previous contains the declaration | |||
| 6368 | // we want to match. For example, given: | |||
| 6369 | // | |||
| 6370 | // class X { | |||
| 6371 | // void f(); | |||
| 6372 | // void f(float); | |||
| 6373 | // }; | |||
| 6374 | // | |||
| 6375 | // void X::f(int) { } // ill-formed | |||
| 6376 | // | |||
| 6377 | // In this case, Previous will point to the overload set | |||
| 6378 | // containing the two f's declared in X, but neither of them | |||
| 6379 | // matches. | |||
| 6380 | ||||
| 6381 | // C++ [dcl.meaning]p1: | |||
| 6382 | // [...] the member shall not merely have been introduced by a | |||
| 6383 | // using-declaration in the scope of the class or namespace nominated by | |||
| 6384 | // the nested-name-specifier of the declarator-id. | |||
| 6385 | RemoveUsingDecls(Previous); | |||
| 6386 | } | |||
| 6387 | ||||
| 6388 | if (Previous.isSingleResult() && | |||
| 6389 | Previous.getFoundDecl()->isTemplateParameter()) { | |||
| 6390 | // Maybe we will complain about the shadowed template parameter. | |||
| 6391 | if (!D.isInvalidType()) | |||
| 6392 | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), | |||
| 6393 | Previous.getFoundDecl()); | |||
| 6394 | ||||
| 6395 | // Just pretend that we didn't see the previous declaration. | |||
| 6396 | Previous.clear(); | |||
| 6397 | } | |||
| 6398 | ||||
| 6399 | if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo)) | |||
| 6400 | // Forget that the previous declaration is the injected-class-name. | |||
| 6401 | Previous.clear(); | |||
| 6402 | ||||
| 6403 | // In C++, the previous declaration we find might be a tag type | |||
| 6404 | // (class or enum). In this case, the new declaration will hide the | |||
| 6405 | // tag type. Note that this applies to functions, function templates, and | |||
| 6406 | // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates. | |||
| 6407 | if (Previous.isSingleTagDecl() && | |||
| 6408 | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && | |||
| 6409 | (TemplateParamLists.size() == 0 || R->isFunctionType())) | |||
| 6410 | Previous.clear(); | |||
| 6411 | ||||
| 6412 | // Check that there are no default arguments other than in the parameters | |||
| 6413 | // of a function declaration (C++ only). | |||
| 6414 | if (getLangOpts().CPlusPlus) | |||
| 6415 | CheckExtraCXXDefaultArguments(D); | |||
| 6416 | ||||
| 6417 | NamedDecl *New; | |||
| 6418 | ||||
| 6419 | bool AddToScope = true; | |||
| 6420 | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { | |||
| 6421 | if (TemplateParamLists.size()) { | |||
| 6422 | Diag(D.getIdentifierLoc(), diag::err_template_typedef); | |||
| 6423 | return nullptr; | |||
| 6424 | } | |||
| 6425 | ||||
| 6426 | New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous); | |||
| 6427 | } else if (R->isFunctionType()) { | |||
| 6428 | New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous, | |||
| 6429 | TemplateParamLists, | |||
| 6430 | AddToScope); | |||
| 6431 | } else { | |||
| 6432 | New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists, | |||
| 6433 | AddToScope); | |||
| 6434 | } | |||
| 6435 | ||||
| 6436 | if (!New) | |||
| 6437 | return nullptr; | |||
| 6438 | ||||
| 6439 | // If this has an identifier and is not a function template specialization, | |||
| 6440 | // add it to the scope stack. | |||
| 6441 | if (New->getDeclName() && AddToScope) | |||
| 6442 | PushOnScopeChains(New, S); | |||
| 6443 | ||||
| 6444 | if (isInOpenMPDeclareTargetContext()) | |||
| 6445 | checkDeclIsAllowedInOpenMPTarget(nullptr, New); | |||
| 6446 | ||||
| 6447 | return New; | |||
| 6448 | } | |||
| 6449 | ||||
| 6450 | /// Helper method to turn variable array types into constant array | |||
| 6451 | /// types in certain situations which would otherwise be errors (for | |||
| 6452 | /// GCC compatibility). | |||
| 6453 | static QualType TryToFixInvalidVariablyModifiedType(QualType T, | |||
| 6454 | ASTContext &Context, | |||
| 6455 | bool &SizeIsNegative, | |||
| 6456 | llvm::APSInt &Oversized) { | |||
| 6457 | // This method tries to turn a variable array into a constant | |||
| 6458 | // array even when the size isn't an ICE. This is necessary | |||
| 6459 | // for compatibility with code that depends on gcc's buggy | |||
| 6460 | // constant expression folding, like struct {char x[(int)(char*)2];} | |||
| 6461 | SizeIsNegative = false; | |||
| 6462 | Oversized = 0; | |||
| 6463 | ||||
| 6464 | if (T->isDependentType()) | |||
| 6465 | return QualType(); | |||
| 6466 | ||||
| 6467 | QualifierCollector Qs; | |||
| 6468 | const Type *Ty = Qs.strip(T); | |||
| 6469 | ||||
| 6470 | if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) { | |||
| 6471 | QualType Pointee = PTy->getPointeeType(); | |||
| 6472 | QualType FixedType = | |||
| 6473 | TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative, | |||
| 6474 | Oversized); | |||
| 6475 | if (FixedType.isNull()) return FixedType; | |||
| 6476 | FixedType = Context.getPointerType(FixedType); | |||
| 6477 | return Qs.apply(Context, FixedType); | |||
| 6478 | } | |||
| 6479 | if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) { | |||
| 6480 | QualType Inner = PTy->getInnerType(); | |||
| 6481 | QualType FixedType = | |||
| 6482 | TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative, | |||
| 6483 | Oversized); | |||
| 6484 | if (FixedType.isNull()) return FixedType; | |||
| 6485 | FixedType = Context.getParenType(FixedType); | |||
| 6486 | return Qs.apply(Context, FixedType); | |||
| 6487 | } | |||
| 6488 | ||||
| 6489 | const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T); | |||
| 6490 | if (!VLATy) | |||
| 6491 | return QualType(); | |||
| 6492 | ||||
| 6493 | QualType ElemTy = VLATy->getElementType(); | |||
| 6494 | if (ElemTy->isVariablyModifiedType()) { | |||
| 6495 | ElemTy = TryToFixInvalidVariablyModifiedType(ElemTy, Context, | |||
| 6496 | SizeIsNegative, Oversized); | |||
| 6497 | if (ElemTy.isNull()) | |||
| 6498 | return QualType(); | |||
| 6499 | } | |||
| 6500 | ||||
| 6501 | Expr::EvalResult Result; | |||
| 6502 | if (!VLATy->getSizeExpr() || | |||
| 6503 | !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context)) | |||
| 6504 | return QualType(); | |||
| 6505 | ||||
| 6506 | llvm::APSInt Res = Result.Val.getInt(); | |||
| 6507 | ||||
| 6508 | // Check whether the array size is negative. | |||
| 6509 | if (Res.isSigned() && Res.isNegative()) { | |||
| 6510 | SizeIsNegative = true; | |||
| 6511 | return QualType(); | |||
| 6512 | } | |||
| 6513 | ||||
| 6514 | // Check whether the array is too large to be addressed. | |||
| 6515 | unsigned ActiveSizeBits = | |||
| 6516 | (!ElemTy->isDependentType() && !ElemTy->isVariablyModifiedType() && | |||
| 6517 | !ElemTy->isIncompleteType() && !ElemTy->isUndeducedType()) | |||
| 6518 | ? ConstantArrayType::getNumAddressingBits(Context, ElemTy, Res) | |||
| 6519 | : Res.getActiveBits(); | |||
| 6520 | if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { | |||
| 6521 | Oversized = Res; | |||
| 6522 | return QualType(); | |||
| 6523 | } | |||
| 6524 | ||||
| 6525 | QualType FoldedArrayType = Context.getConstantArrayType( | |||
| 6526 | ElemTy, Res, VLATy->getSizeExpr(), ArrayType::Normal, 0); | |||
| 6527 | return Qs.apply(Context, FoldedArrayType); | |||
| 6528 | } | |||
| 6529 | ||||
| 6530 | static void | |||
| 6531 | FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) { | |||
| 6532 | SrcTL = SrcTL.getUnqualifiedLoc(); | |||
| 6533 | DstTL = DstTL.getUnqualifiedLoc(); | |||
| 6534 | if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) { | |||
| 6535 | PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>(); | |||
| 6536 | FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(), | |||
| 6537 | DstPTL.getPointeeLoc()); | |||
| 6538 | DstPTL.setStarLoc(SrcPTL.getStarLoc()); | |||
| 6539 | return; | |||
| 6540 | } | |||
| 6541 | if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) { | |||
| 6542 | ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>(); | |||
| 6543 | FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(), | |||
| 6544 | DstPTL.getInnerLoc()); | |||
| 6545 | DstPTL.setLParenLoc(SrcPTL.getLParenLoc()); | |||
| 6546 | DstPTL.setRParenLoc(SrcPTL.getRParenLoc()); | |||
| 6547 | return; | |||
| 6548 | } | |||
| 6549 | ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>(); | |||
| 6550 | ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>(); | |||
| 6551 | TypeLoc SrcElemTL = SrcATL.getElementLoc(); | |||
| 6552 | TypeLoc DstElemTL = DstATL.getElementLoc(); | |||
| 6553 | if (VariableArrayTypeLoc SrcElemATL = | |||
| 6554 | SrcElemTL.getAs<VariableArrayTypeLoc>()) { | |||
| 6555 | ConstantArrayTypeLoc DstElemATL = DstElemTL.castAs<ConstantArrayTypeLoc>(); | |||
| 6556 | FixInvalidVariablyModifiedTypeLoc(SrcElemATL, DstElemATL); | |||
| 6557 | } else { | |||
| 6558 | DstElemTL.initializeFullCopy(SrcElemTL); | |||
| 6559 | } | |||
| 6560 | DstATL.setLBracketLoc(SrcATL.getLBracketLoc()); | |||
| 6561 | DstATL.setSizeExpr(SrcATL.getSizeExpr()); | |||
| 6562 | DstATL.setRBracketLoc(SrcATL.getRBracketLoc()); | |||
| 6563 | } | |||
| 6564 | ||||
| 6565 | /// Helper method to turn variable array types into constant array | |||
| 6566 | /// types in certain situations which would otherwise be errors (for | |||
| 6567 | /// GCC compatibility). | |||
| 6568 | static TypeSourceInfo* | |||
| 6569 | TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo, | |||
| 6570 | ASTContext &Context, | |||
| 6571 | bool &SizeIsNegative, | |||
| 6572 | llvm::APSInt &Oversized) { | |||
| 6573 | QualType FixedTy | |||
| 6574 | = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context, | |||
| 6575 | SizeIsNegative, Oversized); | |||
| 6576 | if (FixedTy.isNull()) | |||
| 6577 | return nullptr; | |||
| 6578 | TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy); | |||
| 6579 | FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(), | |||
| 6580 | FixedTInfo->getTypeLoc()); | |||
| 6581 | return FixedTInfo; | |||
| 6582 | } | |||
| 6583 | ||||
| 6584 | /// Attempt to fold a variable-sized type to a constant-sized type, returning | |||
| 6585 | /// true if we were successful. | |||
| 6586 | bool Sema::tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo, | |||
| 6587 | QualType &T, SourceLocation Loc, | |||
| 6588 | unsigned FailedFoldDiagID) { | |||
| 6589 | bool SizeIsNegative; | |||
| 6590 | llvm::APSInt Oversized; | |||
| 6591 | TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo( | |||
| 6592 | TInfo, Context, SizeIsNegative, Oversized); | |||
| 6593 | if (FixedTInfo) { | |||
| 6594 | Diag(Loc, diag::ext_vla_folded_to_constant); | |||
| 6595 | TInfo = FixedTInfo; | |||
| 6596 | T = FixedTInfo->getType(); | |||
| 6597 | return true; | |||
| 6598 | } | |||
| 6599 | ||||
| 6600 | if (SizeIsNegative) | |||
| 6601 | Diag(Loc, diag::err_typecheck_negative_array_size); | |||
| 6602 | else if (Oversized.getBoolValue()) | |||
| 6603 | Diag(Loc, diag::err_array_too_large) << toString(Oversized, 10); | |||
| 6604 | else if (FailedFoldDiagID) | |||
| 6605 | Diag(Loc, FailedFoldDiagID); | |||
| 6606 | return false; | |||
| 6607 | } | |||
| 6608 | ||||
| 6609 | /// Register the given locally-scoped extern "C" declaration so | |||
| 6610 | /// that it can be found later for redeclarations. We include any extern "C" | |||
| 6611 | /// declaration that is not visible in the translation unit here, not just | |||
| 6612 | /// function-scope declarations. | |||
| 6613 | void | |||
| 6614 | Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) { | |||
| 6615 | if (!getLangOpts().CPlusPlus && | |||
| 6616 | ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit()) | |||
| 6617 | // Don't need to track declarations in the TU in C. | |||
| 6618 | return; | |||
| 6619 | ||||
| 6620 | // Note that we have a locally-scoped external with this name. | |||
| 6621 | Context.getExternCContextDecl()->makeDeclVisibleInContext(ND); | |||
| 6622 | } | |||
| 6623 | ||||
| 6624 | NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) { | |||
| 6625 | // FIXME: We can have multiple results via __attribute__((overloadable)). | |||
| 6626 | auto Result = Context.getExternCContextDecl()->lookup(Name); | |||
| 6627 | return Result.empty() ? nullptr : *Result.begin(); | |||
| 6628 | } | |||
| 6629 | ||||
| 6630 | /// Diagnose function specifiers on a declaration of an identifier that | |||
| 6631 | /// does not identify a function. | |||
| 6632 | void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) { | |||
| 6633 | // FIXME: We should probably indicate the identifier in question to avoid | |||
| 6634 | // confusion for constructs like "virtual int a(), b;" | |||
| 6635 | if (DS.isVirtualSpecified()) | |||
| 6636 | Diag(DS.getVirtualSpecLoc(), | |||
| 6637 | diag::err_virtual_non_function); | |||
| 6638 | ||||
| 6639 | if (DS.hasExplicitSpecifier()) | |||
| 6640 | Diag(DS.getExplicitSpecLoc(), | |||
| 6641 | diag::err_explicit_non_function); | |||
| 6642 | ||||
| 6643 | if (DS.isNoreturnSpecified()) | |||
| 6644 | Diag(DS.getNoreturnSpecLoc(), | |||
| 6645 | diag::err_noreturn_non_function); | |||
| 6646 | } | |||
| 6647 | ||||
| 6648 | NamedDecl* | |||
| 6649 | Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC, | |||
| 6650 | TypeSourceInfo *TInfo, LookupResult &Previous) { | |||
| 6651 | // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1). | |||
| 6652 | if (D.getCXXScopeSpec().isSet()) { | |||
| 6653 | Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator) | |||
| 6654 | << D.getCXXScopeSpec().getRange(); | |||
| 6655 | D.setInvalidType(); | |||
| 6656 | // Pretend we didn't see the scope specifier. | |||
| 6657 | DC = CurContext; | |||
| 6658 | Previous.clear(); | |||
| 6659 | } | |||
| 6660 | ||||
| 6661 | DiagnoseFunctionSpecifiers(D.getDeclSpec()); | |||
| 6662 | ||||
| 6663 | if (D.getDeclSpec().isInlineSpecified()) | |||
| 6664 | Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) | |||
| 6665 | << getLangOpts().CPlusPlus17; | |||
| 6666 | if (D.getDeclSpec().hasConstexprSpecifier()) | |||
| 6667 | Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr) | |||
| 6668 | << 1 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier()); | |||
| 6669 | ||||
| 6670 | if (D.getName().getKind() != UnqualifiedIdKind::IK_Identifier) { | |||
| 6671 | if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName) | |||
| 6672 | Diag(D.getName().StartLocation, | |||
| 6673 | diag::err_deduction_guide_invalid_specifier) | |||
| 6674 | << "typedef"; | |||
| 6675 | else | |||
| 6676 | Diag(D.getName().StartLocation, diag::err_typedef_not_identifier) | |||
| 6677 | << D.getName().getSourceRange(); | |||
| 6678 | return nullptr; | |||
| 6679 | } | |||
| 6680 | ||||
| 6681 | TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo); | |||
| 6682 | if (!NewTD) return nullptr; | |||
| 6683 | ||||
| 6684 | // Handle attributes prior to checking for duplicates in MergeVarDecl | |||
| 6685 | ProcessDeclAttributes(S, NewTD, D); | |||
| 6686 | ||||
| 6687 | CheckTypedefForVariablyModifiedType(S, NewTD); | |||
| 6688 | ||||
| 6689 | bool Redeclaration = D.isRedeclaration(); | |||
| 6690 | NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration); | |||
| 6691 | D.setRedeclaration(Redeclaration); | |||
| 6692 | return ND; | |||
| 6693 | } | |||
| 6694 | ||||
| 6695 | void | |||
| 6696 | Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) { | |||
| 6697 | // C99 6.7.7p2: If a typedef name specifies a variably modified type | |||
| 6698 | // then it shall have block scope. | |||
| 6699 | // Note that variably modified types must be fixed before merging the decl so | |||
| 6700 | // that redeclarations will match. | |||
| 6701 | TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo(); | |||
| 6702 | QualType T = TInfo->getType(); | |||
| 6703 | if (T->isVariablyModifiedType()) { | |||
| 6704 | setFunctionHasBranchProtectedScope(); | |||
| 6705 | ||||
| 6706 | if (S->getFnParent() == nullptr) { | |||
| 6707 | bool SizeIsNegative; | |||
| 6708 | llvm::APSInt Oversized; | |||
| 6709 | TypeSourceInfo *FixedTInfo = | |||
| 6710 | TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context, | |||
| 6711 | SizeIsNegative, | |||
| 6712 | Oversized); | |||
| 6713 | if (FixedTInfo) { | |||
| 6714 | Diag(NewTD->getLocation(), diag::ext_vla_folded_to_constant); | |||
| 6715 | NewTD->setTypeSourceInfo(FixedTInfo); | |||
| 6716 | } else { | |||
| 6717 | if (SizeIsNegative) | |||
| 6718 | Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size); | |||
| 6719 | else if (T->isVariableArrayType()) | |||
| 6720 | Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope); | |||
| 6721 | else if (Oversized.getBoolValue()) | |||
| 6722 | Diag(NewTD->getLocation(), diag::err_array_too_large) | |||
| 6723 | << toString(Oversized, 10); | |||
| 6724 | else | |||
| 6725 | Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope); | |||
| 6726 | NewTD->setInvalidDecl(); | |||
| 6727 | } | |||
| 6728 | } | |||
| 6729 | } | |||
| 6730 | } | |||
| 6731 | ||||
| 6732 | /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which | |||
| 6733 | /// declares a typedef-name, either using the 'typedef' type specifier or via | |||
| 6734 | /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'. | |||
| 6735 | NamedDecl* | |||
| 6736 | Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD, | |||
| 6737 | LookupResult &Previous, bool &Redeclaration) { | |||
| 6738 | ||||
| 6739 | // Find the shadowed declaration before filtering for scope. | |||
| 6740 | NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous); | |||
| 6741 | ||||
| 6742 | // Merge the decl with the existing one if appropriate. If the decl is | |||
| 6743 | // in an outer scope, it isn't the same thing. | |||
| 6744 | FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false, | |||
| 6745 | /*AllowInlineNamespace*/false); | |||
| 6746 | filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous); | |||
| 6747 | if (!Previous.empty()) { | |||
| 6748 | Redeclaration = true; | |||
| 6749 | MergeTypedefNameDecl(S, NewTD, Previous); | |||
| 6750 | } else { | |||
| 6751 | inferGslPointerAttribute(NewTD); | |||
| 6752 | } | |||
| 6753 | ||||
| 6754 | if (ShadowedDecl && !Redeclaration) | |||
| 6755 | CheckShadow(NewTD, ShadowedDecl, Previous); | |||
| 6756 | ||||
| 6757 | // If this is the C FILE type, notify the AST context. | |||
| 6758 | if (IdentifierInfo *II = NewTD->getIdentifier()) | |||
| 6759 | if (!NewTD->isInvalidDecl() && | |||
| 6760 | NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { | |||
| 6761 | if (II->isStr("FILE")) | |||
| 6762 | Context.setFILEDecl(NewTD); | |||
| 6763 | else if (II->isStr("jmp_buf")) | |||
| 6764 | Context.setjmp_bufDecl(NewTD); | |||
| 6765 | else if (II->isStr("sigjmp_buf")) | |||
| 6766 | Context.setsigjmp_bufDecl(NewTD); | |||
| 6767 | else if (II->isStr("ucontext_t")) | |||
| 6768 | Context.setucontext_tDecl(NewTD); | |||
| 6769 | } | |||
| 6770 | ||||
| 6771 | return NewTD; | |||
| 6772 | } | |||
| 6773 | ||||
| 6774 | /// Determines whether the given declaration is an out-of-scope | |||
| 6775 | /// previous declaration. | |||
| 6776 | /// | |||
| 6777 | /// This routine should be invoked when name lookup has found a | |||
| 6778 | /// previous declaration (PrevDecl) that is not in the scope where a | |||
| 6779 | /// new declaration by the same name is being introduced. If the new | |||
| 6780 | /// declaration occurs in a local scope, previous declarations with | |||
| 6781 | /// linkage may still be considered previous declarations (C99 | |||
| 6782 | /// 6.2.2p4-5, C++ [basic.link]p6). | |||
| 6783 | /// | |||
| 6784 | /// \param PrevDecl the previous declaration found by name | |||
| 6785 | /// lookup | |||
| 6786 | /// | |||
| 6787 | /// \param DC the context in which the new declaration is being | |||
| 6788 | /// declared. | |||
| 6789 | /// | |||
| 6790 | /// \returns true if PrevDecl is an out-of-scope previous declaration | |||
| 6791 | /// for a new delcaration with the same name. | |||
| 6792 | static bool | |||
| 6793 | isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC, | |||
| 6794 | ASTContext &Context) { | |||
| 6795 | if (!PrevDecl) | |||
| 6796 | return false; | |||
| 6797 | ||||
| 6798 | if (!PrevDecl->hasLinkage()) | |||
| 6799 | return false; | |||
| 6800 | ||||
| 6801 | if (Context.getLangOpts().CPlusPlus) { | |||
| 6802 | // C++ [basic.link]p6: | |||
| 6803 | // If there is a visible declaration of an entity with linkage | |||
| 6804 | // having the same name and type, ignoring entities declared | |||
| 6805 | // outside the innermost enclosing namespace scope, the block | |||
| 6806 | // scope declaration declares that same entity and receives the | |||
| 6807 | // linkage of the previous declaration. | |||
| 6808 | DeclContext *OuterContext = DC->getRedeclContext(); | |||
| 6809 | if (!OuterContext->isFunctionOrMethod()) | |||
| 6810 | // This rule only applies to block-scope declarations. | |||
| 6811 | return false; | |||
| 6812 | ||||
| 6813 | DeclContext *PrevOuterContext = PrevDecl->getDeclContext(); | |||
| 6814 | if (PrevOuterContext->isRecord()) | |||
| 6815 | // We found a member function: ignore it. | |||
| 6816 | return false; | |||
| 6817 | ||||
| 6818 | // Find the innermost enclosing namespace for the new and | |||
| 6819 | // previous declarations. | |||
| 6820 | OuterContext = OuterContext->getEnclosingNamespaceContext(); | |||
| 6821 | PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext(); | |||
| 6822 | ||||
| 6823 | // The previous declaration is in a different namespace, so it | |||
| 6824 | // isn't the same function. | |||
| 6825 | if (!OuterContext->Equals(PrevOuterContext)) | |||
| 6826 | return false; | |||
| 6827 | } | |||
| 6828 | ||||
| 6829 | return true; | |||
| 6830 | } | |||
| 6831 | ||||
| 6832 | static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) { | |||
| 6833 | CXXScopeSpec &SS = D.getCXXScopeSpec(); | |||
| 6834 | if (!SS.isSet()) return; | |||
| 6835 | DD->setQualifierInfo(SS.getWithLocInContext(S.Context)); | |||
| 6836 | } | |||
| 6837 | ||||
| 6838 | bool Sema::inferObjCARCLifetime(ValueDecl *decl) { | |||
| 6839 | QualType type = decl->getType(); | |||
| 6840 | Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime(); | |||
| 6841 | if (lifetime == Qualifiers::OCL_Autoreleasing) { | |||
| 6842 | // Various kinds of declaration aren't allowed to be __autoreleasing. | |||
| 6843 | unsigned kind = -1U; | |||
| 6844 | if (VarDecl *var = dyn_cast<VarDecl>(decl)) { | |||
| 6845 | if (var->hasAttr<BlocksAttr>()) | |||
| 6846 | kind = 0; // __block | |||
| 6847 | else if (!var->hasLocalStorage()) | |||
| 6848 | kind = 1; // global | |||
| 6849 | } else if (isa<ObjCIvarDecl>(decl)) { | |||
| 6850 | kind = 3; // ivar | |||
| 6851 | } else if (isa<FieldDecl>(decl)) { | |||
| 6852 | kind = 2; // field | |||
| 6853 | } | |||
| 6854 | ||||
| 6855 | if (kind != -1U) { | |||
| 6856 | Diag(decl->getLocation(), diag::err_arc_autoreleasing_var) | |||
| 6857 | << kind; | |||
| 6858 | } | |||
| 6859 | } else if (lifetime == Qualifiers::OCL_None) { | |||
| 6860 | // Try to infer lifetime. | |||
| 6861 | if (!type->isObjCLifetimeType()) | |||
| 6862 | return false; | |||
| 6863 | ||||
| 6864 | lifetime = type->getObjCARCImplicitLifetime(); | |||
| 6865 | type = Context.getLifetimeQualifiedType(type, lifetime); | |||
| 6866 | decl->setType(type); | |||
| 6867 | } | |||
| 6868 | ||||
| 6869 | if (VarDecl *var = dyn_cast<VarDecl>(decl)) { | |||
| 6870 | // Thread-local variables cannot have lifetime. | |||
| 6871 | if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone && | |||
| 6872 | var->getTLSKind()) { | |||
| 6873 | Diag(var->getLocation(), diag::err_arc_thread_ownership) | |||
| 6874 | << var->getType(); | |||
| 6875 | return true; | |||
| 6876 | } | |||
| 6877 | } | |||
| 6878 | ||||
| 6879 | return false; | |||
| 6880 | } | |||
| 6881 | ||||
| 6882 | void Sema::deduceOpenCLAddressSpace(ValueDecl *Decl) { | |||
| 6883 | if (Decl->getType().hasAddressSpace()) | |||
| 6884 | return; | |||
| 6885 | if (Decl->getType()->isDependentType()) | |||
| 6886 | return; | |||
| 6887 | if (VarDecl *Var = dyn_cast<VarDecl>(Decl)) { | |||
| 6888 | QualType Type = Var->getType(); | |||
| 6889 | if (Type->isSamplerT() || Type->isVoidType()) | |||
| 6890 | return; | |||
| 6891 | LangAS ImplAS = LangAS::opencl_private; | |||
| 6892 | // OpenCL C v3.0 s6.7.8 - For OpenCL C 2.0 or with the | |||
| 6893 | // __opencl_c_program_scope_global_variables feature, the address space | |||
| 6894 | // for a variable at program scope or a static or extern variable inside | |||
| 6895 | // a function are inferred to be __global. | |||
| 6896 | if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()) && | |||
| 6897 | Var->hasGlobalStorage()) | |||
| 6898 | ImplAS = LangAS::opencl_global; | |||
| 6899 | // If the original type from a decayed type is an array type and that array | |||
| 6900 | // type has no address space yet, deduce it now. | |||
| 6901 | if (auto DT = dyn_cast<DecayedType>(Type)) { | |||
| 6902 | auto OrigTy = DT->getOriginalType(); | |||
| 6903 | if (!OrigTy.hasAddressSpace() && OrigTy->isArrayType()) { | |||
| 6904 | // Add the address space to the original array type and then propagate | |||
| 6905 | // that to the element type through `getAsArrayType`. | |||
| 6906 | OrigTy = Context.getAddrSpaceQualType(OrigTy, ImplAS); | |||
| 6907 | OrigTy = QualType(Context.getAsArrayType(OrigTy), 0); | |||
| 6908 | // Re-generate the decayed type. | |||
| 6909 | Type = Context.getDecayedType(OrigTy); | |||
| 6910 | } | |||
| 6911 | } | |||
| 6912 | Type = Context.getAddrSpaceQualType(Type, ImplAS); | |||
| 6913 | // Apply any qualifiers (including address space) from the array type to | |||
| 6914 | // the element type. This implements C99 6.7.3p8: "If the specification of | |||
| 6915 | // an array type includes any type qualifiers, the element type is so | |||
| 6916 | // qualified, not the array type." | |||
| 6917 | if (Type->isArrayType()) | |||
| 6918 | Type = QualType(Context.getAsArrayType(Type), 0); | |||
| 6919 | Decl->setType(Type); | |||
| 6920 | } | |||
| 6921 | } | |||
| 6922 | ||||
| 6923 | static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) { | |||
| 6924 | // Ensure that an auto decl is deduced otherwise the checks below might cache | |||
| 6925 | // the wrong linkage. | |||
| 6926 | assert(S.ParsingInitForAutoVars.count(&ND) == 0)(static_cast <bool> (S.ParsingInitForAutoVars.count(& ND) == 0) ? void (0) : __assert_fail ("S.ParsingInitForAutoVars.count(&ND) == 0" , "clang/lib/Sema/SemaDecl.cpp", 6926, __extension__ __PRETTY_FUNCTION__ )); | |||
| 6927 | ||||
| 6928 | // 'weak' only applies to declarations with external linkage. | |||
| 6929 | if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) { | |||
| 6930 | if (!ND.isExternallyVisible()) { | |||
| 6931 | S.Diag(Attr->getLocation(), diag::err_attribute_weak_static); | |||
| 6932 | ND.dropAttr<WeakAttr>(); | |||
| 6933 | } | |||
| 6934 | } | |||
| 6935 | if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) { | |||
| 6936 | if (ND.isExternallyVisible()) { | |||
| 6937 | S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static); | |||
| 6938 | ND.dropAttr<WeakRefAttr>(); | |||
| 6939 | ND.dropAttr<AliasAttr>(); | |||
| 6940 | } | |||
| 6941 | } | |||
| 6942 | ||||
| 6943 | if (auto *VD = dyn_cast<VarDecl>(&ND)) { | |||
| 6944 | if (VD->hasInit()) { | |||
| 6945 | if (const auto *Attr = VD->getAttr<AliasAttr>()) { | |||
| 6946 | assert(VD->isThisDeclarationADefinition() &&(static_cast <bool> (VD->isThisDeclarationADefinition () && !VD->isExternallyVisible() && "Broken AliasAttr handled late!" ) ? void (0) : __assert_fail ("VD->isThisDeclarationADefinition() && !VD->isExternallyVisible() && \"Broken AliasAttr handled late!\"" , "clang/lib/Sema/SemaDecl.cpp", 6947, __extension__ __PRETTY_FUNCTION__ )) | |||
| 6947 | !VD->isExternallyVisible() && "Broken AliasAttr handled late!")(static_cast <bool> (VD->isThisDeclarationADefinition () && !VD->isExternallyVisible() && "Broken AliasAttr handled late!" ) ? void (0) : __assert_fail ("VD->isThisDeclarationADefinition() && !VD->isExternallyVisible() && \"Broken AliasAttr handled late!\"" , "clang/lib/Sema/SemaDecl.cpp", 6947, __extension__ __PRETTY_FUNCTION__ )); | |||
| 6948 | S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0; | |||
| 6949 | VD->dropAttr<AliasAttr>(); | |||
| 6950 | } | |||
| 6951 | } | |||
| 6952 | } | |||
| 6953 | ||||
| 6954 | // 'selectany' only applies to externally visible variable declarations. | |||
| 6955 | // It does not apply to functions. | |||
| 6956 | if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) { | |||
| 6957 | if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) { | |||
| 6958 | S.Diag(Attr->getLocation(), | |||
| 6959 | diag::err_attribute_selectany_non_extern_data); | |||
| 6960 | ND.dropAttr<SelectAnyAttr>(); | |||
| 6961 | } | |||
| 6962 | } | |||
| 6963 | ||||
| 6964 | if (const InheritableAttr *Attr = getDLLAttr(&ND)) { | |||
| 6965 | auto *VD = dyn_cast<VarDecl>(&ND); | |||
| 6966 | bool IsAnonymousNS = false; | |||
| 6967 | bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft(); | |||
| 6968 | if (VD) { | |||
| 6969 | const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext()); | |||
| 6970 | while (NS && !IsAnonymousNS) { | |||
| 6971 | IsAnonymousNS = NS->isAnonymousNamespace(); | |||
| 6972 | NS = dyn_cast<NamespaceDecl>(NS->getParent()); | |||
| 6973 | } | |||
| 6974 | } | |||
| 6975 | // dll attributes require external linkage. Static locals may have external | |||
| 6976 | // linkage but still cannot be explicitly imported or exported. | |||
| 6977 | // In Microsoft mode, a variable defined in anonymous namespace must have | |||
| 6978 | // external linkage in order to be exported. | |||
| 6979 | bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft; | |||
| 6980 | if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) || | |||
| 6981 | (!AnonNSInMicrosoftMode && | |||
| 6982 | (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) { | |||
| 6983 | S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern) | |||
| 6984 | << &ND << Attr; | |||
| 6985 | ND.setInvalidDecl(); | |||
| 6986 | } | |||
| 6987 | } | |||
| 6988 | ||||
| 6989 | // Check the attributes on the function type, if any. | |||
| 6990 | if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) { | |||
| 6991 | // Don't declare this variable in the second operand of the for-statement; | |||
| 6992 | // GCC miscompiles that by ending its lifetime before evaluating the | |||
| 6993 | // third operand. See gcc.gnu.org/PR86769. | |||
| 6994 | AttributedTypeLoc ATL; | |||
| 6995 | for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc(); | |||
| 6996 | (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); | |||
| 6997 | TL = ATL.getModifiedLoc()) { | |||
| 6998 | // The [[lifetimebound]] attribute can be applied to the implicit object | |||
| 6999 | // parameter of a non-static member function (other than a ctor or dtor) | |||
| 7000 | // by applying it to the function type. | |||
| 7001 | if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) { | |||
| 7002 | const auto *MD = dyn_cast<CXXMethodDecl>(FD); | |||
| 7003 | if (!MD || MD->isStatic()) { | |||
| 7004 | S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param) | |||
| 7005 | << !MD << A->getRange(); | |||
| 7006 | } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) { | |||
| 7007 | S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor) | |||
| 7008 | << isa<CXXDestructorDecl>(MD) << A->getRange(); | |||
| 7009 | } | |||
| 7010 | } | |||
| 7011 | } | |||
| 7012 | } | |||
| 7013 | } | |||
| 7014 | ||||
| 7015 | static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl, | |||
| 7016 | NamedDecl *NewDecl, | |||
| 7017 | bool IsSpecialization, | |||
| 7018 | bool IsDefinition) { | |||
| 7019 | if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl()) | |||
| 7020 | return; | |||
| 7021 | ||||
| 7022 | bool IsTemplate = false; | |||
| 7023 | if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) { | |||
| 7024 | OldDecl = OldTD->getTemplatedDecl(); | |||
| 7025 | IsTemplate = true; | |||
| 7026 | if (!IsSpecialization) | |||
| 7027 | IsDefinition = false; | |||
| 7028 | } | |||
| 7029 | if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) { | |||
| 7030 | NewDecl = NewTD->getTemplatedDecl(); | |||
| 7031 | IsTemplate = true; | |||
| 7032 | } | |||
| 7033 | ||||
| 7034 | if (!OldDecl || !NewDecl) | |||
| 7035 | return; | |||
| 7036 | ||||
| 7037 | const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>(); | |||
| 7038 | const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>(); | |||
| 7039 | const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>(); | |||
| 7040 | const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>(); | |||
| 7041 | ||||
| 7042 | // dllimport and dllexport are inheritable attributes so we have to exclude | |||
| 7043 | // inherited attribute instances. | |||
| 7044 | bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) || | |||
| 7045 | (NewExportAttr && !NewExportAttr->isInherited()); | |||
| 7046 | ||||
| 7047 | // A redeclaration is not allowed to add a dllimport or dllexport attribute, | |||
| 7048 | // the only exception being explicit specializations. | |||
| 7049 | // Implicitly generated declarations are also excluded for now because there | |||
| 7050 | // is no other way to switch these to use dllimport or dllexport. | |||
| 7051 | bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr; | |||
| 7052 | ||||
| 7053 | if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) { | |||
| 7054 | // Allow with a warning for free functions and global variables. | |||
| 7055 | bool JustWarn = false; | |||
| 7056 | if (!OldDecl->isCXXClassMember()) { | |||
| 7057 | auto *VD = dyn_cast<VarDecl>(OldDecl); | |||
| 7058 | if (VD && !VD->getDescribedVarTemplate()) | |||
| 7059 | JustWarn = true; | |||
| 7060 | auto *FD = dyn_cast<FunctionDecl>(OldDecl); | |||
| 7061 | if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) | |||
| 7062 | JustWarn = true; | |||
| 7063 | } | |||
| 7064 | ||||
| 7065 | // We cannot change a declaration that's been used because IR has already | |||
| 7066 | // been emitted. Dllimported functions will still work though (modulo | |||
| 7067 | // address equality) as they can use the thunk. | |||
| 7068 | if (OldDecl->isUsed()) | |||
| 7069 | if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr) | |||
| 7070 | JustWarn = false; | |||
| 7071 | ||||
| 7072 | unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration | |||
| 7073 | : diag::err_attribute_dll_redeclaration; | |||
| 7074 | S.Diag(NewDecl->getLocation(), DiagID) | |||
| 7075 | << NewDecl | |||
| 7076 | << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr); | |||
| 7077 | S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); | |||
| 7078 | if (!JustWarn) { | |||
| 7079 | NewDecl->setInvalidDecl(); | |||
| 7080 | return; | |||
| 7081 | } | |||
| 7082 | } | |||
| 7083 | ||||
| 7084 | // A redeclaration is not allowed to drop a dllimport attribute, the only | |||
| 7085 | // exceptions being inline function definitions (except for function | |||
| 7086 | // templates), local extern declarations, qualified friend declarations or | |||
| 7087 | // special MSVC extension: in the last case, the declaration is treated as if | |||
| 7088 | // it were marked dllexport. | |||
| 7089 | bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false; | |||
| 7090 | bool IsMicrosoftABI = S.Context.getTargetInfo().shouldDLLImportComdatSymbols(); | |||
| 7091 | if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) { | |||
| 7092 | // Ignore static data because out-of-line definitions are diagnosed | |||
| 7093 | // separately. | |||
| 7094 | IsStaticDataMember = VD->isStaticDataMember(); | |||
| 7095 | IsDefinition = VD->isThisDeclarationADefinition(S.Context) != | |||
| 7096 | VarDecl::DeclarationOnly; | |||
| 7097 | } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) { | |||
| 7098 | IsInline = FD->isInlined(); | |||
| 7099 | IsQualifiedFriend = FD->getQualifier() && | |||
| 7100 | FD->getFriendObjectKind() == Decl::FOK_Declared; | |||
| 7101 | } | |||
| 7102 | ||||
| 7103 | if (OldImportAttr && !HasNewAttr && | |||
| 7104 | (!IsInline || (IsMicrosoftABI && IsTemplate)) && !IsStaticDataMember && | |||
| 7105 | !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) { | |||
| 7106 | if (IsMicrosoftABI && IsDefinition) { | |||
| 7107 | if (IsSpecialization) { | |||
| 7108 | S.Diag( | |||
| 7109 | NewDecl->getLocation(), | |||
| 7110 | diag::err_attribute_dllimport_function_specialization_definition); | |||
| 7111 | S.Diag(OldImportAttr->getLocation(), diag::note_attribute); | |||
| 7112 | NewDecl->dropAttr<DLLImportAttr>(); | |||
| 7113 | } else { | |||
| 7114 | S.Diag(NewDecl->getLocation(), | |||
| 7115 | diag::warn_redeclaration_without_import_attribute) | |||
| 7116 | << NewDecl; | |||
| 7117 | S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); | |||
| 7118 | NewDecl->dropAttr<DLLImportAttr>(); | |||
| 7119 | NewDecl->addAttr(DLLExportAttr::CreateImplicit( | |||
| 7120 | S.Context, NewImportAttr->getRange())); | |||
| 7121 | } | |||
| 7122 | } else if (IsMicrosoftABI && IsSpecialization) { | |||
| 7123 | assert(!IsDefinition)(static_cast <bool> (!IsDefinition) ? void (0) : __assert_fail ("!IsDefinition", "clang/lib/Sema/SemaDecl.cpp", 7123, __extension__ __PRETTY_FUNCTION__)); | |||
| 7124 | // MSVC allows this. Keep the inherited attribute. | |||
| 7125 | } else { | |||
| 7126 | S.Diag(NewDecl->getLocation(), | |||
| 7127 | diag::warn_redeclaration_without_attribute_prev_attribute_ignored) | |||
| 7128 | << NewDecl << OldImportAttr; | |||
| 7129 | S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); | |||
| 7130 | S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute); | |||
| 7131 | OldDecl->dropAttr<DLLImportAttr>(); | |||
| 7132 | NewDecl->dropAttr<DLLImportAttr>(); | |||
| 7133 | } | |||
| 7134 | } else if (IsInline && OldImportAttr && !IsMicrosoftABI) { | |||
| 7135 | // In MinGW, seeing a function declared inline drops the dllimport | |||
| 7136 | // attribute. | |||
| 7137 | OldDecl->dropAttr<DLLImportAttr>(); | |||
| 7138 | NewDecl->dropAttr<DLLImportAttr>(); | |||
| 7139 | S.Diag(NewDecl->getLocation(), | |||
| 7140 | diag::warn_dllimport_dropped_from_inline_function) | |||
| 7141 | << NewDecl << OldImportAttr; | |||
| 7142 | } | |||
| 7143 | ||||
| 7144 | // A specialization of a class template member function is processed here | |||
| 7145 | // since it's a redeclaration. If the parent class is dllexport, the | |||
| 7146 | // specialization inherits that attribute. This doesn't happen automatically | |||
| 7147 | // since the parent class isn't instantiated until later. | |||
| 7148 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) { | |||
| 7149 | if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization && | |||
| 7150 | !NewImportAttr && !NewExportAttr) { | |||
| 7151 | if (const DLLExportAttr *ParentExportAttr = | |||
| 7152 | MD->getParent()->getAttr<DLLExportAttr>()) { | |||
| 7153 | DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context); | |||
| 7154 | NewAttr->setInherited(true); | |||
| 7155 | NewDecl->addAttr(NewAttr); | |||
| 7156 | } | |||
| 7157 | } | |||
| 7158 | } | |||
| 7159 | } | |||
| 7160 | ||||
| 7161 | /// Given that we are within the definition of the given function, | |||
| 7162 | /// will that definition behave like C99's 'inline', where the | |||
| 7163 | /// definition is discarded except for optimization purposes? | |||
| 7164 | static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) { | |||
| 7165 | // Try to avoid calling GetGVALinkageForFunction. | |||
| 7166 | ||||
| 7167 | // All cases of this require the 'inline' keyword. | |||
| 7168 | if (!FD->isInlined()) return false; | |||
| 7169 | ||||
| 7170 | // This is only possible in C++ with the gnu_inline attribute. | |||
| 7171 | if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>()) | |||
| 7172 | return false; | |||
| 7173 | ||||
| 7174 | // Okay, go ahead and call the relatively-more-expensive function. | |||
| 7175 | return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally; | |||
| 7176 | } | |||
| 7177 | ||||
| 7178 | /// Determine whether a variable is extern "C" prior to attaching | |||
| 7179 | /// an initializer. We can't just call isExternC() here, because that | |||
| 7180 | /// will also compute and cache whether the declaration is externally | |||
| 7181 | /// visible, which might change when we attach the initializer. | |||
| 7182 | /// | |||
| 7183 | /// This can only be used if the declaration is known to not be a | |||
| 7184 | /// redeclaration of an internal linkage declaration. | |||
| 7185 | /// | |||
| 7186 | /// For instance: | |||
| 7187 | /// | |||
| 7188 | /// auto x = []{}; | |||
| 7189 | /// | |||
| 7190 | /// Attaching the initializer here makes this declaration not externally | |||
| 7191 | /// visible, because its type has internal linkage. | |||
| 7192 | /// | |||
| 7193 | /// FIXME: This is a hack. | |||
| 7194 | template<typename T> | |||
| 7195 | static bool isIncompleteDeclExternC(Sema &S, const T *D) { | |||
| 7196 | if (S.getLangOpts().CPlusPlus) { | |||
| 7197 | // In C++, the overloadable attribute negates the effects of extern "C". | |||
| 7198 | if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>()) | |||
| 7199 | return false; | |||
| 7200 | ||||
| 7201 | // So do CUDA's host/device attributes. | |||
| 7202 | if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() || | |||
| 7203 | D->template hasAttr<CUDAHostAttr>())) | |||
| 7204 | return false; | |||
| 7205 | } | |||
| 7206 | return D->isExternC(); | |||
| 7207 | } | |||
| 7208 | ||||
| 7209 | static bool shouldConsiderLinkage(const VarDecl *VD) { | |||
| 7210 | const DeclContext *DC = VD->getDeclContext()->getRedeclContext(); | |||
| 7211 | if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) || | |||
| 7212 | isa<OMPDeclareMapperDecl>(DC)) | |||
| 7213 | return VD->hasExternalStorage(); | |||
| 7214 | if (DC->isFileContext()) | |||
| 7215 | return true; | |||
| 7216 | if (DC->isRecord()) | |||
| 7217 | return false; | |||
| 7218 | if (DC->getDeclKind() == Decl::HLSLBuffer) | |||
| 7219 | return false; | |||
| 7220 | ||||
| 7221 | if (isa<RequiresExprBodyDecl>(DC)) | |||
| 7222 | return false; | |||
| 7223 | llvm_unreachable("Unexpected context")::llvm::llvm_unreachable_internal("Unexpected context", "clang/lib/Sema/SemaDecl.cpp" , 7223); | |||
| 7224 | } | |||
| 7225 | ||||
| 7226 | static bool shouldConsiderLinkage(const FunctionDecl *FD) { | |||
| 7227 | const DeclContext *DC = FD->getDeclContext()->getRedeclContext(); | |||
| 7228 | if (DC->isFileContext() || DC->isFunctionOrMethod() || | |||
| 7229 | isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC)) | |||
| 7230 | return true; | |||
| 7231 | if (DC->isRecord()) | |||
| 7232 | return false; | |||
| 7233 | llvm_unreachable("Unexpected context")::llvm::llvm_unreachable_internal("Unexpected context", "clang/lib/Sema/SemaDecl.cpp" , 7233); | |||
| 7234 | } | |||
| 7235 | ||||
| 7236 | static bool hasParsedAttr(Scope *S, const Declarator &PD, | |||
| 7237 | ParsedAttr::Kind Kind) { | |||
| 7238 | // Check decl attributes on the DeclSpec. | |||
| 7239 | if (PD.getDeclSpec().getAttributes().hasAttribute(Kind)) | |||
| 7240 | return true; | |||
| 7241 | ||||
| 7242 | // Walk the declarator structure, checking decl attributes that were in a type | |||
| 7243 | // position to the decl itself. | |||
| 7244 | for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) { | |||
| 7245 | if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind)) | |||
| 7246 | return true; | |||
| 7247 | } | |||
| 7248 | ||||
| 7249 | // Finally, check attributes on the decl itself. | |||
| 7250 | return PD.getAttributes().hasAttribute(Kind) || | |||
| 7251 | PD.getDeclarationAttributes().hasAttribute(Kind); | |||
| 7252 | } | |||
| 7253 | ||||
| 7254 | /// Adjust the \c DeclContext for a function or variable that might be a | |||
| 7255 | /// function-local external declaration. | |||
| 7256 | bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) { | |||
| 7257 | if (!DC->isFunctionOrMethod()) | |||
| 7258 | return false; | |||
| 7259 | ||||
| 7260 | // If this is a local extern function or variable declared within a function | |||
| 7261 | // template, don't add it into the enclosing namespace scope until it is | |||
| 7262 | // instantiated; it might have a dependent type right now. | |||
| 7263 | if (DC->isDependentContext()) | |||
| 7264 | return true; | |||
| 7265 | ||||
| 7266 | // C++11 [basic.link]p7: | |||
| 7267 | // When a block scope declaration of an entity with linkage is not found to | |||
| 7268 | // refer to some other declaration, then that entity is a member of the | |||
| 7269 | // innermost enclosing namespace. | |||
| 7270 | // | |||
| 7271 | // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a | |||
| 7272 | // semantically-enclosing namespace, not a lexically-enclosing one. | |||
| 7273 | while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC)) | |||
| 7274 | DC = DC->getParent(); | |||
| 7275 | return true; | |||
| 7276 | } | |||
| 7277 | ||||
| 7278 | /// Returns true if given declaration has external C language linkage. | |||
| 7279 | static bool isDeclExternC(const Decl *D) { | |||
| 7280 | if (const auto *FD = dyn_cast<FunctionDecl>(D)) | |||
| 7281 | return FD->isExternC(); | |||
| 7282 | if (const auto *VD = dyn_cast<VarDecl>(D)) | |||
| 7283 | return VD->isExternC(); | |||
| 7284 | ||||
| 7285 | llvm_unreachable("Unknown type of decl!")::llvm::llvm_unreachable_internal("Unknown type of decl!", "clang/lib/Sema/SemaDecl.cpp" , 7285); | |||
| 7286 | } | |||
| 7287 | ||||
| 7288 | /// Returns true if there hasn't been any invalid type diagnosed. | |||
| 7289 | static bool diagnoseOpenCLTypes(Sema &Se, VarDecl *NewVD) { | |||
| 7290 | DeclContext *DC = NewVD->getDeclContext(); | |||
| 7291 | QualType R = NewVD->getType(); | |||
| 7292 | ||||
| 7293 | // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument. | |||
| 7294 | // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function | |||
| 7295 | // argument. | |||
| 7296 | if (R->isImageType() || R->isPipeType()) { | |||
| 7297 | Se.Diag(NewVD->getLocation(), | |||
| 7298 | diag::err_opencl_type_can_only_be_used_as_function_parameter) | |||
| 7299 | << R; | |||
| 7300 | NewVD->setInvalidDecl(); | |||
| 7301 | return false; | |||
| 7302 | } | |||
| 7303 | ||||
| 7304 | // OpenCL v1.2 s6.9.r: | |||
| 7305 | // The event type cannot be used to declare a program scope variable. | |||
| 7306 | // OpenCL v2.0 s6.9.q: | |||
| 7307 | // The clk_event_t and reserve_id_t types cannot be declared in program | |||
| 7308 | // scope. | |||
| 7309 | if (NewVD->hasGlobalStorage() && !NewVD->isStaticLocal()) { | |||
| 7310 | if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) { | |||
| 7311 | Se.Diag(NewVD->getLocation(), | |||
| 7312 | diag::err_invalid_type_for_program_scope_var) | |||
| 7313 | << R; | |||
| 7314 | NewVD->setInvalidDecl(); | |||
| 7315 | return false; | |||
| 7316 | } | |||
| 7317 | } | |||
| 7318 | ||||
| 7319 | // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed. | |||
| 7320 | if (!Se.getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers", | |||
| 7321 | Se.getLangOpts())) { | |||
| 7322 | QualType NR = R.getCanonicalType(); | |||
| 7323 | while (NR->isPointerType() || NR->isMemberFunctionPointerType() || | |||
| 7324 | NR->isReferenceType()) { | |||
| 7325 | if (NR->isFunctionPointerType() || NR->isMemberFunctionPointerType() || | |||
| 7326 | NR->isFunctionReferenceType()) { | |||
| 7327 | Se.Diag(NewVD->getLocation(), diag::err_opencl_function_pointer) | |||
| 7328 | << NR->isReferenceType(); | |||
| 7329 | NewVD->setInvalidDecl(); | |||
| 7330 | return false; | |||
| 7331 | } | |||
| 7332 | NR = NR->getPointeeType(); | |||
| 7333 | } | |||
| 7334 | } | |||
| 7335 | ||||
| 7336 | if (!Se.getOpenCLOptions().isAvailableOption("cl_khr_fp16", | |||
| 7337 | Se.getLangOpts())) { | |||
| 7338 | // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and | |||
| 7339 | // half array type (unless the cl_khr_fp16 extension is enabled). | |||
| 7340 | if (Se.Context.getBaseElementType(R)->isHalfType()) { | |||
| 7341 | Se.Diag(NewVD->getLocation(), diag::err_opencl_half_declaration) << R; | |||
| 7342 | NewVD->setInvalidDecl(); | |||
| 7343 | return false; | |||
| 7344 | } | |||
| 7345 | } | |||
| 7346 | ||||
| 7347 | // OpenCL v1.2 s6.9.r: | |||
| 7348 | // The event type cannot be used with the __local, __constant and __global | |||
| 7349 | // address space qualifiers. | |||
| 7350 | if (R->isEventT()) { | |||
| 7351 | if (R.getAddressSpace() != LangAS::opencl_private) { | |||
| 7352 | Se.Diag(NewVD->getBeginLoc(), diag::err_event_t_addr_space_qual); | |||
| 7353 | NewVD->setInvalidDecl(); | |||
| 7354 | return false; | |||
| 7355 | } | |||
| 7356 | } | |||
| 7357 | ||||
| 7358 | if (R->isSamplerT()) { | |||
| 7359 | // OpenCL v1.2 s6.9.b p4: | |||
| 7360 | // The sampler type cannot be used with the __local and __global address | |||
| 7361 | // space qualifiers. | |||
| 7362 | if (R.getAddressSpace() == LangAS::opencl_local || | |||
| 7363 | R.getAddressSpace() == LangAS::opencl_global) { | |||
| 7364 | Se.Diag(NewVD->getLocation(), diag::err_wrong_sampler_addressspace); | |||
| 7365 | NewVD->setInvalidDecl(); | |||
| 7366 | } | |||
| 7367 | ||||
| 7368 | // OpenCL v1.2 s6.12.14.1: | |||
| 7369 | // A global sampler must be declared with either the constant address | |||
| 7370 | // space qualifier or with the const qualifier. | |||
| 7371 | if (DC->isTranslationUnit() && | |||
| 7372 | !(R.getAddressSpace() == LangAS::opencl_constant || | |||
| 7373 | R.isConstQualified())) { | |||
| 7374 | Se.Diag(NewVD->getLocation(), diag::err_opencl_nonconst_global_sampler); | |||
| 7375 | NewVD->setInvalidDecl(); | |||
| 7376 | } | |||
| 7377 | if (NewVD->isInvalidDecl()) | |||
| 7378 | return false; | |||
| 7379 | } | |||
| 7380 | ||||
| 7381 | return true; | |||
| 7382 | } | |||
| 7383 | ||||
| 7384 | template <typename AttrTy> | |||
| 7385 | static void copyAttrFromTypedefToDecl(Sema &S, Decl *D, const TypedefType *TT) { | |||
| 7386 | const TypedefNameDecl *TND = TT->getDecl(); | |||
| 7387 | if (const auto *Attribute = TND->getAttr<AttrTy>()) { | |||
| 7388 | AttrTy *Clone = Attribute->clone(S.Context); | |||
| 7389 | Clone->setInherited(true); | |||
| 7390 | D->addAttr(Clone); | |||
| 7391 | } | |||
| 7392 | } | |||
| 7393 | ||||
| 7394 | // This function emits warning and a corresponding note based on the | |||
| 7395 | // ReadOnlyPlacementAttr attribute. The warning checks that all global variable | |||
| 7396 | // declarations of an annotated type must be const qualified. | |||
| 7397 | void emitReadOnlyPlacementAttrWarning(Sema &S, const VarDecl *VD) { | |||
| 7398 | QualType VarType = VD->getType().getCanonicalType(); | |||
| 7399 | ||||
| 7400 | // Ignore local declarations (for now) and those with const qualification. | |||
| 7401 | // TODO: Local variables should not be allowed if their type declaration has | |||
| 7402 | // ReadOnlyPlacementAttr attribute. To be handled in follow-up patch. | |||
| 7403 | if (!VD || VD->hasLocalStorage() || VD->getType().isConstQualified()) | |||
| 7404 | return; | |||
| 7405 | ||||
| 7406 | if (VarType->isArrayType()) { | |||
| 7407 | // Retrieve element type for array declarations. | |||
| 7408 | VarType = S.getASTContext().getBaseElementType(VarType); | |||
| 7409 | } | |||
| 7410 | ||||
| 7411 | const RecordDecl *RD = VarType->getAsRecordDecl(); | |||
| 7412 | ||||
| 7413 | // Check if the record declaration is present and if it has any attributes. | |||
| 7414 | if (RD == nullptr) | |||
| 7415 | return; | |||
| 7416 | ||||
| 7417 | if (const auto *ConstDecl = RD->getAttr<ReadOnlyPlacementAttr>()) { | |||
| 7418 | S.Diag(VD->getLocation(), diag::warn_var_decl_not_read_only) << RD; | |||
| 7419 | S.Diag(ConstDecl->getLocation(), diag::note_enforce_read_only_placement); | |||
| 7420 | return; | |||
| 7421 | } | |||
| 7422 | } | |||
| 7423 | ||||
| 7424 | NamedDecl *Sema::ActOnVariableDeclarator( | |||
| 7425 | Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo, | |||
| 7426 | LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists, | |||
| 7427 | bool &AddToScope, ArrayRef<BindingDecl *> Bindings) { | |||
| 7428 | QualType R = TInfo->getType(); | |||
| 7429 | DeclarationName Name = GetNameForDeclarator(D).getName(); | |||
| 7430 | ||||
| 7431 | IdentifierInfo *II = Name.getAsIdentifierInfo(); | |||
| 7432 | ||||
| 7433 | if (D.isDecompositionDeclarator()) { | |||
| 7434 | // Take the name of the first declarator as our name for diagnostic | |||
| 7435 | // purposes. | |||
| 7436 | auto &Decomp = D.getDecompositionDeclarator(); | |||
| 7437 | if (!Decomp.bindings().empty()) { | |||
| 7438 | II = Decomp.bindings()[0].Name; | |||
| 7439 | Name = II; | |||
| 7440 | } | |||
| 7441 | } else if (!II) { | |||
| 7442 | Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name; | |||
| 7443 | return nullptr; | |||
| 7444 | } | |||
| 7445 | ||||
| 7446 | ||||
| 7447 | DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec(); | |||
| 7448 | StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec()); | |||
| 7449 | ||||
| 7450 | // dllimport globals without explicit storage class are treated as extern. We | |||
| 7451 | // have to change the storage class this early to get the right DeclContext. | |||
| 7452 | if (SC == SC_None && !DC->isRecord() && | |||
| 7453 | hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) && | |||
| 7454 | !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport)) | |||
| 7455 | SC = SC_Extern; | |||
| 7456 | ||||
| 7457 | DeclContext *OriginalDC = DC; | |||
| 7458 | bool IsLocalExternDecl = SC == SC_Extern && | |||
| 7459 | adjustContextForLocalExternDecl(DC); | |||
| 7460 | ||||
| 7461 | if (SCSpec == DeclSpec::SCS_mutable) { | |||
| 7462 | // mutable can only appear on non-static class members, so it's always | |||
| 7463 | // an error here | |||
| 7464 | Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember); | |||
| 7465 | D.setInvalidType(); | |||
| 7466 | SC = SC_None; | |||
| 7467 | } | |||
| 7468 | ||||
| 7469 | if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register && | |||
| 7470 | !D.getAsmLabel() && !getSourceManager().isInSystemMacro( | |||
| 7471 | D.getDeclSpec().getStorageClassSpecLoc())) { | |||
| 7472 | // In C++11, the 'register' storage class specifier is deprecated. | |||
| 7473 | // Suppress the warning in system macros, it's used in macros in some | |||
| 7474 | // popular C system headers, such as in glibc's htonl() macro. | |||
| 7475 | Diag(D.getDeclSpec().getStorageClassSpecLoc(), | |||
| 7476 | getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class | |||
| 7477 | : diag::warn_deprecated_register) | |||
| 7478 | << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); | |||
| 7479 | } | |||
| 7480 | ||||
| 7481 | DiagnoseFunctionSpecifiers(D.getDeclSpec()); | |||
| 7482 | ||||
| 7483 | if (!DC->isRecord() && S->getFnParent() == nullptr) { | |||
| 7484 | // C99 6.9p2: The storage-class specifiers auto and register shall not | |||
| 7485 | // appear in the declaration specifiers in an external declaration. | |||
| 7486 | // Global Register+Asm is a GNU extension we support. | |||
| 7487 | if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) { | |||
| 7488 | Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope); | |||
| 7489 | D.setInvalidType(); | |||
| 7490 | } | |||
| 7491 | } | |||
| 7492 | ||||
| 7493 | // If this variable has a VLA type and an initializer, try to | |||
| 7494 | // fold to a constant-sized type. This is otherwise invalid. | |||
| 7495 | if (D.hasInitializer() && R->isVariableArrayType()) | |||
| 7496 | tryToFixVariablyModifiedVarType(TInfo, R, D.getIdentifierLoc(), | |||
| 7497 | /*DiagID=*/0); | |||
| 7498 | ||||
| 7499 | bool IsMemberSpecialization = false; | |||
| 7500 | bool IsVariableTemplateSpecialization = false; | |||
| 7501 | bool IsPartialSpecialization = false; | |||
| 7502 | bool IsVariableTemplate = false; | |||
| 7503 | VarDecl *NewVD = nullptr; | |||
| 7504 | VarTemplateDecl *NewTemplate = nullptr; | |||
| 7505 | TemplateParameterList *TemplateParams = nullptr; | |||
| 7506 | if (!getLangOpts().CPlusPlus) { | |||
| 7507 | NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(), | |||
| 7508 | II, R, TInfo, SC); | |||
| 7509 | ||||
| 7510 | if (R->getContainedDeducedType()) | |||
| 7511 | ParsingInitForAutoVars.insert(NewVD); | |||
| 7512 | ||||
| 7513 | if (D.isInvalidType()) | |||
| 7514 | NewVD->setInvalidDecl(); | |||
| 7515 | ||||
| 7516 | if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() && | |||
| 7517 | NewVD->hasLocalStorage()) | |||
| 7518 | checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(), | |||
| 7519 | NTCUC_AutoVar, NTCUK_Destruct); | |||
| 7520 | } else { | |||
| 7521 | bool Invalid = false; | |||
| 7522 | ||||
| 7523 | if (DC->isRecord() && !CurContext->isRecord()) { | |||
| 7524 | // This is an out-of-line definition of a static data member. | |||
| 7525 | switch (SC) { | |||
| 7526 | case SC_None: | |||
| 7527 | break; | |||
| 7528 | case SC_Static: | |||
| 7529 | Diag(D.getDeclSpec().getStorageClassSpecLoc(), | |||
| 7530 | diag::err_static_out_of_line) | |||
| 7531 | << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); | |||
| 7532 | break; | |||
| 7533 | case SC_Auto: | |||
| 7534 | case SC_Register: | |||
| 7535 | case SC_Extern: | |||
| 7536 | // [dcl.stc] p2: The auto or register specifiers shall be applied only | |||
| 7537 | // to names of variables declared in a block or to function parameters. | |||
| 7538 | // [dcl.stc] p6: The extern specifier cannot be used in the declaration | |||
| 7539 | // of class members | |||
| 7540 | ||||
| 7541 | Diag(D.getDeclSpec().getStorageClassSpecLoc(), | |||
| 7542 | diag::err_storage_class_for_static_member) | |||
| 7543 | << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); | |||
| 7544 | break; | |||
| 7545 | case SC_PrivateExtern: | |||
| 7546 | llvm_unreachable("C storage class in c++!")::llvm::llvm_unreachable_internal("C storage class in c++!", "clang/lib/Sema/SemaDecl.cpp" , 7546); | |||
| 7547 | } | |||
| 7548 | } | |||
| 7549 | ||||
| 7550 | if (SC == SC_Static && CurContext->isRecord()) { | |||
| 7551 | if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) { | |||
| 7552 | // Walk up the enclosing DeclContexts to check for any that are | |||
| 7553 | // incompatible with static data members. | |||
| 7554 | const DeclContext *FunctionOrMethod = nullptr; | |||
| 7555 | const CXXRecordDecl *AnonStruct = nullptr; | |||
| 7556 | for (DeclContext *Ctxt = DC; Ctxt; Ctxt = Ctxt->getParent()) { | |||
| 7557 | if (Ctxt->isFunctionOrMethod()) { | |||
| 7558 | FunctionOrMethod = Ctxt; | |||
| 7559 | break; | |||
| 7560 | } | |||
| 7561 | const CXXRecordDecl *ParentDecl = dyn_cast<CXXRecordDecl>(Ctxt); | |||
| 7562 | if (ParentDecl && !ParentDecl->getDeclName()) { | |||
| 7563 | AnonStruct = ParentDecl; | |||
| 7564 | break; | |||
| 7565 | } | |||
| 7566 | } | |||
| 7567 | if (FunctionOrMethod) { | |||
| 7568 | // C++ [class.static.data]p5: A local class shall not have static data | |||
| 7569 | // members. | |||
| 7570 | Diag(D.getIdentifierLoc(), | |||
| 7571 | diag::err_static_data_member_not_allowed_in_local_class) | |||
| 7572 | << Name << RD->getDeclName() << RD->getTagKind(); | |||
| 7573 | } else if (AnonStruct) { | |||
| 7574 | // C++ [class.static.data]p4: Unnamed classes and classes contained | |||
| 7575 | // directly or indirectly within unnamed classes shall not contain | |||
| 7576 | // static data members. | |||
| 7577 | Diag(D.getIdentifierLoc(), | |||
| 7578 | diag::err_static_data_member_not_allowed_in_anon_struct) | |||
| 7579 | << Name << AnonStruct->getTagKind(); | |||
| 7580 | Invalid = true; | |||
| 7581 | } else if (RD->isUnion()) { | |||
| 7582 | // C++98 [class.union]p1: If a union contains a static data member, | |||
| 7583 | // the program is ill-formed. C++11 drops this restriction. | |||
| 7584 | Diag(D.getIdentifierLoc(), | |||
| 7585 | getLangOpts().CPlusPlus11 | |||
| 7586 | ? diag::warn_cxx98_compat_static_data_member_in_union | |||
| 7587 | : diag::ext_static_data_member_in_union) << Name; | |||
| 7588 | } | |||
| 7589 | } | |||
| 7590 | } | |||
| 7591 | ||||
| 7592 | // Match up the template parameter lists with the scope specifier, then | |||
| 7593 | // determine whether we have a template or a template specialization. | |||
| 7594 | bool InvalidScope = false; | |||
| 7595 | TemplateParams = MatchTemplateParametersToScopeSpecifier( | |||
| 7596 | D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(), | |||
| 7597 | D.getCXXScopeSpec(), | |||
| 7598 | D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId | |||
| 7599 | ? D.getName().TemplateId | |||
| 7600 | : nullptr, | |||
| 7601 | TemplateParamLists, | |||
| 7602 | /*never a friend*/ false, IsMemberSpecialization, InvalidScope); | |||
| 7603 | Invalid |= InvalidScope; | |||
| 7604 | ||||
| 7605 | if (TemplateParams) { | |||
| 7606 | if (!TemplateParams->size() && | |||
| 7607 | D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { | |||
| 7608 | // There is an extraneous 'template<>' for this variable. Complain | |||
| 7609 | // about it, but allow the declaration of the variable. | |||
| 7610 | Diag(TemplateParams->getTemplateLoc(), | |||
| 7611 | diag::err_template_variable_noparams) | |||
| 7612 | << II | |||
| 7613 | << SourceRange(TemplateParams->getTemplateLoc(), | |||
| 7614 | TemplateParams->getRAngleLoc()); | |||
| 7615 | TemplateParams = nullptr; | |||
| 7616 | } else { | |||
| 7617 | // Check that we can declare a template here. | |||
| 7618 | if (CheckTemplateDeclScope(S, TemplateParams)) | |||
| 7619 | return nullptr; | |||
| 7620 | ||||
| 7621 | if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { | |||
| 7622 | // This is an explicit specialization or a partial specialization. | |||
| 7623 | IsVariableTemplateSpecialization = true; | |||
| 7624 | IsPartialSpecialization = TemplateParams->size() > 0; | |||
| 7625 | } else { // if (TemplateParams->size() > 0) | |||
| 7626 | // This is a template declaration. | |||
| 7627 | IsVariableTemplate = true; | |||
| 7628 | ||||
| 7629 | // Only C++1y supports variable templates (N3651). | |||
| 7630 | Diag(D.getIdentifierLoc(), | |||
| 7631 | getLangOpts().CPlusPlus14 | |||
| 7632 | ? diag::warn_cxx11_compat_variable_template | |||
| 7633 | : diag::ext_variable_template); | |||
| 7634 | } | |||
| 7635 | } | |||
| 7636 | } else { | |||
| 7637 | // Check that we can declare a member specialization here. | |||
| 7638 | if (!TemplateParamLists.empty() && IsMemberSpecialization && | |||
| 7639 | CheckTemplateDeclScope(S, TemplateParamLists.back())) | |||
| 7640 | return nullptr; | |||
| 7641 | assert((Invalid ||(static_cast <bool> ((Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && "should have a 'template<>' for this decl" ) ? void (0) : __assert_fail ("(Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && \"should have a 'template<>' for this decl\"" , "clang/lib/Sema/SemaDecl.cpp", 7643, __extension__ __PRETTY_FUNCTION__ )) | |||
| 7642 | D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&(static_cast <bool> ((Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && "should have a 'template<>' for this decl" ) ? void (0) : __assert_fail ("(Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && \"should have a 'template<>' for this decl\"" , "clang/lib/Sema/SemaDecl.cpp", 7643, __extension__ __PRETTY_FUNCTION__ )) | |||
| 7643 | "should have a 'template<>' for this decl")(static_cast <bool> ((Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && "should have a 'template<>' for this decl" ) ? void (0) : __assert_fail ("(Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && \"should have a 'template<>' for this decl\"" , "clang/lib/Sema/SemaDecl.cpp", 7643, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7644 | } | |||
| 7645 | ||||
| 7646 | if (IsVariableTemplateSpecialization) { | |||
| 7647 | SourceLocation TemplateKWLoc = | |||
| 7648 | TemplateParamLists.size() > 0 | |||
| 7649 | ? TemplateParamLists[0]->getTemplateLoc() | |||
| 7650 | : SourceLocation(); | |||
| 7651 | DeclResult Res = ActOnVarTemplateSpecialization( | |||
| 7652 | S, D, TInfo, TemplateKWLoc, TemplateParams, SC, | |||
| 7653 | IsPartialSpecialization); | |||
| 7654 | if (Res.isInvalid()) | |||
| 7655 | return nullptr; | |||
| 7656 | NewVD = cast<VarDecl>(Res.get()); | |||
| 7657 | AddToScope = false; | |||
| 7658 | } else if (D.isDecompositionDeclarator()) { | |||
| 7659 | NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(), | |||
| 7660 | D.getIdentifierLoc(), R, TInfo, SC, | |||
| 7661 | Bindings); | |||
| 7662 | } else | |||
| 7663 | NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), | |||
| 7664 | D.getIdentifierLoc(), II, R, TInfo, SC); | |||
| 7665 | ||||
| 7666 | // If this is supposed to be a variable template, create it as such. | |||
| 7667 | if (IsVariableTemplate) { | |||
| 7668 | NewTemplate = | |||
| 7669 | VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name, | |||
| 7670 | TemplateParams, NewVD); | |||
| 7671 | NewVD->setDescribedVarTemplate(NewTemplate); | |||
| 7672 | } | |||
| 7673 | ||||
| 7674 | // If this decl has an auto type in need of deduction, make a note of the | |||
| 7675 | // Decl so we can diagnose uses of it in its own initializer. | |||
| 7676 | if (R->getContainedDeducedType()) | |||
| 7677 | ParsingInitForAutoVars.insert(NewVD); | |||
| 7678 | ||||
| 7679 | if (D.isInvalidType() || Invalid) { | |||
| 7680 | NewVD->setInvalidDecl(); | |||
| 7681 | if (NewTemplate) | |||
| 7682 | NewTemplate->setInvalidDecl(); | |||
| 7683 | } | |||
| 7684 | ||||
| 7685 | SetNestedNameSpecifier(*this, NewVD, D); | |||
| 7686 | ||||
| 7687 | // If we have any template parameter lists that don't directly belong to | |||
| 7688 | // the variable (matching the scope specifier), store them. | |||
| 7689 | // An explicit variable template specialization does not own any template | |||
| 7690 | // parameter lists. | |||
| 7691 | bool IsExplicitSpecialization = | |||
| 7692 | IsVariableTemplateSpecialization && !IsPartialSpecialization; | |||
| 7693 | unsigned VDTemplateParamLists = | |||
| 7694 | (TemplateParams && !IsExplicitSpecialization) ? 1 : 0; | |||
| 7695 | if (TemplateParamLists.size() > VDTemplateParamLists) | |||
| 7696 | NewVD->setTemplateParameterListsInfo( | |||
| 7697 | Context, TemplateParamLists.drop_back(VDTemplateParamLists)); | |||
| 7698 | } | |||
| 7699 | ||||
| 7700 | if (D.getDeclSpec().isInlineSpecified()) { | |||
| 7701 | if (!getLangOpts().CPlusPlus) { | |||
| 7702 | Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) | |||
| 7703 | << 0; | |||
| 7704 | } else if (CurContext->isFunctionOrMethod()) { | |||
| 7705 | // 'inline' is not allowed on block scope variable declaration. | |||
| 7706 | Diag(D.getDeclSpec().getInlineSpecLoc(), | |||
| 7707 | diag::err_inline_declaration_block_scope) << Name | |||
| 7708 | << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); | |||
| 7709 | } else { | |||
| 7710 | Diag(D.getDeclSpec().getInlineSpecLoc(), | |||
| 7711 | getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable | |||
| 7712 | : diag::ext_inline_variable); | |||
| 7713 | NewVD->setInlineSpecified(); | |||
| 7714 | } | |||
| 7715 | } | |||
| 7716 | ||||
| 7717 | // Set the lexical context. If the declarator has a C++ scope specifier, the | |||
| 7718 | // lexical context will be different from the semantic context. | |||
| 7719 | NewVD->setLexicalDeclContext(CurContext); | |||
| 7720 | if (NewTemplate) | |||
| 7721 | NewTemplate->setLexicalDeclContext(CurContext); | |||
| 7722 | ||||
| 7723 | if (IsLocalExternDecl) { | |||
| 7724 | if (D.isDecompositionDeclarator()) | |||
| 7725 | for (auto *B : Bindings) | |||
| 7726 | B->setLocalExternDecl(); | |||
| 7727 | else | |||
| 7728 | NewVD->setLocalExternDecl(); | |||
| 7729 | } | |||
| 7730 | ||||
| 7731 | bool EmitTLSUnsupportedError = false; | |||
| 7732 | if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) { | |||
| 7733 | // C++11 [dcl.stc]p4: | |||
| 7734 | // When thread_local is applied to a variable of block scope the | |||
| 7735 | // storage-class-specifier static is implied if it does not appear | |||
| 7736 | // explicitly. | |||
| 7737 | // Core issue: 'static' is not implied if the variable is declared | |||
| 7738 | // 'extern'. | |||
| 7739 | if (NewVD->hasLocalStorage() && | |||
| 7740 | (SCSpec != DeclSpec::SCS_unspecified || | |||
| 7741 | TSCS != DeclSpec::TSCS_thread_local || | |||
| 7742 | !DC->isFunctionOrMethod())) | |||
| 7743 | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), | |||
| 7744 | diag::err_thread_non_global) | |||
| 7745 | << DeclSpec::getSpecifierName(TSCS); | |||
| 7746 | else if (!Context.getTargetInfo().isTLSSupported()) { | |||
| 7747 | if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice || | |||
| 7748 | getLangOpts().SYCLIsDevice) { | |||
| 7749 | // Postpone error emission until we've collected attributes required to | |||
| 7750 | // figure out whether it's a host or device variable and whether the | |||
| 7751 | // error should be ignored. | |||
| 7752 | EmitTLSUnsupportedError = true; | |||
| 7753 | // We still need to mark the variable as TLS so it shows up in AST with | |||
| 7754 | // proper storage class for other tools to use even if we're not going | |||
| 7755 | // to emit any code for it. | |||
| 7756 | NewVD->setTSCSpec(TSCS); | |||
| 7757 | } else | |||
| 7758 | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), | |||
| 7759 | diag::err_thread_unsupported); | |||
| 7760 | } else | |||
| 7761 | NewVD->setTSCSpec(TSCS); | |||
| 7762 | } | |||
| 7763 | ||||
| 7764 | switch (D.getDeclSpec().getConstexprSpecifier()) { | |||
| 7765 | case ConstexprSpecKind::Unspecified: | |||
| 7766 | break; | |||
| 7767 | ||||
| 7768 | case ConstexprSpecKind::Consteval: | |||
| 7769 | Diag(D.getDeclSpec().getConstexprSpecLoc(), | |||
| 7770 | diag::err_constexpr_wrong_decl_kind) | |||
| 7771 | << static_cast<int>(D.getDeclSpec().getConstexprSpecifier()); | |||
| 7772 | [[fallthrough]]; | |||
| 7773 | ||||
| 7774 | case ConstexprSpecKind::Constexpr: | |||
| 7775 | NewVD->setConstexpr(true); | |||
| 7776 | // C++1z [dcl.spec.constexpr]p1: | |||
| 7777 | // A static data member declared with the constexpr specifier is | |||
| 7778 | // implicitly an inline variable. | |||
| 7779 | if (NewVD->isStaticDataMember() && | |||
| 7780 | (getLangOpts().CPlusPlus17 || | |||
| 7781 | Context.getTargetInfo().getCXXABI().isMicrosoft())) | |||
| 7782 | NewVD->setImplicitlyInline(); | |||
| 7783 | break; | |||
| 7784 | ||||
| 7785 | case ConstexprSpecKind::Constinit: | |||
| 7786 | if (!NewVD->hasGlobalStorage()) | |||
| 7787 | Diag(D.getDeclSpec().getConstexprSpecLoc(), | |||
| 7788 | diag::err_constinit_local_variable); | |||
| 7789 | else | |||
| 7790 | NewVD->addAttr( | |||
| 7791 | ConstInitAttr::Create(Context, D.getDeclSpec().getConstexprSpecLoc(), | |||
| 7792 | ConstInitAttr::Keyword_constinit)); | |||
| 7793 | break; | |||
| 7794 | } | |||
| 7795 | ||||
| 7796 | // C99 6.7.4p3 | |||
| 7797 | // An inline definition of a function with external linkage shall | |||
| 7798 | // not contain a definition of a modifiable object with static or | |||
| 7799 | // thread storage duration... | |||
| 7800 | // We only apply this when the function is required to be defined | |||
| 7801 | // elsewhere, i.e. when the function is not 'extern inline'. Note | |||
| 7802 | // that a local variable with thread storage duration still has to | |||
| 7803 | // be marked 'static'. Also note that it's possible to get these | |||
| 7804 | // semantics in C++ using __attribute__((gnu_inline)). | |||
| 7805 | if (SC == SC_Static && S->getFnParent() != nullptr && | |||
| 7806 | !NewVD->getType().isConstQualified()) { | |||
| 7807 | FunctionDecl *CurFD = getCurFunctionDecl(); | |||
| 7808 | if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) { | |||
| 7809 | Diag(D.getDeclSpec().getStorageClassSpecLoc(), | |||
| 7810 | diag::warn_static_local_in_extern_inline); | |||
| 7811 | MaybeSuggestAddingStaticToDecl(CurFD); | |||
| 7812 | } | |||
| 7813 | } | |||
| 7814 | ||||
| 7815 | if (D.getDeclSpec().isModulePrivateSpecified()) { | |||
| 7816 | if (IsVariableTemplateSpecialization) | |||
| 7817 | Diag(NewVD->getLocation(), diag::err_module_private_specialization) | |||
| 7818 | << (IsPartialSpecialization ? 1 : 0) | |||
| 7819 | << FixItHint::CreateRemoval( | |||
| 7820 | D.getDeclSpec().getModulePrivateSpecLoc()); | |||
| 7821 | else if (IsMemberSpecialization) | |||
| 7822 | Diag(NewVD->getLocation(), diag::err_module_private_specialization) | |||
| 7823 | << 2 | |||
| 7824 | << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); | |||
| 7825 | else if (NewVD->hasLocalStorage()) | |||
| 7826 | Diag(NewVD->getLocation(), diag::err_module_private_local) | |||
| 7827 | << 0 << NewVD | |||
| 7828 | << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) | |||
| 7829 | << FixItHint::CreateRemoval( | |||
| 7830 | D.getDeclSpec().getModulePrivateSpecLoc()); | |||
| 7831 | else { | |||
| 7832 | NewVD->setModulePrivate(); | |||
| 7833 | if (NewTemplate) | |||
| 7834 | NewTemplate->setModulePrivate(); | |||
| 7835 | for (auto *B : Bindings) | |||
| 7836 | B->setModulePrivate(); | |||
| 7837 | } | |||
| 7838 | } | |||
| 7839 | ||||
| 7840 | if (getLangOpts().OpenCL) { | |||
| 7841 | deduceOpenCLAddressSpace(NewVD); | |||
| 7842 | ||||
| 7843 | DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec(); | |||
| 7844 | if (TSC != TSCS_unspecified) { | |||
| 7845 | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), | |||
| 7846 | diag::err_opencl_unknown_type_specifier) | |||
| 7847 | << getLangOpts().getOpenCLVersionString() | |||
| 7848 | << DeclSpec::getSpecifierName(TSC) << 1; | |||
| 7849 | NewVD->setInvalidDecl(); | |||
| 7850 | } | |||
| 7851 | } | |||
| 7852 | ||||
| 7853 | // Handle attributes prior to checking for duplicates in MergeVarDecl | |||
| 7854 | ProcessDeclAttributes(S, NewVD, D); | |||
| 7855 | ||||
| 7856 | // FIXME: This is probably the wrong location to be doing this and we should | |||
| 7857 | // probably be doing this for more attributes (especially for function | |||
| 7858 | // pointer attributes such as format, warn_unused_result, etc.). Ideally | |||
| 7859 | // the code to copy attributes would be generated by TableGen. | |||
| 7860 | if (R->isFunctionPointerType()) | |||
| 7861 | if (const auto *TT = R->getAs<TypedefType>()) | |||
| 7862 | copyAttrFromTypedefToDecl<AllocSizeAttr>(*this, NewVD, TT); | |||
| 7863 | ||||
| 7864 | if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice || | |||
| 7865 | getLangOpts().SYCLIsDevice) { | |||
| 7866 | if (EmitTLSUnsupportedError && | |||
| 7867 | ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) || | |||
| 7868 | (getLangOpts().OpenMPIsDevice && | |||
| 7869 | OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD)))) | |||
| 7870 | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), | |||
| 7871 | diag::err_thread_unsupported); | |||
| 7872 | ||||
| 7873 | if (EmitTLSUnsupportedError && | |||
| 7874 | (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice))) | |||
| 7875 | targetDiag(D.getIdentifierLoc(), diag::err_thread_unsupported); | |||
| 7876 | // CUDA B.2.5: "__shared__ and __constant__ variables have implied static | |||
| 7877 | // storage [duration]." | |||
| 7878 | if (SC == SC_None && S->getFnParent() != nullptr && | |||
| 7879 | (NewVD->hasAttr<CUDASharedAttr>() || | |||
| 7880 | NewVD->hasAttr<CUDAConstantAttr>())) { | |||
| 7881 | NewVD->setStorageClass(SC_Static); | |||
| 7882 | } | |||
| 7883 | } | |||
| 7884 | ||||
| 7885 | // Ensure that dllimport globals without explicit storage class are treated as | |||
| 7886 | // extern. The storage class is set above using parsed attributes. Now we can | |||
| 7887 | // check the VarDecl itself. | |||
| 7888 | assert(!NewVD->hasAttr<DLLImportAttr>() ||(static_cast <bool> (!NewVD->hasAttr<DLLImportAttr >() || NewVD->getAttr<DLLImportAttr>()->isInherited () || NewVD->isStaticDataMember() || NewVD->getStorageClass () != SC_None) ? void (0) : __assert_fail ("!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None" , "clang/lib/Sema/SemaDecl.cpp", 7890, __extension__ __PRETTY_FUNCTION__ )) | |||
| 7889 | NewVD->getAttr<DLLImportAttr>()->isInherited() ||(static_cast <bool> (!NewVD->hasAttr<DLLImportAttr >() || NewVD->getAttr<DLLImportAttr>()->isInherited () || NewVD->isStaticDataMember() || NewVD->getStorageClass () != SC_None) ? void (0) : __assert_fail ("!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None" , "clang/lib/Sema/SemaDecl.cpp", 7890, __extension__ __PRETTY_FUNCTION__ )) | |||
| 7890 | NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None)(static_cast <bool> (!NewVD->hasAttr<DLLImportAttr >() || NewVD->getAttr<DLLImportAttr>()->isInherited () || NewVD->isStaticDataMember() || NewVD->getStorageClass () != SC_None) ? void (0) : __assert_fail ("!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None" , "clang/lib/Sema/SemaDecl.cpp", 7890, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7891 | ||||
| 7892 | // In auto-retain/release, infer strong retension for variables of | |||
| 7893 | // retainable type. | |||
| 7894 | if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD)) | |||
| 7895 | NewVD->setInvalidDecl(); | |||
| 7896 | ||||
| 7897 | // Handle GNU asm-label extension (encoded as an attribute). | |||
| 7898 | if (Expr *E = (Expr*)D.getAsmLabel()) { | |||
| 7899 | // The parser guarantees this is a string. | |||
| 7900 | StringLiteral *SE = cast<StringLiteral>(E); | |||
| 7901 | StringRef Label = SE->getString(); | |||
| 7902 | if (S->getFnParent() != nullptr) { | |||
| 7903 | switch (SC) { | |||
| 7904 | case SC_None: | |||
| 7905 | case SC_Auto: | |||
| 7906 | Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label; | |||
| 7907 | break; | |||
| 7908 | case SC_Register: | |||
| 7909 | // Local Named register | |||
| 7910 | if (!Context.getTargetInfo().isValidGCCRegisterName(Label) && | |||
| 7911 | DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl())) | |||
| 7912 | Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; | |||
| 7913 | break; | |||
| 7914 | case SC_Static: | |||
| 7915 | case SC_Extern: | |||
| 7916 | case SC_PrivateExtern: | |||
| 7917 | break; | |||
| 7918 | } | |||
| 7919 | } else if (SC == SC_Register) { | |||
| 7920 | // Global Named register | |||
| 7921 | if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) { | |||
| 7922 | const auto &TI = Context.getTargetInfo(); | |||
| 7923 | bool HasSizeMismatch; | |||
| 7924 | ||||
| 7925 | if (!TI.isValidGCCRegisterName(Label)) | |||
| 7926 | Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; | |||
| 7927 | else if (!TI.validateGlobalRegisterVariable(Label, | |||
| 7928 | Context.getTypeSize(R), | |||
| 7929 | HasSizeMismatch)) | |||
| 7930 | Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label; | |||
| 7931 | else if (HasSizeMismatch) | |||
| 7932 | Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label; | |||
| 7933 | } | |||
| 7934 | ||||
| 7935 | if (!R->isIntegralType(Context) && !R->isPointerType()) { | |||
| 7936 | Diag(D.getBeginLoc(), diag::err_asm_bad_register_type); | |||
| 7937 | NewVD->setInvalidDecl(true); | |||
| 7938 | } | |||
| 7939 | } | |||
| 7940 | ||||
| 7941 | NewVD->addAttr(AsmLabelAttr::Create(Context, Label, | |||
| 7942 | /*IsLiteralLabel=*/true, | |||
| 7943 | SE->getStrTokenLoc(0))); | |||
| 7944 | } else if (!ExtnameUndeclaredIdentifiers.empty()) { | |||
| 7945 | llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = | |||
| 7946 | ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier()); | |||
| 7947 | if (I != ExtnameUndeclaredIdentifiers.end()) { | |||
| 7948 | if (isDeclExternC(NewVD)) { | |||
| 7949 | NewVD->addAttr(I->second); | |||
| 7950 | ExtnameUndeclaredIdentifiers.erase(I); | |||
| 7951 | } else | |||
| 7952 | Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied) | |||
| 7953 | << /*Variable*/1 << NewVD; | |||
| 7954 | } | |||
| 7955 | } | |||
| 7956 | ||||
| 7957 | // Find the shadowed declaration before filtering for scope. | |||
| 7958 | NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty() | |||
| 7959 | ? getShadowedDeclaration(NewVD, Previous) | |||
| 7960 | : nullptr; | |||
| 7961 | ||||
| 7962 | // Don't consider existing declarations that are in a different | |||
| 7963 | // scope and are out-of-semantic-context declarations (if the new | |||
| 7964 | // declaration has linkage). | |||
| 7965 | FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD), | |||
| 7966 | D.getCXXScopeSpec().isNotEmpty() || | |||
| 7967 | IsMemberSpecialization || | |||
| 7968 | IsVariableTemplateSpecialization); | |||
| 7969 | ||||
| 7970 | // Check whether the previous declaration is in the same block scope. This | |||
| 7971 | // affects whether we merge types with it, per C++11 [dcl.array]p3. | |||
| 7972 | if (getLangOpts().CPlusPlus && | |||
| 7973 | NewVD->isLocalVarDecl() && NewVD->hasExternalStorage()) | |||
| 7974 | NewVD->setPreviousDeclInSameBlockScope( | |||
| 7975 | Previous.isSingleResult() && !Previous.isShadowed() && | |||
| 7976 | isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false)); | |||
| 7977 | ||||
| 7978 | if (!getLangOpts().CPlusPlus) { | |||
| 7979 | D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); | |||
| 7980 | } else { | |||
| 7981 | // If this is an explicit specialization of a static data member, check it. | |||
| 7982 | if (IsMemberSpecialization && !NewVD->isInvalidDecl() && | |||
| 7983 | CheckMemberSpecialization(NewVD, Previous)) | |||
| 7984 | NewVD->setInvalidDecl(); | |||
| 7985 | ||||
| 7986 | // Merge the decl with the existing one if appropriate. | |||
| 7987 | if (!Previous.empty()) { | |||
| 7988 | if (Previous.isSingleResult() && | |||
| 7989 | isa<FieldDecl>(Previous.getFoundDecl()) && | |||
| 7990 | D.getCXXScopeSpec().isSet()) { | |||
| 7991 | // The user tried to define a non-static data member | |||
| 7992 | // out-of-line (C++ [dcl.meaning]p1). | |||
| 7993 | Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line) | |||
| 7994 | << D.getCXXScopeSpec().getRange(); | |||
| 7995 | Previous.clear(); | |||
| 7996 | NewVD->setInvalidDecl(); | |||
| 7997 | } | |||
| 7998 | } else if (D.getCXXScopeSpec().isSet()) { | |||
| 7999 | // No previous declaration in the qualifying scope. | |||
| 8000 | Diag(D.getIdentifierLoc(), diag::err_no_member) | |||
| 8001 | << Name << computeDeclContext(D.getCXXScopeSpec(), true) | |||
| 8002 | << D.getCXXScopeSpec().getRange(); | |||
| 8003 | NewVD->setInvalidDecl(); | |||
| 8004 | } | |||
| 8005 | ||||
| 8006 | if (!IsVariableTemplateSpecialization) | |||
| 8007 | D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); | |||
| 8008 | ||||
| 8009 | if (NewTemplate) { | |||
| 8010 | VarTemplateDecl *PrevVarTemplate = | |||
| 8011 | NewVD->getPreviousDecl() | |||
| 8012 | ? NewVD->getPreviousDecl()->getDescribedVarTemplate() | |||
| 8013 | : nullptr; | |||
| 8014 | ||||
| 8015 | // Check the template parameter list of this declaration, possibly | |||
| 8016 | // merging in the template parameter list from the previous variable | |||
| 8017 | // template declaration. | |||
| 8018 | if (CheckTemplateParameterList( | |||
| 8019 | TemplateParams, | |||
| 8020 | PrevVarTemplate ? PrevVarTemplate->getTemplateParameters() | |||
| 8021 | : nullptr, | |||
| 8022 | (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() && | |||
| 8023 | DC->isDependentContext()) | |||
| 8024 | ? TPC_ClassTemplateMember | |||
| 8025 | : TPC_VarTemplate)) | |||
| 8026 | NewVD->setInvalidDecl(); | |||
| 8027 | ||||
| 8028 | // If we are providing an explicit specialization of a static variable | |||
| 8029 | // template, make a note of that. | |||
| 8030 | if (PrevVarTemplate && | |||
| 8031 | PrevVarTemplate->getInstantiatedFromMemberTemplate()) | |||
| 8032 | PrevVarTemplate->setMemberSpecialization(); | |||
| 8033 | } | |||
| 8034 | } | |||
| 8035 | ||||
| 8036 | // Diagnose shadowed variables iff this isn't a redeclaration. | |||
| 8037 | if (ShadowedDecl && !D.isRedeclaration()) | |||
| 8038 | CheckShadow(NewVD, ShadowedDecl, Previous); | |||
| 8039 | ||||
| 8040 | ProcessPragmaWeak(S, NewVD); | |||
| 8041 | ||||
| 8042 | // If this is the first declaration of an extern C variable, update | |||
| 8043 | // the map of such variables. | |||
| 8044 | if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() && | |||
| 8045 | isIncompleteDeclExternC(*this, NewVD)) | |||
| 8046 | RegisterLocallyScopedExternCDecl(NewVD, S); | |||
| 8047 | ||||
| 8048 | if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { | |||
| 8049 | MangleNumberingContext *MCtx; | |||
| 8050 | Decl *ManglingContextDecl; | |||
| 8051 | std::tie(MCtx, ManglingContextDecl) = | |||
| 8052 | getCurrentMangleNumberContext(NewVD->getDeclContext()); | |||
| 8053 | if (MCtx) { | |||
| 8054 | Context.setManglingNumber( | |||
| 8055 | NewVD, MCtx->getManglingNumber( | |||
| 8056 | NewVD, getMSManglingNumber(getLangOpts(), S))); | |||
| 8057 | Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD)); | |||
| 8058 | } | |||
| 8059 | } | |||
| 8060 | ||||
| 8061 | // Special handling of variable named 'main'. | |||
| 8062 | if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") && | |||
| 8063 | NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() && | |||
| 8064 | !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) { | |||
| 8065 | ||||
| 8066 | // C++ [basic.start.main]p3 | |||
| 8067 | // A program that declares a variable main at global scope is ill-formed. | |||
| 8068 | if (getLangOpts().CPlusPlus) | |||
| 8069 | Diag(D.getBeginLoc(), diag::err_main_global_variable); | |||
| 8070 | ||||
| 8071 | // In C, and external-linkage variable named main results in undefined | |||
| 8072 | // behavior. | |||
| 8073 | else if (NewVD->hasExternalFormalLinkage()) | |||
| 8074 | Diag(D.getBeginLoc(), diag::warn_main_redefined); | |||
| 8075 | } | |||
| 8076 | ||||
| 8077 | if (D.isRedeclaration() && !Previous.empty()) { | |||
| 8078 | NamedDecl *Prev = Previous.getRepresentativeDecl(); | |||
| 8079 | checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization, | |||
| 8080 | D.isFunctionDefinition()); | |||
| 8081 | } | |||
| 8082 | ||||
| 8083 | if (NewTemplate) { | |||
| 8084 | if (NewVD->isInvalidDecl()) | |||
| 8085 | NewTemplate->setInvalidDecl(); | |||
| 8086 | ActOnDocumentableDecl(NewTemplate); | |||
| 8087 | return NewTemplate; | |||
| 8088 | } | |||
| 8089 | ||||
| 8090 | if (IsMemberSpecialization && !NewVD->isInvalidDecl()) | |||
| 8091 | CompleteMemberSpecialization(NewVD, Previous); | |||
| 8092 | ||||
| 8093 | emitReadOnlyPlacementAttrWarning(*this, NewVD); | |||
| 8094 | ||||
| 8095 | return NewVD; | |||
| 8096 | } | |||
| 8097 | ||||
| 8098 | /// Enum describing the %select options in diag::warn_decl_shadow. | |||
| 8099 | enum ShadowedDeclKind { | |||
| 8100 | SDK_Local, | |||
| 8101 | SDK_Global, | |||
| 8102 | SDK_StaticMember, | |||
| 8103 | SDK_Field, | |||
| 8104 | SDK_Typedef, | |||
| 8105 | SDK_Using, | |||
| 8106 | SDK_StructuredBinding | |||
| 8107 | }; | |||
| 8108 | ||||
| 8109 | /// Determine what kind of declaration we're shadowing. | |||
| 8110 | static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl, | |||
| 8111 | const DeclContext *OldDC) { | |||
| 8112 | if (isa<TypeAliasDecl>(ShadowedDecl)) | |||
| 8113 | return SDK_Using; | |||
| 8114 | else if (isa<TypedefDecl>(ShadowedDecl)) | |||
| 8115 | return SDK_Typedef; | |||
| 8116 | else if (isa<BindingDecl>(ShadowedDecl)) | |||
| 8117 | return SDK_StructuredBinding; | |||
| 8118 | else if (isa<RecordDecl>(OldDC)) | |||
| 8119 | return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember; | |||
| 8120 | ||||
| 8121 | return OldDC->isFileContext() ? SDK_Global : SDK_Local; | |||
| 8122 | } | |||
| 8123 | ||||
| 8124 | /// Return the location of the capture if the given lambda captures the given | |||
| 8125 | /// variable \p VD, or an invalid source location otherwise. | |||
| 8126 | static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI, | |||
| 8127 | const VarDecl *VD) { | |||
| 8128 | for (const Capture &Capture : LSI->Captures) { | |||
| 8129 | if (Capture.isVariableCapture() && Capture.getVariable() == VD) | |||
| 8130 | return Capture.getLocation(); | |||
| 8131 | } | |||
| 8132 | return SourceLocation(); | |||
| 8133 | } | |||
| 8134 | ||||
| 8135 | static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags, | |||
| 8136 | const LookupResult &R) { | |||
| 8137 | // Only diagnose if we're shadowing an unambiguous field or variable. | |||
| 8138 | if (R.getResultKind() != LookupResult::Found) | |||
| 8139 | return false; | |||
| 8140 | ||||
| 8141 | // Return false if warning is ignored. | |||
| 8142 | return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc()); | |||
| 8143 | } | |||
| 8144 | ||||
| 8145 | /// Return the declaration shadowed by the given variable \p D, or null | |||
| 8146 | /// if it doesn't shadow any declaration or shadowing warnings are disabled. | |||
| 8147 | NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D, | |||
| 8148 | const LookupResult &R) { | |||
| 8149 | if (!shouldWarnIfShadowedDecl(Diags, R)) | |||
| 8150 | return nullptr; | |||
| 8151 | ||||
| 8152 | // Don't diagnose declarations at file scope. | |||
| 8153 | if (D->hasGlobalStorage()) | |||
| 8154 | return nullptr; | |||
| 8155 | ||||
| 8156 | NamedDecl *ShadowedDecl = R.getFoundDecl(); | |||
| 8157 | return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl | |||
| 8158 | : nullptr; | |||
| 8159 | } | |||
| 8160 | ||||
| 8161 | /// Return the declaration shadowed by the given typedef \p D, or null | |||
| 8162 | /// if it doesn't shadow any declaration or shadowing warnings are disabled. | |||
| 8163 | NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D, | |||
| 8164 | const LookupResult &R) { | |||
| 8165 | // Don't warn if typedef declaration is part of a class | |||
| 8166 | if (D->getDeclContext()->isRecord()) | |||
| 8167 | return nullptr; | |||
| 8168 | ||||
| 8169 | if (!shouldWarnIfShadowedDecl(Diags, R)) | |||
| 8170 | return nullptr; | |||
| 8171 | ||||
| 8172 | NamedDecl *ShadowedDecl = R.getFoundDecl(); | |||
| 8173 | return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr; | |||
| 8174 | } | |||
| 8175 | ||||
| 8176 | /// Return the declaration shadowed by the given variable \p D, or null | |||
| 8177 | /// if it doesn't shadow any declaration or shadowing warnings are disabled. | |||
| 8178 | NamedDecl *Sema::getShadowedDeclaration(const BindingDecl *D, | |||
| 8179 | const LookupResult &R) { | |||
| 8180 | if (!shouldWarnIfShadowedDecl(Diags, R)) | |||
| 8181 | return nullptr; | |||
| 8182 | ||||
| 8183 | NamedDecl *ShadowedDecl = R.getFoundDecl(); | |||
| 8184 | return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl | |||
| 8185 | : nullptr; | |||
| 8186 | } | |||
| 8187 | ||||
| 8188 | /// Diagnose variable or built-in function shadowing. Implements | |||
| 8189 | /// -Wshadow. | |||
| 8190 | /// | |||
| 8191 | /// This method is called whenever a VarDecl is added to a "useful" | |||
| 8192 | /// scope. | |||
| 8193 | /// | |||
| 8194 | /// \param ShadowedDecl the declaration that is shadowed by the given variable | |||
| 8195 | /// \param R the lookup of the name | |||
| 8196 | /// | |||
| 8197 | void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl, | |||
| 8198 | const LookupResult &R) { | |||
| 8199 | DeclContext *NewDC = D->getDeclContext(); | |||
| 8200 | ||||
| 8201 | if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) { | |||
| 8202 | // Fields are not shadowed by variables in C++ static methods. | |||
| 8203 | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC)) | |||
| 8204 | if (MD->isStatic()) | |||
| 8205 | return; | |||
| 8206 | ||||
| 8207 | // Fields shadowed by constructor parameters are a special case. Usually | |||
| 8208 | // the constructor initializes the field with the parameter. | |||
| 8209 | if (isa<CXXConstructorDecl>(NewDC)) | |||
| 8210 | if (const auto PVD = dyn_cast<ParmVarDecl>(D)) { | |||
| 8211 | // Remember that this was shadowed so we can either warn about its | |||
| 8212 | // modification or its existence depending on warning settings. | |||
| 8213 | ShadowingDecls.insert({PVD->getCanonicalDecl(), FD}); | |||
| 8214 | return; | |||
| 8215 | } | |||
| 8216 | } | |||
| 8217 | ||||
| 8218 | if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl)) | |||
| 8219 | if (shadowedVar->isExternC()) { | |||
| 8220 | // For shadowing external vars, make sure that we point to the global | |||
| 8221 | // declaration, not a locally scoped extern declaration. | |||
| 8222 | for (auto *I : shadowedVar->redecls()) | |||
| 8223 | if (I->isFileVarDecl()) { | |||
| 8224 | ShadowedDecl = I; | |||
| 8225 | break; | |||
| 8226 | } | |||
| 8227 | } | |||
| 8228 | ||||
| 8229 | DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext(); | |||
| 8230 | ||||
| 8231 | unsigned WarningDiag = diag::warn_decl_shadow; | |||
| 8232 | SourceLocation CaptureLoc; | |||
| 8233 | if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC && | |||
| 8234 | isa<CXXMethodDecl>(NewDC)) { | |||
| 8235 | if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) { | |||
| 8236 | if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) { | |||
| 8237 | if (RD->getLambdaCaptureDefault() == LCD_None) { | |||
| 8238 | // Try to avoid warnings for lambdas with an explicit capture list. | |||
| 8239 | const auto *LSI = cast<LambdaScopeInfo>(getCurFunction()); | |||
| 8240 | // Warn only when the lambda captures the shadowed decl explicitly. | |||
| 8241 | CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl)); | |||
| 8242 | if (CaptureLoc.isInvalid()) | |||
| 8243 | WarningDiag = diag::warn_decl_shadow_uncaptured_local; | |||
| 8244 | } else { | |||
| 8245 | // Remember that this was shadowed so we can avoid the warning if the | |||
| 8246 | // shadowed decl isn't captured and the warning settings allow it. | |||
| 8247 | cast<LambdaScopeInfo>(getCurFunction()) | |||
| 8248 | ->ShadowingDecls.push_back( | |||
| 8249 | {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)}); | |||
| 8250 | return; | |||
| 8251 | } | |||
| 8252 | } | |||
| 8253 | ||||
| 8254 | if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) { | |||
| 8255 | // A variable can't shadow a local variable in an enclosing scope, if | |||
| 8256 | // they are separated by a non-capturing declaration context. | |||
| 8257 | for (DeclContext *ParentDC = NewDC; | |||
| 8258 | ParentDC && !ParentDC->Equals(OldDC); | |||
| 8259 | ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) { | |||
| 8260 | // Only block literals, captured statements, and lambda expressions | |||
| 8261 | // can capture; other scopes don't. | |||
| 8262 | if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) && | |||
| 8263 | !isLambdaCallOperator(ParentDC)) { | |||
| 8264 | return; | |||
| 8265 | } | |||
| 8266 | } | |||
| 8267 | } | |||
| 8268 | } | |||
| 8269 | } | |||
| 8270 | ||||
| 8271 | // Only warn about certain kinds of shadowing for class members. | |||
| 8272 | if (NewDC && NewDC->isRecord()) { | |||
| 8273 | // In particular, don't warn about shadowing non-class members. | |||
| 8274 | if (!OldDC->isRecord()) | |||
| 8275 | return; | |||
| 8276 | ||||
| 8277 | // TODO: should we warn about static data members shadowing | |||
| 8278 | // static data members from base classes? | |||
| 8279 | ||||
| 8280 | // TODO: don't diagnose for inaccessible shadowed members. | |||
| 8281 | // This is hard to do perfectly because we might friend the | |||
| 8282 | // shadowing context, but that's just a false negative. | |||
| 8283 | } | |||
| 8284 | ||||
| 8285 | ||||
| 8286 | DeclarationName Name = R.getLookupName(); | |||
| 8287 | ||||
| 8288 | // Emit warning and note. | |||
| 8289 | ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC); | |||
| 8290 | Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC; | |||
| 8291 | if (!CaptureLoc.isInvalid()) | |||
| 8292 | Diag(CaptureLoc, diag::note_var_explicitly_captured_here) | |||
| 8293 | << Name << /*explicitly*/ 1; | |||
| 8294 | Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); | |||
| 8295 | } | |||
| 8296 | ||||
| 8297 | /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD | |||
| 8298 | /// when these variables are captured by the lambda. | |||
| 8299 | void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) { | |||
| 8300 | for (const auto &Shadow : LSI->ShadowingDecls) { | |||
| 8301 | const VarDecl *ShadowedDecl = Shadow.ShadowedDecl; | |||
| 8302 | // Try to avoid the warning when the shadowed decl isn't captured. | |||
| 8303 | SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl); | |||
| 8304 | const DeclContext *OldDC = ShadowedDecl->getDeclContext(); | |||
| 8305 | Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid() | |||
| 8306 | ? diag::warn_decl_shadow_uncaptured_local | |||
| 8307 | : diag::warn_decl_shadow) | |||
| 8308 | << Shadow.VD->getDeclName() | |||
| 8309 | << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC; | |||
| 8310 | if (!CaptureLoc.isInvalid()) | |||
| 8311 | Diag(CaptureLoc, diag::note_var_explicitly_captured_here) | |||
| 8312 | << Shadow.VD->getDeclName() << /*explicitly*/ 0; | |||
| 8313 | Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); | |||
| 8314 | } | |||
| 8315 | } | |||
| 8316 | ||||
| 8317 | /// Check -Wshadow without the advantage of a previous lookup. | |||
| 8318 | void Sema::CheckShadow(Scope *S, VarDecl *D) { | |||
| 8319 | if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation())) | |||
| 8320 | return; | |||
| 8321 | ||||
| 8322 | LookupResult R(*this, D->getDeclName(), D->getLocation(), | |||
| 8323 | Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration); | |||
| 8324 | LookupName(R, S); | |||
| 8325 | if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R)) | |||
| 8326 | CheckShadow(D, ShadowedDecl, R); | |||
| 8327 | } | |||
| 8328 | ||||
| 8329 | /// Check if 'E', which is an expression that is about to be modified, refers | |||
| 8330 | /// to a constructor parameter that shadows a field. | |||
| 8331 | void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) { | |||
| 8332 | // Quickly ignore expressions that can't be shadowing ctor parameters. | |||
| 8333 | if (!getLangOpts().CPlusPlus || ShadowingDecls.empty()) | |||
| 8334 | return; | |||
| 8335 | E = E->IgnoreParenImpCasts(); | |||
| 8336 | auto *DRE = dyn_cast<DeclRefExpr>(E); | |||
| 8337 | if (!DRE) | |||
| 8338 | return; | |||
| 8339 | const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl()); | |||
| 8340 | auto I = ShadowingDecls.find(D); | |||
| 8341 | if (I == ShadowingDecls.end()) | |||
| 8342 | return; | |||
| 8343 | const NamedDecl *ShadowedDecl = I->second; | |||
| 8344 | const DeclContext *OldDC = ShadowedDecl->getDeclContext(); | |||
| 8345 | Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC; | |||
| 8346 | Diag(D->getLocation(), diag::note_var_declared_here) << D; | |||
| 8347 | Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); | |||
| 8348 | ||||
| 8349 | // Avoid issuing multiple warnings about the same decl. | |||
| 8350 | ShadowingDecls.erase(I); | |||
| 8351 | } | |||
| 8352 | ||||
| 8353 | /// Check for conflict between this global or extern "C" declaration and | |||
| 8354 | /// previous global or extern "C" declarations. This is only used in C++. | |||
| 8355 | template<typename T> | |||
| 8356 | static bool checkGlobalOrExternCConflict( | |||
| 8357 | Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) { | |||
| 8358 | assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"")(static_cast <bool> (S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"") ? void (0) : __assert_fail ("S.getLangOpts().CPlusPlus && \"only C++ has extern \\\"C\\\"\"" , "clang/lib/Sema/SemaDecl.cpp", 8358, __extension__ __PRETTY_FUNCTION__ )); | |||
| 8359 | NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName()); | |||
| 8360 | ||||
| 8361 | if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) { | |||
| 8362 | // The common case: this global doesn't conflict with any extern "C" | |||
| 8363 | // declaration. | |||
| 8364 | return false; | |||
| 8365 | } | |||
| 8366 | ||||
| 8367 | if (Prev) { | |||
| 8368 | if (!IsGlobal || isIncompleteDeclExternC(S, ND)) { | |||
| 8369 | // Both the old and new declarations have C language linkage. This is a | |||
| 8370 | // redeclaration. | |||
| 8371 | Previous.clear(); | |||
| 8372 | Previous.addDecl(Prev); | |||
| 8373 | return true; | |||
| 8374 | } | |||
| 8375 | ||||
| 8376 | // This is a global, non-extern "C" declaration, and there is a previous | |||
| 8377 | // non-global extern "C" declaration. Diagnose if this is a variable | |||
| 8378 | // declaration. | |||
| 8379 | if (!isa<VarDecl>(ND)) | |||
| 8380 | return false; | |||
| 8381 | } else { | |||
| 8382 | // The declaration is extern "C". Check for any declaration in the | |||
| 8383 | // translation unit which might conflict. | |||
| 8384 | if (IsGlobal) { | |||
| 8385 | // We have already performed the lookup into the translation unit. | |||
| 8386 | IsGlobal = false; | |||
| 8387 | for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); | |||
| 8388 | I != E; ++I) { | |||
| 8389 | if (isa<VarDecl>(*I)) { | |||
| 8390 | Prev = *I; | |||
| 8391 | break; | |||
| 8392 | } | |||
| 8393 | } | |||
| 8394 | } else { | |||
| 8395 | DeclContext::lookup_result R = | |||
| 8396 | S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName()); | |||
| 8397 | for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end(); | |||
| 8398 | I != E; ++I) { | |||
| 8399 | if (isa<VarDecl>(*I)) { | |||
| 8400 | Prev = *I; | |||
| 8401 | break; | |||
| 8402 | } | |||
| 8403 | // FIXME: If we have any other entity with this name in global scope, | |||
| 8404 | // the declaration is ill-formed, but that is a defect: it breaks the | |||
| 8405 | // 'stat' hack, for instance. Only variables can have mangled name | |||
| 8406 | // clashes with extern "C" declarations, so only they deserve a | |||
| 8407 | // diagnostic. | |||
| 8408 | } | |||
| 8409 | } | |||
| 8410 | ||||
| 8411 | if (!Prev) | |||
| 8412 | return false; | |||
| 8413 | } | |||
| 8414 | ||||
| 8415 | // Use the first declaration's location to ensure we point at something which | |||
| 8416 | // is lexically inside an extern "C" linkage-spec. | |||
| 8417 | assert(Prev && "should have found a previous declaration to diagnose")(static_cast <bool> (Prev && "should have found a previous declaration to diagnose" ) ? void (0) : __assert_fail ("Prev && \"should have found a previous declaration to diagnose\"" , "clang/lib/Sema/SemaDecl.cpp", 8417, __extension__ __PRETTY_FUNCTION__ )); | |||
| 8418 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev)) | |||
| 8419 | Prev = FD->getFirstDecl(); | |||
| 8420 | else | |||
| 8421 | Prev = cast<VarDecl>(Prev)->getFirstDecl(); | |||
| 8422 | ||||
| 8423 | S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict) | |||
| 8424 | << IsGlobal << ND; | |||
| 8425 | S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict) | |||
| 8426 | << IsGlobal; | |||
| 8427 | return false; | |||
| 8428 | } | |||
| 8429 | ||||
| 8430 | /// Apply special rules for handling extern "C" declarations. Returns \c true | |||
| 8431 | /// if we have found that this is a redeclaration of some prior entity. | |||
| 8432 | /// | |||
| 8433 | /// Per C++ [dcl.link]p6: | |||
| 8434 | /// Two declarations [for a function or variable] with C language linkage | |||
| 8435 | /// with the same name that appear in different scopes refer to the same | |||
| 8436 | /// [entity]. An entity with C language linkage shall not be declared with | |||
| 8437 | /// the same name as an entity in global scope. | |||
| 8438 | template<typename T> | |||
| 8439 | static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND, | |||
| 8440 | LookupResult &Previous) { | |||
| 8441 | if (!S.getLangOpts().CPlusPlus) { | |||
| 8442 | // In C, when declaring a global variable, look for a corresponding 'extern' | |||
| 8443 | // variable declared in function scope. We don't need this in C++, because | |||
| 8444 | // we find local extern decls in the surrounding file-scope DeclContext. | |||
| 8445 | if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) { | |||
| 8446 | if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) { | |||
| 8447 | Previous.clear(); | |||
| 8448 | Previous.addDecl(Prev); | |||
| 8449 | return true; | |||
| 8450 | } | |||
| 8451 | } | |||
| 8452 | return false; | |||
| 8453 | } | |||
| 8454 | ||||
| 8455 | // A declaration in the translation unit can conflict with an extern "C" | |||
| 8456 | // declaration. | |||
| 8457 | if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) | |||
| 8458 | return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous); | |||
| 8459 | ||||
| 8460 | // An extern "C" declaration can conflict with a declaration in the | |||
| 8461 | // translation unit or can be a redeclaration of an extern "C" declaration | |||
| 8462 | // in another scope. | |||
| 8463 | if (isIncompleteDeclExternC(S,ND)) | |||
| 8464 | return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous); | |||
| 8465 | ||||
| 8466 | // Neither global nor extern "C": nothing to do. | |||
| 8467 | return false; | |||
| 8468 | } | |||
| 8469 | ||||
| 8470 | void Sema::CheckVariableDeclarationType(VarDecl *NewVD) { | |||
| 8471 | // If the decl is already known invalid, don't check it. | |||
| 8472 | if (NewVD->isInvalidDecl()) | |||
| 8473 | return; | |||
| 8474 | ||||
| 8475 | QualType T = NewVD->getType(); | |||
| 8476 | ||||
| 8477 | // Defer checking an 'auto' type until its initializer is attached. | |||
| 8478 | if (T->isUndeducedType()) | |||
| 8479 | return; | |||
| 8480 | ||||
| 8481 | if (NewVD->hasAttrs()) | |||
| 8482 | CheckAlignasUnderalignment(NewVD); | |||
| 8483 | ||||
| 8484 | if (T->isObjCObjectType()) { | |||
| 8485 | Diag(NewVD->getLocation(), diag::err_statically_allocated_object) | |||
| 8486 | << FixItHint::CreateInsertion(NewVD->getLocation(), "*"); | |||
| 8487 | T = Context.getObjCObjectPointerType(T); | |||
| 8488 | NewVD->setType(T); | |||
| 8489 | } | |||
| 8490 | ||||
| 8491 | // Emit an error if an address space was applied to decl with local storage. | |||
| 8492 | // This includes arrays of objects with address space qualifiers, but not | |||
| 8493 | // automatic variables that point to other address spaces. | |||
| 8494 | // ISO/IEC TR 18037 S5.1.2 | |||
| 8495 | if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() && | |||
| 8496 | T.getAddressSpace() != LangAS::Default) { | |||
| 8497 | Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0; | |||
| 8498 | NewVD->setInvalidDecl(); | |||
| 8499 | return; | |||
| 8500 | } | |||
| 8501 | ||||
| 8502 | // OpenCL v1.2 s6.8 - The static qualifier is valid only in program | |||
| 8503 | // scope. | |||
| 8504 | if (getLangOpts().OpenCLVersion == 120 && | |||
| 8505 | !getOpenCLOptions().isAvailableOption("cl_clang_storage_class_specifiers", | |||
| 8506 | getLangOpts()) && | |||
| 8507 | NewVD->isStaticLocal()) { | |||
| 8508 | Diag(NewVD->getLocation(), diag::err_static_function_scope); | |||
| 8509 | NewVD->setInvalidDecl(); | |||
| 8510 | return; | |||
| 8511 | } | |||
| 8512 | ||||
| 8513 | if (getLangOpts().OpenCL) { | |||
| 8514 | if (!diagnoseOpenCLTypes(*this, NewVD)) | |||
| 8515 | return; | |||
| 8516 | ||||
| 8517 | // OpenCL v2.0 s6.12.5 - The __block storage type is not supported. | |||
| 8518 | if (NewVD->hasAttr<BlocksAttr>()) { | |||
| 8519 | Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type); | |||
| 8520 | return; | |||
| 8521 | } | |||
| 8522 | ||||
| 8523 | if (T->isBlockPointerType()) { | |||
| 8524 | // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and | |||
| 8525 | // can't use 'extern' storage class. | |||
| 8526 | if (!T.isConstQualified()) { | |||
| 8527 | Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration) | |||
| 8528 | << 0 /*const*/; | |||
| 8529 | NewVD->setInvalidDecl(); | |||
| 8530 | return; | |||
| 8531 | } | |||
| 8532 | if (NewVD->hasExternalStorage()) { | |||
| 8533 | Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration); | |||
| 8534 | NewVD->setInvalidDecl(); | |||
| 8535 | return; | |||
| 8536 | } | |||
| 8537 | } | |||
| 8538 | ||||
| 8539 | // FIXME: Adding local AS in C++ for OpenCL might make sense. | |||
| 8540 | if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() || | |||
| 8541 | NewVD->hasExternalStorage()) { | |||
| 8542 | if (!T->isSamplerT() && !T->isDependentType() && | |||
| 8543 | !(T.getAddressSpace() == LangAS::opencl_constant || | |||
| 8544 | (T.getAddressSpace() == LangAS::opencl_global && | |||
| 8545 | getOpenCLOptions().areProgramScopeVariablesSupported( | |||
| 8546 | getLangOpts())))) { | |||
| 8547 | int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1; | |||
| 8548 | if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts())) | |||
| 8549 | Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space) | |||
| 8550 | << Scope << "global or constant"; | |||
| 8551 | else | |||
| 8552 | Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space) | |||
| 8553 | << Scope << "constant"; | |||
| 8554 | NewVD->setInvalidDecl(); | |||
| 8555 | return; | |||
| 8556 | } | |||
| 8557 | } else { | |||
| 8558 | if (T.getAddressSpace() == LangAS::opencl_global) { | |||
| 8559 | Diag(NewVD->getLocation(), diag::err_opencl_function_variable) | |||
| 8560 | << 1 /*is any function*/ << "global"; | |||
| 8561 | NewVD->setInvalidDecl(); | |||
| 8562 | return; | |||
| 8563 | } | |||
| 8564 | if (T.getAddressSpace() == LangAS::opencl_constant || | |||
| 8565 | T.getAddressSpace() == LangAS::opencl_local) { | |||
| 8566 | FunctionDecl *FD = getCurFunctionDecl(); | |||
| 8567 | // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables | |||
| 8568 | // in functions. | |||
| 8569 | if (FD && !FD->hasAttr<OpenCLKernelAttr>()) { | |||
| 8570 | if (T.getAddressSpace() == LangAS::opencl_constant) | |||
| 8571 | Diag(NewVD->getLocation(), diag::err_opencl_function_variable) | |||
| 8572 | << 0 /*non-kernel only*/ << "constant"; | |||
| 8573 | else | |||
| 8574 | Diag(NewVD->getLocation(), diag::err_opencl_function_variable) | |||
| 8575 | << 0 /*non-kernel only*/ << "local"; | |||
| 8576 | NewVD->setInvalidDecl(); | |||
| 8577 | return; | |||
| 8578 | } | |||
| 8579 | // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be | |||
| 8580 | // in the outermost scope of a kernel function. | |||
| 8581 | if (FD && FD->hasAttr<OpenCLKernelAttr>()) { | |||
| 8582 | if (!getCurScope()->isFunctionScope()) { | |||
| 8583 | if (T.getAddressSpace() == LangAS::opencl_constant) | |||
| 8584 | Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope) | |||
| 8585 | << "constant"; | |||
| 8586 | else | |||
| 8587 | Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope) | |||
| 8588 | << "local"; | |||
| 8589 | NewVD->setInvalidDecl(); | |||
| 8590 | return; | |||
| 8591 | } | |||
| 8592 | } | |||
| 8593 | } else if (T.getAddressSpace() != LangAS::opencl_private && | |||
| 8594 | // If we are parsing a template we didn't deduce an addr | |||
| 8595 | // space yet. | |||
| 8596 | T.getAddressSpace() != LangAS::Default) { | |||
| 8597 | // Do not allow other address spaces on automatic variable. | |||
| 8598 | Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1; | |||
| 8599 | NewVD->setInvalidDecl(); | |||
| 8600 | return; | |||
| 8601 | } | |||
| 8602 | } | |||
| 8603 | } | |||
| 8604 | ||||
| 8605 | if (NewVD->hasLocalStorage() && T.isObjCGCWeak() | |||
| 8606 | && !NewVD->hasAttr<BlocksAttr>()) { | |||
| 8607 | if (getLangOpts().getGC() != LangOptions::NonGC) | |||
| 8608 | Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local); | |||
| 8609 | else { | |||
| 8610 | assert(!getLangOpts().ObjCAutoRefCount)(static_cast <bool> (!getLangOpts().ObjCAutoRefCount) ? void (0) : __assert_fail ("!getLangOpts().ObjCAutoRefCount", "clang/lib/Sema/SemaDecl.cpp", 8610, __extension__ __PRETTY_FUNCTION__ )); | |||
| 8611 | Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local); | |||
| 8612 | } | |||
| 8613 | } | |||
| 8614 | ||||
| 8615 | bool isVM = T->isVariablyModifiedType(); | |||
| 8616 | if (isVM || NewVD->hasAttr<CleanupAttr>() || | |||
| 8617 | NewVD->hasAttr<BlocksAttr>()) | |||
| 8618 | setFunctionHasBranchProtectedScope(); | |||
| 8619 | ||||
| 8620 | if ((isVM && NewVD->hasLinkage()) || | |||
| 8621 | (T->isVariableArrayType() && NewVD->hasGlobalStorage())) { | |||
| 8622 | bool SizeIsNegative; | |||
| 8623 | llvm::APSInt Oversized; | |||
| 8624 | TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo( | |||
| 8625 | NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized); | |||
| 8626 | QualType FixedT; | |||
| 8627 | if (FixedTInfo && T == NewVD->getTypeSourceInfo()->getType()) | |||
| 8628 | FixedT = FixedTInfo->getType(); | |||
| 8629 | else if (FixedTInfo) { | |||
| 8630 | // Type and type-as-written are canonically different. We need to fix up | |||
| 8631 | // both types separately. | |||
| 8632 | FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative, | |||
| 8633 | Oversized); | |||
| 8634 | } | |||
| 8635 | if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) { | |||
| 8636 | const VariableArrayType *VAT = Context.getAsVariableArrayType(T); | |||
| 8637 | // FIXME: This won't give the correct result for | |||
| 8638 | // int a[10][n]; | |||
| 8639 | SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange(); | |||
| 8640 | ||||
| 8641 | if (NewVD->isFileVarDecl()) | |||
| 8642 | Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope) | |||
| 8643 | << SizeRange; | |||
| 8644 | else if (NewVD->isStaticLocal()) | |||
| 8645 | Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage) | |||
| 8646 | << SizeRange; | |||
| 8647 | else | |||
| 8648 | Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage) | |||
| 8649 | << SizeRange; | |||
| 8650 | NewVD->setInvalidDecl(); | |||
| 8651 | return; | |||
| 8652 | } | |||
| 8653 | ||||
| 8654 | if (!FixedTInfo) { | |||
| 8655 | if (NewVD->isFileVarDecl()) | |||
| 8656 | Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope); | |||
| 8657 | else | |||
| 8658 | Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage); | |||
| 8659 | NewVD->setInvalidDecl(); | |||
| 8660 | return; | |||
| 8661 | } | |||
| 8662 | ||||
| 8663 | Diag(NewVD->getLocation(), diag::ext_vla_folded_to_constant); | |||
| 8664 | NewVD->setType(FixedT); | |||
| 8665 | NewVD->setTypeSourceInfo(FixedTInfo); | |||
| 8666 | } | |||
| 8667 | ||||
| 8668 | if (T->isVoidType()) { | |||
| 8669 | // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names | |||
| 8670 | // of objects and functions. | |||
| 8671 | if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) { | |||
| 8672 | Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type) | |||
| 8673 | << T; | |||
| 8674 | NewVD->setInvalidDecl(); | |||
| 8675 | return; | |||
| 8676 | } | |||
| 8677 | } | |||
| 8678 | ||||
| 8679 | if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) { | |||
| 8680 | Diag(NewVD->getLocation(), diag::err_block_on_nonlocal); | |||
| 8681 | NewVD->setInvalidDecl(); | |||
| 8682 | return; | |||
| 8683 | } | |||
| 8684 | ||||
| 8685 | if (!NewVD->hasLocalStorage() && T->isSizelessType() && | |||
| 8686 | !T->isWebAssemblyReferenceType()) { | |||
| 8687 | Diag(NewVD->getLocation(), diag::err_sizeless_nonlocal) << T; | |||
| 8688 | NewVD->setInvalidDecl(); | |||
| 8689 | return; | |||
| 8690 | } | |||
| 8691 | ||||
| 8692 | if (isVM && NewVD->hasAttr<BlocksAttr>()) { | |||
| 8693 | Diag(NewVD->getLocation(), diag::err_block_on_vm); | |||
| 8694 | NewVD->setInvalidDecl(); | |||
| 8695 | return; | |||
| 8696 | } | |||
| 8697 | ||||
| 8698 | if (NewVD->isConstexpr() && !T->isDependentType() && | |||
| 8699 | RequireLiteralType(NewVD->getLocation(), T, | |||
| 8700 | diag::err_constexpr_var_non_literal)) { | |||
| 8701 | NewVD->setInvalidDecl(); | |||
| 8702 | return; | |||
| 8703 | } | |||
| 8704 | ||||
| 8705 | // PPC MMA non-pointer types are not allowed as non-local variable types. | |||
| 8706 | if (Context.getTargetInfo().getTriple().isPPC64() && | |||
| 8707 | !NewVD->isLocalVarDecl() && | |||
| 8708 | CheckPPCMMAType(T, NewVD->getLocation())) { | |||
| 8709 | NewVD->setInvalidDecl(); | |||
| 8710 | return; | |||
| 8711 | } | |||
| 8712 | ||||
| 8713 | // Check that SVE types are only used in functions with SVE available. | |||
| 8714 | if (T->isSVESizelessBuiltinType() && isa<FunctionDecl>(CurContext)) { | |||
| 8715 | const FunctionDecl *FD = cast<FunctionDecl>(CurContext); | |||
| 8716 | llvm::StringMap<bool> CallerFeatureMap; | |||
| 8717 | Context.getFunctionFeatureMap(CallerFeatureMap, FD); | |||
| 8718 | if (!Builtin::evaluateRequiredTargetFeatures( | |||
| 8719 | "sve", CallerFeatureMap)) { | |||
| 8720 | Diag(NewVD->getLocation(), diag::err_sve_vector_in_non_sve_target) << T; | |||
| 8721 | NewVD->setInvalidDecl(); | |||
| 8722 | return; | |||
| 8723 | } | |||
| 8724 | } | |||
| 8725 | } | |||
| 8726 | ||||
| 8727 | /// Perform semantic checking on a newly-created variable | |||
| 8728 | /// declaration. | |||
| 8729 | /// | |||
| 8730 | /// This routine performs all of the type-checking required for a | |||
| 8731 | /// variable declaration once it has been built. It is used both to | |||
| 8732 | /// check variables after they have been parsed and their declarators | |||
| 8733 | /// have been translated into a declaration, and to check variables | |||
| 8734 | /// that have been instantiated from a template. | |||
| 8735 | /// | |||
| 8736 | /// Sets NewVD->isInvalidDecl() if an error was encountered. | |||
| 8737 | /// | |||
| 8738 | /// Returns true if the variable declaration is a redeclaration. | |||
| 8739 | bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) { | |||
| 8740 | CheckVariableDeclarationType(NewVD); | |||
| 8741 | ||||
| 8742 | // If the decl is already known invalid, don't check it. | |||
| 8743 | if (NewVD->isInvalidDecl()) | |||
| 8744 | return false; | |||
| 8745 | ||||
| 8746 | // If we did not find anything by this name, look for a non-visible | |||
| 8747 | // extern "C" declaration with the same name. | |||
| 8748 | if (Previous.empty() && | |||
| 8749 | checkForConflictWithNonVisibleExternC(*this, NewVD, Previous)) | |||
| 8750 | Previous.setShadowed(); | |||
| 8751 | ||||
| 8752 | if (!Previous.empty()) { | |||
| 8753 | MergeVarDecl(NewVD, Previous); | |||
| 8754 | return true; | |||
| 8755 | } | |||
| 8756 | return false; | |||
| 8757 | } | |||
| 8758 | ||||
| 8759 | /// AddOverriddenMethods - See if a method overrides any in the base classes, | |||
| 8760 | /// and if so, check that it's a valid override and remember it. | |||
| 8761 | bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) { | |||
| 8762 | llvm::SmallPtrSet<const CXXMethodDecl*, 4> Overridden; | |||
| 8763 | ||||
| 8764 | // Look for methods in base classes that this method might override. | |||
| 8765 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false, | |||
| 8766 | /*DetectVirtual=*/false); | |||
| 8767 | auto VisitBase = [&] (const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { | |||
| 8768 | CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl(); | |||
| 8769 | DeclarationName Name = MD->getDeclName(); | |||
| 8770 | ||||
| 8771 | if (Name.getNameKind() == DeclarationName::CXXDestructorName) { | |||
| 8772 | // We really want to find the base class destructor here. | |||
| 8773 | QualType T = Context.getTypeDeclType(BaseRecord); | |||
| 8774 | CanQualType CT = Context.getCanonicalType(T); | |||
| 8775 | Name = Context.DeclarationNames.getCXXDestructorName(CT); | |||
| 8776 | } | |||
| 8777 | ||||
| 8778 | for (NamedDecl *BaseND : BaseRecord->lookup(Name)) { | |||
| 8779 | CXXMethodDecl *BaseMD = | |||
| 8780 | dyn_cast<CXXMethodDecl>(BaseND->getCanonicalDecl()); | |||
| 8781 | if (!BaseMD || !BaseMD->isVirtual() || | |||
| 8782 | IsOverload(MD, BaseMD, /*UseMemberUsingDeclRules=*/false, | |||
| 8783 | /*ConsiderCudaAttrs=*/true, | |||
| 8784 | // C++2a [class.virtual]p2 does not consider requires | |||
| 8785 | // clauses when overriding. | |||
| 8786 | /*ConsiderRequiresClauses=*/false)) | |||
| 8787 | continue; | |||
| 8788 | ||||
| 8789 | if (Overridden.insert(BaseMD).second) { | |||
| 8790 | MD->addOverriddenMethod(BaseMD); | |||
| 8791 | CheckOverridingFunctionReturnType(MD, BaseMD); | |||
| 8792 | CheckOverridingFunctionAttributes(MD, BaseMD); | |||
| 8793 | CheckOverridingFunctionExceptionSpec(MD, BaseMD); | |||
| 8794 | CheckIfOverriddenFunctionIsMarkedFinal(MD, BaseMD); | |||
| 8795 | } | |||
| 8796 | ||||
| 8797 | // A method can only override one function from each base class. We | |||
| 8798 | // don't track indirectly overridden methods from bases of bases. | |||
| 8799 | return true; | |||
| 8800 | } | |||
| 8801 | ||||
| 8802 | return false; | |||
| 8803 | }; | |||
| 8804 | ||||
| 8805 | DC->lookupInBases(VisitBase, Paths); | |||
| 8806 | return !Overridden.empty(); | |||
| 8807 | } | |||
| 8808 | ||||
| 8809 | namespace { | |||
| 8810 | // Struct for holding all of the extra arguments needed by | |||
| 8811 | // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator. | |||
| 8812 | struct ActOnFDArgs { | |||
| 8813 | Scope *S; | |||
| 8814 | Declarator &D; | |||
| 8815 | MultiTemplateParamsArg TemplateParamLists; | |||
| 8816 | bool AddToScope; | |||
| 8817 | }; | |||
| 8818 | } // end anonymous namespace | |||
| 8819 | ||||
| 8820 | namespace { | |||
| 8821 | ||||
| 8822 | // Callback to only accept typo corrections that have a non-zero edit distance. | |||
| 8823 | // Also only accept corrections that have the same parent decl. | |||
| 8824 | class DifferentNameValidatorCCC final : public CorrectionCandidateCallback { | |||
| 8825 | public: | |||
| 8826 | DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD, | |||
| 8827 | CXXRecordDecl *Parent) | |||
| 8828 | : Context(Context), OriginalFD(TypoFD), | |||
| 8829 | ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {} | |||
| 8830 | ||||
| 8831 | bool ValidateCandidate(const TypoCorrection &candidate) override { | |||
| 8832 | if (candidate.getEditDistance() == 0) | |||
| 8833 | return false; | |||
| 8834 | ||||
| 8835 | SmallVector<unsigned, 1> MismatchedParams; | |||
| 8836 | for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(), | |||
| 8837 | CDeclEnd = candidate.end(); | |||
| 8838 | CDecl != CDeclEnd; ++CDecl) { | |||
| 8839 | FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl); | |||
| 8840 | ||||
| 8841 | if (FD && !FD->hasBody() && | |||
| 8842 | hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) { | |||
| 8843 | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { | |||
| 8844 | CXXRecordDecl *Parent = MD->getParent(); | |||
| 8845 | if (Parent && Parent->getCanonicalDecl() == ExpectedParent) | |||
| 8846 | return true; | |||
| 8847 | } else if (!ExpectedParent) { | |||
| 8848 | return true; | |||
| 8849 | } | |||
| 8850 | } | |||
| 8851 | } | |||
| 8852 | ||||
| 8853 | return false; | |||
| 8854 | } | |||
| 8855 | ||||
| 8856 | std::unique_ptr<CorrectionCandidateCallback> clone() override { | |||
| 8857 | return std::make_unique<DifferentNameValidatorCCC>(*this); | |||
| 8858 | } | |||
| 8859 | ||||
| 8860 | private: | |||
| 8861 | ASTContext &Context; | |||
| 8862 | FunctionDecl *OriginalFD; | |||
| 8863 | CXXRecordDecl *ExpectedParent; | |||
| 8864 | }; | |||
| 8865 | ||||
| 8866 | } // end anonymous namespace | |||
| 8867 | ||||
| 8868 | void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) { | |||
| 8869 | TypoCorrectedFunctionDefinitions.insert(F); | |||
| 8870 | } | |||
| 8871 | ||||
| 8872 | /// Generate diagnostics for an invalid function redeclaration. | |||
| 8873 | /// | |||
| 8874 | /// This routine handles generating the diagnostic messages for an invalid | |||
| 8875 | /// function redeclaration, including finding possible similar declarations | |||
| 8876 | /// or performing typo correction if there are no previous declarations with | |||
| 8877 | /// the same name. | |||
| 8878 | /// | |||
| 8879 | /// Returns a NamedDecl iff typo correction was performed and substituting in | |||
| 8880 | /// the new declaration name does not cause new errors. | |||
| 8881 | static NamedDecl *DiagnoseInvalidRedeclaration( | |||
| 8882 | Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD, | |||
| 8883 | ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) { | |||
| 8884 | DeclarationName Name = NewFD->getDeclName(); | |||
| 8885 | DeclContext *NewDC = NewFD->getDeclContext(); | |||
| 8886 | SmallVector<unsigned, 1> MismatchedParams; | |||
| 8887 | SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches; | |||
| 8888 | TypoCorrection Correction; | |||
| 8889 | bool IsDefinition = ExtraArgs.D.isFunctionDefinition(); | |||
| 8890 | unsigned DiagMsg = | |||
| 8891 | IsLocalFriend ? diag::err_no_matching_local_friend : | |||
| 8892 | NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match : | |||
| 8893 | diag::err_member_decl_does_not_match; | |||
| 8894 | LookupResult Prev(SemaRef, Name, NewFD->getLocation(), | |||
| 8895 | IsLocalFriend ? Sema::LookupLocalFriendName | |||
| 8896 | : Sema::LookupOrdinaryName, | |||
| 8897 | Sema::ForVisibleRedeclaration); | |||
| 8898 | ||||
| 8899 | NewFD->setInvalidDecl(); | |||
| 8900 | if (IsLocalFriend) | |||
| 8901 | SemaRef.LookupName(Prev, S); | |||
| 8902 | else | |||
| 8903 | SemaRef.LookupQualifiedName(Prev, NewDC); | |||
| 8904 | assert(!Prev.isAmbiguous() &&(static_cast <bool> (!Prev.isAmbiguous() && "Cannot have an ambiguity in previous-declaration lookup" ) ? void (0) : __assert_fail ("!Prev.isAmbiguous() && \"Cannot have an ambiguity in previous-declaration lookup\"" , "clang/lib/Sema/SemaDecl.cpp", 8905, __extension__ __PRETTY_FUNCTION__ )) | |||
| 8905 | "Cannot have an ambiguity in previous-declaration lookup")(static_cast <bool> (!Prev.isAmbiguous() && "Cannot have an ambiguity in previous-declaration lookup" ) ? void (0) : __assert_fail ("!Prev.isAmbiguous() && \"Cannot have an ambiguity in previous-declaration lookup\"" , "clang/lib/Sema/SemaDecl.cpp", 8905, __extension__ __PRETTY_FUNCTION__ )); | |||
| 8906 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); | |||
| 8907 | DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD, | |||
| 8908 | MD ? MD->getParent() : nullptr); | |||
| 8909 | if (!Prev.empty()) { | |||
| 8910 | for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end(); | |||
| 8911 | Func != FuncEnd; ++Func) { | |||
| 8912 | FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func); | |||
| 8913 | if (FD && | |||
| 8914 | hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) { | |||
| 8915 | // Add 1 to the index so that 0 can mean the mismatch didn't | |||
| 8916 | // involve a parameter | |||
| 8917 | unsigned ParamNum = | |||
| 8918 | MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1; | |||
| 8919 | NearMatches.push_back(std::make_pair(FD, ParamNum)); | |||
| 8920 | } | |||
| 8921 | } | |||
| 8922 | // If the qualified name lookup yielded nothing, try typo correction | |||
| 8923 | } else if ((Correction = SemaRef.CorrectTypo( | |||
| 8924 | Prev.getLookupNameInfo(), Prev.getLookupKind(), S, | |||
| 8925 | &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery, | |||
| 8926 | IsLocalFriend ? nullptr : NewDC))) { | |||
| 8927 | // Set up everything for the call to ActOnFunctionDeclarator | |||
| 8928 | ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(), | |||
| 8929 | ExtraArgs.D.getIdentifierLoc()); | |||
| 8930 | Previous.clear(); | |||
| 8931 | Previous.setLookupName(Correction.getCorrection()); | |||
| 8932 | for (TypoCorrection::decl_iterator CDecl = Correction.begin(), | |||
| 8933 | CDeclEnd = Correction.end(); | |||
| 8934 | CDecl != CDeclEnd; ++CDecl) { | |||
| 8935 | FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl); | |||
| 8936 | if (FD && !FD->hasBody() && | |||
| 8937 | hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) { | |||
| 8938 | Previous.addDecl(FD); | |||
| 8939 | } | |||
| 8940 | } | |||
| 8941 | bool wasRedeclaration = ExtraArgs.D.isRedeclaration(); | |||
| 8942 | ||||
| 8943 | NamedDecl *Result; | |||
| 8944 | // Retry building the function declaration with the new previous | |||
| 8945 | // declarations, and with errors suppressed. | |||
| 8946 | { | |||
| 8947 | // Trap errors. | |||
| 8948 | Sema::SFINAETrap Trap(SemaRef); | |||
| 8949 | ||||
| 8950 | // TODO: Refactor ActOnFunctionDeclarator so that we can call only the | |||
| 8951 | // pieces need to verify the typo-corrected C++ declaration and hopefully | |||
| 8952 | // eliminate the need for the parameter pack ExtraArgs. | |||
| 8953 | Result = SemaRef.ActOnFunctionDeclarator( | |||
| 8954 | ExtraArgs.S, ExtraArgs.D, | |||
| 8955 | Correction.getCorrectionDecl()->getDeclContext(), | |||
| 8956 | NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists, | |||
| 8957 | ExtraArgs.AddToScope); | |||
| 8958 | ||||
| 8959 | if (Trap.hasErrorOccurred()) | |||
| 8960 | Result = nullptr; | |||
| 8961 | } | |||
| 8962 | ||||
| 8963 | if (Result) { | |||
| 8964 | // Determine which correction we picked. | |||
| 8965 | Decl *Canonical = Result->getCanonicalDecl(); | |||
| 8966 | for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); | |||
| 8967 | I != E; ++I) | |||
| 8968 | if ((*I)->getCanonicalDecl() == Canonical) | |||
| 8969 | Correction.setCorrectionDecl(*I); | |||
| 8970 | ||||
| 8971 | // Let Sema know about the correction. | |||
| 8972 | SemaRef.MarkTypoCorrectedFunctionDefinition(Result); | |||
| 8973 | SemaRef.diagnoseTypo( | |||
| 8974 | Correction, | |||
| 8975 | SemaRef.PDiag(IsLocalFriend | |||
| 8976 | ? diag::err_no_matching_local_friend_suggest | |||
| 8977 | : diag::err_member_decl_does_not_match_suggest) | |||
| 8978 | << Name << NewDC << IsDefinition); | |||
| 8979 | return Result; | |||
| 8980 | } | |||
| 8981 | ||||
| 8982 | // Pretend the typo correction never occurred | |||
| 8983 | ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(), | |||
| 8984 | ExtraArgs.D.getIdentifierLoc()); | |||
| 8985 | ExtraArgs.D.setRedeclaration(wasRedeclaration); | |||
| 8986 | Previous.clear(); | |||
| 8987 | Previous.setLookupName(Name); | |||
| 8988 | } | |||
| 8989 | ||||
| 8990 | SemaRef.Diag(NewFD->getLocation(), DiagMsg) | |||
| 8991 | << Name << NewDC << IsDefinition << NewFD->getLocation(); | |||
| 8992 | ||||
| 8993 | bool NewFDisConst = false; | |||
| 8994 | if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) | |||
| 8995 | NewFDisConst = NewMD->isConst(); | |||
| 8996 | ||||
| 8997 | for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator | |||
| 8998 | NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end(); | |||
| 8999 | NearMatch != NearMatchEnd; ++NearMatch) { | |||
| 9000 | FunctionDecl *FD = NearMatch->first; | |||
| 9001 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); | |||
| 9002 | bool FDisConst = MD && MD->isConst(); | |||
| 9003 | bool IsMember = MD || !IsLocalFriend; | |||
| 9004 | ||||
| 9005 | // FIXME: These notes are poorly worded for the local friend case. | |||
| 9006 | if (unsigned Idx = NearMatch->second) { | |||
| 9007 | ParmVarDecl *FDParam = FD->getParamDecl(Idx-1); | |||
| 9008 | SourceLocation Loc = FDParam->getTypeSpecStartLoc(); | |||
| 9009 | if (Loc.isInvalid()) Loc = FD->getLocation(); | |||
| 9010 | SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match | |||
| 9011 | : diag::note_local_decl_close_param_match) | |||
| 9012 | << Idx << FDParam->getType() | |||
| 9013 | << NewFD->getParamDecl(Idx - 1)->getType(); | |||
| 9014 | } else if (FDisConst != NewFDisConst) { | |||
| 9015 | SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match) | |||
| 9016 | << NewFDisConst << FD->getSourceRange().getEnd() | |||
| 9017 | << (NewFDisConst | |||
| 9018 | ? FixItHint::CreateRemoval(ExtraArgs.D.getFunctionTypeInfo() | |||
| 9019 | .getConstQualifierLoc()) | |||
| 9020 | : FixItHint::CreateInsertion(ExtraArgs.D.getFunctionTypeInfo() | |||
| 9021 | .getRParenLoc() | |||
| 9022 | .getLocWithOffset(1), | |||
| 9023 | " const")); | |||
| 9024 | } else | |||
| 9025 | SemaRef.Diag(FD->getLocation(), | |||
| 9026 | IsMember ? diag::note_member_def_close_match | |||
| 9027 | : diag::note_local_decl_close_match); | |||
| 9028 | } | |||
| 9029 | return nullptr; | |||
| 9030 | } | |||
| 9031 | ||||
| 9032 | static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) { | |||
| 9033 | switch (D.getDeclSpec().getStorageClassSpec()) { | |||
| 9034 | default: llvm_unreachable("Unknown storage class!")::llvm::llvm_unreachable_internal("Unknown storage class!", "clang/lib/Sema/SemaDecl.cpp" , 9034); | |||
| 9035 | case DeclSpec::SCS_auto: | |||
| 9036 | case DeclSpec::SCS_register: | |||
| 9037 | case DeclSpec::SCS_mutable: | |||
| 9038 | SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), | |||
| 9039 | diag::err_typecheck_sclass_func); | |||
| 9040 | D.getMutableDeclSpec().ClearStorageClassSpecs(); | |||
| 9041 | D.setInvalidType(); | |||
| 9042 | break; | |||
| 9043 | case DeclSpec::SCS_unspecified: break; | |||
| 9044 | case DeclSpec::SCS_extern: | |||
| 9045 | if (D.getDeclSpec().isExternInLinkageSpec()) | |||
| 9046 | return SC_None; | |||
| 9047 | return SC_Extern; | |||
| 9048 | case DeclSpec::SCS_static: { | |||
| 9049 | if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) { | |||
| 9050 | // C99 6.7.1p5: | |||
| 9051 | // The declaration of an identifier for a function that has | |||
| 9052 | // block scope shall have no explicit storage-class specifier | |||
| 9053 | // other than extern | |||
| 9054 | // See also (C++ [dcl.stc]p4). | |||
| 9055 | SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), | |||
| 9056 | diag::err_static_block_func); | |||
| 9057 | break; | |||
| 9058 | } else | |||
| 9059 | return SC_Static; | |||
| 9060 | } | |||
| 9061 | case DeclSpec::SCS_private_extern: return SC_PrivateExtern; | |||
| 9062 | } | |||
| 9063 | ||||
| 9064 | // No explicit storage class has already been returned | |||
| 9065 | return SC_None; | |||
| 9066 | } | |||
| 9067 | ||||
| 9068 | static FunctionDecl *CreateNewFunctionDecl(Sema &SemaRef, Declarator &D, | |||
| 9069 | DeclContext *DC, QualType &R, | |||
| 9070 | TypeSourceInfo *TInfo, | |||
| 9071 | StorageClass SC, | |||
| 9072 | bool &IsVirtualOkay) { | |||
| 9073 | DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D); | |||
| 9074 | DeclarationName Name = NameInfo.getName(); | |||
| 9075 | ||||
| 9076 | FunctionDecl *NewFD = nullptr; | |||
| 9077 | bool isInline = D.getDeclSpec().isInlineSpecified(); | |||
| 9078 | ||||
| 9079 | if (!SemaRef.getLangOpts().CPlusPlus) { | |||
| 9080 | // Determine whether the function was written with a prototype. This is | |||
| 9081 | // true when: | |||
| 9082 | // - there is a prototype in the declarator, or | |||
| 9083 | // - the type R of the function is some kind of typedef or other non- | |||
| 9084 | // attributed reference to a type name (which eventually refers to a | |||
| 9085 | // function type). Note, we can't always look at the adjusted type to | |||
| 9086 | // check this case because attributes may cause a non-function | |||
| 9087 | // declarator to still have a function type. e.g., | |||
| 9088 | // typedef void func(int a); | |||
| 9089 | // __attribute__((noreturn)) func other_func; // This has a prototype | |||
| 9090 | bool HasPrototype = | |||
| 9091 | (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) || | |||
| 9092 | (D.getDeclSpec().isTypeRep() && | |||
| 9093 | D.getDeclSpec().getRepAsType().get()->isFunctionProtoType()) || | |||
| 9094 | (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType()); | |||
| 9095 | assert((static_cast <bool> ((HasPrototype || !SemaRef.getLangOpts ().requiresStrictPrototypes()) && "Strict prototypes are required" ) ? void (0) : __assert_fail ("(HasPrototype || !SemaRef.getLangOpts().requiresStrictPrototypes()) && \"Strict prototypes are required\"" , "clang/lib/Sema/SemaDecl.cpp", 9097, __extension__ __PRETTY_FUNCTION__ )) | |||
| 9096 | (HasPrototype || !SemaRef.getLangOpts().requiresStrictPrototypes()) &&(static_cast <bool> ((HasPrototype || !SemaRef.getLangOpts ().requiresStrictPrototypes()) && "Strict prototypes are required" ) ? void (0) : __assert_fail ("(HasPrototype || !SemaRef.getLangOpts().requiresStrictPrototypes()) && \"Strict prototypes are required\"" , "clang/lib/Sema/SemaDecl.cpp", 9097, __extension__ __PRETTY_FUNCTION__ )) | |||
| 9097 | "Strict prototypes are required")(static_cast <bool> ((HasPrototype || !SemaRef.getLangOpts ().requiresStrictPrototypes()) && "Strict prototypes are required" ) ? void (0) : __assert_fail ("(HasPrototype || !SemaRef.getLangOpts().requiresStrictPrototypes()) && \"Strict prototypes are required\"" , "clang/lib/Sema/SemaDecl.cpp", 9097, __extension__ __PRETTY_FUNCTION__ )); | |||
| 9098 | ||||
| 9099 | NewFD = FunctionDecl::Create( | |||
| 9100 | SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC, | |||
| 9101 | SemaRef.getCurFPFeatures().isFPConstrained(), isInline, HasPrototype, | |||
| 9102 | ConstexprSpecKind::Unspecified, | |||
| 9103 | /*TrailingRequiresClause=*/nullptr); | |||
| 9104 | if (D.isInvalidType()) | |||
| 9105 | NewFD->setInvalidDecl(); | |||
| 9106 | ||||
| 9107 | return NewFD; | |||
| 9108 | } | |||
| 9109 | ||||
| 9110 | ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier(); | |||
| 9111 | ||||
| 9112 | ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier(); | |||
| 9113 | if (ConstexprKind == ConstexprSpecKind::Constinit) { | |||
| 9114 | SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(), | |||
| 9115 | diag::err_constexpr_wrong_decl_kind) | |||
| 9116 | << static_cast<int>(ConstexprKind); | |||
| 9117 | ConstexprKind = ConstexprSpecKind::Unspecified; | |||
| 9118 | D.getMutableDeclSpec().ClearConstexprSpec(); | |||
| 9119 | } | |||
| 9120 | Expr *TrailingRequiresClause = D.getTrailingRequiresClause(); | |||
| 9121 | ||||
| 9122 | // Check that the return type is not an abstract class type. | |||
| 9123 | // For record types, this is done by the AbstractClassUsageDiagnoser once | |||
| 9124 | // the class has been completely parsed. | |||
| 9125 | if (!DC->isRecord() && | |||
| 9126 | SemaRef.RequireNonAbstractType( | |||
| 9127 | D.getIdentifierLoc(), R->castAs<FunctionType>()->getReturnType(), | |||
| 9128 | diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType)) | |||
| 9129 | D.setInvalidType(); | |||
| 9130 | ||||
| 9131 | if (Name.getNameKind() == DeclarationName::CXXConstructorName) { | |||
| 9132 | // This is a C++ constructor declaration. | |||
| 9133 | assert(DC->isRecord() &&(static_cast <bool> (DC->isRecord() && "Constructors can only be declared in a member context" ) ? void (0) : __assert_fail ("DC->isRecord() && \"Constructors can only be declared in a member context\"" , "clang/lib/Sema/SemaDecl.cpp", 9134, __extension__ __PRETTY_FUNCTION__ )) | |||
| 9134 | "Constructors can only be declared in a member context")(static_cast <bool> (DC->isRecord() && "Constructors can only be declared in a member context" ) ? void (0) : __assert_fail ("DC->isRecord() && \"Constructors can only be declared in a member context\"" , "clang/lib/Sema/SemaDecl.cpp", 9134, __extension__ __PRETTY_FUNCTION__ )); | |||
| 9135 | ||||
| 9136 | R = SemaRef.CheckConstructorDeclarator(D, R, SC); | |||
| 9137 | return CXXConstructorDecl::Create( | |||
| 9138 | SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R, | |||
| 9139 | TInfo, ExplicitSpecifier, SemaRef.getCurFPFeatures().isFPConstrained(), | |||
| 9140 | isInline, /*isImplicitlyDeclared=*/false, ConstexprKind, | |||
| 9141 | InheritedConstructor(), TrailingRequiresClause); | |||
| 9142 | ||||
| 9143 | } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) { | |||
| 9144 | // This is a C++ destructor declaration. | |||
| 9145 | if (DC->isRecord()) { | |||
| 9146 | R = SemaRef.CheckDestructorDeclarator(D, R, SC); | |||
| 9147 | CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); | |||
| 9148 | CXXDestructorDecl *NewDD = CXXDestructorDecl::Create( | |||
| 9149 | SemaRef.Context, Record, D.getBeginLoc(), NameInfo, R, TInfo, | |||
| 9150 | SemaRef.getCurFPFeatures().isFPConstrained(), isInline, | |||
| 9151 | /*isImplicitlyDeclared=*/false, ConstexprKind, | |||
| 9152 | TrailingRequiresClause); | |||
| 9153 | // User defined destructors start as not selected if the class definition is still | |||
| 9154 | // not done. | |||
| 9155 | if (Record->isBeingDefined()) | |||
| 9156 | NewDD->setIneligibleOrNotSelected(true); | |||
| 9157 | ||||
| 9158 | // If the destructor needs an implicit exception specification, set it | |||
| 9159 | // now. FIXME: It'd be nice to be able to create the right type to start | |||
| 9160 | // with, but the type needs to reference the destructor declaration. | |||
| 9161 | if (SemaRef.getLangOpts().CPlusPlus11) | |||
| 9162 | SemaRef.AdjustDestructorExceptionSpec(NewDD); | |||
| 9163 | ||||
| 9164 | IsVirtualOkay = true; | |||
| 9165 | return NewDD; | |||
| 9166 | ||||
| 9167 | } else { | |||
| 9168 | SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member); | |||
| 9169 | D.setInvalidType(); | |||
| 9170 | ||||
| 9171 | // Create a FunctionDecl to satisfy the function definition parsing | |||
| 9172 | // code path. | |||
| 9173 | return FunctionDecl::Create( | |||
| 9174 | SemaRef.Context, DC, D.getBeginLoc(), D.getIdentifierLoc(), Name, R, | |||
| 9175 | TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline, | |||
| 9176 | /*hasPrototype=*/true, ConstexprKind, TrailingRequiresClause); | |||
| 9177 | } | |||
| 9178 | ||||
| 9179 | } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { | |||
| 9180 | if (!DC->isRecord()) { | |||
| 9181 | SemaRef.Diag(D.getIdentifierLoc(), | |||
| 9182 | diag::err_conv_function_not_member); | |||
| 9183 | return nullptr; | |||
| 9184 | } | |||
| 9185 | ||||
| 9186 | SemaRef.CheckConversionDeclarator(D, R, SC); | |||
| 9187 | if (D.isInvalidType()) | |||
| 9188 | return nullptr; | |||
| 9189 | ||||
| 9190 | IsVirtualOkay = true; | |||
| 9191 | return CXXConversionDecl::Create( | |||
| 9192 | SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R, | |||
| 9193 | TInfo, SemaRef.getCurFPFeatures().isFPConstrained(), isInline, | |||
| 9194 | ExplicitSpecifier, ConstexprKind, SourceLocation(), | |||
| 9195 | TrailingRequiresClause); | |||
| 9196 | ||||
| 9197 | } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) { | |||
| 9198 | if (TrailingRequiresClause) | |||
| 9199 | SemaRef.Diag(TrailingRequiresClause->getBeginLoc(), | |||
| 9200 | diag::err_trailing_requires_clause_on_deduction_guide) | |||
| 9201 | << TrailingRequiresClause->getSourceRange(); | |||
| 9202 | SemaRef.CheckDeductionGuideDeclarator(D, R, SC); | |||
| 9203 | ||||
| 9204 | return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), | |||
| 9205 | ExplicitSpecifier, NameInfo, R, TInfo, | |||
| 9206 | D.getEndLoc()); | |||
| 9207 | } else if (DC->isRecord()) { | |||
| 9208 | // If the name of the function is the same as the name of the record, | |||
| 9209 | // then this must be an invalid constructor that has a return type. | |||
| 9210 | // (The parser checks for a return type and makes the declarator a | |||
| 9211 | // constructor if it has no return type). | |||
| 9212 | if (Name.getAsIdentifierInfo() && | |||
| 9213 | Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){ | |||
| 9214 | SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type) | |||
| 9215 | << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) | |||
| 9216 | << SourceRange(D.getIdentifierLoc()); | |||
| 9217 | return nullptr; | |||
| 9218 | } | |||
| 9219 | ||||
| 9220 | // This is a C++ method declaration. | |||
| 9221 | CXXMethodDecl *Ret = CXXMethodDecl::Create( | |||
| 9222 | SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R, | |||
| 9223 | TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline, | |||
| 9224 | ConstexprKind, SourceLocation(), TrailingRequiresClause); | |||
| 9225 | IsVirtualOkay = !Ret->isStatic(); | |||
| 9226 | return Ret; | |||
| 9227 | } else { | |||
| 9228 | bool isFriend = | |||
| 9229 | SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified(); | |||
| 9230 | if (!isFriend && SemaRef.CurContext->isRecord()) | |||
| 9231 | return nullptr; | |||
| 9232 | ||||
| 9233 | // Determine whether the function was written with a | |||
| 9234 | // prototype. This true when: | |||
| 9235 | // - we're in C++ (where every function has a prototype), | |||
| 9236 | return FunctionDecl::Create( | |||
| 9237 | SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC, | |||
| 9238 | SemaRef.getCurFPFeatures().isFPConstrained(), isInline, | |||
| 9239 | true /*HasPrototype*/, ConstexprKind, TrailingRequiresClause); | |||
| 9240 | } | |||
| 9241 | } | |||
| 9242 | ||||
| 9243 | enum OpenCLParamType { | |||
| 9244 | ValidKernelParam, | |||
| 9245 | PtrPtrKernelParam, | |||
| 9246 | PtrKernelParam, | |||
| 9247 | InvalidAddrSpacePtrKernelParam, | |||
| 9248 | InvalidKernelParam, | |||
| 9249 | RecordKernelParam | |||
| 9250 | }; | |||
| 9251 | ||||
| 9252 | static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) { | |||
| 9253 | // Size dependent types are just typedefs to normal integer types | |||
| 9254 | // (e.g. unsigned long), so we cannot distinguish them from other typedefs to | |||
| 9255 | // integers other than by their names. | |||
| 9256 | StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"}; | |||
| 9257 | ||||
| 9258 | // Remove typedefs one by one until we reach a typedef | |||
| 9259 | // for a size dependent type. | |||
| 9260 | QualType DesugaredTy = Ty; | |||
| 9261 | do { | |||
| 9262 | ArrayRef<StringRef> Names(SizeTypeNames); | |||
| 9263 | auto Match = llvm::find(Names, DesugaredTy.getUnqualifiedType().getAsString()); | |||
| 9264 | if (Names.end() != Match) | |||
| 9265 | return true; | |||
| 9266 | ||||
| 9267 | Ty = DesugaredTy; | |||
| 9268 | DesugaredTy = Ty.getSingleStepDesugaredType(C); | |||
| 9269 | } while (DesugaredTy != Ty); | |||
| 9270 | ||||
| 9271 | return false; | |||
| 9272 | } | |||
| 9273 | ||||
| 9274 | static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) { | |||
| 9275 | if (PT->isDependentType()) | |||
| 9276 | return InvalidKernelParam; | |||
| 9277 | ||||
| 9278 | if (PT->isPointerType() || PT->isReferenceType()) { | |||
| 9279 | QualType PointeeType = PT->getPointeeType(); | |||
| 9280 | if (PointeeType.getAddressSpace() == LangAS::opencl_generic || | |||
| 9281 | PointeeType.getAddressSpace() == LangAS::opencl_private || | |||
| 9282 | PointeeType.getAddressSpace() == LangAS::Default) | |||
| 9283 | return InvalidAddrSpacePtrKernelParam; | |||
| 9284 | ||||
| 9285 | if (PointeeType->isPointerType()) { | |||
| 9286 | // This is a pointer to pointer parameter. | |||
| 9287 | // Recursively check inner type. | |||
| 9288 | OpenCLParamType ParamKind = getOpenCLKernelParameterType(S, PointeeType); | |||
| 9289 | if (ParamKind == InvalidAddrSpacePtrKernelParam || | |||
| 9290 | ParamKind == InvalidKernelParam) | |||
| 9291 | return ParamKind; | |||
| 9292 | ||||
| 9293 | // OpenCL v3.0 s6.11.a: | |||
| 9294 | // A restriction to pass pointers to pointers only applies to OpenCL C | |||
| 9295 | // v1.2 or below. | |||
| 9296 | if (S.getLangOpts().getOpenCLCompatibleVersion() > 120) | |||
| 9297 | return ValidKernelParam; | |||
| 9298 | ||||
| 9299 | return PtrPtrKernelParam; | |||
| 9300 | } | |||
| 9301 | ||||
| 9302 | // C++ for OpenCL v1.0 s2.4: | |||
| 9303 | // Moreover the types used in parameters of the kernel functions must be: | |||
| 9304 | // Standard layout types for pointer parameters. The same applies to | |||
| 9305 | // reference if an implementation supports them in kernel parameters. | |||
| 9306 | if (S.getLangOpts().OpenCLCPlusPlus && | |||
| 9307 | !S.getOpenCLOptions().isAvailableOption( | |||
| 9308 | "__cl_clang_non_portable_kernel_param_types", S.getLangOpts())) { | |||
| 9309 | auto CXXRec = PointeeType.getCanonicalType()->getAsCXXRecordDecl(); | |||
| 9310 | bool IsStandardLayoutType = true; | |||
| 9311 | if (CXXRec) { | |||
| 9312 | // If template type is not ODR-used its definition is only available | |||
| 9313 | // in the template definition not its instantiation. | |||
| 9314 | // FIXME: This logic doesn't work for types that depend on template | |||
| 9315 | // parameter (PR58590). | |||
| 9316 | if (!CXXRec->hasDefinition()) | |||
| 9317 | CXXRec = CXXRec->getTemplateInstantiationPattern(); | |||
| 9318 | if (!CXXRec || !CXXRec->hasDefinition() || !CXXRec->isStandardLayout()) | |||
| 9319 | IsStandardLayoutType = false; | |||
| 9320 | } | |||
| 9321 | if (!PointeeType->isAtomicType() && !PointeeType->isVoidType() && | |||
| 9322 | !IsStandardLayoutType) | |||
| 9323 | return InvalidKernelParam; | |||
| 9324 | } | |||
| 9325 | ||||
| 9326 | // OpenCL v1.2 s6.9.p: | |||
| 9327 | // A restriction to pass pointers only applies to OpenCL C v1.2 or below. | |||
| 9328 | if (S.getLangOpts().getOpenCLCompatibleVersion() > 120) | |||
| 9329 | return ValidKernelParam; | |||
| 9330 | ||||
| 9331 | return PtrKernelParam; | |||
| 9332 | } | |||
| 9333 | ||||
| 9334 | // OpenCL v1.2 s6.9.k: | |||
| 9335 | // Arguments to kernel functions in a program cannot be declared with the | |||
| 9336 | // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and | |||
| 9337 | // uintptr_t or a struct and/or union that contain fields declared to be one | |||
| 9338 | // of these built-in scalar types. | |||
| 9339 | if (isOpenCLSizeDependentType(S.getASTContext(), PT)) | |||
| 9340 | return InvalidKernelParam; | |||
| 9341 | ||||
| 9342 | if (PT->isImageType()) | |||
| 9343 | return PtrKernelParam; | |||
| 9344 | ||||
| 9345 | if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT()) | |||
| 9346 | return InvalidKernelParam; | |||
| 9347 | ||||
| 9348 | // OpenCL extension spec v1.2 s9.5: | |||
| 9349 | // This extension adds support for half scalar and vector types as built-in | |||
| 9350 | // types that can be used for arithmetic operations, conversions etc. | |||
| 9351 | if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16", S.getLangOpts()) && | |||
| 9352 | PT->isHalfType()) | |||
| 9353 | return InvalidKernelParam; | |||
| 9354 | ||||
| 9355 | // Look into an array argument to check if it has a forbidden type. | |||
| 9356 | if (PT->isArrayType()) { | |||
| 9357 | const Type *UnderlyingTy = PT->getPointeeOrArrayElementType(); | |||
| 9358 | // Call ourself to check an underlying type of an array. Since the | |||
| 9359 | // getPointeeOrArrayElementType returns an innermost type which is not an | |||
| 9360 | // array, this recursive call only happens once. | |||
| 9361 | return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0)); | |||
| 9362 | } | |||
| 9363 | ||||
| 9364 | // C++ for OpenCL v1.0 s2.4: | |||
| 9365 | // Moreover the types used in parameters of the kernel functions must be: | |||
| 9366 | // Trivial and standard-layout types C++17 [basic.types] (plain old data | |||
| 9367 | // types) for parameters passed by value; | |||
| 9368 | if (S.getLangOpts().OpenCLCPlusPlus && | |||
| 9369 | !S.getOpenCLOptions().isAvailableOption( | |||
| 9370 | "__cl_clang_non_portable_kernel_param_types", S.getLangOpts()) && | |||
| 9371 | !PT->isOpenCLSpecificType() && !PT.isPODType(S.Context)) | |||
| 9372 | return InvalidKernelParam; | |||
| 9373 | ||||
| 9374 | if (PT->isRecordType()) | |||
| 9375 | return RecordKernelParam; | |||
| 9376 | ||||
| 9377 | return ValidKernelParam; | |||
| 9378 | } | |||
| 9379 | ||||
| 9380 | static void checkIsValidOpenCLKernelParameter( | |||
| 9381 | Sema &S, | |||
| 9382 | Declarator &D, | |||
| 9383 | ParmVarDecl *Param, | |||
| 9384 | llvm::SmallPtrSetImpl<const Type *> &ValidTypes) { | |||
| 9385 | QualType PT = Param->getType(); | |||
| 9386 | ||||
| 9387 | // Cache the valid types we encounter to avoid rechecking structs that are | |||
| 9388 | // used again | |||
| 9389 | if (ValidTypes.count(PT.getTypePtr())) | |||
| 9390 | return; | |||
| 9391 | ||||
| 9392 | switch (getOpenCLKernelParameterType(S, PT)) { | |||
| 9393 | case PtrPtrKernelParam: | |||
| 9394 | // OpenCL v3.0 s6.11.a: | |||
| 9395 | // A kernel function argument cannot be declared as a pointer to a pointer | |||
| 9396 | // type. [...] This restriction only applies to OpenCL C 1.2 or below. | |||
| 9397 | S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param); | |||
| 9398 | D.setInvalidType(); | |||
| 9399 | return; | |||
| 9400 | ||||
| 9401 | case InvalidAddrSpacePtrKernelParam: | |||
| 9402 | // OpenCL v1.0 s6.5: | |||
| 9403 | // __kernel function arguments declared to be a pointer of a type can point | |||
| 9404 | // to one of the following address spaces only : __global, __local or | |||
| 9405 | // __constant. | |||
| 9406 | S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space); | |||
| 9407 | D.setInvalidType(); | |||
| 9408 | return; | |||
| 9409 | ||||
| 9410 | // OpenCL v1.2 s6.9.k: | |||
| 9411 | // Arguments to kernel functions in a program cannot be declared with the | |||
| 9412 | // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and | |||
| 9413 | // uintptr_t or a struct and/or union that contain fields declared to be | |||
| 9414 | // one of these built-in scalar types. | |||
| 9415 | ||||
| 9416 | case InvalidKernelParam: | |||
| 9417 | // OpenCL v1.2 s6.8 n: | |||
| 9418 | // A kernel function argument cannot be declared | |||
| 9419 | // of event_t type. | |||
| 9420 | // Do not diagnose half type since it is diagnosed as invalid argument | |||
| 9421 | // type for any function elsewhere. | |||
| 9422 | if (!PT->isHalfType()) { | |||
| 9423 | S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; | |||
| 9424 | ||||
| 9425 | // Explain what typedefs are involved. | |||
| 9426 | const TypedefType *Typedef = nullptr; | |||
| 9427 | while ((Typedef = PT->getAs<TypedefType>())) { | |||
| 9428 | SourceLocation Loc = Typedef->getDecl()->getLocation(); | |||
| 9429 | // SourceLocation may be invalid for a built-in type. | |||
| 9430 | if (Loc.isValid()) | |||
| 9431 | S.Diag(Loc, diag::note_entity_declared_at) << PT; | |||
| 9432 | PT = Typedef->desugar(); | |||
| 9433 | } | |||
| 9434 | } | |||
| 9435 | ||||
| 9436 | D.setInvalidType(); | |||
| 9437 | return; | |||
| 9438 | ||||
| 9439 | case PtrKernelParam: | |||
| 9440 | case ValidKernelParam: | |||
| 9441 | ValidTypes.insert(PT.getTypePtr()); | |||
| 9442 | return; | |||
| 9443 | ||||
| 9444 | case RecordKernelParam: | |||
| 9445 | break; | |||
| 9446 | } | |||
| 9447 | ||||
| 9448 | // Track nested structs we will inspect | |||
| 9449 | SmallVector<const Decl *, 4> VisitStack; | |||
| 9450 | ||||
| 9451 | // Track where we are in the nested structs. Items will migrate from | |||
| 9452 | // VisitStack to HistoryStack as we do the DFS for bad field. | |||
| 9453 | SmallVector<const FieldDecl *, 4> HistoryStack; | |||
| 9454 | HistoryStack.push_back(nullptr); | |||
| 9455 | ||||
| 9456 | // At this point we already handled everything except of a RecordType or | |||
| 9457 | // an ArrayType of a RecordType. | |||
| 9458 | assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type.")(static_cast <bool> ((PT->isArrayType() || PT->isRecordType ()) && "Unexpected type.") ? void (0) : __assert_fail ("(PT->isArrayType() || PT->isRecordType()) && \"Unexpected type.\"" , "clang/lib/Sema/SemaDecl.cpp", 9458, __extension__ __PRETTY_FUNCTION__ )); | |||
| 9459 | const RecordType *RecTy = | |||
| 9460 | PT->getPointeeOrArrayElementType()->getAs<RecordType>(); | |||
| 9461 | const RecordDecl *OrigRecDecl = RecTy->getDecl(); | |||
| 9462 | ||||
| 9463 | VisitStack.push_back(RecTy->getDecl()); | |||
| 9464 | assert(VisitStack.back() && "First decl null?")(static_cast <bool> (VisitStack.back() && "First decl null?" ) ? void (0) : __assert_fail ("VisitStack.back() && \"First decl null?\"" , "clang/lib/Sema/SemaDecl.cpp", 9464, __extension__ __PRETTY_FUNCTION__ )); | |||
| 9465 | ||||
| 9466 | do { | |||
| 9467 | const Decl *Next = VisitStack.pop_back_val(); | |||
| 9468 | if (!Next) { | |||
| 9469 | assert(!HistoryStack.empty())(static_cast <bool> (!HistoryStack.empty()) ? void (0) : __assert_fail ("!HistoryStack.empty()", "clang/lib/Sema/SemaDecl.cpp" , 9469, __extension__ __PRETTY_FUNCTION__)); | |||
| 9470 | // Found a marker, we have gone up a level | |||
| 9471 | if (const FieldDecl *Hist = HistoryStack.pop_back_val()) | |||
| 9472 | ValidTypes.insert(Hist->getType().getTypePtr()); | |||
| 9473 | ||||
| 9474 | continue; | |||
| 9475 | } | |||
| 9476 | ||||
| 9477 | // Adds everything except the original parameter declaration (which is not a | |||
| 9478 | // field itself) to the history stack. | |||
| 9479 | const RecordDecl *RD; | |||
| 9480 | if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) { | |||
| 9481 | HistoryStack.push_back(Field); | |||
| 9482 | ||||
| 9483 | QualType FieldTy = Field->getType(); | |||
| 9484 | // Other field types (known to be valid or invalid) are handled while we | |||
| 9485 | // walk around RecordDecl::fields(). | |||
| 9486 | assert((FieldTy->isArrayType() || FieldTy->isRecordType()) &&(static_cast <bool> ((FieldTy->isArrayType() || FieldTy ->isRecordType()) && "Unexpected type.") ? void (0 ) : __assert_fail ("(FieldTy->isArrayType() || FieldTy->isRecordType()) && \"Unexpected type.\"" , "clang/lib/Sema/SemaDecl.cpp", 9487, __extension__ __PRETTY_FUNCTION__ )) | |||
| 9487 | "Unexpected type.")(static_cast <bool> ((FieldTy->isArrayType() || FieldTy ->isRecordType()) && "Unexpected type.") ? void (0 ) : __assert_fail ("(FieldTy->isArrayType() || FieldTy->isRecordType()) && \"Unexpected type.\"" , "clang/lib/Sema/SemaDecl.cpp", 9487, __extension__ __PRETTY_FUNCTION__ )); | |||
| 9488 | const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType(); | |||
| 9489 | ||||
| 9490 | RD = FieldRecTy->castAs<RecordType>()->getDecl(); | |||
| 9491 | } else { | |||
| 9492 | RD = cast<RecordDecl>(Next); | |||
| 9493 | } | |||
| 9494 | ||||
| 9495 | // Add a null marker so we know when we've gone back up a level | |||
| 9496 | VisitStack.push_back(nullptr); | |||
| 9497 | ||||
| 9498 | for (const auto *FD : RD->fields()) { | |||
| 9499 | QualType QT = FD->getType(); | |||
| 9500 | ||||
| 9501 | if (ValidTypes.count(QT.getTypePtr())) | |||
| 9502 | continue; | |||
| 9503 | ||||
| 9504 | OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT); | |||
| 9505 | if (ParamType == ValidKernelParam) | |||
| 9506 | continue; | |||
| 9507 | ||||
| 9508 | if (ParamType == RecordKernelParam) { | |||
| 9509 | VisitStack.push_back(FD); | |||
| 9510 | continue; | |||
| 9511 | } | |||
| 9512 | ||||
| 9513 | // OpenCL v1.2 s6.9.p: | |||
| 9514 | // Arguments to kernel functions that are declared to be a struct or union | |||
| 9515 | // do not allow OpenCL objects to be passed as elements of the struct or | |||
| 9516 | // union. This restriction was lifted in OpenCL v2.0 with the introduction | |||
| 9517 | // of SVM. | |||
| 9518 | if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam || | |||
| 9519 | ParamType == InvalidAddrSpacePtrKernelParam) { | |||
| 9520 | S.Diag(Param->getLocation(), | |||
| 9521 | diag::err_record_with_pointers_kernel_param) | |||
| 9522 | << PT->isUnionType() | |||
| 9523 | << PT; | |||
| 9524 | } else { | |||
| 9525 | S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; | |||
| 9526 | } | |||
| 9527 | ||||
| 9528 | S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type) | |||
| 9529 | << OrigRecDecl->getDeclName(); | |||
| 9530 | ||||
| 9531 | // We have an error, now let's go back up through history and show where | |||
| 9532 | // the offending field came from | |||
| 9533 | for (ArrayRef<const FieldDecl *>::const_iterator | |||
| 9534 | I = HistoryStack.begin() + 1, | |||
| 9535 | E = HistoryStack.end(); | |||
| 9536 | I != E; ++I) { | |||
| 9537 | const FieldDecl *OuterField = *I; | |||
| 9538 | S.Diag(OuterField->getLocation(), diag::note_within_field_of_type) | |||
| 9539 | << OuterField->getType(); | |||
| 9540 | } | |||
| 9541 | ||||
| 9542 | S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here) | |||
| 9543 | << QT->isPointerType() | |||
| 9544 | << QT; | |||
| 9545 | D.setInvalidType(); | |||
| 9546 | return; | |||
| 9547 | } | |||
| 9548 | } while (!VisitStack.empty()); | |||
| 9549 | } | |||
| 9550 | ||||
| 9551 | /// Find the DeclContext in which a tag is implicitly declared if we see an | |||
| 9552 | /// elaborated type specifier in the specified context, and lookup finds | |||
| 9553 | /// nothing. | |||
| 9554 | static DeclContext *getTagInjectionContext(DeclContext *DC) { | |||
| 9555 | while (!DC->isFileContext() && !DC->isFunctionOrMethod()) | |||
| 9556 | DC = DC->getParent(); | |||
| 9557 | return DC; | |||
| 9558 | } | |||
| 9559 | ||||
| 9560 | /// Find the Scope in which a tag is implicitly declared if we see an | |||
| 9561 | /// elaborated type specifier in the specified context, and lookup finds | |||
| 9562 | /// nothing. | |||
| 9563 | static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) { | |||
| 9564 | while (S->isClassScope() || | |||
| 9565 | (LangOpts.CPlusPlus && | |||
| 9566 | S->isFunctionPrototypeScope()) || | |||
| 9567 | ((S->getFlags() & Scope::DeclScope) == 0) || | |||
| 9568 | (S->getEntity() && S->getEntity()->isTransparentContext())) | |||
| 9569 | S = S->getParent(); | |||
| 9570 | return S; | |||
| 9571 | } | |||
| 9572 | ||||
| 9573 | /// Determine whether a declaration matches a known function in namespace std. | |||
| 9574 | static bool isStdBuiltin(ASTContext &Ctx, FunctionDecl *FD, | |||
| 9575 | unsigned BuiltinID) { | |||
| 9576 | switch (BuiltinID) { | |||
| 9577 | case Builtin::BI__GetExceptionInfo: | |||
| 9578 | // No type checking whatsoever. | |||
| 9579 | return Ctx.getTargetInfo().getCXXABI().isMicrosoft(); | |||
| 9580 | ||||
| 9581 | case Builtin::BIaddressof: | |||
| 9582 | case Builtin::BI__addressof: | |||
| 9583 | case Builtin::BIforward: | |||
| 9584 | case Builtin::BIforward_like: | |||
| 9585 | case Builtin::BImove: | |||
| 9586 | case Builtin::BImove_if_noexcept: | |||
| 9587 | case Builtin::BIas_const: { | |||
| 9588 | // Ensure that we don't treat the algorithm | |||
| 9589 | // OutputIt std::move(InputIt, InputIt, OutputIt) | |||
| 9590 | // as the builtin std::move. | |||
| 9591 | const auto *FPT = FD->getType()->castAs<FunctionProtoType>(); | |||
| 9592 | return FPT->getNumParams() == 1 && !FPT->isVariadic(); | |||
| 9593 | } | |||
| 9594 | ||||
| 9595 | default: | |||
| 9596 | return false; | |||
| 9597 | } | |||
| 9598 | } | |||
| 9599 | ||||
| 9600 | NamedDecl* | |||
| 9601 | Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC, | |||
| 9602 | TypeSourceInfo *TInfo, LookupResult &Previous, | |||
| 9603 | MultiTemplateParamsArg TemplateParamListsRef, | |||
| 9604 | bool &AddToScope) { | |||
| 9605 | QualType R = TInfo->getType(); | |||
| 9606 | ||||
| 9607 | assert(R->isFunctionType())(static_cast <bool> (R->isFunctionType()) ? void (0) : __assert_fail ("R->isFunctionType()", "clang/lib/Sema/SemaDecl.cpp" , 9607, __extension__ __PRETTY_FUNCTION__)); | |||
| 9608 | if (R.getCanonicalType()->castAs<FunctionType>()->getCmseNSCallAttr()) | |||
| 9609 | Diag(D.getIdentifierLoc(), diag::err_function_decl_cmse_ns_call); | |||
| 9610 | ||||
| 9611 | SmallVector<TemplateParameterList *, 4> TemplateParamLists; | |||
| 9612 | llvm::append_range(TemplateParamLists, TemplateParamListsRef); | |||
| 9613 | if (TemplateParameterList *Invented = D.getInventedTemplateParameterList()) { | |||
| 9614 | if (!TemplateParamLists.empty() && | |||
| 9615 | Invented->getDepth() == TemplateParamLists.back()->getDepth()) | |||
| 9616 | TemplateParamLists.back() = Invented; | |||
| 9617 | else | |||
| 9618 | TemplateParamLists.push_back(Invented); | |||
| 9619 | } | |||
| 9620 | ||||
| 9621 | // TODO: consider using NameInfo for diagnostic. | |||
| 9622 | DeclarationNameInfo NameInfo = GetNameForDeclarator(D); | |||
| 9623 | DeclarationName Name = NameInfo.getName(); | |||
| 9624 | StorageClass SC = getFunctionStorageClass(*this, D); | |||
| 9625 | ||||
| 9626 | if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) | |||
| 9627 | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), | |||
| 9628 | diag::err_invalid_thread) | |||
| 9629 | << DeclSpec::getSpecifierName(TSCS); | |||
| 9630 | ||||
| 9631 | if (D.isFirstDeclarationOfMember()) | |||
| 9632 | adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(), | |||
| 9633 | D.getIdentifierLoc()); | |||
| 9634 | ||||
| 9635 | bool isFriend = false; | |||
| 9636 | FunctionTemplateDecl *FunctionTemplate = nullptr; | |||
| 9637 | bool isMemberSpecialization = false; | |||
| 9638 | bool isFunctionTemplateSpecialization = false; | |||
| 9639 | ||||
| 9640 | bool isDependentClassScopeExplicitSpecialization = false; | |||
| 9641 | bool HasExplicitTemplateArgs = false; | |||
| 9642 | TemplateArgumentListInfo TemplateArgs; | |||
| 9643 | ||||
| 9644 | bool isVirtualOkay = false; | |||
| 9645 | ||||
| 9646 | DeclContext *OriginalDC = DC; | |||
| 9647 | bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC); | |||
| 9648 | ||||
| 9649 | FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC, | |||
| 9650 | isVirtualOkay); | |||
| 9651 | if (!NewFD) return nullptr; | |||
| 9652 | ||||
| 9653 | if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer()) | |||
| 9654 | NewFD->setTopLevelDeclInObjCContainer(); | |||
| 9655 | ||||
| 9656 | // Set the lexical context. If this is a function-scope declaration, or has a | |||
| 9657 | // C++ scope specifier, or is the object of a friend declaration, the lexical | |||
| 9658 | // context will be different from the semantic context. | |||
| 9659 | NewFD->setLexicalDeclContext(CurContext); | |||
| 9660 | ||||
| 9661 | if (IsLocalExternDecl) | |||
| 9662 | NewFD->setLocalExternDecl(); | |||
| 9663 | ||||
| 9664 | if (getLangOpts().CPlusPlus) { | |||
| 9665 | // The rules for implicit inlines changed in C++20 for methods and friends | |||
| 9666 | // with an in-class definition (when such a definition is not attached to | |||
| 9667 | // the global module). User-specified 'inline' overrides this (set when | |||
| 9668 | // the function decl is created above). | |||
| 9669 | // FIXME: We need a better way to separate C++ standard and clang modules. | |||
| 9670 | bool ImplicitInlineCXX20 = !getLangOpts().CPlusPlusModules || | |||
| 9671 | !NewFD->getOwningModule() || | |||
| 9672 | NewFD->getOwningModule()->isGlobalModule() || | |||
| 9673 | NewFD->getOwningModule()->isHeaderLikeModule(); | |||
| 9674 | bool isInline = D.getDeclSpec().isInlineSpecified(); | |||
| 9675 | bool isVirtual = D.getDeclSpec().isVirtualSpecified(); | |||
| 9676 | bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier(); | |||
| 9677 | isFriend = D.getDeclSpec().isFriendSpecified(); | |||
| 9678 | if (isFriend && !isInline && D.isFunctionDefinition()) { | |||
| 9679 | // Pre-C++20 [class.friend]p5 | |||
| 9680 | // A function can be defined in a friend declaration of a | |||
| 9681 | // class . . . . Such a function is implicitly inline. | |||
| 9682 | // Post C++20 [class.friend]p7 | |||
| 9683 | // Such a function is implicitly an inline function if it is attached | |||
| 9684 | // to the global module. | |||
| 9685 | NewFD->setImplicitlyInline(ImplicitInlineCXX20); | |||
| 9686 | } | |||
| 9687 | ||||
| 9688 | // If this is a method defined in an __interface, and is not a constructor | |||
| 9689 | // or an overloaded operator, then set the pure flag (isVirtual will already | |||
| 9690 | // return true). | |||
| 9691 | if (const CXXRecordDecl *Parent = | |||
| 9692 | dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) { | |||
| 9693 | if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided()) | |||
| 9694 | NewFD->setPure(true); | |||
| 9695 | ||||
| 9696 | // C++ [class.union]p2 | |||
| 9697 | // A union can have member functions, but not virtual functions. | |||
| 9698 | if (isVirtual && Parent->isUnion()) { | |||
| 9699 | Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union); | |||
| 9700 | NewFD->setInvalidDecl(); | |||
| 9701 | } | |||
| 9702 | if ((Parent->isClass() || Parent->isStruct()) && | |||
| 9703 | Parent->hasAttr<SYCLSpecialClassAttr>() && | |||
| 9704 | NewFD->getKind() == Decl::Kind::CXXMethod && NewFD->getIdentifier() && | |||
| 9705 | NewFD->getName() == "__init" && D.isFunctionDefinition()) { | |||
| 9706 | if (auto *Def = Parent->getDefinition()) | |||
| 9707 | Def->setInitMethod(true); | |||
| 9708 | } | |||
| 9709 | } | |||
| 9710 | ||||
| 9711 | SetNestedNameSpecifier(*this, NewFD, D); | |||
| 9712 | isMemberSpecialization = false; | |||
| 9713 | isFunctionTemplateSpecialization = false; | |||
| 9714 | if (D.isInvalidType()) | |||
| 9715 | NewFD->setInvalidDecl(); | |||
| 9716 | ||||
| 9717 | // Match up the template parameter lists with the scope specifier, then | |||
| 9718 | // determine whether we have a template or a template specialization. | |||
| 9719 | bool Invalid = false; | |||
| 9720 | TemplateParameterList *TemplateParams = | |||
| 9721 | MatchTemplateParametersToScopeSpecifier( | |||
| 9722 | D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(), | |||
| 9723 | D.getCXXScopeSpec(), | |||
| 9724 | D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId | |||
| 9725 | ? D.getName().TemplateId | |||
| 9726 | : nullptr, | |||
| 9727 | TemplateParamLists, isFriend, isMemberSpecialization, | |||
| 9728 | Invalid); | |||
| 9729 | if (TemplateParams) { | |||
| 9730 | // Check that we can declare a template here. | |||
| 9731 | if (CheckTemplateDeclScope(S, TemplateParams)) | |||
| 9732 | NewFD->setInvalidDecl(); | |||
| 9733 | ||||
| 9734 | if (TemplateParams->size() > 0) { | |||
| 9735 | // This is a function template | |||
| 9736 | ||||
| 9737 | // A destructor cannot be a template. | |||
| 9738 | if (Name.getNameKind() == DeclarationName::CXXDestructorName) { | |||
| 9739 | Diag(NewFD->getLocation(), diag::err_destructor_template); | |||
| 9740 | NewFD->setInvalidDecl(); | |||
| 9741 | } | |||
| 9742 | ||||
| 9743 | // If we're adding a template to a dependent context, we may need to | |||
| 9744 | // rebuilding some of the types used within the template parameter list, | |||
| 9745 | // now that we know what the current instantiation is. | |||
| 9746 | if (DC->isDependentContext()) { | |||
| 9747 | ContextRAII SavedContext(*this, DC); | |||
| 9748 | if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) | |||
| 9749 | Invalid = true; | |||
| 9750 | } | |||
| 9751 | ||||
| 9752 | FunctionTemplate = FunctionTemplateDecl::Create(Context, DC, | |||
| 9753 | NewFD->getLocation(), | |||
| 9754 | Name, TemplateParams, | |||
| 9755 | NewFD); | |||
| 9756 | FunctionTemplate->setLexicalDeclContext(CurContext); | |||
| 9757 | NewFD->setDescribedFunctionTemplate(FunctionTemplate); | |||
| 9758 | ||||
| 9759 | // For source fidelity, store the other template param lists. | |||
| 9760 | if (TemplateParamLists.size() > 1) { | |||
| 9761 | NewFD->setTemplateParameterListsInfo(Context, | |||
| 9762 | ArrayRef<TemplateParameterList *>(TemplateParamLists) | |||
| 9763 | .drop_back(1)); | |||
| 9764 | } | |||
| 9765 | } else { | |||
| 9766 | // This is a function template specialization. | |||
| 9767 | isFunctionTemplateSpecialization = true; | |||
| 9768 | // For source fidelity, store all the template param lists. | |||
| 9769 | if (TemplateParamLists.size() > 0) | |||
| 9770 | NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists); | |||
| 9771 | ||||
| 9772 | // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);". | |||
| 9773 | if (isFriend) { | |||
| 9774 | // We want to remove the "template<>", found here. | |||
| 9775 | SourceRange RemoveRange = TemplateParams->getSourceRange(); | |||
| 9776 | ||||
| 9777 | // If we remove the template<> and the name is not a | |||
| 9778 | // template-id, we're actually silently creating a problem: | |||
| 9779 | // the friend declaration will refer to an untemplated decl, | |||
| 9780 | // and clearly the user wants a template specialization. So | |||
| 9781 | // we need to insert '<>' after the name. | |||
| 9782 | SourceLocation InsertLoc; | |||
| 9783 | if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { | |||
| 9784 | InsertLoc = D.getName().getSourceRange().getEnd(); | |||
| 9785 | InsertLoc = getLocForEndOfToken(InsertLoc); | |||
| 9786 | } | |||
| 9787 | ||||
| 9788 | Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend) | |||
| 9789 | << Name << RemoveRange | |||
| 9790 | << FixItHint::CreateRemoval(RemoveRange) | |||
| 9791 | << FixItHint::CreateInsertion(InsertLoc, "<>"); | |||
| 9792 | Invalid = true; | |||
| 9793 | } | |||
| 9794 | } | |||
| 9795 | } else { | |||
| 9796 | // Check that we can declare a template here. | |||
| 9797 | if (!TemplateParamLists.empty() && isMemberSpecialization && | |||
| 9798 | CheckTemplateDeclScope(S, TemplateParamLists.back())) | |||
| 9799 | NewFD->setInvalidDecl(); | |||
| 9800 | ||||
| 9801 | // All template param lists were matched against the scope specifier: | |||
| 9802 | // this is NOT (an explicit specialization of) a template. | |||
| 9803 | if (TemplateParamLists.size() > 0) | |||
| 9804 | // For source fidelity, store all the template param lists. | |||
| 9805 | NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists); | |||
| 9806 | } | |||
| 9807 | ||||
| 9808 | if (Invalid) { | |||
| 9809 | NewFD->setInvalidDecl(); | |||
| 9810 | if (FunctionTemplate) | |||
| 9811 | FunctionTemplate->setInvalidDecl(); | |||
| 9812 | } | |||
| 9813 | ||||
| 9814 | // C++ [dcl.fct.spec]p5: | |||
| 9815 | // The virtual specifier shall only be used in declarations of | |||
| 9816 | // nonstatic class member functions that appear within a | |||
| 9817 | // member-specification of a class declaration; see 10.3. | |||
| 9818 | // | |||
| 9819 | if (isVirtual && !NewFD->isInvalidDecl()) { | |||
| 9820 | if (!isVirtualOkay) { | |||
| 9821 | Diag(D.getDeclSpec().getVirtualSpecLoc(), | |||
| 9822 | diag::err_virtual_non_function); | |||
| 9823 | } else if (!CurContext->isRecord()) { | |||
| 9824 | // 'virtual' was specified outside of the class. | |||
| 9825 | Diag(D.getDeclSpec().getVirtualSpecLoc(), | |||
| 9826 | diag::err_virtual_out_of_class) | |||
| 9827 | << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); | |||
| 9828 | } else if (NewFD->getDescribedFunctionTemplate()) { | |||
| 9829 | // C++ [temp.mem]p3: | |||
| 9830 | // A member function template shall not be virtual. | |||
| 9831 | Diag(D.getDeclSpec().getVirtualSpecLoc(), | |||
| 9832 | diag::err_virtual_member_function_template) | |||
| 9833 | << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); | |||
| 9834 | } else { | |||
| 9835 | // Okay: Add virtual to the method. | |||
| 9836 | NewFD->setVirtualAsWritten(true); | |||
| 9837 | } | |||
| 9838 | ||||
| 9839 | if (getLangOpts().CPlusPlus14 && | |||
| 9840 | NewFD->getReturnType()->isUndeducedType()) | |||
| 9841 | Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual); | |||
| 9842 | } | |||
| 9843 | ||||
| 9844 | if (getLangOpts().CPlusPlus14 && | |||
| 9845 | (NewFD->isDependentContext() || | |||
| 9846 | (isFriend && CurContext->isDependentContext())) && | |||
| 9847 | NewFD->getReturnType()->isUndeducedType()) { | |||
| 9848 | // If the function template is referenced directly (for instance, as a | |||
| 9849 | // member of the current instantiation), pretend it has a dependent type. | |||
| 9850 | // This is not really justified by the standard, but is the only sane | |||
| 9851 | // thing to do. | |||
| 9852 | // FIXME: For a friend function, we have not marked the function as being | |||
| 9853 | // a friend yet, so 'isDependentContext' on the FD doesn't work. | |||
| 9854 | const FunctionProtoType *FPT = | |||
| 9855 | NewFD->getType()->castAs<FunctionProtoType>(); | |||
| 9856 | QualType Result = SubstAutoTypeDependent(FPT->getReturnType()); | |||
| 9857 | NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(), | |||
| 9858 | FPT->getExtProtoInfo())); | |||
| 9859 | } | |||
| 9860 | ||||
| 9861 | // C++ [dcl.fct.spec]p3: | |||
| 9862 | // The inline specifier shall not appear on a block scope function | |||
| 9863 | // declaration. | |||
| 9864 | if (isInline && !NewFD->isInvalidDecl()) { | |||
| 9865 | if (CurContext->isFunctionOrMethod()) { | |||
| 9866 | // 'inline' is not allowed on block scope function declaration. | |||
| 9867 | Diag(D.getDeclSpec().getInlineSpecLoc(), | |||
| 9868 | diag::err_inline_declaration_block_scope) << Name | |||
| 9869 | << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); | |||
| 9870 | } | |||
| 9871 | } | |||
| 9872 | ||||
| 9873 | // C++ [dcl.fct.spec]p6: | |||
| 9874 | // The explicit specifier shall be used only in the declaration of a | |||
| 9875 | // constructor or conversion function within its class definition; | |||
| 9876 | // see 12.3.1 and 12.3.2. | |||
| 9877 | if (hasExplicit && !NewFD->isInvalidDecl() && | |||
| 9878 | !isa<CXXDeductionGuideDecl>(NewFD)) { | |||
| 9879 | if (!CurContext->isRecord()) { | |||
| 9880 | // 'explicit' was specified outside of the class. | |||
| 9881 | Diag(D.getDeclSpec().getExplicitSpecLoc(), | |||
| 9882 | diag::err_explicit_out_of_class) | |||
| 9883 | << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange()); | |||
| 9884 | } else if (!isa<CXXConstructorDecl>(NewFD) && | |||
| 9885 | !isa<CXXConversionDecl>(NewFD)) { | |||
| 9886 | // 'explicit' was specified on a function that wasn't a constructor | |||
| 9887 | // or conversion function. | |||
| 9888 | Diag(D.getDeclSpec().getExplicitSpecLoc(), | |||
| 9889 | diag::err_explicit_non_ctor_or_conv_function) | |||
| 9890 | << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange()); | |||
| 9891 | } | |||
| 9892 | } | |||
| 9893 | ||||
| 9894 | ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier(); | |||
| 9895 | if (ConstexprKind != ConstexprSpecKind::Unspecified) { | |||
| 9896 | // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors | |||
| 9897 | // are implicitly inline. | |||
| 9898 | NewFD->setImplicitlyInline(); | |||
| 9899 | ||||
| 9900 | // C++11 [dcl.constexpr]p3: functions declared constexpr are required to | |||
| 9901 | // be either constructors or to return a literal type. Therefore, | |||
| 9902 | // destructors cannot be declared constexpr. | |||
| 9903 | if (isa<CXXDestructorDecl>(NewFD) && | |||
| 9904 | (!getLangOpts().CPlusPlus20 || | |||
| 9905 | ConstexprKind == ConstexprSpecKind::Consteval)) { | |||
| 9906 | Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor) | |||
| 9907 | << static_cast<int>(ConstexprKind); | |||
| 9908 | NewFD->setConstexprKind(getLangOpts().CPlusPlus20 | |||
| 9909 | ? ConstexprSpecKind::Unspecified | |||
| 9910 | : ConstexprSpecKind::Constexpr); | |||
| 9911 | } | |||
| 9912 | // C++20 [dcl.constexpr]p2: An allocation function, or a | |||
| 9913 | // deallocation function shall not be declared with the consteval | |||
| 9914 | // specifier. | |||
| 9915 | if (ConstexprKind == ConstexprSpecKind::Consteval && | |||
| 9916 | (NewFD->getOverloadedOperator() == OO_New || | |||
| 9917 | NewFD->getOverloadedOperator() == OO_Array_New || | |||
| 9918 | NewFD->getOverloadedOperator() == OO_Delete || | |||
| 9919 | NewFD->getOverloadedOperator() == OO_Array_Delete)) { | |||
| 9920 | Diag(D.getDeclSpec().getConstexprSpecLoc(), | |||
| 9921 | diag::err_invalid_consteval_decl_kind) | |||
| 9922 | << NewFD; | |||
| 9923 | NewFD->setConstexprKind(ConstexprSpecKind::Constexpr); | |||
| 9924 | } | |||
| 9925 | } | |||
| 9926 | ||||
| 9927 | // If __module_private__ was specified, mark the function accordingly. | |||
| 9928 | if (D.getDeclSpec().isModulePrivateSpecified()) { | |||
| 9929 | if (isFunctionTemplateSpecialization) { | |||
| 9930 | SourceLocation ModulePrivateLoc | |||
| 9931 | = D.getDeclSpec().getModulePrivateSpecLoc(); | |||
| 9932 | Diag(ModulePrivateLoc, diag::err_module_private_specialization) | |||
| 9933 | << 0 | |||
| 9934 | << FixItHint::CreateRemoval(ModulePrivateLoc); | |||
| 9935 | } else { | |||
| 9936 | NewFD->setModulePrivate(); | |||
| 9937 | if (FunctionTemplate) | |||
| 9938 | FunctionTemplate->setModulePrivate(); | |||
| 9939 | } | |||
| 9940 | } | |||
| 9941 | ||||
| 9942 | if (isFriend) { | |||
| 9943 | if (FunctionTemplate) { | |||
| 9944 | FunctionTemplate->setObjectOfFriendDecl(); | |||
| 9945 | FunctionTemplate->setAccess(AS_public); | |||
| 9946 | } | |||
| 9947 | NewFD->setObjectOfFriendDecl(); | |||
| 9948 | NewFD->setAccess(AS_public); | |||
| 9949 | } | |||
| 9950 | ||||
| 9951 | // If a function is defined as defaulted or deleted, mark it as such now. | |||
| 9952 | // We'll do the relevant checks on defaulted / deleted functions later. | |||
| 9953 | switch (D.getFunctionDefinitionKind()) { | |||
| 9954 | case FunctionDefinitionKind::Declaration: | |||
| 9955 | case FunctionDefinitionKind::Definition: | |||
| 9956 | break; | |||
| 9957 | ||||
| 9958 | case FunctionDefinitionKind::Defaulted: | |||
| 9959 | NewFD->setDefaulted(); | |||
| 9960 | break; | |||
| 9961 | ||||
| 9962 | case FunctionDefinitionKind::Deleted: | |||
| 9963 | NewFD->setDeletedAsWritten(); | |||
| 9964 | break; | |||
| 9965 | } | |||
| 9966 | ||||
| 9967 | if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && | |||
| 9968 | D.isFunctionDefinition() && !isInline) { | |||
| 9969 | // Pre C++20 [class.mfct]p2: | |||
| 9970 | // A member function may be defined (8.4) in its class definition, in | |||
| 9971 | // which case it is an inline member function (7.1.2) | |||
| 9972 | // Post C++20 [class.mfct]p1: | |||
| 9973 | // If a member function is attached to the global module and is defined | |||
| 9974 | // in its class definition, it is inline. | |||
| 9975 | NewFD->setImplicitlyInline(ImplicitInlineCXX20); | |||
| 9976 | } | |||
| 9977 | ||||
| 9978 | if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) && | |||
| 9979 | !CurContext->isRecord()) { | |||
| 9980 | // C++ [class.static]p1: | |||
| 9981 | // A data or function member of a class may be declared static | |||
| 9982 | // in a class definition, in which case it is a static member of | |||
| 9983 | // the class. | |||
| 9984 | ||||
| 9985 | // Complain about the 'static' specifier if it's on an out-of-line | |||
| 9986 | // member function definition. | |||
| 9987 | ||||
| 9988 | // MSVC permits the use of a 'static' storage specifier on an out-of-line | |||
| 9989 | // member function template declaration and class member template | |||
| 9990 | // declaration (MSVC versions before 2015), warn about this. | |||
| 9991 | Diag(D.getDeclSpec().getStorageClassSpecLoc(), | |||
| 9992 | ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && | |||
| 9993 | cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) || | |||
| 9994 | (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate())) | |||
| 9995 | ? diag::ext_static_out_of_line : diag::err_static_out_of_line) | |||
| 9996 | << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); | |||
| 9997 | } | |||
| 9998 | ||||
| 9999 | // C++11 [except.spec]p15: | |||
| 10000 | // A deallocation function with no exception-specification is treated | |||
| 10001 | // as if it were specified with noexcept(true). | |||
| 10002 | const FunctionProtoType *FPT = R->getAs<FunctionProtoType>(); | |||
| 10003 | if ((Name.getCXXOverloadedOperator() == OO_Delete || | |||
| 10004 | Name.getCXXOverloadedOperator() == OO_Array_Delete) && | |||
| 10005 | getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) | |||
| 10006 | NewFD->setType(Context.getFunctionType( | |||
| 10007 | FPT->getReturnType(), FPT->getParamTypes(), | |||
| 10008 | FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept))); | |||
| 10009 | ||||
| 10010 | // C++20 [dcl.inline]/7 | |||
| 10011 | // If an inline function or variable that is attached to a named module | |||
| 10012 | // is declared in a definition domain, it shall be defined in that | |||
| 10013 | // domain. | |||
| 10014 | // So, if the current declaration does not have a definition, we must | |||
| 10015 | // check at the end of the TU (or when the PMF starts) to see that we | |||
| 10016 | // have a definition at that point. | |||
| 10017 | if (isInline && !D.isFunctionDefinition() && getLangOpts().CPlusPlus20 && | |||
| 10018 | NewFD->hasOwningModule() && | |||
| 10019 | NewFD->getOwningModule()->isModulePurview()) { | |||
| 10020 | PendingInlineFuncDecls.insert(NewFD); | |||
| 10021 | } | |||
| 10022 | } | |||
| 10023 | ||||
| 10024 | // Filter out previous declarations that don't match the scope. | |||
| 10025 | FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD), | |||
| 10026 | D.getCXXScopeSpec().isNotEmpty() || | |||
| 10027 | isMemberSpecialization || | |||
| 10028 | isFunctionTemplateSpecialization); | |||
| 10029 | ||||
| 10030 | // Handle GNU asm-label extension (encoded as an attribute). | |||
| 10031 | if (Expr *E = (Expr*) D.getAsmLabel()) { | |||
| 10032 | // The parser guarantees this is a string. | |||
| 10033 | StringLiteral *SE = cast<StringLiteral>(E); | |||
| 10034 | NewFD->addAttr(AsmLabelAttr::Create(Context, SE->getString(), | |||
| 10035 | /*IsLiteralLabel=*/true, | |||
| 10036 | SE->getStrTokenLoc(0))); | |||
| 10037 | } else if (!ExtnameUndeclaredIdentifiers.empty()) { | |||
| 10038 | llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = | |||
| 10039 | ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier()); | |||
| 10040 | if (I != ExtnameUndeclaredIdentifiers.end()) { | |||
| 10041 | if (isDeclExternC(NewFD)) { | |||
| 10042 | NewFD->addAttr(I->second); | |||
| 10043 | ExtnameUndeclaredIdentifiers.erase(I); | |||
| 10044 | } else | |||
| 10045 | Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied) | |||
| 10046 | << /*Variable*/0 << NewFD; | |||
| 10047 | } | |||
| 10048 | } | |||
| 10049 | ||||
| 10050 | // Copy the parameter declarations from the declarator D to the function | |||
| 10051 | // declaration NewFD, if they are available. First scavenge them into Params. | |||
| 10052 | SmallVector<ParmVarDecl*, 16> Params; | |||
| 10053 | unsigned FTIIdx; | |||
| 10054 | if (D.isFunctionDeclarator(FTIIdx)) { | |||
| 10055 | DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun; | |||
| 10056 | ||||
| 10057 | // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs | |||
| 10058 | // function that takes no arguments, not a function that takes a | |||
| 10059 | // single void argument. | |||
| 10060 | // We let through "const void" here because Sema::GetTypeForDeclarator | |||
| 10061 | // already checks for that case. | |||
| 10062 | if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) { | |||
| 10063 | for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) { | |||
| 10064 | ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param); | |||
| 10065 | assert(Param->getDeclContext() != NewFD && "Was set before ?")(static_cast <bool> (Param->getDeclContext() != NewFD && "Was set before ?") ? void (0) : __assert_fail ("Param->getDeclContext() != NewFD && \"Was set before ?\"" , "clang/lib/Sema/SemaDecl.cpp", 10065, __extension__ __PRETTY_FUNCTION__ )); | |||
| 10066 | Param->setDeclContext(NewFD); | |||
| 10067 | Params.push_back(Param); | |||
| 10068 | ||||
| 10069 | if (Param->isInvalidDecl()) | |||
| 10070 | NewFD->setInvalidDecl(); | |||
| 10071 | } | |||
| 10072 | } | |||
| 10073 | ||||
| 10074 | if (!getLangOpts().CPlusPlus) { | |||
| 10075 | // In C, find all the tag declarations from the prototype and move them | |||
| 10076 | // into the function DeclContext. Remove them from the surrounding tag | |||
| 10077 | // injection context of the function, which is typically but not always | |||
| 10078 | // the TU. | |||
| 10079 | DeclContext *PrototypeTagContext = | |||
| 10080 | getTagInjectionContext(NewFD->getLexicalDeclContext()); | |||
| 10081 | for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) { | |||
| 10082 | auto *TD = dyn_cast<TagDecl>(NonParmDecl); | |||
| 10083 | ||||
| 10084 | // We don't want to reparent enumerators. Look at their parent enum | |||
| 10085 | // instead. | |||
| 10086 | if (!TD) { | |||
| 10087 | if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl)) | |||
| 10088 | TD = cast<EnumDecl>(ECD->getDeclContext()); | |||
| 10089 | } | |||
| 10090 | if (!TD) | |||
| 10091 | continue; | |||
| 10092 | DeclContext *TagDC = TD->getLexicalDeclContext(); | |||
| 10093 | if (!TagDC->containsDecl(TD)) | |||
| 10094 | continue; | |||
| 10095 | TagDC->removeDecl(TD); | |||
| 10096 | TD->setDeclContext(NewFD); | |||
| 10097 | NewFD->addDecl(TD); | |||
| 10098 | ||||
| 10099 | // Preserve the lexical DeclContext if it is not the surrounding tag | |||
| 10100 | // injection context of the FD. In this example, the semantic context of | |||
| 10101 | // E will be f and the lexical context will be S, while both the | |||
| 10102 | // semantic and lexical contexts of S will be f: | |||
| 10103 | // void f(struct S { enum E { a } f; } s); | |||
| 10104 | if (TagDC != PrototypeTagContext) | |||
| 10105 | TD->setLexicalDeclContext(TagDC); | |||
| 10106 | } | |||
| 10107 | } | |||
| 10108 | } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) { | |||
| 10109 | // When we're declaring a function with a typedef, typeof, etc as in the | |||
| 10110 | // following example, we'll need to synthesize (unnamed) | |||
| 10111 | // parameters for use in the declaration. | |||
| 10112 | // | |||
| 10113 | // @code | |||
| 10114 | // typedef void fn(int); | |||
| 10115 | // fn f; | |||
| 10116 | // @endcode | |||
| 10117 | ||||
| 10118 | // Synthesize a parameter for each argument type. | |||
| 10119 | for (const auto &AI : FT->param_types()) { | |||
| 10120 | ParmVarDecl *Param = | |||
| 10121 | BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI); | |||
| 10122 | Param->setScopeInfo(0, Params.size()); | |||
| 10123 | Params.push_back(Param); | |||
| 10124 | } | |||
| 10125 | } else { | |||
| 10126 | assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&(static_cast <bool> (R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && "Should not need args for typedef of non-prototype fn" ) ? void (0) : __assert_fail ("R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && \"Should not need args for typedef of non-prototype fn\"" , "clang/lib/Sema/SemaDecl.cpp", 10127, __extension__ __PRETTY_FUNCTION__ )) | |||
| 10127 | "Should not need args for typedef of non-prototype fn")(static_cast <bool> (R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && "Should not need args for typedef of non-prototype fn" ) ? void (0) : __assert_fail ("R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && \"Should not need args for typedef of non-prototype fn\"" , "clang/lib/Sema/SemaDecl.cpp", 10127, __extension__ __PRETTY_FUNCTION__ )); | |||
| 10128 | } | |||
| 10129 | ||||
| 10130 | // Finally, we know we have the right number of parameters, install them. | |||
| 10131 | NewFD->setParams(Params); | |||
| 10132 | ||||
| 10133 | if (D.getDeclSpec().isNoreturnSpecified()) | |||
| 10134 | NewFD->addAttr( | |||
| 10135 | C11NoReturnAttr::Create(Context, D.getDeclSpec().getNoreturnSpecLoc())); | |||
| 10136 | ||||
| 10137 | // Functions returning a variably modified type violate C99 6.7.5.2p2 | |||
| 10138 | // because all functions have linkage. | |||
| 10139 | if (!NewFD->isInvalidDecl() && | |||
| 10140 | NewFD->getReturnType()->isVariablyModifiedType()) { | |||
| 10141 | Diag(NewFD->getLocation(), diag::err_vm_func_decl); | |||
| 10142 | NewFD->setInvalidDecl(); | |||
| 10143 | } | |||
| 10144 | ||||
| 10145 | // Apply an implicit SectionAttr if '#pragma clang section text' is active | |||
| 10146 | if (PragmaClangTextSection.Valid && D.isFunctionDefinition() && | |||
| 10147 | !NewFD->hasAttr<SectionAttr>()) | |||
| 10148 | NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit( | |||
| 10149 | Context, PragmaClangTextSection.SectionName, | |||
| 10150 | PragmaClangTextSection.PragmaLocation)); | |||
| 10151 | ||||
| 10152 | // Apply an implicit SectionAttr if #pragma code_seg is active. | |||
| 10153 | if (CodeSegStack.CurrentValue && D.isFunctionDefinition() && | |||
| 10154 | !NewFD->hasAttr<SectionAttr>()) { | |||
| 10155 | NewFD->addAttr(SectionAttr::CreateImplicit( | |||
| 10156 | Context, CodeSegStack.CurrentValue->getString(), | |||
| 10157 | CodeSegStack.CurrentPragmaLocation, SectionAttr::Declspec_allocate)); | |||
| 10158 | if (UnifySection(CodeSegStack.CurrentValue->getString(), | |||
| 10159 | ASTContext::PSF_Implicit | ASTContext::PSF_Execute | | |||
| 10160 | ASTContext::PSF_Read, | |||
| 10161 | NewFD)) | |||
| 10162 | NewFD->dropAttr<SectionAttr>(); | |||
| 10163 | } | |||
| 10164 | ||||
| 10165 | // Apply an implicit StrictGuardStackCheckAttr if #pragma strict_gs_check is | |||
| 10166 | // active. | |||
| 10167 | if (StrictGuardStackCheckStack.CurrentValue && D.isFunctionDefinition() && | |||
| 10168 | !NewFD->hasAttr<StrictGuardStackCheckAttr>()) | |||
| 10169 | NewFD->addAttr(StrictGuardStackCheckAttr::CreateImplicit( | |||
| 10170 | Context, PragmaClangTextSection.PragmaLocation)); | |||
| 10171 | ||||
| 10172 | // Apply an implicit CodeSegAttr from class declspec or | |||
| 10173 | // apply an implicit SectionAttr from #pragma code_seg if active. | |||
| 10174 | if (!NewFD->hasAttr<CodeSegAttr>()) { | |||
| 10175 | if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD, | |||
| 10176 | D.isFunctionDefinition())) { | |||
| 10177 | NewFD->addAttr(SAttr); | |||
| 10178 | } | |||
| 10179 | } | |||
| 10180 | ||||
| 10181 | // Handle attributes. | |||
| 10182 | ProcessDeclAttributes(S, NewFD, D); | |||
| 10183 | const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>(); | |||
| 10184 | if (NewTVA && !NewTVA->isDefaultVersion() && | |||
| 10185 | !Context.getTargetInfo().hasFeature("fmv")) { | |||
| 10186 | // Don't add to scope fmv functions declarations if fmv disabled | |||
| 10187 | AddToScope = false; | |||
| 10188 | return NewFD; | |||
| 10189 | } | |||
| 10190 | ||||
| 10191 | if (getLangOpts().OpenCL) { | |||
| 10192 | // OpenCL v1.1 s6.5: Using an address space qualifier in a function return | |||
| 10193 | // type declaration will generate a compilation error. | |||
| 10194 | LangAS AddressSpace = NewFD->getReturnType().getAddressSpace(); | |||
| 10195 | if (AddressSpace != LangAS::Default) { | |||
| 10196 | Diag(NewFD->getLocation(), diag::err_return_value_with_address_space); | |||
| 10197 | NewFD->setInvalidDecl(); | |||
| 10198 | } | |||
| 10199 | } | |||
| 10200 | ||||
| 10201 | if (getLangOpts().HLSL) { | |||
| 10202 | auto &TargetInfo = getASTContext().getTargetInfo(); | |||
| 10203 | // Skip operator overload which not identifier. | |||
| 10204 | // Also make sure NewFD is in translation-unit scope. | |||
| 10205 | if (!NewFD->isInvalidDecl() && Name.isIdentifier() && | |||
| 10206 | NewFD->getName() == TargetInfo.getTargetOpts().HLSLEntry && | |||
| 10207 | S->getDepth() == 0) { | |||
| 10208 | CheckHLSLEntryPoint(NewFD); | |||
| 10209 | if (!NewFD->isInvalidDecl()) { | |||
| 10210 | auto Env = TargetInfo.getTriple().getEnvironment(); | |||
| 10211 | HLSLShaderAttr::ShaderType ShaderType = | |||
| 10212 | static_cast<HLSLShaderAttr::ShaderType>( | |||
| 10213 | hlsl::getStageFromEnvironment(Env)); | |||
| 10214 | // To share code with HLSLShaderAttr, add HLSLShaderAttr to entry | |||
| 10215 | // function. | |||
| 10216 | if (HLSLShaderAttr *NT = NewFD->getAttr<HLSLShaderAttr>()) { | |||
| 10217 | if (NT->getType() != ShaderType) | |||
| 10218 | Diag(NT->getLocation(), diag::err_hlsl_entry_shader_attr_mismatch) | |||
| 10219 | << NT; | |||
| 10220 | } else { | |||
| 10221 | NewFD->addAttr(HLSLShaderAttr::Create(Context, ShaderType, | |||
| 10222 | NewFD->getBeginLoc())); | |||
| 10223 | } | |||
| 10224 | } | |||
| 10225 | } | |||
| 10226 | // HLSL does not support specifying an address space on a function return | |||
| 10227 | // type. | |||
| 10228 | LangAS AddressSpace = NewFD->getReturnType().getAddressSpace(); | |||
| 10229 | if (AddressSpace != LangAS::Default) { | |||
| 10230 | Diag(NewFD->getLocation(), diag::err_return_value_with_address_space); | |||
| 10231 | NewFD->setInvalidDecl(); | |||
| 10232 | } | |||
| 10233 | } | |||
| 10234 | ||||
| 10235 | if (!getLangOpts().CPlusPlus) { | |||
| 10236 | // Perform semantic checking on the function declaration. | |||
| 10237 | if (!NewFD->isInvalidDecl() && NewFD->isMain()) | |||
| 10238 | CheckMain(NewFD, D.getDeclSpec()); | |||
| 10239 | ||||
| 10240 | if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) | |||
| 10241 | CheckMSVCRTEntryPoint(NewFD); | |||
| 10242 | ||||
| 10243 | if (!NewFD->isInvalidDecl()) | |||
| 10244 | D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, | |||
| 10245 | isMemberSpecialization, | |||
| 10246 | D.isFunctionDefinition())); | |||
| 10247 | else if (!Previous.empty()) | |||
| 10248 | // Recover gracefully from an invalid redeclaration. | |||
| 10249 | D.setRedeclaration(true); | |||
| 10250 | assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||(static_cast <bool> ((NewFD->isInvalidDecl() || !D.isRedeclaration () || Previous.getResultKind() != LookupResult::FoundOverloaded ) && "previous declaration set still overloaded") ? void (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\"" , "clang/lib/Sema/SemaDecl.cpp", 10252, __extension__ __PRETTY_FUNCTION__ )) | |||
| 10251 | Previous.getResultKind() != LookupResult::FoundOverloaded) &&(static_cast <bool> ((NewFD->isInvalidDecl() || !D.isRedeclaration () || Previous.getResultKind() != LookupResult::FoundOverloaded ) && "previous declaration set still overloaded") ? void (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\"" , "clang/lib/Sema/SemaDecl.cpp", 10252, __extension__ __PRETTY_FUNCTION__ )) | |||
| 10252 | "previous declaration set still overloaded")(static_cast <bool> ((NewFD->isInvalidDecl() || !D.isRedeclaration () || Previous.getResultKind() != LookupResult::FoundOverloaded ) && "previous declaration set still overloaded") ? void (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\"" , "clang/lib/Sema/SemaDecl.cpp", 10252, __extension__ __PRETTY_FUNCTION__ )); | |||
| 10253 | ||||
| 10254 | // Diagnose no-prototype function declarations with calling conventions that | |||
| 10255 | // don't support variadic calls. Only do this in C and do it after merging | |||
| 10256 | // possibly prototyped redeclarations. | |||
| 10257 | const FunctionType *FT = NewFD->getType()->castAs<FunctionType>(); | |||
| 10258 | if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) { | |||
| 10259 | CallingConv CC = FT->getExtInfo().getCC(); | |||
| 10260 | if (!supportsVariadicCall(CC)) { | |||
| 10261 | // Windows system headers sometimes accidentally use stdcall without | |||
| 10262 | // (void) parameters, so we relax this to a warning. | |||
| 10263 | int DiagID = | |||
| 10264 | CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr; | |||
| 10265 | Diag(NewFD->getLocation(), DiagID) | |||
| 10266 | << FunctionType::getNameForCallConv(CC); | |||
| 10267 | } | |||
| 10268 | } | |||
| 10269 | ||||
| 10270 | if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() || | |||
| 10271 | NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion()) | |||
| 10272 | checkNonTrivialCUnion(NewFD->getReturnType(), | |||
| 10273 | NewFD->getReturnTypeSourceRange().getBegin(), | |||
| 10274 | NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy); | |||
| 10275 | } else { | |||
| 10276 | // C++11 [replacement.functions]p3: | |||
| 10277 | // The program's definitions shall not be specified as inline. | |||
| 10278 | // | |||
| 10279 | // N.B. We diagnose declarations instead of definitions per LWG issue 2340. | |||
| 10280 | // | |||
| 10281 | // Suppress the diagnostic if the function is __attribute__((used)), since | |||
| 10282 | // that forces an external definition to be emitted. | |||
| 10283 | if (D.getDeclSpec().isInlineSpecified() && | |||
| 10284 | NewFD->isReplaceableGlobalAllocationFunction() && | |||
| 10285 | !NewFD->hasAttr<UsedAttr>()) | |||
| 10286 | Diag(D.getDeclSpec().getInlineSpecLoc(), | |||
| 10287 | diag::ext_operator_new_delete_declared_inline) | |||
| 10288 | << NewFD->getDeclName(); | |||
| 10289 | ||||
| 10290 | // If the declarator is a template-id, translate the parser's template | |||
| 10291 | // argument list into our AST format. | |||
| 10292 | if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { | |||
| 10293 | TemplateIdAnnotation *TemplateId = D.getName().TemplateId; | |||
| 10294 | TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); | |||
| 10295 | TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); | |||
| 10296 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), | |||
| 10297 | TemplateId->NumArgs); | |||
| 10298 | translateTemplateArguments(TemplateArgsPtr, | |||
| 10299 | TemplateArgs); | |||
| 10300 | ||||
| 10301 | HasExplicitTemplateArgs = true; | |||
| 10302 | ||||
| 10303 | if (NewFD->isInvalidDecl()) { | |||
| 10304 | HasExplicitTemplateArgs = false; | |||
| 10305 | } else if (FunctionTemplate) { | |||
| 10306 | // Function template with explicit template arguments. | |||
| 10307 | Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec) | |||
| 10308 | << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc); | |||
| 10309 | ||||
| 10310 | HasExplicitTemplateArgs = false; | |||
| 10311 | } else { | |||
| 10312 | assert((isFunctionTemplateSpecialization ||(static_cast <bool> ((isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified()) && "should have a 'template<>' for this decl" ) ? void (0) : __assert_fail ("(isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified()) && \"should have a 'template<>' for this decl\"" , "clang/lib/Sema/SemaDecl.cpp", 10314, __extension__ __PRETTY_FUNCTION__ )) | |||
| 10313 | D.getDeclSpec().isFriendSpecified()) &&(static_cast <bool> ((isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified()) && "should have a 'template<>' for this decl" ) ? void (0) : __assert_fail ("(isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified()) && \"should have a 'template<>' for this decl\"" , "clang/lib/Sema/SemaDecl.cpp", 10314, __extension__ __PRETTY_FUNCTION__ )) | |||
| 10314 | "should have a 'template<>' for this decl")(static_cast <bool> ((isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified()) && "should have a 'template<>' for this decl" ) ? void (0) : __assert_fail ("(isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified()) && \"should have a 'template<>' for this decl\"" , "clang/lib/Sema/SemaDecl.cpp", 10314, __extension__ __PRETTY_FUNCTION__ )); | |||
| 10315 | // "friend void foo<>(int);" is an implicit specialization decl. | |||
| 10316 | isFunctionTemplateSpecialization = true; | |||
| 10317 | } | |||
| 10318 | } else if (isFriend && isFunctionTemplateSpecialization) { | |||
| 10319 | // This combination is only possible in a recovery case; the user | |||
| 10320 | // wrote something like: | |||
| 10321 | // template <> friend void foo(int); | |||
| 10322 | // which we're recovering from as if the user had written: | |||
| 10323 | // friend void foo<>(int); | |||
| 10324 | // Go ahead and fake up a template id. | |||
| 10325 | HasExplicitTemplateArgs = true; | |||
| 10326 | TemplateArgs.setLAngleLoc(D.getIdentifierLoc()); | |||
| 10327 | TemplateArgs.setRAngleLoc(D.getIdentifierLoc()); | |||
| 10328 | } | |||
| 10329 | ||||
| 10330 | // We do not add HD attributes to specializations here because | |||
| 10331 | // they may have different constexpr-ness compared to their | |||
| 10332 | // templates and, after maybeAddCUDAHostDeviceAttrs() is applied, | |||
| 10333 | // may end up with different effective targets. Instead, a | |||
| 10334 | // specialization inherits its target attributes from its template | |||
| 10335 | // in the CheckFunctionTemplateSpecialization() call below. | |||
| 10336 | if (getLangOpts().CUDA && !isFunctionTemplateSpecialization) | |||
| 10337 | maybeAddCUDAHostDeviceAttrs(NewFD, Previous); | |||
| 10338 | ||||
| 10339 | // If it's a friend (and only if it's a friend), it's possible | |||
| 10340 | // that either the specialized function type or the specialized | |||
| 10341 | // template is dependent, and therefore matching will fail. In | |||
| 10342 | // this case, don't check the specialization yet. | |||
| 10343 | if (isFunctionTemplateSpecialization && isFriend && | |||
| 10344 | (NewFD->getType()->isDependentType() || DC->isDependentContext() || | |||
| 10345 | TemplateSpecializationType::anyInstantiationDependentTemplateArguments( | |||
| 10346 | TemplateArgs.arguments()))) { | |||
| 10347 | assert(HasExplicitTemplateArgs &&(static_cast <bool> (HasExplicitTemplateArgs && "friend function specialization without template args") ? void (0) : __assert_fail ("HasExplicitTemplateArgs && \"friend function specialization without template args\"" , "clang/lib/Sema/SemaDecl.cpp", 10348, __extension__ __PRETTY_FUNCTION__ )) | |||
| 10348 | "friend function specialization without template args")(static_cast <bool> (HasExplicitTemplateArgs && "friend function specialization without template args") ? void (0) : __assert_fail ("HasExplicitTemplateArgs && \"friend function specialization without template args\"" , "clang/lib/Sema/SemaDecl.cpp", 10348, __extension__ __PRETTY_FUNCTION__ )); | |||
| 10349 | if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs, | |||
| 10350 | Previous)) | |||
| 10351 | NewFD->setInvalidDecl(); | |||
| 10352 | } else if (isFunctionTemplateSpecialization) { | |||
| 10353 | if (CurContext->isDependentContext() && CurContext->isRecord() | |||
| 10354 | && !isFriend) { | |||
| 10355 | isDependentClassScopeExplicitSpecialization = true; | |||
| 10356 | } else if (!NewFD->isInvalidDecl() && | |||
| 10357 | CheckFunctionTemplateSpecialization( | |||
| 10358 | NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr), | |||
| 10359 | Previous)) | |||
| 10360 | NewFD->setInvalidDecl(); | |||
| 10361 | ||||
| 10362 | // C++ [dcl.stc]p1: | |||
| 10363 | // A storage-class-specifier shall not be specified in an explicit | |||
| 10364 | // specialization (14.7.3) | |||
| 10365 | FunctionTemplateSpecializationInfo *Info = | |||
| 10366 | NewFD->getTemplateSpecializationInfo(); | |||
| 10367 | if (Info && SC != SC_None) { | |||
| 10368 | if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass()) | |||
| 10369 | Diag(NewFD->getLocation(), | |||
| 10370 | diag::err_explicit_specialization_inconsistent_storage_class) | |||
| 10371 | << SC | |||
| 10372 | << FixItHint::CreateRemoval( | |||
| 10373 | D.getDeclSpec().getStorageClassSpecLoc()); | |||
| 10374 | ||||
| 10375 | else | |||
| 10376 | Diag(NewFD->getLocation(), | |||
| 10377 | diag::ext_explicit_specialization_storage_class) | |||
| 10378 | << FixItHint::CreateRemoval( | |||
| 10379 | D.getDeclSpec().getStorageClassSpecLoc()); | |||
| 10380 | } | |||
| 10381 | } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) { | |||
| 10382 | if (CheckMemberSpecialization(NewFD, Previous)) | |||
| 10383 | NewFD->setInvalidDecl(); | |||
| 10384 | } | |||
| 10385 | ||||
| 10386 | // Perform semantic checking on the function declaration. | |||
| 10387 | if (!isDependentClassScopeExplicitSpecialization) { | |||
| 10388 | if (!NewFD->isInvalidDecl() && NewFD->isMain()) | |||
| 10389 | CheckMain(NewFD, D.getDeclSpec()); | |||
| 10390 | ||||
| 10391 | if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) | |||
| 10392 | CheckMSVCRTEntryPoint(NewFD); | |||
| 10393 | ||||
| 10394 | if (!NewFD->isInvalidDecl()) | |||
| 10395 | D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, | |||
| 10396 | isMemberSpecialization, | |||
| 10397 | D.isFunctionDefinition())); | |||
| 10398 | else if (!Previous.empty()) | |||
| 10399 | // Recover gracefully from an invalid redeclaration. | |||
| 10400 | D.setRedeclaration(true); | |||
| 10401 | } | |||
| 10402 | ||||
| 10403 | assert((NewFD->isInvalidDecl() || NewFD->isMultiVersion() ||(static_cast <bool> ((NewFD->isInvalidDecl() || NewFD ->isMultiVersion() || !D.isRedeclaration() || Previous.getResultKind () != LookupResult::FoundOverloaded) && "previous declaration set still overloaded" ) ? void (0) : __assert_fail ("(NewFD->isInvalidDecl() || NewFD->isMultiVersion() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\"" , "clang/lib/Sema/SemaDecl.cpp", 10406, __extension__ __PRETTY_FUNCTION__ )) | |||
| 10404 | !D.isRedeclaration() ||(static_cast <bool> ((NewFD->isInvalidDecl() || NewFD ->isMultiVersion() || !D.isRedeclaration() || Previous.getResultKind () != LookupResult::FoundOverloaded) && "previous declaration set still overloaded" ) ? void (0) : __assert_fail ("(NewFD->isInvalidDecl() || NewFD->isMultiVersion() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\"" , "clang/lib/Sema/SemaDecl.cpp", 10406, __extension__ __PRETTY_FUNCTION__ )) | |||
| 10405 | Previous.getResultKind() != LookupResult::FoundOverloaded) &&(static_cast <bool> ((NewFD->isInvalidDecl() || NewFD ->isMultiVersion() || !D.isRedeclaration() || Previous.getResultKind () != LookupResult::FoundOverloaded) && "previous declaration set still overloaded" ) ? void (0) : __assert_fail ("(NewFD->isInvalidDecl() || NewFD->isMultiVersion() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\"" , "clang/lib/Sema/SemaDecl.cpp", 10406, __extension__ __PRETTY_FUNCTION__ )) | |||
| 10406 | "previous declaration set still overloaded")(static_cast <bool> ((NewFD->isInvalidDecl() || NewFD ->isMultiVersion() || !D.isRedeclaration() || Previous.getResultKind () != LookupResult::FoundOverloaded) && "previous declaration set still overloaded" ) ? void (0) : __assert_fail ("(NewFD->isInvalidDecl() || NewFD->isMultiVersion() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\"" , "clang/lib/Sema/SemaDecl.cpp", 10406, __extension__ __PRETTY_FUNCTION__ )); | |||
| 10407 | ||||
| 10408 | NamedDecl *PrincipalDecl = (FunctionTemplate | |||
| 10409 | ? cast<NamedDecl>(FunctionTemplate) | |||
| 10410 | : NewFD); | |||
| 10411 | ||||
| 10412 | if (isFriend && NewFD->getPreviousDecl()) { | |||
| 10413 | AccessSpecifier Access = AS_public; | |||
| 10414 | if (!NewFD->isInvalidDecl()) | |||
| 10415 | Access = NewFD->getPreviousDecl()->getAccess(); | |||
| 10416 | ||||
| 10417 | NewFD->setAccess(Access); | |||
| 10418 | if (FunctionTemplate) FunctionTemplate->setAccess(Access); | |||
| 10419 | } | |||
| 10420 | ||||
| 10421 | if (NewFD->isOverloadedOperator() && !DC->isRecord() && | |||
| 10422 | PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) | |||
| 10423 | PrincipalDecl->setNonMemberOperator(); | |||
| 10424 | ||||
| 10425 | // If we have a function template, check the template parameter | |||
| 10426 | // list. This will check and merge default template arguments. | |||
| 10427 | if (FunctionTemplate) { | |||
| 10428 | FunctionTemplateDecl *PrevTemplate = | |||
| 10429 | FunctionTemplate->getPreviousDecl(); | |||
| 10430 | CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(), | |||
| 10431 | PrevTemplate ? PrevTemplate->getTemplateParameters() | |||
| 10432 | : nullptr, | |||
| 10433 | D.getDeclSpec().isFriendSpecified() | |||
| 10434 | ? (D.isFunctionDefinition() | |||
| 10435 | ? TPC_FriendFunctionTemplateDefinition | |||
| 10436 | : TPC_FriendFunctionTemplate) | |||
| 10437 | : (D.getCXXScopeSpec().isSet() && | |||
| 10438 | DC && DC->isRecord() && | |||
| 10439 | DC->isDependentContext()) | |||
| 10440 | ? TPC_ClassTemplateMember | |||
| 10441 | : TPC_FunctionTemplate); | |||
| 10442 | } | |||
| 10443 | ||||
| 10444 | if (NewFD->isInvalidDecl()) { | |||
| 10445 | // Ignore all the rest of this. | |||
| 10446 | } else if (!D.isRedeclaration()) { | |||
| 10447 | struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists, | |||
| 10448 | AddToScope }; | |||
| 10449 | // Fake up an access specifier if it's supposed to be a class member. | |||
| 10450 | if (isa<CXXRecordDecl>(NewFD->getDeclContext())) | |||
| 10451 | NewFD->setAccess(AS_public); | |||
| 10452 | ||||
| 10453 | // Qualified decls generally require a previous declaration. | |||
| 10454 | if (D.getCXXScopeSpec().isSet()) { | |||
| 10455 | // ...with the major exception of templated-scope or | |||
| 10456 | // dependent-scope friend declarations. | |||
| 10457 | ||||
| 10458 | // TODO: we currently also suppress this check in dependent | |||
| 10459 | // contexts because (1) the parameter depth will be off when | |||
| 10460 | // matching friend templates and (2) we might actually be | |||
| 10461 | // selecting a friend based on a dependent factor. But there | |||
| 10462 | // are situations where these conditions don't apply and we | |||
| 10463 | // can actually do this check immediately. | |||
| 10464 | // | |||
| 10465 | // Unless the scope is dependent, it's always an error if qualified | |||
| 10466 | // redeclaration lookup found nothing at all. Diagnose that now; | |||
| 10467 | // nothing will diagnose that error later. | |||
| 10468 | if (isFriend && | |||
| 10469 | (D.getCXXScopeSpec().getScopeRep()->isDependent() || | |||
| 10470 | (!Previous.empty() && CurContext->isDependentContext()))) { | |||
| 10471 | // ignore these | |||
| 10472 | } else if (NewFD->isCPUDispatchMultiVersion() || | |||
| 10473 | NewFD->isCPUSpecificMultiVersion()) { | |||
| 10474 | // ignore this, we allow the redeclaration behavior here to create new | |||
| 10475 | // versions of the function. | |||
| 10476 | } else { | |||
| 10477 | // The user tried to provide an out-of-line definition for a | |||
| 10478 | // function that is a member of a class or namespace, but there | |||
| 10479 | // was no such member function declared (C++ [class.mfct]p2, | |||
| 10480 | // C++ [namespace.memdef]p2). For example: | |||
| 10481 | // | |||
| 10482 | // class X { | |||
| 10483 | // void f() const; | |||
| 10484 | // }; | |||
| 10485 | // | |||
| 10486 | // void X::f() { } // ill-formed | |||
| 10487 | // | |||
| 10488 | // Complain about this problem, and attempt to suggest close | |||
| 10489 | // matches (e.g., those that differ only in cv-qualifiers and | |||
| 10490 | // whether the parameter types are references). | |||
| 10491 | ||||
| 10492 | if (NamedDecl *Result = DiagnoseInvalidRedeclaration( | |||
| 10493 | *this, Previous, NewFD, ExtraArgs, false, nullptr)) { | |||
| 10494 | AddToScope = ExtraArgs.AddToScope; | |||
| 10495 | return Result; | |||
| 10496 | } | |||
| 10497 | } | |||
| 10498 | ||||
| 10499 | // Unqualified local friend declarations are required to resolve | |||
| 10500 | // to something. | |||
| 10501 | } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) { | |||
| 10502 | if (NamedDecl *Result = DiagnoseInvalidRedeclaration( | |||
| 10503 | *this, Previous, NewFD, ExtraArgs, true, S)) { | |||
| 10504 | AddToScope = ExtraArgs.AddToScope; | |||
| 10505 | return Result; | |||
| 10506 | } | |||
| 10507 | } | |||
| 10508 | } else if (!D.isFunctionDefinition() && | |||
| 10509 | isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() && | |||
| 10510 | !isFriend && !isFunctionTemplateSpecialization && | |||
| 10511 | !isMemberSpecialization) { | |||
| 10512 | // An out-of-line member function declaration must also be a | |||
| 10513 | // definition (C++ [class.mfct]p2). | |||
| 10514 | // Note that this is not the case for explicit specializations of | |||
| 10515 | // function templates or member functions of class templates, per | |||
| 10516 | // C++ [temp.expl.spec]p2. We also allow these declarations as an | |||
| 10517 | // extension for compatibility with old SWIG code which likes to | |||
| 10518 | // generate them. | |||
| 10519 | Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration) | |||
| 10520 | << D.getCXXScopeSpec().getRange(); | |||
| 10521 | } | |||
| 10522 | } | |||
| 10523 | ||||
| 10524 | // If this is the first declaration of a library builtin function, add | |||
| 10525 | // attributes as appropriate. | |||
| 10526 | if (!D.isRedeclaration()) { | |||
| 10527 | if (IdentifierInfo *II = Previous.getLookupName().getAsIdentifierInfo()) { | |||
| 10528 | if (unsigned BuiltinID = II->getBuiltinID()) { | |||
| 10529 | bool InStdNamespace = Context.BuiltinInfo.isInStdNamespace(BuiltinID); | |||
| 10530 | if (!InStdNamespace && | |||
| 10531 | NewFD->getDeclContext()->getRedeclContext()->isFileContext()) { | |||
| 10532 | if (NewFD->getLanguageLinkage() == CLanguageLinkage) { | |||
| 10533 | // Validate the type matches unless this builtin is specified as | |||
| 10534 | // matching regardless of its declared type. | |||
| 10535 | if (Context.BuiltinInfo.allowTypeMismatch(BuiltinID)) { | |||
| 10536 | NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID)); | |||
| 10537 | } else { | |||
| 10538 | ASTContext::GetBuiltinTypeError Error; | |||
| 10539 | LookupNecessaryTypesForBuiltin(S, BuiltinID); | |||
| 10540 | QualType BuiltinType = Context.GetBuiltinType(BuiltinID, Error); | |||
| 10541 | ||||
| 10542 | if (!Error && !BuiltinType.isNull() && | |||
| 10543 | Context.hasSameFunctionTypeIgnoringExceptionSpec( | |||
| 10544 | NewFD->getType(), BuiltinType)) | |||
| 10545 | NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID)); | |||
| 10546 | } | |||
| 10547 | } | |||
| 10548 | } else if (InStdNamespace && NewFD->isInStdNamespace() && | |||
| 10549 | isStdBuiltin(Context, NewFD, BuiltinID)) { | |||
| 10550 | NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID)); | |||
| 10551 | } | |||
| 10552 | } | |||
| 10553 | } | |||
| 10554 | } | |||
| 10555 | ||||
| 10556 | ProcessPragmaWeak(S, NewFD); | |||
| 10557 | checkAttributesAfterMerging(*this, *NewFD); | |||
| 10558 | ||||
| 10559 | AddKnownFunctionAttributes(NewFD); | |||
| 10560 | ||||
| 10561 | if (NewFD->hasAttr<OverloadableAttr>() && | |||
| 10562 | !NewFD->getType()->getAs<FunctionProtoType>()) { | |||
| 10563 | Diag(NewFD->getLocation(), | |||
| 10564 | diag::err_attribute_overloadable_no_prototype) | |||
| 10565 | << NewFD; | |||
| 10566 | NewFD->dropAttr<OverloadableAttr>(); | |||
| 10567 | } | |||
| 10568 | ||||
| 10569 | // If there's a #pragma GCC visibility in scope, and this isn't a class | |||
| 10570 | // member, set the visibility of this function. | |||
| 10571 | if (!DC->isRecord() && NewFD->isExternallyVisible()) | |||
| 10572 | AddPushedVisibilityAttribute(NewFD); | |||
| 10573 | ||||
| 10574 | // If there's a #pragma clang arc_cf_code_audited in scope, consider | |||
| 10575 | // marking the function. | |||
| 10576 | AddCFAuditedAttribute(NewFD); | |||
| 10577 | ||||
| 10578 | // If this is a function definition, check if we have to apply any | |||
| 10579 | // attributes (i.e. optnone and no_builtin) due to a pragma. | |||
| 10580 | if (D.isFunctionDefinition()) { | |||
| 10581 | AddRangeBasedOptnone(NewFD); | |||
| 10582 | AddImplicitMSFunctionNoBuiltinAttr(NewFD); | |||
| 10583 | AddSectionMSAllocText(NewFD); | |||
| 10584 | ModifyFnAttributesMSPragmaOptimize(NewFD); | |||
| 10585 | } | |||
| 10586 | ||||
| 10587 | // If this is the first declaration of an extern C variable, update | |||
| 10588 | // the map of such variables. | |||
| 10589 | if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() && | |||
| 10590 | isIncompleteDeclExternC(*this, NewFD)) | |||
| 10591 | RegisterLocallyScopedExternCDecl(NewFD, S); | |||
| 10592 | ||||
| 10593 | // Set this FunctionDecl's range up to the right paren. | |||
| 10594 | NewFD->setRangeEnd(D.getSourceRange().getEnd()); | |||
| 10595 | ||||
| 10596 | if (D.isRedeclaration() && !Previous.empty()) { | |||
| 10597 | NamedDecl *Prev = Previous.getRepresentativeDecl(); | |||
| 10598 | checkDLLAttributeRedeclaration(*this, Prev, NewFD, | |||
| 10599 | isMemberSpecialization || | |||
| 10600 | isFunctionTemplateSpecialization, | |||
| 10601 | D.isFunctionDefinition()); | |||
| 10602 | } | |||
| 10603 | ||||
| 10604 | if (getLangOpts().CUDA) { | |||
| 10605 | IdentifierInfo *II = NewFD->getIdentifier(); | |||
| 10606 | if (II && II->isStr(getCudaConfigureFuncName()) && | |||
| 10607 | !NewFD->isInvalidDecl() && | |||
| 10608 | NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { | |||
| 10609 | if (!R->castAs<FunctionType>()->getReturnType()->isScalarType()) | |||
| 10610 | Diag(NewFD->getLocation(), diag::err_config_scalar_return) | |||
| 10611 | << getCudaConfigureFuncName(); | |||
| 10612 | Context.setcudaConfigureCallDecl(NewFD); | |||
| 10613 | } | |||
| 10614 | ||||
| 10615 | // Variadic functions, other than a *declaration* of printf, are not allowed | |||
| 10616 | // in device-side CUDA code, unless someone passed | |||
| 10617 | // -fcuda-allow-variadic-functions. | |||
| 10618 | if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() && | |||
| 10619 | (NewFD->hasAttr<CUDADeviceAttr>() || | |||
| 10620 | NewFD->hasAttr<CUDAGlobalAttr>()) && | |||
| 10621 | !(II && II->isStr("printf") && NewFD->isExternC() && | |||
| 10622 | !D.isFunctionDefinition())) { | |||
| 10623 | Diag(NewFD->getLocation(), diag::err_variadic_device_fn); | |||
| 10624 | } | |||
| 10625 | } | |||
| 10626 | ||||
| 10627 | MarkUnusedFileScopedDecl(NewFD); | |||
| 10628 | ||||
| 10629 | ||||
| 10630 | ||||
| 10631 | if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) { | |||
| 10632 | // OpenCL v1.2 s6.8 static is invalid for kernel functions. | |||
| 10633 | if (SC == SC_Static) { | |||
| 10634 | Diag(D.getIdentifierLoc(), diag::err_static_kernel); | |||
| 10635 | D.setInvalidType(); | |||
| 10636 | } | |||
| 10637 | ||||
| 10638 | // OpenCL v1.2, s6.9 -- Kernels can only have return type void. | |||
| 10639 | if (!NewFD->getReturnType()->isVoidType()) { | |||
| 10640 | SourceRange RTRange = NewFD->getReturnTypeSourceRange(); | |||
| 10641 | Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type) | |||
| 10642 | << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void") | |||
| 10643 | : FixItHint()); | |||
| 10644 | D.setInvalidType(); | |||
| 10645 | } | |||
| 10646 | ||||
| 10647 | llvm::SmallPtrSet<const Type *, 16> ValidTypes; | |||
| 10648 | for (auto *Param : NewFD->parameters()) | |||
| 10649 | checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes); | |||
| 10650 | ||||
| 10651 | if (getLangOpts().OpenCLCPlusPlus) { | |||
| 10652 | if (DC->isRecord()) { | |||
| 10653 | Diag(D.getIdentifierLoc(), diag::err_method_kernel); | |||
| 10654 | D.setInvalidType(); | |||
| 10655 | } | |||
| 10656 | if (FunctionTemplate) { | |||
| 10657 | Diag(D.getIdentifierLoc(), diag::err_template_kernel); | |||
| 10658 | D.setInvalidType(); | |||
| 10659 | } | |||
| 10660 | } | |||
| 10661 | } | |||
| 10662 | ||||
| 10663 | if (getLangOpts().CPlusPlus) { | |||
| 10664 | // Precalculate whether this is a friend function template with a constraint | |||
| 10665 | // that depends on an enclosing template, per [temp.friend]p9. | |||
| 10666 | if (isFriend && FunctionTemplate && | |||
| 10667 | FriendConstraintsDependOnEnclosingTemplate(NewFD)) | |||
| 10668 | NewFD->setFriendConstraintRefersToEnclosingTemplate(true); | |||
| 10669 | ||||
| 10670 | if (FunctionTemplate) { | |||
| 10671 | if (NewFD->isInvalidDecl()) | |||
| 10672 | FunctionTemplate->setInvalidDecl(); | |||
| 10673 | return FunctionTemplate; | |||
| 10674 | } | |||
| 10675 | ||||
| 10676 | if (isMemberSpecialization && !NewFD->isInvalidDecl()) | |||
| 10677 | CompleteMemberSpecialization(NewFD, Previous); | |||
| 10678 | } | |||
| 10679 | ||||
| 10680 | for (const ParmVarDecl *Param : NewFD->parameters()) { | |||
| 10681 | QualType PT = Param->getType(); | |||
| 10682 | ||||
| 10683 | // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value | |||
| 10684 | // types. | |||
| 10685 | if (getLangOpts().getOpenCLCompatibleVersion() >= 200) { | |||
| 10686 | if(const PipeType *PipeTy = PT->getAs<PipeType>()) { | |||
| 10687 | QualType ElemTy = PipeTy->getElementType(); | |||
| 10688 | if (ElemTy->isReferenceType() || ElemTy->isPointerType()) { | |||
| 10689 | Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type ); | |||
| 10690 | D.setInvalidType(); | |||
| 10691 | } | |||
| 10692 | } | |||
| 10693 | } | |||
| 10694 | } | |||
| 10695 | ||||
| 10696 | // Here we have an function template explicit specialization at class scope. | |||
| 10697 | // The actual specialization will be postponed to template instatiation | |||
| 10698 | // time via the ClassScopeFunctionSpecializationDecl node. | |||
| 10699 | if (isDependentClassScopeExplicitSpecialization) { | |||
| 10700 | ClassScopeFunctionSpecializationDecl *NewSpec = | |||
| 10701 | ClassScopeFunctionSpecializationDecl::Create( | |||
| 10702 | Context, CurContext, NewFD->getLocation(), | |||
| 10703 | cast<CXXMethodDecl>(NewFD), | |||
| 10704 | HasExplicitTemplateArgs, TemplateArgs); | |||
| 10705 | CurContext->addDecl(NewSpec); | |||
| 10706 | AddToScope = false; | |||
| 10707 | } | |||
| 10708 | ||||
| 10709 | // Diagnose availability attributes. Availability cannot be used on functions | |||
| 10710 | // that are run during load/unload. | |||
| 10711 | if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) { | |||
| 10712 | if (NewFD->hasAttr<ConstructorAttr>()) { | |||
| 10713 | Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) | |||
| 10714 | << 1; | |||
| 10715 | NewFD->dropAttr<AvailabilityAttr>(); | |||
| 10716 | } | |||
| 10717 | if (NewFD->hasAttr<DestructorAttr>()) { | |||
| 10718 | Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) | |||
| 10719 | << 2; | |||
| 10720 | NewFD->dropAttr<AvailabilityAttr>(); | |||
| 10721 | } | |||
| 10722 | } | |||
| 10723 | ||||
| 10724 | // Diagnose no_builtin attribute on function declaration that are not a | |||
| 10725 | // definition. | |||
| 10726 | // FIXME: We should really be doing this in | |||
| 10727 | // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to | |||
| 10728 | // the FunctionDecl and at this point of the code | |||
| 10729 | // FunctionDecl::isThisDeclarationADefinition() which always returns `false` | |||
| 10730 | // because Sema::ActOnStartOfFunctionDef has not been called yet. | |||
| 10731 | if (const auto *NBA = NewFD->getAttr<NoBuiltinAttr>()) | |||
| 10732 | switch (D.getFunctionDefinitionKind()) { | |||
| 10733 | case FunctionDefinitionKind::Defaulted: | |||
| 10734 | case FunctionDefinitionKind::Deleted: | |||
| 10735 | Diag(NBA->getLocation(), | |||
| 10736 | diag::err_attribute_no_builtin_on_defaulted_deleted_function) | |||
| 10737 | << NBA->getSpelling(); | |||
| 10738 | break; | |||
| 10739 | case FunctionDefinitionKind::Declaration: | |||
| 10740 | Diag(NBA->getLocation(), diag::err_attribute_no_builtin_on_non_definition) | |||
| 10741 | << NBA->getSpelling(); | |||
| 10742 | break; | |||
| 10743 | case FunctionDefinitionKind::Definition: | |||
| 10744 | break; | |||
| 10745 | } | |||
| 10746 | ||||
| 10747 | return NewFD; | |||
| 10748 | } | |||
| 10749 | ||||
| 10750 | /// Return a CodeSegAttr from a containing class. The Microsoft docs say | |||
| 10751 | /// when __declspec(code_seg) "is applied to a class, all member functions of | |||
| 10752 | /// the class and nested classes -- this includes compiler-generated special | |||
| 10753 | /// member functions -- are put in the specified segment." | |||
| 10754 | /// The actual behavior is a little more complicated. The Microsoft compiler | |||
| 10755 | /// won't check outer classes if there is an active value from #pragma code_seg. | |||
| 10756 | /// The CodeSeg is always applied from the direct parent but only from outer | |||
| 10757 | /// classes when the #pragma code_seg stack is empty. See: | |||
| 10758 | /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer | |||
| 10759 | /// available since MS has removed the page. | |||
| 10760 | static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) { | |||
| 10761 | const auto *Method = dyn_cast<CXXMethodDecl>(FD); | |||
| 10762 | if (!Method) | |||
| 10763 | return nullptr; | |||
| 10764 | const CXXRecordDecl *Parent = Method->getParent(); | |||
| 10765 | if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) { | |||
| 10766 | Attr *NewAttr = SAttr->clone(S.getASTContext()); | |||
| 10767 | NewAttr->setImplicit(true); | |||
| 10768 | return NewAttr; | |||
| 10769 | } | |||
| 10770 | ||||
| 10771 | // The Microsoft compiler won't check outer classes for the CodeSeg | |||
| 10772 | // when the #pragma code_seg stack is active. | |||
| 10773 | if (S.CodeSegStack.CurrentValue) | |||
| 10774 | return nullptr; | |||
| 10775 | ||||
| 10776 | while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) { | |||
| 10777 | if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) { | |||
| 10778 | Attr *NewAttr = SAttr->clone(S.getASTContext()); | |||
| 10779 | NewAttr->setImplicit(true); | |||
| 10780 | return NewAttr; | |||
| 10781 | } | |||
| 10782 | } | |||
| 10783 | return nullptr; | |||
| 10784 | } | |||
| 10785 | ||||
| 10786 | /// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a | |||
| 10787 | /// containing class. Otherwise it will return implicit SectionAttr if the | |||
| 10788 | /// function is a definition and there is an active value on CodeSegStack | |||
| 10789 | /// (from the current #pragma code-seg value). | |||
| 10790 | /// | |||
| 10791 | /// \param FD Function being declared. | |||
| 10792 | /// \param IsDefinition Whether it is a definition or just a declaration. | |||
| 10793 | /// \returns A CodeSegAttr or SectionAttr to apply to the function or | |||
| 10794 | /// nullptr if no attribute should be added. | |||
| 10795 | Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD, | |||
| 10796 | bool IsDefinition) { | |||
| 10797 | if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD)) | |||
| 10798 | return A; | |||
| 10799 | if (!FD->hasAttr<SectionAttr>() && IsDefinition && | |||
| 10800 | CodeSegStack.CurrentValue) | |||
| 10801 | return SectionAttr::CreateImplicit( | |||
| 10802 | getASTContext(), CodeSegStack.CurrentValue->getString(), | |||
| 10803 | CodeSegStack.CurrentPragmaLocation, SectionAttr::Declspec_allocate); | |||
| 10804 | return nullptr; | |||
| 10805 | } | |||
| 10806 | ||||
| 10807 | /// Determines if we can perform a correct type check for \p D as a | |||
| 10808 | /// redeclaration of \p PrevDecl. If not, we can generally still perform a | |||
| 10809 | /// best-effort check. | |||
| 10810 | /// | |||
| 10811 | /// \param NewD The new declaration. | |||
| 10812 | /// \param OldD The old declaration. | |||
| 10813 | /// \param NewT The portion of the type of the new declaration to check. | |||
| 10814 | /// \param OldT The portion of the type of the old declaration to check. | |||
| 10815 | bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD, | |||
| 10816 | QualType NewT, QualType OldT) { | |||
| 10817 | if (!NewD->getLexicalDeclContext()->isDependentContext()) | |||
| 10818 | return true; | |||
| 10819 | ||||
| 10820 | // For dependently-typed local extern declarations and friends, we can't | |||
| 10821 | // perform a correct type check in general until instantiation: | |||
| 10822 | // | |||
| 10823 | // int f(); | |||
| 10824 | // template<typename T> void g() { T f(); } | |||
| 10825 | // | |||
| 10826 | // (valid if g() is only instantiated with T = int). | |||
| 10827 | if (NewT->isDependentType() && | |||
| 10828 | (NewD->isLocalExternDecl() || NewD->getFriendObjectKind())) | |||
| 10829 | return false; | |||
| 10830 | ||||
| 10831 | // Similarly, if the previous declaration was a dependent local extern | |||
| 10832 | // declaration, we don't really know its type yet. | |||
| 10833 | if (OldT->isDependentType() && OldD->isLocalExternDecl()) | |||
| 10834 | return false; | |||
| 10835 | ||||
| 10836 | return true; | |||
| 10837 | } | |||
| 10838 | ||||
| 10839 | /// Checks if the new declaration declared in dependent context must be | |||
| 10840 | /// put in the same redeclaration chain as the specified declaration. | |||
| 10841 | /// | |||
| 10842 | /// \param D Declaration that is checked. | |||
| 10843 | /// \param PrevDecl Previous declaration found with proper lookup method for the | |||
| 10844 | /// same declaration name. | |||
| 10845 | /// \returns True if D must be added to the redeclaration chain which PrevDecl | |||
| 10846 | /// belongs to. | |||
| 10847 | /// | |||
| 10848 | bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) { | |||
| 10849 | if (!D->getLexicalDeclContext()->isDependentContext()) | |||
| 10850 | return true; | |||
| 10851 | ||||
| 10852 | // Don't chain dependent friend function definitions until instantiation, to | |||
| 10853 | // permit cases like | |||
| 10854 | // | |||
| 10855 | // void func(); | |||
| 10856 | // template<typename T> class C1 { friend void func() {} }; | |||
| 10857 | // template<typename T> class C2 { friend void func() {} }; | |||
| 10858 | // | |||
| 10859 | // ... which is valid if only one of C1 and C2 is ever instantiated. | |||
| 10860 | // | |||
| 10861 | // FIXME: This need only apply to function definitions. For now, we proxy | |||
| 10862 | // this by checking for a file-scope function. We do not want this to apply | |||
| 10863 | // to friend declarations nominating member functions, because that gets in | |||
| 10864 | // the way of access checks. | |||
| 10865 | if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext()) | |||
| 10866 | return false; | |||
| 10867 | ||||
| 10868 | auto *VD = dyn_cast<ValueDecl>(D); | |||
| 10869 | auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl); | |||
| 10870 | return !VD || !PrevVD || | |||
| 10871 | canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(), | |||
| 10872 | PrevVD->getType()); | |||
| 10873 | } | |||
| 10874 | ||||
| 10875 | /// Check the target or target_version attribute of the function for | |||
| 10876 | /// MultiVersion validity. | |||
| 10877 | /// | |||
| 10878 | /// Returns true if there was an error, false otherwise. | |||
| 10879 | static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) { | |||
| 10880 | const auto *TA = FD->getAttr<TargetAttr>(); | |||
| 10881 | const auto *TVA = FD->getAttr<TargetVersionAttr>(); | |||
| 10882 | assert((static_cast <bool> ((TA || TVA) && "MultiVersion candidate requires a target or target_version attribute" ) ? void (0) : __assert_fail ("(TA || TVA) && \"MultiVersion candidate requires a target or target_version attribute\"" , "clang/lib/Sema/SemaDecl.cpp", 10884, __extension__ __PRETTY_FUNCTION__ )) | |||
| 10883 | (TA || TVA) &&(static_cast <bool> ((TA || TVA) && "MultiVersion candidate requires a target or target_version attribute" ) ? void (0) : __assert_fail ("(TA || TVA) && \"MultiVersion candidate requires a target or target_version attribute\"" , "clang/lib/Sema/SemaDecl.cpp", 10884, __extension__ __PRETTY_FUNCTION__ )) | |||
| 10884 | "MultiVersion candidate requires a target or target_version attribute")(static_cast <bool> ((TA || TVA) && "MultiVersion candidate requires a target or target_version attribute" ) ? void (0) : __assert_fail ("(TA || TVA) && \"MultiVersion candidate requires a target or target_version attribute\"" , "clang/lib/Sema/SemaDecl.cpp", 10884, __extension__ __PRETTY_FUNCTION__ )); | |||
| 10885 | const TargetInfo &TargetInfo = S.Context.getTargetInfo(); | |||
| 10886 | enum ErrType { Feature = 0, Architecture = 1 }; | |||
| 10887 | ||||
| 10888 | if (TA) { | |||
| 10889 | ParsedTargetAttr ParseInfo = | |||
| 10890 | S.getASTContext().getTargetInfo().parseTargetAttr(TA->getFeaturesStr()); | |||
| 10891 | if (!ParseInfo.CPU.empty() && !TargetInfo.validateCpuIs(ParseInfo.CPU)) { | |||
| 10892 | S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) | |||
| 10893 | << Architecture << ParseInfo.CPU; | |||
| 10894 | return true; | |||
| 10895 | } | |||
| 10896 | for (const auto &Feat : ParseInfo.Features) { | |||
| 10897 | auto BareFeat = StringRef{Feat}.substr(1); | |||
| 10898 | if (Feat[0] == '-') { | |||
| 10899 | S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) | |||
| 10900 | << Feature << ("no-" + BareFeat).str(); | |||
| 10901 | return true; | |||
| 10902 | } | |||
| 10903 | ||||
| 10904 | if (!TargetInfo.validateCpuSupports(BareFeat) || | |||
| 10905 | !TargetInfo.isValidFeatureName(BareFeat)) { | |||
| 10906 | S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) | |||
| 10907 | << Feature << BareFeat; | |||
| 10908 | return true; | |||
| 10909 | } | |||
| 10910 | } | |||
| 10911 | } | |||
| 10912 | ||||
| 10913 | if (TVA) { | |||
| 10914 | llvm::SmallVector<StringRef, 8> Feats; | |||
| 10915 | TVA->getFeatures(Feats); | |||
| 10916 | for (const auto &Feat : Feats) { | |||
| 10917 | if (!TargetInfo.validateCpuSupports(Feat)) { | |||
| 10918 | S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) | |||
| 10919 | << Feature << Feat; | |||
| 10920 | return true; | |||
| 10921 | } | |||
| 10922 | } | |||
| 10923 | } | |||
| 10924 | return false; | |||
| 10925 | } | |||
| 10926 | ||||
| 10927 | // Provide a white-list of attributes that are allowed to be combined with | |||
| 10928 | // multiversion functions. | |||
| 10929 | static bool AttrCompatibleWithMultiVersion(attr::Kind Kind, | |||
| 10930 | MultiVersionKind MVKind) { | |||
| 10931 | // Note: this list/diagnosis must match the list in | |||
| 10932 | // checkMultiversionAttributesAllSame. | |||
| 10933 | switch (Kind) { | |||
| 10934 | default: | |||
| 10935 | return false; | |||
| 10936 | case attr::Used: | |||
| 10937 | return MVKind == MultiVersionKind::Target; | |||
| 10938 | case attr::NonNull: | |||
| 10939 | case attr::NoThrow: | |||
| 10940 | return true; | |||
| 10941 | } | |||
| 10942 | } | |||
| 10943 | ||||
| 10944 | static bool checkNonMultiVersionCompatAttributes(Sema &S, | |||
| 10945 | const FunctionDecl *FD, | |||
| 10946 | const FunctionDecl *CausedFD, | |||
| 10947 | MultiVersionKind MVKind) { | |||
| 10948 | const auto Diagnose = [FD, CausedFD, MVKind](Sema &S, const Attr *A) { | |||
| 10949 | S.Diag(FD->getLocation(), diag::err_multiversion_disallowed_other_attr) | |||
| 10950 | << static_cast<unsigned>(MVKind) << A; | |||
| 10951 | if (CausedFD) | |||
| 10952 | S.Diag(CausedFD->getLocation(), diag::note_multiversioning_caused_here); | |||
| 10953 | return true; | |||
| 10954 | }; | |||
| 10955 | ||||
| 10956 | for (const Attr *A : FD->attrs()) { | |||
| 10957 | switch (A->getKind()) { | |||
| 10958 | case attr::CPUDispatch: | |||
| 10959 | case attr::CPUSpecific: | |||
| 10960 | if (MVKind != MultiVersionKind::CPUDispatch && | |||
| 10961 | MVKind != MultiVersionKind::CPUSpecific) | |||
| 10962 | return Diagnose(S, A); | |||
| 10963 | break; | |||
| 10964 | case attr::Target: | |||
| 10965 | if (MVKind != MultiVersionKind::Target) | |||
| 10966 | return Diagnose(S, A); | |||
| 10967 | break; | |||
| 10968 | case attr::TargetVersion: | |||
| 10969 | if (MVKind != MultiVersionKind::TargetVersion) | |||
| 10970 | return Diagnose(S, A); | |||
| 10971 | break; | |||
| 10972 | case attr::TargetClones: | |||
| 10973 | if (MVKind != MultiVersionKind::TargetClones) | |||
| 10974 | return Diagnose(S, A); | |||
| 10975 | break; | |||
| 10976 | default: | |||
| 10977 | if (!AttrCompatibleWithMultiVersion(A->getKind(), MVKind)) | |||
| 10978 | return Diagnose(S, A); | |||
| 10979 | break; | |||
| 10980 | } | |||
| 10981 | } | |||
| 10982 | return false; | |||
| 10983 | } | |||
| 10984 | ||||
| 10985 | bool Sema::areMultiversionVariantFunctionsCompatible( | |||
| 10986 | const FunctionDecl *OldFD, const FunctionDecl *NewFD, | |||
| 10987 | const PartialDiagnostic &NoProtoDiagID, | |||
| 10988 | const PartialDiagnosticAt &NoteCausedDiagIDAt, | |||
| 10989 | const PartialDiagnosticAt &NoSupportDiagIDAt, | |||
| 10990 | const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported, | |||
| 10991 | bool ConstexprSupported, bool CLinkageMayDiffer) { | |||
| 10992 | enum DoesntSupport { | |||
| 10993 | FuncTemplates = 0, | |||
| 10994 | VirtFuncs = 1, | |||
| 10995 | DeducedReturn = 2, | |||
| 10996 | Constructors = 3, | |||
| 10997 | Destructors = 4, | |||
| 10998 | DeletedFuncs = 5, | |||
| 10999 | DefaultedFuncs = 6, | |||
| 11000 | ConstexprFuncs = 7, | |||
| 11001 | ConstevalFuncs = 8, | |||
| 11002 | Lambda = 9, | |||
| 11003 | }; | |||
| 11004 | enum Different { | |||
| 11005 | CallingConv = 0, | |||
| 11006 | ReturnType = 1, | |||
| 11007 | ConstexprSpec = 2, | |||
| 11008 | InlineSpec = 3, | |||
| 11009 | Linkage = 4, | |||
| 11010 | LanguageLinkage = 5, | |||
| 11011 | }; | |||
| 11012 | ||||
| 11013 | if (NoProtoDiagID.getDiagID() != 0 && OldFD && | |||
| 11014 | !OldFD->getType()->getAs<FunctionProtoType>()) { | |||
| 11015 | Diag(OldFD->getLocation(), NoProtoDiagID); | |||
| 11016 | Diag(NoteCausedDiagIDAt.first, NoteCausedDiagIDAt.second); | |||
| 11017 | return true; | |||
| 11018 | } | |||
| 11019 | ||||
| 11020 | if (NoProtoDiagID.getDiagID() != 0 && | |||
| 11021 | !NewFD->getType()->getAs<FunctionProtoType>()) | |||
| 11022 | return Diag(NewFD->getLocation(), NoProtoDiagID); | |||
| 11023 | ||||
| 11024 | if (!TemplatesSupported && | |||
| 11025 | NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) | |||
| 11026 | return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) | |||
| 11027 | << FuncTemplates; | |||
| 11028 | ||||
| 11029 | if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) { | |||
| 11030 | if (NewCXXFD->isVirtual()) | |||
| 11031 | return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) | |||
| 11032 | << VirtFuncs; | |||
| 11033 | ||||
| 11034 | if (isa<CXXConstructorDecl>(NewCXXFD)) | |||
| 11035 | return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) | |||
| 11036 | << Constructors; | |||
| 11037 | ||||
| 11038 | if (isa<CXXDestructorDecl>(NewCXXFD)) | |||
| 11039 | return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) | |||
| 11040 | << Destructors; | |||
| 11041 | } | |||
| 11042 | ||||
| 11043 | if (NewFD->isDeleted()) | |||
| 11044 | return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) | |||
| 11045 | << DeletedFuncs; | |||
| 11046 | ||||
| 11047 | if (NewFD->isDefaulted()) | |||
| 11048 | return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) | |||
| 11049 | << DefaultedFuncs; | |||
| 11050 | ||||
| 11051 | if (!ConstexprSupported && NewFD->isConstexpr()) | |||
| 11052 | return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) | |||
| 11053 | << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs); | |||
| 11054 | ||||
| 11055 | QualType NewQType = Context.getCanonicalType(NewFD->getType()); | |||
| 11056 | const auto *NewType = cast<FunctionType>(NewQType); | |||
| 11057 | QualType NewReturnType = NewType->getReturnType(); | |||
| 11058 | ||||
| 11059 | if (NewReturnType->isUndeducedType()) | |||
| 11060 | return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) | |||
| 11061 | << DeducedReturn; | |||
| 11062 | ||||
| 11063 | // Ensure the return type is identical. | |||
| 11064 | if (OldFD) { | |||
| 11065 | QualType OldQType = Context.getCanonicalType(OldFD->getType()); | |||
| 11066 | const auto *OldType = cast<FunctionType>(OldQType); | |||
| 11067 | FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); | |||
| 11068 | FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); | |||
| 11069 | ||||
| 11070 | if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) | |||
| 11071 | return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << CallingConv; | |||
| 11072 | ||||
| 11073 | QualType OldReturnType = OldType->getReturnType(); | |||
| 11074 | ||||
| 11075 | if (OldReturnType != NewReturnType) | |||
| 11076 | return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ReturnType; | |||
| 11077 | ||||
| 11078 | if (OldFD->getConstexprKind() != NewFD->getConstexprKind()) | |||
| 11079 | return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ConstexprSpec; | |||
| 11080 | ||||
| 11081 | if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified()) | |||
| 11082 | return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << InlineSpec; | |||
| 11083 | ||||
| 11084 | if (OldFD->getFormalLinkage() != NewFD->getFormalLinkage()) | |||
| 11085 | return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << Linkage; | |||
| 11086 | ||||
| 11087 | if (!CLinkageMayDiffer && OldFD->isExternC() != NewFD->isExternC()) | |||
| 11088 | return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << LanguageLinkage; | |||
| 11089 | ||||
| 11090 | if (CheckEquivalentExceptionSpec( | |||
| 11091 | OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(), | |||
| 11092 | NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation())) | |||
| 11093 | return true; | |||
| 11094 | } | |||
| 11095 | return false; | |||
| 11096 | } | |||
| 11097 | ||||
| 11098 | static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD, | |||
| 11099 | const FunctionDecl *NewFD, | |||
| 11100 | bool CausesMV, | |||
| 11101 | MultiVersionKind MVKind) { | |||
| 11102 | if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) { | |||
| 11103 | S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported); | |||
| 11104 | if (OldFD) | |||
| 11105 | S.Diag(OldFD->getLocation(), diag::note_previous_declaration); | |||
| 11106 | return true; | |||
| 11107 | } | |||
| 11108 | ||||
| 11109 | bool IsCPUSpecificCPUDispatchMVKind = | |||
| 11110 | MVKind == MultiVersionKind::CPUDispatch || | |||
| 11111 | MVKind == MultiVersionKind::CPUSpecific; | |||
| 11112 | ||||
| 11113 | if (CausesMV && OldFD && | |||
| 11114 | checkNonMultiVersionCompatAttributes(S, OldFD, NewFD, MVKind)) | |||
| 11115 | return true; | |||
| 11116 | ||||
| 11117 | if (checkNonMultiVersionCompatAttributes(S, NewFD, nullptr, MVKind)) | |||
| 11118 | return true; | |||
| 11119 | ||||
| 11120 | // Only allow transition to MultiVersion if it hasn't been used. | |||
| 11121 | if (OldFD && CausesMV && OldFD->isUsed(false)) | |||
| 11122 | return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used); | |||
| 11123 | ||||
| 11124 | return S.areMultiversionVariantFunctionsCompatible( | |||
| 11125 | OldFD, NewFD, S.PDiag(diag::err_multiversion_noproto), | |||
| 11126 | PartialDiagnosticAt(NewFD->getLocation(), | |||
| 11127 | S.PDiag(diag::note_multiversioning_caused_here)), | |||
| 11128 | PartialDiagnosticAt(NewFD->getLocation(), | |||
| 11129 | S.PDiag(diag::err_multiversion_doesnt_support) | |||
| 11130 | << static_cast<unsigned>(MVKind)), | |||
| 11131 | PartialDiagnosticAt(NewFD->getLocation(), | |||
| 11132 | S.PDiag(diag::err_multiversion_diff)), | |||
| 11133 | /*TemplatesSupported=*/false, | |||
| 11134 | /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVKind, | |||
| 11135 | /*CLinkageMayDiffer=*/false); | |||
| 11136 | } | |||
| 11137 | ||||
| 11138 | /// Check the validity of a multiversion function declaration that is the | |||
| 11139 | /// first of its kind. Also sets the multiversion'ness' of the function itself. | |||
| 11140 | /// | |||
| 11141 | /// This sets NewFD->isInvalidDecl() to true if there was an error. | |||
| 11142 | /// | |||
| 11143 | /// Returns true if there was an error, false otherwise. | |||
| 11144 | static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD) { | |||
| 11145 | MultiVersionKind MVKind = FD->getMultiVersionKind(); | |||
| 11146 | assert(MVKind != MultiVersionKind::None &&(static_cast <bool> (MVKind != MultiVersionKind::None && "Function lacks multiversion attribute") ? void (0) : __assert_fail ("MVKind != MultiVersionKind::None && \"Function lacks multiversion attribute\"" , "clang/lib/Sema/SemaDecl.cpp", 11147, __extension__ __PRETTY_FUNCTION__ )) | |||
| 11147 | "Function lacks multiversion attribute")(static_cast <bool> (MVKind != MultiVersionKind::None && "Function lacks multiversion attribute") ? void (0) : __assert_fail ("MVKind != MultiVersionKind::None && \"Function lacks multiversion attribute\"" , "clang/lib/Sema/SemaDecl.cpp", 11147, __extension__ __PRETTY_FUNCTION__ )); | |||
| 11148 | const auto *TA = FD->getAttr<TargetAttr>(); | |||
| 11149 | const auto *TVA = FD->getAttr<TargetVersionAttr>(); | |||
| 11150 | // Target and target_version only causes MV if it is default, otherwise this | |||
| 11151 | // is a normal function. | |||
| 11152 | if ((TA && !TA->isDefaultVersion()) || (TVA && !TVA->isDefaultVersion())) | |||
| 11153 | return false; | |||
| 11154 | ||||
| 11155 | if ((TA || TVA) && CheckMultiVersionValue(S, FD)) { | |||
| 11156 | FD->setInvalidDecl(); | |||
| 11157 | return true; | |||
| 11158 | } | |||
| 11159 | ||||
| 11160 | if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVKind)) { | |||
| 11161 | FD->setInvalidDecl(); | |||
| 11162 | return true; | |||
| 11163 | } | |||
| 11164 | ||||
| 11165 | FD->setIsMultiVersion(); | |||
| 11166 | return false; | |||
| 11167 | } | |||
| 11168 | ||||
| 11169 | static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) { | |||
| 11170 | for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) { | |||
| 11171 | if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None) | |||
| 11172 | return true; | |||
| 11173 | } | |||
| 11174 | ||||
| 11175 | return false; | |||
| 11176 | } | |||
| 11177 | ||||
| 11178 | static bool CheckTargetCausesMultiVersioning(Sema &S, FunctionDecl *OldFD, | |||
| 11179 | FunctionDecl *NewFD, | |||
| 11180 | bool &Redeclaration, | |||
| 11181 | NamedDecl *&OldDecl, | |||
| 11182 | LookupResult &Previous) { | |||
| 11183 | const auto *NewTA = NewFD->getAttr<TargetAttr>(); | |||
| 11184 | const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>(); | |||
| 11185 | const auto *OldTA = OldFD->getAttr<TargetAttr>(); | |||
| 11186 | const auto *OldTVA = OldFD->getAttr<TargetVersionAttr>(); | |||
| 11187 | // If the old decl is NOT MultiVersioned yet, and we don't cause that | |||
| 11188 | // to change, this is a simple redeclaration. | |||
| 11189 | if ((NewTA && !NewTA->isDefaultVersion() && | |||
| 11190 | (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr())) || | |||
| 11191 | (NewTVA && !NewTVA->isDefaultVersion() && | |||
| 11192 | (!OldTVA || OldTVA->getName() == NewTVA->getName()))) | |||
| 11193 | return false; | |||
| 11194 | ||||
| 11195 | // Otherwise, this decl causes MultiVersioning. | |||
| 11196 | if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true, | |||
| 11197 | NewTVA ? MultiVersionKind::TargetVersion | |||
| 11198 | : MultiVersionKind::Target)) { | |||
| 11199 | NewFD->setInvalidDecl(); | |||
| 11200 | return true; | |||
| 11201 | } | |||
| 11202 | ||||
| 11203 | if (CheckMultiVersionValue(S, NewFD)) { | |||
| 11204 | NewFD->setInvalidDecl(); | |||
| 11205 | return true; | |||
| 11206 | } | |||
| 11207 | ||||
| 11208 | // If this is 'default', permit the forward declaration. | |||
| 11209 | if (!OldFD->isMultiVersion() && | |||
| 11210 | ((NewTA && NewTA->isDefaultVersion() && !OldTA) || | |||
| 11211 | (NewTVA && NewTVA->isDefaultVersion() && !OldTVA))) { | |||
| 11212 | Redeclaration = true; | |||
| 11213 | OldDecl = OldFD; | |||
| 11214 | OldFD->setIsMultiVersion(); | |||
| 11215 | NewFD->setIsMultiVersion(); | |||
| 11216 | return false; | |||
| 11217 | } | |||
| 11218 | ||||
| 11219 | if (CheckMultiVersionValue(S, OldFD)) { | |||
| 11220 | S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); | |||
| 11221 | NewFD->setInvalidDecl(); | |||
| 11222 | return true; | |||
| 11223 | } | |||
| 11224 | ||||
| 11225 | if (NewTA) { | |||
| 11226 | ParsedTargetAttr OldParsed = | |||
| 11227 | S.getASTContext().getTargetInfo().parseTargetAttr( | |||
| 11228 | OldTA->getFeaturesStr()); | |||
| 11229 | llvm::sort(OldParsed.Features); | |||
| 11230 | ParsedTargetAttr NewParsed = | |||
| 11231 | S.getASTContext().getTargetInfo().parseTargetAttr( | |||
| 11232 | NewTA->getFeaturesStr()); | |||
| 11233 | // Sort order doesn't matter, it just needs to be consistent. | |||
| 11234 | llvm::sort(NewParsed.Features); | |||
| 11235 | if (OldParsed == NewParsed) { | |||
| 11236 | S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); | |||
| 11237 | S.Diag(OldFD->getLocation(), diag::note_previous_declaration); | |||
| 11238 | NewFD->setInvalidDecl(); | |||
| 11239 | return true; | |||
| 11240 | } | |||
| 11241 | } | |||
| 11242 | ||||
| 11243 | if (NewTVA) { | |||
| 11244 | llvm::SmallVector<StringRef, 8> Feats; | |||
| 11245 | OldTVA->getFeatures(Feats); | |||
| 11246 | llvm::sort(Feats); | |||
| 11247 | llvm::SmallVector<StringRef, 8> NewFeats; | |||
| 11248 | NewTVA->getFeatures(NewFeats); | |||
| 11249 | llvm::sort(NewFeats); | |||
| 11250 | ||||
| 11251 | if (Feats == NewFeats) { | |||
| 11252 | S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); | |||
| 11253 | S.Diag(OldFD->getLocation(), diag::note_previous_declaration); | |||
| 11254 | NewFD->setInvalidDecl(); | |||
| 11255 | return true; | |||
| 11256 | } | |||
| 11257 | } | |||
| 11258 | ||||
| 11259 | for (const auto *FD : OldFD->redecls()) { | |||
| 11260 | const auto *CurTA = FD->getAttr<TargetAttr>(); | |||
| 11261 | const auto *CurTVA = FD->getAttr<TargetVersionAttr>(); | |||
| 11262 | // We allow forward declarations before ANY multiversioning attributes, but | |||
| 11263 | // nothing after the fact. | |||
| 11264 | if (PreviousDeclsHaveMultiVersionAttribute(FD) && | |||
| 11265 | ((NewTA && (!CurTA || CurTA->isInherited())) || | |||
| 11266 | (NewTVA && (!CurTVA || CurTVA->isInherited())))) { | |||
| 11267 | S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl) | |||
| 11268 | << (NewTA ? 0 : 2); | |||
| 11269 | S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); | |||
| 11270 | NewFD->setInvalidDecl(); | |||
| 11271 | return true; | |||
| 11272 | } | |||
| 11273 | } | |||
| 11274 | ||||
| 11275 | OldFD->setIsMultiVersion(); | |||
| 11276 | NewFD->setIsMultiVersion(); | |||
| 11277 | Redeclaration = false; | |||
| 11278 | OldDecl = nullptr; | |||
| 11279 | Previous.clear(); | |||
| 11280 | return false; | |||
| 11281 | } | |||
| 11282 | ||||
| 11283 | static bool MultiVersionTypesCompatible(MultiVersionKind Old, | |||
| 11284 | MultiVersionKind New) { | |||
| 11285 | if (Old == New || Old == MultiVersionKind::None || | |||
| 11286 | New == MultiVersionKind::None) | |||
| 11287 | return true; | |||
| 11288 | ||||
| 11289 | return (Old == MultiVersionKind::CPUDispatch && | |||
| 11290 | New == MultiVersionKind::CPUSpecific) || | |||
| 11291 | (Old == MultiVersionKind::CPUSpecific && | |||
| 11292 | New == MultiVersionKind::CPUDispatch); | |||
| 11293 | } | |||
| 11294 | ||||
| 11295 | /// Check the validity of a new function declaration being added to an existing | |||
| 11296 | /// multiversioned declaration collection. | |||
| 11297 | static bool CheckMultiVersionAdditionalDecl( | |||
| 11298 | Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, | |||
| 11299 | MultiVersionKind NewMVKind, const CPUDispatchAttr *NewCPUDisp, | |||
| 11300 | const CPUSpecificAttr *NewCPUSpec, const TargetClonesAttr *NewClones, | |||
| 11301 | bool &Redeclaration, NamedDecl *&OldDecl, LookupResult &Previous) { | |||
| 11302 | const auto *NewTA = NewFD->getAttr<TargetAttr>(); | |||
| 11303 | const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>(); | |||
| 11304 | MultiVersionKind OldMVKind = OldFD->getMultiVersionKind(); | |||
| 11305 | // Disallow mixing of multiversioning types. | |||
| 11306 | if (!MultiVersionTypesCompatible(OldMVKind, NewMVKind)) { | |||
| 11307 | S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed); | |||
| 11308 | S.Diag(OldFD->getLocation(), diag::note_previous_declaration); | |||
| 11309 | NewFD->setInvalidDecl(); | |||
| 11310 | return true; | |||
| 11311 | } | |||
| 11312 | ||||
| 11313 | ParsedTargetAttr NewParsed; | |||
| 11314 | if (NewTA) { | |||
| 11315 | NewParsed = S.getASTContext().getTargetInfo().parseTargetAttr( | |||
| 11316 | NewTA->getFeaturesStr()); | |||
| 11317 | llvm::sort(NewParsed.Features); | |||
| 11318 | } | |||
| 11319 | llvm::SmallVector<StringRef, 8> NewFeats; | |||
| 11320 | if (NewTVA) { | |||
| 11321 | NewTVA->getFeatures(NewFeats); | |||
| 11322 | llvm::sort(NewFeats); | |||
| 11323 | } | |||
| 11324 | ||||
| 11325 | bool UseMemberUsingDeclRules = | |||
| 11326 | S.CurContext->isRecord() && !NewFD->getFriendObjectKind(); | |||
| 11327 | ||||
| 11328 | bool MayNeedOverloadableChecks = | |||
| 11329 | AllowOverloadingOfFunction(Previous, S.Context, NewFD); | |||
| 11330 | ||||
| 11331 | // Next, check ALL non-invalid non-overloads to see if this is a redeclaration | |||
| 11332 | // of a previous member of the MultiVersion set. | |||
| 11333 | for (NamedDecl *ND : Previous) { | |||
| 11334 | FunctionDecl *CurFD = ND->getAsFunction(); | |||
| 11335 | if (!CurFD || CurFD->isInvalidDecl()) | |||
| 11336 | continue; | |||
| 11337 | if (MayNeedOverloadableChecks && | |||
| 11338 | S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules)) | |||
| 11339 | continue; | |||
| 11340 | ||||
| 11341 | if (NewMVKind == MultiVersionKind::None && | |||
| 11342 | OldMVKind == MultiVersionKind::TargetVersion) { | |||
| 11343 | NewFD->addAttr(TargetVersionAttr::CreateImplicit( | |||
| 11344 | S.Context, "default", NewFD->getSourceRange())); | |||
| 11345 | NewFD->setIsMultiVersion(); | |||
| 11346 | NewMVKind = MultiVersionKind::TargetVersion; | |||
| 11347 | if (!NewTVA) { | |||
| 11348 | NewTVA = NewFD->getAttr<TargetVersionAttr>(); | |||
| 11349 | NewTVA->getFeatures(NewFeats); | |||
| 11350 | llvm::sort(NewFeats); | |||
| 11351 | } | |||
| 11352 | } | |||
| 11353 | ||||
| 11354 | switch (NewMVKind) { | |||
| 11355 | case MultiVersionKind::None: | |||
| 11356 | assert(OldMVKind == MultiVersionKind::TargetClones &&(static_cast <bool> (OldMVKind == MultiVersionKind::TargetClones && "Only target_clones can be omitted in subsequent declarations" ) ? void (0) : __assert_fail ("OldMVKind == MultiVersionKind::TargetClones && \"Only target_clones can be omitted in subsequent declarations\"" , "clang/lib/Sema/SemaDecl.cpp", 11357, __extension__ __PRETTY_FUNCTION__ )) | |||
| 11357 | "Only target_clones can be omitted in subsequent declarations")(static_cast <bool> (OldMVKind == MultiVersionKind::TargetClones && "Only target_clones can be omitted in subsequent declarations" ) ? void (0) : __assert_fail ("OldMVKind == MultiVersionKind::TargetClones && \"Only target_clones can be omitted in subsequent declarations\"" , "clang/lib/Sema/SemaDecl.cpp", 11357, __extension__ __PRETTY_FUNCTION__ )); | |||
| 11358 | break; | |||
| 11359 | case MultiVersionKind::Target: { | |||
| 11360 | const auto *CurTA = CurFD->getAttr<TargetAttr>(); | |||
| 11361 | if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) { | |||
| 11362 | NewFD->setIsMultiVersion(); | |||
| 11363 | Redeclaration = true; | |||
| 11364 | OldDecl = ND; | |||
| 11365 | return false; | |||
| 11366 | } | |||
| 11367 | ||||
| 11368 | ParsedTargetAttr CurParsed = | |||
| 11369 | S.getASTContext().getTargetInfo().parseTargetAttr( | |||
| 11370 | CurTA->getFeaturesStr()); | |||
| 11371 | llvm::sort(CurParsed.Features); | |||
| 11372 | if (CurParsed == NewParsed) { | |||
| 11373 | S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); | |||
| 11374 | S.Diag(CurFD->getLocation(), diag::note_previous_declaration); | |||
| 11375 | NewFD->setInvalidDecl(); | |||
| 11376 | return true; | |||
| 11377 | } | |||
| 11378 | break; | |||
| 11379 | } | |||
| 11380 | case MultiVersionKind::TargetVersion: { | |||
| 11381 | const auto *CurTVA = CurFD->getAttr<TargetVersionAttr>(); | |||
| 11382 | if (CurTVA->getName() == NewTVA->getName()) { | |||
| 11383 | NewFD->setIsMultiVersion(); | |||
| 11384 | Redeclaration = true; | |||
| 11385 | OldDecl = ND; | |||
| 11386 | return false; | |||
| 11387 | } | |||
| 11388 | llvm::SmallVector<StringRef, 8> CurFeats; | |||
| 11389 | if (CurTVA) { | |||
| 11390 | CurTVA->getFeatures(CurFeats); | |||
| 11391 | llvm::sort(CurFeats); | |||
| 11392 | } | |||
| 11393 | if (CurFeats == NewFeats) { | |||
| 11394 | S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); | |||
| 11395 | S.Diag(CurFD->getLocation(), diag::note_previous_declaration); | |||
| 11396 | NewFD->setInvalidDecl(); | |||
| 11397 | return true; | |||
| 11398 | } | |||
| 11399 | break; | |||
| 11400 | } | |||
| 11401 | case MultiVersionKind::TargetClones: { | |||
| 11402 | const auto *CurClones = CurFD->getAttr<TargetClonesAttr>(); | |||
| 11403 | Redeclaration = true; | |||
| 11404 | OldDecl = CurFD; | |||
| 11405 | NewFD->setIsMultiVersion(); | |||
| 11406 | ||||
| 11407 | if (CurClones && NewClones && | |||
| 11408 | (CurClones->featuresStrs_size() != NewClones->featuresStrs_size() || | |||
| 11409 | !std::equal(CurClones->featuresStrs_begin(), | |||
| 11410 | CurClones->featuresStrs_end(), | |||
| 11411 | NewClones->featuresStrs_begin()))) { | |||
| 11412 | S.Diag(NewFD->getLocation(), diag::err_target_clone_doesnt_match); | |||
| 11413 | S.Diag(CurFD->getLocation(), diag::note_previous_declaration); | |||
| 11414 | NewFD->setInvalidDecl(); | |||
| 11415 | return true; | |||
| 11416 | } | |||
| 11417 | ||||
| 11418 | return false; | |||
| 11419 | } | |||
| 11420 | case MultiVersionKind::CPUSpecific: | |||
| 11421 | case MultiVersionKind::CPUDispatch: { | |||
| 11422 | const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>(); | |||
| 11423 | const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>(); | |||
| 11424 | // Handle CPUDispatch/CPUSpecific versions. | |||
| 11425 | // Only 1 CPUDispatch function is allowed, this will make it go through | |||
| 11426 | // the redeclaration errors. | |||
| 11427 | if (NewMVKind == MultiVersionKind::CPUDispatch && | |||
| 11428 | CurFD->hasAttr<CPUDispatchAttr>()) { | |||
| 11429 | if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() && | |||
| 11430 | std::equal( | |||
| 11431 | CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(), | |||
| 11432 | NewCPUDisp->cpus_begin(), | |||
| 11433 | [](const IdentifierInfo *Cur, const IdentifierInfo *New) { | |||
| 11434 | return Cur->getName() == New->getName(); | |||
| 11435 | })) { | |||
| 11436 | NewFD->setIsMultiVersion(); | |||
| 11437 | Redeclaration = true; | |||
| 11438 | OldDecl = ND; | |||
| 11439 | return false; | |||
| 11440 | } | |||
| 11441 | ||||
| 11442 | // If the declarations don't match, this is an error condition. | |||
| 11443 | S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch); | |||
| 11444 | S.Diag(CurFD->getLocation(), diag::note_previous_declaration); | |||
| 11445 | NewFD->setInvalidDecl(); | |||
| 11446 | return true; | |||
| 11447 | } | |||
| 11448 | if (NewMVKind == MultiVersionKind::CPUSpecific && CurCPUSpec) { | |||
| 11449 | if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() && | |||
| 11450 | std::equal( | |||
| 11451 | CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(), | |||
| 11452 | NewCPUSpec->cpus_begin(), | |||
| 11453 | [](const IdentifierInfo *Cur, const IdentifierInfo *New) { | |||
| 11454 | return Cur->getName() == New->getName(); | |||
| 11455 | })) { | |||
| 11456 | NewFD->setIsMultiVersion(); | |||
| 11457 | Redeclaration = true; | |||
| 11458 | OldDecl = ND; | |||
| 11459 | return false; | |||
| 11460 | } | |||
| 11461 | ||||
| 11462 | // Only 1 version of CPUSpecific is allowed for each CPU. | |||
| 11463 | for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) { | |||
| 11464 | for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) { | |||
| 11465 | if (CurII == NewII) { | |||
| 11466 | S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs) | |||
| 11467 | << NewII; | |||
| 11468 | S.Diag(CurFD->getLocation(), diag::note_previous_declaration); | |||
| 11469 | NewFD->setInvalidDecl(); | |||
| 11470 | return true; | |||
| 11471 | } | |||
| 11472 | } | |||
| 11473 | } | |||
| 11474 | } | |||
| 11475 | break; | |||
| 11476 | } | |||
| 11477 | } | |||
| 11478 | } | |||
| 11479 | ||||
| 11480 | // Else, this is simply a non-redecl case. Checking the 'value' is only | |||
| 11481 | // necessary in the Target case, since The CPUSpecific/Dispatch cases are | |||
| 11482 | // handled in the attribute adding step. | |||
| 11483 | if ((NewMVKind == MultiVersionKind::TargetVersion || | |||
| 11484 | NewMVKind == MultiVersionKind::Target) && | |||
| 11485 | CheckMultiVersionValue(S, NewFD)) { | |||
| 11486 | NewFD->setInvalidDecl(); | |||
| 11487 | return true; | |||
| 11488 | } | |||
| 11489 | ||||
| 11490 | if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, | |||
| 11491 | !OldFD->isMultiVersion(), NewMVKind)) { | |||
| 11492 | NewFD->setInvalidDecl(); | |||
| 11493 | return true; | |||
| 11494 | } | |||
| 11495 | ||||
| 11496 | // Permit forward declarations in the case where these two are compatible. | |||
| 11497 | if (!OldFD->isMultiVersion()) { | |||
| 11498 | OldFD->setIsMultiVersion(); | |||
| 11499 | NewFD->setIsMultiVersion(); | |||
| 11500 | Redeclaration = true; | |||
| 11501 | OldDecl = OldFD; | |||
| 11502 | return false; | |||
| 11503 | } | |||
| 11504 | ||||
| 11505 | NewFD->setIsMultiVersion(); | |||
| 11506 | Redeclaration = false; | |||
| 11507 | OldDecl = nullptr; | |||
| 11508 | Previous.clear(); | |||
| 11509 | return false; | |||
| 11510 | } | |||
| 11511 | ||||
| 11512 | /// Check the validity of a mulitversion function declaration. | |||
| 11513 | /// Also sets the multiversion'ness' of the function itself. | |||
| 11514 | /// | |||
| 11515 | /// This sets NewFD->isInvalidDecl() to true if there was an error. | |||
| 11516 | /// | |||
| 11517 | /// Returns true if there was an error, false otherwise. | |||
| 11518 | static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD, | |||
| 11519 | bool &Redeclaration, NamedDecl *&OldDecl, | |||
| 11520 | LookupResult &Previous) { | |||
| 11521 | const auto *NewTA = NewFD->getAttr<TargetAttr>(); | |||
| 11522 | const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>(); | |||
| 11523 | const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>(); | |||
| 11524 | const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>(); | |||
| 11525 | const auto *NewClones = NewFD->getAttr<TargetClonesAttr>(); | |||
| 11526 | MultiVersionKind MVKind = NewFD->getMultiVersionKind(); | |||
| 11527 | ||||
| 11528 | // Main isn't allowed to become a multiversion function, however it IS | |||
| 11529 | // permitted to have 'main' be marked with the 'target' optimization hint, | |||
| 11530 | // for 'target_version' only default is allowed. | |||
| 11531 | if (NewFD->isMain()) { | |||
| 11532 | if (MVKind != MultiVersionKind::None && | |||
| 11533 | !(MVKind == MultiVersionKind::Target && !NewTA->isDefaultVersion()) && | |||
| 11534 | !(MVKind == MultiVersionKind::TargetVersion && | |||
| 11535 | NewTVA->isDefaultVersion())) { | |||
| 11536 | S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main); | |||
| 11537 | NewFD->setInvalidDecl(); | |||
| 11538 | return true; | |||
| 11539 | } | |||
| 11540 | return false; | |||
| 11541 | } | |||
| 11542 | ||||
| 11543 | if (!OldDecl || !OldDecl->getAsFunction() || | |||
| 11544 | OldDecl->getDeclContext()->getRedeclContext() != | |||
| 11545 | NewFD->getDeclContext()->getRedeclContext()) { | |||
| 11546 | // If there's no previous declaration, AND this isn't attempting to cause | |||
| 11547 | // multiversioning, this isn't an error condition. | |||
| 11548 | if (MVKind == MultiVersionKind::None) | |||
| 11549 | return false; | |||
| 11550 | return CheckMultiVersionFirstFunction(S, NewFD); | |||
| 11551 | } | |||
| 11552 | ||||
| 11553 | FunctionDecl *OldFD = OldDecl->getAsFunction(); | |||
| 11554 | ||||
| 11555 | if (!OldFD->isMultiVersion() && MVKind == MultiVersionKind::None) { | |||
| 11556 | // No target_version attributes mean default | |||
| 11557 | if (!NewTVA) { | |||
| 11558 | const auto *OldTVA = OldFD->getAttr<TargetVersionAttr>(); | |||
| 11559 | if (OldTVA) { | |||
| 11560 | NewFD->addAttr(TargetVersionAttr::CreateImplicit( | |||
| 11561 | S.Context, "default", NewFD->getSourceRange())); | |||
| 11562 | NewFD->setIsMultiVersion(); | |||
| 11563 | OldFD->setIsMultiVersion(); | |||
| 11564 | OldDecl = OldFD; | |||
| 11565 | Redeclaration = true; | |||
| 11566 | return true; | |||
| 11567 | } | |||
| 11568 | } | |||
| 11569 | return false; | |||
| 11570 | } | |||
| 11571 | ||||
| 11572 | // Multiversioned redeclarations aren't allowed to omit the attribute, except | |||
| 11573 | // for target_clones and target_version. | |||
| 11574 | if (OldFD->isMultiVersion() && MVKind == MultiVersionKind::None && | |||
| 11575 | OldFD->getMultiVersionKind() != MultiVersionKind::TargetClones && | |||
| 11576 | OldFD->getMultiVersionKind() != MultiVersionKind::TargetVersion) { | |||
| 11577 | S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl) | |||
| 11578 | << (OldFD->getMultiVersionKind() != MultiVersionKind::Target); | |||
| 11579 | NewFD->setInvalidDecl(); | |||
| 11580 | return true; | |||
| 11581 | } | |||
| 11582 | ||||
| 11583 | if (!OldFD->isMultiVersion()) { | |||
| 11584 | switch (MVKind) { | |||
| 11585 | case MultiVersionKind::Target: | |||
| 11586 | case MultiVersionKind::TargetVersion: | |||
| 11587 | return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, Redeclaration, | |||
| 11588 | OldDecl, Previous); | |||
| 11589 | case MultiVersionKind::TargetClones: | |||
| 11590 | if (OldFD->isUsed(false)) { | |||
| 11591 | NewFD->setInvalidDecl(); | |||
| 11592 | return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used); | |||
| 11593 | } | |||
| 11594 | OldFD->setIsMultiVersion(); | |||
| 11595 | break; | |||
| 11596 | ||||
| 11597 | case MultiVersionKind::CPUDispatch: | |||
| 11598 | case MultiVersionKind::CPUSpecific: | |||
| 11599 | case MultiVersionKind::None: | |||
| 11600 | break; | |||
| 11601 | } | |||
| 11602 | } | |||
| 11603 | ||||
| 11604 | // At this point, we have a multiversion function decl (in OldFD) AND an | |||
| 11605 | // appropriate attribute in the current function decl. Resolve that these are | |||
| 11606 | // still compatible with previous declarations. | |||
| 11607 | return CheckMultiVersionAdditionalDecl(S, OldFD, NewFD, MVKind, NewCPUDisp, | |||
| 11608 | NewCPUSpec, NewClones, Redeclaration, | |||
| 11609 | OldDecl, Previous); | |||
| 11610 | } | |||
| 11611 | ||||
| 11612 | /// Perform semantic checking of a new function declaration. | |||
| 11613 | /// | |||
| 11614 | /// Performs semantic analysis of the new function declaration | |||
| 11615 | /// NewFD. This routine performs all semantic checking that does not | |||
| 11616 | /// require the actual declarator involved in the declaration, and is | |||
| 11617 | /// used both for the declaration of functions as they are parsed | |||
| 11618 | /// (called via ActOnDeclarator) and for the declaration of functions | |||
| 11619 | /// that have been instantiated via C++ template instantiation (called | |||
| 11620 | /// via InstantiateDecl). | |||
| 11621 | /// | |||
| 11622 | /// \param IsMemberSpecialization whether this new function declaration is | |||
| 11623 | /// a member specialization (that replaces any definition provided by the | |||
| 11624 | /// previous declaration). | |||
| 11625 | /// | |||
| 11626 | /// This sets NewFD->isInvalidDecl() to true if there was an error. | |||
| 11627 | /// | |||
| 11628 | /// \returns true if the function declaration is a redeclaration. | |||
| 11629 | bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD, | |||
| 11630 | LookupResult &Previous, | |||
| 11631 | bool IsMemberSpecialization, | |||
| 11632 | bool DeclIsDefn) { | |||
| 11633 | assert(!NewFD->getReturnType()->isVariablyModifiedType() &&(static_cast <bool> (!NewFD->getReturnType()->isVariablyModifiedType () && "Variably modified return types are not handled here" ) ? void (0) : __assert_fail ("!NewFD->getReturnType()->isVariablyModifiedType() && \"Variably modified return types are not handled here\"" , "clang/lib/Sema/SemaDecl.cpp", 11634, __extension__ __PRETTY_FUNCTION__ )) | |||
| 11634 | "Variably modified return types are not handled here")(static_cast <bool> (!NewFD->getReturnType()->isVariablyModifiedType () && "Variably modified return types are not handled here" ) ? void (0) : __assert_fail ("!NewFD->getReturnType()->isVariablyModifiedType() && \"Variably modified return types are not handled here\"" , "clang/lib/Sema/SemaDecl.cpp", 11634, __extension__ __PRETTY_FUNCTION__ )); | |||
| 11635 | ||||
| 11636 | // Determine whether the type of this function should be merged with | |||
| 11637 | // a previous visible declaration. This never happens for functions in C++, | |||
| 11638 | // and always happens in C if the previous declaration was visible. | |||
| 11639 | bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus && | |||
| 11640 | !Previous.isShadowed(); | |||
| 11641 | ||||
| 11642 | bool Redeclaration = false; | |||
| 11643 | NamedDecl *OldDecl = nullptr; | |||
| 11644 | bool MayNeedOverloadableChecks = false; | |||
| 11645 | ||||
| 11646 | // Merge or overload the declaration with an existing declaration of | |||
| 11647 | // the same name, if appropriate. | |||
| 11648 | if (!Previous.empty()) { | |||
| 11649 | // Determine whether NewFD is an overload of PrevDecl or | |||
| 11650 | // a declaration that requires merging. If it's an overload, | |||
| 11651 | // there's no more work to do here; we'll just add the new | |||
| 11652 | // function to the scope. | |||
| 11653 | if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) { | |||
| 11654 | NamedDecl *Candidate = Previous.getRepresentativeDecl(); | |||
| 11655 | if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) { | |||
| 11656 | Redeclaration = true; | |||
| 11657 | OldDecl = Candidate; | |||
| 11658 | } | |||
| 11659 | } else { | |||
| 11660 | MayNeedOverloadableChecks = true; | |||
| 11661 | switch (CheckOverload(S, NewFD, Previous, OldDecl, | |||
| 11662 | /*NewIsUsingDecl*/ false)) { | |||
| 11663 | case Ovl_Match: | |||
| 11664 | Redeclaration = true; | |||
| 11665 | break; | |||
| 11666 | ||||
| 11667 | case Ovl_NonFunction: | |||
| 11668 | Redeclaration = true; | |||
| 11669 | break; | |||
| 11670 | ||||
| 11671 | case Ovl_Overload: | |||
| 11672 | Redeclaration = false; | |||
| 11673 | break; | |||
| 11674 | } | |||
| 11675 | } | |||
| 11676 | } | |||
| 11677 | ||||
| 11678 | // Check for a previous extern "C" declaration with this name. | |||
| 11679 | if (!Redeclaration && | |||
| 11680 | checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) { | |||
| 11681 | if (!Previous.empty()) { | |||
| 11682 | // This is an extern "C" declaration with the same name as a previous | |||
| 11683 | // declaration, and thus redeclares that entity... | |||
| 11684 | Redeclaration = true; | |||
| 11685 | OldDecl = Previous.getFoundDecl(); | |||
| 11686 | MergeTypeWithPrevious = false; | |||
| 11687 | ||||
| 11688 | // ... except in the presence of __attribute__((overloadable)). | |||
| 11689 | if (OldDecl->hasAttr<OverloadableAttr>() || | |||
| 11690 | NewFD->hasAttr<OverloadableAttr>()) { | |||
| 11691 | if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) { | |||
| 11692 | MayNeedOverloadableChecks = true; | |||
| 11693 | Redeclaration = false; | |||
| 11694 | OldDecl = nullptr; | |||
| 11695 | } | |||
| 11696 | } | |||
| 11697 | } | |||
| 11698 | } | |||
| 11699 | ||||
| 11700 | if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl, Previous)) | |||
| 11701 | return Redeclaration; | |||
| 11702 | ||||
| 11703 | // PPC MMA non-pointer types are not allowed as function return types. | |||
| 11704 | if (Context.getTargetInfo().getTriple().isPPC64() && | |||
| 11705 | CheckPPCMMAType(NewFD->getReturnType(), NewFD->getLocation())) { | |||
| 11706 | NewFD->setInvalidDecl(); | |||
| 11707 | } | |||
| 11708 | ||||
| 11709 | // C++11 [dcl.constexpr]p8: | |||
| 11710 | // A constexpr specifier for a non-static member function that is not | |||
| 11711 | // a constructor declares that member function to be const. | |||
| 11712 | // | |||
| 11713 | // This needs to be delayed until we know whether this is an out-of-line | |||
| 11714 | // definition of a static member function. | |||
| 11715 | // | |||
| 11716 | // This rule is not present in C++1y, so we produce a backwards | |||
| 11717 | // compatibility warning whenever it happens in C++11. | |||
| 11718 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); | |||
| 11719 | if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() && | |||
| 11720 | !MD->isStatic() && !isa<CXXConstructorDecl>(MD) && | |||
| 11721 | !isa<CXXDestructorDecl>(MD) && !MD->getMethodQualifiers().hasConst()) { | |||
| 11722 | CXXMethodDecl *OldMD = nullptr; | |||
| 11723 | if (OldDecl) | |||
| 11724 | OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction()); | |||
| 11725 | if (!OldMD || !OldMD->isStatic()) { | |||
| 11726 | const FunctionProtoType *FPT = | |||
| 11727 | MD->getType()->castAs<FunctionProtoType>(); | |||
| 11728 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); | |||
| 11729 | EPI.TypeQuals.addConst(); | |||
| 11730 | MD->setType(Context.getFunctionType(FPT->getReturnType(), | |||
| 11731 | FPT->getParamTypes(), EPI)); | |||
| 11732 | ||||
| 11733 | // Warn that we did this, if we're not performing template instantiation. | |||
| 11734 | // In that case, we'll have warned already when the template was defined. | |||
| 11735 | if (!inTemplateInstantiation()) { | |||
| 11736 | SourceLocation AddConstLoc; | |||
| 11737 | if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc() | |||
| 11738 | .IgnoreParens().getAs<FunctionTypeLoc>()) | |||
| 11739 | AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc()); | |||
| 11740 | ||||
| 11741 | Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const) | |||
| 11742 | << FixItHint::CreateInsertion(AddConstLoc, " const"); | |||
| 11743 | } | |||
| 11744 | } | |||
| 11745 | } | |||
| 11746 | ||||
| 11747 | if (Redeclaration) { | |||
| 11748 | // NewFD and OldDecl represent declarations that need to be | |||
| 11749 | // merged. | |||
| 11750 | if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious, | |||
| 11751 | DeclIsDefn)) { | |||
| 11752 | NewFD->setInvalidDecl(); | |||
| 11753 | return Redeclaration; | |||
| 11754 | } | |||
| 11755 | ||||
| 11756 | Previous.clear(); | |||
| 11757 | Previous.addDecl(OldDecl); | |||
| 11758 | ||||
| 11759 | if (FunctionTemplateDecl *OldTemplateDecl = | |||
| 11760 | dyn_cast<FunctionTemplateDecl>(OldDecl)) { | |||
| 11761 | auto *OldFD = OldTemplateDecl->getTemplatedDecl(); | |||
| 11762 | FunctionTemplateDecl *NewTemplateDecl | |||
| 11763 | = NewFD->getDescribedFunctionTemplate(); | |||
| 11764 | assert(NewTemplateDecl && "Template/non-template mismatch")(static_cast <bool> (NewTemplateDecl && "Template/non-template mismatch" ) ? void (0) : __assert_fail ("NewTemplateDecl && \"Template/non-template mismatch\"" , "clang/lib/Sema/SemaDecl.cpp", 11764, __extension__ __PRETTY_FUNCTION__ )); | |||
| 11765 | ||||
| 11766 | // The call to MergeFunctionDecl above may have created some state in | |||
| 11767 | // NewTemplateDecl that needs to be merged with OldTemplateDecl before we | |||
| 11768 | // can add it as a redeclaration. | |||
| 11769 | NewTemplateDecl->mergePrevDecl(OldTemplateDecl); | |||
| 11770 | ||||
| 11771 | NewFD->setPreviousDeclaration(OldFD); | |||
| 11772 | if (NewFD->isCXXClassMember()) { | |||
| 11773 | NewFD->setAccess(OldTemplateDecl->getAccess()); | |||
| 11774 | NewTemplateDecl->setAccess(OldTemplateDecl->getAccess()); | |||
| 11775 | } | |||
| 11776 | ||||
| 11777 | // If this is an explicit specialization of a member that is a function | |||
| 11778 | // template, mark it as a member specialization. | |||
| 11779 | if (IsMemberSpecialization && | |||
| 11780 | NewTemplateDecl->getInstantiatedFromMemberTemplate()) { | |||
| 11781 | NewTemplateDecl->setMemberSpecialization(); | |||
| 11782 | assert(OldTemplateDecl->isMemberSpecialization())(static_cast <bool> (OldTemplateDecl->isMemberSpecialization ()) ? void (0) : __assert_fail ("OldTemplateDecl->isMemberSpecialization()" , "clang/lib/Sema/SemaDecl.cpp", 11782, __extension__ __PRETTY_FUNCTION__ )); | |||
| 11783 | // Explicit specializations of a member template do not inherit deleted | |||
| 11784 | // status from the parent member template that they are specializing. | |||
| 11785 | if (OldFD->isDeleted()) { | |||
| 11786 | // FIXME: This assert will not hold in the presence of modules. | |||
| 11787 | assert(OldFD->getCanonicalDecl() == OldFD)(static_cast <bool> (OldFD->getCanonicalDecl() == OldFD ) ? void (0) : __assert_fail ("OldFD->getCanonicalDecl() == OldFD" , "clang/lib/Sema/SemaDecl.cpp", 11787, __extension__ __PRETTY_FUNCTION__ )); | |||
| 11788 | // FIXME: We need an update record for this AST mutation. | |||
| 11789 | OldFD->setDeletedAsWritten(false); | |||
| 11790 | } | |||
| 11791 | } | |||
| 11792 | ||||
| 11793 | } else { | |||
| 11794 | if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) { | |||
| 11795 | auto *OldFD = cast<FunctionDecl>(OldDecl); | |||
| 11796 | // This needs to happen first so that 'inline' propagates. | |||
| 11797 | NewFD->setPreviousDeclaration(OldFD); | |||
| 11798 | if (NewFD->isCXXClassMember()) | |||
| 11799 | NewFD->setAccess(OldFD->getAccess()); | |||
| 11800 | } | |||
| 11801 | } | |||
| 11802 | } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks && | |||
| 11803 | !NewFD->getAttr<OverloadableAttr>()) { | |||
| 11804 | assert((Previous.empty() ||(static_cast <bool> ((Previous.empty() || llvm::any_of( Previous, [](const NamedDecl *ND) { return ND->hasAttr< OverloadableAttr>(); })) && "Non-redecls shouldn't happen without overloadable present" ) ? void (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\"" , "clang/lib/Sema/SemaDecl.cpp", 11809, __extension__ __PRETTY_FUNCTION__ )) | |||
| 11805 | llvm::any_of(Previous,(static_cast <bool> ((Previous.empty() || llvm::any_of( Previous, [](const NamedDecl *ND) { return ND->hasAttr< OverloadableAttr>(); })) && "Non-redecls shouldn't happen without overloadable present" ) ? void (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\"" , "clang/lib/Sema/SemaDecl.cpp", 11809, __extension__ __PRETTY_FUNCTION__ )) | |||
| 11806 | [](const NamedDecl *ND) {(static_cast <bool> ((Previous.empty() || llvm::any_of( Previous, [](const NamedDecl *ND) { return ND->hasAttr< OverloadableAttr>(); })) && "Non-redecls shouldn't happen without overloadable present" ) ? void (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\"" , "clang/lib/Sema/SemaDecl.cpp", 11809, __extension__ __PRETTY_FUNCTION__ )) | |||
| 11807 | return ND->hasAttr<OverloadableAttr>();(static_cast <bool> ((Previous.empty() || llvm::any_of( Previous, [](const NamedDecl *ND) { return ND->hasAttr< OverloadableAttr>(); })) && "Non-redecls shouldn't happen without overloadable present" ) ? void (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\"" , "clang/lib/Sema/SemaDecl.cpp", 11809, __extension__ __PRETTY_FUNCTION__ )) | |||
| 11808 | })) &&(static_cast <bool> ((Previous.empty() || llvm::any_of( Previous, [](const NamedDecl *ND) { return ND->hasAttr< OverloadableAttr>(); })) && "Non-redecls shouldn't happen without overloadable present" ) ? void (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\"" , "clang/lib/Sema/SemaDecl.cpp", 11809, __extension__ __PRETTY_FUNCTION__ )) | |||
| 11809 | "Non-redecls shouldn't happen without overloadable present")(static_cast <bool> ((Previous.empty() || llvm::any_of( Previous, [](const NamedDecl *ND) { return ND->hasAttr< OverloadableAttr>(); })) && "Non-redecls shouldn't happen without overloadable present" ) ? void (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\"" , "clang/lib/Sema/SemaDecl.cpp", 11809, __extension__ __PRETTY_FUNCTION__ )); | |||
| 11810 | ||||
| 11811 | auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) { | |||
| 11812 | const auto *FD = dyn_cast<FunctionDecl>(ND); | |||
| 11813 | return FD && !FD->hasAttr<OverloadableAttr>(); | |||
| 11814 | }); | |||
| 11815 | ||||
| 11816 | if (OtherUnmarkedIter != Previous.end()) { | |||
| 11817 | Diag(NewFD->getLocation(), | |||
| 11818 | diag::err_attribute_overloadable_multiple_unmarked_overloads); | |||
| 11819 | Diag((*OtherUnmarkedIter)->getLocation(), | |||
| 11820 | diag::note_attribute_overloadable_prev_overload) | |||
| 11821 | << false; | |||
| 11822 | ||||
| 11823 | NewFD->addAttr(OverloadableAttr::CreateImplicit(Context)); | |||
| 11824 | } | |||
| 11825 | } | |||
| 11826 | ||||
| 11827 | if (LangOpts.OpenMP) | |||
| 11828 | ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(NewFD); | |||
| 11829 | ||||
| 11830 | // Semantic checking for this function declaration (in isolation). | |||
| 11831 | ||||
| 11832 | if (getLangOpts().CPlusPlus) { | |||
| 11833 | // C++-specific checks. | |||
| 11834 | if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) { | |||
| 11835 | CheckConstructor(Constructor); | |||
| 11836 | } else if (CXXDestructorDecl *Destructor = | |||
| 11837 | dyn_cast<CXXDestructorDecl>(NewFD)) { | |||
| 11838 | // We check here for invalid destructor names. | |||
| 11839 | // If we have a friend destructor declaration that is dependent, we can't | |||
| 11840 | // diagnose right away because cases like this are still valid: | |||
| 11841 | // template <class T> struct A { friend T::X::~Y(); }; | |||
| 11842 | // struct B { struct Y { ~Y(); }; using X = Y; }; | |||
| 11843 | // template struct A<B>; | |||
| 11844 | if (NewFD->getFriendObjectKind() == Decl::FriendObjectKind::FOK_None || | |||
| 11845 | !Destructor->getThisType()->isDependentType()) { | |||
| 11846 | CXXRecordDecl *Record = Destructor->getParent(); | |||
| 11847 | QualType ClassType = Context.getTypeDeclType(Record); | |||
| 11848 | ||||
| 11849 | DeclarationName Name = Context.DeclarationNames.getCXXDestructorName( | |||
| 11850 | Context.getCanonicalType(ClassType)); | |||
| 11851 | if (NewFD->getDeclName() != Name) { | |||
| 11852 | Diag(NewFD->getLocation(), diag::err_destructor_name); | |||
| 11853 | NewFD->setInvalidDecl(); | |||
| 11854 | return Redeclaration; | |||
| 11855 | } | |||
| 11856 | } | |||
| 11857 | } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) { | |||
| 11858 | if (auto *TD = Guide->getDescribedFunctionTemplate()) | |||
| 11859 | CheckDeductionGuideTemplate(TD); | |||
| 11860 | ||||
| 11861 | // A deduction guide is not on the list of entities that can be | |||
| 11862 | // explicitly specialized. | |||
| 11863 | if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) | |||
| 11864 | Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized) | |||
| 11865 | << /*explicit specialization*/ 1; | |||
| 11866 | } | |||
| 11867 | ||||
| 11868 | // Find any virtual functions that this function overrides. | |||
| 11869 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) { | |||
| 11870 | if (!Method->isFunctionTemplateSpecialization() && | |||
| 11871 | !Method->getDescribedFunctionTemplate() && | |||
| 11872 | Method->isCanonicalDecl()) { | |||
| 11873 | AddOverriddenMethods(Method->getParent(), Method); | |||
| 11874 | } | |||
| 11875 | if (Method->isVirtual() && NewFD->getTrailingRequiresClause()) | |||
| 11876 | // C++2a [class.virtual]p6 | |||
| 11877 | // A virtual method shall not have a requires-clause. | |||
| 11878 | Diag(NewFD->getTrailingRequiresClause()->getBeginLoc(), | |||
| 11879 | diag::err_constrained_virtual_method); | |||
| 11880 | ||||
| 11881 | if (Method->isStatic()) | |||
| 11882 | checkThisInStaticMemberFunctionType(Method); | |||
| 11883 | } | |||
| 11884 | ||||
| 11885 | // C++20: dcl.decl.general p4: | |||
| 11886 | // The optional requires-clause ([temp.pre]) in an init-declarator or | |||
| 11887 | // member-declarator shall be present only if the declarator declares a | |||
| 11888 | // templated function ([dcl.fct]). | |||
| 11889 | if (Expr *TRC = NewFD->getTrailingRequiresClause()) { | |||
| 11890 | // [temp.pre]/8: | |||
| 11891 | // An entity is templated if it is | |||
| 11892 | // - a template, | |||
| 11893 | // - an entity defined ([basic.def]) or created ([class.temporary]) in a | |||
| 11894 | // templated entity, | |||
| 11895 | // - a member of a templated entity, | |||
| 11896 | // - an enumerator for an enumeration that is a templated entity, or | |||
| 11897 | // - the closure type of a lambda-expression ([expr.prim.lambda.closure]) | |||
| 11898 | // appearing in the declaration of a templated entity. [Note 6: A local | |||
| 11899 | // class, a local or block variable, or a friend function defined in a | |||
| 11900 | // templated entity is a templated entity. — end note] | |||
| 11901 | // | |||
| 11902 | // A templated function is a function template or a function that is | |||
| 11903 | // templated. A templated class is a class template or a class that is | |||
| 11904 | // templated. A templated variable is a variable template or a variable | |||
| 11905 | // that is templated. | |||
| 11906 | ||||
| 11907 | if (!NewFD->getDescribedFunctionTemplate() && // -a template | |||
| 11908 | // defined... in a templated entity | |||
| 11909 | !(DeclIsDefn && NewFD->isTemplated()) && | |||
| 11910 | // a member of a templated entity | |||
| 11911 | !(isa<CXXMethodDecl>(NewFD) && NewFD->isTemplated()) && | |||
| 11912 | // Don't complain about instantiations, they've already had these | |||
| 11913 | // rules + others enforced. | |||
| 11914 | !NewFD->isTemplateInstantiation()) { | |||
| 11915 | Diag(TRC->getBeginLoc(), diag::err_constrained_non_templated_function); | |||
| 11916 | } | |||
| 11917 | } | |||
| 11918 | ||||
| 11919 | if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD)) | |||
| 11920 | ActOnConversionDeclarator(Conversion); | |||
| 11921 | ||||
| 11922 | // Extra checking for C++ overloaded operators (C++ [over.oper]). | |||
| 11923 | if (NewFD->isOverloadedOperator() && | |||
| 11924 | CheckOverloadedOperatorDeclaration(NewFD)) { | |||
| 11925 | NewFD->setInvalidDecl(); | |||
| 11926 | return Redeclaration; | |||
| 11927 | } | |||
| 11928 | ||||
| 11929 | // Extra checking for C++0x literal operators (C++0x [over.literal]). | |||
| 11930 | if (NewFD->getLiteralIdentifier() && | |||
| 11931 | CheckLiteralOperatorDeclaration(NewFD)) { | |||
| 11932 | NewFD->setInvalidDecl(); | |||
| 11933 | return Redeclaration; | |||
| 11934 | } | |||
| 11935 | ||||
| 11936 | // In C++, check default arguments now that we have merged decls. Unless | |||
| 11937 | // the lexical context is the class, because in this case this is done | |||
| 11938 | // during delayed parsing anyway. | |||
| 11939 | if (!CurContext->isRecord()) | |||
| 11940 | CheckCXXDefaultArguments(NewFD); | |||
| 11941 | ||||
| 11942 | // If this function is declared as being extern "C", then check to see if | |||
| 11943 | // the function returns a UDT (class, struct, or union type) that is not C | |||
| 11944 | // compatible, and if it does, warn the user. | |||
| 11945 | // But, issue any diagnostic on the first declaration only. | |||
| 11946 | if (Previous.empty() && NewFD->isExternC()) { | |||
| 11947 | QualType R = NewFD->getReturnType(); | |||
| 11948 | if (R->isIncompleteType() && !R->isVoidType()) | |||
| 11949 | Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete) | |||
| 11950 | << NewFD << R; | |||
| 11951 | else if (!R.isPODType(Context) && !R->isVoidType() && | |||
| 11952 | !R->isObjCObjectPointerType()) | |||
| 11953 | Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R; | |||
| 11954 | } | |||
| 11955 | ||||
| 11956 | // C++1z [dcl.fct]p6: | |||
| 11957 | // [...] whether the function has a non-throwing exception-specification | |||
| 11958 | // [is] part of the function type | |||
| 11959 | // | |||
| 11960 | // This results in an ABI break between C++14 and C++17 for functions whose | |||
| 11961 | // declared type includes an exception-specification in a parameter or | |||
| 11962 | // return type. (Exception specifications on the function itself are OK in | |||
| 11963 | // most cases, and exception specifications are not permitted in most other | |||
| 11964 | // contexts where they could make it into a mangling.) | |||
| 11965 | if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) { | |||
| 11966 | auto HasNoexcept = [&](QualType T) -> bool { | |||
| 11967 | // Strip off declarator chunks that could be between us and a function | |||
| 11968 | // type. We don't need to look far, exception specifications are very | |||
| 11969 | // restricted prior to C++17. | |||
| 11970 | if (auto *RT = T->getAs<ReferenceType>()) | |||
| 11971 | T = RT->getPointeeType(); | |||
| 11972 | else if (T->isAnyPointerType()) | |||
| 11973 | T = T->getPointeeType(); | |||
| 11974 | else if (auto *MPT = T->getAs<MemberPointerType>()) | |||
| 11975 | T = MPT->getPointeeType(); | |||
| 11976 | if (auto *FPT = T->getAs<FunctionProtoType>()) | |||
| 11977 | if (FPT->isNothrow()) | |||
| 11978 | return true; | |||
| 11979 | return false; | |||
| 11980 | }; | |||
| 11981 | ||||
| 11982 | auto *FPT = NewFD->getType()->castAs<FunctionProtoType>(); | |||
| 11983 | bool AnyNoexcept = HasNoexcept(FPT->getReturnType()); | |||
| 11984 | for (QualType T : FPT->param_types()) | |||
| 11985 | AnyNoexcept |= HasNoexcept(T); | |||
| 11986 | if (AnyNoexcept) | |||
| 11987 | Diag(NewFD->getLocation(), | |||
| 11988 | diag::warn_cxx17_compat_exception_spec_in_signature) | |||
| 11989 | << NewFD; | |||
| 11990 | } | |||
| 11991 | ||||
| 11992 | if (!Redeclaration && LangOpts.CUDA) | |||
| 11993 | checkCUDATargetOverload(NewFD, Previous); | |||
| 11994 | } | |||
| 11995 | return Redeclaration; | |||
| 11996 | } | |||
| 11997 | ||||
| 11998 | void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) { | |||
| 11999 | // C++11 [basic.start.main]p3: | |||
| 12000 | // A program that [...] declares main to be inline, static or | |||
| 12001 | // constexpr is ill-formed. | |||
| 12002 | // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall | |||
| 12003 | // appear in a declaration of main. | |||
| 12004 | // static main is not an error under C99, but we should warn about it. | |||
| 12005 | // We accept _Noreturn main as an extension. | |||
| 12006 | if (FD->getStorageClass() == SC_Static) | |||
| 12007 | Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus | |||
| 12008 | ? diag::err_static_main : diag::warn_static_main) | |||
| 12009 | << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); | |||
| 12010 | if (FD->isInlineSpecified()) | |||
| 12011 | Diag(DS.getInlineSpecLoc(), diag::err_inline_main) | |||
| 12012 | << FixItHint::CreateRemoval(DS.getInlineSpecLoc()); | |||
| 12013 | if (DS.isNoreturnSpecified()) { | |||
| 12014 | SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc(); | |||
| 12015 | SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc)); | |||
| 12016 | Diag(NoreturnLoc, diag::ext_noreturn_main); | |||
| 12017 | Diag(NoreturnLoc, diag::note_main_remove_noreturn) | |||
| 12018 | << FixItHint::CreateRemoval(NoreturnRange); | |||
| 12019 | } | |||
| 12020 | if (FD->isConstexpr()) { | |||
| 12021 | Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main) | |||
| 12022 | << FD->isConsteval() | |||
| 12023 | << FixItHint::CreateRemoval(DS.getConstexprSpecLoc()); | |||
| 12024 | FD->setConstexprKind(ConstexprSpecKind::Unspecified); | |||
| 12025 | } | |||
| 12026 | ||||
| 12027 | if (getLangOpts().OpenCL) { | |||
| 12028 | Diag(FD->getLocation(), diag::err_opencl_no_main) | |||
| 12029 | << FD->hasAttr<OpenCLKernelAttr>(); | |||
| 12030 | FD->setInvalidDecl(); | |||
| 12031 | return; | |||
| 12032 | } | |||
| 12033 | ||||
| 12034 | // Functions named main in hlsl are default entries, but don't have specific | |||
| 12035 | // signatures they are required to conform to. | |||
| 12036 | if (getLangOpts().HLSL) | |||
| 12037 | return; | |||
| 12038 | ||||
| 12039 | QualType T = FD->getType(); | |||
| 12040 | assert(T->isFunctionType() && "function decl is not of function type")(static_cast <bool> (T->isFunctionType() && "function decl is not of function type" ) ? void (0) : __assert_fail ("T->isFunctionType() && \"function decl is not of function type\"" , "clang/lib/Sema/SemaDecl.cpp", 12040, __extension__ __PRETTY_FUNCTION__ )); | |||
| 12041 | const FunctionType* FT = T->castAs<FunctionType>(); | |||
| 12042 | ||||
| 12043 | // Set default calling convention for main() | |||
| 12044 | if (FT->getCallConv() != CC_C) { | |||
| 12045 | FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C)); | |||
| 12046 | FD->setType(QualType(FT, 0)); | |||
| 12047 | T = Context.getCanonicalType(FD->getType()); | |||
| 12048 | } | |||
| 12049 | ||||
| 12050 | if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) { | |||
| 12051 | // In C with GNU extensions we allow main() to have non-integer return | |||
| 12052 | // type, but we should warn about the extension, and we disable the | |||
| 12053 | // implicit-return-zero rule. | |||
| 12054 | ||||
| 12055 | // GCC in C mode accepts qualified 'int'. | |||
| 12056 | if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy)) | |||
| 12057 | FD->setHasImplicitReturnZero(true); | |||
| 12058 | else { | |||
| 12059 | Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint); | |||
| 12060 | SourceRange RTRange = FD->getReturnTypeSourceRange(); | |||
| 12061 | if (RTRange.isValid()) | |||
| 12062 | Diag(RTRange.getBegin(), diag::note_main_change_return_type) | |||
| 12063 | << FixItHint::CreateReplacement(RTRange, "int"); | |||
| 12064 | } | |||
| 12065 | } else { | |||
| 12066 | // In C and C++, main magically returns 0 if you fall off the end; | |||
| 12067 | // set the flag which tells us that. | |||
| 12068 | // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3. | |||
| 12069 | ||||
| 12070 | // All the standards say that main() should return 'int'. | |||
| 12071 | if (Context.hasSameType(FT->getReturnType(), Context.IntTy)) | |||
| 12072 | FD->setHasImplicitReturnZero(true); | |||
| 12073 | else { | |||
| 12074 | // Otherwise, this is just a flat-out error. | |||
| 12075 | SourceRange RTRange = FD->getReturnTypeSourceRange(); | |||
| 12076 | Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint) | |||
| 12077 | << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int") | |||
| 12078 | : FixItHint()); | |||
| 12079 | FD->setInvalidDecl(true); | |||
| 12080 | } | |||
| 12081 | } | |||
| 12082 | ||||
| 12083 | // Treat protoless main() as nullary. | |||
| 12084 | if (isa<FunctionNoProtoType>(FT)) return; | |||
| 12085 | ||||
| 12086 | const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT); | |||
| 12087 | unsigned nparams = FTP->getNumParams(); | |||
| 12088 | assert(FD->getNumParams() == nparams)(static_cast <bool> (FD->getNumParams() == nparams) ? void (0) : __assert_fail ("FD->getNumParams() == nparams" , "clang/lib/Sema/SemaDecl.cpp", 12088, __extension__ __PRETTY_FUNCTION__ )); | |||
| 12089 | ||||
| 12090 | bool HasExtraParameters = (nparams > 3); | |||
| 12091 | ||||
| 12092 | if (FTP->isVariadic()) { | |||
| 12093 | Diag(FD->getLocation(), diag::ext_variadic_main); | |||
| 12094 | // FIXME: if we had information about the location of the ellipsis, we | |||
| 12095 | // could add a FixIt hint to remove it as a parameter. | |||
| 12096 | } | |||
| 12097 | ||||
| 12098 | // Darwin passes an undocumented fourth argument of type char**. If | |||
| 12099 | // other platforms start sprouting these, the logic below will start | |||
| 12100 | // getting shifty. | |||
| 12101 | if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin()) | |||
| 12102 | HasExtraParameters = false; | |||
| 12103 | ||||
| 12104 | if (HasExtraParameters) { | |||
| 12105 | Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams; | |||
| 12106 | FD->setInvalidDecl(true); | |||
| 12107 | nparams = 3; | |||
| 12108 | } | |||
| 12109 | ||||
| 12110 | // FIXME: a lot of the following diagnostics would be improved | |||
| 12111 | // if we had some location information about types. | |||
| 12112 | ||||
| 12113 | QualType CharPP = | |||
| 12114 | Context.getPointerType(Context.getPointerType(Context.CharTy)); | |||
| 12115 | QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP }; | |||
| 12116 | ||||
| 12117 | for (unsigned i = 0; i < nparams; ++i) { | |||
| 12118 | QualType AT = FTP->getParamType(i); | |||
| 12119 | ||||
| 12120 | bool mismatch = true; | |||
| 12121 | ||||
| 12122 | if (Context.hasSameUnqualifiedType(AT, Expected[i])) | |||
| 12123 | mismatch = false; | |||
| 12124 | else if (Expected[i] == CharPP) { | |||
| 12125 | // As an extension, the following forms are okay: | |||
| 12126 | // char const ** | |||
| 12127 | // char const * const * | |||
| 12128 | // char * const * | |||
| 12129 | ||||
| 12130 | QualifierCollector qs; | |||
| 12131 | const PointerType* PT; | |||
| 12132 | if ((PT = qs.strip(AT)->getAs<PointerType>()) && | |||
| 12133 | (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) && | |||
| 12134 | Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0), | |||
| 12135 | Context.CharTy)) { | |||
| 12136 | qs.removeConst(); | |||
| 12137 | mismatch = !qs.empty(); | |||
| 12138 | } | |||
| 12139 | } | |||
| 12140 | ||||
| 12141 | if (mismatch) { | |||
| 12142 | Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i]; | |||
| 12143 | // TODO: suggest replacing given type with expected type | |||
| 12144 | FD->setInvalidDecl(true); | |||
| 12145 | } | |||
| 12146 | } | |||
| 12147 | ||||
| 12148 | if (nparams == 1 && !FD->isInvalidDecl()) { | |||
| 12149 | Diag(FD->getLocation(), diag::warn_main_one_arg); | |||
| 12150 | } | |||
| 12151 | ||||
| 12152 | if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { | |||
| 12153 | Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; | |||
| 12154 | FD->setInvalidDecl(); | |||
| 12155 | } | |||
| 12156 | } | |||
| 12157 | ||||
| 12158 | static bool isDefaultStdCall(FunctionDecl *FD, Sema &S) { | |||
| 12159 | ||||
| 12160 | // Default calling convention for main and wmain is __cdecl | |||
| 12161 | if (FD->getName() == "main" || FD->getName() == "wmain") | |||
| 12162 | return false; | |||
| 12163 | ||||
| 12164 | // Default calling convention for MinGW is __cdecl | |||
| 12165 | const llvm::Triple &T = S.Context.getTargetInfo().getTriple(); | |||
| 12166 | if (T.isWindowsGNUEnvironment()) | |||
| 12167 | return false; | |||
| 12168 | ||||
| 12169 | // Default calling convention for WinMain, wWinMain and DllMain | |||
| 12170 | // is __stdcall on 32 bit Windows | |||
| 12171 | if (T.isOSWindows() && T.getArch() == llvm::Triple::x86) | |||
| 12172 | return true; | |||
| 12173 | ||||
| 12174 | return false; | |||
| 12175 | } | |||
| 12176 | ||||
| 12177 | void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) { | |||
| 12178 | QualType T = FD->getType(); | |||
| 12179 | assert(T->isFunctionType() && "function decl is not of function type")(static_cast <bool> (T->isFunctionType() && "function decl is not of function type" ) ? void (0) : __assert_fail ("T->isFunctionType() && \"function decl is not of function type\"" , "clang/lib/Sema/SemaDecl.cpp", 12179, __extension__ __PRETTY_FUNCTION__ )); | |||
| 12180 | const FunctionType *FT = T->castAs<FunctionType>(); | |||
| 12181 | ||||
| 12182 | // Set an implicit return of 'zero' if the function can return some integral, | |||
| 12183 | // enumeration, pointer or nullptr type. | |||
| 12184 | if (FT->getReturnType()->isIntegralOrEnumerationType() || | |||
| 12185 | FT->getReturnType()->isAnyPointerType() || | |||
| 12186 | FT->getReturnType()->isNullPtrType()) | |||
| 12187 | // DllMain is exempt because a return value of zero means it failed. | |||
| 12188 | if (FD->getName() != "DllMain") | |||
| 12189 | FD->setHasImplicitReturnZero(true); | |||
| 12190 | ||||
| 12191 | // Explicity specified calling conventions are applied to MSVC entry points | |||
| 12192 | if (!hasExplicitCallingConv(T)) { | |||
| 12193 | if (isDefaultStdCall(FD, *this)) { | |||
| 12194 | if (FT->getCallConv() != CC_X86StdCall) { | |||
| 12195 | FT = Context.adjustFunctionType( | |||
| 12196 | FT, FT->getExtInfo().withCallingConv(CC_X86StdCall)); | |||
| 12197 | FD->setType(QualType(FT, 0)); | |||
| 12198 | } | |||
| 12199 | } else if (FT->getCallConv() != CC_C) { | |||
| 12200 | FT = Context.adjustFunctionType(FT, | |||
| 12201 | FT->getExtInfo().withCallingConv(CC_C)); | |||
| 12202 | FD->setType(QualType(FT, 0)); | |||
| 12203 | } | |||
| 12204 | } | |||
| 12205 | ||||
| 12206 | if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { | |||
| 12207 | Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; | |||
| 12208 | FD->setInvalidDecl(); | |||
| 12209 | } | |||
| 12210 | } | |||
| 12211 | ||||
| 12212 | void Sema::CheckHLSLEntryPoint(FunctionDecl *FD) { | |||
| 12213 | auto &TargetInfo = getASTContext().getTargetInfo(); | |||
| 12214 | auto const Triple = TargetInfo.getTriple(); | |||
| 12215 | switch (Triple.getEnvironment()) { | |||
| 12216 | default: | |||
| 12217 | // FIXME: check all shader profiles. | |||
| 12218 | break; | |||
| 12219 | case llvm::Triple::EnvironmentType::Compute: | |||
| 12220 | if (!FD->hasAttr<HLSLNumThreadsAttr>()) { | |||
| 12221 | Diag(FD->getLocation(), diag::err_hlsl_missing_numthreads) | |||
| 12222 | << Triple.getEnvironmentName(); | |||
| 12223 | FD->setInvalidDecl(); | |||
| 12224 | } | |||
| 12225 | break; | |||
| 12226 | } | |||
| 12227 | ||||
| 12228 | for (const auto *Param : FD->parameters()) { | |||
| 12229 | if (!Param->hasAttr<HLSLAnnotationAttr>()) { | |||
| 12230 | // FIXME: Handle struct parameters where annotations are on struct fields. | |||
| 12231 | // See: https://github.com/llvm/llvm-project/issues/57875 | |||
| 12232 | Diag(FD->getLocation(), diag::err_hlsl_missing_semantic_annotation); | |||
| 12233 | Diag(Param->getLocation(), diag::note_previous_decl) << Param; | |||
| 12234 | FD->setInvalidDecl(); | |||
| 12235 | } | |||
| 12236 | } | |||
| 12237 | // FIXME: Verify return type semantic annotation. | |||
| 12238 | } | |||
| 12239 | ||||
| 12240 | bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) { | |||
| 12241 | // FIXME: Need strict checking. In C89, we need to check for | |||
| 12242 | // any assignment, increment, decrement, function-calls, or | |||
| 12243 | // commas outside of a sizeof. In C99, it's the same list, | |||
| 12244 | // except that the aforementioned are allowed in unevaluated | |||
| 12245 | // expressions. Everything else falls under the | |||
| 12246 | // "may accept other forms of constant expressions" exception. | |||
| 12247 | // | |||
| 12248 | // Regular C++ code will not end up here (exceptions: language extensions, | |||
| 12249 | // OpenCL C++ etc), so the constant expression rules there don't matter. | |||
| 12250 | if (Init->isValueDependent()) { | |||
| 12251 | assert(Init->containsErrors() &&(static_cast <bool> (Init->containsErrors() && "Dependent code should only occur in error-recovery path.") ? void (0) : __assert_fail ("Init->containsErrors() && \"Dependent code should only occur in error-recovery path.\"" , "clang/lib/Sema/SemaDecl.cpp", 12252, __extension__ __PRETTY_FUNCTION__ )) | |||
| 12252 | "Dependent code should only occur in error-recovery path.")(static_cast <bool> (Init->containsErrors() && "Dependent code should only occur in error-recovery path.") ? void (0) : __assert_fail ("Init->containsErrors() && \"Dependent code should only occur in error-recovery path.\"" , "clang/lib/Sema/SemaDecl.cpp", 12252, __extension__ __PRETTY_FUNCTION__ )); | |||
| 12253 | return true; | |||
| 12254 | } | |||
| 12255 | const Expr *Culprit; | |||
| 12256 | if (Init->isConstantInitializer(Context, false, &Culprit)) | |||
| 12257 | return false; | |||
| 12258 | Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant) | |||
| 12259 | << Culprit->getSourceRange(); | |||
| 12260 | return true; | |||
| 12261 | } | |||
| 12262 | ||||
| 12263 | namespace { | |||
| 12264 | // Visits an initialization expression to see if OrigDecl is evaluated in | |||
| 12265 | // its own initialization and throws a warning if it does. | |||
| 12266 | class SelfReferenceChecker | |||
| 12267 | : public EvaluatedExprVisitor<SelfReferenceChecker> { | |||
| 12268 | Sema &S; | |||
| 12269 | Decl *OrigDecl; | |||
| 12270 | bool isRecordType; | |||
| 12271 | bool isPODType; | |||
| 12272 | bool isReferenceType; | |||
| 12273 | ||||
| 12274 | bool isInitList; | |||
| 12275 | llvm::SmallVector<unsigned, 4> InitFieldIndex; | |||
| 12276 | ||||
| 12277 | public: | |||
| 12278 | typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited; | |||
| 12279 | ||||
| 12280 | SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context), | |||
| 12281 | S(S), OrigDecl(OrigDecl) { | |||
| 12282 | isPODType = false; | |||
| 12283 | isRecordType = false; | |||
| 12284 | isReferenceType = false; | |||
| 12285 | isInitList = false; | |||
| 12286 | if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) { | |||
| 12287 | isPODType = VD->getType().isPODType(S.Context); | |||
| 12288 | isRecordType = VD->getType()->isRecordType(); | |||
| 12289 | isReferenceType = VD->getType()->isReferenceType(); | |||
| 12290 | } | |||
| 12291 | } | |||
| 12292 | ||||
| 12293 | // For most expressions, just call the visitor. For initializer lists, | |||
| 12294 | // track the index of the field being initialized since fields are | |||
| 12295 | // initialized in order allowing use of previously initialized fields. | |||
| 12296 | void CheckExpr(Expr *E) { | |||
| 12297 | InitListExpr *InitList = dyn_cast<InitListExpr>(E); | |||
| 12298 | if (!InitList) { | |||
| 12299 | Visit(E); | |||
| 12300 | return; | |||
| 12301 | } | |||
| 12302 | ||||
| 12303 | // Track and increment the index here. | |||
| 12304 | isInitList = true; | |||
| 12305 | InitFieldIndex.push_back(0); | |||
| 12306 | for (auto *Child : InitList->children()) { | |||
| 12307 | CheckExpr(cast<Expr>(Child)); | |||
| 12308 | ++InitFieldIndex.back(); | |||
| 12309 | } | |||
| 12310 | InitFieldIndex.pop_back(); | |||
| 12311 | } | |||
| 12312 | ||||
| 12313 | // Returns true if MemberExpr is checked and no further checking is needed. | |||
| 12314 | // Returns false if additional checking is required. | |||
| 12315 | bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) { | |||
| 12316 | llvm::SmallVector<FieldDecl*, 4> Fields; | |||
| 12317 | Expr *Base = E; | |||
| 12318 | bool ReferenceField = false; | |||
| 12319 | ||||
| 12320 | // Get the field members used. | |||
| 12321 | while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { | |||
| 12322 | FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); | |||
| 12323 | if (!FD) | |||
| 12324 | return false; | |||
| 12325 | Fields.push_back(FD); | |||
| 12326 | if (FD->getType()->isReferenceType()) | |||
| 12327 | ReferenceField = true; | |||
| 12328 | Base = ME->getBase()->IgnoreParenImpCasts(); | |||
| 12329 | } | |||
| 12330 | ||||
| 12331 | // Keep checking only if the base Decl is the same. | |||
| 12332 | DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base); | |||
| 12333 | if (!DRE || DRE->getDecl() != OrigDecl) | |||
| 12334 | return false; | |||
| 12335 | ||||
| 12336 | // A reference field can be bound to an unininitialized field. | |||
| 12337 | if (CheckReference && !ReferenceField) | |||
| 12338 | return true; | |||
| 12339 | ||||
| 12340 | // Convert FieldDecls to their index number. | |||
| 12341 | llvm::SmallVector<unsigned, 4> UsedFieldIndex; | |||
| 12342 | for (const FieldDecl *I : llvm::reverse(Fields)) | |||
| 12343 | UsedFieldIndex.push_back(I->getFieldIndex()); | |||
| 12344 | ||||
| 12345 | // See if a warning is needed by checking the first difference in index | |||
| 12346 | // numbers. If field being used has index less than the field being | |||
| 12347 | // initialized, then the use is safe. | |||
| 12348 | for (auto UsedIter = UsedFieldIndex.begin(), | |||
| 12349 | UsedEnd = UsedFieldIndex.end(), | |||
| 12350 | OrigIter = InitFieldIndex.begin(), | |||
| 12351 | OrigEnd = InitFieldIndex.end(); | |||
| 12352 | UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { | |||
| 12353 | if (*UsedIter < *OrigIter) | |||
| 12354 | return true; | |||
| 12355 | if (*UsedIter > *OrigIter) | |||
| 12356 | break; | |||
| 12357 | } | |||
| 12358 | ||||
| 12359 | // TODO: Add a different warning which will print the field names. | |||
| 12360 | HandleDeclRefExpr(DRE); | |||
| 12361 | return true; | |||
| 12362 | } | |||
| 12363 | ||||
| 12364 | // For most expressions, the cast is directly above the DeclRefExpr. | |||
| 12365 | // For conditional operators, the cast can be outside the conditional | |||
| 12366 | // operator if both expressions are DeclRefExpr's. | |||
| 12367 | void HandleValue(Expr *E) { | |||
| 12368 | E = E->IgnoreParens(); | |||
| 12369 | if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) { | |||
| 12370 | HandleDeclRefExpr(DRE); | |||
| 12371 | return; | |||
| 12372 | } | |||
| 12373 | ||||
| 12374 | if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { | |||
| 12375 | Visit(CO->getCond()); | |||
| 12376 | HandleValue(CO->getTrueExpr()); | |||
| 12377 | HandleValue(CO->getFalseExpr()); | |||
| 12378 | return; | |||
| 12379 | } | |||
| 12380 | ||||
| 12381 | if (BinaryConditionalOperator *BCO = | |||
| 12382 | dyn_cast<BinaryConditionalOperator>(E)) { | |||
| 12383 | Visit(BCO->getCond()); | |||
| 12384 | HandleValue(BCO->getFalseExpr()); | |||
| 12385 | return; | |||
| 12386 | } | |||
| 12387 | ||||
| 12388 | if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { | |||
| 12389 | HandleValue(OVE->getSourceExpr()); | |||
| 12390 | return; | |||
| 12391 | } | |||
| 12392 | ||||
| 12393 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { | |||
| 12394 | if (BO->getOpcode() == BO_Comma) { | |||
| 12395 | Visit(BO->getLHS()); | |||
| 12396 | HandleValue(BO->getRHS()); | |||
| 12397 | return; | |||
| 12398 | } | |||
| 12399 | } | |||
| 12400 | ||||
| 12401 | if (isa<MemberExpr>(E)) { | |||
| 12402 | if (isInitList) { | |||
| 12403 | if (CheckInitListMemberExpr(cast<MemberExpr>(E), | |||
| 12404 | false /*CheckReference*/)) | |||
| 12405 | return; | |||
| 12406 | } | |||
| 12407 | ||||
| 12408 | Expr *Base = E->IgnoreParenImpCasts(); | |||
| 12409 | while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { | |||
| 12410 | // Check for static member variables and don't warn on them. | |||
| 12411 | if (!isa<FieldDecl>(ME->getMemberDecl())) | |||
| 12412 | return; | |||
| 12413 | Base = ME->getBase()->IgnoreParenImpCasts(); | |||
| 12414 | } | |||
| 12415 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) | |||
| 12416 | HandleDeclRefExpr(DRE); | |||
| 12417 | return; | |||
| 12418 | } | |||
| 12419 | ||||
| 12420 | Visit(E); | |||
| 12421 | } | |||
| 12422 | ||||
| 12423 | // Reference types not handled in HandleValue are handled here since all | |||
| 12424 | // uses of references are bad, not just r-value uses. | |||
| 12425 | void VisitDeclRefExpr(DeclRefExpr *E) { | |||
| 12426 | if (isReferenceType) | |||
| 12427 | HandleDeclRefExpr(E); | |||
| 12428 | } | |||
| 12429 | ||||
| 12430 | void VisitImplicitCastExpr(ImplicitCastExpr *E) { | |||
| 12431 | if (E->getCastKind() == CK_LValueToRValue) { | |||
| 12432 | HandleValue(E->getSubExpr()); | |||
| 12433 | return; | |||
| 12434 | } | |||
| 12435 | ||||
| 12436 | Inherited::VisitImplicitCastExpr(E); | |||
| 12437 | } | |||
| 12438 | ||||
| 12439 | void VisitMemberExpr(MemberExpr *E) { | |||
| 12440 | if (isInitList) { | |||
| 12441 | if (CheckInitListMemberExpr(E, true /*CheckReference*/)) | |||
| 12442 | return; | |||
| 12443 | } | |||
| 12444 | ||||
| 12445 | // Don't warn on arrays since they can be treated as pointers. | |||
| 12446 | if (E->getType()->canDecayToPointerType()) return; | |||
| 12447 | ||||
| 12448 | // Warn when a non-static method call is followed by non-static member | |||
| 12449 | // field accesses, which is followed by a DeclRefExpr. | |||
| 12450 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl()); | |||
| 12451 | bool Warn = (MD && !MD->isStatic()); | |||
| 12452 | Expr *Base = E->getBase()->IgnoreParenImpCasts(); | |||
| 12453 | while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { | |||
| 12454 | if (!isa<FieldDecl>(ME->getMemberDecl())) | |||
| 12455 | Warn = false; | |||
| 12456 | Base = ME->getBase()->IgnoreParenImpCasts(); | |||
| 12457 | } | |||
| 12458 | ||||
| 12459 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { | |||
| 12460 | if (Warn) | |||
| 12461 | HandleDeclRefExpr(DRE); | |||
| 12462 | return; | |||
| 12463 | } | |||
| 12464 | ||||
| 12465 | // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr. | |||
| 12466 | // Visit that expression. | |||
| 12467 | Visit(Base); | |||
| 12468 | } | |||
| 12469 | ||||
| 12470 | void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { | |||
| 12471 | Expr *Callee = E->getCallee(); | |||
| 12472 | ||||
| 12473 | if (isa<UnresolvedLookupExpr>(Callee)) | |||
| 12474 | return Inherited::VisitCXXOperatorCallExpr(E); | |||
| 12475 | ||||
| 12476 | Visit(Callee); | |||
| 12477 | for (auto Arg: E->arguments()) | |||
| 12478 | HandleValue(Arg->IgnoreParenImpCasts()); | |||
| 12479 | } | |||
| 12480 | ||||
| 12481 | void VisitUnaryOperator(UnaryOperator *E) { | |||
| 12482 | // For POD record types, addresses of its own members are well-defined. | |||
| 12483 | if (E->getOpcode() == UO_AddrOf && isRecordType && | |||
| 12484 | isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) { | |||
| 12485 | if (!isPODType) | |||
| 12486 | HandleValue(E->getSubExpr()); | |||
| 12487 | return; | |||
| 12488 | } | |||
| 12489 | ||||
| 12490 | if (E->isIncrementDecrementOp()) { | |||
| 12491 | HandleValue(E->getSubExpr()); | |||
| 12492 | return; | |||
| 12493 | } | |||
| 12494 | ||||
| 12495 | Inherited::VisitUnaryOperator(E); | |||
| 12496 | } | |||
| 12497 | ||||
| 12498 | void VisitObjCMessageExpr(ObjCMessageExpr *E) {} | |||
| 12499 | ||||
| 12500 | void VisitCXXConstructExpr(CXXConstructExpr *E) { | |||
| 12501 | if (E->getConstructor()->isCopyConstructor()) { | |||
| 12502 | Expr *ArgExpr = E->getArg(0); | |||
| 12503 | if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) | |||
| 12504 | if (ILE->getNumInits() == 1) | |||
| 12505 | ArgExpr = ILE->getInit(0); | |||
| 12506 | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) | |||
| 12507 | if (ICE->getCastKind() == CK_NoOp) | |||
| 12508 | ArgExpr = ICE->getSubExpr(); | |||
| 12509 | HandleValue(ArgExpr); | |||
| 12510 | return; | |||
| 12511 | } | |||
| 12512 | Inherited::VisitCXXConstructExpr(E); | |||
| 12513 | } | |||
| 12514 | ||||
| 12515 | void VisitCallExpr(CallExpr *E) { | |||
| 12516 | // Treat std::move as a use. | |||
| 12517 | if (E->isCallToStdMove()) { | |||
| 12518 | HandleValue(E->getArg(0)); | |||
| 12519 | return; | |||
| 12520 | } | |||
| 12521 | ||||
| 12522 | Inherited::VisitCallExpr(E); | |||
| 12523 | } | |||
| 12524 | ||||
| 12525 | void VisitBinaryOperator(BinaryOperator *E) { | |||
| 12526 | if (E->isCompoundAssignmentOp()) { | |||
| 12527 | HandleValue(E->getLHS()); | |||
| 12528 | Visit(E->getRHS()); | |||
| 12529 | return; | |||
| 12530 | } | |||
| 12531 | ||||
| 12532 | Inherited::VisitBinaryOperator(E); | |||
| 12533 | } | |||
| 12534 | ||||
| 12535 | // A custom visitor for BinaryConditionalOperator is needed because the | |||
| 12536 | // regular visitor would check the condition and true expression separately | |||
| 12537 | // but both point to the same place giving duplicate diagnostics. | |||
| 12538 | void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) { | |||
| 12539 | Visit(E->getCond()); | |||
| 12540 | Visit(E->getFalseExpr()); | |||
| 12541 | } | |||
| 12542 | ||||
| 12543 | void HandleDeclRefExpr(DeclRefExpr *DRE) { | |||
| 12544 | Decl* ReferenceDecl = DRE->getDecl(); | |||
| 12545 | if (OrigDecl != ReferenceDecl) return; | |||
| 12546 | unsigned diag; | |||
| 12547 | if (isReferenceType) { | |||
| 12548 | diag = diag::warn_uninit_self_reference_in_reference_init; | |||
| 12549 | } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) { | |||
| 12550 | diag = diag::warn_static_self_reference_in_init; | |||
| 12551 | } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) || | |||
| 12552 | isa<NamespaceDecl>(OrigDecl->getDeclContext()) || | |||
| 12553 | DRE->getDecl()->getType()->isRecordType()) { | |||
| 12554 | diag = diag::warn_uninit_self_reference_in_init; | |||
| 12555 | } else { | |||
| 12556 | // Local variables will be handled by the CFG analysis. | |||
| 12557 | return; | |||
| 12558 | } | |||
| 12559 | ||||
| 12560 | S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE, | |||
| 12561 | S.PDiag(diag) | |||
| 12562 | << DRE->getDecl() << OrigDecl->getLocation() | |||
| 12563 | << DRE->getSourceRange()); | |||
| 12564 | } | |||
| 12565 | }; | |||
| 12566 | ||||
| 12567 | /// CheckSelfReference - Warns if OrigDecl is used in expression E. | |||
| 12568 | static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E, | |||
| 12569 | bool DirectInit) { | |||
| 12570 | // Parameters arguments are occassionially constructed with itself, | |||
| 12571 | // for instance, in recursive functions. Skip them. | |||
| 12572 | if (isa<ParmVarDecl>(OrigDecl)) | |||
| 12573 | return; | |||
| 12574 | ||||
| 12575 | E = E->IgnoreParens(); | |||
| 12576 | ||||
| 12577 | // Skip checking T a = a where T is not a record or reference type. | |||
| 12578 | // Doing so is a way to silence uninitialized warnings. | |||
| 12579 | if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType()) | |||
| 12580 | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) | |||
| 12581 | if (ICE->getCastKind() == CK_LValueToRValue) | |||
| 12582 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) | |||
| 12583 | if (DRE->getDecl() == OrigDecl) | |||
| 12584 | return; | |||
| 12585 | ||||
| 12586 | SelfReferenceChecker(S, OrigDecl).CheckExpr(E); | |||
| 12587 | } | |||
| 12588 | } // end anonymous namespace | |||
| 12589 | ||||
| 12590 | namespace { | |||
| 12591 | // Simple wrapper to add the name of a variable or (if no variable is | |||
| 12592 | // available) a DeclarationName into a diagnostic. | |||
| 12593 | struct VarDeclOrName { | |||
| 12594 | VarDecl *VDecl; | |||
| 12595 | DeclarationName Name; | |||
| 12596 | ||||
| 12597 | friend const Sema::SemaDiagnosticBuilder & | |||
| 12598 | operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) { | |||
| 12599 | return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name; | |||
| 12600 | } | |||
| 12601 | }; | |||
| 12602 | } // end anonymous namespace | |||
| 12603 | ||||
| 12604 | QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl, | |||
| 12605 | DeclarationName Name, QualType Type, | |||
| 12606 | TypeSourceInfo *TSI, | |||
| 12607 | SourceRange Range, bool DirectInit, | |||
| 12608 | Expr *Init) { | |||
| 12609 | bool IsInitCapture = !VDecl; | |||
| 12610 | assert((!VDecl || !VDecl->isInitCapture()) &&(static_cast <bool> ((!VDecl || !VDecl->isInitCapture ()) && "init captures are expected to be deduced prior to initialization" ) ? void (0) : __assert_fail ("(!VDecl || !VDecl->isInitCapture()) && \"init captures are expected to be deduced prior to initialization\"" , "clang/lib/Sema/SemaDecl.cpp", 12611, __extension__ __PRETTY_FUNCTION__ )) | |||
| 12611 | "init captures are expected to be deduced prior to initialization")(static_cast <bool> ((!VDecl || !VDecl->isInitCapture ()) && "init captures are expected to be deduced prior to initialization" ) ? void (0) : __assert_fail ("(!VDecl || !VDecl->isInitCapture()) && \"init captures are expected to be deduced prior to initialization\"" , "clang/lib/Sema/SemaDecl.cpp", 12611, __extension__ __PRETTY_FUNCTION__ )); | |||
| 12612 | ||||
| 12613 | VarDeclOrName VN{VDecl, Name}; | |||
| 12614 | ||||
| 12615 | DeducedType *Deduced = Type->getContainedDeducedType(); | |||
| 12616 | assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type")(static_cast <bool> (Deduced && "deduceVarTypeFromInitializer for non-deduced type" ) ? void (0) : __assert_fail ("Deduced && \"deduceVarTypeFromInitializer for non-deduced type\"" , "clang/lib/Sema/SemaDecl.cpp", 12616, __extension__ __PRETTY_FUNCTION__ )); | |||
| 12617 | ||||
| 12618 | // C++11 [dcl.spec.auto]p3 | |||
| 12619 | if (!Init) { | |||
| 12620 | assert(VDecl && "no init for init capture deduction?")(static_cast <bool> (VDecl && "no init for init capture deduction?" ) ? void (0) : __assert_fail ("VDecl && \"no init for init capture deduction?\"" , "clang/lib/Sema/SemaDecl.cpp", 12620, __extension__ __PRETTY_FUNCTION__ )); | |||
| 12621 | ||||
| 12622 | // Except for class argument deduction, and then for an initializing | |||
| 12623 | // declaration only, i.e. no static at class scope or extern. | |||
| 12624 | if (!isa<DeducedTemplateSpecializationType>(Deduced) || | |||
| 12625 | VDecl->hasExternalStorage() || | |||
| 12626 | VDecl->isStaticDataMember()) { | |||
| 12627 | Diag(VDecl->getLocation(), diag::err_auto_var_requires_init) | |||
| 12628 | << VDecl->getDeclName() << Type; | |||
| 12629 | return QualType(); | |||
| 12630 | } | |||
| 12631 | } | |||
| 12632 | ||||
| 12633 | ArrayRef<Expr*> DeduceInits; | |||
| 12634 | if (Init) | |||
| 12635 | DeduceInits = Init; | |||
| 12636 | ||||
| 12637 | if (DirectInit) { | |||
| 12638 | if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init)) | |||
| 12639 | DeduceInits = PL->exprs(); | |||
| 12640 | } | |||
| 12641 | ||||
| 12642 | if (isa<DeducedTemplateSpecializationType>(Deduced)) { | |||
| 12643 | assert(VDecl && "non-auto type for init capture deduction?")(static_cast <bool> (VDecl && "non-auto type for init capture deduction?" ) ? void (0) : __assert_fail ("VDecl && \"non-auto type for init capture deduction?\"" , "clang/lib/Sema/SemaDecl.cpp", 12643, __extension__ __PRETTY_FUNCTION__ )); | |||
| 12644 | InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); | |||
| 12645 | InitializationKind Kind = InitializationKind::CreateForInit( | |||
| 12646 | VDecl->getLocation(), DirectInit, Init); | |||
| 12647 | // FIXME: Initialization should not be taking a mutable list of inits. | |||
| 12648 | SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end()); | |||
| 12649 | return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, | |||
| 12650 | InitsCopy); | |||
| 12651 | } | |||
| 12652 | ||||
| 12653 | if (DirectInit) { | |||
| 12654 | if (auto *IL = dyn_cast<InitListExpr>(Init)) | |||
| 12655 | DeduceInits = IL->inits(); | |||
| 12656 | } | |||
| 12657 | ||||
| 12658 | // Deduction only works if we have exactly one source expression. | |||
| 12659 | if (DeduceInits.empty()) { | |||
| 12660 | // It isn't possible to write this directly, but it is possible to | |||
| 12661 | // end up in this situation with "auto x(some_pack...);" | |||
| 12662 | Diag(Init->getBeginLoc(), IsInitCapture | |||
| 12663 | ? diag::err_init_capture_no_expression | |||
| 12664 | : diag::err_auto_var_init_no_expression) | |||
| 12665 | << VN << Type << Range; | |||
| 12666 | return QualType(); | |||
| 12667 | } | |||
| 12668 | ||||
| 12669 | if (DeduceInits.size() > 1) { | |||
| 12670 | Diag(DeduceInits[1]->getBeginLoc(), | |||
| 12671 | IsInitCapture ? diag::err_init_capture_multiple_expressions | |||
| 12672 | : diag::err_auto_var_init_multiple_expressions) | |||
| 12673 | << VN << Type << Range; | |||
| 12674 | return QualType(); | |||
| 12675 | } | |||
| 12676 | ||||
| 12677 | Expr *DeduceInit = DeduceInits[0]; | |||
| 12678 | if (DirectInit && isa<InitListExpr>(DeduceInit)) { | |||
| 12679 | Diag(Init->getBeginLoc(), IsInitCapture | |||
| 12680 | ? diag::err_init_capture_paren_braces | |||
| 12681 | : diag::err_auto_var_init_paren_braces) | |||
| 12682 | << isa<InitListExpr>(Init) << VN << Type << Range; | |||
| 12683 | return QualType(); | |||
| 12684 | } | |||
| 12685 | ||||
| 12686 | // Expressions default to 'id' when we're in a debugger. | |||
| 12687 | bool DefaultedAnyToId = false; | |||
| 12688 | if (getLangOpts().DebuggerCastResultToId && | |||
| 12689 | Init->getType() == Context.UnknownAnyTy && !IsInitCapture) { | |||
| 12690 | ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType()); | |||
| 12691 | if (Result.isInvalid()) { | |||
| 12692 | return QualType(); | |||
| 12693 | } | |||
| 12694 | Init = Result.get(); | |||
| 12695 | DefaultedAnyToId = true; | |||
| 12696 | } | |||
| 12697 | ||||
| 12698 | // C++ [dcl.decomp]p1: | |||
| 12699 | // If the assignment-expression [...] has array type A and no ref-qualifier | |||
| 12700 | // is present, e has type cv A | |||
| 12701 | if (VDecl && isa<DecompositionDecl>(VDecl) && | |||
| 12702 | Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) && | |||
| 12703 | DeduceInit->getType()->isConstantArrayType()) | |||
| 12704 | return Context.getQualifiedType(DeduceInit->getType(), | |||
| 12705 | Type.getQualifiers()); | |||
| 12706 | ||||
| 12707 | QualType DeducedType; | |||
| 12708 | TemplateDeductionInfo Info(DeduceInit->getExprLoc()); | |||
| 12709 | TemplateDeductionResult Result = | |||
| 12710 | DeduceAutoType(TSI->getTypeLoc(), DeduceInit, DeducedType, Info); | |||
| 12711 | if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed) { | |||
| 12712 | if (!IsInitCapture) | |||
| 12713 | DiagnoseAutoDeductionFailure(VDecl, DeduceInit); | |||
| 12714 | else if (isa<InitListExpr>(Init)) | |||
| 12715 | Diag(Range.getBegin(), | |||
| 12716 | diag::err_init_capture_deduction_failure_from_init_list) | |||
| 12717 | << VN | |||
| 12718 | << (DeduceInit->getType().isNull() ? TSI->getType() | |||
| 12719 | : DeduceInit->getType()) | |||
| 12720 | << DeduceInit->getSourceRange(); | |||
| 12721 | else | |||
| 12722 | Diag(Range.getBegin(), diag::err_init_capture_deduction_failure) | |||
| 12723 | << VN << TSI->getType() | |||
| 12724 | << (DeduceInit->getType().isNull() ? TSI->getType() | |||
| 12725 | : DeduceInit->getType()) | |||
| 12726 | << DeduceInit->getSourceRange(); | |||
| 12727 | } | |||
| 12728 | ||||
| 12729 | // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using | |||
| 12730 | // 'id' instead of a specific object type prevents most of our usual | |||
| 12731 | // checks. | |||
| 12732 | // We only want to warn outside of template instantiations, though: | |||
| 12733 | // inside a template, the 'id' could have come from a parameter. | |||
| 12734 | if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture && | |||
| 12735 | !DeducedType.isNull() && DeducedType->isObjCIdType()) { | |||
| 12736 | SourceLocation Loc = TSI->getTypeLoc().getBeginLoc(); | |||
| 12737 | Diag(Loc, diag::warn_auto_var_is_id) << VN << Range; | |||
| 12738 | } | |||
| 12739 | ||||
| 12740 | return DeducedType; | |||
| 12741 | } | |||
| 12742 | ||||
| 12743 | bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit, | |||
| 12744 | Expr *Init) { | |||
| 12745 | assert(!Init || !Init->containsErrors())(static_cast <bool> (!Init || !Init->containsErrors( )) ? void (0) : __assert_fail ("!Init || !Init->containsErrors()" , "clang/lib/Sema/SemaDecl.cpp", 12745, __extension__ __PRETTY_FUNCTION__ )); | |||
| 12746 | QualType DeducedType = deduceVarTypeFromInitializer( | |||
| 12747 | VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(), | |||
| 12748 | VDecl->getSourceRange(), DirectInit, Init); | |||
| 12749 | if (DeducedType.isNull()) { | |||
| 12750 | VDecl->setInvalidDecl(); | |||
| 12751 | return true; | |||
| 12752 | } | |||
| 12753 | ||||
| 12754 | VDecl->setType(DeducedType); | |||
| 12755 | assert(VDecl->isLinkageValid())(static_cast <bool> (VDecl->isLinkageValid()) ? void (0) : __assert_fail ("VDecl->isLinkageValid()", "clang/lib/Sema/SemaDecl.cpp" , 12755, __extension__ __PRETTY_FUNCTION__)); | |||
| 12756 | ||||
| 12757 | // In ARC, infer lifetime. | |||
| 12758 | if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl)) | |||
| 12759 | VDecl->setInvalidDecl(); | |||
| 12760 | ||||
| 12761 | if (getLangOpts().OpenCL) | |||
| 12762 | deduceOpenCLAddressSpace(VDecl); | |||
| 12763 | ||||
| 12764 | // If this is a redeclaration, check that the type we just deduced matches | |||
| 12765 | // the previously declared type. | |||
| 12766 | if (VarDecl *Old = VDecl->getPreviousDecl()) { | |||
| 12767 | // We never need to merge the type, because we cannot form an incomplete | |||
| 12768 | // array of auto, nor deduce such a type. | |||
| 12769 | MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false); | |||
| 12770 | } | |||
| 12771 | ||||
| 12772 | // Check the deduced type is valid for a variable declaration. | |||
| 12773 | CheckVariableDeclarationType(VDecl); | |||
| 12774 | return VDecl->isInvalidDecl(); | |||
| 12775 | } | |||
| 12776 | ||||
| 12777 | void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init, | |||
| 12778 | SourceLocation Loc) { | |||
| 12779 | if (auto *EWC = dyn_cast<ExprWithCleanups>(Init)) | |||
| 12780 | Init = EWC->getSubExpr(); | |||
| 12781 | ||||
| 12782 | if (auto *CE = dyn_cast<ConstantExpr>(Init)) | |||
| 12783 | Init = CE->getSubExpr(); | |||
| 12784 | ||||
| 12785 | QualType InitType = Init->getType(); | |||
| 12786 | assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||(static_cast <bool> ((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion () || InitType.hasNonTrivialToPrimitiveCopyCUnion()) && "shouldn't be called if type doesn't have a non-trivial C struct" ) ? void (0) : __assert_fail ("(InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || InitType.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C struct\"" , "clang/lib/Sema/SemaDecl.cpp", 12788, __extension__ __PRETTY_FUNCTION__ )) | |||
| 12787 | InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&(static_cast <bool> ((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion () || InitType.hasNonTrivialToPrimitiveCopyCUnion()) && "shouldn't be called if type doesn't have a non-trivial C struct" ) ? void (0) : __assert_fail ("(InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || InitType.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C struct\"" , "clang/lib/Sema/SemaDecl.cpp", 12788, __extension__ __PRETTY_FUNCTION__ )) | |||
| 12788 | "shouldn't be called if type doesn't have a non-trivial C struct")(static_cast <bool> ((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion () || InitType.hasNonTrivialToPrimitiveCopyCUnion()) && "shouldn't be called if type doesn't have a non-trivial C struct" ) ? void (0) : __assert_fail ("(InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || InitType.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C struct\"" , "clang/lib/Sema/SemaDecl.cpp", 12788, __extension__ __PRETTY_FUNCTION__ )); | |||
| 12789 | if (auto *ILE = dyn_cast<InitListExpr>(Init)) { | |||
| 12790 | for (auto *I : ILE->inits()) { | |||
| 12791 | if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() && | |||
| 12792 | !I->getType().hasNonTrivialToPrimitiveCopyCUnion()) | |||
| 12793 | continue; | |||
| 12794 | SourceLocation SL = I->getExprLoc(); | |||
| 12795 | checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc); | |||
| 12796 | } | |||
| 12797 | return; | |||
| 12798 | } | |||
| 12799 | ||||
| 12800 | if (isa<ImplicitValueInitExpr>(Init)) { | |||
| 12801 | if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion()) | |||
| 12802 | checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject, | |||
| 12803 | NTCUK_Init); | |||
| 12804 | } else { | |||
| 12805 | // Assume all other explicit initializers involving copying some existing | |||
| 12806 | // object. | |||
| 12807 | // TODO: ignore any explicit initializers where we can guarantee | |||
| 12808 | // copy-elision. | |||
| 12809 | if (InitType.hasNonTrivialToPrimitiveCopyCUnion()) | |||
| 12810 | checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy); | |||
| 12811 | } | |||
| 12812 | } | |||
| 12813 | ||||
| 12814 | namespace { | |||
| 12815 | ||||
| 12816 | bool shouldIgnoreForRecordTriviality(const FieldDecl *FD) { | |||
| 12817 | // Ignore unavailable fields. A field can be marked as unavailable explicitly | |||
| 12818 | // in the source code or implicitly by the compiler if it is in a union | |||
| 12819 | // defined in a system header and has non-trivial ObjC ownership | |||
| 12820 | // qualifications. We don't want those fields to participate in determining | |||
| 12821 | // whether the containing union is non-trivial. | |||
| 12822 | return FD->hasAttr<UnavailableAttr>(); | |||
| 12823 | } | |||
| 12824 | ||||
| 12825 | struct DiagNonTrivalCUnionDefaultInitializeVisitor | |||
| 12826 | : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor, | |||
| 12827 | void> { | |||
| 12828 | using Super = | |||
| 12829 | DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor, | |||
| 12830 | void>; | |||
| 12831 | ||||
| 12832 | DiagNonTrivalCUnionDefaultInitializeVisitor( | |||
| 12833 | QualType OrigTy, SourceLocation OrigLoc, | |||
| 12834 | Sema::NonTrivialCUnionContext UseContext, Sema &S) | |||
| 12835 | : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} | |||
| 12836 | ||||
| 12837 | void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT, | |||
| 12838 | const FieldDecl *FD, bool InNonTrivialUnion) { | |||
| 12839 | if (const auto *AT = S.Context.getAsArrayType(QT)) | |||
| 12840 | return this->asDerived().visit(S.Context.getBaseElementType(AT), FD, | |||
| 12841 | InNonTrivialUnion); | |||
| 12842 | return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion); | |||
| 12843 | } | |||
| 12844 | ||||
| 12845 | void visitARCStrong(QualType QT, const FieldDecl *FD, | |||
| 12846 | bool InNonTrivialUnion) { | |||
| 12847 | if (InNonTrivialUnion) | |||
| 12848 | S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) | |||
| 12849 | << 1 << 0 << QT << FD->getName(); | |||
| 12850 | } | |||
| 12851 | ||||
| 12852 | void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { | |||
| 12853 | if (InNonTrivialUnion) | |||
| 12854 | S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) | |||
| 12855 | << 1 << 0 << QT << FD->getName(); | |||
| 12856 | } | |||
| 12857 | ||||
| 12858 | void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { | |||
| 12859 | const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); | |||
| 12860 | if (RD->isUnion()) { | |||
| 12861 | if (OrigLoc.isValid()) { | |||
| 12862 | bool IsUnion = false; | |||
| 12863 | if (auto *OrigRD = OrigTy->getAsRecordDecl()) | |||
| 12864 | IsUnion = OrigRD->isUnion(); | |||
| 12865 | S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) | |||
| 12866 | << 0 << OrigTy << IsUnion << UseContext; | |||
| 12867 | // Reset OrigLoc so that this diagnostic is emitted only once. | |||
| 12868 | OrigLoc = SourceLocation(); | |||
| 12869 | } | |||
| 12870 | InNonTrivialUnion = true; | |||
| 12871 | } | |||
| 12872 | ||||
| 12873 | if (InNonTrivialUnion) | |||
| 12874 | S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) | |||
| 12875 | << 0 << 0 << QT.getUnqualifiedType() << ""; | |||
| 12876 | ||||
| 12877 | for (const FieldDecl *FD : RD->fields()) | |||
| 12878 | if (!shouldIgnoreForRecordTriviality(FD)) | |||
| 12879 | asDerived().visit(FD->getType(), FD, InNonTrivialUnion); | |||
| 12880 | } | |||
| 12881 | ||||
| 12882 | void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} | |||
| 12883 | ||||
| 12884 | // The non-trivial C union type or the struct/union type that contains a | |||
| 12885 | // non-trivial C union. | |||
| 12886 | QualType OrigTy; | |||
| 12887 | SourceLocation OrigLoc; | |||
| 12888 | Sema::NonTrivialCUnionContext UseContext; | |||
| 12889 | Sema &S; | |||
| 12890 | }; | |||
| 12891 | ||||
| 12892 | struct DiagNonTrivalCUnionDestructedTypeVisitor | |||
| 12893 | : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> { | |||
| 12894 | using Super = | |||
| 12895 | DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>; | |||
| 12896 | ||||
| 12897 | DiagNonTrivalCUnionDestructedTypeVisitor( | |||
| 12898 | QualType OrigTy, SourceLocation OrigLoc, | |||
| 12899 | Sema::NonTrivialCUnionContext UseContext, Sema &S) | |||
| 12900 | : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} | |||
| 12901 | ||||
| 12902 | void visitWithKind(QualType::DestructionKind DK, QualType QT, | |||
| 12903 | const FieldDecl *FD, bool InNonTrivialUnion) { | |||
| 12904 | if (const auto *AT = S.Context.getAsArrayType(QT)) | |||
| 12905 | return this->asDerived().visit(S.Context.getBaseElementType(AT), FD, | |||
| 12906 | InNonTrivialUnion); | |||
| 12907 | return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion); | |||
| 12908 | } | |||
| 12909 | ||||
| 12910 | void visitARCStrong(QualType QT, const FieldDecl *FD, | |||
| 12911 | bool InNonTrivialUnion) { | |||
| 12912 | if (InNonTrivialUnion) | |||
| 12913 | S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) | |||
| 12914 | << 1 << 1 << QT << FD->getName(); | |||
| 12915 | } | |||
| 12916 | ||||
| 12917 | void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { | |||
| 12918 | if (InNonTrivialUnion) | |||
| 12919 | S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) | |||
| 12920 | << 1 << 1 << QT << FD->getName(); | |||
| 12921 | } | |||
| 12922 | ||||
| 12923 | void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { | |||
| 12924 | const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); | |||
| 12925 | if (RD->isUnion()) { | |||
| 12926 | if (OrigLoc.isValid()) { | |||
| 12927 | bool IsUnion = false; | |||
| 12928 | if (auto *OrigRD = OrigTy->getAsRecordDecl()) | |||
| 12929 | IsUnion = OrigRD->isUnion(); | |||
| 12930 | S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) | |||
| 12931 | << 1 << OrigTy << IsUnion << UseContext; | |||
| 12932 | // Reset OrigLoc so that this diagnostic is emitted only once. | |||
| 12933 | OrigLoc = SourceLocation(); | |||
| 12934 | } | |||
| 12935 | InNonTrivialUnion = true; | |||
| 12936 | } | |||
| 12937 | ||||
| 12938 | if (InNonTrivialUnion) | |||
| 12939 | S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) | |||
| 12940 | << 0 << 1 << QT.getUnqualifiedType() << ""; | |||
| 12941 | ||||
| 12942 | for (const FieldDecl *FD : RD->fields()) | |||
| 12943 | if (!shouldIgnoreForRecordTriviality(FD)) | |||
| 12944 | asDerived().visit(FD->getType(), FD, InNonTrivialUnion); | |||
| 12945 | } | |||
| 12946 | ||||
| 12947 | void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} | |||
| 12948 | void visitCXXDestructor(QualType QT, const FieldDecl *FD, | |||
| 12949 | bool InNonTrivialUnion) {} | |||
| 12950 | ||||
| 12951 | // The non-trivial C union type or the struct/union type that contains a | |||
| 12952 | // non-trivial C union. | |||
| 12953 | QualType OrigTy; | |||
| 12954 | SourceLocation OrigLoc; | |||
| 12955 | Sema::NonTrivialCUnionContext UseContext; | |||
| 12956 | Sema &S; | |||
| 12957 | }; | |||
| 12958 | ||||
| 12959 | struct DiagNonTrivalCUnionCopyVisitor | |||
| 12960 | : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> { | |||
| 12961 | using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>; | |||
| 12962 | ||||
| 12963 | DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc, | |||
| 12964 | Sema::NonTrivialCUnionContext UseContext, | |||
| 12965 | Sema &S) | |||
| 12966 | : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} | |||
| 12967 | ||||
| 12968 | void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT, | |||
| 12969 | const FieldDecl *FD, bool InNonTrivialUnion) { | |||
| 12970 | if (const auto *AT = S.Context.getAsArrayType(QT)) | |||
| 12971 | return this->asDerived().visit(S.Context.getBaseElementType(AT), FD, | |||
| 12972 | InNonTrivialUnion); | |||
| 12973 | return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion); | |||
| 12974 | } | |||
| 12975 | ||||
| 12976 | void visitARCStrong(QualType QT, const FieldDecl *FD, | |||
| 12977 | bool InNonTrivialUnion) { | |||
| 12978 | if (InNonTrivialUnion) | |||
| 12979 | S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) | |||
| 12980 | << 1 << 2 << QT << FD->getName(); | |||
| 12981 | } | |||
| 12982 | ||||
| 12983 | void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { | |||
| 12984 | if (InNonTrivialUnion) | |||
| 12985 | S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) | |||
| 12986 | << 1 << 2 << QT << FD->getName(); | |||
| 12987 | } | |||
| 12988 | ||||
| 12989 | void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { | |||
| 12990 | const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); | |||
| 12991 | if (RD->isUnion()) { | |||
| 12992 | if (OrigLoc.isValid()) { | |||
| 12993 | bool IsUnion = false; | |||
| 12994 | if (auto *OrigRD = OrigTy->getAsRecordDecl()) | |||
| 12995 | IsUnion = OrigRD->isUnion(); | |||
| 12996 | S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) | |||
| 12997 | << 2 << OrigTy << IsUnion << UseContext; | |||
| 12998 | // Reset OrigLoc so that this diagnostic is emitted only once. | |||
| 12999 | OrigLoc = SourceLocation(); | |||
| 13000 | } | |||
| 13001 | InNonTrivialUnion = true; | |||
| 13002 | } | |||
| 13003 | ||||
| 13004 | if (InNonTrivialUnion) | |||
| 13005 | S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) | |||
| 13006 | << 0 << 2 << QT.getUnqualifiedType() << ""; | |||
| 13007 | ||||
| 13008 | for (const FieldDecl *FD : RD->fields()) | |||
| 13009 | if (!shouldIgnoreForRecordTriviality(FD)) | |||
| 13010 | asDerived().visit(FD->getType(), FD, InNonTrivialUnion); | |||
| 13011 | } | |||
| 13012 | ||||
| 13013 | void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT, | |||
| 13014 | const FieldDecl *FD, bool InNonTrivialUnion) {} | |||
| 13015 | void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} | |||
| 13016 | void visitVolatileTrivial(QualType QT, const FieldDecl *FD, | |||
| 13017 | bool InNonTrivialUnion) {} | |||
| 13018 | ||||
| 13019 | // The non-trivial C union type or the struct/union type that contains a | |||
| 13020 | // non-trivial C union. | |||
| 13021 | QualType OrigTy; | |||
| 13022 | SourceLocation OrigLoc; | |||
| 13023 | Sema::NonTrivialCUnionContext UseContext; | |||
| 13024 | Sema &S; | |||
| 13025 | }; | |||
| 13026 | ||||
| 13027 | } // namespace | |||
| 13028 | ||||
| 13029 | void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc, | |||
| 13030 | NonTrivialCUnionContext UseContext, | |||
| 13031 | unsigned NonTrivialKind) { | |||
| 13032 | assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||(static_cast <bool> ((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion () || QT.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion ()) && "shouldn't be called if type doesn't have a non-trivial C union" ) ? void (0) : __assert_fail ("(QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || QT.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C union\"" , "clang/lib/Sema/SemaDecl.cpp", 13035, __extension__ __PRETTY_FUNCTION__ )) | |||
| 13033 | QT.hasNonTrivialToPrimitiveDestructCUnion() ||(static_cast <bool> ((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion () || QT.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion ()) && "shouldn't be called if type doesn't have a non-trivial C union" ) ? void (0) : __assert_fail ("(QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || QT.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C union\"" , "clang/lib/Sema/SemaDecl.cpp", 13035, __extension__ __PRETTY_FUNCTION__ )) | |||
| 13034 | QT.hasNonTrivialToPrimitiveCopyCUnion()) &&(static_cast <bool> ((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion () || QT.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion ()) && "shouldn't be called if type doesn't have a non-trivial C union" ) ? void (0) : __assert_fail ("(QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || QT.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C union\"" , "clang/lib/Sema/SemaDecl.cpp", 13035, __extension__ __PRETTY_FUNCTION__ )) | |||
| 13035 | "shouldn't be called if type doesn't have a non-trivial C union")(static_cast <bool> ((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion () || QT.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion ()) && "shouldn't be called if type doesn't have a non-trivial C union" ) ? void (0) : __assert_fail ("(QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || QT.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C union\"" , "clang/lib/Sema/SemaDecl.cpp", 13035, __extension__ __PRETTY_FUNCTION__ )); | |||
| 13036 | ||||
| 13037 | if ((NonTrivialKind & NTCUK_Init) && | |||
| 13038 | QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion()) | |||
| 13039 | DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this) | |||
| 13040 | .visit(QT, nullptr, false); | |||
| 13041 | if ((NonTrivialKind & NTCUK_Destruct) && | |||
| 13042 | QT.hasNonTrivialToPrimitiveDestructCUnion()) | |||
| 13043 | DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this) | |||
| 13044 | .visit(QT, nullptr, false); | |||
| 13045 | if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion()) | |||
| 13046 | DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this) | |||
| 13047 | .visit(QT, nullptr, false); | |||
| 13048 | } | |||
| 13049 | ||||
| 13050 | /// AddInitializerToDecl - Adds the initializer Init to the | |||
| 13051 | /// declaration dcl. If DirectInit is true, this is C++ direct | |||
| 13052 | /// initialization rather than copy initialization. | |||
| 13053 | void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) { | |||
| 13054 | // If there is no declaration, there was an error parsing it. Just ignore | |||
| 13055 | // the initializer. | |||
| 13056 | if (!RealDecl || RealDecl->isInvalidDecl()) { | |||
| 13057 | CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl)); | |||
| 13058 | return; | |||
| 13059 | } | |||
| 13060 | ||||
| 13061 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) { | |||
| 13062 | // Pure-specifiers are handled in ActOnPureSpecifier. | |||
| 13063 | Diag(Method->getLocation(), diag::err_member_function_initialization) | |||
| 13064 | << Method->getDeclName() << Init->getSourceRange(); | |||
| 13065 | Method->setInvalidDecl(); | |||
| 13066 | return; | |||
| 13067 | } | |||
| 13068 | ||||
| 13069 | VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); | |||
| 13070 | if (!VDecl) { | |||
| 13071 | assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here")(static_cast <bool> (!isa<FieldDecl>(RealDecl) && "field init shouldn't get here") ? void (0) : __assert_fail ( "!isa<FieldDecl>(RealDecl) && \"field init shouldn't get here\"" , "clang/lib/Sema/SemaDecl.cpp", 13071, __extension__ __PRETTY_FUNCTION__ )); | |||
| 13072 | Diag(RealDecl->getLocation(), diag::err_illegal_initializer); | |||
| 13073 | RealDecl->setInvalidDecl(); | |||
| 13074 | return; | |||
| 13075 | } | |||
| 13076 | ||||
| 13077 | // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for. | |||
| 13078 | if (VDecl->getType()->isUndeducedType()) { | |||
| 13079 | // Attempt typo correction early so that the type of the init expression can | |||
| 13080 | // be deduced based on the chosen correction if the original init contains a | |||
| 13081 | // TypoExpr. | |||
| 13082 | ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl); | |||
| 13083 | if (!Res.isUsable()) { | |||
| 13084 | // There are unresolved typos in Init, just drop them. | |||
| 13085 | // FIXME: improve the recovery strategy to preserve the Init. | |||
| 13086 | RealDecl->setInvalidDecl(); | |||
| 13087 | return; | |||
| 13088 | } | |||
| 13089 | if (Res.get()->containsErrors()) { | |||
| 13090 | // Invalidate the decl as we don't know the type for recovery-expr yet. | |||
| 13091 | RealDecl->setInvalidDecl(); | |||
| 13092 | VDecl->setInit(Res.get()); | |||
| 13093 | return; | |||
| 13094 | } | |||
| 13095 | Init = Res.get(); | |||
| 13096 | ||||
| 13097 | if (DeduceVariableDeclarationType(VDecl, DirectInit, Init)) | |||
| 13098 | return; | |||
| 13099 | } | |||
| 13100 | ||||
| 13101 | // dllimport cannot be used on variable definitions. | |||
| 13102 | if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) { | |||
| 13103 | Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition); | |||
| 13104 | VDecl->setInvalidDecl(); | |||
| 13105 | return; | |||
| 13106 | } | |||
| 13107 | ||||
| 13108 | // C99 6.7.8p5. If the declaration of an identifier has block scope, and | |||
| 13109 | // the identifier has external or internal linkage, the declaration shall | |||
| 13110 | // have no initializer for the identifier. | |||
| 13111 | // C++14 [dcl.init]p5 is the same restriction for C++. | |||
| 13112 | if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) { | |||
| 13113 | Diag(VDecl->getLocation(), diag::err_block_extern_cant_init); | |||
| 13114 | VDecl->setInvalidDecl(); | |||
| 13115 | return; | |||
| 13116 | } | |||
| 13117 | ||||
| 13118 | if (!VDecl->getType()->isDependentType()) { | |||
| 13119 | // A definition must end up with a complete type, which means it must be | |||
| 13120 | // complete with the restriction that an array type might be completed by | |||
| 13121 | // the initializer; note that later code assumes this restriction. | |||
| 13122 | QualType BaseDeclType = VDecl->getType(); | |||
| 13123 | if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType)) | |||
| 13124 | BaseDeclType = Array->getElementType(); | |||
| 13125 | if (RequireCompleteType(VDecl->getLocation(), BaseDeclType, | |||
| 13126 | diag::err_typecheck_decl_incomplete_type)) { | |||
| 13127 | RealDecl->setInvalidDecl(); | |||
| 13128 | return; | |||
| 13129 | } | |||
| 13130 | ||||
| 13131 | // The variable can not have an abstract class type. | |||
| 13132 | if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(), | |||
| 13133 | diag::err_abstract_type_in_decl, | |||
| 13134 | AbstractVariableType)) | |||
| 13135 | VDecl->setInvalidDecl(); | |||
| 13136 | } | |||
| 13137 | ||||
| 13138 | // C++ [module.import/6] external definitions are not permitted in header | |||
| 13139 | // units. | |||
| 13140 | if (getLangOpts().CPlusPlusModules && currentModuleIsHeaderUnit() && | |||
| 13141 | !VDecl->isInvalidDecl() && VDecl->isThisDeclarationADefinition() && | |||
| 13142 | VDecl->getFormalLinkage() == Linkage::ExternalLinkage && | |||
| 13143 | !VDecl->isInline() && !VDecl->isTemplated() && | |||
| 13144 | !isa<VarTemplateSpecializationDecl>(VDecl)) { | |||
| 13145 | Diag(VDecl->getLocation(), diag::err_extern_def_in_header_unit); | |||
| 13146 | VDecl->setInvalidDecl(); | |||
| 13147 | } | |||
| 13148 | ||||
| 13149 | // If adding the initializer will turn this declaration into a definition, | |||
| 13150 | // and we already have a definition for this variable, diagnose or otherwise | |||
| 13151 | // handle the situation. | |||
| 13152 | if (VarDecl *Def = VDecl->getDefinition()) | |||
| 13153 | if (Def != VDecl && | |||
| 13154 | (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) && | |||
| 13155 | !VDecl->isThisDeclarationADemotedDefinition() && | |||
| 13156 | checkVarDeclRedefinition(Def, VDecl)) | |||
| 13157 | return; | |||
| 13158 | ||||
| 13159 | if (getLangOpts().CPlusPlus) { | |||
| 13160 | // C++ [class.static.data]p4 | |||
| 13161 | // If a static data member is of const integral or const | |||
| 13162 | // enumeration type, its declaration in the class definition can | |||
| 13163 | // specify a constant-initializer which shall be an integral | |||
| 13164 | // constant expression (5.19). In that case, the member can appear | |||
| 13165 | // in integral constant expressions. The member shall still be | |||
| 13166 | // defined in a namespace scope if it is used in the program and the | |||
| 13167 | // namespace scope definition shall not contain an initializer. | |||
| 13168 | // | |||
| 13169 | // We already performed a redefinition check above, but for static | |||
| 13170 | // data members we also need to check whether there was an in-class | |||
| 13171 | // declaration with an initializer. | |||
| 13172 | if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) { | |||
| 13173 | Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization) | |||
| 13174 | << VDecl->getDeclName(); | |||
| 13175 | Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(), | |||
| 13176 | diag::note_previous_initializer) | |||
| 13177 | << 0; | |||
| 13178 | return; | |||
| 13179 | } | |||
| 13180 | ||||
| 13181 | if (VDecl->hasLocalStorage()) | |||
| 13182 | setFunctionHasBranchProtectedScope(); | |||
| 13183 | ||||
| 13184 | if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) { | |||
| 13185 | VDecl->setInvalidDecl(); | |||
| 13186 | return; | |||
| 13187 | } | |||
| 13188 | } | |||
| 13189 | ||||
| 13190 | // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside | |||
| 13191 | // a kernel function cannot be initialized." | |||
| 13192 | if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) { | |||
| 13193 | Diag(VDecl->getLocation(), diag::err_local_cant_init); | |||
| 13194 | VDecl->setInvalidDecl(); | |||
| 13195 | return; | |||
| 13196 | } | |||
| 13197 | ||||
| 13198 | // The LoaderUninitialized attribute acts as a definition (of undef). | |||
| 13199 | if (VDecl->hasAttr<LoaderUninitializedAttr>()) { | |||
| 13200 | Diag(VDecl->getLocation(), diag::err_loader_uninitialized_cant_init); | |||
| 13201 | VDecl->setInvalidDecl(); | |||
| 13202 | return; | |||
| 13203 | } | |||
| 13204 | ||||
| 13205 | // Get the decls type and save a reference for later, since | |||
| 13206 | // CheckInitializerTypes may change it. | |||
| 13207 | QualType DclT = VDecl->getType(), SavT = DclT; | |||
| 13208 | ||||
| 13209 | // Expressions default to 'id' when we're in a debugger | |||
| 13210 | // and we are assigning it to a variable of Objective-C pointer type. | |||
| 13211 | if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() && | |||
| 13212 | Init->getType() == Context.UnknownAnyTy) { | |||
| 13213 | ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType()); | |||
| 13214 | if (Result.isInvalid()) { | |||
| 13215 | VDecl->setInvalidDecl(); | |||
| 13216 | return; | |||
| 13217 | } | |||
| 13218 | Init = Result.get(); | |||
| 13219 | } | |||
| 13220 | ||||
| 13221 | // Perform the initialization. | |||
| 13222 | ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init); | |||
| 13223 | bool IsParenListInit = false; | |||
| 13224 | if (!VDecl->isInvalidDecl()) { | |||
| 13225 | InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); | |||
| 13226 | InitializationKind Kind = InitializationKind::CreateForInit( | |||
| 13227 | VDecl->getLocation(), DirectInit, Init); | |||
| 13228 | ||||
| 13229 | MultiExprArg Args = Init; | |||
| 13230 | if (CXXDirectInit) | |||
| 13231 | Args = MultiExprArg(CXXDirectInit->getExprs(), | |||
| 13232 | CXXDirectInit->getNumExprs()); | |||
| 13233 | ||||
| 13234 | // Try to correct any TypoExprs in the initialization arguments. | |||
| 13235 | for (size_t Idx = 0; Idx < Args.size(); ++Idx) { | |||
| 13236 | ExprResult Res = CorrectDelayedTyposInExpr( | |||
| 13237 | Args[Idx], VDecl, /*RecoverUncorrectedTypos=*/true, | |||
| 13238 | [this, Entity, Kind](Expr *E) { | |||
| 13239 | InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E)); | |||
| 13240 | return Init.Failed() ? ExprError() : E; | |||
| 13241 | }); | |||
| 13242 | if (Res.isInvalid()) { | |||
| 13243 | VDecl->setInvalidDecl(); | |||
| 13244 | } else if (Res.get() != Args[Idx]) { | |||
| 13245 | Args[Idx] = Res.get(); | |||
| 13246 | } | |||
| 13247 | } | |||
| 13248 | if (VDecl->isInvalidDecl()) | |||
| 13249 | return; | |||
| 13250 | ||||
| 13251 | InitializationSequence InitSeq(*this, Entity, Kind, Args, | |||
| 13252 | /*TopLevelOfInitList=*/false, | |||
| 13253 | /*TreatUnavailableAsInvalid=*/false); | |||
| 13254 | ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT); | |||
| 13255 | if (Result.isInvalid()) { | |||
| 13256 | // If the provided initializer fails to initialize the var decl, | |||
| 13257 | // we attach a recovery expr for better recovery. | |||
| 13258 | auto RecoveryExpr = | |||
| 13259 | CreateRecoveryExpr(Init->getBeginLoc(), Init->getEndLoc(), Args); | |||
| 13260 | if (RecoveryExpr.get()) | |||
| 13261 | VDecl->setInit(RecoveryExpr.get()); | |||
| 13262 | return; | |||
| 13263 | } | |||
| 13264 | ||||
| 13265 | Init = Result.getAs<Expr>(); | |||
| 13266 | IsParenListInit = !InitSeq.steps().empty() && | |||
| 13267 | InitSeq.step_begin()->Kind == | |||
| 13268 | InitializationSequence::SK_ParenthesizedListInit; | |||
| 13269 | } | |||
| 13270 | ||||
| 13271 | // Check for self-references within variable initializers. | |||
| 13272 | // Variables declared within a function/method body (except for references) | |||
| 13273 | // are handled by a dataflow analysis. | |||
| 13274 | // This is undefined behavior in C++, but valid in C. | |||
| 13275 | if (getLangOpts().CPlusPlus) | |||
| 13276 | if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() || | |||
| 13277 | VDecl->getType()->isReferenceType()) | |||
| 13278 | CheckSelfReference(*this, RealDecl, Init, DirectInit); | |||
| 13279 | ||||
| 13280 | // If the type changed, it means we had an incomplete type that was | |||
| 13281 | // completed by the initializer. For example: | |||
| 13282 | // int ary[] = { 1, 3, 5 }; | |||
| 13283 | // "ary" transitions from an IncompleteArrayType to a ConstantArrayType. | |||
| 13284 | if (!VDecl->isInvalidDecl() && (DclT != SavT)) | |||
| 13285 | VDecl->setType(DclT); | |||
| 13286 | ||||
| 13287 | if (!VDecl->isInvalidDecl()) { | |||
| 13288 | checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init); | |||
| 13289 | ||||
| 13290 | if (VDecl->hasAttr<BlocksAttr>()) | |||
| 13291 | checkRetainCycles(VDecl, Init); | |||
| 13292 | ||||
| 13293 | // It is safe to assign a weak reference into a strong variable. | |||
| 13294 | // Although this code can still have problems: | |||
| 13295 | // id x = self.weakProp; | |||
| 13296 | // id y = self.weakProp; | |||
| 13297 | // we do not warn to warn spuriously when 'x' and 'y' are on separate | |||
| 13298 | // paths through the function. This should be revisited if | |||
| 13299 | // -Wrepeated-use-of-weak is made flow-sensitive. | |||
| 13300 | if (FunctionScopeInfo *FSI = getCurFunction()) | |||
| 13301 | if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong || | |||
| 13302 | VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) && | |||
| 13303 | !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, | |||
| 13304 | Init->getBeginLoc())) | |||
| 13305 | FSI->markSafeWeakUse(Init); | |||
| 13306 | } | |||
| 13307 | ||||
| 13308 | // The initialization is usually a full-expression. | |||
| 13309 | // | |||
| 13310 | // FIXME: If this is a braced initialization of an aggregate, it is not | |||
| 13311 | // an expression, and each individual field initializer is a separate | |||
| 13312 | // full-expression. For instance, in: | |||
| 13313 | // | |||
| 13314 | // struct Temp { ~Temp(); }; | |||
| 13315 | // struct S { S(Temp); }; | |||
| 13316 | // struct T { S a, b; } t = { Temp(), Temp() } | |||
| 13317 | // | |||
| 13318 | // we should destroy the first Temp before constructing the second. | |||
| 13319 | ExprResult Result = | |||
| 13320 | ActOnFinishFullExpr(Init, VDecl->getLocation(), | |||
| 13321 | /*DiscardedValue*/ false, VDecl->isConstexpr()); | |||
| 13322 | if (Result.isInvalid()) { | |||
| 13323 | VDecl->setInvalidDecl(); | |||
| 13324 | return; | |||
| 13325 | } | |||
| 13326 | Init = Result.get(); | |||
| 13327 | ||||
| 13328 | // Attach the initializer to the decl. | |||
| 13329 | VDecl->setInit(Init); | |||
| 13330 | ||||
| 13331 | if (VDecl->isLocalVarDecl()) { | |||
| 13332 | // Don't check the initializer if the declaration is malformed. | |||
| 13333 | if (VDecl->isInvalidDecl()) { | |||
| 13334 | // do nothing | |||
| 13335 | ||||
| 13336 | // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized. | |||
| 13337 | // This is true even in C++ for OpenCL. | |||
| 13338 | } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) { | |||
| 13339 | CheckForConstantInitializer(Init, DclT); | |||
| 13340 | ||||
| 13341 | // Otherwise, C++ does not restrict the initializer. | |||
| 13342 | } else if (getLangOpts().CPlusPlus) { | |||
| 13343 | // do nothing | |||
| 13344 | ||||
| 13345 | // C99 6.7.8p4: All the expressions in an initializer for an object that has | |||
| 13346 | // static storage duration shall be constant expressions or string literals. | |||
| 13347 | } else if (VDecl->getStorageClass() == SC_Static) { | |||
| 13348 | CheckForConstantInitializer(Init, DclT); | |||
| 13349 | ||||
| 13350 | // C89 is stricter than C99 for aggregate initializers. | |||
| 13351 | // C89 6.5.7p3: All the expressions [...] in an initializer list | |||
| 13352 | // for an object that has aggregate or union type shall be | |||
| 13353 | // constant expressions. | |||
| 13354 | } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() && | |||
| 13355 | isa<InitListExpr>(Init)) { | |||
| 13356 | const Expr *Culprit; | |||
| 13357 | if (!Init->isConstantInitializer(Context, false, &Culprit)) { | |||
| 13358 | Diag(Culprit->getExprLoc(), | |||
| 13359 | diag::ext_aggregate_init_not_constant) | |||
| 13360 | << Culprit->getSourceRange(); | |||
| 13361 | } | |||
| 13362 | } | |||
| 13363 | ||||
| 13364 | if (auto *E = dyn_cast<ExprWithCleanups>(Init)) | |||
| 13365 | if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens())) | |||
| 13366 | if (VDecl->hasLocalStorage()) | |||
| 13367 | BE->getBlockDecl()->setCanAvoidCopyToHeap(); | |||
| 13368 | } else if (VDecl->isStaticDataMember() && !VDecl->isInline() && | |||
| 13369 | VDecl->getLexicalDeclContext()->isRecord()) { | |||
| 13370 | // This is an in-class initialization for a static data member, e.g., | |||
| 13371 | // | |||
| 13372 | // struct S { | |||
| 13373 | // static const int value = 17; | |||
| 13374 | // }; | |||
| 13375 | ||||
| 13376 | // C++ [class.mem]p4: | |||
| 13377 | // A member-declarator can contain a constant-initializer only | |||
| 13378 | // if it declares a static member (9.4) of const integral or | |||
| 13379 | // const enumeration type, see 9.4.2. | |||
| 13380 | // | |||
| 13381 | // C++11 [class.static.data]p3: | |||
| 13382 | // If a non-volatile non-inline const static data member is of integral | |||
| 13383 | // or enumeration type, its declaration in the class definition can | |||
| 13384 | // specify a brace-or-equal-initializer in which every initializer-clause | |||
| 13385 | // that is an assignment-expression is a constant expression. A static | |||
| 13386 | // data member of literal type can be declared in the class definition | |||
| 13387 | // with the constexpr specifier; if so, its declaration shall specify a | |||
| 13388 | // brace-or-equal-initializer in which every initializer-clause that is | |||
| 13389 | // an assignment-expression is a constant expression. | |||
| 13390 | ||||
| 13391 | // Do nothing on dependent types. | |||
| 13392 | if (DclT->isDependentType()) { | |||
| 13393 | ||||
| 13394 | // Allow any 'static constexpr' members, whether or not they are of literal | |||
| 13395 | // type. We separately check that every constexpr variable is of literal | |||
| 13396 | // type. | |||
| 13397 | } else if (VDecl->isConstexpr()) { | |||
| 13398 | ||||
| 13399 | // Require constness. | |||
| 13400 | } else if (!DclT.isConstQualified()) { | |||
| 13401 | Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const) | |||
| 13402 | << Init->getSourceRange(); | |||
| 13403 | VDecl->setInvalidDecl(); | |||
| 13404 | ||||
| 13405 | // We allow integer constant expressions in all cases. | |||
| 13406 | } else if (DclT->isIntegralOrEnumerationType()) { | |||
| 13407 | // Check whether the expression is a constant expression. | |||
| 13408 | SourceLocation Loc; | |||
| 13409 | if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified()) | |||
| 13410 | // In C++11, a non-constexpr const static data member with an | |||
| 13411 | // in-class initializer cannot be volatile. | |||
| 13412 | Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile); | |||
| 13413 | else if (Init->isValueDependent()) | |||
| 13414 | ; // Nothing to check. | |||
| 13415 | else if (Init->isIntegerConstantExpr(Context, &Loc)) | |||
| 13416 | ; // Ok, it's an ICE! | |||
| 13417 | else if (Init->getType()->isScopedEnumeralType() && | |||
| 13418 | Init->isCXX11ConstantExpr(Context)) | |||
| 13419 | ; // Ok, it is a scoped-enum constant expression. | |||
| 13420 | else if (Init->isEvaluatable(Context)) { | |||
| 13421 | // If we can constant fold the initializer through heroics, accept it, | |||
| 13422 | // but report this as a use of an extension for -pedantic. | |||
| 13423 | Diag(Loc, diag::ext_in_class_initializer_non_constant) | |||
| 13424 | << Init->getSourceRange(); | |||
| 13425 | } else { | |||
| 13426 | // Otherwise, this is some crazy unknown case. Report the issue at the | |||
| 13427 | // location provided by the isIntegerConstantExpr failed check. | |||
| 13428 | Diag(Loc, diag::err_in_class_initializer_non_constant) | |||
| 13429 | << Init->getSourceRange(); | |||
| 13430 | VDecl->setInvalidDecl(); | |||
| 13431 | } | |||
| 13432 | ||||
| 13433 | // We allow foldable floating-point constants as an extension. | |||
| 13434 | } else if (DclT->isFloatingType()) { // also permits complex, which is ok | |||
| 13435 | // In C++98, this is a GNU extension. In C++11, it is not, but we support | |||
| 13436 | // it anyway and provide a fixit to add the 'constexpr'. | |||
| 13437 | if (getLangOpts().CPlusPlus11) { | |||
| 13438 | Diag(VDecl->getLocation(), | |||
| 13439 | diag::ext_in_class_initializer_float_type_cxx11) | |||
| 13440 | << DclT << Init->getSourceRange(); | |||
| 13441 | Diag(VDecl->getBeginLoc(), | |||
| 13442 | diag::note_in_class_initializer_float_type_cxx11) | |||
| 13443 | << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr "); | |||
| 13444 | } else { | |||
| 13445 | Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type) | |||
| 13446 | << DclT << Init->getSourceRange(); | |||
| 13447 | ||||
| 13448 | if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) { | |||
| 13449 | Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant) | |||
| 13450 | << Init->getSourceRange(); | |||
| 13451 | VDecl->setInvalidDecl(); | |||
| 13452 | } | |||
| 13453 | } | |||
| 13454 | ||||
| 13455 | // Suggest adding 'constexpr' in C++11 for literal types. | |||
| 13456 | } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) { | |||
| 13457 | Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type) | |||
| 13458 | << DclT << Init->getSourceRange() | |||
| 13459 | << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr "); | |||
| 13460 | VDecl->setConstexpr(true); | |||
| 13461 | ||||
| 13462 | } else { | |||
| 13463 | Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type) | |||
| 13464 | << DclT << Init->getSourceRange(); | |||
| 13465 | VDecl->setInvalidDecl(); | |||
| 13466 | } | |||
| 13467 | } else if (VDecl->isFileVarDecl()) { | |||
| 13468 | // In C, extern is typically used to avoid tentative definitions when | |||
| 13469 | // declaring variables in headers, but adding an intializer makes it a | |||
| 13470 | // definition. This is somewhat confusing, so GCC and Clang both warn on it. | |||
| 13471 | // In C++, extern is often used to give implictly static const variables | |||
| 13472 | // external linkage, so don't warn in that case. If selectany is present, | |||
| 13473 | // this might be header code intended for C and C++ inclusion, so apply the | |||
| 13474 | // C++ rules. | |||
| 13475 | if (VDecl->getStorageClass() == SC_Extern && | |||
| 13476 | ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) || | |||
| 13477 | !Context.getBaseElementType(VDecl->getType()).isConstQualified()) && | |||
| 13478 | !(getLangOpts().CPlusPlus && VDecl->isExternC()) && | |||
| 13479 | !isTemplateInstantiation(VDecl->getTemplateSpecializationKind())) | |||
| 13480 | Diag(VDecl->getLocation(), diag::warn_extern_init); | |||
| 13481 | ||||
| 13482 | // In Microsoft C++ mode, a const variable defined in namespace scope has | |||
| 13483 | // external linkage by default if the variable is declared with | |||
| 13484 | // __declspec(dllexport). | |||
| 13485 | if (Context.getTargetInfo().getCXXABI().isMicrosoft() && | |||
| 13486 | getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() && | |||
| 13487 | VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition()) | |||
| 13488 | VDecl->setStorageClass(SC_Extern); | |||
| 13489 | ||||
| 13490 | // C99 6.7.8p4. All file scoped initializers need to be constant. | |||
| 13491 | if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) | |||
| 13492 | CheckForConstantInitializer(Init, DclT); | |||
| 13493 | } | |||
| 13494 | ||||
| 13495 | QualType InitType = Init->getType(); | |||
| 13496 | if (!InitType.isNull() && | |||
| 13497 | (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || | |||
| 13498 | InitType.hasNonTrivialToPrimitiveCopyCUnion())) | |||
| 13499 | checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc()); | |||
| 13500 | ||||
| 13501 | // We will represent direct-initialization similarly to copy-initialization: | |||
| 13502 | // int x(1); -as-> int x = 1; | |||
| 13503 | // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c); | |||
| 13504 | // | |||
| 13505 | // Clients that want to distinguish between the two forms, can check for | |||
| 13506 | // direct initializer using VarDecl::getInitStyle(). | |||
| 13507 | // A major benefit is that clients that don't particularly care about which | |||
| 13508 | // exactly form was it (like the CodeGen) can handle both cases without | |||
| 13509 | // special case code. | |||
| 13510 | ||||
| 13511 | // C++ 8.5p11: | |||
| 13512 | // The form of initialization (using parentheses or '=') is generally | |||
| 13513 | // insignificant, but does matter when the entity being initialized has a | |||
| 13514 | // class type. | |||
| 13515 | if (CXXDirectInit) { | |||
| 13516 | assert(DirectInit && "Call-style initializer must be direct init.")(static_cast <bool> (DirectInit && "Call-style initializer must be direct init." ) ? void (0) : __assert_fail ("DirectInit && \"Call-style initializer must be direct init.\"" , "clang/lib/Sema/SemaDecl.cpp", 13516, __extension__ __PRETTY_FUNCTION__ )); | |||
| 13517 | VDecl->setInitStyle(IsParenListInit ? VarDecl::ParenListInit | |||
| 13518 | : VarDecl::CallInit); | |||
| 13519 | } else if (DirectInit) { | |||
| 13520 | // This must be list-initialization. No other way is direct-initialization. | |||
| 13521 | VDecl->setInitStyle(VarDecl::ListInit); | |||
| 13522 | } | |||
| 13523 | ||||
| 13524 | if (LangOpts.OpenMP && | |||
| 13525 | (LangOpts.OpenMPIsDevice || !LangOpts.OMPTargetTriples.empty()) && | |||
| 13526 | VDecl->isFileVarDecl()) | |||
| 13527 | DeclsToCheckForDeferredDiags.insert(VDecl); | |||
| 13528 | CheckCompleteVariableDeclaration(VDecl); | |||
| 13529 | } | |||
| 13530 | ||||
| 13531 | /// ActOnInitializerError - Given that there was an error parsing an | |||
| 13532 | /// initializer for the given declaration, try to at least re-establish | |||
| 13533 | /// invariants such as whether a variable's type is either dependent or | |||
| 13534 | /// complete. | |||
| 13535 | void Sema::ActOnInitializerError(Decl *D) { | |||
| 13536 | // Our main concern here is re-establishing invariants like "a | |||
| 13537 | // variable's type is either dependent or complete". | |||
| 13538 | if (!D || D->isInvalidDecl()) return; | |||
| 13539 | ||||
| 13540 | VarDecl *VD = dyn_cast<VarDecl>(D); | |||
| 13541 | if (!VD) return; | |||
| 13542 | ||||
| 13543 | // Bindings are not usable if we can't make sense of the initializer. | |||
| 13544 | if (auto *DD = dyn_cast<DecompositionDecl>(D)) | |||
| 13545 | for (auto *BD : DD->bindings()) | |||
| 13546 | BD->setInvalidDecl(); | |||
| 13547 | ||||
| 13548 | // Auto types are meaningless if we can't make sense of the initializer. | |||
| 13549 | if (VD->getType()->isUndeducedType()) { | |||
| 13550 | D->setInvalidDecl(); | |||
| 13551 | return; | |||
| 13552 | } | |||
| 13553 | ||||
| 13554 | QualType Ty = VD->getType(); | |||
| 13555 | if (Ty->isDependentType()) return; | |||
| 13556 | ||||
| 13557 | // Require a complete type. | |||
| 13558 | if (RequireCompleteType(VD->getLocation(), | |||
| 13559 | Context.getBaseElementType(Ty), | |||
| 13560 | diag::err_typecheck_decl_incomplete_type)) { | |||
| 13561 | VD->setInvalidDecl(); | |||
| 13562 | return; | |||
| 13563 | } | |||
| 13564 | ||||
| 13565 | // Require a non-abstract type. | |||
| 13566 | if (RequireNonAbstractType(VD->getLocation(), Ty, | |||
| 13567 | diag::err_abstract_type_in_decl, | |||
| 13568 | AbstractVariableType)) { | |||
| 13569 | VD->setInvalidDecl(); | |||
| 13570 | return; | |||
| 13571 | } | |||
| 13572 | ||||
| 13573 | // Don't bother complaining about constructors or destructors, | |||
| 13574 | // though. | |||
| 13575 | } | |||
| 13576 | ||||
| 13577 | void Sema::ActOnUninitializedDecl(Decl *RealDecl) { | |||
| 13578 | // If there is no declaration, there was an error parsing it. Just ignore it. | |||
| 13579 | if (!RealDecl) | |||
| 13580 | return; | |||
| 13581 | ||||
| 13582 | if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) { | |||
| 13583 | QualType Type = Var->getType(); | |||
| 13584 | ||||
| 13585 | // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory. | |||
| 13586 | if (isa<DecompositionDecl>(RealDecl)) { | |||
| 13587 | Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var; | |||
| 13588 | Var->setInvalidDecl(); | |||
| 13589 | return; | |||
| 13590 | } | |||
| 13591 | ||||
| 13592 | if (Type->isUndeducedType() && | |||
| 13593 | DeduceVariableDeclarationType(Var, false, nullptr)) | |||
| 13594 | return; | |||
| 13595 | ||||
| 13596 | // C++11 [class.static.data]p3: A static data member can be declared with | |||
| 13597 | // the constexpr specifier; if so, its declaration shall specify | |||
| 13598 | // a brace-or-equal-initializer. | |||
| 13599 | // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to | |||
| 13600 | // the definition of a variable [...] or the declaration of a static data | |||
| 13601 | // member. | |||
| 13602 | if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() && | |||
| 13603 | !Var->isThisDeclarationADemotedDefinition()) { | |||
| 13604 | if (Var->isStaticDataMember()) { | |||
| 13605 | // C++1z removes the relevant rule; the in-class declaration is always | |||
| 13606 | // a definition there. | |||
| 13607 | if (!getLangOpts().CPlusPlus17 && | |||
| 13608 | !Context.getTargetInfo().getCXXABI().isMicrosoft()) { | |||
| 13609 | Diag(Var->getLocation(), | |||
| 13610 | diag::err_constexpr_static_mem_var_requires_init) | |||
| 13611 | << Var; | |||
| 13612 | Var->setInvalidDecl(); | |||
| 13613 | return; | |||
| 13614 | } | |||
| 13615 | } else { | |||
| 13616 | Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl); | |||
| 13617 | Var->setInvalidDecl(); | |||
| 13618 | return; | |||
| 13619 | } | |||
| 13620 | } | |||
| 13621 | ||||
| 13622 | // OpenCL v1.1 s6.5.3: variables declared in the constant address space must | |||
| 13623 | // be initialized. | |||
| 13624 | if (!Var->isInvalidDecl() && | |||
| 13625 | Var->getType().getAddressSpace() == LangAS::opencl_constant && | |||
| 13626 | Var->getStorageClass() != SC_Extern && !Var->getInit()) { | |||
| 13627 | bool HasConstExprDefaultConstructor = false; | |||
| 13628 | if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) { | |||
| 13629 | for (auto *Ctor : RD->ctors()) { | |||
| 13630 | if (Ctor->isConstexpr() && Ctor->getNumParams() == 0 && | |||
| 13631 | Ctor->getMethodQualifiers().getAddressSpace() == | |||
| 13632 | LangAS::opencl_constant) { | |||
| 13633 | HasConstExprDefaultConstructor = true; | |||
| 13634 | } | |||
| 13635 | } | |||
| 13636 | } | |||
| 13637 | if (!HasConstExprDefaultConstructor) { | |||
| 13638 | Diag(Var->getLocation(), diag::err_opencl_constant_no_init); | |||
| 13639 | Var->setInvalidDecl(); | |||
| 13640 | return; | |||
| 13641 | } | |||
| 13642 | } | |||
| 13643 | ||||
| 13644 | if (!Var->isInvalidDecl() && RealDecl->hasAttr<LoaderUninitializedAttr>()) { | |||
| 13645 | if (Var->getStorageClass() == SC_Extern) { | |||
| 13646 | Diag(Var->getLocation(), diag::err_loader_uninitialized_extern_decl) | |||
| 13647 | << Var; | |||
| 13648 | Var->setInvalidDecl(); | |||
| 13649 | return; | |||
| 13650 | } | |||
| 13651 | if (RequireCompleteType(Var->getLocation(), Var->getType(), | |||
| 13652 | diag::err_typecheck_decl_incomplete_type)) { | |||
| 13653 | Var->setInvalidDecl(); | |||
| 13654 | return; | |||
| 13655 | } | |||
| 13656 | if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) { | |||
| 13657 | if (!RD->hasTrivialDefaultConstructor()) { | |||
| 13658 | Diag(Var->getLocation(), diag::err_loader_uninitialized_trivial_ctor); | |||
| 13659 | Var->setInvalidDecl(); | |||
| 13660 | return; | |||
| 13661 | } | |||
| 13662 | } | |||
| 13663 | // The declaration is unitialized, no need for further checks. | |||
| 13664 | return; | |||
| 13665 | } | |||
| 13666 | ||||
| 13667 | VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition(); | |||
| 13668 | if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly && | |||
| 13669 | Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion()) | |||
| 13670 | checkNonTrivialCUnion(Var->getType(), Var->getLocation(), | |||
| 13671 | NTCUC_DefaultInitializedObject, NTCUK_Init); | |||
| 13672 | ||||
| 13673 | ||||
| 13674 | switch (DefKind) { | |||
| 13675 | case VarDecl::Definition: | |||
| 13676 | if (!Var->isStaticDataMember() || !Var->getAnyInitializer()) | |||
| 13677 | break; | |||
| 13678 | ||||
| 13679 | // We have an out-of-line definition of a static data member | |||
| 13680 | // that has an in-class initializer, so we type-check this like | |||
| 13681 | // a declaration. | |||
| 13682 | // | |||
| 13683 | [[fallthrough]]; | |||
| 13684 | ||||
| 13685 | case VarDecl::DeclarationOnly: | |||
| 13686 | // It's only a declaration. | |||
| 13687 | ||||
| 13688 | // Block scope. C99 6.7p7: If an identifier for an object is | |||
| 13689 | // declared with no linkage (C99 6.2.2p6), the type for the | |||
| 13690 | // object shall be complete. | |||
| 13691 | if (!Type->isDependentType() && Var->isLocalVarDecl() && | |||
| 13692 | !Var->hasLinkage() && !Var->isInvalidDecl() && | |||
| 13693 | RequireCompleteType(Var->getLocation(), Type, | |||
| 13694 | diag::err_typecheck_decl_incomplete_type)) | |||
| 13695 | Var->setInvalidDecl(); | |||
| 13696 | ||||
| 13697 | // Make sure that the type is not abstract. | |||
| 13698 | if (!Type->isDependentType() && !Var->isInvalidDecl() && | |||
| 13699 | RequireNonAbstractType(Var->getLocation(), Type, | |||
| 13700 | diag::err_abstract_type_in_decl, | |||
| 13701 | AbstractVariableType)) | |||
| 13702 | Var->setInvalidDecl(); | |||
| 13703 | if (!Type->isDependentType() && !Var->isInvalidDecl() && | |||
| 13704 | Var->getStorageClass() == SC_PrivateExtern) { | |||
| 13705 | Diag(Var->getLocation(), diag::warn_private_extern); | |||
| 13706 | Diag(Var->getLocation(), diag::note_private_extern); | |||
| 13707 | } | |||
| 13708 | ||||
| 13709 | if (Context.getTargetInfo().allowDebugInfoForExternalRef() && | |||
| 13710 | !Var->isInvalidDecl() && !getLangOpts().CPlusPlus) | |||
| 13711 | ExternalDeclarations.push_back(Var); | |||
| 13712 | ||||
| 13713 | return; | |||
| 13714 | ||||
| 13715 | case VarDecl::TentativeDefinition: | |||
| 13716 | // File scope. C99 6.9.2p2: A declaration of an identifier for an | |||
| 13717 | // object that has file scope without an initializer, and without a | |||
| 13718 | // storage-class specifier or with the storage-class specifier "static", | |||
| 13719 | // constitutes a tentative definition. Note: A tentative definition with | |||
| 13720 | // external linkage is valid (C99 6.2.2p5). | |||
| 13721 | if (!Var->isInvalidDecl()) { | |||
| 13722 | if (const IncompleteArrayType *ArrayT | |||
| 13723 | = Context.getAsIncompleteArrayType(Type)) { | |||
| 13724 | if (RequireCompleteSizedType( | |||
| 13725 | Var->getLocation(), ArrayT->getElementType(), | |||
| 13726 | diag::err_array_incomplete_or_sizeless_type)) | |||
| 13727 | Var->setInvalidDecl(); | |||
| 13728 | } else if (Var->getStorageClass() == SC_Static) { | |||
| 13729 | // C99 6.9.2p3: If the declaration of an identifier for an object is | |||
| 13730 | // a tentative definition and has internal linkage (C99 6.2.2p3), the | |||
| 13731 | // declared type shall not be an incomplete type. | |||
| 13732 | // NOTE: code such as the following | |||
| 13733 | // static struct s; | |||
| 13734 | // struct s { int a; }; | |||
| 13735 | // is accepted by gcc. Hence here we issue a warning instead of | |||
| 13736 | // an error and we do not invalidate the static declaration. | |||
| 13737 | // NOTE: to avoid multiple warnings, only check the first declaration. | |||
| 13738 | if (Var->isFirstDecl()) | |||
| 13739 | RequireCompleteType(Var->getLocation(), Type, | |||
| 13740 | diag::ext_typecheck_decl_incomplete_type); | |||
| 13741 | } | |||
| 13742 | } | |||
| 13743 | ||||
| 13744 | // Record the tentative definition; we're done. | |||
| 13745 | if (!Var->isInvalidDecl()) | |||
| 13746 | TentativeDefinitions.push_back(Var); | |||
| 13747 | return; | |||
| 13748 | } | |||
| 13749 | ||||
| 13750 | // Provide a specific diagnostic for uninitialized variable | |||
| 13751 | // definitions with incomplete array type. | |||
| 13752 | if (Type->isIncompleteArrayType()) { | |||
| 13753 | if (Var->isConstexpr()) | |||
| 13754 | Diag(Var->getLocation(), diag::err_constexpr_var_requires_const_init) | |||
| 13755 | << Var; | |||
| 13756 | else | |||
| 13757 | Diag(Var->getLocation(), | |||
| 13758 | diag::err_typecheck_incomplete_array_needs_initializer); | |||
| 13759 | Var->setInvalidDecl(); | |||
| 13760 | return; | |||
| 13761 | } | |||
| 13762 | ||||
| 13763 | // Provide a specific diagnostic for uninitialized variable | |||
| 13764 | // definitions with reference type. | |||
| 13765 | if (Type->isReferenceType()) { | |||
| 13766 | Diag(Var->getLocation(), diag::err_reference_var_requires_init) | |||
| 13767 | << Var << SourceRange(Var->getLocation(), Var->getLocation()); | |||
| 13768 | return; | |||
| 13769 | } | |||
| 13770 | ||||
| 13771 | // Do not attempt to type-check the default initializer for a | |||
| 13772 | // variable with dependent type. | |||
| 13773 | if (Type->isDependentType()) | |||
| 13774 | return; | |||
| 13775 | ||||
| 13776 | if (Var->isInvalidDecl()) | |||
| 13777 | return; | |||
| 13778 | ||||
| 13779 | if (!Var->hasAttr<AliasAttr>()) { | |||
| 13780 | if (RequireCompleteType(Var->getLocation(), | |||
| 13781 | Context.getBaseElementType(Type), | |||
| 13782 | diag::err_typecheck_decl_incomplete_type)) { | |||
| 13783 | Var->setInvalidDecl(); | |||
| 13784 | return; | |||
| 13785 | } | |||
| 13786 | } else { | |||
| 13787 | return; | |||
| 13788 | } | |||
| 13789 | ||||
| 13790 | // The variable can not have an abstract class type. | |||
| 13791 | if (RequireNonAbstractType(Var->getLocation(), Type, | |||
| 13792 | diag::err_abstract_type_in_decl, | |||
| 13793 | AbstractVariableType)) { | |||
| 13794 | Var->setInvalidDecl(); | |||
| 13795 | return; | |||
| 13796 | } | |||
| 13797 | ||||
| 13798 | // Check for jumps past the implicit initializer. C++0x | |||
| 13799 | // clarifies that this applies to a "variable with automatic | |||
| 13800 | // storage duration", not a "local variable". | |||
| 13801 | // C++11 [stmt.dcl]p3 | |||
| 13802 | // A program that jumps from a point where a variable with automatic | |||
| 13803 | // storage duration is not in scope to a point where it is in scope is | |||
| 13804 | // ill-formed unless the variable has scalar type, class type with a | |||
| 13805 | // trivial default constructor and a trivial destructor, a cv-qualified | |||
| 13806 | // version of one of these types, or an array of one of the preceding | |||
| 13807 | // types and is declared without an initializer. | |||
| 13808 | if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) { | |||
| 13809 | if (const RecordType *Record | |||
| 13810 | = Context.getBaseElementType(Type)->getAs<RecordType>()) { | |||
| 13811 | CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl()); | |||
| 13812 | // Mark the function (if we're in one) for further checking even if the | |||
| 13813 | // looser rules of C++11 do not require such checks, so that we can | |||
| 13814 | // diagnose incompatibilities with C++98. | |||
| 13815 | if (!CXXRecord->isPOD()) | |||
| 13816 | setFunctionHasBranchProtectedScope(); | |||
| 13817 | } | |||
| 13818 | } | |||
| 13819 | // In OpenCL, we can't initialize objects in the __local address space, | |||
| 13820 | // even implicitly, so don't synthesize an implicit initializer. | |||
| 13821 | if (getLangOpts().OpenCL && | |||
| 13822 | Var->getType().getAddressSpace() == LangAS::opencl_local) | |||
| 13823 | return; | |||
| 13824 | // C++03 [dcl.init]p9: | |||
| 13825 | // If no initializer is specified for an object, and the | |||
| 13826 | // object is of (possibly cv-qualified) non-POD class type (or | |||
| 13827 | // array thereof), the object shall be default-initialized; if | |||
| 13828 | // the object is of const-qualified type, the underlying class | |||
| 13829 | // type shall have a user-declared default | |||
| 13830 | // constructor. Otherwise, if no initializer is specified for | |||
| 13831 | // a non- static object, the object and its subobjects, if | |||
| 13832 | // any, have an indeterminate initial value); if the object | |||
| 13833 | // or any of its subobjects are of const-qualified type, the | |||
| 13834 | // program is ill-formed. | |||
| 13835 | // C++0x [dcl.init]p11: | |||
| 13836 | // If no initializer is specified for an object, the object is | |||
| 13837 | // default-initialized; [...]. | |||
| 13838 | InitializedEntity Entity = InitializedEntity::InitializeVariable(Var); | |||
| 13839 | InitializationKind Kind | |||
| 13840 | = InitializationKind::CreateDefault(Var->getLocation()); | |||
| 13841 | ||||
| 13842 | InitializationSequence InitSeq(*this, Entity, Kind, std::nullopt); | |||
| 13843 | ExprResult Init = InitSeq.Perform(*this, Entity, Kind, std::nullopt); | |||
| 13844 | ||||
| 13845 | if (Init.get()) { | |||
| 13846 | Var->setInit(MaybeCreateExprWithCleanups(Init.get())); | |||
| 13847 | // This is important for template substitution. | |||
| 13848 | Var->setInitStyle(VarDecl::CallInit); | |||
| 13849 | } else if (Init.isInvalid()) { | |||
| 13850 | // If default-init fails, attach a recovery-expr initializer to track | |||
| 13851 | // that initialization was attempted and failed. | |||
| 13852 | auto RecoveryExpr = | |||
| 13853 | CreateRecoveryExpr(Var->getLocation(), Var->getLocation(), {}); | |||
| 13854 | if (RecoveryExpr.get()) | |||
| 13855 | Var->setInit(RecoveryExpr.get()); | |||
| 13856 | } | |||
| 13857 | ||||
| 13858 | CheckCompleteVariableDeclaration(Var); | |||
| 13859 | } | |||
| 13860 | } | |||
| 13861 | ||||
| 13862 | void Sema::ActOnCXXForRangeDecl(Decl *D) { | |||
| 13863 | // If there is no declaration, there was an error parsing it. Ignore it. | |||
| 13864 | if (!D) | |||
| 13865 | return; | |||
| 13866 | ||||
| 13867 | VarDecl *VD = dyn_cast<VarDecl>(D); | |||
| 13868 | if (!VD) { | |||
| 13869 | Diag(D->getLocation(), diag::err_for_range_decl_must_be_var); | |||
| 13870 | D->setInvalidDecl(); | |||
| 13871 | return; | |||
| 13872 | } | |||
| 13873 | ||||
| 13874 | VD->setCXXForRangeDecl(true); | |||
| 13875 | ||||
| 13876 | // for-range-declaration cannot be given a storage class specifier. | |||
| 13877 | int Error = -1; | |||
| 13878 | switch (VD->getStorageClass()) { | |||
| 13879 | case SC_None: | |||
| 13880 | break; | |||
| 13881 | case SC_Extern: | |||
| 13882 | Error = 0; | |||
| 13883 | break; | |||
| 13884 | case SC_Static: | |||
| 13885 | Error = 1; | |||
| 13886 | break; | |||
| 13887 | case SC_PrivateExtern: | |||
| 13888 | Error = 2; | |||
| 13889 | break; | |||
| 13890 | case SC_Auto: | |||
| 13891 | Error = 3; | |||
| 13892 | break; | |||
| 13893 | case SC_Register: | |||
| 13894 | Error = 4; | |||
| 13895 | break; | |||
| 13896 | } | |||
| 13897 | ||||
| 13898 | // for-range-declaration cannot be given a storage class specifier con't. | |||
| 13899 | switch (VD->getTSCSpec()) { | |||
| 13900 | case TSCS_thread_local: | |||
| 13901 | Error = 6; | |||
| 13902 | break; | |||
| 13903 | case TSCS___thread: | |||
| 13904 | case TSCS__Thread_local: | |||
| 13905 | case TSCS_unspecified: | |||
| 13906 | break; | |||
| 13907 | } | |||
| 13908 | ||||
| 13909 | if (Error != -1) { | |||
| 13910 | Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class) | |||
| 13911 | << VD << Error; | |||
| 13912 | D->setInvalidDecl(); | |||
| 13913 | } | |||
| 13914 | } | |||
| 13915 | ||||
| 13916 | StmtResult Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc, | |||
| 13917 | IdentifierInfo *Ident, | |||
| 13918 | ParsedAttributes &Attrs) { | |||
| 13919 | // C++1y [stmt.iter]p1: | |||
| 13920 | // A range-based for statement of the form | |||
| 13921 | // for ( for-range-identifier : for-range-initializer ) statement | |||
| 13922 | // is equivalent to | |||
| 13923 | // for ( auto&& for-range-identifier : for-range-initializer ) statement | |||
| 13924 | DeclSpec DS(Attrs.getPool().getFactory()); | |||
| 13925 | ||||
| 13926 | const char *PrevSpec; | |||
| 13927 | unsigned DiagID; | |||
| 13928 | DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID, | |||
| 13929 | getPrintingPolicy()); | |||
| 13930 | ||||
| 13931 | Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::ForInit); | |||
| 13932 | D.SetIdentifier(Ident, IdentLoc); | |||
| 13933 | D.takeAttributes(Attrs); | |||
| 13934 | ||||
| 13935 | D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false), | |||
| 13936 | IdentLoc); | |||
| 13937 | Decl *Var = ActOnDeclarator(S, D); | |||
| 13938 | cast<VarDecl>(Var)->setCXXForRangeDecl(true); | |||
| 13939 | FinalizeDeclaration(Var); | |||
| 13940 | return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc, | |||
| 13941 | Attrs.Range.getEnd().isValid() ? Attrs.Range.getEnd() | |||
| 13942 | : IdentLoc); | |||
| 13943 | } | |||
| 13944 | ||||
| 13945 | void Sema::CheckCompleteVariableDeclaration(VarDecl *var) { | |||
| 13946 | if (var->isInvalidDecl()) return; | |||
| 13947 | ||||
| 13948 | MaybeAddCUDAConstantAttr(var); | |||
| 13949 | ||||
| 13950 | if (getLangOpts().OpenCL) { | |||
| 13951 | // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an | |||
| 13952 | // initialiser | |||
| 13953 | if (var->getTypeSourceInfo()->getType()->isBlockPointerType() && | |||
| 13954 | !var->hasInit()) { | |||
| 13955 | Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration) | |||
| 13956 | << 1 /*Init*/; | |||
| 13957 | var->setInvalidDecl(); | |||
| 13958 | return; | |||
| 13959 | } | |||
| 13960 | } | |||
| 13961 | ||||
| 13962 | // In Objective-C, don't allow jumps past the implicit initialization of a | |||
| 13963 | // local retaining variable. | |||
| 13964 | if (getLangOpts().ObjC && | |||
| 13965 | var->hasLocalStorage()) { | |||
| 13966 | switch (var->getType().getObjCLifetime()) { | |||
| 13967 | case Qualifiers::OCL_None: | |||
| 13968 | case Qualifiers::OCL_ExplicitNone: | |||
| 13969 | case Qualifiers::OCL_Autoreleasing: | |||
| 13970 | break; | |||
| 13971 | ||||
| 13972 | case Qualifiers::OCL_Weak: | |||
| 13973 | case Qualifiers::OCL_Strong: | |||
| 13974 | setFunctionHasBranchProtectedScope(); | |||
| 13975 | break; | |||
| 13976 | } | |||
| 13977 | } | |||
| 13978 | ||||
| 13979 | if (var->hasLocalStorage() && | |||
| 13980 | var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) | |||
| 13981 | setFunctionHasBranchProtectedScope(); | |||
| 13982 | ||||
| 13983 | // Warn about externally-visible variables being defined without a | |||
| 13984 | // prior declaration. We only want to do this for global | |||
| 13985 | // declarations, but we also specifically need to avoid doing it for | |||
| 13986 | // class members because the linkage of an anonymous class can | |||
| 13987 | // change if it's later given a typedef name. | |||
| 13988 | if (var->isThisDeclarationADefinition() && | |||
| 13989 | var->getDeclContext()->getRedeclContext()->isFileContext() && | |||
| 13990 | var->isExternallyVisible() && var->hasLinkage() && | |||
| 13991 | !var->isInline() && !var->getDescribedVarTemplate() && | |||
| 13992 | !isa<VarTemplatePartialSpecializationDecl>(var) && | |||
| 13993 | !isTemplateInstantiation(var->getTemplateSpecializationKind()) && | |||
| 13994 | !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations, | |||
| 13995 | var->getLocation())) { | |||
| 13996 | // Find a previous declaration that's not a definition. | |||
| 13997 | VarDecl *prev = var->getPreviousDecl(); | |||
| 13998 | while (prev && prev->isThisDeclarationADefinition()) | |||
| 13999 | prev = prev->getPreviousDecl(); | |||
| 14000 | ||||
| 14001 | if (!prev) { | |||
| 14002 | Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var; | |||
| 14003 | Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage) | |||
| 14004 | << /* variable */ 0; | |||
| 14005 | } | |||
| 14006 | } | |||
| 14007 | ||||
| 14008 | // Cache the result of checking for constant initialization. | |||
| 14009 | std::optional<bool> CacheHasConstInit; | |||
| 14010 | const Expr *CacheCulprit = nullptr; | |||
| 14011 | auto checkConstInit = [&]() mutable { | |||
| 14012 | if (!CacheHasConstInit) | |||
| 14013 | CacheHasConstInit = var->getInit()->isConstantInitializer( | |||
| 14014 | Context, var->getType()->isReferenceType(), &CacheCulprit); | |||
| 14015 | return *CacheHasConstInit; | |||
| 14016 | }; | |||
| 14017 | ||||
| 14018 | if (var->getTLSKind() == VarDecl::TLS_Static) { | |||
| 14019 | if (var->getType().isDestructedType()) { | |||
| 14020 | // GNU C++98 edits for __thread, [basic.start.term]p3: | |||
| 14021 | // The type of an object with thread storage duration shall not | |||
| 14022 | // have a non-trivial destructor. | |||
| 14023 | Diag(var->getLocation(), diag::err_thread_nontrivial_dtor); | |||
| 14024 | if (getLangOpts().CPlusPlus11) | |||
| 14025 | Diag(var->getLocation(), diag::note_use_thread_local); | |||
| 14026 | } else if (getLangOpts().CPlusPlus && var->hasInit()) { | |||
| 14027 | if (!checkConstInit()) { | |||
| 14028 | // GNU C++98 edits for __thread, [basic.start.init]p4: | |||
| 14029 | // An object of thread storage duration shall not require dynamic | |||
| 14030 | // initialization. | |||
| 14031 | // FIXME: Need strict checking here. | |||
| 14032 | Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init) | |||
| 14033 | << CacheCulprit->getSourceRange(); | |||
| 14034 | if (getLangOpts().CPlusPlus11) | |||
| 14035 | Diag(var->getLocation(), diag::note_use_thread_local); | |||
| 14036 | } | |||
| 14037 | } | |||
| 14038 | } | |||
| 14039 | ||||
| 14040 | ||||
| 14041 | if (!var->getType()->isStructureType() && var->hasInit() && | |||
| 14042 | isa<InitListExpr>(var->getInit())) { | |||
| 14043 | const auto *ILE = cast<InitListExpr>(var->getInit()); | |||
| 14044 | unsigned NumInits = ILE->getNumInits(); | |||
| 14045 | if (NumInits > 2) | |||
| 14046 | for (unsigned I = 0; I < NumInits; ++I) { | |||
| 14047 | const auto *Init = ILE->getInit(I); | |||
| 14048 | if (!Init) | |||
| 14049 | break; | |||
| 14050 | const auto *SL = dyn_cast<StringLiteral>(Init->IgnoreImpCasts()); | |||
| 14051 | if (!SL) | |||
| 14052 | break; | |||
| 14053 | ||||
| 14054 | unsigned NumConcat = SL->getNumConcatenated(); | |||
| 14055 | // Diagnose missing comma in string array initialization. | |||
| 14056 | // Do not warn when all the elements in the initializer are concatenated | |||
| 14057 | // together. Do not warn for macros too. | |||
| 14058 | if (NumConcat == 2 && !SL->getBeginLoc().isMacroID()) { | |||
| 14059 | bool OnlyOneMissingComma = true; | |||
| 14060 | for (unsigned J = I + 1; J < NumInits; ++J) { | |||
| 14061 | const auto *Init = ILE->getInit(J); | |||
| 14062 | if (!Init) | |||
| 14063 | break; | |||
| 14064 | const auto *SLJ = dyn_cast<StringLiteral>(Init->IgnoreImpCasts()); | |||
| 14065 | if (!SLJ || SLJ->getNumConcatenated() > 1) { | |||
| 14066 | OnlyOneMissingComma = false; | |||
| 14067 | break; | |||
| 14068 | } | |||
| 14069 | } | |||
| 14070 | ||||
| 14071 | if (OnlyOneMissingComma) { | |||
| 14072 | SmallVector<FixItHint, 1> Hints; | |||
| 14073 | for (unsigned i = 0; i < NumConcat - 1; ++i) | |||
| 14074 | Hints.push_back(FixItHint::CreateInsertion( | |||
| 14075 | PP.getLocForEndOfToken(SL->getStrTokenLoc(i)), ",")); | |||
| 14076 | ||||
| 14077 | Diag(SL->getStrTokenLoc(1), | |||
| 14078 | diag::warn_concatenated_literal_array_init) | |||
| 14079 | << Hints; | |||
| 14080 | Diag(SL->getBeginLoc(), | |||
| 14081 | diag::note_concatenated_string_literal_silence); | |||
| 14082 | } | |||
| 14083 | // In any case, stop now. | |||
| 14084 | break; | |||
| 14085 | } | |||
| 14086 | } | |||
| 14087 | } | |||
| 14088 | ||||
| 14089 | ||||
| 14090 | QualType type = var->getType(); | |||
| 14091 | ||||
| 14092 | if (var->hasAttr<BlocksAttr>()) | |||
| 14093 | getCurFunction()->addByrefBlockVar(var); | |||
| 14094 | ||||
| 14095 | Expr *Init = var->getInit(); | |||
| 14096 | bool GlobalStorage = var->hasGlobalStorage(); | |||
| 14097 | bool IsGlobal = GlobalStorage && !var->isStaticLocal(); | |||
| 14098 | QualType baseType = Context.getBaseElementType(type); | |||
| 14099 | bool HasConstInit = true; | |||
| 14100 | ||||
| 14101 | // Check whether the initializer is sufficiently constant. | |||
| 14102 | if (getLangOpts().CPlusPlus && !type->isDependentType() && Init && | |||
| 14103 | !Init->isValueDependent() && | |||
| 14104 | (GlobalStorage || var->isConstexpr() || | |||
| 14105 | var->mightBeUsableInConstantExpressions(Context))) { | |||
| 14106 | // If this variable might have a constant initializer or might be usable in | |||
| 14107 | // constant expressions, check whether or not it actually is now. We can't | |||
| 14108 | // do this lazily, because the result might depend on things that change | |||
| 14109 | // later, such as which constexpr functions happen to be defined. | |||
| 14110 | SmallVector<PartialDiagnosticAt, 8> Notes; | |||
| 14111 | if (!getLangOpts().CPlusPlus11) { | |||
| 14112 | // Prior to C++11, in contexts where a constant initializer is required, | |||
| 14113 | // the set of valid constant initializers is described by syntactic rules | |||
| 14114 | // in [expr.const]p2-6. | |||
| 14115 | // FIXME: Stricter checking for these rules would be useful for constinit / | |||
| 14116 | // -Wglobal-constructors. | |||
| 14117 | HasConstInit = checkConstInit(); | |||
| 14118 | ||||
| 14119 | // Compute and cache the constant value, and remember that we have a | |||
| 14120 | // constant initializer. | |||
| 14121 | if (HasConstInit) { | |||
| 14122 | (void)var->checkForConstantInitialization(Notes); | |||
| 14123 | Notes.clear(); | |||
| 14124 | } else if (CacheCulprit) { | |||
| 14125 | Notes.emplace_back(CacheCulprit->getExprLoc(), | |||
| 14126 | PDiag(diag::note_invalid_subexpr_in_const_expr)); | |||
| 14127 | Notes.back().second << CacheCulprit->getSourceRange(); | |||
| 14128 | } | |||
| 14129 | } else { | |||
| 14130 | // Evaluate the initializer to see if it's a constant initializer. | |||
| 14131 | HasConstInit = var->checkForConstantInitialization(Notes); | |||
| 14132 | } | |||
| 14133 | ||||
| 14134 | if (HasConstInit) { | |||
| 14135 | // FIXME: Consider replacing the initializer with a ConstantExpr. | |||
| 14136 | } else if (var->isConstexpr()) { | |||
| 14137 | SourceLocation DiagLoc = var->getLocation(); | |||
| 14138 | // If the note doesn't add any useful information other than a source | |||
| 14139 | // location, fold it into the primary diagnostic. | |||
| 14140 | if (Notes.size() == 1 && Notes[0].second.getDiagID() == | |||
| 14141 | diag::note_invalid_subexpr_in_const_expr) { | |||
| 14142 | DiagLoc = Notes[0].first; | |||
| 14143 | Notes.clear(); | |||
| 14144 | } | |||
| 14145 | Diag(DiagLoc, diag::err_constexpr_var_requires_const_init) | |||
| 14146 | << var << Init->getSourceRange(); | |||
| 14147 | for (unsigned I = 0, N = Notes.size(); I != N; ++I) | |||
| 14148 | Diag(Notes[I].first, Notes[I].second); | |||
| 14149 | } else if (GlobalStorage && var->hasAttr<ConstInitAttr>()) { | |||
| 14150 | auto *Attr = var->getAttr<ConstInitAttr>(); | |||
| 14151 | Diag(var->getLocation(), diag::err_require_constant_init_failed) | |||
| 14152 | << Init->getSourceRange(); | |||
| 14153 | Diag(Attr->getLocation(), diag::note_declared_required_constant_init_here) | |||
| 14154 | << Attr->getRange() << Attr->isConstinit(); | |||
| 14155 | for (auto &it : Notes) | |||
| 14156 | Diag(it.first, it.second); | |||
| 14157 | } else if (IsGlobal && | |||
| 14158 | !getDiagnostics().isIgnored(diag::warn_global_constructor, | |||
| 14159 | var->getLocation())) { | |||
| 14160 | // Warn about globals which don't have a constant initializer. Don't | |||
| 14161 | // warn about globals with a non-trivial destructor because we already | |||
| 14162 | // warned about them. | |||
| 14163 | CXXRecordDecl *RD = baseType->getAsCXXRecordDecl(); | |||
| 14164 | if (!(RD && !RD->hasTrivialDestructor())) { | |||
| 14165 | // checkConstInit() here permits trivial default initialization even in | |||
| 14166 | // C++11 onwards, where such an initializer is not a constant initializer | |||
| 14167 | // but nonetheless doesn't require a global constructor. | |||
| 14168 | if (!checkConstInit()) | |||
| 14169 | Diag(var->getLocation(), diag::warn_global_constructor) | |||
| 14170 | << Init->getSourceRange(); | |||
| 14171 | } | |||
| 14172 | } | |||
| 14173 | } | |||
| 14174 | ||||
| 14175 | // Apply section attributes and pragmas to global variables. | |||
| 14176 | if (GlobalStorage && var->isThisDeclarationADefinition() && | |||
| 14177 | !inTemplateInstantiation()) { | |||
| 14178 | PragmaStack<StringLiteral *> *Stack = nullptr; | |||
| 14179 | int SectionFlags = ASTContext::PSF_Read; | |||
| 14180 | if (var->getType().isConstQualified()) { | |||
| 14181 | if (HasConstInit) | |||
| 14182 | Stack = &ConstSegStack; | |||
| 14183 | else { | |||
| 14184 | Stack = &BSSSegStack; | |||
| 14185 | SectionFlags |= ASTContext::PSF_Write; | |||
| 14186 | } | |||
| 14187 | } else if (var->hasInit() && HasConstInit) { | |||
| 14188 | Stack = &DataSegStack; | |||
| 14189 | SectionFlags |= ASTContext::PSF_Write; | |||
| 14190 | } else { | |||
| 14191 | Stack = &BSSSegStack; | |||
| 14192 | SectionFlags |= ASTContext::PSF_Write; | |||
| 14193 | } | |||
| 14194 | if (const SectionAttr *SA = var->getAttr<SectionAttr>()) { | |||
| 14195 | if (SA->getSyntax() == AttributeCommonInfo::AS_Declspec) | |||
| 14196 | SectionFlags |= ASTContext::PSF_Implicit; | |||
| 14197 | UnifySection(SA->getName(), SectionFlags, var); | |||
| 14198 | } else if (Stack->CurrentValue) { | |||
| 14199 | SectionFlags |= ASTContext::PSF_Implicit; | |||
| 14200 | auto SectionName = Stack->CurrentValue->getString(); | |||
| 14201 | var->addAttr(SectionAttr::CreateImplicit(Context, SectionName, | |||
| 14202 | Stack->CurrentPragmaLocation, | |||
| 14203 | SectionAttr::Declspec_allocate)); | |||
| 14204 | if (UnifySection(SectionName, SectionFlags, var)) | |||
| 14205 | var->dropAttr<SectionAttr>(); | |||
| 14206 | } | |||
| 14207 | ||||
| 14208 | // Apply the init_seg attribute if this has an initializer. If the | |||
| 14209 | // initializer turns out to not be dynamic, we'll end up ignoring this | |||
| 14210 | // attribute. | |||
| 14211 | if (CurInitSeg && var->getInit()) | |||
| 14212 | var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(), | |||
| 14213 | CurInitSegLoc)); | |||
| 14214 | } | |||
| 14215 | ||||
| 14216 | // All the following checks are C++ only. | |||
| 14217 | if (!getLangOpts().CPlusPlus) { | |||
| 14218 | // If this variable must be emitted, add it as an initializer for the | |||
| 14219 | // current module. | |||
| 14220 | if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty()) | |||
| 14221 | Context.addModuleInitializer(ModuleScopes.back().Module, var); | |||
| 14222 | return; | |||
| 14223 | } | |||
| 14224 | ||||
| 14225 | // Require the destructor. | |||
| 14226 | if (!type->isDependentType()) | |||
| 14227 | if (const RecordType *recordType = baseType->getAs<RecordType>()) | |||
| 14228 | FinalizeVarWithDestructor(var, recordType); | |||
| 14229 | ||||
| 14230 | // If this variable must be emitted, add it as an initializer for the current | |||
| 14231 | // module. | |||
| 14232 | if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty()) | |||
| 14233 | Context.addModuleInitializer(ModuleScopes.back().Module, var); | |||
| 14234 | ||||
| 14235 | // Build the bindings if this is a structured binding declaration. | |||
| 14236 | if (auto *DD = dyn_cast<DecompositionDecl>(var)) | |||
| 14237 | CheckCompleteDecompositionDeclaration(DD); | |||
| 14238 | } | |||
| 14239 | ||||
| 14240 | /// Check if VD needs to be dllexport/dllimport due to being in a | |||
| 14241 | /// dllexport/import function. | |||
| 14242 | void Sema::CheckStaticLocalForDllExport(VarDecl *VD) { | |||
| 14243 | assert(VD->isStaticLocal())(static_cast <bool> (VD->isStaticLocal()) ? void (0) : __assert_fail ("VD->isStaticLocal()", "clang/lib/Sema/SemaDecl.cpp" , 14243, __extension__ __PRETTY_FUNCTION__)); | |||
| 14244 | ||||
| 14245 | auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod()); | |||
| 14246 | ||||
| 14247 | // Find outermost function when VD is in lambda function. | |||
| 14248 | while (FD && !getDLLAttr(FD) && | |||
| 14249 | !FD->hasAttr<DLLExportStaticLocalAttr>() && | |||
| 14250 | !FD->hasAttr<DLLImportStaticLocalAttr>()) { | |||
| 14251 | FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod()); | |||
| 14252 | } | |||
| 14253 | ||||
| 14254 | if (!FD) | |||
| 14255 | return; | |||
| 14256 | ||||
| 14257 | // Static locals inherit dll attributes from their function. | |||
| 14258 | if (Attr *A = getDLLAttr(FD)) { | |||
| 14259 | auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext())); | |||
| 14260 | NewAttr->setInherited(true); | |||
| 14261 | VD->addAttr(NewAttr); | |||
| 14262 | } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) { | |||
| 14263 | auto *NewAttr = DLLExportAttr::CreateImplicit(getASTContext(), *A); | |||
| 14264 | NewAttr->setInherited(true); | |||
| 14265 | VD->addAttr(NewAttr); | |||
| 14266 | ||||
| 14267 | // Export this function to enforce exporting this static variable even | |||
| 14268 | // if it is not used in this compilation unit. | |||
| 14269 | if (!FD->hasAttr<DLLExportAttr>()) | |||
| 14270 | FD->addAttr(NewAttr); | |||
| 14271 | ||||
| 14272 | } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) { | |||
| 14273 | auto *NewAttr = DLLImportAttr::CreateImplicit(getASTContext(), *A); | |||
| 14274 | NewAttr->setInherited(true); | |||
| 14275 | VD->addAttr(NewAttr); | |||
| 14276 | } | |||
| 14277 | } | |||
| 14278 | ||||
| 14279 | void Sema::CheckThreadLocalForLargeAlignment(VarDecl *VD) { | |||
| 14280 | assert(VD->getTLSKind())(static_cast <bool> (VD->getTLSKind()) ? void (0) : __assert_fail ("VD->getTLSKind()", "clang/lib/Sema/SemaDecl.cpp", 14280 , __extension__ __PRETTY_FUNCTION__)); | |||
| 14281 | ||||
| 14282 | // Perform TLS alignment check here after attributes attached to the variable | |||
| 14283 | // which may affect the alignment have been processed. Only perform the check | |||
| 14284 | // if the target has a maximum TLS alignment (zero means no constraints). | |||
| 14285 | if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) { | |||
| 14286 | // Protect the check so that it's not performed on dependent types and | |||
| 14287 | // dependent alignments (we can't determine the alignment in that case). | |||
| 14288 | if (!VD->hasDependentAlignment()) { | |||
| 14289 | CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign); | |||
| 14290 | if (Context.getDeclAlign(VD) > MaxAlignChars) { | |||
| 14291 | Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum) | |||
| 14292 | << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD | |||
| 14293 | << (unsigned)MaxAlignChars.getQuantity(); | |||
| 14294 | } | |||
| 14295 | } | |||
| 14296 | } | |||
| 14297 | } | |||
| 14298 | ||||
| 14299 | /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform | |||
| 14300 | /// any semantic actions necessary after any initializer has been attached. | |||
| 14301 | void Sema::FinalizeDeclaration(Decl *ThisDecl) { | |||
| 14302 | // Note that we are no longer parsing the initializer for this declaration. | |||
| 14303 | ParsingInitForAutoVars.erase(ThisDecl); | |||
| 14304 | ||||
| 14305 | VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl); | |||
| 14306 | if (!VD) | |||
| 14307 | return; | |||
| 14308 | ||||
| 14309 | // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active | |||
| 14310 | if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() && | |||
| 14311 | !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) { | |||
| 14312 | if (PragmaClangBSSSection.Valid) | |||
| 14313 | VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit( | |||
| 14314 | Context, PragmaClangBSSSection.SectionName, | |||
| 14315 | PragmaClangBSSSection.PragmaLocation)); | |||
| 14316 | if (PragmaClangDataSection.Valid) | |||
| 14317 | VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit( | |||
| 14318 | Context, PragmaClangDataSection.SectionName, | |||
| 14319 | PragmaClangDataSection.PragmaLocation)); | |||
| 14320 | if (PragmaClangRodataSection.Valid) | |||
| 14321 | VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit( | |||
| 14322 | Context, PragmaClangRodataSection.SectionName, | |||
| 14323 | PragmaClangRodataSection.PragmaLocation)); | |||
| 14324 | if (PragmaClangRelroSection.Valid) | |||
| 14325 | VD->addAttr(PragmaClangRelroSectionAttr::CreateImplicit( | |||
| 14326 | Context, PragmaClangRelroSection.SectionName, | |||
| 14327 | PragmaClangRelroSection.PragmaLocation)); | |||
| 14328 | } | |||
| 14329 | ||||
| 14330 | if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) { | |||
| 14331 | for (auto *BD : DD->bindings()) { | |||
| 14332 | FinalizeDeclaration(BD); | |||
| 14333 | } | |||
| 14334 | } | |||
| 14335 | ||||
| 14336 | checkAttributesAfterMerging(*this, *VD); | |||
| 14337 | ||||
| 14338 | if (VD->isStaticLocal()) | |||
| 14339 | CheckStaticLocalForDllExport(VD); | |||
| 14340 | ||||
| 14341 | if (VD->getTLSKind()) | |||
| 14342 | CheckThreadLocalForLargeAlignment(VD); | |||
| 14343 | ||||
| 14344 | // Perform check for initializers of device-side global variables. | |||
| 14345 | // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA | |||
| 14346 | // 7.5). We must also apply the same checks to all __shared__ | |||
| 14347 | // variables whether they are local or not. CUDA also allows | |||
| 14348 | // constant initializers for __constant__ and __device__ variables. | |||
| 14349 | if (getLangOpts().CUDA) | |||
| 14350 | checkAllowedCUDAInitializer(VD); | |||
| 14351 | ||||
| 14352 | // Grab the dllimport or dllexport attribute off of the VarDecl. | |||
| 14353 | const InheritableAttr *DLLAttr = getDLLAttr(VD); | |||
| 14354 | ||||
| 14355 | // Imported static data members cannot be defined out-of-line. | |||
| 14356 | if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) { | |||
| 14357 | if (VD->isStaticDataMember() && VD->isOutOfLine() && | |||
| 14358 | VD->isThisDeclarationADefinition()) { | |||
| 14359 | // We allow definitions of dllimport class template static data members | |||
| 14360 | // with a warning. | |||
| 14361 | CXXRecordDecl *Context = | |||
| 14362 | cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext()); | |||
| 14363 | bool IsClassTemplateMember = | |||
| 14364 | isa<ClassTemplatePartialSpecializationDecl>(Context) || | |||
| 14365 | Context->getDescribedClassTemplate(); | |||
| 14366 | ||||
| 14367 | Diag(VD->getLocation(), | |||
| 14368 | IsClassTemplateMember | |||
| 14369 | ? diag::warn_attribute_dllimport_static_field_definition | |||
| 14370 | : diag::err_attribute_dllimport_static_field_definition); | |||
| 14371 | Diag(IA->getLocation(), diag::note_attribute); | |||
| 14372 | if (!IsClassTemplateMember) | |||
| 14373 | VD->setInvalidDecl(); | |||
| 14374 | } | |||
| 14375 | } | |||
| 14376 | ||||
| 14377 | // dllimport/dllexport variables cannot be thread local, their TLS index | |||
| 14378 | // isn't exported with the variable. | |||
| 14379 | if (DLLAttr && VD->getTLSKind()) { | |||
| 14380 | auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod()); | |||
| 14381 | if (F && getDLLAttr(F)) { | |||
| 14382 | assert(VD->isStaticLocal())(static_cast <bool> (VD->isStaticLocal()) ? void (0) : __assert_fail ("VD->isStaticLocal()", "clang/lib/Sema/SemaDecl.cpp" , 14382, __extension__ __PRETTY_FUNCTION__)); | |||
| 14383 | // But if this is a static local in a dlimport/dllexport function, the | |||
| 14384 | // function will never be inlined, which means the var would never be | |||
| 14385 | // imported, so having it marked import/export is safe. | |||
| 14386 | } else { | |||
| 14387 | Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD | |||
| 14388 | << DLLAttr; | |||
| 14389 | VD->setInvalidDecl(); | |||
| 14390 | } | |||
| 14391 | } | |||
| 14392 | ||||
| 14393 | if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) { | |||
| 14394 | if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) { | |||
| 14395 | Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition) | |||
| 14396 | << Attr; | |||
| 14397 | VD->dropAttr<UsedAttr>(); | |||
| 14398 | } | |||
| 14399 | } | |||
| 14400 | if (RetainAttr *Attr = VD->getAttr<RetainAttr>()) { | |||
| 14401 | if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) { | |||
| 14402 | Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition) | |||
| 14403 | << Attr; | |||
| 14404 | VD->dropAttr<RetainAttr>(); | |||
| 14405 | } | |||
| 14406 | } | |||
| 14407 | ||||
| 14408 | const DeclContext *DC = VD->getDeclContext(); | |||
| 14409 | // If there's a #pragma GCC visibility in scope, and this isn't a class | |||
| 14410 | // member, set the visibility of this variable. | |||
| 14411 | if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible()) | |||
| 14412 | AddPushedVisibilityAttribute(VD); | |||
| 14413 | ||||
| 14414 | // FIXME: Warn on unused var template partial specializations. | |||
| 14415 | if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD)) | |||
| 14416 | MarkUnusedFileScopedDecl(VD); | |||
| 14417 | ||||
| 14418 | // Now we have parsed the initializer and can update the table of magic | |||
| 14419 | // tag values. | |||
| 14420 | if (!VD->hasAttr<TypeTagForDatatypeAttr>() || | |||
| 14421 | !VD->getType()->isIntegralOrEnumerationType()) | |||
| 14422 | return; | |||
| 14423 | ||||
| 14424 | for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) { | |||
| 14425 | const Expr *MagicValueExpr = VD->getInit(); | |||
| 14426 | if (!MagicValueExpr) { | |||
| 14427 | continue; | |||
| 14428 | } | |||
| 14429 | std::optional<llvm::APSInt> MagicValueInt; | |||
| 14430 | if (!(MagicValueInt = MagicValueExpr->getIntegerConstantExpr(Context))) { | |||
| 14431 | Diag(I->getRange().getBegin(), | |||
| 14432 | diag::err_type_tag_for_datatype_not_ice) | |||
| 14433 | << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); | |||
| 14434 | continue; | |||
| 14435 | } | |||
| 14436 | if (MagicValueInt->getActiveBits() > 64) { | |||
| 14437 | Diag(I->getRange().getBegin(), | |||
| 14438 | diag::err_type_tag_for_datatype_too_large) | |||
| 14439 | << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); | |||
| 14440 | continue; | |||
| 14441 | } | |||
| 14442 | uint64_t MagicValue = MagicValueInt->getZExtValue(); | |||
| 14443 | RegisterTypeTagForDatatype(I->getArgumentKind(), | |||
| 14444 | MagicValue, | |||
| 14445 | I->getMatchingCType(), | |||
| 14446 | I->getLayoutCompatible(), | |||
| 14447 | I->getMustBeNull()); | |||
| 14448 | } | |||
| 14449 | } | |||
| 14450 | ||||
| 14451 | static bool hasDeducedAuto(DeclaratorDecl *DD) { | |||
| 14452 | auto *VD = dyn_cast<VarDecl>(DD); | |||
| 14453 | return VD && !VD->getType()->hasAutoForTrailingReturnType(); | |||
| 14454 | } | |||
| 14455 | ||||
| 14456 | Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS, | |||
| 14457 | ArrayRef<Decl *> Group) { | |||
| 14458 | SmallVector<Decl*, 8> Decls; | |||
| 14459 | ||||
| 14460 | if (DS.isTypeSpecOwned()) | |||
| 14461 | Decls.push_back(DS.getRepAsDecl()); | |||
| 14462 | ||||
| 14463 | DeclaratorDecl *FirstDeclaratorInGroup = nullptr; | |||
| 14464 | DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr; | |||
| 14465 | bool DiagnosedMultipleDecomps = false; | |||
| 14466 | DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr; | |||
| 14467 | bool DiagnosedNonDeducedAuto = false; | |||
| 14468 | ||||
| 14469 | for (unsigned i = 0, e = Group.size(); i != e; ++i) { | |||
| 14470 | if (Decl *D = Group[i]) { | |||
| 14471 | // For declarators, there are some additional syntactic-ish checks we need | |||
| 14472 | // to perform. | |||
| 14473 | if (auto *DD = dyn_cast<DeclaratorDecl>(D)) { | |||
| 14474 | if (!FirstDeclaratorInGroup) | |||
| 14475 | FirstDeclaratorInGroup = DD; | |||
| 14476 | if (!FirstDecompDeclaratorInGroup) | |||
| 14477 | FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D); | |||
| 14478 | if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() && | |||
| 14479 | !hasDeducedAuto(DD)) | |||
| 14480 | FirstNonDeducedAutoInGroup = DD; | |||
| 14481 | ||||
| 14482 | if (FirstDeclaratorInGroup != DD) { | |||
| 14483 | // A decomposition declaration cannot be combined with any other | |||
| 14484 | // declaration in the same group. | |||
| 14485 | if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) { | |||
| 14486 | Diag(FirstDecompDeclaratorInGroup->getLocation(), | |||
| 14487 | diag::err_decomp_decl_not_alone) | |||
| 14488 | << FirstDeclaratorInGroup->getSourceRange() | |||
| 14489 | << DD->getSourceRange(); | |||
| 14490 | DiagnosedMultipleDecomps = true; | |||
| 14491 | } | |||
| 14492 | ||||
| 14493 | // A declarator that uses 'auto' in any way other than to declare a | |||
| 14494 | // variable with a deduced type cannot be combined with any other | |||
| 14495 | // declarator in the same group. | |||
| 14496 | if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) { | |||
| 14497 | Diag(FirstNonDeducedAutoInGroup->getLocation(), | |||
| 14498 | diag::err_auto_non_deduced_not_alone) | |||
| 14499 | << FirstNonDeducedAutoInGroup->getType() | |||
| 14500 | ->hasAutoForTrailingReturnType() | |||
| 14501 | << FirstDeclaratorInGroup->getSourceRange() | |||
| 14502 | << DD->getSourceRange(); | |||
| 14503 | DiagnosedNonDeducedAuto = true; | |||
| 14504 | } | |||
| 14505 | } | |||
| 14506 | } | |||
| 14507 | ||||
| 14508 | Decls.push_back(D); | |||
| 14509 | } | |||
| 14510 | } | |||
| 14511 | ||||
| 14512 | if (DeclSpec::isDeclRep(DS.getTypeSpecType())) { | |||
| 14513 | if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) { | |||
| 14514 | handleTagNumbering(Tag, S); | |||
| 14515 | if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() && | |||
| 14516 | getLangOpts().CPlusPlus) | |||
| 14517 | Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup); | |||
| 14518 | } | |||
| 14519 | } | |||
| 14520 | ||||
| 14521 | return BuildDeclaratorGroup(Decls); | |||
| 14522 | } | |||
| 14523 | ||||
| 14524 | /// BuildDeclaratorGroup - convert a list of declarations into a declaration | |||
| 14525 | /// group, performing any necessary semantic checking. | |||
| 14526 | Sema::DeclGroupPtrTy | |||
| 14527 | Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) { | |||
| 14528 | // C++14 [dcl.spec.auto]p7: (DR1347) | |||
| 14529 | // If the type that replaces the placeholder type is not the same in each | |||
| 14530 | // deduction, the program is ill-formed. | |||
| 14531 | if (Group.size() > 1) { | |||
| 14532 | QualType Deduced; | |||
| 14533 | VarDecl *DeducedDecl = nullptr; | |||
| 14534 | for (unsigned i = 0, e = Group.size(); i != e; ++i) { | |||
| 14535 | VarDecl *D = dyn_cast<VarDecl>(Group[i]); | |||
| 14536 | if (!D || D->isInvalidDecl()) | |||
| 14537 | break; | |||
| 14538 | DeducedType *DT = D->getType()->getContainedDeducedType(); | |||
| 14539 | if (!DT || DT->getDeducedType().isNull()) | |||
| 14540 | continue; | |||
| 14541 | if (Deduced.isNull()) { | |||
| 14542 | Deduced = DT->getDeducedType(); | |||
| 14543 | DeducedDecl = D; | |||
| 14544 | } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) { | |||
| 14545 | auto *AT = dyn_cast<AutoType>(DT); | |||
| 14546 | auto Dia = Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), | |||
| 14547 | diag::err_auto_different_deductions) | |||
| 14548 | << (AT ? (unsigned)AT->getKeyword() : 3) << Deduced | |||
| 14549 | << DeducedDecl->getDeclName() << DT->getDeducedType() | |||
| 14550 | << D->getDeclName(); | |||
| 14551 | if (DeducedDecl->hasInit()) | |||
| 14552 | Dia << DeducedDecl->getInit()->getSourceRange(); | |||
| 14553 | if (D->getInit()) | |||
| 14554 | Dia << D->getInit()->getSourceRange(); | |||
| 14555 | D->setInvalidDecl(); | |||
| 14556 | break; | |||
| 14557 | } | |||
| 14558 | } | |||
| 14559 | } | |||
| 14560 | ||||
| 14561 | ActOnDocumentableDecls(Group); | |||
| 14562 | ||||
| 14563 | return DeclGroupPtrTy::make( | |||
| 14564 | DeclGroupRef::Create(Context, Group.data(), Group.size())); | |||
| 14565 | } | |||
| 14566 | ||||
| 14567 | void Sema::ActOnDocumentableDecl(Decl *D) { | |||
| 14568 | ActOnDocumentableDecls(D); | |||
| 14569 | } | |||
| 14570 | ||||
| 14571 | void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) { | |||
| 14572 | // Don't parse the comment if Doxygen diagnostics are ignored. | |||
| 14573 | if (Group.empty() || !Group[0]) | |||
| 14574 | return; | |||
| 14575 | ||||
| 14576 | if (Diags.isIgnored(diag::warn_doc_param_not_found, | |||
| 14577 | Group[0]->getLocation()) && | |||
| 14578 | Diags.isIgnored(diag::warn_unknown_comment_command_name, | |||
| 14579 | Group[0]->getLocation())) | |||
| 14580 | return; | |||
| 14581 | ||||
| 14582 | if (Group.size() >= 2) { | |||
| 14583 | // This is a decl group. Normally it will contain only declarations | |||
| 14584 | // produced from declarator list. But in case we have any definitions or | |||
| 14585 | // additional declaration references: | |||
| 14586 | // 'typedef struct S {} S;' | |||
| 14587 | // 'typedef struct S *S;' | |||
| 14588 | // 'struct S *pS;' | |||
| 14589 | // FinalizeDeclaratorGroup adds these as separate declarations. | |||
| 14590 | Decl *MaybeTagDecl = Group[0]; | |||
| 14591 | if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) { | |||
| 14592 | Group = Group.slice(1); | |||
| 14593 | } | |||
| 14594 | } | |||
| 14595 | ||||
| 14596 | // FIMXE: We assume every Decl in the group is in the same file. | |||
| 14597 | // This is false when preprocessor constructs the group from decls in | |||
| 14598 | // different files (e. g. macros or #include). | |||
| 14599 | Context.attachCommentsToJustParsedDecls(Group, &getPreprocessor()); | |||
| 14600 | } | |||
| 14601 | ||||
| 14602 | /// Common checks for a parameter-declaration that should apply to both function | |||
| 14603 | /// parameters and non-type template parameters. | |||
| 14604 | void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) { | |||
| 14605 | // Check that there are no default arguments inside the type of this | |||
| 14606 | // parameter. | |||
| 14607 | if (getLangOpts().CPlusPlus) | |||
| 14608 | CheckExtraCXXDefaultArguments(D); | |||
| 14609 | ||||
| 14610 | // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). | |||
| 14611 | if (D.getCXXScopeSpec().isSet()) { | |||
| 14612 | Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator) | |||
| 14613 | << D.getCXXScopeSpec().getRange(); | |||
| 14614 | } | |||
| 14615 | ||||
| 14616 | // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a | |||
| 14617 | // simple identifier except [...irrelevant cases...]. | |||
| 14618 | switch (D.getName().getKind()) { | |||
| 14619 | case UnqualifiedIdKind::IK_Identifier: | |||
| 14620 | break; | |||
| 14621 | ||||
| 14622 | case UnqualifiedIdKind::IK_OperatorFunctionId: | |||
| 14623 | case UnqualifiedIdKind::IK_ConversionFunctionId: | |||
| 14624 | case UnqualifiedIdKind::IK_LiteralOperatorId: | |||
| 14625 | case UnqualifiedIdKind::IK_ConstructorName: | |||
| 14626 | case UnqualifiedIdKind::IK_DestructorName: | |||
| 14627 | case UnqualifiedIdKind::IK_ImplicitSelfParam: | |||
| 14628 | case UnqualifiedIdKind::IK_DeductionGuideName: | |||
| 14629 | Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name) | |||
| 14630 | << GetNameForDeclarator(D).getName(); | |||
| 14631 | break; | |||
| 14632 | ||||
| 14633 | case UnqualifiedIdKind::IK_TemplateId: | |||
| 14634 | case UnqualifiedIdKind::IK_ConstructorTemplateId: | |||
| 14635 | // GetNameForDeclarator would not produce a useful name in this case. | |||
| 14636 | Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id); | |||
| 14637 | break; | |||
| 14638 | } | |||
| 14639 | } | |||
| 14640 | ||||
| 14641 | /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator() | |||
| 14642 | /// to introduce parameters into function prototype scope. | |||
| 14643 | Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) { | |||
| 14644 | const DeclSpec &DS = D.getDeclSpec(); | |||
| 14645 | ||||
| 14646 | // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'. | |||
| 14647 | ||||
| 14648 | // C++03 [dcl.stc]p2 also permits 'auto'. | |||
| 14649 | StorageClass SC = SC_None; | |||
| 14650 | if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { | |||
| 14651 | SC = SC_Register; | |||
| 14652 | // In C++11, the 'register' storage class specifier is deprecated. | |||
| 14653 | // In C++17, it is not allowed, but we tolerate it as an extension. | |||
| 14654 | if (getLangOpts().CPlusPlus11) { | |||
| 14655 | Diag(DS.getStorageClassSpecLoc(), | |||
| 14656 | getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class | |||
| 14657 | : diag::warn_deprecated_register) | |||
| 14658 | << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); | |||
| 14659 | } | |||
| 14660 | } else if (getLangOpts().CPlusPlus && | |||
| 14661 | DS.getStorageClassSpec() == DeclSpec::SCS_auto) { | |||
| 14662 | SC = SC_Auto; | |||
| 14663 | } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { | |||
| 14664 | Diag(DS.getStorageClassSpecLoc(), | |||
| 14665 | diag::err_invalid_storage_class_in_func_decl); | |||
| 14666 | D.getMutableDeclSpec().ClearStorageClassSpecs(); | |||
| 14667 | } | |||
| 14668 | ||||
| 14669 | if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) | |||
| 14670 | Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread) | |||
| 14671 | << DeclSpec::getSpecifierName(TSCS); | |||
| 14672 | if (DS.isInlineSpecified()) | |||
| 14673 | Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) | |||
| 14674 | << getLangOpts().CPlusPlus17; | |||
| 14675 | if (DS.hasConstexprSpecifier()) | |||
| 14676 | Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr) | |||
| 14677 | << 0 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier()); | |||
| 14678 | ||||
| 14679 | DiagnoseFunctionSpecifiers(DS); | |||
| 14680 | ||||
| 14681 | CheckFunctionOrTemplateParamDeclarator(S, D); | |||
| 14682 | ||||
| 14683 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | |||
| 14684 | QualType parmDeclType = TInfo->getType(); | |||
| 14685 | ||||
| 14686 | // Check for redeclaration of parameters, e.g. int foo(int x, int x); | |||
| 14687 | IdentifierInfo *II = D.getIdentifier(); | |||
| 14688 | if (II) { | |||
| 14689 | LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName, | |||
| 14690 | ForVisibleRedeclaration); | |||
| 14691 | LookupName(R, S); | |||
| 14692 | if (R.isSingleResult()) { | |||
| 14693 | NamedDecl *PrevDecl = R.getFoundDecl(); | |||
| 14694 | if (PrevDecl->isTemplateParameter()) { | |||
| 14695 | // Maybe we will complain about the shadowed template parameter. | |||
| 14696 | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); | |||
| 14697 | // Just pretend that we didn't see the previous declaration. | |||
| 14698 | PrevDecl = nullptr; | |||
| 14699 | } else if (S->isDeclScope(PrevDecl)) { | |||
| 14700 | Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II; | |||
| 14701 | Diag(PrevDecl->getLocation(), diag::note_previous_declaration); | |||
| 14702 | ||||
| 14703 | // Recover by removing the name | |||
| 14704 | II = nullptr; | |||
| 14705 | D.SetIdentifier(nullptr, D.getIdentifierLoc()); | |||
| 14706 | D.setInvalidType(true); | |||
| 14707 | } | |||
| 14708 | } | |||
| 14709 | } | |||
| 14710 | ||||
| 14711 | // Temporarily put parameter variables in the translation unit, not | |||
| 14712 | // the enclosing context. This prevents them from accidentally | |||
| 14713 | // looking like class members in C++. | |||
| 14714 | ParmVarDecl *New = | |||
| 14715 | CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(), | |||
| 14716 | D.getIdentifierLoc(), II, parmDeclType, TInfo, SC); | |||
| 14717 | ||||
| 14718 | if (D.isInvalidType()) | |||
| 14719 | New->setInvalidDecl(); | |||
| 14720 | ||||
| 14721 | assert(S->isFunctionPrototypeScope())(static_cast <bool> (S->isFunctionPrototypeScope()) ? void (0) : __assert_fail ("S->isFunctionPrototypeScope()" , "clang/lib/Sema/SemaDecl.cpp", 14721, __extension__ __PRETTY_FUNCTION__ )); | |||
| 14722 | assert(S->getFunctionPrototypeDepth() >= 1)(static_cast <bool> (S->getFunctionPrototypeDepth() >= 1) ? void (0) : __assert_fail ("S->getFunctionPrototypeDepth() >= 1" , "clang/lib/Sema/SemaDecl.cpp", 14722, __extension__ __PRETTY_FUNCTION__ )); | |||
| 14723 | New->setScopeInfo(S->getFunctionPrototypeDepth() - 1, | |||
| 14724 | S->getNextFunctionPrototypeIndex()); | |||
| 14725 | ||||
| 14726 | // Add the parameter declaration into this scope. | |||
| 14727 | S->AddDecl(New); | |||
| 14728 | if (II) | |||
| 14729 | IdResolver.AddDecl(New); | |||
| 14730 | ||||
| 14731 | ProcessDeclAttributes(S, New, D); | |||
| 14732 | ||||
| 14733 | if (D.getDeclSpec().isModulePrivateSpecified()) | |||
| 14734 | Diag(New->getLocation(), diag::err_module_private_local) | |||
| 14735 | << 1 << New << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) | |||
| 14736 | << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); | |||
| 14737 | ||||
| 14738 | if (New->hasAttr<BlocksAttr>()) { | |||
| 14739 | Diag(New->getLocation(), diag::err_block_on_nonlocal); | |||
| 14740 | } | |||
| 14741 | ||||
| 14742 | if (getLangOpts().OpenCL) | |||
| 14743 | deduceOpenCLAddressSpace(New); | |||
| 14744 | ||||
| 14745 | return New; | |||
| 14746 | } | |||
| 14747 | ||||
| 14748 | /// Synthesizes a variable for a parameter arising from a | |||
| 14749 | /// typedef. | |||
| 14750 | ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC, | |||
| 14751 | SourceLocation Loc, | |||
| 14752 | QualType T) { | |||
| 14753 | /* FIXME: setting StartLoc == Loc. | |||
| 14754 | Would it be worth to modify callers so as to provide proper source | |||
| 14755 | location for the unnamed parameters, embedding the parameter's type? */ | |||
| 14756 | ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr, | |||
| 14757 | T, Context.getTrivialTypeSourceInfo(T, Loc), | |||
| 14758 | SC_None, nullptr); | |||
| 14759 | Param->setImplicit(); | |||
| 14760 | return Param; | |||
| 14761 | } | |||
| 14762 | ||||
| 14763 | void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) { | |||
| 14764 | // Don't diagnose unused-parameter errors in template instantiations; we | |||
| 14765 | // will already have done so in the template itself. | |||
| 14766 | if (inTemplateInstantiation()) | |||
| 14767 | return; | |||
| 14768 | ||||
| 14769 | for (const ParmVarDecl *Parameter : Parameters) { | |||
| 14770 | if (!Parameter->isReferenced() && Parameter->getDeclName() && | |||
| 14771 | !Parameter->hasAttr<UnusedAttr>()) { | |||
| 14772 | Diag(Parameter->getLocation(), diag::warn_unused_parameter) | |||
| 14773 | << Parameter->getDeclName(); | |||
| 14774 | } | |||
| 14775 | } | |||
| 14776 | } | |||
| 14777 | ||||
| 14778 | void Sema::DiagnoseSizeOfParametersAndReturnValue( | |||
| 14779 | ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) { | |||
| 14780 | if (LangOpts.NumLargeByValueCopy == 0) // No check. | |||
| 14781 | return; | |||
| 14782 | ||||
| 14783 | // Warn if the return value is pass-by-value and larger than the specified | |||
| 14784 | // threshold. | |||
| 14785 | if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) { | |||
| 14786 | unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity(); | |||
| 14787 | if (Size > LangOpts.NumLargeByValueCopy) | |||
| 14788 | Diag(D->getLocation(), diag::warn_return_value_size) << D << Size; | |||
| 14789 | } | |||
| 14790 | ||||
| 14791 | // Warn if any parameter is pass-by-value and larger than the specified | |||
| 14792 | // threshold. | |||
| 14793 | for (const ParmVarDecl *Parameter : Parameters) { | |||
| 14794 | QualType T = Parameter->getType(); | |||
| 14795 | if (T->isDependentType() || !T.isPODType(Context)) | |||
| 14796 | continue; | |||
| 14797 | unsigned Size = Context.getTypeSizeInChars(T).getQuantity(); | |||
| 14798 | if (Size > LangOpts.NumLargeByValueCopy) | |||
| 14799 | Diag(Parameter->getLocation(), diag::warn_parameter_size) | |||
| 14800 | << Parameter << Size; | |||
| 14801 | } | |||
| 14802 | } | |||
| 14803 | ||||
| 14804 | ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc, | |||
| 14805 | SourceLocation NameLoc, IdentifierInfo *Name, | |||
| 14806 | QualType T, TypeSourceInfo *TSInfo, | |||
| 14807 | StorageClass SC) { | |||
| 14808 | // In ARC, infer a lifetime qualifier for appropriate parameter types. | |||
| 14809 | if (getLangOpts().ObjCAutoRefCount && | |||
| 14810 | T.getObjCLifetime() == Qualifiers::OCL_None && | |||
| 14811 | T->isObjCLifetimeType()) { | |||
| 14812 | ||||
| 14813 | Qualifiers::ObjCLifetime lifetime; | |||
| 14814 | ||||
| 14815 | // Special cases for arrays: | |||
| 14816 | // - if it's const, use __unsafe_unretained | |||
| 14817 | // - otherwise, it's an error | |||
| 14818 | if (T->isArrayType()) { | |||
| 14819 | if (!T.isConstQualified()) { | |||
| 14820 | if (DelayedDiagnostics.shouldDelayDiagnostics()) | |||
| 14821 | DelayedDiagnostics.add( | |||
| 14822 | sema::DelayedDiagnostic::makeForbiddenType( | |||
| 14823 | NameLoc, diag::err_arc_array_param_no_ownership, T, false)); | |||
| 14824 | else | |||
| 14825 | Diag(NameLoc, diag::err_arc_array_param_no_ownership) | |||
| 14826 | << TSInfo->getTypeLoc().getSourceRange(); | |||
| 14827 | } | |||
| 14828 | lifetime = Qualifiers::OCL_ExplicitNone; | |||
| 14829 | } else { | |||
| 14830 | lifetime = T->getObjCARCImplicitLifetime(); | |||
| 14831 | } | |||
| 14832 | T = Context.getLifetimeQualifiedType(T, lifetime); | |||
| 14833 | } | |||
| 14834 | ||||
| 14835 | ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name, | |||
| 14836 | Context.getAdjustedParameterType(T), | |||
| 14837 | TSInfo, SC, nullptr); | |||
| 14838 | ||||
| 14839 | // Make a note if we created a new pack in the scope of a lambda, so that | |||
| 14840 | // we know that references to that pack must also be expanded within the | |||
| 14841 | // lambda scope. | |||
| 14842 | if (New->isParameterPack()) | |||
| 14843 | if (auto *LSI = getEnclosingLambda()) | |||
| 14844 | LSI->LocalPacks.push_back(New); | |||
| 14845 | ||||
| 14846 | if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() || | |||
| 14847 | New->getType().hasNonTrivialToPrimitiveCopyCUnion()) | |||
| 14848 | checkNonTrivialCUnion(New->getType(), New->getLocation(), | |||
| 14849 | NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy); | |||
| 14850 | ||||
| 14851 | // Parameters can not be abstract class types. | |||
| 14852 | // For record types, this is done by the AbstractClassUsageDiagnoser once | |||
| 14853 | // the class has been completely parsed. | |||
| 14854 | if (!CurContext->isRecord() && | |||
| 14855 | RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl, | |||
| 14856 | AbstractParamType)) | |||
| 14857 | New->setInvalidDecl(); | |||
| 14858 | ||||
| 14859 | // Parameter declarators cannot be interface types. All ObjC objects are | |||
| 14860 | // passed by reference. | |||
| 14861 | if (T->isObjCObjectType()) { | |||
| 14862 | SourceLocation TypeEndLoc = | |||
| 14863 | getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc()); | |||
| 14864 | Diag(NameLoc, | |||
| 14865 | diag::err_object_cannot_be_passed_returned_by_value) << 1 << T | |||
| 14866 | << FixItHint::CreateInsertion(TypeEndLoc, "*"); | |||
| 14867 | T = Context.getObjCObjectPointerType(T); | |||
| 14868 | New->setType(T); | |||
| 14869 | } | |||
| 14870 | ||||
| 14871 | // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage | |||
| 14872 | // duration shall not be qualified by an address-space qualifier." | |||
| 14873 | // Since all parameters have automatic store duration, they can not have | |||
| 14874 | // an address space. | |||
| 14875 | if (T.getAddressSpace() != LangAS::Default && | |||
| 14876 | // OpenCL allows function arguments declared to be an array of a type | |||
| 14877 | // to be qualified with an address space. | |||
| 14878 | !(getLangOpts().OpenCL && | |||
| 14879 | (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private)) && | |||
| 14880 | // WebAssembly allows reference types as parameters. Funcref in particular | |||
| 14881 | // lives in a different address space. | |||
| 14882 | !(T->isFunctionPointerType() && | |||
| 14883 | T.getAddressSpace() == LangAS::wasm_funcref)) { | |||
| 14884 | Diag(NameLoc, diag::err_arg_with_address_space); | |||
| 14885 | New->setInvalidDecl(); | |||
| 14886 | } | |||
| 14887 | ||||
| 14888 | // PPC MMA non-pointer types are not allowed as function argument types. | |||
| 14889 | if (Context.getTargetInfo().getTriple().isPPC64() && | |||
| 14890 | CheckPPCMMAType(New->getOriginalType(), New->getLocation())) { | |||
| 14891 | New->setInvalidDecl(); | |||
| 14892 | } | |||
| 14893 | ||||
| 14894 | return New; | |||
| 14895 | } | |||
| 14896 | ||||
| 14897 | void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D, | |||
| 14898 | SourceLocation LocAfterDecls) { | |||
| 14899 | DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); | |||
| 14900 | ||||
| 14901 | // C99 6.9.1p6 "If a declarator includes an identifier list, each declaration | |||
| 14902 | // in the declaration list shall have at least one declarator, those | |||
| 14903 | // declarators shall only declare identifiers from the identifier list, and | |||
| 14904 | // every identifier in the identifier list shall be declared. | |||
| 14905 | // | |||
| 14906 | // C89 3.7.1p5 "If a declarator includes an identifier list, only the | |||
| 14907 | // identifiers it names shall be declared in the declaration list." | |||
| 14908 | // | |||
| 14909 | // This is why we only diagnose in C99 and later. Note, the other conditions | |||
| 14910 | // listed are checked elsewhere. | |||
| 14911 | if (!FTI.hasPrototype) { | |||
| 14912 | for (int i = FTI.NumParams; i != 0; /* decrement in loop */) { | |||
| 14913 | --i; | |||
| 14914 | if (FTI.Params[i].Param == nullptr) { | |||
| 14915 | if (getLangOpts().C99) { | |||
| 14916 | SmallString<256> Code; | |||
| 14917 | llvm::raw_svector_ostream(Code) | |||
| 14918 | << " int " << FTI.Params[i].Ident->getName() << ";\n"; | |||
| 14919 | Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared) | |||
| 14920 | << FTI.Params[i].Ident | |||
| 14921 | << FixItHint::CreateInsertion(LocAfterDecls, Code); | |||
| 14922 | } | |||
| 14923 | ||||
| 14924 | // Implicitly declare the argument as type 'int' for lack of a better | |||
| 14925 | // type. | |||
| 14926 | AttributeFactory attrs; | |||
| 14927 | DeclSpec DS(attrs); | |||
| 14928 | const char* PrevSpec; // unused | |||
| 14929 | unsigned DiagID; // unused | |||
| 14930 | DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec, | |||
| 14931 | DiagID, Context.getPrintingPolicy()); | |||
| 14932 | // Use the identifier location for the type source range. | |||
| 14933 | DS.SetRangeStart(FTI.Params[i].IdentLoc); | |||
| 14934 | DS.SetRangeEnd(FTI.Params[i].IdentLoc); | |||
| 14935 | Declarator ParamD(DS, ParsedAttributesView::none(), | |||
| 14936 | DeclaratorContext::KNRTypeList); | |||
| 14937 | ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc); | |||
| 14938 | FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD); | |||
| 14939 | } | |||
| 14940 | } | |||
| 14941 | } | |||
| 14942 | } | |||
| 14943 | ||||
| 14944 | Decl * | |||
| 14945 | Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D, | |||
| 14946 | MultiTemplateParamsArg TemplateParameterLists, | |||
| 14947 | SkipBodyInfo *SkipBody, FnBodyKind BodyKind) { | |||
| 14948 | assert(getCurFunctionDecl() == nullptr && "Function parsing confused")(static_cast <bool> (getCurFunctionDecl() == nullptr && "Function parsing confused") ? void (0) : __assert_fail ("getCurFunctionDecl() == nullptr && \"Function parsing confused\"" , "clang/lib/Sema/SemaDecl.cpp", 14948, __extension__ __PRETTY_FUNCTION__ )); | |||
| 14949 | assert(D.isFunctionDeclarator() && "Not a function declarator!")(static_cast <bool> (D.isFunctionDeclarator() && "Not a function declarator!") ? void (0) : __assert_fail ("D.isFunctionDeclarator() && \"Not a function declarator!\"" , "clang/lib/Sema/SemaDecl.cpp", 14949, __extension__ __PRETTY_FUNCTION__ )); | |||
| 14950 | Scope *ParentScope = FnBodyScope->getParent(); | |||
| 14951 | ||||
| 14952 | // Check if we are in an `omp begin/end declare variant` scope. If we are, and | |||
| 14953 | // we define a non-templated function definition, we will create a declaration | |||
| 14954 | // instead (=BaseFD), and emit the definition with a mangled name afterwards. | |||
| 14955 | // The base function declaration will have the equivalent of an `omp declare | |||
| 14956 | // variant` annotation which specifies the mangled definition as a | |||
| 14957 | // specialization function under the OpenMP context defined as part of the | |||
| 14958 | // `omp begin declare variant`. | |||
| 14959 | SmallVector<FunctionDecl *, 4> Bases; | |||
| 14960 | if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope()) | |||
| 14961 | ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope( | |||
| 14962 | ParentScope, D, TemplateParameterLists, Bases); | |||
| 14963 | ||||
| 14964 | D.setFunctionDefinitionKind(FunctionDefinitionKind::Definition); | |||
| 14965 | Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists); | |||
| 14966 | Decl *Dcl = ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody, BodyKind); | |||
| 14967 | ||||
| 14968 | if (!Bases.empty()) | |||
| 14969 | ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl, Bases); | |||
| 14970 | ||||
| 14971 | return Dcl; | |||
| 14972 | } | |||
| 14973 | ||||
| 14974 | void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) { | |||
| 14975 | Consumer.HandleInlineFunctionDefinition(D); | |||
| 14976 | } | |||
| 14977 | ||||
| 14978 | static bool FindPossiblePrototype(const FunctionDecl *FD, | |||
| 14979 | const FunctionDecl *&PossiblePrototype) { | |||
| 14980 | for (const FunctionDecl *Prev = FD->getPreviousDecl(); Prev; | |||
| 14981 | Prev = Prev->getPreviousDecl()) { | |||
| 14982 | // Ignore any declarations that occur in function or method | |||
| 14983 | // scope, because they aren't visible from the header. | |||
| 14984 | if (Prev->getLexicalDeclContext()->isFunctionOrMethod()) | |||
| 14985 | continue; | |||
| 14986 | ||||
| 14987 | PossiblePrototype = Prev; | |||
| 14988 | return Prev->getType()->isFunctionProtoType(); | |||
| 14989 | } | |||
| 14990 | return false; | |||
| 14991 | } | |||
| 14992 | ||||
| 14993 | static bool | |||
| 14994 | ShouldWarnAboutMissingPrototype(const FunctionDecl *FD, | |||
| 14995 | const FunctionDecl *&PossiblePrototype) { | |||
| 14996 | // Don't warn about invalid declarations. | |||
| 14997 | if (FD->isInvalidDecl()) | |||
| 14998 | return false; | |||
| 14999 | ||||
| 15000 | // Or declarations that aren't global. | |||
| 15001 | if (!FD->isGlobal()) | |||
| 15002 | return false; | |||
| 15003 | ||||
| 15004 | // Don't warn about C++ member functions. | |||
| 15005 | if (isa<CXXMethodDecl>(FD)) | |||
| 15006 | return false; | |||
| 15007 | ||||
| 15008 | // Don't warn about 'main'. | |||
| 15009 | if (isa<TranslationUnitDecl>(FD->getDeclContext()->getRedeclContext())) | |||
| 15010 | if (IdentifierInfo *II = FD->getIdentifier()) | |||
| 15011 | if (II->isStr("main") || II->isStr("efi_main")) | |||
| 15012 | return false; | |||
| 15013 | ||||
| 15014 | // Don't warn about inline functions. | |||
| 15015 | if (FD->isInlined()) | |||
| 15016 | return false; | |||
| 15017 | ||||
| 15018 | // Don't warn about function templates. | |||
| 15019 | if (FD->getDescribedFunctionTemplate()) | |||
| 15020 | return false; | |||
| 15021 | ||||
| 15022 | // Don't warn about function template specializations. | |||
| 15023 | if (FD->isFunctionTemplateSpecialization()) | |||
| 15024 | return false; | |||
| 15025 | ||||
| 15026 | // Don't warn for OpenCL kernels. | |||
| 15027 | if (FD->hasAttr<OpenCLKernelAttr>()) | |||
| 15028 | return false; | |||
| 15029 | ||||
| 15030 | // Don't warn on explicitly deleted functions. | |||
| 15031 | if (FD->isDeleted()) | |||
| 15032 | return false; | |||
| 15033 | ||||
| 15034 | // Don't warn on implicitly local functions (such as having local-typed | |||
| 15035 | // parameters). | |||
| 15036 | if (!FD->isExternallyVisible()) | |||
| 15037 | return false; | |||
| 15038 | ||||
| 15039 | // If we were able to find a potential prototype, don't warn. | |||
| 15040 | if (FindPossiblePrototype(FD, PossiblePrototype)) | |||
| 15041 | return false; | |||
| 15042 | ||||
| 15043 | return true; | |||
| 15044 | } | |||
| 15045 | ||||
| 15046 | void | |||
| 15047 | Sema::CheckForFunctionRedefinition(FunctionDecl *FD, | |||
| 15048 | const FunctionDecl *EffectiveDefinition, | |||
| 15049 | SkipBodyInfo *SkipBody) { | |||
| 15050 | const FunctionDecl *Definition = EffectiveDefinition; | |||
| 15051 | if (!Definition && | |||
| 15052 | !FD->isDefined(Definition, /*CheckForPendingFriendDefinition*/ true)) | |||
| 15053 | return; | |||
| 15054 | ||||
| 15055 | if (Definition->getFriendObjectKind() != Decl::FOK_None) { | |||
| 15056 | if (FunctionDecl *OrigDef = Definition->getInstantiatedFromMemberFunction()) { | |||
| 15057 | if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) { | |||
| 15058 | // A merged copy of the same function, instantiated as a member of | |||
| 15059 | // the same class, is OK. | |||
| 15060 | if (declaresSameEntity(OrigFD, OrigDef) && | |||
| 15061 | declaresSameEntity(cast<Decl>(Definition->getLexicalDeclContext()), | |||
| 15062 | cast<Decl>(FD->getLexicalDeclContext()))) | |||
| 15063 | return; | |||
| 15064 | } | |||
| 15065 | } | |||
| 15066 | } | |||
| 15067 | ||||
| 15068 | if (canRedefineFunction(Definition, getLangOpts())) | |||
| 15069 | return; | |||
| 15070 | ||||
| 15071 | // Don't emit an error when this is redefinition of a typo-corrected | |||
| 15072 | // definition. | |||
| 15073 | if (TypoCorrectedFunctionDefinitions.count(Definition)) | |||
| 15074 | return; | |||
| 15075 | ||||
| 15076 | // If we don't have a visible definition of the function, and it's inline or | |||
| 15077 | // a template, skip the new definition. | |||
| 15078 | if (SkipBody && !hasVisibleDefinition(Definition) && | |||
| 15079 | (Definition->getFormalLinkage() == InternalLinkage || | |||
| 15080 | Definition->isInlined() || | |||
| 15081 | Definition->getDescribedFunctionTemplate() || | |||
| 15082 | Definition->getNumTemplateParameterLists())) { | |||
| 15083 | SkipBody->ShouldSkip = true; | |||
| 15084 | SkipBody->Previous = const_cast<FunctionDecl*>(Definition); | |||
| 15085 | if (auto *TD = Definition->getDescribedFunctionTemplate()) | |||
| 15086 | makeMergedDefinitionVisible(TD); | |||
| 15087 | makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition)); | |||
| 15088 | return; | |||
| 15089 | } | |||
| 15090 | ||||
| 15091 | if (getLangOpts().GNUMode && Definition->isInlineSpecified() && | |||
| 15092 | Definition->getStorageClass() == SC_Extern) | |||
| 15093 | Diag(FD->getLocation(), diag::err_redefinition_extern_inline) | |||
| 15094 | << FD << getLangOpts().CPlusPlus; | |||
| 15095 | else | |||
| 15096 | Diag(FD->getLocation(), diag::err_redefinition) << FD; | |||
| 15097 | ||||
| 15098 | Diag(Definition->getLocation(), diag::note_previous_definition); | |||
| 15099 | FD->setInvalidDecl(); | |||
| 15100 | } | |||
| 15101 | ||||
| 15102 | static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator, | |||
| 15103 | Sema &S) { | |||
| 15104 | CXXRecordDecl *const LambdaClass = CallOperator->getParent(); | |||
| 15105 | ||||
| 15106 | LambdaScopeInfo *LSI = S.PushLambdaScope(); | |||
| 15107 | LSI->CallOperator = CallOperator; | |||
| 15108 | LSI->Lambda = LambdaClass; | |||
| 15109 | LSI->ReturnType = CallOperator->getReturnType(); | |||
| 15110 | const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault(); | |||
| 15111 | ||||
| 15112 | if (LCD == LCD_None) | |||
| 15113 | LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None; | |||
| 15114 | else if (LCD == LCD_ByCopy) | |||
| 15115 | LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval; | |||
| 15116 | else if (LCD == LCD_ByRef) | |||
| 15117 | LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref; | |||
| 15118 | DeclarationNameInfo DNI = CallOperator->getNameInfo(); | |||
| 15119 | ||||
| 15120 | LSI->IntroducerRange = DNI.getCXXOperatorNameRange(); | |||
| 15121 | LSI->Mutable = !CallOperator->isConst(); | |||
| 15122 | ||||
| 15123 | // Add the captures to the LSI so they can be noted as already | |||
| 15124 | // captured within tryCaptureVar. | |||
| 15125 | auto I = LambdaClass->field_begin(); | |||
| 15126 | for (const auto &C : LambdaClass->captures()) { | |||
| 15127 | if (C.capturesVariable()) { | |||
| 15128 | ValueDecl *VD = C.getCapturedVar(); | |||
| 15129 | if (VD->isInitCapture()) | |||
| 15130 | S.CurrentInstantiationScope->InstantiatedLocal(VD, VD); | |||
| 15131 | const bool ByRef = C.getCaptureKind() == LCK_ByRef; | |||
| 15132 | LSI->addCapture(VD, /*IsBlock*/false, ByRef, | |||
| 15133 | /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(), | |||
| 15134 | /*EllipsisLoc*/C.isPackExpansion() | |||
| 15135 | ? C.getEllipsisLoc() : SourceLocation(), | |||
| 15136 | I->getType(), /*Invalid*/false); | |||
| 15137 | ||||
| 15138 | } else if (C.capturesThis()) { | |||
| 15139 | LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(), | |||
| 15140 | C.getCaptureKind() == LCK_StarThis); | |||
| 15141 | } else { | |||
| 15142 | LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(), | |||
| 15143 | I->getType()); | |||
| 15144 | } | |||
| 15145 | ++I; | |||
| 15146 | } | |||
| 15147 | } | |||
| 15148 | ||||
| 15149 | Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D, | |||
| 15150 | SkipBodyInfo *SkipBody, | |||
| 15151 | FnBodyKind BodyKind) { | |||
| 15152 | if (!D) { | |||
| 15153 | // Parsing the function declaration failed in some way. Push on a fake scope | |||
| 15154 | // anyway so we can try to parse the function body. | |||
| 15155 | PushFunctionScope(); | |||
| 15156 | PushExpressionEvaluationContext(ExprEvalContexts.back().Context); | |||
| 15157 | return D; | |||
| 15158 | } | |||
| 15159 | ||||
| 15160 | FunctionDecl *FD = nullptr; | |||
| 15161 | ||||
| 15162 | if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) | |||
| 15163 | FD = FunTmpl->getTemplatedDecl(); | |||
| 15164 | else | |||
| 15165 | FD = cast<FunctionDecl>(D); | |||
| 15166 | ||||
| 15167 | // Do not push if it is a lambda because one is already pushed when building | |||
| 15168 | // the lambda in ActOnStartOfLambdaDefinition(). | |||
| 15169 | if (!isLambdaCallOperator(FD)) | |||
| 15170 | // [expr.const]/p14.1 | |||
| 15171 | // An expression or conversion is in an immediate function context if it is | |||
| 15172 | // potentially evaluated and either: its innermost enclosing non-block scope | |||
| 15173 | // is a function parameter scope of an immediate function. | |||
| 15174 | PushExpressionEvaluationContext( | |||
| 15175 | FD->isConsteval() ? ExpressionEvaluationContext::ImmediateFunctionContext | |||
| 15176 | : ExprEvalContexts.back().Context); | |||
| 15177 | ||||
| 15178 | // Each ExpressionEvaluationContextRecord also keeps track of whether the | |||
| 15179 | // context is nested in an immediate function context, so smaller contexts | |||
| 15180 | // that appear inside immediate functions (like variable initializers) are | |||
| 15181 | // considered to be inside an immediate function context even though by | |||
| 15182 | // themselves they are not immediate function contexts. But when a new | |||
| 15183 | // function is entered, we need to reset this tracking, since the entered | |||
| 15184 | // function might be not an immediate function. | |||
| 15185 | ExprEvalContexts.back().InImmediateFunctionContext = FD->isConsteval(); | |||
| 15186 | ||||
| 15187 | // Check for defining attributes before the check for redefinition. | |||
| 15188 | if (const auto *Attr = FD->getAttr<AliasAttr>()) { | |||
| 15189 | Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0; | |||
| 15190 | FD->dropAttr<AliasAttr>(); | |||
| 15191 | FD->setInvalidDecl(); | |||
| 15192 | } | |||
| 15193 | if (const auto *Attr = FD->getAttr<IFuncAttr>()) { | |||
| 15194 | Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1; | |||
| 15195 | FD->dropAttr<IFuncAttr>(); | |||
| 15196 | FD->setInvalidDecl(); | |||
| 15197 | } | |||
| 15198 | if (const auto *Attr = FD->getAttr<TargetVersionAttr>()) { | |||
| 15199 | if (!Context.getTargetInfo().hasFeature("fmv") && | |||
| 15200 | !Attr->isDefaultVersion()) { | |||
| 15201 | // If function multi versioning disabled skip parsing function body | |||
| 15202 | // defined with non-default target_version attribute | |||
| 15203 | if (SkipBody) | |||
| 15204 | SkipBody->ShouldSkip = true; | |||
| 15205 | return nullptr; | |||
| 15206 | } | |||
| 15207 | } | |||
| 15208 | ||||
| 15209 | if (auto *Ctor = dyn_cast<CXXConstructorDecl>(FD)) { | |||
| 15210 | if (Ctor->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && | |||
| 15211 | Ctor->isDefaultConstructor() && | |||
| 15212 | Context.getTargetInfo().getCXXABI().isMicrosoft()) { | |||
| 15213 | // If this is an MS ABI dllexport default constructor, instantiate any | |||
| 15214 | // default arguments. | |||
| 15215 | InstantiateDefaultCtorDefaultArgs(Ctor); | |||
| 15216 | } | |||
| 15217 | } | |||
| 15218 | ||||
| 15219 | // See if this is a redefinition. If 'will have body' (or similar) is already | |||
| 15220 | // set, then these checks were already performed when it was set. | |||
| 15221 | if (!FD->willHaveBody() && !FD->isLateTemplateParsed() && | |||
| 15222 | !FD->isThisDeclarationInstantiatedFromAFriendDefinition()) { | |||
| 15223 | CheckForFunctionRedefinition(FD, nullptr, SkipBody); | |||
| 15224 | ||||
| 15225 | // If we're skipping the body, we're done. Don't enter the scope. | |||
| 15226 | if (SkipBody && SkipBody->ShouldSkip) | |||
| 15227 | return D; | |||
| 15228 | } | |||
| 15229 | ||||
| 15230 | // Mark this function as "will have a body eventually". This lets users to | |||
| 15231 | // call e.g. isInlineDefinitionExternallyVisible while we're still parsing | |||
| 15232 | // this function. | |||
| 15233 | FD->setWillHaveBody(); | |||
| 15234 | ||||
| 15235 | // If we are instantiating a generic lambda call operator, push | |||
| 15236 | // a LambdaScopeInfo onto the function stack. But use the information | |||
| 15237 | // that's already been calculated (ActOnLambdaExpr) to prime the current | |||
| 15238 | // LambdaScopeInfo. | |||
| 15239 | // When the template operator is being specialized, the LambdaScopeInfo, | |||
| 15240 | // has to be properly restored so that tryCaptureVariable doesn't try | |||
| 15241 | // and capture any new variables. In addition when calculating potential | |||
| 15242 | // captures during transformation of nested lambdas, it is necessary to | |||
| 15243 | // have the LSI properly restored. | |||
| 15244 | if (isGenericLambdaCallOperatorSpecialization(FD)) { | |||
| 15245 | assert(inTemplateInstantiation() &&(static_cast <bool> (inTemplateInstantiation() && "There should be an active template instantiation on the stack " "when instantiating a generic lambda!") ? void (0) : __assert_fail ("inTemplateInstantiation() && \"There should be an active template instantiation on the stack \" \"when instantiating a generic lambda!\"" , "clang/lib/Sema/SemaDecl.cpp", 15247, __extension__ __PRETTY_FUNCTION__ )) | |||
| 15246 | "There should be an active template instantiation on the stack "(static_cast <bool> (inTemplateInstantiation() && "There should be an active template instantiation on the stack " "when instantiating a generic lambda!") ? void (0) : __assert_fail ("inTemplateInstantiation() && \"There should be an active template instantiation on the stack \" \"when instantiating a generic lambda!\"" , "clang/lib/Sema/SemaDecl.cpp", 15247, __extension__ __PRETTY_FUNCTION__ )) | |||
| 15247 | "when instantiating a generic lambda!")(static_cast <bool> (inTemplateInstantiation() && "There should be an active template instantiation on the stack " "when instantiating a generic lambda!") ? void (0) : __assert_fail ("inTemplateInstantiation() && \"There should be an active template instantiation on the stack \" \"when instantiating a generic lambda!\"" , "clang/lib/Sema/SemaDecl.cpp", 15247, __extension__ __PRETTY_FUNCTION__ )); | |||
| 15248 | RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this); | |||
| 15249 | } else { | |||
| 15250 | // Enter a new function scope | |||
| 15251 | PushFunctionScope(); | |||
| 15252 | } | |||
| 15253 | ||||
| 15254 | // Builtin functions cannot be defined. | |||
| 15255 | if (unsigned BuiltinID = FD->getBuiltinID()) { | |||
| 15256 | if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) && | |||
| 15257 | !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) { | |||
| 15258 | Diag(FD->getLocation(), diag::err_builtin_definition) << FD; | |||
| 15259 | FD->setInvalidDecl(); | |||
| 15260 | } | |||
| 15261 | } | |||
| 15262 | ||||
| 15263 | // The return type of a function definition must be complete (C99 6.9.1p3), | |||
| 15264 | // unless the function is deleted (C++ specifc, C++ [dcl.fct.def.general]p2) | |||
| 15265 | QualType ResultType = FD->getReturnType(); | |||
| 15266 | if (!ResultType->isDependentType() && !ResultType->isVoidType() && | |||
| 15267 | !FD->isInvalidDecl() && BodyKind != FnBodyKind::Delete && | |||
| 15268 | RequireCompleteType(FD->getLocation(), ResultType, | |||
| 15269 | diag::err_func_def_incomplete_result)) | |||
| 15270 | FD->setInvalidDecl(); | |||
| 15271 | ||||
| 15272 | if (FnBodyScope) | |||
| 15273 | PushDeclContext(FnBodyScope, FD); | |||
| 15274 | ||||
| 15275 | // Check the validity of our function parameters | |||
| 15276 | if (BodyKind != FnBodyKind::Delete) | |||
| 15277 | CheckParmsForFunctionDef(FD->parameters(), | |||
| 15278 | /*CheckParameterNames=*/true); | |||
| 15279 | ||||
| 15280 | // Add non-parameter declarations already in the function to the current | |||
| 15281 | // scope. | |||
| 15282 | if (FnBodyScope) { | |||
| 15283 | for (Decl *NPD : FD->decls()) { | |||
| 15284 | auto *NonParmDecl = dyn_cast<NamedDecl>(NPD); | |||
| 15285 | if (!NonParmDecl) | |||
| 15286 | continue; | |||
| 15287 | assert(!isa<ParmVarDecl>(NonParmDecl) &&(static_cast <bool> (!isa<ParmVarDecl>(NonParmDecl ) && "parameters should not be in newly created FD yet" ) ? void (0) : __assert_fail ("!isa<ParmVarDecl>(NonParmDecl) && \"parameters should not be in newly created FD yet\"" , "clang/lib/Sema/SemaDecl.cpp", 15288, __extension__ __PRETTY_FUNCTION__ )) | |||
| 15288 | "parameters should not be in newly created FD yet")(static_cast <bool> (!isa<ParmVarDecl>(NonParmDecl ) && "parameters should not be in newly created FD yet" ) ? void (0) : __assert_fail ("!isa<ParmVarDecl>(NonParmDecl) && \"parameters should not be in newly created FD yet\"" , "clang/lib/Sema/SemaDecl.cpp", 15288, __extension__ __PRETTY_FUNCTION__ )); | |||
| 15289 | ||||
| 15290 | // If the decl has a name, make it accessible in the current scope. | |||
| 15291 | if (NonParmDecl->getDeclName()) | |||
| 15292 | PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false); | |||
| 15293 | ||||
| 15294 | // Similarly, dive into enums and fish their constants out, making them | |||
| 15295 | // accessible in this scope. | |||
| 15296 | if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) { | |||
| 15297 | for (auto *EI : ED->enumerators()) | |||
| 15298 | PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false); | |||
| 15299 | } | |||
| 15300 | } | |||
| 15301 | } | |||
| 15302 | ||||
| 15303 | // Introduce our parameters into the function scope | |||
| 15304 | for (auto *Param : FD->parameters()) { | |||
| 15305 | Param->setOwningFunction(FD); | |||
| 15306 | ||||
| 15307 | // If this has an identifier, add it to the scope stack. | |||
| 15308 | if (Param->getIdentifier() && FnBodyScope) { | |||
| 15309 | CheckShadow(FnBodyScope, Param); | |||
| 15310 | ||||
| 15311 | PushOnScopeChains(Param, FnBodyScope); | |||
| 15312 | } | |||
| 15313 | } | |||
| 15314 | ||||
| 15315 | // C++ [module.import/6] external definitions are not permitted in header | |||
| 15316 | // units. Deleted and Defaulted functions are implicitly inline (but the | |||
| 15317 | // inline state is not set at this point, so check the BodyKind explicitly). | |||
| 15318 | // FIXME: Consider an alternate location for the test where the inlined() | |||
| 15319 | // state is complete. | |||
| 15320 | if (getLangOpts().CPlusPlusModules && currentModuleIsHeaderUnit() && | |||
| 15321 | !FD->isInvalidDecl() && !FD->isInlined() && | |||
| 15322 | BodyKind != FnBodyKind::Delete && BodyKind != FnBodyKind::Default && | |||
| 15323 | FD->getFormalLinkage() == Linkage::ExternalLinkage && | |||
| 15324 | !FD->isTemplated() && !FD->isTemplateInstantiation()) { | |||
| 15325 | assert(FD->isThisDeclarationADefinition())(static_cast <bool> (FD->isThisDeclarationADefinition ()) ? void (0) : __assert_fail ("FD->isThisDeclarationADefinition()" , "clang/lib/Sema/SemaDecl.cpp", 15325, __extension__ __PRETTY_FUNCTION__ )); | |||
| 15326 | Diag(FD->getLocation(), diag::err_extern_def_in_header_unit); | |||
| 15327 | FD->setInvalidDecl(); | |||
| 15328 | } | |||
| 15329 | ||||
| 15330 | // Ensure that the function's exception specification is instantiated. | |||
| 15331 | if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>()) | |||
| 15332 | ResolveExceptionSpec(D->getLocation(), FPT); | |||
| 15333 | ||||
| 15334 | // dllimport cannot be applied to non-inline function definitions. | |||
| 15335 | if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() && | |||
| 15336 | !FD->isTemplateInstantiation()) { | |||
| 15337 | assert(!FD->hasAttr<DLLExportAttr>())(static_cast <bool> (!FD->hasAttr<DLLExportAttr> ()) ? void (0) : __assert_fail ("!FD->hasAttr<DLLExportAttr>()" , "clang/lib/Sema/SemaDecl.cpp", 15337, __extension__ __PRETTY_FUNCTION__ )); | |||
| 15338 | Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition); | |||
| 15339 | FD->setInvalidDecl(); | |||
| 15340 | return D; | |||
| 15341 | } | |||
| 15342 | // We want to attach documentation to original Decl (which might be | |||
| 15343 | // a function template). | |||
| 15344 | ActOnDocumentableDecl(D); | |||
| 15345 | if (getCurLexicalContext()->isObjCContainer() && | |||
| 15346 | getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl && | |||
| 15347 | getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation) | |||
| 15348 | Diag(FD->getLocation(), diag::warn_function_def_in_objc_container); | |||
| 15349 | ||||
| 15350 | return D; | |||
| 15351 | } | |||
| 15352 | ||||
| 15353 | /// Given the set of return statements within a function body, | |||
| 15354 | /// compute the variables that are subject to the named return value | |||
| 15355 | /// optimization. | |||
| 15356 | /// | |||
| 15357 | /// Each of the variables that is subject to the named return value | |||
| 15358 | /// optimization will be marked as NRVO variables in the AST, and any | |||
| 15359 | /// return statement that has a marked NRVO variable as its NRVO candidate can | |||
| 15360 | /// use the named return value optimization. | |||
| 15361 | /// | |||
| 15362 | /// This function applies a very simplistic algorithm for NRVO: if every return | |||
| 15363 | /// statement in the scope of a variable has the same NRVO candidate, that | |||
| 15364 | /// candidate is an NRVO variable. | |||
| 15365 | void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) { | |||
| 15366 | ReturnStmt **Returns = Scope->Returns.data(); | |||
| 15367 | ||||
| 15368 | for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) { | |||
| 15369 | if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) { | |||
| 15370 | if (!NRVOCandidate->isNRVOVariable()) | |||
| 15371 | Returns[I]->setNRVOCandidate(nullptr); | |||
| 15372 | } | |||
| 15373 | } | |||
| 15374 | } | |||
| 15375 | ||||
| 15376 | bool Sema::canDelayFunctionBody(const Declarator &D) { | |||
| 15377 | // We can't delay parsing the body of a constexpr function template (yet). | |||
| 15378 | if (D.getDeclSpec().hasConstexprSpecifier()) | |||
| 15379 | return false; | |||
| 15380 | ||||
| 15381 | // We can't delay parsing the body of a function template with a deduced | |||
| 15382 | // return type (yet). | |||
| 15383 | if (D.getDeclSpec().hasAutoTypeSpec()) { | |||
| 15384 | // If the placeholder introduces a non-deduced trailing return type, | |||
| 15385 | // we can still delay parsing it. | |||
| 15386 | if (D.getNumTypeObjects()) { | |||
| 15387 | const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1); | |||
| 15388 | if (Outer.Kind == DeclaratorChunk::Function && | |||
| 15389 | Outer.Fun.hasTrailingReturnType()) { | |||
| 15390 | QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType()); | |||
| 15391 | return Ty.isNull() || !Ty->isUndeducedType(); | |||
| 15392 | } | |||
| 15393 | } | |||
| 15394 | return false; | |||
| 15395 | } | |||
| 15396 | ||||
| 15397 | return true; | |||
| 15398 | } | |||
| 15399 | ||||
| 15400 | bool Sema::canSkipFunctionBody(Decl *D) { | |||
| 15401 | // We cannot skip the body of a function (or function template) which is | |||
| 15402 | // constexpr, since we may need to evaluate its body in order to parse the | |||
| 15403 | // rest of the file. | |||
| 15404 | // We cannot skip the body of a function with an undeduced return type, | |||
| 15405 | // because any callers of that function need to know the type. | |||
| 15406 | if (const FunctionDecl *FD = D->getAsFunction()) { | |||
| 15407 | if (FD->isConstexpr()) | |||
| 15408 | return false; | |||
| 15409 | // We can't simply call Type::isUndeducedType here, because inside template | |||
| 15410 | // auto can be deduced to a dependent type, which is not considered | |||
| 15411 | // "undeduced". | |||
| 15412 | if (FD->getReturnType()->getContainedDeducedType()) | |||
| 15413 | return false; | |||
| 15414 | } | |||
| 15415 | return Consumer.shouldSkipFunctionBody(D); | |||
| 15416 | } | |||
| 15417 | ||||
| 15418 | Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) { | |||
| 15419 | if (!Decl) | |||
| 15420 | return nullptr; | |||
| 15421 | if (FunctionDecl *FD = Decl->getAsFunction()) | |||
| 15422 | FD->setHasSkippedBody(); | |||
| 15423 | else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl)) | |||
| 15424 | MD->setHasSkippedBody(); | |||
| 15425 | return Decl; | |||
| 15426 | } | |||
| 15427 | ||||
| 15428 | Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) { | |||
| 15429 | return ActOnFinishFunctionBody(D, BodyArg, false); | |||
| 15430 | } | |||
| 15431 | ||||
| 15432 | /// RAII object that pops an ExpressionEvaluationContext when exiting a function | |||
| 15433 | /// body. | |||
| 15434 | class ExitFunctionBodyRAII { | |||
| 15435 | public: | |||
| 15436 | ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {} | |||
| 15437 | ~ExitFunctionBodyRAII() { | |||
| 15438 | if (!IsLambda) | |||
| 15439 | S.PopExpressionEvaluationContext(); | |||
| 15440 | } | |||
| 15441 | ||||
| 15442 | private: | |||
| 15443 | Sema &S; | |||
| 15444 | bool IsLambda = false; | |||
| 15445 | }; | |||
| 15446 | ||||
| 15447 | static void diagnoseImplicitlyRetainedSelf(Sema &S) { | |||
| 15448 | llvm::DenseMap<const BlockDecl *, bool> EscapeInfo; | |||
| 15449 | ||||
| 15450 | auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) { | |||
| 15451 | if (EscapeInfo.count(BD)) | |||
| 15452 | return EscapeInfo[BD]; | |||
| 15453 | ||||
| 15454 | bool R = false; | |||
| 15455 | const BlockDecl *CurBD = BD; | |||
| 15456 | ||||
| 15457 | do { | |||
| 15458 | R = !CurBD->doesNotEscape(); | |||
| 15459 | if (R) | |||
| 15460 | break; | |||
| 15461 | CurBD = CurBD->getParent()->getInnermostBlockDecl(); | |||
| 15462 | } while (CurBD); | |||
| 15463 | ||||
| 15464 | return EscapeInfo[BD] = R; | |||
| 15465 | }; | |||
| 15466 | ||||
| 15467 | // If the location where 'self' is implicitly retained is inside a escaping | |||
| 15468 | // block, emit a diagnostic. | |||
| 15469 | for (const std::pair<SourceLocation, const BlockDecl *> &P : | |||
| 15470 | S.ImplicitlyRetainedSelfLocs) | |||
| 15471 | if (IsOrNestedInEscapingBlock(P.second)) | |||
| 15472 | S.Diag(P.first, diag::warn_implicitly_retains_self) | |||
| 15473 | << FixItHint::CreateInsertion(P.first, "self->"); | |||
| 15474 | } | |||
| 15475 | ||||
| 15476 | Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body, | |||
| 15477 | bool IsInstantiation) { | |||
| 15478 | FunctionScopeInfo *FSI = getCurFunction(); | |||
| 15479 | FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr; | |||
| 15480 | ||||
| 15481 | if (FSI->UsesFPIntrin && FD && !FD->hasAttr<StrictFPAttr>()) | |||
| 15482 | FD->addAttr(StrictFPAttr::CreateImplicit(Context)); | |||
| 15483 | ||||
| 15484 | sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy(); | |||
| 15485 | sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr; | |||
| 15486 | ||||
| 15487 | if (getLangOpts().Coroutines && FSI->isCoroutine()) | |||
| 15488 | CheckCompletedCoroutineBody(FD, Body); | |||
| 15489 | ||||
| 15490 | { | |||
| 15491 | // Do not call PopExpressionEvaluationContext() if it is a lambda because | |||
| 15492 | // one is already popped when finishing the lambda in BuildLambdaExpr(). | |||
| 15493 | // This is meant to pop the context added in ActOnStartOfFunctionDef(). | |||
| 15494 | ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD)); | |||
| 15495 | ||||
| 15496 | if (FD) { | |||
| 15497 | FD->setBody(Body); | |||
| 15498 | FD->setWillHaveBody(false); | |||
| 15499 | ||||
| 15500 | if (getLangOpts().CPlusPlus14) { | |||
| 15501 | if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() && | |||
| 15502 | FD->getReturnType()->isUndeducedType()) { | |||
| 15503 | // For a function with a deduced result type to return void, | |||
| 15504 | // the result type as written must be 'auto' or 'decltype(auto)', | |||
| 15505 | // possibly cv-qualified or constrained, but not ref-qualified. | |||
| 15506 | if (!FD->getReturnType()->getAs<AutoType>()) { | |||
| 15507 | Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto) | |||
| 15508 | << FD->getReturnType(); | |||
| 15509 | FD->setInvalidDecl(); | |||
| 15510 | } else { | |||
| 15511 | // Falling off the end of the function is the same as 'return;'. | |||
| 15512 | Expr *Dummy = nullptr; | |||
| 15513 | if (DeduceFunctionTypeFromReturnExpr( | |||
| 15514 | FD, dcl->getLocation(), Dummy, | |||
| 15515 | FD->getReturnType()->getAs<AutoType>())) | |||
| 15516 | FD->setInvalidDecl(); | |||
| 15517 | } | |||
| 15518 | } | |||
| 15519 | } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) { | |||
| 15520 | // In C++11, we don't use 'auto' deduction rules for lambda call | |||
| 15521 | // operators because we don't support return type deduction. | |||
| 15522 | auto *LSI = getCurLambda(); | |||
| 15523 | if (LSI->HasImplicitReturnType) { | |||
| 15524 | deduceClosureReturnType(*LSI); | |||
| 15525 | ||||
| 15526 | // C++11 [expr.prim.lambda]p4: | |||
| 15527 | // [...] if there are no return statements in the compound-statement | |||
| 15528 | // [the deduced type is] the type void | |||
| 15529 | QualType RetType = | |||
| 15530 | LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType; | |||
| 15531 | ||||
| 15532 | // Update the return type to the deduced type. | |||
| 15533 | const auto *Proto = FD->getType()->castAs<FunctionProtoType>(); | |||
| 15534 | FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(), | |||
| 15535 | Proto->getExtProtoInfo())); | |||
| 15536 | } | |||
| 15537 | } | |||
| 15538 | ||||
| 15539 | // If the function implicitly returns zero (like 'main') or is naked, | |||
| 15540 | // don't complain about missing return statements. | |||
| 15541 | if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>()) | |||
| 15542 | WP.disableCheckFallThrough(); | |||
| 15543 | ||||
| 15544 | // MSVC permits the use of pure specifier (=0) on function definition, | |||
| 15545 | // defined at class scope, warn about this non-standard construct. | |||
| 15546 | if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine()) | |||
| 15547 | Diag(FD->getLocation(), diag::ext_pure_function_definition); | |||
| 15548 | ||||
| 15549 | if (!FD->isInvalidDecl()) { | |||
| 15550 | // Don't diagnose unused parameters of defaulted, deleted or naked | |||
| 15551 | // functions. | |||
| 15552 | if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody() && | |||
| 15553 | !FD->hasAttr<NakedAttr>()) | |||
| 15554 | DiagnoseUnusedParameters(FD->parameters()); | |||
| 15555 | DiagnoseSizeOfParametersAndReturnValue(FD->parameters(), | |||
| 15556 | FD->getReturnType(), FD); | |||
| 15557 | ||||
| 15558 | // If this is a structor, we need a vtable. | |||
| 15559 | if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD)) | |||
| 15560 | MarkVTableUsed(FD->getLocation(), Constructor->getParent()); | |||
| 15561 | else if (CXXDestructorDecl *Destructor = | |||
| 15562 | dyn_cast<CXXDestructorDecl>(FD)) | |||
| 15563 | MarkVTableUsed(FD->getLocation(), Destructor->getParent()); | |||
| 15564 | ||||
| 15565 | // Try to apply the named return value optimization. We have to check | |||
| 15566 | // if we can do this here because lambdas keep return statements around | |||
| 15567 | // to deduce an implicit return type. | |||
| 15568 | if (FD->getReturnType()->isRecordType() && | |||
| 15569 | (!getLangOpts().CPlusPlus || !FD->isDependentContext())) | |||
| 15570 | computeNRVO(Body, FSI); | |||
| 15571 | } | |||
| 15572 | ||||
| 15573 | // GNU warning -Wmissing-prototypes: | |||
| 15574 | // Warn if a global function is defined without a previous | |||
| 15575 | // prototype declaration. This warning is issued even if the | |||
| 15576 | // definition itself provides a prototype. The aim is to detect | |||
| 15577 | // global functions that fail to be declared in header files. | |||
| 15578 | const FunctionDecl *PossiblePrototype = nullptr; | |||
| 15579 | if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) { | |||
| 15580 | Diag(FD->getLocation(), diag::warn_missing_prototype) << FD; | |||
| 15581 | ||||
| 15582 | if (PossiblePrototype) { | |||
| 15583 | // We found a declaration that is not a prototype, | |||
| 15584 | // but that could be a zero-parameter prototype | |||
| 15585 | if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) { | |||
| 15586 | TypeLoc TL = TI->getTypeLoc(); | |||
| 15587 | if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>()) | |||
| 15588 | Diag(PossiblePrototype->getLocation(), | |||
| 15589 | diag::note_declaration_not_a_prototype) | |||
| 15590 | << (FD->getNumParams() != 0) | |||
| 15591 | << (FD->getNumParams() == 0 ? FixItHint::CreateInsertion( | |||
| 15592 | FTL.getRParenLoc(), "void") | |||
| 15593 | : FixItHint{}); | |||
| 15594 | } | |||
| 15595 | } else { | |||
| 15596 | // Returns true if the token beginning at this Loc is `const`. | |||
| 15597 | auto isLocAtConst = [&](SourceLocation Loc, const SourceManager &SM, | |||
| 15598 | const LangOptions &LangOpts) { | |||
| 15599 | std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc); | |||
| 15600 | if (LocInfo.first.isInvalid()) | |||
| 15601 | return false; | |||
| 15602 | ||||
| 15603 | bool Invalid = false; | |||
| 15604 | StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); | |||
| 15605 | if (Invalid) | |||
| 15606 | return false; | |||
| 15607 | ||||
| 15608 | if (LocInfo.second > Buffer.size()) | |||
| 15609 | return false; | |||
| 15610 | ||||
| 15611 | const char *LexStart = Buffer.data() + LocInfo.second; | |||
| 15612 | StringRef StartTok(LexStart, Buffer.size() - LocInfo.second); | |||
| 15613 | ||||
| 15614 | return StartTok.consume_front("const") && | |||
| 15615 | (StartTok.empty() || isWhitespace(StartTok[0]) || | |||
| 15616 | StartTok.startswith("/*") || StartTok.startswith("//")); | |||
| 15617 | }; | |||
| 15618 | ||||
| 15619 | auto findBeginLoc = [&]() { | |||
| 15620 | // If the return type has `const` qualifier, we want to insert | |||
| 15621 | // `static` before `const` (and not before the typename). | |||
| 15622 | if ((FD->getReturnType()->isAnyPointerType() && | |||
| 15623 | FD->getReturnType()->getPointeeType().isConstQualified()) || | |||
| 15624 | FD->getReturnType().isConstQualified()) { | |||
| 15625 | // But only do this if we can determine where the `const` is. | |||
| 15626 | ||||
| 15627 | if (isLocAtConst(FD->getBeginLoc(), getSourceManager(), | |||
| 15628 | getLangOpts())) | |||
| 15629 | ||||
| 15630 | return FD->getBeginLoc(); | |||
| 15631 | } | |||
| 15632 | return FD->getTypeSpecStartLoc(); | |||
| 15633 | }; | |||
| 15634 | Diag(FD->getTypeSpecStartLoc(), | |||
| 15635 | diag::note_static_for_internal_linkage) | |||
| 15636 | << /* function */ 1 | |||
| 15637 | << (FD->getStorageClass() == SC_None | |||
| 15638 | ? FixItHint::CreateInsertion(findBeginLoc(), "static ") | |||
| 15639 | : FixItHint{}); | |||
| 15640 | } | |||
| 15641 | } | |||
| 15642 | ||||
| 15643 | // We might not have found a prototype because we didn't wish to warn on | |||
| 15644 | // the lack of a missing prototype. Try again without the checks for | |||
| 15645 | // whether we want to warn on the missing prototype. | |||
| 15646 | if (!PossiblePrototype) | |||
| 15647 | (void)FindPossiblePrototype(FD, PossiblePrototype); | |||
| 15648 | ||||
| 15649 | // If the function being defined does not have a prototype, then we may | |||
| 15650 | // need to diagnose it as changing behavior in C2x because we now know | |||
| 15651 | // whether the function accepts arguments or not. This only handles the | |||
| 15652 | // case where the definition has no prototype but does have parameters | |||
| 15653 | // and either there is no previous potential prototype, or the previous | |||
| 15654 | // potential prototype also has no actual prototype. This handles cases | |||
| 15655 | // like: | |||
| 15656 | // void f(); void f(a) int a; {} | |||
| 15657 | // void g(a) int a; {} | |||
| 15658 | // See MergeFunctionDecl() for other cases of the behavior change | |||
| 15659 | // diagnostic. See GetFullTypeForDeclarator() for handling of a function | |||
| 15660 | // type without a prototype. | |||
| 15661 | if (!FD->hasWrittenPrototype() && FD->getNumParams() != 0 && | |||
| 15662 | (!PossiblePrototype || (!PossiblePrototype->hasWrittenPrototype() && | |||
| 15663 | !PossiblePrototype->isImplicit()))) { | |||
| 15664 | // The function definition has parameters, so this will change behavior | |||
| 15665 | // in C2x. If there is a possible prototype, it comes before the | |||
| 15666 | // function definition. | |||
| 15667 | // FIXME: The declaration may have already been diagnosed as being | |||
| 15668 | // deprecated in GetFullTypeForDeclarator() if it had no arguments, but | |||
| 15669 | // there's no way to test for the "changes behavior" condition in | |||
| 15670 | // SemaType.cpp when forming the declaration's function type. So, we do | |||
| 15671 | // this awkward dance instead. | |||
| 15672 | // | |||
| 15673 | // If we have a possible prototype and it declares a function with a | |||
| 15674 | // prototype, we don't want to diagnose it; if we have a possible | |||
| 15675 | // prototype and it has no prototype, it may have already been | |||
| 15676 | // diagnosed in SemaType.cpp as deprecated depending on whether | |||
| 15677 | // -Wstrict-prototypes is enabled. If we already warned about it being | |||
| 15678 | // deprecated, add a note that it also changes behavior. If we didn't | |||
| 15679 | // warn about it being deprecated (because the diagnostic is not | |||
| 15680 | // enabled), warn now that it is deprecated and changes behavior. | |||
| 15681 | ||||
| 15682 | // This K&R C function definition definitely changes behavior in C2x, | |||
| 15683 | // so diagnose it. | |||
| 15684 | Diag(FD->getLocation(), diag::warn_non_prototype_changes_behavior) | |||
| 15685 | << /*definition*/ 1 << /* not supported in C2x */ 0; | |||
| 15686 | ||||
| 15687 | // If we have a possible prototype for the function which is a user- | |||
| 15688 | // visible declaration, we already tested that it has no prototype. | |||
| 15689 | // This will change behavior in C2x. This gets a warning rather than a | |||
| 15690 | // note because it's the same behavior-changing problem as with the | |||
| 15691 | // definition. | |||
| 15692 | if (PossiblePrototype) | |||
| 15693 | Diag(PossiblePrototype->getLocation(), | |||
| 15694 | diag::warn_non_prototype_changes_behavior) | |||
| 15695 | << /*declaration*/ 0 << /* conflicting */ 1 << /*subsequent*/ 1 | |||
| 15696 | << /*definition*/ 1; | |||
| 15697 | } | |||
| 15698 | ||||
| 15699 | // Warn on CPUDispatch with an actual body. | |||
| 15700 | if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body) | |||
| 15701 | if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body)) | |||
| 15702 | if (!CmpndBody->body_empty()) | |||
| 15703 | Diag(CmpndBody->body_front()->getBeginLoc(), | |||
| 15704 | diag::warn_dispatch_body_ignored); | |||
| 15705 | ||||
| 15706 | if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { | |||
| 15707 | const CXXMethodDecl *KeyFunction; | |||
| 15708 | if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) && | |||
| 15709 | MD->isVirtual() && | |||
| 15710 | (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) && | |||
| 15711 | MD == KeyFunction->getCanonicalDecl()) { | |||
| 15712 | // Update the key-function state if necessary for this ABI. | |||
| 15713 | if (FD->isInlined() && | |||
| 15714 | !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { | |||
| 15715 | Context.setNonKeyFunction(MD); | |||
| 15716 | ||||
| 15717 | // If the newly-chosen key function is already defined, then we | |||
| 15718 | // need to mark the vtable as used retroactively. | |||
| 15719 | KeyFunction = Context.getCurrentKeyFunction(MD->getParent()); | |||
| 15720 | const FunctionDecl *Definition; | |||
| 15721 | if (KeyFunction && KeyFunction->isDefined(Definition)) | |||
| 15722 | MarkVTableUsed(Definition->getLocation(), MD->getParent(), true); | |||
| 15723 | } else { | |||
| 15724 | // We just defined they key function; mark the vtable as used. | |||
| 15725 | MarkVTableUsed(FD->getLocation(), MD->getParent(), true); | |||
| 15726 | } | |||
| 15727 | } | |||
| 15728 | } | |||
| 15729 | ||||
| 15730 | assert((static_cast <bool> ((FD == getCurFunctionDecl() || getCurLambda ()->CallOperator == FD) && "Function parsing confused" ) ? void (0) : __assert_fail ("(FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && \"Function parsing confused\"" , "clang/lib/Sema/SemaDecl.cpp", 15732, __extension__ __PRETTY_FUNCTION__ )) | |||
| 15731 | (FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&(static_cast <bool> ((FD == getCurFunctionDecl() || getCurLambda ()->CallOperator == FD) && "Function parsing confused" ) ? void (0) : __assert_fail ("(FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && \"Function parsing confused\"" , "clang/lib/Sema/SemaDecl.cpp", 15732, __extension__ __PRETTY_FUNCTION__ )) | |||
| 15732 | "Function parsing confused")(static_cast <bool> ((FD == getCurFunctionDecl() || getCurLambda ()->CallOperator == FD) && "Function parsing confused" ) ? void (0) : __assert_fail ("(FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && \"Function parsing confused\"" , "clang/lib/Sema/SemaDecl.cpp", 15732, __extension__ __PRETTY_FUNCTION__ )); | |||
| 15733 | } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) { | |||
| 15734 | assert(MD == getCurMethodDecl() && "Method parsing confused")(static_cast <bool> (MD == getCurMethodDecl() && "Method parsing confused") ? void (0) : __assert_fail ("MD == getCurMethodDecl() && \"Method parsing confused\"" , "clang/lib/Sema/SemaDecl.cpp", 15734, __extension__ __PRETTY_FUNCTION__ )); | |||
| 15735 | MD->setBody(Body); | |||
| 15736 | if (!MD->isInvalidDecl()) { | |||
| 15737 | DiagnoseSizeOfParametersAndReturnValue(MD->parameters(), | |||
| 15738 | MD->getReturnType(), MD); | |||
| 15739 | ||||
| 15740 | if (Body) | |||
| 15741 | computeNRVO(Body, FSI); | |||
| 15742 | } | |||
| 15743 | if (FSI->ObjCShouldCallSuper) { | |||
| 15744 | Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call) | |||
| 15745 | << MD->getSelector().getAsString(); | |||
| 15746 | FSI->ObjCShouldCallSuper = false; | |||
| 15747 | } | |||
| 15748 | if (FSI->ObjCWarnForNoDesignatedInitChain) { | |||
| 15749 | const ObjCMethodDecl *InitMethod = nullptr; | |||
| 15750 | bool isDesignated = | |||
| 15751 | MD->isDesignatedInitializerForTheInterface(&InitMethod); | |||
| 15752 | assert(isDesignated && InitMethod)(static_cast <bool> (isDesignated && InitMethod ) ? void (0) : __assert_fail ("isDesignated && InitMethod" , "clang/lib/Sema/SemaDecl.cpp", 15752, __extension__ __PRETTY_FUNCTION__ )); | |||
| 15753 | (void)isDesignated; | |||
| 15754 | ||||
| 15755 | auto superIsNSObject = [&](const ObjCMethodDecl *MD) { | |||
| 15756 | auto IFace = MD->getClassInterface(); | |||
| 15757 | if (!IFace) | |||
| 15758 | return false; | |||
| 15759 | auto SuperD = IFace->getSuperClass(); | |||
| 15760 | if (!SuperD) | |||
| 15761 | return false; | |||
| 15762 | return SuperD->getIdentifier() == | |||
| 15763 | NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject); | |||
| 15764 | }; | |||
| 15765 | // Don't issue this warning for unavailable inits or direct subclasses | |||
| 15766 | // of NSObject. | |||
| 15767 | if (!MD->isUnavailable() && !superIsNSObject(MD)) { | |||
| 15768 | Diag(MD->getLocation(), | |||
| 15769 | diag::warn_objc_designated_init_missing_super_call); | |||
| 15770 | Diag(InitMethod->getLocation(), | |||
| 15771 | diag::note_objc_designated_init_marked_here); | |||
| 15772 | } | |||
| 15773 | FSI->ObjCWarnForNoDesignatedInitChain = false; | |||
| 15774 | } | |||
| 15775 | if (FSI->ObjCWarnForNoInitDelegation) { | |||
| 15776 | // Don't issue this warning for unavaialable inits. | |||
| 15777 | if (!MD->isUnavailable()) | |||
| 15778 | Diag(MD->getLocation(), | |||
| 15779 | diag::warn_objc_secondary_init_missing_init_call); | |||
| 15780 | FSI->ObjCWarnForNoInitDelegation = false; | |||
| 15781 | } | |||
| 15782 | ||||
| 15783 | diagnoseImplicitlyRetainedSelf(*this); | |||
| 15784 | } else { | |||
| 15785 | // Parsing the function declaration failed in some way. Pop the fake scope | |||
| 15786 | // we pushed on. | |||
| 15787 | PopFunctionScopeInfo(ActivePolicy, dcl); | |||
| 15788 | return nullptr; | |||
| 15789 | } | |||
| 15790 | ||||
| 15791 | if (Body && FSI->HasPotentialAvailabilityViolations) | |||
| 15792 | DiagnoseUnguardedAvailabilityViolations(dcl); | |||
| 15793 | ||||
| 15794 | assert(!FSI->ObjCShouldCallSuper &&(static_cast <bool> (!FSI->ObjCShouldCallSuper && "This should only be set for ObjC methods, which should have been " "handled in the block above.") ? void (0) : __assert_fail ("!FSI->ObjCShouldCallSuper && \"This should only be set for ObjC methods, which should have been \" \"handled in the block above.\"" , "clang/lib/Sema/SemaDecl.cpp", 15796, __extension__ __PRETTY_FUNCTION__ )) | |||
| 15795 | "This should only be set for ObjC methods, which should have been "(static_cast <bool> (!FSI->ObjCShouldCallSuper && "This should only be set for ObjC methods, which should have been " "handled in the block above.") ? void (0) : __assert_fail ("!FSI->ObjCShouldCallSuper && \"This should only be set for ObjC methods, which should have been \" \"handled in the block above.\"" , "clang/lib/Sema/SemaDecl.cpp", 15796, __extension__ __PRETTY_FUNCTION__ )) | |||
| 15796 | "handled in the block above.")(static_cast <bool> (!FSI->ObjCShouldCallSuper && "This should only be set for ObjC methods, which should have been " "handled in the block above.") ? void (0) : __assert_fail ("!FSI->ObjCShouldCallSuper && \"This should only be set for ObjC methods, which should have been \" \"handled in the block above.\"" , "clang/lib/Sema/SemaDecl.cpp", 15796, __extension__ __PRETTY_FUNCTION__ )); | |||
| 15797 | ||||
| 15798 | // Verify and clean out per-function state. | |||
| 15799 | if (Body && (!FD || !FD->isDefaulted())) { | |||
| 15800 | // C++ constructors that have function-try-blocks can't have return | |||
| 15801 | // statements in the handlers of that block. (C++ [except.handle]p14) | |||
| 15802 | // Verify this. | |||
| 15803 | if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body)) | |||
| 15804 | DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body)); | |||
| 15805 | ||||
| 15806 | // Verify that gotos and switch cases don't jump into scopes illegally. | |||
| 15807 | if (FSI->NeedsScopeChecking() && !PP.isCodeCompletionEnabled()) | |||
| 15808 | DiagnoseInvalidJumps(Body); | |||
| 15809 | ||||
| 15810 | if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) { | |||
| 15811 | if (!Destructor->getParent()->isDependentType()) | |||
| 15812 | CheckDestructor(Destructor); | |||
| 15813 | ||||
| 15814 | MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), | |||
| 15815 | Destructor->getParent()); | |||
| 15816 | } | |||
| 15817 | ||||
| 15818 | // If any errors have occurred, clear out any temporaries that may have | |||
| 15819 | // been leftover. This ensures that these temporaries won't be picked up | |||
| 15820 | // for deletion in some later function. | |||
| 15821 | if (hasUncompilableErrorOccurred() || | |||
| 15822 | getDiagnostics().getSuppressAllDiagnostics()) { | |||
| 15823 | DiscardCleanupsInEvaluationContext(); | |||
| 15824 | } | |||
| 15825 | if (!hasUncompilableErrorOccurred() && !isa<FunctionTemplateDecl>(dcl)) { | |||
| 15826 | // Since the body is valid, issue any analysis-based warnings that are | |||
| 15827 | // enabled. | |||
| 15828 | ActivePolicy = &WP; | |||
| 15829 | } | |||
| 15830 | ||||
| 15831 | if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() && | |||
| 15832 | !CheckConstexprFunctionDefinition(FD, CheckConstexprKind::Diagnose)) | |||
| 15833 | FD->setInvalidDecl(); | |||
| 15834 | ||||
| 15835 | if (FD && FD->hasAttr<NakedAttr>()) { | |||
| 15836 | for (const Stmt *S : Body->children()) { | |||
| 15837 | // Allow local register variables without initializer as they don't | |||
| 15838 | // require prologue. | |||
| 15839 | bool RegisterVariables = false; | |||
| 15840 | if (auto *DS = dyn_cast<DeclStmt>(S)) { | |||
| 15841 | for (const auto *Decl : DS->decls()) { | |||
| 15842 | if (const auto *Var = dyn_cast<VarDecl>(Decl)) { | |||
| 15843 | RegisterVariables = | |||
| 15844 | Var->hasAttr<AsmLabelAttr>() && !Var->hasInit(); | |||
| 15845 | if (!RegisterVariables) | |||
| 15846 | break; | |||
| 15847 | } | |||
| 15848 | } | |||
| 15849 | } | |||
| 15850 | if (RegisterVariables) | |||
| 15851 | continue; | |||
| 15852 | if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) { | |||
| 15853 | Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function); | |||
| 15854 | Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); | |||
| 15855 | FD->setInvalidDecl(); | |||
| 15856 | break; | |||
| 15857 | } | |||
| 15858 | } | |||
| 15859 | } | |||
| 15860 | ||||
| 15861 | assert(ExprCleanupObjects.size() ==(static_cast <bool> (ExprCleanupObjects.size() == ExprEvalContexts .back().NumCleanupObjects && "Leftover temporaries in function" ) ? void (0) : __assert_fail ("ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects && \"Leftover temporaries in function\"" , "clang/lib/Sema/SemaDecl.cpp", 15863, __extension__ __PRETTY_FUNCTION__ )) | |||
| 15862 | ExprEvalContexts.back().NumCleanupObjects &&(static_cast <bool> (ExprCleanupObjects.size() == ExprEvalContexts .back().NumCleanupObjects && "Leftover temporaries in function" ) ? void (0) : __assert_fail ("ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects && \"Leftover temporaries in function\"" , "clang/lib/Sema/SemaDecl.cpp", 15863, __extension__ __PRETTY_FUNCTION__ )) | |||
| 15863 | "Leftover temporaries in function")(static_cast <bool> (ExprCleanupObjects.size() == ExprEvalContexts .back().NumCleanupObjects && "Leftover temporaries in function" ) ? void (0) : __assert_fail ("ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects && \"Leftover temporaries in function\"" , "clang/lib/Sema/SemaDecl.cpp", 15863, __extension__ __PRETTY_FUNCTION__ )); | |||
| 15864 | assert(!Cleanup.exprNeedsCleanups() &&(static_cast <bool> (!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function") ? void (0) : __assert_fail ("!Cleanup.exprNeedsCleanups() && \"Unaccounted cleanups in function\"" , "clang/lib/Sema/SemaDecl.cpp", 15865, __extension__ __PRETTY_FUNCTION__ )) | |||
| 15865 | "Unaccounted cleanups in function")(static_cast <bool> (!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function") ? void (0) : __assert_fail ("!Cleanup.exprNeedsCleanups() && \"Unaccounted cleanups in function\"" , "clang/lib/Sema/SemaDecl.cpp", 15865, __extension__ __PRETTY_FUNCTION__ )); | |||
| 15866 | assert(MaybeODRUseExprs.empty() &&(static_cast <bool> (MaybeODRUseExprs.empty() && "Leftover expressions for odr-use checking") ? void (0) : __assert_fail ("MaybeODRUseExprs.empty() && \"Leftover expressions for odr-use checking\"" , "clang/lib/Sema/SemaDecl.cpp", 15867, __extension__ __PRETTY_FUNCTION__ )) | |||
| 15867 | "Leftover expressions for odr-use checking")(static_cast <bool> (MaybeODRUseExprs.empty() && "Leftover expressions for odr-use checking") ? void (0) : __assert_fail ("MaybeODRUseExprs.empty() && \"Leftover expressions for odr-use checking\"" , "clang/lib/Sema/SemaDecl.cpp", 15867, __extension__ __PRETTY_FUNCTION__ )); | |||
| 15868 | } | |||
| 15869 | } // Pops the ExitFunctionBodyRAII scope, which needs to happen before we pop | |||
| 15870 | // the declaration context below. Otherwise, we're unable to transform | |||
| 15871 | // 'this' expressions when transforming immediate context functions. | |||
| 15872 | ||||
| 15873 | if (!IsInstantiation) | |||
| 15874 | PopDeclContext(); | |||
| 15875 | ||||
| 15876 | PopFunctionScopeInfo(ActivePolicy, dcl); | |||
| 15877 | // If any errors have occurred, clear out any temporaries that may have | |||
| 15878 | // been leftover. This ensures that these temporaries won't be picked up for | |||
| 15879 | // deletion in some later function. | |||
| 15880 | if (hasUncompilableErrorOccurred()) { | |||
| 15881 | DiscardCleanupsInEvaluationContext(); | |||
| 15882 | } | |||
| 15883 | ||||
| 15884 | if (FD && ((LangOpts.OpenMP && (LangOpts.OpenMPIsDevice || | |||
| 15885 | !LangOpts.OMPTargetTriples.empty())) || | |||
| 15886 | LangOpts.CUDA || LangOpts.SYCLIsDevice)) { | |||
| 15887 | auto ES = getEmissionStatus(FD); | |||
| 15888 | if (ES == Sema::FunctionEmissionStatus::Emitted || | |||
| 15889 | ES == Sema::FunctionEmissionStatus::Unknown) | |||
| 15890 | DeclsToCheckForDeferredDiags.insert(FD); | |||
| 15891 | } | |||
| 15892 | ||||
| 15893 | if (FD && !FD->isDeleted()) | |||
| 15894 | checkTypeSupport(FD->getType(), FD->getLocation(), FD); | |||
| 15895 | ||||
| 15896 | return dcl; | |||
| 15897 | } | |||
| 15898 | ||||
| 15899 | /// When we finish delayed parsing of an attribute, we must attach it to the | |||
| 15900 | /// relevant Decl. | |||
| 15901 | void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D, | |||
| 15902 | ParsedAttributes &Attrs) { | |||
| 15903 | // Always attach attributes to the underlying decl. | |||
| 15904 | if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) | |||
| 15905 | D = TD->getTemplatedDecl(); | |||
| 15906 | ProcessDeclAttributeList(S, D, Attrs); | |||
| 15907 | ||||
| 15908 | if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D)) | |||
| 15909 | if (Method->isStatic()) | |||
| 15910 | checkThisInStaticMemberFunctionAttributes(Method); | |||
| 15911 | } | |||
| 15912 | ||||
| 15913 | /// ImplicitlyDefineFunction - An undeclared identifier was used in a function | |||
| 15914 | /// call, forming a call to an implicitly defined function (per C99 6.5.1p2). | |||
| 15915 | NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, | |||
| 15916 | IdentifierInfo &II, Scope *S) { | |||
| 15917 | // It is not valid to implicitly define a function in C2x. | |||
| 15918 | assert(LangOpts.implicitFunctionsAllowed() &&(static_cast <bool> (LangOpts.implicitFunctionsAllowed( ) && "Implicit function declarations aren't allowed in this language mode" ) ? void (0) : __assert_fail ("LangOpts.implicitFunctionsAllowed() && \"Implicit function declarations aren't allowed in this language mode\"" , "clang/lib/Sema/SemaDecl.cpp", 15919, __extension__ __PRETTY_FUNCTION__ )) | |||
| 15919 | "Implicit function declarations aren't allowed in this language mode")(static_cast <bool> (LangOpts.implicitFunctionsAllowed( ) && "Implicit function declarations aren't allowed in this language mode" ) ? void (0) : __assert_fail ("LangOpts.implicitFunctionsAllowed() && \"Implicit function declarations aren't allowed in this language mode\"" , "clang/lib/Sema/SemaDecl.cpp", 15919, __extension__ __PRETTY_FUNCTION__ )); | |||
| 15920 | ||||
| 15921 | // Find the scope in which the identifier is injected and the corresponding | |||
| 15922 | // DeclContext. | |||
| 15923 | // FIXME: C89 does not say what happens if there is no enclosing block scope. | |||
| 15924 | // In that case, we inject the declaration into the translation unit scope | |||
| 15925 | // instead. | |||
| 15926 | Scope *BlockScope = S; | |||
| 15927 | while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent()) | |||
| 15928 | BlockScope = BlockScope->getParent(); | |||
| 15929 | ||||
| 15930 | Scope *ContextScope = BlockScope; | |||
| 15931 | while (!ContextScope->getEntity()) | |||
| 15932 | ContextScope = ContextScope->getParent(); | |||
| 15933 | ContextRAII SavedContext(*this, ContextScope->getEntity()); | |||
| 15934 | ||||
| 15935 | // Before we produce a declaration for an implicitly defined | |||
| 15936 | // function, see whether there was a locally-scoped declaration of | |||
| 15937 | // this name as a function or variable. If so, use that | |||
| 15938 | // (non-visible) declaration, and complain about it. | |||
| 15939 | NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II); | |||
| 15940 | if (ExternCPrev) { | |||
| 15941 | // We still need to inject the function into the enclosing block scope so | |||
| 15942 | // that later (non-call) uses can see it. | |||
| 15943 | PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false); | |||
| 15944 | ||||
| 15945 | // C89 footnote 38: | |||
| 15946 | // If in fact it is not defined as having type "function returning int", | |||
| 15947 | // the behavior is undefined. | |||
| 15948 | if (!isa<FunctionDecl>(ExternCPrev) || | |||
| 15949 | !Context.typesAreCompatible( | |||
| 15950 | cast<FunctionDecl>(ExternCPrev)->getType(), | |||
| 15951 | Context.getFunctionNoProtoType(Context.IntTy))) { | |||
| 15952 | Diag(Loc, diag::ext_use_out_of_scope_declaration) | |||
| 15953 | << ExternCPrev << !getLangOpts().C99; | |||
| 15954 | Diag(ExternCPrev->getLocation(), diag::note_previous_declaration); | |||
| 15955 | return ExternCPrev; | |||
| 15956 | } | |||
| 15957 | } | |||
| 15958 | ||||
| 15959 | // Extension in C99 (defaults to error). Legal in C89, but warn about it. | |||
| 15960 | unsigned diag_id; | |||
| 15961 | if (II.getName().startswith("__builtin_")) | |||
| 15962 | diag_id = diag::warn_builtin_unknown; | |||
| 15963 | // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported. | |||
| 15964 | else if (getLangOpts().C99) | |||
| 15965 | diag_id = diag::ext_implicit_function_decl_c99; | |||
| 15966 | else | |||
| 15967 | diag_id = diag::warn_implicit_function_decl; | |||
| 15968 | ||||
| 15969 | TypoCorrection Corrected; | |||
| 15970 | // Because typo correction is expensive, only do it if the implicit | |||
| 15971 | // function declaration is going to be treated as an error. | |||
| 15972 | // | |||
| 15973 | // Perform the correction before issuing the main diagnostic, as some | |||
| 15974 | // consumers use typo-correction callbacks to enhance the main diagnostic. | |||
| 15975 | if (S && !ExternCPrev && | |||
| 15976 | (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error)) { | |||
| 15977 | DeclFilterCCC<FunctionDecl> CCC{}; | |||
| 15978 | Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName, | |||
| 15979 | S, nullptr, CCC, CTK_NonError); | |||
| 15980 | } | |||
| 15981 | ||||
| 15982 | Diag(Loc, diag_id) << &II; | |||
| 15983 | if (Corrected) { | |||
| 15984 | // If the correction is going to suggest an implicitly defined function, | |||
| 15985 | // skip the correction as not being a particularly good idea. | |||
| 15986 | bool Diagnose = true; | |||
| 15987 | if (const auto *D = Corrected.getCorrectionDecl()) | |||
| 15988 | Diagnose = !D->isImplicit(); | |||
| 15989 | if (Diagnose) | |||
| 15990 | diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion), | |||
| 15991 | /*ErrorRecovery*/ false); | |||
| 15992 | } | |||
| 15993 | ||||
| 15994 | // If we found a prior declaration of this function, don't bother building | |||
| 15995 | // another one. We've already pushed that one into scope, so there's nothing | |||
| 15996 | // more to do. | |||
| 15997 | if (ExternCPrev) | |||
| 15998 | return ExternCPrev; | |||
| 15999 | ||||
| 16000 | // Set a Declarator for the implicit definition: int foo(); | |||
| 16001 | const char *Dummy; | |||
| 16002 | AttributeFactory attrFactory; | |||
| 16003 | DeclSpec DS(attrFactory); | |||
| 16004 | unsigned DiagID; | |||
| 16005 | bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID, | |||
| 16006 | Context.getPrintingPolicy()); | |||
| 16007 | (void)Error; // Silence warning. | |||
| 16008 | assert(!Error && "Error setting up implicit decl!")(static_cast <bool> (!Error && "Error setting up implicit decl!" ) ? void (0) : __assert_fail ("!Error && \"Error setting up implicit decl!\"" , "clang/lib/Sema/SemaDecl.cpp", 16008, __extension__ __PRETTY_FUNCTION__ )); | |||
| 16009 | SourceLocation NoLoc; | |||
| 16010 | Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::Block); | |||
| 16011 | D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false, | |||
| 16012 | /*IsAmbiguous=*/false, | |||
| 16013 | /*LParenLoc=*/NoLoc, | |||
| 16014 | /*Params=*/nullptr, | |||
| 16015 | /*NumParams=*/0, | |||
| 16016 | /*EllipsisLoc=*/NoLoc, | |||
| 16017 | /*RParenLoc=*/NoLoc, | |||
| 16018 | /*RefQualifierIsLvalueRef=*/true, | |||
| 16019 | /*RefQualifierLoc=*/NoLoc, | |||
| 16020 | /*MutableLoc=*/NoLoc, EST_None, | |||
| 16021 | /*ESpecRange=*/SourceRange(), | |||
| 16022 | /*Exceptions=*/nullptr, | |||
| 16023 | /*ExceptionRanges=*/nullptr, | |||
| 16024 | /*NumExceptions=*/0, | |||
| 16025 | /*NoexceptExpr=*/nullptr, | |||
| 16026 | /*ExceptionSpecTokens=*/nullptr, | |||
| 16027 | /*DeclsInPrototype=*/std::nullopt, | |||
| 16028 | Loc, Loc, D), | |||
| 16029 | std::move(DS.getAttributes()), SourceLocation()); | |||
| 16030 | D.SetIdentifier(&II, Loc); | |||
| 16031 | ||||
| 16032 | // Insert this function into the enclosing block scope. | |||
| 16033 | FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D)); | |||
| 16034 | FD->setImplicit(); | |||
| 16035 | ||||
| 16036 | AddKnownFunctionAttributes(FD); | |||
| 16037 | ||||
| 16038 | return FD; | |||
| 16039 | } | |||
| 16040 | ||||
| 16041 | /// If this function is a C++ replaceable global allocation function | |||
| 16042 | /// (C++2a [basic.stc.dynamic.allocation], C++2a [new.delete]), | |||
| 16043 | /// adds any function attributes that we know a priori based on the standard. | |||
| 16044 | /// | |||
| 16045 | /// We need to check for duplicate attributes both here and where user-written | |||
| 16046 | /// attributes are applied to declarations. | |||
| 16047 | void Sema::AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction( | |||
| 16048 | FunctionDecl *FD) { | |||
| 16049 | if (FD->isInvalidDecl()) | |||
| 16050 | return; | |||
| 16051 | ||||
| 16052 | if (FD->getDeclName().getCXXOverloadedOperator() != OO_New && | |||
| 16053 | FD->getDeclName().getCXXOverloadedOperator() != OO_Array_New) | |||
| 16054 | return; | |||
| 16055 | ||||
| 16056 | std::optional<unsigned> AlignmentParam; | |||
| 16057 | bool IsNothrow = false; | |||
| 16058 | if (!FD->isReplaceableGlobalAllocationFunction(&AlignmentParam, &IsNothrow)) | |||
| 16059 | return; | |||
| 16060 | ||||
| 16061 | // C++2a [basic.stc.dynamic.allocation]p4: | |||
| 16062 | // An allocation function that has a non-throwing exception specification | |||
| 16063 | // indicates failure by returning a null pointer value. Any other allocation | |||
| 16064 | // function never returns a null pointer value and indicates failure only by | |||
| 16065 | // throwing an exception [...] | |||
| 16066 | if (!IsNothrow && !FD->hasAttr<ReturnsNonNullAttr>()) | |||
| 16067 | FD->addAttr(ReturnsNonNullAttr::CreateImplicit(Context, FD->getLocation())); | |||
| 16068 | ||||
| 16069 | // C++2a [basic.stc.dynamic.allocation]p2: | |||
| 16070 | // An allocation function attempts to allocate the requested amount of | |||
| 16071 | // storage. [...] If the request succeeds, the value returned by a | |||
| 16072 | // replaceable allocation function is a [...] pointer value p0 different | |||
| 16073 | // from any previously returned value p1 [...] | |||
| 16074 | // | |||
| 16075 | // However, this particular information is being added in codegen, | |||
| 16076 | // because there is an opt-out switch for it (-fno-assume-sane-operator-new) | |||
| 16077 | ||||
| 16078 | // C++2a [basic.stc.dynamic.allocation]p2: | |||
| 16079 | // An allocation function attempts to allocate the requested amount of | |||
| 16080 | // storage. If it is successful, it returns the address of the start of a | |||
| 16081 | // block of storage whose length in bytes is at least as large as the | |||
| 16082 | // requested size. | |||
| 16083 | if (!FD->hasAttr<AllocSizeAttr>()) { | |||
| 16084 | FD->addAttr(AllocSizeAttr::CreateImplicit( | |||
| 16085 | Context, /*ElemSizeParam=*/ParamIdx(1, FD), | |||
| 16086 | /*NumElemsParam=*/ParamIdx(), FD->getLocation())); | |||
| 16087 | } | |||
| 16088 | ||||
| 16089 | // C++2a [basic.stc.dynamic.allocation]p3: | |||
| 16090 | // For an allocation function [...], the pointer returned on a successful | |||
| 16091 | // call shall represent the address of storage that is aligned as follows: | |||
| 16092 | // (3.1) If the allocation function takes an argument of type | |||
| 16093 | // std::align_val_t, the storage will have the alignment | |||
| 16094 | // specified by the value of this argument. | |||
| 16095 | if (AlignmentParam && !FD->hasAttr<AllocAlignAttr>()) { | |||
| 16096 | FD->addAttr(AllocAlignAttr::CreateImplicit( | |||
| 16097 | Context, ParamIdx(*AlignmentParam, FD), FD->getLocation())); | |||
| 16098 | } | |||
| 16099 | ||||
| 16100 | // FIXME: | |||
| 16101 | // C++2a [basic.stc.dynamic.allocation]p3: | |||
| 16102 | // For an allocation function [...], the pointer returned on a successful | |||
| 16103 | // call shall represent the address of storage that is aligned as follows: | |||
| 16104 | // (3.2) Otherwise, if the allocation function is named operator new[], | |||
| 16105 | // the storage is aligned for any object that does not have | |||
| 16106 | // new-extended alignment ([basic.align]) and is no larger than the | |||
| 16107 | // requested size. | |||
| 16108 | // (3.3) Otherwise, the storage is aligned for any object that does not | |||
| 16109 | // have new-extended alignment and is of the requested size. | |||
| 16110 | } | |||
| 16111 | ||||
| 16112 | /// Adds any function attributes that we know a priori based on | |||
| 16113 | /// the declaration of this function. | |||
| 16114 | /// | |||
| 16115 | /// These attributes can apply both to implicitly-declared builtins | |||
| 16116 | /// (like __builtin___printf_chk) or to library-declared functions | |||
| 16117 | /// like NSLog or printf. | |||
| 16118 | /// | |||
| 16119 | /// We need to check for duplicate attributes both here and where user-written | |||
| 16120 | /// attributes are applied to declarations. | |||
| 16121 | void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) { | |||
| 16122 | if (FD->isInvalidDecl()) | |||
| 16123 | return; | |||
| 16124 | ||||
| 16125 | // If this is a built-in function, map its builtin attributes to | |||
| 16126 | // actual attributes. | |||
| 16127 | if (unsigned BuiltinID = FD->getBuiltinID()) { | |||
| 16128 | // Handle printf-formatting attributes. | |||
| 16129 | unsigned FormatIdx; | |||
| 16130 | bool HasVAListArg; | |||
| 16131 | if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) { | |||
| 16132 | if (!FD->hasAttr<FormatAttr>()) { | |||
| 16133 | const char *fmt = "printf"; | |||
| 16134 | unsigned int NumParams = FD->getNumParams(); | |||
| 16135 | if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf) | |||
| 16136 | FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType()) | |||
| 16137 | fmt = "NSString"; | |||
| 16138 | FD->addAttr(FormatAttr::CreateImplicit(Context, | |||
| 16139 | &Context.Idents.get(fmt), | |||
| 16140 | FormatIdx+1, | |||
| 16141 | HasVAListArg ? 0 : FormatIdx+2, | |||
| 16142 | FD->getLocation())); | |||
| 16143 | } | |||
| 16144 | } | |||
| 16145 | if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx, | |||
| 16146 | HasVAListArg)) { | |||
| 16147 | if (!FD->hasAttr<FormatAttr>()) | |||
| 16148 | FD->addAttr(FormatAttr::CreateImplicit(Context, | |||
| 16149 | &Context.Idents.get("scanf"), | |||
| 16150 | FormatIdx+1, | |||
| 16151 | HasVAListArg ? 0 : FormatIdx+2, | |||
| 16152 | FD->getLocation())); | |||
| 16153 | } | |||
| 16154 | ||||
| 16155 | // Handle automatically recognized callbacks. | |||
| 16156 | SmallVector<int, 4> Encoding; | |||
| 16157 | if (!FD->hasAttr<CallbackAttr>() && | |||
| 16158 | Context.BuiltinInfo.performsCallback(BuiltinID, Encoding)) | |||
| 16159 | FD->addAttr(CallbackAttr::CreateImplicit( | |||
| 16160 | Context, Encoding.data(), Encoding.size(), FD->getLocation())); | |||
| 16161 | ||||
| 16162 | // Mark const if we don't care about errno and/or floating point exceptions | |||
| 16163 | // that are the only thing preventing the function from being const. This | |||
| 16164 | // allows IRgen to use LLVM intrinsics for such functions. | |||
| 16165 | bool NoExceptions = | |||
| 16166 | getLangOpts().getDefaultExceptionMode() == LangOptions::FPE_Ignore; | |||
| 16167 | bool ConstWithoutErrnoAndExceptions = | |||
| 16168 | Context.BuiltinInfo.isConstWithoutErrnoAndExceptions(BuiltinID); | |||
| 16169 | bool ConstWithoutExceptions = | |||
| 16170 | Context.BuiltinInfo.isConstWithoutExceptions(BuiltinID); | |||
| 16171 | if (!FD->hasAttr<ConstAttr>() && | |||
| 16172 | (ConstWithoutErrnoAndExceptions || ConstWithoutExceptions) && | |||
| 16173 | (!ConstWithoutErrnoAndExceptions || | |||
| 16174 | (!getLangOpts().MathErrno && NoExceptions)) && | |||
| 16175 | (!ConstWithoutExceptions || NoExceptions)) | |||
| 16176 | FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); | |||
| 16177 | ||||
| 16178 | // We make "fma" on GNU or Windows const because we know it does not set | |||
| 16179 | // errno in those environments even though it could set errno based on the | |||
| 16180 | // C standard. | |||
| 16181 | const llvm::Triple &Trip = Context.getTargetInfo().getTriple(); | |||
| 16182 | if ((Trip.isGNUEnvironment() || Trip.isOSMSVCRT()) && | |||
| 16183 | !FD->hasAttr<ConstAttr>()) { | |||
| 16184 | switch (BuiltinID) { | |||
| 16185 | case Builtin::BI__builtin_fma: | |||
| 16186 | case Builtin::BI__builtin_fmaf: | |||
| 16187 | case Builtin::BI__builtin_fmal: | |||
| 16188 | case Builtin::BIfma: | |||
| 16189 | case Builtin::BIfmaf: | |||
| 16190 | case Builtin::BIfmal: | |||
| 16191 | FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); | |||
| 16192 | break; | |||
| 16193 | default: | |||
| 16194 | break; | |||
| 16195 | } | |||
| 16196 | } | |||
| 16197 | ||||
| 16198 | if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) && | |||
| 16199 | !FD->hasAttr<ReturnsTwiceAttr>()) | |||
| 16200 | FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context, | |||
| 16201 | FD->getLocation())); | |||
| 16202 | if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>()) | |||
| 16203 | FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation())); | |||
| 16204 | if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>()) | |||
| 16205 | FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation())); | |||
| 16206 | if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>()) | |||
| 16207 | FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); | |||
| 16208 | if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) && | |||
| 16209 | !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) { | |||
| 16210 | // Add the appropriate attribute, depending on the CUDA compilation mode | |||
| 16211 | // and which target the builtin belongs to. For example, during host | |||
| 16212 | // compilation, aux builtins are __device__, while the rest are __host__. | |||
| 16213 | if (getLangOpts().CUDAIsDevice != | |||
| 16214 | Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) | |||
| 16215 | FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation())); | |||
| 16216 | else | |||
| 16217 | FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation())); | |||
| 16218 | } | |||
| 16219 | ||||
| 16220 | // Add known guaranteed alignment for allocation functions. | |||
| 16221 | switch (BuiltinID) { | |||
| 16222 | case Builtin::BImemalign: | |||
| 16223 | case Builtin::BIaligned_alloc: | |||
| 16224 | if (!FD->hasAttr<AllocAlignAttr>()) | |||
| 16225 | FD->addAttr(AllocAlignAttr::CreateImplicit(Context, ParamIdx(1, FD), | |||
| 16226 | FD->getLocation())); | |||
| 16227 | break; | |||
| 16228 | default: | |||
| 16229 | break; | |||
| 16230 | } | |||
| 16231 | ||||
| 16232 | // Add allocsize attribute for allocation functions. | |||
| 16233 | switch (BuiltinID) { | |||
| 16234 | case Builtin::BIcalloc: | |||
| 16235 | FD->addAttr(AllocSizeAttr::CreateImplicit( | |||
| 16236 | Context, ParamIdx(1, FD), ParamIdx(2, FD), FD->getLocation())); | |||
| 16237 | break; | |||
| 16238 | case Builtin::BImemalign: | |||
| 16239 | case Builtin::BIaligned_alloc: | |||
| 16240 | case Builtin::BIrealloc: | |||
| 16241 | FD->addAttr(AllocSizeAttr::CreateImplicit(Context, ParamIdx(2, FD), | |||
| 16242 | ParamIdx(), FD->getLocation())); | |||
| 16243 | break; | |||
| 16244 | case Builtin::BImalloc: | |||
| 16245 | FD->addAttr(AllocSizeAttr::CreateImplicit(Context, ParamIdx(1, FD), | |||
| 16246 | ParamIdx(), FD->getLocation())); | |||
| 16247 | break; | |||
| 16248 | default: | |||
| 16249 | break; | |||
| 16250 | } | |||
| 16251 | ||||
| 16252 | // Add lifetime attribute to std::move, std::fowrard et al. | |||
| 16253 | switch (BuiltinID) { | |||
| 16254 | case Builtin::BIaddressof: | |||
| 16255 | case Builtin::BI__addressof: | |||
| 16256 | case Builtin::BI__builtin_addressof: | |||
| 16257 | case Builtin::BIas_const: | |||
| 16258 | case Builtin::BIforward: | |||
| 16259 | case Builtin::BIforward_like: | |||
| 16260 | case Builtin::BImove: | |||
| 16261 | case Builtin::BImove_if_noexcept: | |||
| 16262 | if (ParmVarDecl *P = FD->getParamDecl(0u); | |||
| 16263 | !P->hasAttr<LifetimeBoundAttr>()) | |||
| 16264 | P->addAttr( | |||
| 16265 | LifetimeBoundAttr::CreateImplicit(Context, FD->getLocation())); | |||
| 16266 | break; | |||
| 16267 | default: | |||
| 16268 | break; | |||
| 16269 | } | |||
| 16270 | } | |||
| 16271 | ||||
| 16272 | AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD); | |||
| 16273 | ||||
| 16274 | // If C++ exceptions are enabled but we are told extern "C" functions cannot | |||
| 16275 | // throw, add an implicit nothrow attribute to any extern "C" function we come | |||
| 16276 | // across. | |||
| 16277 | if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind && | |||
| 16278 | FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) { | |||
| 16279 | const auto *FPT = FD->getType()->getAs<FunctionProtoType>(); | |||
| 16280 | if (!FPT || FPT->getExceptionSpecType() == EST_None) | |||
| 16281 | FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation())); | |||
| 16282 | } | |||
| 16283 | ||||
| 16284 | IdentifierInfo *Name = FD->getIdentifier(); | |||
| 16285 | if (!Name) | |||
| 16286 | return; | |||
| 16287 | if ((!getLangOpts().CPlusPlus && | |||
| 16288 | FD->getDeclContext()->isTranslationUnit()) || | |||
| 16289 | (isa<LinkageSpecDecl>(FD->getDeclContext()) && | |||
| 16290 | cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() == | |||
| 16291 | LinkageSpecDecl::lang_c)) { | |||
| 16292 | // Okay: this could be a libc/libm/Objective-C function we know | |||
| 16293 | // about. | |||
| 16294 | } else | |||
| 16295 | return; | |||
| 16296 | ||||
| 16297 | if (Name->isStr("asprintf") || Name->isStr("vasprintf")) { | |||
| 16298 | // FIXME: asprintf and vasprintf aren't C99 functions. Should they be | |||
| 16299 | // target-specific builtins, perhaps? | |||
| 16300 | if (!FD->hasAttr<FormatAttr>()) | |||
| 16301 | FD->addAttr(FormatAttr::CreateImplicit(Context, | |||
| 16302 | &Context.Idents.get("printf"), 2, | |||
| 16303 | Name->isStr("vasprintf") ? 0 : 3, | |||
| 16304 | FD->getLocation())); | |||
| 16305 | } | |||
| 16306 | ||||
| 16307 | if (Name->isStr("__CFStringMakeConstantString")) { | |||
| 16308 | // We already have a __builtin___CFStringMakeConstantString, | |||
| 16309 | // but builds that use -fno-constant-cfstrings don't go through that. | |||
| 16310 | if (!FD->hasAttr<FormatArgAttr>()) | |||
| 16311 | FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD), | |||
| 16312 | FD->getLocation())); | |||
| 16313 | } | |||
| 16314 | } | |||
| 16315 | ||||
| 16316 | TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T, | |||
| 16317 | TypeSourceInfo *TInfo) { | |||
| 16318 | assert(D.getIdentifier() && "Wrong callback for declspec without declarator")(static_cast <bool> (D.getIdentifier() && "Wrong callback for declspec without declarator" ) ? void (0) : __assert_fail ("D.getIdentifier() && \"Wrong callback for declspec without declarator\"" , "clang/lib/Sema/SemaDecl.cpp", 16318, __extension__ __PRETTY_FUNCTION__ )); | |||
| 16319 | assert(!T.isNull() && "GetTypeForDeclarator() returned null type")(static_cast <bool> (!T.isNull() && "GetTypeForDeclarator() returned null type" ) ? void (0) : __assert_fail ("!T.isNull() && \"GetTypeForDeclarator() returned null type\"" , "clang/lib/Sema/SemaDecl.cpp", 16319, __extension__ __PRETTY_FUNCTION__ )); | |||
| 16320 | ||||
| 16321 | if (!TInfo) { | |||
| 16322 | assert(D.isInvalidType() && "no declarator info for valid type")(static_cast <bool> (D.isInvalidType() && "no declarator info for valid type" ) ? void (0) : __assert_fail ("D.isInvalidType() && \"no declarator info for valid type\"" , "clang/lib/Sema/SemaDecl.cpp", 16322, __extension__ __PRETTY_FUNCTION__ )); | |||
| 16323 | TInfo = Context.getTrivialTypeSourceInfo(T); | |||
| 16324 | } | |||
| 16325 | ||||
| 16326 | // Scope manipulation handled by caller. | |||
| 16327 | TypedefDecl *NewTD = | |||
| 16328 | TypedefDecl::Create(Context, CurContext, D.getBeginLoc(), | |||
| 16329 | D.getIdentifierLoc(), D.getIdentifier(), TInfo); | |||
| 16330 | ||||
| 16331 | // Bail out immediately if we have an invalid declaration. | |||
| 16332 | if (D.isInvalidType()) { | |||
| 16333 | NewTD->setInvalidDecl(); | |||
| 16334 | return NewTD; | |||
| 16335 | } | |||
| 16336 | ||||
| 16337 | if (D.getDeclSpec().isModulePrivateSpecified()) { | |||
| 16338 | if (CurContext->isFunctionOrMethod()) | |||
| 16339 | Diag(NewTD->getLocation(), diag::err_module_private_local) | |||
| 16340 | << 2 << NewTD | |||
| 16341 | << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) | |||
| 16342 | << FixItHint::CreateRemoval( | |||
| 16343 | D.getDeclSpec().getModulePrivateSpecLoc()); | |||
| 16344 | else | |||
| 16345 | NewTD->setModulePrivate(); | |||
| 16346 | } | |||
| 16347 | ||||
| 16348 | // C++ [dcl.typedef]p8: | |||
| 16349 | // If the typedef declaration defines an unnamed class (or | |||
| 16350 | // enum), the first typedef-name declared by the declaration | |||
| 16351 | // to be that class type (or enum type) is used to denote the | |||
| 16352 | // class type (or enum type) for linkage purposes only. | |||
| 16353 | // We need to check whether the type was declared in the declaration. | |||
| 16354 | switch (D.getDeclSpec().getTypeSpecType()) { | |||
| 16355 | case TST_enum: | |||
| 16356 | case TST_struct: | |||
| 16357 | case TST_interface: | |||
| 16358 | case TST_union: | |||
| 16359 | case TST_class: { | |||
| 16360 | TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl()); | |||
| 16361 | setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD); | |||
| 16362 | break; | |||
| 16363 | } | |||
| 16364 | ||||
| 16365 | default: | |||
| 16366 | break; | |||
| 16367 | } | |||
| 16368 | ||||
| 16369 | return NewTD; | |||
| 16370 | } | |||
| 16371 | ||||
| 16372 | /// Check that this is a valid underlying type for an enum declaration. | |||
| 16373 | bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) { | |||
| 16374 | SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); | |||
| 16375 | QualType T = TI->getType(); | |||
| 16376 | ||||
| 16377 | if (T->isDependentType()) | |||
| 16378 | return false; | |||
| 16379 | ||||
| 16380 | // This doesn't use 'isIntegralType' despite the error message mentioning | |||
| 16381 | // integral type because isIntegralType would also allow enum types in C. | |||
| 16382 | if (const BuiltinType *BT = T->getAs<BuiltinType>()) | |||
| 16383 | if (BT->isInteger()) | |||
| 16384 | return false; | |||
| 16385 | ||||
| 16386 | if (T->isBitIntType()) | |||
| 16387 | return false; | |||
| 16388 | ||||
| 16389 | return Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T; | |||
| 16390 | } | |||
| 16391 | ||||
| 16392 | /// Check whether this is a valid redeclaration of a previous enumeration. | |||
| 16393 | /// \return true if the redeclaration was invalid. | |||
| 16394 | bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped, | |||
| 16395 | QualType EnumUnderlyingTy, bool IsFixed, | |||
| 16396 | const EnumDecl *Prev) { | |||
| 16397 | if (IsScoped != Prev->isScoped()) { | |||
| 16398 | Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch) | |||
| 16399 | << Prev->isScoped(); | |||
| 16400 | Diag(Prev->getLocation(), diag::note_previous_declaration); | |||
| 16401 | return true; | |||
| 16402 | } | |||
| 16403 | ||||
| 16404 | if (IsFixed && Prev->isFixed()) { | |||
| 16405 | if (!EnumUnderlyingTy->isDependentType() && | |||
| 16406 | !Prev->getIntegerType()->isDependentType() && | |||
| 16407 | !Context.hasSameUnqualifiedType(EnumUnderlyingTy, | |||
| 16408 | Prev->getIntegerType())) { | |||
| 16409 | // TODO: Highlight the underlying type of the redeclaration. | |||
| 16410 | Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch) | |||
| 16411 | << EnumUnderlyingTy << Prev->getIntegerType(); | |||
| 16412 | Diag(Prev->getLocation(), diag::note_previous_declaration) | |||
| 16413 | << Prev->getIntegerTypeRange(); | |||
| 16414 | return true; | |||
| 16415 | } | |||
| 16416 | } else if (IsFixed != Prev->isFixed()) { | |||
| 16417 | Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch) | |||
| 16418 | << Prev->isFixed(); | |||
| 16419 | Diag(Prev->getLocation(), diag::note_previous_declaration); | |||
| 16420 | return true; | |||
| 16421 | } | |||
| 16422 | ||||
| 16423 | return false; | |||
| 16424 | } | |||
| 16425 | ||||
| 16426 | /// Get diagnostic %select index for tag kind for | |||
| 16427 | /// redeclaration diagnostic message. | |||
| 16428 | /// WARNING: Indexes apply to particular diagnostics only! | |||
| 16429 | /// | |||
| 16430 | /// \returns diagnostic %select index. | |||
| 16431 | static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) { | |||
| 16432 | switch (Tag) { | |||
| 16433 | case TTK_Struct: return 0; | |||
| 16434 | case TTK_Interface: return 1; | |||
| 16435 | case TTK_Class: return 2; | |||
| 16436 | default: llvm_unreachable("Invalid tag kind for redecl diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for redecl diagnostic!" , "clang/lib/Sema/SemaDecl.cpp", 16436); | |||
| 16437 | } | |||
| 16438 | } | |||
| 16439 | ||||
| 16440 | /// Determine if tag kind is a class-key compatible with | |||
| 16441 | /// class for redeclaration (class, struct, or __interface). | |||
| 16442 | /// | |||
| 16443 | /// \returns true iff the tag kind is compatible. | |||
| 16444 | static bool isClassCompatTagKind(TagTypeKind Tag) | |||
| 16445 | { | |||
| 16446 | return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface; | |||
| 16447 | } | |||
| 16448 | ||||
| 16449 | Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl, | |||
| 16450 | TagTypeKind TTK) { | |||
| 16451 | if (isa<TypedefDecl>(PrevDecl)) | |||
| 16452 | return NTK_Typedef; | |||
| 16453 | else if (isa<TypeAliasDecl>(PrevDecl)) | |||
| 16454 | return NTK_TypeAlias; | |||
| 16455 | else if (isa<ClassTemplateDecl>(PrevDecl)) | |||
| 16456 | return NTK_Template; | |||
| 16457 | else if (isa<TypeAliasTemplateDecl>(PrevDecl)) | |||
| 16458 | return NTK_TypeAliasTemplate; | |||
| 16459 | else if (isa<TemplateTemplateParmDecl>(PrevDecl)) | |||
| 16460 | return NTK_TemplateTemplateArgument; | |||
| 16461 | switch (TTK) { | |||
| 16462 | case TTK_Struct: | |||
| 16463 | case TTK_Interface: | |||
| 16464 | case TTK_Class: | |||
| 16465 | return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct; | |||
| 16466 | case TTK_Union: | |||
| 16467 | return NTK_NonUnion; | |||
| 16468 | case TTK_Enum: | |||
| 16469 | return NTK_NonEnum; | |||
| 16470 | } | |||
| 16471 | llvm_unreachable("invalid TTK")::llvm::llvm_unreachable_internal("invalid TTK", "clang/lib/Sema/SemaDecl.cpp" , 16471); | |||
| 16472 | } | |||
| 16473 | ||||
| 16474 | /// Determine whether a tag with a given kind is acceptable | |||
| 16475 | /// as a redeclaration of the given tag declaration. | |||
| 16476 | /// | |||
| 16477 | /// \returns true if the new tag kind is acceptable, false otherwise. | |||
| 16478 | bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous, | |||
| 16479 | TagTypeKind NewTag, bool isDefinition, | |||
| 16480 | SourceLocation NewTagLoc, | |||
| 16481 | const IdentifierInfo *Name) { | |||
| 16482 | // C++ [dcl.type.elab]p3: | |||
| 16483 | // The class-key or enum keyword present in the | |||
| 16484 | // elaborated-type-specifier shall agree in kind with the | |||
| 16485 | // declaration to which the name in the elaborated-type-specifier | |||
| 16486 | // refers. This rule also applies to the form of | |||
| 16487 | // elaborated-type-specifier that declares a class-name or | |||
| 16488 | // friend class since it can be construed as referring to the | |||
| 16489 | // definition of the class. Thus, in any | |||
| 16490 | // elaborated-type-specifier, the enum keyword shall be used to | |||
| 16491 | // refer to an enumeration (7.2), the union class-key shall be | |||
| 16492 | // used to refer to a union (clause 9), and either the class or | |||
| 16493 | // struct class-key shall be used to refer to a class (clause 9) | |||
| 16494 | // declared using the class or struct class-key. | |||
| 16495 | TagTypeKind OldTag = Previous->getTagKind(); | |||
| 16496 | if (OldTag != NewTag && | |||
| 16497 | !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag))) | |||
| 16498 | return false; | |||
| 16499 | ||||
| 16500 | // Tags are compatible, but we might still want to warn on mismatched tags. | |||
| 16501 | // Non-class tags can't be mismatched at this point. | |||
| 16502 | if (!isClassCompatTagKind(NewTag)) | |||
| 16503 | return true; | |||
| 16504 | ||||
| 16505 | // Declarations for which -Wmismatched-tags is disabled are entirely ignored | |||
| 16506 | // by our warning analysis. We don't want to warn about mismatches with (eg) | |||
| 16507 | // declarations in system headers that are designed to be specialized, but if | |||
| 16508 | // a user asks us to warn, we should warn if their code contains mismatched | |||
| 16509 | // declarations. | |||
| 16510 | auto IsIgnoredLoc = [&](SourceLocation Loc) { | |||
| 16511 | return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch, | |||
| 16512 | Loc); | |||
| 16513 | }; | |||
| 16514 | if (IsIgnoredLoc(NewTagLoc)) | |||
| 16515 | return true; | |||
| 16516 | ||||
| 16517 | auto IsIgnored = [&](const TagDecl *Tag) { | |||
| 16518 | return IsIgnoredLoc(Tag->getLocation()); | |||
| 16519 | }; | |||
| 16520 | while (IsIgnored(Previous)) { | |||
| 16521 | Previous = Previous->getPreviousDecl(); | |||
| 16522 | if (!Previous) | |||
| 16523 | return true; | |||
| 16524 | OldTag = Previous->getTagKind(); | |||
| 16525 | } | |||
| 16526 | ||||
| 16527 | bool isTemplate = false; | |||
| 16528 | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous)) | |||
| 16529 | isTemplate = Record->getDescribedClassTemplate(); | |||
| 16530 | ||||
| 16531 | if (inTemplateInstantiation()) { | |||
| 16532 | if (OldTag != NewTag) { | |||
| 16533 | // In a template instantiation, do not offer fix-its for tag mismatches | |||
| 16534 | // since they usually mess up the template instead of fixing the problem. | |||
| 16535 | Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) | |||
| 16536 | << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name | |||
| 16537 | << getRedeclDiagFromTagKind(OldTag); | |||
| 16538 | // FIXME: Note previous location? | |||
| 16539 | } | |||
| 16540 | return true; | |||
| 16541 | } | |||
| 16542 | ||||
| 16543 | if (isDefinition) { | |||
| 16544 | // On definitions, check all previous tags and issue a fix-it for each | |||
| 16545 | // one that doesn't match the current tag. | |||
| 16546 | if (Previous->getDefinition()) { | |||
| 16547 | // Don't suggest fix-its for redefinitions. | |||
| 16548 | return true; | |||
| 16549 | } | |||
| 16550 | ||||
| 16551 | bool previousMismatch = false; | |||
| 16552 | for (const TagDecl *I : Previous->redecls()) { | |||
| 16553 | if (I->getTagKind() != NewTag) { | |||
| 16554 | // Ignore previous declarations for which the warning was disabled. | |||
| 16555 | if (IsIgnored(I)) | |||
| 16556 | continue; | |||
| 16557 | ||||
| 16558 | if (!previousMismatch) { | |||
| 16559 | previousMismatch = true; | |||
| 16560 | Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch) | |||
| 16561 | << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name | |||
| 16562 | << getRedeclDiagFromTagKind(I->getTagKind()); | |||
| 16563 | } | |||
| 16564 | Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion) | |||
| 16565 | << getRedeclDiagFromTagKind(NewTag) | |||
| 16566 | << FixItHint::CreateReplacement(I->getInnerLocStart(), | |||
| 16567 | TypeWithKeyword::getTagTypeKindName(NewTag)); | |||
| 16568 | } | |||
| 16569 | } | |||
| 16570 | return true; | |||
| 16571 | } | |||
| 16572 | ||||
| 16573 | // Identify the prevailing tag kind: this is the kind of the definition (if | |||
| 16574 | // there is a non-ignored definition), or otherwise the kind of the prior | |||
| 16575 | // (non-ignored) declaration. | |||
| 16576 | const TagDecl *PrevDef = Previous->getDefinition(); | |||
| 16577 | if (PrevDef && IsIgnored(PrevDef)) | |||
| 16578 | PrevDef = nullptr; | |||
| 16579 | const TagDecl *Redecl = PrevDef ? PrevDef : Previous; | |||
| 16580 | if (Redecl->getTagKind() != NewTag) { | |||
| 16581 | Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) | |||
| 16582 | << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name | |||
| 16583 | << getRedeclDiagFromTagKind(OldTag); | |||
| 16584 | Diag(Redecl->getLocation(), diag::note_previous_use); | |||
| 16585 | ||||
| 16586 | // If there is a previous definition, suggest a fix-it. | |||
| 16587 | if (PrevDef) { | |||
| 16588 | Diag(NewTagLoc, diag::note_struct_class_suggestion) | |||
| 16589 | << getRedeclDiagFromTagKind(Redecl->getTagKind()) | |||
| 16590 | << FixItHint::CreateReplacement(SourceRange(NewTagLoc), | |||
| 16591 | TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind())); | |||
| 16592 | } | |||
| 16593 | } | |||
| 16594 | ||||
| 16595 | return true; | |||
| 16596 | } | |||
| 16597 | ||||
| 16598 | /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name | |||
| 16599 | /// from an outer enclosing namespace or file scope inside a friend declaration. | |||
| 16600 | /// This should provide the commented out code in the following snippet: | |||
| 16601 | /// namespace N { | |||
| 16602 | /// struct X; | |||
| 16603 | /// namespace M { | |||
| 16604 | /// struct Y { friend struct /*N::*/ X; }; | |||
| 16605 | /// } | |||
| 16606 | /// } | |||
| 16607 | static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S, | |||
| 16608 | SourceLocation NameLoc) { | |||
| 16609 | // While the decl is in a namespace, do repeated lookup of that name and see | |||
| 16610 | // if we get the same namespace back. If we do not, continue until | |||
| 16611 | // translation unit scope, at which point we have a fully qualified NNS. | |||
| 16612 | SmallVector<IdentifierInfo *, 4> Namespaces; | |||
| 16613 | DeclContext *DC = ND->getDeclContext()->getRedeclContext(); | |||
| 16614 | for (; !DC->isTranslationUnit(); DC = DC->getParent()) { | |||
| 16615 | // This tag should be declared in a namespace, which can only be enclosed by | |||
| 16616 | // other namespaces. Bail if there's an anonymous namespace in the chain. | |||
| 16617 | NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC); | |||
| 16618 | if (!Namespace || Namespace->isAnonymousNamespace()) | |||
| 16619 | return FixItHint(); | |||
| 16620 | IdentifierInfo *II = Namespace->getIdentifier(); | |||
| 16621 | Namespaces.push_back(II); | |||
| 16622 | NamedDecl *Lookup = SemaRef.LookupSingleName( | |||
| 16623 | S, II, NameLoc, Sema::LookupNestedNameSpecifierName); | |||
| 16624 | if (Lookup == Namespace) | |||
| 16625 | break; | |||
| 16626 | } | |||
| 16627 | ||||
| 16628 | // Once we have all the namespaces, reverse them to go outermost first, and | |||
| 16629 | // build an NNS. | |||
| 16630 | SmallString<64> Insertion; | |||
| 16631 | llvm::raw_svector_ostream OS(Insertion); | |||
| 16632 | if (DC->isTranslationUnit()) | |||
| 16633 | OS << "::"; | |||
| 16634 | std::reverse(Namespaces.begin(), Namespaces.end()); | |||
| 16635 | for (auto *II : Namespaces) | |||
| 16636 | OS << II->getName() << "::"; | |||
| 16637 | return FixItHint::CreateInsertion(NameLoc, Insertion); | |||
| 16638 | } | |||
| 16639 | ||||
| 16640 | /// Determine whether a tag originally declared in context \p OldDC can | |||
| 16641 | /// be redeclared with an unqualified name in \p NewDC (assuming name lookup | |||
| 16642 | /// found a declaration in \p OldDC as a previous decl, perhaps through a | |||
| 16643 | /// using-declaration). | |||
| 16644 | static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC, | |||
| 16645 | DeclContext *NewDC) { | |||
| 16646 | OldDC = OldDC->getRedeclContext(); | |||
| 16647 | NewDC = NewDC->getRedeclContext(); | |||
| 16648 | ||||
| 16649 | if (OldDC->Equals(NewDC)) | |||
| 16650 | return true; | |||
| 16651 | ||||
| 16652 | // In MSVC mode, we allow a redeclaration if the contexts are related (either | |||
| 16653 | // encloses the other). | |||
| 16654 | if (S.getLangOpts().MSVCCompat && | |||
| 16655 | (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC))) | |||
| 16656 | return true; | |||
| 16657 | ||||
| 16658 | return false; | |||
| 16659 | } | |||
| 16660 | ||||
| 16661 | /// This is invoked when we see 'struct foo' or 'struct {'. In the | |||
| 16662 | /// former case, Name will be non-null. In the later case, Name will be null. | |||
| 16663 | /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a | |||
| 16664 | /// reference/declaration/definition of a tag. | |||
| 16665 | /// | |||
| 16666 | /// \param IsTypeSpecifier \c true if this is a type-specifier (or | |||
| 16667 | /// trailing-type-specifier) other than one in an alias-declaration. | |||
| 16668 | /// | |||
| 16669 | /// \param SkipBody If non-null, will be set to indicate if the caller should | |||
| 16670 | /// skip the definition of this tag and treat it as if it were a declaration. | |||
| 16671 | DeclResult | |||
| 16672 | Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, | |||
| 16673 | CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, | |||
| 16674 | const ParsedAttributesView &Attrs, AccessSpecifier AS, | |||
| 16675 | SourceLocation ModulePrivateLoc, | |||
| 16676 | MultiTemplateParamsArg TemplateParameterLists, bool &OwnedDecl, | |||
| 16677 | bool &IsDependent, SourceLocation ScopedEnumKWLoc, | |||
| 16678 | bool ScopedEnumUsesClassTag, TypeResult UnderlyingType, | |||
| 16679 | bool IsTypeSpecifier, bool IsTemplateParamOrArg, | |||
| 16680 | OffsetOfKind OOK, SkipBodyInfo *SkipBody) { | |||
| 16681 | // If this is not a definition, it must have a name. | |||
| 16682 | IdentifierInfo *OrigName = Name; | |||
| 16683 | assert((Name != nullptr || TUK == TUK_Definition) &&(static_cast <bool> ((Name != nullptr || TUK == TUK_Definition ) && "Nameless record must be a definition!") ? void ( 0) : __assert_fail ("(Name != nullptr || TUK == TUK_Definition) && \"Nameless record must be a definition!\"" , "clang/lib/Sema/SemaDecl.cpp", 16684, __extension__ __PRETTY_FUNCTION__ )) | |||
| 16684 | "Nameless record must be a definition!")(static_cast <bool> ((Name != nullptr || TUK == TUK_Definition ) && "Nameless record must be a definition!") ? void ( 0) : __assert_fail ("(Name != nullptr || TUK == TUK_Definition) && \"Nameless record must be a definition!\"" , "clang/lib/Sema/SemaDecl.cpp", 16684, __extension__ __PRETTY_FUNCTION__ )); | |||
| 16685 | assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference)(static_cast <bool> (TemplateParameterLists.size() == 0 || TUK != TUK_Reference) ? void (0) : __assert_fail ("TemplateParameterLists.size() == 0 || TUK != TUK_Reference" , "clang/lib/Sema/SemaDecl.cpp", 16685, __extension__ __PRETTY_FUNCTION__ )); | |||
| 16686 | ||||
| 16687 | OwnedDecl = false; | |||
| 16688 | TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); | |||
| 16689 | bool ScopedEnum = ScopedEnumKWLoc.isValid(); | |||
| 16690 | ||||
| 16691 | // FIXME: Check member specializations more carefully. | |||
| 16692 | bool isMemberSpecialization = false; | |||
| 16693 | bool Invalid = false; | |||
| 16694 | ||||
| 16695 | // We only need to do this matching if we have template parameters | |||
| 16696 | // or a scope specifier, which also conveniently avoids this work | |||
| 16697 | // for non-C++ cases. | |||
| 16698 | if (TemplateParameterLists.size() > 0 || | |||
| 16699 | (SS.isNotEmpty() && TUK != TUK_Reference)) { | |||
| 16700 | if (TemplateParameterList *TemplateParams = | |||
| 16701 | MatchTemplateParametersToScopeSpecifier( | |||
| 16702 | KWLoc, NameLoc, SS, nullptr, TemplateParameterLists, | |||
| 16703 | TUK == TUK_Friend, isMemberSpecialization, Invalid)) { | |||
| 16704 | if (Kind == TTK_Enum) { | |||
| 16705 | Diag(KWLoc, diag::err_enum_template); | |||
| 16706 | return true; | |||
| 16707 | } | |||
| 16708 | ||||
| 16709 | if (TemplateParams->size() > 0) { | |||
| 16710 | // This is a declaration or definition of a class template (which may | |||
| 16711 | // be a member of another template). | |||
| 16712 | ||||
| 16713 | if (Invalid) | |||
| 16714 | return true; | |||
| 16715 | ||||
| 16716 | OwnedDecl = false; | |||
| 16717 | DeclResult Result = CheckClassTemplate( | |||
| 16718 | S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams, | |||
| 16719 | AS, ModulePrivateLoc, | |||
| 16720 | /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1, | |||
| 16721 | TemplateParameterLists.data(), SkipBody); | |||
| 16722 | return Result.get(); | |||
| 16723 | } else { | |||
| 16724 | // The "template<>" header is extraneous. | |||
| 16725 | Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) | |||
| 16726 | << TypeWithKeyword::getTagTypeKindName(Kind) << Name; | |||
| 16727 | isMemberSpecialization = true; | |||
| 16728 | } | |||
| 16729 | } | |||
| 16730 | ||||
| 16731 | if (!TemplateParameterLists.empty() && isMemberSpecialization && | |||
| 16732 | CheckTemplateDeclScope(S, TemplateParameterLists.back())) | |||
| 16733 | return true; | |||
| 16734 | } | |||
| 16735 | ||||
| 16736 | // Figure out the underlying type if this a enum declaration. We need to do | |||
| 16737 | // this early, because it's needed to detect if this is an incompatible | |||
| 16738 | // redeclaration. | |||
| 16739 | llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying; | |||
| 16740 | bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum; | |||
| 16741 | ||||
| 16742 | if (Kind == TTK_Enum) { | |||
| 16743 | if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) { | |||
| 16744 | // No underlying type explicitly specified, or we failed to parse the | |||
| 16745 | // type, default to int. | |||
| 16746 | EnumUnderlying = Context.IntTy.getTypePtr(); | |||
| 16747 | } else if (UnderlyingType.get()) { | |||
| 16748 | // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an | |||
| 16749 | // integral type; any cv-qualification is ignored. | |||
| 16750 | TypeSourceInfo *TI = nullptr; | |||
| 16751 | GetTypeFromParser(UnderlyingType.get(), &TI); | |||
| 16752 | EnumUnderlying = TI; | |||
| 16753 | ||||
| 16754 | if (CheckEnumUnderlyingType(TI)) | |||
| 16755 | // Recover by falling back to int. | |||
| 16756 | EnumUnderlying = Context.IntTy.getTypePtr(); | |||
| 16757 | ||||
| 16758 | if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI, | |||
| 16759 | UPPC_FixedUnderlyingType)) | |||
| 16760 | EnumUnderlying = Context.IntTy.getTypePtr(); | |||
| 16761 | ||||
| 16762 | } else if (Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) { | |||
| 16763 | // For MSVC ABI compatibility, unfixed enums must use an underlying type | |||
| 16764 | // of 'int'. However, if this is an unfixed forward declaration, don't set | |||
| 16765 | // the underlying type unless the user enables -fms-compatibility. This | |||
| 16766 | // makes unfixed forward declared enums incomplete and is more conforming. | |||
| 16767 | if (TUK == TUK_Definition || getLangOpts().MSVCCompat) | |||
| 16768 | EnumUnderlying = Context.IntTy.getTypePtr(); | |||
| 16769 | } | |||
| 16770 | } | |||
| 16771 | ||||
| 16772 | DeclContext *SearchDC = CurContext; | |||
| 16773 | DeclContext *DC = CurContext; | |||
| 16774 | bool isStdBadAlloc = false; | |||
| 16775 | bool isStdAlignValT = false; | |||
| 16776 | ||||
| 16777 | RedeclarationKind Redecl = forRedeclarationInCurContext(); | |||
| 16778 | if (TUK == TUK_Friend || TUK == TUK_Reference) | |||
| 16779 | Redecl = NotForRedeclaration; | |||
| 16780 | ||||
| 16781 | /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C | |||
| 16782 | /// implemented asks for structural equivalence checking, the returned decl | |||
| 16783 | /// here is passed back to the parser, allowing the tag body to be parsed. | |||
| 16784 | auto createTagFromNewDecl = [&]() -> TagDecl * { | |||
| 16785 | assert(!getLangOpts().CPlusPlus && "not meant for C++ usage")(static_cast <bool> (!getLangOpts().CPlusPlus && "not meant for C++ usage") ? void (0) : __assert_fail ("!getLangOpts().CPlusPlus && \"not meant for C++ usage\"" , "clang/lib/Sema/SemaDecl.cpp", 16785, __extension__ __PRETTY_FUNCTION__ )); | |||
| 16786 | // If there is an identifier, use the location of the identifier as the | |||
| 16787 | // location of the decl, otherwise use the location of the struct/union | |||
| 16788 | // keyword. | |||
| 16789 | SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; | |||
| 16790 | TagDecl *New = nullptr; | |||
| 16791 | ||||
| 16792 | if (Kind == TTK_Enum) { | |||
| 16793 | New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr, | |||
| 16794 | ScopedEnum, ScopedEnumUsesClassTag, IsFixed); | |||
| 16795 | // If this is an undefined enum, bail. | |||
| 16796 | if (TUK != TUK_Definition && !Invalid) | |||
| 16797 | return nullptr; | |||
| 16798 | if (EnumUnderlying) { | |||
| 16799 | EnumDecl *ED = cast<EnumDecl>(New); | |||
| 16800 | if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>()) | |||
| 16801 | ED->setIntegerTypeSourceInfo(TI); | |||
| 16802 | else | |||
| 16803 | ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0)); | |||
| 16804 | QualType EnumTy = ED->getIntegerType(); | |||
| 16805 | ED->setPromotionType(Context.isPromotableIntegerType(EnumTy) | |||
| 16806 | ? Context.getPromotedIntegerType(EnumTy) | |||
| 16807 | : EnumTy); | |||
| 16808 | } | |||
| 16809 | } else { // struct/union | |||
| 16810 | New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, | |||
| 16811 | nullptr); | |||
| 16812 | } | |||
| 16813 | ||||
| 16814 | if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) { | |||
| 16815 | // Add alignment attributes if necessary; these attributes are checked | |||
| 16816 | // when the ASTContext lays out the structure. | |||
| 16817 | // | |||
| 16818 | // It is important for implementing the correct semantics that this | |||
| 16819 | // happen here (in ActOnTag). The #pragma pack stack is | |||
| 16820 | // maintained as a result of parser callbacks which can occur at | |||
| 16821 | // many points during the parsing of a struct declaration (because | |||
| 16822 | // the #pragma tokens are effectively skipped over during the | |||
| 16823 | // parsing of the struct). | |||
| 16824 | if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { | |||
| 16825 | AddAlignmentAttributesForRecord(RD); | |||
| 16826 | AddMsStructLayoutForRecord(RD); | |||
| 16827 | } | |||
| 16828 | } | |||
| 16829 | New->setLexicalDeclContext(CurContext); | |||
| 16830 | return New; | |||
| 16831 | }; | |||
| 16832 | ||||
| 16833 | LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl); | |||
| 16834 | if (Name && SS.isNotEmpty()) { | |||
| 16835 | // We have a nested-name tag ('struct foo::bar'). | |||
| 16836 | ||||
| 16837 | // Check for invalid 'foo::'. | |||
| 16838 | if (SS.isInvalid()) { | |||
| 16839 | Name = nullptr; | |||
| 16840 | goto CreateNewDecl; | |||
| 16841 | } | |||
| 16842 | ||||
| 16843 | // If this is a friend or a reference to a class in a dependent | |||
| 16844 | // context, don't try to make a decl for it. | |||
| 16845 | if (TUK == TUK_Friend || TUK == TUK_Reference) { | |||
| 16846 | DC = computeDeclContext(SS, false); | |||
| 16847 | if (!DC) { | |||
| 16848 | IsDependent = true; | |||
| 16849 | return true; | |||
| 16850 | } | |||
| 16851 | } else { | |||
| 16852 | DC = computeDeclContext(SS, true); | |||
| 16853 | if (!DC) { | |||
| 16854 | Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec) | |||
| 16855 | << SS.getRange(); | |||
| 16856 | return true; | |||
| 16857 | } | |||
| 16858 | } | |||
| 16859 | ||||
| 16860 | if (RequireCompleteDeclContext(SS, DC)) | |||
| 16861 | return true; | |||
| 16862 | ||||
| 16863 | SearchDC = DC; | |||
| 16864 | // Look-up name inside 'foo::'. | |||
| 16865 | LookupQualifiedName(Previous, DC); | |||
| 16866 | ||||
| 16867 | if (Previous.isAmbiguous()) | |||
| 16868 | return true; | |||
| 16869 | ||||
| 16870 | if (Previous.empty()) { | |||
| 16871 | // Name lookup did not find anything. However, if the | |||
| 16872 | // nested-name-specifier refers to the current instantiation, | |||
| 16873 | // and that current instantiation has any dependent base | |||
| 16874 | // classes, we might find something at instantiation time: treat | |||
| 16875 | // this as a dependent elaborated-type-specifier. | |||
| 16876 | // But this only makes any sense for reference-like lookups. | |||
| 16877 | if (Previous.wasNotFoundInCurrentInstantiation() && | |||
| 16878 | (TUK == TUK_Reference || TUK == TUK_Friend)) { | |||
| 16879 | IsDependent = true; | |||
| 16880 | return true; | |||
| 16881 | } | |||
| 16882 | ||||
| 16883 | // A tag 'foo::bar' must already exist. | |||
| 16884 | Diag(NameLoc, diag::err_not_tag_in_scope) | |||
| 16885 | << Kind << Name << DC << SS.getRange(); | |||
| 16886 | Name = nullptr; | |||
| 16887 | Invalid = true; | |||
| 16888 | goto CreateNewDecl; | |||
| 16889 | } | |||
| 16890 | } else if (Name) { | |||
| 16891 | // C++14 [class.mem]p14: | |||
| 16892 | // If T is the name of a class, then each of the following shall have a | |||
| 16893 | // name different from T: | |||
| 16894 | // -- every member of class T that is itself a type | |||
| 16895 | if (TUK != TUK_Reference && TUK != TUK_Friend && | |||
| 16896 | DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc))) | |||
| 16897 | return true; | |||
| 16898 | ||||
| 16899 | // If this is a named struct, check to see if there was a previous forward | |||
| 16900 | // declaration or definition. | |||
| 16901 | // FIXME: We're looking into outer scopes here, even when we | |||
| 16902 | // shouldn't be. Doing so can result in ambiguities that we | |||
| 16903 | // shouldn't be diagnosing. | |||
| 16904 | LookupName(Previous, S); | |||
| 16905 | ||||
| 16906 | // When declaring or defining a tag, ignore ambiguities introduced | |||
| 16907 | // by types using'ed into this scope. | |||
| 16908 | if (Previous.isAmbiguous() && | |||
| 16909 | (TUK == TUK_Definition || TUK == TUK_Declaration)) { | |||
| 16910 | LookupResult::Filter F = Previous.makeFilter(); | |||
| 16911 | while (F.hasNext()) { | |||
| 16912 | NamedDecl *ND = F.next(); | |||
| 16913 | if (!ND->getDeclContext()->getRedeclContext()->Equals( | |||
| 16914 | SearchDC->getRedeclContext())) | |||
| 16915 | F.erase(); | |||
| 16916 | } | |||
| 16917 | F.done(); | |||
| 16918 | } | |||
| 16919 | ||||
| 16920 | // C++11 [namespace.memdef]p3: | |||
| 16921 | // If the name in a friend declaration is neither qualified nor | |||
| 16922 | // a template-id and the declaration is a function or an | |||
| 16923 | // elaborated-type-specifier, the lookup to determine whether | |||
| 16924 | // the entity has been previously declared shall not consider | |||
| 16925 | // any scopes outside the innermost enclosing namespace. | |||
| 16926 | // | |||
| 16927 | // MSVC doesn't implement the above rule for types, so a friend tag | |||
| 16928 | // declaration may be a redeclaration of a type declared in an enclosing | |||
| 16929 | // scope. They do implement this rule for friend functions. | |||
| 16930 | // | |||
| 16931 | // Does it matter that this should be by scope instead of by | |||
| 16932 | // semantic context? | |||
| 16933 | if (!Previous.empty() && TUK == TUK_Friend) { | |||
| 16934 | DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext(); | |||
| 16935 | LookupResult::Filter F = Previous.makeFilter(); | |||
| 16936 | bool FriendSawTagOutsideEnclosingNamespace = false; | |||
| 16937 | while (F.hasNext()) { | |||
| 16938 | NamedDecl *ND = F.next(); | |||
| 16939 | DeclContext *DC = ND->getDeclContext()->getRedeclContext(); | |||
| 16940 | if (DC->isFileContext() && | |||
| 16941 | !EnclosingNS->Encloses(ND->getDeclContext())) { | |||
| 16942 | if (getLangOpts().MSVCCompat) | |||
| 16943 | FriendSawTagOutsideEnclosingNamespace = true; | |||
| 16944 | else | |||
| 16945 | F.erase(); | |||
| 16946 | } | |||
| 16947 | } | |||
| 16948 | F.done(); | |||
| 16949 | ||||
| 16950 | // Diagnose this MSVC extension in the easy case where lookup would have | |||
| 16951 | // unambiguously found something outside the enclosing namespace. | |||
| 16952 | if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) { | |||
| 16953 | NamedDecl *ND = Previous.getFoundDecl(); | |||
| 16954 | Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace) | |||
| 16955 | << createFriendTagNNSFixIt(*this, ND, S, NameLoc); | |||
| 16956 | } | |||
| 16957 | } | |||
| 16958 | ||||
| 16959 | // Note: there used to be some attempt at recovery here. | |||
| 16960 | if (Previous.isAmbiguous()) | |||
| 16961 | return true; | |||
| 16962 | ||||
| 16963 | if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) { | |||
| 16964 | // FIXME: This makes sure that we ignore the contexts associated | |||
| 16965 | // with C structs, unions, and enums when looking for a matching | |||
| 16966 | // tag declaration or definition. See the similar lookup tweak | |||
| 16967 | // in Sema::LookupName; is there a better way to deal with this? | |||
| 16968 | while (isa<RecordDecl, EnumDecl, ObjCContainerDecl>(SearchDC)) | |||
| 16969 | SearchDC = SearchDC->getParent(); | |||
| 16970 | } else if (getLangOpts().CPlusPlus) { | |||
| 16971 | // Inside ObjCContainer want to keep it as a lexical decl context but go | |||
| 16972 | // past it (most often to TranslationUnit) to find the semantic decl | |||
| 16973 | // context. | |||
| 16974 | while (isa<ObjCContainerDecl>(SearchDC)) | |||
| 16975 | SearchDC = SearchDC->getParent(); | |||
| 16976 | } | |||
| 16977 | } else if (getLangOpts().CPlusPlus) { | |||
| 16978 | // Don't use ObjCContainerDecl as the semantic decl context for anonymous | |||
| 16979 | // TagDecl the same way as we skip it for named TagDecl. | |||
| 16980 | while (isa<ObjCContainerDecl>(SearchDC)) | |||
| 16981 | SearchDC = SearchDC->getParent(); | |||
| 16982 | } | |||
| 16983 | ||||
| 16984 | if (Previous.isSingleResult() && | |||
| 16985 | Previous.getFoundDecl()->isTemplateParameter()) { | |||
| 16986 | // Maybe we will complain about the shadowed template parameter. | |||
| 16987 | DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl()); | |||
| 16988 | // Just pretend that we didn't see the previous declaration. | |||
| 16989 | Previous.clear(); | |||
| 16990 | } | |||
| 16991 | ||||
| 16992 | if (getLangOpts().CPlusPlus && Name && DC && StdNamespace && | |||
| 16993 | DC->Equals(getStdNamespace())) { | |||
| 16994 | if (Name->isStr("bad_alloc")) { | |||
| 16995 | // This is a declaration of or a reference to "std::bad_alloc". | |||
| 16996 | isStdBadAlloc = true; | |||
| 16997 | ||||
| 16998 | // If std::bad_alloc has been implicitly declared (but made invisible to | |||
| 16999 | // name lookup), fill in this implicit declaration as the previous | |||
| 17000 | // declaration, so that the declarations get chained appropriately. | |||
| 17001 | if (Previous.empty() && StdBadAlloc) | |||
| 17002 | Previous.addDecl(getStdBadAlloc()); | |||
| 17003 | } else if (Name->isStr("align_val_t")) { | |||
| 17004 | isStdAlignValT = true; | |||
| 17005 | if (Previous.empty() && StdAlignValT) | |||
| 17006 | Previous.addDecl(getStdAlignValT()); | |||
| 17007 | } | |||
| 17008 | } | |||
| 17009 | ||||
| 17010 | // If we didn't find a previous declaration, and this is a reference | |||
| 17011 | // (or friend reference), move to the correct scope. In C++, we | |||
| 17012 | // also need to do a redeclaration lookup there, just in case | |||
| 17013 | // there's a shadow friend decl. | |||
| 17014 | if (Name && Previous.empty() && | |||
| 17015 | (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) { | |||
| 17016 | if (Invalid) goto CreateNewDecl; | |||
| 17017 | assert(SS.isEmpty())(static_cast <bool> (SS.isEmpty()) ? void (0) : __assert_fail ("SS.isEmpty()", "clang/lib/Sema/SemaDecl.cpp", 17017, __extension__ __PRETTY_FUNCTION__)); | |||
| 17018 | ||||
| 17019 | if (TUK == TUK_Reference || IsTemplateParamOrArg) { | |||
| 17020 | // C++ [basic.scope.pdecl]p5: | |||
| 17021 | // -- for an elaborated-type-specifier of the form | |||
| 17022 | // | |||
| 17023 | // class-key identifier | |||
| 17024 | // | |||
| 17025 | // if the elaborated-type-specifier is used in the | |||
| 17026 | // decl-specifier-seq or parameter-declaration-clause of a | |||
| 17027 | // function defined in namespace scope, the identifier is | |||
| 17028 | // declared as a class-name in the namespace that contains | |||
| 17029 | // the declaration; otherwise, except as a friend | |||
| 17030 | // declaration, the identifier is declared in the smallest | |||
| 17031 | // non-class, non-function-prototype scope that contains the | |||
| 17032 | // declaration. | |||
| 17033 | // | |||
| 17034 | // C99 6.7.2.3p8 has a similar (but not identical!) provision for | |||
| 17035 | // C structs and unions. | |||
| 17036 | // | |||
| 17037 | // It is an error in C++ to declare (rather than define) an enum | |||
| 17038 | // type, including via an elaborated type specifier. We'll | |||
| 17039 | // diagnose that later; for now, declare the enum in the same | |||
| 17040 | // scope as we would have picked for any other tag type. | |||
| 17041 | // | |||
| 17042 | // GNU C also supports this behavior as part of its incomplete | |||
| 17043 | // enum types extension, while GNU C++ does not. | |||
| 17044 | // | |||
| 17045 | // Find the context where we'll be declaring the tag. | |||
| 17046 | // FIXME: We would like to maintain the current DeclContext as the | |||
| 17047 | // lexical context, | |||
| 17048 | SearchDC = getTagInjectionContext(SearchDC); | |||
| 17049 | ||||
| 17050 | // Find the scope where we'll be declaring the tag. | |||
| 17051 | S = getTagInjectionScope(S, getLangOpts()); | |||
| 17052 | } else { | |||
| 17053 | assert(TUK == TUK_Friend)(static_cast <bool> (TUK == TUK_Friend) ? void (0) : __assert_fail ("TUK == TUK_Friend", "clang/lib/Sema/SemaDecl.cpp", 17053, __extension__ __PRETTY_FUNCTION__)); | |||
| 17054 | // C++ [namespace.memdef]p3: | |||
| 17055 | // If a friend declaration in a non-local class first declares a | |||
| 17056 | // class or function, the friend class or function is a member of | |||
| 17057 | // the innermost enclosing namespace. | |||
| 17058 | SearchDC = SearchDC->getEnclosingNamespaceContext(); | |||
| 17059 | } | |||
| 17060 | ||||
| 17061 | // In C++, we need to do a redeclaration lookup to properly | |||
| 17062 | // diagnose some problems. | |||
| 17063 | // FIXME: redeclaration lookup is also used (with and without C++) to find a | |||
| 17064 | // hidden declaration so that we don't get ambiguity errors when using a | |||
| 17065 | // type declared by an elaborated-type-specifier. In C that is not correct | |||
| 17066 | // and we should instead merge compatible types found by lookup. | |||
| 17067 | if (getLangOpts().CPlusPlus) { | |||
| 17068 | // FIXME: This can perform qualified lookups into function contexts, | |||
| 17069 | // which are meaningless. | |||
| 17070 | Previous.setRedeclarationKind(forRedeclarationInCurContext()); | |||
| 17071 | LookupQualifiedName(Previous, SearchDC); | |||
| 17072 | } else { | |||
| 17073 | Previous.setRedeclarationKind(forRedeclarationInCurContext()); | |||
| 17074 | LookupName(Previous, S); | |||
| 17075 | } | |||
| 17076 | } | |||
| 17077 | ||||
| 17078 | // If we have a known previous declaration to use, then use it. | |||
| 17079 | if (Previous.empty() && SkipBody && SkipBody->Previous) | |||
| 17080 | Previous.addDecl(SkipBody->Previous); | |||
| 17081 | ||||
| 17082 | if (!Previous.empty()) { | |||
| 17083 | NamedDecl *PrevDecl = Previous.getFoundDecl(); | |||
| 17084 | NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl(); | |||
| 17085 | ||||
| 17086 | // It's okay to have a tag decl in the same scope as a typedef | |||
| 17087 | // which hides a tag decl in the same scope. Finding this | |||
| 17088 | // with a redeclaration lookup can only actually happen in C++. | |||
| 17089 | // | |||
| 17090 | // This is also okay for elaborated-type-specifiers, which is | |||
| 17091 | // technically forbidden by the current standard but which is | |||
| 17092 | // okay according to the likely resolution of an open issue; | |||
| 17093 | // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407 | |||
| 17094 | if (getLangOpts().CPlusPlus) { | |||
| 17095 | if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) { | |||
| 17096 | if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) { | |||
| 17097 | TagDecl *Tag = TT->getDecl(); | |||
| 17098 | if (Tag->getDeclName() == Name && | |||
| 17099 | Tag->getDeclContext()->getRedeclContext() | |||
| 17100 | ->Equals(TD->getDeclContext()->getRedeclContext())) { | |||
| 17101 | PrevDecl = Tag; | |||
| 17102 | Previous.clear(); | |||
| 17103 | Previous.addDecl(Tag); | |||
| 17104 | Previous.resolveKind(); | |||
| 17105 | } | |||
| 17106 | } | |||
| 17107 | } | |||
| 17108 | } | |||
| 17109 | ||||
| 17110 | // If this is a redeclaration of a using shadow declaration, it must | |||
| 17111 | // declare a tag in the same context. In MSVC mode, we allow a | |||
| 17112 | // redefinition if either context is within the other. | |||
| 17113 | if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) { | |||
| 17114 | auto *OldTag = dyn_cast<TagDecl>(PrevDecl); | |||
| 17115 | if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend && | |||
| 17116 | isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) && | |||
| 17117 | !(OldTag && isAcceptableTagRedeclContext( | |||
| 17118 | *this, OldTag->getDeclContext(), SearchDC))) { | |||
| 17119 | Diag(KWLoc, diag::err_using_decl_conflict_reverse); | |||
| 17120 | Diag(Shadow->getTargetDecl()->getLocation(), | |||
| 17121 | diag::note_using_decl_target); | |||
| 17122 | Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) | |||
| 17123 | << 0; | |||
| 17124 | // Recover by ignoring the old declaration. | |||
| 17125 | Previous.clear(); | |||
| 17126 | goto CreateNewDecl; | |||
| 17127 | } | |||
| 17128 | } | |||
| 17129 | ||||
| 17130 | if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) { | |||
| 17131 | // If this is a use of a previous tag, or if the tag is already declared | |||
| 17132 | // in the same scope (so that the definition/declaration completes or | |||
| 17133 | // rementions the tag), reuse the decl. | |||
| 17134 | if (TUK == TUK_Reference || TUK == TUK_Friend || | |||
| 17135 | isDeclInScope(DirectPrevDecl, SearchDC, S, | |||
| 17136 | SS.isNotEmpty() || isMemberSpecialization)) { | |||
| 17137 | // Make sure that this wasn't declared as an enum and now used as a | |||
| 17138 | // struct or something similar. | |||
| 17139 | if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, | |||
| 17140 | TUK == TUK_Definition, KWLoc, | |||
| 17141 | Name)) { | |||
| 17142 | bool SafeToContinue | |||
| 17143 | = (PrevTagDecl->getTagKind() != TTK_Enum && | |||
| 17144 | Kind != TTK_Enum); | |||
| 17145 | if (SafeToContinue) | |||
| 17146 | Diag(KWLoc, diag::err_use_with_wrong_tag) | |||
| 17147 | << Name | |||
| 17148 | << FixItHint::CreateReplacement(SourceRange(KWLoc), | |||
| 17149 | PrevTagDecl->getKindName()); | |||
| 17150 | else | |||
| 17151 | Diag(KWLoc, diag::err_use_with_wrong_tag) << Name; | |||
| 17152 | Diag(PrevTagDecl->getLocation(), diag::note_previous_use); | |||
| 17153 | ||||
| 17154 | if (SafeToContinue) | |||
| 17155 | Kind = PrevTagDecl->getTagKind(); | |||
| 17156 | else { | |||
| 17157 | // Recover by making this an anonymous redefinition. | |||
| 17158 | Name = nullptr; | |||
| 17159 | Previous.clear(); | |||
| 17160 | Invalid = true; | |||
| 17161 | } | |||
| 17162 | } | |||
| 17163 | ||||
| 17164 | if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) { | |||
| 17165 | const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl); | |||
| 17166 | if (TUK == TUK_Reference || TUK == TUK_Friend) | |||
| 17167 | return PrevTagDecl; | |||
| 17168 | ||||
| 17169 | QualType EnumUnderlyingTy; | |||
| 17170 | if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) | |||
| 17171 | EnumUnderlyingTy = TI->getType().getUnqualifiedType(); | |||
| 17172 | else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>()) | |||
| 17173 | EnumUnderlyingTy = QualType(T, 0); | |||
| 17174 | ||||
| 17175 | // All conflicts with previous declarations are recovered by | |||
| 17176 | // returning the previous declaration, unless this is a definition, | |||
| 17177 | // in which case we want the caller to bail out. | |||
| 17178 | if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc, | |||
| 17179 | ScopedEnum, EnumUnderlyingTy, | |||
| 17180 | IsFixed, PrevEnum)) | |||
| 17181 | return TUK == TUK_Declaration ? PrevTagDecl : nullptr; | |||
| 17182 | } | |||
| 17183 | ||||
| 17184 | // C++11 [class.mem]p1: | |||
| 17185 | // A member shall not be declared twice in the member-specification, | |||
| 17186 | // except that a nested class or member class template can be declared | |||
| 17187 | // and then later defined. | |||
| 17188 | if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() && | |||
| 17189 | S->isDeclScope(PrevDecl)) { | |||
| 17190 | Diag(NameLoc, diag::ext_member_redeclared); | |||
| 17191 | Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration); | |||
| 17192 | } | |||
| 17193 | ||||
| 17194 | if (!Invalid) { | |||
| 17195 | // If this is a use, just return the declaration we found, unless | |||
| 17196 | // we have attributes. | |||
| 17197 | if (TUK == TUK_Reference || TUK == TUK_Friend) { | |||
| 17198 | if (!Attrs.empty()) { | |||
| 17199 | // FIXME: Diagnose these attributes. For now, we create a new | |||
| 17200 | // declaration to hold them. | |||
| 17201 | } else if (TUK == TUK_Reference && | |||
| 17202 | (PrevTagDecl->getFriendObjectKind() == | |||
| 17203 | Decl::FOK_Undeclared || | |||
| 17204 | PrevDecl->getOwningModule() != getCurrentModule()) && | |||
| 17205 | SS.isEmpty()) { | |||
| 17206 | // This declaration is a reference to an existing entity, but | |||
| 17207 | // has different visibility from that entity: it either makes | |||
| 17208 | // a friend visible or it makes a type visible in a new module. | |||
| 17209 | // In either case, create a new declaration. We only do this if | |||
| 17210 | // the declaration would have meant the same thing if no prior | |||
| 17211 | // declaration were found, that is, if it was found in the same | |||
| 17212 | // scope where we would have injected a declaration. | |||
| 17213 | if (!getTagInjectionContext(CurContext)->getRedeclContext() | |||
| 17214 | ->Equals(PrevDecl->getDeclContext()->getRedeclContext())) | |||
| 17215 | return PrevTagDecl; | |||
| 17216 | // This is in the injected scope, create a new declaration in | |||
| 17217 | // that scope. | |||
| 17218 | S = getTagInjectionScope(S, getLangOpts()); | |||
| 17219 | } else { | |||
| 17220 | return PrevTagDecl; | |||
| 17221 | } | |||
| 17222 | } | |||
| 17223 | ||||
| 17224 | // Diagnose attempts to redefine a tag. | |||
| 17225 | if (TUK == TUK_Definition) { | |||
| 17226 | if (NamedDecl *Def = PrevTagDecl->getDefinition()) { | |||
| 17227 | // If we're defining a specialization and the previous definition | |||
| 17228 | // is from an implicit instantiation, don't emit an error | |||
| 17229 | // here; we'll catch this in the general case below. | |||
| 17230 | bool IsExplicitSpecializationAfterInstantiation = false; | |||
| 17231 | if (isMemberSpecialization) { | |||
| 17232 | if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def)) | |||
| 17233 | IsExplicitSpecializationAfterInstantiation = | |||
| 17234 | RD->getTemplateSpecializationKind() != | |||
| 17235 | TSK_ExplicitSpecialization; | |||
| 17236 | else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def)) | |||
| 17237 | IsExplicitSpecializationAfterInstantiation = | |||
| 17238 | ED->getTemplateSpecializationKind() != | |||
| 17239 | TSK_ExplicitSpecialization; | |||
| 17240 | } | |||
| 17241 | ||||
| 17242 | // Note that clang allows ODR-like semantics for ObjC/C, i.e., do | |||
| 17243 | // not keep more that one definition around (merge them). However, | |||
| 17244 | // ensure the decl passes the structural compatibility check in | |||
| 17245 | // C11 6.2.7/1 (or 6.1.2.6/1 in C89). | |||
| 17246 | NamedDecl *Hidden = nullptr; | |||
| 17247 | if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) { | |||
| 17248 | // There is a definition of this tag, but it is not visible. We | |||
| 17249 | // explicitly make use of C++'s one definition rule here, and | |||
| 17250 | // assume that this definition is identical to the hidden one | |||
| 17251 | // we already have. Make the existing definition visible and | |||
| 17252 | // use it in place of this one. | |||
| 17253 | if (!getLangOpts().CPlusPlus) { | |||
| 17254 | // Postpone making the old definition visible until after we | |||
| 17255 | // complete parsing the new one and do the structural | |||
| 17256 | // comparison. | |||
| 17257 | SkipBody->CheckSameAsPrevious = true; | |||
| 17258 | SkipBody->New = createTagFromNewDecl(); | |||
| 17259 | SkipBody->Previous = Def; | |||
| 17260 | return Def; | |||
| 17261 | } else { | |||
| 17262 | SkipBody->ShouldSkip = true; | |||
| 17263 | SkipBody->Previous = Def; | |||
| 17264 | makeMergedDefinitionVisible(Hidden); | |||
| 17265 | // Carry on and handle it like a normal definition. We'll | |||
| 17266 | // skip starting the definitiion later. | |||
| 17267 | } | |||
| 17268 | } else if (!IsExplicitSpecializationAfterInstantiation) { | |||
| 17269 | // A redeclaration in function prototype scope in C isn't | |||
| 17270 | // visible elsewhere, so merely issue a warning. | |||
| 17271 | if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope()) | |||
| 17272 | Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name; | |||
| 17273 | else | |||
| 17274 | Diag(NameLoc, diag::err_redefinition) << Name; | |||
| 17275 | notePreviousDefinition(Def, | |||
| 17276 | NameLoc.isValid() ? NameLoc : KWLoc); | |||
| 17277 | // If this is a redefinition, recover by making this | |||
| 17278 | // struct be anonymous, which will make any later | |||
| 17279 | // references get the previous definition. | |||
| 17280 | Name = nullptr; | |||
| 17281 | Previous.clear(); | |||
| 17282 | Invalid = true; | |||
| 17283 | } | |||
| 17284 | } else { | |||
| 17285 | // If the type is currently being defined, complain | |||
| 17286 | // about a nested redefinition. | |||
| 17287 | auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl(); | |||
| 17288 | if (TD->isBeingDefined()) { | |||
| 17289 | Diag(NameLoc, diag::err_nested_redefinition) << Name; | |||
| 17290 | Diag(PrevTagDecl->getLocation(), | |||
| 17291 | diag::note_previous_definition); | |||
| 17292 | Name = nullptr; | |||
| 17293 | Previous.clear(); | |||
| 17294 | Invalid = true; | |||
| 17295 | } | |||
| 17296 | } | |||
| 17297 | ||||
| 17298 | // Okay, this is definition of a previously declared or referenced | |||
| 17299 | // tag. We're going to create a new Decl for it. | |||
| 17300 | } | |||
| 17301 | ||||
| 17302 | // Okay, we're going to make a redeclaration. If this is some kind | |||
| 17303 | // of reference, make sure we build the redeclaration in the same DC | |||
| 17304 | // as the original, and ignore the current access specifier. | |||
| 17305 | if (TUK == TUK_Friend || TUK == TUK_Reference) { | |||
| 17306 | SearchDC = PrevTagDecl->getDeclContext(); | |||
| 17307 | AS = AS_none; | |||
| 17308 | } | |||
| 17309 | } | |||
| 17310 | // If we get here we have (another) forward declaration or we | |||
| 17311 | // have a definition. Just create a new decl. | |||
| 17312 | ||||
| 17313 | } else { | |||
| 17314 | // If we get here, this is a definition of a new tag type in a nested | |||
| 17315 | // scope, e.g. "struct foo; void bar() { struct foo; }", just create a | |||
| 17316 | // new decl/type. We set PrevDecl to NULL so that the entities | |||
| 17317 | // have distinct types. | |||
| 17318 | Previous.clear(); | |||
| 17319 | } | |||
| 17320 | // If we get here, we're going to create a new Decl. If PrevDecl | |||
| 17321 | // is non-NULL, it's a definition of the tag declared by | |||
| 17322 | // PrevDecl. If it's NULL, we have a new definition. | |||
| 17323 | ||||
| 17324 | // Otherwise, PrevDecl is not a tag, but was found with tag | |||
| 17325 | // lookup. This is only actually possible in C++, where a few | |||
| 17326 | // things like templates still live in the tag namespace. | |||
| 17327 | } else { | |||
| 17328 | // Use a better diagnostic if an elaborated-type-specifier | |||
| 17329 | // found the wrong kind of type on the first | |||
| 17330 | // (non-redeclaration) lookup. | |||
| 17331 | if ((TUK == TUK_Reference || TUK == TUK_Friend) && | |||
| 17332 | !Previous.isForRedeclaration()) { | |||
| 17333 | NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind); | |||
| 17334 | Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK | |||
| 17335 | << Kind; | |||
| 17336 | Diag(PrevDecl->getLocation(), diag::note_declared_at); | |||
| 17337 | Invalid = true; | |||
| 17338 | ||||
| 17339 | // Otherwise, only diagnose if the declaration is in scope. | |||
| 17340 | } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S, | |||
| 17341 | SS.isNotEmpty() || isMemberSpecialization)) { | |||
| 17342 | // do nothing | |||
| 17343 | ||||
| 17344 | // Diagnose implicit declarations introduced by elaborated types. | |||
| 17345 | } else if (TUK == TUK_Reference || TUK == TUK_Friend) { | |||
| 17346 | NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind); | |||
| 17347 | Diag(NameLoc, diag::err_tag_reference_conflict) << NTK; | |||
| 17348 | Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; | |||
| 17349 | Invalid = true; | |||
| 17350 | ||||
| 17351 | // Otherwise it's a declaration. Call out a particularly common | |||
| 17352 | // case here. | |||
| 17353 | } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) { | |||
| 17354 | unsigned Kind = 0; | |||
| 17355 | if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1; | |||
| 17356 | Diag(NameLoc, diag::err_tag_definition_of_typedef) | |||
| 17357 | << Name << Kind << TND->getUnderlyingType(); | |||
| 17358 | Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; | |||
| 17359 | Invalid = true; | |||
| 17360 | ||||
| 17361 | // Otherwise, diagnose. | |||
| 17362 | } else { | |||
| 17363 | // The tag name clashes with something else in the target scope, | |||
| 17364 | // issue an error and recover by making this tag be anonymous. | |||
| 17365 | Diag(NameLoc, diag::err_redefinition_different_kind) << Name; | |||
| 17366 | notePreviousDefinition(PrevDecl, NameLoc); | |||
| 17367 | Name = nullptr; | |||
| 17368 | Invalid = true; | |||
| 17369 | } | |||
| 17370 | ||||
| 17371 | // The existing declaration isn't relevant to us; we're in a | |||
| 17372 | // new scope, so clear out the previous declaration. | |||
| 17373 | Previous.clear(); | |||
| 17374 | } | |||
| 17375 | } | |||
| 17376 | ||||
| 17377 | CreateNewDecl: | |||
| 17378 | ||||
| 17379 | TagDecl *PrevDecl = nullptr; | |||
| 17380 | if (Previous.isSingleResult()) | |||
| 17381 | PrevDecl = cast<TagDecl>(Previous.getFoundDecl()); | |||
| 17382 | ||||
| 17383 | // If there is an identifier, use the location of the identifier as the | |||
| 17384 | // location of the decl, otherwise use the location of the struct/union | |||
| 17385 | // keyword. | |||
| 17386 | SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; | |||
| 17387 | ||||
| 17388 | // Otherwise, create a new declaration. If there is a previous | |||
| 17389 | // declaration of the same entity, the two will be linked via | |||
| 17390 | // PrevDecl. | |||
| 17391 | TagDecl *New; | |||
| 17392 | ||||
| 17393 | if (Kind == TTK_Enum) { | |||
| 17394 | // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: | |||
| 17395 | // enum X { A, B, C } D; D should chain to X. | |||
| 17396 | New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, | |||
| 17397 | cast_or_null<EnumDecl>(PrevDecl), ScopedEnum, | |||
| 17398 | ScopedEnumUsesClassTag, IsFixed); | |||
| 17399 | ||||
| 17400 | if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit())) | |||
| 17401 | StdAlignValT = cast<EnumDecl>(New); | |||
| 17402 | ||||
| 17403 | // If this is an undefined enum, warn. | |||
| 17404 | if (TUK != TUK_Definition && !Invalid) { | |||
| 17405 | TagDecl *Def; | |||
| 17406 | if (IsFixed && cast<EnumDecl>(New)->isFixed()) { | |||
| 17407 | // C++0x: 7.2p2: opaque-enum-declaration. | |||
| 17408 | // Conflicts are diagnosed above. Do nothing. | |||
| 17409 | } | |||
| 17410 | else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) { | |||
| 17411 | Diag(Loc, diag::ext_forward_ref_enum_def) | |||
| 17412 | << New; | |||
| 17413 | Diag(Def->getLocation(), diag::note_previous_definition); | |||
| 17414 | } else { | |||
| 17415 | unsigned DiagID = diag::ext_forward_ref_enum; | |||
| 17416 | if (getLangOpts().MSVCCompat) | |||
| 17417 | DiagID = diag::ext_ms_forward_ref_enum; | |||
| 17418 | else if (getLangOpts().CPlusPlus) | |||
| 17419 | DiagID = diag::err_forward_ref_enum; | |||
| 17420 | Diag(Loc, DiagID); | |||
| 17421 | } | |||
| 17422 | } | |||
| 17423 | ||||
| 17424 | if (EnumUnderlying) { | |||
| 17425 | EnumDecl *ED = cast<EnumDecl>(New); | |||
| 17426 | if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) | |||
| 17427 | ED->setIntegerTypeSourceInfo(TI); | |||
| 17428 | else | |||
| 17429 | ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0)); | |||
| 17430 | QualType EnumTy = ED->getIntegerType(); | |||
| 17431 | ED->setPromotionType(Context.isPromotableIntegerType(EnumTy) | |||
| 17432 | ? Context.getPromotedIntegerType(EnumTy) | |||
| 17433 | : EnumTy); | |||
| 17434 | assert(ED->isComplete() && "enum with type should be complete")(static_cast <bool> (ED->isComplete() && "enum with type should be complete" ) ? void (0) : __assert_fail ("ED->isComplete() && \"enum with type should be complete\"" , "clang/lib/Sema/SemaDecl.cpp", 17434, __extension__ __PRETTY_FUNCTION__ )); | |||
| 17435 | } | |||
| 17436 | } else { | |||
| 17437 | // struct/union/class | |||
| 17438 | ||||
| 17439 | // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: | |||
| 17440 | // struct X { int A; } D; D should chain to X. | |||
| 17441 | if (getLangOpts().CPlusPlus) { | |||
| 17442 | // FIXME: Look for a way to use RecordDecl for simple structs. | |||
| 17443 | New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, | |||
| 17444 | cast_or_null<CXXRecordDecl>(PrevDecl)); | |||
| 17445 | ||||
| 17446 | if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit())) | |||
| 17447 | StdBadAlloc = cast<CXXRecordDecl>(New); | |||
| 17448 | } else | |||
| 17449 | New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, | |||
| 17450 | cast_or_null<RecordDecl>(PrevDecl)); | |||
| 17451 | } | |||
| 17452 | ||||
| 17453 | if (OOK != OOK_Outside && TUK == TUK_Definition && !getLangOpts().CPlusPlus) | |||
| 17454 | Diag(New->getLocation(), diag::ext_type_defined_in_offsetof) | |||
| 17455 | << (OOK == OOK_Macro) << New->getSourceRange(); | |||
| 17456 | ||||
| 17457 | // C++11 [dcl.type]p3: | |||
| 17458 | // A type-specifier-seq shall not define a class or enumeration [...]. | |||
| 17459 | if (!Invalid && getLangOpts().CPlusPlus && | |||
| 17460 | (IsTypeSpecifier || IsTemplateParamOrArg) && TUK == TUK_Definition) { | |||
| 17461 | Diag(New->getLocation(), diag::err_type_defined_in_type_specifier) | |||
| 17462 | << Context.getTagDeclType(New); | |||
| 17463 | Invalid = true; | |||
| 17464 | } | |||
| 17465 | ||||
| 17466 | if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition && | |||
| 17467 | DC->getDeclKind() == Decl::Enum) { | |||
| 17468 | Diag(New->getLocation(), diag::err_type_defined_in_enum) | |||
| 17469 | << Context.getTagDeclType(New); | |||
| 17470 | Invalid = true; | |||
| 17471 | } | |||
| 17472 | ||||
| 17473 | // Maybe add qualifier info. | |||
| 17474 | if (SS.isNotEmpty()) { | |||
| 17475 | if (SS.isSet()) { | |||
| 17476 | // If this is either a declaration or a definition, check the | |||
| 17477 | // nested-name-specifier against the current context. | |||
| 17478 | if ((TUK == TUK_Definition || TUK == TUK_Declaration) && | |||
| 17479 | diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc, | |||
| 17480 | isMemberSpecialization)) | |||
| 17481 | Invalid = true; | |||
| 17482 | ||||
| 17483 | New->setQualifierInfo(SS.getWithLocInContext(Context)); | |||
| 17484 | if (TemplateParameterLists.size() > 0) { | |||
| 17485 | New->setTemplateParameterListsInfo(Context, TemplateParameterLists); | |||
| 17486 | } | |||
| 17487 | } | |||
| 17488 | else | |||
| 17489 | Invalid = true; | |||
| 17490 | } | |||
| 17491 | ||||
| 17492 | if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) { | |||
| 17493 | // Add alignment attributes if necessary; these attributes are checked when | |||
| 17494 | // the ASTContext lays out the structure. | |||
| 17495 | // | |||
| 17496 | // It is important for implementing the correct semantics that this | |||
| 17497 | // happen here (in ActOnTag). The #pragma pack stack is | |||
| 17498 | // maintained as a result of parser callbacks which can occur at | |||
| 17499 | // many points during the parsing of a struct declaration (because | |||
| 17500 | // the #pragma tokens are effectively skipped over during the | |||
| 17501 | // parsing of the struct). | |||
| 17502 | if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { | |||
| 17503 | AddAlignmentAttributesForRecord(RD); | |||
| 17504 | AddMsStructLayoutForRecord(RD); | |||
| 17505 | } | |||
| 17506 | } | |||
| 17507 | ||||
| 17508 | if (ModulePrivateLoc.isValid()) { | |||
| 17509 | if (isMemberSpecialization) | |||
| 17510 | Diag(New->getLocation(), diag::err_module_private_specialization) | |||
| 17511 | << 2 | |||
| 17512 | << FixItHint::CreateRemoval(ModulePrivateLoc); | |||
| 17513 | // __module_private__ does not apply to local classes. However, we only | |||
| 17514 | // diagnose this as an error when the declaration specifiers are | |||
| 17515 | // freestanding. Here, we just ignore the __module_private__. | |||
| 17516 | else if (!SearchDC->isFunctionOrMethod()) | |||
| 17517 | New->setModulePrivate(); | |||
| 17518 | } | |||
| 17519 | ||||
| 17520 | // If this is a specialization of a member class (of a class template), | |||
| 17521 | // check the specialization. | |||
| 17522 | if (isMemberSpecialization && CheckMemberSpecialization(New, Previous)) | |||
| 17523 | Invalid = true; | |||
| 17524 | ||||
| 17525 | // If we're declaring or defining a tag in function prototype scope in C, | |||
| 17526 | // note that this type can only be used within the function and add it to | |||
| 17527 | // the list of decls to inject into the function definition scope. | |||
| 17528 | if ((Name || Kind == TTK_Enum) && | |||
| 17529 | getNonFieldDeclScope(S)->isFunctionPrototypeScope()) { | |||
| 17530 | if (getLangOpts().CPlusPlus) { | |||
| 17531 | // C++ [dcl.fct]p6: | |||
| 17532 | // Types shall not be defined in return or parameter types. | |||
| 17533 | if (TUK == TUK_Definition && !IsTypeSpecifier) { | |||
| 17534 | Diag(Loc, diag::err_type_defined_in_param_type) | |||
| 17535 | << Name; | |||
| 17536 | Invalid = true; | |||
| 17537 | } | |||
| 17538 | } else if (!PrevDecl) { | |||
| 17539 | Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New); | |||
| 17540 | } | |||
| 17541 | } | |||
| 17542 | ||||
| 17543 | if (Invalid) | |||
| 17544 | New->setInvalidDecl(); | |||
| 17545 | ||||
| 17546 | // Set the lexical context. If the tag has a C++ scope specifier, the | |||
| 17547 | // lexical context will be different from the semantic context. | |||
| 17548 | New->setLexicalDeclContext(CurContext); | |||
| 17549 | ||||
| 17550 | // Mark this as a friend decl if applicable. | |||
| 17551 | // In Microsoft mode, a friend declaration also acts as a forward | |||
| 17552 | // declaration so we always pass true to setObjectOfFriendDecl to make | |||
| 17553 | // the tag name visible. | |||
| 17554 | if (TUK == TUK_Friend) | |||
| 17555 | New->setObjectOfFriendDecl(getLangOpts().MSVCCompat); | |||
| 17556 | ||||
| 17557 | // Set the access specifier. | |||
| 17558 | if (!Invalid && SearchDC->isRecord()) | |||
| 17559 | SetMemberAccessSpecifier(New, PrevDecl, AS); | |||
| 17560 | ||||
| 17561 | if (PrevDecl) | |||
| 17562 | CheckRedeclarationInModule(New, PrevDecl); | |||
| 17563 | ||||
| 17564 | if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) | |||
| 17565 | New->startDefinition(); | |||
| 17566 | ||||
| 17567 | ProcessDeclAttributeList(S, New, Attrs); | |||
| 17568 | AddPragmaAttributes(S, New); | |||
| 17569 | ||||
| 17570 | // If this has an identifier, add it to the scope stack. | |||
| 17571 | if (TUK == TUK_Friend) { | |||
| 17572 | // We might be replacing an existing declaration in the lookup tables; | |||
| 17573 | // if so, borrow its access specifier. | |||
| 17574 | if (PrevDecl) | |||
| 17575 | New->setAccess(PrevDecl->getAccess()); | |||
| 17576 | ||||
| 17577 | DeclContext *DC = New->getDeclContext()->getRedeclContext(); | |||
| 17578 | DC->makeDeclVisibleInContext(New); | |||
| 17579 | if (Name) // can be null along some error paths | |||
| 17580 | if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) | |||
| 17581 | PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false); | |||
| 17582 | } else if (Name) { | |||
| 17583 | S = getNonFieldDeclScope(S); | |||
| 17584 | PushOnScopeChains(New, S, true); | |||
| 17585 | } else { | |||
| 17586 | CurContext->addDecl(New); | |||
| 17587 | } | |||
| 17588 | ||||
| 17589 | // If this is the C FILE type, notify the AST context. | |||
| 17590 | if (IdentifierInfo *II = New->getIdentifier()) | |||
| 17591 | if (!New->isInvalidDecl() && | |||
| 17592 | New->getDeclContext()->getRedeclContext()->isTranslationUnit() && | |||
| 17593 | II->isStr("FILE")) | |||
| 17594 | Context.setFILEDecl(New); | |||
| 17595 | ||||
| 17596 | if (PrevDecl) | |||
| 17597 | mergeDeclAttributes(New, PrevDecl); | |||
| 17598 | ||||
| 17599 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(New)) | |||
| 17600 | inferGslOwnerPointerAttribute(CXXRD); | |||
| 17601 | ||||
| 17602 | // If there's a #pragma GCC visibility in scope, set the visibility of this | |||
| 17603 | // record. | |||
| 17604 | AddPushedVisibilityAttribute(New); | |||
| 17605 | ||||
| 17606 | if (isMemberSpecialization && !New->isInvalidDecl()) | |||
| 17607 | CompleteMemberSpecialization(New, Previous); | |||
| 17608 | ||||
| 17609 | OwnedDecl = true; | |||
| 17610 | // In C++, don't return an invalid declaration. We can't recover well from | |||
| 17611 | // the cases where we make the type anonymous. | |||
| 17612 | if (Invalid && getLangOpts().CPlusPlus) { | |||
| 17613 | if (New->isBeingDefined()) | |||
| 17614 | if (auto RD = dyn_cast<RecordDecl>(New)) | |||
| 17615 | RD->completeDefinition(); | |||
| 17616 | return true; | |||
| 17617 | } else if (SkipBody && SkipBody->ShouldSkip) { | |||
| 17618 | return SkipBody->Previous; | |||
| 17619 | } else { | |||
| 17620 | return New; | |||
| 17621 | } | |||
| 17622 | } | |||
| 17623 | ||||
| 17624 | void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) { | |||
| 17625 | AdjustDeclIfTemplate(TagD); | |||
| 17626 | TagDecl *Tag = cast<TagDecl>(TagD); | |||
| 17627 | ||||
| 17628 | // Enter the tag context. | |||
| 17629 | PushDeclContext(S, Tag); | |||
| 17630 | ||||
| 17631 | ActOnDocumentableDecl(TagD); | |||
| 17632 | ||||
| 17633 | // If there's a #pragma GCC visibility in scope, set the visibility of this | |||
| 17634 | // record. | |||
| 17635 | AddPushedVisibilityAttribute(Tag); | |||
| 17636 | } | |||
| 17637 | ||||
| 17638 | bool Sema::ActOnDuplicateDefinition(Decl *Prev, SkipBodyInfo &SkipBody) { | |||
| 17639 | if (!hasStructuralCompatLayout(Prev, SkipBody.New)) | |||
| 17640 | return false; | |||
| 17641 | ||||
| 17642 | // Make the previous decl visible. | |||
| 17643 | makeMergedDefinitionVisible(SkipBody.Previous); | |||
| 17644 | return true; | |||
| 17645 | } | |||
| 17646 | ||||
| 17647 | void Sema::ActOnObjCContainerStartDefinition(ObjCContainerDecl *IDecl) { | |||
| 17648 | assert(IDecl->getLexicalParent() == CurContext &&(static_cast <bool> (IDecl->getLexicalParent() == CurContext && "The next DeclContext should be lexically contained in the current one." ) ? void (0) : __assert_fail ("IDecl->getLexicalParent() == CurContext && \"The next DeclContext should be lexically contained in the current one.\"" , "clang/lib/Sema/SemaDecl.cpp", 17649, __extension__ __PRETTY_FUNCTION__ )) | |||
| 17649 | "The next DeclContext should be lexically contained in the current one.")(static_cast <bool> (IDecl->getLexicalParent() == CurContext && "The next DeclContext should be lexically contained in the current one." ) ? void (0) : __assert_fail ("IDecl->getLexicalParent() == CurContext && \"The next DeclContext should be lexically contained in the current one.\"" , "clang/lib/Sema/SemaDecl.cpp", 17649, __extension__ __PRETTY_FUNCTION__ )); | |||
| 17650 | CurContext = IDecl; | |||
| 17651 | } | |||
| 17652 | ||||
| 17653 | void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD, | |||
| 17654 | SourceLocation FinalLoc, | |||
| 17655 | bool IsFinalSpelledSealed, | |||
| 17656 | bool IsAbstract, | |||
| 17657 | SourceLocation LBraceLoc) { | |||
| 17658 | AdjustDeclIfTemplate(TagD); | |||
| 17659 | CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD); | |||
| 17660 | ||||
| 17661 | FieldCollector->StartClass(); | |||
| 17662 | ||||
| 17663 | if (!Record->getIdentifier()) | |||
| 17664 | return; | |||
| 17665 | ||||
| 17666 | if (IsAbstract) | |||
| 17667 | Record->markAbstract(); | |||
| 17668 | ||||
| 17669 | if (FinalLoc.isValid()) { | |||
| 17670 | Record->addAttr(FinalAttr::Create(Context, FinalLoc, | |||
| 17671 | IsFinalSpelledSealed | |||
| 17672 | ? FinalAttr::Keyword_sealed | |||
| 17673 | : FinalAttr::Keyword_final)); | |||
| 17674 | } | |||
| 17675 | // C++ [class]p2: | |||
| 17676 | // [...] The class-name is also inserted into the scope of the | |||
| 17677 | // class itself; this is known as the injected-class-name. For | |||
| 17678 | // purposes of access checking, the injected-class-name is treated | |||
| 17679 | // as if it were a public member name. | |||
| 17680 | CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create( | |||
| 17681 | Context, Record->getTagKind(), CurContext, Record->getBeginLoc(), | |||
| 17682 | Record->getLocation(), Record->getIdentifier(), | |||
| 17683 | /*PrevDecl=*/nullptr, | |||
| 17684 | /*DelayTypeCreation=*/true); | |||
| 17685 | Context.getTypeDeclType(InjectedClassName, Record); | |||
| 17686 | InjectedClassName->setImplicit(); | |||
| 17687 | InjectedClassName->setAccess(AS_public); | |||
| 17688 | if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate()) | |||
| 17689 | InjectedClassName->setDescribedClassTemplate(Template); | |||
| 17690 | PushOnScopeChains(InjectedClassName, S); | |||
| 17691 | assert(InjectedClassName->isInjectedClassName() &&(static_cast <bool> (InjectedClassName->isInjectedClassName () && "Broken injected-class-name") ? void (0) : __assert_fail ("InjectedClassName->isInjectedClassName() && \"Broken injected-class-name\"" , "clang/lib/Sema/SemaDecl.cpp", 17692, __extension__ __PRETTY_FUNCTION__ )) | |||
| 17692 | "Broken injected-class-name")(static_cast <bool> (InjectedClassName->isInjectedClassName () && "Broken injected-class-name") ? void (0) : __assert_fail ("InjectedClassName->isInjectedClassName() && \"Broken injected-class-name\"" , "clang/lib/Sema/SemaDecl.cpp", 17692, __extension__ __PRETTY_FUNCTION__ )); | |||
| 17693 | } | |||
| 17694 | ||||
| 17695 | void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD, | |||
| 17696 | SourceRange BraceRange) { | |||
| 17697 | AdjustDeclIfTemplate(TagD); | |||
| 17698 | TagDecl *Tag = cast<TagDecl>(TagD); | |||
| 17699 | Tag->setBraceRange(BraceRange); | |||
| 17700 | ||||
| 17701 | // Make sure we "complete" the definition even it is invalid. | |||
| 17702 | if (Tag->isBeingDefined()) { | |||
| 17703 | assert(Tag->isInvalidDecl() && "We should already have completed it")(static_cast <bool> (Tag->isInvalidDecl() && "We should already have completed it") ? void (0) : __assert_fail ("Tag->isInvalidDecl() && \"We should already have completed it\"" , "clang/lib/Sema/SemaDecl.cpp", 17703, __extension__ __PRETTY_FUNCTION__ )); | |||
| 17704 | if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag)) | |||
| 17705 | RD->completeDefinition(); | |||
| 17706 | } | |||
| 17707 | ||||
| 17708 | if (auto *RD = dyn_cast<CXXRecordDecl>(Tag)) { | |||
| 17709 | FieldCollector->FinishClass(); | |||
| 17710 | if (RD->hasAttr<SYCLSpecialClassAttr>()) { | |||
| 17711 | auto *Def = RD->getDefinition(); | |||
| 17712 | assert(Def && "The record is expected to have a completed definition")(static_cast <bool> (Def && "The record is expected to have a completed definition" ) ? void (0) : __assert_fail ("Def && \"The record is expected to have a completed definition\"" , "clang/lib/Sema/SemaDecl.cpp", 17712, __extension__ __PRETTY_FUNCTION__ )); | |||
| 17713 | unsigned NumInitMethods = 0; | |||
| 17714 | for (auto *Method : Def->methods()) { | |||
| 17715 | if (!Method->getIdentifier()) | |||
| 17716 | continue; | |||
| 17717 | if (Method->getName() == "__init") | |||
| 17718 | NumInitMethods++; | |||
| 17719 | } | |||
| 17720 | if (NumInitMethods > 1 || !Def->hasInitMethod()) | |||
| 17721 | Diag(RD->getLocation(), diag::err_sycl_special_type_num_init_method); | |||
| 17722 | } | |||
| 17723 | } | |||
| 17724 | ||||
| 17725 | // Exit this scope of this tag's definition. | |||
| 17726 | PopDeclContext(); | |||
| 17727 | ||||
| 17728 | if (getCurLexicalContext()->isObjCContainer() && | |||
| 17729 | Tag->getDeclContext()->isFileContext()) | |||
| 17730 | Tag->setTopLevelDeclInObjCContainer(); | |||
| 17731 | ||||
| 17732 | // Notify the consumer that we've defined a tag. | |||
| 17733 | if (!Tag->isInvalidDecl()) | |||
| 17734 | Consumer.HandleTagDeclDefinition(Tag); | |||
| 17735 | ||||
| 17736 | // Clangs implementation of #pragma align(packed) differs in bitfield layout | |||
| 17737 | // from XLs and instead matches the XL #pragma pack(1) behavior. | |||
| 17738 | if (Context.getTargetInfo().getTriple().isOSAIX() && | |||
| 17739 | AlignPackStack.hasValue()) { | |||
| 17740 | AlignPackInfo APInfo = AlignPackStack.CurrentValue; | |||
| 17741 | // Only diagnose #pragma align(packed). | |||
| 17742 | if (!APInfo.IsAlignAttr() || APInfo.getAlignMode() != AlignPackInfo::Packed) | |||
| 17743 | return; | |||
| 17744 | const RecordDecl *RD = dyn_cast<RecordDecl>(Tag); | |||
| 17745 | if (!RD) | |||
| 17746 | return; | |||
| 17747 | // Only warn if there is at least 1 bitfield member. | |||
| 17748 | if (llvm::any_of(RD->fields(), | |||
| 17749 | [](const FieldDecl *FD) { return FD->isBitField(); })) | |||
| 17750 | Diag(BraceRange.getBegin(), diag::warn_pragma_align_not_xl_compatible); | |||
| 17751 | } | |||
| 17752 | } | |||
| 17753 | ||||
| 17754 | void Sema::ActOnObjCContainerFinishDefinition() { | |||
| 17755 | // Exit this scope of this interface definition. | |||
| 17756 | PopDeclContext(); | |||
| 17757 | } | |||
| 17758 | ||||
| 17759 | void Sema::ActOnObjCTemporaryExitContainerContext(ObjCContainerDecl *ObjCCtx) { | |||
| 17760 | assert(ObjCCtx == CurContext && "Mismatch of container contexts")(static_cast <bool> (ObjCCtx == CurContext && "Mismatch of container contexts" ) ? void (0) : __assert_fail ("ObjCCtx == CurContext && \"Mismatch of container contexts\"" , "clang/lib/Sema/SemaDecl.cpp", 17760, __extension__ __PRETTY_FUNCTION__ )); | |||
| 17761 | OriginalLexicalContext = ObjCCtx; | |||
| 17762 | ActOnObjCContainerFinishDefinition(); | |||
| 17763 | } | |||
| 17764 | ||||
| 17765 | void Sema::ActOnObjCReenterContainerContext(ObjCContainerDecl *ObjCCtx) { | |||
| 17766 | ActOnObjCContainerStartDefinition(ObjCCtx); | |||
| 17767 | OriginalLexicalContext = nullptr; | |||
| 17768 | } | |||
| 17769 | ||||
| 17770 | void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) { | |||
| 17771 | AdjustDeclIfTemplate(TagD); | |||
| 17772 | TagDecl *Tag = cast<TagDecl>(TagD); | |||
| 17773 | Tag->setInvalidDecl(); | |||
| 17774 | ||||
| 17775 | // Make sure we "complete" the definition even it is invalid. | |||
| 17776 | if (Tag->isBeingDefined()) { | |||
| 17777 | if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag)) | |||
| 17778 | RD->completeDefinition(); | |||
| 17779 | } | |||
| 17780 | ||||
| 17781 | // We're undoing ActOnTagStartDefinition here, not | |||
| 17782 | // ActOnStartCXXMemberDeclarations, so we don't have to mess with | |||
| 17783 | // the FieldCollector. | |||
| 17784 | ||||
| 17785 | PopDeclContext(); | |||
| 17786 | } | |||
| 17787 | ||||
| 17788 | // Note that FieldName may be null for anonymous bitfields. | |||
| 17789 | ExprResult Sema::VerifyBitField(SourceLocation FieldLoc, | |||
| 17790 | IdentifierInfo *FieldName, QualType FieldTy, | |||
| 17791 | bool IsMsStruct, Expr *BitWidth) { | |||
| 17792 | assert(BitWidth)(static_cast <bool> (BitWidth) ? void (0) : __assert_fail ("BitWidth", "clang/lib/Sema/SemaDecl.cpp", 17792, __extension__ __PRETTY_FUNCTION__)); | |||
| 17793 | if (BitWidth->containsErrors()) | |||
| 17794 | return ExprError(); | |||
| 17795 | ||||
| 17796 | // C99 6.7.2.1p4 - verify the field type. | |||
| 17797 | // C++ 9.6p3: A bit-field shall have integral or enumeration type. | |||
| 17798 | if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) { | |||
| 17799 | // Handle incomplete and sizeless types with a specific error. | |||
| 17800 | if (RequireCompleteSizedType(FieldLoc, FieldTy, | |||
| 17801 | diag::err_field_incomplete_or_sizeless)) | |||
| 17802 | return ExprError(); | |||
| 17803 | if (FieldName) | |||
| 17804 | return Diag(FieldLoc, diag::err_not_integral_type_bitfield) | |||
| 17805 | << FieldName << FieldTy << BitWidth->getSourceRange(); | |||
| 17806 | return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield) | |||
| 17807 | << FieldTy << BitWidth->getSourceRange(); | |||
| 17808 | } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth), | |||
| 17809 | UPPC_BitFieldWidth)) | |||
| 17810 | return ExprError(); | |||
| 17811 | ||||
| 17812 | // If the bit-width is type- or value-dependent, don't try to check | |||
| 17813 | // it now. | |||
| 17814 | if (BitWidth->isValueDependent() || BitWidth->isTypeDependent()) | |||
| 17815 | return BitWidth; | |||
| 17816 | ||||
| 17817 | llvm::APSInt Value; | |||
| 17818 | ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value, AllowFold); | |||
| 17819 | if (ICE.isInvalid()) | |||
| 17820 | return ICE; | |||
| 17821 | BitWidth = ICE.get(); | |||
| 17822 | ||||
| 17823 | // Zero-width bitfield is ok for anonymous field. | |||
| 17824 | if (Value == 0 && FieldName) | |||
| 17825 | return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName; | |||
| 17826 | ||||
| 17827 | if (Value.isSigned() && Value.isNegative()) { | |||
| 17828 | if (FieldName) | |||
| 17829 | return Diag(FieldLoc, diag::err_bitfield_has_negative_width) | |||
| 17830 | << FieldName << toString(Value, 10); | |||
| 17831 | return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width) | |||
| 17832 | << toString(Value, 10); | |||
| 17833 | } | |||
| 17834 | ||||
| 17835 | // The size of the bit-field must not exceed our maximum permitted object | |||
| 17836 | // size. | |||
| 17837 | if (Value.getActiveBits() > ConstantArrayType::getMaxSizeBits(Context)) { | |||
| 17838 | return Diag(FieldLoc, diag::err_bitfield_too_wide) | |||
| 17839 | << !FieldName << FieldName << toString(Value, 10); | |||
| 17840 | } | |||
| 17841 | ||||
| 17842 | if (!FieldTy->isDependentType()) { | |||
| 17843 | uint64_t TypeStorageSize = Context.getTypeSize(FieldTy); | |||
| 17844 | uint64_t TypeWidth = Context.getIntWidth(FieldTy); | |||
| 17845 | bool BitfieldIsOverwide = Value.ugt(TypeWidth); | |||
| 17846 | ||||
| 17847 | // Over-wide bitfields are an error in C or when using the MSVC bitfield | |||
| 17848 | // ABI. | |||
| 17849 | bool CStdConstraintViolation = | |||
| 17850 | BitfieldIsOverwide && !getLangOpts().CPlusPlus; | |||
| 17851 | bool MSBitfieldViolation = | |||
| 17852 | Value.ugt(TypeStorageSize) && | |||
| 17853 | (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft()); | |||
| 17854 | if (CStdConstraintViolation || MSBitfieldViolation) { | |||
| 17855 | unsigned DiagWidth = | |||
| 17856 | CStdConstraintViolation ? TypeWidth : TypeStorageSize; | |||
| 17857 | return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width) | |||
| 17858 | << (bool)FieldName << FieldName << toString(Value, 10) | |||
| 17859 | << !CStdConstraintViolation << DiagWidth; | |||
| 17860 | } | |||
| 17861 | ||||
| 17862 | // Warn on types where the user might conceivably expect to get all | |||
| 17863 | // specified bits as value bits: that's all integral types other than | |||
| 17864 | // 'bool'. | |||
| 17865 | if (BitfieldIsOverwide && !FieldTy->isBooleanType() && FieldName) { | |||
| 17866 | Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width) | |||
| 17867 | << FieldName << toString(Value, 10) | |||
| 17868 | << (unsigned)TypeWidth; | |||
| 17869 | } | |||
| 17870 | } | |||
| 17871 | ||||
| 17872 | return BitWidth; | |||
| 17873 | } | |||
| 17874 | ||||
| 17875 | /// ActOnField - Each field of a C struct/union is passed into this in order | |||
| 17876 | /// to create a FieldDecl object for it. | |||
| 17877 | Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart, | |||
| 17878 | Declarator &D, Expr *BitfieldWidth) { | |||
| 17879 | FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD), | |||
| 17880 | DeclStart, D, static_cast<Expr*>(BitfieldWidth), | |||
| 17881 | /*InitStyle=*/ICIS_NoInit, AS_public); | |||
| 17882 | return Res; | |||
| 17883 | } | |||
| 17884 | ||||
| 17885 | /// HandleField - Analyze a field of a C struct or a C++ data member. | |||
| 17886 | /// | |||
| 17887 | FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record, | |||
| 17888 | SourceLocation DeclStart, | |||
| 17889 | Declarator &D, Expr *BitWidth, | |||
| 17890 | InClassInitStyle InitStyle, | |||
| 17891 | AccessSpecifier AS) { | |||
| 17892 | if (D.isDecompositionDeclarator()) { | |||
| 17893 | const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); | |||
| 17894 | Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) | |||
| 17895 | << Decomp.getSourceRange(); | |||
| 17896 | return nullptr; | |||
| 17897 | } | |||
| 17898 | ||||
| 17899 | IdentifierInfo *II = D.getIdentifier(); | |||
| 17900 | SourceLocation Loc = DeclStart; | |||
| 17901 | if (II) Loc = D.getIdentifierLoc(); | |||
| 17902 | ||||
| 17903 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | |||
| 17904 | QualType T = TInfo->getType(); | |||
| 17905 | if (getLangOpts().CPlusPlus) { | |||
| 17906 | CheckExtraCXXDefaultArguments(D); | |||
| 17907 | ||||
| 17908 | if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, | |||
| 17909 | UPPC_DataMemberType)) { | |||
| 17910 | D.setInvalidType(); | |||
| 17911 | T = Context.IntTy; | |||
| 17912 | TInfo = Context.getTrivialTypeSourceInfo(T, Loc); | |||
| 17913 | } | |||
| 17914 | } | |||
| 17915 | ||||
| 17916 | DiagnoseFunctionSpecifiers(D.getDeclSpec()); | |||
| 17917 | ||||
| 17918 | if (D.getDeclSpec().isInlineSpecified()) | |||
| 17919 | Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) | |||
| 17920 | << getLangOpts().CPlusPlus17; | |||
| 17921 | if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) | |||
| 17922 | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), | |||
| 17923 | diag::err_invalid_thread) | |||
| 17924 | << DeclSpec::getSpecifierName(TSCS); | |||
| 17925 | ||||
| 17926 | // Check to see if this name was declared as a member previously | |||
| 17927 | NamedDecl *PrevDecl = nullptr; | |||
| 17928 | LookupResult Previous(*this, II, Loc, LookupMemberName, | |||
| 17929 | ForVisibleRedeclaration); | |||
| 17930 | LookupName(Previous, S); | |||
| 17931 | switch (Previous.getResultKind()) { | |||
| 17932 | case LookupResult::Found: | |||
| 17933 | case LookupResult::FoundUnresolvedValue: | |||
| 17934 | PrevDecl = Previous.getAsSingle<NamedDecl>(); | |||
| 17935 | break; | |||
| 17936 | ||||
| 17937 | case LookupResult::FoundOverloaded: | |||
| 17938 | PrevDecl = Previous.getRepresentativeDecl(); | |||
| 17939 | break; | |||
| 17940 | ||||
| 17941 | case LookupResult::NotFound: | |||
| 17942 | case LookupResult::NotFoundInCurrentInstantiation: | |||
| 17943 | case LookupResult::Ambiguous: | |||
| 17944 | break; | |||
| 17945 | } | |||
| 17946 | Previous.suppressDiagnostics(); | |||
| 17947 | ||||
| 17948 | if (PrevDecl && PrevDecl->isTemplateParameter()) { | |||
| 17949 | // Maybe we will complain about the shadowed template parameter. | |||
| 17950 | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); | |||
| 17951 | // Just pretend that we didn't see the previous declaration. | |||
| 17952 | PrevDecl = nullptr; | |||
| 17953 | } | |||
| 17954 | ||||
| 17955 | if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) | |||
| 17956 | PrevDecl = nullptr; | |||
| 17957 | ||||
| 17958 | bool Mutable | |||
| 17959 | = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable); | |||
| 17960 | SourceLocation TSSL = D.getBeginLoc(); | |||
| 17961 | FieldDecl *NewFD | |||
| 17962 | = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle, | |||
| 17963 | TSSL, AS, PrevDecl, &D); | |||
| 17964 | ||||
| 17965 | if (NewFD->isInvalidDecl()) | |||
| 17966 | Record->setInvalidDecl(); | |||
| 17967 | ||||
| 17968 | if (D.getDeclSpec().isModulePrivateSpecified()) | |||
| 17969 | NewFD->setModulePrivate(); | |||
| 17970 | ||||
| 17971 | if (NewFD->isInvalidDecl() && PrevDecl) { | |||
| 17972 | // Don't introduce NewFD into scope; there's already something | |||
| 17973 | // with the same name in the same scope. | |||
| 17974 | } else if (II) { | |||
| 17975 | PushOnScopeChains(NewFD, S); | |||
| 17976 | } else | |||
| 17977 | Record->addDecl(NewFD); | |||
| 17978 | ||||
| 17979 | return NewFD; | |||
| 17980 | } | |||
| 17981 | ||||
| 17982 | /// Build a new FieldDecl and check its well-formedness. | |||
| 17983 | /// | |||
| 17984 | /// This routine builds a new FieldDecl given the fields name, type, | |||
| 17985 | /// record, etc. \p PrevDecl should refer to any previous declaration | |||
| 17986 | /// with the same name and in the same scope as the field to be | |||
| 17987 | /// created. | |||
| 17988 | /// | |||
| 17989 | /// \returns a new FieldDecl. | |||
| 17990 | /// | |||
| 17991 | /// \todo The Declarator argument is a hack. It will be removed once | |||
| 17992 | FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T, | |||
| 17993 | TypeSourceInfo *TInfo, | |||
| 17994 | RecordDecl *Record, SourceLocation Loc, | |||
| 17995 | bool Mutable, Expr *BitWidth, | |||
| 17996 | InClassInitStyle InitStyle, | |||
| 17997 | SourceLocation TSSL, | |||
| 17998 | AccessSpecifier AS, NamedDecl *PrevDecl, | |||
| 17999 | Declarator *D) { | |||
| 18000 | IdentifierInfo *II = Name.getAsIdentifierInfo(); | |||
| 18001 | bool InvalidDecl = false; | |||
| 18002 | if (D) InvalidDecl = D->isInvalidType(); | |||
| 18003 | ||||
| 18004 | // If we receive a broken type, recover by assuming 'int' and | |||
| 18005 | // marking this declaration as invalid. | |||
| 18006 | if (T.isNull() || T->containsErrors()) { | |||
| 18007 | InvalidDecl = true; | |||
| 18008 | T = Context.IntTy; | |||
| 18009 | } | |||
| 18010 | ||||
| 18011 | QualType EltTy = Context.getBaseElementType(T); | |||
| 18012 | if (!EltTy->isDependentType() && !EltTy->containsErrors()) { | |||
| 18013 | if (RequireCompleteSizedType(Loc, EltTy, | |||
| 18014 | diag::err_field_incomplete_or_sizeless)) { | |||
| 18015 | // Fields of incomplete type force their record to be invalid. | |||
| 18016 | Record->setInvalidDecl(); | |||
| 18017 | InvalidDecl = true; | |||
| 18018 | } else { | |||
| 18019 | NamedDecl *Def; | |||
| 18020 | EltTy->isIncompleteType(&Def); | |||
| 18021 | if (Def && Def->isInvalidDecl()) { | |||
| 18022 | Record->setInvalidDecl(); | |||
| 18023 | InvalidDecl = true; | |||
| 18024 | } | |||
| 18025 | } | |||
| 18026 | } | |||
| 18027 | ||||
| 18028 | // TR 18037 does not allow fields to be declared with address space | |||
| 18029 | if (T.hasAddressSpace() || T->isDependentAddressSpaceType() || | |||
| 18030 | T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) { | |||
| 18031 | Diag(Loc, diag::err_field_with_address_space); | |||
| 18032 | Record->setInvalidDecl(); | |||
| 18033 | InvalidDecl = true; | |||
| 18034 | } | |||
| 18035 | ||||
| 18036 | if (LangOpts.OpenCL) { | |||
| 18037 | // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be | |||
| 18038 | // used as structure or union field: image, sampler, event or block types. | |||
| 18039 | if (T->isEventT() || T->isImageType() || T->isSamplerT() || | |||
| 18040 | T->isBlockPointerType()) { | |||
| 18041 | Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T; | |||
| 18042 | Record->setInvalidDecl(); | |||
| 18043 | InvalidDecl = true; | |||
| 18044 | } | |||
| 18045 | // OpenCL v1.2 s6.9.c: bitfields are not supported, unless Clang extension | |||
| 18046 | // is enabled. | |||
| 18047 | if (BitWidth && !getOpenCLOptions().isAvailableOption( | |||
| 18048 | "__cl_clang_bitfields", LangOpts)) { | |||
| 18049 | Diag(Loc, diag::err_opencl_bitfields); | |||
| 18050 | InvalidDecl = true; | |||
| 18051 | } | |||
| 18052 | } | |||
| 18053 | ||||
| 18054 | // Anonymous bit-fields cannot be cv-qualified (CWG 2229). | |||
| 18055 | if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth && | |||
| 18056 | T.hasQualifiers()) { | |||
| 18057 | InvalidDecl = true; | |||
| 18058 | Diag(Loc, diag::err_anon_bitfield_qualifiers); | |||
| 18059 | } | |||
| 18060 | ||||
| 18061 | // C99 6.7.2.1p8: A member of a structure or union may have any type other | |||
| 18062 | // than a variably modified type. | |||
| 18063 | if (!InvalidDecl && T->isVariablyModifiedType()) { | |||
| 18064 | if (!tryToFixVariablyModifiedVarType( | |||
| 18065 | TInfo, T, Loc, diag::err_typecheck_field_variable_size)) | |||
| 18066 | InvalidDecl = true; | |||
| 18067 | } | |||
| 18068 | ||||
| 18069 | // Fields can not have abstract class types | |||
| 18070 | if (!InvalidDecl && RequireNonAbstractType(Loc, T, | |||
| 18071 | diag::err_abstract_type_in_decl, | |||
| 18072 | AbstractFieldType)) | |||
| 18073 | InvalidDecl = true; | |||
| 18074 | ||||
| 18075 | if (InvalidDecl) | |||
| 18076 | BitWidth = nullptr; | |||
| 18077 | // If this is declared as a bit-field, check the bit-field. | |||
| 18078 | if (BitWidth) { | |||
| 18079 | BitWidth = | |||
| 18080 | VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth).get(); | |||
| 18081 | if (!BitWidth) { | |||
| 18082 | InvalidDecl = true; | |||
| 18083 | BitWidth = nullptr; | |||
| 18084 | } | |||
| 18085 | } | |||
| 18086 | ||||
| 18087 | // Check that 'mutable' is consistent with the type of the declaration. | |||
| 18088 | if (!InvalidDecl && Mutable) { | |||
| 18089 | unsigned DiagID = 0; | |||
| 18090 | if (T->isReferenceType()) | |||
| 18091 | DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference | |||
| 18092 | : diag::err_mutable_reference; | |||
| 18093 | else if (T.isConstQualified()) | |||
| 18094 | DiagID = diag::err_mutable_const; | |||
| 18095 | ||||
| 18096 | if (DiagID) { | |||
| 18097 | SourceLocation ErrLoc = Loc; | |||
| 18098 | if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid()) | |||
| 18099 | ErrLoc = D->getDeclSpec().getStorageClassSpecLoc(); | |||
| 18100 | Diag(ErrLoc, DiagID); | |||
| 18101 | if (DiagID != diag::ext_mutable_reference) { | |||
| 18102 | Mutable = false; | |||
| 18103 | InvalidDecl = true; | |||
| 18104 | } | |||
| 18105 | } | |||
| 18106 | } | |||
| 18107 | ||||
| 18108 | // C++11 [class.union]p8 (DR1460): | |||
| 18109 | // At most one variant member of a union may have a | |||
| 18110 | // brace-or-equal-initializer. | |||
| 18111 | if (InitStyle != ICIS_NoInit) | |||
| 18112 | checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc); | |||
| 18113 | ||||
| 18114 | FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo, | |||
| 18115 | BitWidth, Mutable, InitStyle); | |||
| 18116 | if (InvalidDecl) | |||
| 18117 | NewFD->setInvalidDecl(); | |||
| 18118 | ||||
| 18119 | if (PrevDecl && !isa<TagDecl>(PrevDecl)) { | |||
| 18120 | Diag(Loc, diag::err_duplicate_member) << II; | |||
| 18121 | Diag(PrevDecl->getLocation(), diag::note_previous_declaration); | |||
| 18122 | NewFD->setInvalidDecl(); | |||
| 18123 | } | |||
| 18124 | ||||
| 18125 | if (!InvalidDecl && getLangOpts().CPlusPlus) { | |||
| 18126 | if (Record->isUnion()) { | |||
| 18127 | if (const RecordType *RT = EltTy->getAs<RecordType>()) { | |||
| 18128 | CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl()); | |||
| 18129 | if (RDecl->getDefinition()) { | |||
| 18130 | // C++ [class.union]p1: An object of a class with a non-trivial | |||
| 18131 | // constructor, a non-trivial copy constructor, a non-trivial | |||
| 18132 | // destructor, or a non-trivial copy assignment operator | |||
| 18133 | // cannot be a member of a union, nor can an array of such | |||
| 18134 | // objects. | |||
| 18135 | if (CheckNontrivialField(NewFD)) | |||
| 18136 | NewFD->setInvalidDecl(); | |||
| 18137 | } | |||
| 18138 | } | |||
| 18139 | ||||
| 18140 | // C++ [class.union]p1: If a union contains a member of reference type, | |||
| 18141 | // the program is ill-formed, except when compiling with MSVC extensions | |||
| 18142 | // enabled. | |||
| 18143 | if (EltTy->isReferenceType()) { | |||
| 18144 | Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ? | |||
| 18145 | diag::ext_union_member_of_reference_type : | |||
| 18146 | diag::err_union_member_of_reference_type) | |||
| 18147 | << NewFD->getDeclName() << EltTy; | |||
| 18148 | if (!getLangOpts().MicrosoftExt) | |||
| 18149 | NewFD->setInvalidDecl(); | |||
| 18150 | } | |||
| 18151 | } | |||
| 18152 | } | |||
| 18153 | ||||
| 18154 | // FIXME: We need to pass in the attributes given an AST | |||
| 18155 | // representation, not a parser representation. | |||
| 18156 | if (D) { | |||
| 18157 | // FIXME: The current scope is almost... but not entirely... correct here. | |||
| 18158 | ProcessDeclAttributes(getCurScope(), NewFD, *D); | |||
| 18159 | ||||
| 18160 | if (NewFD->hasAttrs()) | |||
| 18161 | CheckAlignasUnderalignment(NewFD); | |||
| 18162 | } | |||
| 18163 | ||||
| 18164 | // In auto-retain/release, infer strong retension for fields of | |||
| 18165 | // retainable type. | |||
| 18166 | if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD)) | |||
| 18167 | NewFD->setInvalidDecl(); | |||
| 18168 | ||||
| 18169 | if (T.isObjCGCWeak()) | |||
| 18170 | Diag(Loc, diag::warn_attribute_weak_on_field); | |||
| 18171 | ||||
| 18172 | // PPC MMA non-pointer types are not allowed as field types. | |||
| 18173 | if (Context.getTargetInfo().getTriple().isPPC64() && | |||
| 18174 | CheckPPCMMAType(T, NewFD->getLocation())) | |||
| 18175 | NewFD->setInvalidDecl(); | |||
| 18176 | ||||
| 18177 | NewFD->setAccess(AS); | |||
| 18178 | return NewFD; | |||
| 18179 | } | |||
| 18180 | ||||
| 18181 | bool Sema::CheckNontrivialField(FieldDecl *FD) { | |||
| 18182 | assert(FD)(static_cast <bool> (FD) ? void (0) : __assert_fail ("FD" , "clang/lib/Sema/SemaDecl.cpp", 18182, __extension__ __PRETTY_FUNCTION__ )); | |||
| 18183 | assert(getLangOpts().CPlusPlus && "valid check only for C++")(static_cast <bool> (getLangOpts().CPlusPlus && "valid check only for C++") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"valid check only for C++\"" , "clang/lib/Sema/SemaDecl.cpp", 18183, __extension__ __PRETTY_FUNCTION__ )); | |||
| 18184 | ||||
| 18185 | if (FD->isInvalidDecl() || FD->getType()->isDependentType()) | |||
| 18186 | return false; | |||
| 18187 | ||||
| 18188 | QualType EltTy = Context.getBaseElementType(FD->getType()); | |||
| 18189 | if (const RecordType *RT = EltTy->getAs<RecordType>()) { | |||
| 18190 | CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl()); | |||
| 18191 | if (RDecl->getDefinition()) { | |||
| 18192 | // We check for copy constructors before constructors | |||
| 18193 | // because otherwise we'll never get complaints about | |||
| 18194 | // copy constructors. | |||
| 18195 | ||||
| 18196 | CXXSpecialMember member = CXXInvalid; | |||
| 18197 | // We're required to check for any non-trivial constructors. Since the | |||
| 18198 | // implicit default constructor is suppressed if there are any | |||
| 18199 | // user-declared constructors, we just need to check that there is a | |||
| 18200 | // trivial default constructor and a trivial copy constructor. (We don't | |||
| 18201 | // worry about move constructors here, since this is a C++98 check.) | |||
| 18202 | if (RDecl->hasNonTrivialCopyConstructor()) | |||
| 18203 | member = CXXCopyConstructor; | |||
| 18204 | else if (!RDecl->hasTrivialDefaultConstructor()) | |||
| 18205 | member = CXXDefaultConstructor; | |||
| 18206 | else if (RDecl->hasNonTrivialCopyAssignment()) | |||
| 18207 | member = CXXCopyAssignment; | |||
| 18208 | else if (RDecl->hasNonTrivialDestructor()) | |||
| 18209 | member = CXXDestructor; | |||
| 18210 | ||||
| 18211 | if (member != CXXInvalid) { | |||
| 18212 | if (!getLangOpts().CPlusPlus11 && | |||
| 18213 | getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) { | |||
| 18214 | // Objective-C++ ARC: it is an error to have a non-trivial field of | |||
| 18215 | // a union. However, system headers in Objective-C programs | |||
| 18216 | // occasionally have Objective-C lifetime objects within unions, | |||
| 18217 | // and rather than cause the program to fail, we make those | |||
| 18218 | // members unavailable. | |||
| 18219 | SourceLocation Loc = FD->getLocation(); | |||
| 18220 | if (getSourceManager().isInSystemHeader(Loc)) { | |||
| 18221 | if (!FD->hasAttr<UnavailableAttr>()) | |||
| 18222 | FD->addAttr(UnavailableAttr::CreateImplicit(Context, "", | |||
| 18223 | UnavailableAttr::IR_ARCFieldWithOwnership, Loc)); | |||
| 18224 | return false; | |||
| 18225 | } | |||
| 18226 | } | |||
| 18227 | ||||
| 18228 | Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ? | |||
| 18229 | diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member : | |||
| 18230 | diag::err_illegal_union_or_anon_struct_member) | |||
| 18231 | << FD->getParent()->isUnion() << FD->getDeclName() << member; | |||
| 18232 | DiagnoseNontrivial(RDecl, member); | |||
| 18233 | return !getLangOpts().CPlusPlus11; | |||
| 18234 | } | |||
| 18235 | } | |||
| 18236 | } | |||
| 18237 | ||||
| 18238 | return false; | |||
| 18239 | } | |||
| 18240 | ||||
| 18241 | /// TranslateIvarVisibility - Translate visibility from a token ID to an | |||
| 18242 | /// AST enum value. | |||
| 18243 | static ObjCIvarDecl::AccessControl | |||
| 18244 | TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) { | |||
| 18245 | switch (ivarVisibility) { | |||
| 18246 | default: llvm_unreachable("Unknown visitibility kind")::llvm::llvm_unreachable_internal("Unknown visitibility kind" , "clang/lib/Sema/SemaDecl.cpp", 18246); | |||
| 18247 | case tok::objc_private: return ObjCIvarDecl::Private; | |||
| 18248 | case tok::objc_public: return ObjCIvarDecl::Public; | |||
| 18249 | case tok::objc_protected: return ObjCIvarDecl::Protected; | |||
| 18250 | case tok::objc_package: return ObjCIvarDecl::Package; | |||
| 18251 | } | |||
| 18252 | } | |||
| 18253 | ||||
| 18254 | /// ActOnIvar - Each ivar field of an objective-c class is passed into this | |||
| 18255 | /// in order to create an IvarDecl object for it. | |||
| 18256 | Decl *Sema::ActOnIvar(Scope *S, | |||
| 18257 | SourceLocation DeclStart, | |||
| 18258 | Declarator &D, Expr *BitfieldWidth, | |||
| 18259 | tok::ObjCKeywordKind Visibility) { | |||
| 18260 | ||||
| 18261 | IdentifierInfo *II = D.getIdentifier(); | |||
| 18262 | Expr *BitWidth = (Expr*)BitfieldWidth; | |||
| 18263 | SourceLocation Loc = DeclStart; | |||
| 18264 | if (II) Loc = D.getIdentifierLoc(); | |||
| 18265 | ||||
| 18266 | // FIXME: Unnamed fields can be handled in various different ways, for | |||
| 18267 | // example, unnamed unions inject all members into the struct namespace! | |||
| 18268 | ||||
| 18269 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | |||
| 18270 | QualType T = TInfo->getType(); | |||
| 18271 | ||||
| 18272 | if (BitWidth) { | |||
| 18273 | // 6.7.2.1p3, 6.7.2.1p4 | |||
| 18274 | BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get(); | |||
| 18275 | if (!BitWidth) | |||
| 18276 | D.setInvalidType(); | |||
| 18277 | } else { | |||
| 18278 | // Not a bitfield. | |||
| 18279 | ||||
| 18280 | // validate II. | |||
| 18281 | ||||
| 18282 | } | |||
| 18283 | if (T->isReferenceType()) { | |||
| 18284 | Diag(Loc, diag::err_ivar_reference_type); | |||
| 18285 | D.setInvalidType(); | |||
| 18286 | } | |||
| 18287 | // C99 6.7.2.1p8: A member of a structure or union may have any type other | |||
| 18288 | // than a variably modified type. | |||
| 18289 | else if (T->isVariablyModifiedType()) { | |||
| 18290 | if (!tryToFixVariablyModifiedVarType( | |||
| 18291 | TInfo, T, Loc, diag::err_typecheck_ivar_variable_size)) | |||
| 18292 | D.setInvalidType(); | |||
| 18293 | } | |||
| 18294 | ||||
| 18295 | // Get the visibility (access control) for this ivar. | |||
| 18296 | ObjCIvarDecl::AccessControl ac = | |||
| 18297 | Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility) | |||
| 18298 | : ObjCIvarDecl::None; | |||
| 18299 | // Must set ivar's DeclContext to its enclosing interface. | |||
| 18300 | ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext); | |||
| 18301 | if (!EnclosingDecl || EnclosingDecl->isInvalidDecl()) | |||
| 18302 | return nullptr; | |||
| 18303 | ObjCContainerDecl *EnclosingContext; | |||
| 18304 | if (ObjCImplementationDecl *IMPDecl = | |||
| 18305 | dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { | |||
| 18306 | if (LangOpts.ObjCRuntime.isFragile()) { | |||
| 18307 | // Case of ivar declared in an implementation. Context is that of its class. | |||
| 18308 | EnclosingContext = IMPDecl->getClassInterface(); | |||
| 18309 | assert(EnclosingContext && "Implementation has no class interface!")(static_cast <bool> (EnclosingContext && "Implementation has no class interface!" ) ? void (0) : __assert_fail ("EnclosingContext && \"Implementation has no class interface!\"" , "clang/lib/Sema/SemaDecl.cpp", 18309, __extension__ __PRETTY_FUNCTION__ )); | |||
| 18310 | } | |||
| 18311 | else | |||
| 18312 | EnclosingContext = EnclosingDecl; | |||
| 18313 | } else { | |||
| 18314 | if (ObjCCategoryDecl *CDecl = | |||
| 18315 | dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { | |||
| 18316 | if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) { | |||
| 18317 | Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension(); | |||
| 18318 | return nullptr; | |||
| 18319 | } | |||
| 18320 | } | |||
| 18321 | EnclosingContext = EnclosingDecl; | |||
| 18322 | } | |||
| 18323 | ||||
| 18324 | // Construct the decl. | |||
| 18325 | ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext, | |||
| 18326 | DeclStart, Loc, II, T, | |||
| 18327 | TInfo, ac, (Expr *)BitfieldWidth); | |||
| 18328 | ||||
| 18329 | if (II) { | |||
| 18330 | NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName, | |||
| 18331 | ForVisibleRedeclaration); | |||
| 18332 | if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S) | |||
| 18333 | && !isa<TagDecl>(PrevDecl)) { | |||
| 18334 | Diag(Loc, diag::err_duplicate_member) << II; | |||
| 18335 | Diag(PrevDecl->getLocation(), diag::note_previous_declaration); | |||
| 18336 | NewID->setInvalidDecl(); | |||
| 18337 | } | |||
| 18338 | } | |||
| 18339 | ||||
| 18340 | // Process attributes attached to the ivar. | |||
| 18341 | ProcessDeclAttributes(S, NewID, D); | |||
| 18342 | ||||
| 18343 | if (D.isInvalidType()) | |||
| 18344 | NewID->setInvalidDecl(); | |||
| 18345 | ||||
| 18346 | // In ARC, infer 'retaining' for ivars of retainable type. | |||
| 18347 | if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID)) | |||
| 18348 | NewID->setInvalidDecl(); | |||
| 18349 | ||||
| 18350 | if (D.getDeclSpec().isModulePrivateSpecified()) | |||
| 18351 | NewID->setModulePrivate(); | |||
| 18352 | ||||
| 18353 | if (II) { | |||
| 18354 | // FIXME: When interfaces are DeclContexts, we'll need to add | |||
| 18355 | // these to the interface. | |||
| 18356 | S->AddDecl(NewID); | |||
| 18357 | IdResolver.AddDecl(NewID); | |||
| 18358 | } | |||
| 18359 | ||||
| 18360 | if (LangOpts.ObjCRuntime.isNonFragile() && | |||
| 18361 | !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl)) | |||
| 18362 | Diag(Loc, diag::warn_ivars_in_interface); | |||
| 18363 | ||||
| 18364 | return NewID; | |||
| 18365 | } | |||
| 18366 | ||||
| 18367 | /// ActOnLastBitfield - This routine handles synthesized bitfields rules for | |||
| 18368 | /// class and class extensions. For every class \@interface and class | |||
| 18369 | /// extension \@interface, if the last ivar is a bitfield of any type, | |||
| 18370 | /// then add an implicit `char :0` ivar to the end of that interface. | |||
| 18371 | void Sema::ActOnLastBitfield(SourceLocation DeclLoc, | |||
| 18372 | SmallVectorImpl<Decl *> &AllIvarDecls) { | |||
| 18373 | if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty()) | |||
| 18374 | return; | |||
| 18375 | ||||
| 18376 | Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1]; | |||
| 18377 | ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl); | |||
| 18378 | ||||
| 18379 | if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context)) | |||
| 18380 | return; | |||
| 18381 | ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext); | |||
| 18382 | if (!ID) { | |||
| 18383 | if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) { | |||
| 18384 | if (!CD->IsClassExtension()) | |||
| 18385 | return; | |||
| 18386 | } | |||
| 18387 | // No need to add this to end of @implementation. | |||
| 18388 | else | |||
| 18389 | return; | |||
| 18390 | } | |||
| 18391 | // All conditions are met. Add a new bitfield to the tail end of ivars. | |||
| 18392 | llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0); | |||
| 18393 | Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc); | |||
| 18394 | ||||
| 18395 | Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext), | |||
| 18396 | DeclLoc, DeclLoc, nullptr, | |||
| 18397 | Context.CharTy, | |||
| 18398 | Context.getTrivialTypeSourceInfo(Context.CharTy, | |||
| 18399 | DeclLoc), | |||
| 18400 | ObjCIvarDecl::Private, BW, | |||
| 18401 | true); | |||
| 18402 | AllIvarDecls.push_back(Ivar); | |||
| 18403 | } | |||
| 18404 | ||||
| 18405 | /// [class.dtor]p4: | |||
| 18406 | /// At the end of the definition of a class, overload resolution is | |||
| 18407 | /// performed among the prospective destructors declared in that class with | |||
| 18408 | /// an empty argument list to select the destructor for the class, also | |||
| 18409 | /// known as the selected destructor. | |||
| 18410 | /// | |||
| 18411 | /// We do the overload resolution here, then mark the selected constructor in the AST. | |||
| 18412 | /// Later CXXRecordDecl::getDestructor() will return the selected constructor. | |||
| 18413 | static void ComputeSelectedDestructor(Sema &S, CXXRecordDecl *Record) { | |||
| 18414 | if (!Record->hasUserDeclaredDestructor()) { | |||
| 18415 | return; | |||
| 18416 | } | |||
| 18417 | ||||
| 18418 | SourceLocation Loc = Record->getLocation(); | |||
| 18419 | OverloadCandidateSet OCS(Loc, OverloadCandidateSet::CSK_Normal); | |||
| 18420 | ||||
| 18421 | for (auto *Decl : Record->decls()) { | |||
| 18422 | if (auto *DD = dyn_cast<CXXDestructorDecl>(Decl)) { | |||
| 18423 | if (DD->isInvalidDecl()) | |||
| 18424 | continue; | |||
| 18425 | S.AddOverloadCandidate(DD, DeclAccessPair::make(DD, DD->getAccess()), {}, | |||
| 18426 | OCS); | |||
| 18427 | assert(DD->isIneligibleOrNotSelected() && "Selecting a destructor but a destructor was already selected.")(static_cast <bool> (DD->isIneligibleOrNotSelected() && "Selecting a destructor but a destructor was already selected." ) ? void (0) : __assert_fail ("DD->isIneligibleOrNotSelected() && \"Selecting a destructor but a destructor was already selected.\"" , "clang/lib/Sema/SemaDecl.cpp", 18427, __extension__ __PRETTY_FUNCTION__ )); | |||
| 18428 | } | |||
| 18429 | } | |||
| 18430 | ||||
| 18431 | if (OCS.empty()) { | |||
| 18432 | return; | |||
| 18433 | } | |||
| 18434 | OverloadCandidateSet::iterator Best; | |||
| 18435 | unsigned Msg = 0; | |||
| 18436 | OverloadCandidateDisplayKind DisplayKind; | |||
| 18437 | ||||
| 18438 | switch (OCS.BestViableFunction(S, Loc, Best)) { | |||
| 18439 | case OR_Success: | |||
| 18440 | case OR_Deleted: | |||
| 18441 | Record->addedSelectedDestructor(dyn_cast<CXXDestructorDecl>(Best->Function)); | |||
| 18442 | break; | |||
| 18443 | ||||
| 18444 | case OR_Ambiguous: | |||
| 18445 | Msg = diag::err_ambiguous_destructor; | |||
| 18446 | DisplayKind = OCD_AmbiguousCandidates; | |||
| 18447 | break; | |||
| 18448 | ||||
| 18449 | case OR_No_Viable_Function: | |||
| 18450 | Msg = diag::err_no_viable_destructor; | |||
| 18451 | DisplayKind = OCD_AllCandidates; | |||
| 18452 | break; | |||
| 18453 | } | |||
| 18454 | ||||
| 18455 | if (Msg) { | |||
| 18456 | // OpenCL have got their own thing going with destructors. It's slightly broken, | |||
| 18457 | // but we allow it. | |||
| 18458 | if (!S.LangOpts.OpenCL) { | |||
| 18459 | PartialDiagnostic Diag = S.PDiag(Msg) << Record; | |||
| 18460 | OCS.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, DisplayKind, {}); | |||
| 18461 | Record->setInvalidDecl(); | |||
| 18462 | } | |||
| 18463 | // It's a bit hacky: At this point we've raised an error but we want the | |||
| 18464 | // rest of the compiler to continue somehow working. However almost | |||
| 18465 | // everything we'll try to do with the class will depend on there being a | |||
| 18466 | // destructor. So let's pretend the first one is selected and hope for the | |||
| 18467 | // best. | |||
| 18468 | Record->addedSelectedDestructor(dyn_cast<CXXDestructorDecl>(OCS.begin()->Function)); | |||
| 18469 | } | |||
| 18470 | } | |||
| 18471 | ||||
| 18472 | /// [class.mem.special]p5 | |||
| 18473 | /// Two special member functions are of the same kind if: | |||
| 18474 | /// - they are both default constructors, | |||
| 18475 | /// - they are both copy or move constructors with the same first parameter | |||
| 18476 | /// type, or | |||
| 18477 | /// - they are both copy or move assignment operators with the same first | |||
| 18478 | /// parameter type and the same cv-qualifiers and ref-qualifier, if any. | |||
| 18479 | static bool AreSpecialMemberFunctionsSameKind(ASTContext &Context, | |||
| 18480 | CXXMethodDecl *M1, | |||
| 18481 | CXXMethodDecl *M2, | |||
| 18482 | Sema::CXXSpecialMember CSM) { | |||
| 18483 | // We don't want to compare templates to non-templates: See | |||
| 18484 | // https://github.com/llvm/llvm-project/issues/59206 | |||
| 18485 | if (CSM == Sema::CXXDefaultConstructor) | |||
| 18486 | return bool(M1->getDescribedFunctionTemplate()) == | |||
| 18487 | bool(M2->getDescribedFunctionTemplate()); | |||
| 18488 | if (!Context.hasSameType(M1->getParamDecl(0)->getType(), | |||
| 18489 | M2->getParamDecl(0)->getType())) | |||
| 18490 | return false; | |||
| 18491 | if (!Context.hasSameType(M1->getThisType(), M2->getThisType())) | |||
| 18492 | return false; | |||
| 18493 | ||||
| 18494 | return true; | |||
| 18495 | } | |||
| 18496 | ||||
| 18497 | /// [class.mem.special]p6: | |||
| 18498 | /// An eligible special member function is a special member function for which: | |||
| 18499 | /// - the function is not deleted, | |||
| 18500 | /// - the associated constraints, if any, are satisfied, and | |||
| 18501 | /// - no special member function of the same kind whose associated constraints | |||
| 18502 | /// [CWG2595], if any, are satisfied is more constrained. | |||
| 18503 | static void SetEligibleMethods(Sema &S, CXXRecordDecl *Record, | |||
| 18504 | ArrayRef<CXXMethodDecl *> Methods, | |||
| 18505 | Sema::CXXSpecialMember CSM) { | |||
| 18506 | SmallVector<bool, 4> SatisfactionStatus; | |||
| 18507 | ||||
| 18508 | for (CXXMethodDecl *Method : Methods) { | |||
| 18509 | const Expr *Constraints = Method->getTrailingRequiresClause(); | |||
| 18510 | if (!Constraints) | |||
| 18511 | SatisfactionStatus.push_back(true); | |||
| 18512 | else { | |||
| 18513 | ConstraintSatisfaction Satisfaction; | |||
| 18514 | if (S.CheckFunctionConstraints(Method, Satisfaction)) | |||
| 18515 | SatisfactionStatus.push_back(false); | |||
| 18516 | else | |||
| 18517 | SatisfactionStatus.push_back(Satisfaction.IsSatisfied); | |||
| 18518 | } | |||
| 18519 | } | |||
| 18520 | ||||
| 18521 | for (size_t i = 0; i < Methods.size(); i++) { | |||
| 18522 | if (!SatisfactionStatus[i]) | |||
| 18523 | continue; | |||
| 18524 | CXXMethodDecl *Method = Methods[i]; | |||
| 18525 | CXXMethodDecl *OrigMethod = Method; | |||
| 18526 | if (FunctionDecl *MF = OrigMethod->getInstantiatedFromMemberFunction()) | |||
| 18527 | OrigMethod = cast<CXXMethodDecl>(MF); | |||
| 18528 | ||||
| 18529 | const Expr *Constraints = OrigMethod->getTrailingRequiresClause(); | |||
| 18530 | bool AnotherMethodIsMoreConstrained = false; | |||
| 18531 | for (size_t j = 0; j < Methods.size(); j++) { | |||
| 18532 | if (i == j || !SatisfactionStatus[j]) | |||
| 18533 | continue; | |||
| 18534 | CXXMethodDecl *OtherMethod = Methods[j]; | |||
| 18535 | if (FunctionDecl *MF = OtherMethod->getInstantiatedFromMemberFunction()) | |||
| 18536 | OtherMethod = cast<CXXMethodDecl>(MF); | |||
| 18537 | ||||
| 18538 | if (!AreSpecialMemberFunctionsSameKind(S.Context, OrigMethod, OtherMethod, | |||
| 18539 | CSM)) | |||
| 18540 | continue; | |||
| 18541 | ||||
| 18542 | const Expr *OtherConstraints = OtherMethod->getTrailingRequiresClause(); | |||
| 18543 | if (!OtherConstraints) | |||
| 18544 | continue; | |||
| 18545 | if (!Constraints) { | |||
| 18546 | AnotherMethodIsMoreConstrained = true; | |||
| 18547 | break; | |||
| 18548 | } | |||
| 18549 | if (S.IsAtLeastAsConstrained(OtherMethod, {OtherConstraints}, OrigMethod, | |||
| 18550 | {Constraints}, | |||
| 18551 | AnotherMethodIsMoreConstrained)) { | |||
| 18552 | // There was an error with the constraints comparison. Exit the loop | |||
| 18553 | // and don't consider this function eligible. | |||
| 18554 | AnotherMethodIsMoreConstrained = true; | |||
| 18555 | } | |||
| 18556 | if (AnotherMethodIsMoreConstrained) | |||
| 18557 | break; | |||
| 18558 | } | |||
| 18559 | // FIXME: Do not consider deleted methods as eligible after implementing | |||
| 18560 | // DR1734 and DR1496. | |||
| 18561 | if (!AnotherMethodIsMoreConstrained) { | |||
| 18562 | Method->setIneligibleOrNotSelected(false); | |||
| 18563 | Record->addedEligibleSpecialMemberFunction(Method, 1 << CSM); | |||
| 18564 | } | |||
| 18565 | } | |||
| 18566 | } | |||
| 18567 | ||||
| 18568 | static void ComputeSpecialMemberFunctionsEligiblity(Sema &S, | |||
| 18569 | CXXRecordDecl *Record) { | |||
| 18570 | SmallVector<CXXMethodDecl *, 4> DefaultConstructors; | |||
| 18571 | SmallVector<CXXMethodDecl *, 4> CopyConstructors; | |||
| 18572 | SmallVector<CXXMethodDecl *, 4> MoveConstructors; | |||
| 18573 | SmallVector<CXXMethodDecl *, 4> CopyAssignmentOperators; | |||
| 18574 | SmallVector<CXXMethodDecl *, 4> MoveAssignmentOperators; | |||
| 18575 | ||||
| 18576 | for (auto *Decl : Record->decls()) { | |||
| 18577 | auto *MD = dyn_cast<CXXMethodDecl>(Decl); | |||
| 18578 | if (!MD) { | |||
| 18579 | auto *FTD = dyn_cast<FunctionTemplateDecl>(Decl); | |||
| 18580 | if (FTD) | |||
| 18581 | MD = dyn_cast<CXXMethodDecl>(FTD->getTemplatedDecl()); | |||
| 18582 | } | |||
| 18583 | if (!MD) | |||
| 18584 | continue; | |||
| 18585 | if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { | |||
| 18586 | if (CD->isInvalidDecl()) | |||
| 18587 | continue; | |||
| 18588 | if (CD->isDefaultConstructor()) | |||
| 18589 | DefaultConstructors.push_back(MD); | |||
| 18590 | else if (CD->isCopyConstructor()) | |||
| 18591 | CopyConstructors.push_back(MD); | |||
| 18592 | else if (CD->isMoveConstructor()) | |||
| 18593 | MoveConstructors.push_back(MD); | |||
| 18594 | } else if (MD->isCopyAssignmentOperator()) { | |||
| 18595 | CopyAssignmentOperators.push_back(MD); | |||
| 18596 | } else if (MD->isMoveAssignmentOperator()) { | |||
| 18597 | MoveAssignmentOperators.push_back(MD); | |||
| 18598 | } | |||
| 18599 | } | |||
| 18600 | ||||
| 18601 | SetEligibleMethods(S, Record, DefaultConstructors, | |||
| 18602 | Sema::CXXDefaultConstructor); | |||
| 18603 | SetEligibleMethods(S, Record, CopyConstructors, Sema::CXXCopyConstructor); | |||
| 18604 | SetEligibleMethods(S, Record, MoveConstructors, Sema::CXXMoveConstructor); | |||
| 18605 | SetEligibleMethods(S, Record, CopyAssignmentOperators, | |||
| 18606 | Sema::CXXCopyAssignment); | |||
| 18607 | SetEligibleMethods(S, Record, MoveAssignmentOperators, | |||
| 18608 | Sema::CXXMoveAssignment); | |||
| 18609 | } | |||
| 18610 | ||||
| 18611 | void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl, | |||
| 18612 | ArrayRef<Decl *> Fields, SourceLocation LBrac, | |||
| 18613 | SourceLocation RBrac, | |||
| 18614 | const ParsedAttributesView &Attrs) { | |||
| 18615 | assert(EnclosingDecl && "missing record or interface decl")(static_cast <bool> (EnclosingDecl && "missing record or interface decl" ) ? void (0) : __assert_fail ("EnclosingDecl && \"missing record or interface decl\"" , "clang/lib/Sema/SemaDecl.cpp", 18615, __extension__ __PRETTY_FUNCTION__ )); | |||
| 18616 | ||||
| 18617 | // If this is an Objective-C @implementation or category and we have | |||
| 18618 | // new fields here we should reset the layout of the interface since | |||
| 18619 | // it will now change. | |||
| 18620 | if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) { | |||
| 18621 | ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl); | |||
| 18622 | switch (DC->getKind()) { | |||
| 18623 | default: break; | |||
| 18624 | case Decl::ObjCCategory: | |||
| 18625 | Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface()); | |||
| 18626 | break; | |||
| 18627 | case Decl::ObjCImplementation: | |||
| 18628 | Context. | |||
| 18629 | ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface()); | |||
| 18630 | break; | |||
| 18631 | } | |||
| 18632 | } | |||
| 18633 | ||||
| 18634 | RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl); | |||
| 18635 | CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl); | |||
| 18636 | ||||
| 18637 | // Start counting up the number of named members; make sure to include | |||
| 18638 | // members of anonymous structs and unions in the total. | |||
| 18639 | unsigned NumNamedMembers = 0; | |||
| 18640 | if (Record) { | |||
| 18641 | for (const auto *I : Record->decls()) { | |||
| 18642 | if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) | |||
| 18643 | if (IFD->getDeclName()) | |||
| 18644 | ++NumNamedMembers; | |||
| 18645 | } | |||
| 18646 | } | |||
| 18647 | ||||
| 18648 | // Verify that all the fields are okay. | |||
| 18649 | SmallVector<FieldDecl*, 32> RecFields; | |||
| 18650 | ||||
| 18651 | for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end(); | |||
| 18652 | i != end; ++i) { | |||
| 18653 | FieldDecl *FD = cast<FieldDecl>(*i); | |||
| 18654 | ||||
| 18655 | // Get the type for the field. | |||
| 18656 | const Type *FDTy = FD->getType().getTypePtr(); | |||
| 18657 | ||||
| 18658 | if (!FD->isAnonymousStructOrUnion()) { | |||
| 18659 | // Remember all fields written by the user. | |||
| 18660 | RecFields.push_back(FD); | |||
| 18661 | } | |||
| 18662 | ||||
| 18663 | // If the field is already invalid for some reason, don't emit more | |||
| 18664 | // diagnostics about it. | |||
| 18665 | if (FD->isInvalidDecl()) { | |||
| 18666 | EnclosingDecl->setInvalidDecl(); | |||
| 18667 | continue; | |||
| 18668 | } | |||
| 18669 | ||||
| 18670 | // C99 6.7.2.1p2: | |||
| 18671 | // A structure or union shall not contain a member with | |||
| 18672 | // incomplete or function type (hence, a structure shall not | |||
| 18673 | // contain an instance of itself, but may contain a pointer to | |||
| 18674 | // an instance of itself), except that the last member of a | |||
| 18675 | // structure with more than one named member may have incomplete | |||
| 18676 | // array type; such a structure (and any union containing, | |||
| 18677 | // possibly recursively, a member that is such a structure) | |||
| 18678 | // shall not be a member of a structure or an element of an | |||
| 18679 | // array. | |||
| 18680 | bool IsLastField = (i + 1 == Fields.end()); | |||
| 18681 | if (FDTy->isFunctionType()) { | |||
| 18682 | // Field declared as a function. | |||
| 18683 | Diag(FD->getLocation(), diag::err_field_declared_as_function) | |||
| 18684 | << FD->getDeclName(); | |||
| 18685 | FD->setInvalidDecl(); | |||
| 18686 | EnclosingDecl->setInvalidDecl(); | |||
| 18687 | continue; | |||
| 18688 | } else if (FDTy->isIncompleteArrayType() && | |||
| 18689 | (Record || isa<ObjCContainerDecl>(EnclosingDecl))) { | |||
| 18690 | if (Record) { | |||
| 18691 | // Flexible array member. | |||
| 18692 | // Microsoft and g++ is more permissive regarding flexible array. | |||
| 18693 | // It will accept flexible array in union and also | |||
| 18694 | // as the sole element of a struct/class. | |||
| 18695 | unsigned DiagID = 0; | |||
| 18696 | if (!Record->isUnion() && !IsLastField) { | |||
| 18697 | Diag(FD->getLocation(), diag::err_flexible_array_not_at_end) | |||
| 18698 | << FD->getDeclName() << FD->getType() << Record->getTagKind(); | |||
| 18699 | Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration); | |||
| 18700 | FD->setInvalidDecl(); | |||
| 18701 | EnclosingDecl->setInvalidDecl(); | |||
| 18702 | continue; | |||
| 18703 | } else if (Record->isUnion()) | |||
| 18704 | DiagID = getLangOpts().MicrosoftExt | |||
| 18705 | ? diag::ext_flexible_array_union_ms | |||
| 18706 | : getLangOpts().CPlusPlus | |||
| 18707 | ? diag::ext_flexible_array_union_gnu | |||
| 18708 | : diag::err_flexible_array_union; | |||
| 18709 | else if (NumNamedMembers < 1) | |||
| 18710 | DiagID = getLangOpts().MicrosoftExt | |||
| 18711 | ? diag::ext_flexible_array_empty_aggregate_ms | |||
| 18712 | : getLangOpts().CPlusPlus | |||
| 18713 | ? diag::ext_flexible_array_empty_aggregate_gnu | |||
| 18714 | : diag::err_flexible_array_empty_aggregate; | |||
| 18715 | ||||
| 18716 | if (DiagID) | |||
| 18717 | Diag(FD->getLocation(), DiagID) << FD->getDeclName() | |||
| 18718 | << Record->getTagKind(); | |||
| 18719 | // While the layout of types that contain virtual bases is not specified | |||
| 18720 | // by the C++ standard, both the Itanium and Microsoft C++ ABIs place | |||
| 18721 | // virtual bases after the derived members. This would make a flexible | |||
| 18722 | // array member declared at the end of an object not adjacent to the end | |||
| 18723 | // of the type. | |||
| 18724 | if (CXXRecord && CXXRecord->getNumVBases() != 0) | |||
| 18725 | Diag(FD->getLocation(), diag::err_flexible_array_virtual_base) | |||
| 18726 | << FD->getDeclName() << Record->getTagKind(); | |||
| 18727 | if (!getLangOpts().C99) | |||
| 18728 | Diag(FD->getLocation(), diag::ext_c99_flexible_array_member) | |||
| 18729 | << FD->getDeclName() << Record->getTagKind(); | |||
| 18730 | ||||
| 18731 | // If the element type has a non-trivial destructor, we would not | |||
| 18732 | // implicitly destroy the elements, so disallow it for now. | |||
| 18733 | // | |||
| 18734 | // FIXME: GCC allows this. We should probably either implicitly delete | |||
| 18735 | // the destructor of the containing class, or just allow this. | |||
| 18736 | QualType BaseElem = Context.getBaseElementType(FD->getType()); | |||
| 18737 | if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) { | |||
| 18738 | Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor) | |||
| 18739 | << FD->getDeclName() << FD->getType(); | |||
| 18740 | FD->setInvalidDecl(); | |||
| 18741 | EnclosingDecl->setInvalidDecl(); | |||
| 18742 | continue; | |||
| 18743 | } | |||
| 18744 | // Okay, we have a legal flexible array member at the end of the struct. | |||
| 18745 | Record->setHasFlexibleArrayMember(true); | |||
| 18746 | } else { | |||
| 18747 | // In ObjCContainerDecl ivars with incomplete array type are accepted, | |||
| 18748 | // unless they are followed by another ivar. That check is done | |||
| 18749 | // elsewhere, after synthesized ivars are known. | |||
| 18750 | } | |||
| 18751 | } else if (!FDTy->isDependentType() && | |||
| 18752 | RequireCompleteSizedType( | |||
| 18753 | FD->getLocation(), FD->getType(), | |||
| 18754 | diag::err_field_incomplete_or_sizeless)) { | |||
| 18755 | // Incomplete type | |||
| 18756 | FD->setInvalidDecl(); | |||
| 18757 | EnclosingDecl->setInvalidDecl(); | |||
| 18758 | continue; | |||
| 18759 | } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) { | |||
| 18760 | if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) { | |||
| 18761 | // A type which contains a flexible array member is considered to be a | |||
| 18762 | // flexible array member. | |||
| 18763 | Record->setHasFlexibleArrayMember(true); | |||
| 18764 | if (!Record->isUnion()) { | |||
| 18765 | // If this is a struct/class and this is not the last element, reject | |||
| 18766 | // it. Note that GCC supports variable sized arrays in the middle of | |||
| 18767 | // structures. | |||
| 18768 | if (!IsLastField) | |||
| 18769 | Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct) | |||
| 18770 | << FD->getDeclName() << FD->getType(); | |||
| 18771 | else { | |||
| 18772 | // We support flexible arrays at the end of structs in | |||
| 18773 | // other structs as an extension. | |||
| 18774 | Diag(FD->getLocation(), diag::ext_flexible_array_in_struct) | |||
| 18775 | << FD->getDeclName(); | |||
| 18776 | } | |||
| 18777 | } | |||
| 18778 | } | |||
| 18779 | if (isa<ObjCContainerDecl>(EnclosingDecl) && | |||
| 18780 | RequireNonAbstractType(FD->getLocation(), FD->getType(), | |||
| 18781 | diag::err_abstract_type_in_decl, | |||
| 18782 | AbstractIvarType)) { | |||
| 18783 | // Ivars can not have abstract class types | |||
| 18784 | FD->setInvalidDecl(); | |||
| 18785 | } | |||
| 18786 | if (Record && FDTTy->getDecl()->hasObjectMember()) | |||
| 18787 | Record->setHasObjectMember(true); | |||
| 18788 | if (Record && FDTTy->getDecl()->hasVolatileMember()) | |||
| 18789 | Record->setHasVolatileMember(true); | |||
| 18790 | } else if (FDTy->isObjCObjectType()) { | |||
| 18791 | /// A field cannot be an Objective-c object | |||
| 18792 | Diag(FD->getLocation(), diag::err_statically_allocated_object) | |||
| 18793 | << FixItHint::CreateInsertion(FD->getLocation(), "*"); | |||
| 18794 | QualType T = Context.getObjCObjectPointerType(FD->getType()); | |||
| 18795 | FD->setType(T); | |||
| 18796 | } else if (Record && Record->isUnion() && | |||
| 18797 | FD->getType().hasNonTrivialObjCLifetime() && | |||
| 18798 | getSourceManager().isInSystemHeader(FD->getLocation()) && | |||
| 18799 | !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>() && | |||
| 18800 | (FD->getType().getObjCLifetime() != Qualifiers::OCL_Strong || | |||
| 18801 | !Context.hasDirectOwnershipQualifier(FD->getType()))) { | |||
| 18802 | // For backward compatibility, fields of C unions declared in system | |||
| 18803 | // headers that have non-trivial ObjC ownership qualifications are marked | |||
| 18804 | // as unavailable unless the qualifier is explicit and __strong. This can | |||
| 18805 | // break ABI compatibility between programs compiled with ARC and MRR, but | |||
| 18806 | // is a better option than rejecting programs using those unions under | |||
| 18807 | // ARC. | |||
| 18808 | FD->addAttr(UnavailableAttr::CreateImplicit( | |||
| 18809 | Context, "", UnavailableAttr::IR_ARCFieldWithOwnership, | |||
| 18810 | FD->getLocation())); | |||
| 18811 | } else if (getLangOpts().ObjC && | |||
| 18812 | getLangOpts().getGC() != LangOptions::NonGC && Record && | |||
| 18813 | !Record->hasObjectMember()) { | |||
| 18814 | if (FD->getType()->isObjCObjectPointerType() || | |||
| 18815 | FD->getType().isObjCGCStrong()) | |||
| 18816 | Record->setHasObjectMember(true); | |||
| 18817 | else if (Context.getAsArrayType(FD->getType())) { | |||
| 18818 | QualType BaseType = Context.getBaseElementType(FD->getType()); | |||
| 18819 | if (BaseType->isRecordType() && | |||
| 18820 | BaseType->castAs<RecordType>()->getDecl()->hasObjectMember()) | |||
| 18821 | Record->setHasObjectMember(true); | |||
| 18822 | else if (BaseType->isObjCObjectPointerType() || | |||
| 18823 | BaseType.isObjCGCStrong()) | |||
| 18824 | Record->setHasObjectMember(true); | |||
| 18825 | } | |||
| 18826 | } | |||
| 18827 | ||||
| 18828 | if (Record && !getLangOpts().CPlusPlus && | |||
| 18829 | !shouldIgnoreForRecordTriviality(FD)) { | |||
| 18830 | QualType FT = FD->getType(); | |||
| 18831 | if (FT.isNonTrivialToPrimitiveDefaultInitialize()) { | |||
| 18832 | Record->setNonTrivialToPrimitiveDefaultInitialize(true); | |||
| 18833 | if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || | |||
| 18834 | Record->isUnion()) | |||
| 18835 | Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true); | |||
| 18836 | } | |||
| 18837 | QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy(); | |||
| 18838 | if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) { | |||
| 18839 | Record->setNonTrivialToPrimitiveCopy(true); | |||
| 18840 | if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion()) | |||
| 18841 | Record->setHasNonTrivialToPrimitiveCopyCUnion(true); | |||
| 18842 | } | |||
| 18843 | if (FT.isDestructedType()) { | |||
| 18844 | Record->setNonTrivialToPrimitiveDestroy(true); | |||
| 18845 | Record->setParamDestroyedInCallee(true); | |||
| 18846 | if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion()) | |||
| 18847 | Record->setHasNonTrivialToPrimitiveDestructCUnion(true); | |||
| 18848 | } | |||
| 18849 | ||||
| 18850 | if (const auto *RT = FT->getAs<RecordType>()) { | |||
| 18851 | if (RT->getDecl()->getArgPassingRestrictions() == | |||
| 18852 | RecordDecl::APK_CanNeverPassInRegs) | |||
| 18853 | Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); | |||
| 18854 | } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak) | |||
| 18855 | Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); | |||
| 18856 | } | |||
| 18857 | ||||
| 18858 | if (Record && FD->getType().isVolatileQualified()) | |||
| 18859 | Record->setHasVolatileMember(true); | |||
| 18860 | // Keep track of the number of named members. | |||
| 18861 | if (FD->getIdentifier()) | |||
| 18862 | ++NumNamedMembers; | |||
| 18863 | } | |||
| 18864 | ||||
| 18865 | // Okay, we successfully defined 'Record'. | |||
| 18866 | if (Record) { | |||
| 18867 | bool Completed = false; | |||
| 18868 | if (CXXRecord) { | |||
| 18869 | if (!CXXRecord->isInvalidDecl()) { | |||
| 18870 | // Set access bits correctly on the directly-declared conversions. | |||
| 18871 | for (CXXRecordDecl::conversion_iterator | |||
| 18872 | I = CXXRecord->conversion_begin(), | |||
| 18873 | E = CXXRecord->conversion_end(); I != E; ++I) | |||
| 18874 | I.setAccess((*I)->getAccess()); | |||
| 18875 | } | |||
| 18876 | ||||
| 18877 | // Add any implicitly-declared members to this class. | |||
| 18878 | AddImplicitlyDeclaredMembersToClass(CXXRecord); | |||
| 18879 | ||||
| 18880 | if (!CXXRecord->isDependentType()) { | |||
| 18881 | if (!CXXRecord->isInvalidDecl()) { | |||
| 18882 | // If we have virtual base classes, we may end up finding multiple | |||
| 18883 | // final overriders for a given virtual function. Check for this | |||
| 18884 | // problem now. | |||
| 18885 | if (CXXRecord->getNumVBases()) { | |||
| 18886 | CXXFinalOverriderMap FinalOverriders; | |||
| 18887 | CXXRecord->getFinalOverriders(FinalOverriders); | |||
| 18888 | ||||
| 18889 | for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), | |||
| 18890 | MEnd = FinalOverriders.end(); | |||
| 18891 | M != MEnd; ++M) { | |||
| 18892 | for (OverridingMethods::iterator SO = M->second.begin(), | |||
| 18893 | SOEnd = M->second.end(); | |||
| 18894 | SO != SOEnd; ++SO) { | |||
| 18895 | assert(SO->second.size() > 0 &&(static_cast <bool> (SO->second.size() > 0 && "Virtual function without overriding functions?") ? void (0) : __assert_fail ("SO->second.size() > 0 && \"Virtual function without overriding functions?\"" , "clang/lib/Sema/SemaDecl.cpp", 18896, __extension__ __PRETTY_FUNCTION__ )) | |||
| 18896 | "Virtual function without overriding functions?")(static_cast <bool> (SO->second.size() > 0 && "Virtual function without overriding functions?") ? void (0) : __assert_fail ("SO->second.size() > 0 && \"Virtual function without overriding functions?\"" , "clang/lib/Sema/SemaDecl.cpp", 18896, __extension__ __PRETTY_FUNCTION__ )); | |||
| 18897 | if (SO->second.size() == 1) | |||
| 18898 | continue; | |||
| 18899 | ||||
| 18900 | // C++ [class.virtual]p2: | |||
| 18901 | // In a derived class, if a virtual member function of a base | |||
| 18902 | // class subobject has more than one final overrider the | |||
| 18903 | // program is ill-formed. | |||
| 18904 | Diag(Record->getLocation(), diag::err_multiple_final_overriders) | |||
| 18905 | << (const NamedDecl *)M->first << Record; | |||
| 18906 | Diag(M->first->getLocation(), | |||
| 18907 | diag::note_overridden_virtual_function); | |||
| 18908 | for (OverridingMethods::overriding_iterator | |||
| 18909 | OM = SO->second.begin(), | |||
| 18910 | OMEnd = SO->second.end(); | |||
| 18911 | OM != OMEnd; ++OM) | |||
| 18912 | Diag(OM->Method->getLocation(), diag::note_final_overrider) | |||
| 18913 | << (const NamedDecl *)M->first << OM->Method->getParent(); | |||
| 18914 | ||||
| 18915 | Record->setInvalidDecl(); | |||
| 18916 | } | |||
| 18917 | } | |||
| 18918 | CXXRecord->completeDefinition(&FinalOverriders); | |||
| 18919 | Completed = true; | |||
| 18920 | } | |||
| 18921 | } | |||
| 18922 | ComputeSelectedDestructor(*this, CXXRecord); | |||
| 18923 | ComputeSpecialMemberFunctionsEligiblity(*this, CXXRecord); | |||
| 18924 | } | |||
| 18925 | } | |||
| 18926 | ||||
| 18927 | if (!Completed) | |||
| 18928 | Record->completeDefinition(); | |||
| 18929 | ||||
| 18930 | // Handle attributes before checking the layout. | |||
| 18931 | ProcessDeclAttributeList(S, Record, Attrs); | |||
| 18932 | ||||
| 18933 | // Check to see if a FieldDecl is a pointer to a function. | |||
| 18934 | auto IsFunctionPointerOrForwardDecl = [&](const Decl *D) { | |||
| 18935 | const FieldDecl *FD = dyn_cast<FieldDecl>(D); | |||
| 18936 | if (!FD) { | |||
| 18937 | // Check whether this is a forward declaration that was inserted by | |||
| 18938 | // Clang. This happens when a non-forward declared / defined type is | |||
| 18939 | // used, e.g.: | |||
| 18940 | // | |||
| 18941 | // struct foo { | |||
| 18942 | // struct bar *(*f)(); | |||
| 18943 | // struct bar *(*g)(); | |||
| 18944 | // }; | |||
| 18945 | // | |||
| 18946 | // "struct bar" shows up in the decl AST as a "RecordDecl" with an | |||
| 18947 | // incomplete definition. | |||
| 18948 | if (const auto *TD = dyn_cast<TagDecl>(D)) | |||
| 18949 | return !TD->isCompleteDefinition(); | |||
| 18950 | return false; | |||
| 18951 | } | |||
| 18952 | QualType FieldType = FD->getType().getDesugaredType(Context); | |||
| 18953 | if (isa<PointerType>(FieldType)) { | |||
| 18954 | QualType PointeeType = cast<PointerType>(FieldType)->getPointeeType(); | |||
| 18955 | return PointeeType.getDesugaredType(Context)->isFunctionType(); | |||
| 18956 | } | |||
| 18957 | return false; | |||
| 18958 | }; | |||
| 18959 | ||||
| 18960 | // Maybe randomize the record's decls. We automatically randomize a record | |||
| 18961 | // of function pointers, unless it has the "no_randomize_layout" attribute. | |||
| 18962 | if (!getLangOpts().CPlusPlus && | |||
| 18963 | (Record->hasAttr<RandomizeLayoutAttr>() || | |||
| 18964 | (!Record->hasAttr<NoRandomizeLayoutAttr>() && | |||
| 18965 | llvm::all_of(Record->decls(), IsFunctionPointerOrForwardDecl))) && | |||
| 18966 | !Record->isUnion() && !getLangOpts().RandstructSeed.empty() && | |||
| 18967 | !Record->isRandomized()) { | |||
| 18968 | SmallVector<Decl *, 32> NewDeclOrdering; | |||
| 18969 | if (randstruct::randomizeStructureLayout(Context, Record, | |||
| 18970 | NewDeclOrdering)) | |||
| 18971 | Record->reorderDecls(NewDeclOrdering); | |||
| 18972 | } | |||
| 18973 | ||||
| 18974 | // We may have deferred checking for a deleted destructor. Check now. | |||
| 18975 | if (CXXRecord) { | |||
| 18976 | auto *Dtor = CXXRecord->getDestructor(); | |||
| 18977 | if (Dtor && Dtor->isImplicit() && | |||
| 18978 | ShouldDeleteSpecialMember(Dtor, CXXDestructor)) { | |||
| 18979 | CXXRecord->setImplicitDestructorIsDeleted(); | |||
| 18980 | SetDeclDeleted(Dtor, CXXRecord->getLocation()); | |||
| 18981 | } | |||
| 18982 | } | |||
| 18983 | ||||
| 18984 | if (Record->hasAttrs()) { | |||
| 18985 | CheckAlignasUnderalignment(Record); | |||
| 18986 | ||||
| 18987 | if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>()) | |||
| 18988 | checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record), | |||
| 18989 | IA->getRange(), IA->getBestCase(), | |||
| 18990 | IA->getInheritanceModel()); | |||
| 18991 | } | |||
| 18992 | ||||
| 18993 | // Check if the structure/union declaration is a type that can have zero | |||
| 18994 | // size in C. For C this is a language extension, for C++ it may cause | |||
| 18995 | // compatibility problems. | |||
| 18996 | bool CheckForZeroSize; | |||
| 18997 | if (!getLangOpts().CPlusPlus) { | |||
| 18998 | CheckForZeroSize = true; | |||
| 18999 | } else { | |||
| 19000 | // For C++ filter out types that cannot be referenced in C code. | |||
| 19001 | CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record); | |||
| 19002 | CheckForZeroSize = | |||
| 19003 | CXXRecord->getLexicalDeclContext()->isExternCContext() && | |||
| 19004 | !CXXRecord->isDependentType() && !inTemplateInstantiation() && | |||
| 19005 | CXXRecord->isCLike(); | |||
| 19006 | } | |||
| 19007 | if (CheckForZeroSize) { | |||
| 19008 | bool ZeroSize = true; | |||
| 19009 | bool IsEmpty = true; | |||
| 19010 | unsigned NonBitFields = 0; | |||
| 19011 | for (RecordDecl::field_iterator I = Record->field_begin(), | |||
| 19012 | E = Record->field_end(); | |||
| 19013 | (NonBitFields == 0 || ZeroSize) && I != E; ++I) { | |||
| 19014 | IsEmpty = false; | |||
| 19015 | if (I->isUnnamedBitfield()) { | |||
| 19016 | if (!I->isZeroLengthBitField(Context)) | |||
| 19017 | ZeroSize = false; | |||
| 19018 | } else { | |||
| 19019 | ++NonBitFields; | |||
| 19020 | QualType FieldType = I->getType(); | |||
| 19021 | if (FieldType->isIncompleteType() || | |||
| 19022 | !Context.getTypeSizeInChars(FieldType).isZero()) | |||
| 19023 | ZeroSize = false; | |||
| 19024 | } | |||
| 19025 | } | |||
| 19026 | ||||
| 19027 | // Empty structs are an extension in C (C99 6.7.2.1p7). They are | |||
| 19028 | // allowed in C++, but warn if its declaration is inside | |||
| 19029 | // extern "C" block. | |||
| 19030 | if (ZeroSize) { | |||
| 19031 | Diag(RecLoc, getLangOpts().CPlusPlus ? | |||
| 19032 | diag::warn_zero_size_struct_union_in_extern_c : | |||
| 19033 | diag::warn_zero_size_struct_union_compat) | |||
| 19034 | << IsEmpty << Record->isUnion() << (NonBitFields > 1); | |||
| 19035 | } | |||
| 19036 | ||||
| 19037 | // Structs without named members are extension in C (C99 6.7.2.1p7), | |||
| 19038 | // but are accepted by GCC. | |||
| 19039 | if (NonBitFields == 0 && !getLangOpts().CPlusPlus) { | |||
| 19040 | Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union : | |||
| 19041 | diag::ext_no_named_members_in_struct_union) | |||
| 19042 | << Record->isUnion(); | |||
| 19043 | } | |||
| 19044 | } | |||
| 19045 | } else { | |||
| 19046 | ObjCIvarDecl **ClsFields = | |||
| 19047 | reinterpret_cast<ObjCIvarDecl**>(RecFields.data()); | |||
| 19048 | if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) { | |||
| 19049 | ID->setEndOfDefinitionLoc(RBrac); | |||
| 19050 | // Add ivar's to class's DeclContext. | |||
| 19051 | for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { | |||
| 19052 | ClsFields[i]->setLexicalDeclContext(ID); | |||
| 19053 | ID->addDecl(ClsFields[i]); | |||
| 19054 | } | |||
| 19055 | // Must enforce the rule that ivars in the base classes may not be | |||
| 19056 | // duplicates. | |||
| 19057 | if (ID->getSuperClass()) | |||
| 19058 | DiagnoseDuplicateIvars(ID, ID->getSuperClass()); | |||
| 19059 | } else if (ObjCImplementationDecl *IMPDecl = | |||
| 19060 | dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { | |||
| 19061 | assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl")(static_cast <bool> (IMPDecl && "ActOnFields - missing ObjCImplementationDecl" ) ? void (0) : __assert_fail ("IMPDecl && \"ActOnFields - missing ObjCImplementationDecl\"" , "clang/lib/Sema/SemaDecl.cpp", 19061, __extension__ __PRETTY_FUNCTION__ )); | |||
| 19062 | for (unsigned I = 0, N = RecFields.size(); I != N; ++I) | |||
| 19063 | // Ivar declared in @implementation never belongs to the implementation. | |||
| 19064 | // Only it is in implementation's lexical context. | |||
| 19065 | ClsFields[I]->setLexicalDeclContext(IMPDecl); | |||
| 19066 | CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac); | |||
| 19067 | IMPDecl->setIvarLBraceLoc(LBrac); | |||
| 19068 | IMPDecl->setIvarRBraceLoc(RBrac); | |||
| 19069 | } else if (ObjCCategoryDecl *CDecl = | |||
| 19070 | dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { | |||
| 19071 | // case of ivars in class extension; all other cases have been | |||
| 19072 | // reported as errors elsewhere. | |||
| 19073 | // FIXME. Class extension does not have a LocEnd field. | |||
| 19074 | // CDecl->setLocEnd(RBrac); | |||
| 19075 | // Add ivar's to class extension's DeclContext. | |||
| 19076 | // Diagnose redeclaration of private ivars. | |||
| 19077 | ObjCInterfaceDecl *IDecl = CDecl->getClassInterface(); | |||
| 19078 | for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { | |||
| 19079 | if (IDecl) { | |||
| 19080 | if (const ObjCIvarDecl *ClsIvar = | |||
| 19081 | IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) { | |||
| 19082 | Diag(ClsFields[i]->getLocation(), | |||
| 19083 | diag::err_duplicate_ivar_declaration); | |||
| 19084 | Diag(ClsIvar->getLocation(), diag::note_previous_definition); | |||
| 19085 | continue; | |||
| 19086 | } | |||
| 19087 | for (const auto *Ext : IDecl->known_extensions()) { | |||
| 19088 | if (const ObjCIvarDecl *ClsExtIvar | |||
| 19089 | = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) { | |||
| 19090 | Diag(ClsFields[i]->getLocation(), | |||
| 19091 | diag::err_duplicate_ivar_declaration); | |||
| 19092 | Diag(ClsExtIvar->getLocation(), diag::note_previous_definition); | |||
| 19093 | continue; | |||
| 19094 | } | |||
| 19095 | } | |||
| 19096 | } | |||
| 19097 | ClsFields[i]->setLexicalDeclContext(CDecl); | |||
| 19098 | CDecl->addDecl(ClsFields[i]); | |||
| 19099 | } | |||
| 19100 | CDecl->setIvarLBraceLoc(LBrac); | |||
| 19101 | CDecl->setIvarRBraceLoc(RBrac); | |||
| 19102 | } | |||
| 19103 | } | |||
| 19104 | } | |||
| 19105 | ||||
| 19106 | /// Determine whether the given integral value is representable within | |||
| 19107 | /// the given type T. | |||
| 19108 | static bool isRepresentableIntegerValue(ASTContext &Context, | |||
| 19109 | llvm::APSInt &Value, | |||
| 19110 | QualType T) { | |||
| 19111 | assert((T->isIntegralType(Context) || T->isEnumeralType()) &&(static_cast <bool> ((T->isIntegralType(Context) || T ->isEnumeralType()) && "Integral type required!") ? void (0) : __assert_fail ("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\"" , "clang/lib/Sema/SemaDecl.cpp", 19112, __extension__ __PRETTY_FUNCTION__ )) | |||
| 19112 | "Integral type required!")(static_cast <bool> ((T->isIntegralType(Context) || T ->isEnumeralType()) && "Integral type required!") ? void (0) : __assert_fail ("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\"" , "clang/lib/Sema/SemaDecl.cpp", 19112, __extension__ __PRETTY_FUNCTION__ )); | |||
| 19113 | unsigned BitWidth = Context.getIntWidth(T); | |||
| 19114 | ||||
| 19115 | if (Value.isUnsigned() || Value.isNonNegative()) { | |||
| 19116 | if (T->isSignedIntegerOrEnumerationType()) | |||
| 19117 | --BitWidth; | |||
| 19118 | return Value.getActiveBits() <= BitWidth; | |||
| 19119 | } | |||
| 19120 | return Value.getSignificantBits() <= BitWidth; | |||
| 19121 | } | |||
| 19122 | ||||
| 19123 | // Given an integral type, return the next larger integral type | |||
| 19124 | // (or a NULL type of no such type exists). | |||
| 19125 | static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) { | |||
| 19126 | // FIXME: Int128/UInt128 support, which also needs to be introduced into | |||
| 19127 | // enum checking below. | |||
| 19128 | assert((T->isIntegralType(Context) ||(static_cast <bool> ((T->isIntegralType(Context) || T ->isEnumeralType()) && "Integral type required!") ? void (0) : __assert_fail ("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\"" , "clang/lib/Sema/SemaDecl.cpp", 19129, __extension__ __PRETTY_FUNCTION__ )) | |||
| 19129 | T->isEnumeralType()) && "Integral type required!")(static_cast <bool> ((T->isIntegralType(Context) || T ->isEnumeralType()) && "Integral type required!") ? void (0) : __assert_fail ("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\"" , "clang/lib/Sema/SemaDecl.cpp", 19129, __extension__ __PRETTY_FUNCTION__ )); | |||
| 19130 | const unsigned NumTypes = 4; | |||
| 19131 | QualType SignedIntegralTypes[NumTypes] = { | |||
| 19132 | Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy | |||
| 19133 | }; | |||
| 19134 | QualType UnsignedIntegralTypes[NumTypes] = { | |||
| 19135 | Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy, | |||
| 19136 | Context.UnsignedLongLongTy | |||
| 19137 | }; | |||
| 19138 | ||||
| 19139 | unsigned BitWidth = Context.getTypeSize(T); | |||
| 19140 | QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes | |||
| 19141 | : UnsignedIntegralTypes; | |||
| 19142 | for (unsigned I = 0; I != NumTypes; ++I) | |||
| 19143 | if (Context.getTypeSize(Types[I]) > BitWidth) | |||
| 19144 | return Types[I]; | |||
| 19145 | ||||
| 19146 | return QualType(); | |||
| 19147 | } | |||
| 19148 | ||||
| 19149 | EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum, | |||
| 19150 | EnumConstantDecl *LastEnumConst, | |||
| 19151 | SourceLocation IdLoc, | |||
| 19152 | IdentifierInfo *Id, | |||
| 19153 | Expr *Val) { | |||
| 19154 | unsigned IntWidth = Context.getTargetInfo().getIntWidth(); | |||
| 19155 | llvm::APSInt EnumVal(IntWidth); | |||
| 19156 | QualType EltTy; | |||
| 19157 | ||||
| 19158 | if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue)) | |||
| 19159 | Val = nullptr; | |||
| 19160 | ||||
| 19161 | if (Val) | |||
| 19162 | Val = DefaultLvalueConversion(Val).get(); | |||
| 19163 | ||||
| 19164 | if (Val) { | |||
| 19165 | if (Enum->isDependentType() || Val->isTypeDependent() || | |||
| 19166 | Val->containsErrors()) | |||
| 19167 | EltTy = Context.DependentTy; | |||
| 19168 | else { | |||
| 19169 | // FIXME: We don't allow folding in C++11 mode for an enum with a fixed | |||
| 19170 | // underlying type, but do allow it in all other contexts. | |||
| 19171 | if (getLangOpts().CPlusPlus11 && Enum->isFixed()) { | |||
| 19172 | // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the | |||
| 19173 | // constant-expression in the enumerator-definition shall be a converted | |||
| 19174 | // constant expression of the underlying type. | |||
| 19175 | EltTy = Enum->getIntegerType(); | |||
| 19176 | ExprResult Converted = | |||
| 19177 | CheckConvertedConstantExpression(Val, EltTy, EnumVal, | |||
| 19178 | CCEK_Enumerator); | |||
| 19179 | if (Converted.isInvalid()) | |||
| 19180 | Val = nullptr; | |||
| 19181 | else | |||
| 19182 | Val = Converted.get(); | |||
| 19183 | } else if (!Val->isValueDependent() && | |||
| 19184 | !(Val = | |||
| 19185 | VerifyIntegerConstantExpression(Val, &EnumVal, AllowFold) | |||
| 19186 | .get())) { | |||
| 19187 | // C99 6.7.2.2p2: Make sure we have an integer constant expression. | |||
| 19188 | } else { | |||
| 19189 | if (Enum->isComplete()) { | |||
| 19190 | EltTy = Enum->getIntegerType(); | |||
| 19191 | ||||
| 19192 | // In Obj-C and Microsoft mode, require the enumeration value to be | |||
| 19193 | // representable in the underlying type of the enumeration. In C++11, | |||
| 19194 | // we perform a non-narrowing conversion as part of converted constant | |||
| 19195 | // expression checking. | |||
| 19196 | if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) { | |||
| 19197 | if (Context.getTargetInfo() | |||
| 19198 | .getTriple() | |||
| 19199 | .isWindowsMSVCEnvironment()) { | |||
| 19200 | Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy; | |||
| 19201 | } else { | |||
| 19202 | Diag(IdLoc, diag::err_enumerator_too_large) << EltTy; | |||
| 19203 | } | |||
| 19204 | } | |||
| 19205 | ||||
| 19206 | // Cast to the underlying type. | |||
| 19207 | Val = ImpCastExprToType(Val, EltTy, | |||
| 19208 | EltTy->isBooleanType() ? CK_IntegralToBoolean | |||
| 19209 | : CK_IntegralCast) | |||
| 19210 | .get(); | |||
| 19211 | } else if (getLangOpts().CPlusPlus) { | |||
| 19212 | // C++11 [dcl.enum]p5: | |||
| 19213 | // If the underlying type is not fixed, the type of each enumerator | |||
| 19214 | // is the type of its initializing value: | |||
| 19215 | // - If an initializer is specified for an enumerator, the | |||
| 19216 | // initializing value has the same type as the expression. | |||
| 19217 | EltTy = Val->getType(); | |||
| 19218 | } else { | |||
| 19219 | // C99 6.7.2.2p2: | |||
| 19220 | // The expression that defines the value of an enumeration constant | |||
| 19221 | // shall be an integer constant expression that has a value | |||
| 19222 | // representable as an int. | |||
| 19223 | ||||
| 19224 | // Complain if the value is not representable in an int. | |||
| 19225 | if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy)) | |||
| 19226 | Diag(IdLoc, diag::ext_enum_value_not_int) | |||
| 19227 | << toString(EnumVal, 10) << Val->getSourceRange() | |||
| 19228 | << (EnumVal.isUnsigned() || EnumVal.isNonNegative()); | |||
| 19229 | else if (!Context.hasSameType(Val->getType(), Context.IntTy)) { | |||
| 19230 | // Force the type of the expression to 'int'. | |||
| 19231 | Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get(); | |||
| 19232 | } | |||
| 19233 | EltTy = Val->getType(); | |||
| 19234 | } | |||
| 19235 | } | |||
| 19236 | } | |||
| 19237 | } | |||
| 19238 | ||||
| 19239 | if (!Val) { | |||
| 19240 | if (Enum->isDependentType()) | |||
| 19241 | EltTy = Context.DependentTy; | |||
| 19242 | else if (!LastEnumConst) { | |||
| 19243 | // C++0x [dcl.enum]p5: | |||
| 19244 | // If the underlying type is not fixed, the type of each enumerator | |||
| 19245 | // is the type of its initializing value: | |||
| 19246 | // - If no initializer is specified for the first enumerator, the | |||
| 19247 | // initializing value has an unspecified integral type. | |||
| 19248 | // | |||
| 19249 | // GCC uses 'int' for its unspecified integral type, as does | |||
| 19250 | // C99 6.7.2.2p3. | |||
| 19251 | if (Enum->isFixed()) { | |||
| 19252 | EltTy = Enum->getIntegerType(); | |||
| 19253 | } | |||
| 19254 | else { | |||
| 19255 | EltTy = Context.IntTy; | |||
| 19256 | } | |||
| 19257 | } else { | |||
| 19258 | // Assign the last value + 1. | |||
| 19259 | EnumVal = LastEnumConst->getInitVal(); | |||
| 19260 | ++EnumVal; | |||
| 19261 | EltTy = LastEnumConst->getType(); | |||
| 19262 | ||||
| 19263 | // Check for overflow on increment. | |||
| 19264 | if (EnumVal < LastEnumConst->getInitVal()) { | |||
| 19265 | // C++0x [dcl.enum]p5: | |||
| 19266 | // If the underlying type is not fixed, the type of each enumerator | |||
| 19267 | // is the type of its initializing value: | |||
| 19268 | // | |||
| 19269 | // - Otherwise the type of the initializing value is the same as | |||
| 19270 | // the type of the initializing value of the preceding enumerator | |||
| 19271 | // unless the incremented value is not representable in that type, | |||
| 19272 | // in which case the type is an unspecified integral type | |||
| 19273 | // sufficient to contain the incremented value. If no such type | |||
| 19274 | // exists, the program is ill-formed. | |||
| 19275 | QualType T = getNextLargerIntegralType(Context, EltTy); | |||
| 19276 | if (T.isNull() || Enum->isFixed()) { | |||
| 19277 | // There is no integral type larger enough to represent this | |||
| 19278 | // value. Complain, then allow the value to wrap around. | |||
| 19279 | EnumVal = LastEnumConst->getInitVal(); | |||
| 19280 | EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2); | |||
| 19281 | ++EnumVal; | |||
| 19282 | if (Enum->isFixed()) | |||
| 19283 | // When the underlying type is fixed, this is ill-formed. | |||
| 19284 | Diag(IdLoc, diag::err_enumerator_wrapped) | |||
| 19285 | << toString(EnumVal, 10) | |||
| 19286 | << EltTy; | |||
| 19287 | else | |||
| 19288 | Diag(IdLoc, diag::ext_enumerator_increment_too_large) | |||
| 19289 | << toString(EnumVal, 10); | |||
| 19290 | } else { | |||
| 19291 | EltTy = T; | |||
| 19292 | } | |||
| 19293 | ||||
| 19294 | // Retrieve the last enumerator's value, extent that type to the | |||
| 19295 | // type that is supposed to be large enough to represent the incremented | |||
| 19296 | // value, then increment. | |||
| 19297 | EnumVal = LastEnumConst->getInitVal(); | |||
| 19298 | EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); | |||
| 19299 | EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy)); | |||
| 19300 | ++EnumVal; | |||
| 19301 | ||||
| 19302 | // If we're not in C++, diagnose the overflow of enumerator values, | |||
| 19303 | // which in C99 means that the enumerator value is not representable in | |||
| 19304 | // an int (C99 6.7.2.2p2). However, we support GCC's extension that | |||
| 19305 | // permits enumerator values that are representable in some larger | |||
| 19306 | // integral type. | |||
| 19307 | if (!getLangOpts().CPlusPlus && !T.isNull()) | |||
| 19308 | Diag(IdLoc, diag::warn_enum_value_overflow); | |||
| 19309 | } else if (!getLangOpts().CPlusPlus && | |||
| 19310 | !isRepresentableIntegerValue(Context, EnumVal, EltTy)) { | |||
| 19311 | // Enforce C99 6.7.2.2p2 even when we compute the next value. | |||
| 19312 | Diag(IdLoc, diag::ext_enum_value_not_int) | |||
| 19313 | << toString(EnumVal, 10) << 1; | |||
| 19314 | } | |||
| 19315 | } | |||
| 19316 | } | |||
| 19317 | ||||
| 19318 | if (!EltTy->isDependentType()) { | |||
| 19319 | // Make the enumerator value match the signedness and size of the | |||
| 19320 | // enumerator's type. | |||
| 19321 | EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy)); | |||
| 19322 | EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); | |||
| 19323 | } | |||
| 19324 | ||||
| 19325 | return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy, | |||
| 19326 | Val, EnumVal); | |||
| 19327 | } | |||
| 19328 | ||||
| 19329 | Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II, | |||
| 19330 | SourceLocation IILoc) { | |||
| 19331 | if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) || | |||
| 19332 | !getLangOpts().CPlusPlus) | |||
| 19333 | return SkipBodyInfo(); | |||
| 19334 | ||||
| 19335 | // We have an anonymous enum definition. Look up the first enumerator to | |||
| 19336 | // determine if we should merge the definition with an existing one and | |||
| 19337 | // skip the body. | |||
| 19338 | NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName, | |||
| 19339 | forRedeclarationInCurContext()); | |||
| 19340 | auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl); | |||
| 19341 | if (!PrevECD) | |||
| 19342 | return SkipBodyInfo(); | |||
| 19343 | ||||
| 19344 | EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext()); | |||
| 19345 | NamedDecl *Hidden; | |||
| 19346 | if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) { | |||
| 19347 | SkipBodyInfo Skip; | |||
| 19348 | Skip.Previous = Hidden; | |||
| 19349 | return Skip; | |||
| 19350 | } | |||
| 19351 | ||||
| 19352 | return SkipBodyInfo(); | |||
| 19353 | } | |||
| 19354 | ||||
| 19355 | Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst, | |||
| 19356 | SourceLocation IdLoc, IdentifierInfo *Id, | |||
| 19357 | const ParsedAttributesView &Attrs, | |||
| 19358 | SourceLocation EqualLoc, Expr *Val) { | |||
| 19359 | EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl); | |||
| 19360 | EnumConstantDecl *LastEnumConst = | |||
| 19361 | cast_or_null<EnumConstantDecl>(lastEnumConst); | |||
| 19362 | ||||
| 19363 | // The scope passed in may not be a decl scope. Zip up the scope tree until | |||
| 19364 | // we find one that is. | |||
| 19365 | S = getNonFieldDeclScope(S); | |||
| 19366 | ||||
| 19367 | // Verify that there isn't already something declared with this name in this | |||
| 19368 | // scope. | |||
| 19369 | LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration); | |||
| 19370 | LookupName(R, S); | |||
| 19371 | NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>(); | |||
| 19372 | ||||
| 19373 | if (PrevDecl && PrevDecl->isTemplateParameter()) { | |||
| 19374 | // Maybe we will complain about the shadowed template parameter. | |||
| 19375 | DiagnoseTemplateParameterShadow(IdLoc, PrevDecl); | |||
| 19376 | // Just pretend that we didn't see the previous declaration. | |||
| 19377 | PrevDecl = nullptr; | |||
| 19378 | } | |||
| 19379 | ||||
| 19380 | // C++ [class.mem]p15: | |||
| 19381 | // If T is the name of a class, then each of the following shall have a name | |||
| 19382 | // different from T: | |||
| 19383 | // - every enumerator of every member of class T that is an unscoped | |||
| 19384 | // enumerated type | |||
| 19385 | if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped()) | |||
| 19386 | DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(), | |||
| 19387 | DeclarationNameInfo(Id, IdLoc)); | |||
| 19388 | ||||
| 19389 | EnumConstantDecl *New = | |||
| 19390 | CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val); | |||
| 19391 | if (!New) | |||
| 19392 | return nullptr; | |||
| 19393 | ||||
| 19394 | if (PrevDecl) { | |||
| 19395 | if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) { | |||
| 19396 | // Check for other kinds of shadowing not already handled. | |||
| 19397 | CheckShadow(New, PrevDecl, R); | |||
| 19398 | } | |||
| 19399 | ||||
| 19400 | // When in C++, we may get a TagDecl with the same name; in this case the | |||
| 19401 | // enum constant will 'hide' the tag. | |||
| 19402 | assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&(static_cast <bool> ((getLangOpts().CPlusPlus || !isa< TagDecl>(PrevDecl)) && "Received TagDecl when not in C++!" ) ? void (0) : __assert_fail ("(getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) && \"Received TagDecl when not in C++!\"" , "clang/lib/Sema/SemaDecl.cpp", 19403, __extension__ __PRETTY_FUNCTION__ )) | |||
| 19403 | "Received TagDecl when not in C++!")(static_cast <bool> ((getLangOpts().CPlusPlus || !isa< TagDecl>(PrevDecl)) && "Received TagDecl when not in C++!" ) ? void (0) : __assert_fail ("(getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) && \"Received TagDecl when not in C++!\"" , "clang/lib/Sema/SemaDecl.cpp", 19403, __extension__ __PRETTY_FUNCTION__ )); | |||
| 19404 | if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) { | |||
| 19405 | if (isa<EnumConstantDecl>(PrevDecl)) | |||
| 19406 | Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id; | |||
| 19407 | else | |||
| 19408 | Diag(IdLoc, diag::err_redefinition) << Id; | |||
| 19409 | notePreviousDefinition(PrevDecl, IdLoc); | |||
| 19410 | return nullptr; | |||
| 19411 | } | |||
| 19412 | } | |||
| 19413 | ||||
| 19414 | // Process attributes. | |||
| 19415 | ProcessDeclAttributeList(S, New, Attrs); | |||
| 19416 | AddPragmaAttributes(S, New); | |||
| 19417 | ||||
| 19418 | // Register this decl in the current scope stack. | |||
| 19419 | New->setAccess(TheEnumDecl->getAccess()); | |||
| 19420 | PushOnScopeChains(New, S); | |||
| 19421 | ||||
| 19422 | ActOnDocumentableDecl(New); | |||
| 19423 | ||||
| 19424 | return New; | |||
| 19425 | } | |||
| 19426 | ||||
| 19427 | // Returns true when the enum initial expression does not trigger the | |||
| 19428 | // duplicate enum warning. A few common cases are exempted as follows: | |||
| 19429 | // Element2 = Element1 | |||
| 19430 | // Element2 = Element1 + 1 | |||
| 19431 | // Element2 = Element1 - 1 | |||
| 19432 | // Where Element2 and Element1 are from the same enum. | |||
| 19433 | static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) { | |||
| 19434 | Expr *InitExpr = ECD->getInitExpr(); | |||
| 19435 | if (!InitExpr) | |||
| 19436 | return true; | |||
| 19437 | InitExpr = InitExpr->IgnoreImpCasts(); | |||
| 19438 | ||||
| 19439 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) { | |||
| 19440 | if (!BO->isAdditiveOp()) | |||
| 19441 | return true; | |||
| 19442 | IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS()); | |||
| 19443 | if (!IL) | |||
| 19444 | return true; | |||
| 19445 | if (IL->getValue() != 1) | |||
| 19446 | return true; | |||
| 19447 | ||||
| 19448 | InitExpr = BO->getLHS(); | |||
| 19449 | } | |||
| 19450 | ||||
| 19451 | // This checks if the elements are from the same enum. | |||
| 19452 | DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr); | |||
| 19453 | if (!DRE) | |||
| 19454 | return true; | |||
| 19455 | ||||
| 19456 | EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl()); | |||
| 19457 | if (!EnumConstant) | |||
| 19458 | return true; | |||
| 19459 | ||||
| 19460 | if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) != | |||
| 19461 | Enum) | |||
| 19462 | return true; | |||
| 19463 | ||||
| 19464 | return false; | |||
| 19465 | } | |||
| 19466 | ||||
| 19467 | // Emits a warning when an element is implicitly set a value that | |||
| 19468 | // a previous element has already been set to. | |||
| 19469 | static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements, | |||
| 19470 | EnumDecl *Enum, QualType EnumType) { | |||
| 19471 | // Avoid anonymous enums | |||
| 19472 | if (!Enum->getIdentifier()) | |||
| 19473 | return; | |||
| 19474 | ||||
| 19475 | // Only check for small enums. | |||
| 19476 | if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64) | |||
| 19477 | return; | |||
| 19478 | ||||
| 19479 | if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation())) | |||
| 19480 | return; | |||
| 19481 | ||||
| 19482 | typedef SmallVector<EnumConstantDecl *, 3> ECDVector; | |||
| 19483 | typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector; | |||
| 19484 | ||||
| 19485 | typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector; | |||
| 19486 | ||||
| 19487 | // DenseMaps cannot contain the all ones int64_t value, so use unordered_map. | |||
| 19488 | typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap; | |||
| 19489 | ||||
| 19490 | // Use int64_t as a key to avoid needing special handling for map keys. | |||
| 19491 | auto EnumConstantToKey = [](const EnumConstantDecl *D) { | |||
| 19492 | llvm::APSInt Val = D->getInitVal(); | |||
| 19493 | return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(); | |||
| 19494 | }; | |||
| 19495 | ||||
| 19496 | DuplicatesVector DupVector; | |||
| 19497 | ValueToVectorMap EnumMap; | |||
| 19498 | ||||
| 19499 | // Populate the EnumMap with all values represented by enum constants without | |||
| 19500 | // an initializer. | |||
| 19501 | for (auto *Element : Elements) { | |||
| 19502 | EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element); | |||
| 19503 | ||||
| 19504 | // Null EnumConstantDecl means a previous diagnostic has been emitted for | |||
| 19505 | // this constant. Skip this enum since it may be ill-formed. | |||
| 19506 | if (!ECD) { | |||
| 19507 | return; | |||
| 19508 | } | |||
| 19509 | ||||
| 19510 | // Constants with initalizers are handled in the next loop. | |||
| 19511 | if (ECD->getInitExpr()) | |||
| 19512 | continue; | |||
| 19513 | ||||
| 19514 | // Duplicate values are handled in the next loop. | |||
| 19515 | EnumMap.insert({EnumConstantToKey(ECD), ECD}); | |||
| 19516 | } | |||
| 19517 | ||||
| 19518 | if (EnumMap.size() == 0) | |||
| 19519 | return; | |||
| 19520 | ||||
| 19521 | // Create vectors for any values that has duplicates. | |||
| 19522 | for (auto *Element : Elements) { | |||
| 19523 | // The last loop returned if any constant was null. | |||
| 19524 | EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element); | |||
| 19525 | if (!ValidDuplicateEnum(ECD, Enum)) | |||
| 19526 | continue; | |||
| 19527 | ||||
| 19528 | auto Iter = EnumMap.find(EnumConstantToKey(ECD)); | |||
| 19529 | if (Iter == EnumMap.end()) | |||
| 19530 | continue; | |||
| 19531 | ||||
| 19532 | DeclOrVector& Entry = Iter->second; | |||
| 19533 | if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) { | |||
| 19534 | // Ensure constants are different. | |||
| 19535 | if (D == ECD) | |||
| 19536 | continue; | |||
| 19537 | ||||
| 19538 | // Create new vector and push values onto it. | |||
| 19539 | auto Vec = std::make_unique<ECDVector>(); | |||
| 19540 | Vec->push_back(D); | |||
| 19541 | Vec->push_back(ECD); | |||
| 19542 | ||||
| 19543 | // Update entry to point to the duplicates vector. | |||
| 19544 | Entry = Vec.get(); | |||
| 19545 | ||||
| 19546 | // Store the vector somewhere we can consult later for quick emission of | |||
| 19547 | // diagnostics. | |||
| 19548 | DupVector.emplace_back(std::move(Vec)); | |||
| 19549 | continue; | |||
| 19550 | } | |||
| 19551 | ||||
| 19552 | ECDVector *Vec = Entry.get<ECDVector*>(); | |||
| 19553 | // Make sure constants are not added more than once. | |||
| 19554 | if (*Vec->begin() == ECD) | |||
| 19555 | continue; | |||
| 19556 | ||||
| 19557 | Vec->push_back(ECD); | |||
| 19558 | } | |||
| 19559 | ||||
| 19560 | // Emit diagnostics. | |||
| 19561 | for (const auto &Vec : DupVector) { | |||
| 19562 | assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.")(static_cast <bool> (Vec->size() > 1 && "ECDVector should have at least 2 elements." ) ? void (0) : __assert_fail ("Vec->size() > 1 && \"ECDVector should have at least 2 elements.\"" , "clang/lib/Sema/SemaDecl.cpp", 19562, __extension__ __PRETTY_FUNCTION__ )); | |||
| 19563 | ||||
| 19564 | // Emit warning for one enum constant. | |||
| 19565 | auto *FirstECD = Vec->front(); | |||
| 19566 | S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values) | |||
| 19567 | << FirstECD << toString(FirstECD->getInitVal(), 10) | |||
| 19568 | << FirstECD->getSourceRange(); | |||
| 19569 | ||||
| 19570 | // Emit one note for each of the remaining enum constants with | |||
| 19571 | // the same value. | |||
| 19572 | for (auto *ECD : llvm::drop_begin(*Vec)) | |||
| 19573 | S.Diag(ECD->getLocation(), diag::note_duplicate_element) | |||
| 19574 | << ECD << toString(ECD->getInitVal(), 10) | |||
| 19575 | << ECD->getSourceRange(); | |||
| 19576 | } | |||
| 19577 | } | |||
| 19578 | ||||
| 19579 | bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val, | |||
| 19580 | bool AllowMask) const { | |||
| 19581 | assert(ED->isClosedFlag() && "looking for value in non-flag or open enum")(static_cast <bool> (ED->isClosedFlag() && "looking for value in non-flag or open enum" ) ? void (0) : __assert_fail ("ED->isClosedFlag() && \"looking for value in non-flag or open enum\"" , "clang/lib/Sema/SemaDecl.cpp", 19581, __extension__ __PRETTY_FUNCTION__ )); | |||
| 19582 | assert(ED->isCompleteDefinition() && "expected enum definition")(static_cast <bool> (ED->isCompleteDefinition() && "expected enum definition") ? void (0) : __assert_fail ("ED->isCompleteDefinition() && \"expected enum definition\"" , "clang/lib/Sema/SemaDecl.cpp", 19582, __extension__ __PRETTY_FUNCTION__ )); | |||
| 19583 | ||||
| 19584 | auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt())); | |||
| 19585 | llvm::APInt &FlagBits = R.first->second; | |||
| 19586 | ||||
| 19587 | if (R.second) { | |||
| 19588 | for (auto *E : ED->enumerators()) { | |||
| 19589 | const auto &EVal = E->getInitVal(); | |||
| 19590 | // Only single-bit enumerators introduce new flag values. | |||
| 19591 | if (EVal.isPowerOf2()) | |||
| 19592 | FlagBits = FlagBits.zext(EVal.getBitWidth()) | EVal; | |||
| 19593 | } | |||
| 19594 | } | |||
| 19595 | ||||
| 19596 | // A value is in a flag enum if either its bits are a subset of the enum's | |||
| 19597 | // flag bits (the first condition) or we are allowing masks and the same is | |||
| 19598 | // true of its complement (the second condition). When masks are allowed, we | |||
| 19599 | // allow the common idiom of ~(enum1 | enum2) to be a valid enum value. | |||
| 19600 | // | |||
| 19601 | // While it's true that any value could be used as a mask, the assumption is | |||
| 19602 | // that a mask will have all of the insignificant bits set. Anything else is | |||
| 19603 | // likely a logic error. | |||
| 19604 | llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth()); | |||
| 19605 | return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val)); | |||
| 19606 | } | |||
| 19607 | ||||
| 19608 | void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange, | |||
| 19609 | Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S, | |||
| 19610 | const ParsedAttributesView &Attrs) { | |||
| 19611 | EnumDecl *Enum = cast<EnumDecl>(EnumDeclX); | |||
| 19612 | QualType EnumType = Context.getTypeDeclType(Enum); | |||
| 19613 | ||||
| 19614 | ProcessDeclAttributeList(S, Enum, Attrs); | |||
| 19615 | ||||
| 19616 | if (Enum->isDependentType()) { | |||
| 19617 | for (unsigned i = 0, e = Elements.size(); i != e; ++i) { | |||
| 19618 | EnumConstantDecl *ECD = | |||
| 19619 | cast_or_null<EnumConstantDecl>(Elements[i]); | |||
| 19620 | if (!ECD) continue; | |||
| 19621 | ||||
| 19622 | ECD->setType(EnumType); | |||
| 19623 | } | |||
| 19624 | ||||
| 19625 | Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0); | |||
| 19626 | return; | |||
| 19627 | } | |||
| 19628 | ||||
| 19629 | // TODO: If the result value doesn't fit in an int, it must be a long or long | |||
| 19630 | // long value. ISO C does not support this, but GCC does as an extension, | |||
| 19631 | // emit a warning. | |||
| 19632 | unsigned IntWidth = Context.getTargetInfo().getIntWidth(); | |||
| 19633 | unsigned CharWidth = Context.getTargetInfo().getCharWidth(); | |||
| 19634 | unsigned ShortWidth = Context.getTargetInfo().getShortWidth(); | |||
| 19635 | ||||
| 19636 | // Verify that all the values are okay, compute the size of the values, and | |||
| 19637 | // reverse the list. | |||
| 19638 | unsigned NumNegativeBits = 0; | |||
| 19639 | unsigned NumPositiveBits = 0; | |||
| 19640 | ||||
| 19641 | for (unsigned i = 0, e = Elements.size(); i != e; ++i) { | |||
| 19642 | EnumConstantDecl *ECD = | |||
| 19643 | cast_or_null<EnumConstantDecl>(Elements[i]); | |||
| 19644 | if (!ECD) continue; // Already issued a diagnostic. | |||
| 19645 | ||||
| 19646 | const llvm::APSInt &InitVal = ECD->getInitVal(); | |||
| 19647 | ||||
| 19648 | // Keep track of the size of positive and negative values. | |||
| 19649 | if (InitVal.isUnsigned() || InitVal.isNonNegative()) { | |||
| 19650 | // If the enumerator is zero that should still be counted as a positive | |||
| 19651 | // bit since we need a bit to store the value zero. | |||
| 19652 | unsigned ActiveBits = InitVal.getActiveBits(); | |||
| 19653 | NumPositiveBits = std::max({NumPositiveBits, ActiveBits, 1u}); | |||
| 19654 | } else { | |||
| 19655 | NumNegativeBits = | |||
| 19656 | std::max(NumNegativeBits, (unsigned)InitVal.getSignificantBits()); | |||
| 19657 | } | |||
| 19658 | } | |||
| 19659 | ||||
| 19660 | // If we have an empty set of enumerators we still need one bit. | |||
| 19661 | // From [dcl.enum]p8 | |||
| 19662 | // If the enumerator-list is empty, the values of the enumeration are as if | |||
| 19663 | // the enumeration had a single enumerator with value 0 | |||
| 19664 | if (!NumPositiveBits && !NumNegativeBits) | |||
| 19665 | NumPositiveBits = 1; | |||
| 19666 | ||||
| 19667 | // Figure out the type that should be used for this enum. | |||
| 19668 | QualType BestType; | |||
| 19669 | unsigned BestWidth; | |||
| 19670 | ||||
| 19671 | // C++0x N3000 [conv.prom]p3: | |||
| 19672 | // An rvalue of an unscoped enumeration type whose underlying | |||
| 19673 | // type is not fixed can be converted to an rvalue of the first | |||
| 19674 | // of the following types that can represent all the values of | |||
| 19675 | // the enumeration: int, unsigned int, long int, unsigned long | |||
| 19676 | // int, long long int, or unsigned long long int. | |||
| 19677 | // C99 6.4.4.3p2: | |||
| 19678 | // An identifier declared as an enumeration constant has type int. | |||
| 19679 | // The C99 rule is modified by a gcc extension | |||
| 19680 | QualType BestPromotionType; | |||
| 19681 | ||||
| 19682 | bool Packed = Enum->hasAttr<PackedAttr>(); | |||
| 19683 | // -fshort-enums is the equivalent to specifying the packed attribute on all | |||
| 19684 | // enum definitions. | |||
| 19685 | if (LangOpts.ShortEnums) | |||
| 19686 | Packed = true; | |||
| 19687 | ||||
| 19688 | // If the enum already has a type because it is fixed or dictated by the | |||
| 19689 | // target, promote that type instead of analyzing the enumerators. | |||
| 19690 | if (Enum->isComplete()) { | |||
| 19691 | BestType = Enum->getIntegerType(); | |||
| 19692 | if (Context.isPromotableIntegerType(BestType)) | |||
| 19693 | BestPromotionType = Context.getPromotedIntegerType(BestType); | |||
| 19694 | else | |||
| 19695 | BestPromotionType = BestType; | |||
| 19696 | ||||
| 19697 | BestWidth = Context.getIntWidth(BestType); | |||
| 19698 | } | |||
| 19699 | else if (NumNegativeBits) { | |||
| 19700 | // If there is a negative value, figure out the smallest integer type (of | |||
| 19701 | // int/long/longlong) that fits. | |||
| 19702 | // If it's packed, check also if it fits a char or a short. | |||
| 19703 | if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) { | |||
| 19704 | BestType = Context.SignedCharTy; | |||
| 19705 | BestWidth = CharWidth; | |||
| 19706 | } else if (Packed && NumNegativeBits <= ShortWidth && | |||
| 19707 | NumPositiveBits < ShortWidth) { | |||
| 19708 | BestType = Context.ShortTy; | |||
| 19709 | BestWidth = ShortWidth; | |||
| 19710 | } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) { | |||
| 19711 | BestType = Context.IntTy; | |||
| 19712 | BestWidth = IntWidth; | |||
| 19713 | } else { | |||
| 19714 | BestWidth = Context.getTargetInfo().getLongWidth(); | |||
| 19715 | ||||
| 19716 | if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) { | |||
| 19717 | BestType = Context.LongTy; | |||
| 19718 | } else { | |||
| 19719 | BestWidth = Context.getTargetInfo().getLongLongWidth(); | |||
| 19720 | ||||
| 19721 | if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth) | |||
| 19722 | Diag(Enum->getLocation(), diag::ext_enum_too_large); | |||
| 19723 | BestType = Context.LongLongTy; | |||
| 19724 | } | |||
| 19725 | } | |||
| 19726 | BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType); | |||
| 19727 | } else { | |||
| 19728 | // If there is no negative value, figure out the smallest type that fits | |||
| 19729 | // all of the enumerator values. | |||
| 19730 | // If it's packed, check also if it fits a char or a short. | |||
| 19731 | if (Packed && NumPositiveBits <= CharWidth) { | |||
| 19732 | BestType = Context.UnsignedCharTy; | |||
| 19733 | BestPromotionType = Context.IntTy; | |||
| 19734 | BestWidth = CharWidth; | |||
| 19735 | } else if (Packed && NumPositiveBits <= ShortWidth) { | |||
| 19736 | BestType = Context.UnsignedShortTy; | |||
| 19737 | BestPromotionType = Context.IntTy; | |||
| 19738 | BestWidth = ShortWidth; | |||
| 19739 | } else if (NumPositiveBits <= IntWidth) { | |||
| 19740 | BestType = Context.UnsignedIntTy; | |||
| 19741 | BestWidth = IntWidth; | |||
| 19742 | BestPromotionType | |||
| 19743 | = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) | |||
| 19744 | ? Context.UnsignedIntTy : Context.IntTy; | |||
| 19745 | } else if (NumPositiveBits <= | |||
| 19746 | (BestWidth = Context.getTargetInfo().getLongWidth())) { | |||
| 19747 | BestType = Context.UnsignedLongTy; | |||
| 19748 | BestPromotionType | |||
| 19749 | = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) | |||
| 19750 | ? Context.UnsignedLongTy : Context.LongTy; | |||
| 19751 | } else { | |||
| 19752 | BestWidth = Context.getTargetInfo().getLongLongWidth(); | |||
| 19753 | assert(NumPositiveBits <= BestWidth &&(static_cast <bool> (NumPositiveBits <= BestWidth && "How could an initializer get larger than ULL?") ? void (0) : __assert_fail ("NumPositiveBits <= BestWidth && \"How could an initializer get larger than ULL?\"" , "clang/lib/Sema/SemaDecl.cpp", 19754, __extension__ __PRETTY_FUNCTION__ )) | |||
| 19754 | "How could an initializer get larger than ULL?")(static_cast <bool> (NumPositiveBits <= BestWidth && "How could an initializer get larger than ULL?") ? void (0) : __assert_fail ("NumPositiveBits <= BestWidth && \"How could an initializer get larger than ULL?\"" , "clang/lib/Sema/SemaDecl.cpp", 19754, __extension__ __PRETTY_FUNCTION__ )); | |||
| 19755 | BestType = Context.UnsignedLongLongTy; | |||
| 19756 | BestPromotionType | |||
| 19757 | = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) | |||
| 19758 | ? Context.UnsignedLongLongTy : Context.LongLongTy; | |||
| 19759 | } | |||
| 19760 | } | |||
| 19761 | ||||
| 19762 | // Loop over all of the enumerator constants, changing their types to match | |||
| 19763 | // the type of the enum if needed. | |||
| 19764 | for (auto *D : Elements) { | |||
| 19765 | auto *ECD = cast_or_null<EnumConstantDecl>(D); | |||
| 19766 | if (!ECD) continue; // Already issued a diagnostic. | |||
| 19767 | ||||
| 19768 | // Standard C says the enumerators have int type, but we allow, as an | |||
| 19769 | // extension, the enumerators to be larger than int size. If each | |||
| 19770 | // enumerator value fits in an int, type it as an int, otherwise type it the | |||
| 19771 | // same as the enumerator decl itself. This means that in "enum { X = 1U }" | |||
| 19772 | // that X has type 'int', not 'unsigned'. | |||
| 19773 | ||||
| 19774 | // Determine whether the value fits into an int. | |||
| 19775 | llvm::APSInt InitVal = ECD->getInitVal(); | |||
| 19776 | ||||
| 19777 | // If it fits into an integer type, force it. Otherwise force it to match | |||
| 19778 | // the enum decl type. | |||
| 19779 | QualType NewTy; | |||
| 19780 | unsigned NewWidth; | |||
| 19781 | bool NewSign; | |||
| 19782 | if (!getLangOpts().CPlusPlus && | |||
| 19783 | !Enum->isFixed() && | |||
| 19784 | isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) { | |||
| 19785 | NewTy = Context.IntTy; | |||
| 19786 | NewWidth = IntWidth; | |||
| 19787 | NewSign = true; | |||
| 19788 | } else if (ECD->getType() == BestType) { | |||
| 19789 | // Already the right type! | |||
| 19790 | if (getLangOpts().CPlusPlus) | |||
| 19791 | // C++ [dcl.enum]p4: Following the closing brace of an | |||
| 19792 | // enum-specifier, each enumerator has the type of its | |||
| 19793 | // enumeration. | |||
| 19794 | ECD->setType(EnumType); | |||
| 19795 | continue; | |||
| 19796 | } else { | |||
| 19797 | NewTy = BestType; | |||
| 19798 | NewWidth = BestWidth; | |||
| 19799 | NewSign = BestType->isSignedIntegerOrEnumerationType(); | |||
| 19800 | } | |||
| 19801 | ||||
| 19802 | // Adjust the APSInt value. | |||
| 19803 | InitVal = InitVal.extOrTrunc(NewWidth); | |||
| 19804 | InitVal.setIsSigned(NewSign); | |||
| 19805 | ECD->setInitVal(InitVal); | |||
| 19806 | ||||
| 19807 | // Adjust the Expr initializer and type. | |||
| 19808 | if (ECD->getInitExpr() && | |||
| 19809 | !Context.hasSameType(NewTy, ECD->getInitExpr()->getType())) | |||
| 19810 | ECD->setInitExpr(ImplicitCastExpr::Create( | |||
| 19811 | Context, NewTy, CK_IntegralCast, ECD->getInitExpr(), | |||
| 19812 | /*base paths*/ nullptr, VK_PRValue, FPOptionsOverride())); | |||
| 19813 | if (getLangOpts().CPlusPlus) | |||
| 19814 | // C++ [dcl.enum]p4: Following the closing brace of an | |||
| 19815 | // enum-specifier, each enumerator has the type of its | |||
| 19816 | // enumeration. | |||
| 19817 | ECD->setType(EnumType); | |||
| 19818 | else | |||
| 19819 | ECD->setType(NewTy); | |||
| 19820 | } | |||
| 19821 | ||||
| 19822 | Enum->completeDefinition(BestType, BestPromotionType, | |||
| 19823 | NumPositiveBits, NumNegativeBits); | |||
| 19824 | ||||
| 19825 | CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType); | |||
| 19826 | ||||
| 19827 | if (Enum->isClosedFlag()) { | |||
| 19828 | for (Decl *D : Elements) { | |||
| 19829 | EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D); | |||
| 19830 | if (!ECD) continue; // Already issued a diagnostic. | |||
| 19831 | ||||
| 19832 | llvm::APSInt InitVal = ECD->getInitVal(); | |||
| 19833 | if (InitVal != 0 && !InitVal.isPowerOf2() && | |||
| 19834 | !IsValueInFlagEnum(Enum, InitVal, true)) | |||
| 19835 | Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range) | |||
| 19836 | << ECD << Enum; | |||
| 19837 | } | |||
| 19838 | } | |||
| 19839 | ||||
| 19840 | // Now that the enum type is defined, ensure it's not been underaligned. | |||
| 19841 | if (Enum->hasAttrs()) | |||
| 19842 | CheckAlignasUnderalignment(Enum); | |||
| 19843 | } | |||
| 19844 | ||||
| 19845 | Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr, | |||
| 19846 | SourceLocation StartLoc, | |||
| 19847 | SourceLocation EndLoc) { | |||
| 19848 | StringLiteral *AsmString = cast<StringLiteral>(expr); | |||
| 19849 | ||||
| 19850 | FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext, | |||
| 19851 | AsmString, StartLoc, | |||
| 19852 | EndLoc); | |||
| 19853 | CurContext->addDecl(New); | |||
| 19854 | return New; | |||
| 19855 | } | |||
| 19856 | ||||
| 19857 | Decl *Sema::ActOnTopLevelStmtDecl(Stmt *Statement) { | |||
| 19858 | auto *New = TopLevelStmtDecl::Create(Context, Statement); | |||
| 19859 | Context.getTranslationUnitDecl()->addDecl(New); | |||
| 19860 | return New; | |||
| 19861 | } | |||
| 19862 | ||||
| 19863 | void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name, | |||
| 19864 | IdentifierInfo* AliasName, | |||
| 19865 | SourceLocation PragmaLoc, | |||
| 19866 | SourceLocation NameLoc, | |||
| 19867 | SourceLocation AliasNameLoc) { | |||
| 19868 | NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, | |||
| 19869 | LookupOrdinaryName); | |||
| 19870 | AttributeCommonInfo Info(AliasName, SourceRange(AliasNameLoc), | |||
| 19871 | AttributeCommonInfo::Form::Pragma()); | |||
| 19872 | AsmLabelAttr *Attr = AsmLabelAttr::CreateImplicit( | |||
| 19873 | Context, AliasName->getName(), /*IsLiteralLabel=*/true, Info); | |||
| 19874 | ||||
| 19875 | // If a declaration that: | |||
| 19876 | // 1) declares a function or a variable | |||
| 19877 | // 2) has external linkage | |||
| 19878 | // already exists, add a label attribute to it. | |||
| 19879 | if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) { | |||
| 19880 | if (isDeclExternC(PrevDecl)) | |||
| 19881 | PrevDecl->addAttr(Attr); | |||
| 19882 | else | |||
| 19883 | Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied) | |||
| 19884 | << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl; | |||
| 19885 | // Otherwise, add a label attribute to ExtnameUndeclaredIdentifiers. | |||
| 19886 | } else | |||
| 19887 | (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr)); | |||
| 19888 | } | |||
| 19889 | ||||
| 19890 | void Sema::ActOnPragmaWeakID(IdentifierInfo* Name, | |||
| 19891 | SourceLocation PragmaLoc, | |||
| 19892 | SourceLocation NameLoc) { | |||
| 19893 | Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName); | |||
| 19894 | ||||
| 19895 | if (PrevDecl) { | |||
| 19896 | PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc)); | |||
| 19897 | } else { | |||
| 19898 | (void)WeakUndeclaredIdentifiers[Name].insert(WeakInfo(nullptr, NameLoc)); | |||
| 19899 | } | |||
| 19900 | } | |||
| 19901 | ||||
| 19902 | void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name, | |||
| 19903 | IdentifierInfo* AliasName, | |||
| 19904 | SourceLocation PragmaLoc, | |||
| 19905 | SourceLocation NameLoc, | |||
| 19906 | SourceLocation AliasNameLoc) { | |||
| 19907 | Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc, | |||
| 19908 | LookupOrdinaryName); | |||
| 19909 | WeakInfo W = WeakInfo(Name, NameLoc); | |||
| 19910 | ||||
| 19911 | if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) { | |||
| 19912 | if (!PrevDecl->hasAttr<AliasAttr>()) | |||
| 19913 | if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl)) | |||
| 19914 | DeclApplyPragmaWeak(TUScope, ND, W); | |||
| 19915 | } else { | |||
| 19916 | (void)WeakUndeclaredIdentifiers[AliasName].insert(W); | |||
| 19917 | } | |||
| 19918 | } | |||
| 19919 | ||||
| 19920 | ObjCContainerDecl *Sema::getObjCDeclContext() const { | |||
| 19921 | return (dyn_cast_or_null<ObjCContainerDecl>(CurContext)); | |||
| 19922 | } | |||
| 19923 | ||||
| 19924 | Sema::FunctionEmissionStatus Sema::getEmissionStatus(const FunctionDecl *FD, | |||
| 19925 | bool Final) { | |||
| 19926 | assert(FD && "Expected non-null FunctionDecl")(static_cast <bool> (FD && "Expected non-null FunctionDecl" ) ? void (0) : __assert_fail ("FD && \"Expected non-null FunctionDecl\"" , "clang/lib/Sema/SemaDecl.cpp", 19926, __extension__ __PRETTY_FUNCTION__ )); | |||
| 19927 | ||||
| 19928 | // SYCL functions can be template, so we check if they have appropriate | |||
| 19929 | // attribute prior to checking if it is a template. | |||
| 19930 | if (LangOpts.SYCLIsDevice && FD->hasAttr<SYCLKernelAttr>()) | |||
| 19931 | return FunctionEmissionStatus::Emitted; | |||
| 19932 | ||||
| 19933 | // Templates are emitted when they're instantiated. | |||
| 19934 | if (FD->isDependentContext()) | |||
| 19935 | return FunctionEmissionStatus::TemplateDiscarded; | |||
| 19936 | ||||
| 19937 | // Check whether this function is an externally visible definition. | |||
| 19938 | auto IsEmittedForExternalSymbol = [this, FD]() { | |||
| 19939 | // We have to check the GVA linkage of the function's *definition* -- if we | |||
| 19940 | // only have a declaration, we don't know whether or not the function will | |||
| 19941 | // be emitted, because (say) the definition could include "inline". | |||
| 19942 | const FunctionDecl *Def = FD->getDefinition(); | |||
| 19943 | ||||
| 19944 | return Def && !isDiscardableGVALinkage( | |||
| 19945 | getASTContext().GetGVALinkageForFunction(Def)); | |||
| 19946 | }; | |||
| 19947 | ||||
| 19948 | if (LangOpts.OpenMPIsDevice) { | |||
| 19949 | // In OpenMP device mode we will not emit host only functions, or functions | |||
| 19950 | // we don't need due to their linkage. | |||
| 19951 | std::optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy = | |||
| 19952 | OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl()); | |||
| 19953 | // DevTy may be changed later by | |||
| 19954 | // #pragma omp declare target to(*) device_type(*). | |||
| 19955 | // Therefore DevTy having no value does not imply host. The emission status | |||
| 19956 | // will be checked again at the end of compilation unit with Final = true. | |||
| 19957 | if (DevTy) | |||
| 19958 | if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host) | |||
| 19959 | return FunctionEmissionStatus::OMPDiscarded; | |||
| 19960 | // If we have an explicit value for the device type, or we are in a target | |||
| 19961 | // declare context, we need to emit all extern and used symbols. | |||
| 19962 | if (isInOpenMPDeclareTargetContext() || DevTy) | |||
| 19963 | if (IsEmittedForExternalSymbol()) | |||
| 19964 | return FunctionEmissionStatus::Emitted; | |||
| 19965 | // Device mode only emits what it must, if it wasn't tagged yet and needed, | |||
| 19966 | // we'll omit it. | |||
| 19967 | if (Final) | |||
| 19968 | return FunctionEmissionStatus::OMPDiscarded; | |||
| 19969 | } else if (LangOpts.OpenMP > 45) { | |||
| 19970 | // In OpenMP host compilation prior to 5.0 everything was an emitted host | |||
| 19971 | // function. In 5.0, no_host was introduced which might cause a function to | |||
| 19972 | // be ommitted. | |||
| 19973 | std::optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy = | |||
| 19974 | OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl()); | |||
| 19975 | if (DevTy) | |||
| 19976 | if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost) | |||
| 19977 | return FunctionEmissionStatus::OMPDiscarded; | |||
| 19978 | } | |||
| 19979 | ||||
| 19980 | if (Final && LangOpts.OpenMP && !LangOpts.CUDA) | |||
| 19981 | return FunctionEmissionStatus::Emitted; | |||
| 19982 | ||||
| 19983 | if (LangOpts.CUDA) { | |||
| 19984 | // When compiling for device, host functions are never emitted. Similarly, | |||
| 19985 | // when compiling for host, device and global functions are never emitted. | |||
| 19986 | // (Technically, we do emit a host-side stub for global functions, but this | |||
| 19987 | // doesn't count for our purposes here.) | |||
| 19988 | Sema::CUDAFunctionTarget T = IdentifyCUDATarget(FD); | |||
| 19989 | if (LangOpts.CUDAIsDevice && T == Sema::CFT_Host) | |||
| 19990 | return FunctionEmissionStatus::CUDADiscarded; | |||
| 19991 | if (!LangOpts.CUDAIsDevice && | |||
| 19992 | (T == Sema::CFT_Device || T == Sema::CFT_Global)) | |||
| 19993 | return FunctionEmissionStatus::CUDADiscarded; | |||
| 19994 | ||||
| 19995 | if (IsEmittedForExternalSymbol()) | |||
| 19996 | return FunctionEmissionStatus::Emitted; | |||
| 19997 | } | |||
| 19998 | ||||
| 19999 | // Otherwise, the function is known-emitted if it's in our set of | |||
| 20000 | // known-emitted functions. | |||
| 20001 | return FunctionEmissionStatus::Unknown; | |||
| 20002 | } | |||
| 20003 | ||||
| 20004 | bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee) { | |||
| 20005 | // Host-side references to a __global__ function refer to the stub, so the | |||
| 20006 | // function itself is never emitted and therefore should not be marked. | |||
| 20007 | // If we have host fn calls kernel fn calls host+device, the HD function | |||
| 20008 | // does not get instantiated on the host. We model this by omitting at the | |||
| 20009 | // call to the kernel from the callgraph. This ensures that, when compiling | |||
| 20010 | // for host, only HD functions actually called from the host get marked as | |||
| 20011 | // known-emitted. | |||
| 20012 | return LangOpts.CUDA && !LangOpts.CUDAIsDevice && | |||
| 20013 | IdentifyCUDATarget(Callee) == CFT_Global; | |||
| 20014 | } |