File: | build/source/clang/lib/Sema/SemaDecl.cpp |
Warning: | line 4185, column 44 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===// | |||
2 | // | |||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
4 | // See https://llvm.org/LICENSE.txt for license information. | |||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
6 | // | |||
7 | //===----------------------------------------------------------------------===// | |||
8 | // | |||
9 | // This file implements semantic analysis for declarations. | |||
10 | // | |||
11 | //===----------------------------------------------------------------------===// | |||
12 | ||||
13 | #include "TypeLocBuilder.h" | |||
14 | #include "clang/AST/ASTConsumer.h" | |||
15 | #include "clang/AST/ASTContext.h" | |||
16 | #include "clang/AST/ASTLambda.h" | |||
17 | #include "clang/AST/CXXInheritance.h" | |||
18 | #include "clang/AST/CharUnits.h" | |||
19 | #include "clang/AST/CommentDiagnostic.h" | |||
20 | #include "clang/AST/DeclCXX.h" | |||
21 | #include "clang/AST/DeclObjC.h" | |||
22 | #include "clang/AST/DeclTemplate.h" | |||
23 | #include "clang/AST/EvaluatedExprVisitor.h" | |||
24 | #include "clang/AST/Expr.h" | |||
25 | #include "clang/AST/ExprCXX.h" | |||
26 | #include "clang/AST/NonTrivialTypeVisitor.h" | |||
27 | #include "clang/AST/Randstruct.h" | |||
28 | #include "clang/AST/StmtCXX.h" | |||
29 | #include "clang/Basic/Builtins.h" | |||
30 | #include "clang/Basic/HLSLRuntime.h" | |||
31 | #include "clang/Basic/PartialDiagnostic.h" | |||
32 | #include "clang/Basic/SourceManager.h" | |||
33 | #include "clang/Basic/TargetInfo.h" | |||
34 | #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex | |||
35 | #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. | |||
36 | #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex | |||
37 | #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled() | |||
38 | #include "clang/Sema/CXXFieldCollector.h" | |||
39 | #include "clang/Sema/DeclSpec.h" | |||
40 | #include "clang/Sema/DelayedDiagnostic.h" | |||
41 | #include "clang/Sema/Initialization.h" | |||
42 | #include "clang/Sema/Lookup.h" | |||
43 | #include "clang/Sema/ParsedTemplate.h" | |||
44 | #include "clang/Sema/Scope.h" | |||
45 | #include "clang/Sema/ScopeInfo.h" | |||
46 | #include "clang/Sema/SemaInternal.h" | |||
47 | #include "clang/Sema/Template.h" | |||
48 | #include "llvm/ADT/SmallString.h" | |||
49 | #include "llvm/TargetParser/Triple.h" | |||
50 | #include <algorithm> | |||
51 | #include <cstring> | |||
52 | #include <functional> | |||
53 | #include <optional> | |||
54 | #include <unordered_map> | |||
55 | ||||
56 | using namespace clang; | |||
57 | using namespace sema; | |||
58 | ||||
59 | Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) { | |||
60 | if (OwnedType) { | |||
61 | Decl *Group[2] = { OwnedType, Ptr }; | |||
62 | return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2)); | |||
63 | } | |||
64 | ||||
65 | return DeclGroupPtrTy::make(DeclGroupRef(Ptr)); | |||
66 | } | |||
67 | ||||
68 | namespace { | |||
69 | ||||
70 | class TypeNameValidatorCCC final : public CorrectionCandidateCallback { | |||
71 | public: | |||
72 | TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false, | |||
73 | bool AllowTemplates = false, | |||
74 | bool AllowNonTemplates = true) | |||
75 | : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass), | |||
76 | AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) { | |||
77 | WantExpressionKeywords = false; | |||
78 | WantCXXNamedCasts = false; | |||
79 | WantRemainingKeywords = false; | |||
80 | } | |||
81 | ||||
82 | bool ValidateCandidate(const TypoCorrection &candidate) override { | |||
83 | if (NamedDecl *ND = candidate.getCorrectionDecl()) { | |||
84 | if (!AllowInvalidDecl && ND->isInvalidDecl()) | |||
85 | return false; | |||
86 | ||||
87 | if (getAsTypeTemplateDecl(ND)) | |||
88 | return AllowTemplates; | |||
89 | ||||
90 | bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND); | |||
91 | if (!IsType) | |||
92 | return false; | |||
93 | ||||
94 | if (AllowNonTemplates) | |||
95 | return true; | |||
96 | ||||
97 | // An injected-class-name of a class template (specialization) is valid | |||
98 | // as a template or as a non-template. | |||
99 | if (AllowTemplates) { | |||
100 | auto *RD = dyn_cast<CXXRecordDecl>(ND); | |||
101 | if (!RD || !RD->isInjectedClassName()) | |||
102 | return false; | |||
103 | RD = cast<CXXRecordDecl>(RD->getDeclContext()); | |||
104 | return RD->getDescribedClassTemplate() || | |||
105 | isa<ClassTemplateSpecializationDecl>(RD); | |||
106 | } | |||
107 | ||||
108 | return false; | |||
109 | } | |||
110 | ||||
111 | return !WantClassName && candidate.isKeyword(); | |||
112 | } | |||
113 | ||||
114 | std::unique_ptr<CorrectionCandidateCallback> clone() override { | |||
115 | return std::make_unique<TypeNameValidatorCCC>(*this); | |||
116 | } | |||
117 | ||||
118 | private: | |||
119 | bool AllowInvalidDecl; | |||
120 | bool WantClassName; | |||
121 | bool AllowTemplates; | |||
122 | bool AllowNonTemplates; | |||
123 | }; | |||
124 | ||||
125 | } // end anonymous namespace | |||
126 | ||||
127 | /// Determine whether the token kind starts a simple-type-specifier. | |||
128 | bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const { | |||
129 | switch (Kind) { | |||
130 | // FIXME: Take into account the current language when deciding whether a | |||
131 | // token kind is a valid type specifier | |||
132 | case tok::kw_short: | |||
133 | case tok::kw_long: | |||
134 | case tok::kw___int64: | |||
135 | case tok::kw___int128: | |||
136 | case tok::kw_signed: | |||
137 | case tok::kw_unsigned: | |||
138 | case tok::kw_void: | |||
139 | case tok::kw_char: | |||
140 | case tok::kw_int: | |||
141 | case tok::kw_half: | |||
142 | case tok::kw_float: | |||
143 | case tok::kw_double: | |||
144 | case tok::kw___bf16: | |||
145 | case tok::kw__Float16: | |||
146 | case tok::kw___float128: | |||
147 | case tok::kw___ibm128: | |||
148 | case tok::kw_wchar_t: | |||
149 | case tok::kw_bool: | |||
150 | #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait: | |||
151 | #include "clang/Basic/TransformTypeTraits.def" | |||
152 | case tok::kw___auto_type: | |||
153 | return true; | |||
154 | ||||
155 | case tok::annot_typename: | |||
156 | case tok::kw_char16_t: | |||
157 | case tok::kw_char32_t: | |||
158 | case tok::kw_typeof: | |||
159 | case tok::annot_decltype: | |||
160 | case tok::kw_decltype: | |||
161 | return getLangOpts().CPlusPlus; | |||
162 | ||||
163 | case tok::kw_char8_t: | |||
164 | return getLangOpts().Char8; | |||
165 | ||||
166 | default: | |||
167 | break; | |||
168 | } | |||
169 | ||||
170 | return false; | |||
171 | } | |||
172 | ||||
173 | namespace { | |||
174 | enum class UnqualifiedTypeNameLookupResult { | |||
175 | NotFound, | |||
176 | FoundNonType, | |||
177 | FoundType | |||
178 | }; | |||
179 | } // end anonymous namespace | |||
180 | ||||
181 | /// Tries to perform unqualified lookup of the type decls in bases for | |||
182 | /// dependent class. | |||
183 | /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a | |||
184 | /// type decl, \a FoundType if only type decls are found. | |||
185 | static UnqualifiedTypeNameLookupResult | |||
186 | lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II, | |||
187 | SourceLocation NameLoc, | |||
188 | const CXXRecordDecl *RD) { | |||
189 | if (!RD->hasDefinition()) | |||
190 | return UnqualifiedTypeNameLookupResult::NotFound; | |||
191 | // Look for type decls in base classes. | |||
192 | UnqualifiedTypeNameLookupResult FoundTypeDecl = | |||
193 | UnqualifiedTypeNameLookupResult::NotFound; | |||
194 | for (const auto &Base : RD->bases()) { | |||
195 | const CXXRecordDecl *BaseRD = nullptr; | |||
196 | if (auto *BaseTT = Base.getType()->getAs<TagType>()) | |||
197 | BaseRD = BaseTT->getAsCXXRecordDecl(); | |||
198 | else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) { | |||
199 | // Look for type decls in dependent base classes that have known primary | |||
200 | // templates. | |||
201 | if (!TST || !TST->isDependentType()) | |||
202 | continue; | |||
203 | auto *TD = TST->getTemplateName().getAsTemplateDecl(); | |||
204 | if (!TD) | |||
205 | continue; | |||
206 | if (auto *BasePrimaryTemplate = | |||
207 | dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) { | |||
208 | if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl()) | |||
209 | BaseRD = BasePrimaryTemplate; | |||
210 | else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) { | |||
211 | if (const ClassTemplatePartialSpecializationDecl *PS = | |||
212 | CTD->findPartialSpecialization(Base.getType())) | |||
213 | if (PS->getCanonicalDecl() != RD->getCanonicalDecl()) | |||
214 | BaseRD = PS; | |||
215 | } | |||
216 | } | |||
217 | } | |||
218 | if (BaseRD) { | |||
219 | for (NamedDecl *ND : BaseRD->lookup(&II)) { | |||
220 | if (!isa<TypeDecl>(ND)) | |||
221 | return UnqualifiedTypeNameLookupResult::FoundNonType; | |||
222 | FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType; | |||
223 | } | |||
224 | if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) { | |||
225 | switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) { | |||
226 | case UnqualifiedTypeNameLookupResult::FoundNonType: | |||
227 | return UnqualifiedTypeNameLookupResult::FoundNonType; | |||
228 | case UnqualifiedTypeNameLookupResult::FoundType: | |||
229 | FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType; | |||
230 | break; | |||
231 | case UnqualifiedTypeNameLookupResult::NotFound: | |||
232 | break; | |||
233 | } | |||
234 | } | |||
235 | } | |||
236 | } | |||
237 | ||||
238 | return FoundTypeDecl; | |||
239 | } | |||
240 | ||||
241 | static ParsedType recoverFromTypeInKnownDependentBase(Sema &S, | |||
242 | const IdentifierInfo &II, | |||
243 | SourceLocation NameLoc) { | |||
244 | // Lookup in the parent class template context, if any. | |||
245 | const CXXRecordDecl *RD = nullptr; | |||
246 | UnqualifiedTypeNameLookupResult FoundTypeDecl = | |||
247 | UnqualifiedTypeNameLookupResult::NotFound; | |||
248 | for (DeclContext *DC = S.CurContext; | |||
249 | DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound; | |||
250 | DC = DC->getParent()) { | |||
251 | // Look for type decls in dependent base classes that have known primary | |||
252 | // templates. | |||
253 | RD = dyn_cast<CXXRecordDecl>(DC); | |||
254 | if (RD && RD->getDescribedClassTemplate()) | |||
255 | FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD); | |||
256 | } | |||
257 | if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType) | |||
258 | return nullptr; | |||
259 | ||||
260 | // We found some types in dependent base classes. Recover as if the user | |||
261 | // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the | |||
262 | // lookup during template instantiation. | |||
263 | S.Diag(NameLoc, diag::ext_found_in_dependent_base) << &II; | |||
264 | ||||
265 | ASTContext &Context = S.Context; | |||
266 | auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false, | |||
267 | cast<Type>(Context.getRecordType(RD))); | |||
268 | QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II); | |||
269 | ||||
270 | CXXScopeSpec SS; | |||
271 | SS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); | |||
272 | ||||
273 | TypeLocBuilder Builder; | |||
274 | DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); | |||
275 | DepTL.setNameLoc(NameLoc); | |||
276 | DepTL.setElaboratedKeywordLoc(SourceLocation()); | |||
277 | DepTL.setQualifierLoc(SS.getWithLocInContext(Context)); | |||
278 | return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); | |||
279 | } | |||
280 | ||||
281 | /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier. | |||
282 | static ParsedType buildNamedType(Sema &S, const CXXScopeSpec *SS, QualType T, | |||
283 | SourceLocation NameLoc, | |||
284 | bool WantNontrivialTypeSourceInfo = true) { | |||
285 | switch (T->getTypeClass()) { | |||
286 | case Type::DeducedTemplateSpecialization: | |||
287 | case Type::Enum: | |||
288 | case Type::InjectedClassName: | |||
289 | case Type::Record: | |||
290 | case Type::Typedef: | |||
291 | case Type::UnresolvedUsing: | |||
292 | case Type::Using: | |||
293 | break; | |||
294 | // These can never be qualified so an ElaboratedType node | |||
295 | // would carry no additional meaning. | |||
296 | case Type::ObjCInterface: | |||
297 | case Type::ObjCTypeParam: | |||
298 | case Type::TemplateTypeParm: | |||
299 | return ParsedType::make(T); | |||
300 | default: | |||
301 | llvm_unreachable("Unexpected Type Class")::llvm::llvm_unreachable_internal("Unexpected Type Class", "clang/lib/Sema/SemaDecl.cpp" , 301); | |||
302 | } | |||
303 | ||||
304 | if (!SS || SS->isEmpty()) | |||
305 | return ParsedType::make( | |||
306 | S.Context.getElaboratedType(ETK_None, nullptr, T, nullptr)); | |||
307 | ||||
308 | QualType ElTy = S.getElaboratedType(ETK_None, *SS, T); | |||
309 | if (!WantNontrivialTypeSourceInfo) | |||
310 | return ParsedType::make(ElTy); | |||
311 | ||||
312 | TypeLocBuilder Builder; | |||
313 | Builder.pushTypeSpec(T).setNameLoc(NameLoc); | |||
314 | ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(ElTy); | |||
315 | ElabTL.setElaboratedKeywordLoc(SourceLocation()); | |||
316 | ElabTL.setQualifierLoc(SS->getWithLocInContext(S.Context)); | |||
317 | return S.CreateParsedType(ElTy, Builder.getTypeSourceInfo(S.Context, ElTy)); | |||
318 | } | |||
319 | ||||
320 | /// If the identifier refers to a type name within this scope, | |||
321 | /// return the declaration of that type. | |||
322 | /// | |||
323 | /// This routine performs ordinary name lookup of the identifier II | |||
324 | /// within the given scope, with optional C++ scope specifier SS, to | |||
325 | /// determine whether the name refers to a type. If so, returns an | |||
326 | /// opaque pointer (actually a QualType) corresponding to that | |||
327 | /// type. Otherwise, returns NULL. | |||
328 | ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc, | |||
329 | Scope *S, CXXScopeSpec *SS, bool isClassName, | |||
330 | bool HasTrailingDot, ParsedType ObjectTypePtr, | |||
331 | bool IsCtorOrDtorName, | |||
332 | bool WantNontrivialTypeSourceInfo, | |||
333 | bool IsClassTemplateDeductionContext, | |||
334 | ImplicitTypenameContext AllowImplicitTypename, | |||
335 | IdentifierInfo **CorrectedII) { | |||
336 | // FIXME: Consider allowing this outside C++1z mode as an extension. | |||
337 | bool AllowDeducedTemplate = IsClassTemplateDeductionContext && | |||
338 | getLangOpts().CPlusPlus17 && !IsCtorOrDtorName && | |||
339 | !isClassName && !HasTrailingDot; | |||
340 | ||||
341 | // Determine where we will perform name lookup. | |||
342 | DeclContext *LookupCtx = nullptr; | |||
343 | if (ObjectTypePtr) { | |||
344 | QualType ObjectType = ObjectTypePtr.get(); | |||
345 | if (ObjectType->isRecordType()) | |||
346 | LookupCtx = computeDeclContext(ObjectType); | |||
347 | } else if (SS && SS->isNotEmpty()) { | |||
348 | LookupCtx = computeDeclContext(*SS, false); | |||
349 | ||||
350 | if (!LookupCtx) { | |||
351 | if (isDependentScopeSpecifier(*SS)) { | |||
352 | // C++ [temp.res]p3: | |||
353 | // A qualified-id that refers to a type and in which the | |||
354 | // nested-name-specifier depends on a template-parameter (14.6.2) | |||
355 | // shall be prefixed by the keyword typename to indicate that the | |||
356 | // qualified-id denotes a type, forming an | |||
357 | // elaborated-type-specifier (7.1.5.3). | |||
358 | // | |||
359 | // We therefore do not perform any name lookup if the result would | |||
360 | // refer to a member of an unknown specialization. | |||
361 | // In C++2a, in several contexts a 'typename' is not required. Also | |||
362 | // allow this as an extension. | |||
363 | if (AllowImplicitTypename == ImplicitTypenameContext::No && | |||
364 | !isClassName && !IsCtorOrDtorName) | |||
365 | return nullptr; | |||
366 | bool IsImplicitTypename = !isClassName && !IsCtorOrDtorName; | |||
367 | if (IsImplicitTypename) { | |||
368 | SourceLocation QualifiedLoc = SS->getRange().getBegin(); | |||
369 | if (getLangOpts().CPlusPlus20) | |||
370 | Diag(QualifiedLoc, diag::warn_cxx17_compat_implicit_typename); | |||
371 | else | |||
372 | Diag(QualifiedLoc, diag::ext_implicit_typename) | |||
373 | << SS->getScopeRep() << II.getName() | |||
374 | << FixItHint::CreateInsertion(QualifiedLoc, "typename "); | |||
375 | } | |||
376 | ||||
377 | // We know from the grammar that this name refers to a type, | |||
378 | // so build a dependent node to describe the type. | |||
379 | if (WantNontrivialTypeSourceInfo) | |||
380 | return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc, | |||
381 | (ImplicitTypenameContext)IsImplicitTypename) | |||
382 | .get(); | |||
383 | ||||
384 | NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context); | |||
385 | QualType T = | |||
386 | CheckTypenameType(IsImplicitTypename ? ETK_Typename : ETK_None, | |||
387 | SourceLocation(), QualifierLoc, II, NameLoc); | |||
388 | return ParsedType::make(T); | |||
389 | } | |||
390 | ||||
391 | return nullptr; | |||
392 | } | |||
393 | ||||
394 | if (!LookupCtx->isDependentContext() && | |||
395 | RequireCompleteDeclContext(*SS, LookupCtx)) | |||
396 | return nullptr; | |||
397 | } | |||
398 | ||||
399 | // FIXME: LookupNestedNameSpecifierName isn't the right kind of | |||
400 | // lookup for class-names. | |||
401 | LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName : | |||
402 | LookupOrdinaryName; | |||
403 | LookupResult Result(*this, &II, NameLoc, Kind); | |||
404 | if (LookupCtx) { | |||
405 | // Perform "qualified" name lookup into the declaration context we | |||
406 | // computed, which is either the type of the base of a member access | |||
407 | // expression or the declaration context associated with a prior | |||
408 | // nested-name-specifier. | |||
409 | LookupQualifiedName(Result, LookupCtx); | |||
410 | ||||
411 | if (ObjectTypePtr && Result.empty()) { | |||
412 | // C++ [basic.lookup.classref]p3: | |||
413 | // If the unqualified-id is ~type-name, the type-name is looked up | |||
414 | // in the context of the entire postfix-expression. If the type T of | |||
415 | // the object expression is of a class type C, the type-name is also | |||
416 | // looked up in the scope of class C. At least one of the lookups shall | |||
417 | // find a name that refers to (possibly cv-qualified) T. | |||
418 | LookupName(Result, S); | |||
419 | } | |||
420 | } else { | |||
421 | // Perform unqualified name lookup. | |||
422 | LookupName(Result, S); | |||
423 | ||||
424 | // For unqualified lookup in a class template in MSVC mode, look into | |||
425 | // dependent base classes where the primary class template is known. | |||
426 | if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) { | |||
427 | if (ParsedType TypeInBase = | |||
428 | recoverFromTypeInKnownDependentBase(*this, II, NameLoc)) | |||
429 | return TypeInBase; | |||
430 | } | |||
431 | } | |||
432 | ||||
433 | NamedDecl *IIDecl = nullptr; | |||
434 | UsingShadowDecl *FoundUsingShadow = nullptr; | |||
435 | switch (Result.getResultKind()) { | |||
436 | case LookupResult::NotFound: | |||
437 | case LookupResult::NotFoundInCurrentInstantiation: | |||
438 | if (CorrectedII) { | |||
439 | TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName, | |||
440 | AllowDeducedTemplate); | |||
441 | TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind, | |||
442 | S, SS, CCC, CTK_ErrorRecovery); | |||
443 | IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo(); | |||
444 | TemplateTy Template; | |||
445 | bool MemberOfUnknownSpecialization; | |||
446 | UnqualifiedId TemplateName; | |||
447 | TemplateName.setIdentifier(NewII, NameLoc); | |||
448 | NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier(); | |||
449 | CXXScopeSpec NewSS, *NewSSPtr = SS; | |||
450 | if (SS && NNS) { | |||
451 | NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); | |||
452 | NewSSPtr = &NewSS; | |||
453 | } | |||
454 | if (Correction && (NNS || NewII != &II) && | |||
455 | // Ignore a correction to a template type as the to-be-corrected | |||
456 | // identifier is not a template (typo correction for template names | |||
457 | // is handled elsewhere). | |||
458 | !(getLangOpts().CPlusPlus && NewSSPtr && | |||
459 | isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false, | |||
460 | Template, MemberOfUnknownSpecialization))) { | |||
461 | ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr, | |||
462 | isClassName, HasTrailingDot, ObjectTypePtr, | |||
463 | IsCtorOrDtorName, | |||
464 | WantNontrivialTypeSourceInfo, | |||
465 | IsClassTemplateDeductionContext); | |||
466 | if (Ty) { | |||
467 | diagnoseTypo(Correction, | |||
468 | PDiag(diag::err_unknown_type_or_class_name_suggest) | |||
469 | << Result.getLookupName() << isClassName); | |||
470 | if (SS && NNS) | |||
471 | SS->MakeTrivial(Context, NNS, SourceRange(NameLoc)); | |||
472 | *CorrectedII = NewII; | |||
473 | return Ty; | |||
474 | } | |||
475 | } | |||
476 | } | |||
477 | // If typo correction failed or was not performed, fall through | |||
478 | [[fallthrough]]; | |||
479 | case LookupResult::FoundOverloaded: | |||
480 | case LookupResult::FoundUnresolvedValue: | |||
481 | Result.suppressDiagnostics(); | |||
482 | return nullptr; | |||
483 | ||||
484 | case LookupResult::Ambiguous: | |||
485 | // Recover from type-hiding ambiguities by hiding the type. We'll | |||
486 | // do the lookup again when looking for an object, and we can | |||
487 | // diagnose the error then. If we don't do this, then the error | |||
488 | // about hiding the type will be immediately followed by an error | |||
489 | // that only makes sense if the identifier was treated like a type. | |||
490 | if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) { | |||
491 | Result.suppressDiagnostics(); | |||
492 | return nullptr; | |||
493 | } | |||
494 | ||||
495 | // Look to see if we have a type anywhere in the list of results. | |||
496 | for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end(); | |||
497 | Res != ResEnd; ++Res) { | |||
498 | NamedDecl *RealRes = (*Res)->getUnderlyingDecl(); | |||
499 | if (isa<TypeDecl, ObjCInterfaceDecl, UnresolvedUsingIfExistsDecl>( | |||
500 | RealRes) || | |||
501 | (AllowDeducedTemplate && getAsTypeTemplateDecl(RealRes))) { | |||
502 | if (!IIDecl || | |||
503 | // Make the selection of the recovery decl deterministic. | |||
504 | RealRes->getLocation() < IIDecl->getLocation()) { | |||
505 | IIDecl = RealRes; | |||
506 | FoundUsingShadow = dyn_cast<UsingShadowDecl>(*Res); | |||
507 | } | |||
508 | } | |||
509 | } | |||
510 | ||||
511 | if (!IIDecl) { | |||
512 | // None of the entities we found is a type, so there is no way | |||
513 | // to even assume that the result is a type. In this case, don't | |||
514 | // complain about the ambiguity. The parser will either try to | |||
515 | // perform this lookup again (e.g., as an object name), which | |||
516 | // will produce the ambiguity, or will complain that it expected | |||
517 | // a type name. | |||
518 | Result.suppressDiagnostics(); | |||
519 | return nullptr; | |||
520 | } | |||
521 | ||||
522 | // We found a type within the ambiguous lookup; diagnose the | |||
523 | // ambiguity and then return that type. This might be the right | |||
524 | // answer, or it might not be, but it suppresses any attempt to | |||
525 | // perform the name lookup again. | |||
526 | break; | |||
527 | ||||
528 | case LookupResult::Found: | |||
529 | IIDecl = Result.getFoundDecl(); | |||
530 | FoundUsingShadow = dyn_cast<UsingShadowDecl>(*Result.begin()); | |||
531 | break; | |||
532 | } | |||
533 | ||||
534 | assert(IIDecl && "Didn't find decl")(static_cast <bool> (IIDecl && "Didn't find decl" ) ? void (0) : __assert_fail ("IIDecl && \"Didn't find decl\"" , "clang/lib/Sema/SemaDecl.cpp", 534, __extension__ __PRETTY_FUNCTION__ )); | |||
535 | ||||
536 | QualType T; | |||
537 | if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) { | |||
538 | // C++ [class.qual]p2: A lookup that would find the injected-class-name | |||
539 | // instead names the constructors of the class, except when naming a class. | |||
540 | // This is ill-formed when we're not actually forming a ctor or dtor name. | |||
541 | auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); | |||
542 | auto *FoundRD = dyn_cast<CXXRecordDecl>(TD); | |||
543 | if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD && | |||
544 | FoundRD->isInjectedClassName() && | |||
545 | declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent()))) | |||
546 | Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor) | |||
547 | << &II << /*Type*/1; | |||
548 | ||||
549 | DiagnoseUseOfDecl(IIDecl, NameLoc); | |||
550 | ||||
551 | T = Context.getTypeDeclType(TD); | |||
552 | MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); | |||
553 | } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) { | |||
554 | (void)DiagnoseUseOfDecl(IDecl, NameLoc); | |||
555 | if (!HasTrailingDot) | |||
556 | T = Context.getObjCInterfaceType(IDecl); | |||
557 | FoundUsingShadow = nullptr; // FIXME: Target must be a TypeDecl. | |||
558 | } else if (auto *UD = dyn_cast<UnresolvedUsingIfExistsDecl>(IIDecl)) { | |||
559 | (void)DiagnoseUseOfDecl(UD, NameLoc); | |||
560 | // Recover with 'int' | |||
561 | return ParsedType::make(Context.IntTy); | |||
562 | } else if (AllowDeducedTemplate) { | |||
563 | if (auto *TD = getAsTypeTemplateDecl(IIDecl)) { | |||
564 | assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD)(static_cast <bool> (!FoundUsingShadow || FoundUsingShadow ->getTargetDecl() == TD) ? void (0) : __assert_fail ("!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD" , "clang/lib/Sema/SemaDecl.cpp", 564, __extension__ __PRETTY_FUNCTION__ )); | |||
565 | TemplateName Template = | |||
566 | FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD); | |||
567 | T = Context.getDeducedTemplateSpecializationType(Template, QualType(), | |||
568 | false); | |||
569 | // Don't wrap in a further UsingType. | |||
570 | FoundUsingShadow = nullptr; | |||
571 | } | |||
572 | } | |||
573 | ||||
574 | if (T.isNull()) { | |||
575 | // If it's not plausibly a type, suppress diagnostics. | |||
576 | Result.suppressDiagnostics(); | |||
577 | return nullptr; | |||
578 | } | |||
579 | ||||
580 | if (FoundUsingShadow) | |||
581 | T = Context.getUsingType(FoundUsingShadow, T); | |||
582 | ||||
583 | return buildNamedType(*this, SS, T, NameLoc, WantNontrivialTypeSourceInfo); | |||
584 | } | |||
585 | ||||
586 | // Builds a fake NNS for the given decl context. | |||
587 | static NestedNameSpecifier * | |||
588 | synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) { | |||
589 | for (;; DC = DC->getLookupParent()) { | |||
590 | DC = DC->getPrimaryContext(); | |||
591 | auto *ND = dyn_cast<NamespaceDecl>(DC); | |||
592 | if (ND && !ND->isInline() && !ND->isAnonymousNamespace()) | |||
593 | return NestedNameSpecifier::Create(Context, nullptr, ND); | |||
594 | else if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) | |||
595 | return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(), | |||
596 | RD->getTypeForDecl()); | |||
597 | else if (isa<TranslationUnitDecl>(DC)) | |||
598 | return NestedNameSpecifier::GlobalSpecifier(Context); | |||
599 | } | |||
600 | llvm_unreachable("something isn't in TU scope?")::llvm::llvm_unreachable_internal("something isn't in TU scope?" , "clang/lib/Sema/SemaDecl.cpp", 600); | |||
601 | } | |||
602 | ||||
603 | /// Find the parent class with dependent bases of the innermost enclosing method | |||
604 | /// context. Do not look for enclosing CXXRecordDecls directly, or we will end | |||
605 | /// up allowing unqualified dependent type names at class-level, which MSVC | |||
606 | /// correctly rejects. | |||
607 | static const CXXRecordDecl * | |||
608 | findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) { | |||
609 | for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) { | |||
610 | DC = DC->getPrimaryContext(); | |||
611 | if (const auto *MD = dyn_cast<CXXMethodDecl>(DC)) | |||
612 | if (MD->getParent()->hasAnyDependentBases()) | |||
613 | return MD->getParent(); | |||
614 | } | |||
615 | return nullptr; | |||
616 | } | |||
617 | ||||
618 | ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II, | |||
619 | SourceLocation NameLoc, | |||
620 | bool IsTemplateTypeArg) { | |||
621 | assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode")(static_cast <bool> (getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode") ? void (0) : __assert_fail ("getLangOpts().MSVCCompat && \"shouldn't be called in non-MSVC mode\"" , "clang/lib/Sema/SemaDecl.cpp", 621, __extension__ __PRETTY_FUNCTION__ )); | |||
622 | ||||
623 | NestedNameSpecifier *NNS = nullptr; | |||
624 | if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) { | |||
625 | // If we weren't able to parse a default template argument, delay lookup | |||
626 | // until instantiation time by making a non-dependent DependentTypeName. We | |||
627 | // pretend we saw a NestedNameSpecifier referring to the current scope, and | |||
628 | // lookup is retried. | |||
629 | // FIXME: This hurts our diagnostic quality, since we get errors like "no | |||
630 | // type named 'Foo' in 'current_namespace'" when the user didn't write any | |||
631 | // name specifiers. | |||
632 | NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext); | |||
633 | Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II; | |||
634 | } else if (const CXXRecordDecl *RD = | |||
635 | findRecordWithDependentBasesOfEnclosingMethod(CurContext)) { | |||
636 | // Build a DependentNameType that will perform lookup into RD at | |||
637 | // instantiation time. | |||
638 | NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(), | |||
639 | RD->getTypeForDecl()); | |||
640 | ||||
641 | // Diagnose that this identifier was undeclared, and retry the lookup during | |||
642 | // template instantiation. | |||
643 | Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II | |||
644 | << RD; | |||
645 | } else { | |||
646 | // This is not a situation that we should recover from. | |||
647 | return ParsedType(); | |||
648 | } | |||
649 | ||||
650 | QualType T = Context.getDependentNameType(ETK_None, NNS, &II); | |||
651 | ||||
652 | // Build type location information. We synthesized the qualifier, so we have | |||
653 | // to build a fake NestedNameSpecifierLoc. | |||
654 | NestedNameSpecifierLocBuilder NNSLocBuilder; | |||
655 | NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc)); | |||
656 | NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context); | |||
657 | ||||
658 | TypeLocBuilder Builder; | |||
659 | DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); | |||
660 | DepTL.setNameLoc(NameLoc); | |||
661 | DepTL.setElaboratedKeywordLoc(SourceLocation()); | |||
662 | DepTL.setQualifierLoc(QualifierLoc); | |||
663 | return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); | |||
664 | } | |||
665 | ||||
666 | /// isTagName() - This method is called *for error recovery purposes only* | |||
667 | /// to determine if the specified name is a valid tag name ("struct foo"). If | |||
668 | /// so, this returns the TST for the tag corresponding to it (TST_enum, | |||
669 | /// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose | |||
670 | /// cases in C where the user forgot to specify the tag. | |||
671 | DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) { | |||
672 | // Do a tag name lookup in this scope. | |||
673 | LookupResult R(*this, &II, SourceLocation(), LookupTagName); | |||
674 | LookupName(R, S, false); | |||
675 | R.suppressDiagnostics(); | |||
676 | if (R.getResultKind() == LookupResult::Found) | |||
677 | if (const TagDecl *TD = R.getAsSingle<TagDecl>()) { | |||
678 | switch (TD->getTagKind()) { | |||
679 | case TTK_Struct: return DeclSpec::TST_struct; | |||
680 | case TTK_Interface: return DeclSpec::TST_interface; | |||
681 | case TTK_Union: return DeclSpec::TST_union; | |||
682 | case TTK_Class: return DeclSpec::TST_class; | |||
683 | case TTK_Enum: return DeclSpec::TST_enum; | |||
684 | } | |||
685 | } | |||
686 | ||||
687 | return DeclSpec::TST_unspecified; | |||
688 | } | |||
689 | ||||
690 | /// isMicrosoftMissingTypename - In Microsoft mode, within class scope, | |||
691 | /// if a CXXScopeSpec's type is equal to the type of one of the base classes | |||
692 | /// then downgrade the missing typename error to a warning. | |||
693 | /// This is needed for MSVC compatibility; Example: | |||
694 | /// @code | |||
695 | /// template<class T> class A { | |||
696 | /// public: | |||
697 | /// typedef int TYPE; | |||
698 | /// }; | |||
699 | /// template<class T> class B : public A<T> { | |||
700 | /// public: | |||
701 | /// A<T>::TYPE a; // no typename required because A<T> is a base class. | |||
702 | /// }; | |||
703 | /// @endcode | |||
704 | bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) { | |||
705 | if (CurContext->isRecord()) { | |||
706 | if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super) | |||
707 | return true; | |||
708 | ||||
709 | const Type *Ty = SS->getScopeRep()->getAsType(); | |||
710 | ||||
711 | CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext); | |||
712 | for (const auto &Base : RD->bases()) | |||
713 | if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType())) | |||
714 | return true; | |||
715 | return S->isFunctionPrototypeScope(); | |||
716 | } | |||
717 | return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope(); | |||
718 | } | |||
719 | ||||
720 | void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II, | |||
721 | SourceLocation IILoc, | |||
722 | Scope *S, | |||
723 | CXXScopeSpec *SS, | |||
724 | ParsedType &SuggestedType, | |||
725 | bool IsTemplateName) { | |||
726 | // Don't report typename errors for editor placeholders. | |||
727 | if (II->isEditorPlaceholder()) | |||
728 | return; | |||
729 | // We don't have anything to suggest (yet). | |||
730 | SuggestedType = nullptr; | |||
731 | ||||
732 | // There may have been a typo in the name of the type. Look up typo | |||
733 | // results, in case we have something that we can suggest. | |||
734 | TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false, | |||
735 | /*AllowTemplates=*/IsTemplateName, | |||
736 | /*AllowNonTemplates=*/!IsTemplateName); | |||
737 | if (TypoCorrection Corrected = | |||
738 | CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS, | |||
739 | CCC, CTK_ErrorRecovery)) { | |||
740 | // FIXME: Support error recovery for the template-name case. | |||
741 | bool CanRecover = !IsTemplateName; | |||
742 | if (Corrected.isKeyword()) { | |||
743 | // We corrected to a keyword. | |||
744 | diagnoseTypo(Corrected, | |||
745 | PDiag(IsTemplateName ? diag::err_no_template_suggest | |||
746 | : diag::err_unknown_typename_suggest) | |||
747 | << II); | |||
748 | II = Corrected.getCorrectionAsIdentifierInfo(); | |||
749 | } else { | |||
750 | // We found a similarly-named type or interface; suggest that. | |||
751 | if (!SS || !SS->isSet()) { | |||
752 | diagnoseTypo(Corrected, | |||
753 | PDiag(IsTemplateName ? diag::err_no_template_suggest | |||
754 | : diag::err_unknown_typename_suggest) | |||
755 | << II, CanRecover); | |||
756 | } else if (DeclContext *DC = computeDeclContext(*SS, false)) { | |||
757 | std::string CorrectedStr(Corrected.getAsString(getLangOpts())); | |||
758 | bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && | |||
759 | II->getName().equals(CorrectedStr); | |||
760 | diagnoseTypo(Corrected, | |||
761 | PDiag(IsTemplateName | |||
762 | ? diag::err_no_member_template_suggest | |||
763 | : diag::err_unknown_nested_typename_suggest) | |||
764 | << II << DC << DroppedSpecifier << SS->getRange(), | |||
765 | CanRecover); | |||
766 | } else { | |||
767 | llvm_unreachable("could not have corrected a typo here")::llvm::llvm_unreachable_internal("could not have corrected a typo here" , "clang/lib/Sema/SemaDecl.cpp", 767); | |||
768 | } | |||
769 | ||||
770 | if (!CanRecover) | |||
771 | return; | |||
772 | ||||
773 | CXXScopeSpec tmpSS; | |||
774 | if (Corrected.getCorrectionSpecifier()) | |||
775 | tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), | |||
776 | SourceRange(IILoc)); | |||
777 | // FIXME: Support class template argument deduction here. | |||
778 | SuggestedType = | |||
779 | getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S, | |||
780 | tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr, | |||
781 | /*IsCtorOrDtorName=*/false, | |||
782 | /*WantNontrivialTypeSourceInfo=*/true); | |||
783 | } | |||
784 | return; | |||
785 | } | |||
786 | ||||
787 | if (getLangOpts().CPlusPlus && !IsTemplateName) { | |||
788 | // See if II is a class template that the user forgot to pass arguments to. | |||
789 | UnqualifiedId Name; | |||
790 | Name.setIdentifier(II, IILoc); | |||
791 | CXXScopeSpec EmptySS; | |||
792 | TemplateTy TemplateResult; | |||
793 | bool MemberOfUnknownSpecialization; | |||
794 | if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false, | |||
795 | Name, nullptr, true, TemplateResult, | |||
796 | MemberOfUnknownSpecialization) == TNK_Type_template) { | |||
797 | diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc); | |||
798 | return; | |||
799 | } | |||
800 | } | |||
801 | ||||
802 | // FIXME: Should we move the logic that tries to recover from a missing tag | |||
803 | // (struct, union, enum) from Parser::ParseImplicitInt here, instead? | |||
804 | ||||
805 | if (!SS || (!SS->isSet() && !SS->isInvalid())) | |||
806 | Diag(IILoc, IsTemplateName ? diag::err_no_template | |||
807 | : diag::err_unknown_typename) | |||
808 | << II; | |||
809 | else if (DeclContext *DC = computeDeclContext(*SS, false)) | |||
810 | Diag(IILoc, IsTemplateName ? diag::err_no_member_template | |||
811 | : diag::err_typename_nested_not_found) | |||
812 | << II << DC << SS->getRange(); | |||
813 | else if (SS->isValid() && SS->getScopeRep()->containsErrors()) { | |||
814 | SuggestedType = | |||
815 | ActOnTypenameType(S, SourceLocation(), *SS, *II, IILoc).get(); | |||
816 | } else if (isDependentScopeSpecifier(*SS)) { | |||
817 | unsigned DiagID = diag::err_typename_missing; | |||
818 | if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S)) | |||
819 | DiagID = diag::ext_typename_missing; | |||
820 | ||||
821 | Diag(SS->getRange().getBegin(), DiagID) | |||
822 | << SS->getScopeRep() << II->getName() | |||
823 | << SourceRange(SS->getRange().getBegin(), IILoc) | |||
824 | << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename "); | |||
825 | SuggestedType = ActOnTypenameType(S, SourceLocation(), | |||
826 | *SS, *II, IILoc).get(); | |||
827 | } else { | |||
828 | assert(SS && SS->isInvalid() &&(static_cast <bool> (SS && SS->isInvalid() && "Invalid scope specifier has already been diagnosed") ? void (0) : __assert_fail ("SS && SS->isInvalid() && \"Invalid scope specifier has already been diagnosed\"" , "clang/lib/Sema/SemaDecl.cpp", 829, __extension__ __PRETTY_FUNCTION__ )) | |||
829 | "Invalid scope specifier has already been diagnosed")(static_cast <bool> (SS && SS->isInvalid() && "Invalid scope specifier has already been diagnosed") ? void (0) : __assert_fail ("SS && SS->isInvalid() && \"Invalid scope specifier has already been diagnosed\"" , "clang/lib/Sema/SemaDecl.cpp", 829, __extension__ __PRETTY_FUNCTION__ )); | |||
830 | } | |||
831 | } | |||
832 | ||||
833 | /// Determine whether the given result set contains either a type name | |||
834 | /// or | |||
835 | static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) { | |||
836 | bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus && | |||
837 | NextToken.is(tok::less); | |||
838 | ||||
839 | for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { | |||
840 | if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I)) | |||
841 | return true; | |||
842 | ||||
843 | if (CheckTemplate && isa<TemplateDecl>(*I)) | |||
844 | return true; | |||
845 | } | |||
846 | ||||
847 | return false; | |||
848 | } | |||
849 | ||||
850 | static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result, | |||
851 | Scope *S, CXXScopeSpec &SS, | |||
852 | IdentifierInfo *&Name, | |||
853 | SourceLocation NameLoc) { | |||
854 | LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName); | |||
855 | SemaRef.LookupParsedName(R, S, &SS); | |||
856 | if (TagDecl *Tag = R.getAsSingle<TagDecl>()) { | |||
857 | StringRef FixItTagName; | |||
858 | switch (Tag->getTagKind()) { | |||
859 | case TTK_Class: | |||
860 | FixItTagName = "class "; | |||
861 | break; | |||
862 | ||||
863 | case TTK_Enum: | |||
864 | FixItTagName = "enum "; | |||
865 | break; | |||
866 | ||||
867 | case TTK_Struct: | |||
868 | FixItTagName = "struct "; | |||
869 | break; | |||
870 | ||||
871 | case TTK_Interface: | |||
872 | FixItTagName = "__interface "; | |||
873 | break; | |||
874 | ||||
875 | case TTK_Union: | |||
876 | FixItTagName = "union "; | |||
877 | break; | |||
878 | } | |||
879 | ||||
880 | StringRef TagName = FixItTagName.drop_back(); | |||
881 | SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag) | |||
882 | << Name << TagName << SemaRef.getLangOpts().CPlusPlus | |||
883 | << FixItHint::CreateInsertion(NameLoc, FixItTagName); | |||
884 | ||||
885 | for (LookupResult::iterator I = Result.begin(), IEnd = Result.end(); | |||
886 | I != IEnd; ++I) | |||
887 | SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type) | |||
888 | << Name << TagName; | |||
889 | ||||
890 | // Replace lookup results with just the tag decl. | |||
891 | Result.clear(Sema::LookupTagName); | |||
892 | SemaRef.LookupParsedName(Result, S, &SS); | |||
893 | return true; | |||
894 | } | |||
895 | ||||
896 | return false; | |||
897 | } | |||
898 | ||||
899 | Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, | |||
900 | IdentifierInfo *&Name, | |||
901 | SourceLocation NameLoc, | |||
902 | const Token &NextToken, | |||
903 | CorrectionCandidateCallback *CCC) { | |||
904 | DeclarationNameInfo NameInfo(Name, NameLoc); | |||
905 | ObjCMethodDecl *CurMethod = getCurMethodDecl(); | |||
906 | ||||
907 | assert(NextToken.isNot(tok::coloncolon) &&(static_cast <bool> (NextToken.isNot(tok::coloncolon) && "parse nested name specifiers before calling ClassifyName") ? void (0) : __assert_fail ("NextToken.isNot(tok::coloncolon) && \"parse nested name specifiers before calling ClassifyName\"" , "clang/lib/Sema/SemaDecl.cpp", 908, __extension__ __PRETTY_FUNCTION__ )) | |||
908 | "parse nested name specifiers before calling ClassifyName")(static_cast <bool> (NextToken.isNot(tok::coloncolon) && "parse nested name specifiers before calling ClassifyName") ? void (0) : __assert_fail ("NextToken.isNot(tok::coloncolon) && \"parse nested name specifiers before calling ClassifyName\"" , "clang/lib/Sema/SemaDecl.cpp", 908, __extension__ __PRETTY_FUNCTION__ )); | |||
909 | if (getLangOpts().CPlusPlus && SS.isSet() && | |||
910 | isCurrentClassName(*Name, S, &SS)) { | |||
911 | // Per [class.qual]p2, this names the constructors of SS, not the | |||
912 | // injected-class-name. We don't have a classification for that. | |||
913 | // There's not much point caching this result, since the parser | |||
914 | // will reject it later. | |||
915 | return NameClassification::Unknown(); | |||
916 | } | |||
917 | ||||
918 | LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); | |||
919 | LookupParsedName(Result, S, &SS, !CurMethod); | |||
920 | ||||
921 | if (SS.isInvalid()) | |||
922 | return NameClassification::Error(); | |||
923 | ||||
924 | // For unqualified lookup in a class template in MSVC mode, look into | |||
925 | // dependent base classes where the primary class template is known. | |||
926 | if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) { | |||
927 | if (ParsedType TypeInBase = | |||
928 | recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc)) | |||
929 | return TypeInBase; | |||
930 | } | |||
931 | ||||
932 | // Perform lookup for Objective-C instance variables (including automatically | |||
933 | // synthesized instance variables), if we're in an Objective-C method. | |||
934 | // FIXME: This lookup really, really needs to be folded in to the normal | |||
935 | // unqualified lookup mechanism. | |||
936 | if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) { | |||
937 | DeclResult Ivar = LookupIvarInObjCMethod(Result, S, Name); | |||
938 | if (Ivar.isInvalid()) | |||
939 | return NameClassification::Error(); | |||
940 | if (Ivar.isUsable()) | |||
941 | return NameClassification::NonType(cast<NamedDecl>(Ivar.get())); | |||
942 | ||||
943 | // We defer builtin creation until after ivar lookup inside ObjC methods. | |||
944 | if (Result.empty()) | |||
945 | LookupBuiltin(Result); | |||
946 | } | |||
947 | ||||
948 | bool SecondTry = false; | |||
949 | bool IsFilteredTemplateName = false; | |||
950 | ||||
951 | Corrected: | |||
952 | switch (Result.getResultKind()) { | |||
953 | case LookupResult::NotFound: | |||
954 | // If an unqualified-id is followed by a '(', then we have a function | |||
955 | // call. | |||
956 | if (SS.isEmpty() && NextToken.is(tok::l_paren)) { | |||
957 | // In C++, this is an ADL-only call. | |||
958 | // FIXME: Reference? | |||
959 | if (getLangOpts().CPlusPlus) | |||
960 | return NameClassification::UndeclaredNonType(); | |||
961 | ||||
962 | // C90 6.3.2.2: | |||
963 | // If the expression that precedes the parenthesized argument list in a | |||
964 | // function call consists solely of an identifier, and if no | |||
965 | // declaration is visible for this identifier, the identifier is | |||
966 | // implicitly declared exactly as if, in the innermost block containing | |||
967 | // the function call, the declaration | |||
968 | // | |||
969 | // extern int identifier (); | |||
970 | // | |||
971 | // appeared. | |||
972 | // | |||
973 | // We also allow this in C99 as an extension. However, this is not | |||
974 | // allowed in all language modes as functions without prototypes may not | |||
975 | // be supported. | |||
976 | if (getLangOpts().implicitFunctionsAllowed()) { | |||
977 | if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) | |||
978 | return NameClassification::NonType(D); | |||
979 | } | |||
980 | } | |||
981 | ||||
982 | if (getLangOpts().CPlusPlus20 && SS.isEmpty() && NextToken.is(tok::less)) { | |||
983 | // In C++20 onwards, this could be an ADL-only call to a function | |||
984 | // template, and we're required to assume that this is a template name. | |||
985 | // | |||
986 | // FIXME: Find a way to still do typo correction in this case. | |||
987 | TemplateName Template = | |||
988 | Context.getAssumedTemplateName(NameInfo.getName()); | |||
989 | return NameClassification::UndeclaredTemplate(Template); | |||
990 | } | |||
991 | ||||
992 | // In C, we first see whether there is a tag type by the same name, in | |||
993 | // which case it's likely that the user just forgot to write "enum", | |||
994 | // "struct", or "union". | |||
995 | if (!getLangOpts().CPlusPlus && !SecondTry && | |||
996 | isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { | |||
997 | break; | |||
998 | } | |||
999 | ||||
1000 | // Perform typo correction to determine if there is another name that is | |||
1001 | // close to this name. | |||
1002 | if (!SecondTry && CCC) { | |||
1003 | SecondTry = true; | |||
1004 | if (TypoCorrection Corrected = | |||
1005 | CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S, | |||
1006 | &SS, *CCC, CTK_ErrorRecovery)) { | |||
1007 | unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest; | |||
1008 | unsigned QualifiedDiag = diag::err_no_member_suggest; | |||
1009 | ||||
1010 | NamedDecl *FirstDecl = Corrected.getFoundDecl(); | |||
1011 | NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl(); | |||
1012 | if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && | |||
1013 | UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) { | |||
1014 | UnqualifiedDiag = diag::err_no_template_suggest; | |||
1015 | QualifiedDiag = diag::err_no_member_template_suggest; | |||
1016 | } else if (UnderlyingFirstDecl && | |||
1017 | (isa<TypeDecl>(UnderlyingFirstDecl) || | |||
1018 | isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) || | |||
1019 | isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) { | |||
1020 | UnqualifiedDiag = diag::err_unknown_typename_suggest; | |||
1021 | QualifiedDiag = diag::err_unknown_nested_typename_suggest; | |||
1022 | } | |||
1023 | ||||
1024 | if (SS.isEmpty()) { | |||
1025 | diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name); | |||
1026 | } else {// FIXME: is this even reachable? Test it. | |||
1027 | std::string CorrectedStr(Corrected.getAsString(getLangOpts())); | |||
1028 | bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && | |||
1029 | Name->getName().equals(CorrectedStr); | |||
1030 | diagnoseTypo(Corrected, PDiag(QualifiedDiag) | |||
1031 | << Name << computeDeclContext(SS, false) | |||
1032 | << DroppedSpecifier << SS.getRange()); | |||
1033 | } | |||
1034 | ||||
1035 | // Update the name, so that the caller has the new name. | |||
1036 | Name = Corrected.getCorrectionAsIdentifierInfo(); | |||
1037 | ||||
1038 | // Typo correction corrected to a keyword. | |||
1039 | if (Corrected.isKeyword()) | |||
1040 | return Name; | |||
1041 | ||||
1042 | // Also update the LookupResult... | |||
1043 | // FIXME: This should probably go away at some point | |||
1044 | Result.clear(); | |||
1045 | Result.setLookupName(Corrected.getCorrection()); | |||
1046 | if (FirstDecl) | |||
1047 | Result.addDecl(FirstDecl); | |||
1048 | ||||
1049 | // If we found an Objective-C instance variable, let | |||
1050 | // LookupInObjCMethod build the appropriate expression to | |||
1051 | // reference the ivar. | |||
1052 | // FIXME: This is a gross hack. | |||
1053 | if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) { | |||
1054 | DeclResult R = | |||
1055 | LookupIvarInObjCMethod(Result, S, Ivar->getIdentifier()); | |||
1056 | if (R.isInvalid()) | |||
1057 | return NameClassification::Error(); | |||
1058 | if (R.isUsable()) | |||
1059 | return NameClassification::NonType(Ivar); | |||
1060 | } | |||
1061 | ||||
1062 | goto Corrected; | |||
1063 | } | |||
1064 | } | |||
1065 | ||||
1066 | // We failed to correct; just fall through and let the parser deal with it. | |||
1067 | Result.suppressDiagnostics(); | |||
1068 | return NameClassification::Unknown(); | |||
1069 | ||||
1070 | case LookupResult::NotFoundInCurrentInstantiation: { | |||
1071 | // We performed name lookup into the current instantiation, and there were | |||
1072 | // dependent bases, so we treat this result the same way as any other | |||
1073 | // dependent nested-name-specifier. | |||
1074 | ||||
1075 | // C++ [temp.res]p2: | |||
1076 | // A name used in a template declaration or definition and that is | |||
1077 | // dependent on a template-parameter is assumed not to name a type | |||
1078 | // unless the applicable name lookup finds a type name or the name is | |||
1079 | // qualified by the keyword typename. | |||
1080 | // | |||
1081 | // FIXME: If the next token is '<', we might want to ask the parser to | |||
1082 | // perform some heroics to see if we actually have a | |||
1083 | // template-argument-list, which would indicate a missing 'template' | |||
1084 | // keyword here. | |||
1085 | return NameClassification::DependentNonType(); | |||
1086 | } | |||
1087 | ||||
1088 | case LookupResult::Found: | |||
1089 | case LookupResult::FoundOverloaded: | |||
1090 | case LookupResult::FoundUnresolvedValue: | |||
1091 | break; | |||
1092 | ||||
1093 | case LookupResult::Ambiguous: | |||
1094 | if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && | |||
1095 | hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true, | |||
1096 | /*AllowDependent=*/false)) { | |||
1097 | // C++ [temp.local]p3: | |||
1098 | // A lookup that finds an injected-class-name (10.2) can result in an | |||
1099 | // ambiguity in certain cases (for example, if it is found in more than | |||
1100 | // one base class). If all of the injected-class-names that are found | |||
1101 | // refer to specializations of the same class template, and if the name | |||
1102 | // is followed by a template-argument-list, the reference refers to the | |||
1103 | // class template itself and not a specialization thereof, and is not | |||
1104 | // ambiguous. | |||
1105 | // | |||
1106 | // This filtering can make an ambiguous result into an unambiguous one, | |||
1107 | // so try again after filtering out template names. | |||
1108 | FilterAcceptableTemplateNames(Result); | |||
1109 | if (!Result.isAmbiguous()) { | |||
1110 | IsFilteredTemplateName = true; | |||
1111 | break; | |||
1112 | } | |||
1113 | } | |||
1114 | ||||
1115 | // Diagnose the ambiguity and return an error. | |||
1116 | return NameClassification::Error(); | |||
1117 | } | |||
1118 | ||||
1119 | if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && | |||
1120 | (IsFilteredTemplateName || | |||
1121 | hasAnyAcceptableTemplateNames( | |||
1122 | Result, /*AllowFunctionTemplates=*/true, | |||
1123 | /*AllowDependent=*/false, | |||
1124 | /*AllowNonTemplateFunctions*/ SS.isEmpty() && | |||
1125 | getLangOpts().CPlusPlus20))) { | |||
1126 | // C++ [temp.names]p3: | |||
1127 | // After name lookup (3.4) finds that a name is a template-name or that | |||
1128 | // an operator-function-id or a literal- operator-id refers to a set of | |||
1129 | // overloaded functions any member of which is a function template if | |||
1130 | // this is followed by a <, the < is always taken as the delimiter of a | |||
1131 | // template-argument-list and never as the less-than operator. | |||
1132 | // C++2a [temp.names]p2: | |||
1133 | // A name is also considered to refer to a template if it is an | |||
1134 | // unqualified-id followed by a < and name lookup finds either one | |||
1135 | // or more functions or finds nothing. | |||
1136 | if (!IsFilteredTemplateName) | |||
1137 | FilterAcceptableTemplateNames(Result); | |||
1138 | ||||
1139 | bool IsFunctionTemplate; | |||
1140 | bool IsVarTemplate; | |||
1141 | TemplateName Template; | |||
1142 | if (Result.end() - Result.begin() > 1) { | |||
1143 | IsFunctionTemplate = true; | |||
1144 | Template = Context.getOverloadedTemplateName(Result.begin(), | |||
1145 | Result.end()); | |||
1146 | } else if (!Result.empty()) { | |||
1147 | auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl( | |||
1148 | *Result.begin(), /*AllowFunctionTemplates=*/true, | |||
1149 | /*AllowDependent=*/false)); | |||
1150 | IsFunctionTemplate = isa<FunctionTemplateDecl>(TD); | |||
1151 | IsVarTemplate = isa<VarTemplateDecl>(TD); | |||
1152 | ||||
1153 | UsingShadowDecl *FoundUsingShadow = | |||
1154 | dyn_cast<UsingShadowDecl>(*Result.begin()); | |||
1155 | assert(!FoundUsingShadow ||(static_cast <bool> (!FoundUsingShadow || TD == cast< TemplateDecl>(FoundUsingShadow->getTargetDecl())) ? void (0) : __assert_fail ("!FoundUsingShadow || TD == cast<TemplateDecl>(FoundUsingShadow->getTargetDecl())" , "clang/lib/Sema/SemaDecl.cpp", 1156, __extension__ __PRETTY_FUNCTION__ )) | |||
1156 | TD == cast<TemplateDecl>(FoundUsingShadow->getTargetDecl()))(static_cast <bool> (!FoundUsingShadow || TD == cast< TemplateDecl>(FoundUsingShadow->getTargetDecl())) ? void (0) : __assert_fail ("!FoundUsingShadow || TD == cast<TemplateDecl>(FoundUsingShadow->getTargetDecl())" , "clang/lib/Sema/SemaDecl.cpp", 1156, __extension__ __PRETTY_FUNCTION__ )); | |||
1157 | Template = | |||
1158 | FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD); | |||
1159 | if (SS.isNotEmpty()) | |||
1160 | Template = Context.getQualifiedTemplateName(SS.getScopeRep(), | |||
1161 | /*TemplateKeyword=*/false, | |||
1162 | Template); | |||
1163 | } else { | |||
1164 | // All results were non-template functions. This is a function template | |||
1165 | // name. | |||
1166 | IsFunctionTemplate = true; | |||
1167 | Template = Context.getAssumedTemplateName(NameInfo.getName()); | |||
1168 | } | |||
1169 | ||||
1170 | if (IsFunctionTemplate) { | |||
1171 | // Function templates always go through overload resolution, at which | |||
1172 | // point we'll perform the various checks (e.g., accessibility) we need | |||
1173 | // to based on which function we selected. | |||
1174 | Result.suppressDiagnostics(); | |||
1175 | ||||
1176 | return NameClassification::FunctionTemplate(Template); | |||
1177 | } | |||
1178 | ||||
1179 | return IsVarTemplate ? NameClassification::VarTemplate(Template) | |||
1180 | : NameClassification::TypeTemplate(Template); | |||
1181 | } | |||
1182 | ||||
1183 | auto BuildTypeFor = [&](TypeDecl *Type, NamedDecl *Found) { | |||
1184 | QualType T = Context.getTypeDeclType(Type); | |||
1185 | if (const auto *USD = dyn_cast<UsingShadowDecl>(Found)) | |||
1186 | T = Context.getUsingType(USD, T); | |||
1187 | return buildNamedType(*this, &SS, T, NameLoc); | |||
1188 | }; | |||
1189 | ||||
1190 | NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl(); | |||
1191 | if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) { | |||
1192 | DiagnoseUseOfDecl(Type, NameLoc); | |||
1193 | MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); | |||
1194 | return BuildTypeFor(Type, *Result.begin()); | |||
1195 | } | |||
1196 | ||||
1197 | ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl); | |||
1198 | if (!Class) { | |||
1199 | // FIXME: It's unfortunate that we don't have a Type node for handling this. | |||
1200 | if (ObjCCompatibleAliasDecl *Alias = | |||
1201 | dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl)) | |||
1202 | Class = Alias->getClassInterface(); | |||
1203 | } | |||
1204 | ||||
1205 | if (Class) { | |||
1206 | DiagnoseUseOfDecl(Class, NameLoc); | |||
1207 | ||||
1208 | if (NextToken.is(tok::period)) { | |||
1209 | // Interface. <something> is parsed as a property reference expression. | |||
1210 | // Just return "unknown" as a fall-through for now. | |||
1211 | Result.suppressDiagnostics(); | |||
1212 | return NameClassification::Unknown(); | |||
1213 | } | |||
1214 | ||||
1215 | QualType T = Context.getObjCInterfaceType(Class); | |||
1216 | return ParsedType::make(T); | |||
1217 | } | |||
1218 | ||||
1219 | if (isa<ConceptDecl>(FirstDecl)) | |||
1220 | return NameClassification::Concept( | |||
1221 | TemplateName(cast<TemplateDecl>(FirstDecl))); | |||
1222 | ||||
1223 | if (auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(FirstDecl)) { | |||
1224 | (void)DiagnoseUseOfDecl(EmptyD, NameLoc); | |||
1225 | return NameClassification::Error(); | |||
1226 | } | |||
1227 | ||||
1228 | // We can have a type template here if we're classifying a template argument. | |||
1229 | if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) && | |||
1230 | !isa<VarTemplateDecl>(FirstDecl)) | |||
1231 | return NameClassification::TypeTemplate( | |||
1232 | TemplateName(cast<TemplateDecl>(FirstDecl))); | |||
1233 | ||||
1234 | // Check for a tag type hidden by a non-type decl in a few cases where it | |||
1235 | // seems likely a type is wanted instead of the non-type that was found. | |||
1236 | bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star); | |||
1237 | if ((NextToken.is(tok::identifier) || | |||
1238 | (NextIsOp && | |||
1239 | FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) && | |||
1240 | isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { | |||
1241 | TypeDecl *Type = Result.getAsSingle<TypeDecl>(); | |||
1242 | DiagnoseUseOfDecl(Type, NameLoc); | |||
1243 | return BuildTypeFor(Type, *Result.begin()); | |||
1244 | } | |||
1245 | ||||
1246 | // If we already know which single declaration is referenced, just annotate | |||
1247 | // that declaration directly. Defer resolving even non-overloaded class | |||
1248 | // member accesses, as we need to defer certain access checks until we know | |||
1249 | // the context. | |||
1250 | bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren)); | |||
1251 | if (Result.isSingleResult() && !ADL && | |||
1252 | (!FirstDecl->isCXXClassMember() || isa<EnumConstantDecl>(FirstDecl))) | |||
1253 | return NameClassification::NonType(Result.getRepresentativeDecl()); | |||
1254 | ||||
1255 | // Otherwise, this is an overload set that we will need to resolve later. | |||
1256 | Result.suppressDiagnostics(); | |||
1257 | return NameClassification::OverloadSet(UnresolvedLookupExpr::Create( | |||
1258 | Context, Result.getNamingClass(), SS.getWithLocInContext(Context), | |||
1259 | Result.getLookupNameInfo(), ADL, Result.isOverloadedResult(), | |||
1260 | Result.begin(), Result.end())); | |||
1261 | } | |||
1262 | ||||
1263 | ExprResult | |||
1264 | Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name, | |||
1265 | SourceLocation NameLoc) { | |||
1266 | assert(getLangOpts().CPlusPlus && "ADL-only call in C?")(static_cast <bool> (getLangOpts().CPlusPlus && "ADL-only call in C?") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"ADL-only call in C?\"" , "clang/lib/Sema/SemaDecl.cpp", 1266, __extension__ __PRETTY_FUNCTION__ )); | |||
1267 | CXXScopeSpec SS; | |||
1268 | LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); | |||
1269 | return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true); | |||
1270 | } | |||
1271 | ||||
1272 | ExprResult | |||
1273 | Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS, | |||
1274 | IdentifierInfo *Name, | |||
1275 | SourceLocation NameLoc, | |||
1276 | bool IsAddressOfOperand) { | |||
1277 | DeclarationNameInfo NameInfo(Name, NameLoc); | |||
1278 | return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(), | |||
1279 | NameInfo, IsAddressOfOperand, | |||
1280 | /*TemplateArgs=*/nullptr); | |||
1281 | } | |||
1282 | ||||
1283 | ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS, | |||
1284 | NamedDecl *Found, | |||
1285 | SourceLocation NameLoc, | |||
1286 | const Token &NextToken) { | |||
1287 | if (getCurMethodDecl() && SS.isEmpty()) | |||
1288 | if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Found->getUnderlyingDecl())) | |||
1289 | return BuildIvarRefExpr(S, NameLoc, Ivar); | |||
1290 | ||||
1291 | // Reconstruct the lookup result. | |||
1292 | LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName); | |||
1293 | Result.addDecl(Found); | |||
1294 | Result.resolveKind(); | |||
1295 | ||||
1296 | bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren)); | |||
1297 | return BuildDeclarationNameExpr(SS, Result, ADL, /*AcceptInvalidDecl=*/true); | |||
1298 | } | |||
1299 | ||||
1300 | ExprResult Sema::ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *E) { | |||
1301 | // For an implicit class member access, transform the result into a member | |||
1302 | // access expression if necessary. | |||
1303 | auto *ULE = cast<UnresolvedLookupExpr>(E); | |||
1304 | if ((*ULE->decls_begin())->isCXXClassMember()) { | |||
1305 | CXXScopeSpec SS; | |||
1306 | SS.Adopt(ULE->getQualifierLoc()); | |||
1307 | ||||
1308 | // Reconstruct the lookup result. | |||
1309 | LookupResult Result(*this, ULE->getName(), ULE->getNameLoc(), | |||
1310 | LookupOrdinaryName); | |||
1311 | Result.setNamingClass(ULE->getNamingClass()); | |||
1312 | for (auto I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I) | |||
1313 | Result.addDecl(*I, I.getAccess()); | |||
1314 | Result.resolveKind(); | |||
1315 | return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, | |||
1316 | nullptr, S); | |||
1317 | } | |||
1318 | ||||
1319 | // Otherwise, this is already in the form we needed, and no further checks | |||
1320 | // are necessary. | |||
1321 | return ULE; | |||
1322 | } | |||
1323 | ||||
1324 | Sema::TemplateNameKindForDiagnostics | |||
1325 | Sema::getTemplateNameKindForDiagnostics(TemplateName Name) { | |||
1326 | auto *TD = Name.getAsTemplateDecl(); | |||
1327 | if (!TD) | |||
1328 | return TemplateNameKindForDiagnostics::DependentTemplate; | |||
1329 | if (isa<ClassTemplateDecl>(TD)) | |||
1330 | return TemplateNameKindForDiagnostics::ClassTemplate; | |||
1331 | if (isa<FunctionTemplateDecl>(TD)) | |||
1332 | return TemplateNameKindForDiagnostics::FunctionTemplate; | |||
1333 | if (isa<VarTemplateDecl>(TD)) | |||
1334 | return TemplateNameKindForDiagnostics::VarTemplate; | |||
1335 | if (isa<TypeAliasTemplateDecl>(TD)) | |||
1336 | return TemplateNameKindForDiagnostics::AliasTemplate; | |||
1337 | if (isa<TemplateTemplateParmDecl>(TD)) | |||
1338 | return TemplateNameKindForDiagnostics::TemplateTemplateParam; | |||
1339 | if (isa<ConceptDecl>(TD)) | |||
1340 | return TemplateNameKindForDiagnostics::Concept; | |||
1341 | return TemplateNameKindForDiagnostics::DependentTemplate; | |||
1342 | } | |||
1343 | ||||
1344 | void Sema::PushDeclContext(Scope *S, DeclContext *DC) { | |||
1345 | assert(DC->getLexicalParent() == CurContext &&(static_cast <bool> (DC->getLexicalParent() == CurContext && "The next DeclContext should be lexically contained in the current one." ) ? void (0) : __assert_fail ("DC->getLexicalParent() == CurContext && \"The next DeclContext should be lexically contained in the current one.\"" , "clang/lib/Sema/SemaDecl.cpp", 1346, __extension__ __PRETTY_FUNCTION__ )) | |||
1346 | "The next DeclContext should be lexically contained in the current one.")(static_cast <bool> (DC->getLexicalParent() == CurContext && "The next DeclContext should be lexically contained in the current one." ) ? void (0) : __assert_fail ("DC->getLexicalParent() == CurContext && \"The next DeclContext should be lexically contained in the current one.\"" , "clang/lib/Sema/SemaDecl.cpp", 1346, __extension__ __PRETTY_FUNCTION__ )); | |||
1347 | CurContext = DC; | |||
1348 | S->setEntity(DC); | |||
1349 | } | |||
1350 | ||||
1351 | void Sema::PopDeclContext() { | |||
1352 | assert(CurContext && "DeclContext imbalance!")(static_cast <bool> (CurContext && "DeclContext imbalance!" ) ? void (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\"" , "clang/lib/Sema/SemaDecl.cpp", 1352, __extension__ __PRETTY_FUNCTION__ )); | |||
1353 | ||||
1354 | CurContext = CurContext->getLexicalParent(); | |||
1355 | assert(CurContext && "Popped translation unit!")(static_cast <bool> (CurContext && "Popped translation unit!" ) ? void (0) : __assert_fail ("CurContext && \"Popped translation unit!\"" , "clang/lib/Sema/SemaDecl.cpp", 1355, __extension__ __PRETTY_FUNCTION__ )); | |||
1356 | } | |||
1357 | ||||
1358 | Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S, | |||
1359 | Decl *D) { | |||
1360 | // Unlike PushDeclContext, the context to which we return is not necessarily | |||
1361 | // the containing DC of TD, because the new context will be some pre-existing | |||
1362 | // TagDecl definition instead of a fresh one. | |||
1363 | auto Result = static_cast<SkippedDefinitionContext>(CurContext); | |||
1364 | CurContext = cast<TagDecl>(D)->getDefinition(); | |||
1365 | assert(CurContext && "skipping definition of undefined tag")(static_cast <bool> (CurContext && "skipping definition of undefined tag" ) ? void (0) : __assert_fail ("CurContext && \"skipping definition of undefined tag\"" , "clang/lib/Sema/SemaDecl.cpp", 1365, __extension__ __PRETTY_FUNCTION__ )); | |||
1366 | // Start lookups from the parent of the current context; we don't want to look | |||
1367 | // into the pre-existing complete definition. | |||
1368 | S->setEntity(CurContext->getLookupParent()); | |||
1369 | return Result; | |||
1370 | } | |||
1371 | ||||
1372 | void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) { | |||
1373 | CurContext = static_cast<decltype(CurContext)>(Context); | |||
1374 | } | |||
1375 | ||||
1376 | /// EnterDeclaratorContext - Used when we must lookup names in the context | |||
1377 | /// of a declarator's nested name specifier. | |||
1378 | /// | |||
1379 | void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) { | |||
1380 | // C++0x [basic.lookup.unqual]p13: | |||
1381 | // A name used in the definition of a static data member of class | |||
1382 | // X (after the qualified-id of the static member) is looked up as | |||
1383 | // if the name was used in a member function of X. | |||
1384 | // C++0x [basic.lookup.unqual]p14: | |||
1385 | // If a variable member of a namespace is defined outside of the | |||
1386 | // scope of its namespace then any name used in the definition of | |||
1387 | // the variable member (after the declarator-id) is looked up as | |||
1388 | // if the definition of the variable member occurred in its | |||
1389 | // namespace. | |||
1390 | // Both of these imply that we should push a scope whose context | |||
1391 | // is the semantic context of the declaration. We can't use | |||
1392 | // PushDeclContext here because that context is not necessarily | |||
1393 | // lexically contained in the current context. Fortunately, | |||
1394 | // the containing scope should have the appropriate information. | |||
1395 | ||||
1396 | assert(!S->getEntity() && "scope already has entity")(static_cast <bool> (!S->getEntity() && "scope already has entity" ) ? void (0) : __assert_fail ("!S->getEntity() && \"scope already has entity\"" , "clang/lib/Sema/SemaDecl.cpp", 1396, __extension__ __PRETTY_FUNCTION__ )); | |||
1397 | ||||
1398 | #ifndef NDEBUG | |||
1399 | Scope *Ancestor = S->getParent(); | |||
1400 | while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); | |||
1401 | assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch")(static_cast <bool> (Ancestor->getEntity() == CurContext && "ancestor context mismatch") ? void (0) : __assert_fail ("Ancestor->getEntity() == CurContext && \"ancestor context mismatch\"" , "clang/lib/Sema/SemaDecl.cpp", 1401, __extension__ __PRETTY_FUNCTION__ )); | |||
1402 | #endif | |||
1403 | ||||
1404 | CurContext = DC; | |||
1405 | S->setEntity(DC); | |||
1406 | ||||
1407 | if (S->getParent()->isTemplateParamScope()) { | |||
1408 | // Also set the corresponding entities for all immediately-enclosing | |||
1409 | // template parameter scopes. | |||
1410 | EnterTemplatedContext(S->getParent(), DC); | |||
1411 | } | |||
1412 | } | |||
1413 | ||||
1414 | void Sema::ExitDeclaratorContext(Scope *S) { | |||
1415 | assert(S->getEntity() == CurContext && "Context imbalance!")(static_cast <bool> (S->getEntity() == CurContext && "Context imbalance!") ? void (0) : __assert_fail ("S->getEntity() == CurContext && \"Context imbalance!\"" , "clang/lib/Sema/SemaDecl.cpp", 1415, __extension__ __PRETTY_FUNCTION__ )); | |||
1416 | ||||
1417 | // Switch back to the lexical context. The safety of this is | |||
1418 | // enforced by an assert in EnterDeclaratorContext. | |||
1419 | Scope *Ancestor = S->getParent(); | |||
1420 | while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); | |||
1421 | CurContext = Ancestor->getEntity(); | |||
1422 | ||||
1423 | // We don't need to do anything with the scope, which is going to | |||
1424 | // disappear. | |||
1425 | } | |||
1426 | ||||
1427 | void Sema::EnterTemplatedContext(Scope *S, DeclContext *DC) { | |||
1428 | assert(S->isTemplateParamScope() &&(static_cast <bool> (S->isTemplateParamScope() && "expected to be initializing a template parameter scope") ? void (0) : __assert_fail ("S->isTemplateParamScope() && \"expected to be initializing a template parameter scope\"" , "clang/lib/Sema/SemaDecl.cpp", 1429, __extension__ __PRETTY_FUNCTION__ )) | |||
1429 | "expected to be initializing a template parameter scope")(static_cast <bool> (S->isTemplateParamScope() && "expected to be initializing a template parameter scope") ? void (0) : __assert_fail ("S->isTemplateParamScope() && \"expected to be initializing a template parameter scope\"" , "clang/lib/Sema/SemaDecl.cpp", 1429, __extension__ __PRETTY_FUNCTION__ )); | |||
1430 | ||||
1431 | // C++20 [temp.local]p7: | |||
1432 | // In the definition of a member of a class template that appears outside | |||
1433 | // of the class template definition, the name of a member of the class | |||
1434 | // template hides the name of a template-parameter of any enclosing class | |||
1435 | // templates (but not a template-parameter of the member if the member is a | |||
1436 | // class or function template). | |||
1437 | // C++20 [temp.local]p9: | |||
1438 | // In the definition of a class template or in the definition of a member | |||
1439 | // of such a template that appears outside of the template definition, for | |||
1440 | // each non-dependent base class (13.8.2.1), if the name of the base class | |||
1441 | // or the name of a member of the base class is the same as the name of a | |||
1442 | // template-parameter, the base class name or member name hides the | |||
1443 | // template-parameter name (6.4.10). | |||
1444 | // | |||
1445 | // This means that a template parameter scope should be searched immediately | |||
1446 | // after searching the DeclContext for which it is a template parameter | |||
1447 | // scope. For example, for | |||
1448 | // template<typename T> template<typename U> template<typename V> | |||
1449 | // void N::A<T>::B<U>::f(...) | |||
1450 | // we search V then B<U> (and base classes) then U then A<T> (and base | |||
1451 | // classes) then T then N then ::. | |||
1452 | unsigned ScopeDepth = getTemplateDepth(S); | |||
1453 | for (; S && S->isTemplateParamScope(); S = S->getParent(), --ScopeDepth) { | |||
1454 | DeclContext *SearchDCAfterScope = DC; | |||
1455 | for (; DC; DC = DC->getLookupParent()) { | |||
1456 | if (const TemplateParameterList *TPL = | |||
1457 | cast<Decl>(DC)->getDescribedTemplateParams()) { | |||
1458 | unsigned DCDepth = TPL->getDepth() + 1; | |||
1459 | if (DCDepth > ScopeDepth) | |||
1460 | continue; | |||
1461 | if (ScopeDepth == DCDepth) | |||
1462 | SearchDCAfterScope = DC = DC->getLookupParent(); | |||
1463 | break; | |||
1464 | } | |||
1465 | } | |||
1466 | S->setLookupEntity(SearchDCAfterScope); | |||
1467 | } | |||
1468 | } | |||
1469 | ||||
1470 | void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) { | |||
1471 | // We assume that the caller has already called | |||
1472 | // ActOnReenterTemplateScope so getTemplatedDecl() works. | |||
1473 | FunctionDecl *FD = D->getAsFunction(); | |||
1474 | if (!FD) | |||
1475 | return; | |||
1476 | ||||
1477 | // Same implementation as PushDeclContext, but enters the context | |||
1478 | // from the lexical parent, rather than the top-level class. | |||
1479 | assert(CurContext == FD->getLexicalParent() &&(static_cast <bool> (CurContext == FD->getLexicalParent () && "The next DeclContext should be lexically contained in the current one." ) ? void (0) : __assert_fail ("CurContext == FD->getLexicalParent() && \"The next DeclContext should be lexically contained in the current one.\"" , "clang/lib/Sema/SemaDecl.cpp", 1480, __extension__ __PRETTY_FUNCTION__ )) | |||
1480 | "The next DeclContext should be lexically contained in the current one.")(static_cast <bool> (CurContext == FD->getLexicalParent () && "The next DeclContext should be lexically contained in the current one." ) ? void (0) : __assert_fail ("CurContext == FD->getLexicalParent() && \"The next DeclContext should be lexically contained in the current one.\"" , "clang/lib/Sema/SemaDecl.cpp", 1480, __extension__ __PRETTY_FUNCTION__ )); | |||
1481 | CurContext = FD; | |||
1482 | S->setEntity(CurContext); | |||
1483 | ||||
1484 | for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) { | |||
1485 | ParmVarDecl *Param = FD->getParamDecl(P); | |||
1486 | // If the parameter has an identifier, then add it to the scope | |||
1487 | if (Param->getIdentifier()) { | |||
1488 | S->AddDecl(Param); | |||
1489 | IdResolver.AddDecl(Param); | |||
1490 | } | |||
1491 | } | |||
1492 | } | |||
1493 | ||||
1494 | void Sema::ActOnExitFunctionContext() { | |||
1495 | // Same implementation as PopDeclContext, but returns to the lexical parent, | |||
1496 | // rather than the top-level class. | |||
1497 | assert(CurContext && "DeclContext imbalance!")(static_cast <bool> (CurContext && "DeclContext imbalance!" ) ? void (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\"" , "clang/lib/Sema/SemaDecl.cpp", 1497, __extension__ __PRETTY_FUNCTION__ )); | |||
1498 | CurContext = CurContext->getLexicalParent(); | |||
1499 | assert(CurContext && "Popped translation unit!")(static_cast <bool> (CurContext && "Popped translation unit!" ) ? void (0) : __assert_fail ("CurContext && \"Popped translation unit!\"" , "clang/lib/Sema/SemaDecl.cpp", 1499, __extension__ __PRETTY_FUNCTION__ )); | |||
1500 | } | |||
1501 | ||||
1502 | /// Determine whether overloading is allowed for a new function | |||
1503 | /// declaration considering prior declarations of the same name. | |||
1504 | /// | |||
1505 | /// This routine determines whether overloading is possible, not | |||
1506 | /// whether a new declaration actually overloads a previous one. | |||
1507 | /// It will return true in C++ (where overloads are alway permitted) | |||
1508 | /// or, as a C extension, when either the new declaration or a | |||
1509 | /// previous one is declared with the 'overloadable' attribute. | |||
1510 | static bool AllowOverloadingOfFunction(const LookupResult &Previous, | |||
1511 | ASTContext &Context, | |||
1512 | const FunctionDecl *New) { | |||
1513 | if (Context.getLangOpts().CPlusPlus || New->hasAttr<OverloadableAttr>()) | |||
1514 | return true; | |||
1515 | ||||
1516 | // Multiversion function declarations are not overloads in the | |||
1517 | // usual sense of that term, but lookup will report that an | |||
1518 | // overload set was found if more than one multiversion function | |||
1519 | // declaration is present for the same name. It is therefore | |||
1520 | // inadequate to assume that some prior declaration(s) had | |||
1521 | // the overloadable attribute; checking is required. Since one | |||
1522 | // declaration is permitted to omit the attribute, it is necessary | |||
1523 | // to check at least two; hence the 'any_of' check below. Note that | |||
1524 | // the overloadable attribute is implicitly added to declarations | |||
1525 | // that were required to have it but did not. | |||
1526 | if (Previous.getResultKind() == LookupResult::FoundOverloaded) { | |||
1527 | return llvm::any_of(Previous, [](const NamedDecl *ND) { | |||
1528 | return ND->hasAttr<OverloadableAttr>(); | |||
1529 | }); | |||
1530 | } else if (Previous.getResultKind() == LookupResult::Found) | |||
1531 | return Previous.getFoundDecl()->hasAttr<OverloadableAttr>(); | |||
1532 | ||||
1533 | return false; | |||
1534 | } | |||
1535 | ||||
1536 | /// Add this decl to the scope shadowed decl chains. | |||
1537 | void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) { | |||
1538 | // Move up the scope chain until we find the nearest enclosing | |||
1539 | // non-transparent context. The declaration will be introduced into this | |||
1540 | // scope. | |||
1541 | while (S->getEntity() && S->getEntity()->isTransparentContext()) | |||
1542 | S = S->getParent(); | |||
1543 | ||||
1544 | // Add scoped declarations into their context, so that they can be | |||
1545 | // found later. Declarations without a context won't be inserted | |||
1546 | // into any context. | |||
1547 | if (AddToContext) | |||
1548 | CurContext->addDecl(D); | |||
1549 | ||||
1550 | // Out-of-line definitions shouldn't be pushed into scope in C++, unless they | |||
1551 | // are function-local declarations. | |||
1552 | if (getLangOpts().CPlusPlus && D->isOutOfLine() && !S->getFnParent()) | |||
1553 | return; | |||
1554 | ||||
1555 | // Template instantiations should also not be pushed into scope. | |||
1556 | if (isa<FunctionDecl>(D) && | |||
1557 | cast<FunctionDecl>(D)->isFunctionTemplateSpecialization()) | |||
1558 | return; | |||
1559 | ||||
1560 | // If this replaces anything in the current scope, | |||
1561 | IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()), | |||
1562 | IEnd = IdResolver.end(); | |||
1563 | for (; I != IEnd; ++I) { | |||
1564 | if (S->isDeclScope(*I) && D->declarationReplaces(*I)) { | |||
1565 | S->RemoveDecl(*I); | |||
1566 | IdResolver.RemoveDecl(*I); | |||
1567 | ||||
1568 | // Should only need to replace one decl. | |||
1569 | break; | |||
1570 | } | |||
1571 | } | |||
1572 | ||||
1573 | S->AddDecl(D); | |||
1574 | ||||
1575 | if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) { | |||
1576 | // Implicitly-generated labels may end up getting generated in an order that | |||
1577 | // isn't strictly lexical, which breaks name lookup. Be careful to insert | |||
1578 | // the label at the appropriate place in the identifier chain. | |||
1579 | for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) { | |||
1580 | DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext(); | |||
1581 | if (IDC == CurContext) { | |||
1582 | if (!S->isDeclScope(*I)) | |||
1583 | continue; | |||
1584 | } else if (IDC->Encloses(CurContext)) | |||
1585 | break; | |||
1586 | } | |||
1587 | ||||
1588 | IdResolver.InsertDeclAfter(I, D); | |||
1589 | } else { | |||
1590 | IdResolver.AddDecl(D); | |||
1591 | } | |||
1592 | warnOnReservedIdentifier(D); | |||
1593 | } | |||
1594 | ||||
1595 | bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S, | |||
1596 | bool AllowInlineNamespace) const { | |||
1597 | return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace); | |||
1598 | } | |||
1599 | ||||
1600 | Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) { | |||
1601 | DeclContext *TargetDC = DC->getPrimaryContext(); | |||
1602 | do { | |||
1603 | if (DeclContext *ScopeDC = S->getEntity()) | |||
1604 | if (ScopeDC->getPrimaryContext() == TargetDC) | |||
1605 | return S; | |||
1606 | } while ((S = S->getParent())); | |||
1607 | ||||
1608 | return nullptr; | |||
1609 | } | |||
1610 | ||||
1611 | static bool isOutOfScopePreviousDeclaration(NamedDecl *, | |||
1612 | DeclContext*, | |||
1613 | ASTContext&); | |||
1614 | ||||
1615 | /// Filters out lookup results that don't fall within the given scope | |||
1616 | /// as determined by isDeclInScope. | |||
1617 | void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S, | |||
1618 | bool ConsiderLinkage, | |||
1619 | bool AllowInlineNamespace) { | |||
1620 | LookupResult::Filter F = R.makeFilter(); | |||
1621 | while (F.hasNext()) { | |||
1622 | NamedDecl *D = F.next(); | |||
1623 | ||||
1624 | if (isDeclInScope(D, Ctx, S, AllowInlineNamespace)) | |||
1625 | continue; | |||
1626 | ||||
1627 | if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context)) | |||
1628 | continue; | |||
1629 | ||||
1630 | F.erase(); | |||
1631 | } | |||
1632 | ||||
1633 | F.done(); | |||
1634 | } | |||
1635 | ||||
1636 | /// We've determined that \p New is a redeclaration of \p Old. Check that they | |||
1637 | /// have compatible owning modules. | |||
1638 | bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) { | |||
1639 | // [module.interface]p7: | |||
1640 | // A declaration is attached to a module as follows: | |||
1641 | // - If the declaration is a non-dependent friend declaration that nominates a | |||
1642 | // function with a declarator-id that is a qualified-id or template-id or that | |||
1643 | // nominates a class other than with an elaborated-type-specifier with neither | |||
1644 | // a nested-name-specifier nor a simple-template-id, it is attached to the | |||
1645 | // module to which the friend is attached ([basic.link]). | |||
1646 | if (New->getFriendObjectKind() && | |||
1647 | Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) { | |||
1648 | New->setLocalOwningModule(Old->getOwningModule()); | |||
1649 | makeMergedDefinitionVisible(New); | |||
1650 | return false; | |||
1651 | } | |||
1652 | ||||
1653 | Module *NewM = New->getOwningModule(); | |||
1654 | Module *OldM = Old->getOwningModule(); | |||
1655 | ||||
1656 | if (NewM && NewM->isPrivateModule()) | |||
1657 | NewM = NewM->Parent; | |||
1658 | if (OldM && OldM->isPrivateModule()) | |||
1659 | OldM = OldM->Parent; | |||
1660 | ||||
1661 | if (NewM == OldM) | |||
1662 | return false; | |||
1663 | ||||
1664 | if (NewM && OldM) { | |||
1665 | // A module implementation unit has visibility of the decls in its | |||
1666 | // implicitly imported interface. | |||
1667 | if (NewM->isModuleImplementation() && OldM == ThePrimaryInterface) | |||
1668 | return false; | |||
1669 | ||||
1670 | // Partitions are part of the module, but a partition could import another | |||
1671 | // module, so verify that the PMIs agree. | |||
1672 | if ((NewM->isModulePartition() || OldM->isModulePartition()) && | |||
1673 | NewM->getPrimaryModuleInterfaceName() == | |||
1674 | OldM->getPrimaryModuleInterfaceName()) | |||
1675 | return false; | |||
1676 | } | |||
1677 | ||||
1678 | bool NewIsModuleInterface = NewM && NewM->isModulePurview(); | |||
1679 | bool OldIsModuleInterface = OldM && OldM->isModulePurview(); | |||
1680 | if (NewIsModuleInterface || OldIsModuleInterface) { | |||
1681 | // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]: | |||
1682 | // if a declaration of D [...] appears in the purview of a module, all | |||
1683 | // other such declarations shall appear in the purview of the same module | |||
1684 | Diag(New->getLocation(), diag::err_mismatched_owning_module) | |||
1685 | << New | |||
1686 | << NewIsModuleInterface | |||
1687 | << (NewIsModuleInterface ? NewM->getFullModuleName() : "") | |||
1688 | << OldIsModuleInterface | |||
1689 | << (OldIsModuleInterface ? OldM->getFullModuleName() : ""); | |||
1690 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
1691 | New->setInvalidDecl(); | |||
1692 | return true; | |||
1693 | } | |||
1694 | ||||
1695 | return false; | |||
1696 | } | |||
1697 | ||||
1698 | // [module.interface]p6: | |||
1699 | // A redeclaration of an entity X is implicitly exported if X was introduced by | |||
1700 | // an exported declaration; otherwise it shall not be exported. | |||
1701 | bool Sema::CheckRedeclarationExported(NamedDecl *New, NamedDecl *Old) { | |||
1702 | // [module.interface]p1: | |||
1703 | // An export-declaration shall inhabit a namespace scope. | |||
1704 | // | |||
1705 | // So it is meaningless to talk about redeclaration which is not at namespace | |||
1706 | // scope. | |||
1707 | if (!New->getLexicalDeclContext() | |||
1708 | ->getNonTransparentContext() | |||
1709 | ->isFileContext() || | |||
1710 | !Old->getLexicalDeclContext() | |||
1711 | ->getNonTransparentContext() | |||
1712 | ->isFileContext()) | |||
1713 | return false; | |||
1714 | ||||
1715 | bool IsNewExported = New->isInExportDeclContext(); | |||
1716 | bool IsOldExported = Old->isInExportDeclContext(); | |||
1717 | ||||
1718 | // It should be irrevelant if both of them are not exported. | |||
1719 | if (!IsNewExported && !IsOldExported) | |||
1720 | return false; | |||
1721 | ||||
1722 | if (IsOldExported) | |||
1723 | return false; | |||
1724 | ||||
1725 | assert(IsNewExported)(static_cast <bool> (IsNewExported) ? void (0) : __assert_fail ("IsNewExported", "clang/lib/Sema/SemaDecl.cpp", 1725, __extension__ __PRETTY_FUNCTION__)); | |||
1726 | ||||
1727 | auto Lk = Old->getFormalLinkage(); | |||
1728 | int S = 0; | |||
1729 | if (Lk == Linkage::InternalLinkage) | |||
1730 | S = 1; | |||
1731 | else if (Lk == Linkage::ModuleLinkage) | |||
1732 | S = 2; | |||
1733 | Diag(New->getLocation(), diag::err_redeclaration_non_exported) << New << S; | |||
1734 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
1735 | return true; | |||
1736 | } | |||
1737 | ||||
1738 | // A wrapper function for checking the semantic restrictions of | |||
1739 | // a redeclaration within a module. | |||
1740 | bool Sema::CheckRedeclarationInModule(NamedDecl *New, NamedDecl *Old) { | |||
1741 | if (CheckRedeclarationModuleOwnership(New, Old)) | |||
1742 | return true; | |||
1743 | ||||
1744 | if (CheckRedeclarationExported(New, Old)) | |||
1745 | return true; | |||
1746 | ||||
1747 | return false; | |||
1748 | } | |||
1749 | ||||
1750 | // Check the redefinition in C++20 Modules. | |||
1751 | // | |||
1752 | // [basic.def.odr]p14: | |||
1753 | // For any definable item D with definitions in multiple translation units, | |||
1754 | // - if D is a non-inline non-templated function or variable, or | |||
1755 | // - if the definitions in different translation units do not satisfy the | |||
1756 | // following requirements, | |||
1757 | // the program is ill-formed; a diagnostic is required only if the definable | |||
1758 | // item is attached to a named module and a prior definition is reachable at | |||
1759 | // the point where a later definition occurs. | |||
1760 | // - Each such definition shall not be attached to a named module | |||
1761 | // ([module.unit]). | |||
1762 | // - Each such definition shall consist of the same sequence of tokens, ... | |||
1763 | // ... | |||
1764 | // | |||
1765 | // Return true if the redefinition is not allowed. Return false otherwise. | |||
1766 | bool Sema::IsRedefinitionInModule(const NamedDecl *New, | |||
1767 | const NamedDecl *Old) const { | |||
1768 | assert(getASTContext().isSameEntity(New, Old) &&(static_cast <bool> (getASTContext().isSameEntity(New, Old ) && "New and Old are not the same definition, we should diagnostic it " "immediately instead of checking it.") ? void (0) : __assert_fail ("getASTContext().isSameEntity(New, Old) && \"New and Old are not the same definition, we should diagnostic it \" \"immediately instead of checking it.\"" , "clang/lib/Sema/SemaDecl.cpp", 1770, __extension__ __PRETTY_FUNCTION__ )) | |||
1769 | "New and Old are not the same definition, we should diagnostic it "(static_cast <bool> (getASTContext().isSameEntity(New, Old ) && "New and Old are not the same definition, we should diagnostic it " "immediately instead of checking it.") ? void (0) : __assert_fail ("getASTContext().isSameEntity(New, Old) && \"New and Old are not the same definition, we should diagnostic it \" \"immediately instead of checking it.\"" , "clang/lib/Sema/SemaDecl.cpp", 1770, __extension__ __PRETTY_FUNCTION__ )) | |||
1770 | "immediately instead of checking it.")(static_cast <bool> (getASTContext().isSameEntity(New, Old ) && "New and Old are not the same definition, we should diagnostic it " "immediately instead of checking it.") ? void (0) : __assert_fail ("getASTContext().isSameEntity(New, Old) && \"New and Old are not the same definition, we should diagnostic it \" \"immediately instead of checking it.\"" , "clang/lib/Sema/SemaDecl.cpp", 1770, __extension__ __PRETTY_FUNCTION__ )); | |||
1771 | assert(const_cast<Sema *>(this)->isReachable(New) &&(static_cast <bool> (const_cast<Sema *>(this)-> isReachable(New) && const_cast<Sema *>(this)-> isReachable(Old) && "We shouldn't see unreachable definitions here." ) ? void (0) : __assert_fail ("const_cast<Sema *>(this)->isReachable(New) && const_cast<Sema *>(this)->isReachable(Old) && \"We shouldn't see unreachable definitions here.\"" , "clang/lib/Sema/SemaDecl.cpp", 1773, __extension__ __PRETTY_FUNCTION__ )) | |||
1772 | const_cast<Sema *>(this)->isReachable(Old) &&(static_cast <bool> (const_cast<Sema *>(this)-> isReachable(New) && const_cast<Sema *>(this)-> isReachable(Old) && "We shouldn't see unreachable definitions here." ) ? void (0) : __assert_fail ("const_cast<Sema *>(this)->isReachable(New) && const_cast<Sema *>(this)->isReachable(Old) && \"We shouldn't see unreachable definitions here.\"" , "clang/lib/Sema/SemaDecl.cpp", 1773, __extension__ __PRETTY_FUNCTION__ )) | |||
1773 | "We shouldn't see unreachable definitions here.")(static_cast <bool> (const_cast<Sema *>(this)-> isReachable(New) && const_cast<Sema *>(this)-> isReachable(Old) && "We shouldn't see unreachable definitions here." ) ? void (0) : __assert_fail ("const_cast<Sema *>(this)->isReachable(New) && const_cast<Sema *>(this)->isReachable(Old) && \"We shouldn't see unreachable definitions here.\"" , "clang/lib/Sema/SemaDecl.cpp", 1773, __extension__ __PRETTY_FUNCTION__ )); | |||
1774 | ||||
1775 | Module *NewM = New->getOwningModule(); | |||
1776 | Module *OldM = Old->getOwningModule(); | |||
1777 | ||||
1778 | // We only checks for named modules here. The header like modules is skipped. | |||
1779 | // FIXME: This is not right if we import the header like modules in the module | |||
1780 | // purview. | |||
1781 | // | |||
1782 | // For example, assuming "header.h" provides definition for `D`. | |||
1783 | // ```C++ | |||
1784 | // //--- M.cppm | |||
1785 | // export module M; | |||
1786 | // import "header.h"; // or #include "header.h" but import it by clang modules | |||
1787 | // actually. | |||
1788 | // | |||
1789 | // //--- Use.cpp | |||
1790 | // import M; | |||
1791 | // import "header.h"; // or uses clang modules. | |||
1792 | // ``` | |||
1793 | // | |||
1794 | // In this case, `D` has multiple definitions in multiple TU (M.cppm and | |||
1795 | // Use.cpp) and `D` is attached to a named module `M`. The compiler should | |||
1796 | // reject it. But the current implementation couldn't detect the case since we | |||
1797 | // don't record the information about the importee modules. | |||
1798 | // | |||
1799 | // But this might not be painful in practice. Since the design of C++20 Named | |||
1800 | // Modules suggests us to use headers in global module fragment instead of | |||
1801 | // module purview. | |||
1802 | if (NewM && NewM->isHeaderLikeModule()) | |||
1803 | NewM = nullptr; | |||
1804 | if (OldM && OldM->isHeaderLikeModule()) | |||
1805 | OldM = nullptr; | |||
1806 | ||||
1807 | if (!NewM && !OldM) | |||
1808 | return true; | |||
1809 | ||||
1810 | // [basic.def.odr]p14.3 | |||
1811 | // Each such definition shall not be attached to a named module | |||
1812 | // ([module.unit]). | |||
1813 | if ((NewM && NewM->isModulePurview()) || (OldM && OldM->isModulePurview())) | |||
1814 | return true; | |||
1815 | ||||
1816 | // Then New and Old lives in the same TU if their share one same module unit. | |||
1817 | if (NewM) | |||
1818 | NewM = NewM->getTopLevelModule(); | |||
1819 | if (OldM) | |||
1820 | OldM = OldM->getTopLevelModule(); | |||
1821 | return OldM == NewM; | |||
1822 | } | |||
1823 | ||||
1824 | static bool isUsingDecl(NamedDecl *D) { | |||
1825 | return isa<UsingShadowDecl>(D) || | |||
1826 | isa<UnresolvedUsingTypenameDecl>(D) || | |||
1827 | isa<UnresolvedUsingValueDecl>(D); | |||
1828 | } | |||
1829 | ||||
1830 | /// Removes using shadow declarations from the lookup results. | |||
1831 | static void RemoveUsingDecls(LookupResult &R) { | |||
1832 | LookupResult::Filter F = R.makeFilter(); | |||
1833 | while (F.hasNext()) | |||
1834 | if (isUsingDecl(F.next())) | |||
1835 | F.erase(); | |||
1836 | ||||
1837 | F.done(); | |||
1838 | } | |||
1839 | ||||
1840 | /// Check for this common pattern: | |||
1841 | /// @code | |||
1842 | /// class S { | |||
1843 | /// S(const S&); // DO NOT IMPLEMENT | |||
1844 | /// void operator=(const S&); // DO NOT IMPLEMENT | |||
1845 | /// }; | |||
1846 | /// @endcode | |||
1847 | static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) { | |||
1848 | // FIXME: Should check for private access too but access is set after we get | |||
1849 | // the decl here. | |||
1850 | if (D->doesThisDeclarationHaveABody()) | |||
1851 | return false; | |||
1852 | ||||
1853 | if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) | |||
1854 | return CD->isCopyConstructor(); | |||
1855 | return D->isCopyAssignmentOperator(); | |||
1856 | } | |||
1857 | ||||
1858 | // We need this to handle | |||
1859 | // | |||
1860 | // typedef struct { | |||
1861 | // void *foo() { return 0; } | |||
1862 | // } A; | |||
1863 | // | |||
1864 | // When we see foo we don't know if after the typedef we will get 'A' or '*A' | |||
1865 | // for example. If 'A', foo will have external linkage. If we have '*A', | |||
1866 | // foo will have no linkage. Since we can't know until we get to the end | |||
1867 | // of the typedef, this function finds out if D might have non-external linkage. | |||
1868 | // Callers should verify at the end of the TU if it D has external linkage or | |||
1869 | // not. | |||
1870 | bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) { | |||
1871 | const DeclContext *DC = D->getDeclContext(); | |||
1872 | while (!DC->isTranslationUnit()) { | |||
1873 | if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){ | |||
1874 | if (!RD->hasNameForLinkage()) | |||
1875 | return true; | |||
1876 | } | |||
1877 | DC = DC->getParent(); | |||
1878 | } | |||
1879 | ||||
1880 | return !D->isExternallyVisible(); | |||
1881 | } | |||
1882 | ||||
1883 | // FIXME: This needs to be refactored; some other isInMainFile users want | |||
1884 | // these semantics. | |||
1885 | static bool isMainFileLoc(const Sema &S, SourceLocation Loc) { | |||
1886 | if (S.TUKind != TU_Complete || S.getLangOpts().IsHeaderFile) | |||
1887 | return false; | |||
1888 | return S.SourceMgr.isInMainFile(Loc); | |||
1889 | } | |||
1890 | ||||
1891 | bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const { | |||
1892 | assert(D)(static_cast <bool> (D) ? void (0) : __assert_fail ("D" , "clang/lib/Sema/SemaDecl.cpp", 1892, __extension__ __PRETTY_FUNCTION__ )); | |||
1893 | ||||
1894 | if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>()) | |||
1895 | return false; | |||
1896 | ||||
1897 | // Ignore all entities declared within templates, and out-of-line definitions | |||
1898 | // of members of class templates. | |||
1899 | if (D->getDeclContext()->isDependentContext() || | |||
1900 | D->getLexicalDeclContext()->isDependentContext()) | |||
1901 | return false; | |||
1902 | ||||
1903 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | |||
1904 | if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | |||
1905 | return false; | |||
1906 | // A non-out-of-line declaration of a member specialization was implicitly | |||
1907 | // instantiated; it's the out-of-line declaration that we're interested in. | |||
1908 | if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && | |||
1909 | FD->getMemberSpecializationInfo() && !FD->isOutOfLine()) | |||
1910 | return false; | |||
1911 | ||||
1912 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { | |||
1913 | if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD)) | |||
1914 | return false; | |||
1915 | } else { | |||
1916 | // 'static inline' functions are defined in headers; don't warn. | |||
1917 | if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation())) | |||
1918 | return false; | |||
1919 | } | |||
1920 | ||||
1921 | if (FD->doesThisDeclarationHaveABody() && | |||
1922 | Context.DeclMustBeEmitted(FD)) | |||
1923 | return false; | |||
1924 | } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | |||
1925 | // Constants and utility variables are defined in headers with internal | |||
1926 | // linkage; don't warn. (Unlike functions, there isn't a convenient marker | |||
1927 | // like "inline".) | |||
1928 | if (!isMainFileLoc(*this, VD->getLocation())) | |||
1929 | return false; | |||
1930 | ||||
1931 | if (Context.DeclMustBeEmitted(VD)) | |||
1932 | return false; | |||
1933 | ||||
1934 | if (VD->isStaticDataMember() && | |||
1935 | VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | |||
1936 | return false; | |||
1937 | if (VD->isStaticDataMember() && | |||
1938 | VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && | |||
1939 | VD->getMemberSpecializationInfo() && !VD->isOutOfLine()) | |||
1940 | return false; | |||
1941 | ||||
1942 | if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation())) | |||
1943 | return false; | |||
1944 | } else { | |||
1945 | return false; | |||
1946 | } | |||
1947 | ||||
1948 | // Only warn for unused decls internal to the translation unit. | |||
1949 | // FIXME: This seems like a bogus check; it suppresses -Wunused-function | |||
1950 | // for inline functions defined in the main source file, for instance. | |||
1951 | return mightHaveNonExternalLinkage(D); | |||
1952 | } | |||
1953 | ||||
1954 | void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) { | |||
1955 | if (!D) | |||
1956 | return; | |||
1957 | ||||
1958 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | |||
1959 | const FunctionDecl *First = FD->getFirstDecl(); | |||
1960 | if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First)) | |||
1961 | return; // First should already be in the vector. | |||
1962 | } | |||
1963 | ||||
1964 | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | |||
1965 | const VarDecl *First = VD->getFirstDecl(); | |||
1966 | if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First)) | |||
1967 | return; // First should already be in the vector. | |||
1968 | } | |||
1969 | ||||
1970 | if (ShouldWarnIfUnusedFileScopedDecl(D)) | |||
1971 | UnusedFileScopedDecls.push_back(D); | |||
1972 | } | |||
1973 | ||||
1974 | static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) { | |||
1975 | if (D->isInvalidDecl()) | |||
1976 | return false; | |||
1977 | ||||
1978 | if (auto *DD = dyn_cast<DecompositionDecl>(D)) { | |||
1979 | // For a decomposition declaration, warn if none of the bindings are | |||
1980 | // referenced, instead of if the variable itself is referenced (which | |||
1981 | // it is, by the bindings' expressions). | |||
1982 | for (auto *BD : DD->bindings()) | |||
1983 | if (BD->isReferenced()) | |||
1984 | return false; | |||
1985 | } else if (!D->getDeclName()) { | |||
1986 | return false; | |||
1987 | } else if (D->isReferenced() || D->isUsed()) { | |||
1988 | return false; | |||
1989 | } | |||
1990 | ||||
1991 | if (D->hasAttr<UnusedAttr>() || D->hasAttr<ObjCPreciseLifetimeAttr>()) | |||
1992 | return false; | |||
1993 | ||||
1994 | if (isa<LabelDecl>(D)) | |||
1995 | return true; | |||
1996 | ||||
1997 | // Except for labels, we only care about unused decls that are local to | |||
1998 | // functions. | |||
1999 | bool WithinFunction = D->getDeclContext()->isFunctionOrMethod(); | |||
2000 | if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext())) | |||
2001 | // For dependent types, the diagnostic is deferred. | |||
2002 | WithinFunction = | |||
2003 | WithinFunction || (R->isLocalClass() && !R->isDependentType()); | |||
2004 | if (!WithinFunction) | |||
2005 | return false; | |||
2006 | ||||
2007 | if (isa<TypedefNameDecl>(D)) | |||
2008 | return true; | |||
2009 | ||||
2010 | // White-list anything that isn't a local variable. | |||
2011 | if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) | |||
2012 | return false; | |||
2013 | ||||
2014 | // Types of valid local variables should be complete, so this should succeed. | |||
2015 | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | |||
2016 | ||||
2017 | const Expr *Init = VD->getInit(); | |||
2018 | if (const auto *Cleanups = dyn_cast_or_null<ExprWithCleanups>(Init)) | |||
2019 | Init = Cleanups->getSubExpr(); | |||
2020 | ||||
2021 | const auto *Ty = VD->getType().getTypePtr(); | |||
2022 | ||||
2023 | // Only look at the outermost level of typedef. | |||
2024 | if (const TypedefType *TT = Ty->getAs<TypedefType>()) { | |||
2025 | // Allow anything marked with __attribute__((unused)). | |||
2026 | if (TT->getDecl()->hasAttr<UnusedAttr>()) | |||
2027 | return false; | |||
2028 | } | |||
2029 | ||||
2030 | // Warn for reference variables whose initializtion performs lifetime | |||
2031 | // extension. | |||
2032 | if (const auto *MTE = dyn_cast_or_null<MaterializeTemporaryExpr>(Init)) { | |||
2033 | if (MTE->getExtendingDecl()) { | |||
2034 | Ty = VD->getType().getNonReferenceType().getTypePtr(); | |||
2035 | Init = MTE->getSubExpr()->IgnoreImplicitAsWritten(); | |||
2036 | } | |||
2037 | } | |||
2038 | ||||
2039 | // If we failed to complete the type for some reason, or if the type is | |||
2040 | // dependent, don't diagnose the variable. | |||
2041 | if (Ty->isIncompleteType() || Ty->isDependentType()) | |||
2042 | return false; | |||
2043 | ||||
2044 | // Look at the element type to ensure that the warning behaviour is | |||
2045 | // consistent for both scalars and arrays. | |||
2046 | Ty = Ty->getBaseElementTypeUnsafe(); | |||
2047 | ||||
2048 | if (const TagType *TT = Ty->getAs<TagType>()) { | |||
2049 | const TagDecl *Tag = TT->getDecl(); | |||
2050 | if (Tag->hasAttr<UnusedAttr>()) | |||
2051 | return false; | |||
2052 | ||||
2053 | if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) { | |||
2054 | if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>()) | |||
2055 | return false; | |||
2056 | ||||
2057 | if (Init) { | |||
2058 | const CXXConstructExpr *Construct = | |||
2059 | dyn_cast<CXXConstructExpr>(Init); | |||
2060 | if (Construct && !Construct->isElidable()) { | |||
2061 | CXXConstructorDecl *CD = Construct->getConstructor(); | |||
2062 | if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() && | |||
2063 | (VD->getInit()->isValueDependent() || !VD->evaluateValue())) | |||
2064 | return false; | |||
2065 | } | |||
2066 | ||||
2067 | // Suppress the warning if we don't know how this is constructed, and | |||
2068 | // it could possibly be non-trivial constructor. | |||
2069 | if (Init->isTypeDependent()) { | |||
2070 | for (const CXXConstructorDecl *Ctor : RD->ctors()) | |||
2071 | if (!Ctor->isTrivial()) | |||
2072 | return false; | |||
2073 | } | |||
2074 | ||||
2075 | // Suppress the warning if the constructor is unresolved because | |||
2076 | // its arguments are dependent. | |||
2077 | if (isa<CXXUnresolvedConstructExpr>(Init)) | |||
2078 | return false; | |||
2079 | } | |||
2080 | } | |||
2081 | } | |||
2082 | ||||
2083 | // TODO: __attribute__((unused)) templates? | |||
2084 | } | |||
2085 | ||||
2086 | return true; | |||
2087 | } | |||
2088 | ||||
2089 | static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx, | |||
2090 | FixItHint &Hint) { | |||
2091 | if (isa<LabelDecl>(D)) { | |||
2092 | SourceLocation AfterColon = Lexer::findLocationAfterToken( | |||
2093 | D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), | |||
2094 | true); | |||
2095 | if (AfterColon.isInvalid()) | |||
2096 | return; | |||
2097 | Hint = FixItHint::CreateRemoval( | |||
2098 | CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon)); | |||
2099 | } | |||
2100 | } | |||
2101 | ||||
2102 | void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) { | |||
2103 | DiagnoseUnusedNestedTypedefs( | |||
2104 | D, [this](SourceLocation Loc, PartialDiagnostic PD) { Diag(Loc, PD); }); | |||
2105 | } | |||
2106 | ||||
2107 | void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D, | |||
2108 | DiagReceiverTy DiagReceiver) { | |||
2109 | if (D->getTypeForDecl()->isDependentType()) | |||
2110 | return; | |||
2111 | ||||
2112 | for (auto *TmpD : D->decls()) { | |||
2113 | if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD)) | |||
2114 | DiagnoseUnusedDecl(T, DiagReceiver); | |||
2115 | else if(const auto *R = dyn_cast<RecordDecl>(TmpD)) | |||
2116 | DiagnoseUnusedNestedTypedefs(R, DiagReceiver); | |||
2117 | } | |||
2118 | } | |||
2119 | ||||
2120 | void Sema::DiagnoseUnusedDecl(const NamedDecl *D) { | |||
2121 | DiagnoseUnusedDecl( | |||
2122 | D, [this](SourceLocation Loc, PartialDiagnostic PD) { Diag(Loc, PD); }); | |||
2123 | } | |||
2124 | ||||
2125 | /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used | |||
2126 | /// unless they are marked attr(unused). | |||
2127 | void Sema::DiagnoseUnusedDecl(const NamedDecl *D, DiagReceiverTy DiagReceiver) { | |||
2128 | if (!ShouldDiagnoseUnusedDecl(D)) | |||
2129 | return; | |||
2130 | ||||
2131 | if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { | |||
2132 | // typedefs can be referenced later on, so the diagnostics are emitted | |||
2133 | // at end-of-translation-unit. | |||
2134 | UnusedLocalTypedefNameCandidates.insert(TD); | |||
2135 | return; | |||
2136 | } | |||
2137 | ||||
2138 | FixItHint Hint; | |||
2139 | GenerateFixForUnusedDecl(D, Context, Hint); | |||
2140 | ||||
2141 | unsigned DiagID; | |||
2142 | if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable()) | |||
2143 | DiagID = diag::warn_unused_exception_param; | |||
2144 | else if (isa<LabelDecl>(D)) | |||
2145 | DiagID = diag::warn_unused_label; | |||
2146 | else | |||
2147 | DiagID = diag::warn_unused_variable; | |||
2148 | ||||
2149 | DiagReceiver(D->getLocation(), PDiag(DiagID) << D << Hint); | |||
2150 | } | |||
2151 | ||||
2152 | void Sema::DiagnoseUnusedButSetDecl(const VarDecl *VD, | |||
2153 | DiagReceiverTy DiagReceiver) { | |||
2154 | // If it's not referenced, it can't be set. If it has the Cleanup attribute, | |||
2155 | // it's not really unused. | |||
2156 | if (!VD->isReferenced() || !VD->getDeclName() || VD->hasAttr<UnusedAttr>() || | |||
2157 | VD->hasAttr<CleanupAttr>()) | |||
2158 | return; | |||
2159 | ||||
2160 | const auto *Ty = VD->getType().getTypePtr()->getBaseElementTypeUnsafe(); | |||
2161 | ||||
2162 | if (Ty->isReferenceType() || Ty->isDependentType()) | |||
2163 | return; | |||
2164 | ||||
2165 | if (const TagType *TT = Ty->getAs<TagType>()) { | |||
2166 | const TagDecl *Tag = TT->getDecl(); | |||
2167 | if (Tag->hasAttr<UnusedAttr>()) | |||
2168 | return; | |||
2169 | // In C++, don't warn for record types that don't have WarnUnusedAttr, to | |||
2170 | // mimic gcc's behavior. | |||
2171 | if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) { | |||
2172 | if (!RD->hasAttr<WarnUnusedAttr>()) | |||
2173 | return; | |||
2174 | } | |||
2175 | } | |||
2176 | ||||
2177 | // Don't warn about __block Objective-C pointer variables, as they might | |||
2178 | // be assigned in the block but not used elsewhere for the purpose of lifetime | |||
2179 | // extension. | |||
2180 | if (VD->hasAttr<BlocksAttr>() && Ty->isObjCObjectPointerType()) | |||
2181 | return; | |||
2182 | ||||
2183 | // Don't warn about Objective-C pointer variables with precise lifetime | |||
2184 | // semantics; they can be used to ensure ARC releases the object at a known | |||
2185 | // time, which may mean assignment but no other references. | |||
2186 | if (VD->hasAttr<ObjCPreciseLifetimeAttr>() && Ty->isObjCObjectPointerType()) | |||
2187 | return; | |||
2188 | ||||
2189 | auto iter = RefsMinusAssignments.find(VD); | |||
2190 | if (iter == RefsMinusAssignments.end()) | |||
2191 | return; | |||
2192 | ||||
2193 | assert(iter->getSecond() >= 0 &&(static_cast <bool> (iter->getSecond() >= 0 && "Found a negative number of references to a VarDecl") ? void (0) : __assert_fail ("iter->getSecond() >= 0 && \"Found a negative number of references to a VarDecl\"" , "clang/lib/Sema/SemaDecl.cpp", 2194, __extension__ __PRETTY_FUNCTION__ )) | |||
2194 | "Found a negative number of references to a VarDecl")(static_cast <bool> (iter->getSecond() >= 0 && "Found a negative number of references to a VarDecl") ? void (0) : __assert_fail ("iter->getSecond() >= 0 && \"Found a negative number of references to a VarDecl\"" , "clang/lib/Sema/SemaDecl.cpp", 2194, __extension__ __PRETTY_FUNCTION__ )); | |||
2195 | if (iter->getSecond() != 0) | |||
2196 | return; | |||
2197 | unsigned DiagID = isa<ParmVarDecl>(VD) ? diag::warn_unused_but_set_parameter | |||
2198 | : diag::warn_unused_but_set_variable; | |||
2199 | DiagReceiver(VD->getLocation(), PDiag(DiagID) << VD); | |||
2200 | } | |||
2201 | ||||
2202 | static void CheckPoppedLabel(LabelDecl *L, Sema &S, | |||
2203 | Sema::DiagReceiverTy DiagReceiver) { | |||
2204 | // Verify that we have no forward references left. If so, there was a goto | |||
2205 | // or address of a label taken, but no definition of it. Label fwd | |||
2206 | // definitions are indicated with a null substmt which is also not a resolved | |||
2207 | // MS inline assembly label name. | |||
2208 | bool Diagnose = false; | |||
2209 | if (L->isMSAsmLabel()) | |||
2210 | Diagnose = !L->isResolvedMSAsmLabel(); | |||
2211 | else | |||
2212 | Diagnose = L->getStmt() == nullptr; | |||
2213 | if (Diagnose) | |||
2214 | DiagReceiver(L->getLocation(), S.PDiag(diag::err_undeclared_label_use) | |||
2215 | << L); | |||
2216 | } | |||
2217 | ||||
2218 | void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) { | |||
2219 | S->applyNRVO(); | |||
2220 | ||||
2221 | if (S->decl_empty()) return; | |||
2222 | assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&(static_cast <bool> ((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && "Scope shouldn't contain decls!" ) ? void (0) : __assert_fail ("(S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && \"Scope shouldn't contain decls!\"" , "clang/lib/Sema/SemaDecl.cpp", 2223, __extension__ __PRETTY_FUNCTION__ )) | |||
2223 | "Scope shouldn't contain decls!")(static_cast <bool> ((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && "Scope shouldn't contain decls!" ) ? void (0) : __assert_fail ("(S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && \"Scope shouldn't contain decls!\"" , "clang/lib/Sema/SemaDecl.cpp", 2223, __extension__ __PRETTY_FUNCTION__ )); | |||
2224 | ||||
2225 | /// We visit the decls in non-deterministic order, but we want diagnostics | |||
2226 | /// emitted in deterministic order. Collect any diagnostic that may be emitted | |||
2227 | /// and sort the diagnostics before emitting them, after we visited all decls. | |||
2228 | struct LocAndDiag { | |||
2229 | SourceLocation Loc; | |||
2230 | std::optional<SourceLocation> PreviousDeclLoc; | |||
2231 | PartialDiagnostic PD; | |||
2232 | }; | |||
2233 | SmallVector<LocAndDiag, 16> DeclDiags; | |||
2234 | auto addDiag = [&DeclDiags](SourceLocation Loc, PartialDiagnostic PD) { | |||
2235 | DeclDiags.push_back(LocAndDiag{Loc, std::nullopt, std::move(PD)}); | |||
2236 | }; | |||
2237 | auto addDiagWithPrev = [&DeclDiags](SourceLocation Loc, | |||
2238 | SourceLocation PreviousDeclLoc, | |||
2239 | PartialDiagnostic PD) { | |||
2240 | DeclDiags.push_back(LocAndDiag{Loc, PreviousDeclLoc, std::move(PD)}); | |||
2241 | }; | |||
2242 | ||||
2243 | for (auto *TmpD : S->decls()) { | |||
2244 | assert(TmpD && "This decl didn't get pushed??")(static_cast <bool> (TmpD && "This decl didn't get pushed??" ) ? void (0) : __assert_fail ("TmpD && \"This decl didn't get pushed??\"" , "clang/lib/Sema/SemaDecl.cpp", 2244, __extension__ __PRETTY_FUNCTION__ )); | |||
2245 | ||||
2246 | assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?")(static_cast <bool> (isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?") ? void (0) : __assert_fail ("isa<NamedDecl>(TmpD) && \"Decl isn't NamedDecl?\"" , "clang/lib/Sema/SemaDecl.cpp", 2246, __extension__ __PRETTY_FUNCTION__ )); | |||
2247 | NamedDecl *D = cast<NamedDecl>(TmpD); | |||
2248 | ||||
2249 | // Diagnose unused variables in this scope. | |||
2250 | if (!S->hasUnrecoverableErrorOccurred()) { | |||
2251 | DiagnoseUnusedDecl(D, addDiag); | |||
2252 | if (const auto *RD = dyn_cast<RecordDecl>(D)) | |||
2253 | DiagnoseUnusedNestedTypedefs(RD, addDiag); | |||
2254 | if (VarDecl *VD = dyn_cast<VarDecl>(D)) { | |||
2255 | DiagnoseUnusedButSetDecl(VD, addDiag); | |||
2256 | RefsMinusAssignments.erase(VD); | |||
2257 | } | |||
2258 | } | |||
2259 | ||||
2260 | if (!D->getDeclName()) continue; | |||
2261 | ||||
2262 | // If this was a forward reference to a label, verify it was defined. | |||
2263 | if (LabelDecl *LD = dyn_cast<LabelDecl>(D)) | |||
2264 | CheckPoppedLabel(LD, *this, addDiag); | |||
2265 | ||||
2266 | // Remove this name from our lexical scope, and warn on it if we haven't | |||
2267 | // already. | |||
2268 | IdResolver.RemoveDecl(D); | |||
2269 | auto ShadowI = ShadowingDecls.find(D); | |||
2270 | if (ShadowI != ShadowingDecls.end()) { | |||
2271 | if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) { | |||
2272 | addDiagWithPrev(D->getLocation(), FD->getLocation(), | |||
2273 | PDiag(diag::warn_ctor_parm_shadows_field) | |||
2274 | << D << FD << FD->getParent()); | |||
2275 | } | |||
2276 | ShadowingDecls.erase(ShadowI); | |||
2277 | } | |||
2278 | } | |||
2279 | ||||
2280 | llvm::sort(DeclDiags, | |||
2281 | [](const LocAndDiag &LHS, const LocAndDiag &RHS) -> bool { | |||
2282 | // The particular order for diagnostics is not important, as long | |||
2283 | // as the order is deterministic. Using the raw location is going | |||
2284 | // to generally be in source order unless there are macro | |||
2285 | // expansions involved. | |||
2286 | return LHS.Loc.getRawEncoding() < RHS.Loc.getRawEncoding(); | |||
2287 | }); | |||
2288 | for (const LocAndDiag &D : DeclDiags) { | |||
2289 | Diag(D.Loc, D.PD); | |||
2290 | if (D.PreviousDeclLoc) | |||
2291 | Diag(*D.PreviousDeclLoc, diag::note_previous_declaration); | |||
2292 | } | |||
2293 | } | |||
2294 | ||||
2295 | /// Look for an Objective-C class in the translation unit. | |||
2296 | /// | |||
2297 | /// \param Id The name of the Objective-C class we're looking for. If | |||
2298 | /// typo-correction fixes this name, the Id will be updated | |||
2299 | /// to the fixed name. | |||
2300 | /// | |||
2301 | /// \param IdLoc The location of the name in the translation unit. | |||
2302 | /// | |||
2303 | /// \param DoTypoCorrection If true, this routine will attempt typo correction | |||
2304 | /// if there is no class with the given name. | |||
2305 | /// | |||
2306 | /// \returns The declaration of the named Objective-C class, or NULL if the | |||
2307 | /// class could not be found. | |||
2308 | ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id, | |||
2309 | SourceLocation IdLoc, | |||
2310 | bool DoTypoCorrection) { | |||
2311 | // The third "scope" argument is 0 since we aren't enabling lazy built-in | |||
2312 | // creation from this context. | |||
2313 | NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName); | |||
2314 | ||||
2315 | if (!IDecl && DoTypoCorrection) { | |||
2316 | // Perform typo correction at the given location, but only if we | |||
2317 | // find an Objective-C class name. | |||
2318 | DeclFilterCCC<ObjCInterfaceDecl> CCC{}; | |||
2319 | if (TypoCorrection C = | |||
2320 | CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, | |||
2321 | TUScope, nullptr, CCC, CTK_ErrorRecovery)) { | |||
2322 | diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id); | |||
2323 | IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>(); | |||
2324 | Id = IDecl->getIdentifier(); | |||
2325 | } | |||
2326 | } | |||
2327 | ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl); | |||
2328 | // This routine must always return a class definition, if any. | |||
2329 | if (Def && Def->getDefinition()) | |||
2330 | Def = Def->getDefinition(); | |||
2331 | return Def; | |||
2332 | } | |||
2333 | ||||
2334 | /// getNonFieldDeclScope - Retrieves the innermost scope, starting | |||
2335 | /// from S, where a non-field would be declared. This routine copes | |||
2336 | /// with the difference between C and C++ scoping rules in structs and | |||
2337 | /// unions. For example, the following code is well-formed in C but | |||
2338 | /// ill-formed in C++: | |||
2339 | /// @code | |||
2340 | /// struct S6 { | |||
2341 | /// enum { BAR } e; | |||
2342 | /// }; | |||
2343 | /// | |||
2344 | /// void test_S6() { | |||
2345 | /// struct S6 a; | |||
2346 | /// a.e = BAR; | |||
2347 | /// } | |||
2348 | /// @endcode | |||
2349 | /// For the declaration of BAR, this routine will return a different | |||
2350 | /// scope. The scope S will be the scope of the unnamed enumeration | |||
2351 | /// within S6. In C++, this routine will return the scope associated | |||
2352 | /// with S6, because the enumeration's scope is a transparent | |||
2353 | /// context but structures can contain non-field names. In C, this | |||
2354 | /// routine will return the translation unit scope, since the | |||
2355 | /// enumeration's scope is a transparent context and structures cannot | |||
2356 | /// contain non-field names. | |||
2357 | Scope *Sema::getNonFieldDeclScope(Scope *S) { | |||
2358 | while (((S->getFlags() & Scope::DeclScope) == 0) || | |||
2359 | (S->getEntity() && S->getEntity()->isTransparentContext()) || | |||
2360 | (S->isClassScope() && !getLangOpts().CPlusPlus)) | |||
2361 | S = S->getParent(); | |||
2362 | return S; | |||
2363 | } | |||
2364 | ||||
2365 | static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID, | |||
2366 | ASTContext::GetBuiltinTypeError Error) { | |||
2367 | switch (Error) { | |||
2368 | case ASTContext::GE_None: | |||
2369 | return ""; | |||
2370 | case ASTContext::GE_Missing_type: | |||
2371 | return BuiltinInfo.getHeaderName(ID); | |||
2372 | case ASTContext::GE_Missing_stdio: | |||
2373 | return "stdio.h"; | |||
2374 | case ASTContext::GE_Missing_setjmp: | |||
2375 | return "setjmp.h"; | |||
2376 | case ASTContext::GE_Missing_ucontext: | |||
2377 | return "ucontext.h"; | |||
2378 | } | |||
2379 | llvm_unreachable("unhandled error kind")::llvm::llvm_unreachable_internal("unhandled error kind", "clang/lib/Sema/SemaDecl.cpp" , 2379); | |||
2380 | } | |||
2381 | ||||
2382 | FunctionDecl *Sema::CreateBuiltin(IdentifierInfo *II, QualType Type, | |||
2383 | unsigned ID, SourceLocation Loc) { | |||
2384 | DeclContext *Parent = Context.getTranslationUnitDecl(); | |||
2385 | ||||
2386 | if (getLangOpts().CPlusPlus) { | |||
2387 | LinkageSpecDecl *CLinkageDecl = LinkageSpecDecl::Create( | |||
2388 | Context, Parent, Loc, Loc, LinkageSpecDecl::lang_c, false); | |||
2389 | CLinkageDecl->setImplicit(); | |||
2390 | Parent->addDecl(CLinkageDecl); | |||
2391 | Parent = CLinkageDecl; | |||
2392 | } | |||
2393 | ||||
2394 | FunctionDecl *New = FunctionDecl::Create(Context, Parent, Loc, Loc, II, Type, | |||
2395 | /*TInfo=*/nullptr, SC_Extern, | |||
2396 | getCurFPFeatures().isFPConstrained(), | |||
2397 | false, Type->isFunctionProtoType()); | |||
2398 | New->setImplicit(); | |||
2399 | New->addAttr(BuiltinAttr::CreateImplicit(Context, ID)); | |||
2400 | ||||
2401 | // Create Decl objects for each parameter, adding them to the | |||
2402 | // FunctionDecl. | |||
2403 | if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(Type)) { | |||
2404 | SmallVector<ParmVarDecl *, 16> Params; | |||
2405 | for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { | |||
2406 | ParmVarDecl *parm = ParmVarDecl::Create( | |||
2407 | Context, New, SourceLocation(), SourceLocation(), nullptr, | |||
2408 | FT->getParamType(i), /*TInfo=*/nullptr, SC_None, nullptr); | |||
2409 | parm->setScopeInfo(0, i); | |||
2410 | Params.push_back(parm); | |||
2411 | } | |||
2412 | New->setParams(Params); | |||
2413 | } | |||
2414 | ||||
2415 | AddKnownFunctionAttributes(New); | |||
2416 | return New; | |||
2417 | } | |||
2418 | ||||
2419 | /// LazilyCreateBuiltin - The specified Builtin-ID was first used at | |||
2420 | /// file scope. lazily create a decl for it. ForRedeclaration is true | |||
2421 | /// if we're creating this built-in in anticipation of redeclaring the | |||
2422 | /// built-in. | |||
2423 | NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, | |||
2424 | Scope *S, bool ForRedeclaration, | |||
2425 | SourceLocation Loc) { | |||
2426 | LookupNecessaryTypesForBuiltin(S, ID); | |||
2427 | ||||
2428 | ASTContext::GetBuiltinTypeError Error; | |||
2429 | QualType R = Context.GetBuiltinType(ID, Error); | |||
2430 | if (Error) { | |||
2431 | if (!ForRedeclaration) | |||
2432 | return nullptr; | |||
2433 | ||||
2434 | // If we have a builtin without an associated type we should not emit a | |||
2435 | // warning when we were not able to find a type for it. | |||
2436 | if (Error == ASTContext::GE_Missing_type || | |||
2437 | Context.BuiltinInfo.allowTypeMismatch(ID)) | |||
2438 | return nullptr; | |||
2439 | ||||
2440 | // If we could not find a type for setjmp it is because the jmp_buf type was | |||
2441 | // not defined prior to the setjmp declaration. | |||
2442 | if (Error == ASTContext::GE_Missing_setjmp) { | |||
2443 | Diag(Loc, diag::warn_implicit_decl_no_jmp_buf) | |||
2444 | << Context.BuiltinInfo.getName(ID); | |||
2445 | return nullptr; | |||
2446 | } | |||
2447 | ||||
2448 | // Generally, we emit a warning that the declaration requires the | |||
2449 | // appropriate header. | |||
2450 | Diag(Loc, diag::warn_implicit_decl_requires_sysheader) | |||
2451 | << getHeaderName(Context.BuiltinInfo, ID, Error) | |||
2452 | << Context.BuiltinInfo.getName(ID); | |||
2453 | return nullptr; | |||
2454 | } | |||
2455 | ||||
2456 | if (!ForRedeclaration && | |||
2457 | (Context.BuiltinInfo.isPredefinedLibFunction(ID) || | |||
2458 | Context.BuiltinInfo.isHeaderDependentFunction(ID))) { | |||
2459 | Diag(Loc, LangOpts.C99 ? diag::ext_implicit_lib_function_decl_c99 | |||
2460 | : diag::ext_implicit_lib_function_decl) | |||
2461 | << Context.BuiltinInfo.getName(ID) << R; | |||
2462 | if (const char *Header = Context.BuiltinInfo.getHeaderName(ID)) | |||
2463 | Diag(Loc, diag::note_include_header_or_declare) | |||
2464 | << Header << Context.BuiltinInfo.getName(ID); | |||
2465 | } | |||
2466 | ||||
2467 | if (R.isNull()) | |||
2468 | return nullptr; | |||
2469 | ||||
2470 | FunctionDecl *New = CreateBuiltin(II, R, ID, Loc); | |||
2471 | RegisterLocallyScopedExternCDecl(New, S); | |||
2472 | ||||
2473 | // TUScope is the translation-unit scope to insert this function into. | |||
2474 | // FIXME: This is hideous. We need to teach PushOnScopeChains to | |||
2475 | // relate Scopes to DeclContexts, and probably eliminate CurContext | |||
2476 | // entirely, but we're not there yet. | |||
2477 | DeclContext *SavedContext = CurContext; | |||
2478 | CurContext = New->getDeclContext(); | |||
2479 | PushOnScopeChains(New, TUScope); | |||
2480 | CurContext = SavedContext; | |||
2481 | return New; | |||
2482 | } | |||
2483 | ||||
2484 | /// Typedef declarations don't have linkage, but they still denote the same | |||
2485 | /// entity if their types are the same. | |||
2486 | /// FIXME: This is notionally doing the same thing as ASTReaderDecl's | |||
2487 | /// isSameEntity. | |||
2488 | static void filterNonConflictingPreviousTypedefDecls(Sema &S, | |||
2489 | TypedefNameDecl *Decl, | |||
2490 | LookupResult &Previous) { | |||
2491 | // This is only interesting when modules are enabled. | |||
2492 | if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility) | |||
2493 | return; | |||
2494 | ||||
2495 | // Empty sets are uninteresting. | |||
2496 | if (Previous.empty()) | |||
2497 | return; | |||
2498 | ||||
2499 | LookupResult::Filter Filter = Previous.makeFilter(); | |||
2500 | while (Filter.hasNext()) { | |||
2501 | NamedDecl *Old = Filter.next(); | |||
2502 | ||||
2503 | // Non-hidden declarations are never ignored. | |||
2504 | if (S.isVisible(Old)) | |||
2505 | continue; | |||
2506 | ||||
2507 | // Declarations of the same entity are not ignored, even if they have | |||
2508 | // different linkages. | |||
2509 | if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) { | |||
2510 | if (S.Context.hasSameType(OldTD->getUnderlyingType(), | |||
2511 | Decl->getUnderlyingType())) | |||
2512 | continue; | |||
2513 | ||||
2514 | // If both declarations give a tag declaration a typedef name for linkage | |||
2515 | // purposes, then they declare the same entity. | |||
2516 | if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) && | |||
2517 | Decl->getAnonDeclWithTypedefName()) | |||
2518 | continue; | |||
2519 | } | |||
2520 | ||||
2521 | Filter.erase(); | |||
2522 | } | |||
2523 | ||||
2524 | Filter.done(); | |||
2525 | } | |||
2526 | ||||
2527 | bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) { | |||
2528 | QualType OldType; | |||
2529 | if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old)) | |||
2530 | OldType = OldTypedef->getUnderlyingType(); | |||
2531 | else | |||
2532 | OldType = Context.getTypeDeclType(Old); | |||
2533 | QualType NewType = New->getUnderlyingType(); | |||
2534 | ||||
2535 | if (NewType->isVariablyModifiedType()) { | |||
2536 | // Must not redefine a typedef with a variably-modified type. | |||
2537 | int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; | |||
2538 | Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef) | |||
2539 | << Kind << NewType; | |||
2540 | if (Old->getLocation().isValid()) | |||
2541 | notePreviousDefinition(Old, New->getLocation()); | |||
2542 | New->setInvalidDecl(); | |||
2543 | return true; | |||
2544 | } | |||
2545 | ||||
2546 | if (OldType != NewType && | |||
2547 | !OldType->isDependentType() && | |||
2548 | !NewType->isDependentType() && | |||
2549 | !Context.hasSameType(OldType, NewType)) { | |||
2550 | int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; | |||
2551 | Diag(New->getLocation(), diag::err_redefinition_different_typedef) | |||
2552 | << Kind << NewType << OldType; | |||
2553 | if (Old->getLocation().isValid()) | |||
2554 | notePreviousDefinition(Old, New->getLocation()); | |||
2555 | New->setInvalidDecl(); | |||
2556 | return true; | |||
2557 | } | |||
2558 | return false; | |||
2559 | } | |||
2560 | ||||
2561 | /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the | |||
2562 | /// same name and scope as a previous declaration 'Old'. Figure out | |||
2563 | /// how to resolve this situation, merging decls or emitting | |||
2564 | /// diagnostics as appropriate. If there was an error, set New to be invalid. | |||
2565 | /// | |||
2566 | void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New, | |||
2567 | LookupResult &OldDecls) { | |||
2568 | // If the new decl is known invalid already, don't bother doing any | |||
2569 | // merging checks. | |||
2570 | if (New->isInvalidDecl()) return; | |||
2571 | ||||
2572 | // Allow multiple definitions for ObjC built-in typedefs. | |||
2573 | // FIXME: Verify the underlying types are equivalent! | |||
2574 | if (getLangOpts().ObjC) { | |||
2575 | const IdentifierInfo *TypeID = New->getIdentifier(); | |||
2576 | switch (TypeID->getLength()) { | |||
2577 | default: break; | |||
2578 | case 2: | |||
2579 | { | |||
2580 | if (!TypeID->isStr("id")) | |||
2581 | break; | |||
2582 | QualType T = New->getUnderlyingType(); | |||
2583 | if (!T->isPointerType()) | |||
2584 | break; | |||
2585 | if (!T->isVoidPointerType()) { | |||
2586 | QualType PT = T->castAs<PointerType>()->getPointeeType(); | |||
2587 | if (!PT->isStructureType()) | |||
2588 | break; | |||
2589 | } | |||
2590 | Context.setObjCIdRedefinitionType(T); | |||
2591 | // Install the built-in type for 'id', ignoring the current definition. | |||
2592 | New->setTypeForDecl(Context.getObjCIdType().getTypePtr()); | |||
2593 | return; | |||
2594 | } | |||
2595 | case 5: | |||
2596 | if (!TypeID->isStr("Class")) | |||
2597 | break; | |||
2598 | Context.setObjCClassRedefinitionType(New->getUnderlyingType()); | |||
2599 | // Install the built-in type for 'Class', ignoring the current definition. | |||
2600 | New->setTypeForDecl(Context.getObjCClassType().getTypePtr()); | |||
2601 | return; | |||
2602 | case 3: | |||
2603 | if (!TypeID->isStr("SEL")) | |||
2604 | break; | |||
2605 | Context.setObjCSelRedefinitionType(New->getUnderlyingType()); | |||
2606 | // Install the built-in type for 'SEL', ignoring the current definition. | |||
2607 | New->setTypeForDecl(Context.getObjCSelType().getTypePtr()); | |||
2608 | return; | |||
2609 | } | |||
2610 | // Fall through - the typedef name was not a builtin type. | |||
2611 | } | |||
2612 | ||||
2613 | // Verify the old decl was also a type. | |||
2614 | TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>(); | |||
2615 | if (!Old) { | |||
2616 | Diag(New->getLocation(), diag::err_redefinition_different_kind) | |||
2617 | << New->getDeclName(); | |||
2618 | ||||
2619 | NamedDecl *OldD = OldDecls.getRepresentativeDecl(); | |||
2620 | if (OldD->getLocation().isValid()) | |||
2621 | notePreviousDefinition(OldD, New->getLocation()); | |||
2622 | ||||
2623 | return New->setInvalidDecl(); | |||
2624 | } | |||
2625 | ||||
2626 | // If the old declaration is invalid, just give up here. | |||
2627 | if (Old->isInvalidDecl()) | |||
2628 | return New->setInvalidDecl(); | |||
2629 | ||||
2630 | if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) { | |||
2631 | auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true); | |||
2632 | auto *NewTag = New->getAnonDeclWithTypedefName(); | |||
2633 | NamedDecl *Hidden = nullptr; | |||
2634 | if (OldTag && NewTag && | |||
2635 | OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() && | |||
2636 | !hasVisibleDefinition(OldTag, &Hidden)) { | |||
2637 | // There is a definition of this tag, but it is not visible. Use it | |||
2638 | // instead of our tag. | |||
2639 | New->setTypeForDecl(OldTD->getTypeForDecl()); | |||
2640 | if (OldTD->isModed()) | |||
2641 | New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(), | |||
2642 | OldTD->getUnderlyingType()); | |||
2643 | else | |||
2644 | New->setTypeSourceInfo(OldTD->getTypeSourceInfo()); | |||
2645 | ||||
2646 | // Make the old tag definition visible. | |||
2647 | makeMergedDefinitionVisible(Hidden); | |||
2648 | ||||
2649 | // If this was an unscoped enumeration, yank all of its enumerators | |||
2650 | // out of the scope. | |||
2651 | if (isa<EnumDecl>(NewTag)) { | |||
2652 | Scope *EnumScope = getNonFieldDeclScope(S); | |||
2653 | for (auto *D : NewTag->decls()) { | |||
2654 | auto *ED = cast<EnumConstantDecl>(D); | |||
2655 | assert(EnumScope->isDeclScope(ED))(static_cast <bool> (EnumScope->isDeclScope(ED)) ? void (0) : __assert_fail ("EnumScope->isDeclScope(ED)", "clang/lib/Sema/SemaDecl.cpp" , 2655, __extension__ __PRETTY_FUNCTION__)); | |||
2656 | EnumScope->RemoveDecl(ED); | |||
2657 | IdResolver.RemoveDecl(ED); | |||
2658 | ED->getLexicalDeclContext()->removeDecl(ED); | |||
2659 | } | |||
2660 | } | |||
2661 | } | |||
2662 | } | |||
2663 | ||||
2664 | // If the typedef types are not identical, reject them in all languages and | |||
2665 | // with any extensions enabled. | |||
2666 | if (isIncompatibleTypedef(Old, New)) | |||
2667 | return; | |||
2668 | ||||
2669 | // The types match. Link up the redeclaration chain and merge attributes if | |||
2670 | // the old declaration was a typedef. | |||
2671 | if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) { | |||
2672 | New->setPreviousDecl(Typedef); | |||
2673 | mergeDeclAttributes(New, Old); | |||
2674 | } | |||
2675 | ||||
2676 | if (getLangOpts().MicrosoftExt) | |||
2677 | return; | |||
2678 | ||||
2679 | if (getLangOpts().CPlusPlus) { | |||
2680 | // C++ [dcl.typedef]p2: | |||
2681 | // In a given non-class scope, a typedef specifier can be used to | |||
2682 | // redefine the name of any type declared in that scope to refer | |||
2683 | // to the type to which it already refers. | |||
2684 | if (!isa<CXXRecordDecl>(CurContext)) | |||
2685 | return; | |||
2686 | ||||
2687 | // C++0x [dcl.typedef]p4: | |||
2688 | // In a given class scope, a typedef specifier can be used to redefine | |||
2689 | // any class-name declared in that scope that is not also a typedef-name | |||
2690 | // to refer to the type to which it already refers. | |||
2691 | // | |||
2692 | // This wording came in via DR424, which was a correction to the | |||
2693 | // wording in DR56, which accidentally banned code like: | |||
2694 | // | |||
2695 | // struct S { | |||
2696 | // typedef struct A { } A; | |||
2697 | // }; | |||
2698 | // | |||
2699 | // in the C++03 standard. We implement the C++0x semantics, which | |||
2700 | // allow the above but disallow | |||
2701 | // | |||
2702 | // struct S { | |||
2703 | // typedef int I; | |||
2704 | // typedef int I; | |||
2705 | // }; | |||
2706 | // | |||
2707 | // since that was the intent of DR56. | |||
2708 | if (!isa<TypedefNameDecl>(Old)) | |||
2709 | return; | |||
2710 | ||||
2711 | Diag(New->getLocation(), diag::err_redefinition) | |||
2712 | << New->getDeclName(); | |||
2713 | notePreviousDefinition(Old, New->getLocation()); | |||
2714 | return New->setInvalidDecl(); | |||
2715 | } | |||
2716 | ||||
2717 | // Modules always permit redefinition of typedefs, as does C11. | |||
2718 | if (getLangOpts().Modules || getLangOpts().C11) | |||
2719 | return; | |||
2720 | ||||
2721 | // If we have a redefinition of a typedef in C, emit a warning. This warning | |||
2722 | // is normally mapped to an error, but can be controlled with | |||
2723 | // -Wtypedef-redefinition. If either the original or the redefinition is | |||
2724 | // in a system header, don't emit this for compatibility with GCC. | |||
2725 | if (getDiagnostics().getSuppressSystemWarnings() && | |||
2726 | // Some standard types are defined implicitly in Clang (e.g. OpenCL). | |||
2727 | (Old->isImplicit() || | |||
2728 | Context.getSourceManager().isInSystemHeader(Old->getLocation()) || | |||
2729 | Context.getSourceManager().isInSystemHeader(New->getLocation()))) | |||
2730 | return; | |||
2731 | ||||
2732 | Diag(New->getLocation(), diag::ext_redefinition_of_typedef) | |||
2733 | << New->getDeclName(); | |||
2734 | notePreviousDefinition(Old, New->getLocation()); | |||
2735 | } | |||
2736 | ||||
2737 | /// DeclhasAttr - returns true if decl Declaration already has the target | |||
2738 | /// attribute. | |||
2739 | static bool DeclHasAttr(const Decl *D, const Attr *A) { | |||
2740 | const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A); | |||
2741 | const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A); | |||
2742 | for (const auto *i : D->attrs()) | |||
2743 | if (i->getKind() == A->getKind()) { | |||
2744 | if (Ann) { | |||
2745 | if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation()) | |||
2746 | return true; | |||
2747 | continue; | |||
2748 | } | |||
2749 | // FIXME: Don't hardcode this check | |||
2750 | if (OA && isa<OwnershipAttr>(i)) | |||
2751 | return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind(); | |||
2752 | return true; | |||
2753 | } | |||
2754 | ||||
2755 | return false; | |||
2756 | } | |||
2757 | ||||
2758 | static bool isAttributeTargetADefinition(Decl *D) { | |||
2759 | if (VarDecl *VD = dyn_cast<VarDecl>(D)) | |||
2760 | return VD->isThisDeclarationADefinition(); | |||
2761 | if (TagDecl *TD = dyn_cast<TagDecl>(D)) | |||
2762 | return TD->isCompleteDefinition() || TD->isBeingDefined(); | |||
2763 | return true; | |||
2764 | } | |||
2765 | ||||
2766 | /// Merge alignment attributes from \p Old to \p New, taking into account the | |||
2767 | /// special semantics of C11's _Alignas specifier and C++11's alignas attribute. | |||
2768 | /// | |||
2769 | /// \return \c true if any attributes were added to \p New. | |||
2770 | static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) { | |||
2771 | // Look for alignas attributes on Old, and pick out whichever attribute | |||
2772 | // specifies the strictest alignment requirement. | |||
2773 | AlignedAttr *OldAlignasAttr = nullptr; | |||
2774 | AlignedAttr *OldStrictestAlignAttr = nullptr; | |||
2775 | unsigned OldAlign = 0; | |||
2776 | for (auto *I : Old->specific_attrs<AlignedAttr>()) { | |||
2777 | // FIXME: We have no way of representing inherited dependent alignments | |||
2778 | // in a case like: | |||
2779 | // template<int A, int B> struct alignas(A) X; | |||
2780 | // template<int A, int B> struct alignas(B) X {}; | |||
2781 | // For now, we just ignore any alignas attributes which are not on the | |||
2782 | // definition in such a case. | |||
2783 | if (I->isAlignmentDependent()) | |||
2784 | return false; | |||
2785 | ||||
2786 | if (I->isAlignas()) | |||
2787 | OldAlignasAttr = I; | |||
2788 | ||||
2789 | unsigned Align = I->getAlignment(S.Context); | |||
2790 | if (Align > OldAlign) { | |||
2791 | OldAlign = Align; | |||
2792 | OldStrictestAlignAttr = I; | |||
2793 | } | |||
2794 | } | |||
2795 | ||||
2796 | // Look for alignas attributes on New. | |||
2797 | AlignedAttr *NewAlignasAttr = nullptr; | |||
2798 | unsigned NewAlign = 0; | |||
2799 | for (auto *I : New->specific_attrs<AlignedAttr>()) { | |||
2800 | if (I->isAlignmentDependent()) | |||
2801 | return false; | |||
2802 | ||||
2803 | if (I->isAlignas()) | |||
2804 | NewAlignasAttr = I; | |||
2805 | ||||
2806 | unsigned Align = I->getAlignment(S.Context); | |||
2807 | if (Align > NewAlign) | |||
2808 | NewAlign = Align; | |||
2809 | } | |||
2810 | ||||
2811 | if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) { | |||
2812 | // Both declarations have 'alignas' attributes. We require them to match. | |||
2813 | // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but | |||
2814 | // fall short. (If two declarations both have alignas, they must both match | |||
2815 | // every definition, and so must match each other if there is a definition.) | |||
2816 | ||||
2817 | // If either declaration only contains 'alignas(0)' specifiers, then it | |||
2818 | // specifies the natural alignment for the type. | |||
2819 | if (OldAlign == 0 || NewAlign == 0) { | |||
2820 | QualType Ty; | |||
2821 | if (ValueDecl *VD = dyn_cast<ValueDecl>(New)) | |||
2822 | Ty = VD->getType(); | |||
2823 | else | |||
2824 | Ty = S.Context.getTagDeclType(cast<TagDecl>(New)); | |||
2825 | ||||
2826 | if (OldAlign == 0) | |||
2827 | OldAlign = S.Context.getTypeAlign(Ty); | |||
2828 | if (NewAlign == 0) | |||
2829 | NewAlign = S.Context.getTypeAlign(Ty); | |||
2830 | } | |||
2831 | ||||
2832 | if (OldAlign != NewAlign) { | |||
2833 | S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch) | |||
2834 | << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity() | |||
2835 | << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity(); | |||
2836 | S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration); | |||
2837 | } | |||
2838 | } | |||
2839 | ||||
2840 | if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) { | |||
2841 | // C++11 [dcl.align]p6: | |||
2842 | // if any declaration of an entity has an alignment-specifier, | |||
2843 | // every defining declaration of that entity shall specify an | |||
2844 | // equivalent alignment. | |||
2845 | // C11 6.7.5/7: | |||
2846 | // If the definition of an object does not have an alignment | |||
2847 | // specifier, any other declaration of that object shall also | |||
2848 | // have no alignment specifier. | |||
2849 | S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition) | |||
2850 | << OldAlignasAttr; | |||
2851 | S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration) | |||
2852 | << OldAlignasAttr; | |||
2853 | } | |||
2854 | ||||
2855 | bool AnyAdded = false; | |||
2856 | ||||
2857 | // Ensure we have an attribute representing the strictest alignment. | |||
2858 | if (OldAlign > NewAlign) { | |||
2859 | AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context); | |||
2860 | Clone->setInherited(true); | |||
2861 | New->addAttr(Clone); | |||
2862 | AnyAdded = true; | |||
2863 | } | |||
2864 | ||||
2865 | // Ensure we have an alignas attribute if the old declaration had one. | |||
2866 | if (OldAlignasAttr && !NewAlignasAttr && | |||
2867 | !(AnyAdded && OldStrictestAlignAttr->isAlignas())) { | |||
2868 | AlignedAttr *Clone = OldAlignasAttr->clone(S.Context); | |||
2869 | Clone->setInherited(true); | |||
2870 | New->addAttr(Clone); | |||
2871 | AnyAdded = true; | |||
2872 | } | |||
2873 | ||||
2874 | return AnyAdded; | |||
2875 | } | |||
2876 | ||||
2877 | #define WANT_DECL_MERGE_LOGIC | |||
2878 | #include "clang/Sema/AttrParsedAttrImpl.inc" | |||
2879 | #undef WANT_DECL_MERGE_LOGIC | |||
2880 | ||||
2881 | static bool mergeDeclAttribute(Sema &S, NamedDecl *D, | |||
2882 | const InheritableAttr *Attr, | |||
2883 | Sema::AvailabilityMergeKind AMK) { | |||
2884 | // Diagnose any mutual exclusions between the attribute that we want to add | |||
2885 | // and attributes that already exist on the declaration. | |||
2886 | if (!DiagnoseMutualExclusions(S, D, Attr)) | |||
2887 | return false; | |||
2888 | ||||
2889 | // This function copies an attribute Attr from a previous declaration to the | |||
2890 | // new declaration D if the new declaration doesn't itself have that attribute | |||
2891 | // yet or if that attribute allows duplicates. | |||
2892 | // If you're adding a new attribute that requires logic different from | |||
2893 | // "use explicit attribute on decl if present, else use attribute from | |||
2894 | // previous decl", for example if the attribute needs to be consistent | |||
2895 | // between redeclarations, you need to call a custom merge function here. | |||
2896 | InheritableAttr *NewAttr = nullptr; | |||
2897 | if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr)) | |||
2898 | NewAttr = S.mergeAvailabilityAttr( | |||
2899 | D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(), | |||
2900 | AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(), | |||
2901 | AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK, | |||
2902 | AA->getPriority()); | |||
2903 | else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr)) | |||
2904 | NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility()); | |||
2905 | else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr)) | |||
2906 | NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility()); | |||
2907 | else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr)) | |||
2908 | NewAttr = S.mergeDLLImportAttr(D, *ImportA); | |||
2909 | else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr)) | |||
2910 | NewAttr = S.mergeDLLExportAttr(D, *ExportA); | |||
2911 | else if (const auto *EA = dyn_cast<ErrorAttr>(Attr)) | |||
2912 | NewAttr = S.mergeErrorAttr(D, *EA, EA->getUserDiagnostic()); | |||
2913 | else if (const auto *FA = dyn_cast<FormatAttr>(Attr)) | |||
2914 | NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(), | |||
2915 | FA->getFirstArg()); | |||
2916 | else if (const auto *SA = dyn_cast<SectionAttr>(Attr)) | |||
2917 | NewAttr = S.mergeSectionAttr(D, *SA, SA->getName()); | |||
2918 | else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr)) | |||
2919 | NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName()); | |||
2920 | else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr)) | |||
2921 | NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(), | |||
2922 | IA->getInheritanceModel()); | |||
2923 | else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr)) | |||
2924 | NewAttr = S.mergeAlwaysInlineAttr(D, *AA, | |||
2925 | &S.Context.Idents.get(AA->getSpelling())); | |||
2926 | else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) && | |||
2927 | (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) || | |||
2928 | isa<CUDAGlobalAttr>(Attr))) { | |||
2929 | // CUDA target attributes are part of function signature for | |||
2930 | // overloading purposes and must not be merged. | |||
2931 | return false; | |||
2932 | } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr)) | |||
2933 | NewAttr = S.mergeMinSizeAttr(D, *MA); | |||
2934 | else if (const auto *SNA = dyn_cast<SwiftNameAttr>(Attr)) | |||
2935 | NewAttr = S.mergeSwiftNameAttr(D, *SNA, SNA->getName()); | |||
2936 | else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr)) | |||
2937 | NewAttr = S.mergeOptimizeNoneAttr(D, *OA); | |||
2938 | else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr)) | |||
2939 | NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA); | |||
2940 | else if (isa<AlignedAttr>(Attr)) | |||
2941 | // AlignedAttrs are handled separately, because we need to handle all | |||
2942 | // such attributes on a declaration at the same time. | |||
2943 | NewAttr = nullptr; | |||
2944 | else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) && | |||
2945 | (AMK == Sema::AMK_Override || | |||
2946 | AMK == Sema::AMK_ProtocolImplementation || | |||
2947 | AMK == Sema::AMK_OptionalProtocolImplementation)) | |||
2948 | NewAttr = nullptr; | |||
2949 | else if (const auto *UA = dyn_cast<UuidAttr>(Attr)) | |||
2950 | NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid(), UA->getGuidDecl()); | |||
2951 | else if (const auto *IMA = dyn_cast<WebAssemblyImportModuleAttr>(Attr)) | |||
2952 | NewAttr = S.mergeImportModuleAttr(D, *IMA); | |||
2953 | else if (const auto *INA = dyn_cast<WebAssemblyImportNameAttr>(Attr)) | |||
2954 | NewAttr = S.mergeImportNameAttr(D, *INA); | |||
2955 | else if (const auto *TCBA = dyn_cast<EnforceTCBAttr>(Attr)) | |||
2956 | NewAttr = S.mergeEnforceTCBAttr(D, *TCBA); | |||
2957 | else if (const auto *TCBLA = dyn_cast<EnforceTCBLeafAttr>(Attr)) | |||
2958 | NewAttr = S.mergeEnforceTCBLeafAttr(D, *TCBLA); | |||
2959 | else if (const auto *BTFA = dyn_cast<BTFDeclTagAttr>(Attr)) | |||
2960 | NewAttr = S.mergeBTFDeclTagAttr(D, *BTFA); | |||
2961 | else if (const auto *NT = dyn_cast<HLSLNumThreadsAttr>(Attr)) | |||
2962 | NewAttr = | |||
2963 | S.mergeHLSLNumThreadsAttr(D, *NT, NT->getX(), NT->getY(), NT->getZ()); | |||
2964 | else if (const auto *SA = dyn_cast<HLSLShaderAttr>(Attr)) | |||
2965 | NewAttr = S.mergeHLSLShaderAttr(D, *SA, SA->getType()); | |||
2966 | else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr)) | |||
2967 | NewAttr = cast<InheritableAttr>(Attr->clone(S.Context)); | |||
2968 | ||||
2969 | if (NewAttr) { | |||
2970 | NewAttr->setInherited(true); | |||
2971 | D->addAttr(NewAttr); | |||
2972 | if (isa<MSInheritanceAttr>(NewAttr)) | |||
2973 | S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D)); | |||
2974 | return true; | |||
2975 | } | |||
2976 | ||||
2977 | return false; | |||
2978 | } | |||
2979 | ||||
2980 | static const NamedDecl *getDefinition(const Decl *D) { | |||
2981 | if (const TagDecl *TD = dyn_cast<TagDecl>(D)) | |||
2982 | return TD->getDefinition(); | |||
2983 | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | |||
2984 | const VarDecl *Def = VD->getDefinition(); | |||
2985 | if (Def) | |||
2986 | return Def; | |||
2987 | return VD->getActingDefinition(); | |||
2988 | } | |||
2989 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | |||
2990 | const FunctionDecl *Def = nullptr; | |||
2991 | if (FD->isDefined(Def, true)) | |||
2992 | return Def; | |||
2993 | } | |||
2994 | return nullptr; | |||
2995 | } | |||
2996 | ||||
2997 | static bool hasAttribute(const Decl *D, attr::Kind Kind) { | |||
2998 | for (const auto *Attribute : D->attrs()) | |||
2999 | if (Attribute->getKind() == Kind) | |||
3000 | return true; | |||
3001 | return false; | |||
3002 | } | |||
3003 | ||||
3004 | /// checkNewAttributesAfterDef - If we already have a definition, check that | |||
3005 | /// there are no new attributes in this declaration. | |||
3006 | static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) { | |||
3007 | if (!New->hasAttrs()) | |||
3008 | return; | |||
3009 | ||||
3010 | const NamedDecl *Def = getDefinition(Old); | |||
3011 | if (!Def || Def == New) | |||
3012 | return; | |||
3013 | ||||
3014 | AttrVec &NewAttributes = New->getAttrs(); | |||
3015 | for (unsigned I = 0, E = NewAttributes.size(); I != E;) { | |||
3016 | const Attr *NewAttribute = NewAttributes[I]; | |||
3017 | ||||
3018 | if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) { | |||
3019 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) { | |||
3020 | Sema::SkipBodyInfo SkipBody; | |||
3021 | S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody); | |||
3022 | ||||
3023 | // If we're skipping this definition, drop the "alias" attribute. | |||
3024 | if (SkipBody.ShouldSkip) { | |||
3025 | NewAttributes.erase(NewAttributes.begin() + I); | |||
3026 | --E; | |||
3027 | continue; | |||
3028 | } | |||
3029 | } else { | |||
3030 | VarDecl *VD = cast<VarDecl>(New); | |||
3031 | unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() == | |||
3032 | VarDecl::TentativeDefinition | |||
3033 | ? diag::err_alias_after_tentative | |||
3034 | : diag::err_redefinition; | |||
3035 | S.Diag(VD->getLocation(), Diag) << VD->getDeclName(); | |||
3036 | if (Diag == diag::err_redefinition) | |||
3037 | S.notePreviousDefinition(Def, VD->getLocation()); | |||
3038 | else | |||
3039 | S.Diag(Def->getLocation(), diag::note_previous_definition); | |||
3040 | VD->setInvalidDecl(); | |||
3041 | } | |||
3042 | ++I; | |||
3043 | continue; | |||
3044 | } | |||
3045 | ||||
3046 | if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) { | |||
3047 | // Tentative definitions are only interesting for the alias check above. | |||
3048 | if (VD->isThisDeclarationADefinition() != VarDecl::Definition) { | |||
3049 | ++I; | |||
3050 | continue; | |||
3051 | } | |||
3052 | } | |||
3053 | ||||
3054 | if (hasAttribute(Def, NewAttribute->getKind())) { | |||
3055 | ++I; | |||
3056 | continue; // regular attr merging will take care of validating this. | |||
3057 | } | |||
3058 | ||||
3059 | if (isa<C11NoReturnAttr>(NewAttribute)) { | |||
3060 | // C's _Noreturn is allowed to be added to a function after it is defined. | |||
3061 | ++I; | |||
3062 | continue; | |||
3063 | } else if (isa<UuidAttr>(NewAttribute)) { | |||
3064 | // msvc will allow a subsequent definition to add an uuid to a class | |||
3065 | ++I; | |||
3066 | continue; | |||
3067 | } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) { | |||
3068 | if (AA->isAlignas()) { | |||
3069 | // C++11 [dcl.align]p6: | |||
3070 | // if any declaration of an entity has an alignment-specifier, | |||
3071 | // every defining declaration of that entity shall specify an | |||
3072 | // equivalent alignment. | |||
3073 | // C11 6.7.5/7: | |||
3074 | // If the definition of an object does not have an alignment | |||
3075 | // specifier, any other declaration of that object shall also | |||
3076 | // have no alignment specifier. | |||
3077 | S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition) | |||
3078 | << AA; | |||
3079 | S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration) | |||
3080 | << AA; | |||
3081 | NewAttributes.erase(NewAttributes.begin() + I); | |||
3082 | --E; | |||
3083 | continue; | |||
3084 | } | |||
3085 | } else if (isa<LoaderUninitializedAttr>(NewAttribute)) { | |||
3086 | // If there is a C definition followed by a redeclaration with this | |||
3087 | // attribute then there are two different definitions. In C++, prefer the | |||
3088 | // standard diagnostics. | |||
3089 | if (!S.getLangOpts().CPlusPlus) { | |||
3090 | S.Diag(NewAttribute->getLocation(), | |||
3091 | diag::err_loader_uninitialized_redeclaration); | |||
3092 | S.Diag(Def->getLocation(), diag::note_previous_definition); | |||
3093 | NewAttributes.erase(NewAttributes.begin() + I); | |||
3094 | --E; | |||
3095 | continue; | |||
3096 | } | |||
3097 | } else if (isa<SelectAnyAttr>(NewAttribute) && | |||
3098 | cast<VarDecl>(New)->isInline() && | |||
3099 | !cast<VarDecl>(New)->isInlineSpecified()) { | |||
3100 | // Don't warn about applying selectany to implicitly inline variables. | |||
3101 | // Older compilers and language modes would require the use of selectany | |||
3102 | // to make such variables inline, and it would have no effect if we | |||
3103 | // honored it. | |||
3104 | ++I; | |||
3105 | continue; | |||
3106 | } else if (isa<OMPDeclareVariantAttr>(NewAttribute)) { | |||
3107 | // We allow to add OMP[Begin]DeclareVariantAttr to be added to | |||
3108 | // declarations after definitions. | |||
3109 | ++I; | |||
3110 | continue; | |||
3111 | } | |||
3112 | ||||
3113 | S.Diag(NewAttribute->getLocation(), | |||
3114 | diag::warn_attribute_precede_definition); | |||
3115 | S.Diag(Def->getLocation(), diag::note_previous_definition); | |||
3116 | NewAttributes.erase(NewAttributes.begin() + I); | |||
3117 | --E; | |||
3118 | } | |||
3119 | } | |||
3120 | ||||
3121 | static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl, | |||
3122 | const ConstInitAttr *CIAttr, | |||
3123 | bool AttrBeforeInit) { | |||
3124 | SourceLocation InsertLoc = InitDecl->getInnerLocStart(); | |||
3125 | ||||
3126 | // Figure out a good way to write this specifier on the old declaration. | |||
3127 | // FIXME: We should just use the spelling of CIAttr, but we don't preserve | |||
3128 | // enough of the attribute list spelling information to extract that without | |||
3129 | // heroics. | |||
3130 | std::string SuitableSpelling; | |||
3131 | if (S.getLangOpts().CPlusPlus20) | |||
3132 | SuitableSpelling = std::string( | |||
3133 | S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit})); | |||
3134 | if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11) | |||
3135 | SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling( | |||
3136 | InsertLoc, {tok::l_square, tok::l_square, | |||
3137 | S.PP.getIdentifierInfo("clang"), tok::coloncolon, | |||
3138 | S.PP.getIdentifierInfo("require_constant_initialization"), | |||
3139 | tok::r_square, tok::r_square})); | |||
3140 | if (SuitableSpelling.empty()) | |||
3141 | SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling( | |||
3142 | InsertLoc, {tok::kw___attribute, tok::l_paren, tok::r_paren, | |||
3143 | S.PP.getIdentifierInfo("require_constant_initialization"), | |||
3144 | tok::r_paren, tok::r_paren})); | |||
3145 | if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus20) | |||
3146 | SuitableSpelling = "constinit"; | |||
3147 | if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11) | |||
3148 | SuitableSpelling = "[[clang::require_constant_initialization]]"; | |||
3149 | if (SuitableSpelling.empty()) | |||
3150 | SuitableSpelling = "__attribute__((require_constant_initialization))"; | |||
3151 | SuitableSpelling += " "; | |||
3152 | ||||
3153 | if (AttrBeforeInit) { | |||
3154 | // extern constinit int a; | |||
3155 | // int a = 0; // error (missing 'constinit'), accepted as extension | |||
3156 | assert(CIAttr->isConstinit() && "should not diagnose this for attribute")(static_cast <bool> (CIAttr->isConstinit() && "should not diagnose this for attribute") ? void (0) : __assert_fail ("CIAttr->isConstinit() && \"should not diagnose this for attribute\"" , "clang/lib/Sema/SemaDecl.cpp", 3156, __extension__ __PRETTY_FUNCTION__ )); | |||
3157 | S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing) | |||
3158 | << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling); | |||
3159 | S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here); | |||
3160 | } else { | |||
3161 | // int a = 0; | |||
3162 | // constinit extern int a; // error (missing 'constinit') | |||
3163 | S.Diag(CIAttr->getLocation(), | |||
3164 | CIAttr->isConstinit() ? diag::err_constinit_added_too_late | |||
3165 | : diag::warn_require_const_init_added_too_late) | |||
3166 | << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation())); | |||
3167 | S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here) | |||
3168 | << CIAttr->isConstinit() | |||
3169 | << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling); | |||
3170 | } | |||
3171 | } | |||
3172 | ||||
3173 | /// mergeDeclAttributes - Copy attributes from the Old decl to the New one. | |||
3174 | void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old, | |||
3175 | AvailabilityMergeKind AMK) { | |||
3176 | if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) { | |||
3177 | UsedAttr *NewAttr = OldAttr->clone(Context); | |||
3178 | NewAttr->setInherited(true); | |||
3179 | New->addAttr(NewAttr); | |||
3180 | } | |||
3181 | if (RetainAttr *OldAttr = Old->getMostRecentDecl()->getAttr<RetainAttr>()) { | |||
3182 | RetainAttr *NewAttr = OldAttr->clone(Context); | |||
3183 | NewAttr->setInherited(true); | |||
3184 | New->addAttr(NewAttr); | |||
3185 | } | |||
3186 | ||||
3187 | if (!Old->hasAttrs() && !New->hasAttrs()) | |||
3188 | return; | |||
3189 | ||||
3190 | // [dcl.constinit]p1: | |||
3191 | // If the [constinit] specifier is applied to any declaration of a | |||
3192 | // variable, it shall be applied to the initializing declaration. | |||
3193 | const auto *OldConstInit = Old->getAttr<ConstInitAttr>(); | |||
3194 | const auto *NewConstInit = New->getAttr<ConstInitAttr>(); | |||
3195 | if (bool(OldConstInit) != bool(NewConstInit)) { | |||
3196 | const auto *OldVD = cast<VarDecl>(Old); | |||
3197 | auto *NewVD = cast<VarDecl>(New); | |||
3198 | ||||
3199 | // Find the initializing declaration. Note that we might not have linked | |||
3200 | // the new declaration into the redeclaration chain yet. | |||
3201 | const VarDecl *InitDecl = OldVD->getInitializingDeclaration(); | |||
3202 | if (!InitDecl && | |||
3203 | (NewVD->hasInit() || NewVD->isThisDeclarationADefinition())) | |||
3204 | InitDecl = NewVD; | |||
3205 | ||||
3206 | if (InitDecl == NewVD) { | |||
3207 | // This is the initializing declaration. If it would inherit 'constinit', | |||
3208 | // that's ill-formed. (Note that we do not apply this to the attribute | |||
3209 | // form). | |||
3210 | if (OldConstInit && OldConstInit->isConstinit()) | |||
3211 | diagnoseMissingConstinit(*this, NewVD, OldConstInit, | |||
3212 | /*AttrBeforeInit=*/true); | |||
3213 | } else if (NewConstInit) { | |||
3214 | // This is the first time we've been told that this declaration should | |||
3215 | // have a constant initializer. If we already saw the initializing | |||
3216 | // declaration, this is too late. | |||
3217 | if (InitDecl && InitDecl != NewVD) { | |||
3218 | diagnoseMissingConstinit(*this, InitDecl, NewConstInit, | |||
3219 | /*AttrBeforeInit=*/false); | |||
3220 | NewVD->dropAttr<ConstInitAttr>(); | |||
3221 | } | |||
3222 | } | |||
3223 | } | |||
3224 | ||||
3225 | // Attributes declared post-definition are currently ignored. | |||
3226 | checkNewAttributesAfterDef(*this, New, Old); | |||
3227 | ||||
3228 | if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) { | |||
3229 | if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) { | |||
3230 | if (!OldA->isEquivalent(NewA)) { | |||
3231 | // This redeclaration changes __asm__ label. | |||
3232 | Diag(New->getLocation(), diag::err_different_asm_label); | |||
3233 | Diag(OldA->getLocation(), diag::note_previous_declaration); | |||
3234 | } | |||
3235 | } else if (Old->isUsed()) { | |||
3236 | // This redeclaration adds an __asm__ label to a declaration that has | |||
3237 | // already been ODR-used. | |||
3238 | Diag(New->getLocation(), diag::err_late_asm_label_name) | |||
3239 | << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange(); | |||
3240 | } | |||
3241 | } | |||
3242 | ||||
3243 | // Re-declaration cannot add abi_tag's. | |||
3244 | if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) { | |||
3245 | if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) { | |||
3246 | for (const auto &NewTag : NewAbiTagAttr->tags()) { | |||
3247 | if (!llvm::is_contained(OldAbiTagAttr->tags(), NewTag)) { | |||
3248 | Diag(NewAbiTagAttr->getLocation(), | |||
3249 | diag::err_new_abi_tag_on_redeclaration) | |||
3250 | << NewTag; | |||
3251 | Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration); | |||
3252 | } | |||
3253 | } | |||
3254 | } else { | |||
3255 | Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration); | |||
3256 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
3257 | } | |||
3258 | } | |||
3259 | ||||
3260 | // This redeclaration adds a section attribute. | |||
3261 | if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) { | |||
3262 | if (auto *VD = dyn_cast<VarDecl>(New)) { | |||
3263 | if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) { | |||
3264 | Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration); | |||
3265 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
3266 | } | |||
3267 | } | |||
3268 | } | |||
3269 | ||||
3270 | // Redeclaration adds code-seg attribute. | |||
3271 | const auto *NewCSA = New->getAttr<CodeSegAttr>(); | |||
3272 | if (NewCSA && !Old->hasAttr<CodeSegAttr>() && | |||
3273 | !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) { | |||
3274 | Diag(New->getLocation(), diag::warn_mismatched_section) | |||
3275 | << 0 /*codeseg*/; | |||
3276 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
3277 | } | |||
3278 | ||||
3279 | if (!Old->hasAttrs()) | |||
3280 | return; | |||
3281 | ||||
3282 | bool foundAny = New->hasAttrs(); | |||
3283 | ||||
3284 | // Ensure that any moving of objects within the allocated map is done before | |||
3285 | // we process them. | |||
3286 | if (!foundAny) New->setAttrs(AttrVec()); | |||
3287 | ||||
3288 | for (auto *I : Old->specific_attrs<InheritableAttr>()) { | |||
3289 | // Ignore deprecated/unavailable/availability attributes if requested. | |||
3290 | AvailabilityMergeKind LocalAMK = AMK_None; | |||
3291 | if (isa<DeprecatedAttr>(I) || | |||
3292 | isa<UnavailableAttr>(I) || | |||
3293 | isa<AvailabilityAttr>(I)) { | |||
3294 | switch (AMK) { | |||
3295 | case AMK_None: | |||
3296 | continue; | |||
3297 | ||||
3298 | case AMK_Redeclaration: | |||
3299 | case AMK_Override: | |||
3300 | case AMK_ProtocolImplementation: | |||
3301 | case AMK_OptionalProtocolImplementation: | |||
3302 | LocalAMK = AMK; | |||
3303 | break; | |||
3304 | } | |||
3305 | } | |||
3306 | ||||
3307 | // Already handled. | |||
3308 | if (isa<UsedAttr>(I) || isa<RetainAttr>(I)) | |||
3309 | continue; | |||
3310 | ||||
3311 | if (mergeDeclAttribute(*this, New, I, LocalAMK)) | |||
3312 | foundAny = true; | |||
3313 | } | |||
3314 | ||||
3315 | if (mergeAlignedAttrs(*this, New, Old)) | |||
3316 | foundAny = true; | |||
3317 | ||||
3318 | if (!foundAny) New->dropAttrs(); | |||
3319 | } | |||
3320 | ||||
3321 | /// mergeParamDeclAttributes - Copy attributes from the old parameter | |||
3322 | /// to the new one. | |||
3323 | static void mergeParamDeclAttributes(ParmVarDecl *newDecl, | |||
3324 | const ParmVarDecl *oldDecl, | |||
3325 | Sema &S) { | |||
3326 | // C++11 [dcl.attr.depend]p2: | |||
3327 | // The first declaration of a function shall specify the | |||
3328 | // carries_dependency attribute for its declarator-id if any declaration | |||
3329 | // of the function specifies the carries_dependency attribute. | |||
3330 | const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>(); | |||
3331 | if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) { | |||
3332 | S.Diag(CDA->getLocation(), | |||
3333 | diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/; | |||
3334 | // Find the first declaration of the parameter. | |||
3335 | // FIXME: Should we build redeclaration chains for function parameters? | |||
3336 | const FunctionDecl *FirstFD = | |||
3337 | cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl(); | |||
3338 | const ParmVarDecl *FirstVD = | |||
3339 | FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex()); | |||
3340 | S.Diag(FirstVD->getLocation(), | |||
3341 | diag::note_carries_dependency_missing_first_decl) << 1/*Param*/; | |||
3342 | } | |||
3343 | ||||
3344 | if (!oldDecl->hasAttrs()) | |||
3345 | return; | |||
3346 | ||||
3347 | bool foundAny = newDecl->hasAttrs(); | |||
3348 | ||||
3349 | // Ensure that any moving of objects within the allocated map is | |||
3350 | // done before we process them. | |||
3351 | if (!foundAny) newDecl->setAttrs(AttrVec()); | |||
3352 | ||||
3353 | for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) { | |||
3354 | if (!DeclHasAttr(newDecl, I)) { | |||
3355 | InheritableAttr *newAttr = | |||
3356 | cast<InheritableParamAttr>(I->clone(S.Context)); | |||
3357 | newAttr->setInherited(true); | |||
3358 | newDecl->addAttr(newAttr); | |||
3359 | foundAny = true; | |||
3360 | } | |||
3361 | } | |||
3362 | ||||
3363 | if (!foundAny) newDecl->dropAttrs(); | |||
3364 | } | |||
3365 | ||||
3366 | static bool EquivalentArrayTypes(QualType Old, QualType New, | |||
3367 | const ASTContext &Ctx) { | |||
3368 | ||||
3369 | auto NoSizeInfo = [&Ctx](QualType Ty) { | |||
3370 | if (Ty->isIncompleteArrayType() || Ty->isPointerType()) | |||
3371 | return true; | |||
3372 | if (const auto *VAT = Ctx.getAsVariableArrayType(Ty)) | |||
3373 | return VAT->getSizeModifier() == ArrayType::ArraySizeModifier::Star; | |||
3374 | return false; | |||
3375 | }; | |||
3376 | ||||
3377 | // `type[]` is equivalent to `type *` and `type[*]`. | |||
3378 | if (NoSizeInfo(Old) && NoSizeInfo(New)) | |||
3379 | return true; | |||
3380 | ||||
3381 | // Don't try to compare VLA sizes, unless one of them has the star modifier. | |||
3382 | if (Old->isVariableArrayType() && New->isVariableArrayType()) { | |||
3383 | const auto *OldVAT = Ctx.getAsVariableArrayType(Old); | |||
3384 | const auto *NewVAT = Ctx.getAsVariableArrayType(New); | |||
3385 | if ((OldVAT->getSizeModifier() == ArrayType::ArraySizeModifier::Star) ^ | |||
3386 | (NewVAT->getSizeModifier() == ArrayType::ArraySizeModifier::Star)) | |||
3387 | return false; | |||
3388 | return true; | |||
3389 | } | |||
3390 | ||||
3391 | // Only compare size, ignore Size modifiers and CVR. | |||
3392 | if (Old->isConstantArrayType() && New->isConstantArrayType()) { | |||
3393 | return Ctx.getAsConstantArrayType(Old)->getSize() == | |||
3394 | Ctx.getAsConstantArrayType(New)->getSize(); | |||
3395 | } | |||
3396 | ||||
3397 | // Don't try to compare dependent sized array | |||
3398 | if (Old->isDependentSizedArrayType() && New->isDependentSizedArrayType()) { | |||
3399 | return true; | |||
3400 | } | |||
3401 | ||||
3402 | return Old == New; | |||
3403 | } | |||
3404 | ||||
3405 | static void mergeParamDeclTypes(ParmVarDecl *NewParam, | |||
3406 | const ParmVarDecl *OldParam, | |||
3407 | Sema &S) { | |||
3408 | if (auto Oldnullability = OldParam->getType()->getNullability()) { | |||
3409 | if (auto Newnullability = NewParam->getType()->getNullability()) { | |||
3410 | if (*Oldnullability != *Newnullability) { | |||
3411 | S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr) | |||
3412 | << DiagNullabilityKind( | |||
3413 | *Newnullability, | |||
3414 | ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) | |||
3415 | != 0)) | |||
3416 | << DiagNullabilityKind( | |||
3417 | *Oldnullability, | |||
3418 | ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) | |||
3419 | != 0)); | |||
3420 | S.Diag(OldParam->getLocation(), diag::note_previous_declaration); | |||
3421 | } | |||
3422 | } else { | |||
3423 | QualType NewT = NewParam->getType(); | |||
3424 | NewT = S.Context.getAttributedType( | |||
3425 | AttributedType::getNullabilityAttrKind(*Oldnullability), | |||
3426 | NewT, NewT); | |||
3427 | NewParam->setType(NewT); | |||
3428 | } | |||
3429 | } | |||
3430 | const auto *OldParamDT = dyn_cast<DecayedType>(OldParam->getType()); | |||
3431 | const auto *NewParamDT = dyn_cast<DecayedType>(NewParam->getType()); | |||
3432 | if (OldParamDT && NewParamDT && | |||
3433 | OldParamDT->getPointeeType() == NewParamDT->getPointeeType()) { | |||
3434 | QualType OldParamOT = OldParamDT->getOriginalType(); | |||
3435 | QualType NewParamOT = NewParamDT->getOriginalType(); | |||
3436 | if (!EquivalentArrayTypes(OldParamOT, NewParamOT, S.getASTContext())) { | |||
3437 | S.Diag(NewParam->getLocation(), diag::warn_inconsistent_array_form) | |||
3438 | << NewParam << NewParamOT; | |||
3439 | S.Diag(OldParam->getLocation(), diag::note_previous_declaration_as) | |||
3440 | << OldParamOT; | |||
3441 | } | |||
3442 | } | |||
3443 | } | |||
3444 | ||||
3445 | namespace { | |||
3446 | ||||
3447 | /// Used in MergeFunctionDecl to keep track of function parameters in | |||
3448 | /// C. | |||
3449 | struct GNUCompatibleParamWarning { | |||
3450 | ParmVarDecl *OldParm; | |||
3451 | ParmVarDecl *NewParm; | |||
3452 | QualType PromotedType; | |||
3453 | }; | |||
3454 | ||||
3455 | } // end anonymous namespace | |||
3456 | ||||
3457 | // Determine whether the previous declaration was a definition, implicit | |||
3458 | // declaration, or a declaration. | |||
3459 | template <typename T> | |||
3460 | static std::pair<diag::kind, SourceLocation> | |||
3461 | getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) { | |||
3462 | diag::kind PrevDiag; | |||
3463 | SourceLocation OldLocation = Old->getLocation(); | |||
3464 | if (Old->isThisDeclarationADefinition()) | |||
3465 | PrevDiag = diag::note_previous_definition; | |||
3466 | else if (Old->isImplicit()) { | |||
3467 | PrevDiag = diag::note_previous_implicit_declaration; | |||
3468 | if (const auto *FD = dyn_cast<FunctionDecl>(Old)) { | |||
3469 | if (FD->getBuiltinID()) | |||
3470 | PrevDiag = diag::note_previous_builtin_declaration; | |||
3471 | } | |||
3472 | if (OldLocation.isInvalid()) | |||
3473 | OldLocation = New->getLocation(); | |||
3474 | } else | |||
3475 | PrevDiag = diag::note_previous_declaration; | |||
3476 | return std::make_pair(PrevDiag, OldLocation); | |||
3477 | } | |||
3478 | ||||
3479 | /// canRedefineFunction - checks if a function can be redefined. Currently, | |||
3480 | /// only extern inline functions can be redefined, and even then only in | |||
3481 | /// GNU89 mode. | |||
3482 | static bool canRedefineFunction(const FunctionDecl *FD, | |||
3483 | const LangOptions& LangOpts) { | |||
3484 | return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) && | |||
3485 | !LangOpts.CPlusPlus && | |||
3486 | FD->isInlineSpecified() && | |||
3487 | FD->getStorageClass() == SC_Extern); | |||
3488 | } | |||
3489 | ||||
3490 | const AttributedType *Sema::getCallingConvAttributedType(QualType T) const { | |||
3491 | const AttributedType *AT = T->getAs<AttributedType>(); | |||
3492 | while (AT && !AT->isCallingConv()) | |||
3493 | AT = AT->getModifiedType()->getAs<AttributedType>(); | |||
3494 | return AT; | |||
3495 | } | |||
3496 | ||||
3497 | template <typename T> | |||
3498 | static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) { | |||
3499 | const DeclContext *DC = Old->getDeclContext(); | |||
3500 | if (DC->isRecord()) | |||
3501 | return false; | |||
3502 | ||||
3503 | LanguageLinkage OldLinkage = Old->getLanguageLinkage(); | |||
3504 | if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext()) | |||
3505 | return true; | |||
3506 | if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext()) | |||
3507 | return true; | |||
3508 | return false; | |||
3509 | } | |||
3510 | ||||
3511 | template<typename T> static bool isExternC(T *D) { return D->isExternC(); } | |||
3512 | static bool isExternC(VarTemplateDecl *) { return false; } | |||
3513 | static bool isExternC(FunctionTemplateDecl *) { return false; } | |||
3514 | ||||
3515 | /// Check whether a redeclaration of an entity introduced by a | |||
3516 | /// using-declaration is valid, given that we know it's not an overload | |||
3517 | /// (nor a hidden tag declaration). | |||
3518 | template<typename ExpectedDecl> | |||
3519 | static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS, | |||
3520 | ExpectedDecl *New) { | |||
3521 | // C++11 [basic.scope.declarative]p4: | |||
3522 | // Given a set of declarations in a single declarative region, each of | |||
3523 | // which specifies the same unqualified name, | |||
3524 | // -- they shall all refer to the same entity, or all refer to functions | |||
3525 | // and function templates; or | |||
3526 | // -- exactly one declaration shall declare a class name or enumeration | |||
3527 | // name that is not a typedef name and the other declarations shall all | |||
3528 | // refer to the same variable or enumerator, or all refer to functions | |||
3529 | // and function templates; in this case the class name or enumeration | |||
3530 | // name is hidden (3.3.10). | |||
3531 | ||||
3532 | // C++11 [namespace.udecl]p14: | |||
3533 | // If a function declaration in namespace scope or block scope has the | |||
3534 | // same name and the same parameter-type-list as a function introduced | |||
3535 | // by a using-declaration, and the declarations do not declare the same | |||
3536 | // function, the program is ill-formed. | |||
3537 | ||||
3538 | auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl()); | |||
3539 | if (Old && | |||
3540 | !Old->getDeclContext()->getRedeclContext()->Equals( | |||
3541 | New->getDeclContext()->getRedeclContext()) && | |||
3542 | !(isExternC(Old) && isExternC(New))) | |||
3543 | Old = nullptr; | |||
3544 | ||||
3545 | if (!Old) { | |||
3546 | S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse); | |||
3547 | S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target); | |||
3548 | S.Diag(OldS->getIntroducer()->getLocation(), diag::note_using_decl) << 0; | |||
3549 | return true; | |||
3550 | } | |||
3551 | return false; | |||
3552 | } | |||
3553 | ||||
3554 | static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A, | |||
3555 | const FunctionDecl *B) { | |||
3556 | assert(A->getNumParams() == B->getNumParams())(static_cast <bool> (A->getNumParams() == B->getNumParams ()) ? void (0) : __assert_fail ("A->getNumParams() == B->getNumParams()" , "clang/lib/Sema/SemaDecl.cpp", 3556, __extension__ __PRETTY_FUNCTION__ )); | |||
3557 | ||||
3558 | auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) { | |||
3559 | const auto *AttrA = A->getAttr<PassObjectSizeAttr>(); | |||
3560 | const auto *AttrB = B->getAttr<PassObjectSizeAttr>(); | |||
3561 | if (AttrA == AttrB) | |||
3562 | return true; | |||
3563 | return AttrA && AttrB && AttrA->getType() == AttrB->getType() && | |||
3564 | AttrA->isDynamic() == AttrB->isDynamic(); | |||
3565 | }; | |||
3566 | ||||
3567 | return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq); | |||
3568 | } | |||
3569 | ||||
3570 | /// If necessary, adjust the semantic declaration context for a qualified | |||
3571 | /// declaration to name the correct inline namespace within the qualifier. | |||
3572 | static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD, | |||
3573 | DeclaratorDecl *OldD) { | |||
3574 | // The only case where we need to update the DeclContext is when | |||
3575 | // redeclaration lookup for a qualified name finds a declaration | |||
3576 | // in an inline namespace within the context named by the qualifier: | |||
3577 | // | |||
3578 | // inline namespace N { int f(); } | |||
3579 | // int ::f(); // Sema DC needs adjusting from :: to N::. | |||
3580 | // | |||
3581 | // For unqualified declarations, the semantic context *can* change | |||
3582 | // along the redeclaration chain (for local extern declarations, | |||
3583 | // extern "C" declarations, and friend declarations in particular). | |||
3584 | if (!NewD->getQualifier()) | |||
3585 | return; | |||
3586 | ||||
3587 | // NewD is probably already in the right context. | |||
3588 | auto *NamedDC = NewD->getDeclContext()->getRedeclContext(); | |||
3589 | auto *SemaDC = OldD->getDeclContext()->getRedeclContext(); | |||
3590 | if (NamedDC->Equals(SemaDC)) | |||
3591 | return; | |||
3592 | ||||
3593 | assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||(static_cast <bool> ((NamedDC->InEnclosingNamespaceSetOf (SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl ()) && "unexpected context for redeclaration") ? void (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\"" , "clang/lib/Sema/SemaDecl.cpp", 3595, __extension__ __PRETTY_FUNCTION__ )) | |||
3594 | NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&(static_cast <bool> ((NamedDC->InEnclosingNamespaceSetOf (SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl ()) && "unexpected context for redeclaration") ? void (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\"" , "clang/lib/Sema/SemaDecl.cpp", 3595, __extension__ __PRETTY_FUNCTION__ )) | |||
3595 | "unexpected context for redeclaration")(static_cast <bool> ((NamedDC->InEnclosingNamespaceSetOf (SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl ()) && "unexpected context for redeclaration") ? void (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\"" , "clang/lib/Sema/SemaDecl.cpp", 3595, __extension__ __PRETTY_FUNCTION__ )); | |||
3596 | ||||
3597 | auto *LexDC = NewD->getLexicalDeclContext(); | |||
3598 | auto FixSemaDC = [=](NamedDecl *D) { | |||
3599 | if (!D) | |||
3600 | return; | |||
3601 | D->setDeclContext(SemaDC); | |||
3602 | D->setLexicalDeclContext(LexDC); | |||
3603 | }; | |||
3604 | ||||
3605 | FixSemaDC(NewD); | |||
3606 | if (auto *FD = dyn_cast<FunctionDecl>(NewD)) | |||
3607 | FixSemaDC(FD->getDescribedFunctionTemplate()); | |||
3608 | else if (auto *VD = dyn_cast<VarDecl>(NewD)) | |||
3609 | FixSemaDC(VD->getDescribedVarTemplate()); | |||
3610 | } | |||
3611 | ||||
3612 | /// MergeFunctionDecl - We just parsed a function 'New' from | |||
3613 | /// declarator D which has the same name and scope as a previous | |||
3614 | /// declaration 'Old'. Figure out how to resolve this situation, | |||
3615 | /// merging decls or emitting diagnostics as appropriate. | |||
3616 | /// | |||
3617 | /// In C++, New and Old must be declarations that are not | |||
3618 | /// overloaded. Use IsOverload to determine whether New and Old are | |||
3619 | /// overloaded, and to select the Old declaration that New should be | |||
3620 | /// merged with. | |||
3621 | /// | |||
3622 | /// Returns true if there was an error, false otherwise. | |||
3623 | bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD, Scope *S, | |||
3624 | bool MergeTypeWithOld, bool NewDeclIsDefn) { | |||
3625 | // Verify the old decl was also a function. | |||
3626 | FunctionDecl *Old = OldD->getAsFunction(); | |||
3627 | if (!Old) { | |||
| ||||
3628 | if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) { | |||
3629 | if (New->getFriendObjectKind()) { | |||
3630 | Diag(New->getLocation(), diag::err_using_decl_friend); | |||
3631 | Diag(Shadow->getTargetDecl()->getLocation(), | |||
3632 | diag::note_using_decl_target); | |||
3633 | Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) | |||
3634 | << 0; | |||
3635 | return true; | |||
3636 | } | |||
3637 | ||||
3638 | // Check whether the two declarations might declare the same function or | |||
3639 | // function template. | |||
3640 | if (FunctionTemplateDecl *NewTemplate = | |||
3641 | New->getDescribedFunctionTemplate()) { | |||
3642 | if (checkUsingShadowRedecl<FunctionTemplateDecl>(*this, Shadow, | |||
3643 | NewTemplate)) | |||
3644 | return true; | |||
3645 | OldD = Old = cast<FunctionTemplateDecl>(Shadow->getTargetDecl()) | |||
3646 | ->getAsFunction(); | |||
3647 | } else { | |||
3648 | if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New)) | |||
3649 | return true; | |||
3650 | OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl()); | |||
3651 | } | |||
3652 | } else { | |||
3653 | Diag(New->getLocation(), diag::err_redefinition_different_kind) | |||
3654 | << New->getDeclName(); | |||
3655 | notePreviousDefinition(OldD, New->getLocation()); | |||
3656 | return true; | |||
3657 | } | |||
3658 | } | |||
3659 | ||||
3660 | // If the old declaration was found in an inline namespace and the new | |||
3661 | // declaration was qualified, update the DeclContext to match. | |||
3662 | adjustDeclContextForDeclaratorDecl(New, Old); | |||
3663 | ||||
3664 | // If the old declaration is invalid, just give up here. | |||
3665 | if (Old->isInvalidDecl()) | |||
3666 | return true; | |||
3667 | ||||
3668 | // Disallow redeclaration of some builtins. | |||
3669 | if (!getASTContext().canBuiltinBeRedeclared(Old)) { | |||
3670 | Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName(); | |||
3671 | Diag(Old->getLocation(), diag::note_previous_builtin_declaration) | |||
3672 | << Old << Old->getType(); | |||
3673 | return true; | |||
3674 | } | |||
3675 | ||||
3676 | diag::kind PrevDiag; | |||
3677 | SourceLocation OldLocation; | |||
3678 | std::tie(PrevDiag, OldLocation) = | |||
3679 | getNoteDiagForInvalidRedeclaration(Old, New); | |||
3680 | ||||
3681 | // Don't complain about this if we're in GNU89 mode and the old function | |||
3682 | // is an extern inline function. | |||
3683 | // Don't complain about specializations. They are not supposed to have | |||
3684 | // storage classes. | |||
3685 | if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) && | |||
3686 | New->getStorageClass() == SC_Static && | |||
3687 | Old->hasExternalFormalLinkage() && | |||
3688 | !New->getTemplateSpecializationInfo() && | |||
3689 | !canRedefineFunction(Old, getLangOpts())) { | |||
3690 | if (getLangOpts().MicrosoftExt) { | |||
3691 | Diag(New->getLocation(), diag::ext_static_non_static) << New; | |||
3692 | Diag(OldLocation, PrevDiag); | |||
3693 | } else { | |||
3694 | Diag(New->getLocation(), diag::err_static_non_static) << New; | |||
3695 | Diag(OldLocation, PrevDiag); | |||
3696 | return true; | |||
3697 | } | |||
3698 | } | |||
3699 | ||||
3700 | if (const auto *ILA
| |||
3701 | if (!Old->hasAttr<InternalLinkageAttr>()) { | |||
3702 | Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl) | |||
3703 | << ILA; | |||
3704 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
3705 | New->dropAttr<InternalLinkageAttr>(); | |||
3706 | } | |||
3707 | ||||
3708 | if (auto *EA
| |||
3709 | if (!Old->hasAttr<ErrorAttr>()) { | |||
3710 | Diag(EA->getLocation(), diag::err_attribute_missing_on_first_decl) << EA; | |||
3711 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
3712 | New->dropAttr<ErrorAttr>(); | |||
3713 | } | |||
3714 | } | |||
3715 | ||||
3716 | if (CheckRedeclarationInModule(New, Old)) | |||
3717 | return true; | |||
3718 | ||||
3719 | if (!getLangOpts().CPlusPlus) { | |||
3720 | bool OldOvl = Old->hasAttr<OverloadableAttr>(); | |||
3721 | if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) { | |||
3722 | Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch) | |||
3723 | << New << OldOvl; | |||
3724 | ||||
3725 | // Try our best to find a decl that actually has the overloadable | |||
3726 | // attribute for the note. In most cases (e.g. programs with only one | |||
3727 | // broken declaration/definition), this won't matter. | |||
3728 | // | |||
3729 | // FIXME: We could do this if we juggled some extra state in | |||
3730 | // OverloadableAttr, rather than just removing it. | |||
3731 | const Decl *DiagOld = Old; | |||
3732 | if (OldOvl) { | |||
3733 | auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) { | |||
3734 | const auto *A = D->getAttr<OverloadableAttr>(); | |||
3735 | return A && !A->isImplicit(); | |||
3736 | }); | |||
3737 | // If we've implicitly added *all* of the overloadable attrs to this | |||
3738 | // chain, emitting a "previous redecl" note is pointless. | |||
3739 | DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter; | |||
3740 | } | |||
3741 | ||||
3742 | if (DiagOld) | |||
3743 | Diag(DiagOld->getLocation(), | |||
3744 | diag::note_attribute_overloadable_prev_overload) | |||
3745 | << OldOvl; | |||
3746 | ||||
3747 | if (OldOvl) | |||
3748 | New->addAttr(OverloadableAttr::CreateImplicit(Context)); | |||
3749 | else | |||
3750 | New->dropAttr<OverloadableAttr>(); | |||
3751 | } | |||
3752 | } | |||
3753 | ||||
3754 | // If a function is first declared with a calling convention, but is later | |||
3755 | // declared or defined without one, all following decls assume the calling | |||
3756 | // convention of the first. | |||
3757 | // | |||
3758 | // It's OK if a function is first declared without a calling convention, | |||
3759 | // but is later declared or defined with the default calling convention. | |||
3760 | // | |||
3761 | // To test if either decl has an explicit calling convention, we look for | |||
3762 | // AttributedType sugar nodes on the type as written. If they are missing or | |||
3763 | // were canonicalized away, we assume the calling convention was implicit. | |||
3764 | // | |||
3765 | // Note also that we DO NOT return at this point, because we still have | |||
3766 | // other tests to run. | |||
3767 | QualType OldQType = Context.getCanonicalType(Old->getType()); | |||
3768 | QualType NewQType = Context.getCanonicalType(New->getType()); | |||
3769 | const FunctionType *OldType = cast<FunctionType>(OldQType); | |||
3770 | const FunctionType *NewType = cast<FunctionType>(NewQType); | |||
3771 | FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); | |||
3772 | FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); | |||
3773 | bool RequiresAdjustment = false; | |||
3774 | ||||
3775 | if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) { | |||
3776 | FunctionDecl *First = Old->getFirstDecl(); | |||
3777 | const FunctionType *FT = | |||
3778 | First->getType().getCanonicalType()->castAs<FunctionType>(); | |||
3779 | FunctionType::ExtInfo FI = FT->getExtInfo(); | |||
3780 | bool NewCCExplicit = getCallingConvAttributedType(New->getType()); | |||
3781 | if (!NewCCExplicit) { | |||
3782 | // Inherit the CC from the previous declaration if it was specified | |||
3783 | // there but not here. | |||
3784 | NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); | |||
3785 | RequiresAdjustment = true; | |||
3786 | } else if (Old->getBuiltinID()) { | |||
3787 | // Builtin attribute isn't propagated to the new one yet at this point, | |||
3788 | // so we check if the old one is a builtin. | |||
3789 | ||||
3790 | // Calling Conventions on a Builtin aren't really useful and setting a | |||
3791 | // default calling convention and cdecl'ing some builtin redeclarations is | |||
3792 | // common, so warn and ignore the calling convention on the redeclaration. | |||
3793 | Diag(New->getLocation(), diag::warn_cconv_unsupported) | |||
3794 | << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) | |||
3795 | << (int)CallingConventionIgnoredReason::BuiltinFunction; | |||
3796 | NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); | |||
3797 | RequiresAdjustment = true; | |||
3798 | } else { | |||
3799 | // Calling conventions aren't compatible, so complain. | |||
3800 | bool FirstCCExplicit = getCallingConvAttributedType(First->getType()); | |||
3801 | Diag(New->getLocation(), diag::err_cconv_change) | |||
3802 | << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) | |||
3803 | << !FirstCCExplicit | |||
3804 | << (!FirstCCExplicit ? "" : | |||
3805 | FunctionType::getNameForCallConv(FI.getCC())); | |||
3806 | ||||
3807 | // Put the note on the first decl, since it is the one that matters. | |||
3808 | Diag(First->getLocation(), diag::note_previous_declaration); | |||
3809 | return true; | |||
3810 | } | |||
3811 | } | |||
3812 | ||||
3813 | // FIXME: diagnose the other way around? | |||
3814 | if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) { | |||
3815 | NewTypeInfo = NewTypeInfo.withNoReturn(true); | |||
3816 | RequiresAdjustment = true; | |||
3817 | } | |||
3818 | ||||
3819 | // Merge regparm attribute. | |||
3820 | if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() || | |||
3821 | OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) { | |||
3822 | if (NewTypeInfo.getHasRegParm()) { | |||
3823 | Diag(New->getLocation(), diag::err_regparm_mismatch) | |||
3824 | << NewType->getRegParmType() | |||
3825 | << OldType->getRegParmType(); | |||
3826 | Diag(OldLocation, diag::note_previous_declaration); | |||
3827 | return true; | |||
3828 | } | |||
3829 | ||||
3830 | NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm()); | |||
3831 | RequiresAdjustment = true; | |||
3832 | } | |||
3833 | ||||
3834 | // Merge ns_returns_retained attribute. | |||
3835 | if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) { | |||
3836 | if (NewTypeInfo.getProducesResult()) { | |||
3837 | Diag(New->getLocation(), diag::err_function_attribute_mismatch) | |||
3838 | << "'ns_returns_retained'"; | |||
3839 | Diag(OldLocation, diag::note_previous_declaration); | |||
3840 | return true; | |||
3841 | } | |||
3842 | ||||
3843 | NewTypeInfo = NewTypeInfo.withProducesResult(true); | |||
3844 | RequiresAdjustment = true; | |||
3845 | } | |||
3846 | ||||
3847 | if (OldTypeInfo.getNoCallerSavedRegs() != | |||
3848 | NewTypeInfo.getNoCallerSavedRegs()) { | |||
3849 | if (NewTypeInfo.getNoCallerSavedRegs()) { | |||
3850 | AnyX86NoCallerSavedRegistersAttr *Attr = | |||
3851 | New->getAttr<AnyX86NoCallerSavedRegistersAttr>(); | |||
3852 | Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr; | |||
3853 | Diag(OldLocation, diag::note_previous_declaration); | |||
3854 | return true; | |||
3855 | } | |||
3856 | ||||
3857 | NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true); | |||
3858 | RequiresAdjustment = true; | |||
3859 | } | |||
3860 | ||||
3861 | if (RequiresAdjustment
| |||
3862 | const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>(); | |||
3863 | AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo); | |||
3864 | New->setType(QualType(AdjustedType, 0)); | |||
3865 | NewQType = Context.getCanonicalType(New->getType()); | |||
3866 | } | |||
3867 | ||||
3868 | // If this redeclaration makes the function inline, we may need to add it to | |||
3869 | // UndefinedButUsed. | |||
3870 | if (!Old->isInlined() && New->isInlined() && | |||
3871 | !New->hasAttr<GNUInlineAttr>() && | |||
3872 | !getLangOpts().GNUInline && | |||
3873 | Old->isUsed(false) && | |||
3874 | !Old->isDefined() && !New->isThisDeclarationADefinition()) | |||
3875 | UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(), | |||
3876 | SourceLocation())); | |||
3877 | ||||
3878 | // If this redeclaration makes it newly gnu_inline, we don't want to warn | |||
3879 | // about it. | |||
3880 | if (New->hasAttr<GNUInlineAttr>() && | |||
3881 | Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) { | |||
3882 | UndefinedButUsed.erase(Old->getCanonicalDecl()); | |||
3883 | } | |||
3884 | ||||
3885 | // If pass_object_size params don't match up perfectly, this isn't a valid | |||
3886 | // redeclaration. | |||
3887 | if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() && | |||
3888 | !hasIdenticalPassObjectSizeAttrs(Old, New)) { | |||
3889 | Diag(New->getLocation(), diag::err_different_pass_object_size_params) | |||
3890 | << New->getDeclName(); | |||
3891 | Diag(OldLocation, PrevDiag) << Old << Old->getType(); | |||
3892 | return true; | |||
3893 | } | |||
3894 | ||||
3895 | if (getLangOpts().CPlusPlus
| |||
3896 | // C++1z [over.load]p2 | |||
3897 | // Certain function declarations cannot be overloaded: | |||
3898 | // -- Function declarations that differ only in the return type, | |||
3899 | // the exception specification, or both cannot be overloaded. | |||
3900 | ||||
3901 | // Check the exception specifications match. This may recompute the type of | |||
3902 | // both Old and New if it resolved exception specifications, so grab the | |||
3903 | // types again after this. Because this updates the type, we do this before | |||
3904 | // any of the other checks below, which may update the "de facto" NewQType | |||
3905 | // but do not necessarily update the type of New. | |||
3906 | if (CheckEquivalentExceptionSpec(Old, New)) | |||
3907 | return true; | |||
3908 | OldQType = Context.getCanonicalType(Old->getType()); | |||
3909 | NewQType = Context.getCanonicalType(New->getType()); | |||
3910 | ||||
3911 | // Go back to the type source info to compare the declared return types, | |||
3912 | // per C++1y [dcl.type.auto]p13: | |||
3913 | // Redeclarations or specializations of a function or function template | |||
3914 | // with a declared return type that uses a placeholder type shall also | |||
3915 | // use that placeholder, not a deduced type. | |||
3916 | QualType OldDeclaredReturnType = Old->getDeclaredReturnType(); | |||
3917 | QualType NewDeclaredReturnType = New->getDeclaredReturnType(); | |||
3918 | if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) && | |||
3919 | canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType, | |||
3920 | OldDeclaredReturnType)) { | |||
3921 | QualType ResQT; | |||
3922 | if (NewDeclaredReturnType->isObjCObjectPointerType() && | |||
3923 | OldDeclaredReturnType->isObjCObjectPointerType()) | |||
3924 | // FIXME: This does the wrong thing for a deduced return type. | |||
3925 | ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType); | |||
3926 | if (ResQT.isNull()) { | |||
3927 | if (New->isCXXClassMember() && New->isOutOfLine()) | |||
3928 | Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type) | |||
3929 | << New << New->getReturnTypeSourceRange(); | |||
3930 | else | |||
3931 | Diag(New->getLocation(), diag::err_ovl_diff_return_type) | |||
3932 | << New->getReturnTypeSourceRange(); | |||
3933 | Diag(OldLocation, PrevDiag) << Old << Old->getType() | |||
3934 | << Old->getReturnTypeSourceRange(); | |||
3935 | return true; | |||
3936 | } | |||
3937 | else | |||
3938 | NewQType = ResQT; | |||
3939 | } | |||
3940 | ||||
3941 | QualType OldReturnType = OldType->getReturnType(); | |||
3942 | QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType(); | |||
3943 | if (OldReturnType != NewReturnType) { | |||
3944 | // If this function has a deduced return type and has already been | |||
3945 | // defined, copy the deduced value from the old declaration. | |||
3946 | AutoType *OldAT = Old->getReturnType()->getContainedAutoType(); | |||
3947 | if (OldAT && OldAT->isDeduced()) { | |||
3948 | QualType DT = OldAT->getDeducedType(); | |||
3949 | if (DT.isNull()) { | |||
3950 | New->setType(SubstAutoTypeDependent(New->getType())); | |||
3951 | NewQType = Context.getCanonicalType(SubstAutoTypeDependent(NewQType)); | |||
3952 | } else { | |||
3953 | New->setType(SubstAutoType(New->getType(), DT)); | |||
3954 | NewQType = Context.getCanonicalType(SubstAutoType(NewQType, DT)); | |||
3955 | } | |||
3956 | } | |||
3957 | } | |||
3958 | ||||
3959 | const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); | |||
3960 | CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); | |||
3961 | if (OldMethod
| |||
3962 | // Preserve triviality. | |||
3963 | NewMethod->setTrivial(OldMethod->isTrivial()); | |||
3964 | ||||
3965 | // MSVC allows explicit template specialization at class scope: | |||
3966 | // 2 CXXMethodDecls referring to the same function will be injected. | |||
3967 | // We don't want a redeclaration error. | |||
3968 | bool IsClassScopeExplicitSpecialization = | |||
3969 | OldMethod->isFunctionTemplateSpecialization() && | |||
3970 | NewMethod->isFunctionTemplateSpecialization(); | |||
3971 | bool isFriend = NewMethod->getFriendObjectKind(); | |||
3972 | ||||
3973 | if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() && | |||
3974 | !IsClassScopeExplicitSpecialization) { | |||
3975 | // -- Member function declarations with the same name and the | |||
3976 | // same parameter types cannot be overloaded if any of them | |||
3977 | // is a static member function declaration. | |||
3978 | if (OldMethod->isStatic() != NewMethod->isStatic()) { | |||
3979 | Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member); | |||
3980 | Diag(OldLocation, PrevDiag) << Old << Old->getType(); | |||
3981 | return true; | |||
3982 | } | |||
3983 | ||||
3984 | // C++ [class.mem]p1: | |||
3985 | // [...] A member shall not be declared twice in the | |||
3986 | // member-specification, except that a nested class or member | |||
3987 | // class template can be declared and then later defined. | |||
3988 | if (!inTemplateInstantiation()) { | |||
3989 | unsigned NewDiag; | |||
3990 | if (isa<CXXConstructorDecl>(OldMethod)) | |||
3991 | NewDiag = diag::err_constructor_redeclared; | |||
3992 | else if (isa<CXXDestructorDecl>(NewMethod)) | |||
3993 | NewDiag = diag::err_destructor_redeclared; | |||
3994 | else if (isa<CXXConversionDecl>(NewMethod)) | |||
3995 | NewDiag = diag::err_conv_function_redeclared; | |||
3996 | else | |||
3997 | NewDiag = diag::err_member_redeclared; | |||
3998 | ||||
3999 | Diag(New->getLocation(), NewDiag); | |||
4000 | } else { | |||
4001 | Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation) | |||
4002 | << New << New->getType(); | |||
4003 | } | |||
4004 | Diag(OldLocation, PrevDiag) << Old << Old->getType(); | |||
4005 | return true; | |||
4006 | ||||
4007 | // Complain if this is an explicit declaration of a special | |||
4008 | // member that was initially declared implicitly. | |||
4009 | // | |||
4010 | // As an exception, it's okay to befriend such methods in order | |||
4011 | // to permit the implicit constructor/destructor/operator calls. | |||
4012 | } else if (OldMethod->isImplicit()) { | |||
4013 | if (isFriend) { | |||
4014 | NewMethod->setImplicit(); | |||
4015 | } else { | |||
4016 | Diag(NewMethod->getLocation(), | |||
4017 | diag::err_definition_of_implicitly_declared_member) | |||
4018 | << New << getSpecialMember(OldMethod); | |||
4019 | return true; | |||
4020 | } | |||
4021 | } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) { | |||
4022 | Diag(NewMethod->getLocation(), | |||
4023 | diag::err_definition_of_explicitly_defaulted_member) | |||
4024 | << getSpecialMember(OldMethod); | |||
4025 | return true; | |||
4026 | } | |||
4027 | } | |||
4028 | ||||
4029 | // C++11 [dcl.attr.noreturn]p1: | |||
4030 | // The first declaration of a function shall specify the noreturn | |||
4031 | // attribute if any declaration of that function specifies the noreturn | |||
4032 | // attribute. | |||
4033 | if (const auto *NRA
| |||
4034 | if (!Old->hasAttr<CXX11NoReturnAttr>()) { | |||
4035 | Diag(NRA->getLocation(), diag::err_attribute_missing_on_first_decl) | |||
4036 | << NRA; | |||
4037 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
4038 | } | |||
4039 | ||||
4040 | // C++11 [dcl.attr.depend]p2: | |||
4041 | // The first declaration of a function shall specify the | |||
4042 | // carries_dependency attribute for its declarator-id if any declaration | |||
4043 | // of the function specifies the carries_dependency attribute. | |||
4044 | const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>(); | |||
4045 | if (CDA
| |||
4046 | Diag(CDA->getLocation(), | |||
4047 | diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/; | |||
4048 | Diag(Old->getFirstDecl()->getLocation(), | |||
4049 | diag::note_carries_dependency_missing_first_decl) << 0/*Function*/; | |||
4050 | } | |||
4051 | ||||
4052 | // (C++98 8.3.5p3): | |||
4053 | // All declarations for a function shall agree exactly in both the | |||
4054 | // return type and the parameter-type-list. | |||
4055 | // We also want to respect all the extended bits except noreturn. | |||
4056 | ||||
4057 | // noreturn should now match unless the old type info didn't have it. | |||
4058 | QualType OldQTypeForComparison = OldQType; | |||
4059 | if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) { | |||
4060 | auto *OldType = OldQType->castAs<FunctionProtoType>(); | |||
4061 | const FunctionType *OldTypeForComparison | |||
4062 | = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true)); | |||
4063 | OldQTypeForComparison = QualType(OldTypeForComparison, 0); | |||
4064 | assert(OldQTypeForComparison.isCanonical())(static_cast <bool> (OldQTypeForComparison.isCanonical( )) ? void (0) : __assert_fail ("OldQTypeForComparison.isCanonical()" , "clang/lib/Sema/SemaDecl.cpp", 4064, __extension__ __PRETTY_FUNCTION__ )); | |||
4065 | } | |||
4066 | ||||
4067 | if (haveIncompatibleLanguageLinkages(Old, New)) { | |||
4068 | // As a special case, retain the language linkage from previous | |||
4069 | // declarations of a friend function as an extension. | |||
4070 | // | |||
4071 | // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC | |||
4072 | // and is useful because there's otherwise no way to specify language | |||
4073 | // linkage within class scope. | |||
4074 | // | |||
4075 | // Check cautiously as the friend object kind isn't yet complete. | |||
4076 | if (New->getFriendObjectKind() != Decl::FOK_None) { | |||
4077 | Diag(New->getLocation(), diag::ext_retained_language_linkage) << New; | |||
4078 | Diag(OldLocation, PrevDiag); | |||
4079 | } else { | |||
4080 | Diag(New->getLocation(), diag::err_different_language_linkage) << New; | |||
4081 | Diag(OldLocation, PrevDiag); | |||
4082 | return true; | |||
4083 | } | |||
4084 | } | |||
4085 | ||||
4086 | // If the function types are compatible, merge the declarations. Ignore the | |||
4087 | // exception specifier because it was already checked above in | |||
4088 | // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics | |||
4089 | // about incompatible types under -fms-compatibility. | |||
4090 | if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison, | |||
4091 | NewQType)) | |||
4092 | return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); | |||
4093 | ||||
4094 | // If the types are imprecise (due to dependent constructs in friends or | |||
4095 | // local extern declarations), it's OK if they differ. We'll check again | |||
4096 | // during instantiation. | |||
4097 | if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType)) | |||
4098 | return false; | |||
4099 | ||||
4100 | // Fall through for conflicting redeclarations and redefinitions. | |||
4101 | } | |||
4102 | ||||
4103 | // C: Function types need to be compatible, not identical. This handles | |||
4104 | // duplicate function decls like "void f(int); void f(enum X);" properly. | |||
4105 | if (!getLangOpts().CPlusPlus) { | |||
4106 | // C99 6.7.5.3p15: ...If one type has a parameter type list and the other | |||
4107 | // type is specified by a function definition that contains a (possibly | |||
4108 | // empty) identifier list, both shall agree in the number of parameters | |||
4109 | // and the type of each parameter shall be compatible with the type that | |||
4110 | // results from the application of default argument promotions to the | |||
4111 | // type of the corresponding identifier. ... | |||
4112 | // This cannot be handled by ASTContext::typesAreCompatible() because that | |||
4113 | // doesn't know whether the function type is for a definition or not when | |||
4114 | // eventually calling ASTContext::mergeFunctionTypes(). The only situation | |||
4115 | // we need to cover here is that the number of arguments agree as the | |||
4116 | // default argument promotion rules were already checked by | |||
4117 | // ASTContext::typesAreCompatible(). | |||
4118 | if (Old->hasPrototype() && !New->hasWrittenPrototype() && NewDeclIsDefn && | |||
4119 | Old->getNumParams() != New->getNumParams() && !Old->isImplicit()) { | |||
4120 | if (Old->hasInheritedPrototype()) | |||
4121 | Old = Old->getCanonicalDecl(); | |||
4122 | Diag(New->getLocation(), diag::err_conflicting_types) << New; | |||
4123 | Diag(Old->getLocation(), PrevDiag) << Old << Old->getType(); | |||
4124 | return true; | |||
4125 | } | |||
4126 | ||||
4127 | // If we are merging two functions where only one of them has a prototype, | |||
4128 | // we may have enough information to decide to issue a diagnostic that the | |||
4129 | // function without a protoype will change behavior in C2x. This handles | |||
4130 | // cases like: | |||
4131 | // void i(); void i(int j); | |||
4132 | // void i(int j); void i(); | |||
4133 | // void i(); void i(int j) {} | |||
4134 | // See ActOnFinishFunctionBody() for other cases of the behavior change | |||
4135 | // diagnostic. See GetFullTypeForDeclarator() for handling of a function | |||
4136 | // type without a prototype. | |||
4137 | if (New->hasWrittenPrototype() != Old->hasWrittenPrototype() && | |||
4138 | !New->isImplicit() && !Old->isImplicit()) { | |||
4139 | const FunctionDecl *WithProto, *WithoutProto; | |||
4140 | if (New->hasWrittenPrototype()) { | |||
4141 | WithProto = New; | |||
4142 | WithoutProto = Old; | |||
4143 | } else { | |||
4144 | WithProto = Old; | |||
4145 | WithoutProto = New; | |||
4146 | } | |||
4147 | ||||
4148 | if (WithProto->getNumParams() != 0) { | |||
4149 | if (WithoutProto->getBuiltinID() == 0 && !WithoutProto->isImplicit()) { | |||
4150 | // The one without the prototype will be changing behavior in C2x, so | |||
4151 | // warn about that one so long as it's a user-visible declaration. | |||
4152 | bool IsWithoutProtoADef = false, IsWithProtoADef = false; | |||
4153 | if (WithoutProto == New) | |||
4154 | IsWithoutProtoADef = NewDeclIsDefn; | |||
4155 | else | |||
4156 | IsWithProtoADef = NewDeclIsDefn; | |||
4157 | Diag(WithoutProto->getLocation(), | |||
4158 | diag::warn_non_prototype_changes_behavior) | |||
4159 | << IsWithoutProtoADef << (WithoutProto->getNumParams() ? 0 : 1) | |||
4160 | << (WithoutProto == Old) << IsWithProtoADef; | |||
4161 | ||||
4162 | // The reason the one without the prototype will be changing behavior | |||
4163 | // is because of the one with the prototype, so note that so long as | |||
4164 | // it's a user-visible declaration. There is one exception to this: | |||
4165 | // when the new declaration is a definition without a prototype, the | |||
4166 | // old declaration with a prototype is not the cause of the issue, | |||
4167 | // and that does not need to be noted because the one with a | |||
4168 | // prototype will not change behavior in C2x. | |||
4169 | if (WithProto->getBuiltinID() == 0 && !WithProto->isImplicit() && | |||
4170 | !IsWithoutProtoADef) | |||
4171 | Diag(WithProto->getLocation(), diag::note_conflicting_prototype); | |||
4172 | } | |||
4173 | } | |||
4174 | } | |||
4175 | ||||
4176 | if (Context.typesAreCompatible(OldQType, NewQType)) { | |||
4177 | const FunctionType *OldFuncType = OldQType->getAs<FunctionType>(); | |||
4178 | const FunctionType *NewFuncType = NewQType->getAs<FunctionType>(); | |||
4179 | const FunctionProtoType *OldProto = nullptr; | |||
4180 | if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) && | |||
4181 | (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) { | |||
4182 | // The old declaration provided a function prototype, but the | |||
4183 | // new declaration does not. Merge in the prototype. | |||
4184 | assert(!OldProto->hasExceptionSpec() && "Exception spec in C")(static_cast <bool> (!OldProto->hasExceptionSpec() && "Exception spec in C") ? void (0) : __assert_fail ("!OldProto->hasExceptionSpec() && \"Exception spec in C\"" , "clang/lib/Sema/SemaDecl.cpp", 4184, __extension__ __PRETTY_FUNCTION__ )); | |||
4185 | NewQType = Context.getFunctionType(NewFuncType->getReturnType(), | |||
| ||||
4186 | OldProto->getParamTypes(), | |||
4187 | OldProto->getExtProtoInfo()); | |||
4188 | New->setType(NewQType); | |||
4189 | New->setHasInheritedPrototype(); | |||
4190 | ||||
4191 | // Synthesize parameters with the same types. | |||
4192 | SmallVector<ParmVarDecl *, 16> Params; | |||
4193 | for (const auto &ParamType : OldProto->param_types()) { | |||
4194 | ParmVarDecl *Param = ParmVarDecl::Create( | |||
4195 | Context, New, SourceLocation(), SourceLocation(), nullptr, | |||
4196 | ParamType, /*TInfo=*/nullptr, SC_None, nullptr); | |||
4197 | Param->setScopeInfo(0, Params.size()); | |||
4198 | Param->setImplicit(); | |||
4199 | Params.push_back(Param); | |||
4200 | } | |||
4201 | ||||
4202 | New->setParams(Params); | |||
4203 | } | |||
4204 | ||||
4205 | return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); | |||
4206 | } | |||
4207 | } | |||
4208 | ||||
4209 | // Check if the function types are compatible when pointer size address | |||
4210 | // spaces are ignored. | |||
4211 | if (Context.hasSameFunctionTypeIgnoringPtrSizes(OldQType, NewQType)) | |||
4212 | return false; | |||
4213 | ||||
4214 | // GNU C permits a K&R definition to follow a prototype declaration | |||
4215 | // if the declared types of the parameters in the K&R definition | |||
4216 | // match the types in the prototype declaration, even when the | |||
4217 | // promoted types of the parameters from the K&R definition differ | |||
4218 | // from the types in the prototype. GCC then keeps the types from | |||
4219 | // the prototype. | |||
4220 | // | |||
4221 | // If a variadic prototype is followed by a non-variadic K&R definition, | |||
4222 | // the K&R definition becomes variadic. This is sort of an edge case, but | |||
4223 | // it's legal per the standard depending on how you read C99 6.7.5.3p15 and | |||
4224 | // C99 6.9.1p8. | |||
4225 | if (!getLangOpts().CPlusPlus && | |||
4226 | Old->hasPrototype() && !New->hasPrototype() && | |||
4227 | New->getType()->getAs<FunctionProtoType>() && | |||
4228 | Old->getNumParams() == New->getNumParams()) { | |||
4229 | SmallVector<QualType, 16> ArgTypes; | |||
4230 | SmallVector<GNUCompatibleParamWarning, 16> Warnings; | |||
4231 | const FunctionProtoType *OldProto | |||
4232 | = Old->getType()->getAs<FunctionProtoType>(); | |||
4233 | const FunctionProtoType *NewProto | |||
4234 | = New->getType()->getAs<FunctionProtoType>(); | |||
4235 | ||||
4236 | // Determine whether this is the GNU C extension. | |||
4237 | QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(), | |||
4238 | NewProto->getReturnType()); | |||
4239 | bool LooseCompatible = !MergedReturn.isNull(); | |||
4240 | for (unsigned Idx = 0, End = Old->getNumParams(); | |||
4241 | LooseCompatible && Idx != End; ++Idx) { | |||
4242 | ParmVarDecl *OldParm = Old->getParamDecl(Idx); | |||
4243 | ParmVarDecl *NewParm = New->getParamDecl(Idx); | |||
4244 | if (Context.typesAreCompatible(OldParm->getType(), | |||
4245 | NewProto->getParamType(Idx))) { | |||
4246 | ArgTypes.push_back(NewParm->getType()); | |||
4247 | } else if (Context.typesAreCompatible(OldParm->getType(), | |||
4248 | NewParm->getType(), | |||
4249 | /*CompareUnqualified=*/true)) { | |||
4250 | GNUCompatibleParamWarning Warn = { OldParm, NewParm, | |||
4251 | NewProto->getParamType(Idx) }; | |||
4252 | Warnings.push_back(Warn); | |||
4253 | ArgTypes.push_back(NewParm->getType()); | |||
4254 | } else | |||
4255 | LooseCompatible = false; | |||
4256 | } | |||
4257 | ||||
4258 | if (LooseCompatible) { | |||
4259 | for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) { | |||
4260 | Diag(Warnings[Warn].NewParm->getLocation(), | |||
4261 | diag::ext_param_promoted_not_compatible_with_prototype) | |||
4262 | << Warnings[Warn].PromotedType | |||
4263 | << Warnings[Warn].OldParm->getType(); | |||
4264 | if (Warnings[Warn].OldParm->getLocation().isValid()) | |||
4265 | Diag(Warnings[Warn].OldParm->getLocation(), | |||
4266 | diag::note_previous_declaration); | |||
4267 | } | |||
4268 | ||||
4269 | if (MergeTypeWithOld) | |||
4270 | New->setType(Context.getFunctionType(MergedReturn, ArgTypes, | |||
4271 | OldProto->getExtProtoInfo())); | |||
4272 | return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); | |||
4273 | } | |||
4274 | ||||
4275 | // Fall through to diagnose conflicting types. | |||
4276 | } | |||
4277 | ||||
4278 | // A function that has already been declared has been redeclared or | |||
4279 | // defined with a different type; show an appropriate diagnostic. | |||
4280 | ||||
4281 | // If the previous declaration was an implicitly-generated builtin | |||
4282 | // declaration, then at the very least we should use a specialized note. | |||
4283 | unsigned BuiltinID; | |||
4284 | if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) { | |||
4285 | // If it's actually a library-defined builtin function like 'malloc' | |||
4286 | // or 'printf', just warn about the incompatible redeclaration. | |||
4287 | if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) { | |||
4288 | Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New; | |||
4289 | Diag(OldLocation, diag::note_previous_builtin_declaration) | |||
4290 | << Old << Old->getType(); | |||
4291 | return false; | |||
4292 | } | |||
4293 | ||||
4294 | PrevDiag = diag::note_previous_builtin_declaration; | |||
4295 | } | |||
4296 | ||||
4297 | Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName(); | |||
4298 | Diag(OldLocation, PrevDiag) << Old << Old->getType(); | |||
4299 | return true; | |||
4300 | } | |||
4301 | ||||
4302 | /// Completes the merge of two function declarations that are | |||
4303 | /// known to be compatible. | |||
4304 | /// | |||
4305 | /// This routine handles the merging of attributes and other | |||
4306 | /// properties of function declarations from the old declaration to | |||
4307 | /// the new declaration, once we know that New is in fact a | |||
4308 | /// redeclaration of Old. | |||
4309 | /// | |||
4310 | /// \returns false | |||
4311 | bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old, | |||
4312 | Scope *S, bool MergeTypeWithOld) { | |||
4313 | // Merge the attributes | |||
4314 | mergeDeclAttributes(New, Old); | |||
4315 | ||||
4316 | // Merge "pure" flag. | |||
4317 | if (Old->isPure()) | |||
4318 | New->setPure(); | |||
4319 | ||||
4320 | // Merge "used" flag. | |||
4321 | if (Old->getMostRecentDecl()->isUsed(false)) | |||
4322 | New->setIsUsed(); | |||
4323 | ||||
4324 | // Merge attributes from the parameters. These can mismatch with K&R | |||
4325 | // declarations. | |||
4326 | if (New->getNumParams() == Old->getNumParams()) | |||
4327 | for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) { | |||
4328 | ParmVarDecl *NewParam = New->getParamDecl(i); | |||
4329 | ParmVarDecl *OldParam = Old->getParamDecl(i); | |||
4330 | mergeParamDeclAttributes(NewParam, OldParam, *this); | |||
4331 | mergeParamDeclTypes(NewParam, OldParam, *this); | |||
4332 | } | |||
4333 | ||||
4334 | if (getLangOpts().CPlusPlus) | |||
4335 | return MergeCXXFunctionDecl(New, Old, S); | |||
4336 | ||||
4337 | // Merge the function types so the we get the composite types for the return | |||
4338 | // and argument types. Per C11 6.2.7/4, only update the type if the old decl | |||
4339 | // was visible. | |||
4340 | QualType Merged = Context.mergeTypes(Old->getType(), New->getType()); | |||
4341 | if (!Merged.isNull() && MergeTypeWithOld) | |||
4342 | New->setType(Merged); | |||
4343 | ||||
4344 | return false; | |||
4345 | } | |||
4346 | ||||
4347 | void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod, | |||
4348 | ObjCMethodDecl *oldMethod) { | |||
4349 | // Merge the attributes, including deprecated/unavailable | |||
4350 | AvailabilityMergeKind MergeKind = | |||
4351 | isa<ObjCProtocolDecl>(oldMethod->getDeclContext()) | |||
4352 | ? (oldMethod->isOptional() ? AMK_OptionalProtocolImplementation | |||
4353 | : AMK_ProtocolImplementation) | |||
4354 | : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration | |||
4355 | : AMK_Override; | |||
4356 | ||||
4357 | mergeDeclAttributes(newMethod, oldMethod, MergeKind); | |||
4358 | ||||
4359 | // Merge attributes from the parameters. | |||
4360 | ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(), | |||
4361 | oe = oldMethod->param_end(); | |||
4362 | for (ObjCMethodDecl::param_iterator | |||
4363 | ni = newMethod->param_begin(), ne = newMethod->param_end(); | |||
4364 | ni != ne && oi != oe; ++ni, ++oi) | |||
4365 | mergeParamDeclAttributes(*ni, *oi, *this); | |||
4366 | ||||
4367 | CheckObjCMethodOverride(newMethod, oldMethod); | |||
4368 | } | |||
4369 | ||||
4370 | static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) { | |||
4371 | assert(!S.Context.hasSameType(New->getType(), Old->getType()))(static_cast <bool> (!S.Context.hasSameType(New->getType (), Old->getType())) ? void (0) : __assert_fail ("!S.Context.hasSameType(New->getType(), Old->getType())" , "clang/lib/Sema/SemaDecl.cpp", 4371, __extension__ __PRETTY_FUNCTION__ )); | |||
4372 | ||||
4373 | S.Diag(New->getLocation(), New->isThisDeclarationADefinition() | |||
4374 | ? diag::err_redefinition_different_type | |||
4375 | : diag::err_redeclaration_different_type) | |||
4376 | << New->getDeclName() << New->getType() << Old->getType(); | |||
4377 | ||||
4378 | diag::kind PrevDiag; | |||
4379 | SourceLocation OldLocation; | |||
4380 | std::tie(PrevDiag, OldLocation) | |||
4381 | = getNoteDiagForInvalidRedeclaration(Old, New); | |||
4382 | S.Diag(OldLocation, PrevDiag); | |||
4383 | New->setInvalidDecl(); | |||
4384 | } | |||
4385 | ||||
4386 | /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and | |||
4387 | /// scope as a previous declaration 'Old'. Figure out how to merge their types, | |||
4388 | /// emitting diagnostics as appropriate. | |||
4389 | /// | |||
4390 | /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back | |||
4391 | /// to here in AddInitializerToDecl. We can't check them before the initializer | |||
4392 | /// is attached. | |||
4393 | void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, | |||
4394 | bool MergeTypeWithOld) { | |||
4395 | if (New->isInvalidDecl() || Old->isInvalidDecl()) | |||
4396 | return; | |||
4397 | ||||
4398 | QualType MergedT; | |||
4399 | if (getLangOpts().CPlusPlus) { | |||
4400 | if (New->getType()->isUndeducedType()) { | |||
4401 | // We don't know what the new type is until the initializer is attached. | |||
4402 | return; | |||
4403 | } else if (Context.hasSameType(New->getType(), Old->getType())) { | |||
4404 | // These could still be something that needs exception specs checked. | |||
4405 | return MergeVarDeclExceptionSpecs(New, Old); | |||
4406 | } | |||
4407 | // C++ [basic.link]p10: | |||
4408 | // [...] the types specified by all declarations referring to a given | |||
4409 | // object or function shall be identical, except that declarations for an | |||
4410 | // array object can specify array types that differ by the presence or | |||
4411 | // absence of a major array bound (8.3.4). | |||
4412 | else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) { | |||
4413 | const ArrayType *OldArray = Context.getAsArrayType(Old->getType()); | |||
4414 | const ArrayType *NewArray = Context.getAsArrayType(New->getType()); | |||
4415 | ||||
4416 | // We are merging a variable declaration New into Old. If it has an array | |||
4417 | // bound, and that bound differs from Old's bound, we should diagnose the | |||
4418 | // mismatch. | |||
4419 | if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) { | |||
4420 | for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD; | |||
4421 | PrevVD = PrevVD->getPreviousDecl()) { | |||
4422 | QualType PrevVDTy = PrevVD->getType(); | |||
4423 | if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType()) | |||
4424 | continue; | |||
4425 | ||||
4426 | if (!Context.hasSameType(New->getType(), PrevVDTy)) | |||
4427 | return diagnoseVarDeclTypeMismatch(*this, New, PrevVD); | |||
4428 | } | |||
4429 | } | |||
4430 | ||||
4431 | if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) { | |||
4432 | if (Context.hasSameType(OldArray->getElementType(), | |||
4433 | NewArray->getElementType())) | |||
4434 | MergedT = New->getType(); | |||
4435 | } | |||
4436 | // FIXME: Check visibility. New is hidden but has a complete type. If New | |||
4437 | // has no array bound, it should not inherit one from Old, if Old is not | |||
4438 | // visible. | |||
4439 | else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) { | |||
4440 | if (Context.hasSameType(OldArray->getElementType(), | |||
4441 | NewArray->getElementType())) | |||
4442 | MergedT = Old->getType(); | |||
4443 | } | |||
4444 | } | |||
4445 | else if (New->getType()->isObjCObjectPointerType() && | |||
4446 | Old->getType()->isObjCObjectPointerType()) { | |||
4447 | MergedT = Context.mergeObjCGCQualifiers(New->getType(), | |||
4448 | Old->getType()); | |||
4449 | } | |||
4450 | } else { | |||
4451 | // C 6.2.7p2: | |||
4452 | // All declarations that refer to the same object or function shall have | |||
4453 | // compatible type. | |||
4454 | MergedT = Context.mergeTypes(New->getType(), Old->getType()); | |||
4455 | } | |||
4456 | if (MergedT.isNull()) { | |||
4457 | // It's OK if we couldn't merge types if either type is dependent, for a | |||
4458 | // block-scope variable. In other cases (static data members of class | |||
4459 | // templates, variable templates, ...), we require the types to be | |||
4460 | // equivalent. | |||
4461 | // FIXME: The C++ standard doesn't say anything about this. | |||
4462 | if ((New->getType()->isDependentType() || | |||
4463 | Old->getType()->isDependentType()) && New->isLocalVarDecl()) { | |||
4464 | // If the old type was dependent, we can't merge with it, so the new type | |||
4465 | // becomes dependent for now. We'll reproduce the original type when we | |||
4466 | // instantiate the TypeSourceInfo for the variable. | |||
4467 | if (!New->getType()->isDependentType() && MergeTypeWithOld) | |||
4468 | New->setType(Context.DependentTy); | |||
4469 | return; | |||
4470 | } | |||
4471 | return diagnoseVarDeclTypeMismatch(*this, New, Old); | |||
4472 | } | |||
4473 | ||||
4474 | // Don't actually update the type on the new declaration if the old | |||
4475 | // declaration was an extern declaration in a different scope. | |||
4476 | if (MergeTypeWithOld) | |||
4477 | New->setType(MergedT); | |||
4478 | } | |||
4479 | ||||
4480 | static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD, | |||
4481 | LookupResult &Previous) { | |||
4482 | // C11 6.2.7p4: | |||
4483 | // For an identifier with internal or external linkage declared | |||
4484 | // in a scope in which a prior declaration of that identifier is | |||
4485 | // visible, if the prior declaration specifies internal or | |||
4486 | // external linkage, the type of the identifier at the later | |||
4487 | // declaration becomes the composite type. | |||
4488 | // | |||
4489 | // If the variable isn't visible, we do not merge with its type. | |||
4490 | if (Previous.isShadowed()) | |||
4491 | return false; | |||
4492 | ||||
4493 | if (S.getLangOpts().CPlusPlus) { | |||
4494 | // C++11 [dcl.array]p3: | |||
4495 | // If there is a preceding declaration of the entity in the same | |||
4496 | // scope in which the bound was specified, an omitted array bound | |||
4497 | // is taken to be the same as in that earlier declaration. | |||
4498 | return NewVD->isPreviousDeclInSameBlockScope() || | |||
4499 | (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() && | |||
4500 | !NewVD->getLexicalDeclContext()->isFunctionOrMethod()); | |||
4501 | } else { | |||
4502 | // If the old declaration was function-local, don't merge with its | |||
4503 | // type unless we're in the same function. | |||
4504 | return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() || | |||
4505 | OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext(); | |||
4506 | } | |||
4507 | } | |||
4508 | ||||
4509 | /// MergeVarDecl - We just parsed a variable 'New' which has the same name | |||
4510 | /// and scope as a previous declaration 'Old'. Figure out how to resolve this | |||
4511 | /// situation, merging decls or emitting diagnostics as appropriate. | |||
4512 | /// | |||
4513 | /// Tentative definition rules (C99 6.9.2p2) are checked by | |||
4514 | /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative | |||
4515 | /// definitions here, since the initializer hasn't been attached. | |||
4516 | /// | |||
4517 | void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) { | |||
4518 | // If the new decl is already invalid, don't do any other checking. | |||
4519 | if (New->isInvalidDecl()) | |||
4520 | return; | |||
4521 | ||||
4522 | if (!shouldLinkPossiblyHiddenDecl(Previous, New)) | |||
4523 | return; | |||
4524 | ||||
4525 | VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate(); | |||
4526 | ||||
4527 | // Verify the old decl was also a variable or variable template. | |||
4528 | VarDecl *Old = nullptr; | |||
4529 | VarTemplateDecl *OldTemplate = nullptr; | |||
4530 | if (Previous.isSingleResult()) { | |||
4531 | if (NewTemplate) { | |||
4532 | OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl()); | |||
4533 | Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr; | |||
4534 | ||||
4535 | if (auto *Shadow = | |||
4536 | dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl())) | |||
4537 | if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate)) | |||
4538 | return New->setInvalidDecl(); | |||
4539 | } else { | |||
4540 | Old = dyn_cast<VarDecl>(Previous.getFoundDecl()); | |||
4541 | ||||
4542 | if (auto *Shadow = | |||
4543 | dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl())) | |||
4544 | if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New)) | |||
4545 | return New->setInvalidDecl(); | |||
4546 | } | |||
4547 | } | |||
4548 | if (!Old) { | |||
4549 | Diag(New->getLocation(), diag::err_redefinition_different_kind) | |||
4550 | << New->getDeclName(); | |||
4551 | notePreviousDefinition(Previous.getRepresentativeDecl(), | |||
4552 | New->getLocation()); | |||
4553 | return New->setInvalidDecl(); | |||
4554 | } | |||
4555 | ||||
4556 | // If the old declaration was found in an inline namespace and the new | |||
4557 | // declaration was qualified, update the DeclContext to match. | |||
4558 | adjustDeclContextForDeclaratorDecl(New, Old); | |||
4559 | ||||
4560 | // Ensure the template parameters are compatible. | |||
4561 | if (NewTemplate && | |||
4562 | !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), | |||
4563 | OldTemplate->getTemplateParameters(), | |||
4564 | /*Complain=*/true, TPL_TemplateMatch)) | |||
4565 | return New->setInvalidDecl(); | |||
4566 | ||||
4567 | // C++ [class.mem]p1: | |||
4568 | // A member shall not be declared twice in the member-specification [...] | |||
4569 | // | |||
4570 | // Here, we need only consider static data members. | |||
4571 | if (Old->isStaticDataMember() && !New->isOutOfLine()) { | |||
4572 | Diag(New->getLocation(), diag::err_duplicate_member) | |||
4573 | << New->getIdentifier(); | |||
4574 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
4575 | New->setInvalidDecl(); | |||
4576 | } | |||
4577 | ||||
4578 | mergeDeclAttributes(New, Old); | |||
4579 | // Warn if an already-declared variable is made a weak_import in a subsequent | |||
4580 | // declaration | |||
4581 | if (New->hasAttr<WeakImportAttr>() && | |||
4582 | Old->getStorageClass() == SC_None && | |||
4583 | !Old->hasAttr<WeakImportAttr>()) { | |||
4584 | Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName(); | |||
4585 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
4586 | // Remove weak_import attribute on new declaration. | |||
4587 | New->dropAttr<WeakImportAttr>(); | |||
4588 | } | |||
4589 | ||||
4590 | if (const auto *ILA = New->getAttr<InternalLinkageAttr>()) | |||
4591 | if (!Old->hasAttr<InternalLinkageAttr>()) { | |||
4592 | Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl) | |||
4593 | << ILA; | |||
4594 | Diag(Old->getLocation(), diag::note_previous_declaration); | |||
4595 | New->dropAttr<InternalLinkageAttr>(); | |||
4596 | } | |||
4597 | ||||
4598 | // Merge the types. | |||
4599 | VarDecl *MostRecent = Old->getMostRecentDecl(); | |||
4600 | if (MostRecent != Old) { | |||
4601 | MergeVarDeclTypes(New, MostRecent, | |||
4602 | mergeTypeWithPrevious(*this, New, MostRecent, Previous)); | |||
4603 | if (New->isInvalidDecl()) | |||
4604 | return; | |||
4605 | } | |||
4606 | ||||
4607 | MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous)); | |||
4608 | if (New->isInvalidDecl()) | |||
4609 | return; | |||
4610 | ||||
4611 | diag::kind PrevDiag; | |||
4612 | SourceLocation OldLocation; | |||
4613 | std::tie(PrevDiag, OldLocation) = | |||
4614 | getNoteDiagForInvalidRedeclaration(Old, New); | |||
4615 | ||||
4616 | // [dcl.stc]p8: Check if we have a non-static decl followed by a static. | |||
4617 | if (New->getStorageClass() == SC_Static && | |||
4618 | !New->isStaticDataMember() && | |||
4619 | Old->hasExternalFormalLinkage()) { | |||
4620 | if (getLangOpts().MicrosoftExt) { | |||
4621 | Diag(New->getLocation(), diag::ext_static_non_static) | |||
4622 | << New->getDeclName(); | |||
4623 | Diag(OldLocation, PrevDiag); | |||
4624 | } else { | |||
4625 | Diag(New->getLocation(), diag::err_static_non_static) | |||
4626 | << New->getDeclName(); | |||
4627 | Diag(OldLocation, PrevDiag); | |||
4628 | return New->setInvalidDecl(); | |||
4629 | } | |||
4630 | } | |||
4631 | // C99 6.2.2p4: | |||
4632 | // For an identifier declared with the storage-class specifier | |||
4633 | // extern in a scope in which a prior declaration of that | |||
4634 | // identifier is visible,23) if the prior declaration specifies | |||
4635 | // internal or external linkage, the linkage of the identifier at | |||
4636 | // the later declaration is the same as the linkage specified at | |||
4637 | // the prior declaration. If no prior declaration is visible, or | |||
4638 | // if the prior declaration specifies no linkage, then the | |||
4639 | // identifier has external linkage. | |||
4640 | if (New->hasExternalStorage() && Old->hasLinkage()) | |||
4641 | /* Okay */; | |||
4642 | else if (New->getCanonicalDecl()->getStorageClass() != SC_Static && | |||
4643 | !New->isStaticDataMember() && | |||
4644 | Old->getCanonicalDecl()->getStorageClass() == SC_Static) { | |||
4645 | Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName(); | |||
4646 | Diag(OldLocation, PrevDiag); | |||
4647 | return New->setInvalidDecl(); | |||
4648 | } | |||
4649 | ||||
4650 | // Check if extern is followed by non-extern and vice-versa. | |||
4651 | if (New->hasExternalStorage() && | |||
4652 | !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) { | |||
4653 | Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName(); | |||
4654 | Diag(OldLocation, PrevDiag); | |||
4655 | return New->setInvalidDecl(); | |||
4656 | } | |||
4657 | if (Old->hasLinkage() && New->isLocalVarDeclOrParm() && | |||
4658 | !New->hasExternalStorage()) { | |||
4659 | Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName(); | |||
4660 | Diag(OldLocation, PrevDiag); | |||
4661 | return New->setInvalidDecl(); | |||
4662 | } | |||
4663 | ||||
4664 | if (CheckRedeclarationInModule(New, Old)) | |||
4665 | return; | |||
4666 | ||||
4667 | // Variables with external linkage are analyzed in FinalizeDeclaratorGroup. | |||
4668 | ||||
4669 | // FIXME: The test for external storage here seems wrong? We still | |||
4670 | // need to check for mismatches. | |||
4671 | if (!New->hasExternalStorage() && !New->isFileVarDecl() && | |||
4672 | // Don't complain about out-of-line definitions of static members. | |||
4673 | !(Old->getLexicalDeclContext()->isRecord() && | |||
4674 | !New->getLexicalDeclContext()->isRecord())) { | |||
4675 | Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName(); | |||
4676 | Diag(OldLocation, PrevDiag); | |||
4677 | return New->setInvalidDecl(); | |||
4678 | } | |||
4679 | ||||
4680 | if (New->isInline() && !Old->getMostRecentDecl()->isInline()) { | |||
4681 | if (VarDecl *Def = Old->getDefinition()) { | |||
4682 | // C++1z [dcl.fcn.spec]p4: | |||
4683 | // If the definition of a variable appears in a translation unit before | |||
4684 | // its first declaration as inline, the program is ill-formed. | |||
4685 | Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; | |||
4686 | Diag(Def->getLocation(), diag::note_previous_definition); | |||
4687 | } | |||
4688 | } | |||
4689 | ||||
4690 | // If this redeclaration makes the variable inline, we may need to add it to | |||
4691 | // UndefinedButUsed. | |||
4692 | if (!Old->isInline() && New->isInline() && Old->isUsed(false) && | |||
4693 | !Old->getDefinition() && !New->isThisDeclarationADefinition()) | |||
4694 | UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(), | |||
4695 | SourceLocation())); | |||
4696 | ||||
4697 | if (New->getTLSKind() != Old->getTLSKind()) { | |||
4698 | if (!Old->getTLSKind()) { | |||
4699 | Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName(); | |||
4700 | Diag(OldLocation, PrevDiag); | |||
4701 | } else if (!New->getTLSKind()) { | |||
4702 | Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName(); | |||
4703 | Diag(OldLocation, PrevDiag); | |||
4704 | } else { | |||
4705 | // Do not allow redeclaration to change the variable between requiring | |||
4706 | // static and dynamic initialization. | |||
4707 | // FIXME: GCC allows this, but uses the TLS keyword on the first | |||
4708 | // declaration to determine the kind. Do we need to be compatible here? | |||
4709 | Diag(New->getLocation(), diag::err_thread_thread_different_kind) | |||
4710 | << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic); | |||
4711 | Diag(OldLocation, PrevDiag); | |||
4712 | } | |||
4713 | } | |||
4714 | ||||
4715 | // C++ doesn't have tentative definitions, so go right ahead and check here. | |||
4716 | if (getLangOpts().CPlusPlus) { | |||
4717 | if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() && | |||
4718 | Old->getCanonicalDecl()->isConstexpr()) { | |||
4719 | // This definition won't be a definition any more once it's been merged. | |||
4720 | Diag(New->getLocation(), | |||
4721 | diag::warn_deprecated_redundant_constexpr_static_def); | |||
4722 | } else if (New->isThisDeclarationADefinition() == VarDecl::Definition) { | |||
4723 | VarDecl *Def = Old->getDefinition(); | |||
4724 | if (Def && checkVarDeclRedefinition(Def, New)) | |||
4725 | return; | |||
4726 | } | |||
4727 | } | |||
4728 | ||||
4729 | if (haveIncompatibleLanguageLinkages(Old, New)) { | |||
4730 | Diag(New->getLocation(), diag::err_different_language_linkage) << New; | |||
4731 | Diag(OldLocation, PrevDiag); | |||
4732 | New->setInvalidDecl(); | |||
4733 | return; | |||
4734 | } | |||
4735 | ||||
4736 | // Merge "used" flag. | |||
4737 | if (Old->getMostRecentDecl()->isUsed(false)) | |||
4738 | New->setIsUsed(); | |||
4739 | ||||
4740 | // Keep a chain of previous declarations. | |||
4741 | New->setPreviousDecl(Old); | |||
4742 | if (NewTemplate) | |||
4743 | NewTemplate->setPreviousDecl(OldTemplate); | |||
4744 | ||||
4745 | // Inherit access appropriately. | |||
4746 | New->setAccess(Old->getAccess()); | |||
4747 | if (NewTemplate) | |||
4748 | NewTemplate->setAccess(New->getAccess()); | |||
4749 | ||||
4750 | if (Old->isInline()) | |||
4751 | New->setImplicitlyInline(); | |||
4752 | } | |||
4753 | ||||
4754 | void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) { | |||
4755 | SourceManager &SrcMgr = getSourceManager(); | |||
4756 | auto FNewDecLoc = SrcMgr.getDecomposedLoc(New); | |||
4757 | auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation()); | |||
4758 | auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first); | |||
4759 | auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first); | |||
4760 | auto &HSI = PP.getHeaderSearchInfo(); | |||
4761 | StringRef HdrFilename = | |||
4762 | SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation())); | |||
4763 | ||||
4764 | auto noteFromModuleOrInclude = [&](Module *Mod, | |||
4765 | SourceLocation IncLoc) -> bool { | |||
4766 | // Redefinition errors with modules are common with non modular mapped | |||
4767 | // headers, example: a non-modular header H in module A that also gets | |||
4768 | // included directly in a TU. Pointing twice to the same header/definition | |||
4769 | // is confusing, try to get better diagnostics when modules is on. | |||
4770 | if (IncLoc.isValid()) { | |||
4771 | if (Mod) { | |||
4772 | Diag(IncLoc, diag::note_redefinition_modules_same_file) | |||
4773 | << HdrFilename.str() << Mod->getFullModuleName(); | |||
4774 | if (!Mod->DefinitionLoc.isInvalid()) | |||
4775 | Diag(Mod->DefinitionLoc, diag::note_defined_here) | |||
4776 | << Mod->getFullModuleName(); | |||
4777 | } else { | |||
4778 | Diag(IncLoc, diag::note_redefinition_include_same_file) | |||
4779 | << HdrFilename.str(); | |||
4780 | } | |||
4781 | return true; | |||
4782 | } | |||
4783 | ||||
4784 | return false; | |||
4785 | }; | |||
4786 | ||||
4787 | // Is it the same file and same offset? Provide more information on why | |||
4788 | // this leads to a redefinition error. | |||
4789 | if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) { | |||
4790 | SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first); | |||
4791 | SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first); | |||
4792 | bool EmittedDiag = | |||
4793 | noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc); | |||
4794 | EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc); | |||
4795 | ||||
4796 | // If the header has no guards, emit a note suggesting one. | |||
4797 | if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld)) | |||
4798 | Diag(Old->getLocation(), diag::note_use_ifdef_guards); | |||
4799 | ||||
4800 | if (EmittedDiag) | |||
4801 | return; | |||
4802 | } | |||
4803 | ||||
4804 | // Redefinition coming from different files or couldn't do better above. | |||
4805 | if (Old->getLocation().isValid()) | |||
4806 | Diag(Old->getLocation(), diag::note_previous_definition); | |||
4807 | } | |||
4808 | ||||
4809 | /// We've just determined that \p Old and \p New both appear to be definitions | |||
4810 | /// of the same variable. Either diagnose or fix the problem. | |||
4811 | bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) { | |||
4812 | if (!hasVisibleDefinition(Old) && | |||
4813 | (New->getFormalLinkage() == InternalLinkage || | |||
4814 | New->isInline() || | |||
4815 | isa<VarTemplateSpecializationDecl>(New) || | |||
4816 | New->getDescribedVarTemplate() || | |||
4817 | New->getNumTemplateParameterLists() || | |||
4818 | New->getDeclContext()->isDependentContext())) { | |||
4819 | // The previous definition is hidden, and multiple definitions are | |||
4820 | // permitted (in separate TUs). Demote this to a declaration. | |||
4821 | New->demoteThisDefinitionToDeclaration(); | |||
4822 | ||||
4823 | // Make the canonical definition visible. | |||
4824 | if (auto *OldTD = Old->getDescribedVarTemplate()) | |||
4825 | makeMergedDefinitionVisible(OldTD); | |||
4826 | makeMergedDefinitionVisible(Old); | |||
4827 | return false; | |||
4828 | } else { | |||
4829 | Diag(New->getLocation(), diag::err_redefinition) << New; | |||
4830 | notePreviousDefinition(Old, New->getLocation()); | |||
4831 | New->setInvalidDecl(); | |||
4832 | return true; | |||
4833 | } | |||
4834 | } | |||
4835 | ||||
4836 | /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with | |||
4837 | /// no declarator (e.g. "struct foo;") is parsed. | |||
4838 | Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, | |||
4839 | DeclSpec &DS, | |||
4840 | const ParsedAttributesView &DeclAttrs, | |||
4841 | RecordDecl *&AnonRecord) { | |||
4842 | return ParsedFreeStandingDeclSpec( | |||
4843 | S, AS, DS, DeclAttrs, MultiTemplateParamsArg(), false, AnonRecord); | |||
4844 | } | |||
4845 | ||||
4846 | // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to | |||
4847 | // disambiguate entities defined in different scopes. | |||
4848 | // While the VS2015 ABI fixes potential miscompiles, it is also breaks | |||
4849 | // compatibility. | |||
4850 | // We will pick our mangling number depending on which version of MSVC is being | |||
4851 | // targeted. | |||
4852 | static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) { | |||
4853 | return LO.isCompatibleWithMSVC(LangOptions::MSVC2015) | |||
4854 | ? S->getMSCurManglingNumber() | |||
4855 | : S->getMSLastManglingNumber(); | |||
4856 | } | |||
4857 | ||||
4858 | void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) { | |||
4859 | if (!Context.getLangOpts().CPlusPlus) | |||
4860 | return; | |||
4861 | ||||
4862 | if (isa<CXXRecordDecl>(Tag->getParent())) { | |||
4863 | // If this tag is the direct child of a class, number it if | |||
4864 | // it is anonymous. | |||
4865 | if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl()) | |||
4866 | return; | |||
4867 | MangleNumberingContext &MCtx = | |||
4868 | Context.getManglingNumberContext(Tag->getParent()); | |||
4869 | Context.setManglingNumber( | |||
4870 | Tag, MCtx.getManglingNumber( | |||
4871 | Tag, getMSManglingNumber(getLangOpts(), TagScope))); | |||
4872 | return; | |||
4873 | } | |||
4874 | ||||
4875 | // If this tag isn't a direct child of a class, number it if it is local. | |||
4876 | MangleNumberingContext *MCtx; | |||
4877 | Decl *ManglingContextDecl; | |||
4878 | std::tie(MCtx, ManglingContextDecl) = | |||
4879 | getCurrentMangleNumberContext(Tag->getDeclContext()); | |||
4880 | if (MCtx) { | |||
4881 | Context.setManglingNumber( | |||
4882 | Tag, MCtx->getManglingNumber( | |||
4883 | Tag, getMSManglingNumber(getLangOpts(), TagScope))); | |||
4884 | } | |||
4885 | } | |||
4886 | ||||
4887 | namespace { | |||
4888 | struct NonCLikeKind { | |||
4889 | enum { | |||
4890 | None, | |||
4891 | BaseClass, | |||
4892 | DefaultMemberInit, | |||
4893 | Lambda, | |||
4894 | Friend, | |||
4895 | OtherMember, | |||
4896 | Invalid, | |||
4897 | } Kind = None; | |||
4898 | SourceRange Range; | |||
4899 | ||||
4900 | explicit operator bool() { return Kind != None; } | |||
4901 | }; | |||
4902 | } | |||
4903 | ||||
4904 | /// Determine whether a class is C-like, according to the rules of C++ | |||
4905 | /// [dcl.typedef] for anonymous classes with typedef names for linkage. | |||
4906 | static NonCLikeKind getNonCLikeKindForAnonymousStruct(const CXXRecordDecl *RD) { | |||
4907 | if (RD->isInvalidDecl()) | |||
4908 | return {NonCLikeKind::Invalid, {}}; | |||
4909 | ||||
4910 | // C++ [dcl.typedef]p9: [P1766R1] | |||
4911 | // An unnamed class with a typedef name for linkage purposes shall not | |||
4912 | // | |||
4913 | // -- have any base classes | |||
4914 | if (RD->getNumBases()) | |||
4915 | return {NonCLikeKind::BaseClass, | |||
4916 | SourceRange(RD->bases_begin()->getBeginLoc(), | |||
4917 | RD->bases_end()[-1].getEndLoc())}; | |||
4918 | bool Invalid = false; | |||
4919 | for (Decl *D : RD->decls()) { | |||
4920 | // Don't complain about things we already diagnosed. | |||
4921 | if (D->isInvalidDecl()) { | |||
4922 | Invalid = true; | |||
4923 | continue; | |||
4924 | } | |||
4925 | ||||
4926 | // -- have any [...] default member initializers | |||
4927 | if (auto *FD = dyn_cast<FieldDecl>(D)) { | |||
4928 | if (FD->hasInClassInitializer()) { | |||
4929 | auto *Init = FD->getInClassInitializer(); | |||
4930 | return {NonCLikeKind::DefaultMemberInit, | |||
4931 | Init ? Init->getSourceRange() : D->getSourceRange()}; | |||
4932 | } | |||
4933 | continue; | |||
4934 | } | |||
4935 | ||||
4936 | // FIXME: We don't allow friend declarations. This violates the wording of | |||
4937 | // P1766, but not the intent. | |||
4938 | if (isa<FriendDecl>(D)) | |||
4939 | return {NonCLikeKind::Friend, D->getSourceRange()}; | |||
4940 | ||||
4941 | // -- declare any members other than non-static data members, member | |||
4942 | // enumerations, or member classes, | |||
4943 | if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D) || | |||
4944 | isa<EnumDecl>(D)) | |||
4945 | continue; | |||
4946 | auto *MemberRD = dyn_cast<CXXRecordDecl>(D); | |||
4947 | if (!MemberRD) { | |||
4948 | if (D->isImplicit()) | |||
4949 | continue; | |||
4950 | return {NonCLikeKind::OtherMember, D->getSourceRange()}; | |||
4951 | } | |||
4952 | ||||
4953 | // -- contain a lambda-expression, | |||
4954 | if (MemberRD->isLambda()) | |||
4955 | return {NonCLikeKind::Lambda, MemberRD->getSourceRange()}; | |||
4956 | ||||
4957 | // and all member classes shall also satisfy these requirements | |||
4958 | // (recursively). | |||
4959 | if (MemberRD->isThisDeclarationADefinition()) { | |||
4960 | if (auto Kind = getNonCLikeKindForAnonymousStruct(MemberRD)) | |||
4961 | return Kind; | |||
4962 | } | |||
4963 | } | |||
4964 | ||||
4965 | return {Invalid ? NonCLikeKind::Invalid : NonCLikeKind::None, {}}; | |||
4966 | } | |||
4967 | ||||
4968 | void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec, | |||
4969 | TypedefNameDecl *NewTD) { | |||
4970 | if (TagFromDeclSpec->isInvalidDecl()) | |||
4971 | return; | |||
4972 | ||||
4973 | // Do nothing if the tag already has a name for linkage purposes. | |||
4974 | if (TagFromDeclSpec->hasNameForLinkage()) | |||
4975 | return; | |||
4976 | ||||
4977 | // A well-formed anonymous tag must always be a TUK_Definition. | |||
4978 | assert(TagFromDeclSpec->isThisDeclarationADefinition())(static_cast <bool> (TagFromDeclSpec->isThisDeclarationADefinition ()) ? void (0) : __assert_fail ("TagFromDeclSpec->isThisDeclarationADefinition()" , "clang/lib/Sema/SemaDecl.cpp", 4978, __extension__ __PRETTY_FUNCTION__ )); | |||
4979 | ||||
4980 | // The type must match the tag exactly; no qualifiers allowed. | |||
4981 | if (!Context.hasSameType(NewTD->getUnderlyingType(), | |||
4982 | Context.getTagDeclType(TagFromDeclSpec))) { | |||
4983 | if (getLangOpts().CPlusPlus) | |||
4984 | Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD); | |||
4985 | return; | |||
4986 | } | |||
4987 | ||||
4988 | // C++ [dcl.typedef]p9: [P1766R1, applied as DR] | |||
4989 | // An unnamed class with a typedef name for linkage purposes shall [be | |||
4990 | // C-like]. | |||
4991 | // | |||
4992 | // FIXME: Also diagnose if we've already computed the linkage. That ideally | |||
4993 | // shouldn't happen, but there are constructs that the language rule doesn't | |||
4994 | // disallow for which we can't reasonably avoid computing linkage early. | |||
4995 | const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TagFromDeclSpec); | |||
4996 | NonCLikeKind NonCLike = RD ? getNonCLikeKindForAnonymousStruct(RD) | |||
4997 | : NonCLikeKind(); | |||
4998 | bool ChangesLinkage = TagFromDeclSpec->hasLinkageBeenComputed(); | |||
4999 | if (NonCLike || ChangesLinkage) { | |||
5000 | if (NonCLike.Kind == NonCLikeKind::Invalid) | |||
5001 | return; | |||
5002 | ||||
5003 | unsigned DiagID = diag::ext_non_c_like_anon_struct_in_typedef; | |||
5004 | if (ChangesLinkage) { | |||
5005 | // If the linkage changes, we can't accept this as an extension. | |||
5006 | if (NonCLike.Kind == NonCLikeKind::None) | |||
5007 | DiagID = diag::err_typedef_changes_linkage; | |||
5008 | else | |||
5009 | DiagID = diag::err_non_c_like_anon_struct_in_typedef; | |||
5010 | } | |||
5011 | ||||
5012 | SourceLocation FixitLoc = | |||
5013 | getLocForEndOfToken(TagFromDeclSpec->getInnerLocStart()); | |||
5014 | llvm::SmallString<40> TextToInsert; | |||
5015 | TextToInsert += ' '; | |||
5016 | TextToInsert += NewTD->getIdentifier()->getName(); | |||
5017 | ||||
5018 | Diag(FixitLoc, DiagID) | |||
5019 | << isa<TypeAliasDecl>(NewTD) | |||
5020 | << FixItHint::CreateInsertion(FixitLoc, TextToInsert); | |||
5021 | if (NonCLike.Kind != NonCLikeKind::None) { | |||
5022 | Diag(NonCLike.Range.getBegin(), diag::note_non_c_like_anon_struct) | |||
5023 | << NonCLike.Kind - 1 << NonCLike.Range; | |||
5024 | } | |||
5025 | Diag(NewTD->getLocation(), diag::note_typedef_for_linkage_here) | |||
5026 | << NewTD << isa<TypeAliasDecl>(NewTD); | |||
5027 | ||||
5028 | if (ChangesLinkage) | |||
5029 | return; | |||
5030 | } | |||
5031 | ||||
5032 | // Otherwise, set this as the anon-decl typedef for the tag. | |||
5033 | TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD); | |||
5034 | } | |||
5035 | ||||
5036 | static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) { | |||
5037 | switch (T) { | |||
5038 | case DeclSpec::TST_class: | |||
5039 | return 0; | |||
5040 | case DeclSpec::TST_struct: | |||
5041 | return 1; | |||
5042 | case DeclSpec::TST_interface: | |||
5043 | return 2; | |||
5044 | case DeclSpec::TST_union: | |||
5045 | return 3; | |||
5046 | case DeclSpec::TST_enum: | |||
5047 | return 4; | |||
5048 | default: | |||
5049 | llvm_unreachable("unexpected type specifier")::llvm::llvm_unreachable_internal("unexpected type specifier" , "clang/lib/Sema/SemaDecl.cpp", 5049); | |||
5050 | } | |||
5051 | } | |||
5052 | ||||
5053 | /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with | |||
5054 | /// no declarator (e.g. "struct foo;") is parsed. It also accepts template | |||
5055 | /// parameters to cope with template friend declarations. | |||
5056 | Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, | |||
5057 | DeclSpec &DS, | |||
5058 | const ParsedAttributesView &DeclAttrs, | |||
5059 | MultiTemplateParamsArg TemplateParams, | |||
5060 | bool IsExplicitInstantiation, | |||
5061 | RecordDecl *&AnonRecord) { | |||
5062 | Decl *TagD = nullptr; | |||
5063 | TagDecl *Tag = nullptr; | |||
5064 | if (DS.getTypeSpecType() == DeclSpec::TST_class || | |||
5065 | DS.getTypeSpecType() == DeclSpec::TST_struct || | |||
5066 | DS.getTypeSpecType() == DeclSpec::TST_interface || | |||
5067 | DS.getTypeSpecType() == DeclSpec::TST_union || | |||
5068 | DS.getTypeSpecType() == DeclSpec::TST_enum) { | |||
5069 | TagD = DS.getRepAsDecl(); | |||
5070 | ||||
5071 | if (!TagD) // We probably had an error | |||
5072 | return nullptr; | |||
5073 | ||||
5074 | // Note that the above type specs guarantee that the | |||
5075 | // type rep is a Decl, whereas in many of the others | |||
5076 | // it's a Type. | |||
5077 | if (isa<TagDecl>(TagD)) | |||
5078 | Tag = cast<TagDecl>(TagD); | |||
5079 | else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD)) | |||
5080 | Tag = CTD->getTemplatedDecl(); | |||
5081 | } | |||
5082 | ||||
5083 | if (Tag) { | |||
5084 | handleTagNumbering(Tag, S); | |||
5085 | Tag->setFreeStanding(); | |||
5086 | if (Tag->isInvalidDecl()) | |||
5087 | return Tag; | |||
5088 | } | |||
5089 | ||||
5090 | if (unsigned TypeQuals = DS.getTypeQualifiers()) { | |||
5091 | // Enforce C99 6.7.3p2: "Types other than pointer types derived from object | |||
5092 | // or incomplete types shall not be restrict-qualified." | |||
5093 | if (TypeQuals & DeclSpec::TQ_restrict) | |||
5094 | Diag(DS.getRestrictSpecLoc(), | |||
5095 | diag::err_typecheck_invalid_restrict_not_pointer_noarg) | |||
5096 | << DS.getSourceRange(); | |||
5097 | } | |||
5098 | ||||
5099 | if (DS.isInlineSpecified()) | |||
5100 | Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) | |||
5101 | << getLangOpts().CPlusPlus17; | |||
5102 | ||||
5103 | if (DS.hasConstexprSpecifier()) { | |||
5104 | // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations | |||
5105 | // and definitions of functions and variables. | |||
5106 | // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to | |||
5107 | // the declaration of a function or function template | |||
5108 | if (Tag) | |||
5109 | Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag) | |||
5110 | << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) | |||
5111 | << static_cast<int>(DS.getConstexprSpecifier()); | |||
5112 | else | |||
5113 | Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind) | |||
5114 | << static_cast<int>(DS.getConstexprSpecifier()); | |||
5115 | // Don't emit warnings after this error. | |||
5116 | return TagD; | |||
5117 | } | |||
5118 | ||||
5119 | DiagnoseFunctionSpecifiers(DS); | |||
5120 | ||||
5121 | if (DS.isFriendSpecified()) { | |||
5122 | // If we're dealing with a decl but not a TagDecl, assume that | |||
5123 | // whatever routines created it handled the friendship aspect. | |||
5124 | if (TagD && !Tag) | |||
5125 | return nullptr; | |||
5126 | return ActOnFriendTypeDecl(S, DS, TemplateParams); | |||
5127 | } | |||
5128 | ||||
5129 | const CXXScopeSpec &SS = DS.getTypeSpecScope(); | |||
5130 | bool IsExplicitSpecialization = | |||
5131 | !TemplateParams.empty() && TemplateParams.back()->size() == 0; | |||
5132 | if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() && | |||
5133 | !IsExplicitInstantiation && !IsExplicitSpecialization && | |||
5134 | !isa<ClassTemplatePartialSpecializationDecl>(Tag)) { | |||
5135 | // Per C++ [dcl.type.elab]p1, a class declaration cannot have a | |||
5136 | // nested-name-specifier unless it is an explicit instantiation | |||
5137 | // or an explicit specialization. | |||
5138 | // | |||
5139 | // FIXME: We allow class template partial specializations here too, per the | |||
5140 | // obvious intent of DR1819. | |||
5141 | // | |||
5142 | // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either. | |||
5143 | Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier) | |||
5144 | << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange(); | |||
5145 | return nullptr; | |||
5146 | } | |||
5147 | ||||
5148 | // Track whether this decl-specifier declares anything. | |||
5149 | bool DeclaresAnything = true; | |||
5150 | ||||
5151 | // Handle anonymous struct definitions. | |||
5152 | if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) { | |||
5153 | if (!Record->getDeclName() && Record->isCompleteDefinition() && | |||
5154 | DS.getStorageClassSpec() != DeclSpec::SCS_typedef) { | |||
5155 | if (getLangOpts().CPlusPlus || | |||
5156 | Record->getDeclContext()->isRecord()) { | |||
5157 | // If CurContext is a DeclContext that can contain statements, | |||
5158 | // RecursiveASTVisitor won't visit the decls that | |||
5159 | // BuildAnonymousStructOrUnion() will put into CurContext. | |||
5160 | // Also store them here so that they can be part of the | |||
5161 | // DeclStmt that gets created in this case. | |||
5162 | // FIXME: Also return the IndirectFieldDecls created by | |||
5163 | // BuildAnonymousStructOr union, for the same reason? | |||
5164 | if (CurContext->isFunctionOrMethod()) | |||
5165 | AnonRecord = Record; | |||
5166 | return BuildAnonymousStructOrUnion(S, DS, AS, Record, | |||
5167 | Context.getPrintingPolicy()); | |||
5168 | } | |||
5169 | ||||
5170 | DeclaresAnything = false; | |||
5171 | } | |||
5172 | } | |||
5173 | ||||
5174 | // C11 6.7.2.1p2: | |||
5175 | // A struct-declaration that does not declare an anonymous structure or | |||
5176 | // anonymous union shall contain a struct-declarator-list. | |||
5177 | // | |||
5178 | // This rule also existed in C89 and C99; the grammar for struct-declaration | |||
5179 | // did not permit a struct-declaration without a struct-declarator-list. | |||
5180 | if (!getLangOpts().CPlusPlus && CurContext->isRecord() && | |||
5181 | DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) { | |||
5182 | // Check for Microsoft C extension: anonymous struct/union member. | |||
5183 | // Handle 2 kinds of anonymous struct/union: | |||
5184 | // struct STRUCT; | |||
5185 | // union UNION; | |||
5186 | // and | |||
5187 | // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct. | |||
5188 | // UNION_TYPE; <- where UNION_TYPE is a typedef union. | |||
5189 | if ((Tag && Tag->getDeclName()) || | |||
5190 | DS.getTypeSpecType() == DeclSpec::TST_typename) { | |||
5191 | RecordDecl *Record = nullptr; | |||
5192 | if (Tag) | |||
5193 | Record = dyn_cast<RecordDecl>(Tag); | |||
5194 | else if (const RecordType *RT = | |||
5195 | DS.getRepAsType().get()->getAsStructureType()) | |||
5196 | Record = RT->getDecl(); | |||
5197 | else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType()) | |||
5198 | Record = UT->getDecl(); | |||
5199 | ||||
5200 | if (Record && getLangOpts().MicrosoftExt) { | |||
5201 | Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record) | |||
5202 | << Record->isUnion() << DS.getSourceRange(); | |||
5203 | return BuildMicrosoftCAnonymousStruct(S, DS, Record); | |||
5204 | } | |||
5205 | ||||
5206 | DeclaresAnything = false; | |||
5207 | } | |||
5208 | } | |||
5209 | ||||
5210 | // Skip all the checks below if we have a type error. | |||
5211 | if (DS.getTypeSpecType() == DeclSpec::TST_error || | |||
5212 | (TagD && TagD->isInvalidDecl())) | |||
5213 | return TagD; | |||
5214 | ||||
5215 | if (getLangOpts().CPlusPlus && | |||
5216 | DS.getStorageClassSpec() != DeclSpec::SCS_typedef) | |||
5217 | if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag)) | |||
5218 | if (Enum->enumerator_begin() == Enum->enumerator_end() && | |||
5219 | !Enum->getIdentifier() && !Enum->isInvalidDecl()) | |||
5220 | DeclaresAnything = false; | |||
5221 | ||||
5222 | if (!DS.isMissingDeclaratorOk()) { | |||
5223 | // Customize diagnostic for a typedef missing a name. | |||
5224 | if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) | |||
5225 | Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name) | |||
5226 | << DS.getSourceRange(); | |||
5227 | else | |||
5228 | DeclaresAnything = false; | |||
5229 | } | |||
5230 | ||||
5231 | if (DS.isModulePrivateSpecified() && | |||
5232 | Tag && Tag->getDeclContext()->isFunctionOrMethod()) | |||
5233 | Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class) | |||
5234 | << Tag->getTagKind() | |||
5235 | << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc()); | |||
5236 | ||||
5237 | ActOnDocumentableDecl(TagD); | |||
5238 | ||||
5239 | // C 6.7/2: | |||
5240 | // A declaration [...] shall declare at least a declarator [...], a tag, | |||
5241 | // or the members of an enumeration. | |||
5242 | // C++ [dcl.dcl]p3: | |||
5243 | // [If there are no declarators], and except for the declaration of an | |||
5244 | // unnamed bit-field, the decl-specifier-seq shall introduce one or more | |||
5245 | // names into the program, or shall redeclare a name introduced by a | |||
5246 | // previous declaration. | |||
5247 | if (!DeclaresAnything) { | |||
5248 | // In C, we allow this as a (popular) extension / bug. Don't bother | |||
5249 | // producing further diagnostics for redundant qualifiers after this. | |||
5250 | Diag(DS.getBeginLoc(), (IsExplicitInstantiation || !TemplateParams.empty()) | |||
5251 | ? diag::err_no_declarators | |||
5252 | : diag::ext_no_declarators) | |||
5253 | << DS.getSourceRange(); | |||
5254 | return TagD; | |||
5255 | } | |||
5256 | ||||
5257 | // C++ [dcl.stc]p1: | |||
5258 | // If a storage-class-specifier appears in a decl-specifier-seq, [...] the | |||
5259 | // init-declarator-list of the declaration shall not be empty. | |||
5260 | // C++ [dcl.fct.spec]p1: | |||
5261 | // If a cv-qualifier appears in a decl-specifier-seq, the | |||
5262 | // init-declarator-list of the declaration shall not be empty. | |||
5263 | // | |||
5264 | // Spurious qualifiers here appear to be valid in C. | |||
5265 | unsigned DiagID = diag::warn_standalone_specifier; | |||
5266 | if (getLangOpts().CPlusPlus) | |||
5267 | DiagID = diag::ext_standalone_specifier; | |||
5268 | ||||
5269 | // Note that a linkage-specification sets a storage class, but | |||
5270 | // 'extern "C" struct foo;' is actually valid and not theoretically | |||
5271 | // useless. | |||
5272 | if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { | |||
5273 | if (SCS == DeclSpec::SCS_mutable) | |||
5274 | // Since mutable is not a viable storage class specifier in C, there is | |||
5275 | // no reason to treat it as an extension. Instead, diagnose as an error. | |||
5276 | Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember); | |||
5277 | else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef) | |||
5278 | Diag(DS.getStorageClassSpecLoc(), DiagID) | |||
5279 | << DeclSpec::getSpecifierName(SCS); | |||
5280 | } | |||
5281 | ||||
5282 | if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) | |||
5283 | Diag(DS.getThreadStorageClassSpecLoc(), DiagID) | |||
5284 | << DeclSpec::getSpecifierName(TSCS); | |||
5285 | if (DS.getTypeQualifiers()) { | |||
5286 | if (DS.getTypeQualifiers() & DeclSpec::TQ_const) | |||
5287 | Diag(DS.getConstSpecLoc(), DiagID) << "const"; | |||
5288 | if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) | |||
5289 | Diag(DS.getConstSpecLoc(), DiagID) << "volatile"; | |||
5290 | // Restrict is covered above. | |||
5291 | if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) | |||
5292 | Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic"; | |||
5293 | if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) | |||
5294 | Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned"; | |||
5295 | } | |||
5296 | ||||
5297 | // Warn about ignored type attributes, for example: | |||
5298 | // __attribute__((aligned)) struct A; | |||
5299 | // Attributes should be placed after tag to apply to type declaration. | |||
5300 | if (!DS.getAttributes().empty() || !DeclAttrs.empty()) { | |||
5301 | DeclSpec::TST TypeSpecType = DS.getTypeSpecType(); | |||
5302 | if (TypeSpecType == DeclSpec::TST_class || | |||
5303 | TypeSpecType == DeclSpec::TST_struct || | |||
5304 | TypeSpecType == DeclSpec::TST_interface || | |||
5305 | TypeSpecType == DeclSpec::TST_union || | |||
5306 | TypeSpecType == DeclSpec::TST_enum) { | |||
5307 | for (const ParsedAttr &AL : DS.getAttributes()) | |||
5308 | Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored) | |||
5309 | << AL << GetDiagnosticTypeSpecifierID(TypeSpecType); | |||
5310 | for (const ParsedAttr &AL : DeclAttrs) | |||
5311 | Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored) | |||
5312 | << AL << GetDiagnosticTypeSpecifierID(TypeSpecType); | |||
5313 | } | |||
5314 | } | |||
5315 | ||||
5316 | return TagD; | |||
5317 | } | |||
5318 | ||||
5319 | /// We are trying to inject an anonymous member into the given scope; | |||
5320 | /// check if there's an existing declaration that can't be overloaded. | |||
5321 | /// | |||
5322 | /// \return true if this is a forbidden redeclaration | |||
5323 | static bool CheckAnonMemberRedeclaration(Sema &SemaRef, | |||
5324 | Scope *S, | |||
5325 | DeclContext *Owner, | |||
5326 | DeclarationName Name, | |||
5327 | SourceLocation NameLoc, | |||
5328 | bool IsUnion) { | |||
5329 | LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName, | |||
5330 | Sema::ForVisibleRedeclaration); | |||
5331 | if (!SemaRef.LookupName(R, S)) return false; | |||
5332 | ||||
5333 | // Pick a representative declaration. | |||
5334 | NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl(); | |||
5335 | assert(PrevDecl && "Expected a non-null Decl")(static_cast <bool> (PrevDecl && "Expected a non-null Decl" ) ? void (0) : __assert_fail ("PrevDecl && \"Expected a non-null Decl\"" , "clang/lib/Sema/SemaDecl.cpp", 5335, __extension__ __PRETTY_FUNCTION__ )); | |||
5336 | ||||
5337 | if (!SemaRef.isDeclInScope(PrevDecl, Owner, S)) | |||
5338 | return false; | |||
5339 | ||||
5340 | SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl) | |||
5341 | << IsUnion << Name; | |||
5342 | SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration); | |||
5343 | ||||
5344 | return true; | |||
5345 | } | |||
5346 | ||||
5347 | /// InjectAnonymousStructOrUnionMembers - Inject the members of the | |||
5348 | /// anonymous struct or union AnonRecord into the owning context Owner | |||
5349 | /// and scope S. This routine will be invoked just after we realize | |||
5350 | /// that an unnamed union or struct is actually an anonymous union or | |||
5351 | /// struct, e.g., | |||
5352 | /// | |||
5353 | /// @code | |||
5354 | /// union { | |||
5355 | /// int i; | |||
5356 | /// float f; | |||
5357 | /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and | |||
5358 | /// // f into the surrounding scope.x | |||
5359 | /// @endcode | |||
5360 | /// | |||
5361 | /// This routine is recursive, injecting the names of nested anonymous | |||
5362 | /// structs/unions into the owning context and scope as well. | |||
5363 | static bool | |||
5364 | InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner, | |||
5365 | RecordDecl *AnonRecord, AccessSpecifier AS, | |||
5366 | SmallVectorImpl<NamedDecl *> &Chaining) { | |||
5367 | bool Invalid = false; | |||
5368 | ||||
5369 | // Look every FieldDecl and IndirectFieldDecl with a name. | |||
5370 | for (auto *D : AnonRecord->decls()) { | |||
5371 | if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) && | |||
5372 | cast<NamedDecl>(D)->getDeclName()) { | |||
5373 | ValueDecl *VD = cast<ValueDecl>(D); | |||
5374 | if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(), | |||
5375 | VD->getLocation(), | |||
5376 | AnonRecord->isUnion())) { | |||
5377 | // C++ [class.union]p2: | |||
5378 | // The names of the members of an anonymous union shall be | |||
5379 | // distinct from the names of any other entity in the | |||
5380 | // scope in which the anonymous union is declared. | |||
5381 | Invalid = true; | |||
5382 | } else { | |||
5383 | // C++ [class.union]p2: | |||
5384 | // For the purpose of name lookup, after the anonymous union | |||
5385 | // definition, the members of the anonymous union are | |||
5386 | // considered to have been defined in the scope in which the | |||
5387 | // anonymous union is declared. | |||
5388 | unsigned OldChainingSize = Chaining.size(); | |||
5389 | if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD)) | |||
5390 | Chaining.append(IF->chain_begin(), IF->chain_end()); | |||
5391 | else | |||
5392 | Chaining.push_back(VD); | |||
5393 | ||||
5394 | assert(Chaining.size() >= 2)(static_cast <bool> (Chaining.size() >= 2) ? void (0 ) : __assert_fail ("Chaining.size() >= 2", "clang/lib/Sema/SemaDecl.cpp" , 5394, __extension__ __PRETTY_FUNCTION__)); | |||
5395 | NamedDecl **NamedChain = | |||
5396 | new (SemaRef.Context)NamedDecl*[Chaining.size()]; | |||
5397 | for (unsigned i = 0; i < Chaining.size(); i++) | |||
5398 | NamedChain[i] = Chaining[i]; | |||
5399 | ||||
5400 | IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create( | |||
5401 | SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(), | |||
5402 | VD->getType(), {NamedChain, Chaining.size()}); | |||
5403 | ||||
5404 | for (const auto *Attr : VD->attrs()) | |||
5405 | IndirectField->addAttr(Attr->clone(SemaRef.Context)); | |||
5406 | ||||
5407 | IndirectField->setAccess(AS); | |||
5408 | IndirectField->setImplicit(); | |||
5409 | SemaRef.PushOnScopeChains(IndirectField, S); | |||
5410 | ||||
5411 | // That includes picking up the appropriate access specifier. | |||
5412 | if (AS != AS_none) IndirectField->setAccess(AS); | |||
5413 | ||||
5414 | Chaining.resize(OldChainingSize); | |||
5415 | } | |||
5416 | } | |||
5417 | } | |||
5418 | ||||
5419 | return Invalid; | |||
5420 | } | |||
5421 | ||||
5422 | /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to | |||
5423 | /// a VarDecl::StorageClass. Any error reporting is up to the caller: | |||
5424 | /// illegal input values are mapped to SC_None. | |||
5425 | static StorageClass | |||
5426 | StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) { | |||
5427 | DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec(); | |||
5428 | assert(StorageClassSpec != DeclSpec::SCS_typedef &&(static_cast <bool> (StorageClassSpec != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class VarDecl." ) ? void (0) : __assert_fail ("StorageClassSpec != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class VarDecl.\"" , "clang/lib/Sema/SemaDecl.cpp", 5429, __extension__ __PRETTY_FUNCTION__ )) | |||
5429 | "Parser allowed 'typedef' as storage class VarDecl.")(static_cast <bool> (StorageClassSpec != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class VarDecl." ) ? void (0) : __assert_fail ("StorageClassSpec != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class VarDecl.\"" , "clang/lib/Sema/SemaDecl.cpp", 5429, __extension__ __PRETTY_FUNCTION__ )); | |||
5430 | switch (StorageClassSpec) { | |||
5431 | case DeclSpec::SCS_unspecified: return SC_None; | |||
5432 | case DeclSpec::SCS_extern: | |||
5433 | if (DS.isExternInLinkageSpec()) | |||
5434 | return SC_None; | |||
5435 | return SC_Extern; | |||
5436 | case DeclSpec::SCS_static: return SC_Static; | |||
5437 | case DeclSpec::SCS_auto: return SC_Auto; | |||
5438 | case DeclSpec::SCS_register: return SC_Register; | |||
5439 | case DeclSpec::SCS_private_extern: return SC_PrivateExtern; | |||
5440 | // Illegal SCSs map to None: error reporting is up to the caller. | |||
5441 | case DeclSpec::SCS_mutable: // Fall through. | |||
5442 | case DeclSpec::SCS_typedef: return SC_None; | |||
5443 | } | |||
5444 | llvm_unreachable("unknown storage class specifier")::llvm::llvm_unreachable_internal("unknown storage class specifier" , "clang/lib/Sema/SemaDecl.cpp", 5444); | |||
5445 | } | |||
5446 | ||||
5447 | static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) { | |||
5448 | assert(Record->hasInClassInitializer())(static_cast <bool> (Record->hasInClassInitializer() ) ? void (0) : __assert_fail ("Record->hasInClassInitializer()" , "clang/lib/Sema/SemaDecl.cpp", 5448, __extension__ __PRETTY_FUNCTION__ )); | |||
5449 | ||||
5450 | for (const auto *I : Record->decls()) { | |||
5451 | const auto *FD = dyn_cast<FieldDecl>(I); | |||
5452 | if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) | |||
5453 | FD = IFD->getAnonField(); | |||
5454 | if (FD && FD->hasInClassInitializer()) | |||
5455 | return FD->getLocation(); | |||
5456 | } | |||
5457 | ||||
5458 | llvm_unreachable("couldn't find in-class initializer")::llvm::llvm_unreachable_internal("couldn't find in-class initializer" , "clang/lib/Sema/SemaDecl.cpp", 5458); | |||
5459 | } | |||
5460 | ||||
5461 | static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, | |||
5462 | SourceLocation DefaultInitLoc) { | |||
5463 | if (!Parent->isUnion() || !Parent->hasInClassInitializer()) | |||
5464 | return; | |||
5465 | ||||
5466 | S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization); | |||
5467 | S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0; | |||
5468 | } | |||
5469 | ||||
5470 | static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, | |||
5471 | CXXRecordDecl *AnonUnion) { | |||
5472 | if (!Parent->isUnion() || !Parent->hasInClassInitializer()) | |||
5473 | return; | |||
5474 | ||||
5475 | checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion)); | |||
5476 | } | |||
5477 | ||||
5478 | /// BuildAnonymousStructOrUnion - Handle the declaration of an | |||
5479 | /// anonymous structure or union. Anonymous unions are a C++ feature | |||
5480 | /// (C++ [class.union]) and a C11 feature; anonymous structures | |||
5481 | /// are a C11 feature and GNU C++ extension. | |||
5482 | Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, | |||
5483 | AccessSpecifier AS, | |||
5484 | RecordDecl *Record, | |||
5485 | const PrintingPolicy &Policy) { | |||
5486 | DeclContext *Owner = Record->getDeclContext(); | |||
5487 | ||||
5488 | // Diagnose whether this anonymous struct/union is an extension. | |||
5489 | if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11) | |||
5490 | Diag(Record->getLocation(), diag::ext_anonymous_union); | |||
5491 | else if (!Record->isUnion() && getLangOpts().CPlusPlus) | |||
5492 | Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct); | |||
5493 | else if (!Record->isUnion() && !getLangOpts().C11) | |||
5494 | Diag(Record->getLocation(), diag::ext_c11_anonymous_struct); | |||
5495 | ||||
5496 | // C and C++ require different kinds of checks for anonymous | |||
5497 | // structs/unions. | |||
5498 | bool Invalid = false; | |||
5499 | if (getLangOpts().CPlusPlus) { | |||
5500 | const char *PrevSpec = nullptr; | |||
5501 | if (Record->isUnion()) { | |||
5502 | // C++ [class.union]p6: | |||
5503 | // C++17 [class.union.anon]p2: | |||
5504 | // Anonymous unions declared in a named namespace or in the | |||
5505 | // global namespace shall be declared static. | |||
5506 | unsigned DiagID; | |||
5507 | DeclContext *OwnerScope = Owner->getRedeclContext(); | |||
5508 | if (DS.getStorageClassSpec() != DeclSpec::SCS_static && | |||
5509 | (OwnerScope->isTranslationUnit() || | |||
5510 | (OwnerScope->isNamespace() && | |||
5511 | !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) { | |||
5512 | Diag(Record->getLocation(), diag::err_anonymous_union_not_static) | |||
5513 | << FixItHint::CreateInsertion(Record->getLocation(), "static "); | |||
5514 | ||||
5515 | // Recover by adding 'static'. | |||
5516 | DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(), | |||
5517 | PrevSpec, DiagID, Policy); | |||
5518 | } | |||
5519 | // C++ [class.union]p6: | |||
5520 | // A storage class is not allowed in a declaration of an | |||
5521 | // anonymous union in a class scope. | |||
5522 | else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && | |||
5523 | isa<RecordDecl>(Owner)) { | |||
5524 | Diag(DS.getStorageClassSpecLoc(), | |||
5525 | diag::err_anonymous_union_with_storage_spec) | |||
5526 | << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); | |||
5527 | ||||
5528 | // Recover by removing the storage specifier. | |||
5529 | DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified, | |||
5530 | SourceLocation(), | |||
5531 | PrevSpec, DiagID, Context.getPrintingPolicy()); | |||
5532 | } | |||
5533 | } | |||
5534 | ||||
5535 | // Ignore const/volatile/restrict qualifiers. | |||
5536 | if (DS.getTypeQualifiers()) { | |||
5537 | if (DS.getTypeQualifiers() & DeclSpec::TQ_const) | |||
5538 | Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified) | |||
5539 | << Record->isUnion() << "const" | |||
5540 | << FixItHint::CreateRemoval(DS.getConstSpecLoc()); | |||
5541 | if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) | |||
5542 | Diag(DS.getVolatileSpecLoc(), | |||
5543 | diag::ext_anonymous_struct_union_qualified) | |||
5544 | << Record->isUnion() << "volatile" | |||
5545 | << FixItHint::CreateRemoval(DS.getVolatileSpecLoc()); | |||
5546 | if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) | |||
5547 | Diag(DS.getRestrictSpecLoc(), | |||
5548 | diag::ext_anonymous_struct_union_qualified) | |||
5549 | << Record->isUnion() << "restrict" | |||
5550 | << FixItHint::CreateRemoval(DS.getRestrictSpecLoc()); | |||
5551 | if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) | |||
5552 | Diag(DS.getAtomicSpecLoc(), | |||
5553 | diag::ext_anonymous_struct_union_qualified) | |||
5554 | << Record->isUnion() << "_Atomic" | |||
5555 | << FixItHint::CreateRemoval(DS.getAtomicSpecLoc()); | |||
5556 | if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) | |||
5557 | Diag(DS.getUnalignedSpecLoc(), | |||
5558 | diag::ext_anonymous_struct_union_qualified) | |||
5559 | << Record->isUnion() << "__unaligned" | |||
5560 | << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc()); | |||
5561 | ||||
5562 | DS.ClearTypeQualifiers(); | |||
5563 | } | |||
5564 | ||||
5565 | // C++ [class.union]p2: | |||
5566 | // The member-specification of an anonymous union shall only | |||
5567 | // define non-static data members. [Note: nested types and | |||
5568 | // functions cannot be declared within an anonymous union. ] | |||
5569 | for (auto *Mem : Record->decls()) { | |||
5570 | // Ignore invalid declarations; we already diagnosed them. | |||
5571 | if (Mem->isInvalidDecl()) | |||
5572 | continue; | |||
5573 | ||||
5574 | if (auto *FD = dyn_cast<FieldDecl>(Mem)) { | |||
5575 | // C++ [class.union]p3: | |||
5576 | // An anonymous union shall not have private or protected | |||
5577 | // members (clause 11). | |||
5578 | assert(FD->getAccess() != AS_none)(static_cast <bool> (FD->getAccess() != AS_none) ? void (0) : __assert_fail ("FD->getAccess() != AS_none", "clang/lib/Sema/SemaDecl.cpp" , 5578, __extension__ __PRETTY_FUNCTION__)); | |||
5579 | if (FD->getAccess() != AS_public) { | |||
5580 | Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member) | |||
5581 | << Record->isUnion() << (FD->getAccess() == AS_protected); | |||
5582 | Invalid = true; | |||
5583 | } | |||
5584 | ||||
5585 | // C++ [class.union]p1 | |||
5586 | // An object of a class with a non-trivial constructor, a non-trivial | |||
5587 | // copy constructor, a non-trivial destructor, or a non-trivial copy | |||
5588 | // assignment operator cannot be a member of a union, nor can an | |||
5589 | // array of such objects. | |||
5590 | if (CheckNontrivialField(FD)) | |||
5591 | Invalid = true; | |||
5592 | } else if (Mem->isImplicit()) { | |||
5593 | // Any implicit members are fine. | |||
5594 | } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) { | |||
5595 | // This is a type that showed up in an | |||
5596 | // elaborated-type-specifier inside the anonymous struct or | |||
5597 | // union, but which actually declares a type outside of the | |||
5598 | // anonymous struct or union. It's okay. | |||
5599 | } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) { | |||
5600 | if (!MemRecord->isAnonymousStructOrUnion() && | |||
5601 | MemRecord->getDeclName()) { | |||
5602 | // Visual C++ allows type definition in anonymous struct or union. | |||
5603 | if (getLangOpts().MicrosoftExt) | |||
5604 | Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type) | |||
5605 | << Record->isUnion(); | |||
5606 | else { | |||
5607 | // This is a nested type declaration. | |||
5608 | Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type) | |||
5609 | << Record->isUnion(); | |||
5610 | Invalid = true; | |||
5611 | } | |||
5612 | } else { | |||
5613 | // This is an anonymous type definition within another anonymous type. | |||
5614 | // This is a popular extension, provided by Plan9, MSVC and GCC, but | |||
5615 | // not part of standard C++. | |||
5616 | Diag(MemRecord->getLocation(), | |||
5617 | diag::ext_anonymous_record_with_anonymous_type) | |||
5618 | << Record->isUnion(); | |||
5619 | } | |||
5620 | } else if (isa<AccessSpecDecl>(Mem)) { | |||
5621 | // Any access specifier is fine. | |||
5622 | } else if (isa<StaticAssertDecl>(Mem)) { | |||
5623 | // In C++1z, static_assert declarations are also fine. | |||
5624 | } else { | |||
5625 | // We have something that isn't a non-static data | |||
5626 | // member. Complain about it. | |||
5627 | unsigned DK = diag::err_anonymous_record_bad_member; | |||
5628 | if (isa<TypeDecl>(Mem)) | |||
5629 | DK = diag::err_anonymous_record_with_type; | |||
5630 | else if (isa<FunctionDecl>(Mem)) | |||
5631 | DK = diag::err_anonymous_record_with_function; | |||
5632 | else if (isa<VarDecl>(Mem)) | |||
5633 | DK = diag::err_anonymous_record_with_static; | |||
5634 | ||||
5635 | // Visual C++ allows type definition in anonymous struct or union. | |||
5636 | if (getLangOpts().MicrosoftExt && | |||
5637 | DK == diag::err_anonymous_record_with_type) | |||
5638 | Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type) | |||
5639 | << Record->isUnion(); | |||
5640 | else { | |||
5641 | Diag(Mem->getLocation(), DK) << Record->isUnion(); | |||
5642 | Invalid = true; | |||
5643 | } | |||
5644 | } | |||
5645 | } | |||
5646 | ||||
5647 | // C++11 [class.union]p8 (DR1460): | |||
5648 | // At most one variant member of a union may have a | |||
5649 | // brace-or-equal-initializer. | |||
5650 | if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() && | |||
5651 | Owner->isRecord()) | |||
5652 | checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner), | |||
5653 | cast<CXXRecordDecl>(Record)); | |||
5654 | } | |||
5655 | ||||
5656 | if (!Record->isUnion() && !Owner->isRecord()) { | |||
5657 | Diag(Record->getLocation(), diag::err_anonymous_struct_not_member) | |||
5658 | << getLangOpts().CPlusPlus; | |||
5659 | Invalid = true; | |||
5660 | } | |||
5661 | ||||
5662 | // C++ [dcl.dcl]p3: | |||
5663 | // [If there are no declarators], and except for the declaration of an | |||
5664 | // unnamed bit-field, the decl-specifier-seq shall introduce one or more | |||
5665 | // names into the program | |||
5666 | // C++ [class.mem]p2: | |||
5667 | // each such member-declaration shall either declare at least one member | |||
5668 | // name of the class or declare at least one unnamed bit-field | |||
5669 | // | |||
5670 | // For C this is an error even for a named struct, and is diagnosed elsewhere. | |||
5671 | if (getLangOpts().CPlusPlus && Record->field_empty()) | |||
5672 | Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange(); | |||
5673 | ||||
5674 | // Mock up a declarator. | |||
5675 | Declarator Dc(DS, ParsedAttributesView::none(), DeclaratorContext::Member); | |||
5676 | TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); | |||
5677 | assert(TInfo && "couldn't build declarator info for anonymous struct/union")(static_cast <bool> (TInfo && "couldn't build declarator info for anonymous struct/union" ) ? void (0) : __assert_fail ("TInfo && \"couldn't build declarator info for anonymous struct/union\"" , "clang/lib/Sema/SemaDecl.cpp", 5677, __extension__ __PRETTY_FUNCTION__ )); | |||
5678 | ||||
5679 | // Create a declaration for this anonymous struct/union. | |||
5680 | NamedDecl *Anon = nullptr; | |||
5681 | if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) { | |||
5682 | Anon = FieldDecl::Create( | |||
5683 | Context, OwningClass, DS.getBeginLoc(), Record->getLocation(), | |||
5684 | /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo, | |||
5685 | /*BitWidth=*/nullptr, /*Mutable=*/false, | |||
5686 | /*InitStyle=*/ICIS_NoInit); | |||
5687 | Anon->setAccess(AS); | |||
5688 | ProcessDeclAttributes(S, Anon, Dc); | |||
5689 | ||||
5690 | if (getLangOpts().CPlusPlus) | |||
5691 | FieldCollector->Add(cast<FieldDecl>(Anon)); | |||
5692 | } else { | |||
5693 | DeclSpec::SCS SCSpec = DS.getStorageClassSpec(); | |||
5694 | StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS); | |||
5695 | if (SCSpec == DeclSpec::SCS_mutable) { | |||
5696 | // mutable can only appear on non-static class members, so it's always | |||
5697 | // an error here | |||
5698 | Diag(Record->getLocation(), diag::err_mutable_nonmember); | |||
5699 | Invalid = true; | |||
5700 | SC = SC_None; | |||
5701 | } | |||
5702 | ||||
5703 | assert(DS.getAttributes().empty() && "No attribute expected")(static_ca |