Bug Summary

File:clang/lib/Sema/SemaDeclCXX.cpp
Warning:line 15393, column 3
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaDeclCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/build-llvm -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D CLANG_ROUND_TRIP_CC1_ARGS=ON -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-command-line-argument -Wno-unknown-warning-option -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/build-llvm -ferror-limit 19 -fvisibility-inlines-hidden -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-10-17-004846-21170-1 -x c++ /build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for C++ declarations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTConsumer.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/ASTLambda.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/ComparisonCategories.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/AST/TypeOrdering.h"
27#include "clang/Basic/AttributeCommonInfo.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/LiteralSupport.h"
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Sema/CXXFieldCollector.h"
33#include "clang/Sema/DeclSpec.h"
34#include "clang/Sema/Initialization.h"
35#include "clang/Sema/Lookup.h"
36#include "clang/Sema/ParsedTemplate.h"
37#include "clang/Sema/Scope.h"
38#include "clang/Sema/ScopeInfo.h"
39#include "clang/Sema/SemaInternal.h"
40#include "clang/Sema/Template.h"
41#include "llvm/ADT/ScopeExit.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/STLExtras.h"
44#include "llvm/ADT/StringExtras.h"
45#include <map>
46#include <set>
47
48using namespace clang;
49
50//===----------------------------------------------------------------------===//
51// CheckDefaultArgumentVisitor
52//===----------------------------------------------------------------------===//
53
54namespace {
55/// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
56/// the default argument of a parameter to determine whether it
57/// contains any ill-formed subexpressions. For example, this will
58/// diagnose the use of local variables or parameters within the
59/// default argument expression.
60class CheckDefaultArgumentVisitor
61 : public ConstStmtVisitor<CheckDefaultArgumentVisitor, bool> {
62 Sema &S;
63 const Expr *DefaultArg;
64
65public:
66 CheckDefaultArgumentVisitor(Sema &S, const Expr *DefaultArg)
67 : S(S), DefaultArg(DefaultArg) {}
68
69 bool VisitExpr(const Expr *Node);
70 bool VisitDeclRefExpr(const DeclRefExpr *DRE);
71 bool VisitCXXThisExpr(const CXXThisExpr *ThisE);
72 bool VisitLambdaExpr(const LambdaExpr *Lambda);
73 bool VisitPseudoObjectExpr(const PseudoObjectExpr *POE);
74};
75
76/// VisitExpr - Visit all of the children of this expression.
77bool CheckDefaultArgumentVisitor::VisitExpr(const Expr *Node) {
78 bool IsInvalid = false;
79 for (const Stmt *SubStmt : Node->children())
80 IsInvalid |= Visit(SubStmt);
81 return IsInvalid;
82}
83
84/// VisitDeclRefExpr - Visit a reference to a declaration, to
85/// determine whether this declaration can be used in the default
86/// argument expression.
87bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(const DeclRefExpr *DRE) {
88 const NamedDecl *Decl = DRE->getDecl();
89 if (const auto *Param = dyn_cast<ParmVarDecl>(Decl)) {
90 // C++ [dcl.fct.default]p9:
91 // [...] parameters of a function shall not be used in default
92 // argument expressions, even if they are not evaluated. [...]
93 //
94 // C++17 [dcl.fct.default]p9 (by CWG 2082):
95 // [...] A parameter shall not appear as a potentially-evaluated
96 // expression in a default argument. [...]
97 //
98 if (DRE->isNonOdrUse() != NOUR_Unevaluated)
99 return S.Diag(DRE->getBeginLoc(),
100 diag::err_param_default_argument_references_param)
101 << Param->getDeclName() << DefaultArg->getSourceRange();
102 } else if (const auto *VDecl = dyn_cast<VarDecl>(Decl)) {
103 // C++ [dcl.fct.default]p7:
104 // Local variables shall not be used in default argument
105 // expressions.
106 //
107 // C++17 [dcl.fct.default]p7 (by CWG 2082):
108 // A local variable shall not appear as a potentially-evaluated
109 // expression in a default argument.
110 //
111 // C++20 [dcl.fct.default]p7 (DR as part of P0588R1, see also CWG 2346):
112 // Note: A local variable cannot be odr-used (6.3) in a default argument.
113 //
114 if (VDecl->isLocalVarDecl() && !DRE->isNonOdrUse())
115 return S.Diag(DRE->getBeginLoc(),
116 diag::err_param_default_argument_references_local)
117 << VDecl->getDeclName() << DefaultArg->getSourceRange();
118 }
119
120 return false;
121}
122
123/// VisitCXXThisExpr - Visit a C++ "this" expression.
124bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(const CXXThisExpr *ThisE) {
125 // C++ [dcl.fct.default]p8:
126 // The keyword this shall not be used in a default argument of a
127 // member function.
128 return S.Diag(ThisE->getBeginLoc(),
129 diag::err_param_default_argument_references_this)
130 << ThisE->getSourceRange();
131}
132
133bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(
134 const PseudoObjectExpr *POE) {
135 bool Invalid = false;
136 for (const Expr *E : POE->semantics()) {
137 // Look through bindings.
138 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) {
139 E = OVE->getSourceExpr();
140 assert(E && "pseudo-object binding without source expression?")(static_cast <bool> (E && "pseudo-object binding without source expression?"
) ? void (0) : __assert_fail ("E && \"pseudo-object binding without source expression?\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 140, __extension__ __PRETTY_FUNCTION__))
;
141 }
142
143 Invalid |= Visit(E);
144 }
145 return Invalid;
146}
147
148bool CheckDefaultArgumentVisitor::VisitLambdaExpr(const LambdaExpr *Lambda) {
149 // C++11 [expr.lambda.prim]p13:
150 // A lambda-expression appearing in a default argument shall not
151 // implicitly or explicitly capture any entity.
152 if (Lambda->capture_begin() == Lambda->capture_end())
153 return false;
154
155 return S.Diag(Lambda->getBeginLoc(), diag::err_lambda_capture_default_arg);
156}
157} // namespace
158
159void
160Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
161 const CXXMethodDecl *Method) {
162 // If we have an MSAny spec already, don't bother.
163 if (!Method || ComputedEST == EST_MSAny)
164 return;
165
166 const FunctionProtoType *Proto
167 = Method->getType()->getAs<FunctionProtoType>();
168 Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
169 if (!Proto)
170 return;
171
172 ExceptionSpecificationType EST = Proto->getExceptionSpecType();
173
174 // If we have a throw-all spec at this point, ignore the function.
175 if (ComputedEST == EST_None)
176 return;
177
178 if (EST == EST_None && Method->hasAttr<NoThrowAttr>())
179 EST = EST_BasicNoexcept;
180
181 switch (EST) {
182 case EST_Unparsed:
183 case EST_Uninstantiated:
184 case EST_Unevaluated:
185 llvm_unreachable("should not see unresolved exception specs here")::llvm::llvm_unreachable_internal("should not see unresolved exception specs here"
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 185)
;
186
187 // If this function can throw any exceptions, make a note of that.
188 case EST_MSAny:
189 case EST_None:
190 // FIXME: Whichever we see last of MSAny and None determines our result.
191 // We should make a consistent, order-independent choice here.
192 ClearExceptions();
193 ComputedEST = EST;
194 return;
195 case EST_NoexceptFalse:
196 ClearExceptions();
197 ComputedEST = EST_None;
198 return;
199 // FIXME: If the call to this decl is using any of its default arguments, we
200 // need to search them for potentially-throwing calls.
201 // If this function has a basic noexcept, it doesn't affect the outcome.
202 case EST_BasicNoexcept:
203 case EST_NoexceptTrue:
204 case EST_NoThrow:
205 return;
206 // If we're still at noexcept(true) and there's a throw() callee,
207 // change to that specification.
208 case EST_DynamicNone:
209 if (ComputedEST == EST_BasicNoexcept)
210 ComputedEST = EST_DynamicNone;
211 return;
212 case EST_DependentNoexcept:
213 llvm_unreachable(::llvm::llvm_unreachable_internal("should not generate implicit declarations for dependent cases"
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 214)
214 "should not generate implicit declarations for dependent cases")::llvm::llvm_unreachable_internal("should not generate implicit declarations for dependent cases"
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 214)
;
215 case EST_Dynamic:
216 break;
217 }
218 assert(EST == EST_Dynamic && "EST case not considered earlier.")(static_cast <bool> (EST == EST_Dynamic && "EST case not considered earlier."
) ? void (0) : __assert_fail ("EST == EST_Dynamic && \"EST case not considered earlier.\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 218, __extension__ __PRETTY_FUNCTION__))
;
219 assert(ComputedEST != EST_None &&(static_cast <bool> (ComputedEST != EST_None &&
"Shouldn't collect exceptions when throw-all is guaranteed."
) ? void (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 220, __extension__ __PRETTY_FUNCTION__))
220 "Shouldn't collect exceptions when throw-all is guaranteed.")(static_cast <bool> (ComputedEST != EST_None &&
"Shouldn't collect exceptions when throw-all is guaranteed."
) ? void (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 220, __extension__ __PRETTY_FUNCTION__))
;
221 ComputedEST = EST_Dynamic;
222 // Record the exceptions in this function's exception specification.
223 for (const auto &E : Proto->exceptions())
224 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
225 Exceptions.push_back(E);
226}
227
228void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) {
229 if (!S || ComputedEST == EST_MSAny)
230 return;
231
232 // FIXME:
233 //
234 // C++0x [except.spec]p14:
235 // [An] implicit exception-specification specifies the type-id T if and
236 // only if T is allowed by the exception-specification of a function directly
237 // invoked by f's implicit definition; f shall allow all exceptions if any
238 // function it directly invokes allows all exceptions, and f shall allow no
239 // exceptions if every function it directly invokes allows no exceptions.
240 //
241 // Note in particular that if an implicit exception-specification is generated
242 // for a function containing a throw-expression, that specification can still
243 // be noexcept(true).
244 //
245 // Note also that 'directly invoked' is not defined in the standard, and there
246 // is no indication that we should only consider potentially-evaluated calls.
247 //
248 // Ultimately we should implement the intent of the standard: the exception
249 // specification should be the set of exceptions which can be thrown by the
250 // implicit definition. For now, we assume that any non-nothrow expression can
251 // throw any exception.
252
253 if (Self->canThrow(S))
254 ComputedEST = EST_None;
255}
256
257ExprResult Sema::ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
258 SourceLocation EqualLoc) {
259 if (RequireCompleteType(Param->getLocation(), Param->getType(),
260 diag::err_typecheck_decl_incomplete_type))
261 return true;
262
263 // C++ [dcl.fct.default]p5
264 // A default argument expression is implicitly converted (clause
265 // 4) to the parameter type. The default argument expression has
266 // the same semantic constraints as the initializer expression in
267 // a declaration of a variable of the parameter type, using the
268 // copy-initialization semantics (8.5).
269 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
270 Param);
271 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
272 EqualLoc);
273 InitializationSequence InitSeq(*this, Entity, Kind, Arg);
274 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
275 if (Result.isInvalid())
276 return true;
277 Arg = Result.getAs<Expr>();
278
279 CheckCompletedExpr(Arg, EqualLoc);
280 Arg = MaybeCreateExprWithCleanups(Arg);
281
282 return Arg;
283}
284
285void Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
286 SourceLocation EqualLoc) {
287 // Add the default argument to the parameter
288 Param->setDefaultArg(Arg);
289
290 // We have already instantiated this parameter; provide each of the
291 // instantiations with the uninstantiated default argument.
292 UnparsedDefaultArgInstantiationsMap::iterator InstPos
293 = UnparsedDefaultArgInstantiations.find(Param);
294 if (InstPos != UnparsedDefaultArgInstantiations.end()) {
295 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
296 InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
297
298 // We're done tracking this parameter's instantiations.
299 UnparsedDefaultArgInstantiations.erase(InstPos);
300 }
301}
302
303/// ActOnParamDefaultArgument - Check whether the default argument
304/// provided for a function parameter is well-formed. If so, attach it
305/// to the parameter declaration.
306void
307Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
308 Expr *DefaultArg) {
309 if (!param || !DefaultArg)
310 return;
311
312 ParmVarDecl *Param = cast<ParmVarDecl>(param);
313 UnparsedDefaultArgLocs.erase(Param);
314
315 auto Fail = [&] {
316 Param->setInvalidDecl();
317 Param->setDefaultArg(new (Context) OpaqueValueExpr(
318 EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue));
319 };
320
321 // Default arguments are only permitted in C++
322 if (!getLangOpts().CPlusPlus) {
323 Diag(EqualLoc, diag::err_param_default_argument)
324 << DefaultArg->getSourceRange();
325 return Fail();
326 }
327
328 // Check for unexpanded parameter packs.
329 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
330 return Fail();
331 }
332
333 // C++11 [dcl.fct.default]p3
334 // A default argument expression [...] shall not be specified for a
335 // parameter pack.
336 if (Param->isParameterPack()) {
337 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
338 << DefaultArg->getSourceRange();
339 // Recover by discarding the default argument.
340 Param->setDefaultArg(nullptr);
341 return;
342 }
343
344 ExprResult Result = ConvertParamDefaultArgument(Param, DefaultArg, EqualLoc);
345 if (Result.isInvalid())
346 return Fail();
347
348 DefaultArg = Result.getAs<Expr>();
349
350 // Check that the default argument is well-formed
351 CheckDefaultArgumentVisitor DefaultArgChecker(*this, DefaultArg);
352 if (DefaultArgChecker.Visit(DefaultArg))
353 return Fail();
354
355 SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
356}
357
358/// ActOnParamUnparsedDefaultArgument - We've seen a default
359/// argument for a function parameter, but we can't parse it yet
360/// because we're inside a class definition. Note that this default
361/// argument will be parsed later.
362void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
363 SourceLocation EqualLoc,
364 SourceLocation ArgLoc) {
365 if (!param)
366 return;
367
368 ParmVarDecl *Param = cast<ParmVarDecl>(param);
369 Param->setUnparsedDefaultArg();
370 UnparsedDefaultArgLocs[Param] = ArgLoc;
371}
372
373/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
374/// the default argument for the parameter param failed.
375void Sema::ActOnParamDefaultArgumentError(Decl *param,
376 SourceLocation EqualLoc) {
377 if (!param)
378 return;
379
380 ParmVarDecl *Param = cast<ParmVarDecl>(param);
381 Param->setInvalidDecl();
382 UnparsedDefaultArgLocs.erase(Param);
383 Param->setDefaultArg(new (Context) OpaqueValueExpr(
384 EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue));
385}
386
387/// CheckExtraCXXDefaultArguments - Check for any extra default
388/// arguments in the declarator, which is not a function declaration
389/// or definition and therefore is not permitted to have default
390/// arguments. This routine should be invoked for every declarator
391/// that is not a function declaration or definition.
392void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
393 // C++ [dcl.fct.default]p3
394 // A default argument expression shall be specified only in the
395 // parameter-declaration-clause of a function declaration or in a
396 // template-parameter (14.1). It shall not be specified for a
397 // parameter pack. If it is specified in a
398 // parameter-declaration-clause, it shall not occur within a
399 // declarator or abstract-declarator of a parameter-declaration.
400 bool MightBeFunction = D.isFunctionDeclarationContext();
401 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
402 DeclaratorChunk &chunk = D.getTypeObject(i);
403 if (chunk.Kind == DeclaratorChunk::Function) {
404 if (MightBeFunction) {
405 // This is a function declaration. It can have default arguments, but
406 // keep looking in case its return type is a function type with default
407 // arguments.
408 MightBeFunction = false;
409 continue;
410 }
411 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
412 ++argIdx) {
413 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
414 if (Param->hasUnparsedDefaultArg()) {
415 std::unique_ptr<CachedTokens> Toks =
416 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens);
417 SourceRange SR;
418 if (Toks->size() > 1)
419 SR = SourceRange((*Toks)[1].getLocation(),
420 Toks->back().getLocation());
421 else
422 SR = UnparsedDefaultArgLocs[Param];
423 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
424 << SR;
425 } else if (Param->getDefaultArg()) {
426 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
427 << Param->getDefaultArg()->getSourceRange();
428 Param->setDefaultArg(nullptr);
429 }
430 }
431 } else if (chunk.Kind != DeclaratorChunk::Paren) {
432 MightBeFunction = false;
433 }
434 }
435}
436
437static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
438 return std::any_of(FD->param_begin(), FD->param_end(), [](ParmVarDecl *P) {
439 return P->hasDefaultArg() && !P->hasInheritedDefaultArg();
440 });
441}
442
443/// MergeCXXFunctionDecl - Merge two declarations of the same C++
444/// function, once we already know that they have the same
445/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
446/// error, false otherwise.
447bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
448 Scope *S) {
449 bool Invalid = false;
450
451 // The declaration context corresponding to the scope is the semantic
452 // parent, unless this is a local function declaration, in which case
453 // it is that surrounding function.
454 DeclContext *ScopeDC = New->isLocalExternDecl()
455 ? New->getLexicalDeclContext()
456 : New->getDeclContext();
457
458 // Find the previous declaration for the purpose of default arguments.
459 FunctionDecl *PrevForDefaultArgs = Old;
460 for (/**/; PrevForDefaultArgs;
461 // Don't bother looking back past the latest decl if this is a local
462 // extern declaration; nothing else could work.
463 PrevForDefaultArgs = New->isLocalExternDecl()
464 ? nullptr
465 : PrevForDefaultArgs->getPreviousDecl()) {
466 // Ignore hidden declarations.
467 if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
468 continue;
469
470 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
471 !New->isCXXClassMember()) {
472 // Ignore default arguments of old decl if they are not in
473 // the same scope and this is not an out-of-line definition of
474 // a member function.
475 continue;
476 }
477
478 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
479 // If only one of these is a local function declaration, then they are
480 // declared in different scopes, even though isDeclInScope may think
481 // they're in the same scope. (If both are local, the scope check is
482 // sufficient, and if neither is local, then they are in the same scope.)
483 continue;
484 }
485
486 // We found the right previous declaration.
487 break;
488 }
489
490 // C++ [dcl.fct.default]p4:
491 // For non-template functions, default arguments can be added in
492 // later declarations of a function in the same
493 // scope. Declarations in different scopes have completely
494 // distinct sets of default arguments. That is, declarations in
495 // inner scopes do not acquire default arguments from
496 // declarations in outer scopes, and vice versa. In a given
497 // function declaration, all parameters subsequent to a
498 // parameter with a default argument shall have default
499 // arguments supplied in this or previous declarations. A
500 // default argument shall not be redefined by a later
501 // declaration (not even to the same value).
502 //
503 // C++ [dcl.fct.default]p6:
504 // Except for member functions of class templates, the default arguments
505 // in a member function definition that appears outside of the class
506 // definition are added to the set of default arguments provided by the
507 // member function declaration in the class definition.
508 for (unsigned p = 0, NumParams = PrevForDefaultArgs
509 ? PrevForDefaultArgs->getNumParams()
510 : 0;
511 p < NumParams; ++p) {
512 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p);
513 ParmVarDecl *NewParam = New->getParamDecl(p);
514
515 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false;
516 bool NewParamHasDfl = NewParam->hasDefaultArg();
517
518 if (OldParamHasDfl && NewParamHasDfl) {
519 unsigned DiagDefaultParamID =
520 diag::err_param_default_argument_redefinition;
521
522 // MSVC accepts that default parameters be redefined for member functions
523 // of template class. The new default parameter's value is ignored.
524 Invalid = true;
525 if (getLangOpts().MicrosoftExt) {
526 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New);
527 if (MD && MD->getParent()->getDescribedClassTemplate()) {
528 // Merge the old default argument into the new parameter.
529 NewParam->setHasInheritedDefaultArg();
530 if (OldParam->hasUninstantiatedDefaultArg())
531 NewParam->setUninstantiatedDefaultArg(
532 OldParam->getUninstantiatedDefaultArg());
533 else
534 NewParam->setDefaultArg(OldParam->getInit());
535 DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
536 Invalid = false;
537 }
538 }
539
540 // FIXME: If we knew where the '=' was, we could easily provide a fix-it
541 // hint here. Alternatively, we could walk the type-source information
542 // for NewParam to find the last source location in the type... but it
543 // isn't worth the effort right now. This is the kind of test case that
544 // is hard to get right:
545 // int f(int);
546 // void g(int (*fp)(int) = f);
547 // void g(int (*fp)(int) = &f);
548 Diag(NewParam->getLocation(), DiagDefaultParamID)
549 << NewParam->getDefaultArgRange();
550
551 // Look for the function declaration where the default argument was
552 // actually written, which may be a declaration prior to Old.
553 for (auto Older = PrevForDefaultArgs;
554 OldParam->hasInheritedDefaultArg(); /**/) {
555 Older = Older->getPreviousDecl();
556 OldParam = Older->getParamDecl(p);
557 }
558
559 Diag(OldParam->getLocation(), diag::note_previous_definition)
560 << OldParam->getDefaultArgRange();
561 } else if (OldParamHasDfl) {
562 // Merge the old default argument into the new parameter unless the new
563 // function is a friend declaration in a template class. In the latter
564 // case the default arguments will be inherited when the friend
565 // declaration will be instantiated.
566 if (New->getFriendObjectKind() == Decl::FOK_None ||
567 !New->getLexicalDeclContext()->isDependentContext()) {
568 // It's important to use getInit() here; getDefaultArg()
569 // strips off any top-level ExprWithCleanups.
570 NewParam->setHasInheritedDefaultArg();
571 if (OldParam->hasUnparsedDefaultArg())
572 NewParam->setUnparsedDefaultArg();
573 else if (OldParam->hasUninstantiatedDefaultArg())
574 NewParam->setUninstantiatedDefaultArg(
575 OldParam->getUninstantiatedDefaultArg());
576 else
577 NewParam->setDefaultArg(OldParam->getInit());
578 }
579 } else if (NewParamHasDfl) {
580 if (New->getDescribedFunctionTemplate()) {
581 // Paragraph 4, quoted above, only applies to non-template functions.
582 Diag(NewParam->getLocation(),
583 diag::err_param_default_argument_template_redecl)
584 << NewParam->getDefaultArgRange();
585 Diag(PrevForDefaultArgs->getLocation(),
586 diag::note_template_prev_declaration)
587 << false;
588 } else if (New->getTemplateSpecializationKind()
589 != TSK_ImplicitInstantiation &&
590 New->getTemplateSpecializationKind() != TSK_Undeclared) {
591 // C++ [temp.expr.spec]p21:
592 // Default function arguments shall not be specified in a declaration
593 // or a definition for one of the following explicit specializations:
594 // - the explicit specialization of a function template;
595 // - the explicit specialization of a member function template;
596 // - the explicit specialization of a member function of a class
597 // template where the class template specialization to which the
598 // member function specialization belongs is implicitly
599 // instantiated.
600 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
601 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
602 << New->getDeclName()
603 << NewParam->getDefaultArgRange();
604 } else if (New->getDeclContext()->isDependentContext()) {
605 // C++ [dcl.fct.default]p6 (DR217):
606 // Default arguments for a member function of a class template shall
607 // be specified on the initial declaration of the member function
608 // within the class template.
609 //
610 // Reading the tea leaves a bit in DR217 and its reference to DR205
611 // leads me to the conclusion that one cannot add default function
612 // arguments for an out-of-line definition of a member function of a
613 // dependent type.
614 int WhichKind = 2;
615 if (CXXRecordDecl *Record
616 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
617 if (Record->getDescribedClassTemplate())
618 WhichKind = 0;
619 else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
620 WhichKind = 1;
621 else
622 WhichKind = 2;
623 }
624
625 Diag(NewParam->getLocation(),
626 diag::err_param_default_argument_member_template_redecl)
627 << WhichKind
628 << NewParam->getDefaultArgRange();
629 }
630 }
631 }
632
633 // DR1344: If a default argument is added outside a class definition and that
634 // default argument makes the function a special member function, the program
635 // is ill-formed. This can only happen for constructors.
636 if (isa<CXXConstructorDecl>(New) &&
637 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
638 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
639 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
640 if (NewSM != OldSM) {
641 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
642 assert(NewParam->hasDefaultArg())(static_cast <bool> (NewParam->hasDefaultArg()) ? void
(0) : __assert_fail ("NewParam->hasDefaultArg()", "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 642, __extension__ __PRETTY_FUNCTION__))
;
643 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
644 << NewParam->getDefaultArgRange() << NewSM;
645 Diag(Old->getLocation(), diag::note_previous_declaration);
646 }
647 }
648
649 const FunctionDecl *Def;
650 // C++11 [dcl.constexpr]p1: If any declaration of a function or function
651 // template has a constexpr specifier then all its declarations shall
652 // contain the constexpr specifier.
653 if (New->getConstexprKind() != Old->getConstexprKind()) {
654 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
655 << New << static_cast<int>(New->getConstexprKind())
656 << static_cast<int>(Old->getConstexprKind());
657 Diag(Old->getLocation(), diag::note_previous_declaration);
658 Invalid = true;
659 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
660 Old->isDefined(Def) &&
661 // If a friend function is inlined but does not have 'inline'
662 // specifier, it is a definition. Do not report attribute conflict
663 // in this case, redefinition will be diagnosed later.
664 (New->isInlineSpecified() ||
665 New->getFriendObjectKind() == Decl::FOK_None)) {
666 // C++11 [dcl.fcn.spec]p4:
667 // If the definition of a function appears in a translation unit before its
668 // first declaration as inline, the program is ill-formed.
669 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
670 Diag(Def->getLocation(), diag::note_previous_definition);
671 Invalid = true;
672 }
673
674 // C++17 [temp.deduct.guide]p3:
675 // Two deduction guide declarations in the same translation unit
676 // for the same class template shall not have equivalent
677 // parameter-declaration-clauses.
678 if (isa<CXXDeductionGuideDecl>(New) &&
679 !New->isFunctionTemplateSpecialization() && isVisible(Old)) {
680 Diag(New->getLocation(), diag::err_deduction_guide_redeclared);
681 Diag(Old->getLocation(), diag::note_previous_declaration);
682 }
683
684 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
685 // argument expression, that declaration shall be a definition and shall be
686 // the only declaration of the function or function template in the
687 // translation unit.
688 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
689 functionDeclHasDefaultArgument(Old)) {
690 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
691 Diag(Old->getLocation(), diag::note_previous_declaration);
692 Invalid = true;
693 }
694
695 // C++11 [temp.friend]p4 (DR329):
696 // When a function is defined in a friend function declaration in a class
697 // template, the function is instantiated when the function is odr-used.
698 // The same restrictions on multiple declarations and definitions that
699 // apply to non-template function declarations and definitions also apply
700 // to these implicit definitions.
701 const FunctionDecl *OldDefinition = nullptr;
702 if (New->isThisDeclarationInstantiatedFromAFriendDefinition() &&
703 Old->isDefined(OldDefinition, true))
704 CheckForFunctionRedefinition(New, OldDefinition);
705
706 return Invalid;
707}
708
709NamedDecl *
710Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D,
711 MultiTemplateParamsArg TemplateParamLists) {
712 assert(D.isDecompositionDeclarator())(static_cast <bool> (D.isDecompositionDeclarator()) ? void
(0) : __assert_fail ("D.isDecompositionDeclarator()", "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 712, __extension__ __PRETTY_FUNCTION__))
;
713 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
714
715 // The syntax only allows a decomposition declarator as a simple-declaration,
716 // a for-range-declaration, or a condition in Clang, but we parse it in more
717 // cases than that.
718 if (!D.mayHaveDecompositionDeclarator()) {
719 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
720 << Decomp.getSourceRange();
721 return nullptr;
722 }
723
724 if (!TemplateParamLists.empty()) {
725 // FIXME: There's no rule against this, but there are also no rules that
726 // would actually make it usable, so we reject it for now.
727 Diag(TemplateParamLists.front()->getTemplateLoc(),
728 diag::err_decomp_decl_template);
729 return nullptr;
730 }
731
732 Diag(Decomp.getLSquareLoc(),
733 !getLangOpts().CPlusPlus17
734 ? diag::ext_decomp_decl
735 : D.getContext() == DeclaratorContext::Condition
736 ? diag::ext_decomp_decl_cond
737 : diag::warn_cxx14_compat_decomp_decl)
738 << Decomp.getSourceRange();
739
740 // The semantic context is always just the current context.
741 DeclContext *const DC = CurContext;
742
743 // C++17 [dcl.dcl]/8:
744 // The decl-specifier-seq shall contain only the type-specifier auto
745 // and cv-qualifiers.
746 // C++2a [dcl.dcl]/8:
747 // If decl-specifier-seq contains any decl-specifier other than static,
748 // thread_local, auto, or cv-qualifiers, the program is ill-formed.
749 auto &DS = D.getDeclSpec();
750 {
751 SmallVector<StringRef, 8> BadSpecifiers;
752 SmallVector<SourceLocation, 8> BadSpecifierLocs;
753 SmallVector<StringRef, 8> CPlusPlus20Specifiers;
754 SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs;
755 if (auto SCS = DS.getStorageClassSpec()) {
756 if (SCS == DeclSpec::SCS_static) {
757 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS));
758 CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc());
759 } else {
760 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS));
761 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc());
762 }
763 }
764 if (auto TSCS = DS.getThreadStorageClassSpec()) {
765 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS));
766 CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc());
767 }
768 if (DS.hasConstexprSpecifier()) {
769 BadSpecifiers.push_back(
770 DeclSpec::getSpecifierName(DS.getConstexprSpecifier()));
771 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc());
772 }
773 if (DS.isInlineSpecified()) {
774 BadSpecifiers.push_back("inline");
775 BadSpecifierLocs.push_back(DS.getInlineSpecLoc());
776 }
777 if (!BadSpecifiers.empty()) {
778 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec);
779 Err << (int)BadSpecifiers.size()
780 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " ");
781 // Don't add FixItHints to remove the specifiers; we do still respect
782 // them when building the underlying variable.
783 for (auto Loc : BadSpecifierLocs)
784 Err << SourceRange(Loc, Loc);
785 } else if (!CPlusPlus20Specifiers.empty()) {
786 auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(),
787 getLangOpts().CPlusPlus20
788 ? diag::warn_cxx17_compat_decomp_decl_spec
789 : diag::ext_decomp_decl_spec);
790 Warn << (int)CPlusPlus20Specifiers.size()
791 << llvm::join(CPlusPlus20Specifiers.begin(),
792 CPlusPlus20Specifiers.end(), " ");
793 for (auto Loc : CPlusPlus20SpecifierLocs)
794 Warn << SourceRange(Loc, Loc);
795 }
796 // We can't recover from it being declared as a typedef.
797 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
798 return nullptr;
799 }
800
801 // C++2a [dcl.struct.bind]p1:
802 // A cv that includes volatile is deprecated
803 if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) &&
804 getLangOpts().CPlusPlus20)
805 Diag(DS.getVolatileSpecLoc(),
806 diag::warn_deprecated_volatile_structured_binding);
807
808 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
809 QualType R = TInfo->getType();
810
811 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
812 UPPC_DeclarationType))
813 D.setInvalidType();
814
815 // The syntax only allows a single ref-qualifier prior to the decomposition
816 // declarator. No other declarator chunks are permitted. Also check the type
817 // specifier here.
818 if (DS.getTypeSpecType() != DeclSpec::TST_auto ||
819 D.hasGroupingParens() || D.getNumTypeObjects() > 1 ||
820 (D.getNumTypeObjects() == 1 &&
821 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) {
822 Diag(Decomp.getLSquareLoc(),
823 (D.hasGroupingParens() ||
824 (D.getNumTypeObjects() &&
825 D.getTypeObject(0).Kind == DeclaratorChunk::Paren))
826 ? diag::err_decomp_decl_parens
827 : diag::err_decomp_decl_type)
828 << R;
829
830 // In most cases, there's no actual problem with an explicitly-specified
831 // type, but a function type won't work here, and ActOnVariableDeclarator
832 // shouldn't be called for such a type.
833 if (R->isFunctionType())
834 D.setInvalidType();
835 }
836
837 // Build the BindingDecls.
838 SmallVector<BindingDecl*, 8> Bindings;
839
840 // Build the BindingDecls.
841 for (auto &B : D.getDecompositionDeclarator().bindings()) {
842 // Check for name conflicts.
843 DeclarationNameInfo NameInfo(B.Name, B.NameLoc);
844 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
845 ForVisibleRedeclaration);
846 LookupName(Previous, S,
847 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit());
848
849 // It's not permitted to shadow a template parameter name.
850 if (Previous.isSingleResult() &&
851 Previous.getFoundDecl()->isTemplateParameter()) {
852 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
853 Previous.getFoundDecl());
854 Previous.clear();
855 }
856
857 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name);
858
859 // Find the shadowed declaration before filtering for scope.
860 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
861 ? getShadowedDeclaration(BD, Previous)
862 : nullptr;
863
864 bool ConsiderLinkage = DC->isFunctionOrMethod() &&
865 DS.getStorageClassSpec() == DeclSpec::SCS_extern;
866 FilterLookupForScope(Previous, DC, S, ConsiderLinkage,
867 /*AllowInlineNamespace*/false);
868
869 if (!Previous.empty()) {
870 auto *Old = Previous.getRepresentativeDecl();
871 Diag(B.NameLoc, diag::err_redefinition) << B.Name;
872 Diag(Old->getLocation(), diag::note_previous_definition);
873 } else if (ShadowedDecl && !D.isRedeclaration()) {
874 CheckShadow(BD, ShadowedDecl, Previous);
875 }
876 PushOnScopeChains(BD, S, true);
877 Bindings.push_back(BD);
878 ParsingInitForAutoVars.insert(BD);
879 }
880
881 // There are no prior lookup results for the variable itself, because it
882 // is unnamed.
883 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr,
884 Decomp.getLSquareLoc());
885 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
886 ForVisibleRedeclaration);
887
888 // Build the variable that holds the non-decomposed object.
889 bool AddToScope = true;
890 NamedDecl *New =
891 ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
892 MultiTemplateParamsArg(), AddToScope, Bindings);
893 if (AddToScope) {
894 S->AddDecl(New);
895 CurContext->addHiddenDecl(New);
896 }
897
898 if (isInOpenMPDeclareTargetContext())
899 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
900
901 return New;
902}
903
904static bool checkSimpleDecomposition(
905 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src,
906 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType,
907 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) {
908 if ((int64_t)Bindings.size() != NumElems) {
909 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
910 << DecompType << (unsigned)Bindings.size()
911 << (unsigned)NumElems.getLimitedValue(UINT_MAX(2147483647 *2U +1U))
912 << toString(NumElems, 10) << (NumElems < Bindings.size());
913 return true;
914 }
915
916 unsigned I = 0;
917 for (auto *B : Bindings) {
918 SourceLocation Loc = B->getLocation();
919 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
920 if (E.isInvalid())
921 return true;
922 E = GetInit(Loc, E.get(), I++);
923 if (E.isInvalid())
924 return true;
925 B->setBinding(ElemType, E.get());
926 }
927
928 return false;
929}
930
931static bool checkArrayLikeDecomposition(Sema &S,
932 ArrayRef<BindingDecl *> Bindings,
933 ValueDecl *Src, QualType DecompType,
934 const llvm::APSInt &NumElems,
935 QualType ElemType) {
936 return checkSimpleDecomposition(
937 S, Bindings, Src, DecompType, NumElems, ElemType,
938 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
939 ExprResult E = S.ActOnIntegerConstant(Loc, I);
940 if (E.isInvalid())
941 return ExprError();
942 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc);
943 });
944}
945
946static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
947 ValueDecl *Src, QualType DecompType,
948 const ConstantArrayType *CAT) {
949 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType,
950 llvm::APSInt(CAT->getSize()),
951 CAT->getElementType());
952}
953
954static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
955 ValueDecl *Src, QualType DecompType,
956 const VectorType *VT) {
957 return checkArrayLikeDecomposition(
958 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()),
959 S.Context.getQualifiedType(VT->getElementType(),
960 DecompType.getQualifiers()));
961}
962
963static bool checkComplexDecomposition(Sema &S,
964 ArrayRef<BindingDecl *> Bindings,
965 ValueDecl *Src, QualType DecompType,
966 const ComplexType *CT) {
967 return checkSimpleDecomposition(
968 S, Bindings, Src, DecompType, llvm::APSInt::get(2),
969 S.Context.getQualifiedType(CT->getElementType(),
970 DecompType.getQualifiers()),
971 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
972 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base);
973 });
974}
975
976static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy,
977 TemplateArgumentListInfo &Args,
978 const TemplateParameterList *Params) {
979 SmallString<128> SS;
980 llvm::raw_svector_ostream OS(SS);
981 bool First = true;
982 unsigned I = 0;
983 for (auto &Arg : Args.arguments()) {
984 if (!First)
985 OS << ", ";
986 Arg.getArgument().print(
987 PrintingPolicy, OS,
988 TemplateParameterList::shouldIncludeTypeForArgument(Params, I));
989 First = false;
990 I++;
991 }
992 return std::string(OS.str());
993}
994
995static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup,
996 SourceLocation Loc, StringRef Trait,
997 TemplateArgumentListInfo &Args,
998 unsigned DiagID) {
999 auto DiagnoseMissing = [&] {
1000 if (DiagID)
1001 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(),
1002 Args, /*Params*/ nullptr);
1003 return true;
1004 };
1005
1006 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine.
1007 NamespaceDecl *Std = S.getStdNamespace();
1008 if (!Std)
1009 return DiagnoseMissing();
1010
1011 // Look up the trait itself, within namespace std. We can diagnose various
1012 // problems with this lookup even if we've been asked to not diagnose a
1013 // missing specialization, because this can only fail if the user has been
1014 // declaring their own names in namespace std or we don't support the
1015 // standard library implementation in use.
1016 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait),
1017 Loc, Sema::LookupOrdinaryName);
1018 if (!S.LookupQualifiedName(Result, Std))
1019 return DiagnoseMissing();
1020 if (Result.isAmbiguous())
1021 return true;
1022
1023 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>();
1024 if (!TraitTD) {
1025 Result.suppressDiagnostics();
1026 NamedDecl *Found = *Result.begin();
1027 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait;
1028 S.Diag(Found->getLocation(), diag::note_declared_at);
1029 return true;
1030 }
1031
1032 // Build the template-id.
1033 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args);
1034 if (TraitTy.isNull())
1035 return true;
1036 if (!S.isCompleteType(Loc, TraitTy)) {
1037 if (DiagID)
1038 S.RequireCompleteType(
1039 Loc, TraitTy, DiagID,
1040 printTemplateArgs(S.Context.getPrintingPolicy(), Args,
1041 TraitTD->getTemplateParameters()));
1042 return true;
1043 }
1044
1045 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl();
1046 assert(RD && "specialization of class template is not a class?")(static_cast <bool> (RD && "specialization of class template is not a class?"
) ? void (0) : __assert_fail ("RD && \"specialization of class template is not a class?\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 1046, __extension__ __PRETTY_FUNCTION__))
;
1047
1048 // Look up the member of the trait type.
1049 S.LookupQualifiedName(TraitMemberLookup, RD);
1050 return TraitMemberLookup.isAmbiguous();
1051}
1052
1053static TemplateArgumentLoc
1054getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T,
1055 uint64_t I) {
1056 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T);
1057 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc);
1058}
1059
1060static TemplateArgumentLoc
1061getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) {
1062 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc);
1063}
1064
1065namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; }
1066
1067static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T,
1068 llvm::APSInt &Size) {
1069 EnterExpressionEvaluationContext ContextRAII(
1070 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1071
1072 DeclarationName Value = S.PP.getIdentifierInfo("value");
1073 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName);
1074
1075 // Form template argument list for tuple_size<T>.
1076 TemplateArgumentListInfo Args(Loc, Loc);
1077 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1078
1079 // If there's no tuple_size specialization or the lookup of 'value' is empty,
1080 // it's not tuple-like.
1081 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) ||
1082 R.empty())
1083 return IsTupleLike::NotTupleLike;
1084
1085 // If we get this far, we've committed to the tuple interpretation, but
1086 // we can still fail if there actually isn't a usable ::value.
1087
1088 struct ICEDiagnoser : Sema::VerifyICEDiagnoser {
1089 LookupResult &R;
1090 TemplateArgumentListInfo &Args;
1091 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args)
1092 : R(R), Args(Args) {}
1093 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
1094 SourceLocation Loc) override {
1095 return S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant)
1096 << printTemplateArgs(S.Context.getPrintingPolicy(), Args,
1097 /*Params*/ nullptr);
1098 }
1099 } Diagnoser(R, Args);
1100
1101 ExprResult E =
1102 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false);
1103 if (E.isInvalid())
1104 return IsTupleLike::Error;
1105
1106 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser);
1107 if (E.isInvalid())
1108 return IsTupleLike::Error;
1109
1110 return IsTupleLike::TupleLike;
1111}
1112
1113/// \return std::tuple_element<I, T>::type.
1114static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc,
1115 unsigned I, QualType T) {
1116 // Form template argument list for tuple_element<I, T>.
1117 TemplateArgumentListInfo Args(Loc, Loc);
1118 Args.addArgument(
1119 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1120 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1121
1122 DeclarationName TypeDN = S.PP.getIdentifierInfo("type");
1123 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName);
1124 if (lookupStdTypeTraitMember(
1125 S, R, Loc, "tuple_element", Args,
1126 diag::err_decomp_decl_std_tuple_element_not_specialized))
1127 return QualType();
1128
1129 auto *TD = R.getAsSingle<TypeDecl>();
1130 if (!TD) {
1131 R.suppressDiagnostics();
1132 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized)
1133 << printTemplateArgs(S.Context.getPrintingPolicy(), Args,
1134 /*Params*/ nullptr);
1135 if (!R.empty())
1136 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at);
1137 return QualType();
1138 }
1139
1140 return S.Context.getTypeDeclType(TD);
1141}
1142
1143namespace {
1144struct InitializingBinding {
1145 Sema &S;
1146 InitializingBinding(Sema &S, BindingDecl *BD) : S(S) {
1147 Sema::CodeSynthesisContext Ctx;
1148 Ctx.Kind = Sema::CodeSynthesisContext::InitializingStructuredBinding;
1149 Ctx.PointOfInstantiation = BD->getLocation();
1150 Ctx.Entity = BD;
1151 S.pushCodeSynthesisContext(Ctx);
1152 }
1153 ~InitializingBinding() {
1154 S.popCodeSynthesisContext();
1155 }
1156};
1157}
1158
1159static bool checkTupleLikeDecomposition(Sema &S,
1160 ArrayRef<BindingDecl *> Bindings,
1161 VarDecl *Src, QualType DecompType,
1162 const llvm::APSInt &TupleSize) {
1163 if ((int64_t)Bindings.size() != TupleSize) {
1164 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1165 << DecompType << (unsigned)Bindings.size()
1166 << (unsigned)TupleSize.getLimitedValue(UINT_MAX(2147483647 *2U +1U))
1167 << toString(TupleSize, 10) << (TupleSize < Bindings.size());
1168 return true;
1169 }
1170
1171 if (Bindings.empty())
1172 return false;
1173
1174 DeclarationName GetDN = S.PP.getIdentifierInfo("get");
1175
1176 // [dcl.decomp]p3:
1177 // The unqualified-id get is looked up in the scope of E by class member
1178 // access lookup ...
1179 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName);
1180 bool UseMemberGet = false;
1181 if (S.isCompleteType(Src->getLocation(), DecompType)) {
1182 if (auto *RD = DecompType->getAsCXXRecordDecl())
1183 S.LookupQualifiedName(MemberGet, RD);
1184 if (MemberGet.isAmbiguous())
1185 return true;
1186 // ... and if that finds at least one declaration that is a function
1187 // template whose first template parameter is a non-type parameter ...
1188 for (NamedDecl *D : MemberGet) {
1189 if (FunctionTemplateDecl *FTD =
1190 dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) {
1191 TemplateParameterList *TPL = FTD->getTemplateParameters();
1192 if (TPL->size() != 0 &&
1193 isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) {
1194 // ... the initializer is e.get<i>().
1195 UseMemberGet = true;
1196 break;
1197 }
1198 }
1199 }
1200 }
1201
1202 unsigned I = 0;
1203 for (auto *B : Bindings) {
1204 InitializingBinding InitContext(S, B);
1205 SourceLocation Loc = B->getLocation();
1206
1207 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1208 if (E.isInvalid())
1209 return true;
1210
1211 // e is an lvalue if the type of the entity is an lvalue reference and
1212 // an xvalue otherwise
1213 if (!Src->getType()->isLValueReferenceType())
1214 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp,
1215 E.get(), nullptr, VK_XValue,
1216 FPOptionsOverride());
1217
1218 TemplateArgumentListInfo Args(Loc, Loc);
1219 Args.addArgument(
1220 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1221
1222 if (UseMemberGet) {
1223 // if [lookup of member get] finds at least one declaration, the
1224 // initializer is e.get<i-1>().
1225 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false,
1226 CXXScopeSpec(), SourceLocation(), nullptr,
1227 MemberGet, &Args, nullptr);
1228 if (E.isInvalid())
1229 return true;
1230
1231 E = S.BuildCallExpr(nullptr, E.get(), Loc, None, Loc);
1232 } else {
1233 // Otherwise, the initializer is get<i-1>(e), where get is looked up
1234 // in the associated namespaces.
1235 Expr *Get = UnresolvedLookupExpr::Create(
1236 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(),
1237 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args,
1238 UnresolvedSetIterator(), UnresolvedSetIterator());
1239
1240 Expr *Arg = E.get();
1241 E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc);
1242 }
1243 if (E.isInvalid())
1244 return true;
1245 Expr *Init = E.get();
1246
1247 // Given the type T designated by std::tuple_element<i - 1, E>::type,
1248 QualType T = getTupleLikeElementType(S, Loc, I, DecompType);
1249 if (T.isNull())
1250 return true;
1251
1252 // each vi is a variable of type "reference to T" initialized with the
1253 // initializer, where the reference is an lvalue reference if the
1254 // initializer is an lvalue and an rvalue reference otherwise
1255 QualType RefType =
1256 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName());
1257 if (RefType.isNull())
1258 return true;
1259 auto *RefVD = VarDecl::Create(
1260 S.Context, Src->getDeclContext(), Loc, Loc,
1261 B->getDeclName().getAsIdentifierInfo(), RefType,
1262 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass());
1263 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext());
1264 RefVD->setTSCSpec(Src->getTSCSpec());
1265 RefVD->setImplicit();
1266 if (Src->isInlineSpecified())
1267 RefVD->setInlineSpecified();
1268 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD);
1269
1270 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD);
1271 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc);
1272 InitializationSequence Seq(S, Entity, Kind, Init);
1273 E = Seq.Perform(S, Entity, Kind, Init);
1274 if (E.isInvalid())
1275 return true;
1276 E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false);
1277 if (E.isInvalid())
1278 return true;
1279 RefVD->setInit(E.get());
1280 S.CheckCompleteVariableDeclaration(RefVD);
1281
1282 E = S.BuildDeclarationNameExpr(CXXScopeSpec(),
1283 DeclarationNameInfo(B->getDeclName(), Loc),
1284 RefVD);
1285 if (E.isInvalid())
1286 return true;
1287
1288 B->setBinding(T, E.get());
1289 I++;
1290 }
1291
1292 return false;
1293}
1294
1295/// Find the base class to decompose in a built-in decomposition of a class type.
1296/// This base class search is, unfortunately, not quite like any other that we
1297/// perform anywhere else in C++.
1298static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc,
1299 const CXXRecordDecl *RD,
1300 CXXCastPath &BasePath) {
1301 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier,
1302 CXXBasePath &Path) {
1303 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields();
1304 };
1305
1306 const CXXRecordDecl *ClassWithFields = nullptr;
1307 AccessSpecifier AS = AS_public;
1308 if (RD->hasDirectFields())
1309 // [dcl.decomp]p4:
1310 // Otherwise, all of E's non-static data members shall be public direct
1311 // members of E ...
1312 ClassWithFields = RD;
1313 else {
1314 // ... or of ...
1315 CXXBasePaths Paths;
1316 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD));
1317 if (!RD->lookupInBases(BaseHasFields, Paths)) {
1318 // If no classes have fields, just decompose RD itself. (This will work
1319 // if and only if zero bindings were provided.)
1320 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public);
1321 }
1322
1323 CXXBasePath *BestPath = nullptr;
1324 for (auto &P : Paths) {
1325 if (!BestPath)
1326 BestPath = &P;
1327 else if (!S.Context.hasSameType(P.back().Base->getType(),
1328 BestPath->back().Base->getType())) {
1329 // ... the same ...
1330 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1331 << false << RD << BestPath->back().Base->getType()
1332 << P.back().Base->getType();
1333 return DeclAccessPair();
1334 } else if (P.Access < BestPath->Access) {
1335 BestPath = &P;
1336 }
1337 }
1338
1339 // ... unambiguous ...
1340 QualType BaseType = BestPath->back().Base->getType();
1341 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) {
1342 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base)
1343 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths);
1344 return DeclAccessPair();
1345 }
1346
1347 // ... [accessible, implied by other rules] base class of E.
1348 S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD),
1349 *BestPath, diag::err_decomp_decl_inaccessible_base);
1350 AS = BestPath->Access;
1351
1352 ClassWithFields = BaseType->getAsCXXRecordDecl();
1353 S.BuildBasePathArray(Paths, BasePath);
1354 }
1355
1356 // The above search did not check whether the selected class itself has base
1357 // classes with fields, so check that now.
1358 CXXBasePaths Paths;
1359 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) {
1360 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1361 << (ClassWithFields == RD) << RD << ClassWithFields
1362 << Paths.front().back().Base->getType();
1363 return DeclAccessPair();
1364 }
1365
1366 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS);
1367}
1368
1369static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
1370 ValueDecl *Src, QualType DecompType,
1371 const CXXRecordDecl *OrigRD) {
1372 if (S.RequireCompleteType(Src->getLocation(), DecompType,
1373 diag::err_incomplete_type))
1374 return true;
1375
1376 CXXCastPath BasePath;
1377 DeclAccessPair BasePair =
1378 findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath);
1379 const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl());
1380 if (!RD)
1381 return true;
1382 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD),
1383 DecompType.getQualifiers());
1384
1385 auto DiagnoseBadNumberOfBindings = [&]() -> bool {
1386 unsigned NumFields =
1387 std::count_if(RD->field_begin(), RD->field_end(),
1388 [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); });
1389 assert(Bindings.size() != NumFields)(static_cast <bool> (Bindings.size() != NumFields) ? void
(0) : __assert_fail ("Bindings.size() != NumFields", "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 1389, __extension__ __PRETTY_FUNCTION__))
;
1390 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1391 << DecompType << (unsigned)Bindings.size() << NumFields << NumFields
1392 << (NumFields < Bindings.size());
1393 return true;
1394 };
1395
1396 // all of E's non-static data members shall be [...] well-formed
1397 // when named as e.name in the context of the structured binding,
1398 // E shall not have an anonymous union member, ...
1399 unsigned I = 0;
1400 for (auto *FD : RD->fields()) {
1401 if (FD->isUnnamedBitfield())
1402 continue;
1403
1404 // All the non-static data members are required to be nameable, so they
1405 // must all have names.
1406 if (!FD->getDeclName()) {
1407 if (RD->isLambda()) {
1408 S.Diag(Src->getLocation(), diag::err_decomp_decl_lambda);
1409 S.Diag(RD->getLocation(), diag::note_lambda_decl);
1410 return true;
1411 }
1412
1413 if (FD->isAnonymousStructOrUnion()) {
1414 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member)
1415 << DecompType << FD->getType()->isUnionType();
1416 S.Diag(FD->getLocation(), diag::note_declared_at);
1417 return true;
1418 }
1419
1420 // FIXME: Are there any other ways we could have an anonymous member?
1421 }
1422
1423 // We have a real field to bind.
1424 if (I >= Bindings.size())
1425 return DiagnoseBadNumberOfBindings();
1426 auto *B = Bindings[I++];
1427 SourceLocation Loc = B->getLocation();
1428
1429 // The field must be accessible in the context of the structured binding.
1430 // We already checked that the base class is accessible.
1431 // FIXME: Add 'const' to AccessedEntity's classes so we can remove the
1432 // const_cast here.
1433 S.CheckStructuredBindingMemberAccess(
1434 Loc, const_cast<CXXRecordDecl *>(OrigRD),
1435 DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess(
1436 BasePair.getAccess(), FD->getAccess())));
1437
1438 // Initialize the binding to Src.FD.
1439 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1440 if (E.isInvalid())
1441 return true;
1442 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase,
1443 VK_LValue, &BasePath);
1444 if (E.isInvalid())
1445 return true;
1446 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc,
1447 CXXScopeSpec(), FD,
1448 DeclAccessPair::make(FD, FD->getAccess()),
1449 DeclarationNameInfo(FD->getDeclName(), Loc));
1450 if (E.isInvalid())
1451 return true;
1452
1453 // If the type of the member is T, the referenced type is cv T, where cv is
1454 // the cv-qualification of the decomposition expression.
1455 //
1456 // FIXME: We resolve a defect here: if the field is mutable, we do not add
1457 // 'const' to the type of the field.
1458 Qualifiers Q = DecompType.getQualifiers();
1459 if (FD->isMutable())
1460 Q.removeConst();
1461 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get());
1462 }
1463
1464 if (I != Bindings.size())
1465 return DiagnoseBadNumberOfBindings();
1466
1467 return false;
1468}
1469
1470void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) {
1471 QualType DecompType = DD->getType();
1472
1473 // If the type of the decomposition is dependent, then so is the type of
1474 // each binding.
1475 if (DecompType->isDependentType()) {
1476 for (auto *B : DD->bindings())
1477 B->setType(Context.DependentTy);
1478 return;
1479 }
1480
1481 DecompType = DecompType.getNonReferenceType();
1482 ArrayRef<BindingDecl*> Bindings = DD->bindings();
1483
1484 // C++1z [dcl.decomp]/2:
1485 // If E is an array type [...]
1486 // As an extension, we also support decomposition of built-in complex and
1487 // vector types.
1488 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) {
1489 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT))
1490 DD->setInvalidDecl();
1491 return;
1492 }
1493 if (auto *VT = DecompType->getAs<VectorType>()) {
1494 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT))
1495 DD->setInvalidDecl();
1496 return;
1497 }
1498 if (auto *CT = DecompType->getAs<ComplexType>()) {
1499 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT))
1500 DD->setInvalidDecl();
1501 return;
1502 }
1503
1504 // C++1z [dcl.decomp]/3:
1505 // if the expression std::tuple_size<E>::value is a well-formed integral
1506 // constant expression, [...]
1507 llvm::APSInt TupleSize(32);
1508 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) {
1509 case IsTupleLike::Error:
1510 DD->setInvalidDecl();
1511 return;
1512
1513 case IsTupleLike::TupleLike:
1514 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize))
1515 DD->setInvalidDecl();
1516 return;
1517
1518 case IsTupleLike::NotTupleLike:
1519 break;
1520 }
1521
1522 // C++1z [dcl.dcl]/8:
1523 // [E shall be of array or non-union class type]
1524 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl();
1525 if (!RD || RD->isUnion()) {
1526 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type)
1527 << DD << !RD << DecompType;
1528 DD->setInvalidDecl();
1529 return;
1530 }
1531
1532 // C++1z [dcl.decomp]/4:
1533 // all of E's non-static data members shall be [...] direct members of
1534 // E or of the same unambiguous public base class of E, ...
1535 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD))
1536 DD->setInvalidDecl();
1537}
1538
1539/// Merge the exception specifications of two variable declarations.
1540///
1541/// This is called when there's a redeclaration of a VarDecl. The function
1542/// checks if the redeclaration might have an exception specification and
1543/// validates compatibility and merges the specs if necessary.
1544void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
1545 // Shortcut if exceptions are disabled.
1546 if (!getLangOpts().CXXExceptions)
1547 return;
1548
1549 assert(Context.hasSameType(New->getType(), Old->getType()) &&(static_cast <bool> (Context.hasSameType(New->getType
(), Old->getType()) && "Should only be called if types are otherwise the same."
) ? void (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 1550, __extension__ __PRETTY_FUNCTION__))
1550 "Should only be called if types are otherwise the same.")(static_cast <bool> (Context.hasSameType(New->getType
(), Old->getType()) && "Should only be called if types are otherwise the same."
) ? void (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 1550, __extension__ __PRETTY_FUNCTION__))
;
1551
1552 QualType NewType = New->getType();
1553 QualType OldType = Old->getType();
1554
1555 // We're only interested in pointers and references to functions, as well
1556 // as pointers to member functions.
1557 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
1558 NewType = R->getPointeeType();
1559 OldType = OldType->castAs<ReferenceType>()->getPointeeType();
1560 } else if (const PointerType *P = NewType->getAs<PointerType>()) {
1561 NewType = P->getPointeeType();
1562 OldType = OldType->castAs<PointerType>()->getPointeeType();
1563 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
1564 NewType = M->getPointeeType();
1565 OldType = OldType->castAs<MemberPointerType>()->getPointeeType();
1566 }
1567
1568 if (!NewType->isFunctionProtoType())
1569 return;
1570
1571 // There's lots of special cases for functions. For function pointers, system
1572 // libraries are hopefully not as broken so that we don't need these
1573 // workarounds.
1574 if (CheckEquivalentExceptionSpec(
1575 OldType->getAs<FunctionProtoType>(), Old->getLocation(),
1576 NewType->getAs<FunctionProtoType>(), New->getLocation())) {
1577 New->setInvalidDecl();
1578 }
1579}
1580
1581/// CheckCXXDefaultArguments - Verify that the default arguments for a
1582/// function declaration are well-formed according to C++
1583/// [dcl.fct.default].
1584void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
1585 unsigned NumParams = FD->getNumParams();
1586 unsigned ParamIdx = 0;
1587
1588 // This checking doesn't make sense for explicit specializations; their
1589 // default arguments are determined by the declaration we're specializing,
1590 // not by FD.
1591 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
1592 return;
1593 if (auto *FTD = FD->getDescribedFunctionTemplate())
1594 if (FTD->isMemberSpecialization())
1595 return;
1596
1597 // Find first parameter with a default argument
1598 for (; ParamIdx < NumParams; ++ParamIdx) {
1599 ParmVarDecl *Param = FD->getParamDecl(ParamIdx);
1600 if (Param->hasDefaultArg())
1601 break;
1602 }
1603
1604 // C++20 [dcl.fct.default]p4:
1605 // In a given function declaration, each parameter subsequent to a parameter
1606 // with a default argument shall have a default argument supplied in this or
1607 // a previous declaration, unless the parameter was expanded from a
1608 // parameter pack, or shall be a function parameter pack.
1609 for (; ParamIdx < NumParams; ++ParamIdx) {
1610 ParmVarDecl *Param = FD->getParamDecl(ParamIdx);
1611 if (!Param->hasDefaultArg() && !Param->isParameterPack() &&
1612 !(CurrentInstantiationScope &&
1613 CurrentInstantiationScope->isLocalPackExpansion(Param))) {
1614 if (Param->isInvalidDecl())
1615 /* We already complained about this parameter. */;
1616 else if (Param->getIdentifier())
1617 Diag(Param->getLocation(),
1618 diag::err_param_default_argument_missing_name)
1619 << Param->getIdentifier();
1620 else
1621 Diag(Param->getLocation(),
1622 diag::err_param_default_argument_missing);
1623 }
1624 }
1625}
1626
1627/// Check that the given type is a literal type. Issue a diagnostic if not,
1628/// if Kind is Diagnose.
1629/// \return \c true if a problem has been found (and optionally diagnosed).
1630template <typename... Ts>
1631static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind,
1632 SourceLocation Loc, QualType T, unsigned DiagID,
1633 Ts &&...DiagArgs) {
1634 if (T->isDependentType())
1635 return false;
1636
1637 switch (Kind) {
1638 case Sema::CheckConstexprKind::Diagnose:
1639 return SemaRef.RequireLiteralType(Loc, T, DiagID,
1640 std::forward<Ts>(DiagArgs)...);
1641
1642 case Sema::CheckConstexprKind::CheckValid:
1643 return !T->isLiteralType(SemaRef.Context);
1644 }
1645
1646 llvm_unreachable("unknown CheckConstexprKind")::llvm::llvm_unreachable_internal("unknown CheckConstexprKind"
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 1646)
;
1647}
1648
1649/// Determine whether a destructor cannot be constexpr due to
1650static bool CheckConstexprDestructorSubobjects(Sema &SemaRef,
1651 const CXXDestructorDecl *DD,
1652 Sema::CheckConstexprKind Kind) {
1653 auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) {
1654 const CXXRecordDecl *RD =
1655 T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1656 if (!RD || RD->hasConstexprDestructor())
1657 return true;
1658
1659 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1660 SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject)
1661 << static_cast<int>(DD->getConstexprKind()) << !FD
1662 << (FD ? FD->getDeclName() : DeclarationName()) << T;
1663 SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject)
1664 << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T;
1665 }
1666 return false;
1667 };
1668
1669 const CXXRecordDecl *RD = DD->getParent();
1670 for (const CXXBaseSpecifier &B : RD->bases())
1671 if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr))
1672 return false;
1673 for (const FieldDecl *FD : RD->fields())
1674 if (!Check(FD->getLocation(), FD->getType(), FD))
1675 return false;
1676 return true;
1677}
1678
1679/// Check whether a function's parameter types are all literal types. If so,
1680/// return true. If not, produce a suitable diagnostic and return false.
1681static bool CheckConstexprParameterTypes(Sema &SemaRef,
1682 const FunctionDecl *FD,
1683 Sema::CheckConstexprKind Kind) {
1684 unsigned ArgIndex = 0;
1685 const auto *FT = FD->getType()->castAs<FunctionProtoType>();
1686 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
1687 e = FT->param_type_end();
1688 i != e; ++i, ++ArgIndex) {
1689 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
1690 SourceLocation ParamLoc = PD->getLocation();
1691 if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i,
1692 diag::err_constexpr_non_literal_param, ArgIndex + 1,
1693 PD->getSourceRange(), isa<CXXConstructorDecl>(FD),
1694 FD->isConsteval()))
1695 return false;
1696 }
1697 return true;
1698}
1699
1700/// Check whether a function's return type is a literal type. If so, return
1701/// true. If not, produce a suitable diagnostic and return false.
1702static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD,
1703 Sema::CheckConstexprKind Kind) {
1704 if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(),
1705 diag::err_constexpr_non_literal_return,
1706 FD->isConsteval()))
1707 return false;
1708 return true;
1709}
1710
1711/// Get diagnostic %select index for tag kind for
1712/// record diagnostic message.
1713/// WARNING: Indexes apply to particular diagnostics only!
1714///
1715/// \returns diagnostic %select index.
1716static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
1717 switch (Tag) {
1718 case TTK_Struct: return 0;
1719 case TTK_Interface: return 1;
1720 case TTK_Class: return 2;
1721 default: llvm_unreachable("Invalid tag kind for record diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for record diagnostic!"
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 1721)
;
1722 }
1723}
1724
1725static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
1726 Stmt *Body,
1727 Sema::CheckConstexprKind Kind);
1728
1729// Check whether a function declaration satisfies the requirements of a
1730// constexpr function definition or a constexpr constructor definition. If so,
1731// return true. If not, produce appropriate diagnostics (unless asked not to by
1732// Kind) and return false.
1733//
1734// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
1735bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD,
1736 CheckConstexprKind Kind) {
1737 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
1738 if (MD && MD->isInstance()) {
1739 // C++11 [dcl.constexpr]p4:
1740 // The definition of a constexpr constructor shall satisfy the following
1741 // constraints:
1742 // - the class shall not have any virtual base classes;
1743 //
1744 // FIXME: This only applies to constructors and destructors, not arbitrary
1745 // member functions.
1746 const CXXRecordDecl *RD = MD->getParent();
1747 if (RD->getNumVBases()) {
1748 if (Kind == CheckConstexprKind::CheckValid)
1749 return false;
1750
1751 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
1752 << isa<CXXConstructorDecl>(NewFD)
1753 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
1754 for (const auto &I : RD->vbases())
1755 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
1756 << I.getSourceRange();
1757 return false;
1758 }
1759 }
1760
1761 if (!isa<CXXConstructorDecl>(NewFD)) {
1762 // C++11 [dcl.constexpr]p3:
1763 // The definition of a constexpr function shall satisfy the following
1764 // constraints:
1765 // - it shall not be virtual; (removed in C++20)
1766 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
1767 if (Method && Method->isVirtual()) {
1768 if (getLangOpts().CPlusPlus20) {
1769 if (Kind == CheckConstexprKind::Diagnose)
1770 Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual);
1771 } else {
1772 if (Kind == CheckConstexprKind::CheckValid)
1773 return false;
1774
1775 Method = Method->getCanonicalDecl();
1776 Diag(Method->getLocation(), diag::err_constexpr_virtual);
1777
1778 // If it's not obvious why this function is virtual, find an overridden
1779 // function which uses the 'virtual' keyword.
1780 const CXXMethodDecl *WrittenVirtual = Method;
1781 while (!WrittenVirtual->isVirtualAsWritten())
1782 WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
1783 if (WrittenVirtual != Method)
1784 Diag(WrittenVirtual->getLocation(),
1785 diag::note_overridden_virtual_function);
1786 return false;
1787 }
1788 }
1789
1790 // - its return type shall be a literal type;
1791 if (!CheckConstexprReturnType(*this, NewFD, Kind))
1792 return false;
1793 }
1794
1795 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) {
1796 // A destructor can be constexpr only if the defaulted destructor could be;
1797 // we don't need to check the members and bases if we already know they all
1798 // have constexpr destructors.
1799 if (!Dtor->getParent()->defaultedDestructorIsConstexpr()) {
1800 if (Kind == CheckConstexprKind::CheckValid)
1801 return false;
1802 if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind))
1803 return false;
1804 }
1805 }
1806
1807 // - each of its parameter types shall be a literal type;
1808 if (!CheckConstexprParameterTypes(*this, NewFD, Kind))
1809 return false;
1810
1811 Stmt *Body = NewFD->getBody();
1812 assert(Body &&(static_cast <bool> (Body && "CheckConstexprFunctionDefinition called on function with no body"
) ? void (0) : __assert_fail ("Body && \"CheckConstexprFunctionDefinition called on function with no body\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 1813, __extension__ __PRETTY_FUNCTION__))
1813 "CheckConstexprFunctionDefinition called on function with no body")(static_cast <bool> (Body && "CheckConstexprFunctionDefinition called on function with no body"
) ? void (0) : __assert_fail ("Body && \"CheckConstexprFunctionDefinition called on function with no body\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 1813, __extension__ __PRETTY_FUNCTION__))
;
1814 return CheckConstexprFunctionBody(*this, NewFD, Body, Kind);
1815}
1816
1817/// Check the given declaration statement is legal within a constexpr function
1818/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
1819///
1820/// \return true if the body is OK (maybe only as an extension), false if we
1821/// have diagnosed a problem.
1822static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
1823 DeclStmt *DS, SourceLocation &Cxx1yLoc,
1824 Sema::CheckConstexprKind Kind) {
1825 // C++11 [dcl.constexpr]p3 and p4:
1826 // The definition of a constexpr function(p3) or constructor(p4) [...] shall
1827 // contain only
1828 for (const auto *DclIt : DS->decls()) {
1829 switch (DclIt->getKind()) {
1830 case Decl::StaticAssert:
1831 case Decl::Using:
1832 case Decl::UsingShadow:
1833 case Decl::UsingDirective:
1834 case Decl::UnresolvedUsingTypename:
1835 case Decl::UnresolvedUsingValue:
1836 case Decl::UsingEnum:
1837 // - static_assert-declarations
1838 // - using-declarations,
1839 // - using-directives,
1840 // - using-enum-declaration
1841 continue;
1842
1843 case Decl::Typedef:
1844 case Decl::TypeAlias: {
1845 // - typedef declarations and alias-declarations that do not define
1846 // classes or enumerations,
1847 const auto *TN = cast<TypedefNameDecl>(DclIt);
1848 if (TN->getUnderlyingType()->isVariablyModifiedType()) {
1849 // Don't allow variably-modified types in constexpr functions.
1850 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1851 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
1852 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
1853 << TL.getSourceRange() << TL.getType()
1854 << isa<CXXConstructorDecl>(Dcl);
1855 }
1856 return false;
1857 }
1858 continue;
1859 }
1860
1861 case Decl::Enum:
1862 case Decl::CXXRecord:
1863 // C++1y allows types to be defined, not just declared.
1864 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) {
1865 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1866 SemaRef.Diag(DS->getBeginLoc(),
1867 SemaRef.getLangOpts().CPlusPlus14
1868 ? diag::warn_cxx11_compat_constexpr_type_definition
1869 : diag::ext_constexpr_type_definition)
1870 << isa<CXXConstructorDecl>(Dcl);
1871 } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1872 return false;
1873 }
1874 }
1875 continue;
1876
1877 case Decl::EnumConstant:
1878 case Decl::IndirectField:
1879 case Decl::ParmVar:
1880 // These can only appear with other declarations which are banned in
1881 // C++11 and permitted in C++1y, so ignore them.
1882 continue;
1883
1884 case Decl::Var:
1885 case Decl::Decomposition: {
1886 // C++1y [dcl.constexpr]p3 allows anything except:
1887 // a definition of a variable of non-literal type or of static or
1888 // thread storage duration or [before C++2a] for which no
1889 // initialization is performed.
1890 const auto *VD = cast<VarDecl>(DclIt);
1891 if (VD->isThisDeclarationADefinition()) {
1892 if (VD->isStaticLocal()) {
1893 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1894 SemaRef.Diag(VD->getLocation(),
1895 diag::err_constexpr_local_var_static)
1896 << isa<CXXConstructorDecl>(Dcl)
1897 << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
1898 }
1899 return false;
1900 }
1901 if (CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(),
1902 diag::err_constexpr_local_var_non_literal_type,
1903 isa<CXXConstructorDecl>(Dcl)))
1904 return false;
1905 if (!VD->getType()->isDependentType() &&
1906 !VD->hasInit() && !VD->isCXXForRangeDecl()) {
1907 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1908 SemaRef.Diag(
1909 VD->getLocation(),
1910 SemaRef.getLangOpts().CPlusPlus20
1911 ? diag::warn_cxx17_compat_constexpr_local_var_no_init
1912 : diag::ext_constexpr_local_var_no_init)
1913 << isa<CXXConstructorDecl>(Dcl);
1914 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
1915 return false;
1916 }
1917 continue;
1918 }
1919 }
1920 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1921 SemaRef.Diag(VD->getLocation(),
1922 SemaRef.getLangOpts().CPlusPlus14
1923 ? diag::warn_cxx11_compat_constexpr_local_var
1924 : diag::ext_constexpr_local_var)
1925 << isa<CXXConstructorDecl>(Dcl);
1926 } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1927 return false;
1928 }
1929 continue;
1930 }
1931
1932 case Decl::NamespaceAlias:
1933 case Decl::Function:
1934 // These are disallowed in C++11 and permitted in C++1y. Allow them
1935 // everywhere as an extension.
1936 if (!Cxx1yLoc.isValid())
1937 Cxx1yLoc = DS->getBeginLoc();
1938 continue;
1939
1940 default:
1941 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1942 SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
1943 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
1944 }
1945 return false;
1946 }
1947 }
1948
1949 return true;
1950}
1951
1952/// Check that the given field is initialized within a constexpr constructor.
1953///
1954/// \param Dcl The constexpr constructor being checked.
1955/// \param Field The field being checked. This may be a member of an anonymous
1956/// struct or union nested within the class being checked.
1957/// \param Inits All declarations, including anonymous struct/union members and
1958/// indirect members, for which any initialization was provided.
1959/// \param Diagnosed Whether we've emitted the error message yet. Used to attach
1960/// multiple notes for different members to the same error.
1961/// \param Kind Whether we're diagnosing a constructor as written or determining
1962/// whether the formal requirements are satisfied.
1963/// \return \c false if we're checking for validity and the constructor does
1964/// not satisfy the requirements on a constexpr constructor.
1965static bool CheckConstexprCtorInitializer(Sema &SemaRef,
1966 const FunctionDecl *Dcl,
1967 FieldDecl *Field,
1968 llvm::SmallSet<Decl*, 16> &Inits,
1969 bool &Diagnosed,
1970 Sema::CheckConstexprKind Kind) {
1971 // In C++20 onwards, there's nothing to check for validity.
1972 if (Kind == Sema::CheckConstexprKind::CheckValid &&
1973 SemaRef.getLangOpts().CPlusPlus20)
1974 return true;
1975
1976 if (Field->isInvalidDecl())
1977 return true;
1978
1979 if (Field->isUnnamedBitfield())
1980 return true;
1981
1982 // Anonymous unions with no variant members and empty anonymous structs do not
1983 // need to be explicitly initialized. FIXME: Anonymous structs that contain no
1984 // indirect fields don't need initializing.
1985 if (Field->isAnonymousStructOrUnion() &&
1986 (Field->getType()->isUnionType()
1987 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
1988 : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
1989 return true;
1990
1991 if (!Inits.count(Field)) {
1992 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1993 if (!Diagnosed) {
1994 SemaRef.Diag(Dcl->getLocation(),
1995 SemaRef.getLangOpts().CPlusPlus20
1996 ? diag::warn_cxx17_compat_constexpr_ctor_missing_init
1997 : diag::ext_constexpr_ctor_missing_init);
1998 Diagnosed = true;
1999 }
2000 SemaRef.Diag(Field->getLocation(),
2001 diag::note_constexpr_ctor_missing_init);
2002 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
2003 return false;
2004 }
2005 } else if (Field->isAnonymousStructOrUnion()) {
2006 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
2007 for (auto *I : RD->fields())
2008 // If an anonymous union contains an anonymous struct of which any member
2009 // is initialized, all members must be initialized.
2010 if (!RD->isUnion() || Inits.count(I))
2011 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
2012 Kind))
2013 return false;
2014 }
2015 return true;
2016}
2017
2018/// Check the provided statement is allowed in a constexpr function
2019/// definition.
2020static bool
2021CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
2022 SmallVectorImpl<SourceLocation> &ReturnStmts,
2023 SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc,
2024 Sema::CheckConstexprKind Kind) {
2025 // - its function-body shall be [...] a compound-statement that contains only
2026 switch (S->getStmtClass()) {
2027 case Stmt::NullStmtClass:
2028 // - null statements,
2029 return true;
2030
2031 case Stmt::DeclStmtClass:
2032 // - static_assert-declarations
2033 // - using-declarations,
2034 // - using-directives,
2035 // - typedef declarations and alias-declarations that do not define
2036 // classes or enumerations,
2037 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind))
2038 return false;
2039 return true;
2040
2041 case Stmt::ReturnStmtClass:
2042 // - and exactly one return statement;
2043 if (isa<CXXConstructorDecl>(Dcl)) {
2044 // C++1y allows return statements in constexpr constructors.
2045 if (!Cxx1yLoc.isValid())
2046 Cxx1yLoc = S->getBeginLoc();
2047 return true;
2048 }
2049
2050 ReturnStmts.push_back(S->getBeginLoc());
2051 return true;
2052
2053 case Stmt::AttributedStmtClass:
2054 // Attributes on a statement don't affect its formal kind and hence don't
2055 // affect its validity in a constexpr function.
2056 return CheckConstexprFunctionStmt(SemaRef, Dcl,
2057 cast<AttributedStmt>(S)->getSubStmt(),
2058 ReturnStmts, Cxx1yLoc, Cxx2aLoc, Kind);
2059
2060 case Stmt::CompoundStmtClass: {
2061 // C++1y allows compound-statements.
2062 if (!Cxx1yLoc.isValid())
2063 Cxx1yLoc = S->getBeginLoc();
2064
2065 CompoundStmt *CompStmt = cast<CompoundStmt>(S);
2066 for (auto *BodyIt : CompStmt->body()) {
2067 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
2068 Cxx1yLoc, Cxx2aLoc, Kind))
2069 return false;
2070 }
2071 return true;
2072 }
2073
2074 case Stmt::IfStmtClass: {
2075 // C++1y allows if-statements.
2076 if (!Cxx1yLoc.isValid())
2077 Cxx1yLoc = S->getBeginLoc();
2078
2079 IfStmt *If = cast<IfStmt>(S);
2080 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
2081 Cxx1yLoc, Cxx2aLoc, Kind))
2082 return false;
2083 if (If->getElse() &&
2084 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
2085 Cxx1yLoc, Cxx2aLoc, Kind))
2086 return false;
2087 return true;
2088 }
2089
2090 case Stmt::WhileStmtClass:
2091 case Stmt::DoStmtClass:
2092 case Stmt::ForStmtClass:
2093 case Stmt::CXXForRangeStmtClass:
2094 case Stmt::ContinueStmtClass:
2095 // C++1y allows all of these. We don't allow them as extensions in C++11,
2096 // because they don't make sense without variable mutation.
2097 if (!SemaRef.getLangOpts().CPlusPlus14)
2098 break;
2099 if (!Cxx1yLoc.isValid())
2100 Cxx1yLoc = S->getBeginLoc();
2101 for (Stmt *SubStmt : S->children())
2102 if (SubStmt &&
2103 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2104 Cxx1yLoc, Cxx2aLoc, Kind))
2105 return false;
2106 return true;
2107
2108 case Stmt::SwitchStmtClass:
2109 case Stmt::CaseStmtClass:
2110 case Stmt::DefaultStmtClass:
2111 case Stmt::BreakStmtClass:
2112 // C++1y allows switch-statements, and since they don't need variable
2113 // mutation, we can reasonably allow them in C++11 as an extension.
2114 if (!Cxx1yLoc.isValid())
2115 Cxx1yLoc = S->getBeginLoc();
2116 for (Stmt *SubStmt : S->children())
2117 if (SubStmt &&
2118 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2119 Cxx1yLoc, Cxx2aLoc, Kind))
2120 return false;
2121 return true;
2122
2123 case Stmt::GCCAsmStmtClass:
2124 case Stmt::MSAsmStmtClass:
2125 // C++2a allows inline assembly statements.
2126 case Stmt::CXXTryStmtClass:
2127 if (Cxx2aLoc.isInvalid())
2128 Cxx2aLoc = S->getBeginLoc();
2129 for (Stmt *SubStmt : S->children()) {
2130 if (SubStmt &&
2131 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2132 Cxx1yLoc, Cxx2aLoc, Kind))
2133 return false;
2134 }
2135 return true;
2136
2137 case Stmt::CXXCatchStmtClass:
2138 // Do not bother checking the language mode (already covered by the
2139 // try block check).
2140 if (!CheckConstexprFunctionStmt(SemaRef, Dcl,
2141 cast<CXXCatchStmt>(S)->getHandlerBlock(),
2142 ReturnStmts, Cxx1yLoc, Cxx2aLoc, Kind))
2143 return false;
2144 return true;
2145
2146 default:
2147 if (!isa<Expr>(S))
2148 break;
2149
2150 // C++1y allows expression-statements.
2151 if (!Cxx1yLoc.isValid())
2152 Cxx1yLoc = S->getBeginLoc();
2153 return true;
2154 }
2155
2156 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2157 SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
2158 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2159 }
2160 return false;
2161}
2162
2163/// Check the body for the given constexpr function declaration only contains
2164/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
2165///
2166/// \return true if the body is OK, false if we have found or diagnosed a
2167/// problem.
2168static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
2169 Stmt *Body,
2170 Sema::CheckConstexprKind Kind) {
2171 SmallVector<SourceLocation, 4> ReturnStmts;
2172
2173 if (isa<CXXTryStmt>(Body)) {
2174 // C++11 [dcl.constexpr]p3:
2175 // The definition of a constexpr function shall satisfy the following
2176 // constraints: [...]
2177 // - its function-body shall be = delete, = default, or a
2178 // compound-statement
2179 //
2180 // C++11 [dcl.constexpr]p4:
2181 // In the definition of a constexpr constructor, [...]
2182 // - its function-body shall not be a function-try-block;
2183 //
2184 // This restriction is lifted in C++2a, as long as inner statements also
2185 // apply the general constexpr rules.
2186 switch (Kind) {
2187 case Sema::CheckConstexprKind::CheckValid:
2188 if (!SemaRef.getLangOpts().CPlusPlus20)
2189 return false;
2190 break;
2191
2192 case Sema::CheckConstexprKind::Diagnose:
2193 SemaRef.Diag(Body->getBeginLoc(),
2194 !SemaRef.getLangOpts().CPlusPlus20
2195 ? diag::ext_constexpr_function_try_block_cxx20
2196 : diag::warn_cxx17_compat_constexpr_function_try_block)
2197 << isa<CXXConstructorDecl>(Dcl);
2198 break;
2199 }
2200 }
2201
2202 // - its function-body shall be [...] a compound-statement that contains only
2203 // [... list of cases ...]
2204 //
2205 // Note that walking the children here is enough to properly check for
2206 // CompoundStmt and CXXTryStmt body.
2207 SourceLocation Cxx1yLoc, Cxx2aLoc;
2208 for (Stmt *SubStmt : Body->children()) {
2209 if (SubStmt &&
2210 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2211 Cxx1yLoc, Cxx2aLoc, Kind))
2212 return false;
2213 }
2214
2215 if (Kind == Sema::CheckConstexprKind::CheckValid) {
2216 // If this is only valid as an extension, report that we don't satisfy the
2217 // constraints of the current language.
2218 if ((Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus20) ||
2219 (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17))
2220 return false;
2221 } else if (Cxx2aLoc.isValid()) {
2222 SemaRef.Diag(Cxx2aLoc,
2223 SemaRef.getLangOpts().CPlusPlus20
2224 ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt
2225 : diag::ext_constexpr_body_invalid_stmt_cxx20)
2226 << isa<CXXConstructorDecl>(Dcl);
2227 } else if (Cxx1yLoc.isValid()) {
2228 SemaRef.Diag(Cxx1yLoc,
2229 SemaRef.getLangOpts().CPlusPlus14
2230 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
2231 : diag::ext_constexpr_body_invalid_stmt)
2232 << isa<CXXConstructorDecl>(Dcl);
2233 }
2234
2235 if (const CXXConstructorDecl *Constructor
2236 = dyn_cast<CXXConstructorDecl>(Dcl)) {
2237 const CXXRecordDecl *RD = Constructor->getParent();
2238 // DR1359:
2239 // - every non-variant non-static data member and base class sub-object
2240 // shall be initialized;
2241 // DR1460:
2242 // - if the class is a union having variant members, exactly one of them
2243 // shall be initialized;
2244 if (RD->isUnion()) {
2245 if (Constructor->getNumCtorInitializers() == 0 &&
2246 RD->hasVariantMembers()) {
2247 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2248 SemaRef.Diag(
2249 Dcl->getLocation(),
2250 SemaRef.getLangOpts().CPlusPlus20
2251 ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init
2252 : diag::ext_constexpr_union_ctor_no_init);
2253 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
2254 return false;
2255 }
2256 }
2257 } else if (!Constructor->isDependentContext() &&
2258 !Constructor->isDelegatingConstructor()) {
2259 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases")(static_cast <bool> (RD->getNumVBases() == 0 &&
"constexpr ctor with virtual bases") ? void (0) : __assert_fail
("RD->getNumVBases() == 0 && \"constexpr ctor with virtual bases\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 2259, __extension__ __PRETTY_FUNCTION__))
;
2260
2261 // Skip detailed checking if we have enough initializers, and we would
2262 // allow at most one initializer per member.
2263 bool AnyAnonStructUnionMembers = false;
2264 unsigned Fields = 0;
2265 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
2266 E = RD->field_end(); I != E; ++I, ++Fields) {
2267 if (I->isAnonymousStructOrUnion()) {
2268 AnyAnonStructUnionMembers = true;
2269 break;
2270 }
2271 }
2272 // DR1460:
2273 // - if the class is a union-like class, but is not a union, for each of
2274 // its anonymous union members having variant members, exactly one of
2275 // them shall be initialized;
2276 if (AnyAnonStructUnionMembers ||
2277 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
2278 // Check initialization of non-static data members. Base classes are
2279 // always initialized so do not need to be checked. Dependent bases
2280 // might not have initializers in the member initializer list.
2281 llvm::SmallSet<Decl*, 16> Inits;
2282 for (const auto *I: Constructor->inits()) {
2283 if (FieldDecl *FD = I->getMember())
2284 Inits.insert(FD);
2285 else if (IndirectFieldDecl *ID = I->getIndirectMember())
2286 Inits.insert(ID->chain_begin(), ID->chain_end());
2287 }
2288
2289 bool Diagnosed = false;
2290 for (auto *I : RD->fields())
2291 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
2292 Kind))
2293 return false;
2294 }
2295 }
2296 } else {
2297 if (ReturnStmts.empty()) {
2298 // C++1y doesn't require constexpr functions to contain a 'return'
2299 // statement. We still do, unless the return type might be void, because
2300 // otherwise if there's no return statement, the function cannot
2301 // be used in a core constant expression.
2302 bool OK = SemaRef.getLangOpts().CPlusPlus14 &&
2303 (Dcl->getReturnType()->isVoidType() ||
2304 Dcl->getReturnType()->isDependentType());
2305 switch (Kind) {
2306 case Sema::CheckConstexprKind::Diagnose:
2307 SemaRef.Diag(Dcl->getLocation(),
2308 OK ? diag::warn_cxx11_compat_constexpr_body_no_return
2309 : diag::err_constexpr_body_no_return)
2310 << Dcl->isConsteval();
2311 if (!OK)
2312 return false;
2313 break;
2314
2315 case Sema::CheckConstexprKind::CheckValid:
2316 // The formal requirements don't include this rule in C++14, even
2317 // though the "must be able to produce a constant expression" rules
2318 // still imply it in some cases.
2319 if (!SemaRef.getLangOpts().CPlusPlus14)
2320 return false;
2321 break;
2322 }
2323 } else if (ReturnStmts.size() > 1) {
2324 switch (Kind) {
2325 case Sema::CheckConstexprKind::Diagnose:
2326 SemaRef.Diag(
2327 ReturnStmts.back(),
2328 SemaRef.getLangOpts().CPlusPlus14
2329 ? diag::warn_cxx11_compat_constexpr_body_multiple_return
2330 : diag::ext_constexpr_body_multiple_return);
2331 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
2332 SemaRef.Diag(ReturnStmts[I],
2333 diag::note_constexpr_body_previous_return);
2334 break;
2335
2336 case Sema::CheckConstexprKind::CheckValid:
2337 if (!SemaRef.getLangOpts().CPlusPlus14)
2338 return false;
2339 break;
2340 }
2341 }
2342 }
2343
2344 // C++11 [dcl.constexpr]p5:
2345 // if no function argument values exist such that the function invocation
2346 // substitution would produce a constant expression, the program is
2347 // ill-formed; no diagnostic required.
2348 // C++11 [dcl.constexpr]p3:
2349 // - every constructor call and implicit conversion used in initializing the
2350 // return value shall be one of those allowed in a constant expression.
2351 // C++11 [dcl.constexpr]p4:
2352 // - every constructor involved in initializing non-static data members and
2353 // base class sub-objects shall be a constexpr constructor.
2354 //
2355 // Note that this rule is distinct from the "requirements for a constexpr
2356 // function", so is not checked in CheckValid mode.
2357 SmallVector<PartialDiagnosticAt, 8> Diags;
2358 if (Kind == Sema::CheckConstexprKind::Diagnose &&
2359 !Expr::isPotentialConstantExpr(Dcl, Diags)) {
2360 SemaRef.Diag(Dcl->getLocation(),
2361 diag::ext_constexpr_function_never_constant_expr)
2362 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2363 for (size_t I = 0, N = Diags.size(); I != N; ++I)
2364 SemaRef.Diag(Diags[I].first, Diags[I].second);
2365 // Don't return false here: we allow this for compatibility in
2366 // system headers.
2367 }
2368
2369 return true;
2370}
2371
2372/// Get the class that is directly named by the current context. This is the
2373/// class for which an unqualified-id in this scope could name a constructor
2374/// or destructor.
2375///
2376/// If the scope specifier denotes a class, this will be that class.
2377/// If the scope specifier is empty, this will be the class whose
2378/// member-specification we are currently within. Otherwise, there
2379/// is no such class.
2380CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) {
2381 assert(getLangOpts().CPlusPlus && "No class names in C!")(static_cast <bool> (getLangOpts().CPlusPlus &&
"No class names in C!") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 2381, __extension__ __PRETTY_FUNCTION__))
;
2382
2383 if (SS && SS->isInvalid())
2384 return nullptr;
2385
2386 if (SS && SS->isNotEmpty()) {
2387 DeclContext *DC = computeDeclContext(*SS, true);
2388 return dyn_cast_or_null<CXXRecordDecl>(DC);
2389 }
2390
2391 return dyn_cast_or_null<CXXRecordDecl>(CurContext);
2392}
2393
2394/// isCurrentClassName - Determine whether the identifier II is the
2395/// name of the class type currently being defined. In the case of
2396/// nested classes, this will only return true if II is the name of
2397/// the innermost class.
2398bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S,
2399 const CXXScopeSpec *SS) {
2400 CXXRecordDecl *CurDecl = getCurrentClass(S, SS);
2401 return CurDecl && &II == CurDecl->getIdentifier();
2402}
2403
2404/// Determine whether the identifier II is a typo for the name of
2405/// the class type currently being defined. If so, update it to the identifier
2406/// that should have been used.
2407bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
2408 assert(getLangOpts().CPlusPlus && "No class names in C!")(static_cast <bool> (getLangOpts().CPlusPlus &&
"No class names in C!") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 2408, __extension__ __PRETTY_FUNCTION__))
;
2409
2410 if (!getLangOpts().SpellChecking)
2411 return false;
2412
2413 CXXRecordDecl *CurDecl;
2414 if (SS && SS->isSet() && !SS->isInvalid()) {
2415 DeclContext *DC = computeDeclContext(*SS, true);
2416 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2417 } else
2418 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2419
2420 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
2421 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
2422 < II->getLength()) {
2423 II = CurDecl->getIdentifier();
2424 return true;
2425 }
2426
2427 return false;
2428}
2429
2430/// Determine whether the given class is a base class of the given
2431/// class, including looking at dependent bases.
2432static bool findCircularInheritance(const CXXRecordDecl *Class,
2433 const CXXRecordDecl *Current) {
2434 SmallVector<const CXXRecordDecl*, 8> Queue;
2435
2436 Class = Class->getCanonicalDecl();
2437 while (true) {
2438 for (const auto &I : Current->bases()) {
2439 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
2440 if (!Base)
2441 continue;
2442
2443 Base = Base->getDefinition();
2444 if (!Base)
2445 continue;
2446
2447 if (Base->getCanonicalDecl() == Class)
2448 return true;
2449
2450 Queue.push_back(Base);
2451 }
2452
2453 if (Queue.empty())
2454 return false;
2455
2456 Current = Queue.pop_back_val();
2457 }
2458
2459 return false;
2460}
2461
2462/// Check the validity of a C++ base class specifier.
2463///
2464/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
2465/// and returns NULL otherwise.
2466CXXBaseSpecifier *
2467Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
2468 SourceRange SpecifierRange,
2469 bool Virtual, AccessSpecifier Access,
2470 TypeSourceInfo *TInfo,
2471 SourceLocation EllipsisLoc) {
2472 QualType BaseType = TInfo->getType();
2473 if (BaseType->containsErrors()) {
2474 // Already emitted a diagnostic when parsing the error type.
2475 return nullptr;
2476 }
2477 // C++ [class.union]p1:
2478 // A union shall not have base classes.
2479 if (Class->isUnion()) {
2480 Diag(Class->getLocation(), diag::err_base_clause_on_union)
2481 << SpecifierRange;
2482 return nullptr;
2483 }
2484
2485 if (EllipsisLoc.isValid() &&
2486 !TInfo->getType()->containsUnexpandedParameterPack()) {
2487 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2488 << TInfo->getTypeLoc().getSourceRange();
2489 EllipsisLoc = SourceLocation();
2490 }
2491
2492 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
2493
2494 if (BaseType->isDependentType()) {
2495 // Make sure that we don't have circular inheritance among our dependent
2496 // bases. For non-dependent bases, the check for completeness below handles
2497 // this.
2498 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
2499 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
2500 ((BaseDecl = BaseDecl->getDefinition()) &&
2501 findCircularInheritance(Class, BaseDecl))) {
2502 Diag(BaseLoc, diag::err_circular_inheritance)
2503 << BaseType << Context.getTypeDeclType(Class);
2504
2505 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
2506 Diag(BaseDecl->getLocation(), diag::note_previous_decl)
2507 << BaseType;
2508
2509 return nullptr;
2510 }
2511 }
2512
2513 // Make sure that we don't make an ill-formed AST where the type of the
2514 // Class is non-dependent and its attached base class specifier is an
2515 // dependent type, which violates invariants in many clang code paths (e.g.
2516 // constexpr evaluator). If this case happens (in errory-recovery mode), we
2517 // explicitly mark the Class decl invalid. The diagnostic was already
2518 // emitted.
2519 if (!Class->getTypeForDecl()->isDependentType())
2520 Class->setInvalidDecl();
2521 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2522 Class->getTagKind() == TTK_Class,
2523 Access, TInfo, EllipsisLoc);
2524 }
2525
2526 // Base specifiers must be record types.
2527 if (!BaseType->isRecordType()) {
2528 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
2529 return nullptr;
2530 }
2531
2532 // C++ [class.union]p1:
2533 // A union shall not be used as a base class.
2534 if (BaseType->isUnionType()) {
2535 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
2536 return nullptr;
2537 }
2538
2539 // For the MS ABI, propagate DLL attributes to base class templates.
2540 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2541 if (Attr *ClassAttr = getDLLAttr(Class)) {
2542 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
2543 BaseType->getAsCXXRecordDecl())) {
2544 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate,
2545 BaseLoc);
2546 }
2547 }
2548 }
2549
2550 // C++ [class.derived]p2:
2551 // The class-name in a base-specifier shall not be an incompletely
2552 // defined class.
2553 if (RequireCompleteType(BaseLoc, BaseType,
2554 diag::err_incomplete_base_class, SpecifierRange)) {
2555 Class->setInvalidDecl();
2556 return nullptr;
2557 }
2558
2559 // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
2560 RecordDecl *BaseDecl = BaseType->castAs<RecordType>()->getDecl();
2561 assert(BaseDecl && "Record type has no declaration")(static_cast <bool> (BaseDecl && "Record type has no declaration"
) ? void (0) : __assert_fail ("BaseDecl && \"Record type has no declaration\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 2561, __extension__ __PRETTY_FUNCTION__))
;
2562 BaseDecl = BaseDecl->getDefinition();
2563 assert(BaseDecl && "Base type is not incomplete, but has no definition")(static_cast <bool> (BaseDecl && "Base type is not incomplete, but has no definition"
) ? void (0) : __assert_fail ("BaseDecl && \"Base type is not incomplete, but has no definition\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 2563, __extension__ __PRETTY_FUNCTION__))
;
2564 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
2565 assert(CXXBaseDecl && "Base type is not a C++ type")(static_cast <bool> (CXXBaseDecl && "Base type is not a C++ type"
) ? void (0) : __assert_fail ("CXXBaseDecl && \"Base type is not a C++ type\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 2565, __extension__ __PRETTY_FUNCTION__))
;
2566
2567 // Microsoft docs say:
2568 // "If a base-class has a code_seg attribute, derived classes must have the
2569 // same attribute."
2570 const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>();
2571 const auto *DerivedCSA = Class->getAttr<CodeSegAttr>();
2572 if ((DerivedCSA || BaseCSA) &&
2573 (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) {
2574 Diag(Class->getLocation(), diag::err_mismatched_code_seg_base);
2575 Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here)
2576 << CXXBaseDecl;
2577 return nullptr;
2578 }
2579
2580 // A class which contains a flexible array member is not suitable for use as a
2581 // base class:
2582 // - If the layout determines that a base comes before another base,
2583 // the flexible array member would index into the subsequent base.
2584 // - If the layout determines that base comes before the derived class,
2585 // the flexible array member would index into the derived class.
2586 if (CXXBaseDecl->hasFlexibleArrayMember()) {
2587 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
2588 << CXXBaseDecl->getDeclName();
2589 return nullptr;
2590 }
2591
2592 // C++ [class]p3:
2593 // If a class is marked final and it appears as a base-type-specifier in
2594 // base-clause, the program is ill-formed.
2595 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
2596 Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
2597 << CXXBaseDecl->getDeclName()
2598 << FA->isSpelledAsSealed();
2599 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
2600 << CXXBaseDecl->getDeclName() << FA->getRange();
2601 return nullptr;
2602 }
2603
2604 if (BaseDecl->isInvalidDecl())
2605 Class->setInvalidDecl();
2606
2607 // Create the base specifier.
2608 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2609 Class->getTagKind() == TTK_Class,
2610 Access, TInfo, EllipsisLoc);
2611}
2612
2613/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
2614/// one entry in the base class list of a class specifier, for
2615/// example:
2616/// class foo : public bar, virtual private baz {
2617/// 'public bar' and 'virtual private baz' are each base-specifiers.
2618BaseResult
2619Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
2620 ParsedAttributes &Attributes,
2621 bool Virtual, AccessSpecifier Access,
2622 ParsedType basetype, SourceLocation BaseLoc,
2623 SourceLocation EllipsisLoc) {
2624 if (!classdecl)
2625 return true;
2626
2627 AdjustDeclIfTemplate(classdecl);
2628 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
2629 if (!Class)
2630 return true;
2631
2632 // We haven't yet attached the base specifiers.
2633 Class->setIsParsingBaseSpecifiers();
2634
2635 // We do not support any C++11 attributes on base-specifiers yet.
2636 // Diagnose any attributes we see.
2637 for (const ParsedAttr &AL : Attributes) {
2638 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
2639 continue;
2640 Diag(AL.getLoc(), AL.getKind() == ParsedAttr::UnknownAttribute
2641 ? (unsigned)diag::warn_unknown_attribute_ignored
2642 : (unsigned)diag::err_base_specifier_attribute)
2643 << AL << AL.getRange();
2644 }
2645
2646 TypeSourceInfo *TInfo = nullptr;
2647 GetTypeFromParser(basetype, &TInfo);
2648
2649 if (EllipsisLoc.isInvalid() &&
2650 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
2651 UPPC_BaseType))
2652 return true;
2653
2654 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
2655 Virtual, Access, TInfo,
2656 EllipsisLoc))
2657 return BaseSpec;
2658 else
2659 Class->setInvalidDecl();
2660
2661 return true;
2662}
2663
2664/// Use small set to collect indirect bases. As this is only used
2665/// locally, there's no need to abstract the small size parameter.
2666typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
2667
2668/// Recursively add the bases of Type. Don't add Type itself.
2669static void
2670NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
2671 const QualType &Type)
2672{
2673 // Even though the incoming type is a base, it might not be
2674 // a class -- it could be a template parm, for instance.
2675 if (auto Rec = Type->getAs<RecordType>()) {
2676 auto Decl = Rec->getAsCXXRecordDecl();
2677
2678 // Iterate over its bases.
2679 for (const auto &BaseSpec : Decl->bases()) {
2680 QualType Base = Context.getCanonicalType(BaseSpec.getType())
2681 .getUnqualifiedType();
2682 if (Set.insert(Base).second)
2683 // If we've not already seen it, recurse.
2684 NoteIndirectBases(Context, Set, Base);
2685 }
2686 }
2687}
2688
2689/// Performs the actual work of attaching the given base class
2690/// specifiers to a C++ class.
2691bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class,
2692 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2693 if (Bases.empty())
2694 return false;
2695
2696 // Used to keep track of which base types we have already seen, so
2697 // that we can properly diagnose redundant direct base types. Note
2698 // that the key is always the unqualified canonical type of the base
2699 // class.
2700 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
2701
2702 // Used to track indirect bases so we can see if a direct base is
2703 // ambiguous.
2704 IndirectBaseSet IndirectBaseTypes;
2705
2706 // Copy non-redundant base specifiers into permanent storage.
2707 unsigned NumGoodBases = 0;
2708 bool Invalid = false;
2709 for (unsigned idx = 0; idx < Bases.size(); ++idx) {
2710 QualType NewBaseType
2711 = Context.getCanonicalType(Bases[idx]->getType());
2712 NewBaseType = NewBaseType.getLocalUnqualifiedType();
2713
2714 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
2715 if (KnownBase) {
2716 // C++ [class.mi]p3:
2717 // A class shall not be specified as a direct base class of a
2718 // derived class more than once.
2719 Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class)
2720 << KnownBase->getType() << Bases[idx]->getSourceRange();
2721
2722 // Delete the duplicate base class specifier; we're going to
2723 // overwrite its pointer later.
2724 Context.Deallocate(Bases[idx]);
2725
2726 Invalid = true;
2727 } else {
2728 // Okay, add this new base class.
2729 KnownBase = Bases[idx];
2730 Bases[NumGoodBases++] = Bases[idx];
2731
2732 // Note this base's direct & indirect bases, if there could be ambiguity.
2733 if (Bases.size() > 1)
2734 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
2735
2736 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
2737 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2738 if (Class->isInterface() &&
2739 (!RD->isInterfaceLike() ||
2740 KnownBase->getAccessSpecifier() != AS_public)) {
2741 // The Microsoft extension __interface does not permit bases that
2742 // are not themselves public interfaces.
2743 Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface)
2744 << getRecordDiagFromTagKind(RD->getTagKind()) << RD
2745 << RD->getSourceRange();
2746 Invalid = true;
2747 }
2748 if (RD->hasAttr<WeakAttr>())
2749 Class->addAttr(WeakAttr::CreateImplicit(Context));
2750 }
2751 }
2752 }
2753
2754 // Attach the remaining base class specifiers to the derived class.
2755 Class->setBases(Bases.data(), NumGoodBases);
2756
2757 // Check that the only base classes that are duplicate are virtual.
2758 for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
2759 // Check whether this direct base is inaccessible due to ambiguity.
2760 QualType BaseType = Bases[idx]->getType();
2761
2762 // Skip all dependent types in templates being used as base specifiers.
2763 // Checks below assume that the base specifier is a CXXRecord.
2764 if (BaseType->isDependentType())
2765 continue;
2766
2767 CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
2768 .getUnqualifiedType();
2769
2770 if (IndirectBaseTypes.count(CanonicalBase)) {
2771 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2772 /*DetectVirtual=*/true);
2773 bool found
2774 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
2775 assert(found)(static_cast <bool> (found) ? void (0) : __assert_fail (
"found", "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 2775, __extension__ __PRETTY_FUNCTION__))
;
2776 (void)found;
2777
2778 if (Paths.isAmbiguous(CanonicalBase))
2779 Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class)
2780 << BaseType << getAmbiguousPathsDisplayString(Paths)
2781 << Bases[idx]->getSourceRange();
2782 else
2783 assert(Bases[idx]->isVirtual())(static_cast <bool> (Bases[idx]->isVirtual()) ? void
(0) : __assert_fail ("Bases[idx]->isVirtual()", "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 2783, __extension__ __PRETTY_FUNCTION__))
;
2784 }
2785
2786 // Delete the base class specifier, since its data has been copied
2787 // into the CXXRecordDecl.
2788 Context.Deallocate(Bases[idx]);
2789 }
2790
2791 return Invalid;
2792}
2793
2794/// ActOnBaseSpecifiers - Attach the given base specifiers to the
2795/// class, after checking whether there are any duplicate base
2796/// classes.
2797void Sema::ActOnBaseSpecifiers(Decl *ClassDecl,
2798 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2799 if (!ClassDecl || Bases.empty())
2800 return;
2801
2802 AdjustDeclIfTemplate(ClassDecl);
2803 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases);
2804}
2805
2806/// Determine whether the type \p Derived is a C++ class that is
2807/// derived from the type \p Base.
2808bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) {
2809 if (!getLangOpts().CPlusPlus)
2810 return false;
2811
2812 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2813 if (!DerivedRD)
2814 return false;
2815
2816 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2817 if (!BaseRD)
2818 return false;
2819
2820 // If either the base or the derived type is invalid, don't try to
2821 // check whether one is derived from the other.
2822 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
2823 return false;
2824
2825 // FIXME: In a modules build, do we need the entire path to be visible for us
2826 // to be able to use the inheritance relationship?
2827 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2828 return false;
2829
2830 return DerivedRD->isDerivedFrom(BaseRD);
2831}
2832
2833/// Determine whether the type \p Derived is a C++ class that is
2834/// derived from the type \p Base.
2835bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
2836 CXXBasePaths &Paths) {
2837 if (!getLangOpts().CPlusPlus)
2838 return false;
2839
2840 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2841 if (!DerivedRD)
2842 return false;
2843
2844 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2845 if (!BaseRD)
2846 return false;
2847
2848 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2849 return false;
2850
2851 return DerivedRD->isDerivedFrom(BaseRD, Paths);
2852}
2853
2854static void BuildBasePathArray(const CXXBasePath &Path,
2855 CXXCastPath &BasePathArray) {
2856 // We first go backward and check if we have a virtual base.
2857 // FIXME: It would be better if CXXBasePath had the base specifier for
2858 // the nearest virtual base.
2859 unsigned Start = 0;
2860 for (unsigned I = Path.size(); I != 0; --I) {
2861 if (Path[I - 1].Base->isVirtual()) {
2862 Start = I - 1;
2863 break;
2864 }
2865 }
2866
2867 // Now add all bases.
2868 for (unsigned I = Start, E = Path.size(); I != E; ++I)
2869 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
2870}
2871
2872
2873void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
2874 CXXCastPath &BasePathArray) {
2875 assert(BasePathArray.empty() && "Base path array must be empty!")(static_cast <bool> (BasePathArray.empty() && "Base path array must be empty!"
) ? void (0) : __assert_fail ("BasePathArray.empty() && \"Base path array must be empty!\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 2875, __extension__ __PRETTY_FUNCTION__))
;
2876 assert(Paths.isRecordingPaths() && "Must record paths!")(static_cast <bool> (Paths.isRecordingPaths() &&
"Must record paths!") ? void (0) : __assert_fail ("Paths.isRecordingPaths() && \"Must record paths!\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 2876, __extension__ __PRETTY_FUNCTION__))
;
2877 return ::BuildBasePathArray(Paths.front(), BasePathArray);
2878}
2879/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
2880/// conversion (where Derived and Base are class types) is
2881/// well-formed, meaning that the conversion is unambiguous (and
2882/// that all of the base classes are accessible). Returns true
2883/// and emits a diagnostic if the code is ill-formed, returns false
2884/// otherwise. Loc is the location where this routine should point to
2885/// if there is an error, and Range is the source range to highlight
2886/// if there is an error.
2887///
2888/// If either InaccessibleBaseID or AmbiguousBaseConvID are 0, then the
2889/// diagnostic for the respective type of error will be suppressed, but the
2890/// check for ill-formed code will still be performed.
2891bool
2892Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2893 unsigned InaccessibleBaseID,
2894 unsigned AmbiguousBaseConvID,
2895 SourceLocation Loc, SourceRange Range,
2896 DeclarationName Name,
2897 CXXCastPath *BasePath,
2898 bool IgnoreAccess) {
2899 // First, determine whether the path from Derived to Base is
2900 // ambiguous. This is slightly more expensive than checking whether
2901 // the Derived to Base conversion exists, because here we need to
2902 // explore multiple paths to determine if there is an ambiguity.
2903 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2904 /*DetectVirtual=*/false);
2905 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2906 if (!DerivationOkay)
2907 return true;
2908
2909 const CXXBasePath *Path = nullptr;
2910 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType()))
2911 Path = &Paths.front();
2912
2913 // For MSVC compatibility, check if Derived directly inherits from Base. Clang
2914 // warns about this hierarchy under -Winaccessible-base, but MSVC allows the
2915 // user to access such bases.
2916 if (!Path && getLangOpts().MSVCCompat) {
2917 for (const CXXBasePath &PossiblePath : Paths) {
2918 if (PossiblePath.size() == 1) {
2919 Path = &PossiblePath;
2920 if (AmbiguousBaseConvID)
2921 Diag(Loc, diag::ext_ms_ambiguous_direct_base)
2922 << Base << Derived << Range;
2923 break;
2924 }
2925 }
2926 }
2927
2928 if (Path) {
2929 if (!IgnoreAccess) {
2930 // Check that the base class can be accessed.
2931 switch (
2932 CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) {
2933 case AR_inaccessible:
2934 return true;
2935 case AR_accessible:
2936 case AR_dependent:
2937 case AR_delayed:
2938 break;
2939 }
2940 }
2941
2942 // Build a base path if necessary.
2943 if (BasePath)
2944 ::BuildBasePathArray(*Path, *BasePath);
2945 return false;
2946 }
2947
2948 if (AmbiguousBaseConvID) {
2949 // We know that the derived-to-base conversion is ambiguous, and
2950 // we're going to produce a diagnostic. Perform the derived-to-base
2951 // search just one more time to compute all of the possible paths so
2952 // that we can print them out. This is more expensive than any of
2953 // the previous derived-to-base checks we've done, but at this point
2954 // performance isn't as much of an issue.
2955 Paths.clear();
2956 Paths.setRecordingPaths(true);
2957 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2958 assert(StillOkay && "Can only be used with a derived-to-base conversion")(static_cast <bool> (StillOkay && "Can only be used with a derived-to-base conversion"
) ? void (0) : __assert_fail ("StillOkay && \"Can only be used with a derived-to-base conversion\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 2958, __extension__ __PRETTY_FUNCTION__))
;
2959 (void)StillOkay;
2960
2961 // Build up a textual representation of the ambiguous paths, e.g.,
2962 // D -> B -> A, that will be used to illustrate the ambiguous
2963 // conversions in the diagnostic. We only print one of the paths
2964 // to each base class subobject.
2965 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2966
2967 Diag(Loc, AmbiguousBaseConvID)
2968 << Derived << Base << PathDisplayStr << Range << Name;
2969 }
2970 return true;
2971}
2972
2973bool
2974Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2975 SourceLocation Loc, SourceRange Range,
2976 CXXCastPath *BasePath,
2977 bool IgnoreAccess) {
2978 return CheckDerivedToBaseConversion(
2979 Derived, Base, diag::err_upcast_to_inaccessible_base,
2980 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(),
2981 BasePath, IgnoreAccess);
2982}
2983
2984
2985/// Builds a string representing ambiguous paths from a
2986/// specific derived class to different subobjects of the same base
2987/// class.
2988///
2989/// This function builds a string that can be used in error messages
2990/// to show the different paths that one can take through the
2991/// inheritance hierarchy to go from the derived class to different
2992/// subobjects of a base class. The result looks something like this:
2993/// @code
2994/// struct D -> struct B -> struct A
2995/// struct D -> struct C -> struct A
2996/// @endcode
2997std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
2998 std::string PathDisplayStr;
2999 std::set<unsigned> DisplayedPaths;
3000 for (CXXBasePaths::paths_iterator Path = Paths.begin();
3001 Path != Paths.end(); ++Path) {
3002 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
3003 // We haven't displayed a path to this particular base
3004 // class subobject yet.
3005 PathDisplayStr += "\n ";
3006 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
3007 for (CXXBasePath::const_iterator Element = Path->begin();
3008 Element != Path->end(); ++Element)
3009 PathDisplayStr += " -> " + Element->Base->getType().getAsString();
3010 }
3011 }
3012
3013 return PathDisplayStr;
3014}
3015
3016//===----------------------------------------------------------------------===//
3017// C++ class member Handling
3018//===----------------------------------------------------------------------===//
3019
3020/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
3021bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc,
3022 SourceLocation ColonLoc,
3023 const ParsedAttributesView &Attrs) {
3024 assert(Access != AS_none && "Invalid kind for syntactic access specifier!")(static_cast <bool> (Access != AS_none && "Invalid kind for syntactic access specifier!"
) ? void (0) : __assert_fail ("Access != AS_none && \"Invalid kind for syntactic access specifier!\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 3024, __extension__ __PRETTY_FUNCTION__))
;
3025 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
3026 ASLoc, ColonLoc);
3027 CurContext->addHiddenDecl(ASDecl);
3028 return ProcessAccessDeclAttributeList(ASDecl, Attrs);
3029}
3030
3031/// CheckOverrideControl - Check C++11 override control semantics.
3032void Sema::CheckOverrideControl(NamedDecl *D) {
3033 if (D->isInvalidDecl())
3034 return;
3035
3036 // We only care about "override" and "final" declarations.
3037 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
3038 return;
3039
3040 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
3041
3042 // We can't check dependent instance methods.
3043 if (MD && MD->isInstance() &&
3044 (MD->getParent()->hasAnyDependentBases() ||
3045 MD->getType()->isDependentType()))
3046 return;
3047
3048 if (MD && !MD->isVirtual()) {
3049 // If we have a non-virtual method, check if if hides a virtual method.
3050 // (In that case, it's most likely the method has the wrong type.)
3051 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
3052 FindHiddenVirtualMethods(MD, OverloadedMethods);
3053
3054 if (!OverloadedMethods.empty()) {
3055 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
3056 Diag(OA->getLocation(),
3057 diag::override_keyword_hides_virtual_member_function)
3058 << "override" << (OverloadedMethods.size() > 1);
3059 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
3060 Diag(FA->getLocation(),
3061 diag::override_keyword_hides_virtual_member_function)
3062 << (FA->isSpelledAsSealed() ? "sealed" : "final")
3063 << (OverloadedMethods.size() > 1);
3064 }
3065 NoteHiddenVirtualMethods(MD, OverloadedMethods);
3066 MD->setInvalidDecl();
3067 return;
3068 }
3069 // Fall through into the general case diagnostic.
3070 // FIXME: We might want to attempt typo correction here.
3071 }
3072
3073 if (!MD || !MD->isVirtual()) {
3074 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
3075 Diag(OA->getLocation(),
3076 diag::override_keyword_only_allowed_on_virtual_member_functions)
3077 << "override" << FixItHint::CreateRemoval(OA->getLocation());
3078 D->dropAttr<OverrideAttr>();
3079 }
3080 if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
3081 Diag(FA->getLocation(),
3082 diag::override_keyword_only_allowed_on_virtual_member_functions)
3083 << (FA->isSpelledAsSealed() ? "sealed" : "final")
3084 << FixItHint::CreateRemoval(FA->getLocation());
3085 D->dropAttr<FinalAttr>();
3086 }
3087 return;
3088 }
3089
3090 // C++11 [class.virtual]p5:
3091 // If a function is marked with the virt-specifier override and
3092 // does not override a member function of a base class, the program is
3093 // ill-formed.
3094 bool HasOverriddenMethods = MD->size_overridden_methods() != 0;
3095 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
3096 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
3097 << MD->getDeclName();
3098}
3099
3100void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent) {
3101 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
3102 return;
3103 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
3104 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>())
3105 return;
3106
3107 SourceLocation Loc = MD->getLocation();
3108 SourceLocation SpellingLoc = Loc;
3109 if (getSourceManager().isMacroArgExpansion(Loc))
3110 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin();
3111 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
3112 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
3113 return;
3114
3115 if (MD->size_overridden_methods() > 0) {
3116 auto EmitDiag = [&](unsigned DiagInconsistent, unsigned DiagSuggest) {
3117 unsigned DiagID =
3118 Inconsistent && !Diags.isIgnored(DiagInconsistent, MD->getLocation())
3119 ? DiagInconsistent
3120 : DiagSuggest;
3121 Diag(MD->getLocation(), DiagID) << MD->getDeclName();
3122 const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
3123 Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
3124 };
3125 if (isa<CXXDestructorDecl>(MD))
3126 EmitDiag(
3127 diag::warn_inconsistent_destructor_marked_not_override_overriding,
3128 diag::warn_suggest_destructor_marked_not_override_overriding);
3129 else
3130 EmitDiag(diag::warn_inconsistent_function_marked_not_override_overriding,
3131 diag::warn_suggest_function_marked_not_override_overriding);
3132 }
3133}
3134
3135/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
3136/// function overrides a virtual member function marked 'final', according to
3137/// C++11 [class.virtual]p4.
3138bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
3139 const CXXMethodDecl *Old) {
3140 FinalAttr *FA = Old->getAttr<FinalAttr>();
3141 if (!FA)
3142 return false;
3143
3144 Diag(New->getLocation(), diag::err_final_function_overridden)
3145 << New->getDeclName()
3146 << FA->isSpelledAsSealed();
3147 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3148 return true;
3149}
3150
3151static bool InitializationHasSideEffects(const FieldDecl &FD) {
3152 const Type *T = FD.getType()->getBaseElementTypeUnsafe();
3153 // FIXME: Destruction of ObjC lifetime types has side-effects.
3154 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3155 return !RD->isCompleteDefinition() ||
3156 !RD->hasTrivialDefaultConstructor() ||
3157 !RD->hasTrivialDestructor();
3158 return false;
3159}
3160
3161static const ParsedAttr *getMSPropertyAttr(const ParsedAttributesView &list) {
3162 ParsedAttributesView::const_iterator Itr =
3163 llvm::find_if(list, [](const ParsedAttr &AL) {
3164 return AL.isDeclspecPropertyAttribute();
3165 });
3166 if (Itr != list.end())
3167 return &*Itr;
3168 return nullptr;
3169}
3170
3171// Check if there is a field shadowing.
3172void Sema::CheckShadowInheritedFields(const SourceLocation &Loc,
3173 DeclarationName FieldName,
3174 const CXXRecordDecl *RD,
3175 bool DeclIsField) {
3176 if (Diags.isIgnored(diag::warn_shadow_field, Loc))
3177 return;
3178
3179 // To record a shadowed field in a base
3180 std::map<CXXRecordDecl*, NamedDecl*> Bases;
3181 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier,
3182 CXXBasePath &Path) {
3183 const auto Base = Specifier->getType()->getAsCXXRecordDecl();
3184 // Record an ambiguous path directly
3185 if (Bases.find(Base) != Bases.end())
3186 return true;
3187 for (const auto Field : Base->lookup(FieldName)) {
3188 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) &&
3189 Field->getAccess() != AS_private) {
3190 assert(Field->getAccess() != AS_none)(static_cast <bool> (Field->getAccess() != AS_none) ?
void (0) : __assert_fail ("Field->getAccess() != AS_none"
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 3190, __extension__ __PRETTY_FUNCTION__))
;
3191 assert(Bases.find(Base) == Bases.end())(static_cast <bool> (Bases.find(Base) == Bases.end()) ?
void (0) : __assert_fail ("Bases.find(Base) == Bases.end()",
"/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 3191, __extension__ __PRETTY_FUNCTION__))
;
3192 Bases[Base] = Field;
3193 return true;
3194 }
3195 }
3196 return false;
3197 };
3198
3199 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3200 /*DetectVirtual=*/true);
3201 if (!RD->lookupInBases(FieldShadowed, Paths))
3202 return;
3203
3204 for (const auto &P : Paths) {
3205 auto Base = P.back().Base->getType()->getAsCXXRecordDecl();
3206 auto It = Bases.find(Base);
3207 // Skip duplicated bases
3208 if (It == Bases.end())
3209 continue;
3210 auto BaseField = It->second;
3211 assert(BaseField->getAccess() != AS_private)(static_cast <bool> (BaseField->getAccess() != AS_private
) ? void (0) : __assert_fail ("BaseField->getAccess() != AS_private"
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 3211, __extension__ __PRETTY_FUNCTION__))
;
3212 if (AS_none !=
3213 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) {
3214 Diag(Loc, diag::warn_shadow_field)
3215 << FieldName << RD << Base << DeclIsField;
3216 Diag(BaseField->getLocation(), diag::note_shadow_field);
3217 Bases.erase(It);
3218 }
3219 }
3220}
3221
3222/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
3223/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
3224/// bitfield width if there is one, 'InitExpr' specifies the initializer if
3225/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
3226/// present (but parsing it has been deferred).
3227NamedDecl *
3228Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
3229 MultiTemplateParamsArg TemplateParameterLists,
3230 Expr *BW, const VirtSpecifiers &VS,
3231 InClassInitStyle InitStyle) {
3232 const DeclSpec &DS = D.getDeclSpec();
3233 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3234 DeclarationName Name = NameInfo.getName();
3235 SourceLocation Loc = NameInfo.getLoc();
3236
3237 // For anonymous bitfields, the location should point to the type.
3238 if (Loc.isInvalid())
3239 Loc = D.getBeginLoc();
3240
3241 Expr *BitWidth = static_cast<Expr*>(BW);
3242
3243 assert(isa<CXXRecordDecl>(CurContext))(static_cast <bool> (isa<CXXRecordDecl>(CurContext
)) ? void (0) : __assert_fail ("isa<CXXRecordDecl>(CurContext)"
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 3243, __extension__ __PRETTY_FUNCTION__))
;
3244 assert(!DS.isFriendSpecified())(static_cast <bool> (!DS.isFriendSpecified()) ? void (0
) : __assert_fail ("!DS.isFriendSpecified()", "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 3244, __extension__ __PRETTY_FUNCTION__))
;
3245
3246 bool isFunc = D.isDeclarationOfFunction();
3247 const ParsedAttr *MSPropertyAttr =
3248 getMSPropertyAttr(D.getDeclSpec().getAttributes());
3249
3250 if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
3251 // The Microsoft extension __interface only permits public member functions
3252 // and prohibits constructors, destructors, operators, non-public member
3253 // functions, static methods and data members.
3254 unsigned InvalidDecl;
3255 bool ShowDeclName = true;
3256 if (!isFunc &&
3257 (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr))
3258 InvalidDecl = 0;
3259 else if (!isFunc)
3260 InvalidDecl = 1;
3261 else if (AS != AS_public)
3262 InvalidDecl = 2;
3263 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
3264 InvalidDecl = 3;
3265 else switch (Name.getNameKind()) {
3266 case DeclarationName::CXXConstructorName:
3267 InvalidDecl = 4;
3268 ShowDeclName = false;
3269 break;
3270
3271 case DeclarationName::CXXDestructorName:
3272 InvalidDecl = 5;
3273 ShowDeclName = false;
3274 break;
3275
3276 case DeclarationName::CXXOperatorName:
3277 case DeclarationName::CXXConversionFunctionName:
3278 InvalidDecl = 6;
3279 break;
3280
3281 default:
3282 InvalidDecl = 0;
3283 break;
3284 }
3285
3286 if (InvalidDecl) {
3287 if (ShowDeclName)
3288 Diag(Loc, diag::err_invalid_member_in_interface)
3289 << (InvalidDecl-1) << Name;
3290 else
3291 Diag(Loc, diag::err_invalid_member_in_interface)
3292 << (InvalidDecl-1) << "";
3293 return nullptr;
3294 }
3295 }
3296
3297 // C++ 9.2p6: A member shall not be declared to have automatic storage
3298 // duration (auto, register) or with the extern storage-class-specifier.
3299 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
3300 // data members and cannot be applied to names declared const or static,
3301 // and cannot be applied to reference members.
3302 switch (DS.getStorageClassSpec()) {
3303 case DeclSpec::SCS_unspecified:
3304 case DeclSpec::SCS_typedef:
3305 case DeclSpec::SCS_static:
3306 break;
3307 case DeclSpec::SCS_mutable:
3308 if (isFunc) {
3309 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
3310
3311 // FIXME: It would be nicer if the keyword was ignored only for this
3312 // declarator. Otherwise we could get follow-up errors.
3313 D.getMutableDeclSpec().ClearStorageClassSpecs();
3314 }
3315 break;
3316 default:
3317 Diag(DS.getStorageClassSpecLoc(),
3318 diag::err_storageclass_invalid_for_member);
3319 D.getMutableDeclSpec().ClearStorageClassSpecs();
3320 break;
3321 }
3322
3323 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
3324 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
3325 !isFunc);
3326
3327 if (DS.hasConstexprSpecifier() && isInstField) {
3328 SemaDiagnosticBuilder B =
3329 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
3330 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
3331 if (InitStyle == ICIS_NoInit) {
3332 B << 0 << 0;
3333 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
3334 B << FixItHint::CreateRemoval(ConstexprLoc);
3335 else {
3336 B << FixItHint::CreateReplacement(ConstexprLoc, "const");
3337 D.getMutableDeclSpec().ClearConstexprSpec();
3338 const char *PrevSpec;
3339 unsigned DiagID;
3340 bool Failed = D.getMutableDeclSpec().SetTypeQual(
3341 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
3342 (void)Failed;
3343 assert(!Failed && "Making a constexpr member const shouldn't fail")(static_cast <bool> (!Failed && "Making a constexpr member const shouldn't fail"
) ? void (0) : __assert_fail ("!Failed && \"Making a constexpr member const shouldn't fail\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 3343, __extension__ __PRETTY_FUNCTION__))
;
3344 }
3345 } else {
3346 B << 1;
3347 const char *PrevSpec;
3348 unsigned DiagID;
3349 if (D.getMutableDeclSpec().SetStorageClassSpec(
3350 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
3351 Context.getPrintingPolicy())) {
3352 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&(static_cast <bool> (DS.getStorageClassSpec() == DeclSpec
::SCS_mutable && "This is the only DeclSpec that should fail to be applied"
) ? void (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 3353, __extension__ __PRETTY_FUNCTION__))
3353 "This is the only DeclSpec that should fail to be applied")(static_cast <bool> (DS.getStorageClassSpec() == DeclSpec
::SCS_mutable && "This is the only DeclSpec that should fail to be applied"
) ? void (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 3353, __extension__ __PRETTY_FUNCTION__))
;
3354 B << 1;
3355 } else {
3356 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
3357 isInstField = false;
3358 }
3359 }
3360 }
3361
3362 NamedDecl *Member;
3363 if (isInstField) {
3364 CXXScopeSpec &SS = D.getCXXScopeSpec();
3365
3366 // Data members must have identifiers for names.
3367 if (!Name.isIdentifier()) {
3368 Diag(Loc, diag::err_bad_variable_name)
3369 << Name;
3370 return nullptr;
3371 }
3372
3373 IdentifierInfo *II = Name.getAsIdentifierInfo();
3374
3375 // Member field could not be with "template" keyword.
3376 // So TemplateParameterLists should be empty in this case.
3377 if (TemplateParameterLists.size()) {
3378 TemplateParameterList* TemplateParams = TemplateParameterLists[0];
3379 if (TemplateParams->size()) {
3380 // There is no such thing as a member field template.
3381 Diag(D.getIdentifierLoc(), diag::err_template_member)
3382 << II
3383 << SourceRange(TemplateParams->getTemplateLoc(),
3384 TemplateParams->getRAngleLoc());
3385 } else {
3386 // There is an extraneous 'template<>' for this member.
3387 Diag(TemplateParams->getTemplateLoc(),
3388 diag::err_template_member_noparams)
3389 << II
3390 << SourceRange(TemplateParams->getTemplateLoc(),
3391 TemplateParams->getRAngleLoc());
3392 }
3393 return nullptr;
3394 }
3395
3396 if (SS.isSet() && !SS.isInvalid()) {
3397 // The user provided a superfluous scope specifier inside a class
3398 // definition:
3399 //
3400 // class X {
3401 // int X::member;
3402 // };
3403 if (DeclContext *DC = computeDeclContext(SS, false))
3404 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(),
3405 D.getName().getKind() ==
3406 UnqualifiedIdKind::IK_TemplateId);
3407 else
3408 Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3409 << Name << SS.getRange();
3410
3411 SS.clear();
3412 }
3413
3414 if (MSPropertyAttr) {
3415 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3416 BitWidth, InitStyle, AS, *MSPropertyAttr);
3417 if (!Member)
3418 return nullptr;
3419 isInstField = false;
3420 } else {
3421 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3422 BitWidth, InitStyle, AS);
3423 if (!Member)
3424 return nullptr;
3425 }
3426
3427 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext));
3428 } else {
3429 Member = HandleDeclarator(S, D, TemplateParameterLists);
3430 if (!Member)
3431 return nullptr;
3432
3433 // Non-instance-fields can't have a bitfield.
3434 if (BitWidth) {
3435 if (Member->isInvalidDecl()) {
3436 // don't emit another diagnostic.
3437 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
3438 // C++ 9.6p3: A bit-field shall not be a static member.
3439 // "static member 'A' cannot be a bit-field"
3440 Diag(Loc, diag::err_static_not_bitfield)
3441 << Name << BitWidth->getSourceRange();
3442 } else if (isa<TypedefDecl>(Member)) {
3443 // "typedef member 'x' cannot be a bit-field"
3444 Diag(Loc, diag::err_typedef_not_bitfield)
3445 << Name << BitWidth->getSourceRange();
3446 } else {
3447 // A function typedef ("typedef int f(); f a;").
3448 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3449 Diag(Loc, diag::err_not_integral_type_bitfield)
3450 << Name << cast<ValueDecl>(Member)->getType()
3451 << BitWidth->getSourceRange();
3452 }
3453
3454 BitWidth = nullptr;
3455 Member->setInvalidDecl();
3456 }
3457
3458 NamedDecl *NonTemplateMember = Member;
3459 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
3460 NonTemplateMember = FunTmpl->getTemplatedDecl();
3461 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
3462 NonTemplateMember = VarTmpl->getTemplatedDecl();
3463
3464 Member->setAccess(AS);
3465
3466 // If we have declared a member function template or static data member
3467 // template, set the access of the templated declaration as well.
3468 if (NonTemplateMember != Member)
3469 NonTemplateMember->setAccess(AS);
3470
3471 // C++ [temp.deduct.guide]p3:
3472 // A deduction guide [...] for a member class template [shall be
3473 // declared] with the same access [as the template].
3474 if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) {
3475 auto *TD = DG->getDeducedTemplate();
3476 // Access specifiers are only meaningful if both the template and the
3477 // deduction guide are from the same scope.
3478 if (AS != TD->getAccess() &&
3479 TD->getDeclContext()->getRedeclContext()->Equals(
3480 DG->getDeclContext()->getRedeclContext())) {
3481 Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access);
3482 Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access)
3483 << TD->getAccess();
3484 const AccessSpecDecl *LastAccessSpec = nullptr;
3485 for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) {
3486 if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D))
3487 LastAccessSpec = AccessSpec;
3488 }
3489 assert(LastAccessSpec && "differing access with no access specifier")(static_cast <bool> (LastAccessSpec && "differing access with no access specifier"
) ? void (0) : __assert_fail ("LastAccessSpec && \"differing access with no access specifier\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 3489, __extension__ __PRETTY_FUNCTION__))
;
3490 Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access)
3491 << AS;
3492 }
3493 }
3494 }
3495
3496 if (VS.isOverrideSpecified())
3497 Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc(),
3498 AttributeCommonInfo::AS_Keyword));
3499 if (VS.isFinalSpecified())
3500 Member->addAttr(FinalAttr::Create(
3501 Context, VS.getFinalLoc(), AttributeCommonInfo::AS_Keyword,
3502 static_cast<FinalAttr::Spelling>(VS.isFinalSpelledSealed())));
3503
3504 if (VS.getLastLocation().isValid()) {
3505 // Update the end location of a method that has a virt-specifiers.
3506 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
3507 MD->setRangeEnd(VS.getLastLocation());
3508 }
3509
3510 CheckOverrideControl(Member);
3511
3512 assert((Name || isInstField) && "No identifier for non-field ?")(static_cast <bool> ((Name || isInstField) && "No identifier for non-field ?"
) ? void (0) : __assert_fail ("(Name || isInstField) && \"No identifier for non-field ?\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 3512, __extension__ __PRETTY_FUNCTION__))
;
3513
3514 if (isInstField) {
3515 FieldDecl *FD = cast<FieldDecl>(Member);
3516 FieldCollector->Add(FD);
3517
3518 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
3519 // Remember all explicit private FieldDecls that have a name, no side
3520 // effects and are not part of a dependent type declaration.
3521 if (!FD->isImplicit() && FD->getDeclName() &&
3522 FD->getAccess() == AS_private &&
3523 !FD->hasAttr<UnusedAttr>() &&
3524 !FD->getParent()->isDependentContext() &&
3525 !InitializationHasSideEffects(*FD))
3526 UnusedPrivateFields.insert(FD);
3527 }
3528 }
3529
3530 return Member;
3531}
3532
3533namespace {
3534 class UninitializedFieldVisitor
3535 : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
3536 Sema &S;
3537 // List of Decls to generate a warning on. Also remove Decls that become
3538 // initialized.
3539 llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
3540 // List of base classes of the record. Classes are removed after their
3541 // initializers.
3542 llvm::SmallPtrSetImpl<QualType> &BaseClasses;
3543 // Vector of decls to be removed from the Decl set prior to visiting the
3544 // nodes. These Decls may have been initialized in the prior initializer.
3545 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
3546 // If non-null, add a note to the warning pointing back to the constructor.
3547 const CXXConstructorDecl *Constructor;
3548 // Variables to hold state when processing an initializer list. When
3549 // InitList is true, special case initialization of FieldDecls matching
3550 // InitListFieldDecl.
3551 bool InitList;
3552 FieldDecl *InitListFieldDecl;
3553 llvm::SmallVector<unsigned, 4> InitFieldIndex;
3554
3555 public:
3556 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
3557 UninitializedFieldVisitor(Sema &S,
3558 llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
3559 llvm::SmallPtrSetImpl<QualType> &BaseClasses)
3560 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
3561 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
3562
3563 // Returns true if the use of ME is not an uninitialized use.
3564 bool IsInitListMemberExprInitialized(MemberExpr *ME,
3565 bool CheckReferenceOnly) {
3566 llvm::SmallVector<FieldDecl*, 4> Fields;
3567 bool ReferenceField = false;
3568 while (ME) {
3569 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
3570 if (!FD)
3571 return false;
3572 Fields.push_back(FD);
3573 if (FD->getType()->isReferenceType())
3574 ReferenceField = true;
3575 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
3576 }
3577
3578 // Binding a reference to an uninitialized field is not an
3579 // uninitialized use.
3580 if (CheckReferenceOnly && !ReferenceField)
3581 return true;
3582
3583 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
3584 // Discard the first field since it is the field decl that is being
3585 // initialized.
3586 for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) {
3587 UsedFieldIndex.push_back((*I)->getFieldIndex());
3588 }
3589
3590 for (auto UsedIter = UsedFieldIndex.begin(),
3591 UsedEnd = UsedFieldIndex.end(),
3592 OrigIter = InitFieldIndex.begin(),
3593 OrigEnd = InitFieldIndex.end();
3594 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
3595 if (*UsedIter < *OrigIter)
3596 return true;
3597 if (*UsedIter > *OrigIter)
3598 break;
3599 }
3600
3601 return false;
3602 }
3603
3604 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
3605 bool AddressOf) {
3606 if (isa<EnumConstantDecl>(ME->getMemberDecl()))
3607 return;
3608
3609 // FieldME is the inner-most MemberExpr that is not an anonymous struct
3610 // or union.
3611 MemberExpr *FieldME = ME;
3612
3613 bool AllPODFields = FieldME->getType().isPODType(S.Context);
3614
3615 Expr *Base = ME;
3616 while (MemberExpr *SubME =
3617 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
3618
3619 if (isa<VarDecl>(SubME->getMemberDecl()))
3620 return;
3621
3622 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
3623 if (!FD->isAnonymousStructOrUnion())
3624 FieldME = SubME;
3625
3626 if (!FieldME->getType().isPODType(S.Context))
3627 AllPODFields = false;
3628
3629 Base = SubME->getBase();
3630 }
3631
3632 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts())) {
3633 Visit(Base);
3634 return;
3635 }
3636
3637 if (AddressOf && AllPODFields)
3638 return;
3639
3640 ValueDecl* FoundVD = FieldME->getMemberDecl();
3641
3642 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
3643 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
3644 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
3645 }
3646
3647 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
3648 QualType T = BaseCast->getType();
3649 if (T->isPointerType() &&
3650 BaseClasses.count(T->getPointeeType())) {
3651 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
3652 << T->getPointeeType() << FoundVD;
3653 }
3654 }
3655 }
3656
3657 if (!Decls.count(FoundVD))
3658 return;
3659
3660 const bool IsReference = FoundVD->getType()->isReferenceType();
3661
3662 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
3663 // Special checking for initializer lists.
3664 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
3665 return;
3666 }
3667 } else {
3668 // Prevent double warnings on use of unbounded references.
3669 if (CheckReferenceOnly && !IsReference)
3670 return;
3671 }
3672
3673 unsigned diag = IsReference
3674 ? diag::warn_reference_field_is_uninit
3675 : diag::warn_field_is_uninit;
3676 S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
3677 if (Constructor)
3678 S.Diag(Constructor->getLocation(),
3679 diag::note_uninit_in_this_constructor)
3680 << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
3681
3682 }
3683
3684 void HandleValue(Expr *E, bool AddressOf) {
3685 E = E->IgnoreParens();
3686
3687 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3688 HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
3689 AddressOf /*AddressOf*/);
3690 return;
3691 }
3692
3693 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3694 Visit(CO->getCond());
3695 HandleValue(CO->getTrueExpr(), AddressOf);
3696 HandleValue(CO->getFalseExpr(), AddressOf);
3697 return;
3698 }
3699
3700 if (BinaryConditionalOperator *BCO =
3701 dyn_cast<BinaryConditionalOperator>(E)) {
3702 Visit(BCO->getCond());
3703 HandleValue(BCO->getFalseExpr(), AddressOf);
3704 return;
3705 }
3706
3707 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
3708 HandleValue(OVE->getSourceExpr(), AddressOf);
3709 return;
3710 }
3711
3712 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3713 switch (BO->getOpcode()) {
3714 default:
3715 break;
3716 case(BO_PtrMemD):
3717 case(BO_PtrMemI):
3718 HandleValue(BO->getLHS(), AddressOf);
3719 Visit(BO->getRHS());
3720 return;
3721 case(BO_Comma):
3722 Visit(BO->getLHS());
3723 HandleValue(BO->getRHS(), AddressOf);
3724 return;
3725 }
3726 }
3727
3728 Visit(E);
3729 }
3730
3731 void CheckInitListExpr(InitListExpr *ILE) {
3732 InitFieldIndex.push_back(0);
3733 for (auto Child : ILE->children()) {
3734 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
3735 CheckInitListExpr(SubList);
3736 } else {
3737 Visit(Child);
3738 }
3739 ++InitFieldIndex.back();
3740 }
3741 InitFieldIndex.pop_back();
3742 }
3743
3744 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
3745 FieldDecl *Field, const Type *BaseClass) {
3746 // Remove Decls that may have been initialized in the previous
3747 // initializer.
3748 for (ValueDecl* VD : DeclsToRemove)
3749 Decls.erase(VD);
3750 DeclsToRemove.clear();
3751
3752 Constructor = FieldConstructor;
3753 InitListExpr *ILE = dyn_cast<InitListExpr>(E);
3754
3755 if (ILE && Field) {
3756 InitList = true;
3757 InitListFieldDecl = Field;
3758 InitFieldIndex.clear();
3759 CheckInitListExpr(ILE);
3760 } else {
3761 InitList = false;
3762 Visit(E);
3763 }
3764
3765 if (Field)
3766 Decls.erase(Field);
3767 if (BaseClass)
3768 BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
3769 }
3770
3771 void VisitMemberExpr(MemberExpr *ME) {
3772 // All uses of unbounded reference fields will warn.
3773 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
3774 }
3775
3776 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
3777 if (E->getCastKind() == CK_LValueToRValue) {
3778 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3779 return;
3780 }
3781
3782 Inherited::VisitImplicitCastExpr(E);
3783 }
3784
3785 void VisitCXXConstructExpr(CXXConstructExpr *E) {
3786 if (E->getConstructor()->isCopyConstructor()) {
3787 Expr *ArgExpr = E->getArg(0);
3788 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
3789 if (ILE->getNumInits() == 1)
3790 ArgExpr = ILE->getInit(0);
3791 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
3792 if (ICE->getCastKind() == CK_NoOp)
3793 ArgExpr = ICE->getSubExpr();
3794 HandleValue(ArgExpr, false /*AddressOf*/);
3795 return;
3796 }
3797 Inherited::VisitCXXConstructExpr(E);
3798 }
3799
3800 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3801 Expr *Callee = E->getCallee();
3802 if (isa<MemberExpr>(Callee)) {
3803 HandleValue(Callee, false /*AddressOf*/);
3804 for (auto Arg : E->arguments())
3805 Visit(Arg);
3806 return;
3807 }
3808
3809 Inherited::VisitCXXMemberCallExpr(E);
3810 }
3811
3812 void VisitCallExpr(CallExpr *E) {
3813 // Treat std::move as a use.
3814 if (E->isCallToStdMove()) {
3815 HandleValue(E->getArg(0), /*AddressOf=*/false);
3816 return;
3817 }
3818
3819 Inherited::VisitCallExpr(E);
3820 }
3821
3822 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
3823 Expr *Callee = E->getCallee();
3824
3825 if (isa<UnresolvedLookupExpr>(Callee))
3826 return Inherited::VisitCXXOperatorCallExpr(E);
3827
3828 Visit(Callee);
3829 for (auto Arg : E->arguments())
3830 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
3831 }
3832
3833 void VisitBinaryOperator(BinaryOperator *E) {
3834 // If a field assignment is detected, remove the field from the
3835 // uninitiailized field set.
3836 if (E->getOpcode() == BO_Assign)
3837 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
3838 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3839 if (!FD->getType()->isReferenceType())
3840 DeclsToRemove.push_back(FD);
3841
3842 if (E->isCompoundAssignmentOp()) {
3843 HandleValue(E->getLHS(), false /*AddressOf*/);
3844 Visit(E->getRHS());
3845 return;
3846 }
3847
3848 Inherited::VisitBinaryOperator(E);
3849 }
3850
3851 void VisitUnaryOperator(UnaryOperator *E) {
3852 if (E->isIncrementDecrementOp()) {
3853 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3854 return;
3855 }
3856 if (E->getOpcode() == UO_AddrOf) {
3857 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
3858 HandleValue(ME->getBase(), true /*AddressOf*/);
3859 return;
3860 }
3861 }
3862
3863 Inherited::VisitUnaryOperator(E);
3864 }
3865 };
3866
3867 // Diagnose value-uses of fields to initialize themselves, e.g.
3868 // foo(foo)
3869 // where foo is not also a parameter to the constructor.
3870 // Also diagnose across field uninitialized use such as
3871 // x(y), y(x)
3872 // TODO: implement -Wuninitialized and fold this into that framework.
3873 static void DiagnoseUninitializedFields(
3874 Sema &SemaRef, const CXXConstructorDecl *Constructor) {
3875
3876 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
3877 Constructor->getLocation())) {
3878 return;
3879 }
3880
3881 if (Constructor->isInvalidDecl())
3882 return;
3883
3884 const CXXRecordDecl *RD = Constructor->getParent();
3885
3886 if (RD->isDependentContext())
3887 return;
3888
3889 // Holds fields that are uninitialized.
3890 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
3891
3892 // At the beginning, all fields are uninitialized.
3893 for (auto *I : RD->decls()) {
3894 if (auto *FD = dyn_cast<FieldDecl>(I)) {
3895 UninitializedFields.insert(FD);
3896 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
3897 UninitializedFields.insert(IFD->getAnonField());
3898 }
3899 }
3900
3901 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
3902 for (auto I : RD->bases())
3903 UninitializedBaseClasses.insert(I.getType().getCanonicalType());
3904
3905 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3906 return;
3907
3908 UninitializedFieldVisitor UninitializedChecker(SemaRef,
3909 UninitializedFields,
3910 UninitializedBaseClasses);
3911
3912 for (const auto *FieldInit : Constructor->inits()) {
3913 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3914 break;
3915
3916 Expr *InitExpr = FieldInit->getInit();
3917 if (!InitExpr)
3918 continue;
3919
3920 if (CXXDefaultInitExpr *Default =
3921 dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
3922 InitExpr = Default->getExpr();
3923 if (!InitExpr)
3924 continue;
3925 // In class initializers will point to the constructor.
3926 UninitializedChecker.CheckInitializer(InitExpr, Constructor,
3927 FieldInit->getAnyMember(),
3928 FieldInit->getBaseClass());
3929 } else {
3930 UninitializedChecker.CheckInitializer(InitExpr, nullptr,
3931 FieldInit->getAnyMember(),
3932 FieldInit->getBaseClass());
3933 }
3934 }
3935 }
3936} // namespace
3937
3938/// Enter a new C++ default initializer scope. After calling this, the
3939/// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
3940/// parsing or instantiating the initializer failed.
3941void Sema::ActOnStartCXXInClassMemberInitializer() {
3942 // Create a synthetic function scope to represent the call to the constructor
3943 // that notionally surrounds a use of this initializer.
3944 PushFunctionScope();
3945}
3946
3947void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) {
3948 if (!D.isFunctionDeclarator())
3949 return;
3950 auto &FTI = D.getFunctionTypeInfo();
3951 if (!FTI.Params)
3952 return;
3953 for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params,
3954 FTI.NumParams)) {
3955 auto *ParamDecl = cast<NamedDecl>(Param.Param);
3956 if (ParamDecl->getDeclName())
3957 PushOnScopeChains(ParamDecl, S, /*AddToContext=*/false);
3958 }
3959}
3960
3961ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) {
3962 return ActOnRequiresClause(ConstraintExpr);
3963}
3964
3965ExprResult Sema::ActOnRequiresClause(ExprResult ConstraintExpr) {
3966 if (ConstraintExpr.isInvalid())
3967 return ExprError();
3968
3969 ConstraintExpr = CorrectDelayedTyposInExpr(ConstraintExpr);
3970 if (ConstraintExpr.isInvalid())
3971 return ExprError();
3972
3973 if (DiagnoseUnexpandedParameterPack(ConstraintExpr.get(),
3974 UPPC_RequiresClause))
3975 return ExprError();
3976
3977 return ConstraintExpr;
3978}
3979
3980/// This is invoked after parsing an in-class initializer for a
3981/// non-static C++ class member, and after instantiating an in-class initializer
3982/// in a class template. Such actions are deferred until the class is complete.
3983void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
3984 SourceLocation InitLoc,
3985 Expr *InitExpr) {
3986 // Pop the notional constructor scope we created earlier.
3987 PopFunctionScopeInfo(nullptr, D);
3988
3989 FieldDecl *FD = dyn_cast<FieldDecl>(D);
3990 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&(static_cast <bool> ((isa<MSPropertyDecl>(D) || FD
->getInClassInitStyle() != ICIS_NoInit) && "must set init style when field is created"
) ? void (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 3991, __extension__ __PRETTY_FUNCTION__))
3991 "must set init style when field is created")(static_cast <bool> ((isa<MSPropertyDecl>(D) || FD
->getInClassInitStyle() != ICIS_NoInit) && "must set init style when field is created"
) ? void (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 3991, __extension__ __PRETTY_FUNCTION__))
;
3992
3993 if (!InitExpr) {
3994 D->setInvalidDecl();
3995 if (FD)
3996 FD->removeInClassInitializer();
3997 return;
3998 }
3999
4000 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
4001 FD->setInvalidDecl();
4002 FD->removeInClassInitializer();
4003 return;
4004 }
4005
4006 ExprResult Init = InitExpr;
4007 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
4008 InitializedEntity Entity =
4009 InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD);
4010 InitializationKind Kind =
4011 FD->getInClassInitStyle() == ICIS_ListInit
4012 ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(),
4013 InitExpr->getBeginLoc(),
4014 InitExpr->getEndLoc())
4015 : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc);
4016 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
4017 Init = Seq.Perform(*this, Entity, Kind, InitExpr);
4018 if (Init.isInvalid()) {
4019 FD->setInvalidDecl();
4020 return;
4021 }
4022 }
4023
4024 // C++11 [class.base.init]p7:
4025 // The initialization of each base and member constitutes a
4026 // full-expression.
4027 Init = ActOnFinishFullExpr(Init.get(), InitLoc, /*DiscardedValue*/ false);
4028 if (Init.isInvalid()) {
4029 FD->setInvalidDecl();
4030 return;
4031 }
4032
4033 InitExpr = Init.get();
4034
4035 FD->setInClassInitializer(InitExpr);
4036}
4037
4038/// Find the direct and/or virtual base specifiers that
4039/// correspond to the given base type, for use in base initialization
4040/// within a constructor.
4041static bool FindBaseInitializer(Sema &SemaRef,
4042 CXXRecordDecl *ClassDecl,
4043 QualType BaseType,
4044 const CXXBaseSpecifier *&DirectBaseSpec,
4045 const CXXBaseSpecifier *&VirtualBaseSpec) {
4046 // First, check for a direct base class.
4047 DirectBaseSpec = nullptr;
4048 for (const auto &Base : ClassDecl->bases()) {
4049 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
4050 // We found a direct base of this type. That's what we're
4051 // initializing.
4052 DirectBaseSpec = &Base;
4053 break;
4054 }
4055 }
4056
4057 // Check for a virtual base class.
4058 // FIXME: We might be able to short-circuit this if we know in advance that
4059 // there are no virtual bases.
4060 VirtualBaseSpec = nullptr;
4061 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
4062 // We haven't found a base yet; search the class hierarchy for a
4063 // virtual base class.
4064 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
4065 /*DetectVirtual=*/false);
4066 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(),
4067 SemaRef.Context.getTypeDeclType(ClassDecl),
4068 BaseType, Paths)) {
4069 for (CXXBasePaths::paths_iterator Path = Paths.begin();
4070 Path != Paths.end(); ++Path) {
4071 if (Path->back().Base->isVirtual()) {
4072 VirtualBaseSpec = Path->back().Base;
4073 break;
4074 }
4075 }
4076 }
4077 }
4078
4079 return DirectBaseSpec || VirtualBaseSpec;
4080}
4081
4082/// Handle a C++ member initializer using braced-init-list syntax.
4083MemInitResult
4084Sema::ActOnMemInitializer(Decl *ConstructorD,
4085 Scope *S,
4086 CXXScopeSpec &SS,
4087 IdentifierInfo *MemberOrBase,
4088 ParsedType TemplateTypeTy,
4089 const DeclSpec &DS,
4090 SourceLocation IdLoc,
4091 Expr *InitList,
4092 SourceLocation EllipsisLoc) {
4093 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4094 DS, IdLoc, InitList,
4095 EllipsisLoc);
4096}
4097
4098/// Handle a C++ member initializer using parentheses syntax.
4099MemInitResult
4100Sema::ActOnMemInitializer(Decl *ConstructorD,
4101 Scope *S,
4102 CXXScopeSpec &SS,
4103 IdentifierInfo *MemberOrBase,
4104 ParsedType TemplateTypeTy,
4105 const DeclSpec &DS,
4106 SourceLocation IdLoc,
4107 SourceLocation LParenLoc,
4108 ArrayRef<Expr *> Args,
4109 SourceLocation RParenLoc,
4110 SourceLocation EllipsisLoc) {
4111 Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc);
4112 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4113 DS, IdLoc, List, EllipsisLoc);
4114}
4115
4116namespace {
4117
4118// Callback to only accept typo corrections that can be a valid C++ member
4119// initializer: either a non-static field member or a base class.
4120class MemInitializerValidatorCCC final : public CorrectionCandidateCallback {
4121public:
4122 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
4123 : ClassDecl(ClassDecl) {}
4124
4125 bool ValidateCandidate(const TypoCorrection &candidate) override {
4126 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
4127 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
4128 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
4129 return isa<TypeDecl>(ND);
4130 }
4131 return false;
4132 }
4133
4134 std::unique_ptr<CorrectionCandidateCallback> clone() override {
4135 return std::make_unique<MemInitializerValidatorCCC>(*this);
4136 }
4137
4138private:
4139 CXXRecordDecl *ClassDecl;
4140};
4141
4142}
4143
4144ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl,
4145 CXXScopeSpec &SS,
4146 ParsedType TemplateTypeTy,
4147 IdentifierInfo *MemberOrBase) {
4148 if (SS.getScopeRep() || TemplateTypeTy)
4149 return nullptr;
4150 for (auto *D : ClassDecl->lookup(MemberOrBase))
4151 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D))
4152 return cast<ValueDecl>(D);
4153 return nullptr;
4154}
4155
4156/// Handle a C++ member initializer.
4157MemInitResult
4158Sema::BuildMemInitializer(Decl *ConstructorD,
4159 Scope *S,
4160 CXXScopeSpec &SS,
4161 IdentifierInfo *MemberOrBase,
4162 ParsedType TemplateTypeTy,
4163 const DeclSpec &DS,
4164 SourceLocation IdLoc,
4165 Expr *Init,
4166 SourceLocation EllipsisLoc) {
4167 ExprResult Res = CorrectDelayedTyposInExpr(Init, /*InitDecl=*/nullptr,
4168 /*RecoverUncorrectedTypos=*/true);
4169 if (!Res.isUsable())
4170 return true;
4171 Init = Res.get();
4172
4173 if (!ConstructorD)
4174 return true;
4175
4176 AdjustDeclIfTemplate(ConstructorD);
4177
4178 CXXConstructorDecl *Constructor
4179 = dyn_cast<CXXConstructorDecl>(ConstructorD);
4180 if (!Constructor) {
4181 // The user wrote a constructor initializer on a function that is
4182 // not a C++ constructor. Ignore the error for now, because we may
4183 // have more member initializers coming; we'll diagnose it just
4184 // once in ActOnMemInitializers.
4185 return true;
4186 }
4187
4188 CXXRecordDecl *ClassDecl = Constructor->getParent();
4189
4190 // C++ [class.base.init]p2:
4191 // Names in a mem-initializer-id are looked up in the scope of the
4192 // constructor's class and, if not found in that scope, are looked
4193 // up in the scope containing the constructor's definition.
4194 // [Note: if the constructor's class contains a member with the
4195 // same name as a direct or virtual base class of the class, a
4196 // mem-initializer-id naming the member or base class and composed
4197 // of a single identifier refers to the class member. A
4198 // mem-initializer-id for the hidden base class may be specified
4199 // using a qualified name. ]
4200
4201 // Look for a member, first.
4202 if (ValueDecl *Member = tryLookupCtorInitMemberDecl(
4203 ClassDecl, SS, TemplateTypeTy, MemberOrBase)) {
4204 if (EllipsisLoc.isValid())
4205 Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
4206 << MemberOrBase
4207 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
4208
4209 return BuildMemberInitializer(Member, Init, IdLoc);
4210 }
4211 // It didn't name a member, so see if it names a class.
4212 QualType BaseType;
4213 TypeSourceInfo *TInfo = nullptr;
4214
4215 if (TemplateTypeTy) {
4216 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
4217 if (BaseType.isNull())
4218 return true;
4219 } else if (DS.getTypeSpecType() == TST_decltype) {
4220 BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
4221 } else if (DS.getTypeSpecType() == TST_decltype_auto) {
4222 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
4223 return true;
4224 } else {
4225 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
4226 LookupParsedName(R, S, &SS);
4227
4228 TypeDecl *TyD = R.getAsSingle<TypeDecl>();
4229 if (!TyD) {
4230 if (R.isAmbiguous()) return true;
4231
4232 // We don't want access-control diagnostics here.
4233 R.suppressDiagnostics();
4234
4235 if (SS.isSet() && isDependentScopeSpecifier(SS)) {
4236 bool NotUnknownSpecialization = false;
4237 DeclContext *DC = computeDeclContext(SS, false);
4238 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
4239 NotUnknownSpecialization = !Record->hasAnyDependentBases();
4240
4241 if (!NotUnknownSpecialization) {
4242 // When the scope specifier can refer to a member of an unknown
4243 // specialization, we take it as a type name.
4244 BaseType = CheckTypenameType(ETK_None, SourceLocation(),
4245 SS.getWithLocInContext(Context),
4246 *MemberOrBase, IdLoc);
4247 if (BaseType.isNull())
4248 return true;
4249
4250 TInfo = Context.CreateTypeSourceInfo(BaseType);
4251 DependentNameTypeLoc TL =
4252 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>();
4253 if (!TL.isNull()) {
4254 TL.setNameLoc(IdLoc);
4255 TL.setElaboratedKeywordLoc(SourceLocation());
4256 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4257 }
4258
4259 R.clear();
4260 R.setLookupName(MemberOrBase);
4261 }
4262 }
4263
4264 // If no results were found, try to correct typos.
4265 TypoCorrection Corr;
4266 MemInitializerValidatorCCC CCC(ClassDecl);
4267 if (R.empty() && BaseType.isNull() &&
4268 (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
4269 CCC, CTK_ErrorRecovery, ClassDecl))) {
4270 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
4271 // We have found a non-static data member with a similar
4272 // name to what was typed; complain and initialize that
4273 // member.
4274 diagnoseTypo(Corr,
4275 PDiag(diag::err_mem_init_not_member_or_class_suggest)
4276 << MemberOrBase << true);
4277 return BuildMemberInitializer(Member, Init, IdLoc);
4278 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
4279 const CXXBaseSpecifier *DirectBaseSpec;
4280 const CXXBaseSpecifier *VirtualBaseSpec;
4281 if (FindBaseInitializer(*this, ClassDecl,
4282 Context.getTypeDeclType(Type),
4283 DirectBaseSpec, VirtualBaseSpec)) {
4284 // We have found a direct or virtual base class with a
4285 // similar name to what was typed; complain and initialize
4286 // that base class.
4287 diagnoseTypo(Corr,
4288 PDiag(diag::err_mem_init_not_member_or_class_suggest)
4289 << MemberOrBase << false,
4290 PDiag() /*Suppress note, we provide our own.*/);
4291
4292 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
4293 : VirtualBaseSpec;
4294 Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here)
4295 << BaseSpec->getType() << BaseSpec->getSourceRange();
4296
4297 TyD = Type;
4298 }
4299 }
4300 }
4301
4302 if (!TyD && BaseType.isNull()) {
4303 Diag(IdLoc, diag::err_mem_init_not_member_or_class)
4304 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
4305 return true;
4306 }
4307 }
4308
4309 if (BaseType.isNull()) {
4310 BaseType = Context.getTypeDeclType(TyD);
4311 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
4312 if (SS.isSet()) {
4313 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
4314 BaseType);
4315 TInfo = Context.CreateTypeSourceInfo(BaseType);
4316 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>();
4317 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
4318 TL.setElaboratedKeywordLoc(SourceLocation());
4319 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4320 }
4321 }
4322 }
4323
4324 if (!TInfo)
4325 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
4326
4327 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
4328}
4329
4330MemInitResult
4331Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
4332 SourceLocation IdLoc) {
4333 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
4334 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
4335 assert((DirectMember || IndirectMember) &&(static_cast <bool> ((DirectMember || IndirectMember) &&
"Member must be a FieldDecl or IndirectFieldDecl") ? void (0
) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 4336, __extension__ __PRETTY_FUNCTION__))
4336 "Member must be a FieldDecl or IndirectFieldDecl")(static_cast <bool> ((DirectMember || IndirectMember) &&
"Member must be a FieldDecl or IndirectFieldDecl") ? void (0
) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 4336, __extension__ __PRETTY_FUNCTION__))
;
4337
4338 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4339 return true;
4340
4341 if (Member->isInvalidDecl())
4342 return true;
4343
4344 MultiExprArg Args;
4345 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4346 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4347 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
4348 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
4349 } else {
4350 // Template instantiation doesn't reconstruct ParenListExprs for us.
4351 Args = Init;
4352 }
4353
4354 SourceRange InitRange = Init->getSourceRange();
4355
4356 if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
4357 // Can't check initialization for a member of dependent type or when
4358 // any of the arguments are type-dependent expressions.
4359 DiscardCleanupsInEvaluationContext();
4360 } else {
4361 bool InitList = false;
4362 if (isa<InitListExpr>(Init)) {
4363 InitList = true;
4364 Args = Init;
4365 }
4366
4367 // Initialize the member.
4368 InitializedEntity MemberEntity =
4369 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
4370 : InitializedEntity::InitializeMember(IndirectMember,
4371 nullptr);
4372 InitializationKind Kind =
4373 InitList ? InitializationKind::CreateDirectList(
4374 IdLoc, Init->getBeginLoc(), Init->getEndLoc())
4375 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
4376 InitRange.getEnd());
4377
4378 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
4379 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
4380 nullptr);
4381 if (!MemberInit.isInvalid()) {
4382 // C++11 [class.base.init]p7:
4383 // The initialization of each base and member constitutes a
4384 // full-expression.
4385 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(),
4386 /*DiscardedValue*/ false);
4387 }
4388
4389 if (MemberInit.isInvalid()) {
4390 // Args were sensible expressions but we couldn't initialize the member
4391 // from them. Preserve them in a RecoveryExpr instead.
4392 Init = CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), Args,
4393 Member->getType())
4394 .get();
4395 if (!Init)
4396 return true;
4397 } else {
4398 Init = MemberInit.get();
4399 }
4400 }
4401
4402 if (DirectMember) {
4403 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
4404 InitRange.getBegin(), Init,
4405 InitRange.getEnd());
4406 } else {
4407 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
4408 InitRange.getBegin(), Init,
4409 InitRange.getEnd());
4410 }
4411}
4412
4413MemInitResult
4414Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
4415 CXXRecordDecl *ClassDecl) {
4416 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
4417 if (!LangOpts.CPlusPlus11)
4418 return Diag(NameLoc, diag::err_delegating_ctor)
4419 << TInfo->getTypeLoc().getLocalSourceRange();
4420 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
4421
4422 bool InitList = true;
4423 MultiExprArg Args = Init;
4424 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4425 InitList = false;
4426 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4427 }
4428
4429 SourceRange InitRange = Init->getSourceRange();
4430 // Initialize the object.
4431 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
4432 QualType(ClassDecl->getTypeForDecl(), 0));
4433 InitializationKind Kind =
4434 InitList ? InitializationKind::CreateDirectList(
4435 NameLoc, Init->getBeginLoc(), Init->getEndLoc())
4436 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
4437 InitRange.getEnd());
4438 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
4439 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
4440 Args, nullptr);
4441 if (!DelegationInit.isInvalid()) {
4442 assert((DelegationInit.get()->containsErrors() ||(static_cast <bool> ((DelegationInit.get()->containsErrors
() || cast<CXXConstructExpr>(DelegationInit.get())->
getConstructor()) && "Delegating constructor with no target?"
) ? void (0) : __assert_fail ("(DelegationInit.get()->containsErrors() || cast<CXXConstructExpr>(DelegationInit.get())->getConstructor()) && \"Delegating constructor with no target?\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 4444, __extension__ __PRETTY_FUNCTION__))
4443 cast<CXXConstructExpr>(DelegationInit.get())->getConstructor()) &&(static_cast <bool> ((DelegationInit.get()->containsErrors
() || cast<CXXConstructExpr>(DelegationInit.get())->
getConstructor()) && "Delegating constructor with no target?"
) ? void (0) : __assert_fail ("(DelegationInit.get()->containsErrors() || cast<CXXConstructExpr>(DelegationInit.get())->getConstructor()) && \"Delegating constructor with no target?\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 4444, __extension__ __PRETTY_FUNCTION__))
4444 "Delegating constructor with no target?")(static_cast <bool> ((DelegationInit.get()->containsErrors
() || cast<CXXConstructExpr>(DelegationInit.get())->
getConstructor()) && "Delegating constructor with no target?"
) ? void (0) : __assert_fail ("(DelegationInit.get()->containsErrors() || cast<CXXConstructExpr>(DelegationInit.get())->getConstructor()) && \"Delegating constructor with no target?\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 4444, __extension__ __PRETTY_FUNCTION__))
;
4445
4446 // C++11 [class.base.init]p7:
4447 // The initialization of each base and member constitutes a
4448 // full-expression.
4449 DelegationInit = ActOnFinishFullExpr(
4450 DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false);
4451 }
4452
4453 if (DelegationInit.isInvalid()) {
4454 DelegationInit =
4455 CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), Args,
4456 QualType(ClassDecl->getTypeForDecl(), 0));
4457 if (DelegationInit.isInvalid())
4458 return true;
4459 } else {
4460 // If we are in a dependent context, template instantiation will
4461 // perform this type-checking again. Just save the arguments that we
4462 // received in a ParenListExpr.
4463 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4464 // of the information that we have about the base
4465 // initializer. However, deconstructing the ASTs is a dicey process,
4466 // and this approach is far more likely to get the corner cases right.
4467 if (CurContext->isDependentContext())
4468 DelegationInit = Init;
4469 }
4470
4471 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
4472 DelegationInit.getAs<Expr>(),
4473 InitRange.getEnd());
4474}
4475
4476MemInitResult
4477Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
4478 Expr *Init, CXXRecordDecl *ClassDecl,
4479 SourceLocation EllipsisLoc) {
4480 SourceLocation BaseLoc
4481 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
4482
4483 if (!BaseType->isDependentType() && !BaseType->isRecordType())
4484 return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
4485 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4486
4487 // C++ [class.base.init]p2:
4488 // [...] Unless the mem-initializer-id names a nonstatic data
4489 // member of the constructor's class or a direct or virtual base
4490 // of that class, the mem-initializer is ill-formed. A
4491 // mem-initializer-list can initialize a base class using any
4492 // name that denotes that base class type.
4493
4494 // We can store the initializers in "as-written" form and delay analysis until
4495 // instantiation if the constructor is dependent. But not for dependent
4496 // (broken) code in a non-template! SetCtorInitializers does not expect this.
4497 bool Dependent = CurContext->isDependentContext() &&
4498 (BaseType->isDependentType() || Init->isTypeDependent());
4499
4500 SourceRange InitRange = Init->getSourceRange();
4501 if (EllipsisLoc.isValid()) {
4502 // This is a pack expansion.
4503 if (!BaseType->containsUnexpandedParameterPack()) {
4504 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
4505 << SourceRange(BaseLoc, InitRange.getEnd());
4506
4507 EllipsisLoc = SourceLocation();
4508 }
4509 } else {
4510 // Check for any unexpanded parameter packs.
4511 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
4512 return true;
4513
4514 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4515 return true;
4516 }
4517
4518 // Check for direct and virtual base classes.
4519 const CXXBaseSpecifier *DirectBaseSpec = nullptr;
4520 const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
4521 if (!Dependent) {
4522 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
4523 BaseType))
4524 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
4525
4526 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
4527 VirtualBaseSpec);
4528
4529 // C++ [base.class.init]p2:
4530 // Unless the mem-initializer-id names a nonstatic data member of the
4531 // constructor's class or a direct or virtual base of that class, the
4532 // mem-initializer is ill-formed.
4533 if (!DirectBaseSpec && !VirtualBaseSpec) {
4534 // If the class has any dependent bases, then it's possible that
4535 // one of those types will resolve to the same type as
4536 // BaseType. Therefore, just treat this as a dependent base
4537 // class initialization. FIXME: Should we try to check the
4538 // initialization anyway? It seems odd.
4539 if (ClassDecl->hasAnyDependentBases())
4540 Dependent = true;
4541 else
4542 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
4543 << BaseType << Context.getTypeDeclType(ClassDecl)
4544 << BaseTInfo->getTypeLoc().getLocalSourceRange();
4545 }
4546 }
4547
4548 if (Dependent) {
4549 DiscardCleanupsInEvaluationContext();
4550
4551 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4552 /*IsVirtual=*/false,
4553 InitRange.getBegin(), Init,
4554 InitRange.getEnd(), EllipsisLoc);
4555 }
4556
4557 // C++ [base.class.init]p2:
4558 // If a mem-initializer-id is ambiguous because it designates both
4559 // a direct non-virtual base class and an inherited virtual base
4560 // class, the mem-initializer is ill-formed.
4561 if (DirectBaseSpec && VirtualBaseSpec)
4562 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
4563 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4564
4565 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
4566 if (!BaseSpec)
4567 BaseSpec = VirtualBaseSpec;
4568
4569 // Initialize the base.
4570 bool InitList = true;
4571 MultiExprArg Args = Init;
4572 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4573 InitList = false;
4574 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4575 }
4576
4577 InitializedEntity BaseEntity =
4578 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
4579 InitializationKind Kind =
4580 InitList ? InitializationKind::CreateDirectList(BaseLoc)
4581 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
4582 InitRange.getEnd());
4583 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
4584 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
4585 if (!BaseInit.isInvalid()) {
4586 // C++11 [class.base.init]p7:
4587 // The initialization of each base and member constitutes a
4588 // full-expression.
4589 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(),
4590 /*DiscardedValue*/ false);
4591 }
4592
4593 if (BaseInit.isInvalid()) {
4594 BaseInit = CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(),
4595 Args, BaseType);
4596 if (BaseInit.isInvalid())
4597 return true;
4598 } else {
4599 // If we are in a dependent context, template instantiation will
4600 // perform this type-checking again. Just save the arguments that we
4601 // received in a ParenListExpr.
4602 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4603 // of the information that we have about the base
4604 // initializer. However, deconstructing the ASTs is a dicey process,
4605 // and this approach is far more likely to get the corner cases right.
4606 if (CurContext->isDependentContext())
4607 BaseInit = Init;
4608 }
4609
4610 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4611 BaseSpec->isVirtual(),
4612 InitRange.getBegin(),
4613 BaseInit.getAs<Expr>(),
4614 InitRange.getEnd(), EllipsisLoc);
4615}
4616
4617// Create a static_cast\<T&&>(expr).
4618static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
4619 if (T.isNull()) T = E->getType();
4620 QualType TargetType = SemaRef.BuildReferenceType(
4621 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
4622 SourceLocation ExprLoc = E->getBeginLoc();
4623 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
4624 TargetType, ExprLoc);
4625
4626 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
4627 SourceRange(ExprLoc, ExprLoc),
4628 E->getSourceRange()).get();
4629}
4630
4631/// ImplicitInitializerKind - How an implicit base or member initializer should
4632/// initialize its base or member.
4633enum ImplicitInitializerKind {
4634 IIK_Default,
4635 IIK_Copy,
4636 IIK_Move,
4637 IIK_Inherit
4638};
4639
4640static bool
4641BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4642 ImplicitInitializerKind ImplicitInitKind,
4643 CXXBaseSpecifier *BaseSpec,
4644 bool IsInheritedVirtualBase,
4645 CXXCtorInitializer *&CXXBaseInit) {
4646 InitializedEntity InitEntity
4647 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
4648 IsInheritedVirtualBase);
4649
4650 ExprResult BaseInit;
4651
4652 switch (ImplicitInitKind) {
4653 case IIK_Inherit:
4654 case IIK_Default: {
4655 InitializationKind InitKind
4656 = InitializationKind::CreateDefault(Constructor->getLocation());
4657 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4658 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4659 break;
4660 }
4661
4662 case IIK_Move:
4663 case IIK_Copy: {
4664 bool Moving = ImplicitInitKind == IIK_Move;
4665 ParmVarDecl *Param = Constructor->getParamDecl(0);
4666 QualType ParamType = Param->getType().getNonReferenceType();
4667
4668 Expr *CopyCtorArg =
4669 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4670 SourceLocation(), Param, false,
4671 Constructor->getLocation(), ParamType,
4672 VK_LValue, nullptr);
4673
4674 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
4675
4676 // Cast to the base class to avoid ambiguities.
4677 QualType ArgTy =
4678 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
4679 ParamType.getQualifiers());
4680
4681 if (Moving) {
4682 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
4683 }
4684
4685 CXXCastPath BasePath;
4686 BasePath.push_back(BaseSpec);
4687 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
4688 CK_UncheckedDerivedToBase,
4689 Moving ? VK_XValue : VK_LValue,
4690 &BasePath).get();
4691
4692 InitializationKind InitKind
4693 = InitializationKind::CreateDirect(Constructor->getLocation(),
4694 SourceLocation(), SourceLocation());
4695 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
4696 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
4697 break;
4698 }
4699 }
4700
4701 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
4702 if (BaseInit.isInvalid())
4703 return true;
4704
4705 CXXBaseInit =
4706 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4707 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
4708 SourceLocation()),
4709 BaseSpec->isVirtual(),
4710 SourceLocation(),
4711 BaseInit.getAs<Expr>(),
4712 SourceLocation(),
4713 SourceLocation());
4714
4715 return false;
4716}
4717
4718static bool RefersToRValueRef(Expr *MemRef) {
4719 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
4720 return Referenced->getType()->isRValueReferenceType();
4721}
4722
4723static bool
4724BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4725 ImplicitInitializerKind ImplicitInitKind,
4726 FieldDecl *Field, IndirectFieldDecl *Indirect,
4727 CXXCtorInitializer *&CXXMemberInit) {
4728 if (Field->isInvalidDecl())
4729 return true;
4730
4731 SourceLocation Loc = Constructor->getLocation();
4732
4733 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
4734 bool Moving = ImplicitInitKind == IIK_Move;
4735 ParmVarDecl *Param = Constructor->getParamDecl(0);
4736 QualType ParamType = Param->getType().getNonReferenceType();
4737
4738 // Suppress copying zero-width bitfields.
4739 if (Field->isZeroLengthBitField(SemaRef.Context))
4740 return false;
4741
4742 Expr *MemberExprBase =
4743 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4744 SourceLocation(), Param, false,
4745 Loc, ParamType, VK_LValue, nullptr);
4746
4747 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
4748
4749 if (Moving) {
4750 MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
4751 }
4752
4753 // Build a reference to this field within the parameter.
4754 CXXScopeSpec SS;
4755 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
4756 Sema::LookupMemberName);
4757 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
4758 : cast<ValueDecl>(Field), AS_public);
4759 MemberLookup.resolveKind();
4760 ExprResult CtorArg
4761 = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
4762 ParamType, Loc,
4763 /*IsArrow=*/false,
4764 SS,
4765 /*TemplateKWLoc=*/SourceLocation(),
4766 /*FirstQualifierInScope=*/nullptr,
4767 MemberLookup,
4768 /*TemplateArgs=*/nullptr,
4769 /*S*/nullptr);
4770 if (CtorArg.isInvalid())
4771 return true;
4772
4773 // C++11 [class.copy]p15:
4774 // - if a member m has rvalue reference type T&&, it is direct-initialized
4775 // with static_cast<T&&>(x.m);
4776 if (RefersToRValueRef(CtorArg.get())) {
4777 CtorArg = CastForMoving(SemaRef, CtorArg.get());
4778 }
4779
4780 InitializedEntity Entity =
4781 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4782 /*Implicit*/ true)
4783 : InitializedEntity::InitializeMember(Field, nullptr,
4784 /*Implicit*/ true);
4785
4786 // Direct-initialize to use the copy constructor.
4787 InitializationKind InitKind =
4788 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
4789
4790 Expr *CtorArgE = CtorArg.getAs<Expr>();
4791 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE);
4792 ExprResult MemberInit =
4793 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1));
4794 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4795 if (MemberInit.isInvalid())
4796 return true;
4797
4798 if (Indirect)
4799 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4800 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4801 else
4802 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4803 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4804 return false;
4805 }
4806
4807 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&(static_cast <bool> ((ImplicitInitKind == IIK_Default ||
ImplicitInitKind == IIK_Inherit) && "Unhandled implicit init kind!"
) ? void (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 4808, __extension__ __PRETTY_FUNCTION__))
4808 "Unhandled implicit init kind!")(static_cast <bool> ((ImplicitInitKind == IIK_Default ||
ImplicitInitKind == IIK_Inherit) && "Unhandled implicit init kind!"
) ? void (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 4808, __extension__ __PRETTY_FUNCTION__))
;
4809
4810 QualType FieldBaseElementType =
4811 SemaRef.Context.getBaseElementType(Field->getType());
4812
4813 if (FieldBaseElementType->isRecordType()) {
4814 InitializedEntity InitEntity =
4815 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4816 /*Implicit*/ true)
4817 : InitializedEntity::InitializeMember(Field, nullptr,
4818 /*Implicit*/ true);
4819 InitializationKind InitKind =
4820 InitializationKind::CreateDefault(Loc);
4821
4822 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4823 ExprResult MemberInit =
4824 InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4825
4826 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4827 if (MemberInit.isInvalid())
4828 return true;
4829
4830 if (Indirect)
4831 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4832 Indirect, Loc,
4833 Loc,
4834 MemberInit.get(),
4835 Loc);
4836 else
4837 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4838 Field, Loc, Loc,
4839 MemberInit.get(),
4840 Loc);
4841 return false;
4842 }
4843
4844 if (!Field->getParent()->isUnion()) {
4845 if (FieldBaseElementType->isReferenceType()) {
4846 SemaRef.Diag(Constructor->getLocation(),
4847 diag::err_uninitialized_member_in_ctor)
4848 << (int)Constructor->isImplicit()
4849 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4850 << 0 << Field->getDeclName();
4851 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4852 return true;
4853 }
4854
4855 if (FieldBaseElementType.isConstQualified()) {
4856 SemaRef.Diag(Constructor->getLocation(),
4857 diag::err_uninitialized_member_in_ctor)
4858 << (int)Constructor->isImplicit()
4859 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4860 << 1 << Field->getDeclName();
4861 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4862 return true;
4863 }
4864 }
4865
4866 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) {
4867 // ARC and Weak:
4868 // Default-initialize Objective-C pointers to NULL.
4869 CXXMemberInit
4870 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
4871 Loc, Loc,
4872 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
4873 Loc);
4874 return false;
4875 }
4876
4877 // Nothing to initialize.
4878 CXXMemberInit = nullptr;
4879 return false;
4880}
4881
4882namespace {
4883struct BaseAndFieldInfo {
4884 Sema &S;
4885 CXXConstructorDecl *Ctor;
4886 bool AnyErrorsInInits;
4887 ImplicitInitializerKind IIK;
4888 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
4889 SmallVector<CXXCtorInitializer*, 8> AllToInit;
4890 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
4891
4892 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
4893 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
4894 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
4895 if (Ctor->getInheritedConstructor())
4896 IIK = IIK_Inherit;
4897 else if (Generated && Ctor->isCopyConstructor())
4898 IIK = IIK_Copy;
4899 else if (Generated && Ctor->isMoveConstructor())
4900 IIK = IIK_Move;
4901 else
4902 IIK = IIK_Default;
4903 }
4904
4905 bool isImplicitCopyOrMove() const {
4906 switch (IIK) {
4907 case IIK_Copy:
4908 case IIK_Move:
4909 return true;
4910
4911 case IIK_Default:
4912 case IIK_Inherit:
4913 return false;
4914 }
4915
4916 llvm_unreachable("Invalid ImplicitInitializerKind!")::llvm::llvm_unreachable_internal("Invalid ImplicitInitializerKind!"
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 4916)
;
4917 }
4918
4919 bool addFieldInitializer(CXXCtorInitializer *Init) {
4920 AllToInit.push_back(Init);
4921
4922 // Check whether this initializer makes the field "used".
4923 if (Init->getInit()->HasSideEffects(S.Context))
4924 S.UnusedPrivateFields.remove(Init->getAnyMember());
4925
4926 return false;
4927 }
4928
4929 bool isInactiveUnionMember(FieldDecl *Field) {
4930 RecordDecl *Record = Field->getParent();
4931 if (!Record->isUnion())
4932 return false;
4933
4934 if (FieldDecl *Active =
4935 ActiveUnionMember.lookup(Record->getCanonicalDecl()))
4936 return Active != Field->getCanonicalDecl();
4937
4938 // In an implicit copy or move constructor, ignore any in-class initializer.
4939 if (isImplicitCopyOrMove())
4940 return true;
4941
4942 // If there's no explicit initialization, the field is active only if it
4943 // has an in-class initializer...
4944 if (Field->hasInClassInitializer())
4945 return false;
4946 // ... or it's an anonymous struct or union whose class has an in-class
4947 // initializer.
4948 if (!Field->isAnonymousStructOrUnion())
4949 return true;
4950 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
4951 return !FieldRD->hasInClassInitializer();
4952 }
4953
4954 /// Determine whether the given field is, or is within, a union member
4955 /// that is inactive (because there was an initializer given for a different
4956 /// member of the union, or because the union was not initialized at all).
4957 bool isWithinInactiveUnionMember(FieldDecl *Field,
4958 IndirectFieldDecl *Indirect) {
4959 if (!Indirect)
4960 return isInactiveUnionMember(Field);
4961
4962 for (auto *C : Indirect->chain()) {
4963 FieldDecl *Field = dyn_cast<FieldDecl>(C);
4964 if (Field && isInactiveUnionMember(Field))
4965 return true;
4966 }
4967 return false;
4968 }
4969};
4970}
4971
4972/// Determine whether the given type is an incomplete or zero-lenfgth
4973/// array type.
4974static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
4975 if (T->isIncompleteArrayType())
4976 return true;
4977
4978 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
4979 if (!ArrayT->getSize())
4980 return true;
4981
4982 T = ArrayT->getElementType();
4983 }
4984
4985 return false;
4986}
4987
4988static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
4989 FieldDecl *Field,
4990 IndirectFieldDecl *Indirect = nullptr) {
4991 if (Field->isInvalidDecl())
4992 return false;
4993
4994 // Overwhelmingly common case: we have a direct initializer for this field.
4995 if (CXXCtorInitializer *Init =
4996 Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
4997 return Info.addFieldInitializer(Init);
4998
4999 // C++11 [class.base.init]p8:
5000 // if the entity is a non-static data member that has a
5001 // brace-or-equal-initializer and either
5002 // -- the constructor's class is a union and no other variant member of that
5003 // union is designated by a mem-initializer-id or
5004 // -- the constructor's class is not a union, and, if the entity is a member
5005 // of an anonymous union, no other member of that union is designated by
5006 // a mem-initializer-id,
5007 // the entity is initialized as specified in [dcl.init].
5008 //
5009 // We also apply the same rules to handle anonymous structs within anonymous
5010 // unions.
5011 if (Info.isWithinInactiveUnionMember(Field, Indirect))
5012 return false;
5013
5014 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
5015 ExprResult DIE =
5016 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
5017 if (DIE.isInvalid())
5018 return true;
5019
5020 auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true);
5021 SemaRef.checkInitializerLifetime(Entity, DIE.get());
5022
5023 CXXCtorInitializer *Init;
5024 if (Indirect)
5025 Init = new (SemaRef.Context)
5026 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
5027 SourceLocation(), DIE.get(), SourceLocation());
5028 else
5029 Init = new (SemaRef.Context)
5030 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
5031 SourceLocation(), DIE.get(), SourceLocation());
5032 return Info.addFieldInitializer(Init);
5033 }
5034
5035 // Don't initialize incomplete or zero-length arrays.
5036 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
5037 return false;
5038
5039 // Don't try to build an implicit initializer if there were semantic
5040 // errors in any of the initializers (and therefore we might be
5041 // missing some that the user actually wrote).
5042 if (Info.AnyErrorsInInits)
5043 return false;
5044
5045 CXXCtorInitializer *Init = nullptr;
5046 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
5047 Indirect, Init))
5048 return true;
5049
5050 if (!Init)
5051 return false;
5052
5053 return Info.addFieldInitializer(Init);
5054}
5055
5056bool
5057Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
5058 CXXCtorInitializer *Initializer) {
5059 assert(Initializer->isDelegatingInitializer())(static_cast <bool> (Initializer->isDelegatingInitializer
()) ? void (0) : __assert_fail ("Initializer->isDelegatingInitializer()"
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 5059, __extension__ __PRETTY_FUNCTION__))
;
5060 Constructor->setNumCtorInitializers(1);
5061 CXXCtorInitializer **initializer =
5062 new (Context) CXXCtorInitializer*[1];
5063 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
5064 Constructor->setCtorInitializers(initializer);
5065
5066 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
5067 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
5068 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
5069 }
5070
5071 DelegatingCtorDecls.push_back(Constructor);
5072
5073 DiagnoseUninitializedFields(*this, Constructor);
5074
5075 return false;
5076}
5077
5078bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
5079 ArrayRef<CXXCtorInitializer *> Initializers) {
5080 if (Constructor->isDependentContext()) {
5081 // Just store the initializers as written, they will be checked during
5082 // instantiation.
5083 if (!Initializers.empty()) {
5084 Constructor->setNumCtorInitializers(Initializers.size());
5085 CXXCtorInitializer **baseOrMemberInitializers =
5086 new (Context) CXXCtorInitializer*[Initializers.size()];
5087 memcpy(baseOrMemberInitializers, Initializers.data(),
5088 Initializers.size() * sizeof(CXXCtorInitializer*));
5089 Constructor->setCtorInitializers(baseOrMemberInitializers);
5090 }
5091
5092 // Let template instantiation know whether we had errors.
5093 if (AnyErrors)
5094 Constructor->setInvalidDecl();
5095
5096 return false;
5097 }
5098
5099 BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
5100
5101 // We need to build the initializer AST according to order of construction
5102 // and not what user specified in the Initializers list.
5103 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
5104 if (!ClassDecl)
5105 return true;
5106
5107 bool HadError = false;
5108
5109 for (unsigned i = 0; i < Initializers.size(); i++) {
5110 CXXCtorInitializer *Member = Initializers[i];
5111
5112 if (Member->isBaseInitializer())
5113 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
5114 else {
5115 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
5116
5117 if (IndirectFieldDecl *F = Member->getIndirectMember()) {
5118 for (auto *C : F->chain()) {
5119 FieldDecl *FD = dyn_cast<FieldDecl>(C);
5120 if (FD && FD->getParent()->isUnion())
5121 Info.ActiveUnionMember.insert(std::make_pair(
5122 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5123 }
5124 } else if (FieldDecl *FD = Member->getMember()) {
5125 if (FD->getParent()->isUnion())
5126 Info.ActiveUnionMember.insert(std::make_pair(
5127 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5128 }
5129 }
5130 }
5131
5132 // Keep track of the direct virtual bases.
5133 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
5134 for (auto &I : ClassDecl->bases()) {
5135 if (I.isVirtual())
5136 DirectVBases.insert(&I);
5137 }
5138
5139 // Push virtual bases before others.
5140 for (auto &VBase : ClassDecl->vbases()) {
5141 if (CXXCtorInitializer *Value
5142 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
5143 // [class.base.init]p7, per DR257:
5144 // A mem-initializer where the mem-initializer-id names a virtual base
5145 // class is ignored during execution of a constructor of any class that
5146 // is not the most derived class.
5147 if (ClassDecl->isAbstract()) {
5148 // FIXME: Provide a fixit to remove the base specifier. This requires
5149 // tracking the location of the associated comma for a base specifier.
5150 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
5151 << VBase.getType() << ClassDecl;
5152 DiagnoseAbstractType(ClassDecl);
5153 }
5154
5155 Info.AllToInit.push_back(Value);
5156 } else if (!AnyErrors && !ClassDecl->isAbstract()) {
5157 // [class.base.init]p8, per DR257:
5158 // If a given [...] base class is not named by a mem-initializer-id
5159 // [...] and the entity is not a virtual base class of an abstract
5160 // class, then [...] the entity is default-initialized.
5161 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
5162 CXXCtorInitializer *CXXBaseInit;
5163 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5164 &VBase, IsInheritedVirtualBase,
5165 CXXBaseInit)) {
5166 HadError = true;
5167 continue;
5168 }
5169
5170 Info.AllToInit.push_back(CXXBaseInit);
5171 }
5172 }
5173
5174 // Non-virtual bases.
5175 for (auto &Base : ClassDecl->bases()) {
5176 // Virtuals are in the virtual base list and already constructed.
5177 if (Base.isVirtual())
5178 continue;
5179
5180 if (CXXCtorInitializer *Value
5181 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
5182 Info.AllToInit.push_back(Value);
5183 } else if (!AnyErrors) {
5184 CXXCtorInitializer *CXXBaseInit;
5185 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5186 &Base, /*IsInheritedVirtualBase=*/false,
5187 CXXBaseInit)) {
5188 HadError = true;
5189 continue;
5190 }
5191
5192 Info.AllToInit.push_back(CXXBaseInit);
5193 }
5194 }
5195
5196 // Fields.
5197 for (auto *Mem : ClassDecl->decls()) {
5198 if (auto *F = dyn_cast<FieldDecl>(Mem)) {
5199 // C++ [class.bit]p2:
5200 // A declaration for a bit-field that omits the identifier declares an
5201 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
5202 // initialized.
5203 if (F->isUnnamedBitfield())
5204 continue;
5205
5206 // If we're not generating the implicit copy/move constructor, then we'll
5207 // handle anonymous struct/union fields based on their individual
5208 // indirect fields.
5209 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
5210 continue;
5211
5212 if (CollectFieldInitializer(*this, Info, F))
5213 HadError = true;
5214 continue;
5215 }
5216
5217 // Beyond this point, we only consider default initialization.
5218 if (Info.isImplicitCopyOrMove())
5219 continue;
5220
5221 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
5222 if (F->getType()->isIncompleteArrayType()) {
5223 assert(ClassDecl->hasFlexibleArrayMember() &&(static_cast <bool> (ClassDecl->hasFlexibleArrayMember
() && "Incomplete array type is not valid") ? void (0
) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 5224, __extension__ __PRETTY_FUNCTION__))
5224 "Incomplete array type is not valid")(static_cast <bool> (ClassDecl->hasFlexibleArrayMember
() && "Incomplete array type is not valid") ? void (0
) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 5224, __extension__ __PRETTY_FUNCTION__))
;
5225 continue;
5226 }
5227
5228 // Initialize each field of an anonymous struct individually.
5229 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
5230 HadError = true;
5231
5232 continue;
5233 }
5234 }
5235
5236 unsigned NumInitializers = Info.AllToInit.size();
5237 if (NumInitializers > 0) {
5238 Constructor->setNumCtorInitializers(NumInitializers);
5239 CXXCtorInitializer **baseOrMemberInitializers =
5240 new (Context) CXXCtorInitializer*[NumInitializers];
5241 memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
5242 NumInitializers * sizeof(CXXCtorInitializer*));
5243 Constructor->setCtorInitializers(baseOrMemberInitializers);
5244
5245 // Constructors implicitly reference the base and member
5246 // destructors.
5247 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
5248 Constructor->getParent());
5249 }
5250
5251 return HadError;
5252}
5253
5254static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
5255 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
5256 const RecordDecl *RD = RT->getDecl();
5257 if (RD->isAnonymousStructOrUnion()) {
5258 for (auto *Field : RD->fields())
5259 PopulateKeysForFields(Field, IdealInits);
5260 return;
5261 }
5262 }
5263 IdealInits.push_back(Field->getCanonicalDecl());
5264}
5265
5266static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
5267 return Context.getCanonicalType(BaseType).getTypePtr();
5268}
5269
5270static const void *GetKeyForMember(ASTContext &Context,
5271 CXXCtorInitializer *Member) {
5272 if (!Member->isAnyMemberInitializer())
5273 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
5274
5275 return Member->getAnyMember()->getCanonicalDecl();
5276}
5277
5278static void AddInitializerToDiag(const Sema::SemaDiagnosticBuilder &Diag,
5279 const CXXCtorInitializer *Previous,
5280 const CXXCtorInitializer *Current) {
5281 if (Previous->isAnyMemberInitializer())
5282 Diag << 0 << Previous->getAnyMember();
5283 else
5284 Diag << 1 << Previous->getTypeSourceInfo()->getType();
5285
5286 if (Current->isAnyMemberInitializer())
5287 Diag << 0 << Current->getAnyMember();
5288 else
5289 Diag << 1 << Current->getTypeSourceInfo()->getType();
5290}
5291
5292static void DiagnoseBaseOrMemInitializerOrder(
5293 Sema &SemaRef, const CXXConstructorDecl *Constructor,
5294 ArrayRef<CXXCtorInitializer *> Inits) {
5295 if (Constructor->getDeclContext()->isDependentContext())
5296 return;
5297
5298 // Don't check initializers order unless the warning is enabled at the
5299 // location of at least one initializer.
5300 bool ShouldCheckOrder = false;
5301 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5302 CXXCtorInitializer *Init = Inits[InitIndex];
5303 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
5304 Init->getSourceLocation())) {
5305 ShouldCheckOrder = true;
5306 break;
5307 }
5308 }
5309 if (!ShouldCheckOrder)
5310 return;
5311
5312 // Build the list of bases and members in the order that they'll
5313 // actually be initialized. The explicit initializers should be in
5314 // this same order but may be missing things.
5315 SmallVector<const void*, 32> IdealInitKeys;
5316
5317 const CXXRecordDecl *ClassDecl = Constructor->getParent();
5318
5319 // 1. Virtual bases.
5320 for (const auto &VBase : ClassDecl->vbases())
5321 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
5322
5323 // 2. Non-virtual bases.
5324 for (const auto &Base : ClassDecl->bases()) {
5325 if (Base.isVirtual())
5326 continue;
5327 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
5328 }
5329
5330 // 3. Direct fields.
5331 for (auto *Field : ClassDecl->fields()) {
5332 if (Field->isUnnamedBitfield())
5333 continue;
5334
5335 PopulateKeysForFields(Field, IdealInitKeys);
5336 }
5337
5338 unsigned NumIdealInits = IdealInitKeys.size();
5339 unsigned IdealIndex = 0;
5340
5341 // Track initializers that are in an incorrect order for either a warning or
5342 // note if multiple ones occur.
5343 SmallVector<unsigned> WarnIndexes;
5344 // Correlates the index of an initializer in the init-list to the index of
5345 // the field/base in the class.
5346 SmallVector<std::pair<unsigned, unsigned>, 32> CorrelatedInitOrder;
5347
5348 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5349 const void *InitKey = GetKeyForMember(SemaRef.Context, Inits[InitIndex]);
5350
5351 // Scan forward to try to find this initializer in the idealized
5352 // initializers list.
5353 for (; IdealIndex != NumIdealInits; ++IdealIndex)
5354 if (InitKey == IdealInitKeys[IdealIndex])
5355 break;
5356
5357 // If we didn't find this initializer, it must be because we
5358 // scanned past it on a previous iteration. That can only
5359 // happen if we're out of order; emit a warning.
5360 if (IdealIndex == NumIdealInits && InitIndex) {
5361 WarnIndexes.push_back(InitIndex);
5362
5363 // Move back to the initializer's location in the ideal list.
5364 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
5365 if (InitKey == IdealInitKeys[IdealIndex])
5366 break;
5367
5368 assert(IdealIndex < NumIdealInits &&(static_cast <bool> (IdealIndex < NumIdealInits &&
"initializer not found in initializer list") ? void (0) : __assert_fail
("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 5369, __extension__ __PRETTY_FUNCTION__))
5369 "initializer not found in initializer list")(static_cast <bool> (IdealIndex < NumIdealInits &&
"initializer not found in initializer list") ? void (0) : __assert_fail
("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 5369, __extension__ __PRETTY_FUNCTION__))
;
5370 }
5371 CorrelatedInitOrder.emplace_back(IdealIndex, InitIndex);
5372 }
5373
5374 if (WarnIndexes.empty())
5375 return;
5376
5377 // Sort based on the ideal order, first in the pair.
5378 llvm::sort(CorrelatedInitOrder,
5379 [](auto &LHS, auto &RHS) { return LHS.first < RHS.first; });
5380
5381 // Introduce a new scope as SemaDiagnosticBuilder needs to be destroyed to
5382 // emit the diagnostic before we can try adding notes.
5383 {
5384 Sema::SemaDiagnosticBuilder D = SemaRef.Diag(
5385 Inits[WarnIndexes.front() - 1]->getSourceLocation(),
5386 WarnIndexes.size() == 1 ? diag::warn_initializer_out_of_order
5387 : diag::warn_some_initializers_out_of_order);
5388
5389 for (unsigned I = 0; I < CorrelatedInitOrder.size(); ++I) {
5390 if (CorrelatedInitOrder[I].second == I)
5391 continue;
5392 // Ideally we would be using InsertFromRange here, but clang doesn't
5393 // appear to handle InsertFromRange correctly when the source range is
5394 // modified by another fix-it.
5395 D << FixItHint::CreateReplacement(
5396 Inits[I]->getSourceRange(),
5397 Lexer::getSourceText(
5398 CharSourceRange::getTokenRange(
5399 Inits[CorrelatedInitOrder[I].second]->getSourceRange()),
5400 SemaRef.getSourceManager(), SemaRef.getLangOpts()));
5401 }
5402
5403 // If there is only 1 item out of order, the warning expects the name and
5404 // type of each being added to it.
5405 if (WarnIndexes.size() == 1) {
5406 AddInitializerToDiag(D, Inits[WarnIndexes.front() - 1],
5407 Inits[WarnIndexes.front()]);
5408 return;
5409 }
5410 }
5411 // More than 1 item to warn, create notes letting the user know which ones
5412 // are bad.
5413 for (unsigned WarnIndex : WarnIndexes) {
5414 const clang::CXXCtorInitializer *PrevInit = Inits[WarnIndex - 1];
5415 auto D = SemaRef.Diag(PrevInit->getSourceLocation(),
5416 diag::note_initializer_out_of_order);
5417 AddInitializerToDiag(D, PrevInit, Inits[WarnIndex]);
5418 D << PrevInit->getSourceRange();
5419 }
5420}
5421
5422namespace {
5423bool CheckRedundantInit(Sema &S,
5424 CXXCtorInitializer *Init,
5425 CXXCtorInitializer *&PrevInit) {
5426 if (!PrevInit) {
5427 PrevInit = Init;
5428 return false;
5429 }
5430
5431 if (FieldDecl *Field = Init->getAnyMember())
5432 S.Diag(Init->getSourceLocation(),
5433 diag::err_multiple_mem_initialization)
5434 << Field->getDeclName()
5435 << Init->getSourceRange();
5436 else {
5437 const Type *BaseClass = Init->getBaseClass();
5438 assert(BaseClass && "neither field nor base")(static_cast <bool> (BaseClass && "neither field nor base"
) ? void (0) : __assert_fail ("BaseClass && \"neither field nor base\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 5438, __extension__ __PRETTY_FUNCTION__))
;
5439 S.Diag(Init->getSourceLocation(),
5440 diag::err_multiple_base_initialization)
5441 << QualType(BaseClass, 0)
5442 << Init->getSourceRange();
5443 }
5444 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
5445 << 0 << PrevInit->getSourceRange();
5446
5447 return true;
5448}
5449
5450typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
5451typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
5452
5453bool CheckRedundantUnionInit(Sema &S,
5454 CXXCtorInitializer *Init,
5455 RedundantUnionMap &Unions) {
5456 FieldDecl *Field = Init->getAnyMember();
5457 RecordDecl *Parent = Field->getParent();
5458 NamedDecl *Child = Field;
5459
5460 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
5461 if (Parent->isUnion()) {
5462 UnionEntry &En = Unions[Parent];
5463 if (En.first && En.first != Child) {
5464 S.Diag(Init->getSourceLocation(),
5465 diag::err_multiple_mem_union_initialization)
5466 << Field->getDeclName()
5467 << Init->getSourceRange();
5468 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
5469 << 0 << En.second->getSourceRange();
5470 return true;
5471 }
5472 if (!En.first) {
5473 En.first = Child;
5474 En.second = Init;
5475 }
5476 if (!Parent->isAnonymousStructOrUnion())
5477 return false;
5478 }
5479
5480 Child = Parent;
5481 Parent = cast<RecordDecl>(Parent->getDeclContext());
5482 }
5483
5484 return false;
5485}
5486} // namespace
5487
5488/// ActOnMemInitializers - Handle the member initializers for a constructor.
5489void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
5490 SourceLocation ColonLoc,
5491 ArrayRef<CXXCtorInitializer*> MemInits,
5492 bool AnyErrors) {
5493 if (!ConstructorDecl)
5494 return;
5495
5496 AdjustDeclIfTemplate(ConstructorDecl);
5497
5498 CXXConstructorDecl *Constructor
5499 = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
5500
5501 if (!Constructor) {
5502 Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
5503 return;
5504 }
5505
5506 // Mapping for the duplicate initializers check.
5507 // For member initializers, this is keyed with a FieldDecl*.
5508 // For base initializers, this is keyed with a Type*.
5509 llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
5510
5511 // Mapping for the inconsistent anonymous-union initializers check.
5512 RedundantUnionMap MemberUnions;
5513
5514 bool HadError = false;
5515 for (unsigned i = 0; i < MemInits.size(); i++) {
5516 CXXCtorInitializer *Init = MemInits[i];
5517
5518 // Set the source order index.
5519 Init->setSourceOrder(i);
5520
5521 if (Init->isAnyMemberInitializer()) {
5522 const void *Key = GetKeyForMember(Context, Init);
5523 if (CheckRedundantInit(*this, Init, Members[Key]) ||
5524 CheckRedundantUnionInit(*this, Init, MemberUnions))
5525 HadError = true;
5526 } else if (Init->isBaseInitializer()) {
5527 const void *Key = GetKeyForMember(Context, Init);
5528 if (CheckRedundantInit(*this, Init, Members[Key]))
5529 HadError = true;
5530 } else {
5531 assert(Init->isDelegatingInitializer())(static_cast <bool> (Init->isDelegatingInitializer()
) ? void (0) : __assert_fail ("Init->isDelegatingInitializer()"
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 5531, __extension__ __PRETTY_FUNCTION__))
;
5532 // This must be the only initializer
5533 if (MemInits.size() != 1) {
5534 Diag(Init->getSourceLocation(),
5535 diag::err_delegating_initializer_alone)
5536 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
5537 // We will treat this as being the only initializer.
5538 }
5539 SetDelegatingInitializer(Constructor, MemInits[i]);
5540 // Return immediately as the initializer is set.
5541 return;
5542 }
5543 }
5544
5545 if (HadError)
5546 return;
5547
5548 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
5549
5550 SetCtorInitializers(Constructor, AnyErrors, MemInits);
5551
5552 DiagnoseUninitializedFields(*this, Constructor);
5553}
5554
5555void
5556Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
5557 CXXRecordDecl *ClassDecl) {
5558 // Ignore dependent contexts. Also ignore unions, since their members never
5559 // have destructors implicitly called.
5560 if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
5561 return;
5562
5563 // FIXME: all the access-control diagnostics are positioned on the
5564 // field/base declaration. That's probably good; that said, the
5565 // user might reasonably want to know why the destructor is being
5566 // emitted, and we currently don't say.
5567
5568 // Non-static data members.
5569 for (auto *Field : ClassDecl->fields()) {
5570 if (Field->isInvalidDecl())
5571 continue;
5572
5573 // Don't destroy incomplete or zero-length arrays.
5574 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
5575 continue;
5576
5577 QualType FieldType = Context.getBaseElementType(Field->getType());
5578
5579 const RecordType* RT = FieldType->getAs<RecordType>();
5580 if (!RT)
5581 continue;
5582
5583 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5584 if (FieldClassDecl->isInvalidDecl())
5585 continue;
5586 if (FieldClassDecl->hasIrrelevantDestructor())
5587 continue;
5588 // The destructor for an implicit anonymous union member is never invoked.
5589 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
5590 continue;
5591
5592 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
5593 assert(Dtor && "No dtor found for FieldClassDecl!")(static_cast <bool> (Dtor && "No dtor found for FieldClassDecl!"
) ? void (0) : __assert_fail ("Dtor && \"No dtor found for FieldClassDecl!\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 5593, __extension__ __PRETTY_FUNCTION__))
;
5594 CheckDestructorAccess(Field->getLocation(), Dtor,
5595 PDiag(diag::err_access_dtor_field)
5596 << Field->getDeclName()
5597 << FieldType);
5598
5599 MarkFunctionReferenced(Location, Dtor);
5600 DiagnoseUseOfDecl(Dtor, Location);
5601 }
5602
5603 // We only potentially invoke the destructors of potentially constructed
5604 // subobjects.
5605 bool VisitVirtualBases = !ClassDecl->isAbstract();
5606
5607 // If the destructor exists and has already been marked used in the MS ABI,
5608 // then virtual base destructors have already been checked and marked used.
5609 // Skip checking them again to avoid duplicate diagnostics.
5610 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5611 CXXDestructorDecl *Dtor = ClassDecl->getDestructor();
5612 if (Dtor && Dtor->isUsed())
5613 VisitVirtualBases = false;
5614 }
5615
5616 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
5617
5618 // Bases.
5619 for (const auto &Base : ClassDecl->bases()) {
5620 const RecordType *RT = Base.getType()->getAs<RecordType>();
5621 if (!RT)
5622 continue;
5623
5624 // Remember direct virtual bases.
5625 if (Base.isVirtual()) {
5626 if (!VisitVirtualBases)
5627 continue;
5628 DirectVirtualBases.insert(RT);
5629 }
5630
5631 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5632 // If our base class is invalid, we probably can't get its dtor anyway.
5633 if (BaseClassDecl->isInvalidDecl())
5634 continue;
5635 if (BaseClassDecl->hasIrrelevantDestructor())
5636 continue;
5637
5638 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5639 assert(Dtor && "No dtor found for BaseClassDecl!")(static_cast <bool> (Dtor && "No dtor found for BaseClassDecl!"
) ? void (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 5639, __extension__ __PRETTY_FUNCTION__))
;
5640
5641 // FIXME: caret should be on the start of the class name
5642 CheckDestructorAccess(Base.getBeginLoc(), Dtor,
5643 PDiag(diag::err_access_dtor_base)
5644 << Base.getType() << Base.getSourceRange(),
5645 Context.getTypeDeclType(ClassDecl));
5646
5647 MarkFunctionReferenced(Location, Dtor);
5648 DiagnoseUseOfDecl(Dtor, Location);
5649 }
5650
5651 if (VisitVirtualBases)
5652 MarkVirtualBaseDestructorsReferenced(Location, ClassDecl,
5653 &DirectVirtualBases);
5654}
5655
5656void Sema::MarkVirtualBaseDestructorsReferenced(
5657 SourceLocation Location, CXXRecordDecl *ClassDecl,
5658 llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases) {
5659 // Virtual bases.
5660 for (const auto &VBase : ClassDecl->vbases()) {
5661 // Bases are always records in a well-formed non-dependent class.
5662 const RecordType *RT = VBase.getType()->castAs<RecordType>();
5663
5664 // Ignore already visited direct virtual bases.
5665 if (DirectVirtualBases && DirectVirtualBases->count(RT))
5666 continue;
5667
5668 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5669 // If our base class is invalid, we probably can't get its dtor anyway.
5670 if (BaseClassDecl->isInvalidDecl())
5671 continue;
5672 if (BaseClassDecl->hasIrrelevantDestructor())
5673 continue;
5674
5675 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5676 assert(Dtor && "No dtor found for BaseClassDecl!")(static_cast <bool> (Dtor && "No dtor found for BaseClassDecl!"
) ? void (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 5676, __extension__ __PRETTY_FUNCTION__))
;
5677 if (CheckDestructorAccess(
5678 ClassDecl->getLocation(), Dtor,
5679 PDiag(diag::err_access_dtor_vbase)
5680 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
5681 Context.getTypeDeclType(ClassDecl)) ==
5682 AR_accessible) {
5683 CheckDerivedToBaseConversion(
5684 Context.getTypeDeclType(ClassDecl), VBase.getType(),
5685 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
5686 SourceRange(), DeclarationName(), nullptr);
5687 }
5688
5689 MarkFunctionReferenced(Location, Dtor);
5690 DiagnoseUseOfDecl(Dtor, Location);
5691 }
5692}
5693
5694void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
5695 if (!CDtorDecl)
5696 return;
5697
5698 if (CXXConstructorDecl *Constructor
5699 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
5700 SetCtorInitializers(Constructor, /*AnyErrors=*/false);
5701 DiagnoseUninitializedFields(*this, Constructor);
5702 }
5703}
5704
5705bool Sema::isAbstractType(SourceLocation Loc, QualType T) {
5706 if (!getLangOpts().CPlusPlus)
5707 return false;
5708
5709 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl();
5710 if (!RD)
5711 return false;
5712
5713 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a
5714 // class template specialization here, but doing so breaks a lot of code.
5715
5716 // We can't answer whether something is abstract until it has a
5717 // definition. If it's currently being defined, we'll walk back
5718 // over all the declarations when we have a full definition.
5719 const CXXRecordDecl *Def = RD->getDefinition();
5720 if (!Def || Def->isBeingDefined())
5721 return false;
5722
5723 return RD->isAbstract();
5724}
5725
5726bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
5727 TypeDiagnoser &Diagnoser) {
5728 if (!isAbstractType(Loc, T))
5729 return false;
5730
5731 T = Context.getBaseElementType(T);
5732 Diagnoser.diagnose(*this, Loc, T);
5733 DiagnoseAbstractType(T->getAsCXXRecordDecl());
5734 return true;
5735}
5736
5737void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
5738 // Check if we've already emitted the list of pure virtual functions
5739 // for this class.
5740 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
5741 return;
5742
5743 // If the diagnostic is suppressed, don't emit the notes. We're only
5744 // going to emit them once, so try to attach them to a diagnostic we're
5745 // actually going to show.
5746 if (Diags.isLastDiagnosticIgnored())
5747 return;
5748
5749 CXXFinalOverriderMap FinalOverriders;
5750 RD->getFinalOverriders(FinalOverriders);
5751
5752 // Keep a set of seen pure methods so we won't diagnose the same method
5753 // more than once.
5754 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
5755
5756 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
5757 MEnd = FinalOverriders.end();
5758 M != MEnd;
5759 ++M) {
5760 for (OverridingMethods::iterator SO = M->second.begin(),
5761 SOEnd = M->second.end();
5762 SO != SOEnd; ++SO) {
5763 // C++ [class.abstract]p4:
5764 // A class is abstract if it contains or inherits at least one
5765 // pure virtual function for which the final overrider is pure
5766 // virtual.
5767
5768 //
5769 if (SO->second.size() != 1)
5770 continue;
5771
5772 if (!SO->second.front().Method->isPure())
5773 continue;
5774
5775 if (!SeenPureMethods.insert(SO->second.front().Method).second)
5776 continue;
5777
5778 Diag(SO->second.front().Method->getLocation(),
5779 diag::note_pure_virtual_function)
5780 << SO->second.front().Method->getDeclName() << RD->getDeclName();
5781 }
5782 }
5783
5784 if (!PureVirtualClassDiagSet)
5785 PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
5786 PureVirtualClassDiagSet->insert(RD);
5787}
5788
5789namespace {
5790struct AbstractUsageInfo {
5791 Sema &S;
5792 CXXRecordDecl *Record;
5793 CanQualType AbstractType;
5794 bool Invalid;
5795
5796 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
5797 : S(S), Record(Record),
5798 AbstractType(S.Context.getCanonicalType(
5799 S.Context.getTypeDeclType(Record))),
5800 Invalid(false) {}
5801
5802 void DiagnoseAbstractType() {
5803 if (Invalid) return;
5804 S.DiagnoseAbstractType(Record);
5805 Invalid = true;
5806 }
5807
5808 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
5809};
5810
5811struct CheckAbstractUsage {
5812 AbstractUsageInfo &Info;
5813 const NamedDecl *Ctx;
5814
5815 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
5816 : Info(Info), Ctx(Ctx) {}
5817
5818 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5819 switch (TL.getTypeLocClass()) {
5820#define ABSTRACT_TYPELOC(CLASS, PARENT)
5821#define TYPELOC(CLASS, PARENT) \
5822 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
5823#include "clang/AST/TypeLocNodes.def"
5824 }
5825 }
5826
5827 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5828 Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
5829 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
5830 if (!TL.getParam(I))
5831 continue;
5832
5833 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
5834 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
5835 }
5836 }
5837
5838 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5839 Visit(TL.getElementLoc(), Sema::AbstractArrayType);
5840 }
5841
5842 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5843 // Visit the type parameters from a permissive context.
5844 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
5845 TemplateArgumentLoc TAL = TL.getArgLoc(I);
5846 if (TAL.getArgument().getKind() == TemplateArgument::Type)
5847 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
5848 Visit(TSI->getTypeLoc(), Sema::AbstractNone);
5849 // TODO: other template argument types?
5850 }
5851 }
5852
5853 // Visit pointee types from a permissive context.
5854#define CheckPolymorphic(Type)void Check(Type TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getNextTypeLoc
(), Sema::AbstractNone); }
\
5855 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
5856 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
5857 }
5858 CheckPolymorphic(PointerTypeLoc)void Check(PointerTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5859 CheckPolymorphic(ReferenceTypeLoc)void Check(ReferenceTypeLoc TL, Sema::AbstractDiagSelID Sel) {
Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5860 CheckPolymorphic(MemberPointerTypeLoc)void Check(MemberPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5861 CheckPolymorphic(BlockPointerTypeLoc)void Check(BlockPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5862 CheckPolymorphic(AtomicTypeLoc)void Check(AtomicTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5863
5864 /// Handle all the types we haven't given a more specific
5865 /// implementation for above.
5866 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5867 // Every other kind of type that we haven't called out already
5868 // that has an inner type is either (1) sugar or (2) contains that
5869 // inner type in some way as a subobject.
5870 if (TypeLoc Next = TL.getNextTypeLoc())
5871 return Visit(Next, Sel);
5872
5873 // If there's no inner type and we're in a permissive context,
5874 // don't diagnose.
5875 if (Sel == Sema::AbstractNone) return;
5876
5877 // Check whether the type matches the abstract type.
5878 QualType T = TL.getType();
5879 if (T->isArrayType()) {
5880 Sel = Sema::AbstractArrayType;
5881 T = Info.S.Context.getBaseElementType(T);
5882 }
5883 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
5884 if (CT != Info.AbstractType) return;
5885
5886 // It matched; do some magic.
5887 // FIXME: These should be at most warnings. See P0929R2, CWG1640, CWG1646.
5888 if (Sel == Sema::AbstractArrayType) {
5889 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
5890 << T << TL.getSourceRange();
5891 } else {
5892 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
5893 << Sel << T << TL.getSourceRange();
5894 }
5895 Info.DiagnoseAbstractType();
5896 }
5897};
5898
5899void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
5900 Sema::AbstractDiagSelID Sel) {
5901 CheckAbstractUsage(*this, D).Visit(TL, Sel);
5902}
5903
5904}
5905
5906/// Check for invalid uses of an abstract type in a function declaration.
5907static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5908 FunctionDecl *FD) {
5909 // No need to do the check on definitions, which require that
5910 // the return/param types be complete.
5911 if (FD->doesThisDeclarationHaveABody())
5912 return;
5913
5914 // For safety's sake, just ignore it if we don't have type source
5915 // information. This should never happen for non-implicit methods,
5916 // but...
5917 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
5918 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractNone);
5919}
5920
5921/// Check for invalid uses of an abstract type in a variable0 declaration.
5922static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5923 VarDecl *VD) {
5924 // No need to do the check on definitions, which require that
5925 // the type is complete.
5926 if (VD->isThisDeclarationADefinition())
5927 return;
5928
5929 Info.CheckType(VD, VD->getTypeSourceInfo()->getTypeLoc(),
5930 Sema::AbstractVariableType);
5931}
5932
5933/// Check for invalid uses of an abstract type within a class definition.
5934static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5935 CXXRecordDecl *RD) {
5936 for (auto *D : RD->decls()) {
5937 if (D->isImplicit()) continue;
5938
5939 // Step through friends to the befriended declaration.
5940 if (auto *FD = dyn_cast<FriendDecl>(D)) {
5941 D = FD->getFriendDecl();
5942 if (!D) continue;
5943 }
5944
5945 // Functions and function templates.
5946 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
5947 CheckAbstractClassUsage(Info, FD);
5948 } else if (auto *FTD = dyn_cast<FunctionTemplateDecl>(D)) {
5949 CheckAbstractClassUsage(Info, FTD->getTemplatedDecl());
5950
5951 // Fields and static variables.
5952 } else if (auto *FD = dyn_cast<FieldDecl>(D)) {
5953 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
5954 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
5955 } else if (auto *VD = dyn_cast<VarDecl>(D)) {
5956 CheckAbstractClassUsage(Info, VD);
5957 } else if (auto *VTD = dyn_cast<VarTemplateDecl>(D)) {
5958 CheckAbstractClassUsage(Info, VTD->getTemplatedDecl());
5959
5960 // Nested classes and class templates.
5961 } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
5962 CheckAbstractClassUsage(Info, RD);
5963 } else if (auto *CTD = dyn_cast<ClassTemplateDecl>(D)) {
5964 CheckAbstractClassUsage(Info, CTD->getTemplatedDecl());
5965 }
5966 }
5967}
5968
5969static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) {
5970 Attr *ClassAttr = getDLLAttr(Class);
5971 if (!ClassAttr)
5972 return;
5973
5974 assert(ClassAttr->getKind() == attr::DLLExport)(static_cast <bool> (ClassAttr->getKind() == attr::DLLExport
) ? void (0) : __assert_fail ("ClassAttr->getKind() == attr::DLLExport"
, "/build/llvm-toolchain-snapshot-14~++20211016100712+8e1d532707fd/clang/lib/Sema/SemaDeclCXX.cpp"
, 5974, __extension__ __PRETTY_FUNCTION__))
;
5975
5976 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
5977
5978 if (TSK == TSK_ExplicitInstantiationDeclaration)
5979 // Don't go any further if this is just an explicit instantiation
5980 // declaration.
5981 return;
5982
5983 // Add a context note to explain how we got to any diagnostics produced below.
5984 struct MarkingClassDllexported {
5985 Sema &S;
5986 MarkingClassDllexported(Sema &S, CXXRecordDecl *Class,
5987 SourceLocation AttrLoc)
5988 : S(S) {
5989 Sema::CodeSynthesisContext Ctx;
5990 Ctx.Kind = Sema::CodeSynthesisContext::MarkingClassDllexported;
5991 Ctx.PointOfInstantiation = AttrLoc;
5992 Ctx.Entity = Class;
5993 S.pushCodeSynthesisContext(Ctx);
5994 }
5995 ~MarkingClassDllexported() {
5996 S.popCodeSynthesisContext();
5997 }
5998 } MarkingDllexportedContext(S, Class, ClassAttr->getLocation());
5999
6000 if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
6001 S.MarkVTableUsed(Class->getLocation(), Class, true);
6002
6003 for (Decl *Member : Class->decls()) {
6004 // Skip members that were not marked exported.
6005 if (!Member->hasAttr<DLLExportAttr>())
6006 continue;
6007
6008 // Defined static variables that are members of an exported base
6009 // class must be marked export too.
6010 auto *VD = dyn_cast<VarDecl>(Member);
6011 if (VD && VD->getStorageClass() == SC_Static &&
6012 TSK == TSK_ImplicitInstantiation)
6013 S.MarkVariableReferenced(VD->getLocation(), VD);
6014
6015 auto *MD = dyn_cast<CXXMethodDecl>(Member);
6016 if (!MD)
6017 continue;
6018
6019 if (MD->isUserProvided()) {
6020 // Instantiate non-default class member functions ...
6021
6022 // .. except for certain kinds of template specializations.
6023 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
6024 continue;
6025
6026 // If this is an MS ABI dllexport default constructor, instantiate any
6027 // default arguments.
6028 if (S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
6029 auto *CD = dyn_cast<CXXConstructorDecl>(MD);
6030 if (CD && CD->isDefaultConstructor() && TSK == TSK_Undeclared) {
6031 S.InstantiateDefaultCtorDefaultArgs(CD);
6032 }
6033 }
6034
6035 S.MarkFunctionReferenced(Class->getLocation(), MD);
6036
6037 // The function will be passed to the consumer when its definition is
6038 // encountered.
6039 } else if (MD->isExplicitlyDefaulted()) {
6040 // Synthesize and instantiate explicitly defaulted methods.