Bug Summary

File:clang/lib/Sema/SemaDeclCXX.cpp
Warning:line 15404, column 10
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaDeclCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/lib/Sema -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include -D NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-09-04-040900-46481-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/lib/Sema/SemaDeclCXX.cpp

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/lib/Sema/SemaDeclCXX.cpp

1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for C++ declarations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTConsumer.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/ASTLambda.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/ComparisonCategories.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/AST/TypeOrdering.h"
27#include "clang/Basic/AttributeCommonInfo.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/LiteralSupport.h"
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Sema/CXXFieldCollector.h"
33#include "clang/Sema/DeclSpec.h"
34#include "clang/Sema/Initialization.h"
35#include "clang/Sema/Lookup.h"
36#include "clang/Sema/ParsedTemplate.h"
37#include "clang/Sema/Scope.h"
38#include "clang/Sema/ScopeInfo.h"
39#include "clang/Sema/SemaInternal.h"
40#include "clang/Sema/Template.h"
41#include "llvm/ADT/ScopeExit.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/STLExtras.h"
44#include "llvm/ADT/StringExtras.h"
45#include <map>
46#include <set>
47
48using namespace clang;
49
50//===----------------------------------------------------------------------===//
51// CheckDefaultArgumentVisitor
52//===----------------------------------------------------------------------===//
53
54namespace {
55/// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
56/// the default argument of a parameter to determine whether it
57/// contains any ill-formed subexpressions. For example, this will
58/// diagnose the use of local variables or parameters within the
59/// default argument expression.
60class CheckDefaultArgumentVisitor
61 : public ConstStmtVisitor<CheckDefaultArgumentVisitor, bool> {
62 Sema &S;
63 const Expr *DefaultArg;
64
65public:
66 CheckDefaultArgumentVisitor(Sema &S, const Expr *DefaultArg)
67 : S(S), DefaultArg(DefaultArg) {}
68
69 bool VisitExpr(const Expr *Node);
70 bool VisitDeclRefExpr(const DeclRefExpr *DRE);
71 bool VisitCXXThisExpr(const CXXThisExpr *ThisE);
72 bool VisitLambdaExpr(const LambdaExpr *Lambda);
73 bool VisitPseudoObjectExpr(const PseudoObjectExpr *POE);
74};
75
76/// VisitExpr - Visit all of the children of this expression.
77bool CheckDefaultArgumentVisitor::VisitExpr(const Expr *Node) {
78 bool IsInvalid = false;
79 for (const Stmt *SubStmt : Node->children())
80 IsInvalid |= Visit(SubStmt);
81 return IsInvalid;
82}
83
84/// VisitDeclRefExpr - Visit a reference to a declaration, to
85/// determine whether this declaration can be used in the default
86/// argument expression.
87bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(const DeclRefExpr *DRE) {
88 const NamedDecl *Decl = DRE->getDecl();
89 if (const auto *Param = dyn_cast<ParmVarDecl>(Decl)) {
90 // C++ [dcl.fct.default]p9:
91 // [...] parameters of a function shall not be used in default
92 // argument expressions, even if they are not evaluated. [...]
93 //
94 // C++17 [dcl.fct.default]p9 (by CWG 2082):
95 // [...] A parameter shall not appear as a potentially-evaluated
96 // expression in a default argument. [...]
97 //
98 if (DRE->isNonOdrUse() != NOUR_Unevaluated)
99 return S.Diag(DRE->getBeginLoc(),
100 diag::err_param_default_argument_references_param)
101 << Param->getDeclName() << DefaultArg->getSourceRange();
102 } else if (const auto *VDecl = dyn_cast<VarDecl>(Decl)) {
103 // C++ [dcl.fct.default]p7:
104 // Local variables shall not be used in default argument
105 // expressions.
106 //
107 // C++17 [dcl.fct.default]p7 (by CWG 2082):
108 // A local variable shall not appear as a potentially-evaluated
109 // expression in a default argument.
110 //
111 // C++20 [dcl.fct.default]p7 (DR as part of P0588R1, see also CWG 2346):
112 // Note: A local variable cannot be odr-used (6.3) in a default argument.
113 //
114 if (VDecl->isLocalVarDecl() && !DRE->isNonOdrUse())
115 return S.Diag(DRE->getBeginLoc(),
116 diag::err_param_default_argument_references_local)
117 << VDecl->getDeclName() << DefaultArg->getSourceRange();
118 }
119
120 return false;
121}
122
123/// VisitCXXThisExpr - Visit a C++ "this" expression.
124bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(const CXXThisExpr *ThisE) {
125 // C++ [dcl.fct.default]p8:
126 // The keyword this shall not be used in a default argument of a
127 // member function.
128 return S.Diag(ThisE->getBeginLoc(),
129 diag::err_param_default_argument_references_this)
130 << ThisE->getSourceRange();
131}
132
133bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(
134 const PseudoObjectExpr *POE) {
135 bool Invalid = false;
136 for (const Expr *E : POE->semantics()) {
137 // Look through bindings.
138 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) {
139 E = OVE->getSourceExpr();
140 assert(E && "pseudo-object binding without source expression?")(static_cast<void> (0));
141 }
142
143 Invalid |= Visit(E);
144 }
145 return Invalid;
146}
147
148bool CheckDefaultArgumentVisitor::VisitLambdaExpr(const LambdaExpr *Lambda) {
149 // C++11 [expr.lambda.prim]p13:
150 // A lambda-expression appearing in a default argument shall not
151 // implicitly or explicitly capture any entity.
152 if (Lambda->capture_begin() == Lambda->capture_end())
153 return false;
154
155 return S.Diag(Lambda->getBeginLoc(), diag::err_lambda_capture_default_arg);
156}
157} // namespace
158
159void
160Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
161 const CXXMethodDecl *Method) {
162 // If we have an MSAny spec already, don't bother.
163 if (!Method || ComputedEST == EST_MSAny)
164 return;
165
166 const FunctionProtoType *Proto
167 = Method->getType()->getAs<FunctionProtoType>();
168 Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
169 if (!Proto)
170 return;
171
172 ExceptionSpecificationType EST = Proto->getExceptionSpecType();
173
174 // If we have a throw-all spec at this point, ignore the function.
175 if (ComputedEST == EST_None)
176 return;
177
178 if (EST == EST_None && Method->hasAttr<NoThrowAttr>())
179 EST = EST_BasicNoexcept;
180
181 switch (EST) {
182 case EST_Unparsed:
183 case EST_Uninstantiated:
184 case EST_Unevaluated:
185 llvm_unreachable("should not see unresolved exception specs here")__builtin_unreachable();
186
187 // If this function can throw any exceptions, make a note of that.
188 case EST_MSAny:
189 case EST_None:
190 // FIXME: Whichever we see last of MSAny and None determines our result.
191 // We should make a consistent, order-independent choice here.
192 ClearExceptions();
193 ComputedEST = EST;
194 return;
195 case EST_NoexceptFalse:
196 ClearExceptions();
197 ComputedEST = EST_None;
198 return;
199 // FIXME: If the call to this decl is using any of its default arguments, we
200 // need to search them for potentially-throwing calls.
201 // If this function has a basic noexcept, it doesn't affect the outcome.
202 case EST_BasicNoexcept:
203 case EST_NoexceptTrue:
204 case EST_NoThrow:
205 return;
206 // If we're still at noexcept(true) and there's a throw() callee,
207 // change to that specification.
208 case EST_DynamicNone:
209 if (ComputedEST == EST_BasicNoexcept)
210 ComputedEST = EST_DynamicNone;
211 return;
212 case EST_DependentNoexcept:
213 llvm_unreachable(__builtin_unreachable()
214 "should not generate implicit declarations for dependent cases")__builtin_unreachable();
215 case EST_Dynamic:
216 break;
217 }
218 assert(EST == EST_Dynamic && "EST case not considered earlier.")(static_cast<void> (0));
219 assert(ComputedEST != EST_None &&(static_cast<void> (0))
220 "Shouldn't collect exceptions when throw-all is guaranteed.")(static_cast<void> (0));
221 ComputedEST = EST_Dynamic;
222 // Record the exceptions in this function's exception specification.
223 for (const auto &E : Proto->exceptions())
224 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
225 Exceptions.push_back(E);
226}
227
228void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) {
229 if (!S || ComputedEST == EST_MSAny)
230 return;
231
232 // FIXME:
233 //
234 // C++0x [except.spec]p14:
235 // [An] implicit exception-specification specifies the type-id T if and
236 // only if T is allowed by the exception-specification of a function directly
237 // invoked by f's implicit definition; f shall allow all exceptions if any
238 // function it directly invokes allows all exceptions, and f shall allow no
239 // exceptions if every function it directly invokes allows no exceptions.
240 //
241 // Note in particular that if an implicit exception-specification is generated
242 // for a function containing a throw-expression, that specification can still
243 // be noexcept(true).
244 //
245 // Note also that 'directly invoked' is not defined in the standard, and there
246 // is no indication that we should only consider potentially-evaluated calls.
247 //
248 // Ultimately we should implement the intent of the standard: the exception
249 // specification should be the set of exceptions which can be thrown by the
250 // implicit definition. For now, we assume that any non-nothrow expression can
251 // throw any exception.
252
253 if (Self->canThrow(S))
254 ComputedEST = EST_None;
255}
256
257ExprResult Sema::ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
258 SourceLocation EqualLoc) {
259 if (RequireCompleteType(Param->getLocation(), Param->getType(),
260 diag::err_typecheck_decl_incomplete_type))
261 return true;
262
263 // C++ [dcl.fct.default]p5
264 // A default argument expression is implicitly converted (clause
265 // 4) to the parameter type. The default argument expression has
266 // the same semantic constraints as the initializer expression in
267 // a declaration of a variable of the parameter type, using the
268 // copy-initialization semantics (8.5).
269 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
270 Param);
271 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
272 EqualLoc);
273 InitializationSequence InitSeq(*this, Entity, Kind, Arg);
274 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
275 if (Result.isInvalid())
276 return true;
277 Arg = Result.getAs<Expr>();
278
279 CheckCompletedExpr(Arg, EqualLoc);
280 Arg = MaybeCreateExprWithCleanups(Arg);
281
282 return Arg;
283}
284
285void Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
286 SourceLocation EqualLoc) {
287 // Add the default argument to the parameter
288 Param->setDefaultArg(Arg);
289
290 // We have already instantiated this parameter; provide each of the
291 // instantiations with the uninstantiated default argument.
292 UnparsedDefaultArgInstantiationsMap::iterator InstPos
293 = UnparsedDefaultArgInstantiations.find(Param);
294 if (InstPos != UnparsedDefaultArgInstantiations.end()) {
295 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
296 InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
297
298 // We're done tracking this parameter's instantiations.
299 UnparsedDefaultArgInstantiations.erase(InstPos);
300 }
301}
302
303/// ActOnParamDefaultArgument - Check whether the default argument
304/// provided for a function parameter is well-formed. If so, attach it
305/// to the parameter declaration.
306void
307Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
308 Expr *DefaultArg) {
309 if (!param || !DefaultArg)
310 return;
311
312 ParmVarDecl *Param = cast<ParmVarDecl>(param);
313 UnparsedDefaultArgLocs.erase(Param);
314
315 auto Fail = [&] {
316 Param->setInvalidDecl();
317 Param->setDefaultArg(new (Context) OpaqueValueExpr(
318 EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue));
319 };
320
321 // Default arguments are only permitted in C++
322 if (!getLangOpts().CPlusPlus) {
323 Diag(EqualLoc, diag::err_param_default_argument)
324 << DefaultArg->getSourceRange();
325 return Fail();
326 }
327
328 // Check for unexpanded parameter packs.
329 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
330 return Fail();
331 }
332
333 // C++11 [dcl.fct.default]p3
334 // A default argument expression [...] shall not be specified for a
335 // parameter pack.
336 if (Param->isParameterPack()) {
337 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
338 << DefaultArg->getSourceRange();
339 // Recover by discarding the default argument.
340 Param->setDefaultArg(nullptr);
341 return;
342 }
343
344 ExprResult Result = ConvertParamDefaultArgument(Param, DefaultArg, EqualLoc);
345 if (Result.isInvalid())
346 return Fail();
347
348 DefaultArg = Result.getAs<Expr>();
349
350 // Check that the default argument is well-formed
351 CheckDefaultArgumentVisitor DefaultArgChecker(*this, DefaultArg);
352 if (DefaultArgChecker.Visit(DefaultArg))
353 return Fail();
354
355 SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
356}
357
358/// ActOnParamUnparsedDefaultArgument - We've seen a default
359/// argument for a function parameter, but we can't parse it yet
360/// because we're inside a class definition. Note that this default
361/// argument will be parsed later.
362void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
363 SourceLocation EqualLoc,
364 SourceLocation ArgLoc) {
365 if (!param)
366 return;
367
368 ParmVarDecl *Param = cast<ParmVarDecl>(param);
369 Param->setUnparsedDefaultArg();
370 UnparsedDefaultArgLocs[Param] = ArgLoc;
371}
372
373/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
374/// the default argument for the parameter param failed.
375void Sema::ActOnParamDefaultArgumentError(Decl *param,
376 SourceLocation EqualLoc) {
377 if (!param)
378 return;
379
380 ParmVarDecl *Param = cast<ParmVarDecl>(param);
381 Param->setInvalidDecl();
382 UnparsedDefaultArgLocs.erase(Param);
383 Param->setDefaultArg(new (Context) OpaqueValueExpr(
384 EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue));
385}
386
387/// CheckExtraCXXDefaultArguments - Check for any extra default
388/// arguments in the declarator, which is not a function declaration
389/// or definition and therefore is not permitted to have default
390/// arguments. This routine should be invoked for every declarator
391/// that is not a function declaration or definition.
392void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
393 // C++ [dcl.fct.default]p3
394 // A default argument expression shall be specified only in the
395 // parameter-declaration-clause of a function declaration or in a
396 // template-parameter (14.1). It shall not be specified for a
397 // parameter pack. If it is specified in a
398 // parameter-declaration-clause, it shall not occur within a
399 // declarator or abstract-declarator of a parameter-declaration.
400 bool MightBeFunction = D.isFunctionDeclarationContext();
401 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
402 DeclaratorChunk &chunk = D.getTypeObject(i);
403 if (chunk.Kind == DeclaratorChunk::Function) {
404 if (MightBeFunction) {
405 // This is a function declaration. It can have default arguments, but
406 // keep looking in case its return type is a function type with default
407 // arguments.
408 MightBeFunction = false;
409 continue;
410 }
411 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
412 ++argIdx) {
413 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
414 if (Param->hasUnparsedDefaultArg()) {
415 std::unique_ptr<CachedTokens> Toks =
416 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens);
417 SourceRange SR;
418 if (Toks->size() > 1)
419 SR = SourceRange((*Toks)[1].getLocation(),
420 Toks->back().getLocation());
421 else
422 SR = UnparsedDefaultArgLocs[Param];
423 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
424 << SR;
425 } else if (Param->getDefaultArg()) {
426 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
427 << Param->getDefaultArg()->getSourceRange();
428 Param->setDefaultArg(nullptr);
429 }
430 }
431 } else if (chunk.Kind != DeclaratorChunk::Paren) {
432 MightBeFunction = false;
433 }
434 }
435}
436
437static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
438 return std::any_of(FD->param_begin(), FD->param_end(), [](ParmVarDecl *P) {
439 return P->hasDefaultArg() && !P->hasInheritedDefaultArg();
440 });
441}
442
443/// MergeCXXFunctionDecl - Merge two declarations of the same C++
444/// function, once we already know that they have the same
445/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
446/// error, false otherwise.
447bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
448 Scope *S) {
449 bool Invalid = false;
450
451 // The declaration context corresponding to the scope is the semantic
452 // parent, unless this is a local function declaration, in which case
453 // it is that surrounding function.
454 DeclContext *ScopeDC = New->isLocalExternDecl()
455 ? New->getLexicalDeclContext()
456 : New->getDeclContext();
457
458 // Find the previous declaration for the purpose of default arguments.
459 FunctionDecl *PrevForDefaultArgs = Old;
460 for (/**/; PrevForDefaultArgs;
461 // Don't bother looking back past the latest decl if this is a local
462 // extern declaration; nothing else could work.
463 PrevForDefaultArgs = New->isLocalExternDecl()
464 ? nullptr
465 : PrevForDefaultArgs->getPreviousDecl()) {
466 // Ignore hidden declarations.
467 if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
468 continue;
469
470 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
471 !New->isCXXClassMember()) {
472 // Ignore default arguments of old decl if they are not in
473 // the same scope and this is not an out-of-line definition of
474 // a member function.
475 continue;
476 }
477
478 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
479 // If only one of these is a local function declaration, then they are
480 // declared in different scopes, even though isDeclInScope may think
481 // they're in the same scope. (If both are local, the scope check is
482 // sufficient, and if neither is local, then they are in the same scope.)
483 continue;
484 }
485
486 // We found the right previous declaration.
487 break;
488 }
489
490 // C++ [dcl.fct.default]p4:
491 // For non-template functions, default arguments can be added in
492 // later declarations of a function in the same
493 // scope. Declarations in different scopes have completely
494 // distinct sets of default arguments. That is, declarations in
495 // inner scopes do not acquire default arguments from
496 // declarations in outer scopes, and vice versa. In a given
497 // function declaration, all parameters subsequent to a
498 // parameter with a default argument shall have default
499 // arguments supplied in this or previous declarations. A
500 // default argument shall not be redefined by a later
501 // declaration (not even to the same value).
502 //
503 // C++ [dcl.fct.default]p6:
504 // Except for member functions of class templates, the default arguments
505 // in a member function definition that appears outside of the class
506 // definition are added to the set of default arguments provided by the
507 // member function declaration in the class definition.
508 for (unsigned p = 0, NumParams = PrevForDefaultArgs
509 ? PrevForDefaultArgs->getNumParams()
510 : 0;
511 p < NumParams; ++p) {
512 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p);
513 ParmVarDecl *NewParam = New->getParamDecl(p);
514
515 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false;
516 bool NewParamHasDfl = NewParam->hasDefaultArg();
517
518 if (OldParamHasDfl && NewParamHasDfl) {
519 unsigned DiagDefaultParamID =
520 diag::err_param_default_argument_redefinition;
521
522 // MSVC accepts that default parameters be redefined for member functions
523 // of template class. The new default parameter's value is ignored.
524 Invalid = true;
525 if (getLangOpts().MicrosoftExt) {
526 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New);
527 if (MD && MD->getParent()->getDescribedClassTemplate()) {
528 // Merge the old default argument into the new parameter.
529 NewParam->setHasInheritedDefaultArg();
530 if (OldParam->hasUninstantiatedDefaultArg())
531 NewParam->setUninstantiatedDefaultArg(
532 OldParam->getUninstantiatedDefaultArg());
533 else
534 NewParam->setDefaultArg(OldParam->getInit());
535 DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
536 Invalid = false;
537 }
538 }
539
540 // FIXME: If we knew where the '=' was, we could easily provide a fix-it
541 // hint here. Alternatively, we could walk the type-source information
542 // for NewParam to find the last source location in the type... but it
543 // isn't worth the effort right now. This is the kind of test case that
544 // is hard to get right:
545 // int f(int);
546 // void g(int (*fp)(int) = f);
547 // void g(int (*fp)(int) = &f);
548 Diag(NewParam->getLocation(), DiagDefaultParamID)
549 << NewParam->getDefaultArgRange();
550
551 // Look for the function declaration where the default argument was
552 // actually written, which may be a declaration prior to Old.
553 for (auto Older = PrevForDefaultArgs;
554 OldParam->hasInheritedDefaultArg(); /**/) {
555 Older = Older->getPreviousDecl();
556 OldParam = Older->getParamDecl(p);
557 }
558
559 Diag(OldParam->getLocation(), diag::note_previous_definition)
560 << OldParam->getDefaultArgRange();
561 } else if (OldParamHasDfl) {
562 // Merge the old default argument into the new parameter unless the new
563 // function is a friend declaration in a template class. In the latter
564 // case the default arguments will be inherited when the friend
565 // declaration will be instantiated.
566 if (New->getFriendObjectKind() == Decl::FOK_None ||
567 !New->getLexicalDeclContext()->isDependentContext()) {
568 // It's important to use getInit() here; getDefaultArg()
569 // strips off any top-level ExprWithCleanups.
570 NewParam->setHasInheritedDefaultArg();
571 if (OldParam->hasUnparsedDefaultArg())
572 NewParam->setUnparsedDefaultArg();
573 else if (OldParam->hasUninstantiatedDefaultArg())
574 NewParam->setUninstantiatedDefaultArg(
575 OldParam->getUninstantiatedDefaultArg());
576 else
577 NewParam->setDefaultArg(OldParam->getInit());
578 }
579 } else if (NewParamHasDfl) {
580 if (New->getDescribedFunctionTemplate()) {
581 // Paragraph 4, quoted above, only applies to non-template functions.
582 Diag(NewParam->getLocation(),
583 diag::err_param_default_argument_template_redecl)
584 << NewParam->getDefaultArgRange();
585 Diag(PrevForDefaultArgs->getLocation(),
586 diag::note_template_prev_declaration)
587 << false;
588 } else if (New->getTemplateSpecializationKind()
589 != TSK_ImplicitInstantiation &&
590 New->getTemplateSpecializationKind() != TSK_Undeclared) {
591 // C++ [temp.expr.spec]p21:
592 // Default function arguments shall not be specified in a declaration
593 // or a definition for one of the following explicit specializations:
594 // - the explicit specialization of a function template;
595 // - the explicit specialization of a member function template;
596 // - the explicit specialization of a member function of a class
597 // template where the class template specialization to which the
598 // member function specialization belongs is implicitly
599 // instantiated.
600 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
601 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
602 << New->getDeclName()
603 << NewParam->getDefaultArgRange();
604 } else if (New->getDeclContext()->isDependentContext()) {
605 // C++ [dcl.fct.default]p6 (DR217):
606 // Default arguments for a member function of a class template shall
607 // be specified on the initial declaration of the member function
608 // within the class template.
609 //
610 // Reading the tea leaves a bit in DR217 and its reference to DR205
611 // leads me to the conclusion that one cannot add default function
612 // arguments for an out-of-line definition of a member function of a
613 // dependent type.
614 int WhichKind = 2;
615 if (CXXRecordDecl *Record
616 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
617 if (Record->getDescribedClassTemplate())
618 WhichKind = 0;
619 else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
620 WhichKind = 1;
621 else
622 WhichKind = 2;
623 }
624
625 Diag(NewParam->getLocation(),
626 diag::err_param_default_argument_member_template_redecl)
627 << WhichKind
628 << NewParam->getDefaultArgRange();
629 }
630 }
631 }
632
633 // DR1344: If a default argument is added outside a class definition and that
634 // default argument makes the function a special member function, the program
635 // is ill-formed. This can only happen for constructors.
636 if (isa<CXXConstructorDecl>(New) &&
637 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
638 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
639 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
640 if (NewSM != OldSM) {
641 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
642 assert(NewParam->hasDefaultArg())(static_cast<void> (0));
643 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
644 << NewParam->getDefaultArgRange() << NewSM;
645 Diag(Old->getLocation(), diag::note_previous_declaration);
646 }
647 }
648
649 const FunctionDecl *Def;
650 // C++11 [dcl.constexpr]p1: If any declaration of a function or function
651 // template has a constexpr specifier then all its declarations shall
652 // contain the constexpr specifier.
653 if (New->getConstexprKind() != Old->getConstexprKind()) {
654 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
655 << New << static_cast<int>(New->getConstexprKind())
656 << static_cast<int>(Old->getConstexprKind());
657 Diag(Old->getLocation(), diag::note_previous_declaration);
658 Invalid = true;
659 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
660 Old->isDefined(Def) &&
661 // If a friend function is inlined but does not have 'inline'
662 // specifier, it is a definition. Do not report attribute conflict
663 // in this case, redefinition will be diagnosed later.
664 (New->isInlineSpecified() ||
665 New->getFriendObjectKind() == Decl::FOK_None)) {
666 // C++11 [dcl.fcn.spec]p4:
667 // If the definition of a function appears in a translation unit before its
668 // first declaration as inline, the program is ill-formed.
669 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
670 Diag(Def->getLocation(), diag::note_previous_definition);
671 Invalid = true;
672 }
673
674 // C++17 [temp.deduct.guide]p3:
675 // Two deduction guide declarations in the same translation unit
676 // for the same class template shall not have equivalent
677 // parameter-declaration-clauses.
678 if (isa<CXXDeductionGuideDecl>(New) &&
679 !New->isFunctionTemplateSpecialization() && isVisible(Old)) {
680 Diag(New->getLocation(), diag::err_deduction_guide_redeclared);
681 Diag(Old->getLocation(), diag::note_previous_declaration);
682 }
683
684 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
685 // argument expression, that declaration shall be a definition and shall be
686 // the only declaration of the function or function template in the
687 // translation unit.
688 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
689 functionDeclHasDefaultArgument(Old)) {
690 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
691 Diag(Old->getLocation(), diag::note_previous_declaration);
692 Invalid = true;
693 }
694
695 // C++11 [temp.friend]p4 (DR329):
696 // When a function is defined in a friend function declaration in a class
697 // template, the function is instantiated when the function is odr-used.
698 // The same restrictions on multiple declarations and definitions that
699 // apply to non-template function declarations and definitions also apply
700 // to these implicit definitions.
701 const FunctionDecl *OldDefinition = nullptr;
702 if (New->isThisDeclarationInstantiatedFromAFriendDefinition() &&
703 Old->isDefined(OldDefinition, true))
704 CheckForFunctionRedefinition(New, OldDefinition);
705
706 return Invalid;
707}
708
709NamedDecl *
710Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D,
711 MultiTemplateParamsArg TemplateParamLists) {
712 assert(D.isDecompositionDeclarator())(static_cast<void> (0));
713 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
714
715 // The syntax only allows a decomposition declarator as a simple-declaration,
716 // a for-range-declaration, or a condition in Clang, but we parse it in more
717 // cases than that.
718 if (!D.mayHaveDecompositionDeclarator()) {
719 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
720 << Decomp.getSourceRange();
721 return nullptr;
722 }
723
724 if (!TemplateParamLists.empty()) {
725 // FIXME: There's no rule against this, but there are also no rules that
726 // would actually make it usable, so we reject it for now.
727 Diag(TemplateParamLists.front()->getTemplateLoc(),
728 diag::err_decomp_decl_template);
729 return nullptr;
730 }
731
732 Diag(Decomp.getLSquareLoc(),
733 !getLangOpts().CPlusPlus17
734 ? diag::ext_decomp_decl
735 : D.getContext() == DeclaratorContext::Condition
736 ? diag::ext_decomp_decl_cond
737 : diag::warn_cxx14_compat_decomp_decl)
738 << Decomp.getSourceRange();
739
740 // The semantic context is always just the current context.
741 DeclContext *const DC = CurContext;
742
743 // C++17 [dcl.dcl]/8:
744 // The decl-specifier-seq shall contain only the type-specifier auto
745 // and cv-qualifiers.
746 // C++2a [dcl.dcl]/8:
747 // If decl-specifier-seq contains any decl-specifier other than static,
748 // thread_local, auto, or cv-qualifiers, the program is ill-formed.
749 auto &DS = D.getDeclSpec();
750 {
751 SmallVector<StringRef, 8> BadSpecifiers;
752 SmallVector<SourceLocation, 8> BadSpecifierLocs;
753 SmallVector<StringRef, 8> CPlusPlus20Specifiers;
754 SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs;
755 if (auto SCS = DS.getStorageClassSpec()) {
756 if (SCS == DeclSpec::SCS_static) {
757 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS));
758 CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc());
759 } else {
760 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS));
761 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc());
762 }
763 }
764 if (auto TSCS = DS.getThreadStorageClassSpec()) {
765 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS));
766 CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc());
767 }
768 if (DS.hasConstexprSpecifier()) {
769 BadSpecifiers.push_back(
770 DeclSpec::getSpecifierName(DS.getConstexprSpecifier()));
771 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc());
772 }
773 if (DS.isInlineSpecified()) {
774 BadSpecifiers.push_back("inline");
775 BadSpecifierLocs.push_back(DS.getInlineSpecLoc());
776 }
777 if (!BadSpecifiers.empty()) {
778 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec);
779 Err << (int)BadSpecifiers.size()
780 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " ");
781 // Don't add FixItHints to remove the specifiers; we do still respect
782 // them when building the underlying variable.
783 for (auto Loc : BadSpecifierLocs)
784 Err << SourceRange(Loc, Loc);
785 } else if (!CPlusPlus20Specifiers.empty()) {
786 auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(),
787 getLangOpts().CPlusPlus20
788 ? diag::warn_cxx17_compat_decomp_decl_spec
789 : diag::ext_decomp_decl_spec);
790 Warn << (int)CPlusPlus20Specifiers.size()
791 << llvm::join(CPlusPlus20Specifiers.begin(),
792 CPlusPlus20Specifiers.end(), " ");
793 for (auto Loc : CPlusPlus20SpecifierLocs)
794 Warn << SourceRange(Loc, Loc);
795 }
796 // We can't recover from it being declared as a typedef.
797 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
798 return nullptr;
799 }
800
801 // C++2a [dcl.struct.bind]p1:
802 // A cv that includes volatile is deprecated
803 if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) &&
804 getLangOpts().CPlusPlus20)
805 Diag(DS.getVolatileSpecLoc(),
806 diag::warn_deprecated_volatile_structured_binding);
807
808 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
809 QualType R = TInfo->getType();
810
811 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
812 UPPC_DeclarationType))
813 D.setInvalidType();
814
815 // The syntax only allows a single ref-qualifier prior to the decomposition
816 // declarator. No other declarator chunks are permitted. Also check the type
817 // specifier here.
818 if (DS.getTypeSpecType() != DeclSpec::TST_auto ||
819 D.hasGroupingParens() || D.getNumTypeObjects() > 1 ||
820 (D.getNumTypeObjects() == 1 &&
821 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) {
822 Diag(Decomp.getLSquareLoc(),
823 (D.hasGroupingParens() ||
824 (D.getNumTypeObjects() &&
825 D.getTypeObject(0).Kind == DeclaratorChunk::Paren))
826 ? diag::err_decomp_decl_parens
827 : diag::err_decomp_decl_type)
828 << R;
829
830 // In most cases, there's no actual problem with an explicitly-specified
831 // type, but a function type won't work here, and ActOnVariableDeclarator
832 // shouldn't be called for such a type.
833 if (R->isFunctionType())
834 D.setInvalidType();
835 }
836
837 // Build the BindingDecls.
838 SmallVector<BindingDecl*, 8> Bindings;
839
840 // Build the BindingDecls.
841 for (auto &B : D.getDecompositionDeclarator().bindings()) {
842 // Check for name conflicts.
843 DeclarationNameInfo NameInfo(B.Name, B.NameLoc);
844 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
845 ForVisibleRedeclaration);
846 LookupName(Previous, S,
847 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit());
848
849 // It's not permitted to shadow a template parameter name.
850 if (Previous.isSingleResult() &&
851 Previous.getFoundDecl()->isTemplateParameter()) {
852 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
853 Previous.getFoundDecl());
854 Previous.clear();
855 }
856
857 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name);
858
859 // Find the shadowed declaration before filtering for scope.
860 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
861 ? getShadowedDeclaration(BD, Previous)
862 : nullptr;
863
864 bool ConsiderLinkage = DC->isFunctionOrMethod() &&
865 DS.getStorageClassSpec() == DeclSpec::SCS_extern;
866 FilterLookupForScope(Previous, DC, S, ConsiderLinkage,
867 /*AllowInlineNamespace*/false);
868
869 if (!Previous.empty()) {
870 auto *Old = Previous.getRepresentativeDecl();
871 Diag(B.NameLoc, diag::err_redefinition) << B.Name;
872 Diag(Old->getLocation(), diag::note_previous_definition);
873 } else if (ShadowedDecl && !D.isRedeclaration()) {
874 CheckShadow(BD, ShadowedDecl, Previous);
875 }
876 PushOnScopeChains(BD, S, true);
877 Bindings.push_back(BD);
878 ParsingInitForAutoVars.insert(BD);
879 }
880
881 // There are no prior lookup results for the variable itself, because it
882 // is unnamed.
883 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr,
884 Decomp.getLSquareLoc());
885 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
886 ForVisibleRedeclaration);
887
888 // Build the variable that holds the non-decomposed object.
889 bool AddToScope = true;
890 NamedDecl *New =
891 ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
892 MultiTemplateParamsArg(), AddToScope, Bindings);
893 if (AddToScope) {
894 S->AddDecl(New);
895 CurContext->addHiddenDecl(New);
896 }
897
898 if (isInOpenMPDeclareTargetContext())
899 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
900
901 return New;
902}
903
904static bool checkSimpleDecomposition(
905 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src,
906 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType,
907 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) {
908 if ((int64_t)Bindings.size() != NumElems) {
909 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
910 << DecompType << (unsigned)Bindings.size()
911 << (unsigned)NumElems.getLimitedValue(UINT_MAX(2147483647 *2U +1U))
912 << toString(NumElems, 10) << (NumElems < Bindings.size());
913 return true;
914 }
915
916 unsigned I = 0;
917 for (auto *B : Bindings) {
918 SourceLocation Loc = B->getLocation();
919 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
920 if (E.isInvalid())
921 return true;
922 E = GetInit(Loc, E.get(), I++);
923 if (E.isInvalid())
924 return true;
925 B->setBinding(ElemType, E.get());
926 }
927
928 return false;
929}
930
931static bool checkArrayLikeDecomposition(Sema &S,
932 ArrayRef<BindingDecl *> Bindings,
933 ValueDecl *Src, QualType DecompType,
934 const llvm::APSInt &NumElems,
935 QualType ElemType) {
936 return checkSimpleDecomposition(
937 S, Bindings, Src, DecompType, NumElems, ElemType,
938 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
939 ExprResult E = S.ActOnIntegerConstant(Loc, I);
940 if (E.isInvalid())
941 return ExprError();
942 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc);
943 });
944}
945
946static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
947 ValueDecl *Src, QualType DecompType,
948 const ConstantArrayType *CAT) {
949 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType,
950 llvm::APSInt(CAT->getSize()),
951 CAT->getElementType());
952}
953
954static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
955 ValueDecl *Src, QualType DecompType,
956 const VectorType *VT) {
957 return checkArrayLikeDecomposition(
958 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()),
959 S.Context.getQualifiedType(VT->getElementType(),
960 DecompType.getQualifiers()));
961}
962
963static bool checkComplexDecomposition(Sema &S,
964 ArrayRef<BindingDecl *> Bindings,
965 ValueDecl *Src, QualType DecompType,
966 const ComplexType *CT) {
967 return checkSimpleDecomposition(
968 S, Bindings, Src, DecompType, llvm::APSInt::get(2),
969 S.Context.getQualifiedType(CT->getElementType(),
970 DecompType.getQualifiers()),
971 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
972 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base);
973 });
974}
975
976static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy,
977 TemplateArgumentListInfo &Args,
978 const TemplateParameterList *Params) {
979 SmallString<128> SS;
980 llvm::raw_svector_ostream OS(SS);
981 bool First = true;
982 unsigned I = 0;
983 for (auto &Arg : Args.arguments()) {
984 if (!First)
985 OS << ", ";
986 Arg.getArgument().print(
987 PrintingPolicy, OS,
988 TemplateParameterList::shouldIncludeTypeForArgument(Params, I));
989 First = false;
990 I++;
991 }
992 return std::string(OS.str());
993}
994
995static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup,
996 SourceLocation Loc, StringRef Trait,
997 TemplateArgumentListInfo &Args,
998 unsigned DiagID) {
999 auto DiagnoseMissing = [&] {
1000 if (DiagID)
1001 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(),
1002 Args, /*Params*/ nullptr);
1003 return true;
1004 };
1005
1006 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine.
1007 NamespaceDecl *Std = S.getStdNamespace();
1008 if (!Std)
1009 return DiagnoseMissing();
1010
1011 // Look up the trait itself, within namespace std. We can diagnose various
1012 // problems with this lookup even if we've been asked to not diagnose a
1013 // missing specialization, because this can only fail if the user has been
1014 // declaring their own names in namespace std or we don't support the
1015 // standard library implementation in use.
1016 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait),
1017 Loc, Sema::LookupOrdinaryName);
1018 if (!S.LookupQualifiedName(Result, Std))
1019 return DiagnoseMissing();
1020 if (Result.isAmbiguous())
1021 return true;
1022
1023 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>();
1024 if (!TraitTD) {
1025 Result.suppressDiagnostics();
1026 NamedDecl *Found = *Result.begin();
1027 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait;
1028 S.Diag(Found->getLocation(), diag::note_declared_at);
1029 return true;
1030 }
1031
1032 // Build the template-id.
1033 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args);
1034 if (TraitTy.isNull())
1035 return true;
1036 if (!S.isCompleteType(Loc, TraitTy)) {
1037 if (DiagID)
1038 S.RequireCompleteType(
1039 Loc, TraitTy, DiagID,
1040 printTemplateArgs(S.Context.getPrintingPolicy(), Args,
1041 TraitTD->getTemplateParameters()));
1042 return true;
1043 }
1044
1045 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl();
1046 assert(RD && "specialization of class template is not a class?")(static_cast<void> (0));
1047
1048 // Look up the member of the trait type.
1049 S.LookupQualifiedName(TraitMemberLookup, RD);
1050 return TraitMemberLookup.isAmbiguous();
1051}
1052
1053static TemplateArgumentLoc
1054getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T,
1055 uint64_t I) {
1056 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T);
1057 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc);
1058}
1059
1060static TemplateArgumentLoc
1061getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) {
1062 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc);
1063}
1064
1065namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; }
1066
1067static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T,
1068 llvm::APSInt &Size) {
1069 EnterExpressionEvaluationContext ContextRAII(
1070 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1071
1072 DeclarationName Value = S.PP.getIdentifierInfo("value");
1073 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName);
1074
1075 // Form template argument list for tuple_size<T>.
1076 TemplateArgumentListInfo Args(Loc, Loc);
1077 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1078
1079 // If there's no tuple_size specialization or the lookup of 'value' is empty,
1080 // it's not tuple-like.
1081 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) ||
1082 R.empty())
1083 return IsTupleLike::NotTupleLike;
1084
1085 // If we get this far, we've committed to the tuple interpretation, but
1086 // we can still fail if there actually isn't a usable ::value.
1087
1088 struct ICEDiagnoser : Sema::VerifyICEDiagnoser {
1089 LookupResult &R;
1090 TemplateArgumentListInfo &Args;
1091 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args)
1092 : R(R), Args(Args) {}
1093 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
1094 SourceLocation Loc) override {
1095 return S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant)
1096 << printTemplateArgs(S.Context.getPrintingPolicy(), Args,
1097 /*Params*/ nullptr);
1098 }
1099 } Diagnoser(R, Args);
1100
1101 ExprResult E =
1102 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false);
1103 if (E.isInvalid())
1104 return IsTupleLike::Error;
1105
1106 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser);
1107 if (E.isInvalid())
1108 return IsTupleLike::Error;
1109
1110 return IsTupleLike::TupleLike;
1111}
1112
1113/// \return std::tuple_element<I, T>::type.
1114static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc,
1115 unsigned I, QualType T) {
1116 // Form template argument list for tuple_element<I, T>.
1117 TemplateArgumentListInfo Args(Loc, Loc);
1118 Args.addArgument(
1119 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1120 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1121
1122 DeclarationName TypeDN = S.PP.getIdentifierInfo("type");
1123 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName);
1124 if (lookupStdTypeTraitMember(
1125 S, R, Loc, "tuple_element", Args,
1126 diag::err_decomp_decl_std_tuple_element_not_specialized))
1127 return QualType();
1128
1129 auto *TD = R.getAsSingle<TypeDecl>();
1130 if (!TD) {
1131 R.suppressDiagnostics();
1132 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized)
1133 << printTemplateArgs(S.Context.getPrintingPolicy(), Args,
1134 /*Params*/ nullptr);
1135 if (!R.empty())
1136 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at);
1137 return QualType();
1138 }
1139
1140 return S.Context.getTypeDeclType(TD);
1141}
1142
1143namespace {
1144struct InitializingBinding {
1145 Sema &S;
1146 InitializingBinding(Sema &S, BindingDecl *BD) : S(S) {
1147 Sema::CodeSynthesisContext Ctx;
1148 Ctx.Kind = Sema::CodeSynthesisContext::InitializingStructuredBinding;
1149 Ctx.PointOfInstantiation = BD->getLocation();
1150 Ctx.Entity = BD;
1151 S.pushCodeSynthesisContext(Ctx);
1152 }
1153 ~InitializingBinding() {
1154 S.popCodeSynthesisContext();
1155 }
1156};
1157}
1158
1159static bool checkTupleLikeDecomposition(Sema &S,
1160 ArrayRef<BindingDecl *> Bindings,
1161 VarDecl *Src, QualType DecompType,
1162 const llvm::APSInt &TupleSize) {
1163 if ((int64_t)Bindings.size() != TupleSize) {
1164 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1165 << DecompType << (unsigned)Bindings.size()
1166 << (unsigned)TupleSize.getLimitedValue(UINT_MAX(2147483647 *2U +1U))
1167 << toString(TupleSize, 10) << (TupleSize < Bindings.size());
1168 return true;
1169 }
1170
1171 if (Bindings.empty())
1172 return false;
1173
1174 DeclarationName GetDN = S.PP.getIdentifierInfo("get");
1175
1176 // [dcl.decomp]p3:
1177 // The unqualified-id get is looked up in the scope of E by class member
1178 // access lookup ...
1179 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName);
1180 bool UseMemberGet = false;
1181 if (S.isCompleteType(Src->getLocation(), DecompType)) {
1182 if (auto *RD = DecompType->getAsCXXRecordDecl())
1183 S.LookupQualifiedName(MemberGet, RD);
1184 if (MemberGet.isAmbiguous())
1185 return true;
1186 // ... and if that finds at least one declaration that is a function
1187 // template whose first template parameter is a non-type parameter ...
1188 for (NamedDecl *D : MemberGet) {
1189 if (FunctionTemplateDecl *FTD =
1190 dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) {
1191 TemplateParameterList *TPL = FTD->getTemplateParameters();
1192 if (TPL->size() != 0 &&
1193 isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) {
1194 // ... the initializer is e.get<i>().
1195 UseMemberGet = true;
1196 break;
1197 }
1198 }
1199 }
1200 }
1201
1202 unsigned I = 0;
1203 for (auto *B : Bindings) {
1204 InitializingBinding InitContext(S, B);
1205 SourceLocation Loc = B->getLocation();
1206
1207 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1208 if (E.isInvalid())
1209 return true;
1210
1211 // e is an lvalue if the type of the entity is an lvalue reference and
1212 // an xvalue otherwise
1213 if (!Src->getType()->isLValueReferenceType())
1214 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp,
1215 E.get(), nullptr, VK_XValue,
1216 FPOptionsOverride());
1217
1218 TemplateArgumentListInfo Args(Loc, Loc);
1219 Args.addArgument(
1220 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1221
1222 if (UseMemberGet) {
1223 // if [lookup of member get] finds at least one declaration, the
1224 // initializer is e.get<i-1>().
1225 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false,
1226 CXXScopeSpec(), SourceLocation(), nullptr,
1227 MemberGet, &Args, nullptr);
1228 if (E.isInvalid())
1229 return true;
1230
1231 E = S.BuildCallExpr(nullptr, E.get(), Loc, None, Loc);
1232 } else {
1233 // Otherwise, the initializer is get<i-1>(e), where get is looked up
1234 // in the associated namespaces.
1235 Expr *Get = UnresolvedLookupExpr::Create(
1236 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(),
1237 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args,
1238 UnresolvedSetIterator(), UnresolvedSetIterator());
1239
1240 Expr *Arg = E.get();
1241 E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc);
1242 }
1243 if (E.isInvalid())
1244 return true;
1245 Expr *Init = E.get();
1246
1247 // Given the type T designated by std::tuple_element<i - 1, E>::type,
1248 QualType T = getTupleLikeElementType(S, Loc, I, DecompType);
1249 if (T.isNull())
1250 return true;
1251
1252 // each vi is a variable of type "reference to T" initialized with the
1253 // initializer, where the reference is an lvalue reference if the
1254 // initializer is an lvalue and an rvalue reference otherwise
1255 QualType RefType =
1256 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName());
1257 if (RefType.isNull())
1258 return true;
1259 auto *RefVD = VarDecl::Create(
1260 S.Context, Src->getDeclContext(), Loc, Loc,
1261 B->getDeclName().getAsIdentifierInfo(), RefType,
1262 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass());
1263 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext());
1264 RefVD->setTSCSpec(Src->getTSCSpec());
1265 RefVD->setImplicit();
1266 if (Src->isInlineSpecified())
1267 RefVD->setInlineSpecified();
1268 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD);
1269
1270 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD);
1271 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc);
1272 InitializationSequence Seq(S, Entity, Kind, Init);
1273 E = Seq.Perform(S, Entity, Kind, Init);
1274 if (E.isInvalid())
1275 return true;
1276 E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false);
1277 if (E.isInvalid())
1278 return true;
1279 RefVD->setInit(E.get());
1280 S.CheckCompleteVariableDeclaration(RefVD);
1281
1282 E = S.BuildDeclarationNameExpr(CXXScopeSpec(),
1283 DeclarationNameInfo(B->getDeclName(), Loc),
1284 RefVD);
1285 if (E.isInvalid())
1286 return true;
1287
1288 B->setBinding(T, E.get());
1289 I++;
1290 }
1291
1292 return false;
1293}
1294
1295/// Find the base class to decompose in a built-in decomposition of a class type.
1296/// This base class search is, unfortunately, not quite like any other that we
1297/// perform anywhere else in C++.
1298static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc,
1299 const CXXRecordDecl *RD,
1300 CXXCastPath &BasePath) {
1301 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier,
1302 CXXBasePath &Path) {
1303 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields();
1304 };
1305
1306 const CXXRecordDecl *ClassWithFields = nullptr;
1307 AccessSpecifier AS = AS_public;
1308 if (RD->hasDirectFields())
1309 // [dcl.decomp]p4:
1310 // Otherwise, all of E's non-static data members shall be public direct
1311 // members of E ...
1312 ClassWithFields = RD;
1313 else {
1314 // ... or of ...
1315 CXXBasePaths Paths;
1316 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD));
1317 if (!RD->lookupInBases(BaseHasFields, Paths)) {
1318 // If no classes have fields, just decompose RD itself. (This will work
1319 // if and only if zero bindings were provided.)
1320 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public);
1321 }
1322
1323 CXXBasePath *BestPath = nullptr;
1324 for (auto &P : Paths) {
1325 if (!BestPath)
1326 BestPath = &P;
1327 else if (!S.Context.hasSameType(P.back().Base->getType(),
1328 BestPath->back().Base->getType())) {
1329 // ... the same ...
1330 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1331 << false << RD << BestPath->back().Base->getType()
1332 << P.back().Base->getType();
1333 return DeclAccessPair();
1334 } else if (P.Access < BestPath->Access) {
1335 BestPath = &P;
1336 }
1337 }
1338
1339 // ... unambiguous ...
1340 QualType BaseType = BestPath->back().Base->getType();
1341 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) {
1342 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base)
1343 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths);
1344 return DeclAccessPair();
1345 }
1346
1347 // ... [accessible, implied by other rules] base class of E.
1348 S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD),
1349 *BestPath, diag::err_decomp_decl_inaccessible_base);
1350 AS = BestPath->Access;
1351
1352 ClassWithFields = BaseType->getAsCXXRecordDecl();
1353 S.BuildBasePathArray(Paths, BasePath);
1354 }
1355
1356 // The above search did not check whether the selected class itself has base
1357 // classes with fields, so check that now.
1358 CXXBasePaths Paths;
1359 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) {
1360 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1361 << (ClassWithFields == RD) << RD << ClassWithFields
1362 << Paths.front().back().Base->getType();
1363 return DeclAccessPair();
1364 }
1365
1366 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS);
1367}
1368
1369static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
1370 ValueDecl *Src, QualType DecompType,
1371 const CXXRecordDecl *OrigRD) {
1372 if (S.RequireCompleteType(Src->getLocation(), DecompType,
1373 diag::err_incomplete_type))
1374 return true;
1375
1376 CXXCastPath BasePath;
1377 DeclAccessPair BasePair =
1378 findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath);
1379 const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl());
1380 if (!RD)
1381 return true;
1382 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD),
1383 DecompType.getQualifiers());
1384
1385 auto DiagnoseBadNumberOfBindings = [&]() -> bool {
1386 unsigned NumFields =
1387 std::count_if(RD->field_begin(), RD->field_end(),
1388 [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); });
1389 assert(Bindings.size() != NumFields)(static_cast<void> (0));
1390 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1391 << DecompType << (unsigned)Bindings.size() << NumFields << NumFields
1392 << (NumFields < Bindings.size());
1393 return true;
1394 };
1395
1396 // all of E's non-static data members shall be [...] well-formed
1397 // when named as e.name in the context of the structured binding,
1398 // E shall not have an anonymous union member, ...
1399 unsigned I = 0;
1400 for (auto *FD : RD->fields()) {
1401 if (FD->isUnnamedBitfield())
1402 continue;
1403
1404 // All the non-static data members are required to be nameable, so they
1405 // must all have names.
1406 if (!FD->getDeclName()) {
1407 if (RD->isLambda()) {
1408 S.Diag(Src->getLocation(), diag::err_decomp_decl_lambda);
1409 S.Diag(RD->getLocation(), diag::note_lambda_decl);
1410 return true;
1411 }
1412
1413 if (FD->isAnonymousStructOrUnion()) {
1414 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member)
1415 << DecompType << FD->getType()->isUnionType();
1416 S.Diag(FD->getLocation(), diag::note_declared_at);
1417 return true;
1418 }
1419
1420 // FIXME: Are there any other ways we could have an anonymous member?
1421 }
1422
1423 // We have a real field to bind.
1424 if (I >= Bindings.size())
1425 return DiagnoseBadNumberOfBindings();
1426 auto *B = Bindings[I++];
1427 SourceLocation Loc = B->getLocation();
1428
1429 // The field must be accessible in the context of the structured binding.
1430 // We already checked that the base class is accessible.
1431 // FIXME: Add 'const' to AccessedEntity's classes so we can remove the
1432 // const_cast here.
1433 S.CheckStructuredBindingMemberAccess(
1434 Loc, const_cast<CXXRecordDecl *>(OrigRD),
1435 DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess(
1436 BasePair.getAccess(), FD->getAccess())));
1437
1438 // Initialize the binding to Src.FD.
1439 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1440 if (E.isInvalid())
1441 return true;
1442 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase,
1443 VK_LValue, &BasePath);
1444 if (E.isInvalid())
1445 return true;
1446 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc,
1447 CXXScopeSpec(), FD,
1448 DeclAccessPair::make(FD, FD->getAccess()),
1449 DeclarationNameInfo(FD->getDeclName(), Loc));
1450 if (E.isInvalid())
1451 return true;
1452
1453 // If the type of the member is T, the referenced type is cv T, where cv is
1454 // the cv-qualification of the decomposition expression.
1455 //
1456 // FIXME: We resolve a defect here: if the field is mutable, we do not add
1457 // 'const' to the type of the field.
1458 Qualifiers Q = DecompType.getQualifiers();
1459 if (FD->isMutable())
1460 Q.removeConst();
1461 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get());
1462 }
1463
1464 if (I != Bindings.size())
1465 return DiagnoseBadNumberOfBindings();
1466
1467 return false;
1468}
1469
1470void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) {
1471 QualType DecompType = DD->getType();
1472
1473 // If the type of the decomposition is dependent, then so is the type of
1474 // each binding.
1475 if (DecompType->isDependentType()) {
1476 for (auto *B : DD->bindings())
1477 B->setType(Context.DependentTy);
1478 return;
1479 }
1480
1481 DecompType = DecompType.getNonReferenceType();
1482 ArrayRef<BindingDecl*> Bindings = DD->bindings();
1483
1484 // C++1z [dcl.decomp]/2:
1485 // If E is an array type [...]
1486 // As an extension, we also support decomposition of built-in complex and
1487 // vector types.
1488 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) {
1489 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT))
1490 DD->setInvalidDecl();
1491 return;
1492 }
1493 if (auto *VT = DecompType->getAs<VectorType>()) {
1494 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT))
1495 DD->setInvalidDecl();
1496 return;
1497 }
1498 if (auto *CT = DecompType->getAs<ComplexType>()) {
1499 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT))
1500 DD->setInvalidDecl();
1501 return;
1502 }
1503
1504 // C++1z [dcl.decomp]/3:
1505 // if the expression std::tuple_size<E>::value is a well-formed integral
1506 // constant expression, [...]
1507 llvm::APSInt TupleSize(32);
1508 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) {
1509 case IsTupleLike::Error:
1510 DD->setInvalidDecl();
1511 return;
1512
1513 case IsTupleLike::TupleLike:
1514 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize))
1515 DD->setInvalidDecl();
1516 return;
1517
1518 case IsTupleLike::NotTupleLike:
1519 break;
1520 }
1521
1522 // C++1z [dcl.dcl]/8:
1523 // [E shall be of array or non-union class type]
1524 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl();
1525 if (!RD || RD->isUnion()) {
1526 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type)
1527 << DD << !RD << DecompType;
1528 DD->setInvalidDecl();
1529 return;
1530 }
1531
1532 // C++1z [dcl.decomp]/4:
1533 // all of E's non-static data members shall be [...] direct members of
1534 // E or of the same unambiguous public base class of E, ...
1535 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD))
1536 DD->setInvalidDecl();
1537}
1538
1539/// Merge the exception specifications of two variable declarations.
1540///
1541/// This is called when there's a redeclaration of a VarDecl. The function
1542/// checks if the redeclaration might have an exception specification and
1543/// validates compatibility and merges the specs if necessary.
1544void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
1545 // Shortcut if exceptions are disabled.
1546 if (!getLangOpts().CXXExceptions)
1547 return;
1548
1549 assert(Context.hasSameType(New->getType(), Old->getType()) &&(static_cast<void> (0))
1550 "Should only be called if types are otherwise the same.")(static_cast<void> (0));
1551
1552 QualType NewType = New->getType();
1553 QualType OldType = Old->getType();
1554
1555 // We're only interested in pointers and references to functions, as well
1556 // as pointers to member functions.
1557 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
1558 NewType = R->getPointeeType();
1559 OldType = OldType->castAs<ReferenceType>()->getPointeeType();
1560 } else if (const PointerType *P = NewType->getAs<PointerType>()) {
1561 NewType = P->getPointeeType();
1562 OldType = OldType->castAs<PointerType>()->getPointeeType();
1563 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
1564 NewType = M->getPointeeType();
1565 OldType = OldType->castAs<MemberPointerType>()->getPointeeType();
1566 }
1567
1568 if (!NewType->isFunctionProtoType())
1569 return;
1570
1571 // There's lots of special cases for functions. For function pointers, system
1572 // libraries are hopefully not as broken so that we don't need these
1573 // workarounds.
1574 if (CheckEquivalentExceptionSpec(
1575 OldType->getAs<FunctionProtoType>(), Old->getLocation(),
1576 NewType->getAs<FunctionProtoType>(), New->getLocation())) {
1577 New->setInvalidDecl();
1578 }
1579}
1580
1581/// CheckCXXDefaultArguments - Verify that the default arguments for a
1582/// function declaration are well-formed according to C++
1583/// [dcl.fct.default].
1584void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
1585 unsigned NumParams = FD->getNumParams();
1586 unsigned ParamIdx = 0;
1587
1588 // This checking doesn't make sense for explicit specializations; their
1589 // default arguments are determined by the declaration we're specializing,
1590 // not by FD.
1591 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
1592 return;
1593 if (auto *FTD = FD->getDescribedFunctionTemplate())
1594 if (FTD->isMemberSpecialization())
1595 return;
1596
1597 // Find first parameter with a default argument
1598 for (; ParamIdx < NumParams; ++ParamIdx) {
1599 ParmVarDecl *Param = FD->getParamDecl(ParamIdx);
1600 if (Param->hasDefaultArg())
1601 break;
1602 }
1603
1604 // C++20 [dcl.fct.default]p4:
1605 // In a given function declaration, each parameter subsequent to a parameter
1606 // with a default argument shall have a default argument supplied in this or
1607 // a previous declaration, unless the parameter was expanded from a
1608 // parameter pack, or shall be a function parameter pack.
1609 for (; ParamIdx < NumParams; ++ParamIdx) {
1610 ParmVarDecl *Param = FD->getParamDecl(ParamIdx);
1611 if (!Param->hasDefaultArg() && !Param->isParameterPack() &&
1612 !(CurrentInstantiationScope &&
1613 CurrentInstantiationScope->isLocalPackExpansion(Param))) {
1614 if (Param->isInvalidDecl())
1615 /* We already complained about this parameter. */;
1616 else if (Param->getIdentifier())
1617 Diag(Param->getLocation(),
1618 diag::err_param_default_argument_missing_name)
1619 << Param->getIdentifier();
1620 else
1621 Diag(Param->getLocation(),
1622 diag::err_param_default_argument_missing);
1623 }
1624 }
1625}
1626
1627/// Check that the given type is a literal type. Issue a diagnostic if not,
1628/// if Kind is Diagnose.
1629/// \return \c true if a problem has been found (and optionally diagnosed).
1630template <typename... Ts>
1631static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind,
1632 SourceLocation Loc, QualType T, unsigned DiagID,
1633 Ts &&...DiagArgs) {
1634 if (T->isDependentType())
1635 return false;
1636
1637 switch (Kind) {
1638 case Sema::CheckConstexprKind::Diagnose:
1639 return SemaRef.RequireLiteralType(Loc, T, DiagID,
1640 std::forward<Ts>(DiagArgs)...);
1641
1642 case Sema::CheckConstexprKind::CheckValid:
1643 return !T->isLiteralType(SemaRef.Context);
1644 }
1645
1646 llvm_unreachable("unknown CheckConstexprKind")__builtin_unreachable();
1647}
1648
1649/// Determine whether a destructor cannot be constexpr due to
1650static bool CheckConstexprDestructorSubobjects(Sema &SemaRef,
1651 const CXXDestructorDecl *DD,
1652 Sema::CheckConstexprKind Kind) {
1653 auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) {
1654 const CXXRecordDecl *RD =
1655 T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1656 if (!RD || RD->hasConstexprDestructor())
1657 return true;
1658
1659 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1660 SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject)
1661 << static_cast<int>(DD->getConstexprKind()) << !FD
1662 << (FD ? FD->getDeclName() : DeclarationName()) << T;
1663 SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject)
1664 << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T;
1665 }
1666 return false;
1667 };
1668
1669 const CXXRecordDecl *RD = DD->getParent();
1670 for (const CXXBaseSpecifier &B : RD->bases())
1671 if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr))
1672 return false;
1673 for (const FieldDecl *FD : RD->fields())
1674 if (!Check(FD->getLocation(), FD->getType(), FD))
1675 return false;
1676 return true;
1677}
1678
1679/// Check whether a function's parameter types are all literal types. If so,
1680/// return true. If not, produce a suitable diagnostic and return false.
1681static bool CheckConstexprParameterTypes(Sema &SemaRef,
1682 const FunctionDecl *FD,
1683 Sema::CheckConstexprKind Kind) {
1684 unsigned ArgIndex = 0;
1685 const auto *FT = FD->getType()->castAs<FunctionProtoType>();
1686 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
1687 e = FT->param_type_end();
1688 i != e; ++i, ++ArgIndex) {
1689 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
1690 SourceLocation ParamLoc = PD->getLocation();
1691 if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i,
1692 diag::err_constexpr_non_literal_param, ArgIndex + 1,
1693 PD->getSourceRange(), isa<CXXConstructorDecl>(FD),
1694 FD->isConsteval()))
1695 return false;
1696 }
1697 return true;
1698}
1699
1700/// Check whether a function's return type is a literal type. If so, return
1701/// true. If not, produce a suitable diagnostic and return false.
1702static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD,
1703 Sema::CheckConstexprKind Kind) {
1704 if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(),
1705 diag::err_constexpr_non_literal_return,
1706 FD->isConsteval()))
1707 return false;
1708 return true;
1709}
1710
1711/// Get diagnostic %select index for tag kind for
1712/// record diagnostic message.
1713/// WARNING: Indexes apply to particular diagnostics only!
1714///
1715/// \returns diagnostic %select index.
1716static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
1717 switch (Tag) {
1718 case TTK_Struct: return 0;
1719 case TTK_Interface: return 1;
1720 case TTK_Class: return 2;
1721 default: llvm_unreachable("Invalid tag kind for record diagnostic!")__builtin_unreachable();
1722 }
1723}
1724
1725static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
1726 Stmt *Body,
1727 Sema::CheckConstexprKind Kind);
1728
1729// Check whether a function declaration satisfies the requirements of a
1730// constexpr function definition or a constexpr constructor definition. If so,
1731// return true. If not, produce appropriate diagnostics (unless asked not to by
1732// Kind) and return false.
1733//
1734// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
1735bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD,
1736 CheckConstexprKind Kind) {
1737 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
1738 if (MD && MD->isInstance()) {
1739 // C++11 [dcl.constexpr]p4:
1740 // The definition of a constexpr constructor shall satisfy the following
1741 // constraints:
1742 // - the class shall not have any virtual base classes;
1743 //
1744 // FIXME: This only applies to constructors and destructors, not arbitrary
1745 // member functions.
1746 const CXXRecordDecl *RD = MD->getParent();
1747 if (RD->getNumVBases()) {
1748 if (Kind == CheckConstexprKind::CheckValid)
1749 return false;
1750
1751 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
1752 << isa<CXXConstructorDecl>(NewFD)
1753 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
1754 for (const auto &I : RD->vbases())
1755 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
1756 << I.getSourceRange();
1757 return false;
1758 }
1759 }
1760
1761 if (!isa<CXXConstructorDecl>(NewFD)) {
1762 // C++11 [dcl.constexpr]p3:
1763 // The definition of a constexpr function shall satisfy the following
1764 // constraints:
1765 // - it shall not be virtual; (removed in C++20)
1766 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
1767 if (Method && Method->isVirtual()) {
1768 if (getLangOpts().CPlusPlus20) {
1769 if (Kind == CheckConstexprKind::Diagnose)
1770 Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual);
1771 } else {
1772 if (Kind == CheckConstexprKind::CheckValid)
1773 return false;
1774
1775 Method = Method->getCanonicalDecl();
1776 Diag(Method->getLocation(), diag::err_constexpr_virtual);
1777
1778 // If it's not obvious why this function is virtual, find an overridden
1779 // function which uses the 'virtual' keyword.
1780 const CXXMethodDecl *WrittenVirtual = Method;
1781 while (!WrittenVirtual->isVirtualAsWritten())
1782 WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
1783 if (WrittenVirtual != Method)
1784 Diag(WrittenVirtual->getLocation(),
1785 diag::note_overridden_virtual_function);
1786 return false;
1787 }
1788 }
1789
1790 // - its return type shall be a literal type;
1791 if (!CheckConstexprReturnType(*this, NewFD, Kind))
1792 return false;
1793 }
1794
1795 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) {
1796 // A destructor can be constexpr only if the defaulted destructor could be;
1797 // we don't need to check the members and bases if we already know they all
1798 // have constexpr destructors.
1799 if (!Dtor->getParent()->defaultedDestructorIsConstexpr()) {
1800 if (Kind == CheckConstexprKind::CheckValid)
1801 return false;
1802 if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind))
1803 return false;
1804 }
1805 }
1806
1807 // - each of its parameter types shall be a literal type;
1808 if (!CheckConstexprParameterTypes(*this, NewFD, Kind))
1809 return false;
1810
1811 Stmt *Body = NewFD->getBody();
1812 assert(Body &&(static_cast<void> (0))
1813 "CheckConstexprFunctionDefinition called on function with no body")(static_cast<void> (0));
1814 return CheckConstexprFunctionBody(*this, NewFD, Body, Kind);
1815}
1816
1817/// Check the given declaration statement is legal within a constexpr function
1818/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
1819///
1820/// \return true if the body is OK (maybe only as an extension), false if we
1821/// have diagnosed a problem.
1822static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
1823 DeclStmt *DS, SourceLocation &Cxx1yLoc,
1824 Sema::CheckConstexprKind Kind) {
1825 // C++11 [dcl.constexpr]p3 and p4:
1826 // The definition of a constexpr function(p3) or constructor(p4) [...] shall
1827 // contain only
1828 for (const auto *DclIt : DS->decls()) {
1829 switch (DclIt->getKind()) {
1830 case Decl::StaticAssert:
1831 case Decl::Using:
1832 case Decl::UsingShadow:
1833 case Decl::UsingDirective:
1834 case Decl::UnresolvedUsingTypename:
1835 case Decl::UnresolvedUsingValue:
1836 case Decl::UsingEnum:
1837 // - static_assert-declarations
1838 // - using-declarations,
1839 // - using-directives,
1840 // - using-enum-declaration
1841 continue;
1842
1843 case Decl::Typedef:
1844 case Decl::TypeAlias: {
1845 // - typedef declarations and alias-declarations that do not define
1846 // classes or enumerations,
1847 const auto *TN = cast<TypedefNameDecl>(DclIt);
1848 if (TN->getUnderlyingType()->isVariablyModifiedType()) {
1849 // Don't allow variably-modified types in constexpr functions.
1850 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1851 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
1852 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
1853 << TL.getSourceRange() << TL.getType()
1854 << isa<CXXConstructorDecl>(Dcl);
1855 }
1856 return false;
1857 }
1858 continue;
1859 }
1860
1861 case Decl::Enum:
1862 case Decl::CXXRecord:
1863 // C++1y allows types to be defined, not just declared.
1864 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) {
1865 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1866 SemaRef.Diag(DS->getBeginLoc(),
1867 SemaRef.getLangOpts().CPlusPlus14
1868 ? diag::warn_cxx11_compat_constexpr_type_definition
1869 : diag::ext_constexpr_type_definition)
1870 << isa<CXXConstructorDecl>(Dcl);
1871 } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1872 return false;
1873 }
1874 }
1875 continue;
1876
1877 case Decl::EnumConstant:
1878 case Decl::IndirectField:
1879 case Decl::ParmVar:
1880 // These can only appear with other declarations which are banned in
1881 // C++11 and permitted in C++1y, so ignore them.
1882 continue;
1883
1884 case Decl::Var:
1885 case Decl::Decomposition: {
1886 // C++1y [dcl.constexpr]p3 allows anything except:
1887 // a definition of a variable of non-literal type or of static or
1888 // thread storage duration or [before C++2a] for which no
1889 // initialization is performed.
1890 const auto *VD = cast<VarDecl>(DclIt);
1891 if (VD->isThisDeclarationADefinition()) {
1892 if (VD->isStaticLocal()) {
1893 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1894 SemaRef.Diag(VD->getLocation(),
1895 diag::err_constexpr_local_var_static)
1896 << isa<CXXConstructorDecl>(Dcl)
1897 << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
1898 }
1899 return false;
1900 }
1901 if (CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(),
1902 diag::err_constexpr_local_var_non_literal_type,
1903 isa<CXXConstructorDecl>(Dcl)))
1904 return false;
1905 if (!VD->getType()->isDependentType() &&
1906 !VD->hasInit() && !VD->isCXXForRangeDecl()) {
1907 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1908 SemaRef.Diag(
1909 VD->getLocation(),
1910 SemaRef.getLangOpts().CPlusPlus20
1911 ? diag::warn_cxx17_compat_constexpr_local_var_no_init
1912 : diag::ext_constexpr_local_var_no_init)
1913 << isa<CXXConstructorDecl>(Dcl);
1914 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
1915 return false;
1916 }
1917 continue;
1918 }
1919 }
1920 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1921 SemaRef.Diag(VD->getLocation(),
1922 SemaRef.getLangOpts().CPlusPlus14
1923 ? diag::warn_cxx11_compat_constexpr_local_var
1924 : diag::ext_constexpr_local_var)
1925 << isa<CXXConstructorDecl>(Dcl);
1926 } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1927 return false;
1928 }
1929 continue;
1930 }
1931
1932 case Decl::NamespaceAlias:
1933 case Decl::Function:
1934 // These are disallowed in C++11 and permitted in C++1y. Allow them
1935 // everywhere as an extension.
1936 if (!Cxx1yLoc.isValid())
1937 Cxx1yLoc = DS->getBeginLoc();
1938 continue;
1939
1940 default:
1941 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1942 SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
1943 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
1944 }
1945 return false;
1946 }
1947 }
1948
1949 return true;
1950}
1951
1952/// Check that the given field is initialized within a constexpr constructor.
1953///
1954/// \param Dcl The constexpr constructor being checked.
1955/// \param Field The field being checked. This may be a member of an anonymous
1956/// struct or union nested within the class being checked.
1957/// \param Inits All declarations, including anonymous struct/union members and
1958/// indirect members, for which any initialization was provided.
1959/// \param Diagnosed Whether we've emitted the error message yet. Used to attach
1960/// multiple notes for different members to the same error.
1961/// \param Kind Whether we're diagnosing a constructor as written or determining
1962/// whether the formal requirements are satisfied.
1963/// \return \c false if we're checking for validity and the constructor does
1964/// not satisfy the requirements on a constexpr constructor.
1965static bool CheckConstexprCtorInitializer(Sema &SemaRef,
1966 const FunctionDecl *Dcl,
1967 FieldDecl *Field,
1968 llvm::SmallSet<Decl*, 16> &Inits,
1969 bool &Diagnosed,
1970 Sema::CheckConstexprKind Kind) {
1971 // In C++20 onwards, there's nothing to check for validity.
1972 if (Kind == Sema::CheckConstexprKind::CheckValid &&
1973 SemaRef.getLangOpts().CPlusPlus20)
1974 return true;
1975
1976 if (Field->isInvalidDecl())
1977 return true;
1978
1979 if (Field->isUnnamedBitfield())
1980 return true;
1981
1982 // Anonymous unions with no variant members and empty anonymous structs do not
1983 // need to be explicitly initialized. FIXME: Anonymous structs that contain no
1984 // indirect fields don't need initializing.
1985 if (Field->isAnonymousStructOrUnion() &&
1986 (Field->getType()->isUnionType()
1987 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
1988 : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
1989 return true;
1990
1991 if (!Inits.count(Field)) {
1992 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1993 if (!Diagnosed) {
1994 SemaRef.Diag(Dcl->getLocation(),
1995 SemaRef.getLangOpts().CPlusPlus20
1996 ? diag::warn_cxx17_compat_constexpr_ctor_missing_init
1997 : diag::ext_constexpr_ctor_missing_init);
1998 Diagnosed = true;
1999 }
2000 SemaRef.Diag(Field->getLocation(),
2001 diag::note_constexpr_ctor_missing_init);
2002 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
2003 return false;
2004 }
2005 } else if (Field->isAnonymousStructOrUnion()) {
2006 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
2007 for (auto *I : RD->fields())
2008 // If an anonymous union contains an anonymous struct of which any member
2009 // is initialized, all members must be initialized.
2010 if (!RD->isUnion() || Inits.count(I))
2011 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
2012 Kind))
2013 return false;
2014 }
2015 return true;
2016}
2017
2018/// Check the provided statement is allowed in a constexpr function
2019/// definition.
2020static bool
2021CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
2022 SmallVectorImpl<SourceLocation> &ReturnStmts,
2023 SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc,
2024 Sema::CheckConstexprKind Kind) {
2025 // - its function-body shall be [...] a compound-statement that contains only
2026 switch (S->getStmtClass()) {
2027 case Stmt::NullStmtClass:
2028 // - null statements,
2029 return true;
2030
2031 case Stmt::DeclStmtClass:
2032 // - static_assert-declarations
2033 // - using-declarations,
2034 // - using-directives,
2035 // - typedef declarations and alias-declarations that do not define
2036 // classes or enumerations,
2037 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind))
2038 return false;
2039 return true;
2040
2041 case Stmt::ReturnStmtClass:
2042 // - and exactly one return statement;
2043 if (isa<CXXConstructorDecl>(Dcl)) {
2044 // C++1y allows return statements in constexpr constructors.
2045 if (!Cxx1yLoc.isValid())
2046 Cxx1yLoc = S->getBeginLoc();
2047 return true;
2048 }
2049
2050 ReturnStmts.push_back(S->getBeginLoc());
2051 return true;
2052
2053 case Stmt::CompoundStmtClass: {
2054 // C++1y allows compound-statements.
2055 if (!Cxx1yLoc.isValid())
2056 Cxx1yLoc = S->getBeginLoc();
2057
2058 CompoundStmt *CompStmt = cast<CompoundStmt>(S);
2059 for (auto *BodyIt : CompStmt->body()) {
2060 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
2061 Cxx1yLoc, Cxx2aLoc, Kind))
2062 return false;
2063 }
2064 return true;
2065 }
2066
2067 case Stmt::AttributedStmtClass:
2068 if (!Cxx1yLoc.isValid())
2069 Cxx1yLoc = S->getBeginLoc();
2070 return true;
2071
2072 case Stmt::IfStmtClass: {
2073 // C++1y allows if-statements.
2074 if (!Cxx1yLoc.isValid())
2075 Cxx1yLoc = S->getBeginLoc();
2076
2077 IfStmt *If = cast<IfStmt>(S);
2078 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
2079 Cxx1yLoc, Cxx2aLoc, Kind))
2080 return false;
2081 if (If->getElse() &&
2082 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
2083 Cxx1yLoc, Cxx2aLoc, Kind))
2084 return false;
2085 return true;
2086 }
2087
2088 case Stmt::WhileStmtClass:
2089 case Stmt::DoStmtClass:
2090 case Stmt::ForStmtClass:
2091 case Stmt::CXXForRangeStmtClass:
2092 case Stmt::ContinueStmtClass:
2093 // C++1y allows all of these. We don't allow them as extensions in C++11,
2094 // because they don't make sense without variable mutation.
2095 if (!SemaRef.getLangOpts().CPlusPlus14)
2096 break;
2097 if (!Cxx1yLoc.isValid())
2098 Cxx1yLoc = S->getBeginLoc();
2099 for (Stmt *SubStmt : S->children())
2100 if (SubStmt &&
2101 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2102 Cxx1yLoc, Cxx2aLoc, Kind))
2103 return false;
2104 return true;
2105
2106 case Stmt::SwitchStmtClass:
2107 case Stmt::CaseStmtClass:
2108 case Stmt::DefaultStmtClass:
2109 case Stmt::BreakStmtClass:
2110 // C++1y allows switch-statements, and since they don't need variable
2111 // mutation, we can reasonably allow them in C++11 as an extension.
2112 if (!Cxx1yLoc.isValid())
2113 Cxx1yLoc = S->getBeginLoc();
2114 for (Stmt *SubStmt : S->children())
2115 if (SubStmt &&
2116 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2117 Cxx1yLoc, Cxx2aLoc, Kind))
2118 return false;
2119 return true;
2120
2121 case Stmt::GCCAsmStmtClass:
2122 case Stmt::MSAsmStmtClass:
2123 // C++2a allows inline assembly statements.
2124 case Stmt::CXXTryStmtClass:
2125 if (Cxx2aLoc.isInvalid())
2126 Cxx2aLoc = S->getBeginLoc();
2127 for (Stmt *SubStmt : S->children()) {
2128 if (SubStmt &&
2129 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2130 Cxx1yLoc, Cxx2aLoc, Kind))
2131 return false;
2132 }
2133 return true;
2134
2135 case Stmt::CXXCatchStmtClass:
2136 // Do not bother checking the language mode (already covered by the
2137 // try block check).
2138 if (!CheckConstexprFunctionStmt(SemaRef, Dcl,
2139 cast<CXXCatchStmt>(S)->getHandlerBlock(),
2140 ReturnStmts, Cxx1yLoc, Cxx2aLoc, Kind))
2141 return false;
2142 return true;
2143
2144 default:
2145 if (!isa<Expr>(S))
2146 break;
2147
2148 // C++1y allows expression-statements.
2149 if (!Cxx1yLoc.isValid())
2150 Cxx1yLoc = S->getBeginLoc();
2151 return true;
2152 }
2153
2154 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2155 SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
2156 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2157 }
2158 return false;
2159}
2160
2161/// Check the body for the given constexpr function declaration only contains
2162/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
2163///
2164/// \return true if the body is OK, false if we have found or diagnosed a
2165/// problem.
2166static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
2167 Stmt *Body,
2168 Sema::CheckConstexprKind Kind) {
2169 SmallVector<SourceLocation, 4> ReturnStmts;
2170
2171 if (isa<CXXTryStmt>(Body)) {
2172 // C++11 [dcl.constexpr]p3:
2173 // The definition of a constexpr function shall satisfy the following
2174 // constraints: [...]
2175 // - its function-body shall be = delete, = default, or a
2176 // compound-statement
2177 //
2178 // C++11 [dcl.constexpr]p4:
2179 // In the definition of a constexpr constructor, [...]
2180 // - its function-body shall not be a function-try-block;
2181 //
2182 // This restriction is lifted in C++2a, as long as inner statements also
2183 // apply the general constexpr rules.
2184 switch (Kind) {
2185 case Sema::CheckConstexprKind::CheckValid:
2186 if (!SemaRef.getLangOpts().CPlusPlus20)
2187 return false;
2188 break;
2189
2190 case Sema::CheckConstexprKind::Diagnose:
2191 SemaRef.Diag(Body->getBeginLoc(),
2192 !SemaRef.getLangOpts().CPlusPlus20
2193 ? diag::ext_constexpr_function_try_block_cxx20
2194 : diag::warn_cxx17_compat_constexpr_function_try_block)
2195 << isa<CXXConstructorDecl>(Dcl);
2196 break;
2197 }
2198 }
2199
2200 // - its function-body shall be [...] a compound-statement that contains only
2201 // [... list of cases ...]
2202 //
2203 // Note that walking the children here is enough to properly check for
2204 // CompoundStmt and CXXTryStmt body.
2205 SourceLocation Cxx1yLoc, Cxx2aLoc;
2206 for (Stmt *SubStmt : Body->children()) {
2207 if (SubStmt &&
2208 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2209 Cxx1yLoc, Cxx2aLoc, Kind))
2210 return false;
2211 }
2212
2213 if (Kind == Sema::CheckConstexprKind::CheckValid) {
2214 // If this is only valid as an extension, report that we don't satisfy the
2215 // constraints of the current language.
2216 if ((Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus20) ||
2217 (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17))
2218 return false;
2219 } else if (Cxx2aLoc.isValid()) {
2220 SemaRef.Diag(Cxx2aLoc,
2221 SemaRef.getLangOpts().CPlusPlus20
2222 ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt
2223 : diag::ext_constexpr_body_invalid_stmt_cxx20)
2224 << isa<CXXConstructorDecl>(Dcl);
2225 } else if (Cxx1yLoc.isValid()) {
2226 SemaRef.Diag(Cxx1yLoc,
2227 SemaRef.getLangOpts().CPlusPlus14
2228 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
2229 : diag::ext_constexpr_body_invalid_stmt)
2230 << isa<CXXConstructorDecl>(Dcl);
2231 }
2232
2233 if (const CXXConstructorDecl *Constructor
2234 = dyn_cast<CXXConstructorDecl>(Dcl)) {
2235 const CXXRecordDecl *RD = Constructor->getParent();
2236 // DR1359:
2237 // - every non-variant non-static data member and base class sub-object
2238 // shall be initialized;
2239 // DR1460:
2240 // - if the class is a union having variant members, exactly one of them
2241 // shall be initialized;
2242 if (RD->isUnion()) {
2243 if (Constructor->getNumCtorInitializers() == 0 &&
2244 RD->hasVariantMembers()) {
2245 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2246 SemaRef.Diag(
2247 Dcl->getLocation(),
2248 SemaRef.getLangOpts().CPlusPlus20
2249 ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init
2250 : diag::ext_constexpr_union_ctor_no_init);
2251 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
2252 return false;
2253 }
2254 }
2255 } else if (!Constructor->isDependentContext() &&
2256 !Constructor->isDelegatingConstructor()) {
2257 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases")(static_cast<void> (0));
2258
2259 // Skip detailed checking if we have enough initializers, and we would
2260 // allow at most one initializer per member.
2261 bool AnyAnonStructUnionMembers = false;
2262 unsigned Fields = 0;
2263 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
2264 E = RD->field_end(); I != E; ++I, ++Fields) {
2265 if (I->isAnonymousStructOrUnion()) {
2266 AnyAnonStructUnionMembers = true;
2267 break;
2268 }
2269 }
2270 // DR1460:
2271 // - if the class is a union-like class, but is not a union, for each of
2272 // its anonymous union members having variant members, exactly one of
2273 // them shall be initialized;
2274 if (AnyAnonStructUnionMembers ||
2275 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
2276 // Check initialization of non-static data members. Base classes are
2277 // always initialized so do not need to be checked. Dependent bases
2278 // might not have initializers in the member initializer list.
2279 llvm::SmallSet<Decl*, 16> Inits;
2280 for (const auto *I: Constructor->inits()) {
2281 if (FieldDecl *FD = I->getMember())
2282 Inits.insert(FD);
2283 else if (IndirectFieldDecl *ID = I->getIndirectMember())
2284 Inits.insert(ID->chain_begin(), ID->chain_end());
2285 }
2286
2287 bool Diagnosed = false;
2288 for (auto *I : RD->fields())
2289 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
2290 Kind))
2291 return false;
2292 }
2293 }
2294 } else {
2295 if (ReturnStmts.empty()) {
2296 // C++1y doesn't require constexpr functions to contain a 'return'
2297 // statement. We still do, unless the return type might be void, because
2298 // otherwise if there's no return statement, the function cannot
2299 // be used in a core constant expression.
2300 bool OK = SemaRef.getLangOpts().CPlusPlus14 &&
2301 (Dcl->getReturnType()->isVoidType() ||
2302 Dcl->getReturnType()->isDependentType());
2303 switch (Kind) {
2304 case Sema::CheckConstexprKind::Diagnose:
2305 SemaRef.Diag(Dcl->getLocation(),
2306 OK ? diag::warn_cxx11_compat_constexpr_body_no_return
2307 : diag::err_constexpr_body_no_return)
2308 << Dcl->isConsteval();
2309 if (!OK)
2310 return false;
2311 break;
2312
2313 case Sema::CheckConstexprKind::CheckValid:
2314 // The formal requirements don't include this rule in C++14, even
2315 // though the "must be able to produce a constant expression" rules
2316 // still imply it in some cases.
2317 if (!SemaRef.getLangOpts().CPlusPlus14)
2318 return false;
2319 break;
2320 }
2321 } else if (ReturnStmts.size() > 1) {
2322 switch (Kind) {
2323 case Sema::CheckConstexprKind::Diagnose:
2324 SemaRef.Diag(
2325 ReturnStmts.back(),
2326 SemaRef.getLangOpts().CPlusPlus14
2327 ? diag::warn_cxx11_compat_constexpr_body_multiple_return
2328 : diag::ext_constexpr_body_multiple_return);
2329 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
2330 SemaRef.Diag(ReturnStmts[I],
2331 diag::note_constexpr_body_previous_return);
2332 break;
2333
2334 case Sema::CheckConstexprKind::CheckValid:
2335 if (!SemaRef.getLangOpts().CPlusPlus14)
2336 return false;
2337 break;
2338 }
2339 }
2340 }
2341
2342 // C++11 [dcl.constexpr]p5:
2343 // if no function argument values exist such that the function invocation
2344 // substitution would produce a constant expression, the program is
2345 // ill-formed; no diagnostic required.
2346 // C++11 [dcl.constexpr]p3:
2347 // - every constructor call and implicit conversion used in initializing the
2348 // return value shall be one of those allowed in a constant expression.
2349 // C++11 [dcl.constexpr]p4:
2350 // - every constructor involved in initializing non-static data members and
2351 // base class sub-objects shall be a constexpr constructor.
2352 //
2353 // Note that this rule is distinct from the "requirements for a constexpr
2354 // function", so is not checked in CheckValid mode.
2355 SmallVector<PartialDiagnosticAt, 8> Diags;
2356 if (Kind == Sema::CheckConstexprKind::Diagnose &&
2357 !Expr::isPotentialConstantExpr(Dcl, Diags)) {
2358 SemaRef.Diag(Dcl->getLocation(),
2359 diag::ext_constexpr_function_never_constant_expr)
2360 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2361 for (size_t I = 0, N = Diags.size(); I != N; ++I)
2362 SemaRef.Diag(Diags[I].first, Diags[I].second);
2363 // Don't return false here: we allow this for compatibility in
2364 // system headers.
2365 }
2366
2367 return true;
2368}
2369
2370/// Get the class that is directly named by the current context. This is the
2371/// class for which an unqualified-id in this scope could name a constructor
2372/// or destructor.
2373///
2374/// If the scope specifier denotes a class, this will be that class.
2375/// If the scope specifier is empty, this will be the class whose
2376/// member-specification we are currently within. Otherwise, there
2377/// is no such class.
2378CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) {
2379 assert(getLangOpts().CPlusPlus && "No class names in C!")(static_cast<void> (0));
2380
2381 if (SS && SS->isInvalid())
2382 return nullptr;
2383
2384 if (SS && SS->isNotEmpty()) {
2385 DeclContext *DC = computeDeclContext(*SS, true);
2386 return dyn_cast_or_null<CXXRecordDecl>(DC);
2387 }
2388
2389 return dyn_cast_or_null<CXXRecordDecl>(CurContext);
2390}
2391
2392/// isCurrentClassName - Determine whether the identifier II is the
2393/// name of the class type currently being defined. In the case of
2394/// nested classes, this will only return true if II is the name of
2395/// the innermost class.
2396bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S,
2397 const CXXScopeSpec *SS) {
2398 CXXRecordDecl *CurDecl = getCurrentClass(S, SS);
2399 return CurDecl && &II == CurDecl->getIdentifier();
2400}
2401
2402/// Determine whether the identifier II is a typo for the name of
2403/// the class type currently being defined. If so, update it to the identifier
2404/// that should have been used.
2405bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
2406 assert(getLangOpts().CPlusPlus && "No class names in C!")(static_cast<void> (0));
2407
2408 if (!getLangOpts().SpellChecking)
2409 return false;
2410
2411 CXXRecordDecl *CurDecl;
2412 if (SS && SS->isSet() && !SS->isInvalid()) {
2413 DeclContext *DC = computeDeclContext(*SS, true);
2414 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2415 } else
2416 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2417
2418 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
2419 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
2420 < II->getLength()) {
2421 II = CurDecl->getIdentifier();
2422 return true;
2423 }
2424
2425 return false;
2426}
2427
2428/// Determine whether the given class is a base class of the given
2429/// class, including looking at dependent bases.
2430static bool findCircularInheritance(const CXXRecordDecl *Class,
2431 const CXXRecordDecl *Current) {
2432 SmallVector<const CXXRecordDecl*, 8> Queue;
2433
2434 Class = Class->getCanonicalDecl();
2435 while (true) {
2436 for (const auto &I : Current->bases()) {
2437 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
2438 if (!Base)
2439 continue;
2440
2441 Base = Base->getDefinition();
2442 if (!Base)
2443 continue;
2444
2445 if (Base->getCanonicalDecl() == Class)
2446 return true;
2447
2448 Queue.push_back(Base);
2449 }
2450
2451 if (Queue.empty())
2452 return false;
2453
2454 Current = Queue.pop_back_val();
2455 }
2456
2457 return false;
2458}
2459
2460/// Check the validity of a C++ base class specifier.
2461///
2462/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
2463/// and returns NULL otherwise.
2464CXXBaseSpecifier *
2465Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
2466 SourceRange SpecifierRange,
2467 bool Virtual, AccessSpecifier Access,
2468 TypeSourceInfo *TInfo,
2469 SourceLocation EllipsisLoc) {
2470 QualType BaseType = TInfo->getType();
2471 if (BaseType->containsErrors()) {
2472 // Already emitted a diagnostic when parsing the error type.
2473 return nullptr;
2474 }
2475 // C++ [class.union]p1:
2476 // A union shall not have base classes.
2477 if (Class->isUnion()) {
2478 Diag(Class->getLocation(), diag::err_base_clause_on_union)
2479 << SpecifierRange;
2480 return nullptr;
2481 }
2482
2483 if (EllipsisLoc.isValid() &&
2484 !TInfo->getType()->containsUnexpandedParameterPack()) {
2485 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2486 << TInfo->getTypeLoc().getSourceRange();
2487 EllipsisLoc = SourceLocation();
2488 }
2489
2490 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
2491
2492 if (BaseType->isDependentType()) {
2493 // Make sure that we don't have circular inheritance among our dependent
2494 // bases. For non-dependent bases, the check for completeness below handles
2495 // this.
2496 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
2497 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
2498 ((BaseDecl = BaseDecl->getDefinition()) &&
2499 findCircularInheritance(Class, BaseDecl))) {
2500 Diag(BaseLoc, diag::err_circular_inheritance)
2501 << BaseType << Context.getTypeDeclType(Class);
2502
2503 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
2504 Diag(BaseDecl->getLocation(), diag::note_previous_decl)
2505 << BaseType;
2506
2507 return nullptr;
2508 }
2509 }
2510
2511 // Make sure that we don't make an ill-formed AST where the type of the
2512 // Class is non-dependent and its attached base class specifier is an
2513 // dependent type, which violates invariants in many clang code paths (e.g.
2514 // constexpr evaluator). If this case happens (in errory-recovery mode), we
2515 // explicitly mark the Class decl invalid. The diagnostic was already
2516 // emitted.
2517 if (!Class->getTypeForDecl()->isDependentType())
2518 Class->setInvalidDecl();
2519 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2520 Class->getTagKind() == TTK_Class,
2521 Access, TInfo, EllipsisLoc);
2522 }
2523
2524 // Base specifiers must be record types.
2525 if (!BaseType->isRecordType()) {
2526 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
2527 return nullptr;
2528 }
2529
2530 // C++ [class.union]p1:
2531 // A union shall not be used as a base class.
2532 if (BaseType->isUnionType()) {
2533 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
2534 return nullptr;
2535 }
2536
2537 // For the MS ABI, propagate DLL attributes to base class templates.
2538 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2539 if (Attr *ClassAttr = getDLLAttr(Class)) {
2540 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
2541 BaseType->getAsCXXRecordDecl())) {
2542 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate,
2543 BaseLoc);
2544 }
2545 }
2546 }
2547
2548 // C++ [class.derived]p2:
2549 // The class-name in a base-specifier shall not be an incompletely
2550 // defined class.
2551 if (RequireCompleteType(BaseLoc, BaseType,
2552 diag::err_incomplete_base_class, SpecifierRange)) {
2553 Class->setInvalidDecl();
2554 return nullptr;
2555 }
2556
2557 // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
2558 RecordDecl *BaseDecl = BaseType->castAs<RecordType>()->getDecl();
2559 assert(BaseDecl && "Record type has no declaration")(static_cast<void> (0));
2560 BaseDecl = BaseDecl->getDefinition();
2561 assert(BaseDecl && "Base type is not incomplete, but has no definition")(static_cast<void> (0));
2562 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
2563 assert(CXXBaseDecl && "Base type is not a C++ type")(static_cast<void> (0));
2564
2565 // Microsoft docs say:
2566 // "If a base-class has a code_seg attribute, derived classes must have the
2567 // same attribute."
2568 const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>();
2569 const auto *DerivedCSA = Class->getAttr<CodeSegAttr>();
2570 if ((DerivedCSA || BaseCSA) &&
2571 (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) {
2572 Diag(Class->getLocation(), diag::err_mismatched_code_seg_base);
2573 Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here)
2574 << CXXBaseDecl;
2575 return nullptr;
2576 }
2577
2578 // A class which contains a flexible array member is not suitable for use as a
2579 // base class:
2580 // - If the layout determines that a base comes before another base,
2581 // the flexible array member would index into the subsequent base.
2582 // - If the layout determines that base comes before the derived class,
2583 // the flexible array member would index into the derived class.
2584 if (CXXBaseDecl->hasFlexibleArrayMember()) {
2585 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
2586 << CXXBaseDecl->getDeclName();
2587 return nullptr;
2588 }
2589
2590 // C++ [class]p3:
2591 // If a class is marked final and it appears as a base-type-specifier in
2592 // base-clause, the program is ill-formed.
2593 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
2594 Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
2595 << CXXBaseDecl->getDeclName()
2596 << FA->isSpelledAsSealed();
2597 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
2598 << CXXBaseDecl->getDeclName() << FA->getRange();
2599 return nullptr;
2600 }
2601
2602 if (BaseDecl->isInvalidDecl())
2603 Class->setInvalidDecl();
2604
2605 // Create the base specifier.
2606 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2607 Class->getTagKind() == TTK_Class,
2608 Access, TInfo, EllipsisLoc);
2609}
2610
2611/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
2612/// one entry in the base class list of a class specifier, for
2613/// example:
2614/// class foo : public bar, virtual private baz {
2615/// 'public bar' and 'virtual private baz' are each base-specifiers.
2616BaseResult
2617Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
2618 ParsedAttributes &Attributes,
2619 bool Virtual, AccessSpecifier Access,
2620 ParsedType basetype, SourceLocation BaseLoc,
2621 SourceLocation EllipsisLoc) {
2622 if (!classdecl)
2623 return true;
2624
2625 AdjustDeclIfTemplate(classdecl);
2626 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
2627 if (!Class)
2628 return true;
2629
2630 // We haven't yet attached the base specifiers.
2631 Class->setIsParsingBaseSpecifiers();
2632
2633 // We do not support any C++11 attributes on base-specifiers yet.
2634 // Diagnose any attributes we see.
2635 for (const ParsedAttr &AL : Attributes) {
2636 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
2637 continue;
2638 Diag(AL.getLoc(), AL.getKind() == ParsedAttr::UnknownAttribute
2639 ? (unsigned)diag::warn_unknown_attribute_ignored
2640 : (unsigned)diag::err_base_specifier_attribute)
2641 << AL << AL.getRange();
2642 }
2643
2644 TypeSourceInfo *TInfo = nullptr;
2645 GetTypeFromParser(basetype, &TInfo);
2646
2647 if (EllipsisLoc.isInvalid() &&
2648 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
2649 UPPC_BaseType))
2650 return true;
2651
2652 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
2653 Virtual, Access, TInfo,
2654 EllipsisLoc))
2655 return BaseSpec;
2656 else
2657 Class->setInvalidDecl();
2658
2659 return true;
2660}
2661
2662/// Use small set to collect indirect bases. As this is only used
2663/// locally, there's no need to abstract the small size parameter.
2664typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
2665
2666/// Recursively add the bases of Type. Don't add Type itself.
2667static void
2668NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
2669 const QualType &Type)
2670{
2671 // Even though the incoming type is a base, it might not be
2672 // a class -- it could be a template parm, for instance.
2673 if (auto Rec = Type->getAs<RecordType>()) {
2674 auto Decl = Rec->getAsCXXRecordDecl();
2675
2676 // Iterate over its bases.
2677 for (const auto &BaseSpec : Decl->bases()) {
2678 QualType Base = Context.getCanonicalType(BaseSpec.getType())
2679 .getUnqualifiedType();
2680 if (Set.insert(Base).second)
2681 // If we've not already seen it, recurse.
2682 NoteIndirectBases(Context, Set, Base);
2683 }
2684 }
2685}
2686
2687/// Performs the actual work of attaching the given base class
2688/// specifiers to a C++ class.
2689bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class,
2690 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2691 if (Bases.empty())
2692 return false;
2693
2694 // Used to keep track of which base types we have already seen, so
2695 // that we can properly diagnose redundant direct base types. Note
2696 // that the key is always the unqualified canonical type of the base
2697 // class.
2698 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
2699
2700 // Used to track indirect bases so we can see if a direct base is
2701 // ambiguous.
2702 IndirectBaseSet IndirectBaseTypes;
2703
2704 // Copy non-redundant base specifiers into permanent storage.
2705 unsigned NumGoodBases = 0;
2706 bool Invalid = false;
2707 for (unsigned idx = 0; idx < Bases.size(); ++idx) {
2708 QualType NewBaseType
2709 = Context.getCanonicalType(Bases[idx]->getType());
2710 NewBaseType = NewBaseType.getLocalUnqualifiedType();
2711
2712 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
2713 if (KnownBase) {
2714 // C++ [class.mi]p3:
2715 // A class shall not be specified as a direct base class of a
2716 // derived class more than once.
2717 Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class)
2718 << KnownBase->getType() << Bases[idx]->getSourceRange();
2719
2720 // Delete the duplicate base class specifier; we're going to
2721 // overwrite its pointer later.
2722 Context.Deallocate(Bases[idx]);
2723
2724 Invalid = true;
2725 } else {
2726 // Okay, add this new base class.
2727 KnownBase = Bases[idx];
2728 Bases[NumGoodBases++] = Bases[idx];
2729
2730 // Note this base's direct & indirect bases, if there could be ambiguity.
2731 if (Bases.size() > 1)
2732 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
2733
2734 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
2735 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2736 if (Class->isInterface() &&
2737 (!RD->isInterfaceLike() ||
2738 KnownBase->getAccessSpecifier() != AS_public)) {
2739 // The Microsoft extension __interface does not permit bases that
2740 // are not themselves public interfaces.
2741 Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface)
2742 << getRecordDiagFromTagKind(RD->getTagKind()) << RD
2743 << RD->getSourceRange();
2744 Invalid = true;
2745 }
2746 if (RD->hasAttr<WeakAttr>())
2747 Class->addAttr(WeakAttr::CreateImplicit(Context));
2748 }
2749 }
2750 }
2751
2752 // Attach the remaining base class specifiers to the derived class.
2753 Class->setBases(Bases.data(), NumGoodBases);
2754
2755 // Check that the only base classes that are duplicate are virtual.
2756 for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
2757 // Check whether this direct base is inaccessible due to ambiguity.
2758 QualType BaseType = Bases[idx]->getType();
2759
2760 // Skip all dependent types in templates being used as base specifiers.
2761 // Checks below assume that the base specifier is a CXXRecord.
2762 if (BaseType->isDependentType())
2763 continue;
2764
2765 CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
2766 .getUnqualifiedType();
2767
2768 if (IndirectBaseTypes.count(CanonicalBase)) {
2769 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2770 /*DetectVirtual=*/true);
2771 bool found
2772 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
2773 assert(found)(static_cast<void> (0));
2774 (void)found;
2775
2776 if (Paths.isAmbiguous(CanonicalBase))
2777 Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class)
2778 << BaseType << getAmbiguousPathsDisplayString(Paths)
2779 << Bases[idx]->getSourceRange();
2780 else
2781 assert(Bases[idx]->isVirtual())(static_cast<void> (0));
2782 }
2783
2784 // Delete the base class specifier, since its data has been copied
2785 // into the CXXRecordDecl.
2786 Context.Deallocate(Bases[idx]);
2787 }
2788
2789 return Invalid;
2790}
2791
2792/// ActOnBaseSpecifiers - Attach the given base specifiers to the
2793/// class, after checking whether there are any duplicate base
2794/// classes.
2795void Sema::ActOnBaseSpecifiers(Decl *ClassDecl,
2796 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2797 if (!ClassDecl || Bases.empty())
2798 return;
2799
2800 AdjustDeclIfTemplate(ClassDecl);
2801 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases);
2802}
2803
2804/// Determine whether the type \p Derived is a C++ class that is
2805/// derived from the type \p Base.
2806bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) {
2807 if (!getLangOpts().CPlusPlus)
2808 return false;
2809
2810 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2811 if (!DerivedRD)
2812 return false;
2813
2814 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2815 if (!BaseRD)
2816 return false;
2817
2818 // If either the base or the derived type is invalid, don't try to
2819 // check whether one is derived from the other.
2820 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
2821 return false;
2822
2823 // FIXME: In a modules build, do we need the entire path to be visible for us
2824 // to be able to use the inheritance relationship?
2825 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2826 return false;
2827
2828 return DerivedRD->isDerivedFrom(BaseRD);
2829}
2830
2831/// Determine whether the type \p Derived is a C++ class that is
2832/// derived from the type \p Base.
2833bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
2834 CXXBasePaths &Paths) {
2835 if (!getLangOpts().CPlusPlus)
2836 return false;
2837
2838 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2839 if (!DerivedRD)
2840 return false;
2841
2842 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2843 if (!BaseRD)
2844 return false;
2845
2846 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2847 return false;
2848
2849 return DerivedRD->isDerivedFrom(BaseRD, Paths);
2850}
2851
2852static void BuildBasePathArray(const CXXBasePath &Path,
2853 CXXCastPath &BasePathArray) {
2854 // We first go backward and check if we have a virtual base.
2855 // FIXME: It would be better if CXXBasePath had the base specifier for
2856 // the nearest virtual base.
2857 unsigned Start = 0;
2858 for (unsigned I = Path.size(); I != 0; --I) {
2859 if (Path[I - 1].Base->isVirtual()) {
2860 Start = I - 1;
2861 break;
2862 }
2863 }
2864
2865 // Now add all bases.
2866 for (unsigned I = Start, E = Path.size(); I != E; ++I)
2867 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
2868}
2869
2870
2871void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
2872 CXXCastPath &BasePathArray) {
2873 assert(BasePathArray.empty() && "Base path array must be empty!")(static_cast<void> (0));
2874 assert(Paths.isRecordingPaths() && "Must record paths!")(static_cast<void> (0));
2875 return ::BuildBasePathArray(Paths.front(), BasePathArray);
2876}
2877/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
2878/// conversion (where Derived and Base are class types) is
2879/// well-formed, meaning that the conversion is unambiguous (and
2880/// that all of the base classes are accessible). Returns true
2881/// and emits a diagnostic if the code is ill-formed, returns false
2882/// otherwise. Loc is the location where this routine should point to
2883/// if there is an error, and Range is the source range to highlight
2884/// if there is an error.
2885///
2886/// If either InaccessibleBaseID or AmbiguousBaseConvID are 0, then the
2887/// diagnostic for the respective type of error will be suppressed, but the
2888/// check for ill-formed code will still be performed.
2889bool
2890Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2891 unsigned InaccessibleBaseID,
2892 unsigned AmbiguousBaseConvID,
2893 SourceLocation Loc, SourceRange Range,
2894 DeclarationName Name,
2895 CXXCastPath *BasePath,
2896 bool IgnoreAccess) {
2897 // First, determine whether the path from Derived to Base is
2898 // ambiguous. This is slightly more expensive than checking whether
2899 // the Derived to Base conversion exists, because here we need to
2900 // explore multiple paths to determine if there is an ambiguity.
2901 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2902 /*DetectVirtual=*/false);
2903 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2904 if (!DerivationOkay)
2905 return true;
2906
2907 const CXXBasePath *Path = nullptr;
2908 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType()))
2909 Path = &Paths.front();
2910
2911 // For MSVC compatibility, check if Derived directly inherits from Base. Clang
2912 // warns about this hierarchy under -Winaccessible-base, but MSVC allows the
2913 // user to access such bases.
2914 if (!Path && getLangOpts().MSVCCompat) {
2915 for (const CXXBasePath &PossiblePath : Paths) {
2916 if (PossiblePath.size() == 1) {
2917 Path = &PossiblePath;
2918 if (AmbiguousBaseConvID)
2919 Diag(Loc, diag::ext_ms_ambiguous_direct_base)
2920 << Base << Derived << Range;
2921 break;
2922 }
2923 }
2924 }
2925
2926 if (Path) {
2927 if (!IgnoreAccess) {
2928 // Check that the base class can be accessed.
2929 switch (
2930 CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) {
2931 case AR_inaccessible:
2932 return true;
2933 case AR_accessible:
2934 case AR_dependent:
2935 case AR_delayed:
2936 break;
2937 }
2938 }
2939
2940 // Build a base path if necessary.
2941 if (BasePath)
2942 ::BuildBasePathArray(*Path, *BasePath);
2943 return false;
2944 }
2945
2946 if (AmbiguousBaseConvID) {
2947 // We know that the derived-to-base conversion is ambiguous, and
2948 // we're going to produce a diagnostic. Perform the derived-to-base
2949 // search just one more time to compute all of the possible paths so
2950 // that we can print them out. This is more expensive than any of
2951 // the previous derived-to-base checks we've done, but at this point
2952 // performance isn't as much of an issue.
2953 Paths.clear();
2954 Paths.setRecordingPaths(true);
2955 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2956 assert(StillOkay && "Can only be used with a derived-to-base conversion")(static_cast<void> (0));
2957 (void)StillOkay;
2958
2959 // Build up a textual representation of the ambiguous paths, e.g.,
2960 // D -> B -> A, that will be used to illustrate the ambiguous
2961 // conversions in the diagnostic. We only print one of the paths
2962 // to each base class subobject.
2963 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2964
2965 Diag(Loc, AmbiguousBaseConvID)
2966 << Derived << Base << PathDisplayStr << Range << Name;
2967 }
2968 return true;
2969}
2970
2971bool
2972Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2973 SourceLocation Loc, SourceRange Range,
2974 CXXCastPath *BasePath,
2975 bool IgnoreAccess) {
2976 return CheckDerivedToBaseConversion(
2977 Derived, Base, diag::err_upcast_to_inaccessible_base,
2978 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(),
2979 BasePath, IgnoreAccess);
2980}
2981
2982
2983/// Builds a string representing ambiguous paths from a
2984/// specific derived class to different subobjects of the same base
2985/// class.
2986///
2987/// This function builds a string that can be used in error messages
2988/// to show the different paths that one can take through the
2989/// inheritance hierarchy to go from the derived class to different
2990/// subobjects of a base class. The result looks something like this:
2991/// @code
2992/// struct D -> struct B -> struct A
2993/// struct D -> struct C -> struct A
2994/// @endcode
2995std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
2996 std::string PathDisplayStr;
2997 std::set<unsigned> DisplayedPaths;
2998 for (CXXBasePaths::paths_iterator Path = Paths.begin();
2999 Path != Paths.end(); ++Path) {
3000 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
3001 // We haven't displayed a path to this particular base
3002 // class subobject yet.
3003 PathDisplayStr += "\n ";
3004 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
3005 for (CXXBasePath::const_iterator Element = Path->begin();
3006 Element != Path->end(); ++Element)
3007 PathDisplayStr += " -> " + Element->Base->getType().getAsString();
3008 }
3009 }
3010
3011 return PathDisplayStr;
3012}
3013
3014//===----------------------------------------------------------------------===//
3015// C++ class member Handling
3016//===----------------------------------------------------------------------===//
3017
3018/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
3019bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc,
3020 SourceLocation ColonLoc,
3021 const ParsedAttributesView &Attrs) {
3022 assert(Access != AS_none && "Invalid kind for syntactic access specifier!")(static_cast<void> (0));
3023 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
3024 ASLoc, ColonLoc);
3025 CurContext->addHiddenDecl(ASDecl);
3026 return ProcessAccessDeclAttributeList(ASDecl, Attrs);
3027}
3028
3029/// CheckOverrideControl - Check C++11 override control semantics.
3030void Sema::CheckOverrideControl(NamedDecl *D) {
3031 if (D->isInvalidDecl())
3032 return;
3033
3034 // We only care about "override" and "final" declarations.
3035 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
3036 return;
3037
3038 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
3039
3040 // We can't check dependent instance methods.
3041 if (MD && MD->isInstance() &&
3042 (MD->getParent()->hasAnyDependentBases() ||
3043 MD->getType()->isDependentType()))
3044 return;
3045
3046 if (MD && !MD->isVirtual()) {
3047 // If we have a non-virtual method, check if if hides a virtual method.
3048 // (In that case, it's most likely the method has the wrong type.)
3049 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
3050 FindHiddenVirtualMethods(MD, OverloadedMethods);
3051
3052 if (!OverloadedMethods.empty()) {
3053 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
3054 Diag(OA->getLocation(),
3055 diag::override_keyword_hides_virtual_member_function)
3056 << "override" << (OverloadedMethods.size() > 1);
3057 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
3058 Diag(FA->getLocation(),
3059 diag::override_keyword_hides_virtual_member_function)
3060 << (FA->isSpelledAsSealed() ? "sealed" : "final")
3061 << (OverloadedMethods.size() > 1);
3062 }
3063 NoteHiddenVirtualMethods(MD, OverloadedMethods);
3064 MD->setInvalidDecl();
3065 return;
3066 }
3067 // Fall through into the general case diagnostic.
3068 // FIXME: We might want to attempt typo correction here.
3069 }
3070
3071 if (!MD || !MD->isVirtual()) {
3072 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
3073 Diag(OA->getLocation(),
3074 diag::override_keyword_only_allowed_on_virtual_member_functions)
3075 << "override" << FixItHint::CreateRemoval(OA->getLocation());
3076 D->dropAttr<OverrideAttr>();
3077 }
3078 if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
3079 Diag(FA->getLocation(),
3080 diag::override_keyword_only_allowed_on_virtual_member_functions)
3081 << (FA->isSpelledAsSealed() ? "sealed" : "final")
3082 << FixItHint::CreateRemoval(FA->getLocation());
3083 D->dropAttr<FinalAttr>();
3084 }
3085 return;
3086 }
3087
3088 // C++11 [class.virtual]p5:
3089 // If a function is marked with the virt-specifier override and
3090 // does not override a member function of a base class, the program is
3091 // ill-formed.
3092 bool HasOverriddenMethods = MD->size_overridden_methods() != 0;
3093 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
3094 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
3095 << MD->getDeclName();
3096}
3097
3098void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent) {
3099 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
3100 return;
3101 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
3102 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>())
3103 return;
3104
3105 SourceLocation Loc = MD->getLocation();
3106 SourceLocation SpellingLoc = Loc;
3107 if (getSourceManager().isMacroArgExpansion(Loc))
3108 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin();
3109 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
3110 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
3111 return;
3112
3113 if (MD->size_overridden_methods() > 0) {
3114 auto EmitDiag = [&](unsigned DiagInconsistent, unsigned DiagSuggest) {
3115 unsigned DiagID =
3116 Inconsistent && !Diags.isIgnored(DiagInconsistent, MD->getLocation())
3117 ? DiagInconsistent
3118 : DiagSuggest;
3119 Diag(MD->getLocation(), DiagID) << MD->getDeclName();
3120 const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
3121 Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
3122 };
3123 if (isa<CXXDestructorDecl>(MD))
3124 EmitDiag(
3125 diag::warn_inconsistent_destructor_marked_not_override_overriding,
3126 diag::warn_suggest_destructor_marked_not_override_overriding);
3127 else
3128 EmitDiag(diag::warn_inconsistent_function_marked_not_override_overriding,
3129 diag::warn_suggest_function_marked_not_override_overriding);
3130 }
3131}
3132
3133/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
3134/// function overrides a virtual member function marked 'final', according to
3135/// C++11 [class.virtual]p4.
3136bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
3137 const CXXMethodDecl *Old) {
3138 FinalAttr *FA = Old->getAttr<FinalAttr>();
3139 if (!FA)
3140 return false;
3141
3142 Diag(New->getLocation(), diag::err_final_function_overridden)
3143 << New->getDeclName()
3144 << FA->isSpelledAsSealed();
3145 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3146 return true;
3147}
3148
3149static bool InitializationHasSideEffects(const FieldDecl &FD) {
3150 const Type *T = FD.getType()->getBaseElementTypeUnsafe();
3151 // FIXME: Destruction of ObjC lifetime types has side-effects.
3152 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3153 return !RD->isCompleteDefinition() ||
3154 !RD->hasTrivialDefaultConstructor() ||
3155 !RD->hasTrivialDestructor();
3156 return false;
3157}
3158
3159static const ParsedAttr *getMSPropertyAttr(const ParsedAttributesView &list) {
3160 ParsedAttributesView::const_iterator Itr =
3161 llvm::find_if(list, [](const ParsedAttr &AL) {
3162 return AL.isDeclspecPropertyAttribute();
3163 });
3164 if (Itr != list.end())
3165 return &*Itr;
3166 return nullptr;
3167}
3168
3169// Check if there is a field shadowing.
3170void Sema::CheckShadowInheritedFields(const SourceLocation &Loc,
3171 DeclarationName FieldName,
3172 const CXXRecordDecl *RD,
3173 bool DeclIsField) {
3174 if (Diags.isIgnored(diag::warn_shadow_field, Loc))
3175 return;
3176
3177 // To record a shadowed field in a base
3178 std::map<CXXRecordDecl*, NamedDecl*> Bases;
3179 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier,
3180 CXXBasePath &Path) {
3181 const auto Base = Specifier->getType()->getAsCXXRecordDecl();
3182 // Record an ambiguous path directly
3183 if (Bases.find(Base) != Bases.end())
3184 return true;
3185 for (const auto Field : Base->lookup(FieldName)) {
3186 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) &&
3187 Field->getAccess() != AS_private) {
3188 assert(Field->getAccess() != AS_none)(static_cast<void> (0));
3189 assert(Bases.find(Base) == Bases.end())(static_cast<void> (0));
3190 Bases[Base] = Field;
3191 return true;
3192 }
3193 }
3194 return false;
3195 };
3196
3197 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3198 /*DetectVirtual=*/true);
3199 if (!RD->lookupInBases(FieldShadowed, Paths))
3200 return;
3201
3202 for (const auto &P : Paths) {
3203 auto Base = P.back().Base->getType()->getAsCXXRecordDecl();
3204 auto It = Bases.find(Base);
3205 // Skip duplicated bases
3206 if (It == Bases.end())
3207 continue;
3208 auto BaseField = It->second;
3209 assert(BaseField->getAccess() != AS_private)(static_cast<void> (0));
3210 if (AS_none !=
3211 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) {
3212 Diag(Loc, diag::warn_shadow_field)
3213 << FieldName << RD << Base << DeclIsField;
3214 Diag(BaseField->getLocation(), diag::note_shadow_field);
3215 Bases.erase(It);
3216 }
3217 }
3218}
3219
3220/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
3221/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
3222/// bitfield width if there is one, 'InitExpr' specifies the initializer if
3223/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
3224/// present (but parsing it has been deferred).
3225NamedDecl *
3226Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
3227 MultiTemplateParamsArg TemplateParameterLists,
3228 Expr *BW, const VirtSpecifiers &VS,
3229 InClassInitStyle InitStyle) {
3230 const DeclSpec &DS = D.getDeclSpec();
3231 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3232 DeclarationName Name = NameInfo.getName();
3233 SourceLocation Loc = NameInfo.getLoc();
3234
3235 // For anonymous bitfields, the location should point to the type.
3236 if (Loc.isInvalid())
3237 Loc = D.getBeginLoc();
3238
3239 Expr *BitWidth = static_cast<Expr*>(BW);
3240
3241 assert(isa<CXXRecordDecl>(CurContext))(static_cast<void> (0));
3242 assert(!DS.isFriendSpecified())(static_cast<void> (0));
3243
3244 bool isFunc = D.isDeclarationOfFunction();
3245 const ParsedAttr *MSPropertyAttr =
3246 getMSPropertyAttr(D.getDeclSpec().getAttributes());
3247
3248 if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
3249 // The Microsoft extension __interface only permits public member functions
3250 // and prohibits constructors, destructors, operators, non-public member
3251 // functions, static methods and data members.
3252 unsigned InvalidDecl;
3253 bool ShowDeclName = true;
3254 if (!isFunc &&
3255 (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr))
3256 InvalidDecl = 0;
3257 else if (!isFunc)
3258 InvalidDecl = 1;
3259 else if (AS != AS_public)
3260 InvalidDecl = 2;
3261 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
3262 InvalidDecl = 3;
3263 else switch (Name.getNameKind()) {
3264 case DeclarationName::CXXConstructorName:
3265 InvalidDecl = 4;
3266 ShowDeclName = false;
3267 break;
3268
3269 case DeclarationName::CXXDestructorName:
3270 InvalidDecl = 5;
3271 ShowDeclName = false;
3272 break;
3273
3274 case DeclarationName::CXXOperatorName:
3275 case DeclarationName::CXXConversionFunctionName:
3276 InvalidDecl = 6;
3277 break;
3278
3279 default:
3280 InvalidDecl = 0;
3281 break;
3282 }
3283
3284 if (InvalidDecl) {
3285 if (ShowDeclName)
3286 Diag(Loc, diag::err_invalid_member_in_interface)
3287 << (InvalidDecl-1) << Name;
3288 else
3289 Diag(Loc, diag::err_invalid_member_in_interface)
3290 << (InvalidDecl-1) << "";
3291 return nullptr;
3292 }
3293 }
3294
3295 // C++ 9.2p6: A member shall not be declared to have automatic storage
3296 // duration (auto, register) or with the extern storage-class-specifier.
3297 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
3298 // data members and cannot be applied to names declared const or static,
3299 // and cannot be applied to reference members.
3300 switch (DS.getStorageClassSpec()) {
3301 case DeclSpec::SCS_unspecified:
3302 case DeclSpec::SCS_typedef:
3303 case DeclSpec::SCS_static:
3304 break;
3305 case DeclSpec::SCS_mutable:
3306 if (isFunc) {
3307 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
3308
3309 // FIXME: It would be nicer if the keyword was ignored only for this
3310 // declarator. Otherwise we could get follow-up errors.
3311 D.getMutableDeclSpec().ClearStorageClassSpecs();
3312 }
3313 break;
3314 default:
3315 Diag(DS.getStorageClassSpecLoc(),
3316 diag::err_storageclass_invalid_for_member);
3317 D.getMutableDeclSpec().ClearStorageClassSpecs();
3318 break;
3319 }
3320
3321 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
3322 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
3323 !isFunc);
3324
3325 if (DS.hasConstexprSpecifier() && isInstField) {
3326 SemaDiagnosticBuilder B =
3327 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
3328 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
3329 if (InitStyle == ICIS_NoInit) {
3330 B << 0 << 0;
3331 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
3332 B << FixItHint::CreateRemoval(ConstexprLoc);
3333 else {
3334 B << FixItHint::CreateReplacement(ConstexprLoc, "const");
3335 D.getMutableDeclSpec().ClearConstexprSpec();
3336 const char *PrevSpec;
3337 unsigned DiagID;
3338 bool Failed = D.getMutableDeclSpec().SetTypeQual(
3339 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
3340 (void)Failed;
3341 assert(!Failed && "Making a constexpr member const shouldn't fail")(static_cast<void> (0));
3342 }
3343 } else {
3344 B << 1;
3345 const char *PrevSpec;
3346 unsigned DiagID;
3347 if (D.getMutableDeclSpec().SetStorageClassSpec(
3348 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
3349 Context.getPrintingPolicy())) {
3350 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&(static_cast<void> (0))
3351 "This is the only DeclSpec that should fail to be applied")(static_cast<void> (0));
3352 B << 1;
3353 } else {
3354 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
3355 isInstField = false;
3356 }
3357 }
3358 }
3359
3360 NamedDecl *Member;
3361 if (isInstField) {
3362 CXXScopeSpec &SS = D.getCXXScopeSpec();
3363
3364 // Data members must have identifiers for names.
3365 if (!Name.isIdentifier()) {
3366 Diag(Loc, diag::err_bad_variable_name)
3367 << Name;
3368 return nullptr;
3369 }
3370
3371 IdentifierInfo *II = Name.getAsIdentifierInfo();
3372
3373 // Member field could not be with "template" keyword.
3374 // So TemplateParameterLists should be empty in this case.
3375 if (TemplateParameterLists.size()) {
3376 TemplateParameterList* TemplateParams = TemplateParameterLists[0];
3377 if (TemplateParams->size()) {
3378 // There is no such thing as a member field template.
3379 Diag(D.getIdentifierLoc(), diag::err_template_member)
3380 << II
3381 << SourceRange(TemplateParams->getTemplateLoc(),
3382 TemplateParams->getRAngleLoc());
3383 } else {
3384 // There is an extraneous 'template<>' for this member.
3385 Diag(TemplateParams->getTemplateLoc(),
3386 diag::err_template_member_noparams)
3387 << II
3388 << SourceRange(TemplateParams->getTemplateLoc(),
3389 TemplateParams->getRAngleLoc());
3390 }
3391 return nullptr;
3392 }
3393
3394 if (SS.isSet() && !SS.isInvalid()) {
3395 // The user provided a superfluous scope specifier inside a class
3396 // definition:
3397 //
3398 // class X {
3399 // int X::member;
3400 // };
3401 if (DeclContext *DC = computeDeclContext(SS, false))
3402 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(),
3403 D.getName().getKind() ==
3404 UnqualifiedIdKind::IK_TemplateId);
3405 else
3406 Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3407 << Name << SS.getRange();
3408
3409 SS.clear();
3410 }
3411
3412 if (MSPropertyAttr) {
3413 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3414 BitWidth, InitStyle, AS, *MSPropertyAttr);
3415 if (!Member)
3416 return nullptr;
3417 isInstField = false;
3418 } else {
3419 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3420 BitWidth, InitStyle, AS);
3421 if (!Member)
3422 return nullptr;
3423 }
3424
3425 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext));
3426 } else {
3427 Member = HandleDeclarator(S, D, TemplateParameterLists);
3428 if (!Member)
3429 return nullptr;
3430
3431 // Non-instance-fields can't have a bitfield.
3432 if (BitWidth) {
3433 if (Member->isInvalidDecl()) {
3434 // don't emit another diagnostic.
3435 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
3436 // C++ 9.6p3: A bit-field shall not be a static member.
3437 // "static member 'A' cannot be a bit-field"
3438 Diag(Loc, diag::err_static_not_bitfield)
3439 << Name << BitWidth->getSourceRange();
3440 } else if (isa<TypedefDecl>(Member)) {
3441 // "typedef member 'x' cannot be a bit-field"
3442 Diag(Loc, diag::err_typedef_not_bitfield)
3443 << Name << BitWidth->getSourceRange();
3444 } else {
3445 // A function typedef ("typedef int f(); f a;").
3446 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3447 Diag(Loc, diag::err_not_integral_type_bitfield)
3448 << Name << cast<ValueDecl>(Member)->getType()
3449 << BitWidth->getSourceRange();
3450 }
3451
3452 BitWidth = nullptr;
3453 Member->setInvalidDecl();
3454 }
3455
3456 NamedDecl *NonTemplateMember = Member;
3457 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
3458 NonTemplateMember = FunTmpl->getTemplatedDecl();
3459 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
3460 NonTemplateMember = VarTmpl->getTemplatedDecl();
3461
3462 Member->setAccess(AS);
3463
3464 // If we have declared a member function template or static data member
3465 // template, set the access of the templated declaration as well.
3466 if (NonTemplateMember != Member)
3467 NonTemplateMember->setAccess(AS);
3468
3469 // C++ [temp.deduct.guide]p3:
3470 // A deduction guide [...] for a member class template [shall be
3471 // declared] with the same access [as the template].
3472 if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) {
3473 auto *TD = DG->getDeducedTemplate();
3474 // Access specifiers are only meaningful if both the template and the
3475 // deduction guide are from the same scope.
3476 if (AS != TD->getAccess() &&
3477 TD->getDeclContext()->getRedeclContext()->Equals(
3478 DG->getDeclContext()->getRedeclContext())) {
3479 Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access);
3480 Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access)
3481 << TD->getAccess();
3482 const AccessSpecDecl *LastAccessSpec = nullptr;
3483 for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) {
3484 if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D))
3485 LastAccessSpec = AccessSpec;
3486 }
3487 assert(LastAccessSpec && "differing access with no access specifier")(static_cast<void> (0));
3488 Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access)
3489 << AS;
3490 }
3491 }
3492 }
3493
3494 if (VS.isOverrideSpecified())
3495 Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc(),
3496 AttributeCommonInfo::AS_Keyword));
3497 if (VS.isFinalSpecified())
3498 Member->addAttr(FinalAttr::Create(
3499 Context, VS.getFinalLoc(), AttributeCommonInfo::AS_Keyword,
3500 static_cast<FinalAttr::Spelling>(VS.isFinalSpelledSealed())));
3501
3502 if (VS.getLastLocation().isValid()) {
3503 // Update the end location of a method that has a virt-specifiers.
3504 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
3505 MD->setRangeEnd(VS.getLastLocation());
3506 }
3507
3508 CheckOverrideControl(Member);
3509
3510 assert((Name || isInstField) && "No identifier for non-field ?")(static_cast<void> (0));
3511
3512 if (isInstField) {
3513 FieldDecl *FD = cast<FieldDecl>(Member);
3514 FieldCollector->Add(FD);
3515
3516 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
3517 // Remember all explicit private FieldDecls that have a name, no side
3518 // effects and are not part of a dependent type declaration.
3519 if (!FD->isImplicit() && FD->getDeclName() &&
3520 FD->getAccess() == AS_private &&
3521 !FD->hasAttr<UnusedAttr>() &&
3522 !FD->getParent()->isDependentContext() &&
3523 !InitializationHasSideEffects(*FD))
3524 UnusedPrivateFields.insert(FD);
3525 }
3526 }
3527
3528 return Member;
3529}
3530
3531namespace {
3532 class UninitializedFieldVisitor
3533 : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
3534 Sema &S;
3535 // List of Decls to generate a warning on. Also remove Decls that become
3536 // initialized.
3537 llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
3538 // List of base classes of the record. Classes are removed after their
3539 // initializers.
3540 llvm::SmallPtrSetImpl<QualType> &BaseClasses;
3541 // Vector of decls to be removed from the Decl set prior to visiting the
3542 // nodes. These Decls may have been initialized in the prior initializer.
3543 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
3544 // If non-null, add a note to the warning pointing back to the constructor.
3545 const CXXConstructorDecl *Constructor;
3546 // Variables to hold state when processing an initializer list. When
3547 // InitList is true, special case initialization of FieldDecls matching
3548 // InitListFieldDecl.
3549 bool InitList;
3550 FieldDecl *InitListFieldDecl;
3551 llvm::SmallVector<unsigned, 4> InitFieldIndex;
3552
3553 public:
3554 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
3555 UninitializedFieldVisitor(Sema &S,
3556 llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
3557 llvm::SmallPtrSetImpl<QualType> &BaseClasses)
3558 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
3559 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
3560
3561 // Returns true if the use of ME is not an uninitialized use.
3562 bool IsInitListMemberExprInitialized(MemberExpr *ME,
3563 bool CheckReferenceOnly) {
3564 llvm::SmallVector<FieldDecl*, 4> Fields;
3565 bool ReferenceField = false;
3566 while (ME) {
3567 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
3568 if (!FD)
3569 return false;
3570 Fields.push_back(FD);
3571 if (FD->getType()->isReferenceType())
3572 ReferenceField = true;
3573 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
3574 }
3575
3576 // Binding a reference to an uninitialized field is not an
3577 // uninitialized use.
3578 if (CheckReferenceOnly && !ReferenceField)
3579 return true;
3580
3581 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
3582 // Discard the first field since it is the field decl that is being
3583 // initialized.
3584 for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) {
3585 UsedFieldIndex.push_back((*I)->getFieldIndex());
3586 }
3587
3588 for (auto UsedIter = UsedFieldIndex.begin(),
3589 UsedEnd = UsedFieldIndex.end(),
3590 OrigIter = InitFieldIndex.begin(),
3591 OrigEnd = InitFieldIndex.end();
3592 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
3593 if (*UsedIter < *OrigIter)
3594 return true;
3595 if (*UsedIter > *OrigIter)
3596 break;
3597 }
3598
3599 return false;
3600 }
3601
3602 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
3603 bool AddressOf) {
3604 if (isa<EnumConstantDecl>(ME->getMemberDecl()))
3605 return;
3606
3607 // FieldME is the inner-most MemberExpr that is not an anonymous struct
3608 // or union.
3609 MemberExpr *FieldME = ME;
3610
3611 bool AllPODFields = FieldME->getType().isPODType(S.Context);
3612
3613 Expr *Base = ME;
3614 while (MemberExpr *SubME =
3615 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
3616
3617 if (isa<VarDecl>(SubME->getMemberDecl()))
3618 return;
3619
3620 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
3621 if (!FD->isAnonymousStructOrUnion())
3622 FieldME = SubME;
3623
3624 if (!FieldME->getType().isPODType(S.Context))
3625 AllPODFields = false;
3626
3627 Base = SubME->getBase();
3628 }
3629
3630 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts())) {
3631 Visit(Base);
3632 return;
3633 }
3634
3635 if (AddressOf && AllPODFields)
3636 return;
3637
3638 ValueDecl* FoundVD = FieldME->getMemberDecl();
3639
3640 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
3641 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
3642 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
3643 }
3644
3645 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
3646 QualType T = BaseCast->getType();
3647 if (T->isPointerType() &&
3648 BaseClasses.count(T->getPointeeType())) {
3649 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
3650 << T->getPointeeType() << FoundVD;
3651 }
3652 }
3653 }
3654
3655 if (!Decls.count(FoundVD))
3656 return;
3657
3658 const bool IsReference = FoundVD->getType()->isReferenceType();
3659
3660 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
3661 // Special checking for initializer lists.
3662 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
3663 return;
3664 }
3665 } else {
3666 // Prevent double warnings on use of unbounded references.
3667 if (CheckReferenceOnly && !IsReference)
3668 return;
3669 }
3670
3671 unsigned diag = IsReference
3672 ? diag::warn_reference_field_is_uninit
3673 : diag::warn_field_is_uninit;
3674 S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
3675 if (Constructor)
3676 S.Diag(Constructor->getLocation(),
3677 diag::note_uninit_in_this_constructor)
3678 << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
3679
3680 }
3681
3682 void HandleValue(Expr *E, bool AddressOf) {
3683 E = E->IgnoreParens();
3684
3685 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3686 HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
3687 AddressOf /*AddressOf*/);
3688 return;
3689 }
3690
3691 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3692 Visit(CO->getCond());
3693 HandleValue(CO->getTrueExpr(), AddressOf);
3694 HandleValue(CO->getFalseExpr(), AddressOf);
3695 return;
3696 }
3697
3698 if (BinaryConditionalOperator *BCO =
3699 dyn_cast<BinaryConditionalOperator>(E)) {
3700 Visit(BCO->getCond());
3701 HandleValue(BCO->getFalseExpr(), AddressOf);
3702 return;
3703 }
3704
3705 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
3706 HandleValue(OVE->getSourceExpr(), AddressOf);
3707 return;
3708 }
3709
3710 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3711 switch (BO->getOpcode()) {
3712 default:
3713 break;
3714 case(BO_PtrMemD):
3715 case(BO_PtrMemI):
3716 HandleValue(BO->getLHS(), AddressOf);
3717 Visit(BO->getRHS());
3718 return;
3719 case(BO_Comma):
3720 Visit(BO->getLHS());
3721 HandleValue(BO->getRHS(), AddressOf);
3722 return;
3723 }
3724 }
3725
3726 Visit(E);
3727 }
3728
3729 void CheckInitListExpr(InitListExpr *ILE) {
3730 InitFieldIndex.push_back(0);
3731 for (auto Child : ILE->children()) {
3732 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
3733 CheckInitListExpr(SubList);
3734 } else {
3735 Visit(Child);
3736 }
3737 ++InitFieldIndex.back();
3738 }
3739 InitFieldIndex.pop_back();
3740 }
3741
3742 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
3743 FieldDecl *Field, const Type *BaseClass) {
3744 // Remove Decls that may have been initialized in the previous
3745 // initializer.
3746 for (ValueDecl* VD : DeclsToRemove)
3747 Decls.erase(VD);
3748 DeclsToRemove.clear();
3749
3750 Constructor = FieldConstructor;
3751 InitListExpr *ILE = dyn_cast<InitListExpr>(E);
3752
3753 if (ILE && Field) {
3754 InitList = true;
3755 InitListFieldDecl = Field;
3756 InitFieldIndex.clear();
3757 CheckInitListExpr(ILE);
3758 } else {
3759 InitList = false;
3760 Visit(E);
3761 }
3762
3763 if (Field)
3764 Decls.erase(Field);
3765 if (BaseClass)
3766 BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
3767 }
3768
3769 void VisitMemberExpr(MemberExpr *ME) {
3770 // All uses of unbounded reference fields will warn.
3771 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
3772 }
3773
3774 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
3775 if (E->getCastKind() == CK_LValueToRValue) {
3776 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3777 return;
3778 }
3779
3780 Inherited::VisitImplicitCastExpr(E);
3781 }
3782
3783 void VisitCXXConstructExpr(CXXConstructExpr *E) {
3784 if (E->getConstructor()->isCopyConstructor()) {
3785 Expr *ArgExpr = E->getArg(0);
3786 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
3787 if (ILE->getNumInits() == 1)
3788 ArgExpr = ILE->getInit(0);
3789 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
3790 if (ICE->getCastKind() == CK_NoOp)
3791 ArgExpr = ICE->getSubExpr();
3792 HandleValue(ArgExpr, false /*AddressOf*/);
3793 return;
3794 }
3795 Inherited::VisitCXXConstructExpr(E);
3796 }
3797
3798 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3799 Expr *Callee = E->getCallee();
3800 if (isa<MemberExpr>(Callee)) {
3801 HandleValue(Callee, false /*AddressOf*/);
3802 for (auto Arg : E->arguments())
3803 Visit(Arg);
3804 return;
3805 }
3806
3807 Inherited::VisitCXXMemberCallExpr(E);
3808 }
3809
3810 void VisitCallExpr(CallExpr *E) {
3811 // Treat std::move as a use.
3812 if (E->isCallToStdMove()) {
3813 HandleValue(E->getArg(0), /*AddressOf=*/false);
3814 return;
3815 }
3816
3817 Inherited::VisitCallExpr(E);
3818 }
3819
3820 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
3821 Expr *Callee = E->getCallee();
3822
3823 if (isa<UnresolvedLookupExpr>(Callee))
3824 return Inherited::VisitCXXOperatorCallExpr(E);
3825
3826 Visit(Callee);
3827 for (auto Arg : E->arguments())
3828 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
3829 }
3830
3831 void VisitBinaryOperator(BinaryOperator *E) {
3832 // If a field assignment is detected, remove the field from the
3833 // uninitiailized field set.
3834 if (E->getOpcode() == BO_Assign)
3835 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
3836 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3837 if (!FD->getType()->isReferenceType())
3838 DeclsToRemove.push_back(FD);
3839
3840 if (E->isCompoundAssignmentOp()) {
3841 HandleValue(E->getLHS(), false /*AddressOf*/);
3842 Visit(E->getRHS());
3843 return;
3844 }
3845
3846 Inherited::VisitBinaryOperator(E);
3847 }
3848
3849 void VisitUnaryOperator(UnaryOperator *E) {
3850 if (E->isIncrementDecrementOp()) {
3851 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3852 return;
3853 }
3854 if (E->getOpcode() == UO_AddrOf) {
3855 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
3856 HandleValue(ME->getBase(), true /*AddressOf*/);
3857 return;
3858 }
3859 }
3860
3861 Inherited::VisitUnaryOperator(E);
3862 }
3863 };
3864
3865 // Diagnose value-uses of fields to initialize themselves, e.g.
3866 // foo(foo)
3867 // where foo is not also a parameter to the constructor.
3868 // Also diagnose across field uninitialized use such as
3869 // x(y), y(x)
3870 // TODO: implement -Wuninitialized and fold this into that framework.
3871 static void DiagnoseUninitializedFields(
3872 Sema &SemaRef, const CXXConstructorDecl *Constructor) {
3873
3874 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
3875 Constructor->getLocation())) {
3876 return;
3877 }
3878
3879 if (Constructor->isInvalidDecl())
3880 return;
3881
3882 const CXXRecordDecl *RD = Constructor->getParent();
3883
3884 if (RD->isDependentContext())
3885 return;
3886
3887 // Holds fields that are uninitialized.
3888 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
3889
3890 // At the beginning, all fields are uninitialized.
3891 for (auto *I : RD->decls()) {
3892 if (auto *FD = dyn_cast<FieldDecl>(I)) {
3893 UninitializedFields.insert(FD);
3894 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
3895 UninitializedFields.insert(IFD->getAnonField());
3896 }
3897 }
3898
3899 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
3900 for (auto I : RD->bases())
3901 UninitializedBaseClasses.insert(I.getType().getCanonicalType());
3902
3903 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3904 return;
3905
3906 UninitializedFieldVisitor UninitializedChecker(SemaRef,
3907 UninitializedFields,
3908 UninitializedBaseClasses);
3909
3910 for (const auto *FieldInit : Constructor->inits()) {
3911 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3912 break;
3913
3914 Expr *InitExpr = FieldInit->getInit();
3915 if (!InitExpr)
3916 continue;
3917
3918 if (CXXDefaultInitExpr *Default =
3919 dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
3920 InitExpr = Default->getExpr();
3921 if (!InitExpr)
3922 continue;
3923 // In class initializers will point to the constructor.
3924 UninitializedChecker.CheckInitializer(InitExpr, Constructor,
3925 FieldInit->getAnyMember(),
3926 FieldInit->getBaseClass());
3927 } else {
3928 UninitializedChecker.CheckInitializer(InitExpr, nullptr,
3929 FieldInit->getAnyMember(),
3930 FieldInit->getBaseClass());
3931 }
3932 }
3933 }
3934} // namespace
3935
3936/// Enter a new C++ default initializer scope. After calling this, the
3937/// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
3938/// parsing or instantiating the initializer failed.
3939void Sema::ActOnStartCXXInClassMemberInitializer() {
3940 // Create a synthetic function scope to represent the call to the constructor
3941 // that notionally surrounds a use of this initializer.
3942 PushFunctionScope();
3943}
3944
3945void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) {
3946 if (!D.isFunctionDeclarator())
3947 return;
3948 auto &FTI = D.getFunctionTypeInfo();
3949 if (!FTI.Params)
3950 return;
3951 for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params,
3952 FTI.NumParams)) {
3953 auto *ParamDecl = cast<NamedDecl>(Param.Param);
3954 if (ParamDecl->getDeclName())
3955 PushOnScopeChains(ParamDecl, S, /*AddToContext=*/false);
3956 }
3957}
3958
3959ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) {
3960 return ActOnRequiresClause(ConstraintExpr);
3961}
3962
3963ExprResult Sema::ActOnRequiresClause(ExprResult ConstraintExpr) {
3964 if (ConstraintExpr.isInvalid())
3965 return ExprError();
3966
3967 ConstraintExpr = CorrectDelayedTyposInExpr(ConstraintExpr);
3968 if (ConstraintExpr.isInvalid())
3969 return ExprError();
3970
3971 if (DiagnoseUnexpandedParameterPack(ConstraintExpr.get(),
3972 UPPC_RequiresClause))
3973 return ExprError();
3974
3975 return ConstraintExpr;
3976}
3977
3978/// This is invoked after parsing an in-class initializer for a
3979/// non-static C++ class member, and after instantiating an in-class initializer
3980/// in a class template. Such actions are deferred until the class is complete.
3981void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
3982 SourceLocation InitLoc,
3983 Expr *InitExpr) {
3984 // Pop the notional constructor scope we created earlier.
3985 PopFunctionScopeInfo(nullptr, D);
3986
3987 FieldDecl *FD = dyn_cast<FieldDecl>(D);
3988 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&(static_cast<void> (0))
3989 "must set init style when field is created")(static_cast<void> (0));
3990
3991 if (!InitExpr) {
3992 D->setInvalidDecl();
3993 if (FD)
3994 FD->removeInClassInitializer();
3995 return;
3996 }
3997
3998 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
3999 FD->setInvalidDecl();
4000 FD->removeInClassInitializer();
4001 return;
4002 }
4003
4004 ExprResult Init = InitExpr;
4005 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
4006 InitializedEntity Entity =
4007 InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD);
4008 InitializationKind Kind =
4009 FD->getInClassInitStyle() == ICIS_ListInit
4010 ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(),
4011 InitExpr->getBeginLoc(),
4012 InitExpr->getEndLoc())
4013 : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc);
4014 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
4015 Init = Seq.Perform(*this, Entity, Kind, InitExpr);
4016 if (Init.isInvalid()) {
4017 FD->setInvalidDecl();
4018 return;
4019 }
4020 }
4021
4022 // C++11 [class.base.init]p7:
4023 // The initialization of each base and member constitutes a
4024 // full-expression.
4025 Init = ActOnFinishFullExpr(Init.get(), InitLoc, /*DiscardedValue*/ false);
4026 if (Init.isInvalid()) {
4027 FD->setInvalidDecl();
4028 return;
4029 }
4030
4031 InitExpr = Init.get();
4032
4033 FD->setInClassInitializer(InitExpr);
4034}
4035
4036/// Find the direct and/or virtual base specifiers that
4037/// correspond to the given base type, for use in base initialization
4038/// within a constructor.
4039static bool FindBaseInitializer(Sema &SemaRef,
4040 CXXRecordDecl *ClassDecl,
4041 QualType BaseType,
4042 const CXXBaseSpecifier *&DirectBaseSpec,
4043 const CXXBaseSpecifier *&VirtualBaseSpec) {
4044 // First, check for a direct base class.
4045 DirectBaseSpec = nullptr;
4046 for (const auto &Base : ClassDecl->bases()) {
4047 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
4048 // We found a direct base of this type. That's what we're
4049 // initializing.
4050 DirectBaseSpec = &Base;
4051 break;
4052 }
4053 }
4054
4055 // Check for a virtual base class.
4056 // FIXME: We might be able to short-circuit this if we know in advance that
4057 // there are no virtual bases.
4058 VirtualBaseSpec = nullptr;
4059 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
4060 // We haven't found a base yet; search the class hierarchy for a
4061 // virtual base class.
4062 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
4063 /*DetectVirtual=*/false);
4064 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(),
4065 SemaRef.Context.getTypeDeclType(ClassDecl),
4066 BaseType, Paths)) {
4067 for (CXXBasePaths::paths_iterator Path = Paths.begin();
4068 Path != Paths.end(); ++Path) {
4069 if (Path->back().Base->isVirtual()) {
4070 VirtualBaseSpec = Path->back().Base;
4071 break;
4072 }
4073 }
4074 }
4075 }
4076
4077 return DirectBaseSpec || VirtualBaseSpec;
4078}
4079
4080/// Handle a C++ member initializer using braced-init-list syntax.
4081MemInitResult
4082Sema::ActOnMemInitializer(Decl *ConstructorD,
4083 Scope *S,
4084 CXXScopeSpec &SS,
4085 IdentifierInfo *MemberOrBase,
4086 ParsedType TemplateTypeTy,
4087 const DeclSpec &DS,
4088 SourceLocation IdLoc,
4089 Expr *InitList,
4090 SourceLocation EllipsisLoc) {
4091 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4092 DS, IdLoc, InitList,
4093 EllipsisLoc);
4094}
4095
4096/// Handle a C++ member initializer using parentheses syntax.
4097MemInitResult
4098Sema::ActOnMemInitializer(Decl *ConstructorD,
4099 Scope *S,
4100 CXXScopeSpec &SS,
4101 IdentifierInfo *MemberOrBase,
4102 ParsedType TemplateTypeTy,
4103 const DeclSpec &DS,
4104 SourceLocation IdLoc,
4105 SourceLocation LParenLoc,
4106 ArrayRef<Expr *> Args,
4107 SourceLocation RParenLoc,
4108 SourceLocation EllipsisLoc) {
4109 Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc);
4110 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4111 DS, IdLoc, List, EllipsisLoc);
4112}
4113
4114namespace {
4115
4116// Callback to only accept typo corrections that can be a valid C++ member
4117// intializer: either a non-static field member or a base class.
4118class MemInitializerValidatorCCC final : public CorrectionCandidateCallback {
4119public:
4120 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
4121 : ClassDecl(ClassDecl) {}
4122
4123 bool ValidateCandidate(const TypoCorrection &candidate) override {
4124 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
4125 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
4126 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
4127 return isa<TypeDecl>(ND);
4128 }
4129 return false;
4130 }
4131
4132 std::unique_ptr<CorrectionCandidateCallback> clone() override {
4133 return std::make_unique<MemInitializerValidatorCCC>(*this);
4134 }
4135
4136private:
4137 CXXRecordDecl *ClassDecl;
4138};
4139
4140}
4141
4142ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl,
4143 CXXScopeSpec &SS,
4144 ParsedType TemplateTypeTy,
4145 IdentifierInfo *MemberOrBase) {
4146 if (SS.getScopeRep() || TemplateTypeTy)
4147 return nullptr;
4148 for (auto *D : ClassDecl->lookup(MemberOrBase))
4149 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D))
4150 return cast<ValueDecl>(D);
4151 return nullptr;
4152}
4153
4154/// Handle a C++ member initializer.
4155MemInitResult
4156Sema::BuildMemInitializer(Decl *ConstructorD,
4157 Scope *S,
4158 CXXScopeSpec &SS,
4159 IdentifierInfo *MemberOrBase,
4160 ParsedType TemplateTypeTy,
4161 const DeclSpec &DS,
4162 SourceLocation IdLoc,
4163 Expr *Init,
4164 SourceLocation EllipsisLoc) {
4165 ExprResult Res = CorrectDelayedTyposInExpr(Init, /*InitDecl=*/nullptr,
4166 /*RecoverUncorrectedTypos=*/true);
4167 if (!Res.isUsable())
4168 return true;
4169 Init = Res.get();
4170
4171 if (!ConstructorD)
4172 return true;
4173
4174 AdjustDeclIfTemplate(ConstructorD);
4175
4176 CXXConstructorDecl *Constructor
4177 = dyn_cast<CXXConstructorDecl>(ConstructorD);
4178 if (!Constructor) {
4179 // The user wrote a constructor initializer on a function that is
4180 // not a C++ constructor. Ignore the error for now, because we may
4181 // have more member initializers coming; we'll diagnose it just
4182 // once in ActOnMemInitializers.
4183 return true;
4184 }
4185
4186 CXXRecordDecl *ClassDecl = Constructor->getParent();
4187
4188 // C++ [class.base.init]p2:
4189 // Names in a mem-initializer-id are looked up in the scope of the
4190 // constructor's class and, if not found in that scope, are looked
4191 // up in the scope containing the constructor's definition.
4192 // [Note: if the constructor's class contains a member with the
4193 // same name as a direct or virtual base class of the class, a
4194 // mem-initializer-id naming the member or base class and composed
4195 // of a single identifier refers to the class member. A
4196 // mem-initializer-id for the hidden base class may be specified
4197 // using a qualified name. ]
4198
4199 // Look for a member, first.
4200 if (ValueDecl *Member = tryLookupCtorInitMemberDecl(
4201 ClassDecl, SS, TemplateTypeTy, MemberOrBase)) {
4202 if (EllipsisLoc.isValid())
4203 Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
4204 << MemberOrBase
4205 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
4206
4207 return BuildMemberInitializer(Member, Init, IdLoc);
4208 }
4209 // It didn't name a member, so see if it names a class.
4210 QualType BaseType;
4211 TypeSourceInfo *TInfo = nullptr;
4212
4213 if (TemplateTypeTy) {
4214 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
4215 if (BaseType.isNull())
4216 return true;
4217 } else if (DS.getTypeSpecType() == TST_decltype) {
4218 BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
4219 } else if (DS.getTypeSpecType() == TST_decltype_auto) {
4220 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
4221 return true;
4222 } else {
4223 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
4224 LookupParsedName(R, S, &SS);
4225
4226 TypeDecl *TyD = R.getAsSingle<TypeDecl>();
4227 if (!TyD) {
4228 if (R.isAmbiguous()) return true;
4229
4230 // We don't want access-control diagnostics here.
4231 R.suppressDiagnostics();
4232
4233 if (SS.isSet() && isDependentScopeSpecifier(SS)) {
4234 bool NotUnknownSpecialization = false;
4235 DeclContext *DC = computeDeclContext(SS, false);
4236 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
4237 NotUnknownSpecialization = !Record->hasAnyDependentBases();
4238
4239 if (!NotUnknownSpecialization) {
4240 // When the scope specifier can refer to a member of an unknown
4241 // specialization, we take it as a type name.
4242 BaseType = CheckTypenameType(ETK_None, SourceLocation(),
4243 SS.getWithLocInContext(Context),
4244 *MemberOrBase, IdLoc);
4245 if (BaseType.isNull())
4246 return true;
4247
4248 TInfo = Context.CreateTypeSourceInfo(BaseType);
4249 DependentNameTypeLoc TL =
4250 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>();
4251 if (!TL.isNull()) {
4252 TL.setNameLoc(IdLoc);
4253 TL.setElaboratedKeywordLoc(SourceLocation());
4254 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4255 }
4256
4257 R.clear();
4258 R.setLookupName(MemberOrBase);
4259 }
4260 }
4261
4262 // If no results were found, try to correct typos.
4263 TypoCorrection Corr;
4264 MemInitializerValidatorCCC CCC(ClassDecl);
4265 if (R.empty() && BaseType.isNull() &&
4266 (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
4267 CCC, CTK_ErrorRecovery, ClassDecl))) {
4268 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
4269 // We have found a non-static data member with a similar
4270 // name to what was typed; complain and initialize that
4271 // member.
4272 diagnoseTypo(Corr,
4273 PDiag(diag::err_mem_init_not_member_or_class_suggest)
4274 << MemberOrBase << true);
4275 return BuildMemberInitializer(Member, Init, IdLoc);
4276 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
4277 const CXXBaseSpecifier *DirectBaseSpec;
4278 const CXXBaseSpecifier *VirtualBaseSpec;
4279 if (FindBaseInitializer(*this, ClassDecl,
4280 Context.getTypeDeclType(Type),
4281 DirectBaseSpec, VirtualBaseSpec)) {
4282 // We have found a direct or virtual base class with a
4283 // similar name to what was typed; complain and initialize
4284 // that base class.
4285 diagnoseTypo(Corr,
4286 PDiag(diag::err_mem_init_not_member_or_class_suggest)
4287 << MemberOrBase << false,
4288 PDiag() /*Suppress note, we provide our own.*/);
4289
4290 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
4291 : VirtualBaseSpec;
4292 Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here)
4293 << BaseSpec->getType() << BaseSpec->getSourceRange();
4294
4295 TyD = Type;
4296 }
4297 }
4298 }
4299
4300 if (!TyD && BaseType.isNull()) {
4301 Diag(IdLoc, diag::err_mem_init_not_member_or_class)
4302 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
4303 return true;
4304 }
4305 }
4306
4307 if (BaseType.isNull()) {
4308 BaseType = Context.getTypeDeclType(TyD);
4309 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
4310 if (SS.isSet()) {
4311 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
4312 BaseType);
4313 TInfo = Context.CreateTypeSourceInfo(BaseType);
4314 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>();
4315 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
4316 TL.setElaboratedKeywordLoc(SourceLocation());
4317 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4318 }
4319 }
4320 }
4321
4322 if (!TInfo)
4323 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
4324
4325 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
4326}
4327
4328MemInitResult
4329Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
4330 SourceLocation IdLoc) {
4331 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
4332 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
4333 assert((DirectMember || IndirectMember) &&(static_cast<void> (0))
4334 "Member must be a FieldDecl or IndirectFieldDecl")(static_cast<void> (0));
4335
4336 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4337 return true;
4338
4339 if (Member->isInvalidDecl())
4340 return true;
4341
4342 MultiExprArg Args;
4343 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4344 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4345 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
4346 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
4347 } else {
4348 // Template instantiation doesn't reconstruct ParenListExprs for us.
4349 Args = Init;
4350 }
4351
4352 SourceRange InitRange = Init->getSourceRange();
4353
4354 if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
4355 // Can't check initialization for a member of dependent type or when
4356 // any of the arguments are type-dependent expressions.
4357 DiscardCleanupsInEvaluationContext();
4358 } else {
4359 bool InitList = false;
4360 if (isa<InitListExpr>(Init)) {
4361 InitList = true;
4362 Args = Init;
4363 }
4364
4365 // Initialize the member.
4366 InitializedEntity MemberEntity =
4367 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
4368 : InitializedEntity::InitializeMember(IndirectMember,
4369 nullptr);
4370 InitializationKind Kind =
4371 InitList ? InitializationKind::CreateDirectList(
4372 IdLoc, Init->getBeginLoc(), Init->getEndLoc())
4373 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
4374 InitRange.getEnd());
4375
4376 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
4377 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
4378 nullptr);
4379 if (!MemberInit.isInvalid()) {
4380 // C++11 [class.base.init]p7:
4381 // The initialization of each base and member constitutes a
4382 // full-expression.
4383 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(),
4384 /*DiscardedValue*/ false);
4385 }
4386
4387 if (MemberInit.isInvalid()) {
4388 // Args were sensible expressions but we couldn't initialize the member
4389 // from them. Preserve them in a RecoveryExpr instead.
4390 Init = CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), Args,
4391 Member->getType())
4392 .get();
4393 if (!Init)
4394 return true;
4395 } else {
4396 Init = MemberInit.get();
4397 }
4398 }
4399
4400 if (DirectMember) {
4401 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
4402 InitRange.getBegin(), Init,
4403 InitRange.getEnd());
4404 } else {
4405 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
4406 InitRange.getBegin(), Init,
4407 InitRange.getEnd());
4408 }
4409}
4410
4411MemInitResult
4412Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
4413 CXXRecordDecl *ClassDecl) {
4414 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
4415 if (!LangOpts.CPlusPlus11)
4416 return Diag(NameLoc, diag::err_delegating_ctor)
4417 << TInfo->getTypeLoc().getLocalSourceRange();
4418 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
4419
4420 bool InitList = true;
4421 MultiExprArg Args = Init;
4422 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4423 InitList = false;
4424 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4425 }
4426
4427 SourceRange InitRange = Init->getSourceRange();
4428 // Initialize the object.
4429 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
4430 QualType(ClassDecl->getTypeForDecl(), 0));
4431 InitializationKind Kind =
4432 InitList ? InitializationKind::CreateDirectList(
4433 NameLoc, Init->getBeginLoc(), Init->getEndLoc())
4434 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
4435 InitRange.getEnd());
4436 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
4437 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
4438 Args, nullptr);
4439 if (!DelegationInit.isInvalid()) {
4440 assert((DelegationInit.get()->containsErrors() ||(static_cast<void> (0))
4441 cast<CXXConstructExpr>(DelegationInit.get())->getConstructor()) &&(static_cast<void> (0))
4442 "Delegating constructor with no target?")(static_cast<void> (0));
4443
4444 // C++11 [class.base.init]p7:
4445 // The initialization of each base and member constitutes a
4446 // full-expression.
4447 DelegationInit = ActOnFinishFullExpr(
4448 DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false);
4449 }
4450
4451 if (DelegationInit.isInvalid()) {
4452 DelegationInit =
4453 CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), Args,
4454 QualType(ClassDecl->getTypeForDecl(), 0));
4455 if (DelegationInit.isInvalid())
4456 return true;
4457 } else {
4458 // If we are in a dependent context, template instantiation will
4459 // perform this type-checking again. Just save the arguments that we
4460 // received in a ParenListExpr.
4461 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4462 // of the information that we have about the base
4463 // initializer. However, deconstructing the ASTs is a dicey process,
4464 // and this approach is far more likely to get the corner cases right.
4465 if (CurContext->isDependentContext())
4466 DelegationInit = Init;
4467 }
4468
4469 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
4470 DelegationInit.getAs<Expr>(),
4471 InitRange.getEnd());
4472}
4473
4474MemInitResult
4475Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
4476 Expr *Init, CXXRecordDecl *ClassDecl,
4477 SourceLocation EllipsisLoc) {
4478 SourceLocation BaseLoc
4479 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
4480
4481 if (!BaseType->isDependentType() && !BaseType->isRecordType())
4482 return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
4483 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4484
4485 // C++ [class.base.init]p2:
4486 // [...] Unless the mem-initializer-id names a nonstatic data
4487 // member of the constructor's class or a direct or virtual base
4488 // of that class, the mem-initializer is ill-formed. A
4489 // mem-initializer-list can initialize a base class using any
4490 // name that denotes that base class type.
4491
4492 // We can store the initializers in "as-written" form and delay analysis until
4493 // instantiation if the constructor is dependent. But not for dependent
4494 // (broken) code in a non-template! SetCtorInitializers does not expect this.
4495 bool Dependent = CurContext->isDependentContext() &&
4496 (BaseType->isDependentType() || Init->isTypeDependent());
4497
4498 SourceRange InitRange = Init->getSourceRange();
4499 if (EllipsisLoc.isValid()) {
4500 // This is a pack expansion.
4501 if (!BaseType->containsUnexpandedParameterPack()) {
4502 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
4503 << SourceRange(BaseLoc, InitRange.getEnd());
4504
4505 EllipsisLoc = SourceLocation();
4506 }
4507 } else {
4508 // Check for any unexpanded parameter packs.
4509 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
4510 return true;
4511
4512 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4513 return true;
4514 }
4515
4516 // Check for direct and virtual base classes.
4517 const CXXBaseSpecifier *DirectBaseSpec = nullptr;
4518 const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
4519 if (!Dependent) {
4520 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
4521 BaseType))
4522 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
4523
4524 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
4525 VirtualBaseSpec);
4526
4527 // C++ [base.class.init]p2:
4528 // Unless the mem-initializer-id names a nonstatic data member of the
4529 // constructor's class or a direct or virtual base of that class, the
4530 // mem-initializer is ill-formed.
4531 if (!DirectBaseSpec && !VirtualBaseSpec) {
4532 // If the class has any dependent bases, then it's possible that
4533 // one of those types will resolve to the same type as
4534 // BaseType. Therefore, just treat this as a dependent base
4535 // class initialization. FIXME: Should we try to check the
4536 // initialization anyway? It seems odd.
4537 if (ClassDecl->hasAnyDependentBases())
4538 Dependent = true;
4539 else
4540 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
4541 << BaseType << Context.getTypeDeclType(ClassDecl)
4542 << BaseTInfo->getTypeLoc().getLocalSourceRange();
4543 }
4544 }
4545
4546 if (Dependent) {
4547 DiscardCleanupsInEvaluationContext();
4548
4549 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4550 /*IsVirtual=*/false,
4551 InitRange.getBegin(), Init,
4552 InitRange.getEnd(), EllipsisLoc);
4553 }
4554
4555 // C++ [base.class.init]p2:
4556 // If a mem-initializer-id is ambiguous because it designates both
4557 // a direct non-virtual base class and an inherited virtual base
4558 // class, the mem-initializer is ill-formed.
4559 if (DirectBaseSpec && VirtualBaseSpec)
4560 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
4561 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4562
4563 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
4564 if (!BaseSpec)
4565 BaseSpec = VirtualBaseSpec;
4566
4567 // Initialize the base.
4568 bool InitList = true;
4569 MultiExprArg Args = Init;
4570 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4571 InitList = false;
4572 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4573 }
4574
4575 InitializedEntity BaseEntity =
4576 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
4577 InitializationKind Kind =
4578 InitList ? InitializationKind::CreateDirectList(BaseLoc)
4579 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
4580 InitRange.getEnd());
4581 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
4582 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
4583 if (!BaseInit.isInvalid()) {
4584 // C++11 [class.base.init]p7:
4585 // The initialization of each base and member constitutes a
4586 // full-expression.
4587 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(),
4588 /*DiscardedValue*/ false);
4589 }
4590
4591 if (BaseInit.isInvalid()) {
4592 BaseInit = CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(),
4593 Args, BaseType);
4594 if (BaseInit.isInvalid())
4595 return true;
4596 } else {
4597 // If we are in a dependent context, template instantiation will
4598 // perform this type-checking again. Just save the arguments that we
4599 // received in a ParenListExpr.
4600 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4601 // of the information that we have about the base
4602 // initializer. However, deconstructing the ASTs is a dicey process,
4603 // and this approach is far more likely to get the corner cases right.
4604 if (CurContext->isDependentContext())
4605 BaseInit = Init;
4606 }
4607
4608 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4609 BaseSpec->isVirtual(),
4610 InitRange.getBegin(),
4611 BaseInit.getAs<Expr>(),
4612 InitRange.getEnd(), EllipsisLoc);
4613}
4614
4615// Create a static_cast\<T&&>(expr).
4616static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
4617 if (T.isNull()) T = E->getType();
4618 QualType TargetType = SemaRef.BuildReferenceType(
4619 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
4620 SourceLocation ExprLoc = E->getBeginLoc();
4621 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
4622 TargetType, ExprLoc);
4623
4624 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
4625 SourceRange(ExprLoc, ExprLoc),
4626 E->getSourceRange()).get();
4627}
4628
4629/// ImplicitInitializerKind - How an implicit base or member initializer should
4630/// initialize its base or member.
4631enum ImplicitInitializerKind {
4632 IIK_Default,
4633 IIK_Copy,
4634 IIK_Move,
4635 IIK_Inherit
4636};
4637
4638static bool
4639BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4640 ImplicitInitializerKind ImplicitInitKind,
4641 CXXBaseSpecifier *BaseSpec,
4642 bool IsInheritedVirtualBase,
4643 CXXCtorInitializer *&CXXBaseInit) {
4644 InitializedEntity InitEntity
4645 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
4646 IsInheritedVirtualBase);
4647
4648 ExprResult BaseInit;
4649
4650 switch (ImplicitInitKind) {
4651 case IIK_Inherit:
4652 case IIK_Default: {
4653 InitializationKind InitKind
4654 = InitializationKind::CreateDefault(Constructor->getLocation());
4655 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4656 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4657 break;
4658 }
4659
4660 case IIK_Move:
4661 case IIK_Copy: {
4662 bool Moving = ImplicitInitKind == IIK_Move;
4663 ParmVarDecl *Param = Constructor->getParamDecl(0);
4664 QualType ParamType = Param->getType().getNonReferenceType();
4665
4666 Expr *CopyCtorArg =
4667 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4668 SourceLocation(), Param, false,
4669 Constructor->getLocation(), ParamType,
4670 VK_LValue, nullptr);
4671
4672 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
4673
4674 // Cast to the base class to avoid ambiguities.
4675 QualType ArgTy =
4676 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
4677 ParamType.getQualifiers());
4678
4679 if (Moving) {
4680 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
4681 }
4682
4683 CXXCastPath BasePath;
4684 BasePath.push_back(BaseSpec);
4685 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
4686 CK_UncheckedDerivedToBase,
4687 Moving ? VK_XValue : VK_LValue,
4688 &BasePath).get();
4689
4690 InitializationKind InitKind
4691 = InitializationKind::CreateDirect(Constructor->getLocation(),
4692 SourceLocation(), SourceLocation());
4693 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
4694 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
4695 break;
4696 }
4697 }
4698
4699 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
4700 if (BaseInit.isInvalid())
4701 return true;
4702
4703 CXXBaseInit =
4704 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4705 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
4706 SourceLocation()),
4707 BaseSpec->isVirtual(),
4708 SourceLocation(),
4709 BaseInit.getAs<Expr>(),
4710 SourceLocation(),
4711 SourceLocation());
4712
4713 return false;
4714}
4715
4716static bool RefersToRValueRef(Expr *MemRef) {
4717 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
4718 return Referenced->getType()->isRValueReferenceType();
4719}
4720
4721static bool
4722BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4723 ImplicitInitializerKind ImplicitInitKind,
4724 FieldDecl *Field, IndirectFieldDecl *Indirect,
4725 CXXCtorInitializer *&CXXMemberInit) {
4726 if (Field->isInvalidDecl())
4727 return true;
4728
4729 SourceLocation Loc = Constructor->getLocation();
4730
4731 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
4732 bool Moving = ImplicitInitKind == IIK_Move;
4733 ParmVarDecl *Param = Constructor->getParamDecl(0);
4734 QualType ParamType = Param->getType().getNonReferenceType();
4735
4736 // Suppress copying zero-width bitfields.
4737 if (Field->isZeroLengthBitField(SemaRef.Context))
4738 return false;
4739
4740 Expr *MemberExprBase =
4741 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4742 SourceLocation(), Param, false,
4743 Loc, ParamType, VK_LValue, nullptr);
4744
4745 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
4746
4747 if (Moving) {
4748 MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
4749 }
4750
4751 // Build a reference to this field within the parameter.
4752 CXXScopeSpec SS;
4753 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
4754 Sema::LookupMemberName);
4755 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
4756 : cast<ValueDecl>(Field), AS_public);
4757 MemberLookup.resolveKind();
4758 ExprResult CtorArg
4759 = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
4760 ParamType, Loc,
4761 /*IsArrow=*/false,
4762 SS,
4763 /*TemplateKWLoc=*/SourceLocation(),
4764 /*FirstQualifierInScope=*/nullptr,
4765 MemberLookup,
4766 /*TemplateArgs=*/nullptr,
4767 /*S*/nullptr);
4768 if (CtorArg.isInvalid())
4769 return true;
4770
4771 // C++11 [class.copy]p15:
4772 // - if a member m has rvalue reference type T&&, it is direct-initialized
4773 // with static_cast<T&&>(x.m);
4774 if (RefersToRValueRef(CtorArg.get())) {
4775 CtorArg = CastForMoving(SemaRef, CtorArg.get());
4776 }
4777
4778 InitializedEntity Entity =
4779 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4780 /*Implicit*/ true)
4781 : InitializedEntity::InitializeMember(Field, nullptr,
4782 /*Implicit*/ true);
4783
4784 // Direct-initialize to use the copy constructor.
4785 InitializationKind InitKind =
4786 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
4787
4788 Expr *CtorArgE = CtorArg.getAs<Expr>();
4789 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE);
4790 ExprResult MemberInit =
4791 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1));
4792 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4793 if (MemberInit.isInvalid())
4794 return true;
4795
4796 if (Indirect)
4797 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4798 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4799 else
4800 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4801 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4802 return false;
4803 }
4804
4805 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&(static_cast<void> (0))
4806 "Unhandled implicit init kind!")(static_cast<void> (0));
4807
4808 QualType FieldBaseElementType =
4809 SemaRef.Context.getBaseElementType(Field->getType());
4810
4811 if (FieldBaseElementType->isRecordType()) {
4812 InitializedEntity InitEntity =
4813 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4814 /*Implicit*/ true)
4815 : InitializedEntity::InitializeMember(Field, nullptr,
4816 /*Implicit*/ true);
4817 InitializationKind InitKind =
4818 InitializationKind::CreateDefault(Loc);
4819
4820 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4821 ExprResult MemberInit =
4822 InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4823
4824 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4825 if (MemberInit.isInvalid())
4826 return true;
4827
4828 if (Indirect)
4829 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4830 Indirect, Loc,
4831 Loc,
4832 MemberInit.get(),
4833 Loc);
4834 else
4835 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4836 Field, Loc, Loc,
4837 MemberInit.get(),
4838 Loc);
4839 return false;
4840 }
4841
4842 if (!Field->getParent()->isUnion()) {
4843 if (FieldBaseElementType->isReferenceType()) {
4844 SemaRef.Diag(Constructor->getLocation(),
4845 diag::err_uninitialized_member_in_ctor)
4846 << (int)Constructor->isImplicit()
4847 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4848 << 0 << Field->getDeclName();
4849 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4850 return true;
4851 }
4852
4853 if (FieldBaseElementType.isConstQualified()) {
4854 SemaRef.Diag(Constructor->getLocation(),
4855 diag::err_uninitialized_member_in_ctor)
4856 << (int)Constructor->isImplicit()
4857 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4858 << 1 << Field->getDeclName();
4859 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4860 return true;
4861 }
4862 }
4863
4864 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) {
4865 // ARC and Weak:
4866 // Default-initialize Objective-C pointers to NULL.
4867 CXXMemberInit
4868 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
4869 Loc, Loc,
4870 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
4871 Loc);
4872 return false;
4873 }
4874
4875 // Nothing to initialize.
4876 CXXMemberInit = nullptr;
4877 return false;
4878}
4879
4880namespace {
4881struct BaseAndFieldInfo {
4882 Sema &S;
4883 CXXConstructorDecl *Ctor;
4884 bool AnyErrorsInInits;
4885 ImplicitInitializerKind IIK;
4886 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
4887 SmallVector<CXXCtorInitializer*, 8> AllToInit;
4888 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
4889
4890 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
4891 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
4892 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
4893 if (Ctor->getInheritedConstructor())
4894 IIK = IIK_Inherit;
4895 else if (Generated && Ctor->isCopyConstructor())
4896 IIK = IIK_Copy;
4897 else if (Generated && Ctor->isMoveConstructor())
4898 IIK = IIK_Move;
4899 else
4900 IIK = IIK_Default;
4901 }
4902
4903 bool isImplicitCopyOrMove() const {
4904 switch (IIK) {
4905 case IIK_Copy:
4906 case IIK_Move:
4907 return true;
4908
4909 case IIK_Default:
4910 case IIK_Inherit:
4911 return false;
4912 }
4913
4914 llvm_unreachable("Invalid ImplicitInitializerKind!")__builtin_unreachable();
4915 }
4916
4917 bool addFieldInitializer(CXXCtorInitializer *Init) {
4918 AllToInit.push_back(Init);
4919
4920 // Check whether this initializer makes the field "used".
4921 if (Init->getInit()->HasSideEffects(S.Context))
4922 S.UnusedPrivateFields.remove(Init->getAnyMember());
4923
4924 return false;
4925 }
4926
4927 bool isInactiveUnionMember(FieldDecl *Field) {
4928 RecordDecl *Record = Field->getParent();
4929 if (!Record->isUnion())
4930 return false;
4931
4932 if (FieldDecl *Active =
4933 ActiveUnionMember.lookup(Record->getCanonicalDecl()))
4934 return Active != Field->getCanonicalDecl();
4935
4936 // In an implicit copy or move constructor, ignore any in-class initializer.
4937 if (isImplicitCopyOrMove())
4938 return true;
4939
4940 // If there's no explicit initialization, the field is active only if it
4941 // has an in-class initializer...
4942 if (Field->hasInClassInitializer())
4943 return false;
4944 // ... or it's an anonymous struct or union whose class has an in-class
4945 // initializer.
4946 if (!Field->isAnonymousStructOrUnion())
4947 return true;
4948 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
4949 return !FieldRD->hasInClassInitializer();
4950 }
4951
4952 /// Determine whether the given field is, or is within, a union member
4953 /// that is inactive (because there was an initializer given for a different
4954 /// member of the union, or because the union was not initialized at all).
4955 bool isWithinInactiveUnionMember(FieldDecl *Field,
4956 IndirectFieldDecl *Indirect) {
4957 if (!Indirect)
4958 return isInactiveUnionMember(Field);
4959
4960 for (auto *C : Indirect->chain()) {
4961 FieldDecl *Field = dyn_cast<FieldDecl>(C);
4962 if (Field && isInactiveUnionMember(Field))
4963 return true;
4964 }
4965 return false;
4966 }
4967};
4968}
4969
4970/// Determine whether the given type is an incomplete or zero-lenfgth
4971/// array type.
4972static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
4973 if (T->isIncompleteArrayType())
4974 return true;
4975
4976 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
4977 if (!ArrayT->getSize())
4978 return true;
4979
4980 T = ArrayT->getElementType();
4981 }
4982
4983 return false;
4984}
4985
4986static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
4987 FieldDecl *Field,
4988 IndirectFieldDecl *Indirect = nullptr) {
4989 if (Field->isInvalidDecl())
19
Assuming the condition is false
20
Taking false branch
4990 return false;
4991
4992 // Overwhelmingly common case: we have a direct initializer for this field.
4993 if (CXXCtorInitializer *Init =
21
Assuming 'Init' is null
22
Taking false branch
4994 Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
4995 return Info.addFieldInitializer(Init);
4996
4997 // C++11 [class.base.init]p8:
4998 // if the entity is a non-static data member that has a
4999 // brace-or-equal-initializer and either
5000 // -- the constructor's class is a union and no other variant member of that
5001 // union is designated by a mem-initializer-id or
5002 // -- the constructor's class is not a union, and, if the entity is a member
5003 // of an anonymous union, no other member of that union is designated by
5004 // a mem-initializer-id,
5005 // the entity is initialized as specified in [dcl.init].
5006 //
5007 // We also apply the same rules to handle anonymous structs within anonymous
5008 // unions.
5009 if (Info.isWithinInactiveUnionMember(Field, Indirect))
5010 return false;
5011
5012 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
23
Taking true branch
5013 ExprResult DIE =
5014 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
24
Calling 'Sema::BuildCXXDefaultInitExpr'
5015 if (DIE.isInvalid())
5016 return true;
5017
5018 auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true);
5019 SemaRef.checkInitializerLifetime(Entity, DIE.get());
5020
5021 CXXCtorInitializer *Init;
5022 if (Indirect)
5023 Init = new (SemaRef.Context)
5024 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
5025 SourceLocation(), DIE.get(), SourceLocation());
5026 else
5027 Init = new (SemaRef.Context)
5028 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
5029 SourceLocation(), DIE.get(), SourceLocation());
5030 return Info.addFieldInitializer(Init);
5031 }
5032
5033 // Don't initialize incomplete or zero-length arrays.
5034 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
5035 return false;
5036
5037 // Don't try to build an implicit initializer if there were semantic
5038 // errors in any of the initializers (and therefore we might be
5039 // missing some that the user actually wrote).
5040 if (Info.AnyErrorsInInits)
5041 return false;
5042
5043 CXXCtorInitializer *Init = nullptr;
5044 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
5045 Indirect, Init))
5046 return true;
5047
5048 if (!Init)
5049 return false;
5050
5051 return Info.addFieldInitializer(Init);
5052}
5053
5054bool
5055Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
5056 CXXCtorInitializer *Initializer) {
5057 assert(Initializer->isDelegatingInitializer())(static_cast<void> (0));
5058 Constructor->setNumCtorInitializers(1);
5059 CXXCtorInitializer **initializer =
5060 new (Context) CXXCtorInitializer*[1];
5061 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
5062 Constructor->setCtorInitializers(initializer);
5063
5064 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
5065 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
5066 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
5067 }
5068
5069 DelegatingCtorDecls.push_back(Constructor);
5070
5071 DiagnoseUninitializedFields(*this, Constructor);
5072
5073 return false;
5074}
5075
5076bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
5077 ArrayRef<CXXCtorInitializer *> Initializers) {
5078 if (Constructor->isDependentContext()) {
6
Assuming the condition is false
7
Taking false branch
5079 // Just store the initializers as written, they will be checked during
5080 // instantiation.
5081 if (!Initializers.empty()) {
5082 Constructor->setNumCtorInitializers(Initializers.size());
5083 CXXCtorInitializer **baseOrMemberInitializers =
5084 new (Context) CXXCtorInitializer*[Initializers.size()];
5085 memcpy(baseOrMemberInitializers, Initializers.data(),
5086 Initializers.size() * sizeof(CXXCtorInitializer*));
5087 Constructor->setCtorInitializers(baseOrMemberInitializers);
5088 }
5089
5090 // Let template instantiation know whether we had errors.
5091 if (AnyErrors)
5092 Constructor->setInvalidDecl();
5093
5094 return false;
5095 }
5096
5097 BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
5098
5099 // We need to build the initializer AST according to order of construction
5100 // and not what user specified in the Initializers list.
5101 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
5102 if (!ClassDecl)
8
Assuming 'ClassDecl' is non-null
9
Taking false branch
5103 return true;
5104
5105 bool HadError = false;
5106
5107 for (unsigned i = 0; i < Initializers.size(); i++) {
10
Assuming the condition is false
11
Loop condition is false. Execution continues on line 5131
5108 CXXCtorInitializer *Member = Initializers[i];
5109
5110 if (Member->isBaseInitializer())
5111 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
5112 else {
5113 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
5114
5115 if (IndirectFieldDecl *F = Member->getIndirectMember()) {
5116 for (auto *C : F->chain()) {
5117 FieldDecl *FD = dyn_cast<FieldDecl>(C);
5118 if (FD && FD->getParent()->isUnion())
5119 Info.ActiveUnionMember.insert(std::make_pair(
5120 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5121 }
5122 } else if (FieldDecl *FD = Member->getMember()) {
5123 if (FD->getParent()->isUnion())
5124 Info.ActiveUnionMember.insert(std::make_pair(
5125 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5126 }
5127 }
5128 }
5129
5130 // Keep track of the direct virtual bases.
5131 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
5132 for (auto &I : ClassDecl->bases()) {
12
Assuming '__begin1' is equal to '__end1'
5133 if (I.isVirtual())
5134 DirectVBases.insert(&I);
5135 }
5136
5137 // Push virtual bases before others.
5138 for (auto &VBase : ClassDecl->vbases()) {
13
Assuming '__begin1' is equal to '__end1'
5139 if (CXXCtorInitializer *Value
5140 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
5141 // [class.base.init]p7, per DR257:
5142 // A mem-initializer where the mem-initializer-id names a virtual base
5143 // class is ignored during execution of a constructor of any class that
5144 // is not the most derived class.
5145 if (ClassDecl->isAbstract()) {
5146 // FIXME: Provide a fixit to remove the base specifier. This requires
5147 // tracking the location of the associated comma for a base specifier.
5148 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
5149 << VBase.getType() << ClassDecl;
5150 DiagnoseAbstractType(ClassDecl);
5151 }
5152
5153 Info.AllToInit.push_back(Value);
5154 } else if (!AnyErrors && !ClassDecl->isAbstract()) {
5155 // [class.base.init]p8, per DR257:
5156 // If a given [...] base class is not named by a mem-initializer-id
5157 // [...] and the entity is not a virtual base class of an abstract
5158 // class, then [...] the entity is default-initialized.
5159 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
5160 CXXCtorInitializer *CXXBaseInit;
5161 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5162 &VBase, IsInheritedVirtualBase,
5163 CXXBaseInit)) {
5164 HadError = true;
5165 continue;
5166 }
5167
5168 Info.AllToInit.push_back(CXXBaseInit);
5169 }
5170 }
5171
5172 // Non-virtual bases.
5173 for (auto &Base : ClassDecl->bases()) {
14
Assuming '__begin1' is equal to '__end1'
5174 // Virtuals are in the virtual base list and already constructed.
5175 if (Base.isVirtual())
5176 continue;
5177
5178 if (CXXCtorInitializer *Value
5179 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
5180 Info.AllToInit.push_back(Value);
5181 } else if (!AnyErrors) {
5182 CXXCtorInitializer *CXXBaseInit;
5183 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5184 &Base, /*IsInheritedVirtualBase=*/false,
5185 CXXBaseInit)) {
5186 HadError = true;
5187 continue;
5188 }
5189
5190 Info.AllToInit.push_back(CXXBaseInit);
5191 }
5192 }
5193
5194 // Fields.
5195 for (auto *Mem : ClassDecl->decls()) {
5196 if (auto *F
15.1
'F' is non-null
15.1
'F' is non-null
15.1
'F' is non-null
= dyn_cast<FieldDecl>(Mem)) {
15
Assuming 'Mem' is a 'FieldDecl'
16
Taking true branch
5197 // C++ [class.bit]p2:
5198 // A declaration for a bit-field that omits the identifier declares an
5199 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
5200 // initialized.
5201 if (F->isUnnamedBitfield())
5202 continue;
5203
5204 // If we're not generating the implicit copy/move constructor, then we'll
5205 // handle anonymous struct/union fields based on their individual
5206 // indirect fields.
5207 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
17
Assuming the condition is false
5208 continue;
5209
5210 if (CollectFieldInitializer(*this, Info, F))
18
Calling 'CollectFieldInitializer'
5211 HadError = true;
5212 continue;
5213 }
5214
5215 // Beyond this point, we only consider default initialization.
5216 if (Info.isImplicitCopyOrMove())
5217 continue;
5218
5219 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
5220 if (F->getType()->isIncompleteArrayType()) {
5221 assert(ClassDecl->hasFlexibleArrayMember() &&(static_cast<void> (0))
5222 "Incomplete array type is not valid")(static_cast<void> (0));
5223 continue;
5224 }
5225
5226 // Initialize each field of an anonymous struct individually.
5227 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
5228 HadError = true;
5229
5230 continue;
5231 }
5232 }
5233
5234 unsigned NumInitializers = Info.AllToInit.size();
5235 if (NumInitializers > 0) {
5236 Constructor->setNumCtorInitializers(NumInitializers);
5237 CXXCtorInitializer **baseOrMemberInitializers =
5238 new (Context) CXXCtorInitializer*[NumInitializers];
5239 memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
5240 NumInitializers * sizeof(CXXCtorInitializer*));
5241 Constructor->setCtorInitializers(baseOrMemberInitializers);
5242
5243 // Constructors implicitly reference the base and member
5244 // destructors.
5245 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
5246 Constructor->getParent());
5247 }
5248
5249 return HadError;
5250}
5251
5252static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
5253 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
5254 const RecordDecl *RD = RT->getDecl();
5255 if (RD->isAnonymousStructOrUnion()) {
5256 for (auto *Field : RD->fields())
5257 PopulateKeysForFields(Field, IdealInits);
5258 return;
5259 }
5260 }
5261 IdealInits.push_back(Field->getCanonicalDecl());
5262}
5263
5264static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
5265 return Context.getCanonicalType(BaseType).getTypePtr();
5266}
5267
5268static const void *GetKeyForMember(ASTContext &Context,
5269 CXXCtorInitializer *Member) {
5270 if (!Member->isAnyMemberInitializer())
5271 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
5272
5273 return Member->getAnyMember()->getCanonicalDecl();
5274}
5275
5276static void AddInitializerToDiag(const Sema::SemaDiagnosticBuilder &Diag,
5277 const CXXCtorInitializer *Previous,
5278 const CXXCtorInitializer *Current) {
5279 if (Previous->isAnyMemberInitializer())
5280 Diag << 0 << Previous->getAnyMember();
5281 else
5282 Diag << 1 << Previous->getTypeSourceInfo()->getType();
5283
5284 if (Current->isAnyMemberInitializer())
5285 Diag << 0 << Current->getAnyMember();
5286 else
5287 Diag << 1 << Current->getTypeSourceInfo()->getType();
5288}
5289
5290static void DiagnoseBaseOrMemInitializerOrder(
5291 Sema &SemaRef, const CXXConstructorDecl *Constructor,
5292 ArrayRef<CXXCtorInitializer *> Inits) {
5293 if (Constructor->getDeclContext()->isDependentContext())
5294 return;
5295
5296 // Don't check initializers order unless the warning is enabled at the
5297 // location of at least one initializer.
5298 bool ShouldCheckOrder = false;
5299 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5300 CXXCtorInitializer *Init = Inits[InitIndex];
5301 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
5302 Init->getSourceLocation())) {
5303 ShouldCheckOrder = true;
5304 break;
5305 }
5306 }
5307 if (!ShouldCheckOrder)
5308 return;
5309
5310 // Build the list of bases and members in the order that they'll
5311 // actually be initialized. The explicit initializers should be in
5312 // this same order but may be missing things.
5313 SmallVector<const void*, 32> IdealInitKeys;
5314
5315 const CXXRecordDecl *ClassDecl = Constructor->getParent();
5316
5317 // 1. Virtual bases.
5318 for (const auto &VBase : ClassDecl->vbases())
5319 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
5320
5321 // 2. Non-virtual bases.
5322 for (const auto &Base : ClassDecl->bases()) {
5323 if (Base.isVirtual())
5324 continue;
5325 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
5326 }
5327
5328 // 3. Direct fields.
5329 for (auto *Field : ClassDecl->fields()) {
5330 if (Field->isUnnamedBitfield())
5331 continue;
5332
5333 PopulateKeysForFields(Field, IdealInitKeys);
5334 }
5335
5336 unsigned NumIdealInits = IdealInitKeys.size();
5337 unsigned IdealIndex = 0;
5338
5339 // Track initializers that are in an incorrect order for either a warning or
5340 // note if multiple ones occur.
5341 SmallVector<unsigned> WarnIndexes;
5342 // Correlates the index of an initializer in the init-list to the index of
5343 // the field/base in the class.
5344 SmallVector<std::pair<unsigned, unsigned>, 32> CorrelatedInitOrder;
5345
5346 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5347 const void *InitKey = GetKeyForMember(SemaRef.Context, Inits[InitIndex]);
5348
5349 // Scan forward to try to find this initializer in the idealized
5350 // initializers list.
5351 for (; IdealIndex != NumIdealInits; ++IdealIndex)
5352 if (InitKey == IdealInitKeys[IdealIndex])
5353 break;
5354
5355 // If we didn't find this initializer, it must be because we
5356 // scanned past it on a previous iteration. That can only
5357 // happen if we're out of order; emit a warning.
5358 if (IdealIndex == NumIdealInits && InitIndex) {
5359 WarnIndexes.push_back(InitIndex);
5360
5361 // Move back to the initializer's location in the ideal list.
5362 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
5363 if (InitKey == IdealInitKeys[IdealIndex])
5364 break;
5365
5366 assert(IdealIndex < NumIdealInits &&(static_cast<void> (0))
5367 "initializer not found in initializer list")(static_cast<void> (0));
5368 }
5369 CorrelatedInitOrder.emplace_back(IdealIndex, InitIndex);
5370 }
5371
5372 if (WarnIndexes.empty())
5373 return;
5374
5375 // Sort based on the ideal order, first in the pair.
5376 llvm::sort(CorrelatedInitOrder,
5377 [](auto &LHS, auto &RHS) { return LHS.first < RHS.first; });
5378
5379 // Introduce a new scope as SemaDiagnosticBuilder needs to be destroyed to
5380 // emit the diagnostic before we can try adding notes.
5381 {
5382 Sema::SemaDiagnosticBuilder D = SemaRef.Diag(
5383 Inits[WarnIndexes.front() - 1]->getSourceLocation(),
5384 WarnIndexes.size() == 1 ? diag::warn_initializer_out_of_order
5385 : diag::warn_some_initializers_out_of_order);
5386
5387 for (unsigned I = 0; I < CorrelatedInitOrder.size(); ++I) {
5388 if (CorrelatedInitOrder[I].second == I)
5389 continue;
5390 // Ideally we would be using InsertFromRange here, but clang doesn't
5391 // appear to handle InsertFromRange correctly when the source range is
5392 // modified by another fix-it.
5393 D << FixItHint::CreateReplacement(
5394 Inits[I]->getSourceRange(),
5395 Lexer::getSourceText(
5396 CharSourceRange::getTokenRange(
5397 Inits[CorrelatedInitOrder[I].second]->getSourceRange()),
5398 SemaRef.getSourceManager(), SemaRef.getLangOpts()));
5399 }
5400
5401 // If there is only 1 item out of order, the warning expects the name and
5402 // type of each being added to it.
5403 if (WarnIndexes.size() == 1) {
5404 AddInitializerToDiag(D, Inits[WarnIndexes.front() - 1],
5405 Inits[WarnIndexes.front()]);
5406 return;
5407 }
5408 }
5409 // More than 1 item to warn, create notes letting the user know which ones
5410 // are bad.
5411 for (unsigned WarnIndex : WarnIndexes) {
5412 const clang::CXXCtorInitializer *PrevInit = Inits[WarnIndex - 1];
5413 auto D = SemaRef.Diag(PrevInit->getSourceLocation(),
5414 diag::note_initializer_out_of_order);
5415 AddInitializerToDiag(D, PrevInit, Inits[WarnIndex]);
5416 D << PrevInit->getSourceRange();
5417 }
5418}
5419
5420namespace {
5421bool CheckRedundantInit(Sema &S,
5422 CXXCtorInitializer *Init,
5423 CXXCtorInitializer *&PrevInit) {
5424 if (!PrevInit) {
5425 PrevInit = Init;
5426 return false;
5427 }
5428
5429 if (FieldDecl *Field = Init->getAnyMember())
5430 S.Diag(Init->getSourceLocation(),
5431 diag::err_multiple_mem_initialization)
5432 << Field->getDeclName()
5433 << Init->getSourceRange();
5434 else {
5435 const Type *BaseClass = Init->getBaseClass();
5436 assert(BaseClass && "neither field nor base")(static_cast<void> (0));
5437 S.Diag(Init->getSourceLocation(),
5438 diag::err_multiple_base_initialization)
5439 << QualType(BaseClass, 0)
5440 << Init->getSourceRange();
5441 }
5442 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
5443 << 0 << PrevInit->getSourceRange();
5444
5445 return true;
5446}
5447
5448typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
5449typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
5450
5451bool CheckRedundantUnionInit(Sema &S,
5452 CXXCtorInitializer *Init,
5453 RedundantUnionMap &Unions) {
5454 FieldDecl *Field = Init->getAnyMember();
5455 RecordDecl *Parent = Field->getParent();
5456 NamedDecl *Child = Field;
5457
5458 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
5459 if (Parent->isUnion()) {
5460 UnionEntry &En = Unions[Parent];
5461 if (En.first && En.first != Child) {
5462 S.Diag(Init->getSourceLocation(),
5463 diag::err_multiple_mem_union_initialization)
5464 << Field->getDeclName()
5465 << Init->getSourceRange();
5466 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
5467 << 0 << En.second->getSourceRange();
5468 return true;
5469 }
5470 if (!En.first) {
5471 En.first = Child;
5472 En.second = Init;
5473 }
5474 if (!Parent->isAnonymousStructOrUnion())
5475 return false;
5476 }
5477
5478 Child = Parent;
5479 Parent = cast<RecordDecl>(Parent->getDeclContext());
5480 }
5481
5482 return false;
5483}
5484} // namespace
5485
5486/// ActOnMemInitializers - Handle the member initializers for a constructor.
5487void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
5488 SourceLocation ColonLoc,
5489 ArrayRef<CXXCtorInitializer*> MemInits,
5490 bool AnyErrors) {
5491 if (!ConstructorDecl)
5492 return;
5493
5494 AdjustDeclIfTemplate(ConstructorDecl);
5495
5496 CXXConstructorDecl *Constructor
5497 = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
5498
5499 if (!Constructor) {
5500 Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
5501 return;
5502 }
5503
5504 // Mapping for the duplicate initializers check.
5505 // For member initializers, this is keyed with a FieldDecl*.
5506 // For base initializers, this is keyed with a Type*.
5507 llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
5508
5509 // Mapping for the inconsistent anonymous-union initializers check.
5510 RedundantUnionMap MemberUnions;
5511
5512 bool HadError = false;
5513 for (unsigned i = 0; i < MemInits.size(); i++) {
5514 CXXCtorInitializer *Init = MemInits[i];
5515
5516 // Set the source order index.
5517 Init->setSourceOrder(i);
5518
5519 if (Init->isAnyMemberInitializer()) {
5520 const void *Key = GetKeyForMember(Context, Init);
5521 if (CheckRedundantInit(*this, Init, Members[Key]) ||
5522 CheckRedundantUnionInit(*this, Init, MemberUnions))
5523 HadError = true;
5524 } else if (Init->isBaseInitializer()) {
5525 const void *Key = GetKeyForMember(Context, Init);
5526 if (CheckRedundantInit(*this, Init, Members[Key]))
5527 HadError = true;
5528 } else {
5529 assert(Init->isDelegatingInitializer())(static_cast<void> (0));
5530 // This must be the only initializer
5531 if (MemInits.size() != 1) {
5532 Diag(Init->getSourceLocation(),
5533 diag::err_delegating_initializer_alone)
5534 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
5535 // We will treat this as being the only initializer.
5536 }
5537 SetDelegatingInitializer(Constructor, MemInits[i]);
5538 // Return immediately as the initializer is set.
5539 return;
5540 }
5541 }
5542
5543 if (HadError)
5544 return;
5545
5546 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
5547
5548 SetCtorInitializers(Constructor, AnyErrors, MemInits);
5549
5550 DiagnoseUninitializedFields(*this, Constructor);
5551}
5552
5553void
5554Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
5555 CXXRecordDecl *ClassDecl) {
5556 // Ignore dependent contexts. Also ignore unions, since their members never
5557 // have destructors implicitly called.
5558 if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
5559 return;
5560
5561 // FIXME: all the access-control diagnostics are positioned on the
5562 // field/base declaration. That's probably good; that said, the
5563 // user might reasonably want to know why the destructor is being
5564 // emitted, and we currently don't say.
5565
5566 // Non-static data members.
5567 for (auto *Field : ClassDecl->fields()) {
5568 if (Field->isInvalidDecl())
5569 continue;
5570
5571 // Don't destroy incomplete or zero-length arrays.
5572 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
5573 continue;
5574
5575 QualType FieldType = Context.getBaseElementType(Field->getType());
5576
5577 const RecordType* RT = FieldType->getAs<RecordType>();
5578 if (!RT)
5579 continue;
5580
5581 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5582 if (FieldClassDecl->isInvalidDecl())
5583 continue;
5584 if (FieldClassDecl->hasIrrelevantDestructor())
5585 continue;
5586 // The destructor for an implicit anonymous union member is never invoked.
5587 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
5588 continue;
5589
5590 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
5591 assert(Dtor && "No dtor found for FieldClassDecl!")(static_cast<void> (0));
5592 CheckDestructorAccess(Field->getLocation(), Dtor,
5593 PDiag(diag::err_access_dtor_field)
5594 << Field->getDeclName()
5595 << FieldType);
5596
5597 MarkFunctionReferenced(Location, Dtor);
5598 DiagnoseUseOfDecl(Dtor, Location);
5599 }
5600
5601 // We only potentially invoke the destructors of potentially constructed
5602 // subobjects.
5603 bool VisitVirtualBases = !ClassDecl->isAbstract();
5604
5605 // If the destructor exists and has already been marked used in the MS ABI,
5606 // then virtual base destructors have already been checked and marked used.
5607 // Skip checking them again to avoid duplicate diagnostics.
5608 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5609 CXXDestructorDecl *Dtor = ClassDecl->getDestructor();
5610 if (Dtor && Dtor->isUsed())
5611 VisitVirtualBases = false;
5612 }
5613
5614 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
5615
5616 // Bases.
5617 for (const auto &Base : ClassDecl->bases()) {
5618 const RecordType *RT = Base.getType()->getAs<RecordType>();
5619 if (!RT)
5620 continue;
5621
5622 // Remember direct virtual bases.
5623 if (Base.isVirtual()) {
5624 if (!VisitVirtualBases)
5625 continue;
5626 DirectVirtualBases.insert(RT);
5627 }
5628
5629 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5630 // If our base class is invalid, we probably can't get its dtor anyway.
5631 if (BaseClassDecl->isInvalidDecl())
5632 continue;
5633 if (BaseClassDecl->hasIrrelevantDestructor())
5634 continue;
5635
5636 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5637 assert(Dtor && "No dtor found for BaseClassDecl!")(static_cast<void> (0));
5638
5639 // FIXME: caret should be on the start of the class name
5640 CheckDestructorAccess(Base.getBeginLoc(), Dtor,
5641 PDiag(diag::err_access_dtor_base)
5642 << Base.getType() << Base.getSourceRange(),
5643 Context.getTypeDeclType(ClassDecl));
5644
5645 MarkFunctionReferenced(Location, Dtor);
5646 DiagnoseUseOfDecl(Dtor, Location);
5647 }
5648
5649 if (VisitVirtualBases)
5650 MarkVirtualBaseDestructorsReferenced(Location, ClassDecl,
5651 &DirectVirtualBases);
5652}
5653
5654void Sema::MarkVirtualBaseDestructorsReferenced(
5655 SourceLocation Location, CXXRecordDecl *ClassDecl,
5656 llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases) {
5657 // Virtual bases.
5658 for (const auto &VBase : ClassDecl->vbases()) {
5659 // Bases are always records in a well-formed non-dependent class.
5660 const RecordType *RT = VBase.getType()->castAs<RecordType>();
5661
5662 // Ignore already visited direct virtual bases.
5663 if (DirectVirtualBases && DirectVirtualBases->count(RT))
5664 continue;
5665
5666 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5667 // If our base class is invalid, we probably can't get its dtor anyway.
5668 if (BaseClassDecl->isInvalidDecl())
5669 continue;
5670 if (BaseClassDecl->hasIrrelevantDestructor())
5671 continue;
5672
5673 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5674 assert(Dtor && "No dtor found for BaseClassDecl!")(static_cast<void> (0));
5675 if (CheckDestructorAccess(
5676 ClassDecl->getLocation(), Dtor,
5677 PDiag(diag::err_access_dtor_vbase)
5678 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
5679 Context.getTypeDeclType(ClassDecl)) ==
5680 AR_accessible) {
5681 CheckDerivedToBaseConversion(
5682 Context.getTypeDeclType(ClassDecl), VBase.getType(),
5683 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
5684 SourceRange(), DeclarationName(), nullptr);
5685 }
5686
5687 MarkFunctionReferenced(Location, Dtor);
5688 DiagnoseUseOfDecl(Dtor, Location);
5689 }
5690}
5691
5692void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
5693 if (!CDtorDecl)
1
Assuming 'CDtorDecl' is non-null
2
Taking false branch
5694 return;
5695
5696 if (CXXConstructorDecl *Constructor
3.1
'Constructor' is non-null
3.1
'Constructor' is non-null
3.1
'Constructor' is non-null
4
Taking true branch
5697 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
3
Assuming 'CDtorDecl' is a 'CXXConstructorDecl'
5698 SetCtorInitializers(Constructor, /*AnyErrors=*/false);
5
Calling 'Sema::SetCtorInitializers'
5699 DiagnoseUninitializedFields(*this, Constructor); 5700 } 5701} 5702 5703bool Sema::isAbstractType(SourceLocation Loc, QualType T) { 5704 if (!getLangOpts().CPlusPlus) 5705 return false; 5706 5707 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl(); 5708 if (!RD) 5709 return false; 5710 5711 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a 5712 // class template specialization here, but doing so breaks a lot of code. 5713 5714 // We can't answer whether something is abstract until it has a 5715 // definition. If it's currently being defined, we'll walk back 5716 // over all the declarations when we have a full definition. 5717 const CXXRecordDecl *Def = RD->getDefinition(); 5718 if (!Def || Def->isBeingDefined()) 5719 return false; 5720 5721 return RD->isAbstract(); 5722} 5723 5724bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, 5725 TypeDiagnoser &Diagnoser) { 5726 if (!isAbstractType(Loc, T)) 5727 return false; 5728 5729 T = Context.getBaseElementType(T); 5730 Diagnoser.diagnose(*this, Loc, T); 5731 DiagnoseAbstractType(T->getAsCXXRecordDecl()); 5732 return true; 5733} 5734 5735void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) { 5736 // Check if we've already emitted the list of pure virtual functions 5737 // for this class. 5738 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) 5739 return; 5740 5741 // If the diagnostic is suppressed, don't emit the notes. We're only 5742 // going to emit them once, so try to attach them to a diagnostic we're 5743 // actually going to show. 5744 if (Diags.isLastDiagnosticIgnored()) 5745 return; 5746 5747 CXXFinalOverriderMap FinalOverriders; 5748 RD->getFinalOverriders(FinalOverriders); 5749 5750 // Keep a set of seen pure methods so we won't diagnose the same method 5751 // more than once. 5752 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods; 5753 5754 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 5755 MEnd = FinalOverriders.end(); 5756 M != MEnd; 5757 ++M) { 5758 for (OverridingMethods::iterator SO = M->second.begin(), 5759 SOEnd = M->second.end(); 5760 SO != SOEnd; ++SO) { 5761 // C++ [class.abstract]p4: 5762 // A class is abstract if it contains or inherits at least one 5763 // pure virtual function for which the final overrider is pure 5764 // virtual. 5765 5766 // 5767 if (SO->second.size() != 1) 5768 continue; 5769 5770 if (!SO->second.front().Method->isPure()) 5771 continue; 5772 5773 if (!SeenPureMethods.insert(SO->second.front().Method).second) 5774 continue; 5775 5776 Diag(SO->second.front().Method->getLocation(), 5777 diag::note_pure_virtual_function) 5778 << SO->second.front().Method->getDeclName() << RD->getDeclName(); 5779 } 5780 } 5781 5782 if (!PureVirtualClassDiagSet) 5783 PureVirtualClassDiagSet.reset(new RecordDeclSetTy); 5784 PureVirtualClassDiagSet->insert(RD); 5785} 5786 5787namespace { 5788struct AbstractUsageInfo { 5789 Sema &S; 5790 CXXRecordDecl *Record; 5791 CanQualType AbstractType; 5792 bool Invalid; 5793 5794 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record) 5795 : S(S), Record(Record), 5796 AbstractType(S.Context.getCanonicalType( 5797 S.Context.getTypeDeclType(Record))), 5798 Invalid(false) {} 5799 5800 void DiagnoseAbstractType() { 5801 if (Invalid) return; 5802 S.DiagnoseAbstractType(Record); 5803 Invalid = true; 5804 } 5805 5806 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel); 5807}; 5808 5809struct CheckAbstractUsage { 5810 AbstractUsageInfo &Info; 5811 const NamedDecl *Ctx; 5812 5813 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx) 5814 : Info(Info), Ctx(Ctx) {} 5815 5816 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 5817 switch (TL.getTypeLocClass()) { 5818#define ABSTRACT_TYPELOC(CLASS, PARENT) 5819#define TYPELOC(CLASS, PARENT) \ 5820 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break; 5821#include "clang/AST/TypeLocNodes.def" 5822 } 5823 } 5824 5825 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5826 Visit(TL.getReturnLoc(), Sema::AbstractReturnType); 5827 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) { 5828 if (!TL.getParam(I)) 5829 continue; 5830 5831 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo(); 5832 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType); 5833 } 5834 } 5835 5836 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5837 Visit(TL.getElementLoc(), Sema::AbstractArrayType); 5838 } 5839 5840 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5841 // Visit the type parameters from a permissive context. 5842 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { 5843 TemplateArgumentLoc TAL = TL.getArgLoc(I); 5844 if (TAL.getArgument().getKind() == TemplateArgument::Type) 5845 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo()) 5846 Visit(TSI->getTypeLoc(), Sema::AbstractNone); 5847 // TODO: other template argument types? 5848 } 5849 } 5850 5851 // Visit pointee types from a permissive context. 5852#define CheckPolymorphic(Type)void Check(Type TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getNextTypeLoc
(), Sema::AbstractNone); }
\
5853 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \ 5854 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \ 5855 } 5856 CheckPolymorphic(PointerTypeLoc)void Check(PointerTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5857 CheckPolymorphic(ReferenceTypeLoc)void Check(ReferenceTypeLoc TL, Sema::AbstractDiagSelID Sel) {
Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5858 CheckPolymorphic(MemberPointerTypeLoc)void Check(MemberPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5859 CheckPolymorphic(BlockPointerTypeLoc)void Check(BlockPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5860 CheckPolymorphic(AtomicTypeLoc)void Check(AtomicTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5861 5862 /// Handle all the types we haven't given a more specific 5863 /// implementation for above. 5864 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 5865 // Every other kind of type that we haven't called out already 5866 // that has an inner type is either (1) sugar or (2) contains that 5867 // inner type in some way as a subobject. 5868 if (TypeLoc Next = TL.getNextTypeLoc()) 5869 return Visit(Next, Sel); 5870 5871 // If there's no inner type and we're in a permissive context, 5872 // don't diagnose. 5873 if (Sel == Sema::AbstractNone) return; 5874 5875 // Check whether the type matches the abstract type. 5876 QualType T = TL.getType(); 5877 if (T->isArrayType()) { 5878 Sel = Sema::AbstractArrayType; 5879 T = Info.S.Context.getBaseElementType(T); 5880 } 5881 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType(); 5882 if (CT != Info.AbstractType) return; 5883 5884 // It matched; do some magic. 5885 if (Sel == Sema::AbstractArrayType) { 5886 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type) 5887 << T << TL.getSourceRange(); 5888 } else { 5889 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl) 5890 << Sel << T << TL.getSourceRange(); 5891 } 5892 Info.DiagnoseAbstractType(); 5893 } 5894}; 5895 5896void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL, 5897 Sema::AbstractDiagSelID Sel) { 5898 CheckAbstractUsage(*this, D).Visit(TL, Sel); 5899} 5900 5901} 5902 5903/// Check for invalid uses of an abstract type in a method declaration. 5904static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 5905 CXXMethodDecl *MD) { 5906 // No need to do the check on definitions, which require that 5907 // the return/param types be complete. 5908 if (MD->doesThisDeclarationHaveABody()) 5909 return; 5910 5911 // For safety's sake, just ignore it if we don't have type source 5912 // information. This should never happen for non-implicit methods, 5913 // but... 5914 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) 5915 Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone); 5916} 5917 5918/// Check for invalid uses of an abstract type within a class definition. 5919static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 5920 CXXRecordDecl *RD) { 5921 for (auto *D : RD->decls()) { 5922 if (D->isImplicit()) continue; 5923 5924 // Methods and method templates. 5925 if (isa<CXXMethodDecl>(D)) { 5926 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D)); 5927 } else if (isa<FunctionTemplateDecl>(D)) { 5928 FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl(); 5929 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD)); 5930 5931 // Fields and static variables. 5932 } else if (isa<FieldDecl>(D)) { 5933 FieldDecl *FD = cast<FieldDecl>(D); 5934 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) 5935 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType); 5936 } else if (isa<VarDecl>(D)) { 5937 VarDecl *VD = cast<VarDecl>(D); 5938 if (TypeSourceInfo *TSI = VD->getTypeSourceInfo()) 5939 Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType); 5940 5941 // Nested classes and class templates. 5942 } else if (isa<CXXRecordDecl>(D)) { 5943 CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D)); 5944 } else if (isa<ClassTemplateDecl>(D)) { 5945 CheckAbstractClassUsage(Info, 5946 cast<ClassTemplateDecl>(D)->getTemplatedDecl()); 5947 } 5948 } 5949} 5950 5951static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) { 5952 Attr *ClassAttr = getDLLAttr(Class); 5953 if (!ClassAttr) 5954 return; 5955 5956 assert(ClassAttr->getKind() == attr::DLLExport)(static_cast<void> (0)); 5957 5958 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); 5959 5960 if (TSK == TSK_ExplicitInstantiationDeclaration) 5961 // Don't go any further if this is just an explicit instantiation 5962 // declaration. 5963 return; 5964 5965 // Add a context note to explain how we got to any diagnostics produced below. 5966 struct MarkingClassDllexported { 5967 Sema &S; 5968 MarkingClassDllexported(Sema &S, CXXRecordDecl *Class, 5969 SourceLocation AttrLoc) 5970 : S(S) { 5971 Sema::CodeSynthesisContext Ctx; 5972 Ctx.Kind = Sema::CodeSynthesisContext::MarkingClassDllexported; 5973 Ctx.PointOfInstantiation = AttrLoc; 5974 Ctx.Entity = Class; 5975 S.pushCodeSynthesisContext(Ctx); 5976 } 5977 ~MarkingClassDllexported() { 5978 S.popCodeSynthesisContext(); 5979 } 5980 } MarkingDllexportedContext(S, Class, ClassAttr->getLocation()); 5981 5982 if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) 5983 S.MarkVTableUsed(Class->getLocation(), Class, true); 5984 5985 for (Decl *Member : Class->decls()) { 5986 // Skip members that were not marked exported. 5987 if (!Member->hasAttr<DLLExportAttr>()) 5988 continue; 5989 5990 // Defined static variables that are members of an exported base 5991 // class must be marked export too. 5992 auto *VD = dyn_cast<VarDecl>(Member); 5993 if (VD && VD->getStorageClass() == SC_Static && 5994 TSK == TSK_ImplicitInstantiation) 5995 S.MarkVariableReferenced(VD->getLocation(), VD); 5996 5997 auto *MD = dyn_cast<CXXMethodDecl>(Member); 5998 if (!MD) 5999 continue; 6000 6001 if (MD->isUserProvided()) { 6002 // Instantiate non-default class member functions ... 6003 6004 // .. except for certain kinds of template specializations. 6005 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited()) 6006 continue; 6007 6008 // If this is an MS ABI dllexport default constructor, instantiate any 6009 // default arguments. 6010 if (S.Context.getTargetInfo().getCXXABI().isMicrosoft()) { 6011 auto *CD = dyn_cast<CXXConstructorDecl>(MD); 6012 if (CD && CD->isDefaultConstructor() && TSK == TSK_Undeclared) { 6013 S.InstantiateDefaultCtorDefaultArgs(CD); 6014 } 6015 } 6016 6017 S.MarkFunctionReferenced(Class->getLocation(), MD); 6018 6019 // The function will be passed to the consumer when its definition is 6020 // encountered. 6021 } else if (MD->isExplicitlyDefaulted()) { 6022 // Synthesize and instantiate explicitly defaulted methods. 6023 S.MarkFunctionReferenced(Class->getLocation(), MD); 6024 6025 if (TSK != TSK_ExplicitInstantiationDefinition) { 6026 // Except for explicit instantiation defs, we will not see the 6027 // definition again later, so pass it to the consumer now. 6028 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); 6029 } 6030 } else if (!MD->isTrivial() || 6031 MD->isCopyAssignmentOperator() || 6032 MD->isMoveAssignmentOperator()) { 6033 // Synthesize and instantiate non-trivial implicit methods, and the copy 6034 // and move assignment operators. The latter are exported even if they 6035 // are trivial, because the address of an operator can be taken and 6036 // should compare equal across libraries. 6037 S.MarkFunctionReferenced(Class->getLocation(), MD); 6038 6039 // There is no later point when we will see the definition of this 6040 // function, so pass it to the consumer now. 6041 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); 6042 } 6043 } 6044} 6045 6046static void checkForMultipleExportedDefaultConstructors(Sema &S, 6047 CXXRecordDecl *Class) { 6048 // Only the MS ABI has default constructor closures, so we don't need to do 6049 // this semantic checking anywhere else. 6050 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft()) 6051 return; 6052 6053 CXXConstructorDecl *LastExportedDefaultCtor = nullptr; 6054 for (Decl *Member : Class->decls()) { 6055 // Look for exported default constructors. 6056 auto *CD = dyn_cast<CXXConstructorDecl>(Member); 6057 if (!CD || !CD->isDefaultConstructor()) 6058 continue; 6059 auto *Attr = CD->getAttr<DLLExportAttr>(); 6060 if (!Attr) 6061 continue; 6062 6063 // If the class is non-dependent, mark the default arguments as ODR-used so 6064 // that we can properly codegen the constructor closure. 6065 if (!Class->isDependentContext()) { 6066 for (ParmVarDecl *PD : CD->parameters()) { 6067 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD); 6068 S.DiscardCleanupsInEvaluationContext(); 6069 } 6070 } 6071 6072 if (LastExportedDefaultCtor) { 6073 S.Diag(LastExportedDefaultCtor->getLocation(), 6074 diag::err_attribute_dll_ambiguous_default_ctor) 6075 << Class; 6076 S.Diag(CD->getLocation(), diag::note_entity_declared_at) 6077 << CD->getDeclName(); 6078 return; 6079 } 6080 LastExportedDefaultCtor = CD; 6081 } 6082} 6083 6084static void checkCUDADeviceBuiltinSurfaceClassTemplate(Sema &S, 6085 CXXRecordDecl *Class) { 6086 bool ErrorReported = false; 6087 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, 6088 ClassTemplateDecl *TD) { 6089 if (ErrorReported) 6090 return; 6091 S.Diag(TD->getLocation(), 6092 diag::err_cuda_device_builtin_surftex_cls_template) 6093 << /*surface*/ 0 << TD; 6094 ErrorReported = true; 6095 }; 6096 6097 ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); 6098 if (!TD) { 6099 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class); 6100 if (!SD) { 6101 S.Diag(Class->getLocation(), 6102 diag::err_cuda_device_builtin_surftex_ref_decl) 6103 << /*surface*/ 0 << Class; 6104 S.Diag(Class->getLocation(), 6105 diag::note_cuda_device_builtin_surftex_should_be_template_class) 6106 << Class; 6107 return; 6108 } 6109 TD = SD->getSpecializedTemplate(); 6110 } 6111 6112 TemplateParameterList *Params = TD->getTemplateParameters(); 6113 unsigned N = Params->size(); 6114 6115 if (N != 2) { 6116 reportIllegalClassTemplate(S, TD); 6117 S.Diag(TD->getLocation(), 6118 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) 6119 << TD << 2; 6120 } 6121 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 6122 reportIllegalClassTemplate(S, TD); 6123 S.Diag(TD->getLocation(), 6124 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6125 << TD << /*1st*/ 0 << /*type*/ 0; 6126 } 6127 if (N > 1) { 6128 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1)); 6129 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6130 reportIllegalClassTemplate(S, TD); 6131 S.Diag(TD->getLocation(), 6132 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6133 << TD << /*2nd*/ 1 << /*integer*/ 1; 6134 } 6135 } 6136} 6137 6138static void checkCUDADeviceBuiltinTextureClassTemplate(Sema &S, 6139 CXXRecordDecl *Class) { 6140 bool ErrorReported = false; 6141 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, 6142 ClassTemplateDecl *TD) { 6143 if (ErrorReported) 6144 return; 6145 S.Diag(TD->getLocation(), 6146 diag::err_cuda_device_builtin_surftex_cls_template) 6147 << /*texture*/ 1 << TD; 6148 ErrorReported = true; 6149 }; 6150 6151 ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); 6152 if (!TD) { 6153 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class); 6154 if (!SD) { 6155 S.Diag(Class->getLocation(), 6156 diag::err_cuda_device_builtin_surftex_ref_decl) 6157 << /*texture*/ 1 << Class; 6158 S.Diag(Class->getLocation(), 6159 diag::note_cuda_device_builtin_surftex_should_be_template_class) 6160 << Class; 6161 return; 6162 } 6163 TD = SD->getSpecializedTemplate(); 6164 } 6165 6166 TemplateParameterList *Params = TD->getTemplateParameters(); 6167 unsigned N = Params->size(); 6168 6169 if (N != 3) { 6170 reportIllegalClassTemplate(S, TD); 6171 S.Diag(TD->getLocation(), 6172 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) 6173 << TD << 3; 6174 } 6175 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 6176 reportIllegalClassTemplate(S, TD); 6177 S.Diag(TD->getLocation(), 6178 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6179 << TD << /*1st*/ 0 << /*type*/ 0; 6180 } 6181 if (N > 1) { 6182 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1)); 6183 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6184 reportIllegalClassTemplate(S, TD); 6185 S.Diag(TD->getLocation(), 6186 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6187 << TD << /*2nd*/ 1 << /*integer*/ 1; 6188 } 6189 } 6190 if (N > 2) { 6191 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(2)); 6192 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6193 reportIllegalClassTemplate(S, TD); 6194 S.Diag(TD->getLocation(), 6195 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6196 << TD << /*3rd*/ 2 << /*integer*/ 1; 6197 } 6198 } 6199} 6200 6201void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) { 6202 // Mark any compiler-generated routines with the implicit code_seg attribute. 6203 for (auto *Method : Class->methods()) { 6204 if (Method->isUserProvided()) 6205 continue; 6206 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true)) 6207 Method->addAttr(A); 6208 } 6209} 6210 6211/// Check class-level dllimport/dllexport attribute. 6212void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) { 6213 Attr *ClassAttr = getDLLAttr(Class); 6214 6215 // MSVC inherits DLL attributes to partial class template specializations. 6216 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && !ClassAttr) { 6217 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) { 6218 if (Attr *TemplateAttr = 6219 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) { 6220 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext())); 6221 A->setInherited(true); 6222 ClassAttr = A; 6223 } 6224 } 6225 } 6226 6227 if (!ClassAttr) 6228 return; 6229 6230 if (!Class->isExternallyVisible()) { 6231 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern) 6232 << Class << ClassAttr; 6233 return; 6234 } 6235 6236 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && 6237 !ClassAttr->isInherited()) { 6238 // Diagnose dll attributes on members of class with dll attribute. 6239 for (Decl *Member : Class->decls()) { 6240 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member)) 6241 continue; 6242 InheritableAttr *MemberAttr = getDLLAttr(Member); 6243 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl()) 6244 continue; 6245 6246 Diag(MemberAttr->getLocation(), 6247 diag::err_attribute_dll_member_of_dll_class) 6248 << MemberAttr << ClassAttr; 6249 Diag(ClassAttr->getLocation(), diag::note_previous_attribute); 6250 Member->setInvalidDecl(); 6251 } 6252 } 6253 6254 if (Class->getDescribedClassTemplate()) 6255 // Don't inherit dll attribute until the template is instantiated. 6256 return; 6257 6258 // The class is either imported or exported. 6259 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport; 6260 6261 // Check if this was a dllimport attribute propagated from a derived class to 6262 // a base class template specialization. We don't apply these attributes to 6263 // static data members. 6264 const bool PropagatedImport = 6265 !ClassExported && 6266 cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate(); 6267 6268 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); 6269 6270 // Ignore explicit dllexport on explicit class template instantiation 6271 // declarations, except in MinGW mode. 6272 if (ClassExported && !ClassAttr->isInherited() && 6273 TSK == TSK_ExplicitInstantiationDeclaration && 6274 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 6275 Class->dropAttr<DLLExportAttr>(); 6276 return; 6277 } 6278 6279 // Force declaration of implicit members so they can inherit the attribute. 6280 ForceDeclarationOfImplicitMembers(Class); 6281 6282 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't 6283 // seem to be true in practice? 6284 6285 for (Decl *Member : Class->decls()) { 6286 VarDecl *VD = dyn_cast<VarDecl>(Member); 6287 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member); 6288 6289 // Only methods and static fields inherit the attributes. 6290 if (!VD && !MD) 6291 continue; 6292 6293 if (MD) { 6294 // Don't process deleted methods. 6295 if (MD->isDeleted()) 6296 continue; 6297 6298 if (MD->isInlined()) { 6299 // MinGW does not import or export inline methods. But do it for 6300 // template instantiations. 6301 if (!Context.getTargetInfo().shouldDLLImportComdatSymbols() && 6302 TSK != TSK_ExplicitInstantiationDeclaration && 6303 TSK != TSK_ExplicitInstantiationDefinition) 6304 continue; 6305 6306 // MSVC versions before 2015 don't export the move assignment operators 6307 // and move constructor, so don't attempt to import/export them if 6308 // we have a definition. 6309 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD); 6310 if ((MD->isMoveAssignmentOperator() || 6311 (Ctor && Ctor->isMoveConstructor())) && 6312 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015)) 6313 continue; 6314 6315 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign 6316 // operator is exported anyway. 6317 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && 6318 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial()) 6319 continue; 6320 } 6321 } 6322 6323 // Don't apply dllimport attributes to static data members of class template 6324 // instantiations when the attribute is propagated from a derived class. 6325 if (VD && PropagatedImport) 6326 continue; 6327 6328 if (!cast<NamedDecl>(Member)->isExternallyVisible()) 6329 continue; 6330 6331 if (!getDLLAttr(Member)) { 6332 InheritableAttr *NewAttr = nullptr; 6333 6334 // Do not export/import inline function when -fno-dllexport-inlines is 6335 // passed. But add attribute for later local static var check. 6336 if (!getLangOpts().DllExportInlines && MD && MD->isInlined() && 6337 TSK != TSK_ExplicitInstantiationDeclaration && 6338 TSK != TSK_ExplicitInstantiationDefinition) { 6339 if (ClassExported) { 6340 NewAttr = ::new (getASTContext()) 6341 DLLExportStaticLocalAttr(getASTContext(), *ClassAttr); 6342 } else { 6343 NewAttr = ::new (getASTContext()) 6344 DLLImportStaticLocalAttr(getASTContext(), *ClassAttr); 6345 } 6346 } else { 6347 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6348 } 6349 6350 NewAttr->setInherited(true); 6351 Member->addAttr(NewAttr); 6352 6353 if (MD) { 6354 // Propagate DLLAttr to friend re-declarations of MD that have already 6355 // been constructed. 6356 for (FunctionDecl *FD = MD->getMostRecentDecl(); FD; 6357 FD = FD->getPreviousDecl()) { 6358 if (FD->getFriendObjectKind() == Decl::FOK_None) 6359 continue; 6360 assert(!getDLLAttr(FD) &&(static_cast<void> (0)) 6361 "friend re-decl should not already have a DLLAttr")(static_cast<void> (0)); 6362 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6363 NewAttr->setInherited(true); 6364 FD->addAttr(NewAttr); 6365 } 6366 } 6367 } 6368 } 6369 6370 if (ClassExported) 6371 DelayedDllExportClasses.push_back(Class); 6372} 6373 6374/// Perform propagation of DLL attributes from a derived class to a 6375/// templated base class for MS compatibility. 6376void Sema::propagateDLLAttrToBaseClassTemplate( 6377 CXXRecordDecl *Class, Attr *ClassAttr, 6378 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) { 6379 if (getDLLAttr( 6380 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) { 6381 // If the base class template has a DLL attribute, don't try to change it. 6382 return; 6383 } 6384 6385 auto TSK = BaseTemplateSpec->getSpecializationKind(); 6386 if (!getDLLAttr(BaseTemplateSpec) && 6387 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration || 6388 TSK == TSK_ImplicitInstantiation)) { 6389 // The template hasn't been instantiated yet (or it has, but only as an 6390 // explicit instantiation declaration or implicit instantiation, which means 6391 // we haven't codegenned any members yet), so propagate the attribute. 6392 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6393 NewAttr->setInherited(true); 6394 BaseTemplateSpec->addAttr(NewAttr); 6395 6396 // If this was an import, mark that we propagated it from a derived class to 6397 // a base class template specialization. 6398 if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr)) 6399 ImportAttr->setPropagatedToBaseTemplate(); 6400 6401 // If the template is already instantiated, checkDLLAttributeRedeclaration() 6402 // needs to be run again to work see the new attribute. Otherwise this will 6403 // get run whenever the template is instantiated. 6404 if (TSK != TSK_Undeclared) 6405 checkClassLevelDLLAttribute(BaseTemplateSpec); 6406 6407 return; 6408 } 6409 6410 if (getDLLAttr(BaseTemplateSpec)) { 6411 // The template has already been specialized or instantiated with an 6412 // attribute, explicitly or through propagation. We should not try to change 6413 // it. 6414 return; 6415 } 6416 6417 // The template was previously instantiated or explicitly specialized without 6418 // a dll attribute, It's too late for us to add an attribute, so warn that 6419 // this is unsupported. 6420 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class) 6421 << BaseTemplateSpec->isExplicitSpecialization(); 6422 Diag(ClassAttr->getLocation(), diag::note_attribute); 6423 if (BaseTemplateSpec->isExplicitSpecialization()) { 6424 Diag(BaseTemplateSpec->getLocation(), 6425 diag::note_template_class_explicit_specialization_was_here) 6426 << BaseTemplateSpec; 6427 } else { 6428 Diag(BaseTemplateSpec->getPointOfInstantiation(), 6429 diag::note_template_class_instantiation_was_here) 6430 << BaseTemplateSpec; 6431 } 6432} 6433 6434/// Determine the kind of defaulting that would be done for a given function. 6435/// 6436/// If the function is both a default constructor and a copy / move constructor 6437/// (due to having a default argument for the first parameter), this picks 6438/// CXXDefaultConstructor. 6439/// 6440/// FIXME: Check that case is properly handled by all callers. 6441Sema::DefaultedFunctionKind 6442Sema::getDefaultedFunctionKind(const FunctionDecl *FD) { 6443 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 6444 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(FD)) { 6445 if (Ctor->isDefaultConstructor()) 6446 return Sema::CXXDefaultConstructor; 6447 6448 if (Ctor->isCopyConstructor()) 6449 return Sema::CXXCopyConstructor; 6450 6451 if (Ctor->isMoveConstructor()) 6452 return Sema::CXXMoveConstructor; 6453 } 6454 6455 if (MD->isCopyAssignmentOperator()) 6456 return Sema::CXXCopyAssignment; 6457 6458 if (MD->isMoveAssignmentOperator()) 6459 return Sema::CXXMoveAssignment; 6460 6461 if (isa<CXXDestructorDecl>(FD)) 6462 return Sema::CXXDestructor; 6463 } 6464 6465 switch (FD->getDeclName().getCXXOverloadedOperator()) { 6466 case OO_EqualEqual: 6467 return DefaultedComparisonKind::Equal; 6468 6469 case OO_ExclaimEqual: 6470 return DefaultedComparisonKind::NotEqual; 6471 6472 case OO_Spaceship: 6473 // No point allowing this if <=> doesn't exist in the current language mode. 6474 if (!getLangOpts().CPlusPlus20) 6475 break; 6476 return DefaultedComparisonKind::ThreeWay; 6477 6478 case OO_Less: 6479 case OO_LessEqual: 6480 case OO_Greater: 6481 case OO_GreaterEqual: 6482 // No point allowing this if <=> doesn't exist in the current language mode. 6483 if (!getLangOpts().CPlusPlus20) 6484 break; 6485 return DefaultedComparisonKind::Relational; 6486 6487 default: 6488 break; 6489 } 6490 6491 // Not defaultable. 6492 return DefaultedFunctionKind(); 6493} 6494 6495static void DefineDefaultedFunction(Sema &S, FunctionDecl *FD, 6496 SourceLocation DefaultLoc) { 6497 Sema::DefaultedFunctionKind DFK = S.getDefaultedFunctionKind(FD); 6498 if (DFK.isComparison()) 6499 return S.DefineDefaultedComparison(DefaultLoc, FD, DFK.asComparison()); 6500 6501 switch (DFK.asSpecialMember()) { 6502 case Sema::CXXDefaultConstructor: 6503 S.DefineImplicitDefaultConstructor(DefaultLoc, 6504 cast<CXXConstructorDecl>(FD)); 6505 break; 6506 case Sema::CXXCopyConstructor: 6507 S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD)); 6508 break; 6509 case Sema::CXXCopyAssignment: 6510 S.DefineImplicitCopyAssignment(DefaultLoc, cast<CXXMethodDecl>(FD)); 6511 break; 6512 case Sema::CXXDestructor: 6513 S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(FD)); 6514 break; 6515 case Sema::CXXMoveConstructor: 6516 S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD)); 6517 break; 6518 case Sema::CXXMoveAssignment: 6519 S.DefineImplicitMoveAssignment(DefaultLoc, cast<CXXMethodDecl>(FD)); 6520 break; 6521 case Sema::CXXInvalid: 6522 llvm_unreachable("Invalid special member.")__builtin_unreachable(); 6523 } 6524} 6525 6526/// Determine whether a type is permitted to be passed or returned in 6527/// registers, per C++ [class.temporary]p3. 6528static bool canPassInRegisters(Sema &S, CXXRecordDecl *D, 6529 TargetInfo::CallingConvKind CCK) { 6530 if (D->isDependentType() || D->isInvalidDecl()) 6531 return false; 6532 6533 // Clang <= 4 used the pre-C++11 rule, which ignores move operations. 6534 // The PS4 platform ABI follows the behavior of Clang 3.2. 6535 if (CCK == TargetInfo::CCK_ClangABI4OrPS4) 6536 return !D->hasNonTrivialDestructorForCall() && 6537 !D->hasNonTrivialCopyConstructorForCall(); 6538 6539 if (CCK == TargetInfo::CCK_MicrosoftWin64) { 6540 bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false; 6541 bool DtorIsTrivialForCall = false; 6542 6543 // If a class has at least one non-deleted, trivial copy constructor, it 6544 // is passed according to the C ABI. Otherwise, it is passed indirectly. 6545 // 6546 // Note: This permits classes with non-trivial copy or move ctors to be 6547 // passed in registers, so long as they *also* have a trivial copy ctor, 6548 // which is non-conforming. 6549 if (D->needsImplicitCopyConstructor()) { 6550 if (!D->defaultedCopyConstructorIsDeleted()) { 6551 if (D->hasTrivialCopyConstructor()) 6552 CopyCtorIsTrivial = true; 6553 if (D->hasTrivialCopyConstructorForCall()) 6554 CopyCtorIsTrivialForCall = true; 6555 } 6556 } else { 6557 for (const CXXConstructorDecl *CD : D->ctors()) { 6558 if (CD->isCopyConstructor() && !CD->isDeleted()) { 6559 if (CD->isTrivial()) 6560 CopyCtorIsTrivial = true; 6561 if (CD->isTrivialForCall()) 6562 CopyCtorIsTrivialForCall = true; 6563 } 6564 } 6565 } 6566 6567 if (D->needsImplicitDestructor()) { 6568 if (!D->defaultedDestructorIsDeleted() && 6569 D->hasTrivialDestructorForCall()) 6570 DtorIsTrivialForCall = true; 6571 } else if (const auto *DD = D->getDestructor()) { 6572 if (!DD->isDeleted() && DD->isTrivialForCall()) 6573 DtorIsTrivialForCall = true; 6574 } 6575 6576 // If the copy ctor and dtor are both trivial-for-calls, pass direct. 6577 if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall) 6578 return true; 6579 6580 // If a class has a destructor, we'd really like to pass it indirectly 6581 // because it allows us to elide copies. Unfortunately, MSVC makes that 6582 // impossible for small types, which it will pass in a single register or 6583 // stack slot. Most objects with dtors are large-ish, so handle that early. 6584 // We can't call out all large objects as being indirect because there are 6585 // multiple x64 calling conventions and the C++ ABI code shouldn't dictate 6586 // how we pass large POD types. 6587 6588 // Note: This permits small classes with nontrivial destructors to be 6589 // passed in registers, which is non-conforming. 6590 bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); 6591 uint64_t TypeSize = isAArch64 ? 128 : 64; 6592 6593 if (CopyCtorIsTrivial && 6594 S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize) 6595 return true; 6596 return false; 6597 } 6598 6599 // Per C++ [class.temporary]p3, the relevant condition is: 6600 // each copy constructor, move constructor, and destructor of X is 6601 // either trivial or deleted, and X has at least one non-deleted copy 6602 // or move constructor 6603 bool HasNonDeletedCopyOrMove = false; 6604 6605 if (D->needsImplicitCopyConstructor() && 6606 !D->defaultedCopyConstructorIsDeleted()) { 6607 if (!D->hasTrivialCopyConstructorForCall()) 6608 return false; 6609 HasNonDeletedCopyOrMove = true; 6610 } 6611 6612 if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() && 6613 !D->defaultedMoveConstructorIsDeleted()) { 6614 if (!D->hasTrivialMoveConstructorForCall()) 6615 return false; 6616 HasNonDeletedCopyOrMove = true; 6617 } 6618 6619 if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() && 6620 !D->hasTrivialDestructorForCall()) 6621 return false; 6622 6623 for (const CXXMethodDecl *MD : D->methods()) { 6624 if (MD->isDeleted()) 6625 continue; 6626 6627 auto *CD = dyn_cast<CXXConstructorDecl>(MD); 6628 if (CD && CD->isCopyOrMoveConstructor()) 6629 HasNonDeletedCopyOrMove = true; 6630 else if (!isa<CXXDestructorDecl>(MD)) 6631 continue; 6632 6633 if (!MD->isTrivialForCall()) 6634 return false; 6635 } 6636 6637 return HasNonDeletedCopyOrMove; 6638} 6639 6640/// Report an error regarding overriding, along with any relevant 6641/// overridden methods. 6642/// 6643/// \param DiagID the primary error to report. 6644/// \param MD the overriding method. 6645static bool 6646ReportOverrides(Sema &S, unsigned DiagID, const CXXMethodDecl *MD, 6647 llvm::function_ref<bool(const CXXMethodDecl *)> Report) { 6648 bool IssuedDiagnostic = false; 6649 for (const CXXMethodDecl *O : MD->overridden_methods()) { 6650 if (Report(O)) { 6651 if (!IssuedDiagnostic) { 6652 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName(); 6653 IssuedDiagnostic = true; 6654 } 6655 S.Diag(O->getLocation(), diag::note_overridden_virtual_function); 6656 } 6657 } 6658 return IssuedDiagnostic; 6659} 6660 6661/// Perform semantic checks on a class definition that has been 6662/// completing, introducing implicitly-declared members, checking for 6663/// abstract types, etc. 6664/// 6665/// \param S The scope in which the class was parsed. Null if we didn't just 6666/// parse a class definition. 6667/// \param Record The completed class. 6668void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) { 6669 if (!Record) 6670 return; 6671 6672 if (Record->isAbstract() && !Record->isInvalidDecl()) { 6673 AbstractUsageInfo Info(*this, Record); 6674 CheckAbstractClassUsage(Info, Record); 6675 } 6676 6677 // If this is not an aggregate type and has no user-declared constructor, 6678 // complain about any non-static data members of reference or const scalar 6679 // type, since they will never get initializers. 6680 if (!Record->isInvalidDecl() && !Record->isDependentType() && 6681 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() && 6682 !Record->isLambda()) { 6683 bool Complained = false; 6684 for (const auto *F : Record->fields()) { 6685 if (F->hasInClassInitializer() || F->isUnnamedBitfield()) 6686 continue; 6687 6688 if (F->getType()->isReferenceType() || 6689 (F->getType().isConstQualified() && F->getType()->isScalarType())) { 6690 if (!Complained) { 6691 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst) 6692 << Record->getTagKind() << Record; 6693 Complained = true; 6694 } 6695 6696 Diag(F->getLocation(), diag::note_refconst_member_not_initialized) 6697 << F->getType()->isReferenceType() 6698 << F->getDeclName(); 6699 } 6700 } 6701 } 6702 6703 if (Record->getIdentifier()) { 6704 // C++ [class.mem]p13: 6705 // If T is the name of a class, then each of the following shall have a 6706 // name different from T: 6707 // - every member of every anonymous union that is a member of class T. 6708 // 6709 // C++ [class.mem]p14: 6710 // In addition, if class T has a user-declared constructor (12.1), every 6711 // non-static data member of class T shall have a name different from T. 6712 DeclContext::lookup_result R = Record->lookup(Record->getDeclName()); 6713 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; 6714 ++I) { 6715 NamedDecl *D = (*I)->getUnderlyingDecl(); 6716 if (((isa<FieldDecl>(D) || isa<UnresolvedUsingValueDecl>(D)) && 6717 Record->hasUserDeclaredConstructor()) || 6718 isa<IndirectFieldDecl>(D)) { 6719 Diag((*I)->getLocation(), diag::err_member_name_of_class) 6720 << D->getDeclName(); 6721 break; 6722 } 6723 } 6724 } 6725 6726 // Warn if the class has virtual methods but non-virtual public destructor. 6727 if (Record->isPolymorphic() && !Record->isDependentType()) { 6728 CXXDestructorDecl *dtor = Record->getDestructor(); 6729 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) && 6730 !Record->hasAttr<FinalAttr>()) 6731 Diag(dtor ? dtor->getLocation() : Record->getLocation(), 6732 diag::warn_non_virtual_dtor) << Context.getRecordType(Record); 6733 } 6734 6735 if (Record->isAbstract()) { 6736 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) { 6737 Diag(Record->getLocation(), diag::warn_abstract_final_class) 6738 << FA->isSpelledAsSealed(); 6739 DiagnoseAbstractType(Record); 6740 } 6741 } 6742 6743 // Warn if the class has a final destructor but is not itself marked final. 6744 if (!Record->hasAttr<FinalAttr>()) { 6745 if (const CXXDestructorDecl *dtor = Record->getDestructor()) { 6746 if (const FinalAttr *FA = dtor->getAttr<FinalAttr>()) { 6747 Diag(FA->getLocation(), diag::warn_final_dtor_non_final_class) 6748 << FA->isSpelledAsSealed() 6749 << FixItHint::CreateInsertion( 6750 getLocForEndOfToken(Record->getLocation()), 6751 (FA->isSpelledAsSealed() ? " sealed" : " final")); 6752 Diag(Record->getLocation(), 6753 diag::note_final_dtor_non_final_class_silence) 6754 << Context.getRecordType(Record) << FA->isSpelledAsSealed(); 6755 } 6756 } 6757 } 6758 6759 // See if trivial_abi has to be dropped. 6760 if (Record->hasAttr<TrivialABIAttr>()) 6761 checkIllFormedTrivialABIStruct(*Record); 6762 6763 // Set HasTrivialSpecialMemberForCall if the record has attribute 6764 // "trivial_abi". 6765 bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>(); 6766 6767 if (HasTrivialABI) 6768 Record->setHasTrivialSpecialMemberForCall(); 6769 6770 // Explicitly-defaulted secondary comparison functions (!=, <, <=, >, >=). 6771 // We check these last because they can depend on the properties of the 6772 // primary comparison functions (==, <=>). 6773 llvm::SmallVector<FunctionDecl*, 5> DefaultedSecondaryComparisons; 6774 6775 // Perform checks that can't be done until we know all the properties of a 6776 // member function (whether it's defaulted, deleted, virtual, overriding, 6777 // ...). 6778 auto CheckCompletedMemberFunction = [&](CXXMethodDecl *MD) { 6779 // A static function cannot override anything. 6780 if (MD->getStorageClass() == SC_Static) { 6781 if (ReportOverrides(*this, diag::err_static_overrides_virtual, MD, 6782 [](const CXXMethodDecl *) { return true; })) 6783 return; 6784 } 6785 6786 // A deleted function cannot override a non-deleted function and vice 6787 // versa. 6788 if (ReportOverrides(*this, 6789 MD->isDeleted() ? diag::err_deleted_override 6790 : diag::err_non_deleted_override, 6791 MD, [&](const CXXMethodDecl *V) { 6792 return MD->isDeleted() != V->isDeleted(); 6793 })) { 6794 if (MD->isDefaulted() && MD->isDeleted()) 6795 // Explain why this defaulted function was deleted. 6796 DiagnoseDeletedDefaultedFunction(MD); 6797 return; 6798 } 6799 6800 // A consteval function cannot override a non-consteval function and vice 6801 // versa. 6802 if (ReportOverrides(*this, 6803 MD->isConsteval() ? diag::err_consteval_override 6804 : diag::err_non_consteval_override, 6805 MD, [&](const CXXMethodDecl *V) { 6806 return MD->isConsteval() != V->isConsteval(); 6807 })) { 6808 if (MD->isDefaulted() && MD->isDeleted()) 6809 // Explain why this defaulted function was deleted. 6810 DiagnoseDeletedDefaultedFunction(MD); 6811 return; 6812 } 6813 }; 6814 6815 auto CheckForDefaultedFunction = [&](FunctionDecl *FD) -> bool { 6816 if (!FD || FD->isInvalidDecl() || !FD->isExplicitlyDefaulted()) 6817 return false; 6818 6819 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); 6820 if (DFK.asComparison() == DefaultedComparisonKind::NotEqual || 6821 DFK.asComparison() == DefaultedComparisonKind::Relational) { 6822 DefaultedSecondaryComparisons.push_back(FD); 6823 return true; 6824 } 6825 6826 CheckExplicitlyDefaultedFunction(S, FD); 6827 return false; 6828 }; 6829 6830 auto CompleteMemberFunction = [&](CXXMethodDecl *M) { 6831 // Check whether the explicitly-defaulted members are valid. 6832 bool Incomplete = CheckForDefaultedFunction(M); 6833 6834 // Skip the rest of the checks for a member of a dependent class. 6835 if (Record->isDependentType()) 6836 return; 6837 6838 // For an explicitly defaulted or deleted special member, we defer 6839 // determining triviality until the class is complete. That time is now! 6840 CXXSpecialMember CSM = getSpecialMember(M); 6841 if (!M->isImplicit() && !M->isUserProvided()) { 6842 if (CSM != CXXInvalid) { 6843 M->setTrivial(SpecialMemberIsTrivial(M, CSM)); 6844 // Inform the class that we've finished declaring this member. 6845 Record->finishedDefaultedOrDeletedMember(M); 6846 M->setTrivialForCall( 6847 HasTrivialABI || 6848 SpecialMemberIsTrivial(M, CSM, TAH_ConsiderTrivialABI)); 6849 Record->setTrivialForCallFlags(M); 6850 } 6851 } 6852 6853 // Set triviality for the purpose of calls if this is a user-provided 6854 // copy/move constructor or destructor. 6855 if ((CSM == CXXCopyConstructor || CSM == CXXMoveConstructor || 6856 CSM == CXXDestructor) && M->isUserProvided()) { 6857 M->setTrivialForCall(HasTrivialABI); 6858 Record->setTrivialForCallFlags(M); 6859 } 6860 6861 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() && 6862 M->hasAttr<DLLExportAttr>()) { 6863 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && 6864 M->isTrivial() && 6865 (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor || 6866 CSM == CXXDestructor)) 6867 M->dropAttr<DLLExportAttr>(); 6868 6869 if (M->hasAttr<DLLExportAttr>()) { 6870 // Define after any fields with in-class initializers have been parsed. 6871 DelayedDllExportMemberFunctions.push_back(M); 6872 } 6873 } 6874 6875 // Define defaulted constexpr virtual functions that override a base class 6876 // function right away. 6877 // FIXME: We can defer doing this until the vtable is marked as used. 6878 if (M->isDefaulted() && M->isConstexpr() && M->size_overridden_methods()) 6879 DefineDefaultedFunction(*this, M, M->getLocation()); 6880 6881 if (!Incomplete) 6882 CheckCompletedMemberFunction(M); 6883 }; 6884 6885 // Check the destructor before any other member function. We need to 6886 // determine whether it's trivial in order to determine whether the claas 6887 // type is a literal type, which is a prerequisite for determining whether 6888 // other special member functions are valid and whether they're implicitly 6889 // 'constexpr'. 6890 if (CXXDestructorDecl *Dtor = Record->getDestructor()) 6891 CompleteMemberFunction(Dtor); 6892 6893 bool HasMethodWithOverrideControl = false, 6894 HasOverridingMethodWithoutOverrideControl = false; 6895 for (auto *D : Record->decls()) { 6896 if (auto *M = dyn_cast<CXXMethodDecl>(D)) { 6897 // FIXME: We could do this check for dependent types with non-dependent 6898 // bases. 6899 if (!Record->isDependentType()) { 6900 // See if a method overloads virtual methods in a base 6901 // class without overriding any. 6902 if (!M->isStatic()) 6903 DiagnoseHiddenVirtualMethods(M); 6904 if (M->hasAttr<OverrideAttr>()) 6905 HasMethodWithOverrideControl = true; 6906 else if (M->size_overridden_methods() > 0) 6907 HasOverridingMethodWithoutOverrideControl = true; 6908 } 6909 6910 if (!isa<CXXDestructorDecl>(M)) 6911 CompleteMemberFunction(M); 6912 } else if (auto *F = dyn_cast<FriendDecl>(D)) { 6913 CheckForDefaultedFunction( 6914 dyn_cast_or_null<FunctionDecl>(F->getFriendDecl())); 6915 } 6916 } 6917 6918 if (HasOverridingMethodWithoutOverrideControl) { 6919 bool HasInconsistentOverrideControl = HasMethodWithOverrideControl; 6920 for (auto *M : Record->methods()) 6921 DiagnoseAbsenceOfOverrideControl(M, HasInconsistentOverrideControl); 6922 } 6923 6924 // Check the defaulted secondary comparisons after any other member functions. 6925 for (FunctionDecl *FD : DefaultedSecondaryComparisons) { 6926 CheckExplicitlyDefaultedFunction(S, FD); 6927 6928 // If this is a member function, we deferred checking it until now. 6929 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) 6930 CheckCompletedMemberFunction(MD); 6931 } 6932 6933 // ms_struct is a request to use the same ABI rules as MSVC. Check 6934 // whether this class uses any C++ features that are implemented 6935 // completely differently in MSVC, and if so, emit a diagnostic. 6936 // That diagnostic defaults to an error, but we allow projects to 6937 // map it down to a warning (or ignore it). It's a fairly common 6938 // practice among users of the ms_struct pragma to mass-annotate 6939 // headers, sweeping up a bunch of types that the project doesn't 6940 // really rely on MSVC-compatible layout for. We must therefore 6941 // support "ms_struct except for C++ stuff" as a secondary ABI. 6942 // Don't emit this diagnostic if the feature was enabled as a 6943 // language option (as opposed to via a pragma or attribute), as 6944 // the option -mms-bitfields otherwise essentially makes it impossible 6945 // to build C++ code, unless this diagnostic is turned off. 6946 if (Record->isMsStruct(Context) && !Context.getLangOpts().MSBitfields && 6947 (Record->isPolymorphic() || Record->getNumBases())) { 6948 Diag(Record->getLocation(), diag::warn_cxx_ms_struct); 6949 } 6950 6951 checkClassLevelDLLAttribute(Record); 6952 checkClassLevelCodeSegAttribute(Record); 6953 6954 bool ClangABICompat4 = 6955 Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4; 6956 TargetInfo::CallingConvKind CCK = 6957 Context.getTargetInfo().getCallingConvKind(ClangABICompat4); 6958 bool CanPass = canPassInRegisters(*this, Record, CCK); 6959 6960 // Do not change ArgPassingRestrictions if it has already been set to 6961 // APK_CanNeverPassInRegs. 6962 if (Record->getArgPassingRestrictions() != RecordDecl::APK_CanNeverPassInRegs) 6963 Record->setArgPassingRestrictions(CanPass 6964 ? RecordDecl::APK_CanPassInRegs 6965 : RecordDecl::APK_CannotPassInRegs); 6966 6967 // If canPassInRegisters returns true despite the record having a non-trivial 6968 // destructor, the record is destructed in the callee. This happens only when 6969 // the record or one of its subobjects has a field annotated with trivial_abi 6970 // or a field qualified with ObjC __strong/__weak. 6971 if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee()) 6972 Record->setParamDestroyedInCallee(true); 6973 else if (Record->hasNonTrivialDestructor()) 6974 Record->setParamDestroyedInCallee(CanPass); 6975 6976 if (getLangOpts().ForceEmitVTables) { 6977 // If we want to emit all the vtables, we need to mark it as used. This 6978 // is especially required for cases like vtable assumption loads. 6979 MarkVTableUsed(Record->getInnerLocStart(), Record); 6980 } 6981 6982 if (getLangOpts().CUDA) { 6983 if (Record->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) 6984 checkCUDADeviceBuiltinSurfaceClassTemplate(*this, Record); 6985 else if (Record->hasAttr<CUDADeviceBuiltinTextureTypeAttr>()) 6986 checkCUDADeviceBuiltinTextureClassTemplate(*this, Record); 6987 } 6988} 6989 6990/// Look up the special member function that would be called by a special 6991/// member function for a subobject of class type. 6992/// 6993/// \param Class The class type of the subobject. 6994/// \param CSM The kind of special member function. 6995/// \param FieldQuals If the subobject is a field, its cv-qualifiers. 6996/// \param ConstRHS True if this is a copy operation with a const object 6997/// on its RHS, that is, if the argument to the outer special member 6998/// function is 'const' and this is not a field marked 'mutable'. 6999static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember( 7000 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM, 7001 unsigned FieldQuals, bool ConstRHS) { 7002 unsigned LHSQuals = 0; 7003 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment) 7004 LHSQuals = FieldQuals; 7005 7006 unsigned RHSQuals = FieldQuals; 7007 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor) 7008 RHSQuals = 0; 7009 else if (ConstRHS) 7010 RHSQuals |= Qualifiers::Const; 7011 7012 return S.LookupSpecialMember(Class, CSM, 7013 RHSQuals & Qualifiers::Const, 7014 RHSQuals & Qualifiers::Volatile, 7015 false, 7016 LHSQuals & Qualifiers::Const, 7017 LHSQuals & Qualifiers::Volatile); 7018} 7019 7020class Sema::InheritedConstructorInfo { 7021 Sema &S; 7022 SourceLocation UseLoc; 7023 7024 /// A mapping from the base classes through which the constructor was 7025 /// inherited to the using shadow declaration in that base class (or a null 7026 /// pointer if the constructor was declared in that base class). 7027 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *> 7028 InheritedFromBases; 7029 7030public: 7031 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc, 7032 ConstructorUsingShadowDecl *Shadow) 7033 : S(S), UseLoc(UseLoc) { 7034 bool DiagnosedMultipleConstructedBases = false; 7035 CXXRecordDecl *ConstructedBase = nullptr; 7036 BaseUsingDecl *ConstructedBaseIntroducer = nullptr; 7037 7038 // Find the set of such base class subobjects and check that there's a 7039 // unique constructed subobject. 7040 for (auto *D : Shadow->redecls()) { 7041 auto *DShadow = cast<ConstructorUsingShadowDecl>(D); 7042 auto *DNominatedBase = DShadow->getNominatedBaseClass(); 7043 auto *DConstructedBase = DShadow->getConstructedBaseClass(); 7044 7045 InheritedFromBases.insert( 7046 std::make_pair(DNominatedBase->getCanonicalDecl(), 7047 DShadow->getNominatedBaseClassShadowDecl())); 7048 if (DShadow->constructsVirtualBase()) 7049 InheritedFromBases.insert( 7050 std::make_pair(DConstructedBase->getCanonicalDecl(), 7051 DShadow->getConstructedBaseClassShadowDecl())); 7052 else 7053 assert(DNominatedBase == DConstructedBase)(static_cast<void> (0)); 7054 7055 // [class.inhctor.init]p2: 7056 // If the constructor was inherited from multiple base class subobjects 7057 // of type B, the program is ill-formed. 7058 if (!ConstructedBase) { 7059 ConstructedBase = DConstructedBase; 7060 ConstructedBaseIntroducer = D->getIntroducer(); 7061 } else if (ConstructedBase != DConstructedBase && 7062 !Shadow->isInvalidDecl()) { 7063 if (!DiagnosedMultipleConstructedBases) { 7064 S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor) 7065 << Shadow->getTargetDecl(); 7066 S.Diag(ConstructedBaseIntroducer->getLocation(), 7067 diag::note_ambiguous_inherited_constructor_using) 7068 << ConstructedBase; 7069 DiagnosedMultipleConstructedBases = true; 7070 } 7071 S.Diag(D->getIntroducer()->getLocation(), 7072 diag::note_ambiguous_inherited_constructor_using) 7073 << DConstructedBase; 7074 } 7075 } 7076 7077 if (DiagnosedMultipleConstructedBases) 7078 Shadow->setInvalidDecl(); 7079 } 7080 7081 /// Find the constructor to use for inherited construction of a base class, 7082 /// and whether that base class constructor inherits the constructor from a 7083 /// virtual base class (in which case it won't actually invoke it). 7084 std::pair<CXXConstructorDecl *, bool> 7085 findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const { 7086 auto It = InheritedFromBases.find(Base->getCanonicalDecl()); 7087 if (It == InheritedFromBases.end()) 7088 return std::make_pair(nullptr, false); 7089 7090 // This is an intermediary class. 7091 if (It->second) 7092 return std::make_pair( 7093 S.findInheritingConstructor(UseLoc, Ctor, It->second), 7094 It->second->constructsVirtualBase()); 7095 7096 // This is the base class from which the constructor was inherited. 7097 return std::make_pair(Ctor, false); 7098 } 7099}; 7100 7101/// Is the special member function which would be selected to perform the 7102/// specified operation on the specified class type a constexpr constructor? 7103static bool 7104specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl, 7105 Sema::CXXSpecialMember CSM, unsigned Quals, 7106 bool ConstRHS, 7107 CXXConstructorDecl *InheritedCtor = nullptr, 7108 Sema::InheritedConstructorInfo *Inherited = nullptr) { 7109 // If we're inheriting a constructor, see if we need to call it for this base 7110 // class. 7111 if (InheritedCtor) { 7112 assert(CSM == Sema::CXXDefaultConstructor)(static_cast<void> (0)); 7113 auto BaseCtor = 7114 Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first; 7115 if (BaseCtor) 7116 return BaseCtor->isConstexpr(); 7117 } 7118 7119 if (CSM == Sema::CXXDefaultConstructor) 7120 return ClassDecl->hasConstexprDefaultConstructor(); 7121 if (CSM == Sema::CXXDestructor) 7122 return ClassDecl->hasConstexprDestructor(); 7123 7124 Sema::SpecialMemberOverloadResult SMOR = 7125 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS); 7126 if (!SMOR.getMethod()) 7127 // A constructor we wouldn't select can't be "involved in initializing" 7128 // anything. 7129 return true; 7130 return SMOR.getMethod()->isConstexpr(); 7131} 7132 7133/// Determine whether the specified special member function would be constexpr 7134/// if it were implicitly defined. 7135static bool defaultedSpecialMemberIsConstexpr( 7136 Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM, 7137 bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr, 7138 Sema::InheritedConstructorInfo *Inherited = nullptr) { 7139 if (!S.getLangOpts().CPlusPlus11) 7140 return false; 7141 7142 // C++11 [dcl.constexpr]p4: 7143 // In the definition of a constexpr constructor [...] 7144 bool Ctor = true; 7145 switch (CSM) { 7146 case Sema::CXXDefaultConstructor: 7147 if (Inherited) 7148 break; 7149 // Since default constructor lookup is essentially trivial (and cannot 7150 // involve, for instance, template instantiation), we compute whether a 7151 // defaulted default constructor is constexpr directly within CXXRecordDecl. 7152 // 7153 // This is important for performance; we need to know whether the default 7154 // constructor is constexpr to determine whether the type is a literal type. 7155 return ClassDecl->defaultedDefaultConstructorIsConstexpr(); 7156 7157 case Sema::CXXCopyConstructor: 7158 case Sema::CXXMoveConstructor: 7159 // For copy or move constructors, we need to perform overload resolution. 7160 break; 7161 7162 case Sema::CXXCopyAssignment: 7163 case Sema::CXXMoveAssignment: 7164 if (!S.getLangOpts().CPlusPlus14) 7165 return false; 7166 // In C++1y, we need to perform overload resolution. 7167 Ctor = false; 7168 break; 7169 7170 case Sema::CXXDestructor: 7171 return ClassDecl->defaultedDestructorIsConstexpr(); 7172 7173 case Sema::CXXInvalid: 7174 return false; 7175 } 7176 7177 // -- if the class is a non-empty union, or for each non-empty anonymous 7178 // union member of a non-union class, exactly one non-static data member 7179 // shall be initialized; [DR1359] 7180 // 7181 // If we squint, this is guaranteed, since exactly one non-static data member 7182 // will be initialized (if the constructor isn't deleted), we just don't know 7183 // which one. 7184 if (Ctor && ClassDecl->isUnion()) 7185 return CSM == Sema::CXXDefaultConstructor 7186 ? ClassDecl->hasInClassInitializer() || 7187 !ClassDecl->hasVariantMembers() 7188 : true; 7189 7190 // -- the class shall not have any virtual base classes; 7191 if (Ctor && ClassDecl->getNumVBases()) 7192 return false; 7193 7194 // C++1y [class.copy]p26: 7195 // -- [the class] is a literal type, and 7196 if (!Ctor && !ClassDecl->isLiteral()) 7197 return false; 7198 7199 // -- every constructor involved in initializing [...] base class 7200 // sub-objects shall be a constexpr constructor; 7201 // -- the assignment operator selected to copy/move each direct base 7202 // class is a constexpr function, and 7203 for (const auto &B : ClassDecl->bases()) { 7204 const RecordType *BaseType = B.getType()->getAs<RecordType>(); 7205 if (!BaseType) continue; 7206 7207 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 7208 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg, 7209 InheritedCtor, Inherited)) 7210 return false; 7211 } 7212 7213 // -- every constructor involved in initializing non-static data members 7214 // [...] shall be a constexpr constructor; 7215 // -- every non-static data member and base class sub-object shall be 7216 // initialized 7217 // -- for each non-static data member of X that is of class type (or array 7218 // thereof), the assignment operator selected to copy/move that member is 7219 // a constexpr function 7220 for (const auto *F : ClassDecl->fields()) { 7221 if (F->isInvalidDecl()) 7222 continue; 7223 if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer()) 7224 continue; 7225 QualType BaseType = S.Context.getBaseElementType(F->getType()); 7226 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 7227 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 7228 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, 7229 BaseType.getCVRQualifiers(), 7230 ConstArg && !F->isMutable())) 7231 return false; 7232 } else if (CSM == Sema::CXXDefaultConstructor) { 7233 return false; 7234 } 7235 } 7236 7237 // All OK, it's constexpr! 7238 return true; 7239} 7240 7241namespace { 7242/// RAII object to register a defaulted function as having its exception 7243/// specification computed. 7244struct ComputingExceptionSpec { 7245 Sema &S; 7246 7247 ComputingExceptionSpec(Sema &S, FunctionDecl *FD, SourceLocation Loc) 7248 : S(S) { 7249 Sema::CodeSynthesisContext Ctx; 7250 Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation; 7251 Ctx.PointOfInstantiation = Loc; 7252 Ctx.Entity = FD; 7253 S.pushCodeSynthesisContext(Ctx); 7254 } 7255 ~ComputingExceptionSpec() { 7256 S.popCodeSynthesisContext(); 7257 } 7258}; 7259} 7260 7261static Sema::ImplicitExceptionSpecification 7262ComputeDefaultedSpecialMemberExceptionSpec( 7263 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, 7264 Sema::InheritedConstructorInfo *ICI); 7265 7266static Sema::ImplicitExceptionSpecification 7267ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, 7268 FunctionDecl *FD, 7269 Sema::DefaultedComparisonKind DCK); 7270 7271static Sema::ImplicitExceptionSpecification 7272computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, FunctionDecl *FD) { 7273 auto DFK = S.getDefaultedFunctionKind(FD); 7274 if (DFK.isSpecialMember()) 7275 return ComputeDefaultedSpecialMemberExceptionSpec( 7276 S, Loc, cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), nullptr); 7277 if (DFK.isComparison()) 7278 return ComputeDefaultedComparisonExceptionSpec(S, Loc, FD, 7279 DFK.asComparison()); 7280 7281 auto *CD = cast<CXXConstructorDecl>(FD); 7282 assert(CD->getInheritedConstructor() &&(static_cast<void> (0)) 7283 "only defaulted functions and inherited constructors have implicit "(static_cast<void> (0)) 7284 "exception specs")(static_cast<void> (0)); 7285 Sema::InheritedConstructorInfo ICI( 7286 S, Loc, CD->getInheritedConstructor().getShadowDecl()); 7287 return ComputeDefaultedSpecialMemberExceptionSpec( 7288 S, Loc, CD, Sema::CXXDefaultConstructor, &ICI); 7289} 7290 7291static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S, 7292 CXXMethodDecl *MD) { 7293 FunctionProtoType::ExtProtoInfo EPI; 7294 7295 // Build an exception specification pointing back at this member. 7296 EPI.ExceptionSpec.Type = EST_Unevaluated; 7297 EPI.ExceptionSpec.SourceDecl = MD; 7298 7299 // Set the calling convention to the default for C++ instance methods. 7300 EPI.ExtInfo = EPI.ExtInfo.withCallingConv( 7301 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false, 7302 /*IsCXXMethod=*/true)); 7303 return EPI; 7304} 7305 7306void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD) { 7307 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 7308 if (FPT->getExceptionSpecType() != EST_Unevaluated) 7309 return; 7310 7311 // Evaluate the exception specification. 7312 auto IES = computeImplicitExceptionSpec(*this, Loc, FD); 7313 auto ESI = IES.getExceptionSpec(); 7314 7315 // Update the type of the special member to use it. 7316 UpdateExceptionSpec(FD, ESI); 7317} 7318 7319void Sema::CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *FD) { 7320 assert(FD->isExplicitlyDefaulted() && "not explicitly-defaulted")(static_cast<void> (0)); 7321 7322 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); 7323 if (!DefKind) { 7324 assert(FD->getDeclContext()->isDependentContext())(static_cast<void> (0)); 7325 return; 7326 } 7327 7328 if (DefKind.isComparison()) 7329 UnusedPrivateFields.clear(); 7330 7331 if (DefKind.isSpecialMember() 7332 ? CheckExplicitlyDefaultedSpecialMember(cast<CXXMethodDecl>(FD), 7333 DefKind.asSpecialMember()) 7334 : CheckExplicitlyDefaultedComparison(S, FD, DefKind.asComparison())) 7335 FD->setInvalidDecl(); 7336} 7337 7338bool Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD, 7339 CXXSpecialMember CSM) { 7340 CXXRecordDecl *RD = MD->getParent(); 7341 7342 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&(static_cast<void> (0)) 7343 "not an explicitly-defaulted special member")(static_cast<void> (0)); 7344 7345 // Defer all checking for special members of a dependent type. 7346 if (RD->isDependentType()) 7347 return false; 7348 7349 // Whether this was the first-declared instance of the constructor. 7350 // This affects whether we implicitly add an exception spec and constexpr. 7351 bool First = MD == MD->getCanonicalDecl(); 7352 7353 bool HadError = false; 7354 7355 // C++11 [dcl.fct.def.default]p1: 7356 // A function that is explicitly defaulted shall 7357 // -- be a special member function [...] (checked elsewhere), 7358 // -- have the same type (except for ref-qualifiers, and except that a 7359 // copy operation can take a non-const reference) as an implicit 7360 // declaration, and 7361 // -- not have default arguments. 7362 // C++2a changes the second bullet to instead delete the function if it's 7363 // defaulted on its first declaration, unless it's "an assignment operator, 7364 // and its return type differs or its parameter type is not a reference". 7365 bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus20 && First; 7366 bool ShouldDeleteForTypeMismatch = false; 7367 unsigned ExpectedParams = 1; 7368 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor) 7369 ExpectedParams = 0; 7370 if (MD->getNumParams() != ExpectedParams) { 7371 // This checks for default arguments: a copy or move constructor with a 7372 // default argument is classified as a default constructor, and assignment 7373 // operations and destructors can't have default arguments. 7374 Diag(MD->getLocation(), diag::err_defaulted_special_member_params) 7375 << CSM << MD->getSourceRange(); 7376 HadError = true; 7377 } else if (MD->isVariadic()) { 7378 if (DeleteOnTypeMismatch) 7379 ShouldDeleteForTypeMismatch = true; 7380 else { 7381 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic) 7382 << CSM << MD->getSourceRange(); 7383 HadError = true; 7384 } 7385 } 7386 7387 const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>(); 7388 7389 bool CanHaveConstParam = false; 7390 if (CSM == CXXCopyConstructor) 7391 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam(); 7392 else if (CSM == CXXCopyAssignment) 7393 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam(); 7394 7395 QualType ReturnType = Context.VoidTy; 7396 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) { 7397 // Check for return type matching. 7398 ReturnType = Type->getReturnType(); 7399 7400 QualType DeclType = Context.getTypeDeclType(RD); 7401 DeclType = Context.getAddrSpaceQualType(DeclType, MD->getMethodQualifiers().getAddressSpace()); 7402 QualType ExpectedReturnType = Context.getLValueReferenceType(DeclType); 7403 7404 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) { 7405 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type) 7406 << (CSM == CXXMoveAssignment) << ExpectedReturnType; 7407 HadError = true; 7408 } 7409 7410 // A defaulted special member cannot have cv-qualifiers. 7411 if (Type->getMethodQuals().hasConst() || Type->getMethodQuals().hasVolatile()) { 7412 if (DeleteOnTypeMismatch) 7413 ShouldDeleteForTypeMismatch = true; 7414 else { 7415 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals) 7416 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14; 7417 HadError = true; 7418 } 7419 } 7420 } 7421 7422 // Check for parameter type matching. 7423 QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType(); 7424 bool HasConstParam = false; 7425 if (ExpectedParams && ArgType->isReferenceType()) { 7426 // Argument must be reference to possibly-const T. 7427 QualType ReferentType = ArgType->getPointeeType(); 7428 HasConstParam = ReferentType.isConstQualified(); 7429 7430 if (ReferentType.isVolatileQualified()) { 7431 if (DeleteOnTypeMismatch) 7432 ShouldDeleteForTypeMismatch = true; 7433 else { 7434 Diag(MD->getLocation(), 7435 diag::err_defaulted_special_member_volatile_param) << CSM; 7436 HadError = true; 7437 } 7438 } 7439 7440 if (HasConstParam && !CanHaveConstParam) { 7441 if (DeleteOnTypeMismatch) 7442 ShouldDeleteForTypeMismatch = true; 7443 else if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) { 7444 Diag(MD->getLocation(), 7445 diag::err_defaulted_special_member_copy_const_param) 7446 << (CSM == CXXCopyAssignment); 7447 // FIXME: Explain why this special member can't be const. 7448 HadError = true; 7449 } else { 7450 Diag(MD->getLocation(), 7451 diag::err_defaulted_special_member_move_const_param) 7452 << (CSM == CXXMoveAssignment); 7453 HadError = true; 7454 } 7455 } 7456 } else if (ExpectedParams) { 7457 // A copy assignment operator can take its argument by value, but a 7458 // defaulted one cannot. 7459 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument")(static_cast<void> (0)); 7460 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref); 7461 HadError = true; 7462 } 7463 7464 // C++11 [dcl.fct.def.default]p2: 7465 // An explicitly-defaulted function may be declared constexpr only if it 7466 // would have been implicitly declared as constexpr, 7467 // Do not apply this rule to members of class templates, since core issue 1358 7468 // makes such functions always instantiate to constexpr functions. For 7469 // functions which cannot be constexpr (for non-constructors in C++11 and for 7470 // destructors in C++14 and C++17), this is checked elsewhere. 7471 // 7472 // FIXME: This should not apply if the member is deleted. 7473 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM, 7474 HasConstParam); 7475 if ((getLangOpts().CPlusPlus20 || 7476 (getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD) 7477 : isa<CXXConstructorDecl>(MD))) && 7478 MD->isConstexpr() && !Constexpr && 7479 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) { 7480 Diag(MD->getBeginLoc(), MD->isConsteval() 7481 ? diag::err_incorrect_defaulted_consteval 7482 : diag::err_incorrect_defaulted_constexpr) 7483 << CSM; 7484 // FIXME: Explain why the special member can't be constexpr. 7485 HadError = true; 7486 } 7487 7488 if (First) { 7489 // C++2a [dcl.fct.def.default]p3: 7490 // If a function is explicitly defaulted on its first declaration, it is 7491 // implicitly considered to be constexpr if the implicit declaration 7492 // would be. 7493 MD->setConstexprKind(Constexpr ? (MD->isConsteval() 7494 ? ConstexprSpecKind::Consteval 7495 : ConstexprSpecKind::Constexpr) 7496 : ConstexprSpecKind::Unspecified); 7497 7498 if (!Type->hasExceptionSpec()) { 7499 // C++2a [except.spec]p3: 7500 // If a declaration of a function does not have a noexcept-specifier 7501 // [and] is defaulted on its first declaration, [...] the exception 7502 // specification is as specified below 7503 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo(); 7504 EPI.ExceptionSpec.Type = EST_Unevaluated; 7505 EPI.ExceptionSpec.SourceDecl = MD; 7506 MD->setType(Context.getFunctionType(ReturnType, 7507 llvm::makeArrayRef(&ArgType, 7508 ExpectedParams), 7509 EPI)); 7510 } 7511 } 7512 7513 if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) { 7514 if (First) { 7515 SetDeclDeleted(MD, MD->getLocation()); 7516 if (!inTemplateInstantiation() && !HadError) { 7517 Diag(MD->getLocation(), diag::warn_defaulted_method_deleted) << CSM; 7518 if (ShouldDeleteForTypeMismatch) { 7519 Diag(MD->getLocation(), diag::note_deleted_type_mismatch) << CSM; 7520 } else { 7521 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true); 7522 } 7523 } 7524 if (ShouldDeleteForTypeMismatch && !HadError) { 7525 Diag(MD->getLocation(), 7526 diag::warn_cxx17_compat_defaulted_method_type_mismatch) << CSM; 7527 } 7528 } else { 7529 // C++11 [dcl.fct.def.default]p4: 7530 // [For a] user-provided explicitly-defaulted function [...] if such a 7531 // function is implicitly defined as deleted, the program is ill-formed. 7532 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM; 7533 assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl")(static_cast<void> (0)); 7534 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true); 7535 HadError = true; 7536 } 7537 } 7538 7539 return HadError; 7540} 7541 7542namespace { 7543/// Helper class for building and checking a defaulted comparison. 7544/// 7545/// Defaulted functions are built in two phases: 7546/// 7547/// * First, the set of operations that the function will perform are 7548/// identified, and some of them are checked. If any of the checked 7549/// operations is invalid in certain ways, the comparison function is 7550/// defined as deleted and no body is built. 7551/// * Then, if the function is not defined as deleted, the body is built. 7552/// 7553/// This is accomplished by performing two visitation steps over the eventual 7554/// body of the function. 7555template<typename Derived, typename ResultList, typename Result, 7556 typename Subobject> 7557class DefaultedComparisonVisitor { 7558public: 7559 using DefaultedComparisonKind = Sema::DefaultedComparisonKind; 7560 7561 DefaultedComparisonVisitor(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 7562 DefaultedComparisonKind DCK) 7563 : S(S), RD(RD), FD(FD), DCK(DCK) { 7564 if (auto *Info = FD->getDefaultedFunctionInfo()) { 7565 // FIXME: Change CreateOverloadedBinOp to take an ArrayRef instead of an 7566 // UnresolvedSet to avoid this copy. 7567 Fns.assign(Info->getUnqualifiedLookups().begin(), 7568 Info->getUnqualifiedLookups().end()); 7569 } 7570 } 7571 7572 ResultList visit() { 7573 // The type of an lvalue naming a parameter of this function. 7574 QualType ParamLvalType = 7575 FD->getParamDecl(0)->getType().getNonReferenceType(); 7576 7577 ResultList Results; 7578 7579 switch (DCK) { 7580 case DefaultedComparisonKind::None: 7581 llvm_unreachable("not a defaulted comparison")__builtin_unreachable(); 7582 7583 case DefaultedComparisonKind::Equal: 7584 case DefaultedComparisonKind::ThreeWay: 7585 getDerived().visitSubobjects(Results, RD, ParamLvalType.getQualifiers()); 7586 return Results; 7587 7588 case DefaultedComparisonKind::NotEqual: 7589 case DefaultedComparisonKind::Relational: 7590 Results.add(getDerived().visitExpandedSubobject( 7591 ParamLvalType, getDerived().getCompleteObject())); 7592 return Results; 7593 } 7594 llvm_unreachable("")__builtin_unreachable(); 7595 } 7596 7597protected: 7598 Derived &getDerived() { return static_cast<Derived&>(*this); } 7599 7600 /// Visit the expanded list of subobjects of the given type, as specified in 7601 /// C++2a [class.compare.default]. 7602 /// 7603 /// \return \c true if the ResultList object said we're done, \c false if not. 7604 bool visitSubobjects(ResultList &Results, CXXRecordDecl *Record, 7605 Qualifiers Quals) { 7606 // C++2a [class.compare.default]p4: 7607 // The direct base class subobjects of C 7608 for (CXXBaseSpecifier &Base : Record->bases()) 7609 if (Results.add(getDerived().visitSubobject( 7610 S.Context.getQualifiedType(Base.getType(), Quals), 7611 getDerived().getBase(&Base)))) 7612 return true; 7613 7614 // followed by the non-static data members of C 7615 for (FieldDecl *Field : Record->fields()) { 7616 // Recursively expand anonymous structs. 7617 if (Field->isAnonymousStructOrUnion()) { 7618 if (visitSubobjects(Results, Field->getType()->getAsCXXRecordDecl(), 7619 Quals)) 7620 return true; 7621 continue; 7622 } 7623 7624 // Figure out the type of an lvalue denoting this field. 7625 Qualifiers FieldQuals = Quals; 7626 if (Field->isMutable()) 7627 FieldQuals.removeConst(); 7628 QualType FieldType = 7629 S.Context.getQualifiedType(Field->getType(), FieldQuals); 7630 7631 if (Results.add(getDerived().visitSubobject( 7632 FieldType, getDerived().getField(Field)))) 7633 return true; 7634 } 7635 7636 // form a list of subobjects. 7637 return false; 7638 } 7639 7640 Result visitSubobject(QualType Type, Subobject Subobj) { 7641 // In that list, any subobject of array type is recursively expanded 7642 const ArrayType *AT = S.Context.getAsArrayType(Type); 7643 if (auto *CAT = dyn_cast_or_null<ConstantArrayType>(AT)) 7644 return getDerived().visitSubobjectArray(CAT->getElementType(), 7645 CAT->getSize(), Subobj); 7646 return getDerived().visitExpandedSubobject(Type, Subobj); 7647 } 7648 7649 Result visitSubobjectArray(QualType Type, const llvm::APInt &Size, 7650 Subobject Subobj) { 7651 return getDerived().visitSubobject(Type, Subobj); 7652 } 7653 7654protected: 7655 Sema &S; 7656 CXXRecordDecl *RD; 7657 FunctionDecl *FD; 7658 DefaultedComparisonKind DCK; 7659 UnresolvedSet<16> Fns; 7660}; 7661 7662/// Information about a defaulted comparison, as determined by 7663/// DefaultedComparisonAnalyzer. 7664struct DefaultedComparisonInfo { 7665 bool Deleted = false; 7666 bool Constexpr = true; 7667 ComparisonCategoryType Category = ComparisonCategoryType::StrongOrdering; 7668 7669 static DefaultedComparisonInfo deleted() { 7670 DefaultedComparisonInfo Deleted; 7671 Deleted.Deleted = true; 7672 return Deleted; 7673 } 7674 7675 bool add(const DefaultedComparisonInfo &R) { 7676 Deleted |= R.Deleted; 7677 Constexpr &= R.Constexpr; 7678 Category = commonComparisonType(Category, R.Category); 7679 return Deleted; 7680 } 7681}; 7682 7683/// An element in the expanded list of subobjects of a defaulted comparison, as 7684/// specified in C++2a [class.compare.default]p4. 7685struct DefaultedComparisonSubobject { 7686 enum { CompleteObject, Member, Base } Kind; 7687 NamedDecl *Decl; 7688 SourceLocation Loc; 7689}; 7690 7691/// A visitor over the notional body of a defaulted comparison that determines 7692/// whether that body would be deleted or constexpr. 7693class DefaultedComparisonAnalyzer 7694 : public DefaultedComparisonVisitor<DefaultedComparisonAnalyzer, 7695 DefaultedComparisonInfo, 7696 DefaultedComparisonInfo, 7697 DefaultedComparisonSubobject> { 7698public: 7699 enum DiagnosticKind { NoDiagnostics, ExplainDeleted, ExplainConstexpr }; 7700 7701private: 7702 DiagnosticKind Diagnose; 7703 7704public: 7705 using Base = DefaultedComparisonVisitor; 7706 using Result = DefaultedComparisonInfo; 7707 using Subobject = DefaultedComparisonSubobject; 7708 7709 friend Base; 7710 7711 DefaultedComparisonAnalyzer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 7712 DefaultedComparisonKind DCK, 7713 DiagnosticKind Diagnose = NoDiagnostics) 7714 : Base(S, RD, FD, DCK), Diagnose(Diagnose) {} 7715 7716 Result visit() { 7717 if ((DCK == DefaultedComparisonKind::Equal || 7718 DCK == DefaultedComparisonKind::ThreeWay) && 7719 RD->hasVariantMembers()) { 7720 // C++2a [class.compare.default]p2 [P2002R0]: 7721 // A defaulted comparison operator function for class C is defined as 7722 // deleted if [...] C has variant members. 7723 if (Diagnose == ExplainDeleted) { 7724 S.Diag(FD->getLocation(), diag::note_defaulted_comparison_union) 7725 << FD << RD->isUnion() << RD; 7726 } 7727 return Result::deleted(); 7728 } 7729 7730 return Base::visit(); 7731 } 7732 7733private: 7734 Subobject getCompleteObject() { 7735 return Subobject{Subobject::CompleteObject, RD, FD->getLocation()}; 7736 } 7737 7738 Subobject getBase(CXXBaseSpecifier *Base) { 7739 return Subobject{Subobject::Base, Base->getType()->getAsCXXRecordDecl(), 7740 Base->getBaseTypeLoc()}; 7741 } 7742 7743 Subobject getField(FieldDecl *Field) { 7744 return Subobject{Subobject::Member, Field, Field->getLocation()}; 7745 } 7746 7747 Result visitExpandedSubobject(QualType Type, Subobject Subobj) { 7748 // C++2a [class.compare.default]p2 [P2002R0]: 7749 // A defaulted <=> or == operator function for class C is defined as 7750 // deleted if any non-static data member of C is of reference type 7751 if (Type->isReferenceType()) { 7752 if (Diagnose == ExplainDeleted) { 7753 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_reference_member) 7754 << FD << RD; 7755 } 7756 return Result::deleted(); 7757 } 7758 7759 // [...] Let xi be an lvalue denoting the ith element [...] 7760 OpaqueValueExpr Xi(FD->getLocation(), Type, VK_LValue); 7761 Expr *Args[] = {&Xi, &Xi}; 7762 7763 // All operators start by trying to apply that same operator recursively. 7764 OverloadedOperatorKind OO = FD->getOverloadedOperator(); 7765 assert(OO != OO_None && "not an overloaded operator!")(static_cast<void> (0)); 7766 return visitBinaryOperator(OO, Args, Subobj); 7767 } 7768 7769 Result 7770 visitBinaryOperator(OverloadedOperatorKind OO, ArrayRef<Expr *> Args, 7771 Subobject Subobj, 7772 OverloadCandidateSet *SpaceshipCandidates = nullptr) { 7773 // Note that there is no need to consider rewritten candidates here if 7774 // we've already found there is no viable 'operator<=>' candidate (and are 7775 // considering synthesizing a '<=>' from '==' and '<'). 7776 OverloadCandidateSet CandidateSet( 7777 FD->getLocation(), OverloadCandidateSet::CSK_Operator, 7778 OverloadCandidateSet::OperatorRewriteInfo( 7779 OO, /*AllowRewrittenCandidates=*/!SpaceshipCandidates)); 7780 7781 /// C++2a [class.compare.default]p1 [P2002R0]: 7782 /// [...] the defaulted function itself is never a candidate for overload 7783 /// resolution [...] 7784 CandidateSet.exclude(FD); 7785 7786 if (Args[0]->getType()->isOverloadableType()) 7787 S.LookupOverloadedBinOp(CandidateSet, OO, Fns, Args); 7788 else 7789 // FIXME: We determine whether this is a valid expression by checking to 7790 // see if there's a viable builtin operator candidate for it. That isn't 7791 // really what the rules ask us to do, but should give the right results. 7792 S.AddBuiltinOperatorCandidates(OO, FD->getLocation(), Args, CandidateSet); 7793 7794 Result R; 7795 7796 OverloadCandidateSet::iterator Best; 7797 switch (CandidateSet.BestViableFunction(S, FD->getLocation(), Best)) { 7798 case OR_Success: { 7799 // C++2a [class.compare.secondary]p2 [P2002R0]: 7800 // The operator function [...] is defined as deleted if [...] the 7801 // candidate selected by overload resolution is not a rewritten 7802 // candidate. 7803 if ((DCK == DefaultedComparisonKind::NotEqual || 7804 DCK == DefaultedComparisonKind::Relational) && 7805 !Best->RewriteKind) { 7806 if (Diagnose == ExplainDeleted) { 7807 S.Diag(Best->Function->getLocation(), 7808 diag::note_defaulted_comparison_not_rewritten_callee) 7809 << FD; 7810 } 7811 return Result::deleted(); 7812 } 7813 7814 // Throughout C++2a [class.compare]: if overload resolution does not 7815 // result in a usable function, the candidate function is defined as 7816 // deleted. This requires that we selected an accessible function. 7817 // 7818 // Note that this only considers the access of the function when named 7819 // within the type of the subobject, and not the access path for any 7820 // derived-to-base conversion. 7821 CXXRecordDecl *ArgClass = Args[0]->getType()->getAsCXXRecordDecl(); 7822 if (ArgClass && Best->FoundDecl.getDecl() && 7823 Best->FoundDecl.getDecl()->isCXXClassMember()) { 7824 QualType ObjectType = Subobj.Kind == Subobject::Member 7825 ? Args[0]->getType() 7826 : S.Context.getRecordType(RD); 7827 if (!S.isMemberAccessibleForDeletion( 7828 ArgClass, Best->FoundDecl, ObjectType, Subobj.Loc, 7829 Diagnose == ExplainDeleted 7830 ? S.PDiag(diag::note_defaulted_comparison_inaccessible) 7831 << FD << Subobj.Kind << Subobj.Decl 7832 : S.PDiag())) 7833 return Result::deleted(); 7834 } 7835 7836 bool NeedsDeducing = 7837 OO == OO_Spaceship && FD->getReturnType()->isUndeducedAutoType(); 7838 7839 if (FunctionDecl *BestFD = Best->Function) { 7840 // C++2a [class.compare.default]p3 [P2002R0]: 7841 // A defaulted comparison function is constexpr-compatible if 7842 // [...] no overlod resolution performed [...] results in a 7843 // non-constexpr function. 7844 assert(!BestFD->isDeleted() && "wrong overload resolution result")(static_cast<void> (0)); 7845 // If it's not constexpr, explain why not. 7846 if (Diagnose == ExplainConstexpr && !BestFD->isConstexpr()) { 7847 if (Subobj.Kind != Subobject::CompleteObject) 7848 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_not_constexpr) 7849 << Subobj.Kind << Subobj.Decl; 7850 S.Diag(BestFD->getLocation(), 7851 diag::note_defaulted_comparison_not_constexpr_here); 7852 // Bail out after explaining; we don't want any more notes. 7853 return Result::deleted(); 7854 } 7855 R.Constexpr &= BestFD->isConstexpr(); 7856 7857 if (NeedsDeducing) { 7858 // If any callee has an undeduced return type, deduce it now. 7859 // FIXME: It's not clear how a failure here should be handled. For 7860 // now, we produce an eager diagnostic, because that is forward 7861 // compatible with most (all?) other reasonable options. 7862 if (BestFD->getReturnType()->isUndeducedType() && 7863 S.DeduceReturnType(BestFD, FD->getLocation(), 7864 /*Diagnose=*/false)) { 7865 // Don't produce a duplicate error when asked to explain why the 7866 // comparison is deleted: we diagnosed that when initially checking 7867 // the defaulted operator. 7868 if (Diagnose == NoDiagnostics) { 7869 S.Diag( 7870 FD->getLocation(), 7871 diag::err_defaulted_comparison_cannot_deduce_undeduced_auto) 7872 << Subobj.Kind << Subobj.Decl; 7873 S.Diag( 7874 Subobj.Loc, 7875 diag::note_defaulted_comparison_cannot_deduce_undeduced_auto) 7876 << Subobj.Kind << Subobj.Decl; 7877 S.Diag(BestFD->getLocation(), 7878 diag::note_defaulted_comparison_cannot_deduce_callee) 7879 << Subobj.Kind << Subobj.Decl; 7880 } 7881 return Result::deleted(); 7882 } 7883 auto *Info = S.Context.CompCategories.lookupInfoForType( 7884 BestFD->getCallResultType()); 7885 if (!Info) { 7886 if (Diagnose == ExplainDeleted) { 7887 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_cannot_deduce) 7888 << Subobj.Kind << Subobj.Decl 7889 << BestFD->getCallResultType().withoutLocalFastQualifiers(); 7890 S.Diag(BestFD->getLocation(), 7891 diag::note_defaulted_comparison_cannot_deduce_callee) 7892 << Subobj.Kind << Subobj.Decl; 7893 } 7894 return Result::deleted(); 7895 } 7896 R.Category = Info->Kind; 7897 } 7898 } else { 7899 QualType T = Best->BuiltinParamTypes[0]; 7900 assert(T == Best->BuiltinParamTypes[1] &&(static_cast<void> (0)) 7901 "builtin comparison for different types?")(static_cast<void> (0)); 7902 assert(Best->BuiltinParamTypes[2].isNull() &&(static_cast<void> (0)) 7903 "invalid builtin comparison")(static_cast<void> (0)); 7904 7905 if (NeedsDeducing) { 7906 Optional<ComparisonCategoryType> Cat = 7907 getComparisonCategoryForBuiltinCmp(T); 7908 assert(Cat && "no category for builtin comparison?")(static_cast<void> (0)); 7909 R.Category = *Cat; 7910 } 7911 } 7912 7913 // Note that we might be rewriting to a different operator. That call is 7914 // not considered until we come to actually build the comparison function. 7915 break; 7916 } 7917 7918 case OR_Ambiguous: 7919 if (Diagnose == ExplainDeleted) { 7920 unsigned Kind = 0; 7921 if (FD->getOverloadedOperator() == OO_Spaceship && OO != OO_Spaceship) 7922 Kind = OO == OO_EqualEqual ? 1 : 2; 7923 CandidateSet.NoteCandidates( 7924 PartialDiagnosticAt( 7925 Subobj.Loc, S.PDiag(diag::note_defaulted_comparison_ambiguous) 7926 << FD << Kind << Subobj.Kind << Subobj.Decl), 7927 S, OCD_AmbiguousCandidates, Args); 7928 } 7929 R = Result::deleted(); 7930 break; 7931 7932 case OR_Deleted: 7933 if (Diagnose == ExplainDeleted) { 7934 if ((DCK == DefaultedComparisonKind::NotEqual || 7935 DCK == DefaultedComparisonKind::Relational) && 7936 !Best->RewriteKind) { 7937 S.Diag(Best->Function->getLocation(), 7938 diag::note_defaulted_comparison_not_rewritten_callee) 7939 << FD; 7940 } else { 7941 S.Diag(Subobj.Loc, 7942 diag::note_defaulted_comparison_calls_deleted) 7943 << FD << Subobj.Kind << Subobj.Decl; 7944 S.NoteDeletedFunction(Best->Function); 7945 } 7946 } 7947 R = Result::deleted(); 7948 break; 7949 7950 case OR_No_Viable_Function: 7951 // If there's no usable candidate, we're done unless we can rewrite a 7952 // '<=>' in terms of '==' and '<'. 7953 if (OO == OO_Spaceship && 7954 S.Context.CompCategories.lookupInfoForType(FD->getReturnType())) { 7955 // For any kind of comparison category return type, we need a usable 7956 // '==' and a usable '<'. 7957 if (!R.add(visitBinaryOperator(OO_EqualEqual, Args, Subobj, 7958 &CandidateSet))) 7959 R.add(visitBinaryOperator(OO_Less, Args, Subobj, &CandidateSet)); 7960 break; 7961 } 7962 7963 if (Diagnose == ExplainDeleted) { 7964 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_no_viable_function) 7965 << FD << Subobj.Kind << Subobj.Decl; 7966 7967 // For a three-way comparison, list both the candidates for the 7968 // original operator and the candidates for the synthesized operator. 7969 if (SpaceshipCandidates) { 7970 SpaceshipCandidates->NoteCandidates( 7971 S, Args, 7972 SpaceshipCandidates->CompleteCandidates(S, OCD_AllCandidates, 7973 Args, FD->getLocation())); 7974 S.Diag(Subobj.Loc, 7975 diag::note_defaulted_comparison_no_viable_function_synthesized) 7976 << (OO == OO_EqualEqual ? 0 : 1); 7977 } 7978 7979 CandidateSet.NoteCandidates( 7980 S, Args, 7981 CandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args, 7982 FD->getLocation())); 7983 } 7984 R = Result::deleted(); 7985 break; 7986 } 7987 7988 return R; 7989 } 7990}; 7991 7992/// A list of statements. 7993struct StmtListResult { 7994 bool IsInvalid = false; 7995 llvm::SmallVector<Stmt*, 16> Stmts; 7996 7997 bool add(const StmtResult &S) { 7998 IsInvalid |= S.isInvalid(); 7999 if (IsInvalid) 8000 return true; 8001 Stmts.push_back(S.get()); 8002 return false; 8003 } 8004}; 8005 8006/// A visitor over the notional body of a defaulted comparison that synthesizes 8007/// the actual body. 8008class DefaultedComparisonSynthesizer 8009 : public DefaultedComparisonVisitor<DefaultedComparisonSynthesizer, 8010 StmtListResult, StmtResult, 8011 std::pair<ExprResult, ExprResult>> { 8012 SourceLocation Loc; 8013 unsigned ArrayDepth = 0; 8014 8015public: 8016 using Base = DefaultedComparisonVisitor; 8017 using ExprPair = std::pair<ExprResult, ExprResult>; 8018 8019 friend Base; 8020 8021 DefaultedComparisonSynthesizer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 8022 DefaultedComparisonKind DCK, 8023 SourceLocation BodyLoc) 8024 : Base(S, RD, FD, DCK), Loc(BodyLoc) {} 8025 8026 /// Build a suitable function body for this defaulted comparison operator. 8027 StmtResult build() { 8028 Sema::CompoundScopeRAII CompoundScope(S); 8029 8030 StmtListResult Stmts = visit(); 8031 if (Stmts.IsInvalid) 8032 return StmtError(); 8033 8034 ExprResult RetVal; 8035 switch (DCK) { 8036 case DefaultedComparisonKind::None: 8037 llvm_unreachable("not a defaulted comparison")__builtin_unreachable(); 8038 8039 case DefaultedComparisonKind::Equal: { 8040 // C++2a [class.eq]p3: 8041 // [...] compar[e] the corresponding elements [...] until the first 8042 // index i where xi == yi yields [...] false. If no such index exists, 8043 // V is true. Otherwise, V is false. 8044 // 8045 // Join the comparisons with '&&'s and return the result. Use a right 8046 // fold (traversing the conditions right-to-left), because that 8047 // short-circuits more naturally. 8048 auto OldStmts = std::move(Stmts.Stmts); 8049 Stmts.Stmts.clear(); 8050 ExprResult CmpSoFar; 8051 // Finish a particular comparison chain. 8052 auto FinishCmp = [&] { 8053 if (Expr *Prior = CmpSoFar.get()) { 8054 // Convert the last expression to 'return ...;' 8055 if (RetVal.isUnset() && Stmts.Stmts.empty()) 8056 RetVal = CmpSoFar; 8057 // Convert any prior comparison to 'if (!(...)) return false;' 8058 else if (Stmts.add(buildIfNotCondReturnFalse(Prior))) 8059 return true; 8060 CmpSoFar = ExprResult(); 8061 } 8062 return false; 8063 }; 8064 for (Stmt *EAsStmt : llvm::reverse(OldStmts)) { 8065 Expr *E = dyn_cast<Expr>(EAsStmt); 8066 if (!E) { 8067 // Found an array comparison. 8068 if (FinishCmp() || Stmts.add(EAsStmt)) 8069 return StmtError(); 8070 continue; 8071 } 8072 8073 if (CmpSoFar.isUnset()) { 8074 CmpSoFar = E; 8075 continue; 8076 } 8077 CmpSoFar = S.CreateBuiltinBinOp(Loc, BO_LAnd, E, CmpSoFar.get()); 8078 if (CmpSoFar.isInvalid()) 8079 return StmtError(); 8080 } 8081 if (FinishCmp()) 8082 return StmtError(); 8083 std::reverse(Stmts.Stmts.begin(), Stmts.Stmts.end()); 8084 // If no such index exists, V is true. 8085 if (RetVal.isUnset()) 8086 RetVal = S.ActOnCXXBoolLiteral(Loc, tok::kw_true); 8087 break; 8088 } 8089 8090 case DefaultedComparisonKind::ThreeWay: { 8091 // Per C++2a [class.spaceship]p3, as a fallback add: 8092 // return static_cast<R>(std::strong_ordering::equal); 8093 QualType StrongOrdering = S.CheckComparisonCategoryType( 8094 ComparisonCategoryType::StrongOrdering, Loc, 8095 Sema::ComparisonCategoryUsage::DefaultedOperator); 8096 if (StrongOrdering.isNull()) 8097 return StmtError(); 8098 VarDecl *EqualVD = S.Context.CompCategories.getInfoForType(StrongOrdering) 8099 .getValueInfo(ComparisonCategoryResult::Equal) 8100 ->VD; 8101 RetVal = getDecl(EqualVD); 8102 if (RetVal.isInvalid()) 8103 return StmtError(); 8104 RetVal = buildStaticCastToR(RetVal.get()); 8105 break; 8106 } 8107 8108 case DefaultedComparisonKind::NotEqual: 8109 case DefaultedComparisonKind::Relational: 8110 RetVal = cast<Expr>(Stmts.Stmts.pop_back_val()); 8111 break; 8112 } 8113 8114 // Build the final return statement. 8115 if (RetVal.isInvalid()) 8116 return StmtError(); 8117 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, RetVal.get()); 8118 if (ReturnStmt.isInvalid()) 8119 return StmtError(); 8120 Stmts.Stmts.push_back(ReturnStmt.get()); 8121 8122 return S.ActOnCompoundStmt(Loc, Loc, Stmts.Stmts, /*IsStmtExpr=*/false); 8123 } 8124 8125private: 8126 ExprResult getDecl(ValueDecl *VD) { 8127 return S.BuildDeclarationNameExpr( 8128 CXXScopeSpec(), DeclarationNameInfo(VD->getDeclName(), Loc), VD); 8129 } 8130 8131 ExprResult getParam(unsigned I) { 8132 ParmVarDecl *PD = FD->getParamDecl(I); 8133 return getDecl(PD); 8134 } 8135 8136 ExprPair getCompleteObject() { 8137 unsigned Param = 0; 8138 ExprResult LHS; 8139 if (isa<CXXMethodDecl>(FD)) { 8140 // LHS is '*this'. 8141 LHS = S.ActOnCXXThis(Loc); 8142 if (!LHS.isInvalid()) 8143 LHS = S.CreateBuiltinUnaryOp(Loc, UO_Deref, LHS.get()); 8144 } else { 8145 LHS = getParam(Param++); 8146 } 8147 ExprResult RHS = getParam(Param++); 8148 assert(Param == FD->getNumParams())(static_cast<void> (0)); 8149 return {LHS, RHS}; 8150 } 8151 8152 ExprPair getBase(CXXBaseSpecifier *Base) { 8153 ExprPair Obj = getCompleteObject(); 8154 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 8155 return {ExprError(), ExprError()}; 8156 CXXCastPath Path = {Base}; 8157 return {S.ImpCastExprToType(Obj.first.get(), Base->getType(), 8158 CK_DerivedToBase, VK_LValue, &Path), 8159 S.ImpCastExprToType(Obj.second.get(), Base->getType(), 8160 CK_DerivedToBase, VK_LValue, &Path)}; 8161 } 8162 8163 ExprPair getField(FieldDecl *Field) { 8164 ExprPair Obj = getCompleteObject(); 8165 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 8166 return {ExprError(), ExprError()}; 8167 8168 DeclAccessPair Found = DeclAccessPair::make(Field, Field->getAccess()); 8169 DeclarationNameInfo NameInfo(Field->getDeclName(), Loc); 8170 return {S.BuildFieldReferenceExpr(Obj.first.get(), /*IsArrow=*/false, Loc, 8171 CXXScopeSpec(), Field, Found, NameInfo), 8172 S.BuildFieldReferenceExpr(Obj.second.get(), /*IsArrow=*/false, Loc, 8173 CXXScopeSpec(), Field, Found, NameInfo)}; 8174 } 8175 8176 // FIXME: When expanding a subobject, register a note in the code synthesis 8177 // stack to say which subobject we're comparing. 8178 8179 StmtResult buildIfNotCondReturnFalse(ExprResult Cond) { 8180 if (Cond.isInvalid()) 8181 return StmtError(); 8182 8183 ExprResult NotCond = S.CreateBuiltinUnaryOp(Loc, UO_LNot, Cond.get()); 8184 if (NotCond.isInvalid()) 8185 return StmtError(); 8186 8187 ExprResult False = S.ActOnCXXBoolLiteral(Loc, tok::kw_false); 8188 assert(!False.isInvalid() && "should never fail")(static_cast<void> (0)); 8189 StmtResult ReturnFalse = S.BuildReturnStmt(Loc, False.get()); 8190 if (ReturnFalse.isInvalid()) 8191 return StmtError(); 8192 8193 return S.ActOnIfStmt(Loc, false, Loc, nullptr, 8194 S.ActOnCondition(nullptr, Loc, NotCond.get(), 8195 Sema::ConditionKind::Boolean), 8196 Loc, ReturnFalse.get(), SourceLocation(), nullptr); 8197 } 8198 8199 StmtResult visitSubobjectArray(QualType Type, llvm::APInt Size, 8200 ExprPair Subobj) { 8201 QualType SizeType = S.Context.getSizeType(); 8202 Size = Size.zextOrTrunc(S.Context.getTypeSize(SizeType)); 8203 8204 // Build 'size_t i$n = 0'. 8205 IdentifierInfo *IterationVarName = nullptr; 8206 { 8207 SmallString<8> Str; 8208 llvm::raw_svector_ostream OS(Str); 8209 OS << "i" << ArrayDepth; 8210 IterationVarName = &S.Context.Idents.get(OS.str()); 8211 } 8212 VarDecl *IterationVar = VarDecl::Create( 8213 S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType, 8214 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None); 8215 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); 8216 IterationVar->setInit( 8217 IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); 8218 Stmt *Init = new (S.Context) DeclStmt(DeclGroupRef(IterationVar), Loc, Loc); 8219 8220 auto IterRef = [&] { 8221 ExprResult Ref = S.BuildDeclarationNameExpr( 8222 CXXScopeSpec(), DeclarationNameInfo(IterationVarName, Loc), 8223 IterationVar); 8224 assert(!Ref.isInvalid() && "can't reference our own variable?")(static_cast<void> (0)); 8225 return Ref.get(); 8226 }; 8227 8228 // Build 'i$n != Size'. 8229 ExprResult Cond = S.CreateBuiltinBinOp( 8230 Loc, BO_NE, IterRef(), 8231 IntegerLiteral::Create(S.Context, Size, SizeType, Loc)); 8232 assert(!Cond.isInvalid() && "should never fail")(static_cast<void> (0)); 8233 8234 // Build '++i$n'. 8235 ExprResult Inc = S.CreateBuiltinUnaryOp(Loc, UO_PreInc, IterRef()); 8236 assert(!Inc.isInvalid() && "should never fail")(static_cast<void> (0)); 8237 8238 // Build 'a[i$n]' and 'b[i$n]'. 8239 auto Index = [&](ExprResult E) { 8240 if (E.isInvalid()) 8241 return ExprError(); 8242 return S.CreateBuiltinArraySubscriptExpr(E.get(), Loc, IterRef(), Loc); 8243 }; 8244 Subobj.first = Index(Subobj.first); 8245 Subobj.second = Index(Subobj.second); 8246 8247 // Compare the array elements. 8248 ++ArrayDepth; 8249 StmtResult Substmt = visitSubobject(Type, Subobj); 8250 --ArrayDepth; 8251 8252 if (Substmt.isInvalid()) 8253 return StmtError(); 8254 8255 // For the inner level of an 'operator==', build 'if (!cmp) return false;'. 8256 // For outer levels or for an 'operator<=>' we already have a suitable 8257 // statement that returns as necessary. 8258 if (Expr *ElemCmp = dyn_cast<Expr>(Substmt.get())) { 8259 assert(DCK == DefaultedComparisonKind::Equal &&(static_cast<void> (0)) 8260 "should have non-expression statement")(static_cast<void> (0)); 8261 Substmt = buildIfNotCondReturnFalse(ElemCmp); 8262 if (Substmt.isInvalid()) 8263 return StmtError(); 8264 } 8265 8266 // Build 'for (...) ...' 8267 return S.ActOnForStmt(Loc, Loc, Init, 8268 S.ActOnCondition(nullptr, Loc, Cond.get(), 8269 Sema::ConditionKind::Boolean), 8270 S.MakeFullDiscardedValueExpr(Inc.get()), Loc, 8271 Substmt.get()); 8272 } 8273 8274 StmtResult visitExpandedSubobject(QualType Type, ExprPair Obj) { 8275 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 8276 return StmtError(); 8277 8278 OverloadedOperatorKind OO = FD->getOverloadedOperator(); 8279 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(OO); 8280 ExprResult Op; 8281 if (Type->isOverloadableType()) 8282 Op = S.CreateOverloadedBinOp(Loc, Opc, Fns, Obj.first.get(), 8283 Obj.second.get(), /*PerformADL=*/true, 8284 /*AllowRewrittenCandidates=*/true, FD); 8285 else 8286 Op = S.CreateBuiltinBinOp(Loc, Opc, Obj.first.get(), Obj.second.get()); 8287 if (Op.isInvalid()) 8288 return StmtError(); 8289 8290 switch (DCK) { 8291 case DefaultedComparisonKind::None: 8292 llvm_unreachable("not a defaulted comparison")__builtin_unreachable(); 8293 8294 case DefaultedComparisonKind::Equal: 8295 // Per C++2a [class.eq]p2, each comparison is individually contextually 8296 // converted to bool. 8297 Op = S.PerformContextuallyConvertToBool(Op.get()); 8298 if (Op.isInvalid()) 8299 return StmtError(); 8300 return Op.get(); 8301 8302 case DefaultedComparisonKind::ThreeWay: { 8303 // Per C++2a [class.spaceship]p3, form: 8304 // if (R cmp = static_cast<R>(op); cmp != 0) 8305 // return cmp; 8306 QualType R = FD->getReturnType(); 8307 Op = buildStaticCastToR(Op.get()); 8308 if (Op.isInvalid()) 8309 return StmtError(); 8310 8311 // R cmp = ...; 8312 IdentifierInfo *Name = &S.Context.Idents.get("cmp"); 8313 VarDecl *VD = 8314 VarDecl::Create(S.Context, S.CurContext, Loc, Loc, Name, R, 8315 S.Context.getTrivialTypeSourceInfo(R, Loc), SC_None); 8316 S.AddInitializerToDecl(VD, Op.get(), /*DirectInit=*/false); 8317 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(VD), Loc, Loc); 8318 8319 // cmp != 0 8320 ExprResult VDRef = getDecl(VD); 8321 if (VDRef.isInvalid()) 8322 return StmtError(); 8323 llvm::APInt ZeroVal(S.Context.getIntWidth(S.Context.IntTy), 0); 8324 Expr *Zero = 8325 IntegerLiteral::Create(S.Context, ZeroVal, S.Context.IntTy, Loc); 8326 ExprResult Comp; 8327 if (VDRef.get()->getType()->isOverloadableType()) 8328 Comp = S.CreateOverloadedBinOp(Loc, BO_NE, Fns, VDRef.get(), Zero, true, 8329 true, FD); 8330 else 8331 Comp = S.CreateBuiltinBinOp(Loc, BO_NE, VDRef.get(), Zero); 8332 if (Comp.isInvalid()) 8333 return StmtError(); 8334 Sema::ConditionResult Cond = S.ActOnCondition( 8335 nullptr, Loc, Comp.get(), Sema::ConditionKind::Boolean); 8336 if (Cond.isInvalid()) 8337 return StmtError(); 8338 8339 // return cmp; 8340 VDRef = getDecl(VD); 8341 if (VDRef.isInvalid()) 8342 return StmtError(); 8343 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, VDRef.get()); 8344 if (ReturnStmt.isInvalid()) 8345 return StmtError(); 8346 8347 // if (...) 8348 return S.ActOnIfStmt(Loc, /*IsConstexpr=*/false, Loc, InitStmt, Cond, Loc, 8349 ReturnStmt.get(), 8350 /*ElseLoc=*/SourceLocation(), /*Else=*/nullptr); 8351 } 8352 8353 case DefaultedComparisonKind::NotEqual: 8354 case DefaultedComparisonKind::Relational: 8355 // C++2a [class.compare.secondary]p2: 8356 // Otherwise, the operator function yields x @ y. 8357 return Op.get(); 8358 } 8359 llvm_unreachable("")__builtin_unreachable(); 8360 } 8361 8362 /// Build "static_cast<R>(E)". 8363 ExprResult buildStaticCastToR(Expr *E) { 8364 QualType R = FD->getReturnType(); 8365 assert(!R->isUndeducedType() && "type should have been deduced already")(static_cast<void> (0)); 8366 8367 // Don't bother forming a no-op cast in the common case. 8368 if (E->isPRValue() && S.Context.hasSameType(E->getType(), R)) 8369 return E; 8370 return S.BuildCXXNamedCast(Loc, tok::kw_static_cast, 8371 S.Context.getTrivialTypeSourceInfo(R, Loc), E, 8372 SourceRange(Loc, Loc), SourceRange(Loc, Loc)); 8373 } 8374}; 8375} 8376 8377/// Perform the unqualified lookups that might be needed to form a defaulted 8378/// comparison function for the given operator. 8379static void lookupOperatorsForDefaultedComparison(Sema &Self, Scope *S, 8380 UnresolvedSetImpl &Operators, 8381 OverloadedOperatorKind Op) { 8382 auto Lookup = [&](OverloadedOperatorKind OO) { 8383 Self.LookupOverloadedOperatorName(OO, S, Operators); 8384 }; 8385 8386 // Every defaulted operator looks up itself. 8387 Lookup(Op); 8388 // ... and the rewritten form of itself, if any. 8389 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(Op)) 8390 Lookup(ExtraOp); 8391 8392 // For 'operator<=>', we also form a 'cmp != 0' expression, and might 8393 // synthesize a three-way comparison from '<' and '=='. In a dependent 8394 // context, we also need to look up '==' in case we implicitly declare a 8395 // defaulted 'operator=='. 8396 if (Op == OO_Spaceship) { 8397 Lookup(OO_ExclaimEqual); 8398 Lookup(OO_Less); 8399 Lookup(OO_EqualEqual); 8400 } 8401} 8402 8403bool Sema::CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *FD, 8404 DefaultedComparisonKind DCK) { 8405 assert(DCK != DefaultedComparisonKind::None && "not a defaulted comparison")(static_cast<void> (0)); 8406 8407 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext()); 8408 assert(RD && "defaulted comparison is not defaulted in a class")(static_cast<void> (0)); 8409 8410 // Perform any unqualified lookups we're going to need to default this 8411 // function. 8412 if (S) { 8413 UnresolvedSet<32> Operators; 8414 lookupOperatorsForDefaultedComparison(*this, S, Operators, 8415 FD->getOverloadedOperator()); 8416 FD->setDefaultedFunctionInfo(FunctionDecl::DefaultedFunctionInfo::Create( 8417 Context, Operators.pairs())); 8418 } 8419 8420 // C++2a [class.compare.default]p1: 8421 // A defaulted comparison operator function for some class C shall be a 8422 // non-template function declared in the member-specification of C that is 8423 // -- a non-static const member of C having one parameter of type 8424 // const C&, or 8425 // -- a friend of C having two parameters of type const C& or two 8426 // parameters of type C. 8427 QualType ExpectedParmType1 = Context.getRecordType(RD); 8428 QualType ExpectedParmType2 = 8429 Context.getLValueReferenceType(ExpectedParmType1.withConst()); 8430 if (isa<CXXMethodDecl>(FD)) 8431 ExpectedParmType1 = ExpectedParmType2; 8432 for (const ParmVarDecl *Param : FD->parameters()) { 8433 if (!Param->getType()->isDependentType() && 8434 !Context.hasSameType(Param->getType(), ExpectedParmType1) && 8435 !Context.hasSameType(Param->getType(), ExpectedParmType2)) { 8436 // Don't diagnose an implicit 'operator=='; we will have diagnosed the 8437 // corresponding defaulted 'operator<=>' already. 8438 if (!FD->isImplicit()) { 8439 Diag(FD->getLocation(), diag::err_defaulted_comparison_param) 8440 << (int)DCK << Param->getType() << ExpectedParmType1 8441 << !isa<CXXMethodDecl>(FD) 8442 << ExpectedParmType2 << Param->getSourceRange(); 8443 } 8444 return true; 8445 } 8446 } 8447 if (FD->getNumParams() == 2 && 8448 !Context.hasSameType(FD->getParamDecl(0)->getType(), 8449 FD->getParamDecl(1)->getType())) { 8450 if (!FD->isImplicit()) { 8451 Diag(FD->getLocation(), diag::err_defaulted_comparison_param_mismatch) 8452 << (int)DCK 8453 << FD->getParamDecl(0)->getType() 8454 << FD->getParamDecl(0)->getSourceRange() 8455 << FD->getParamDecl(1)->getType() 8456 << FD->getParamDecl(1)->getSourceRange(); 8457 } 8458 return true; 8459 } 8460 8461 // ... non-static const member ... 8462 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 8463 assert(!MD->isStatic() && "comparison function cannot be a static member")(static_cast<void> (0)); 8464 if (!MD->isConst()) { 8465 SourceLocation InsertLoc; 8466 if (FunctionTypeLoc Loc = MD->getFunctionTypeLoc()) 8467 InsertLoc = getLocForEndOfToken(Loc.getRParenLoc()); 8468 // Don't diagnose an implicit 'operator=='; we will have diagnosed the 8469 // corresponding defaulted 'operator<=>' already. 8470 if (!MD->isImplicit()) { 8471 Diag(MD->getLocation(), diag::err_defaulted_comparison_non_const) 8472 << (int)DCK << FixItHint::CreateInsertion(InsertLoc, " const"); 8473 } 8474 8475 // Add the 'const' to the type to recover. 8476 const auto *FPT = MD->getType()->castAs<FunctionProtoType>(); 8477 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8478 EPI.TypeQuals.addConst(); 8479 MD->setType(Context.getFunctionType(FPT->getReturnType(), 8480 FPT->getParamTypes(), EPI)); 8481 } 8482 } else { 8483 // A non-member function declared in a class must be a friend. 8484 assert(FD->getFriendObjectKind() && "expected a friend declaration")(static_cast<void> (0)); 8485 } 8486 8487 // C++2a [class.eq]p1, [class.rel]p1: 8488 // A [defaulted comparison other than <=>] shall have a declared return 8489 // type bool. 8490 if (DCK != DefaultedComparisonKind::ThreeWay && 8491 !FD->getDeclaredReturnType()->isDependentType() && 8492 !Context.hasSameType(FD->getDeclaredReturnType(), Context.BoolTy)) { 8493 Diag(FD->getLocation(), diag::err_defaulted_comparison_return_type_not_bool) 8494 << (int)DCK << FD->getDeclaredReturnType() << Context.BoolTy 8495 << FD->getReturnTypeSourceRange(); 8496 return true; 8497 } 8498 // C++2a [class.spaceship]p2 [P2002R0]: 8499 // Let R be the declared return type [...]. If R is auto, [...]. Otherwise, 8500 // R shall not contain a placeholder type. 8501 if (DCK == DefaultedComparisonKind::ThreeWay && 8502 FD->getDeclaredReturnType()->getContainedDeducedType() && 8503 !Context.hasSameType(FD->getDeclaredReturnType(), 8504 Context.getAutoDeductType())) { 8505 Diag(FD->getLocation(), 8506 diag::err_defaulted_comparison_deduced_return_type_not_auto) 8507 << (int)DCK << FD->getDeclaredReturnType() << Context.AutoDeductTy 8508 << FD->getReturnTypeSourceRange(); 8509 return true; 8510 } 8511 8512 // For a defaulted function in a dependent class, defer all remaining checks 8513 // until instantiation. 8514 if (RD->isDependentType()) 8515 return false; 8516 8517 // Determine whether the function should be defined as deleted. 8518 DefaultedComparisonInfo Info = 8519 DefaultedComparisonAnalyzer(*this, RD, FD, DCK).visit(); 8520 8521 bool First = FD == FD->getCanonicalDecl(); 8522 8523 // If we want to delete the function, then do so; there's nothing else to 8524 // check in that case. 8525 if (Info.Deleted) { 8526 if (!First) { 8527 // C++11 [dcl.fct.def.default]p4: 8528 // [For a] user-provided explicitly-defaulted function [...] if such a 8529 // function is implicitly defined as deleted, the program is ill-formed. 8530 // 8531 // This is really just a consequence of the general rule that you can 8532 // only delete a function on its first declaration. 8533 Diag(FD->getLocation(), diag::err_non_first_default_compare_deletes) 8534 << FD->isImplicit() << (int)DCK; 8535 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 8536 DefaultedComparisonAnalyzer::ExplainDeleted) 8537 .visit(); 8538 return true; 8539 } 8540 8541 SetDeclDeleted(FD, FD->getLocation()); 8542 if (!inTemplateInstantiation() && !FD->isImplicit()) { 8543 Diag(FD->getLocation(), diag::warn_defaulted_comparison_deleted) 8544 << (int)DCK; 8545 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 8546 DefaultedComparisonAnalyzer::ExplainDeleted) 8547 .visit(); 8548 } 8549 return false; 8550 } 8551 8552 // C++2a [class.spaceship]p2: 8553 // The return type is deduced as the common comparison type of R0, R1, ... 8554 if (DCK == DefaultedComparisonKind::ThreeWay && 8555 FD->getDeclaredReturnType()->isUndeducedAutoType()) { 8556 SourceLocation RetLoc = FD->getReturnTypeSourceRange().getBegin(); 8557 if (RetLoc.isInvalid()) 8558 RetLoc = FD->getBeginLoc(); 8559 // FIXME: Should we really care whether we have the complete type and the 8560 // 'enumerator' constants here? A forward declaration seems sufficient. 8561 QualType Cat = CheckComparisonCategoryType( 8562 Info.Category, RetLoc, ComparisonCategoryUsage::DefaultedOperator); 8563 if (Cat.isNull()) 8564 return true; 8565 Context.adjustDeducedFunctionResultType( 8566 FD, SubstAutoType(FD->getDeclaredReturnType(), Cat)); 8567 } 8568 8569 // C++2a [dcl.fct.def.default]p3 [P2002R0]: 8570 // An explicitly-defaulted function that is not defined as deleted may be 8571 // declared constexpr or consteval only if it is constexpr-compatible. 8572 // C++2a [class.compare.default]p3 [P2002R0]: 8573 // A defaulted comparison function is constexpr-compatible if it satisfies 8574 // the requirements for a constexpr function [...] 8575 // The only relevant requirements are that the parameter and return types are 8576 // literal types. The remaining conditions are checked by the analyzer. 8577 if (FD->isConstexpr()) { 8578 if (CheckConstexprReturnType(*this, FD, CheckConstexprKind::Diagnose) && 8579 CheckConstexprParameterTypes(*this, FD, CheckConstexprKind::Diagnose) && 8580 !Info.Constexpr) { 8581 Diag(FD->getBeginLoc(), 8582 diag::err_incorrect_defaulted_comparison_constexpr) 8583 << FD->isImplicit() << (int)DCK << FD->isConsteval(); 8584 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 8585 DefaultedComparisonAnalyzer::ExplainConstexpr) 8586 .visit(); 8587 } 8588 } 8589 8590 // C++2a [dcl.fct.def.default]p3 [P2002R0]: 8591 // If a constexpr-compatible function is explicitly defaulted on its first 8592 // declaration, it is implicitly considered to be constexpr. 8593 // FIXME: Only applying this to the first declaration seems problematic, as 8594 // simple reorderings can affect the meaning of the program. 8595 if (First && !FD->isConstexpr() && Info.Constexpr) 8596 FD->setConstexprKind(ConstexprSpecKind::Constexpr); 8597 8598 // C++2a [except.spec]p3: 8599 // If a declaration of a function does not have a noexcept-specifier 8600 // [and] is defaulted on its first declaration, [...] the exception 8601 // specification is as specified below 8602 if (FD->getExceptionSpecType() == EST_None) { 8603 auto *FPT = FD->getType()->castAs<FunctionProtoType>(); 8604 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8605 EPI.ExceptionSpec.Type = EST_Unevaluated; 8606 EPI.ExceptionSpec.SourceDecl = FD; 8607 FD->setType(Context.getFunctionType(FPT->getReturnType(), 8608 FPT->getParamTypes(), EPI)); 8609 } 8610 8611 return false; 8612} 8613 8614void Sema::DeclareImplicitEqualityComparison(CXXRecordDecl *RD, 8615 FunctionDecl *Spaceship) { 8616 Sema::CodeSynthesisContext Ctx; 8617 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringImplicitEqualityComparison; 8618 Ctx.PointOfInstantiation = Spaceship->getEndLoc(); 8619 Ctx.Entity = Spaceship; 8620 pushCodeSynthesisContext(Ctx); 8621 8622 if (FunctionDecl *EqualEqual = SubstSpaceshipAsEqualEqual(RD, Spaceship)) 8623 EqualEqual->setImplicit(); 8624 8625 popCodeSynthesisContext(); 8626} 8627 8628void Sema::DefineDefaultedComparison(SourceLocation UseLoc, FunctionDecl *FD, 8629 DefaultedComparisonKind DCK) { 8630 assert(FD->isDefaulted() && !FD->isDeleted() &&(static_cast<void> (0)) 8631 !FD->doesThisDeclarationHaveABody())(static_cast<void> (0)); 8632 if (FD->willHaveBody() || FD->isInvalidDecl()) 8633 return; 8634 8635 SynthesizedFunctionScope Scope(*this, FD); 8636 8637 // Add a context note for diagnostics produced after this point. 8638 Scope.addContextNote(UseLoc); 8639 8640 { 8641 // Build and set up the function body. 8642 CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent()); 8643 SourceLocation BodyLoc = 8644 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); 8645 StmtResult Body = 8646 DefaultedComparisonSynthesizer(*this, RD, FD, DCK, BodyLoc).build(); 8647 if (Body.isInvalid()) { 8648 FD->setInvalidDecl(); 8649 return; 8650 } 8651 FD->setBody(Body.get()); 8652 FD->markUsed(Context); 8653 } 8654 8655 // The exception specification is needed because we are defining the 8656 // function. Note that this will reuse the body we just built. 8657 ResolveExceptionSpec(UseLoc, FD->getType()->castAs<FunctionProtoType>()); 8658 8659 if (ASTMutationListener *L = getASTMutationListener()) 8660 L->CompletedImplicitDefinition(FD); 8661} 8662 8663static Sema::ImplicitExceptionSpecification 8664ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, 8665 FunctionDecl *FD, 8666 Sema::DefaultedComparisonKind DCK) { 8667 ComputingExceptionSpec CES(S, FD, Loc); 8668 Sema::ImplicitExceptionSpecification ExceptSpec(S); 8669 8670 if (FD->isInvalidDecl()) 8671 return ExceptSpec; 8672 8673 // The common case is that we just defined the comparison function. In that 8674 // case, just look at whether the body can throw. 8675 if (FD->hasBody()) { 8676 ExceptSpec.CalledStmt(FD->getBody()); 8677 } else { 8678 // Otherwise, build a body so we can check it. This should ideally only 8679 // happen when we're not actually marking the function referenced. (This is 8680 // only really important for efficiency: we don't want to build and throw 8681 // away bodies for comparison functions more than we strictly need to.) 8682 8683 // Pretend to synthesize the function body in an unevaluated context. 8684 // Note that we can't actually just go ahead and define the function here: 8685 // we are not permitted to mark its callees as referenced. 8686 Sema::SynthesizedFunctionScope Scope(S, FD); 8687 EnterExpressionEvaluationContext Context( 8688 S, Sema::ExpressionEvaluationContext::Unevaluated); 8689 8690 CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent()); 8691 SourceLocation BodyLoc = 8692 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); 8693 StmtResult Body = 8694 DefaultedComparisonSynthesizer(S, RD, FD, DCK, BodyLoc).build(); 8695 if (!Body.isInvalid()) 8696 ExceptSpec.CalledStmt(Body.get()); 8697 8698 // FIXME: Can we hold onto this body and just transform it to potentially 8699 // evaluated when we're asked to define the function rather than rebuilding 8700 // it? Either that, or we should only build the bits of the body that we 8701 // need (the expressions, not the statements). 8702 } 8703 8704 return ExceptSpec; 8705} 8706 8707void Sema::CheckDelayedMemberExceptionSpecs() { 8708 decltype(DelayedOverridingExceptionSpecChecks) Overriding; 8709 decltype(DelayedEquivalentExceptionSpecChecks) Equivalent; 8710 8711 std::swap(Overriding, DelayedOverridingExceptionSpecChecks); 8712 std::swap(Equivalent, DelayedEquivalentExceptionSpecChecks); 8713 8714 // Perform any deferred checking of exception specifications for virtual 8715 // destructors. 8716 for (auto &Check : Overriding) 8717 CheckOverridingFunctionExceptionSpec(Check.first, Check.second); 8718 8719 // Perform any deferred checking of exception specifications for befriended 8720 // special members. 8721 for (auto &Check : Equivalent) 8722 CheckEquivalentExceptionSpec(Check.second, Check.first); 8723} 8724 8725namespace { 8726/// CRTP base class for visiting operations performed by a special member 8727/// function (or inherited constructor). 8728template<typename Derived> 8729struct SpecialMemberVisitor { 8730 Sema &S; 8731 CXXMethodDecl *MD; 8732 Sema::CXXSpecialMember CSM; 8733 Sema::InheritedConstructorInfo *ICI; 8734 8735 // Properties of the special member, computed for convenience. 8736 bool IsConstructor = false, IsAssignment = false, ConstArg = false; 8737 8738 SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, 8739 Sema::InheritedConstructorInfo *ICI) 8740 : S(S), MD(MD), CSM(CSM), ICI(ICI) { 8741 switch (CSM) { 8742 case Sema::CXXDefaultConstructor: 8743 case Sema::CXXCopyConstructor: 8744 case Sema::CXXMoveConstructor: 8745 IsConstructor = true; 8746 break; 8747 case Sema::CXXCopyAssignment: 8748 case Sema::CXXMoveAssignment: 8749 IsAssignment = true; 8750 break; 8751 case Sema::CXXDestructor: 8752 break; 8753 case Sema::CXXInvalid: 8754 llvm_unreachable("invalid special member kind")__builtin_unreachable(); 8755 } 8756 8757 if (MD->getNumParams()) { 8758 if (const ReferenceType *RT = 8759 MD->getParamDecl(0)->getType()->getAs<ReferenceType>()) 8760 ConstArg = RT->getPointeeType().isConstQualified(); 8761 } 8762 } 8763 8764 Derived &getDerived() { return static_cast<Derived&>(*this); } 8765 8766 /// Is this a "move" special member? 8767 bool isMove() const { 8768 return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment; 8769 } 8770 8771 /// Look up the corresponding special member in the given class. 8772 Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class, 8773 unsigned Quals, bool IsMutable) { 8774 return lookupCallFromSpecialMember(S, Class, CSM, Quals, 8775 ConstArg && !IsMutable); 8776 } 8777 8778 /// Look up the constructor for the specified base class to see if it's 8779 /// overridden due to this being an inherited constructor. 8780 Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) { 8781 if (!ICI) 8782 return {}; 8783 assert(CSM == Sema::CXXDefaultConstructor)(static_cast<void> (0)); 8784 auto *BaseCtor = 8785 cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor(); 8786 if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first) 8787 return MD; 8788 return {}; 8789 } 8790 8791 /// A base or member subobject. 8792 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject; 8793 8794 /// Get the location to use for a subobject in diagnostics. 8795 static SourceLocation getSubobjectLoc(Subobject Subobj) { 8796 // FIXME: For an indirect virtual base, the direct base leading to 8797 // the indirect virtual base would be a more useful choice. 8798 if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>()) 8799 return B->getBaseTypeLoc(); 8800 else 8801 return Subobj.get<FieldDecl*>()->getLocation(); 8802 } 8803 8804 enum BasesToVisit { 8805 /// Visit all non-virtual (direct) bases. 8806 VisitNonVirtualBases, 8807 /// Visit all direct bases, virtual or not. 8808 VisitDirectBases, 8809 /// Visit all non-virtual bases, and all virtual bases if the class 8810 /// is not abstract. 8811 VisitPotentiallyConstructedBases, 8812 /// Visit all direct or virtual bases. 8813 VisitAllBases 8814 }; 8815 8816 // Visit the bases and members of the class. 8817 bool visit(BasesToVisit Bases) { 8818 CXXRecordDecl *RD = MD->getParent(); 8819 8820 if (Bases == VisitPotentiallyConstructedBases) 8821 Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases; 8822 8823 for (auto &B : RD->bases()) 8824 if ((Bases == VisitDirectBases || !B.isVirtual()) && 8825 getDerived().visitBase(&B)) 8826 return true; 8827 8828 if (Bases == VisitAllBases) 8829 for (auto &B : RD->vbases()) 8830 if (getDerived().visitBase(&B)) 8831 return true; 8832 8833 for (auto *F : RD->fields()) 8834 if (!F->isInvalidDecl() && !F->isUnnamedBitfield() && 8835 getDerived().visitField(F)) 8836 return true; 8837 8838 return false; 8839 } 8840}; 8841} 8842 8843namespace { 8844struct SpecialMemberDeletionInfo 8845 : SpecialMemberVisitor<SpecialMemberDeletionInfo> { 8846 bool Diagnose; 8847 8848 SourceLocation Loc; 8849 8850 bool AllFieldsAreConst; 8851 8852 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD, 8853 Sema::CXXSpecialMember CSM, 8854 Sema::InheritedConstructorInfo *ICI, bool Diagnose) 8855 : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose), 8856 Loc(MD->getLocation()), AllFieldsAreConst(true) {} 8857 8858 bool inUnion() const { return MD->getParent()->isUnion(); } 8859 8860 Sema::CXXSpecialMember getEffectiveCSM() { 8861 return ICI ? Sema::CXXInvalid : CSM; 8862 } 8863 8864 bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType); 8865 8866 bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); } 8867 bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); } 8868 8869 bool shouldDeleteForBase(CXXBaseSpecifier *Base); 8870 bool shouldDeleteForField(FieldDecl *FD); 8871 bool shouldDeleteForAllConstMembers(); 8872 8873 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj, 8874 unsigned Quals); 8875 bool shouldDeleteForSubobjectCall(Subobject Subobj, 8876 Sema::SpecialMemberOverloadResult SMOR, 8877 bool IsDtorCallInCtor); 8878 8879 bool isAccessible(Subobject Subobj, CXXMethodDecl *D); 8880}; 8881} 8882 8883/// Is the given special member inaccessible when used on the given 8884/// sub-object. 8885bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj, 8886 CXXMethodDecl *target) { 8887 /// If we're operating on a base class, the object type is the 8888 /// type of this special member. 8889 QualType objectTy; 8890 AccessSpecifier access = target->getAccess(); 8891 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) { 8892 objectTy = S.Context.getTypeDeclType(MD->getParent()); 8893 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access); 8894 8895 // If we're operating on a field, the object type is the type of the field. 8896 } else { 8897 objectTy = S.Context.getTypeDeclType(target->getParent()); 8898 } 8899 8900 return S.isMemberAccessibleForDeletion( 8901 target->getParent(), DeclAccessPair::make(target, access), objectTy); 8902} 8903 8904/// Check whether we should delete a special member due to the implicit 8905/// definition containing a call to a special member of a subobject. 8906bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall( 8907 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR, 8908 bool IsDtorCallInCtor) { 8909 CXXMethodDecl *Decl = SMOR.getMethod(); 8910 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 8911 8912 int DiagKind = -1; 8913 8914 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted) 8915 DiagKind = !Decl ? 0 : 1; 8916 else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) 8917 DiagKind = 2; 8918 else if (!isAccessible(Subobj, Decl)) 8919 DiagKind = 3; 8920 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() && 8921 !Decl->isTrivial()) { 8922 // A member of a union must have a trivial corresponding special member. 8923 // As a weird special case, a destructor call from a union's constructor 8924 // must be accessible and non-deleted, but need not be trivial. Such a 8925 // destructor is never actually called, but is semantically checked as 8926 // if it were. 8927 DiagKind = 4; 8928 } 8929 8930 if (DiagKind == -1) 8931 return false; 8932 8933 if (Diagnose) { 8934 if (Field) { 8935 S.Diag(Field->getLocation(), 8936 diag::note_deleted_special_member_class_subobject) 8937 << getEffectiveCSM() << MD->getParent() << /*IsField*/true 8938 << Field << DiagKind << IsDtorCallInCtor << /*IsObjCPtr*/false; 8939 } else { 8940 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>(); 8941 S.Diag(Base->getBeginLoc(), 8942 diag::note_deleted_special_member_class_subobject) 8943 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false 8944 << Base->getType() << DiagKind << IsDtorCallInCtor 8945 << /*IsObjCPtr*/false; 8946 } 8947 8948 if (DiagKind == 1) 8949 S.NoteDeletedFunction(Decl); 8950 // FIXME: Explain inaccessibility if DiagKind == 3. 8951 } 8952 8953 return true; 8954} 8955 8956/// Check whether we should delete a special member function due to having a 8957/// direct or virtual base class or non-static data member of class type M. 8958bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject( 8959 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) { 8960 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 8961 bool IsMutable = Field && Field->isMutable(); 8962 8963 // C++11 [class.ctor]p5: 8964 // -- any direct or virtual base class, or non-static data member with no 8965 // brace-or-equal-initializer, has class type M (or array thereof) and 8966 // either M has no default constructor or overload resolution as applied 8967 // to M's default constructor results in an ambiguity or in a function 8968 // that is deleted or inaccessible 8969 // C++11 [class.copy]p11, C++11 [class.copy]p23: 8970 // -- a direct or virtual base class B that cannot be copied/moved because 8971 // overload resolution, as applied to B's corresponding special member, 8972 // results in an ambiguity or a function that is deleted or inaccessible 8973 // from the defaulted special member 8974 // C++11 [class.dtor]p5: 8975 // -- any direct or virtual base class [...] has a type with a destructor 8976 // that is deleted or inaccessible 8977 if (!(CSM == Sema::CXXDefaultConstructor && 8978 Field && Field->hasInClassInitializer()) && 8979 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable), 8980 false)) 8981 return true; 8982 8983 // C++11 [class.ctor]p5, C++11 [class.copy]p11: 8984 // -- any direct or virtual base class or non-static data member has a 8985 // type with a destructor that is deleted or inaccessible 8986 if (IsConstructor) { 8987 Sema::SpecialMemberOverloadResult SMOR = 8988 S.LookupSpecialMember(Class, Sema::CXXDestructor, 8989 false, false, false, false, false); 8990 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true)) 8991 return true; 8992 } 8993 8994 return false; 8995} 8996 8997bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember( 8998 FieldDecl *FD, QualType FieldType) { 8999 // The defaulted special functions are defined as deleted if this is a variant 9000 // member with a non-trivial ownership type, e.g., ObjC __strong or __weak 9001 // type under ARC. 9002 if (!FieldType.hasNonTrivialObjCLifetime()) 9003 return false; 9004 9005 // Don't make the defaulted default constructor defined as deleted if the 9006 // member has an in-class initializer. 9007 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) 9008 return false; 9009 9010 if (Diagnose) { 9011 auto *ParentClass = cast<CXXRecordDecl>(FD->getParent()); 9012 S.Diag(FD->getLocation(), 9013 diag::note_deleted_special_member_class_subobject) 9014 << getEffectiveCSM() << ParentClass << /*IsField*/true 9015 << FD << 4 << /*IsDtorCallInCtor*/false << /*IsObjCPtr*/true; 9016 } 9017 9018 return true; 9019} 9020 9021/// Check whether we should delete a special member function due to the class 9022/// having a particular direct or virtual base class. 9023bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) { 9024 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl(); 9025 // If program is correct, BaseClass cannot be null, but if it is, the error 9026 // must be reported elsewhere. 9027 if (!BaseClass) 9028 return false; 9029 // If we have an inheriting constructor, check whether we're calling an 9030 // inherited constructor instead of a default constructor. 9031 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); 9032 if (auto *BaseCtor = SMOR.getMethod()) { 9033 // Note that we do not check access along this path; other than that, 9034 // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false); 9035 // FIXME: Check that the base has a usable destructor! Sink this into 9036 // shouldDeleteForClassSubobject. 9037 if (BaseCtor->isDeleted() && Diagnose) { 9038 S.Diag(Base->getBeginLoc(), 9039 diag::note_deleted_special_member_class_subobject) 9040 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false 9041 << Base->getType() << /*Deleted*/ 1 << /*IsDtorCallInCtor*/ false 9042 << /*IsObjCPtr*/false; 9043 S.NoteDeletedFunction(BaseCtor); 9044 } 9045 return BaseCtor->isDeleted(); 9046 } 9047 return shouldDeleteForClassSubobject(BaseClass, Base, 0); 9048} 9049 9050/// Check whether we should delete a special member function due to the class 9051/// having a particular non-static data member. 9052bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) { 9053 QualType FieldType = S.Context.getBaseElementType(FD->getType()); 9054 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl(); 9055 9056 if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType)) 9057 return true; 9058 9059 if (CSM == Sema::CXXDefaultConstructor) { 9060 // For a default constructor, all references must be initialized in-class 9061 // and, if a union, it must have a non-const member. 9062 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) { 9063 if (Diagnose) 9064 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) 9065 << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0; 9066 return true; 9067 } 9068 // C++11 [class.ctor]p5: any non-variant non-static data member of 9069 // const-qualified type (or array thereof) with no 9070 // brace-or-equal-initializer does not have a user-provided default 9071 // constructor. 9072 if (!inUnion() && FieldType.isConstQualified() && 9073 !FD->hasInClassInitializer() && 9074 (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) { 9075 if (Diagnose) 9076 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) 9077 << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1; 9078 return true; 9079 } 9080 9081 if (inUnion() && !FieldType.isConstQualified()) 9082 AllFieldsAreConst = false; 9083 } else if (CSM == Sema::CXXCopyConstructor) { 9084 // For a copy constructor, data members must not be of rvalue reference 9085 // type. 9086 if (FieldType->isRValueReferenceType()) { 9087 if (Diagnose) 9088 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference) 9089 << MD->getParent() << FD << FieldType; 9090 return true; 9091 } 9092 } else if (IsAssignment) { 9093 // For an assignment operator, data members must not be of reference type. 9094 if (FieldType->isReferenceType()) { 9095 if (Diagnose) 9096 S.Diag(FD->getLocation(), diag::note_deleted_assign_field) 9097 << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0; 9098 return true; 9099 } 9100 if (!FieldRecord && FieldType.isConstQualified()) { 9101 // C++11 [class.copy]p23: 9102 // -- a non-static data member of const non-class type (or array thereof) 9103 if (Diagnose) 9104 S.Diag(FD->getLocation(), diag::note_deleted_assign_field) 9105 << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1; 9106 return true; 9107 } 9108 } 9109 9110 if (FieldRecord) { 9111 // Some additional restrictions exist on the variant members. 9112 if (!inUnion() && FieldRecord->isUnion() && 9113 FieldRecord->isAnonymousStructOrUnion()) { 9114 bool AllVariantFieldsAreConst = true; 9115 9116 // FIXME: Handle anonymous unions declared within anonymous unions. 9117 for (auto *UI : FieldRecord->fields()) { 9118 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType()); 9119 9120 if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType)) 9121 return true; 9122 9123 if (!UnionFieldType.isConstQualified()) 9124 AllVariantFieldsAreConst = false; 9125 9126 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl(); 9127 if (UnionFieldRecord && 9128 shouldDeleteForClassSubobject(UnionFieldRecord, UI, 9129 UnionFieldType.getCVRQualifiers())) 9130 return true; 9131 } 9132 9133 // At least one member in each anonymous union must be non-const 9134 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst && 9135 !FieldRecord->field_empty()) { 9136 if (Diagnose) 9137 S.Diag(FieldRecord->getLocation(), 9138 diag::note_deleted_default_ctor_all_const) 9139 << !!ICI << MD->getParent() << /*anonymous union*/1; 9140 return true; 9141 } 9142 9143 // Don't check the implicit member of the anonymous union type. 9144 // This is technically non-conformant, but sanity demands it. 9145 return false; 9146 } 9147 9148 if (shouldDeleteForClassSubobject(FieldRecord, FD, 9149 FieldType.getCVRQualifiers())) 9150 return true; 9151 } 9152 9153 return false; 9154} 9155 9156/// C++11 [class.ctor] p5: 9157/// A defaulted default constructor for a class X is defined as deleted if 9158/// X is a union and all of its variant members are of const-qualified type. 9159bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() { 9160 // This is a silly definition, because it gives an empty union a deleted 9161 // default constructor. Don't do that. 9162 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) { 9163 bool AnyFields = false; 9164 for (auto *F : MD->getParent()->fields()) 9165 if ((AnyFields = !F->isUnnamedBitfield())) 9166 break; 9167 if (!AnyFields) 9168 return false; 9169 if (Diagnose) 9170 S.Diag(MD->getParent()->getLocation(), 9171 diag::note_deleted_default_ctor_all_const) 9172 << !!ICI << MD->getParent() << /*not anonymous union*/0; 9173 return true; 9174 } 9175 return false; 9176} 9177 9178/// Determine whether a defaulted special member function should be defined as 9179/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11, 9180/// C++11 [class.copy]p23, and C++11 [class.dtor]p5. 9181bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM, 9182 InheritedConstructorInfo *ICI, 9183 bool Diagnose) { 9184 if (MD->isInvalidDecl()) 9185 return false; 9186 CXXRecordDecl *RD = MD->getParent(); 9187 assert(!RD->isDependentType() && "do deletion after instantiation")(static_cast<void> (0)); 9188 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl()) 9189 return false; 9190 9191 // C++11 [expr.lambda.prim]p19: 9192 // The closure type associated with a lambda-expression has a 9193 // deleted (8.4.3) default constructor and a deleted copy 9194 // assignment operator. 9195 // C++2a adds back these operators if the lambda has no lambda-capture. 9196 if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() && 9197 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) { 9198 if (Diagnose) 9199 Diag(RD->getLocation(), diag::note_lambda_decl); 9200 return true; 9201 } 9202 9203 // For an anonymous struct or union, the copy and assignment special members 9204 // will never be used, so skip the check. For an anonymous union declared at 9205 // namespace scope, the constructor and destructor are used. 9206 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor && 9207 RD->isAnonymousStructOrUnion()) 9208 return false; 9209 9210 // C++11 [class.copy]p7, p18: 9211 // If the class definition declares a move constructor or move assignment 9212 // operator, an implicitly declared copy constructor or copy assignment 9213 // operator is defined as deleted. 9214 if (MD->isImplicit() && 9215 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) { 9216 CXXMethodDecl *UserDeclaredMove = nullptr; 9217 9218 // In Microsoft mode up to MSVC 2013, a user-declared move only causes the 9219 // deletion of the corresponding copy operation, not both copy operations. 9220 // MSVC 2015 has adopted the standards conforming behavior. 9221 bool DeletesOnlyMatchingCopy = 9222 getLangOpts().MSVCCompat && 9223 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015); 9224 9225 if (RD->hasUserDeclaredMoveConstructor() && 9226 (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) { 9227 if (!Diagnose) return true; 9228 9229 // Find any user-declared move constructor. 9230 for (auto *I : RD->ctors()) { 9231 if (I->isMoveConstructor()) { 9232 UserDeclaredMove = I; 9233 break; 9234 } 9235 } 9236 assert(UserDeclaredMove)(static_cast<void> (0)); 9237 } else if (RD->hasUserDeclaredMoveAssignment() && 9238 (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) { 9239 if (!Diagnose) return true; 9240 9241 // Find any user-declared move assignment operator. 9242 for (auto *I : RD->methods()) { 9243 if (I->isMoveAssignmentOperator()) { 9244 UserDeclaredMove = I; 9245 break; 9246 } 9247 } 9248 assert(UserDeclaredMove)(static_cast<void> (0)); 9249 } 9250 9251 if (UserDeclaredMove) { 9252 Diag(UserDeclaredMove->getLocation(), 9253 diag::note_deleted_copy_user_declared_move) 9254 << (CSM == CXXCopyAssignment) << RD 9255 << UserDeclaredMove->isMoveAssignmentOperator(); 9256 return true; 9257 } 9258 } 9259 9260 // Do access control from the special member function 9261 ContextRAII MethodContext(*this, MD); 9262 9263 // C++11 [class.dtor]p5: 9264 // -- for a virtual destructor, lookup of the non-array deallocation function 9265 // results in an ambiguity or in a function that is deleted or inaccessible 9266 if (CSM == CXXDestructor && MD->isVirtual()) { 9267 FunctionDecl *OperatorDelete = nullptr; 9268 DeclarationName Name = 9269 Context.DeclarationNames.getCXXOperatorName(OO_Delete); 9270 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name, 9271 OperatorDelete, /*Diagnose*/false)) { 9272 if (Diagnose) 9273 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete); 9274 return true; 9275 } 9276 } 9277 9278 SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose); 9279 9280 // Per DR1611, do not consider virtual bases of constructors of abstract 9281 // classes, since we are not going to construct them. 9282 // Per DR1658, do not consider virtual bases of destructors of abstract 9283 // classes either. 9284 // Per DR2180, for assignment operators we only assign (and thus only 9285 // consider) direct bases. 9286 if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases 9287 : SMI.VisitPotentiallyConstructedBases)) 9288 return true; 9289 9290 if (SMI.shouldDeleteForAllConstMembers()) 9291 return true; 9292 9293 if (getLangOpts().CUDA) { 9294 // We should delete the special member in CUDA mode if target inference 9295 // failed. 9296 // For inherited constructors (non-null ICI), CSM may be passed so that MD 9297 // is treated as certain special member, which may not reflect what special 9298 // member MD really is. However inferCUDATargetForImplicitSpecialMember 9299 // expects CSM to match MD, therefore recalculate CSM. 9300 assert(ICI || CSM == getSpecialMember(MD))(static_cast<void> (0)); 9301 auto RealCSM = CSM; 9302 if (ICI) 9303 RealCSM = getSpecialMember(MD); 9304 9305 return inferCUDATargetForImplicitSpecialMember(RD, RealCSM, MD, 9306 SMI.ConstArg, Diagnose); 9307 } 9308 9309 return false; 9310} 9311 9312void Sema::DiagnoseDeletedDefaultedFunction(FunctionDecl *FD) { 9313 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); 9314 assert(DFK && "not a defaultable function")(static_cast<void> (0)); 9315 assert(FD->isDefaulted() && FD->isDeleted() && "not defaulted and deleted")(static_cast<void> (0)); 9316 9317 if (DFK.isSpecialMember()) { 9318 ShouldDeleteSpecialMember(cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), 9319 nullptr, /*Diagnose=*/true); 9320 } else { 9321 DefaultedComparisonAnalyzer( 9322 *this, cast<CXXRecordDecl>(FD->getLexicalDeclContext()), FD, 9323 DFK.asComparison(), DefaultedComparisonAnalyzer::ExplainDeleted) 9324 .visit(); 9325 } 9326} 9327 9328/// Perform lookup for a special member of the specified kind, and determine 9329/// whether it is trivial. If the triviality can be determined without the 9330/// lookup, skip it. This is intended for use when determining whether a 9331/// special member of a containing object is trivial, and thus does not ever 9332/// perform overload resolution for default constructors. 9333/// 9334/// If \p Selected is not \c NULL, \c *Selected will be filled in with the 9335/// member that was most likely to be intended to be trivial, if any. 9336/// 9337/// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to 9338/// determine whether the special member is trivial. 9339static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD, 9340 Sema::CXXSpecialMember CSM, unsigned Quals, 9341 bool ConstRHS, 9342 Sema::TrivialABIHandling TAH, 9343 CXXMethodDecl **Selected) { 9344 if (Selected) 9345 *Selected = nullptr; 9346 9347 switch (CSM) { 9348 case Sema::CXXInvalid: 9349 llvm_unreachable("not a special member")__builtin_unreachable(); 9350 9351 case Sema::CXXDefaultConstructor: 9352 // C++11 [class.ctor]p5: 9353 // A default constructor is trivial if: 9354 // - all the [direct subobjects] have trivial default constructors 9355 // 9356 // Note, no overload resolution is performed in this case. 9357 if (RD->hasTrivialDefaultConstructor()) 9358 return true; 9359 9360 if (Selected) { 9361 // If there's a default constructor which could have been trivial, dig it 9362 // out. Otherwise, if there's any user-provided default constructor, point 9363 // to that as an example of why there's not a trivial one. 9364 CXXConstructorDecl *DefCtor = nullptr; 9365 if (RD->needsImplicitDefaultConstructor()) 9366 S.DeclareImplicitDefaultConstructor(RD); 9367 for (auto *CI : RD->ctors()) { 9368 if (!CI->isDefaultConstructor()) 9369 continue; 9370 DefCtor = CI; 9371 if (!DefCtor->isUserProvided()) 9372 break; 9373 } 9374 9375 *Selected = DefCtor; 9376 } 9377 9378 return false; 9379 9380 case Sema::CXXDestructor: 9381 // C++11 [class.dtor]p5: 9382 // A destructor is trivial if: 9383 // - all the direct [subobjects] have trivial destructors 9384 if (RD->hasTrivialDestructor() || 9385 (TAH == Sema::TAH_ConsiderTrivialABI && 9386 RD->hasTrivialDestructorForCall())) 9387 return true; 9388 9389 if (Selected) { 9390 if (RD->needsImplicitDestructor()) 9391 S.DeclareImplicitDestructor(RD); 9392 *Selected = RD->getDestructor(); 9393 } 9394 9395 return false; 9396 9397 case Sema::CXXCopyConstructor: 9398 // C++11 [class.copy]p12: 9399 // A copy constructor is trivial if: 9400 // - the constructor selected to copy each direct [subobject] is trivial 9401 if (RD->hasTrivialCopyConstructor() || 9402 (TAH == Sema::TAH_ConsiderTrivialABI && 9403 RD->hasTrivialCopyConstructorForCall())) { 9404 if (Quals == Qualifiers::Const) 9405 // We must either select the trivial copy constructor or reach an 9406 // ambiguity; no need to actually perform overload resolution. 9407 return true; 9408 } else if (!Selected) { 9409 return false; 9410 } 9411 // In C++98, we are not supposed to perform overload resolution here, but we 9412 // treat that as a language defect, as suggested on cxx-abi-dev, to treat 9413 // cases like B as having a non-trivial copy constructor: 9414 // struct A { template<typename T> A(T&); }; 9415 // struct B { mutable A a; }; 9416 goto NeedOverloadResolution; 9417 9418 case Sema::CXXCopyAssignment: 9419 // C++11 [class.copy]p25: 9420 // A copy assignment operator is trivial if: 9421 // - the assignment operator selected to copy each direct [subobject] is 9422 // trivial 9423 if (RD->hasTrivialCopyAssignment()) { 9424 if (Quals == Qualifiers::Const) 9425 return true; 9426 } else if (!Selected) { 9427 return false; 9428 } 9429 // In C++98, we are not supposed to perform overload resolution here, but we 9430 // treat that as a language defect. 9431 goto NeedOverloadResolution; 9432 9433 case Sema::CXXMoveConstructor: 9434 case Sema::CXXMoveAssignment: 9435 NeedOverloadResolution: 9436 Sema::SpecialMemberOverloadResult SMOR = 9437 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS); 9438 9439 // The standard doesn't describe how to behave if the lookup is ambiguous. 9440 // We treat it as not making the member non-trivial, just like the standard 9441 // mandates for the default constructor. This should rarely matter, because 9442 // the member will also be deleted. 9443 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) 9444 return true; 9445 9446 if (!SMOR.getMethod()) { 9447 assert(SMOR.getKind() ==(static_cast<void> (0)) 9448 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)(static_cast<void> (0)); 9449 return false; 9450 } 9451 9452 // We deliberately don't check if we found a deleted special member. We're 9453 // not supposed to! 9454 if (Selected) 9455 *Selected = SMOR.getMethod(); 9456 9457 if (TAH == Sema::TAH_ConsiderTrivialABI && 9458 (CSM == Sema::CXXCopyConstructor || CSM == Sema::CXXMoveConstructor)) 9459 return SMOR.getMethod()->isTrivialForCall(); 9460 return SMOR.getMethod()->isTrivial(); 9461 } 9462 9463 llvm_unreachable("unknown special method kind")__builtin_unreachable(); 9464} 9465 9466static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) { 9467 for (auto *CI : RD->ctors()) 9468 if (!CI->isImplicit()) 9469 return CI; 9470 9471 // Look for constructor templates. 9472 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter; 9473 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) { 9474 if (CXXConstructorDecl *CD = 9475 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl())) 9476 return CD; 9477 } 9478 9479 return nullptr; 9480} 9481 9482/// The kind of subobject we are checking for triviality. The values of this 9483/// enumeration are used in diagnostics. 9484enum TrivialSubobjectKind { 9485 /// The subobject is a base class. 9486 TSK_BaseClass, 9487 /// The subobject is a non-static data member. 9488 TSK_Field, 9489 /// The object is actually the complete object. 9490 TSK_CompleteObject 9491}; 9492 9493/// Check whether the special member selected for a given type would be trivial. 9494static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc, 9495 QualType SubType, bool ConstRHS, 9496 Sema::CXXSpecialMember CSM, 9497 TrivialSubobjectKind Kind, 9498 Sema::TrivialABIHandling TAH, bool Diagnose) { 9499 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl(); 9500 if (!SubRD) 9501 return true; 9502 9503 CXXMethodDecl *Selected; 9504 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(), 9505 ConstRHS, TAH, Diagnose ? &Selected : nullptr)) 9506 return true; 9507 9508 if (Diagnose) { 9509 if (ConstRHS) 9510 SubType.addConst(); 9511 9512 if (!Selected && CSM == Sema::CXXDefaultConstructor) { 9513 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor) 9514 << Kind << SubType.getUnqualifiedType(); 9515 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD)) 9516 S.Diag(CD->getLocation(), diag::note_user_declared_ctor); 9517 } else if (!Selected) 9518 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy) 9519 << Kind << SubType.getUnqualifiedType() << CSM << SubType; 9520 else if (Selected->isUserProvided()) { 9521 if (Kind == TSK_CompleteObject) 9522 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided) 9523 << Kind << SubType.getUnqualifiedType() << CSM; 9524 else { 9525 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided) 9526 << Kind << SubType.getUnqualifiedType() << CSM; 9527 S.Diag(Selected->getLocation(), diag::note_declared_at); 9528 } 9529 } else { 9530 if (Kind != TSK_CompleteObject) 9531 S.Diag(SubobjLoc, diag::note_nontrivial_subobject) 9532 << Kind << SubType.getUnqualifiedType() << CSM; 9533 9534 // Explain why the defaulted or deleted special member isn't trivial. 9535 S.SpecialMemberIsTrivial(Selected, CSM, Sema::TAH_IgnoreTrivialABI, 9536 Diagnose); 9537 } 9538 } 9539 9540 return false; 9541} 9542 9543/// Check whether the members of a class type allow a special member to be 9544/// trivial. 9545static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD, 9546 Sema::CXXSpecialMember CSM, 9547 bool ConstArg, 9548 Sema::TrivialABIHandling TAH, 9549 bool Diagnose) { 9550 for (const auto *FI : RD->fields()) { 9551 if (FI->isInvalidDecl() || FI->isUnnamedBitfield()) 9552 continue; 9553 9554 QualType FieldType = S.Context.getBaseElementType(FI->getType()); 9555 9556 // Pretend anonymous struct or union members are members of this class. 9557 if (FI->isAnonymousStructOrUnion()) { 9558 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(), 9559 CSM, ConstArg, TAH, Diagnose)) 9560 return false; 9561 continue; 9562 } 9563 9564 // C++11 [class.ctor]p5: 9565 // A default constructor is trivial if [...] 9566 // -- no non-static data member of its class has a 9567 // brace-or-equal-initializer 9568 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) { 9569 if (Diagnose) 9570 S.Diag(FI->getLocation(), diag::note_nontrivial_default_member_init) 9571 << FI; 9572 return false; 9573 } 9574 9575 // Objective C ARC 4.3.5: 9576 // [...] nontrivally ownership-qualified types are [...] not trivially 9577 // default constructible, copy constructible, move constructible, copy 9578 // assignable, move assignable, or destructible [...] 9579 if (FieldType.hasNonTrivialObjCLifetime()) { 9580 if (Diagnose) 9581 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership) 9582 << RD << FieldType.getObjCLifetime(); 9583 return false; 9584 } 9585 9586 bool ConstRHS = ConstArg && !FI->isMutable(); 9587 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS, 9588 CSM, TSK_Field, TAH, Diagnose)) 9589 return false; 9590 } 9591 9592 return true; 9593} 9594 9595/// Diagnose why the specified class does not have a trivial special member of 9596/// the given kind. 9597void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) { 9598 QualType Ty = Context.getRecordType(RD); 9599 9600 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment); 9601 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM, 9602 TSK_CompleteObject, TAH_IgnoreTrivialABI, 9603 /*Diagnose*/true); 9604} 9605 9606/// Determine whether a defaulted or deleted special member function is trivial, 9607/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12, 9608/// C++11 [class.copy]p25, and C++11 [class.dtor]p5. 9609bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM, 9610 TrivialABIHandling TAH, bool Diagnose) { 9611 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough")(static_cast<void> (0)); 9612 9613 CXXRecordDecl *RD = MD->getParent(); 9614 9615 bool ConstArg = false; 9616 9617 // C++11 [class.copy]p12, p25: [DR1593] 9618 // A [special member] is trivial if [...] its parameter-type-list is 9619 // equivalent to the parameter-type-list of an implicit declaration [...] 9620 switch (CSM) { 9621 case CXXDefaultConstructor: 9622 case CXXDestructor: 9623 // Trivial default constructors and destructors cannot have parameters. 9624 break; 9625 9626 case CXXCopyConstructor: 9627 case CXXCopyAssignment: { 9628 // Trivial copy operations always have const, non-volatile parameter types. 9629 ConstArg = true; 9630 const ParmVarDecl *Param0 = MD->getParamDecl(0); 9631 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>(); 9632 if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) { 9633 if (Diagnose) 9634 Diag(Param0->getLocation(), diag::note_nontrivial_param_type) 9635 << Param0->getSourceRange() << Param0->getType() 9636 << Context.getLValueReferenceType( 9637 Context.getRecordType(RD).withConst()); 9638 return false; 9639 } 9640 break; 9641 } 9642 9643 case CXXMoveConstructor: 9644 case CXXMoveAssignment: { 9645 // Trivial move operations always have non-cv-qualified parameters. 9646 const ParmVarDecl *Param0 = MD->getParamDecl(0); 9647 const RValueReferenceType *RT = 9648 Param0->getType()->getAs<RValueReferenceType>(); 9649 if (!RT || RT->getPointeeType().getCVRQualifiers()) { 9650 if (Diagnose) 9651 Diag(Param0->getLocation(), diag::note_nontrivial_param_type) 9652 << Param0->getSourceRange() << Param0->getType() 9653 << Context.getRValueReferenceType(Context.getRecordType(RD)); 9654 return false; 9655 } 9656 break; 9657 } 9658 9659 case CXXInvalid: 9660 llvm_unreachable("not a special member")__builtin_unreachable(); 9661 } 9662 9663 if (MD->getMinRequiredArguments() < MD->getNumParams()) { 9664 if (Diagnose) 9665 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(), 9666 diag::note_nontrivial_default_arg) 9667 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange(); 9668 return false; 9669 } 9670 if (MD->isVariadic()) { 9671 if (Diagnose) 9672 Diag(MD->getLocation(), diag::note_nontrivial_variadic); 9673 return false; 9674 } 9675 9676 // C++11 [class.ctor]p5, C++11 [class.dtor]p5: 9677 // A copy/move [constructor or assignment operator] is trivial if 9678 // -- the [member] selected to copy/move each direct base class subobject 9679 // is trivial 9680 // 9681 // C++11 [class.copy]p12, C++11 [class.copy]p25: 9682 // A [default constructor or destructor] is trivial if 9683 // -- all the direct base classes have trivial [default constructors or 9684 // destructors] 9685 for (const auto &BI : RD->bases()) 9686 if (!checkTrivialSubobjectCall(*this, BI.getBeginLoc(), BI.getType(), 9687 ConstArg, CSM, TSK_BaseClass, TAH, Diagnose)) 9688 return false; 9689 9690 // C++11 [class.ctor]p5, C++11 [class.dtor]p5: 9691 // A copy/move [constructor or assignment operator] for a class X is 9692 // trivial if 9693 // -- for each non-static data member of X that is of class type (or array 9694 // thereof), the constructor selected to copy/move that member is 9695 // trivial 9696 // 9697 // C++11 [class.copy]p12, C++11 [class.copy]p25: 9698 // A [default constructor or destructor] is trivial if 9699 // -- for all of the non-static data members of its class that are of class 9700 // type (or array thereof), each such class has a trivial [default 9701 // constructor or destructor] 9702 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, TAH, Diagnose)) 9703 return false; 9704 9705 // C++11 [class.dtor]p5: 9706 // A destructor is trivial if [...] 9707 // -- the destructor is not virtual 9708 if (CSM == CXXDestructor && MD->isVirtual()) { 9709 if (Diagnose) 9710 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD; 9711 return false; 9712 } 9713 9714 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: 9715 // A [special member] for class X is trivial if [...] 9716 // -- class X has no virtual functions and no virtual base classes 9717 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) { 9718 if (!Diagnose) 9719 return false; 9720 9721 if (RD->getNumVBases()) { 9722 // Check for virtual bases. We already know that the corresponding 9723 // member in all bases is trivial, so vbases must all be direct. 9724 CXXBaseSpecifier &BS = *RD->vbases_begin(); 9725 assert(BS.isVirtual())(static_cast<void> (0)); 9726 Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1; 9727 return false; 9728 } 9729 9730 // Must have a virtual method. 9731 for (const auto *MI : RD->methods()) { 9732 if (MI->isVirtual()) { 9733 SourceLocation MLoc = MI->getBeginLoc(); 9734 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0; 9735 return false; 9736 } 9737 } 9738 9739 llvm_unreachable("dynamic class with no vbases and no virtual functions")__builtin_unreachable(); 9740 } 9741 9742 // Looks like it's trivial! 9743 return true; 9744} 9745 9746namespace { 9747struct FindHiddenVirtualMethod { 9748 Sema *S; 9749 CXXMethodDecl *Method; 9750 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods; 9751 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 9752 9753private: 9754 /// Check whether any most overridden method from MD in Methods 9755 static bool CheckMostOverridenMethods( 9756 const CXXMethodDecl *MD, 9757 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) { 9758 if (MD->size_overridden_methods() == 0) 9759 return Methods.count(MD->getCanonicalDecl()); 9760 for (const CXXMethodDecl *O : MD->overridden_methods()) 9761 if (CheckMostOverridenMethods(O, Methods)) 9762 return true; 9763 return false; 9764 } 9765 9766public: 9767 /// Member lookup function that determines whether a given C++ 9768 /// method overloads virtual methods in a base class without overriding any, 9769 /// to be used with CXXRecordDecl::lookupInBases(). 9770 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { 9771 RecordDecl *BaseRecord = 9772 Specifier->getType()->castAs<RecordType>()->getDecl(); 9773 9774 DeclarationName Name = Method->getDeclName(); 9775 assert(Name.getNameKind() == DeclarationName::Identifier)(static_cast<void> (0)); 9776 9777 bool foundSameNameMethod = false; 9778 SmallVector<CXXMethodDecl *, 8> overloadedMethods; 9779 for (Path.Decls = BaseRecord->lookup(Name).begin(); 9780 Path.Decls != DeclContext::lookup_iterator(); ++Path.Decls) { 9781 NamedDecl *D = *Path.Decls; 9782 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 9783 MD = MD->getCanonicalDecl(); 9784 foundSameNameMethod = true; 9785 // Interested only in hidden virtual methods. 9786 if (!MD->isVirtual()) 9787 continue; 9788 // If the method we are checking overrides a method from its base 9789 // don't warn about the other overloaded methods. Clang deviates from 9790 // GCC by only diagnosing overloads of inherited virtual functions that 9791 // do not override any other virtual functions in the base. GCC's 9792 // -Woverloaded-virtual diagnoses any derived function hiding a virtual 9793 // function from a base class. These cases may be better served by a 9794 // warning (not specific to virtual functions) on call sites when the 9795 // call would select a different function from the base class, were it 9796 // visible. 9797 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example. 9798 if (!S->IsOverload(Method, MD, false)) 9799 return true; 9800 // Collect the overload only if its hidden. 9801 if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods)) 9802 overloadedMethods.push_back(MD); 9803 } 9804 } 9805 9806 if (foundSameNameMethod) 9807 OverloadedMethods.append(overloadedMethods.begin(), 9808 overloadedMethods.end()); 9809 return foundSameNameMethod; 9810 } 9811}; 9812} // end anonymous namespace 9813 9814/// Add the most overriden methods from MD to Methods 9815static void AddMostOverridenMethods(const CXXMethodDecl *MD, 9816 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) { 9817 if (MD->size_overridden_methods() == 0) 9818 Methods.insert(MD->getCanonicalDecl()); 9819 else 9820 for (const CXXMethodDecl *O : MD->overridden_methods()) 9821 AddMostOverridenMethods(O, Methods); 9822} 9823 9824/// Check if a method overloads virtual methods in a base class without 9825/// overriding any. 9826void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD, 9827 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { 9828 if (!MD->getDeclName().isIdentifier()) 9829 return; 9830 9831 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases. 9832 /*bool RecordPaths=*/false, 9833 /*bool DetectVirtual=*/false); 9834 FindHiddenVirtualMethod FHVM; 9835 FHVM.Method = MD; 9836 FHVM.S = this; 9837 9838 // Keep the base methods that were overridden or introduced in the subclass 9839 // by 'using' in a set. A base method not in this set is hidden. 9840 CXXRecordDecl *DC = MD->getParent(); 9841 DeclContext::lookup_result R = DC->lookup(MD->getDeclName()); 9842 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) { 9843 NamedDecl *ND = *I; 9844 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I)) 9845 ND = shad->getTargetDecl(); 9846 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) 9847 AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods); 9848 } 9849 9850 if (DC->lookupInBases(FHVM, Paths)) 9851 OverloadedMethods = FHVM.OverloadedMethods; 9852} 9853 9854void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD, 9855 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { 9856 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) { 9857 CXXMethodDecl *overloadedMD = OverloadedMethods[i]; 9858 PartialDiagnostic PD = PDiag( 9859 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD; 9860 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType()); 9861 Diag(overloadedMD->getLocation(), PD); 9862 } 9863} 9864 9865/// Diagnose methods which overload virtual methods in a base class 9866/// without overriding any. 9867void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) { 9868 if (MD->isInvalidDecl()) 9869 return; 9870 9871 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation())) 9872 return; 9873 9874 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 9875 FindHiddenVirtualMethods(MD, OverloadedMethods); 9876 if (!OverloadedMethods.empty()) { 9877 Diag(MD->getLocation(), diag::warn_overloaded_virtual) 9878 << MD << (OverloadedMethods.size() > 1); 9879 9880 NoteHiddenVirtualMethods(MD, OverloadedMethods); 9881 } 9882} 9883 9884void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) { 9885 auto PrintDiagAndRemoveAttr = [&](unsigned N) { 9886 // No diagnostics if this is a template instantiation. 9887 if (!isTemplateInstantiation(RD.getTemplateSpecializationKind())) { 9888 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(), 9889 diag::ext_cannot_use_trivial_abi) << &RD; 9890 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(), 9891 diag::note_cannot_use_trivial_abi_reason) << &RD << N; 9892 } 9893 RD.dropAttr<TrivialABIAttr>(); 9894 }; 9895 9896 // Ill-formed if the copy and move constructors are deleted. 9897 auto HasNonDeletedCopyOrMoveConstructor = [&]() { 9898 // If the type is dependent, then assume it might have 9899 // implicit copy or move ctor because we won't know yet at this point. 9900 if (RD.isDependentType()) 9901 return true; 9902 if (RD.needsImplicitCopyConstructor() && 9903 !RD.defaultedCopyConstructorIsDeleted()) 9904 return true; 9905 if (RD.needsImplicitMoveConstructor() && 9906 !RD.defaultedMoveConstructorIsDeleted()) 9907 return true; 9908 for (const CXXConstructorDecl *CD : RD.ctors()) 9909 if (CD->isCopyOrMoveConstructor() && !CD->isDeleted()) 9910 return true; 9911 return false; 9912 }; 9913 9914 if (!HasNonDeletedCopyOrMoveConstructor()) { 9915 PrintDiagAndRemoveAttr(0); 9916 return; 9917 } 9918 9919 // Ill-formed if the struct has virtual functions. 9920 if (RD.isPolymorphic()) { 9921 PrintDiagAndRemoveAttr(1); 9922 return; 9923 } 9924 9925 for (const auto &B : RD.bases()) { 9926 // Ill-formed if the base class is non-trivial for the purpose of calls or a 9927 // virtual base. 9928 if (!B.getType()->isDependentType() && 9929 !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) { 9930 PrintDiagAndRemoveAttr(2); 9931 return; 9932 } 9933 9934 if (B.isVirtual()) { 9935 PrintDiagAndRemoveAttr(3); 9936 return; 9937 } 9938 } 9939 9940 for (const auto *FD : RD.fields()) { 9941 // Ill-formed if the field is an ObjectiveC pointer or of a type that is 9942 // non-trivial for the purpose of calls. 9943 QualType FT = FD->getType(); 9944 if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) { 9945 PrintDiagAndRemoveAttr(4); 9946 return; 9947 } 9948 9949 if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>()) 9950 if (!RT->isDependentType() && 9951 !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) { 9952 PrintDiagAndRemoveAttr(5); 9953 return; 9954 } 9955 } 9956} 9957 9958void Sema::ActOnFinishCXXMemberSpecification( 9959 Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac, 9960 SourceLocation RBrac, const ParsedAttributesView &AttrList) { 9961 if (!TagDecl) 9962 return; 9963 9964 AdjustDeclIfTemplate(TagDecl); 9965 9966 for (const ParsedAttr &AL : AttrList) { 9967 if (AL.getKind() != ParsedAttr::AT_Visibility) 9968 continue; 9969 AL.setInvalid(); 9970 Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) << AL; 9971 } 9972 9973 ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef( 9974 // strict aliasing violation! 9975 reinterpret_cast<Decl**>(FieldCollector->getCurFields()), 9976 FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList); 9977 9978 CheckCompletedCXXClass(S, cast<CXXRecordDecl>(TagDecl)); 9979} 9980 9981/// Find the equality comparison functions that should be implicitly declared 9982/// in a given class definition, per C++2a [class.compare.default]p3. 9983static void findImplicitlyDeclaredEqualityComparisons( 9984 ASTContext &Ctx, CXXRecordDecl *RD, 9985 llvm::SmallVectorImpl<FunctionDecl *> &Spaceships) { 9986 DeclarationName EqEq = Ctx.DeclarationNames.getCXXOperatorName(OO_EqualEqual); 9987 if (!RD->lookup(EqEq).empty()) 9988 // Member operator== explicitly declared: no implicit operator==s. 9989 return; 9990 9991 // Traverse friends looking for an '==' or a '<=>'. 9992 for (FriendDecl *Friend : RD->friends()) { 9993 FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Friend->getFriendDecl()); 9994 if (!FD) continue; 9995 9996 if (FD->getOverloadedOperator() == OO_EqualEqual) { 9997 // Friend operator== explicitly declared: no implicit operator==s. 9998 Spaceships.clear(); 9999 return; 10000 } 10001 10002 if (FD->getOverloadedOperator() == OO_Spaceship && 10003 FD->isExplicitlyDefaulted()) 10004 Spaceships.push_back(FD); 10005 } 10006 10007 // Look for members named 'operator<=>'. 10008 DeclarationName Cmp = Ctx.DeclarationNames.getCXXOperatorName(OO_Spaceship); 10009 for (NamedDecl *ND : RD->lookup(Cmp)) { 10010 // Note that we could find a non-function here (either a function template 10011 // or a using-declaration). Neither case results in an implicit 10012 // 'operator=='. 10013 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 10014 if (FD->isExplicitlyDefaulted()) 10015 Spaceships.push_back(FD); 10016 } 10017} 10018 10019/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared 10020/// special functions, such as the default constructor, copy 10021/// constructor, or destructor, to the given C++ class (C++ 10022/// [special]p1). This routine can only be executed just before the 10023/// definition of the class is complete. 10024void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { 10025 // Don't add implicit special members to templated classes. 10026 // FIXME: This means unqualified lookups for 'operator=' within a class 10027 // template don't work properly. 10028 if (!ClassDecl->isDependentType()) { 10029 if (ClassDecl->needsImplicitDefaultConstructor()) { 10030 ++getASTContext().NumImplicitDefaultConstructors; 10031 10032 if (ClassDecl->hasInheritedConstructor()) 10033 DeclareImplicitDefaultConstructor(ClassDecl); 10034 } 10035 10036 if (ClassDecl->needsImplicitCopyConstructor()) { 10037 ++getASTContext().NumImplicitCopyConstructors; 10038 10039 // If the properties or semantics of the copy constructor couldn't be 10040 // determined while the class was being declared, force a declaration 10041 // of it now. 10042 if (ClassDecl->needsOverloadResolutionForCopyConstructor() || 10043 ClassDecl->hasInheritedConstructor()) 10044 DeclareImplicitCopyConstructor(ClassDecl); 10045 // For the MS ABI we need to know whether the copy ctor is deleted. A 10046 // prerequisite for deleting the implicit copy ctor is that the class has 10047 // a move ctor or move assignment that is either user-declared or whose 10048 // semantics are inherited from a subobject. FIXME: We should provide a 10049 // more direct way for CodeGen to ask whether the constructor was deleted. 10050 else if (Context.getTargetInfo().getCXXABI().isMicrosoft() && 10051 (ClassDecl->hasUserDeclaredMoveConstructor() || 10052 ClassDecl->needsOverloadResolutionForMoveConstructor() || 10053 ClassDecl->hasUserDeclaredMoveAssignment() || 10054 ClassDecl->needsOverloadResolutionForMoveAssignment())) 10055 DeclareImplicitCopyConstructor(ClassDecl); 10056 } 10057 10058 if (getLangOpts().CPlusPlus11 && 10059 ClassDecl->needsImplicitMoveConstructor()) { 10060 ++getASTContext().NumImplicitMoveConstructors; 10061 10062 if (ClassDecl->needsOverloadResolutionForMoveConstructor() || 10063 ClassDecl->hasInheritedConstructor()) 10064 DeclareImplicitMoveConstructor(ClassDecl); 10065 } 10066 10067 if (ClassDecl->needsImplicitCopyAssignment()) { 10068 ++getASTContext().NumImplicitCopyAssignmentOperators; 10069 10070 // If we have a dynamic class, then the copy assignment operator may be 10071 // virtual, so we have to declare it immediately. This ensures that, e.g., 10072 // it shows up in the right place in the vtable and that we diagnose 10073 // problems with the implicit exception specification. 10074 if (ClassDecl->isDynamicClass() || 10075 ClassDecl->needsOverloadResolutionForCopyAssignment() || 10076 ClassDecl->hasInheritedAssignment()) 10077 DeclareImplicitCopyAssignment(ClassDecl); 10078 } 10079 10080 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) { 10081 ++getASTContext().NumImplicitMoveAssignmentOperators; 10082 10083 // Likewise for the move assignment operator. 10084 if (ClassDecl->isDynamicClass() || 10085 ClassDecl->needsOverloadResolutionForMoveAssignment() || 10086 ClassDecl->hasInheritedAssignment()) 10087 DeclareImplicitMoveAssignment(ClassDecl); 10088 } 10089 10090 if (ClassDecl->needsImplicitDestructor()) { 10091 ++getASTContext().NumImplicitDestructors; 10092 10093 // If we have a dynamic class, then the destructor may be virtual, so we 10094 // have to declare the destructor immediately. This ensures that, e.g., it 10095 // shows up in the right place in the vtable and that we diagnose problems 10096 // with the implicit exception specification. 10097 if (ClassDecl->isDynamicClass() || 10098 ClassDecl->needsOverloadResolutionForDestructor()) 10099 DeclareImplicitDestructor(ClassDecl); 10100 } 10101 } 10102 10103 // C++2a [class.compare.default]p3: 10104 // If the member-specification does not explicitly declare any member or 10105 // friend named operator==, an == operator function is declared implicitly 10106 // for each defaulted three-way comparison operator function defined in 10107 // the member-specification 10108 // FIXME: Consider doing this lazily. 10109 // We do this during the initial parse for a class template, not during 10110 // instantiation, so that we can handle unqualified lookups for 'operator==' 10111 // when parsing the template. 10112 if (getLangOpts().CPlusPlus20 && !inTemplateInstantiation()) { 10113 llvm::SmallVector<FunctionDecl *, 4> DefaultedSpaceships; 10114 findImplicitlyDeclaredEqualityComparisons(Context, ClassDecl, 10115 DefaultedSpaceships); 10116 for (auto *FD : DefaultedSpaceships) 10117 DeclareImplicitEqualityComparison(ClassDecl, FD); 10118 } 10119} 10120 10121unsigned 10122Sema::ActOnReenterTemplateScope(Decl *D, 10123 llvm::function_ref<Scope *()> EnterScope) { 10124 if (!D) 10125 return 0; 10126 AdjustDeclIfTemplate(D); 10127 10128 // In order to get name lookup right, reenter template scopes in order from 10129 // outermost to innermost. 10130 SmallVector<TemplateParameterList *, 4> ParameterLists; 10131 DeclContext *LookupDC = dyn_cast<DeclContext>(D); 10132 10133 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) { 10134 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i) 10135 ParameterLists.push_back(DD->getTemplateParameterList(i)); 10136 10137 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10138 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) 10139 ParameterLists.push_back(FTD->getTemplateParameters()); 10140 } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) { 10141 LookupDC = VD->getDeclContext(); 10142 10143 if (VarTemplateDecl *VTD = VD->getDescribedVarTemplate()) 10144 ParameterLists.push_back(VTD->getTemplateParameters()); 10145 else if (auto *PSD = dyn_cast<VarTemplatePartialSpecializationDecl>(D)) 10146 ParameterLists.push_back(PSD->getTemplateParameters()); 10147 } 10148 } else if (TagDecl *TD = dyn_cast<TagDecl>(D)) { 10149 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i) 10150 ParameterLists.push_back(TD->getTemplateParameterList(i)); 10151 10152 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) { 10153 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate()) 10154 ParameterLists.push_back(CTD->getTemplateParameters()); 10155 else if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) 10156 ParameterLists.push_back(PSD->getTemplateParameters()); 10157 } 10158 } 10159 // FIXME: Alias declarations and concepts. 10160 10161 unsigned Count = 0; 10162 Scope *InnermostTemplateScope = nullptr; 10163 for (TemplateParameterList *Params : ParameterLists) { 10164 // Ignore explicit specializations; they don't contribute to the template 10165 // depth. 10166 if (Params->size() == 0) 10167 continue; 10168 10169 InnermostTemplateScope = EnterScope(); 10170 for (NamedDecl *Param : *Params) { 10171 if (Param->getDeclName()) { 10172 InnermostTemplateScope->AddDecl(Param); 10173 IdResolver.AddDecl(Param); 10174 } 10175 } 10176 ++Count; 10177 } 10178 10179 // Associate the new template scopes with the corresponding entities. 10180 if (InnermostTemplateScope) { 10181 assert(LookupDC && "no enclosing DeclContext for template lookup")(static_cast<void> (0)); 10182 EnterTemplatedContext(InnermostTemplateScope, LookupDC); 10183 } 10184 10185 return Count; 10186} 10187 10188void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) { 10189 if (!RecordD) return; 10190 AdjustDeclIfTemplate(RecordD); 10191 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD); 10192 PushDeclContext(S, Record); 10193} 10194 10195void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) { 10196 if (!RecordD) return; 10197 PopDeclContext(); 10198} 10199 10200/// This is used to implement the constant expression evaluation part of the 10201/// attribute enable_if extension. There is nothing in standard C++ which would 10202/// require reentering parameters. 10203void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) { 10204 if (!Param) 10205 return; 10206 10207 S->AddDecl(Param); 10208 if (Param->getDeclName()) 10209 IdResolver.AddDecl(Param); 10210} 10211 10212/// ActOnStartDelayedCXXMethodDeclaration - We have completed 10213/// parsing a top-level (non-nested) C++ class, and we are now 10214/// parsing those parts of the given Method declaration that could 10215/// not be parsed earlier (C++ [class.mem]p2), such as default 10216/// arguments. This action should enter the scope of the given 10217/// Method declaration as if we had just parsed the qualified method 10218/// name. However, it should not bring the parameters into scope; 10219/// that will be performed by ActOnDelayedCXXMethodParameter. 10220void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { 10221} 10222 10223/// ActOnDelayedCXXMethodParameter - We've already started a delayed 10224/// C++ method declaration. We're (re-)introducing the given 10225/// function parameter into scope for use in parsing later parts of 10226/// the method declaration. For example, we could see an 10227/// ActOnParamDefaultArgument event for this parameter. 10228void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) { 10229 if (!ParamD) 10230 return; 10231 10232 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD); 10233 10234 S->AddDecl(Param); 10235 if (Param->getDeclName()) 10236 IdResolver.AddDecl(Param); 10237} 10238 10239/// ActOnFinishDelayedCXXMethodDeclaration - We have finished 10240/// processing the delayed method declaration for Method. The method 10241/// declaration is now considered finished. There may be a separate 10242/// ActOnStartOfFunctionDef action later (not necessarily 10243/// immediately!) for this method, if it was also defined inside the 10244/// class body. 10245void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { 10246 if (!MethodD) 10247 return; 10248 10249 AdjustDeclIfTemplate(MethodD); 10250 10251 FunctionDecl *Method = cast<FunctionDecl>(MethodD); 10252 10253 // Now that we have our default arguments, check the constructor 10254 // again. It could produce additional diagnostics or affect whether 10255 // the class has implicitly-declared destructors, among other 10256 // things. 10257 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) 10258 CheckConstructor(Constructor); 10259 10260 // Check the default arguments, which we may have added. 10261 if (!Method->isInvalidDecl()) 10262 CheckCXXDefaultArguments(Method); 10263} 10264 10265// Emit the given diagnostic for each non-address-space qualifier. 10266// Common part of CheckConstructorDeclarator and CheckDestructorDeclarator. 10267static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) { 10268 const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10269 if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) { 10270 bool DiagOccured = false; 10271 FTI.MethodQualifiers->forEachQualifier( 10272 [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName, 10273 SourceLocation SL) { 10274 // This diagnostic should be emitted on any qualifier except an addr 10275 // space qualifier. However, forEachQualifier currently doesn't visit 10276 // addr space qualifiers, so there's no way to write this condition 10277 // right now; we just diagnose on everything. 10278 S.Diag(SL, DiagID) << QualName << SourceRange(SL); 10279 DiagOccured = true; 10280 }); 10281 if (DiagOccured) 10282 D.setInvalidType(); 10283 } 10284} 10285 10286/// CheckConstructorDeclarator - Called by ActOnDeclarator to check 10287/// the well-formedness of the constructor declarator @p D with type @p 10288/// R. If there are any errors in the declarator, this routine will 10289/// emit diagnostics and set the invalid bit to true. In any case, the type 10290/// will be updated to reflect a well-formed type for the constructor and 10291/// returned. 10292QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, 10293 StorageClass &SC) { 10294 bool isVirtual = D.getDeclSpec().isVirtualSpecified(); 10295 10296 // C++ [class.ctor]p3: 10297 // A constructor shall not be virtual (10.3) or static (9.4). A 10298 // constructor can be invoked for a const, volatile or const 10299 // volatile object. A constructor shall not be declared const, 10300 // volatile, or const volatile (9.3.2). 10301 if (isVirtual) { 10302 if (!D.isInvalidType()) 10303 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) 10304 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) 10305 << SourceRange(D.getIdentifierLoc()); 10306 D.setInvalidType(); 10307 } 10308 if (SC == SC_Static) { 10309 if (!D.isInvalidType()) 10310 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) 10311 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 10312 << SourceRange(D.getIdentifierLoc()); 10313 D.setInvalidType(); 10314 SC = SC_None; 10315 } 10316 10317 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { 10318 diagnoseIgnoredQualifiers( 10319 diag::err_constructor_return_type, TypeQuals, SourceLocation(), 10320 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(), 10321 D.getDeclSpec().getRestrictSpecLoc(), 10322 D.getDeclSpec().getAtomicSpecLoc()); 10323 D.setInvalidType(); 10324 } 10325 10326 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor); 10327 10328 // C++0x [class.ctor]p4: 10329 // A constructor shall not be declared with a ref-qualifier. 10330 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10331 if (FTI.hasRefQualifier()) { 10332 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor) 10333 << FTI.RefQualifierIsLValueRef 10334 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); 10335 D.setInvalidType(); 10336 } 10337 10338 // Rebuild the function type "R" without any type qualifiers (in 10339 // case any of the errors above fired) and with "void" as the 10340 // return type, since constructors don't have return types. 10341 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>(); 10342 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType()) 10343 return R; 10344 10345 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 10346 EPI.TypeQuals = Qualifiers(); 10347 EPI.RefQualifier = RQ_None; 10348 10349 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI); 10350} 10351 10352/// CheckConstructor - Checks a fully-formed constructor for 10353/// well-formedness, issuing any diagnostics required. Returns true if 10354/// the constructor declarator is invalid. 10355void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { 10356 CXXRecordDecl *ClassDecl 10357 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext()); 10358 if (!ClassDecl) 10359 return Constructor->setInvalidDecl(); 10360 10361 // C++ [class.copy]p3: 10362 // A declaration of a constructor for a class X is ill-formed if 10363 // its first parameter is of type (optionally cv-qualified) X and 10364 // either there are no other parameters or else all other 10365 // parameters have default arguments. 10366 if (!Constructor->isInvalidDecl() && 10367 Constructor->hasOneParamOrDefaultArgs() && 10368 Constructor->getTemplateSpecializationKind() != 10369 TSK_ImplicitInstantiation) { 10370 QualType ParamType = Constructor->getParamDecl(0)->getType(); 10371 QualType ClassTy = Context.getTagDeclType(ClassDecl); 10372 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { 10373 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); 10374 const char *ConstRef 10375 = Constructor->getParamDecl(0)->getIdentifier() ? "const &" 10376 : " const &"; 10377 Diag(ParamLoc, diag::err_constructor_byvalue_arg) 10378 << FixItHint::CreateInsertion(ParamLoc, ConstRef); 10379 10380 // FIXME: Rather that making the constructor invalid, we should endeavor 10381 // to fix the type. 10382 Constructor->setInvalidDecl(); 10383 } 10384 } 10385} 10386 10387/// CheckDestructor - Checks a fully-formed destructor definition for 10388/// well-formedness, issuing any diagnostics required. Returns true 10389/// on error. 10390bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) { 10391 CXXRecordDecl *RD = Destructor->getParent(); 10392 10393 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) { 10394 SourceLocation Loc; 10395 10396 if (!Destructor->isImplicit()) 10397 Loc = Destructor->getLocation(); 10398 else 10399 Loc = RD->getLocation(); 10400 10401 // If we have a virtual destructor, look up the deallocation function 10402 if (FunctionDecl *OperatorDelete = 10403 FindDeallocationFunctionForDestructor(Loc, RD)) { 10404 Expr *ThisArg = nullptr; 10405 10406 // If the notional 'delete this' expression requires a non-trivial 10407 // conversion from 'this' to the type of a destroying operator delete's 10408 // first parameter, perform that conversion now. 10409 if (OperatorDelete->isDestroyingOperatorDelete()) { 10410 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 10411 if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) { 10412 // C++ [class.dtor]p13: 10413 // ... as if for the expression 'delete this' appearing in a 10414 // non-virtual destructor of the destructor's class. 10415 ContextRAII SwitchContext(*this, Destructor); 10416 ExprResult This = 10417 ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation()); 10418 assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?")(static_cast<void> (0)); 10419 This = PerformImplicitConversion(This.get(), ParamType, AA_Passing); 10420 if (This.isInvalid()) { 10421 // FIXME: Register this as a context note so that it comes out 10422 // in the right order. 10423 Diag(Loc, diag::note_implicit_delete_this_in_destructor_here); 10424 return true; 10425 } 10426 ThisArg = This.get(); 10427 } 10428 } 10429 10430 DiagnoseUseOfDecl(OperatorDelete, Loc); 10431 MarkFunctionReferenced(Loc, OperatorDelete); 10432 Destructor->setOperatorDelete(OperatorDelete, ThisArg); 10433 } 10434 } 10435 10436 return false; 10437} 10438 10439/// CheckDestructorDeclarator - Called by ActOnDeclarator to check 10440/// the well-formednes of the destructor declarator @p D with type @p 10441/// R. If there are any errors in the declarator, this routine will 10442/// emit diagnostics and set the declarator to invalid. Even if this happens, 10443/// will be updated to reflect a well-formed type for the destructor and 10444/// returned. 10445QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R, 10446 StorageClass& SC) { 10447 // C++ [class.dtor]p1: 10448 // [...] A typedef-name that names a class is a class-name 10449 // (7.1.3); however, a typedef-name that names a class shall not 10450 // be used as the identifier in the declarator for a destructor 10451 // declaration. 10452 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName); 10453 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>()) 10454 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name) 10455 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl()); 10456 else if (const TemplateSpecializationType *TST = 10457 DeclaratorType->getAs<TemplateSpecializationType>()) 10458 if (TST->isTypeAlias()) 10459 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name) 10460 << DeclaratorType << 1; 10461 10462 // C++ [class.dtor]p2: 10463 // A destructor is used to destroy objects of its class type. A 10464 // destructor takes no parameters, and no return type can be 10465 // specified for it (not even void). The address of a destructor 10466 // shall not be taken. A destructor shall not be static. A 10467 // destructor can be invoked for a const, volatile or const 10468 // volatile object. A destructor shall not be declared const, 10469 // volatile or const volatile (9.3.2). 10470 if (SC == SC_Static) { 10471 if (!D.isInvalidType()) 10472 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) 10473 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 10474 << SourceRange(D.getIdentifierLoc()) 10475 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 10476 10477 SC = SC_None; 10478 } 10479 if (!D.isInvalidType()) { 10480 // Destructors don't have return types, but the parser will 10481 // happily parse something like: 10482 // 10483 // class X { 10484 // float ~X(); 10485 // }; 10486 // 10487 // The return type will be eliminated later. 10488 if (D.getDeclSpec().hasTypeSpecifier()) 10489 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) 10490 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) 10491 << SourceRange(D.getIdentifierLoc()); 10492 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { 10493 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals, 10494 SourceLocation(), 10495 D.getDeclSpec().getConstSpecLoc(), 10496 D.getDeclSpec().getVolatileSpecLoc(), 10497 D.getDeclSpec().getRestrictSpecLoc(), 10498 D.getDeclSpec().getAtomicSpecLoc()); 10499 D.setInvalidType(); 10500 } 10501 } 10502 10503 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor); 10504 10505 // C++0x [class.dtor]p2: 10506 // A destructor shall not be declared with a ref-qualifier. 10507 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10508 if (FTI.hasRefQualifier()) { 10509 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor) 10510 << FTI.RefQualifierIsLValueRef 10511 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); 10512 D.setInvalidType(); 10513 } 10514 10515 // Make sure we don't have any parameters. 10516 if (FTIHasNonVoidParameters(FTI)) { 10517 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); 10518 10519 // Delete the parameters. 10520 FTI.freeParams(); 10521 D.setInvalidType(); 10522 } 10523 10524 // Make sure the destructor isn't variadic. 10525 if (FTI.isVariadic) { 10526 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); 10527 D.setInvalidType(); 10528 } 10529 10530 // Rebuild the function type "R" without any type qualifiers or 10531 // parameters (in case any of the errors above fired) and with 10532 // "void" as the return type, since destructors don't have return 10533 // types. 10534 if (!D.isInvalidType()) 10535 return R; 10536 10537 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>(); 10538 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 10539 EPI.Variadic = false; 10540 EPI.TypeQuals = Qualifiers(); 10541 EPI.RefQualifier = RQ_None; 10542 return Context.getFunctionType(Context.VoidTy, None, EPI); 10543} 10544 10545static void extendLeft(SourceRange &R, SourceRange Before) { 10546 if (Before.isInvalid()) 10547 return; 10548 R.setBegin(Before.getBegin()); 10549 if (R.getEnd().isInvalid()) 10550 R.setEnd(Before.getEnd()); 10551} 10552 10553static void extendRight(SourceRange &R, SourceRange After) { 10554 if (After.isInvalid()) 10555 return; 10556 if (R.getBegin().isInvalid()) 10557 R.setBegin(After.getBegin()); 10558 R.setEnd(After.getEnd()); 10559} 10560 10561/// CheckConversionDeclarator - Called by ActOnDeclarator to check the 10562/// well-formednes of the conversion function declarator @p D with 10563/// type @p R. If there are any errors in the declarator, this routine 10564/// will emit diagnostics and return true. Otherwise, it will return 10565/// false. Either way, the type @p R will be updated to reflect a 10566/// well-formed type for the conversion operator. 10567void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, 10568 StorageClass& SC) { 10569 // C++ [class.conv.fct]p1: 10570 // Neither parameter types nor return type can be specified. The 10571 // type of a conversion function (8.3.5) is "function taking no 10572 // parameter returning conversion-type-id." 10573 if (SC == SC_Static) { 10574 if (!D.isInvalidType()) 10575 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) 10576 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 10577 << D.getName().getSourceRange(); 10578 D.setInvalidType(); 10579 SC = SC_None; 10580 } 10581 10582 TypeSourceInfo *ConvTSI = nullptr; 10583 QualType ConvType = 10584 GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI); 10585 10586 const DeclSpec &DS = D.getDeclSpec(); 10587 if (DS.hasTypeSpecifier() && !D.isInvalidType()) { 10588 // Conversion functions don't have return types, but the parser will 10589 // happily parse something like: 10590 // 10591 // class X { 10592 // float operator bool(); 10593 // }; 10594 // 10595 // The return type will be changed later anyway. 10596 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) 10597 << SourceRange(DS.getTypeSpecTypeLoc()) 10598 << SourceRange(D.getIdentifierLoc()); 10599 D.setInvalidType(); 10600 } else if (DS.getTypeQualifiers() && !D.isInvalidType()) { 10601 // It's also plausible that the user writes type qualifiers in the wrong 10602 // place, such as: 10603 // struct S { const operator int(); }; 10604 // FIXME: we could provide a fixit to move the qualifiers onto the 10605 // conversion type. 10606 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl) 10607 << SourceRange(D.getIdentifierLoc()) << 0; 10608 D.setInvalidType(); 10609 } 10610 10611 const auto *Proto = R->castAs<FunctionProtoType>(); 10612 10613 // Make sure we don't have any parameters. 10614 if (Proto->getNumParams() > 0) { 10615 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); 10616 10617 // Delete the parameters. 10618 D.getFunctionTypeInfo().freeParams(); 10619 D.setInvalidType(); 10620 } else if (Proto->isVariadic()) { 10621 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); 10622 D.setInvalidType(); 10623 } 10624 10625 // Diagnose "&operator bool()" and other such nonsense. This 10626 // is actually a gcc extension which we don't support. 10627 if (Proto->getReturnType() != ConvType) { 10628 bool NeedsTypedef = false; 10629 SourceRange Before, After; 10630 10631 // Walk the chunks and extract information on them for our diagnostic. 10632 bool PastFunctionChunk = false; 10633 for (auto &Chunk : D.type_objects()) { 10634 switch (Chunk.Kind) { 10635 case DeclaratorChunk::Function: 10636 if (!PastFunctionChunk) { 10637 if (Chunk.Fun.HasTrailingReturnType) { 10638 TypeSourceInfo *TRT = nullptr; 10639 GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT); 10640 if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange()); 10641 } 10642 PastFunctionChunk = true; 10643 break; 10644 } 10645 LLVM_FALLTHROUGH[[gnu::fallthrough]]; 10646 case DeclaratorChunk::Array: 10647 NeedsTypedef = true; 10648 extendRight(After, Chunk.getSourceRange()); 10649 break; 10650 10651 case DeclaratorChunk::Pointer: 10652 case DeclaratorChunk::BlockPointer: 10653 case DeclaratorChunk::Reference: 10654 case DeclaratorChunk::MemberPointer: 10655 case DeclaratorChunk::Pipe: 10656 extendLeft(Before, Chunk.getSourceRange()); 10657 break; 10658 10659 case DeclaratorChunk::Paren: 10660 extendLeft(Before, Chunk.Loc); 10661 extendRight(After, Chunk.EndLoc); 10662 break; 10663 } 10664 } 10665 10666 SourceLocation Loc = Before.isValid() ? Before.getBegin() : 10667 After.isValid() ? After.getBegin() : 10668 D.getIdentifierLoc(); 10669 auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl); 10670 DB << Before << After; 10671 10672 if (!NeedsTypedef) { 10673 DB << /*don't need a typedef*/0; 10674 10675 // If we can provide a correct fix-it hint, do so. 10676 if (After.isInvalid() && ConvTSI) { 10677 SourceLocation InsertLoc = 10678 getLocForEndOfToken(ConvTSI->getTypeLoc().getEndLoc()); 10679 DB << FixItHint::CreateInsertion(InsertLoc, " ") 10680 << FixItHint::CreateInsertionFromRange( 10681 InsertLoc, CharSourceRange::getTokenRange(Before)) 10682 << FixItHint::CreateRemoval(Before); 10683 } 10684 } else if (!Proto->getReturnType()->isDependentType()) { 10685 DB << /*typedef*/1 << Proto->getReturnType(); 10686 } else if (getLangOpts().CPlusPlus11) { 10687 DB << /*alias template*/2 << Proto->getReturnType(); 10688 } else { 10689 DB << /*might not be fixable*/3; 10690 } 10691 10692 // Recover by incorporating the other type chunks into the result type. 10693 // Note, this does *not* change the name of the function. This is compatible 10694 // with the GCC extension: 10695 // struct S { &operator int(); } s; 10696 // int &r = s.operator int(); // ok in GCC 10697 // S::operator int&() {} // error in GCC, function name is 'operator int'. 10698 ConvType = Proto->getReturnType(); 10699 } 10700 10701 // C++ [class.conv.fct]p4: 10702 // The conversion-type-id shall not represent a function type nor 10703 // an array type. 10704 if (ConvType->isArrayType()) { 10705 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); 10706 ConvType = Context.getPointerType(ConvType); 10707 D.setInvalidType(); 10708 } else if (ConvType->isFunctionType()) { 10709 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); 10710 ConvType = Context.getPointerType(ConvType); 10711 D.setInvalidType(); 10712 } 10713 10714 // Rebuild the function type "R" without any parameters (in case any 10715 // of the errors above fired) and with the conversion type as the 10716 // return type. 10717 if (D.isInvalidType()) 10718 R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo()); 10719 10720 // C++0x explicit conversion operators. 10721 if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus20) 10722 Diag(DS.getExplicitSpecLoc(), 10723 getLangOpts().CPlusPlus11 10724 ? diag::warn_cxx98_compat_explicit_conversion_functions 10725 : diag::ext_explicit_conversion_functions) 10726 << SourceRange(DS.getExplicitSpecRange()); 10727} 10728 10729/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete 10730/// the declaration of the given C++ conversion function. This routine 10731/// is responsible for recording the conversion function in the C++ 10732/// class, if possible. 10733Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { 10734 assert(Conversion && "Expected to receive a conversion function declaration")(static_cast<void> (0)); 10735 10736 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext()); 10737 10738 // Make sure we aren't redeclaring the conversion function. 10739 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); 10740 // C++ [class.conv.fct]p1: 10741 // [...] A conversion function is never used to convert a 10742 // (possibly cv-qualified) object to the (possibly cv-qualified) 10743 // same object type (or a reference to it), to a (possibly 10744 // cv-qualified) base class of that type (or a reference to it), 10745 // or to (possibly cv-qualified) void. 10746 QualType ClassType 10747 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 10748 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>()) 10749 ConvType = ConvTypeRef->getPointeeType(); 10750 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared && 10751 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) 10752 /* Suppress diagnostics for instantiations. */; 10753 else if (Conversion->size_overridden_methods() != 0) 10754 /* Suppress diagnostics for overriding virtual function in a base class. */; 10755 else if (ConvType->isRecordType()) { 10756 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); 10757 if (ConvType == ClassType) 10758 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) 10759 << ClassType; 10760 else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType)) 10761 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) 10762 << ClassType << ConvType; 10763 } else if (ConvType->isVoidType()) { 10764 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) 10765 << ClassType << ConvType; 10766 } 10767 10768 if (FunctionTemplateDecl *ConversionTemplate 10769 = Conversion->getDescribedFunctionTemplate()) 10770 return ConversionTemplate; 10771 10772 return Conversion; 10773} 10774 10775namespace { 10776/// Utility class to accumulate and print a diagnostic listing the invalid 10777/// specifier(s) on a declaration. 10778struct BadSpecifierDiagnoser { 10779 BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID) 10780 : S(S), Diagnostic(S.Diag(Loc, DiagID)) {} 10781 ~BadSpecifierDiagnoser() { 10782 Diagnostic << Specifiers; 10783 } 10784 10785 template<typename T> void check(SourceLocation SpecLoc, T Spec) { 10786 return check(SpecLoc, DeclSpec::getSpecifierName(Spec)); 10787 } 10788 void check(SourceLocation SpecLoc, DeclSpec::TST Spec) { 10789 return check(SpecLoc, 10790 DeclSpec::getSpecifierName(Spec, S.getPrintingPolicy())); 10791 } 10792 void check(SourceLocation SpecLoc, const char *Spec) { 10793 if (SpecLoc.isInvalid()) return; 10794 Diagnostic << SourceRange(SpecLoc, SpecLoc); 10795 if (!Specifiers.empty()) Specifiers += " "; 10796 Specifiers += Spec; 10797 } 10798 10799 Sema &S; 10800 Sema::SemaDiagnosticBuilder Diagnostic; 10801 std::string Specifiers; 10802}; 10803} 10804 10805/// Check the validity of a declarator that we parsed for a deduction-guide. 10806/// These aren't actually declarators in the grammar, so we need to check that 10807/// the user didn't specify any pieces that are not part of the deduction-guide 10808/// grammar. 10809void Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R, 10810 StorageClass &SC) { 10811 TemplateName GuidedTemplate = D.getName().TemplateName.get().get(); 10812 TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl(); 10813 assert(GuidedTemplateDecl && "missing template decl for deduction guide")(static_cast<void> (0)); 10814 10815 // C++ [temp.deduct.guide]p3: 10816 // A deduction-gide shall be declared in the same scope as the 10817 // corresponding class template. 10818 if (!CurContext->getRedeclContext()->Equals( 10819 GuidedTemplateDecl->getDeclContext()->getRedeclContext())) { 10820 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope) 10821 << GuidedTemplateDecl; 10822 Diag(GuidedTemplateDecl->getLocation(), diag::note_template_decl_here); 10823 } 10824 10825 auto &DS = D.getMutableDeclSpec(); 10826 // We leave 'friend' and 'virtual' to be rejected in the normal way. 10827 if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() || 10828 DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() || 10829 DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) { 10830 BadSpecifierDiagnoser Diagnoser( 10831 *this, D.getIdentifierLoc(), 10832 diag::err_deduction_guide_invalid_specifier); 10833 10834 Diagnoser.check(DS.getStorageClassSpecLoc(), DS.getStorageClassSpec()); 10835 DS.ClearStorageClassSpecs(); 10836 SC = SC_None; 10837 10838 // 'explicit' is permitted. 10839 Diagnoser.check(DS.getInlineSpecLoc(), "inline"); 10840 Diagnoser.check(DS.getNoreturnSpecLoc(), "_Noreturn"); 10841 Diagnoser.check(DS.getConstexprSpecLoc(), "constexpr"); 10842 DS.ClearConstexprSpec(); 10843 10844 Diagnoser.check(DS.getConstSpecLoc(), "const"); 10845 Diagnoser.check(DS.getRestrictSpecLoc(), "__restrict"); 10846 Diagnoser.check(DS.getVolatileSpecLoc(), "volatile"); 10847 Diagnoser.check(DS.getAtomicSpecLoc(), "_Atomic"); 10848 Diagnoser.check(DS.getUnalignedSpecLoc(), "__unaligned"); 10849 DS.ClearTypeQualifiers(); 10850 10851 Diagnoser.check(DS.getTypeSpecComplexLoc(), DS.getTypeSpecComplex()); 10852 Diagnoser.check(DS.getTypeSpecSignLoc(), DS.getTypeSpecSign()); 10853 Diagnoser.check(DS.getTypeSpecWidthLoc(), DS.getTypeSpecWidth()); 10854 Diagnoser.check(DS.getTypeSpecTypeLoc(), DS.getTypeSpecType()); 10855 DS.ClearTypeSpecType(); 10856 } 10857 10858 if (D.isInvalidType()) 10859 return; 10860 10861 // Check the declarator is simple enough. 10862 bool FoundFunction = false; 10863 for (const DeclaratorChunk &Chunk : llvm::reverse(D.type_objects())) { 10864 if (Chunk.Kind == DeclaratorChunk::Paren) 10865 continue; 10866 if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) { 10867 Diag(D.getDeclSpec().getBeginLoc(), 10868 diag::err_deduction_guide_with_complex_decl) 10869 << D.getSourceRange(); 10870 break; 10871 } 10872 if (!Chunk.Fun.hasTrailingReturnType()) { 10873 Diag(D.getName().getBeginLoc(), 10874 diag::err_deduction_guide_no_trailing_return_type); 10875 break; 10876 } 10877 10878 // Check that the return type is written as a specialization of 10879 // the template specified as the deduction-guide's name. 10880 ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType(); 10881 TypeSourceInfo *TSI = nullptr; 10882 QualType RetTy = GetTypeFromParser(TrailingReturnType, &TSI); 10883 assert(TSI && "deduction guide has valid type but invalid return type?")(static_cast<void> (0)); 10884 bool AcceptableReturnType = false; 10885 bool MightInstantiateToSpecialization = false; 10886 if (auto RetTST = 10887 TSI->getTypeLoc().getAs<TemplateSpecializationTypeLoc>()) { 10888 TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName(); 10889 bool TemplateMatches = 10890 Context.hasSameTemplateName(SpecifiedName, GuidedTemplate); 10891 if (SpecifiedName.getKind() == TemplateName::Template && TemplateMatches) 10892 AcceptableReturnType = true; 10893 else { 10894 // This could still instantiate to the right type, unless we know it 10895 // names the wrong class template. 10896 auto *TD = SpecifiedName.getAsTemplateDecl(); 10897 MightInstantiateToSpecialization = !(TD && isa<ClassTemplateDecl>(TD) && 10898 !TemplateMatches); 10899 } 10900 } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) { 10901 MightInstantiateToSpecialization = true; 10902 } 10903 10904 if (!AcceptableReturnType) { 10905 Diag(TSI->getTypeLoc().getBeginLoc(), 10906 diag::err_deduction_guide_bad_trailing_return_type) 10907 << GuidedTemplate << TSI->getType() 10908 << MightInstantiateToSpecialization 10909 << TSI->getTypeLoc().getSourceRange(); 10910 } 10911 10912 // Keep going to check that we don't have any inner declarator pieces (we 10913 // could still have a function returning a pointer to a function). 10914 FoundFunction = true; 10915 } 10916 10917 if (D.isFunctionDefinition()) 10918 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function); 10919} 10920 10921//===----------------------------------------------------------------------===// 10922// Namespace Handling 10923//===----------------------------------------------------------------------===// 10924 10925/// Diagnose a mismatch in 'inline' qualifiers when a namespace is 10926/// reopened. 10927static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc, 10928 SourceLocation Loc, 10929 IdentifierInfo *II, bool *IsInline, 10930 NamespaceDecl *PrevNS) { 10931 assert(*IsInline != PrevNS->isInline())(static_cast<void> (0)); 10932 10933 if (PrevNS->isInline()) 10934 // The user probably just forgot the 'inline', so suggest that it 10935 // be added back. 10936 S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline) 10937 << FixItHint::CreateInsertion(KeywordLoc, "inline "); 10938 else 10939 S.Diag(Loc, diag::err_inline_namespace_mismatch); 10940 10941 S.Diag(PrevNS->getLocation(), diag::note_previous_definition); 10942 *IsInline = PrevNS->isInline(); 10943} 10944 10945/// ActOnStartNamespaceDef - This is called at the start of a namespace 10946/// definition. 10947Decl *Sema::ActOnStartNamespaceDef( 10948 Scope *NamespcScope, SourceLocation InlineLoc, SourceLocation NamespaceLoc, 10949 SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation LBrace, 10950 const ParsedAttributesView &AttrList, UsingDirectiveDecl *&UD) { 10951 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc; 10952 // For anonymous namespace, take the location of the left brace. 10953 SourceLocation Loc = II ? IdentLoc : LBrace; 10954 bool IsInline = InlineLoc.isValid(); 10955 bool IsInvalid = false; 10956 bool IsStd = false; 10957 bool AddToKnown = false; 10958 Scope *DeclRegionScope = NamespcScope->getParent(); 10959 10960 NamespaceDecl *PrevNS = nullptr; 10961 if (II) { 10962 // C++ [namespace.def]p2: 10963 // The identifier in an original-namespace-definition shall not 10964 // have been previously defined in the declarative region in 10965 // which the original-namespace-definition appears. The 10966 // identifier in an original-namespace-definition is the name of 10967 // the namespace. Subsequently in that declarative region, it is 10968 // treated as an original-namespace-name. 10969 // 10970 // Since namespace names are unique in their scope, and we don't 10971 // look through using directives, just look for any ordinary names 10972 // as if by qualified name lookup. 10973 LookupResult R(*this, II, IdentLoc, LookupOrdinaryName, 10974 ForExternalRedeclaration); 10975 LookupQualifiedName(R, CurContext->getRedeclContext()); 10976 NamedDecl *PrevDecl = 10977 R.isSingleResult() ? R.getRepresentativeDecl() : nullptr; 10978 PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl); 10979 10980 if (PrevNS) { 10981 // This is an extended namespace definition. 10982 if (IsInline != PrevNS->isInline()) 10983 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II, 10984 &IsInline, PrevNS); 10985 } else if (PrevDecl) { 10986 // This is an invalid name redefinition. 10987 Diag(Loc, diag::err_redefinition_different_kind) 10988 << II; 10989 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 10990 IsInvalid = true; 10991 // Continue on to push Namespc as current DeclContext and return it. 10992 } else if (II->isStr("std") && 10993 CurContext->getRedeclContext()->isTranslationUnit()) { 10994 // This is the first "real" definition of the namespace "std", so update 10995 // our cache of the "std" namespace to point at this definition. 10996 PrevNS = getStdNamespace(); 10997 IsStd = true; 10998 AddToKnown = !IsInline; 10999 } else { 11000 // We've seen this namespace for the first time. 11001 AddToKnown = !IsInline; 11002 } 11003 } else { 11004 // Anonymous namespaces. 11005 11006 // Determine whether the parent already has an anonymous namespace. 11007 DeclContext *Parent = CurContext->getRedeclContext(); 11008 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { 11009 PrevNS = TU->getAnonymousNamespace(); 11010 } else { 11011 NamespaceDecl *ND = cast<NamespaceDecl>(Parent); 11012 PrevNS = ND->getAnonymousNamespace(); 11013 } 11014 11015 if (PrevNS && IsInline != PrevNS->isInline()) 11016 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II, 11017 &IsInline, PrevNS); 11018 } 11019 11020 NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline, 11021 StartLoc, Loc, II, PrevNS); 11022 if (IsInvalid) 11023 Namespc->setInvalidDecl(); 11024 11025 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList); 11026 AddPragmaAttributes(DeclRegionScope, Namespc); 11027 11028 // FIXME: Should we be merging attributes? 11029 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>()) 11030 PushNamespaceVisibilityAttr(Attr, Loc); 11031 11032 if (IsStd) 11033 StdNamespace = Namespc; 11034 if (AddToKnown) 11035 KnownNamespaces[Namespc] = false; 11036 11037 if (II) { 11038 PushOnScopeChains(Namespc, DeclRegionScope); 11039 } else { 11040 // Link the anonymous namespace into its parent. 11041 DeclContext *Parent = CurContext->getRedeclContext(); 11042 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { 11043 TU->setAnonymousNamespace(Namespc); 11044 } else { 11045 cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc); 11046 } 11047 11048 CurContext->addDecl(Namespc); 11049 11050 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition 11051 // behaves as if it were replaced by 11052 // namespace unique { /* empty body */ } 11053 // using namespace unique; 11054 // namespace unique { namespace-body } 11055 // where all occurrences of 'unique' in a translation unit are 11056 // replaced by the same identifier and this identifier differs 11057 // from all other identifiers in the entire program. 11058 11059 // We just create the namespace with an empty name and then add an 11060 // implicit using declaration, just like the standard suggests. 11061 // 11062 // CodeGen enforces the "universally unique" aspect by giving all 11063 // declarations semantically contained within an anonymous 11064 // namespace internal linkage. 11065 11066 if (!PrevNS) { 11067 UD = UsingDirectiveDecl::Create(Context, Parent, 11068 /* 'using' */ LBrace, 11069 /* 'namespace' */ SourceLocation(), 11070 /* qualifier */ NestedNameSpecifierLoc(), 11071 /* identifier */ SourceLocation(), 11072 Namespc, 11073 /* Ancestor */ Parent); 11074 UD->setImplicit(); 11075 Parent->addDecl(UD); 11076 } 11077 } 11078 11079 ActOnDocumentableDecl(Namespc); 11080 11081 // Although we could have an invalid decl (i.e. the namespace name is a 11082 // redefinition), push it as current DeclContext and try to continue parsing. 11083 // FIXME: We should be able to push Namespc here, so that the each DeclContext 11084 // for the namespace has the declarations that showed up in that particular 11085 // namespace definition. 11086 PushDeclContext(NamespcScope, Namespc); 11087 return Namespc; 11088} 11089 11090/// getNamespaceDecl - Returns the namespace a decl represents. If the decl 11091/// is a namespace alias, returns the namespace it points to. 11092static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { 11093 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D)) 11094 return AD->getNamespace(); 11095 return dyn_cast_or_null<NamespaceDecl>(D); 11096} 11097 11098/// ActOnFinishNamespaceDef - This callback is called after a namespace is 11099/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef. 11100void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) { 11101 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl); 11102 assert(Namespc && "Invalid parameter, expected NamespaceDecl")(static_cast<void> (0)); 11103 Namespc->setRBraceLoc(RBrace); 11104 PopDeclContext(); 11105 if (Namespc->hasAttr<VisibilityAttr>()) 11106 PopPragmaVisibility(true, RBrace); 11107 // If this namespace contains an export-declaration, export it now. 11108 if (DeferredExportedNamespaces.erase(Namespc)) 11109 Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); 11110} 11111 11112CXXRecordDecl *Sema::getStdBadAlloc() const { 11113 return cast_or_null<CXXRecordDecl>( 11114 StdBadAlloc.get(Context.getExternalSource())); 11115} 11116 11117EnumDecl *Sema::getStdAlignValT() const { 11118 return cast_or_null<EnumDecl>(StdAlignValT.get(Context.getExternalSource())); 11119} 11120 11121NamespaceDecl *Sema::getStdNamespace() const { 11122 return cast_or_null<NamespaceDecl>( 11123 StdNamespace.get(Context.getExternalSource())); 11124} 11125 11126NamespaceDecl *Sema::lookupStdExperimentalNamespace() { 11127 if (!StdExperimentalNamespaceCache) { 11128 if (auto Std = getStdNamespace()) { 11129 LookupResult Result(*this, &PP.getIdentifierTable().get("experimental"), 11130 SourceLocation(), LookupNamespaceName); 11131 if (!LookupQualifiedName(Result, Std) || 11132 !(StdExperimentalNamespaceCache = 11133 Result.getAsSingle<NamespaceDecl>())) 11134 Result.suppressDiagnostics(); 11135 } 11136 } 11137 return StdExperimentalNamespaceCache; 11138} 11139 11140namespace { 11141 11142enum UnsupportedSTLSelect { 11143 USS_InvalidMember, 11144 USS_MissingMember, 11145 USS_NonTrivial, 11146 USS_Other 11147}; 11148 11149struct InvalidSTLDiagnoser { 11150 Sema &S; 11151 SourceLocation Loc; 11152 QualType TyForDiags; 11153 11154 QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "", 11155 const VarDecl *VD = nullptr) { 11156 { 11157 auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported) 11158 << TyForDiags << ((int)Sel); 11159 if (Sel == USS_InvalidMember || Sel == USS_MissingMember) { 11160 assert(!Name.empty())(static_cast<void> (0)); 11161 D << Name; 11162 } 11163 } 11164 if (Sel == USS_InvalidMember) { 11165 S.Diag(VD->getLocation(), diag::note_var_declared_here) 11166 << VD << VD->getSourceRange(); 11167 } 11168 return QualType(); 11169 } 11170}; 11171} // namespace 11172 11173QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind, 11174 SourceLocation Loc, 11175 ComparisonCategoryUsage Usage) { 11176 assert(getLangOpts().CPlusPlus &&(static_cast<void> (0)) 11177 "Looking for comparison category type outside of C++.")(static_cast<void> (0)); 11178 11179 // Use an elaborated type for diagnostics which has a name containing the 11180 // prepended 'std' namespace but not any inline namespace names. 11181 auto TyForDiags = [&](ComparisonCategoryInfo *Info) { 11182 auto *NNS = 11183 NestedNameSpecifier::Create(Context, nullptr, getStdNamespace()); 11184 return Context.getElaboratedType(ETK_None, NNS, Info->getType()); 11185 }; 11186 11187 // Check if we've already successfully checked the comparison category type 11188 // before. If so, skip checking it again. 11189 ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind); 11190 if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)]) { 11191 // The only thing we need to check is that the type has a reachable 11192 // definition in the current context. 11193 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) 11194 return QualType(); 11195 11196 return Info->getType(); 11197 } 11198 11199 // If lookup failed 11200 if (!Info) { 11201 std::string NameForDiags = "std::"; 11202 NameForDiags += ComparisonCategories::getCategoryString(Kind); 11203 Diag(Loc, diag::err_implied_comparison_category_type_not_found) 11204 << NameForDiags << (int)Usage; 11205 return QualType(); 11206 } 11207 11208 assert(Info->Kind == Kind)(static_cast<void> (0)); 11209 assert(Info->Record)(static_cast<void> (0)); 11210 11211 // Update the Record decl in case we encountered a forward declaration on our 11212 // first pass. FIXME: This is a bit of a hack. 11213 if (Info->Record->hasDefinition()) 11214 Info->Record = Info->Record->getDefinition(); 11215 11216 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) 11217 return QualType(); 11218 11219 InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags(Info)}; 11220 11221 if (!Info->Record->isTriviallyCopyable()) 11222 return UnsupportedSTLError(USS_NonTrivial); 11223 11224 for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) { 11225 CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl(); 11226 // Tolerate empty base classes. 11227 if (Base->isEmpty()) 11228 continue; 11229 // Reject STL implementations which have at least one non-empty base. 11230 return UnsupportedSTLError(); 11231 } 11232 11233 // Check that the STL has implemented the types using a single integer field. 11234 // This expectation allows better codegen for builtin operators. We require: 11235 // (1) The class has exactly one field. 11236 // (2) The field is an integral or enumeration type. 11237 auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end(); 11238 if (std::distance(FIt, FEnd) != 1 || 11239 !FIt->getType()->isIntegralOrEnumerationType()) { 11240 return UnsupportedSTLError(); 11241 } 11242 11243 // Build each of the require values and store them in Info. 11244 for (ComparisonCategoryResult CCR : 11245 ComparisonCategories::getPossibleResultsForType(Kind)) { 11246 StringRef MemName = ComparisonCategories::getResultString(CCR); 11247 ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(CCR); 11248 11249 if (!ValInfo) 11250 return UnsupportedSTLError(USS_MissingMember, MemName); 11251 11252 VarDecl *VD = ValInfo->VD; 11253 assert(VD && "should not be null!")(static_cast<void> (0)); 11254 11255 // Attempt to diagnose reasons why the STL definition of this type 11256 // might be foobar, including it failing to be a constant expression. 11257 // TODO Handle more ways the lookup or result can be invalid. 11258 if (!VD->isStaticDataMember() || 11259 !VD->isUsableInConstantExpressions(Context)) 11260 return UnsupportedSTLError(USS_InvalidMember, MemName, VD); 11261 11262 // Attempt to evaluate the var decl as a constant expression and extract 11263 // the value of its first field as a ICE. If this fails, the STL 11264 // implementation is not supported. 11265 if (!ValInfo->hasValidIntValue()) 11266 return UnsupportedSTLError(); 11267 11268 MarkVariableReferenced(Loc, VD); 11269 } 11270 11271 // We've successfully built the required types and expressions. Update 11272 // the cache and return the newly cached value. 11273 FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true; 11274 return Info->getType(); 11275} 11276 11277/// Retrieve the special "std" namespace, which may require us to 11278/// implicitly define the namespace. 11279NamespaceDecl *Sema::getOrCreateStdNamespace() { 11280 if (!StdNamespace) { 11281 // The "std" namespace has not yet been defined, so build one implicitly. 11282 StdNamespace = NamespaceDecl::Create(Context, 11283 Context.getTranslationUnitDecl(), 11284 /*Inline=*/false, 11285 SourceLocation(), SourceLocation(), 11286 &PP.getIdentifierTable().get("std"), 11287 /*PrevDecl=*/nullptr); 11288 getStdNamespace()->setImplicit(true); 11289 } 11290 11291 return getStdNamespace(); 11292} 11293 11294bool Sema::isStdInitializerList(QualType Ty, QualType *Element) { 11295 assert(getLangOpts().CPlusPlus &&(static_cast<void> (0)) 11296 "Looking for std::initializer_list outside of C++.")(static_cast<void> (0)); 11297 11298 // We're looking for implicit instantiations of 11299 // template <typename E> class std::initializer_list. 11300 11301 if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it. 11302 return false; 11303 11304 ClassTemplateDecl *Template = nullptr; 11305 const TemplateArgument *Arguments = nullptr; 11306 11307 if (const RecordType *RT = Ty->getAs<RecordType>()) { 11308 11309 ClassTemplateSpecializationDecl *Specialization = 11310 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); 11311 if (!Specialization) 11312 return false; 11313 11314 Template = Specialization->getSpecializedTemplate(); 11315 Arguments = Specialization->getTemplateArgs().data(); 11316 } else if (const TemplateSpecializationType *TST = 11317 Ty->getAs<TemplateSpecializationType>()) { 11318 Template = dyn_cast_or_null<ClassTemplateDecl>( 11319 TST->getTemplateName().getAsTemplateDecl()); 11320 Arguments = TST->getArgs(); 11321 } 11322 if (!Template) 11323 return false; 11324 11325 if (!StdInitializerList) { 11326 // Haven't recognized std::initializer_list yet, maybe this is it. 11327 CXXRecordDecl *TemplateClass = Template->getTemplatedDecl(); 11328 if (TemplateClass->getIdentifier() != 11329 &PP.getIdentifierTable().get("initializer_list") || 11330 !getStdNamespace()->InEnclosingNamespaceSetOf( 11331 TemplateClass->getDeclContext())) 11332 return false; 11333 // This is a template called std::initializer_list, but is it the right 11334 // template? 11335 TemplateParameterList *Params = Template->getTemplateParameters(); 11336 if (Params->getMinRequiredArguments() != 1) 11337 return false; 11338 if (!isa<TemplateTypeParmDecl>(Params->getParam(0))) 11339 return false; 11340 11341 // It's the right template. 11342 StdInitializerList = Template; 11343 } 11344 11345 if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl()) 11346 return false; 11347 11348 // This is an instance of std::initializer_list. Find the argument type. 11349 if (Element) 11350 *Element = Arguments[0].getAsType(); 11351 return true; 11352} 11353 11354static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){ 11355 NamespaceDecl *Std = S.getStdNamespace(); 11356 if (!Std) { 11357 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); 11358 return nullptr; 11359 } 11360 11361 LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"), 11362 Loc, Sema::LookupOrdinaryName); 11363 if (!S.LookupQualifiedName(Result, Std)) { 11364 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); 11365 return nullptr; 11366 } 11367 ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>(); 11368 if (!Template) { 11369 Result.suppressDiagnostics(); 11370 // We found something weird. Complain about the first thing we found. 11371 NamedDecl *Found = *Result.begin(); 11372 S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list); 11373 return nullptr; 11374 } 11375 11376 // We found some template called std::initializer_list. Now verify that it's 11377 // correct. 11378 TemplateParameterList *Params = Template->getTemplateParameters(); 11379 if (Params->getMinRequiredArguments() != 1 || 11380 !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 11381 S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list); 11382 return nullptr; 11383 } 11384 11385 return Template; 11386} 11387 11388QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) { 11389 if (!StdInitializerList) { 11390 StdInitializerList = LookupStdInitializerList(*this, Loc); 11391 if (!StdInitializerList) 11392 return QualType(); 11393 } 11394 11395 TemplateArgumentListInfo Args(Loc, Loc); 11396 Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element), 11397 Context.getTrivialTypeSourceInfo(Element, 11398 Loc))); 11399 return Context.getCanonicalType( 11400 CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args)); 11401} 11402 11403bool Sema::isInitListConstructor(const FunctionDecl *Ctor) { 11404 // C++ [dcl.init.list]p2: 11405 // A constructor is an initializer-list constructor if its first parameter 11406 // is of type std::initializer_list<E> or reference to possibly cv-qualified 11407 // std::initializer_list<E> for some type E, and either there are no other 11408 // parameters or else all other parameters have default arguments. 11409 if (!Ctor->hasOneParamOrDefaultArgs()) 11410 return false; 11411 11412 QualType ArgType = Ctor->getParamDecl(0)->getType(); 11413 if (const ReferenceType *RT = ArgType->getAs<ReferenceType>()) 11414 ArgType = RT->getPointeeType().getUnqualifiedType(); 11415 11416 return isStdInitializerList(ArgType, nullptr); 11417} 11418 11419/// Determine whether a using statement is in a context where it will be 11420/// apply in all contexts. 11421static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) { 11422 switch (CurContext->getDeclKind()) { 11423 case Decl::TranslationUnit: 11424 return true; 11425 case Decl::LinkageSpec: 11426 return IsUsingDirectiveInToplevelContext(CurContext->getParent()); 11427 default: 11428 return false; 11429 } 11430} 11431 11432namespace { 11433 11434// Callback to only accept typo corrections that are namespaces. 11435class NamespaceValidatorCCC final : public CorrectionCandidateCallback { 11436public: 11437 bool ValidateCandidate(const TypoCorrection &candidate) override { 11438 if (NamedDecl *ND = candidate.getCorrectionDecl()) 11439 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND); 11440 return false; 11441 } 11442 11443 std::unique_ptr<CorrectionCandidateCallback> clone() override { 11444 return std::make_unique<NamespaceValidatorCCC>(*this); 11445 } 11446}; 11447 11448} 11449 11450static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc, 11451 CXXScopeSpec &SS, 11452 SourceLocation IdentLoc, 11453 IdentifierInfo *Ident) { 11454 R.clear(); 11455 NamespaceValidatorCCC CCC{}; 11456 if (TypoCorrection Corrected = 11457 S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS, CCC, 11458 Sema::CTK_ErrorRecovery)) { 11459 if (DeclContext *DC = S.computeDeclContext(SS, false)) { 11460 std::string CorrectedStr(Corrected.getAsString(S.getLangOpts())); 11461 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 11462 Ident->getName().equals(CorrectedStr); 11463 S.diagnoseTypo(Corrected, 11464 S.PDiag(diag::err_using_directive_member_suggest) 11465 << Ident << DC << DroppedSpecifier << SS.getRange(), 11466 S.PDiag(diag::note_namespace_defined_here)); 11467 } else { 11468 S.diagnoseTypo(Corrected, 11469 S.PDiag(diag::err_using_directive_suggest) << Ident, 11470 S.PDiag(diag::note_namespace_defined_here)); 11471 } 11472 R.addDecl(Corrected.getFoundDecl()); 11473 return true; 11474 } 11475 return false; 11476} 11477 11478Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc, 11479 SourceLocation NamespcLoc, CXXScopeSpec &SS, 11480 SourceLocation IdentLoc, 11481 IdentifierInfo *NamespcName, 11482 const ParsedAttributesView &AttrList) { 11483 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.")(static_cast<void> (0)); 11484 assert(NamespcName && "Invalid NamespcName.")(static_cast<void> (0)); 11485 assert(IdentLoc.isValid() && "Invalid NamespceName location.")(static_cast<void> (0)); 11486 11487 // This can only happen along a recovery path. 11488 while (S->isTemplateParamScope()) 11489 S = S->getParent(); 11490 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.")(static_cast<void> (0)); 11491 11492 UsingDirectiveDecl *UDir = nullptr; 11493 NestedNameSpecifier *Qualifier = nullptr; 11494 if (SS.isSet()) 11495 Qualifier = SS.getScopeRep(); 11496 11497 // Lookup namespace name. 11498 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName); 11499 LookupParsedName(R, S, &SS); 11500 if (R.isAmbiguous()) 11501 return nullptr; 11502 11503 if (R.empty()) { 11504 R.clear(); 11505 // Allow "using namespace std;" or "using namespace ::std;" even if 11506 // "std" hasn't been defined yet, for GCC compatibility. 11507 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) && 11508 NamespcName->isStr("std")) { 11509 Diag(IdentLoc, diag::ext_using_undefined_std); 11510 R.addDecl(getOrCreateStdNamespace()); 11511 R.resolveKind(); 11512 } 11513 // Otherwise, attempt typo correction. 11514 else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName); 11515 } 11516 11517 if (!R.empty()) { 11518 NamedDecl *Named = R.getRepresentativeDecl(); 11519 NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>(); 11520 assert(NS && "expected namespace decl")(static_cast<void> (0)); 11521 11522 // The use of a nested name specifier may trigger deprecation warnings. 11523 DiagnoseUseOfDecl(Named, IdentLoc); 11524 11525 // C++ [namespace.udir]p1: 11526 // A using-directive specifies that the names in the nominated 11527 // namespace can be used in the scope in which the 11528 // using-directive appears after the using-directive. During 11529 // unqualified name lookup (3.4.1), the names appear as if they 11530 // were declared in the nearest enclosing namespace which 11531 // contains both the using-directive and the nominated 11532 // namespace. [Note: in this context, "contains" means "contains 11533 // directly or indirectly". ] 11534 11535 // Find enclosing context containing both using-directive and 11536 // nominated namespace. 11537 DeclContext *CommonAncestor = NS; 11538 while (CommonAncestor && !CommonAncestor->Encloses(CurContext)) 11539 CommonAncestor = CommonAncestor->getParent(); 11540 11541 UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc, 11542 SS.getWithLocInContext(Context), 11543 IdentLoc, Named, CommonAncestor); 11544 11545 if (IsUsingDirectiveInToplevelContext(CurContext) && 11546 !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) { 11547 Diag(IdentLoc, diag::warn_using_directive_in_header); 11548 } 11549 11550 PushUsingDirective(S, UDir); 11551 } else { 11552 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); 11553 } 11554 11555 if (UDir) 11556 ProcessDeclAttributeList(S, UDir, AttrList); 11557 11558 return UDir; 11559} 11560 11561void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { 11562 // If the scope has an associated entity and the using directive is at 11563 // namespace or translation unit scope, add the UsingDirectiveDecl into 11564 // its lookup structure so qualified name lookup can find it. 11565 DeclContext *Ctx = S->getEntity(); 11566 if (Ctx && !Ctx->isFunctionOrMethod()) 11567 Ctx->addDecl(UDir); 11568 else 11569 // Otherwise, it is at block scope. The using-directives will affect lookup 11570 // only to the end of the scope. 11571 S->PushUsingDirective(UDir); 11572} 11573 11574Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS, 11575 SourceLocation UsingLoc, 11576 SourceLocation TypenameLoc, CXXScopeSpec &SS, 11577 UnqualifiedId &Name, 11578 SourceLocation EllipsisLoc, 11579 const ParsedAttributesView &AttrList) { 11580 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.")(static_cast<void> (0)); 11581 11582 if (SS.isEmpty()) { 11583 Diag(Name.getBeginLoc(), diag::err_using_requires_qualname); 11584 return nullptr; 11585 } 11586 11587 switch (Name.getKind()) { 11588 case UnqualifiedIdKind::IK_ImplicitSelfParam: 11589 case UnqualifiedIdKind::IK_Identifier: 11590 case UnqualifiedIdKind::IK_OperatorFunctionId: 11591 case UnqualifiedIdKind::IK_LiteralOperatorId: 11592 case UnqualifiedIdKind::IK_ConversionFunctionId: 11593 break; 11594 11595 case UnqualifiedIdKind::IK_ConstructorName: 11596 case UnqualifiedIdKind::IK_ConstructorTemplateId: 11597 // C++11 inheriting constructors. 11598 Diag(Name.getBeginLoc(), 11599 getLangOpts().CPlusPlus11 11600 ? diag::warn_cxx98_compat_using_decl_constructor 11601 : diag::err_using_decl_constructor) 11602 << SS.getRange(); 11603 11604 if (getLangOpts().CPlusPlus11) break; 11605 11606 return nullptr; 11607 11608 case UnqualifiedIdKind::IK_DestructorName: 11609 Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange(); 11610 return nullptr; 11611 11612 case UnqualifiedIdKind::IK_TemplateId: 11613 Diag(Name.getBeginLoc(), diag::err_using_decl_template_id) 11614 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc); 11615 return nullptr; 11616 11617 case UnqualifiedIdKind::IK_DeductionGuideName: 11618 llvm_unreachable("cannot parse qualified deduction guide name")__builtin_unreachable(); 11619 } 11620 11621 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 11622 DeclarationName TargetName = TargetNameInfo.getName(); 11623 if (!TargetName) 11624 return nullptr; 11625 11626 // Warn about access declarations. 11627 if (UsingLoc.isInvalid()) { 11628 Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11 11629 ? diag::err_access_decl 11630 : diag::warn_access_decl_deprecated) 11631 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using "); 11632 } 11633 11634 if (EllipsisLoc.isInvalid()) { 11635 if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) || 11636 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration)) 11637 return nullptr; 11638 } else { 11639 if (!SS.getScopeRep()->containsUnexpandedParameterPack() && 11640 !TargetNameInfo.containsUnexpandedParameterPack()) { 11641 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 11642 << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc()); 11643 EllipsisLoc = SourceLocation(); 11644 } 11645 } 11646 11647 NamedDecl *UD = 11648 BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc, 11649 SS, TargetNameInfo, EllipsisLoc, AttrList, 11650 /*IsInstantiation*/ false, 11651 AttrList.hasAttribute(ParsedAttr::AT_UsingIfExists)); 11652 if (UD) 11653 PushOnScopeChains(UD, S, /*AddToContext*/ false); 11654 11655 return UD; 11656} 11657 11658Decl *Sema::ActOnUsingEnumDeclaration(Scope *S, AccessSpecifier AS, 11659 SourceLocation UsingLoc, 11660 SourceLocation EnumLoc, 11661 const DeclSpec &DS) { 11662 switch (DS.getTypeSpecType()) { 11663 case DeclSpec::TST_error: 11664 // This will already have been diagnosed 11665 return nullptr; 11666 11667 case DeclSpec::TST_enum: 11668 break; 11669 11670 case DeclSpec::TST_typename: 11671 Diag(DS.getTypeSpecTypeLoc(), diag::err_using_enum_is_dependent); 11672 return nullptr; 11673 11674 default: 11675 llvm_unreachable("unexpected DeclSpec type")__builtin_unreachable(); 11676 } 11677 11678 // As with enum-decls, we ignore attributes for now. 11679 auto *Enum = cast<EnumDecl>(DS.getRepAsDecl()); 11680 if (auto *Def = Enum->getDefinition()) 11681 Enum = Def; 11682 11683 auto *UD = BuildUsingEnumDeclaration(S, AS, UsingLoc, EnumLoc, 11684 DS.getTypeSpecTypeNameLoc(), Enum); 11685 if (UD) 11686 PushOnScopeChains(UD, S, /*AddToContext*/ false); 11687 11688 return UD; 11689} 11690 11691/// Determine whether a using declaration considers the given 11692/// declarations as "equivalent", e.g., if they are redeclarations of 11693/// the same entity or are both typedefs of the same type. 11694static bool 11695IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) { 11696 if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) 11697 return true; 11698 11699 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1)) 11700 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) 11701 return Context.hasSameType(TD1->getUnderlyingType(), 11702 TD2->getUnderlyingType()); 11703 11704 // Two using_if_exists using-declarations are equivalent if both are 11705 // unresolved. 11706 if (isa<UnresolvedUsingIfExistsDecl>(D1) && 11707 isa<UnresolvedUsingIfExistsDecl>(D2)) 11708 return true; 11709 11710 return false; 11711} 11712 11713 11714/// Determines whether to create a using shadow decl for a particular 11715/// decl, given the set of decls existing prior to this using lookup. 11716bool Sema::CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Orig, 11717 const LookupResult &Previous, 11718 UsingShadowDecl *&PrevShadow) { 11719 // Diagnose finding a decl which is not from a base class of the 11720 // current class. We do this now because there are cases where this 11721 // function will silently decide not to build a shadow decl, which 11722 // will pre-empt further diagnostics. 11723 // 11724 // We don't need to do this in C++11 because we do the check once on 11725 // the qualifier. 11726 // 11727 // FIXME: diagnose the following if we care enough: 11728 // struct A { int foo; }; 11729 // struct B : A { using A::foo; }; 11730 // template <class T> struct C : A {}; 11731 // template <class T> struct D : C<T> { using B::foo; } // <--- 11732 // This is invalid (during instantiation) in C++03 because B::foo 11733 // resolves to the using decl in B, which is not a base class of D<T>. 11734 // We can't diagnose it immediately because C<T> is an unknown 11735 // specialization. The UsingShadowDecl in D<T> then points directly 11736 // to A::foo, which will look well-formed when we instantiate. 11737 // The right solution is to not collapse the shadow-decl chain. 11738 if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) 11739 if (auto *Using = dyn_cast<UsingDecl>(BUD)) { 11740 DeclContext *OrigDC = Orig->getDeclContext(); 11741 11742 // Handle enums and anonymous structs. 11743 if (isa<EnumDecl>(OrigDC)) 11744 OrigDC = OrigDC->getParent(); 11745 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC); 11746 while (OrigRec->isAnonymousStructOrUnion()) 11747 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext()); 11748 11749 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) { 11750 if (OrigDC == CurContext) { 11751 Diag(Using->getLocation(), 11752 diag::err_using_decl_nested_name_specifier_is_current_class) 11753 << Using->getQualifierLoc().getSourceRange(); 11754 Diag(Orig->getLocation(), diag::note_using_decl_target); 11755 Using->setInvalidDecl(); 11756 return true; 11757 } 11758 11759 Diag(Using->getQualifierLoc().getBeginLoc(), 11760 diag::err_using_decl_nested_name_specifier_is_not_base_class) 11761 << Using->getQualifier() << cast<CXXRecordDecl>(CurContext) 11762 << Using->getQualifierLoc().getSourceRange(); 11763 Diag(Orig->getLocation(), diag::note_using_decl_target); 11764 Using->setInvalidDecl(); 11765 return true; 11766 } 11767 } 11768 11769 if (Previous.empty()) return false; 11770 11771 NamedDecl *Target = Orig; 11772 if (isa<UsingShadowDecl>(Target)) 11773 Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); 11774 11775 // If the target happens to be one of the previous declarations, we 11776 // don't have a conflict. 11777 // 11778 // FIXME: but we might be increasing its access, in which case we 11779 // should redeclare it. 11780 NamedDecl *NonTag = nullptr, *Tag = nullptr; 11781 bool FoundEquivalentDecl = false; 11782 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 11783 I != E; ++I) { 11784 NamedDecl *D = (*I)->getUnderlyingDecl(); 11785 // We can have UsingDecls in our Previous results because we use the same 11786 // LookupResult for checking whether the UsingDecl itself is a valid 11787 // redeclaration. 11788 if (isa<UsingDecl>(D) || isa<UsingPackDecl>(D) || isa<UsingEnumDecl>(D)) 11789 continue; 11790 11791 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) { 11792 // C++ [class.mem]p19: 11793 // If T is the name of a class, then [every named member other than 11794 // a non-static data member] shall have a name different from T 11795 if (RD->isInjectedClassName() && !isa<FieldDecl>(Target) && 11796 !isa<IndirectFieldDecl>(Target) && 11797 !isa<UnresolvedUsingValueDecl>(Target) && 11798 DiagnoseClassNameShadow( 11799 CurContext, 11800 DeclarationNameInfo(BUD->getDeclName(), BUD->getLocation()))) 11801 return true; 11802 } 11803 11804 if (IsEquivalentForUsingDecl(Context, D, Target)) { 11805 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I)) 11806 PrevShadow = Shadow; 11807 FoundEquivalentDecl = true; 11808 } else if (isEquivalentInternalLinkageDeclaration(D, Target)) { 11809 // We don't conflict with an existing using shadow decl of an equivalent 11810 // declaration, but we're not a redeclaration of it. 11811 FoundEquivalentDecl = true; 11812 } 11813 11814 if (isVisible(D)) 11815 (isa<TagDecl>(D) ? Tag : NonTag) = D; 11816 } 11817 11818 if (FoundEquivalentDecl) 11819 return false; 11820 11821 // Always emit a diagnostic for a mismatch between an unresolved 11822 // using_if_exists and a resolved using declaration in either direction. 11823 if (isa<UnresolvedUsingIfExistsDecl>(Target) != 11824 (isa_and_nonnull<UnresolvedUsingIfExistsDecl>(NonTag))) { 11825 if (!NonTag && !Tag) 11826 return false; 11827 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 11828 Diag(Target->getLocation(), diag::note_using_decl_target); 11829 Diag((NonTag ? NonTag : Tag)->getLocation(), 11830 diag::note_using_decl_conflict); 11831 BUD->setInvalidDecl(); 11832 return true; 11833 } 11834 11835 if (FunctionDecl *FD = Target->getAsFunction()) { 11836 NamedDecl *OldDecl = nullptr; 11837 switch (CheckOverload(nullptr, FD, Previous, OldDecl, 11838 /*IsForUsingDecl*/ true)) { 11839 case Ovl_Overload: 11840 return false; 11841 11842 case Ovl_NonFunction: 11843 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 11844 break; 11845 11846 // We found a decl with the exact signature. 11847 case Ovl_Match: 11848 // If we're in a record, we want to hide the target, so we 11849 // return true (without a diagnostic) to tell the caller not to 11850 // build a shadow decl. 11851 if (CurContext->isRecord()) 11852 return true; 11853 11854 // If we're not in a record, this is an error. 11855 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 11856 break; 11857 } 11858 11859 Diag(Target->getLocation(), diag::note_using_decl_target); 11860 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict); 11861 BUD->setInvalidDecl(); 11862 return true; 11863 } 11864 11865 // Target is not a function. 11866 11867 if (isa<TagDecl>(Target)) { 11868 // No conflict between a tag and a non-tag. 11869 if (!Tag) return false; 11870 11871 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 11872 Diag(Target->getLocation(), diag::note_using_decl_target); 11873 Diag(Tag->getLocation(), diag::note_using_decl_conflict); 11874 BUD->setInvalidDecl(); 11875 return true; 11876 } 11877 11878 // No conflict between a tag and a non-tag. 11879 if (!NonTag) return false; 11880 11881 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 11882 Diag(Target->getLocation(), diag::note_using_decl_target); 11883 Diag(NonTag->getLocation(), diag::note_using_decl_conflict); 11884 BUD->setInvalidDecl(); 11885 return true; 11886} 11887 11888/// Determine whether a direct base class is a virtual base class. 11889static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) { 11890 if (!Derived->getNumVBases()) 11891 return false; 11892 for (auto &B : Derived->bases()) 11893 if (B.getType()->getAsCXXRecordDecl() == Base) 11894 return B.isVirtual(); 11895 llvm_unreachable("not a direct base class")__builtin_unreachable(); 11896} 11897 11898/// Builds a shadow declaration corresponding to a 'using' declaration. 11899UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD, 11900 NamedDecl *Orig, 11901 UsingShadowDecl *PrevDecl) { 11902 // If we resolved to another shadow declaration, just coalesce them. 11903 NamedDecl *Target = Orig; 11904 if (isa<UsingShadowDecl>(Target)) { 11905 Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); 11906 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration")(static_cast<void> (0)); 11907 } 11908 11909 NamedDecl *NonTemplateTarget = Target; 11910 if (auto *TargetTD = dyn_cast<TemplateDecl>(Target)) 11911 NonTemplateTarget = TargetTD->getTemplatedDecl(); 11912 11913 UsingShadowDecl *Shadow; 11914 if (NonTemplateTarget && isa<CXXConstructorDecl>(NonTemplateTarget)) { 11915 UsingDecl *Using = cast<UsingDecl>(BUD); 11916 bool IsVirtualBase = 11917 isVirtualDirectBase(cast<CXXRecordDecl>(CurContext), 11918 Using->getQualifier()->getAsRecordDecl()); 11919 Shadow = ConstructorUsingShadowDecl::Create( 11920 Context, CurContext, Using->getLocation(), Using, Orig, IsVirtualBase); 11921 } else { 11922 Shadow = UsingShadowDecl::Create(Context, CurContext, BUD->getLocation(), 11923 Target->getDeclName(), BUD, Target); 11924 } 11925 BUD->addShadowDecl(Shadow); 11926 11927 Shadow->setAccess(BUD->getAccess()); 11928 if (Orig->isInvalidDecl() || BUD->isInvalidDecl()) 11929 Shadow->setInvalidDecl(); 11930 11931 Shadow->setPreviousDecl(PrevDecl); 11932 11933 if (S) 11934 PushOnScopeChains(Shadow, S); 11935 else 11936 CurContext->addDecl(Shadow); 11937 11938 11939 return Shadow; 11940} 11941 11942/// Hides a using shadow declaration. This is required by the current 11943/// using-decl implementation when a resolvable using declaration in a 11944/// class is followed by a declaration which would hide or override 11945/// one or more of the using decl's targets; for example: 11946/// 11947/// struct Base { void foo(int); }; 11948/// struct Derived : Base { 11949/// using Base::foo; 11950/// void foo(int); 11951/// }; 11952/// 11953/// The governing language is C++03 [namespace.udecl]p12: 11954/// 11955/// When a using-declaration brings names from a base class into a 11956/// derived class scope, member functions in the derived class 11957/// override and/or hide member functions with the same name and 11958/// parameter types in a base class (rather than conflicting). 11959/// 11960/// There are two ways to implement this: 11961/// (1) optimistically create shadow decls when they're not hidden 11962/// by existing declarations, or 11963/// (2) don't create any shadow decls (or at least don't make them 11964/// visible) until we've fully parsed/instantiated the class. 11965/// The problem with (1) is that we might have to retroactively remove 11966/// a shadow decl, which requires several O(n) operations because the 11967/// decl structures are (very reasonably) not designed for removal. 11968/// (2) avoids this but is very fiddly and phase-dependent. 11969void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) { 11970 if (Shadow->getDeclName().getNameKind() == 11971 DeclarationName::CXXConversionFunctionName) 11972 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow); 11973 11974 // Remove it from the DeclContext... 11975 Shadow->getDeclContext()->removeDecl(Shadow); 11976 11977 // ...and the scope, if applicable... 11978 if (S) { 11979 S->RemoveDecl(Shadow); 11980 IdResolver.RemoveDecl(Shadow); 11981 } 11982 11983 // ...and the using decl. 11984 Shadow->getIntroducer()->removeShadowDecl(Shadow); 11985 11986 // TODO: complain somehow if Shadow was used. It shouldn't 11987 // be possible for this to happen, because...? 11988} 11989 11990/// Find the base specifier for a base class with the given type. 11991static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived, 11992 QualType DesiredBase, 11993 bool &AnyDependentBases) { 11994 // Check whether the named type is a direct base class. 11995 CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified() 11996 .getUnqualifiedType(); 11997 for (auto &Base : Derived->bases()) { 11998 CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified(); 11999 if (CanonicalDesiredBase == BaseType) 12000 return &Base; 12001 if (BaseType->isDependentType()) 12002 AnyDependentBases = true; 12003 } 12004 return nullptr; 12005} 12006 12007namespace { 12008class UsingValidatorCCC final : public CorrectionCandidateCallback { 12009public: 12010 UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation, 12011 NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf) 12012 : HasTypenameKeyword(HasTypenameKeyword), 12013 IsInstantiation(IsInstantiation), OldNNS(NNS), 12014 RequireMemberOf(RequireMemberOf) {} 12015 12016 bool ValidateCandidate(const TypoCorrection &Candidate) override { 12017 NamedDecl *ND = Candidate.getCorrectionDecl(); 12018 12019 // Keywords are not valid here. 12020 if (!ND || isa<NamespaceDecl>(ND)) 12021 return false; 12022 12023 // Completely unqualified names are invalid for a 'using' declaration. 12024 if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier()) 12025 return false; 12026 12027 // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would 12028 // reject. 12029 12030 if (RequireMemberOf) { 12031 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND); 12032 if (FoundRecord && FoundRecord->isInjectedClassName()) { 12033 // No-one ever wants a using-declaration to name an injected-class-name 12034 // of a base class, unless they're declaring an inheriting constructor. 12035 ASTContext &Ctx = ND->getASTContext(); 12036 if (!Ctx.getLangOpts().CPlusPlus11) 12037 return false; 12038 QualType FoundType = Ctx.getRecordType(FoundRecord); 12039 12040 // Check that the injected-class-name is named as a member of its own 12041 // type; we don't want to suggest 'using Derived::Base;', since that 12042 // means something else. 12043 NestedNameSpecifier *Specifier = 12044 Candidate.WillReplaceSpecifier() 12045 ? Candidate.getCorrectionSpecifier() 12046 : OldNNS; 12047 if (!Specifier->getAsType() || 12048 !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType)) 12049 return false; 12050 12051 // Check that this inheriting constructor declaration actually names a 12052 // direct base class of the current class. 12053 bool AnyDependentBases = false; 12054 if (!findDirectBaseWithType(RequireMemberOf, 12055 Ctx.getRecordType(FoundRecord), 12056 AnyDependentBases) && 12057 !AnyDependentBases) 12058 return false; 12059 } else { 12060 auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext()); 12061 if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD)) 12062 return false; 12063 12064 // FIXME: Check that the base class member is accessible? 12065 } 12066 } else { 12067 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND); 12068 if (FoundRecord && FoundRecord->isInjectedClassName()) 12069 return false; 12070 } 12071 12072 if (isa<TypeDecl>(ND)) 12073 return HasTypenameKeyword || !IsInstantiation; 12074 12075 return !HasTypenameKeyword; 12076 } 12077 12078 std::unique_ptr<CorrectionCandidateCallback> clone() override { 12079 return std::make_unique<UsingValidatorCCC>(*this); 12080 } 12081 12082private: 12083 bool HasTypenameKeyword; 12084 bool IsInstantiation; 12085 NestedNameSpecifier *OldNNS; 12086 CXXRecordDecl *RequireMemberOf; 12087}; 12088} // end anonymous namespace 12089 12090/// Remove decls we can't actually see from a lookup being used to declare 12091/// shadow using decls. 12092/// 12093/// \param S - The scope of the potential shadow decl 12094/// \param Previous - The lookup of a potential shadow decl's name. 12095void Sema::FilterUsingLookup(Scope *S, LookupResult &Previous) { 12096 // It is really dumb that we have to do this. 12097 LookupResult::Filter F = Previous.makeFilter(); 12098 while (F.hasNext()) { 12099 NamedDecl *D = F.next(); 12100 if (!isDeclInScope(D, CurContext, S)) 12101 F.erase(); 12102 // If we found a local extern declaration that's not ordinarily visible, 12103 // and this declaration is being added to a non-block scope, ignore it. 12104 // We're only checking for scope conflicts here, not also for violations 12105 // of the linkage rules. 12106 else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() && 12107 !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary)) 12108 F.erase(); 12109 } 12110 F.done(); 12111} 12112 12113/// Builds a using declaration. 12114/// 12115/// \param IsInstantiation - Whether this call arises from an 12116/// instantiation of an unresolved using declaration. We treat 12117/// the lookup differently for these declarations. 12118NamedDecl *Sema::BuildUsingDeclaration( 12119 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, 12120 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS, 12121 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc, 12122 const ParsedAttributesView &AttrList, bool IsInstantiation, 12123 bool IsUsingIfExists) { 12124 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.")(static_cast<void> (0)); 12125 SourceLocation IdentLoc = NameInfo.getLoc(); 12126 assert(IdentLoc.isValid() && "Invalid TargetName location.")(static_cast<void> (0)); 12127 12128 // FIXME: We ignore attributes for now. 12129 12130 // For an inheriting constructor declaration, the name of the using 12131 // declaration is the name of a constructor in this class, not in the 12132 // base class. 12133 DeclarationNameInfo UsingName = NameInfo; 12134 if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName) 12135 if (auto *RD = dyn_cast<CXXRecordDecl>(CurContext)) 12136 UsingName.setName(Context.DeclarationNames.getCXXConstructorName( 12137 Context.getCanonicalType(Context.getRecordType(RD)))); 12138 12139 // Do the redeclaration lookup in the current scope. 12140 LookupResult Previous(*this, UsingName, LookupUsingDeclName, 12141 ForVisibleRedeclaration); 12142 Previous.setHideTags(false); 12143 if (S) { 12144 LookupName(Previous, S); 12145 12146 FilterUsingLookup(S, Previous); 12147 } else { 12148 assert(IsInstantiation && "no scope in non-instantiation")(static_cast<void> (0)); 12149 if (CurContext->isRecord()) 12150 LookupQualifiedName(Previous, CurContext); 12151 else { 12152 // No redeclaration check is needed here; in non-member contexts we 12153 // diagnosed all possible conflicts with other using-declarations when 12154 // building the template: 12155 // 12156 // For a dependent non-type using declaration, the only valid case is 12157 // if we instantiate to a single enumerator. We check for conflicts 12158 // between shadow declarations we introduce, and we check in the template 12159 // definition for conflicts between a non-type using declaration and any 12160 // other declaration, which together covers all cases. 12161 // 12162 // A dependent typename using declaration will never successfully 12163 // instantiate, since it will always name a class member, so we reject 12164 // that in the template definition. 12165 } 12166 } 12167 12168 // Check for invalid redeclarations. 12169 if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword, 12170 SS, IdentLoc, Previous)) 12171 return nullptr; 12172 12173 // 'using_if_exists' doesn't make sense on an inherited constructor. 12174 if (IsUsingIfExists && UsingName.getName().getNameKind() == 12175 DeclarationName::CXXConstructorName) { 12176 Diag(UsingLoc, diag::err_using_if_exists_on_ctor); 12177 return nullptr; 12178 } 12179 12180 DeclContext *LookupContext = computeDeclContext(SS); 12181 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 12182 if (!LookupContext || EllipsisLoc.isValid()) { 12183 NamedDecl *D; 12184 // Dependent scope, or an unexpanded pack 12185 if (!LookupContext && CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, 12186 SS, NameInfo, IdentLoc)) 12187 return nullptr; 12188 12189 if (HasTypenameKeyword) { 12190 // FIXME: not all declaration name kinds are legal here 12191 D = UnresolvedUsingTypenameDecl::Create(Context, CurContext, 12192 UsingLoc, TypenameLoc, 12193 QualifierLoc, 12194 IdentLoc, NameInfo.getName(), 12195 EllipsisLoc); 12196 } else { 12197 D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc, 12198 QualifierLoc, NameInfo, EllipsisLoc); 12199 } 12200 D->setAccess(AS); 12201 CurContext->addDecl(D); 12202 ProcessDeclAttributeList(S, D, AttrList); 12203 return D; 12204 } 12205 12206 auto Build = [&](bool Invalid) { 12207 UsingDecl *UD = 12208 UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc, 12209 UsingName, HasTypenameKeyword); 12210 UD->setAccess(AS); 12211 CurContext->addDecl(UD); 12212 ProcessDeclAttributeList(S, UD, AttrList); 12213 UD->setInvalidDecl(Invalid); 12214 return UD; 12215 }; 12216 auto BuildInvalid = [&]{ return Build(true); }; 12217 auto BuildValid = [&]{ return Build(false); }; 12218 12219 if (RequireCompleteDeclContext(SS, LookupContext)) 12220 return BuildInvalid(); 12221 12222 // Look up the target name. 12223 LookupResult R(*this, NameInfo, LookupOrdinaryName); 12224 12225 // Unlike most lookups, we don't always want to hide tag 12226 // declarations: tag names are visible through the using declaration 12227 // even if hidden by ordinary names, *except* in a dependent context 12228 // where it's important for the sanity of two-phase lookup. 12229 if (!IsInstantiation) 12230 R.setHideTags(false); 12231 12232 // For the purposes of this lookup, we have a base object type 12233 // equal to that of the current context. 12234 if (CurContext->isRecord()) { 12235 R.setBaseObjectType( 12236 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))); 12237 } 12238 12239 LookupQualifiedName(R, LookupContext); 12240 12241 // Validate the context, now we have a lookup 12242 if (CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo, 12243 IdentLoc, &R)) 12244 return nullptr; 12245 12246 if (R.empty() && IsUsingIfExists) 12247 R.addDecl(UnresolvedUsingIfExistsDecl::Create(Context, CurContext, UsingLoc, 12248 UsingName.getName()), 12249 AS_public); 12250 12251 // Try to correct typos if possible. If constructor name lookup finds no 12252 // results, that means the named class has no explicit constructors, and we 12253 // suppressed declaring implicit ones (probably because it's dependent or 12254 // invalid). 12255 if (R.empty() && 12256 NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) { 12257 // HACK 2017-01-08: Work around an issue with libstdc++'s detection of 12258 // ::gets. Sometimes it believes that glibc provides a ::gets in cases where 12259 // it does not. The issue was fixed in libstdc++ 6.3 (2016-12-21) and later. 12260 auto *II = NameInfo.getName().getAsIdentifierInfo(); 12261 if (getLangOpts().CPlusPlus14 && II && II->isStr("gets") && 12262 CurContext->isStdNamespace() && 12263 isa<TranslationUnitDecl>(LookupContext) && 12264 getSourceManager().isInSystemHeader(UsingLoc)) 12265 return nullptr; 12266 UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(), 12267 dyn_cast<CXXRecordDecl>(CurContext)); 12268 if (TypoCorrection Corrected = 12269 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC, 12270 CTK_ErrorRecovery)) { 12271 // We reject candidates where DroppedSpecifier == true, hence the 12272 // literal '0' below. 12273 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) 12274 << NameInfo.getName() << LookupContext << 0 12275 << SS.getRange()); 12276 12277 // If we picked a correction with no attached Decl we can't do anything 12278 // useful with it, bail out. 12279 NamedDecl *ND = Corrected.getCorrectionDecl(); 12280 if (!ND) 12281 return BuildInvalid(); 12282 12283 // If we corrected to an inheriting constructor, handle it as one. 12284 auto *RD = dyn_cast<CXXRecordDecl>(ND); 12285 if (RD && RD->isInjectedClassName()) { 12286 // The parent of the injected class name is the class itself. 12287 RD = cast<CXXRecordDecl>(RD->getParent()); 12288 12289 // Fix up the information we'll use to build the using declaration. 12290 if (Corrected.WillReplaceSpecifier()) { 12291 NestedNameSpecifierLocBuilder Builder; 12292 Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), 12293 QualifierLoc.getSourceRange()); 12294 QualifierLoc = Builder.getWithLocInContext(Context); 12295 } 12296 12297 // In this case, the name we introduce is the name of a derived class 12298 // constructor. 12299 auto *CurClass = cast<CXXRecordDecl>(CurContext); 12300 UsingName.setName(Context.DeclarationNames.getCXXConstructorName( 12301 Context.getCanonicalType(Context.getRecordType(CurClass)))); 12302 UsingName.setNamedTypeInfo(nullptr); 12303 for (auto *Ctor : LookupConstructors(RD)) 12304 R.addDecl(Ctor); 12305 R.resolveKind(); 12306 } else { 12307 // FIXME: Pick up all the declarations if we found an overloaded 12308 // function. 12309 UsingName.setName(ND->getDeclName()); 12310 R.addDecl(ND); 12311 } 12312 } else { 12313 Diag(IdentLoc, diag::err_no_member) 12314 << NameInfo.getName() << LookupContext << SS.getRange(); 12315 return BuildInvalid(); 12316 } 12317 } 12318 12319 if (R.isAmbiguous()) 12320 return BuildInvalid(); 12321 12322 if (HasTypenameKeyword) { 12323 // If we asked for a typename and got a non-type decl, error out. 12324 if (!R.getAsSingle<TypeDecl>() && 12325 !R.getAsSingle<UnresolvedUsingIfExistsDecl>()) { 12326 Diag(IdentLoc, diag::err_using_typename_non_type); 12327 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 12328 Diag((*I)->getUnderlyingDecl()->getLocation(), 12329 diag::note_using_decl_target); 12330 return BuildInvalid(); 12331 } 12332 } else { 12333 // If we asked for a non-typename and we got a type, error out, 12334 // but only if this is an instantiation of an unresolved using 12335 // decl. Otherwise just silently find the type name. 12336 if (IsInstantiation && R.getAsSingle<TypeDecl>()) { 12337 Diag(IdentLoc, diag::err_using_dependent_value_is_type); 12338 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target); 12339 return BuildInvalid(); 12340 } 12341 } 12342 12343 // C++14 [namespace.udecl]p6: 12344 // A using-declaration shall not name a namespace. 12345 if (R.getAsSingle<NamespaceDecl>()) { 12346 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace) 12347 << SS.getRange(); 12348 return BuildInvalid(); 12349 } 12350 12351 UsingDecl *UD = BuildValid(); 12352 12353 // Some additional rules apply to inheriting constructors. 12354 if (UsingName.getName().getNameKind() == 12355 DeclarationName::CXXConstructorName) { 12356 // Suppress access diagnostics; the access check is instead performed at the 12357 // point of use for an inheriting constructor. 12358 R.suppressDiagnostics(); 12359 if (CheckInheritingConstructorUsingDecl(UD)) 12360 return UD; 12361 } 12362 12363 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 12364 UsingShadowDecl *PrevDecl = nullptr; 12365 if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl)) 12366 BuildUsingShadowDecl(S, UD, *I, PrevDecl); 12367 } 12368 12369 return UD; 12370} 12371 12372NamedDecl *Sema::BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS, 12373 SourceLocation UsingLoc, 12374 SourceLocation EnumLoc, 12375 SourceLocation NameLoc, 12376 EnumDecl *ED) { 12377 bool Invalid = false; 12378 12379 if (CurContext->getRedeclContext()->isRecord()) { 12380 /// In class scope, check if this is a duplicate, for better a diagnostic. 12381 DeclarationNameInfo UsingEnumName(ED->getDeclName(), NameLoc); 12382 LookupResult Previous(*this, UsingEnumName, LookupUsingDeclName, 12383 ForVisibleRedeclaration); 12384 12385 LookupName(Previous, S); 12386 12387 for (NamedDecl *D : Previous) 12388 if (UsingEnumDecl *UED = dyn_cast<UsingEnumDecl>(D)) 12389 if (UED->getEnumDecl() == ED) { 12390 Diag(UsingLoc, diag::err_using_enum_decl_redeclaration) 12391 << SourceRange(EnumLoc, NameLoc); 12392 Diag(D->getLocation(), diag::note_using_enum_decl) << 1; 12393 Invalid = true; 12394 break; 12395 } 12396 } 12397 12398 if (RequireCompleteEnumDecl(ED, NameLoc)) 12399 Invalid = true; 12400 12401 UsingEnumDecl *UD = UsingEnumDecl::Create(Context, CurContext, UsingLoc, 12402 EnumLoc, NameLoc, ED); 12403 UD->setAccess(AS); 12404 CurContext->addDecl(UD); 12405 12406 if (Invalid) { 12407 UD->setInvalidDecl(); 12408 return UD; 12409 } 12410 12411 // Create the shadow decls for each enumerator 12412 for (EnumConstantDecl *EC : ED->enumerators()) { 12413 UsingShadowDecl *PrevDecl = nullptr; 12414 DeclarationNameInfo DNI(EC->getDeclName(), EC->getLocation()); 12415 LookupResult Previous(*this, DNI, LookupOrdinaryName, 12416 ForVisibleRedeclaration); 12417 LookupName(Previous, S); 12418 FilterUsingLookup(S, Previous); 12419 12420 if (!CheckUsingShadowDecl(UD, EC, Previous, PrevDecl)) 12421 BuildUsingShadowDecl(S, UD, EC, PrevDecl); 12422 } 12423 12424 return UD; 12425} 12426 12427NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom, 12428 ArrayRef<NamedDecl *> Expansions) { 12429 assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) ||(static_cast<void> (0)) 12430 isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) ||(static_cast<void> (0)) 12431 isa<UsingPackDecl>(InstantiatedFrom))(static_cast<void> (0)); 12432 12433 auto *UPD = 12434 UsingPackDecl::Create(Context, CurContext, InstantiatedFrom, Expansions); 12435 UPD->setAccess(InstantiatedFrom->getAccess()); 12436 CurContext->addDecl(UPD); 12437 return UPD; 12438} 12439 12440/// Additional checks for a using declaration referring to a constructor name. 12441bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) { 12442 assert(!UD->hasTypename() && "expecting a constructor name")(static_cast<void> (0)); 12443 12444 const Type *SourceType = UD->getQualifier()->getAsType(); 12445 assert(SourceType &&(static_cast<void> (0)) 12446 "Using decl naming constructor doesn't have type in scope spec.")(static_cast<void> (0)); 12447 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext); 12448 12449 // Check whether the named type is a direct base class. 12450 bool AnyDependentBases = false; 12451 auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0), 12452 AnyDependentBases); 12453 if (!Base && !AnyDependentBases) { 12454 Diag(UD->getUsingLoc(), 12455 diag::err_using_decl_constructor_not_in_direct_base) 12456 << UD->getNameInfo().getSourceRange() 12457 << QualType(SourceType, 0) << TargetClass; 12458 UD->setInvalidDecl(); 12459 return true; 12460 } 12461 12462 if (Base) 12463 Base->setInheritConstructors(); 12464 12465 return false; 12466} 12467 12468/// Checks that the given using declaration is not an invalid 12469/// redeclaration. Note that this is checking only for the using decl 12470/// itself, not for any ill-formedness among the UsingShadowDecls. 12471bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc, 12472 bool HasTypenameKeyword, 12473 const CXXScopeSpec &SS, 12474 SourceLocation NameLoc, 12475 const LookupResult &Prev) { 12476 NestedNameSpecifier *Qual = SS.getScopeRep(); 12477 12478 // C++03 [namespace.udecl]p8: 12479 // C++0x [namespace.udecl]p10: 12480 // A using-declaration is a declaration and can therefore be used 12481 // repeatedly where (and only where) multiple declarations are 12482 // allowed. 12483 // 12484 // That's in non-member contexts. 12485 if (!CurContext->getRedeclContext()->isRecord()) { 12486 // A dependent qualifier outside a class can only ever resolve to an 12487 // enumeration type. Therefore it conflicts with any other non-type 12488 // declaration in the same scope. 12489 // FIXME: How should we check for dependent type-type conflicts at block 12490 // scope? 12491 if (Qual->isDependent() && !HasTypenameKeyword) { 12492 for (auto *D : Prev) { 12493 if (!isa<TypeDecl>(D) && !isa<UsingDecl>(D) && !isa<UsingPackDecl>(D)) { 12494 bool OldCouldBeEnumerator = 12495 isa<UnresolvedUsingValueDecl>(D) || isa<EnumConstantDecl>(D); 12496 Diag(NameLoc, 12497 OldCouldBeEnumerator ? diag::err_redefinition 12498 : diag::err_redefinition_different_kind) 12499 << Prev.getLookupName(); 12500 Diag(D->getLocation(), diag::note_previous_definition); 12501 return true; 12502 } 12503 } 12504 } 12505 return false; 12506 } 12507 12508 const NestedNameSpecifier *CNNS = 12509 Context.getCanonicalNestedNameSpecifier(Qual); 12510 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) { 12511 NamedDecl *D = *I; 12512 12513 bool DTypename; 12514 NestedNameSpecifier *DQual; 12515 if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) { 12516 DTypename = UD->hasTypename(); 12517 DQual = UD->getQualifier(); 12518 } else if (UnresolvedUsingValueDecl *UD 12519 = dyn_cast<UnresolvedUsingValueDecl>(D)) { 12520 DTypename = false; 12521 DQual = UD->getQualifier(); 12522 } else if (UnresolvedUsingTypenameDecl *UD 12523 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) { 12524 DTypename = true; 12525 DQual = UD->getQualifier(); 12526 } else continue; 12527 12528 // using decls differ if one says 'typename' and the other doesn't. 12529 // FIXME: non-dependent using decls? 12530 if (HasTypenameKeyword != DTypename) continue; 12531 12532 // using decls differ if they name different scopes (but note that 12533 // template instantiation can cause this check to trigger when it 12534 // didn't before instantiation). 12535 if (CNNS != Context.getCanonicalNestedNameSpecifier(DQual)) 12536 continue; 12537 12538 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange(); 12539 Diag(D->getLocation(), diag::note_using_decl) << 1; 12540 return true; 12541 } 12542 12543 return false; 12544} 12545 12546/// Checks that the given nested-name qualifier used in a using decl 12547/// in the current context is appropriately related to the current 12548/// scope. If an error is found, diagnoses it and returns true. 12549/// R is nullptr, if the caller has not (yet) done a lookup, otherwise it's the 12550/// result of that lookup. UD is likewise nullptr, except when we have an 12551/// already-populated UsingDecl whose shadow decls contain the same information 12552/// (i.e. we're instantiating a UsingDecl with non-dependent scope). 12553bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename, 12554 const CXXScopeSpec &SS, 12555 const DeclarationNameInfo &NameInfo, 12556 SourceLocation NameLoc, 12557 const LookupResult *R, const UsingDecl *UD) { 12558 DeclContext *NamedContext = computeDeclContext(SS); 12559 assert(bool(NamedContext) == (R || UD) && !(R && UD) &&(static_cast<void> (0)) 12560 "resolvable context must have exactly one set of decls")(static_cast<void> (0)); 12561 12562 // C++ 20 permits using an enumerator that does not have a class-hierarchy 12563 // relationship. 12564 bool Cxx20Enumerator = false; 12565 if (NamedContext) { 12566 EnumConstantDecl *EC = nullptr; 12567 if (R) 12568 EC = R->getAsSingle<EnumConstantDecl>(); 12569 else if (UD && UD->shadow_size() == 1) 12570 EC = dyn_cast<EnumConstantDecl>(UD->shadow_begin()->getTargetDecl()); 12571 if (EC) 12572 Cxx20Enumerator = getLangOpts().CPlusPlus20; 12573 12574 if (auto *ED = dyn_cast<EnumDecl>(NamedContext)) { 12575 // C++14 [namespace.udecl]p7: 12576 // A using-declaration shall not name a scoped enumerator. 12577 // C++20 p1099 permits enumerators. 12578 if (EC && R && ED->isScoped()) 12579 Diag(SS.getBeginLoc(), 12580 getLangOpts().CPlusPlus20 12581 ? diag::warn_cxx17_compat_using_decl_scoped_enumerator 12582 : diag::ext_using_decl_scoped_enumerator) 12583 << SS.getRange(); 12584 12585 // We want to consider the scope of the enumerator 12586 NamedContext = ED->getDeclContext(); 12587 } 12588 } 12589 12590 if (!CurContext->isRecord()) { 12591 // C++03 [namespace.udecl]p3: 12592 // C++0x [namespace.udecl]p8: 12593 // A using-declaration for a class member shall be a member-declaration. 12594 // C++20 [namespace.udecl]p7 12595 // ... other than an enumerator ... 12596 12597 // If we weren't able to compute a valid scope, it might validly be a 12598 // dependent class or enumeration scope. If we have a 'typename' keyword, 12599 // the scope must resolve to a class type. 12600 if (NamedContext ? !NamedContext->getRedeclContext()->isRecord() 12601 : !HasTypename) 12602 return false; // OK 12603 12604 Diag(NameLoc, 12605 Cxx20Enumerator 12606 ? diag::warn_cxx17_compat_using_decl_class_member_enumerator 12607 : diag::err_using_decl_can_not_refer_to_class_member) 12608 << SS.getRange(); 12609 12610 if (Cxx20Enumerator) 12611 return false; // OK 12612 12613 auto *RD = NamedContext 12614 ? cast<CXXRecordDecl>(NamedContext->getRedeclContext()) 12615 : nullptr; 12616 if (RD && !RequireCompleteDeclContext(const_cast<CXXScopeSpec &>(SS), RD)) { 12617 // See if there's a helpful fixit 12618 12619 if (!R) { 12620 // We will have already diagnosed the problem on the template 12621 // definition, Maybe we should do so again? 12622 } else if (R->getAsSingle<TypeDecl>()) { 12623 if (getLangOpts().CPlusPlus11) { 12624 // Convert 'using X::Y;' to 'using Y = X::Y;'. 12625 Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround) 12626 << 0 // alias declaration 12627 << FixItHint::CreateInsertion(SS.getBeginLoc(), 12628 NameInfo.getName().getAsString() + 12629 " = "); 12630 } else { 12631 // Convert 'using X::Y;' to 'typedef X::Y Y;'. 12632 SourceLocation InsertLoc = getLocForEndOfToken(NameInfo.getEndLoc()); 12633 Diag(InsertLoc, diag::note_using_decl_class_member_workaround) 12634 << 1 // typedef declaration 12635 << FixItHint::CreateReplacement(UsingLoc, "typedef") 12636 << FixItHint::CreateInsertion( 12637 InsertLoc, " " + NameInfo.getName().getAsString()); 12638 } 12639 } else if (R->getAsSingle<VarDecl>()) { 12640 // Don't provide a fixit outside C++11 mode; we don't want to suggest 12641 // repeating the type of the static data member here. 12642 FixItHint FixIt; 12643 if (getLangOpts().CPlusPlus11) { 12644 // Convert 'using X::Y;' to 'auto &Y = X::Y;'. 12645 FixIt = FixItHint::CreateReplacement( 12646 UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = "); 12647 } 12648 12649 Diag(UsingLoc, diag::note_using_decl_class_member_workaround) 12650 << 2 // reference declaration 12651 << FixIt; 12652 } else if (R->getAsSingle<EnumConstantDecl>()) { 12653 // Don't provide a fixit outside C++11 mode; we don't want to suggest 12654 // repeating the type of the enumeration here, and we can't do so if 12655 // the type is anonymous. 12656 FixItHint FixIt; 12657 if (getLangOpts().CPlusPlus11) { 12658 // Convert 'using X::Y;' to 'auto &Y = X::Y;'. 12659 FixIt = FixItHint::CreateReplacement( 12660 UsingLoc, 12661 "constexpr auto " + NameInfo.getName().getAsString() + " = "); 12662 } 12663 12664 Diag(UsingLoc, diag::note_using_decl_class_member_workaround) 12665 << (getLangOpts().CPlusPlus11 ? 4 : 3) // const[expr] variable 12666 << FixIt; 12667 } 12668 } 12669 12670 return true; // Fail 12671 } 12672 12673 // If the named context is dependent, we can't decide much. 12674 if (!NamedContext) { 12675 // FIXME: in C++0x, we can diagnose if we can prove that the 12676 // nested-name-specifier does not refer to a base class, which is 12677 // still possible in some cases. 12678 12679 // Otherwise we have to conservatively report that things might be 12680 // okay. 12681 return false; 12682 } 12683 12684 // The current scope is a record. 12685 if (!NamedContext->isRecord()) { 12686 // Ideally this would point at the last name in the specifier, 12687 // but we don't have that level of source info. 12688 Diag(SS.getBeginLoc(), 12689 Cxx20Enumerator 12690 ? diag::warn_cxx17_compat_using_decl_non_member_enumerator 12691 : diag::err_using_decl_nested_name_specifier_is_not_class) 12692 << SS.getScopeRep() << SS.getRange(); 12693 12694 if (Cxx20Enumerator) 12695 return false; // OK 12696 12697 return true; 12698 } 12699 12700 if (!NamedContext->isDependentContext() && 12701 RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext)) 12702 return true; 12703 12704 if (getLangOpts().CPlusPlus11) { 12705 // C++11 [namespace.udecl]p3: 12706 // In a using-declaration used as a member-declaration, the 12707 // nested-name-specifier shall name a base class of the class 12708 // being defined. 12709 12710 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom( 12711 cast<CXXRecordDecl>(NamedContext))) { 12712 12713 if (Cxx20Enumerator) { 12714 Diag(NameLoc, diag::warn_cxx17_compat_using_decl_non_member_enumerator) 12715 << SS.getRange(); 12716 return false; 12717 } 12718 12719 if (CurContext == NamedContext) { 12720 Diag(SS.getBeginLoc(), 12721 diag::err_using_decl_nested_name_specifier_is_current_class) 12722 << SS.getRange(); 12723 return !getLangOpts().CPlusPlus20; 12724 } 12725 12726 if (!cast<CXXRecordDecl>(NamedContext)->isInvalidDecl()) { 12727 Diag(SS.getBeginLoc(), 12728 diag::err_using_decl_nested_name_specifier_is_not_base_class) 12729 << SS.getScopeRep() << cast<CXXRecordDecl>(CurContext) 12730 << SS.getRange(); 12731 } 12732 return true; 12733 } 12734 12735 return false; 12736 } 12737 12738 // C++03 [namespace.udecl]p4: 12739 // A using-declaration used as a member-declaration shall refer 12740 // to a member of a base class of the class being defined [etc.]. 12741 12742 // Salient point: SS doesn't have to name a base class as long as 12743 // lookup only finds members from base classes. Therefore we can 12744 // diagnose here only if we can prove that that can't happen, 12745 // i.e. if the class hierarchies provably don't intersect. 12746 12747 // TODO: it would be nice if "definitely valid" results were cached 12748 // in the UsingDecl and UsingShadowDecl so that these checks didn't 12749 // need to be repeated. 12750 12751 llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases; 12752 auto Collect = [&Bases](const CXXRecordDecl *Base) { 12753 Bases.insert(Base); 12754 return true; 12755 }; 12756 12757 // Collect all bases. Return false if we find a dependent base. 12758 if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect)) 12759 return false; 12760 12761 // Returns true if the base is dependent or is one of the accumulated base 12762 // classes. 12763 auto IsNotBase = [&Bases](const CXXRecordDecl *Base) { 12764 return !Bases.count(Base); 12765 }; 12766 12767 // Return false if the class has a dependent base or if it or one 12768 // of its bases is present in the base set of the current context. 12769 if (Bases.count(cast<CXXRecordDecl>(NamedContext)) || 12770 !cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase)) 12771 return false; 12772 12773 Diag(SS.getRange().getBegin(), 12774 diag::err_using_decl_nested_name_specifier_is_not_base_class) 12775 << SS.getScopeRep() 12776 << cast<CXXRecordDecl>(CurContext) 12777 << SS.getRange(); 12778 12779 return true; 12780} 12781 12782Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS, 12783 MultiTemplateParamsArg TemplateParamLists, 12784 SourceLocation UsingLoc, UnqualifiedId &Name, 12785 const ParsedAttributesView &AttrList, 12786 TypeResult Type, Decl *DeclFromDeclSpec) { 12787 // Skip up to the relevant declaration scope. 12788 while (S->isTemplateParamScope()) 12789 S = S->getParent(); 12790 assert((S->getFlags() & Scope::DeclScope) &&(static_cast<void> (0)) 12791 "got alias-declaration outside of declaration scope")(static_cast<void> (0)); 12792 12793 if (Type.isInvalid()) 12794 return nullptr; 12795 12796 bool Invalid = false; 12797 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name); 12798 TypeSourceInfo *TInfo = nullptr; 12799 GetTypeFromParser(Type.get(), &TInfo); 12800 12801 if (DiagnoseClassNameShadow(CurContext, NameInfo)) 12802 return nullptr; 12803 12804 if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo, 12805 UPPC_DeclarationType)) { 12806 Invalid = true; 12807 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 12808 TInfo->getTypeLoc().getBeginLoc()); 12809 } 12810 12811 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 12812 TemplateParamLists.size() 12813 ? forRedeclarationInCurContext() 12814 : ForVisibleRedeclaration); 12815 LookupName(Previous, S); 12816 12817 // Warn about shadowing the name of a template parameter. 12818 if (Previous.isSingleResult() && 12819 Previous.getFoundDecl()->isTemplateParameter()) { 12820 DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl()); 12821 Previous.clear(); 12822 } 12823 12824 assert(Name.Kind == UnqualifiedIdKind::IK_Identifier &&(static_cast<void> (0)) 12825 "name in alias declaration must be an identifier")(static_cast<void> (0)); 12826 TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc, 12827 Name.StartLocation, 12828 Name.Identifier, TInfo); 12829 12830 NewTD->setAccess(AS); 12831 12832 if (Invalid) 12833 NewTD->setInvalidDecl(); 12834 12835 ProcessDeclAttributeList(S, NewTD, AttrList); 12836 AddPragmaAttributes(S, NewTD); 12837 12838 CheckTypedefForVariablyModifiedType(S, NewTD); 12839 Invalid |= NewTD->isInvalidDecl(); 12840 12841 bool Redeclaration = false; 12842 12843 NamedDecl *NewND; 12844 if (TemplateParamLists.size()) { 12845 TypeAliasTemplateDecl *OldDecl = nullptr; 12846 TemplateParameterList *OldTemplateParams = nullptr; 12847 12848 if (TemplateParamLists.size() != 1) { 12849 Diag(UsingLoc, diag::err_alias_template_extra_headers) 12850 << SourceRange(TemplateParamLists[1]->getTemplateLoc(), 12851 TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc()); 12852 } 12853 TemplateParameterList *TemplateParams = TemplateParamLists[0]; 12854 12855 // Check that we can declare a template here. 12856 if (CheckTemplateDeclScope(S, TemplateParams)) 12857 return nullptr; 12858 12859 // Only consider previous declarations in the same scope. 12860 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false, 12861 /*ExplicitInstantiationOrSpecialization*/false); 12862 if (!Previous.empty()) { 12863 Redeclaration = true; 12864 12865 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>(); 12866 if (!OldDecl && !Invalid) { 12867 Diag(UsingLoc, diag::err_redefinition_different_kind) 12868 << Name.Identifier; 12869 12870 NamedDecl *OldD = Previous.getRepresentativeDecl(); 12871 if (OldD->getLocation().isValid()) 12872 Diag(OldD->getLocation(), diag::note_previous_definition); 12873 12874 Invalid = true; 12875 } 12876 12877 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) { 12878 if (TemplateParameterListsAreEqual(TemplateParams, 12879 OldDecl->getTemplateParameters(), 12880 /*Complain=*/true, 12881 TPL_TemplateMatch)) 12882 OldTemplateParams = 12883 OldDecl->getMostRecentDecl()->getTemplateParameters(); 12884 else 12885 Invalid = true; 12886 12887 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl(); 12888 if (!Invalid && 12889 !Context.hasSameType(OldTD->getUnderlyingType(), 12890 NewTD->getUnderlyingType())) { 12891 // FIXME: The C++0x standard does not clearly say this is ill-formed, 12892 // but we can't reasonably accept it. 12893 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef) 12894 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType(); 12895 if (OldTD->getLocation().isValid()) 12896 Diag(OldTD->getLocation(), diag::note_previous_definition); 12897 Invalid = true; 12898 } 12899 } 12900 } 12901 12902 // Merge any previous default template arguments into our parameters, 12903 // and check the parameter list. 12904 if (CheckTemplateParameterList(TemplateParams, OldTemplateParams, 12905 TPC_TypeAliasTemplate)) 12906 return nullptr; 12907 12908 TypeAliasTemplateDecl *NewDecl = 12909 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc, 12910 Name.Identifier, TemplateParams, 12911 NewTD); 12912 NewTD->setDescribedAliasTemplate(NewDecl); 12913 12914 NewDecl->setAccess(AS); 12915 12916 if (Invalid) 12917 NewDecl->setInvalidDecl(); 12918 else if (OldDecl) { 12919 NewDecl->setPreviousDecl(OldDecl); 12920 CheckRedeclarationModuleOwnership(NewDecl, OldDecl); 12921 } 12922 12923 NewND = NewDecl; 12924 } else { 12925 if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) { 12926 setTagNameForLinkagePurposes(TD, NewTD); 12927 handleTagNumbering(TD, S); 12928 } 12929 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration); 12930 NewND = NewTD; 12931 } 12932 12933 PushOnScopeChains(NewND, S); 12934 ActOnDocumentableDecl(NewND); 12935 return NewND; 12936} 12937 12938Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc, 12939 SourceLocation AliasLoc, 12940 IdentifierInfo *Alias, CXXScopeSpec &SS, 12941 SourceLocation IdentLoc, 12942 IdentifierInfo *Ident) { 12943 12944 // Lookup the namespace name. 12945 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName); 12946 LookupParsedName(R, S, &SS); 12947 12948 if (R.isAmbiguous()) 12949 return nullptr; 12950 12951 if (R.empty()) { 12952 if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) { 12953 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); 12954 return nullptr; 12955 } 12956 } 12957 assert(!R.isAmbiguous() && !R.empty())(static_cast<void> (0)); 12958 NamedDecl *ND = R.getRepresentativeDecl(); 12959 12960 // Check if we have a previous declaration with the same name. 12961 LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName, 12962 ForVisibleRedeclaration); 12963 LookupName(PrevR, S); 12964 12965 // Check we're not shadowing a template parameter. 12966 if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) { 12967 DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl()); 12968 PrevR.clear(); 12969 } 12970 12971 // Filter out any other lookup result from an enclosing scope. 12972 FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false, 12973 /*AllowInlineNamespace*/false); 12974 12975 // Find the previous declaration and check that we can redeclare it. 12976 NamespaceAliasDecl *Prev = nullptr; 12977 if (PrevR.isSingleResult()) { 12978 NamedDecl *PrevDecl = PrevR.getRepresentativeDecl(); 12979 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) { 12980 // We already have an alias with the same name that points to the same 12981 // namespace; check that it matches. 12982 if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) { 12983 Prev = AD; 12984 } else if (isVisible(PrevDecl)) { 12985 Diag(AliasLoc, diag::err_redefinition_different_namespace_alias) 12986 << Alias; 12987 Diag(AD->getLocation(), diag::note_previous_namespace_alias) 12988 << AD->getNamespace(); 12989 return nullptr; 12990 } 12991 } else if (isVisible(PrevDecl)) { 12992 unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl()) 12993 ? diag::err_redefinition 12994 : diag::err_redefinition_different_kind; 12995 Diag(AliasLoc, DiagID) << Alias; 12996 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 12997 return nullptr; 12998 } 12999 } 13000 13001 // The use of a nested name specifier may trigger deprecation warnings. 13002 DiagnoseUseOfDecl(ND, IdentLoc); 13003 13004 NamespaceAliasDecl *AliasDecl = 13005 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, 13006 Alias, SS.getWithLocInContext(Context), 13007 IdentLoc, ND); 13008 if (Prev) 13009 AliasDecl->setPreviousDecl(Prev); 13010 13011 PushOnScopeChains(AliasDecl, S); 13012 return AliasDecl; 13013} 13014 13015namespace { 13016struct SpecialMemberExceptionSpecInfo 13017 : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> { 13018 SourceLocation Loc; 13019 Sema::ImplicitExceptionSpecification ExceptSpec; 13020 13021 SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD, 13022 Sema::CXXSpecialMember CSM, 13023 Sema::InheritedConstructorInfo *ICI, 13024 SourceLocation Loc) 13025 : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {} 13026 13027 bool visitBase(CXXBaseSpecifier *Base); 13028 bool visitField(FieldDecl *FD); 13029 13030 void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj, 13031 unsigned Quals); 13032 13033 void visitSubobjectCall(Subobject Subobj, 13034 Sema::SpecialMemberOverloadResult SMOR); 13035}; 13036} 13037 13038bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) { 13039 auto *RT = Base->getType()->getAs<RecordType>(); 13040 if (!RT) 13041 return false; 13042 13043 auto *BaseClass = cast<CXXRecordDecl>(RT->getDecl()); 13044 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); 13045 if (auto *BaseCtor = SMOR.getMethod()) { 13046 visitSubobjectCall(Base, BaseCtor); 13047 return false; 13048 } 13049 13050 visitClassSubobject(BaseClass, Base, 0); 13051 return false; 13052} 13053 13054bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) { 13055 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) { 13056 Expr *E = FD->getInClassInitializer(); 13057 if (!E) 13058 // FIXME: It's a little wasteful to build and throw away a 13059 // CXXDefaultInitExpr here. 13060 // FIXME: We should have a single context note pointing at Loc, and 13061 // this location should be MD->getLocation() instead, since that's 13062 // the location where we actually use the default init expression. 13063 E = S.BuildCXXDefaultInitExpr(Loc, FD).get(); 13064 if (E) 13065 ExceptSpec.CalledExpr(E); 13066 } else if (auto *RT = S.Context.getBaseElementType(FD->getType()) 13067 ->getAs<RecordType>()) { 13068 visitClassSubobject(cast<CXXRecordDecl>(RT->getDecl()), FD, 13069 FD->getType().getCVRQualifiers()); 13070 } 13071 return false; 13072} 13073 13074void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class, 13075 Subobject Subobj, 13076 unsigned Quals) { 13077 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 13078 bool IsMutable = Field && Field->isMutable(); 13079 visitSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable)); 13080} 13081 13082void SpecialMemberExceptionSpecInfo::visitSubobjectCall( 13083 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) { 13084 // Note, if lookup fails, it doesn't matter what exception specification we 13085 // choose because the special member will be deleted. 13086 if (CXXMethodDecl *MD = SMOR.getMethod()) 13087 ExceptSpec.CalledDecl(getSubobjectLoc(Subobj), MD); 13088} 13089 13090bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) { 13091 llvm::APSInt Result; 13092 ExprResult Converted = CheckConvertedConstantExpression( 13093 ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEK_ExplicitBool); 13094 ExplicitSpec.setExpr(Converted.get()); 13095 if (Converted.isUsable() && !Converted.get()->isValueDependent()) { 13096 ExplicitSpec.setKind(Result.getBoolValue() 13097 ? ExplicitSpecKind::ResolvedTrue 13098 : ExplicitSpecKind::ResolvedFalse); 13099 return true; 13100 } 13101 ExplicitSpec.setKind(ExplicitSpecKind::Unresolved); 13102 return false; 13103} 13104 13105ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) { 13106 ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved); 13107 if (!ExplicitExpr->isTypeDependent()) 13108 tryResolveExplicitSpecifier(ES); 13109 return ES; 13110} 13111 13112static Sema::ImplicitExceptionSpecification 13113ComputeDefaultedSpecialMemberExceptionSpec( 13114 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM, 13115 Sema::InheritedConstructorInfo *ICI) { 13116 ComputingExceptionSpec CES(S, MD, Loc); 13117 13118 CXXRecordDecl *ClassDecl = MD->getParent(); 13119 13120 // C++ [except.spec]p14: 13121 // An implicitly declared special member function (Clause 12) shall have an 13122 // exception-specification. [...] 13123 SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation()); 13124 if (ClassDecl->isInvalidDecl()) 13125 return Info.ExceptSpec; 13126 13127 // FIXME: If this diagnostic fires, we're probably missing a check for 13128 // attempting to resolve an exception specification before it's known 13129 // at a higher level. 13130 if (S.RequireCompleteType(MD->getLocation(), 13131 S.Context.getRecordType(ClassDecl), 13132 diag::err_exception_spec_incomplete_type)) 13133 return Info.ExceptSpec; 13134 13135 // C++1z [except.spec]p7: 13136 // [Look for exceptions thrown by] a constructor selected [...] to 13137 // initialize a potentially constructed subobject, 13138 // C++1z [except.spec]p8: 13139 // The exception specification for an implicitly-declared destructor, or a 13140 // destructor without a noexcept-specifier, is potentially-throwing if and 13141 // only if any of the destructors for any of its potentially constructed 13142 // subojects is potentially throwing. 13143 // FIXME: We respect the first rule but ignore the "potentially constructed" 13144 // in the second rule to resolve a core issue (no number yet) that would have 13145 // us reject: 13146 // struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; }; 13147 // struct B : A {}; 13148 // struct C : B { void f(); }; 13149 // ... due to giving B::~B() a non-throwing exception specification. 13150 Info.visit(Info.IsConstructor ? Info.VisitPotentiallyConstructedBases 13151 : Info.VisitAllBases); 13152 13153 return Info.ExceptSpec; 13154} 13155 13156namespace { 13157/// RAII object to register a special member as being currently declared. 13158struct DeclaringSpecialMember { 13159 Sema &S; 13160 Sema::SpecialMemberDecl D; 13161 Sema::ContextRAII SavedContext; 13162 bool WasAlreadyBeingDeclared; 13163 13164 DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM) 13165 : S(S), D(RD, CSM), SavedContext(S, RD) { 13166 WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second; 13167 if (WasAlreadyBeingDeclared) 13168 // This almost never happens, but if it does, ensure that our cache 13169 // doesn't contain a stale result. 13170 S.SpecialMemberCache.clear(); 13171 else { 13172 // Register a note to be produced if we encounter an error while 13173 // declaring the special member. 13174 Sema::CodeSynthesisContext Ctx; 13175 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember; 13176 // FIXME: We don't have a location to use here. Using the class's 13177 // location maintains the fiction that we declare all special members 13178 // with the class, but (1) it's not clear that lying about that helps our 13179 // users understand what's going on, and (2) there may be outer contexts 13180 // on the stack (some of which are relevant) and printing them exposes 13181 // our lies. 13182 Ctx.PointOfInstantiation = RD->getLocation(); 13183 Ctx.Entity = RD; 13184 Ctx.SpecialMember = CSM; 13185 S.pushCodeSynthesisContext(Ctx); 13186 } 13187 } 13188 ~DeclaringSpecialMember() { 13189 if (!WasAlreadyBeingDeclared) { 13190 S.SpecialMembersBeingDeclared.erase(D); 13191 S.popCodeSynthesisContext(); 13192 } 13193 } 13194 13195 /// Are we already trying to declare this special member? 13196 bool isAlreadyBeingDeclared() const { 13197 return WasAlreadyBeingDeclared; 13198 } 13199}; 13200} 13201 13202void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) { 13203 // Look up any existing declarations, but don't trigger declaration of all 13204 // implicit special members with this name. 13205 DeclarationName Name = FD->getDeclName(); 13206 LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName, 13207 ForExternalRedeclaration); 13208 for (auto *D : FD->getParent()->lookup(Name)) 13209 if (auto *Acceptable = R.getAcceptableDecl(D)) 13210 R.addDecl(Acceptable); 13211 R.resolveKind(); 13212 R.suppressDiagnostics(); 13213 13214 CheckFunctionDeclaration(S, FD, R, /*IsMemberSpecialization*/false); 13215} 13216 13217void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem, 13218 QualType ResultTy, 13219 ArrayRef<QualType> Args) { 13220 // Build an exception specification pointing back at this constructor. 13221 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, SpecialMem); 13222 13223 LangAS AS = getDefaultCXXMethodAddrSpace(); 13224 if (AS != LangAS::Default) { 13225 EPI.TypeQuals.addAddressSpace(AS); 13226 } 13227 13228 auto QT = Context.getFunctionType(ResultTy, Args, EPI); 13229 SpecialMem->setType(QT); 13230 13231 // During template instantiation of implicit special member functions we need 13232 // a reliable TypeSourceInfo for the function prototype in order to allow 13233 // functions to be substituted. 13234 if (inTemplateInstantiation() && 13235 cast<CXXRecordDecl>(SpecialMem->getParent())->isLambda()) { 13236 TypeSourceInfo *TSI = 13237 Context.getTrivialTypeSourceInfo(SpecialMem->getType()); 13238 SpecialMem->setTypeSourceInfo(TSI); 13239 } 13240} 13241 13242CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor( 13243 CXXRecordDecl *ClassDecl) { 13244 // C++ [class.ctor]p5: 13245 // A default constructor for a class X is a constructor of class X 13246 // that can be called without an argument. If there is no 13247 // user-declared constructor for class X, a default constructor is 13248 // implicitly declared. An implicitly-declared default constructor 13249 // is an inline public member of its class. 13250 assert(ClassDecl->needsImplicitDefaultConstructor() &&(static_cast<void> (0)) 13251 "Should not build implicit default constructor!")(static_cast<void> (0)); 13252 13253 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor); 13254 if (DSM.isAlreadyBeingDeclared()) 13255 return nullptr; 13256 13257 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 13258 CXXDefaultConstructor, 13259 false); 13260 13261 // Create the actual constructor declaration. 13262 CanQualType ClassType 13263 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 13264 SourceLocation ClassLoc = ClassDecl->getLocation(); 13265 DeclarationName Name 13266 = Context.DeclarationNames.getCXXConstructorName(ClassType); 13267 DeclarationNameInfo NameInfo(Name, ClassLoc); 13268 CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create( 13269 Context, ClassDecl, ClassLoc, NameInfo, /*Type*/ QualType(), 13270 /*TInfo=*/nullptr, ExplicitSpecifier(), 13271 getCurFPFeatures().isFPConstrained(), 13272 /*isInline=*/true, /*isImplicitlyDeclared=*/true, 13273 Constexpr ? ConstexprSpecKind::Constexpr 13274 : ConstexprSpecKind::Unspecified); 13275 DefaultCon->setAccess(AS_public); 13276 DefaultCon->setDefaulted(); 13277 13278 if (getLangOpts().CUDA) { 13279 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor, 13280 DefaultCon, 13281 /* ConstRHS */ false, 13282 /* Diagnose */ false); 13283 } 13284 13285 setupImplicitSpecialMemberType(DefaultCon, Context.VoidTy, None); 13286 13287 // We don't need to use SpecialMemberIsTrivial here; triviality for default 13288 // constructors is easy to compute. 13289 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor()); 13290 13291 // Note that we have declared this constructor. 13292 ++getASTContext().NumImplicitDefaultConstructorsDeclared; 13293 13294 Scope *S = getScopeForContext(ClassDecl); 13295 CheckImplicitSpecialMemberDeclaration(S, DefaultCon); 13296 13297 if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor)) 13298 SetDeclDeleted(DefaultCon, ClassLoc); 13299 13300 if (S) 13301 PushOnScopeChains(DefaultCon, S, false); 13302 ClassDecl->addDecl(DefaultCon); 13303 13304 return DefaultCon; 13305} 13306 13307void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, 13308 CXXConstructorDecl *Constructor) { 13309 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&(static_cast<void> (0)) 13310 !Constructor->doesThisDeclarationHaveABody() &&(static_cast<void> (0)) 13311 !Constructor->isDeleted()) &&(static_cast<void> (0)) 13312 "DefineImplicitDefaultConstructor - call it for implicit default ctor")(static_cast<void> (0)); 13313 if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) 13314 return; 13315 13316 CXXRecordDecl *ClassDecl = Constructor->getParent(); 13317 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor")(static_cast<void> (0)); 13318 13319 SynthesizedFunctionScope Scope(*this, Constructor); 13320 13321 // The exception specification is needed because we are defining the 13322 // function. 13323 ResolveExceptionSpec(CurrentLocation, 13324 Constructor->getType()->castAs<FunctionProtoType>()); 13325 MarkVTableUsed(CurrentLocation, ClassDecl); 13326 13327 // Add a context note for diagnostics produced after this point. 13328 Scope.addContextNote(CurrentLocation); 13329 13330 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) { 13331 Constructor->setInvalidDecl(); 13332 return; 13333 } 13334 13335 SourceLocation Loc = Constructor->getEndLoc().isValid() 13336 ? Constructor->getEndLoc() 13337 : Constructor->getLocation(); 13338 Constructor->setBody(new (Context) CompoundStmt(Loc)); 13339 Constructor->markUsed(Context); 13340 13341 if (ASTMutationListener *L = getASTMutationListener()) { 13342 L->CompletedImplicitDefinition(Constructor); 13343 } 13344 13345 DiagnoseUninitializedFields(*this, Constructor); 13346} 13347 13348void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) { 13349 // Perform any delayed checks on exception specifications. 13350 CheckDelayedMemberExceptionSpecs(); 13351} 13352 13353/// Find or create the fake constructor we synthesize to model constructing an 13354/// object of a derived class via a constructor of a base class. 13355CXXConstructorDecl * 13356Sema::findInheritingConstructor(SourceLocation Loc, 13357 CXXConstructorDecl *BaseCtor, 13358 ConstructorUsingShadowDecl *Shadow) { 13359 CXXRecordDecl *Derived = Shadow->getParent(); 13360 SourceLocation UsingLoc = Shadow->getLocation(); 13361 13362 // FIXME: Add a new kind of DeclarationName for an inherited constructor. 13363 // For now we use the name of the base class constructor as a member of the 13364 // derived class to indicate a (fake) inherited constructor name. 13365 DeclarationName Name = BaseCtor->getDeclName(); 13366 13367 // Check to see if we already have a fake constructor for this inherited 13368 // constructor call. 13369 for (NamedDecl *Ctor : Derived->lookup(Name)) 13370 if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor) 13371 ->getInheritedConstructor() 13372 .getConstructor(), 13373 BaseCtor)) 13374 return cast<CXXConstructorDecl>(Ctor); 13375 13376 DeclarationNameInfo NameInfo(Name, UsingLoc); 13377 TypeSourceInfo *TInfo = 13378 Context.getTrivialTypeSourceInfo(BaseCtor->getType(), UsingLoc); 13379 FunctionProtoTypeLoc ProtoLoc = 13380 TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>(); 13381 13382 // Check the inherited constructor is valid and find the list of base classes 13383 // from which it was inherited. 13384 InheritedConstructorInfo ICI(*this, Loc, Shadow); 13385 13386 bool Constexpr = 13387 BaseCtor->isConstexpr() && 13388 defaultedSpecialMemberIsConstexpr(*this, Derived, CXXDefaultConstructor, 13389 false, BaseCtor, &ICI); 13390 13391 CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create( 13392 Context, Derived, UsingLoc, NameInfo, TInfo->getType(), TInfo, 13393 BaseCtor->getExplicitSpecifier(), getCurFPFeatures().isFPConstrained(), 13394 /*isInline=*/true, 13395 /*isImplicitlyDeclared=*/true, 13396 Constexpr ? BaseCtor->getConstexprKind() : ConstexprSpecKind::Unspecified, 13397 InheritedConstructor(Shadow, BaseCtor), 13398 BaseCtor->getTrailingRequiresClause()); 13399 if (Shadow->isInvalidDecl()) 13400 DerivedCtor->setInvalidDecl(); 13401 13402 // Build an unevaluated exception specification for this fake constructor. 13403 const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>(); 13404 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 13405 EPI.ExceptionSpec.Type = EST_Unevaluated; 13406 EPI.ExceptionSpec.SourceDecl = DerivedCtor; 13407 DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(), 13408 FPT->getParamTypes(), EPI)); 13409 13410 // Build the parameter declarations. 13411 SmallVector<ParmVarDecl *, 16> ParamDecls; 13412 for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) { 13413 TypeSourceInfo *TInfo = 13414 Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc); 13415 ParmVarDecl *PD = ParmVarDecl::Create( 13416 Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr, 13417 FPT->getParamType(I), TInfo, SC_None, /*DefArg=*/nullptr); 13418 PD->setScopeInfo(0, I); 13419 PD->setImplicit(); 13420 // Ensure attributes are propagated onto parameters (this matters for 13421 // format, pass_object_size, ...). 13422 mergeDeclAttributes(PD, BaseCtor->getParamDecl(I)); 13423 ParamDecls.push_back(PD); 13424 ProtoLoc.setParam(I, PD); 13425 } 13426 13427 // Set up the new constructor. 13428 assert(!BaseCtor->isDeleted() && "should not use deleted constructor")(static_cast<void> (0)); 13429 DerivedCtor->setAccess(BaseCtor->getAccess()); 13430 DerivedCtor->setParams(ParamDecls); 13431 Derived->addDecl(DerivedCtor); 13432 13433 if (ShouldDeleteSpecialMember(DerivedCtor, CXXDefaultConstructor, &ICI)) 13434 SetDeclDeleted(DerivedCtor, UsingLoc); 13435 13436 return DerivedCtor; 13437} 13438 13439void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) { 13440 InheritedConstructorInfo ICI(*this, Ctor->getLocation(), 13441 Ctor->getInheritedConstructor().getShadowDecl()); 13442 ShouldDeleteSpecialMember(Ctor, CXXDefaultConstructor, &ICI, 13443 /*Diagnose*/true); 13444} 13445 13446void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation, 13447 CXXConstructorDecl *Constructor) { 13448 CXXRecordDecl *ClassDecl = Constructor->getParent(); 13449 assert(Constructor->getInheritedConstructor() &&(static_cast<void> (0)) 13450 !Constructor->doesThisDeclarationHaveABody() &&(static_cast<void> (0)) 13451 !Constructor->isDeleted())(static_cast<void> (0)); 13452 if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) 13453 return; 13454 13455 // Initializations are performed "as if by a defaulted default constructor", 13456 // so enter the appropriate scope. 13457 SynthesizedFunctionScope Scope(*this, Constructor); 13458 13459 // The exception specification is needed because we are defining the 13460 // function. 13461 ResolveExceptionSpec(CurrentLocation, 13462 Constructor->getType()->castAs<FunctionProtoType>()); 13463 MarkVTableUsed(CurrentLocation, ClassDecl); 13464 13465 // Add a context note for diagnostics produced after this point. 13466 Scope.addContextNote(CurrentLocation); 13467 13468 ConstructorUsingShadowDecl *Shadow = 13469 Constructor->getInheritedConstructor().getShadowDecl(); 13470 CXXConstructorDecl *InheritedCtor = 13471 Constructor->getInheritedConstructor().getConstructor(); 13472 13473 // [class.inhctor.init]p1: 13474 // initialization proceeds as if a defaulted default constructor is used to 13475 // initialize the D object and each base class subobject from which the 13476 // constructor was inherited 13477 13478 InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow); 13479 CXXRecordDecl *RD = Shadow->getParent(); 13480 SourceLocation InitLoc = Shadow->getLocation(); 13481 13482 // Build explicit initializers for all base classes from which the 13483 // constructor was inherited. 13484 SmallVector<CXXCtorInitializer*, 8> Inits; 13485 for (bool VBase : {false, true}) { 13486 for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) { 13487 if (B.isVirtual() != VBase) 13488 continue; 13489 13490 auto *BaseRD = B.getType()->getAsCXXRecordDecl(); 13491 if (!BaseRD) 13492 continue; 13493 13494 auto BaseCtor = ICI.findConstructorForBase(BaseRD, InheritedCtor); 13495 if (!BaseCtor.first) 13496 continue; 13497 13498 MarkFunctionReferenced(CurrentLocation, BaseCtor.first); 13499 ExprResult Init = new (Context) CXXInheritedCtorInitExpr( 13500 InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second); 13501 13502 auto *TInfo = Context.getTrivialTypeSourceInfo(B.getType(), InitLoc); 13503 Inits.push_back(new (Context) CXXCtorInitializer( 13504 Context, TInfo, VBase, InitLoc, Init.get(), InitLoc, 13505 SourceLocation())); 13506 } 13507 } 13508 13509 // We now proceed as if for a defaulted default constructor, with the relevant 13510 // initializers replaced. 13511 13512 if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Inits)) { 13513 Constructor->setInvalidDecl(); 13514 return; 13515 } 13516 13517 Constructor->setBody(new (Context) CompoundStmt(InitLoc)); 13518 Constructor->markUsed(Context); 13519 13520 if (ASTMutationListener *L = getASTMutationListener()) { 13521 L->CompletedImplicitDefinition(Constructor); 13522 } 13523 13524 DiagnoseUninitializedFields(*this, Constructor); 13525} 13526 13527CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) { 13528 // C++ [class.dtor]p2: 13529 // If a class has no user-declared destructor, a destructor is 13530 // declared implicitly. An implicitly-declared destructor is an 13531 // inline public member of its class. 13532 assert(ClassDecl->needsImplicitDestructor())(static_cast<void> (0)); 13533 13534 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor); 13535 if (DSM.isAlreadyBeingDeclared()) 13536 return nullptr; 13537 13538 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 13539 CXXDestructor, 13540 false); 13541 13542 // Create the actual destructor declaration. 13543 CanQualType ClassType 13544 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 13545 SourceLocation ClassLoc = ClassDecl->getLocation(); 13546 DeclarationName Name 13547 = Context.DeclarationNames.getCXXDestructorName(ClassType); 13548 DeclarationNameInfo NameInfo(Name, ClassLoc); 13549 CXXDestructorDecl *Destructor = CXXDestructorDecl::Create( 13550 Context, ClassDecl, ClassLoc, NameInfo, QualType(), nullptr, 13551 getCurFPFeatures().isFPConstrained(), 13552 /*isInline=*/true, 13553 /*isImplicitlyDeclared=*/true, 13554 Constexpr ? ConstexprSpecKind::Constexpr 13555 : ConstexprSpecKind::Unspecified); 13556 Destructor->setAccess(AS_public); 13557 Destructor->setDefaulted(); 13558 13559 if (getLangOpts().CUDA) { 13560 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor, 13561 Destructor, 13562 /* ConstRHS */ false, 13563 /* Diagnose */ false); 13564 } 13565 13566 setupImplicitSpecialMemberType(Destructor, Context.VoidTy, None); 13567 13568 // We don't need to use SpecialMemberIsTrivial here; triviality for 13569 // destructors is easy to compute. 13570 Destructor->setTrivial(ClassDecl->hasTrivialDestructor()); 13571 Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() || 13572 ClassDecl->hasTrivialDestructorForCall()); 13573 13574 // Note that we have declared this destructor. 13575 ++getASTContext().NumImplicitDestructorsDeclared; 13576 13577 Scope *S = getScopeForContext(ClassDecl); 13578 CheckImplicitSpecialMemberDeclaration(S, Destructor); 13579 13580 // We can't check whether an implicit destructor is deleted before we complete 13581 // the definition of the class, because its validity depends on the alignment 13582 // of the class. We'll check this from ActOnFields once the class is complete. 13583 if (ClassDecl->isCompleteDefinition() && 13584 ShouldDeleteSpecialMember(Destructor, CXXDestructor)) 13585 SetDeclDeleted(Destructor, ClassLoc); 13586 13587 // Introduce this destructor into its scope. 13588 if (S) 13589 PushOnScopeChains(Destructor, S, false); 13590 ClassDecl->addDecl(Destructor); 13591 13592 return Destructor; 13593} 13594 13595void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation, 13596 CXXDestructorDecl *Destructor) { 13597 assert((Destructor->isDefaulted() &&(static_cast<void> (0)) 13598 !Destructor->doesThisDeclarationHaveABody() &&(static_cast<void> (0)) 13599 !Destructor->isDeleted()) &&(static_cast<void> (0)) 13600 "DefineImplicitDestructor - call it for implicit default dtor")(static_cast<void> (0)); 13601 if (Destructor->willHaveBody() || Destructor->isInvalidDecl()) 13602 return; 13603 13604 CXXRecordDecl *ClassDecl = Destructor->getParent(); 13605 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor")(static_cast<void> (0)); 13606 13607 SynthesizedFunctionScope Scope(*this, Destructor); 13608 13609 // The exception specification is needed because we are defining the 13610 // function. 13611 ResolveExceptionSpec(CurrentLocation, 13612 Destructor->getType()->castAs<FunctionProtoType>()); 13613 MarkVTableUsed(CurrentLocation, ClassDecl); 13614 13615 // Add a context note for diagnostics produced after this point. 13616 Scope.addContextNote(CurrentLocation); 13617 13618 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), 13619 Destructor->getParent()); 13620 13621 if (CheckDestructor(Destructor)) { 13622 Destructor->setInvalidDecl(); 13623 return; 13624 } 13625 13626 SourceLocation Loc = Destructor->getEndLoc().isValid() 13627 ? Destructor->getEndLoc() 13628 : Destructor->getLocation(); 13629 Destructor->setBody(new (Context) CompoundStmt(Loc)); 13630 Destructor->markUsed(Context); 13631 13632 if (ASTMutationListener *L = getASTMutationListener()) { 13633 L->CompletedImplicitDefinition(Destructor); 13634 } 13635} 13636 13637void Sema::CheckCompleteDestructorVariant(SourceLocation CurrentLocation, 13638 CXXDestructorDecl *Destructor) { 13639 if (Destructor->isInvalidDecl()) 13640 return; 13641 13642 CXXRecordDecl *ClassDecl = Destructor->getParent(); 13643 assert(Context.getTargetInfo().getCXXABI().isMicrosoft() &&(static_cast<void> (0)) 13644 "implicit complete dtors unneeded outside MS ABI")(static_cast<void> (0)); 13645 assert(ClassDecl->getNumVBases() > 0 &&(static_cast<void> (0)) 13646 "complete dtor only exists for classes with vbases")(static_cast<void> (0)); 13647 13648 SynthesizedFunctionScope Scope(*this, Destructor); 13649 13650 // Add a context note for diagnostics produced after this point. 13651 Scope.addContextNote(CurrentLocation); 13652 13653 MarkVirtualBaseDestructorsReferenced(Destructor->getLocation(), ClassDecl); 13654} 13655 13656/// Perform any semantic analysis which needs to be delayed until all 13657/// pending class member declarations have been parsed. 13658void Sema::ActOnFinishCXXMemberDecls() { 13659 // If the context is an invalid C++ class, just suppress these checks. 13660 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) { 13661 if (Record->isInvalidDecl()) { 13662 DelayedOverridingExceptionSpecChecks.clear(); 13663 DelayedEquivalentExceptionSpecChecks.clear(); 13664 return; 13665 } 13666 checkForMultipleExportedDefaultConstructors(*this, Record); 13667 } 13668} 13669 13670void Sema::ActOnFinishCXXNonNestedClass() { 13671 referenceDLLExportedClassMethods(); 13672 13673 if (!DelayedDllExportMemberFunctions.empty()) { 13674 SmallVector<CXXMethodDecl*, 4> WorkList; 13675 std::swap(DelayedDllExportMemberFunctions, WorkList); 13676 for (CXXMethodDecl *M : WorkList) { 13677 DefineDefaultedFunction(*this, M, M->getLocation()); 13678 13679 // Pass the method to the consumer to get emitted. This is not necessary 13680 // for explicit instantiation definitions, as they will get emitted 13681 // anyway. 13682 if (M->getParent()->getTemplateSpecializationKind() != 13683 TSK_ExplicitInstantiationDefinition) 13684 ActOnFinishInlineFunctionDef(M); 13685 } 13686 } 13687} 13688 13689void Sema::referenceDLLExportedClassMethods() { 13690 if (!DelayedDllExportClasses.empty()) { 13691 // Calling ReferenceDllExportedMembers might cause the current function to 13692 // be called again, so use a local copy of DelayedDllExportClasses. 13693 SmallVector<CXXRecordDecl *, 4> WorkList; 13694 std::swap(DelayedDllExportClasses, WorkList); 13695 for (CXXRecordDecl *Class : WorkList) 13696 ReferenceDllExportedMembers(*this, Class); 13697 } 13698} 13699 13700void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) { 13701 assert(getLangOpts().CPlusPlus11 &&(static_cast<void> (0)) 13702 "adjusting dtor exception specs was introduced in c++11")(static_cast<void> (0)); 13703 13704 if (Destructor->isDependentContext()) 13705 return; 13706 13707 // C++11 [class.dtor]p3: 13708 // A declaration of a destructor that does not have an exception- 13709 // specification is implicitly considered to have the same exception- 13710 // specification as an implicit declaration. 13711 const auto *DtorType = Destructor->getType()->castAs<FunctionProtoType>(); 13712 if (DtorType->hasExceptionSpec()) 13713 return; 13714 13715 // Replace the destructor's type, building off the existing one. Fortunately, 13716 // the only thing of interest in the destructor type is its extended info. 13717 // The return and arguments are fixed. 13718 FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo(); 13719 EPI.ExceptionSpec.Type = EST_Unevaluated; 13720 EPI.ExceptionSpec.SourceDecl = Destructor; 13721 Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI)); 13722 13723 // FIXME: If the destructor has a body that could throw, and the newly created 13724 // spec doesn't allow exceptions, we should emit a warning, because this 13725 // change in behavior can break conforming C++03 programs at runtime. 13726 // However, we don't have a body or an exception specification yet, so it 13727 // needs to be done somewhere else. 13728} 13729 13730namespace { 13731/// An abstract base class for all helper classes used in building the 13732// copy/move operators. These classes serve as factory functions and help us 13733// avoid using the same Expr* in the AST twice. 13734class ExprBuilder { 13735 ExprBuilder(const ExprBuilder&) = delete; 13736 ExprBuilder &operator=(const ExprBuilder&) = delete; 13737 13738protected: 13739 static Expr *assertNotNull(Expr *E) { 13740 assert(E && "Expression construction must not fail.")(static_cast<void> (0)); 13741 return E; 13742 } 13743 13744public: 13745 ExprBuilder() {} 13746 virtual ~ExprBuilder() {} 13747 13748 virtual Expr *build(Sema &S, SourceLocation Loc) const = 0; 13749}; 13750 13751class RefBuilder: public ExprBuilder { 13752 VarDecl *Var; 13753 QualType VarType; 13754 13755public: 13756 Expr *build(Sema &S, SourceLocation Loc) const override { 13757 return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc)); 13758 } 13759 13760 RefBuilder(VarDecl *Var, QualType VarType) 13761 : Var(Var), VarType(VarType) {} 13762}; 13763 13764class ThisBuilder: public ExprBuilder { 13765public: 13766 Expr *build(Sema &S, SourceLocation Loc) const override { 13767 return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>()); 13768 } 13769}; 13770 13771class CastBuilder: public ExprBuilder { 13772 const ExprBuilder &Builder; 13773 QualType Type; 13774 ExprValueKind Kind; 13775 const CXXCastPath &Path; 13776 13777public: 13778 Expr *build(Sema &S, SourceLocation Loc) const override { 13779 return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type, 13780 CK_UncheckedDerivedToBase, Kind, 13781 &Path).get()); 13782 } 13783 13784 CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind, 13785 const CXXCastPath &Path) 13786 : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {} 13787}; 13788 13789class DerefBuilder: public ExprBuilder { 13790 const ExprBuilder &Builder; 13791 13792public: 13793 Expr *build(Sema &S, SourceLocation Loc) const override { 13794 return assertNotNull( 13795 S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get()); 13796 } 13797 13798 DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 13799}; 13800 13801class MemberBuilder: public ExprBuilder { 13802 const ExprBuilder &Builder; 13803 QualType Type; 13804 CXXScopeSpec SS; 13805 bool IsArrow; 13806 LookupResult &MemberLookup; 13807 13808public: 13809 Expr *build(Sema &S, SourceLocation Loc) const override { 13810 return assertNotNull(S.BuildMemberReferenceExpr( 13811 Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(), 13812 nullptr, MemberLookup, nullptr, nullptr).get()); 13813 } 13814 13815 MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow, 13816 LookupResult &MemberLookup) 13817 : Builder(Builder), Type(Type), IsArrow(IsArrow), 13818 MemberLookup(MemberLookup) {} 13819}; 13820 13821class MoveCastBuilder: public ExprBuilder { 13822 const ExprBuilder &Builder; 13823 13824public: 13825 Expr *build(Sema &S, SourceLocation Loc) const override { 13826 return assertNotNull(CastForMoving(S, Builder.build(S, Loc))); 13827 } 13828 13829 MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 13830}; 13831 13832class LvalueConvBuilder: public ExprBuilder { 13833 const ExprBuilder &Builder; 13834 13835public: 13836 Expr *build(Sema &S, SourceLocation Loc) const override { 13837 return assertNotNull( 13838 S.DefaultLvalueConversion(Builder.build(S, Loc)).get()); 13839 } 13840 13841 LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 13842}; 13843 13844class SubscriptBuilder: public ExprBuilder { 13845 const ExprBuilder &Base; 13846 const ExprBuilder &Index; 13847 13848public: 13849 Expr *build(Sema &S, SourceLocation Loc) const override { 13850 return assertNotNull(S.CreateBuiltinArraySubscriptExpr( 13851 Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get()); 13852 } 13853 13854 SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index) 13855 : Base(Base), Index(Index) {} 13856}; 13857 13858} // end anonymous namespace 13859 13860/// When generating a defaulted copy or move assignment operator, if a field 13861/// should be copied with __builtin_memcpy rather than via explicit assignments, 13862/// do so. This optimization only applies for arrays of scalars, and for arrays 13863/// of class type where the selected copy/move-assignment operator is trivial. 13864static StmtResult 13865buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T, 13866 const ExprBuilder &ToB, const ExprBuilder &FromB) { 13867 // Compute the size of the memory buffer to be copied. 13868 QualType SizeType = S.Context.getSizeType(); 13869 llvm::APInt Size(S.Context.getTypeSize(SizeType), 13870 S.Context.getTypeSizeInChars(T).getQuantity()); 13871 13872 // Take the address of the field references for "from" and "to". We 13873 // directly construct UnaryOperators here because semantic analysis 13874 // does not permit us to take the address of an xvalue. 13875 Expr *From = FromB.build(S, Loc); 13876 From = UnaryOperator::Create( 13877 S.Context, From, UO_AddrOf, S.Context.getPointerType(From->getType()), 13878 VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides()); 13879 Expr *To = ToB.build(S, Loc); 13880 To = UnaryOperator::Create( 13881 S.Context, To, UO_AddrOf, S.Context.getPointerType(To->getType()), 13882 VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides()); 13883 13884 const Type *E = T->getBaseElementTypeUnsafe(); 13885 bool NeedsCollectableMemCpy = 13886 E->isRecordType() && 13887 E->castAs<RecordType>()->getDecl()->hasObjectMember(); 13888 13889 // Create a reference to the __builtin_objc_memmove_collectable function 13890 StringRef MemCpyName = NeedsCollectableMemCpy ? 13891 "__builtin_objc_memmove_collectable" : 13892 "__builtin_memcpy"; 13893 LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc, 13894 Sema::LookupOrdinaryName); 13895 S.LookupName(R, S.TUScope, true); 13896 13897 FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>(); 13898 if (!MemCpy) 13899 // Something went horribly wrong earlier, and we will have complained 13900 // about it. 13901 return StmtError(); 13902 13903 ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy, 13904 VK_PRValue, Loc, nullptr); 13905 assert(MemCpyRef.isUsable() && "Builtin reference cannot fail")(static_cast<void> (0)); 13906 13907 Expr *CallArgs[] = { 13908 To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc) 13909 }; 13910 ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(), 13911 Loc, CallArgs, Loc); 13912 13913 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!")(static_cast<void> (0)); 13914 return Call.getAs<Stmt>(); 13915} 13916 13917/// Builds a statement that copies/moves the given entity from \p From to 13918/// \c To. 13919/// 13920/// This routine is used to copy/move the members of a class with an 13921/// implicitly-declared copy/move assignment operator. When the entities being 13922/// copied are arrays, this routine builds for loops to copy them. 13923/// 13924/// \param S The Sema object used for type-checking. 13925/// 13926/// \param Loc The location where the implicit copy/move is being generated. 13927/// 13928/// \param T The type of the expressions being copied/moved. Both expressions 13929/// must have this type. 13930/// 13931/// \param To The expression we are copying/moving to. 13932/// 13933/// \param From The expression we are copying/moving from. 13934/// 13935/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject. 13936/// Otherwise, it's a non-static member subobject. 13937/// 13938/// \param Copying Whether we're copying or moving. 13939/// 13940/// \param Depth Internal parameter recording the depth of the recursion. 13941/// 13942/// \returns A statement or a loop that copies the expressions, or StmtResult(0) 13943/// if a memcpy should be used instead. 13944static StmtResult 13945buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T, 13946 const ExprBuilder &To, const ExprBuilder &From, 13947 bool CopyingBaseSubobject, bool Copying, 13948 unsigned Depth = 0) { 13949 // C++11 [class.copy]p28: 13950 // Each subobject is assigned in the manner appropriate to its type: 13951 // 13952 // - if the subobject is of class type, as if by a call to operator= with 13953 // the subobject as the object expression and the corresponding 13954 // subobject of x as a single function argument (as if by explicit 13955 // qualification; that is, ignoring any possible virtual overriding 13956 // functions in more derived classes); 13957 // 13958 // C++03 [class.copy]p13: 13959 // - if the subobject is of class type, the copy assignment operator for 13960 // the class is used (as if by explicit qualification; that is, 13961 // ignoring any possible virtual overriding functions in more derived 13962 // classes); 13963 if (const RecordType *RecordTy = T->getAs<RecordType>()) { 13964 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 13965 13966 // Look for operator=. 13967 DeclarationName Name 13968 = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal); 13969 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName); 13970 S.LookupQualifiedName(OpLookup, ClassDecl, false); 13971 13972 // Prior to C++11, filter out any result that isn't a copy/move-assignment 13973 // operator. 13974 if (!S.getLangOpts().CPlusPlus11) { 13975 LookupResult::Filter F = OpLookup.makeFilter(); 13976 while (F.hasNext()) { 13977 NamedDecl *D = F.next(); 13978 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 13979 if (Method->isCopyAssignmentOperator() || 13980 (!Copying && Method->isMoveAssignmentOperator())) 13981 continue; 13982 13983 F.erase(); 13984 } 13985 F.done(); 13986 } 13987 13988 // Suppress the protected check (C++ [class.protected]) for each of the 13989 // assignment operators we found. This strange dance is required when 13990 // we're assigning via a base classes's copy-assignment operator. To 13991 // ensure that we're getting the right base class subobject (without 13992 // ambiguities), we need to cast "this" to that subobject type; to 13993 // ensure that we don't go through the virtual call mechanism, we need 13994 // to qualify the operator= name with the base class (see below). However, 13995 // this means that if the base class has a protected copy assignment 13996 // operator, the protected member access check will fail. So, we 13997 // rewrite "protected" access to "public" access in this case, since we 13998 // know by construction that we're calling from a derived class. 13999 if (CopyingBaseSubobject) { 14000 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end(); 14001 L != LEnd; ++L) { 14002 if (L.getAccess() == AS_protected) 14003 L.setAccess(AS_public); 14004 } 14005 } 14006 14007 // Create the nested-name-specifier that will be used to qualify the 14008 // reference to operator=; this is required to suppress the virtual 14009 // call mechanism. 14010 CXXScopeSpec SS; 14011 const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr()); 14012 SS.MakeTrivial(S.Context, 14013 NestedNameSpecifier::Create(S.Context, nullptr, false, 14014 CanonicalT), 14015 Loc); 14016 14017 // Create the reference to operator=. 14018 ExprResult OpEqualRef 14019 = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*IsArrow=*/false, 14020 SS, /*TemplateKWLoc=*/SourceLocation(), 14021 /*FirstQualifierInScope=*/nullptr, 14022 OpLookup, 14023 /*TemplateArgs=*/nullptr, /*S*/nullptr, 14024 /*SuppressQualifierCheck=*/true); 14025 if (OpEqualRef.isInvalid()) 14026 return StmtError(); 14027 14028 // Build the call to the assignment operator. 14029 14030 Expr *FromInst = From.build(S, Loc); 14031 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr, 14032 OpEqualRef.getAs<Expr>(), 14033 Loc, FromInst, Loc); 14034 if (Call.isInvalid()) 14035 return StmtError(); 14036 14037 // If we built a call to a trivial 'operator=' while copying an array, 14038 // bail out. We'll replace the whole shebang with a memcpy. 14039 CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get()); 14040 if (CE && CE->getMethodDecl()->isTrivial() && Depth) 14041 return StmtResult((Stmt*)nullptr); 14042 14043 // Convert to an expression-statement, and clean up any produced 14044 // temporaries. 14045 return S.ActOnExprStmt(Call); 14046 } 14047 14048 // - if the subobject is of scalar type, the built-in assignment 14049 // operator is used. 14050 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T); 14051 if (!ArrayTy) { 14052 ExprResult Assignment = S.CreateBuiltinBinOp( 14053 Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc)); 14054 if (Assignment.isInvalid()) 14055 return StmtError(); 14056 return S.ActOnExprStmt(Assignment); 14057 } 14058 14059 // - if the subobject is an array, each element is assigned, in the 14060 // manner appropriate to the element type; 14061 14062 // Construct a loop over the array bounds, e.g., 14063 // 14064 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0) 14065 // 14066 // that will copy each of the array elements. 14067 QualType SizeType = S.Context.getSizeType(); 14068 14069 // Create the iteration variable. 14070 IdentifierInfo *IterationVarName = nullptr; 14071 { 14072 SmallString<8> Str; 14073 llvm::raw_svector_ostream OS(Str); 14074 OS << "__i" << Depth; 14075 IterationVarName = &S.Context.Idents.get(OS.str()); 14076 } 14077 VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, 14078 IterationVarName, SizeType, 14079 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), 14080 SC_None); 14081 14082 // Initialize the iteration variable to zero. 14083 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); 14084 IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); 14085 14086 // Creates a reference to the iteration variable. 14087 RefBuilder IterationVarRef(IterationVar, SizeType); 14088 LvalueConvBuilder IterationVarRefRVal(IterationVarRef); 14089 14090 // Create the DeclStmt that holds the iteration variable. 14091 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc); 14092 14093 // Subscript the "from" and "to" expressions with the iteration variable. 14094 SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal); 14095 MoveCastBuilder FromIndexMove(FromIndexCopy); 14096 const ExprBuilder *FromIndex; 14097 if (Copying) 14098 FromIndex = &FromIndexCopy; 14099 else 14100 FromIndex = &FromIndexMove; 14101 14102 SubscriptBuilder ToIndex(To, IterationVarRefRVal); 14103 14104 // Build the copy/move for an individual element of the array. 14105 StmtResult Copy = 14106 buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(), 14107 ToIndex, *FromIndex, CopyingBaseSubobject, 14108 Copying, Depth + 1); 14109 // Bail out if copying fails or if we determined that we should use memcpy. 14110 if (Copy.isInvalid() || !Copy.get()) 14111 return Copy; 14112 14113 // Create the comparison against the array bound. 14114 llvm::APInt Upper 14115 = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType)); 14116 Expr *Comparison = BinaryOperator::Create( 14117 S.Context, IterationVarRefRVal.build(S, Loc), 14118 IntegerLiteral::Create(S.Context, Upper, SizeType, Loc), BO_NE, 14119 S.Context.BoolTy, VK_PRValue, OK_Ordinary, Loc, 14120 S.CurFPFeatureOverrides()); 14121 14122 // Create the pre-increment of the iteration variable. We can determine 14123 // whether the increment will overflow based on the value of the array 14124 // bound. 14125 Expr *Increment = UnaryOperator::Create( 14126 S.Context, IterationVarRef.build(S, Loc), UO_PreInc, SizeType, VK_LValue, 14127 OK_Ordinary, Loc, Upper.isMaxValue(), S.CurFPFeatureOverrides()); 14128 14129 // Construct the loop that copies all elements of this array. 14130 return S.ActOnForStmt( 14131 Loc, Loc, InitStmt, 14132 S.ActOnCondition(nullptr, Loc, Comparison, Sema::ConditionKind::Boolean), 14133 S.MakeFullDiscardedValueExpr(Increment), Loc, Copy.get()); 14134} 14135 14136static StmtResult 14137buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T, 14138 const ExprBuilder &To, const ExprBuilder &From, 14139 bool CopyingBaseSubobject, bool Copying) { 14140 // Maybe we should use a memcpy? 14141 if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() && 14142 T.isTriviallyCopyableType(S.Context)) 14143 return buildMemcpyForAssignmentOp(S, Loc, T, To, From); 14144 14145 StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From, 14146 CopyingBaseSubobject, 14147 Copying, 0)); 14148 14149 // If we ended up picking a trivial assignment operator for an array of a 14150 // non-trivially-copyable class type, just emit a memcpy. 14151 if (!Result.isInvalid() && !Result.get()) 14152 return buildMemcpyForAssignmentOp(S, Loc, T, To, From); 14153 14154 return Result; 14155} 14156 14157CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) { 14158 // Note: The following rules are largely analoguous to the copy 14159 // constructor rules. Note that virtual bases are not taken into account 14160 // for determining the argument type of the operator. Note also that 14161 // operators taking an object instead of a reference are allowed. 14162 assert(ClassDecl->needsImplicitCopyAssignment())(static_cast<void> (0)); 14163 14164 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment); 14165 if (DSM.isAlreadyBeingDeclared()) 14166 return nullptr; 14167 14168 QualType ArgType = Context.getTypeDeclType(ClassDecl); 14169 LangAS AS = getDefaultCXXMethodAddrSpace(); 14170 if (AS != LangAS::Default) 14171 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 14172 QualType RetType = Context.getLValueReferenceType(ArgType); 14173 bool Const = ClassDecl->implicitCopyAssignmentHasConstParam(); 14174 if (Const) 14175 ArgType = ArgType.withConst(); 14176 14177 ArgType = Context.getLValueReferenceType(ArgType); 14178 14179 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 14180 CXXCopyAssignment, 14181 Const); 14182 14183 // An implicitly-declared copy assignment operator is an inline public 14184 // member of its class. 14185 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 14186 SourceLocation ClassLoc = ClassDecl->getLocation(); 14187 DeclarationNameInfo NameInfo(Name, ClassLoc); 14188 CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create( 14189 Context, ClassDecl, ClassLoc, NameInfo, QualType(), 14190 /*TInfo=*/nullptr, /*StorageClass=*/SC_None, 14191 getCurFPFeatures().isFPConstrained(), 14192 /*isInline=*/true, 14193 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified, 14194 SourceLocation()); 14195 CopyAssignment->setAccess(AS_public); 14196 CopyAssignment->setDefaulted(); 14197 CopyAssignment->setImplicit(); 14198 14199 if (getLangOpts().CUDA) { 14200 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment, 14201 CopyAssignment, 14202 /* ConstRHS */ Const, 14203 /* Diagnose */ false); 14204 } 14205 14206 setupImplicitSpecialMemberType(CopyAssignment, RetType, ArgType); 14207 14208 // Add the parameter to the operator. 14209 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, 14210 ClassLoc, ClassLoc, 14211 /*Id=*/nullptr, ArgType, 14212 /*TInfo=*/nullptr, SC_None, 14213 nullptr); 14214 CopyAssignment->setParams(FromParam); 14215 14216 CopyAssignment->setTrivial( 14217 ClassDecl->needsOverloadResolutionForCopyAssignment() 14218 ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment) 14219 : ClassDecl->hasTrivialCopyAssignment()); 14220 14221 // Note that we have added this copy-assignment operator. 14222 ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared; 14223 14224 Scope *S = getScopeForContext(ClassDecl); 14225 CheckImplicitSpecialMemberDeclaration(S, CopyAssignment); 14226 14227 if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment)) { 14228 ClassDecl->setImplicitCopyAssignmentIsDeleted(); 14229 SetDeclDeleted(CopyAssignment, ClassLoc); 14230 } 14231 14232 if (S) 14233 PushOnScopeChains(CopyAssignment, S, false); 14234 ClassDecl->addDecl(CopyAssignment); 14235 14236 return CopyAssignment; 14237} 14238 14239/// Diagnose an implicit copy operation for a class which is odr-used, but 14240/// which is deprecated because the class has a user-declared copy constructor, 14241/// copy assignment operator, or destructor. 14242static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) { 14243 assert(CopyOp->isImplicit())(static_cast<void> (0)); 14244 14245 CXXRecordDecl *RD = CopyOp->getParent(); 14246 CXXMethodDecl *UserDeclaredOperation = nullptr; 14247 14248 // In Microsoft mode, assignment operations don't affect constructors and 14249 // vice versa. 14250 if (RD->hasUserDeclaredDestructor()) { 14251 UserDeclaredOperation = RD->getDestructor(); 14252 } else if (!isa<CXXConstructorDecl>(CopyOp) && 14253 RD->hasUserDeclaredCopyConstructor() && 14254 !S.getLangOpts().MSVCCompat) { 14255 // Find any user-declared copy constructor. 14256 for (auto *I : RD->ctors()) { 14257 if (I->isCopyConstructor()) { 14258 UserDeclaredOperation = I; 14259 break; 14260 } 14261 } 14262 assert(UserDeclaredOperation)(static_cast<void> (0)); 14263 } else if (isa<CXXConstructorDecl>(CopyOp) && 14264 RD->hasUserDeclaredCopyAssignment() && 14265 !S.getLangOpts().MSVCCompat) { 14266 // Find any user-declared move assignment operator. 14267 for (auto *I : RD->methods()) { 14268 if (I->isCopyAssignmentOperator()) { 14269 UserDeclaredOperation = I; 14270 break; 14271 } 14272 } 14273 assert(UserDeclaredOperation)(static_cast<void> (0)); 14274 } 14275 14276 if (UserDeclaredOperation) { 14277 bool UDOIsUserProvided = UserDeclaredOperation->isUserProvided(); 14278 bool UDOIsDestructor = isa<CXXDestructorDecl>(UserDeclaredOperation); 14279 bool IsCopyAssignment = !isa<CXXConstructorDecl>(CopyOp); 14280 unsigned DiagID = 14281 (UDOIsUserProvided && UDOIsDestructor) 14282 ? diag::warn_deprecated_copy_with_user_provided_dtor 14283 : (UDOIsUserProvided && !UDOIsDestructor) 14284 ? diag::warn_deprecated_copy_with_user_provided_copy 14285 : (!UDOIsUserProvided && UDOIsDestructor) 14286 ? diag::warn_deprecated_copy_with_dtor 14287 : diag::warn_deprecated_copy; 14288 S.Diag(UserDeclaredOperation->getLocation(), DiagID) 14289 << RD << IsCopyAssignment; 14290 } 14291} 14292 14293void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation, 14294 CXXMethodDecl *CopyAssignOperator) { 14295 assert((CopyAssignOperator->isDefaulted() &&(static_cast<void> (0)) 14296 CopyAssignOperator->isOverloadedOperator() &&(static_cast<void> (0)) 14297 CopyAssignOperator->getOverloadedOperator() == OO_Equal &&(static_cast<void> (0)) 14298 !CopyAssignOperator->doesThisDeclarationHaveABody() &&(static_cast<void> (0)) 14299 !CopyAssignOperator->isDeleted()) &&(static_cast<void> (0)) 14300 "DefineImplicitCopyAssignment called for wrong function")(static_cast<void> (0)); 14301 if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl()) 14302 return; 14303 14304 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent(); 14305 if (ClassDecl->isInvalidDecl()) { 14306 CopyAssignOperator->setInvalidDecl(); 14307 return; 14308 } 14309 14310 SynthesizedFunctionScope Scope(*this, CopyAssignOperator); 14311 14312 // The exception specification is needed because we are defining the 14313 // function. 14314 ResolveExceptionSpec(CurrentLocation, 14315 CopyAssignOperator->getType()->castAs<FunctionProtoType>()); 14316 14317 // Add a context note for diagnostics produced after this point. 14318 Scope.addContextNote(CurrentLocation); 14319 14320 // C++11 [class.copy]p18: 14321 // The [definition of an implicitly declared copy assignment operator] is 14322 // deprecated if the class has a user-declared copy constructor or a 14323 // user-declared destructor. 14324 if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit()) 14325 diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator); 14326 14327 // C++0x [class.copy]p30: 14328 // The implicitly-defined or explicitly-defaulted copy assignment operator 14329 // for a non-union class X performs memberwise copy assignment of its 14330 // subobjects. The direct base classes of X are assigned first, in the 14331 // order of their declaration in the base-specifier-list, and then the 14332 // immediate non-static data members of X are assigned, in the order in 14333 // which they were declared in the class definition. 14334 14335 // The statements that form the synthesized function body. 14336 SmallVector<Stmt*, 8> Statements; 14337 14338 // The parameter for the "other" object, which we are copying from. 14339 ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0); 14340 Qualifiers OtherQuals = Other->getType().getQualifiers(); 14341 QualType OtherRefType = Other->getType(); 14342 if (const LValueReferenceType *OtherRef 14343 = OtherRefType->getAs<LValueReferenceType>()) { 14344 OtherRefType = OtherRef->getPointeeType(); 14345 OtherQuals = OtherRefType.getQualifiers(); 14346 } 14347 14348 // Our location for everything implicitly-generated. 14349 SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid() 14350 ? CopyAssignOperator->getEndLoc() 14351 : CopyAssignOperator->getLocation(); 14352 14353 // Builds a DeclRefExpr for the "other" object. 14354 RefBuilder OtherRef(Other, OtherRefType); 14355 14356 // Builds the "this" pointer. 14357 ThisBuilder This; 14358 14359 // Assign base classes. 14360 bool Invalid = false; 14361 for (auto &Base : ClassDecl->bases()) { 14362 // Form the assignment: 14363 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other)); 14364 QualType BaseType = Base.getType().getUnqualifiedType(); 14365 if (!BaseType->isRecordType()) { 14366 Invalid = true; 14367 continue; 14368 } 14369 14370 CXXCastPath BasePath; 14371 BasePath.push_back(&Base); 14372 14373 // Construct the "from" expression, which is an implicit cast to the 14374 // appropriately-qualified base type. 14375 CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals), 14376 VK_LValue, BasePath); 14377 14378 // Dereference "this". 14379 DerefBuilder DerefThis(This); 14380 CastBuilder To(DerefThis, 14381 Context.getQualifiedType( 14382 BaseType, CopyAssignOperator->getMethodQualifiers()), 14383 VK_LValue, BasePath); 14384 14385 // Build the copy. 14386 StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType, 14387 To, From, 14388 /*CopyingBaseSubobject=*/true, 14389 /*Copying=*/true); 14390 if (Copy.isInvalid()) { 14391 CopyAssignOperator->setInvalidDecl(); 14392 return; 14393 } 14394 14395 // Success! Record the copy. 14396 Statements.push_back(Copy.getAs<Expr>()); 14397 } 14398 14399 // Assign non-static members. 14400 for (auto *Field : ClassDecl->fields()) { 14401 // FIXME: We should form some kind of AST representation for the implied 14402 // memcpy in a union copy operation. 14403 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion()) 14404 continue; 14405 14406 if (Field->isInvalidDecl()) { 14407 Invalid = true; 14408 continue; 14409 } 14410 14411 // Check for members of reference type; we can't copy those. 14412 if (Field->getType()->isReferenceType()) { 14413 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 14414 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); 14415 Diag(Field->getLocation(), diag::note_declared_at); 14416 Invalid = true; 14417 continue; 14418 } 14419 14420 // Check for members of const-qualified, non-class type. 14421 QualType BaseType = Context.getBaseElementType(Field->getType()); 14422 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { 14423 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 14424 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); 14425 Diag(Field->getLocation(), diag::note_declared_at); 14426 Invalid = true; 14427 continue; 14428 } 14429 14430 // Suppress assigning zero-width bitfields. 14431 if (Field->isZeroLengthBitField(Context)) 14432 continue; 14433 14434 QualType FieldType = Field->getType().getNonReferenceType(); 14435 if (FieldType->isIncompleteArrayType()) { 14436 assert(ClassDecl->hasFlexibleArrayMember() &&(static_cast<void> (0)) 14437 "Incomplete array type is not valid")(static_cast<void> (0)); 14438 continue; 14439 } 14440 14441 // Build references to the field in the object we're copying from and to. 14442 CXXScopeSpec SS; // Intentionally empty 14443 LookupResult MemberLookup(*this, Field->getDeclName(), Loc, 14444 LookupMemberName); 14445 MemberLookup.addDecl(Field); 14446 MemberLookup.resolveKind(); 14447 14448 MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup); 14449 14450 MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup); 14451 14452 // Build the copy of this field. 14453 StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType, 14454 To, From, 14455 /*CopyingBaseSubobject=*/false, 14456 /*Copying=*/true); 14457 if (Copy.isInvalid()) { 14458 CopyAssignOperator->setInvalidDecl(); 14459 return; 14460 } 14461 14462 // Success! Record the copy. 14463 Statements.push_back(Copy.getAs<Stmt>()); 14464 } 14465 14466 if (!Invalid) { 14467 // Add a "return *this;" 14468 ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc)); 14469 14470 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get()); 14471 if (Return.isInvalid()) 14472 Invalid = true; 14473 else 14474 Statements.push_back(Return.getAs<Stmt>()); 14475 } 14476 14477 if (Invalid) { 14478 CopyAssignOperator->setInvalidDecl(); 14479 return; 14480 } 14481 14482 StmtResult Body; 14483 { 14484 CompoundScopeRAII CompoundScope(*this); 14485 Body = ActOnCompoundStmt(Loc, Loc, Statements, 14486 /*isStmtExpr=*/false); 14487 assert(!Body.isInvalid() && "Compound statement creation cannot fail")(static_cast<void> (0)); 14488 } 14489 CopyAssignOperator->setBody(Body.getAs<Stmt>()); 14490 CopyAssignOperator->markUsed(Context); 14491 14492 if (ASTMutationListener *L = getASTMutationListener()) { 14493 L->CompletedImplicitDefinition(CopyAssignOperator); 14494 } 14495} 14496 14497CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) { 14498 assert(ClassDecl->needsImplicitMoveAssignment())(static_cast<void> (0)); 14499 14500 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment); 14501 if (DSM.isAlreadyBeingDeclared()) 14502 return nullptr; 14503 14504 // Note: The following rules are largely analoguous to the move 14505 // constructor rules. 14506 14507 QualType ArgType = Context.getTypeDeclType(ClassDecl); 14508 LangAS AS = getDefaultCXXMethodAddrSpace(); 14509 if (AS != LangAS::Default) 14510 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 14511 QualType RetType = Context.getLValueReferenceType(ArgType); 14512 ArgType = Context.getRValueReferenceType(ArgType); 14513 14514 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 14515 CXXMoveAssignment, 14516 false); 14517 14518 // An implicitly-declared move assignment operator is an inline public 14519 // member of its class. 14520 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 14521 SourceLocation ClassLoc = ClassDecl->getLocation(); 14522 DeclarationNameInfo NameInfo(Name, ClassLoc); 14523 CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create( 14524 Context, ClassDecl, ClassLoc, NameInfo, QualType(), 14525 /*TInfo=*/nullptr, /*StorageClass=*/SC_None, 14526 getCurFPFeatures().isFPConstrained(), 14527 /*isInline=*/true, 14528 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified, 14529 SourceLocation()); 14530 MoveAssignment->setAccess(AS_public); 14531 MoveAssignment->setDefaulted(); 14532 MoveAssignment->setImplicit(); 14533 14534 if (getLangOpts().CUDA) { 14535 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment, 14536 MoveAssignment, 14537 /* ConstRHS */ false, 14538 /* Diagnose */ false); 14539 } 14540 14541 setupImplicitSpecialMemberType(MoveAssignment, RetType, ArgType); 14542 14543 // Add the parameter to the operator. 14544 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment, 14545 ClassLoc, ClassLoc, 14546 /*Id=*/nullptr, ArgType, 14547 /*TInfo=*/nullptr, SC_None, 14548 nullptr); 14549 MoveAssignment->setParams(FromParam); 14550 14551 MoveAssignment->setTrivial( 14552 ClassDecl->needsOverloadResolutionForMoveAssignment() 14553 ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment) 14554 : ClassDecl->hasTrivialMoveAssignment()); 14555 14556 // Note that we have added this copy-assignment operator. 14557 ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared; 14558 14559 Scope *S = getScopeForContext(ClassDecl); 14560 CheckImplicitSpecialMemberDeclaration(S, MoveAssignment); 14561 14562 if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) { 14563 ClassDecl->setImplicitMoveAssignmentIsDeleted(); 14564 SetDeclDeleted(MoveAssignment, ClassLoc); 14565 } 14566 14567 if (S) 14568 PushOnScopeChains(MoveAssignment, S, false); 14569 ClassDecl->addDecl(MoveAssignment); 14570 14571 return MoveAssignment; 14572} 14573 14574/// Check if we're implicitly defining a move assignment operator for a class 14575/// with virtual bases. Such a move assignment might move-assign the virtual 14576/// base multiple times. 14577static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class, 14578 SourceLocation CurrentLocation) { 14579 assert(!Class->isDependentContext() && "should not define dependent move")(static_cast<void> (0)); 14580 14581 // Only a virtual base could get implicitly move-assigned multiple times. 14582 // Only a non-trivial move assignment can observe this. We only want to 14583 // diagnose if we implicitly define an assignment operator that assigns 14584 // two base classes, both of which move-assign the same virtual base. 14585 if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() || 14586 Class->getNumBases() < 2) 14587 return; 14588 14589 llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist; 14590 typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap; 14591 VBaseMap VBases; 14592 14593 for (auto &BI : Class->bases()) { 14594 Worklist.push_back(&BI); 14595 while (!Worklist.empty()) { 14596 CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val(); 14597 CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl(); 14598 14599 // If the base has no non-trivial move assignment operators, 14600 // we don't care about moves from it. 14601 if (!Base->hasNonTrivialMoveAssignment()) 14602 continue; 14603 14604 // If there's nothing virtual here, skip it. 14605 if (!BaseSpec->isVirtual() && !Base->getNumVBases()) 14606 continue; 14607 14608 // If we're not actually going to call a move assignment for this base, 14609 // or the selected move assignment is trivial, skip it. 14610 Sema::SpecialMemberOverloadResult SMOR = 14611 S.LookupSpecialMember(Base, Sema::CXXMoveAssignment, 14612 /*ConstArg*/false, /*VolatileArg*/false, 14613 /*RValueThis*/true, /*ConstThis*/false, 14614 /*VolatileThis*/false); 14615 if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() || 14616 !SMOR.getMethod()->isMoveAssignmentOperator()) 14617 continue; 14618 14619 if (BaseSpec->isVirtual()) { 14620 // We're going to move-assign this virtual base, and its move 14621 // assignment operator is not trivial. If this can happen for 14622 // multiple distinct direct bases of Class, diagnose it. (If it 14623 // only happens in one base, we'll diagnose it when synthesizing 14624 // that base class's move assignment operator.) 14625 CXXBaseSpecifier *&Existing = 14626 VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI)) 14627 .first->second; 14628 if (Existing && Existing != &BI) { 14629 S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times) 14630 << Class << Base; 14631 S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here) 14632 << (Base->getCanonicalDecl() == 14633 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl()) 14634 << Base << Existing->getType() << Existing->getSourceRange(); 14635 S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here) 14636 << (Base->getCanonicalDecl() == 14637 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl()) 14638 << Base << BI.getType() << BaseSpec->getSourceRange(); 14639 14640 // Only diagnose each vbase once. 14641 Existing = nullptr; 14642 } 14643 } else { 14644 // Only walk over bases that have defaulted move assignment operators. 14645 // We assume that any user-provided move assignment operator handles 14646 // the multiple-moves-of-vbase case itself somehow. 14647 if (!SMOR.getMethod()->isDefaulted()) 14648 continue; 14649 14650 // We're going to move the base classes of Base. Add them to the list. 14651 for (auto &BI : Base->bases()) 14652 Worklist.push_back(&BI); 14653 } 14654 } 14655 } 14656} 14657 14658void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation, 14659 CXXMethodDecl *MoveAssignOperator) { 14660 assert((MoveAssignOperator->isDefaulted() &&(static_cast<void> (0)) 14661 MoveAssignOperator->isOverloadedOperator() &&(static_cast<void> (0)) 14662 MoveAssignOperator->getOverloadedOperator() == OO_Equal &&(static_cast<void> (0)) 14663 !MoveAssignOperator->doesThisDeclarationHaveABody() &&(static_cast<void> (0)) 14664 !MoveAssignOperator->isDeleted()) &&(static_cast<void> (0)) 14665 "DefineImplicitMoveAssignment called for wrong function")(static_cast<void> (0)); 14666 if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl()) 14667 return; 14668 14669 CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent(); 14670 if (ClassDecl->isInvalidDecl()) { 14671 MoveAssignOperator->setInvalidDecl(); 14672 return; 14673 } 14674 14675 // C++0x [class.copy]p28: 14676 // The implicitly-defined or move assignment operator for a non-union class 14677 // X performs memberwise move assignment of its subobjects. The direct base 14678 // classes of X are assigned first, in the order of their declaration in the 14679 // base-specifier-list, and then the immediate non-static data members of X 14680 // are assigned, in the order in which they were declared in the class 14681 // definition. 14682 14683 // Issue a warning if our implicit move assignment operator will move 14684 // from a virtual base more than once. 14685 checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation); 14686 14687 SynthesizedFunctionScope Scope(*this, MoveAssignOperator); 14688 14689 // The exception specification is needed because we are defining the 14690 // function. 14691 ResolveExceptionSpec(CurrentLocation, 14692 MoveAssignOperator->getType()->castAs<FunctionProtoType>()); 14693 14694 // Add a context note for diagnostics produced after this point. 14695 Scope.addContextNote(CurrentLocation); 14696 14697 // The statements that form the synthesized function body. 14698 SmallVector<Stmt*, 8> Statements; 14699 14700 // The parameter for the "other" object, which we are move from. 14701 ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0); 14702 QualType OtherRefType = 14703 Other->getType()->castAs<RValueReferenceType>()->getPointeeType(); 14704 14705 // Our location for everything implicitly-generated. 14706 SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid() 14707 ? MoveAssignOperator->getEndLoc() 14708 : MoveAssignOperator->getLocation(); 14709 14710 // Builds a reference to the "other" object. 14711 RefBuilder OtherRef(Other, OtherRefType); 14712 // Cast to rvalue. 14713 MoveCastBuilder MoveOther(OtherRef); 14714 14715 // Builds the "this" pointer. 14716 ThisBuilder This; 14717 14718 // Assign base classes. 14719 bool Invalid = false; 14720 for (auto &Base : ClassDecl->bases()) { 14721 // C++11 [class.copy]p28: 14722 // It is unspecified whether subobjects representing virtual base classes 14723 // are assigned more than once by the implicitly-defined copy assignment 14724 // operator. 14725 // FIXME: Do not assign to a vbase that will be assigned by some other base 14726 // class. For a move-assignment, this can result in the vbase being moved 14727 // multiple times. 14728 14729 // Form the assignment: 14730 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other)); 14731 QualType BaseType = Base.getType().getUnqualifiedType(); 14732 if (!BaseType->isRecordType()) { 14733 Invalid = true; 14734 continue; 14735 } 14736 14737 CXXCastPath BasePath; 14738 BasePath.push_back(&Base); 14739 14740 // Construct the "from" expression, which is an implicit cast to the 14741 // appropriately-qualified base type. 14742 CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath); 14743 14744 // Dereference "this". 14745 DerefBuilder DerefThis(This); 14746 14747 // Implicitly cast "this" to the appropriately-qualified base type. 14748 CastBuilder To(DerefThis, 14749 Context.getQualifiedType( 14750 BaseType, MoveAssignOperator->getMethodQualifiers()), 14751 VK_LValue, BasePath); 14752 14753 // Build the move. 14754 StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType, 14755 To, From, 14756 /*CopyingBaseSubobject=*/true, 14757 /*Copying=*/false); 14758 if (Move.isInvalid()) { 14759 MoveAssignOperator->setInvalidDecl(); 14760 return; 14761 } 14762 14763 // Success! Record the move. 14764 Statements.push_back(Move.getAs<Expr>()); 14765 } 14766 14767 // Assign non-static members. 14768 for (auto *Field : ClassDecl->fields()) { 14769 // FIXME: We should form some kind of AST representation for the implied 14770 // memcpy in a union copy operation. 14771 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion()) 14772 continue; 14773 14774 if (Field->isInvalidDecl()) { 14775 Invalid = true; 14776 continue; 14777 } 14778 14779 // Check for members of reference type; we can't move those. 14780 if (Field->getType()->isReferenceType()) { 14781 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 14782 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); 14783 Diag(Field->getLocation(), diag::note_declared_at); 14784 Invalid = true; 14785 continue; 14786 } 14787 14788 // Check for members of const-qualified, non-class type. 14789 QualType BaseType = Context.getBaseElementType(Field->getType()); 14790 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { 14791 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 14792 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); 14793 Diag(Field->getLocation(), diag::note_declared_at); 14794 Invalid = true; 14795 continue; 14796 } 14797 14798 // Suppress assigning zero-width bitfields. 14799 if (Field->isZeroLengthBitField(Context)) 14800 continue; 14801 14802 QualType FieldType = Field->getType().getNonReferenceType(); 14803 if (FieldType->isIncompleteArrayType()) { 14804 assert(ClassDecl->hasFlexibleArrayMember() &&(static_cast<void> (0)) 14805 "Incomplete array type is not valid")(static_cast<void> (0)); 14806 continue; 14807 } 14808 14809 // Build references to the field in the object we're copying from and to. 14810 LookupResult MemberLookup(*this, Field->getDeclName(), Loc, 14811 LookupMemberName); 14812 MemberLookup.addDecl(Field); 14813 MemberLookup.resolveKind(); 14814 MemberBuilder From(MoveOther, OtherRefType, 14815 /*IsArrow=*/false, MemberLookup); 14816 MemberBuilder To(This, getCurrentThisType(), 14817 /*IsArrow=*/true, MemberLookup); 14818 14819 assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue(static_cast<void> (0)) 14820 "Member reference with rvalue base must be rvalue except for reference "(static_cast<void> (0)) 14821 "members, which aren't allowed for move assignment.")(static_cast<void> (0)); 14822 14823 // Build the move of this field. 14824 StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType, 14825 To, From, 14826 /*CopyingBaseSubobject=*/false, 14827 /*Copying=*/false); 14828 if (Move.isInvalid()) { 14829 MoveAssignOperator->setInvalidDecl(); 14830 return; 14831 } 14832 14833 // Success! Record the copy. 14834 Statements.push_back(Move.getAs<Stmt>()); 14835 } 14836 14837 if (!Invalid) { 14838 // Add a "return *this;" 14839 ExprResult ThisObj = 14840 CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc)); 14841 14842 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get()); 14843 if (Return.isInvalid()) 14844 Invalid = true; 14845 else 14846 Statements.push_back(Return.getAs<Stmt>()); 14847 } 14848 14849 if (Invalid) { 14850 MoveAssignOperator->setInvalidDecl(); 14851 return; 14852 } 14853 14854 StmtResult Body; 14855 { 14856 CompoundScopeRAII CompoundScope(*this); 14857 Body = ActOnCompoundStmt(Loc, Loc, Statements, 14858 /*isStmtExpr=*/false); 14859 assert(!Body.isInvalid() && "Compound statement creation cannot fail")(static_cast<void> (0)); 14860 } 14861 MoveAssignOperator->setBody(Body.getAs<Stmt>()); 14862 MoveAssignOperator->markUsed(Context); 14863 14864 if (ASTMutationListener *L = getASTMutationListener()) { 14865 L->CompletedImplicitDefinition(MoveAssignOperator); 14866 } 14867} 14868 14869CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor( 14870 CXXRecordDecl *ClassDecl) { 14871 // C++ [class.copy]p4: 14872 // If the class definition does not explicitly declare a copy 14873 // constructor, one is declared implicitly. 14874 assert(ClassDecl->needsImplicitCopyConstructor())(static_cast<void> (0)); 14875 14876 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor); 14877 if (DSM.isAlreadyBeingDeclared()) 14878 return nullptr; 14879 14880 QualType ClassType = Context.getTypeDeclType(ClassDecl); 14881 QualType ArgType = ClassType; 14882 bool Const = ClassDecl->implicitCopyConstructorHasConstParam(); 14883 if (Const) 14884 ArgType = ArgType.withConst(); 14885 14886 LangAS AS = getDefaultCXXMethodAddrSpace(); 14887 if (AS != LangAS::Default) 14888 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 14889 14890 ArgType = Context.getLValueReferenceType(ArgType); 14891 14892 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 14893 CXXCopyConstructor, 14894 Const); 14895 14896 DeclarationName Name 14897 = Context.DeclarationNames.getCXXConstructorName( 14898 Context.getCanonicalType(ClassType)); 14899 SourceLocation ClassLoc = ClassDecl->getLocation(); 14900 DeclarationNameInfo NameInfo(Name, ClassLoc); 14901 14902 // An implicitly-declared copy constructor is an inline public 14903 // member of its class. 14904 CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create( 14905 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, 14906 ExplicitSpecifier(), getCurFPFeatures().isFPConstrained(), 14907 /*isInline=*/true, 14908 /*isImplicitlyDeclared=*/true, 14909 Constexpr ? ConstexprSpecKind::Constexpr 14910 : ConstexprSpecKind::Unspecified); 14911 CopyConstructor->setAccess(AS_public); 14912 CopyConstructor->setDefaulted(); 14913 14914 if (getLangOpts().CUDA) { 14915 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor, 14916 CopyConstructor, 14917 /* ConstRHS */ Const, 14918 /* Diagnose */ false); 14919 } 14920 14921 setupImplicitSpecialMemberType(CopyConstructor, Context.VoidTy, ArgType); 14922 14923 // During template instantiation of special member functions we need a 14924 // reliable TypeSourceInfo for the parameter types in order to allow functions 14925 // to be substituted. 14926 TypeSourceInfo *TSI = nullptr; 14927 if (inTemplateInstantiation() && ClassDecl->isLambda()) 14928 TSI = Context.getTrivialTypeSourceInfo(ArgType); 14929 14930 // Add the parameter to the constructor. 14931 ParmVarDecl *FromParam = 14932 ParmVarDecl::Create(Context, CopyConstructor, ClassLoc, ClassLoc, 14933 /*IdentifierInfo=*/nullptr, ArgType, 14934 /*TInfo=*/TSI, SC_None, nullptr); 14935 CopyConstructor->setParams(FromParam); 14936 14937 CopyConstructor->setTrivial( 14938 ClassDecl->needsOverloadResolutionForCopyConstructor() 14939 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor) 14940 : ClassDecl->hasTrivialCopyConstructor()); 14941 14942 CopyConstructor->setTrivialForCall( 14943 ClassDecl->hasAttr<TrivialABIAttr>() || 14944 (ClassDecl->needsOverloadResolutionForCopyConstructor() 14945 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor, 14946 TAH_ConsiderTrivialABI) 14947 : ClassDecl->hasTrivialCopyConstructorForCall())); 14948 14949 // Note that we have declared this constructor. 14950 ++getASTContext().NumImplicitCopyConstructorsDeclared; 14951 14952 Scope *S = getScopeForContext(ClassDecl); 14953 CheckImplicitSpecialMemberDeclaration(S, CopyConstructor); 14954 14955 if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor)) { 14956 ClassDecl->setImplicitCopyConstructorIsDeleted(); 14957 SetDeclDeleted(CopyConstructor, ClassLoc); 14958 } 14959 14960 if (S) 14961 PushOnScopeChains(CopyConstructor, S, false); 14962 ClassDecl->addDecl(CopyConstructor); 14963 14964 return CopyConstructor; 14965} 14966 14967void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation, 14968 CXXConstructorDecl *CopyConstructor) { 14969 assert((CopyConstructor->isDefaulted() &&(static_cast<void> (0)) 14970 CopyConstructor->isCopyConstructor() &&(static_cast<void> (0)) 14971 !CopyConstructor->doesThisDeclarationHaveABody() &&(static_cast<void> (0)) 14972 !CopyConstructor->isDeleted()) &&(static_cast<void> (0)) 14973 "DefineImplicitCopyConstructor - call it for implicit copy ctor")(static_cast<void> (0)); 14974 if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl()) 14975 return; 14976 14977 CXXRecordDecl *ClassDecl = CopyConstructor->getParent(); 14978 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor")(static_cast<void> (0)); 14979 14980 SynthesizedFunctionScope Scope(*this, CopyConstructor); 14981 14982 // The exception specification is needed because we are defining the 14983 // function. 14984 ResolveExceptionSpec(CurrentLocation, 14985 CopyConstructor->getType()->castAs<FunctionProtoType>()); 14986 MarkVTableUsed(CurrentLocation, ClassDecl); 14987 14988 // Add a context note for diagnostics produced after this point. 14989 Scope.addContextNote(CurrentLocation); 14990 14991 // C++11 [class.copy]p7: 14992 // The [definition of an implicitly declared copy constructor] is 14993 // deprecated if the class has a user-declared copy assignment operator 14994 // or a user-declared destructor. 14995 if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit()) 14996 diagnoseDeprecatedCopyOperation(*this, CopyConstructor); 14997 14998 if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false)) { 14999 CopyConstructor->setInvalidDecl(); 15000 } else { 15001 SourceLocation Loc = CopyConstructor->getEndLoc().isValid() 15002 ? CopyConstructor->getEndLoc() 15003 : CopyConstructor->getLocation(); 15004 Sema::CompoundScopeRAII CompoundScope(*this); 15005 CopyConstructor->setBody( 15006 ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>()); 15007 CopyConstructor->markUsed(Context); 15008 } 15009 15010 if (ASTMutationListener *L = getASTMutationListener()) { 15011 L->CompletedImplicitDefinition(CopyConstructor); 15012 } 15013} 15014 15015CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor( 15016 CXXRecordDecl *ClassDecl) { 15017 assert(ClassDecl->needsImplicitMoveConstructor())(static_cast<void> (0)); 15018 15019 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor); 15020 if (DSM.isAlreadyBeingDeclared()) 15021 return nullptr; 15022 15023 QualType ClassType = Context.getTypeDeclType(ClassDecl); 15024 15025 QualType ArgType = ClassType; 15026 LangAS AS = getDefaultCXXMethodAddrSpace(); 15027 if (AS != LangAS::Default) 15028 ArgType = Context.getAddrSpaceQualType(ClassType, AS); 15029 ArgType = Context.getRValueReferenceType(ArgType); 15030 15031 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl, 15032 CXXMoveConstructor, 15033 false); 15034 15035 DeclarationName Name 15036 = Context.DeclarationNames.getCXXConstructorName( 15037 Context.getCanonicalType(ClassType)); 15038 SourceLocation ClassLoc = ClassDecl->getLocation(); 15039 DeclarationNameInfo NameInfo(Name, ClassLoc); 15040 15041 // C++11 [class.copy]p11: 15042 // An implicitly-declared copy/move constructor is an inline public 15043 // member of its class. 15044 CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create( 15045 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, 15046 ExplicitSpecifier(), getCurFPFeatures().isFPConstrained(), 15047 /*isInline=*/true, 15048 /*isImplicitlyDeclared=*/true, 15049 Constexpr ? ConstexprSpecKind::Constexpr 15050 : ConstexprSpecKind::Unspecified); 15051 MoveConstructor->setAccess(AS_public); 15052 MoveConstructor->setDefaulted(); 15053 15054 if (getLangOpts().CUDA) { 15055 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor, 15056 MoveConstructor, 15057 /* ConstRHS */ false, 15058 /* Diagnose */ false); 15059 } 15060 15061 setupImplicitSpecialMemberType(MoveConstructor, Context.VoidTy, ArgType); 15062 15063 // Add the parameter to the constructor. 15064 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor, 15065 ClassLoc, ClassLoc, 15066 /*IdentifierInfo=*/nullptr, 15067 ArgType, /*TInfo=*/nullptr, 15068 SC_None, nullptr); 15069 MoveConstructor->setParams(FromParam); 15070 15071 MoveConstructor->setTrivial( 15072 ClassDecl->needsOverloadResolutionForMoveConstructor() 15073 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor) 15074 : ClassDecl->hasTrivialMoveConstructor()); 15075 15076 MoveConstructor->setTrivialForCall( 15077 ClassDecl->hasAttr<TrivialABIAttr>() || 15078 (ClassDecl->needsOverloadResolutionForMoveConstructor() 15079 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor, 15080 TAH_ConsiderTrivialABI) 15081 : ClassDecl->hasTrivialMoveConstructorForCall())); 15082 15083 // Note that we have declared this constructor. 15084 ++getASTContext().NumImplicitMoveConstructorsDeclared; 15085 15086 Scope *S = getScopeForContext(ClassDecl); 15087 CheckImplicitSpecialMemberDeclaration(S, MoveConstructor); 15088 15089 if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) { 15090 ClassDecl->setImplicitMoveConstructorIsDeleted(); 15091 SetDeclDeleted(MoveConstructor, ClassLoc); 15092 } 15093 15094 if (S) 15095 PushOnScopeChains(MoveConstructor, S, false); 15096 ClassDecl->addDecl(MoveConstructor); 15097 15098 return MoveConstructor; 15099} 15100 15101void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation, 15102 CXXConstructorDecl *MoveConstructor) { 15103 assert((MoveConstructor->isDefaulted() &&(static_cast<void> (0)) 15104 MoveConstructor->isMoveConstructor() &&(static_cast<void> (0)) 15105 !MoveConstructor->doesThisDeclarationHaveABody() &&(static_cast<void> (0)) 15106 !MoveConstructor->isDeleted()) &&(static_cast<void> (0)) 15107 "DefineImplicitMoveConstructor - call it for implicit move ctor")(static_cast<void> (0)); 15108 if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl()) 15109 return; 15110 15111 CXXRecordDecl *ClassDecl = MoveConstructor->getParent(); 15112 assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor")(static_cast<void> (0)); 15113 15114 SynthesizedFunctionScope Scope(*this, MoveConstructor); 15115 15116 // The exception specification is needed because we are defining the 15117 // function. 15118 ResolveExceptionSpec(CurrentLocation, 15119 MoveConstructor->getType()->castAs<FunctionProtoType>()); 15120 MarkVTableUsed(CurrentLocation, ClassDecl); 15121 15122 // Add a context note for diagnostics produced after this point. 15123 Scope.addContextNote(CurrentLocation); 15124 15125 if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false)) { 15126 MoveConstructor->setInvalidDecl(); 15127 } else { 15128 SourceLocation Loc = MoveConstructor->getEndLoc().isValid() 15129 ? MoveConstructor->getEndLoc() 15130 : MoveConstructor->getLocation(); 15131 Sema::CompoundScopeRAII CompoundScope(*this); 15132 MoveConstructor->setBody(ActOnCompoundStmt( 15133 Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>()); 15134 MoveConstructor->markUsed(Context); 15135 } 15136 15137 if (ASTMutationListener *L = getASTMutationListener()) { 15138 L->CompletedImplicitDefinition(MoveConstructor); 15139 } 15140} 15141 15142bool Sema::isImplicitlyDeleted(FunctionDecl *FD) { 15143 return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD); 15144} 15145 15146void Sema::DefineImplicitLambdaToFunctionPointerConversion( 15147 SourceLocation CurrentLocation, 15148 CXXConversionDecl *Conv) { 15149 SynthesizedFunctionScope Scope(*this, Conv); 15150 assert(!Conv->getReturnType()->isUndeducedType())(static_cast<void> (0)); 15151 15152 QualType ConvRT = Conv->getType()->castAs<FunctionType>()->getReturnType(); 15153 CallingConv CC = 15154 ConvRT->getPointeeType()->castAs<FunctionType>()->getCallConv(); 15155 15156 CXXRecordDecl *Lambda = Conv->getParent(); 15157 FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); 15158 FunctionDecl *Invoker = Lambda->getLambdaStaticInvoker(CC); 15159 15160 if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) { 15161 CallOp = InstantiateFunctionDeclaration( 15162 CallOp->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation); 15163 if (!CallOp) 15164 return; 15165 15166 Invoker = InstantiateFunctionDeclaration( 15167 Invoker->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation); 15168 if (!Invoker) 15169 return; 15170 } 15171 15172 if (CallOp->isInvalidDecl()) 15173 return; 15174 15175 // Mark the call operator referenced (and add to pending instantiations 15176 // if necessary). 15177 // For both the conversion and static-invoker template specializations 15178 // we construct their body's in this function, so no need to add them 15179 // to the PendingInstantiations. 15180 MarkFunctionReferenced(CurrentLocation, CallOp); 15181 15182 // Fill in the __invoke function with a dummy implementation. IR generation 15183 // will fill in the actual details. Update its type in case it contained 15184 // an 'auto'. 15185 Invoker->markUsed(Context); 15186 Invoker->setReferenced(); 15187 Invoker->setType(Conv->getReturnType()->getPointeeType()); 15188 Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation())); 15189 15190 // Construct the body of the conversion function { return __invoke; }. 15191 Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(), 15192 VK_LValue, Conv->getLocation()); 15193 assert(FunctionRef && "Can't refer to __invoke function?")(static_cast<void> (0)); 15194 Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get(); 15195 Conv->setBody(CompoundStmt::Create(Context, Return, Conv->getLocation(), 15196 Conv->getLocation())); 15197 Conv->markUsed(Context); 15198 Conv->setReferenced(); 15199 15200 if (ASTMutationListener *L = getASTMutationListener()) { 15201 L->CompletedImplicitDefinition(Conv); 15202 L->CompletedImplicitDefinition(Invoker); 15203 } 15204} 15205 15206 15207 15208void Sema::DefineImplicitLambdaToBlockPointerConversion( 15209 SourceLocation CurrentLocation, 15210 CXXConversionDecl *Conv) 15211{ 15212 assert(!Conv->getParent()->isGenericLambda())(static_cast<void> (0)); 15213 15214 SynthesizedFunctionScope Scope(*this, Conv); 15215 15216 // Copy-initialize the lambda object as needed to capture it. 15217 Expr *This = ActOnCXXThis(CurrentLocation).get(); 15218 Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get(); 15219 15220 ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation, 15221 Conv->getLocation(), 15222 Conv, DerefThis); 15223 15224 // If we're not under ARC, make sure we still get the _Block_copy/autorelease 15225 // behavior. Note that only the general conversion function does this 15226 // (since it's unusable otherwise); in the case where we inline the 15227 // block literal, it has block literal lifetime semantics. 15228 if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount) 15229 BuildBlock = ImplicitCastExpr::Create( 15230 Context, BuildBlock.get()->getType(), CK_CopyAndAutoreleaseBlockObject, 15231 BuildBlock.get(), nullptr, VK_PRValue, FPOptionsOverride()); 15232 15233 if (BuildBlock.isInvalid()) { 15234 Diag(CurrentLocation, diag::note_lambda_to_block_conv); 15235 Conv->setInvalidDecl(); 15236 return; 15237 } 15238 15239 // Create the return statement that returns the block from the conversion 15240 // function. 15241 StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get()); 15242 if (Return.isInvalid()) { 15243 Diag(CurrentLocation, diag::note_lambda_to_block_conv); 15244 Conv->setInvalidDecl(); 15245 return; 15246 } 15247 15248 // Set the body of the conversion function. 15249 Stmt *ReturnS = Return.get(); 15250 Conv->setBody(CompoundStmt::Create(Context, ReturnS, Conv->getLocation(), 15251 Conv->getLocation())); 15252 Conv->markUsed(Context); 15253 15254 // We're done; notify the mutation listener, if any. 15255 if (ASTMutationListener *L = getASTMutationListener()) { 15256 L->CompletedImplicitDefinition(Conv); 15257 } 15258} 15259 15260/// Determine whether the given list arguments contains exactly one 15261/// "real" (non-default) argument. 15262static bool hasOneRealArgument(MultiExprArg Args) { 15263 switch (Args.size()) { 15264 case 0: 15265 return false; 15266 15267 default: 15268 if (!Args[1]->isDefaultArgument()) 15269 return false; 15270 15271 LLVM_FALLTHROUGH[[gnu::fallthrough]]; 15272 case 1: 15273 return !Args[0]->isDefaultArgument(); 15274 } 15275 15276 return false; 15277} 15278 15279ExprResult 15280Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 15281 NamedDecl *FoundDecl, 15282 CXXConstructorDecl *Constructor, 15283 MultiExprArg ExprArgs, 15284 bool HadMultipleCandidates, 15285 bool IsListInitialization, 15286 bool IsStdInitListInitialization, 15287 bool RequiresZeroInit, 15288 unsigned ConstructKind, 15289 SourceRange ParenRange) { 15290 bool Elidable = false; 15291 15292 // C++0x [class.copy]p34: 15293 // When certain criteria are met, an implementation is allowed to 15294 // omit the copy/move construction of a class object, even if the 15295 // copy/move constructor and/or destructor for the object have 15296 // side effects. [...] 15297 // - when a temporary class object that has not been bound to a 15298 // reference (12.2) would be copied/moved to a class object 15299 // with the same cv-unqualified type, the copy/move operation 15300 // can be omitted by constructing the temporary object 15301 // directly into the target of the omitted copy/move 15302 if (ConstructKind == CXXConstructExpr::CK_Complete && Constructor && 15303 Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) { 15304 Expr *SubExpr = ExprArgs[0]; 15305 Elidable = SubExpr->isTemporaryObject( 15306 Context, cast<CXXRecordDecl>(FoundDecl->getDeclContext())); 15307 } 15308 15309 return BuildCXXConstructExpr(ConstructLoc, DeclInitType, 15310 FoundDecl, Constructor, 15311 Elidable, ExprArgs, HadMultipleCandidates, 15312 IsListInitialization, 15313 IsStdInitListInitialization, RequiresZeroInit, 15314 ConstructKind, ParenRange); 15315} 15316 15317ExprResult 15318Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 15319 NamedDecl *FoundDecl, 15320 CXXConstructorDecl *Constructor, 15321 bool Elidable, 15322 MultiExprArg ExprArgs, 15323 bool HadMultipleCandidates, 15324 bool IsListInitialization, 15325 bool IsStdInitListInitialization, 15326 bool RequiresZeroInit, 15327 unsigned ConstructKind, 15328 SourceRange ParenRange) { 15329 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) { 15330 Constructor = findInheritingConstructor(ConstructLoc, Constructor, Shadow); 15331 if (DiagnoseUseOfDecl(Constructor, ConstructLoc)) 15332 return ExprError(); 15333 } 15334 15335 return BuildCXXConstructExpr( 15336 ConstructLoc, DeclInitType, Constructor, Elidable, ExprArgs, 15337 HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization, 15338 RequiresZeroInit, ConstructKind, ParenRange); 15339} 15340 15341/// BuildCXXConstructExpr - Creates a complete call to a constructor, 15342/// including handling of its default argument expressions. 15343ExprResult 15344Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, 15345 CXXConstructorDecl *Constructor, 15346 bool Elidable, 15347 MultiExprArg ExprArgs, 15348 bool HadMultipleCandidates, 15349 bool IsListInitialization, 15350 bool IsStdInitListInitialization, 15351 bool RequiresZeroInit, 15352 unsigned ConstructKind, 15353 SourceRange ParenRange) { 15354 assert(declaresSameEntity((static_cast<void> (0)) 15355 Constructor->getParent(),(static_cast<void> (0)) 15356 DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&(static_cast<void> (0)) 15357 "given constructor for wrong type")(static_cast<void> (0)); 15358 MarkFunctionReferenced(ConstructLoc, Constructor); 15359 if (getLangOpts().CUDA && !CheckCUDACall(ConstructLoc, Constructor)) 15360 return ExprError(); 15361 if (getLangOpts().SYCLIsDevice && 15362 !checkSYCLDeviceFunction(ConstructLoc, Constructor)) 15363 return ExprError(); 15364 15365 return CheckForImmediateInvocation( 15366 CXXConstructExpr::Create( 15367 Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs, 15368 HadMultipleCandidates, IsListInitialization, 15369 IsStdInitListInitialization, RequiresZeroInit, 15370 static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind), 15371 ParenRange), 15372 Constructor); 15373} 15374 15375ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) { 15376 assert(Field->hasInClassInitializer())(static_cast<void> (0)); 15377 15378 // If we already have the in-class initializer nothing needs to be done. 15379 if (Field->getInClassInitializer())
25
Calling 'FieldDecl::getInClassInitializer'
32
Returning from 'FieldDecl::getInClassInitializer'
33
Taking false branch
15380 return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext); 15381 15382 // If we might have already tried and failed to instantiate, don't try again. 15383 if (Field->isInvalidDecl())
34
Assuming the condition is false
35
Taking false branch
15384 return ExprError(); 15385 15386 // Maybe we haven't instantiated the in-class initializer. Go check the 15387 // pattern FieldDecl to see if it has one. 15388 CXXRecordDecl *ParentRD = cast<CXXRecordDecl>(Field->getParent()); 15389 15390 if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
36
Calling 'isTemplateInstantiation'
40
Returning from 'isTemplateInstantiation'
41
Taking true branch
15391 CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern(); 15392 DeclContext::lookup_result Lookup = 15393 ClassPattern->lookup(Field->getDeclName()); 15394 15395 FieldDecl *Pattern = nullptr;
42
'Pattern' initialized to a null pointer value
15396 for (auto L : Lookup) { 15397 if (isa<FieldDecl>(L)) { 15398 Pattern = cast<FieldDecl>(L); 15399 break; 15400 } 15401 } 15402 assert(Pattern && "We must have set the Pattern!")(static_cast<void> (0)); 15403 15404 if (!Pattern->hasInClassInitializer() ||
43
Called C++ object pointer is null
15405 InstantiateInClassInitializer(Loc, Field, Pattern, 15406 getTemplateInstantiationArgs(Field))) { 15407 // Don't diagnose this again. 15408 Field->setInvalidDecl(); 15409 return ExprError(); 15410 } 15411 return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext); 15412 } 15413 15414 // DR1351: 15415 // If the brace-or-equal-initializer of a non-static data member 15416 // invokes a defaulted default constructor of its class or of an 15417 // enclosing class in a potentially evaluated subexpression, the 15418 // program is ill-formed. 15419 // 15420 // This resolution is unworkable: the exception specification of the 15421 // default constructor can be needed in an unevaluated context, in 15422 // particular, in the operand of a noexcept-expression, and we can be 15423 // unable to compute an exception specification for an enclosed class. 15424 // 15425 // Any attempt to resolve the exception specification of a defaulted default 15426 // constructor before the initializer is lexically complete will ultimately 15427 // come here at which point we can diagnose it. 15428 RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext(); 15429 Diag(Loc, diag::err_default_member_initializer_not_yet_parsed) 15430 << OutermostClass << Field; 15431 Diag(Field->getEndLoc(), 15432 diag::note_default_member_initializer_not_yet_parsed); 15433 // Recover by marking the field invalid, unless we're in a SFINAE context. 15434 if (!isSFINAEContext()) 15435 Field->setInvalidDecl(); 15436 return ExprError(); 15437} 15438 15439void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) { 15440 if (VD->isInvalidDecl()) return; 15441 // If initializing the variable failed, don't also diagnose problems with 15442 // the desctructor, they're likely related. 15443 if (VD->getInit() && VD->getInit()->containsErrors()) 15444 return; 15445 15446 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl()); 15447 if (ClassDecl->isInvalidDecl()) return; 15448 if (ClassDecl->hasIrrelevantDestructor()) return; 15449 if (ClassDecl->isDependentContext()) return; 15450 15451 if (VD->isNoDestroy(getASTContext())) 15452 return; 15453 15454 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); 15455 15456 // If this is an array, we'll require the destructor during initialization, so 15457 // we can skip over this. We still want to emit exit-time destructor warnings 15458 // though. 15459 if (!VD->getType()->isArrayType()) { 15460 MarkFunctionReferenced(VD->getLocation(), Destructor); 15461 CheckDestructorAccess(VD->getLocation(), Destructor, 15462 PDiag(diag::err_access_dtor_var) 15463 << VD->getDeclName() << VD->getType()); 15464 DiagnoseUseOfDecl(Destructor, VD->getLocation()); 15465 } 15466 15467 if (Destructor->isTrivial()) return; 15468 15469 // If the destructor is constexpr, check whether the variable has constant 15470 // destruction now. 15471 if (Destructor->isConstexpr()) { 15472 bool HasConstantInit = false; 15473 if (VD->getInit() && !VD->getInit()->isValueDependent()) 15474 HasConstantInit = VD->evaluateValue(); 15475 SmallVector<PartialDiagnosticAt, 8> Notes; 15476 if (!VD->evaluateDestruction(Notes) && VD->isConstexpr() && 15477 HasConstantInit) { 15478 Diag(VD->getLocation(), 15479 diag::err_constexpr_var_requires_const_destruction) << VD; 15480 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 15481 Diag(Notes[I].first, Notes[I].second); 15482 } 15483 } 15484 15485 if (!VD->hasGlobalStorage()) return; 15486 15487 // Emit warning for non-trivial dtor in global scope (a real global, 15488 // class-static, function-static). 15489 Diag(VD->getLocation(), diag::warn_exit_time_destructor); 15490 15491 // TODO: this should be re-enabled for static locals by !CXAAtExit 15492 if (!VD->isStaticLocal()) 15493 Diag(VD->getLocation(), diag::warn_global_destructor); 15494} 15495 15496/// Given a constructor and the set of arguments provided for the 15497/// constructor, convert the arguments and add any required default arguments 15498/// to form a proper call to this constructor. 15499/// 15500/// \returns true if an error occurred, false otherwise. 15501bool Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor, 15502 QualType DeclInitType, MultiExprArg ArgsPtr, 15503 SourceLocation Loc, 15504 SmallVectorImpl<Expr *> &ConvertedArgs, 15505 bool AllowExplicit, 15506 bool IsListInitialization) { 15507 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall. 15508 unsigned NumArgs = ArgsPtr.size(); 15509 Expr **Args = ArgsPtr.data(); 15510 15511 const auto *Proto = Constructor->getType()->castAs<FunctionProtoType>(); 15512 unsigned NumParams = Proto->getNumParams(); 15513 15514 // If too few arguments are available, we'll fill in the rest with defaults. 15515 if (NumArgs < NumParams) 15516 ConvertedArgs.reserve(NumParams); 15517 else 15518 ConvertedArgs.reserve(NumArgs); 15519 15520 VariadicCallType CallType = 15521 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; 15522 SmallVector<Expr *, 8> AllArgs; 15523 bool Invalid = GatherArgumentsForCall(Loc, Constructor, 15524 Proto, 0, 15525 llvm::makeArrayRef(Args, NumArgs), 15526 AllArgs, 15527 CallType, AllowExplicit, 15528 IsListInitialization); 15529 ConvertedArgs.append(AllArgs.begin(), AllArgs.end()); 15530 15531 DiagnoseSentinelCalls(Constructor, Loc, AllArgs); 15532 15533 CheckConstructorCall(Constructor, DeclInitType, 15534 llvm::makeArrayRef(AllArgs.data(), AllArgs.size()), 15535 Proto, Loc); 15536 15537 return Invalid; 15538} 15539 15540static inline bool 15541CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, 15542 const FunctionDecl *FnDecl) { 15543 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext(); 15544 if (isa<NamespaceDecl>(DC)) { 15545 return SemaRef.Diag(FnDecl->getLocation(), 15546 diag::err_operator_new_delete_declared_in_namespace) 15547 << FnDecl->getDeclName(); 15548 } 15549 15550 if (isa<TranslationUnitDecl>(DC) && 15551 FnDecl->getStorageClass() == SC_Static) { 15552 return SemaRef.Diag(FnDecl->getLocation(), 15553 diag::err_operator_new_delete_declared_static) 15554 << FnDecl->getDeclName(); 15555 } 15556 15557 return false; 15558} 15559 15560static CanQualType RemoveAddressSpaceFromPtr(Sema &SemaRef, 15561 const PointerType *PtrTy) { 15562 auto &Ctx = SemaRef.Context; 15563 Qualifiers PtrQuals = PtrTy->getPointeeType().getQualifiers(); 15564 PtrQuals.removeAddressSpace(); 15565 return Ctx.getPointerType(Ctx.getCanonicalType(Ctx.getQualifiedType( 15566 PtrTy->getPointeeType().getUnqualifiedType(), PtrQuals))); 15567} 15568 15569static inline bool 15570CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl, 15571 CanQualType ExpectedResultType, 15572 CanQualType ExpectedFirstParamType, 15573 unsigned DependentParamTypeDiag, 15574 unsigned InvalidParamTypeDiag) { 15575 QualType ResultType = 15576 FnDecl->getType()->castAs<FunctionType>()->getReturnType(); 15577 15578 if (SemaRef.getLangOpts().OpenCLCPlusPlus) { 15579 // The operator is valid on any address space for OpenCL. 15580 // Drop address space from actual and expected result types. 15581 if (const auto *PtrTy = ResultType->getAs<PointerType>()) 15582 ResultType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); 15583 15584 if (auto ExpectedPtrTy = ExpectedResultType->getAs<PointerType>()) 15585 ExpectedResultType = RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy); 15586 } 15587 15588 // Check that the result type is what we expect. 15589 if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) { 15590 // Reject even if the type is dependent; an operator delete function is 15591 // required to have a non-dependent result type. 15592 return SemaRef.Diag( 15593 FnDecl->getLocation(), 15594 ResultType->isDependentType() 15595 ? diag::err_operator_new_delete_dependent_result_type 15596 : diag::err_operator_new_delete_invalid_result_type) 15597 << FnDecl->getDeclName() << ExpectedResultType; 15598 } 15599 15600 // A function template must have at least 2 parameters. 15601 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2) 15602 return SemaRef.Diag(FnDecl->getLocation(), 15603 diag::err_operator_new_delete_template_too_few_parameters) 15604 << FnDecl->getDeclName(); 15605 15606 // The function decl must have at least 1 parameter. 15607 if (FnDecl->getNumParams() == 0) 15608 return SemaRef.Diag(FnDecl->getLocation(), 15609 diag::err_operator_new_delete_too_few_parameters) 15610 << FnDecl->getDeclName(); 15611 15612 QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); 15613 if (SemaRef.getLangOpts().OpenCLCPlusPlus) { 15614 // The operator is valid on any address space for OpenCL. 15615 // Drop address space from actual and expected first parameter types. 15616 if (const auto *PtrTy = 15617 FnDecl->getParamDecl(0)->getType()->getAs<PointerType>()) 15618 FirstParamType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); 15619 15620 if (auto ExpectedPtrTy = ExpectedFirstParamType->getAs<PointerType>()) 15621 ExpectedFirstParamType = 15622 RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy); 15623 } 15624 15625 // Check that the first parameter type is what we expect. 15626 if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() != 15627 ExpectedFirstParamType) { 15628 // The first parameter type is not allowed to be dependent. As a tentative 15629 // DR resolution, we allow a dependent parameter type if it is the right 15630 // type anyway, to allow destroying operator delete in class templates. 15631 return SemaRef.Diag(FnDecl->getLocation(), FirstParamType->isDependentType() 15632 ? DependentParamTypeDiag 15633 : InvalidParamTypeDiag) 15634 << FnDecl->getDeclName() << ExpectedFirstParamType; 15635 } 15636 15637 return false; 15638} 15639 15640static bool 15641CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { 15642 // C++ [basic.stc.dynamic.allocation]p1: 15643 // A program is ill-formed if an allocation function is declared in a 15644 // namespace scope other than global scope or declared static in global 15645 // scope. 15646 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) 15647 return true; 15648 15649 CanQualType SizeTy = 15650 SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType()); 15651 15652 // C++ [basic.stc.dynamic.allocation]p1: 15653 // The return type shall be void*. The first parameter shall have type 15654 // std::size_t. 15655 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy, 15656 SizeTy, 15657 diag::err_operator_new_dependent_param_type, 15658 diag::err_operator_new_param_type)) 15659 return true; 15660 15661 // C++ [basic.stc.dynamic.allocation]p1: 15662 // The first parameter shall not have an associated default argument. 15663 if (FnDecl->getParamDecl(0)->hasDefaultArg()) 15664 return SemaRef.Diag(FnDecl->getLocation(), 15665 diag::err_operator_new_default_arg) 15666 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange(); 15667 15668 return false; 15669} 15670 15671static bool 15672CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) { 15673 // C++ [basic.stc.dynamic.deallocation]p1: 15674 // A program is ill-formed if deallocation functions are declared in a 15675 // namespace scope other than global scope or declared static in global 15676 // scope. 15677 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) 15678 return true; 15679 15680 auto *MD = dyn_cast<CXXMethodDecl>(FnDecl); 15681 15682 // C++ P0722: 15683 // Within a class C, the first parameter of a destroying operator delete 15684 // shall be of type C *. The first parameter of any other deallocation 15685 // function shall be of type void *. 15686 CanQualType ExpectedFirstParamType = 15687 MD && MD->isDestroyingOperatorDelete() 15688 ? SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType( 15689 SemaRef.Context.getRecordType(MD->getParent()))) 15690 : SemaRef.Context.VoidPtrTy; 15691 15692 // C++ [basic.stc.dynamic.deallocation]p2: 15693 // Each deallocation function shall return void 15694 if (CheckOperatorNewDeleteTypes( 15695 SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType, 15696 diag::err_operator_delete_dependent_param_type, 15697 diag::err_operator_delete_param_type)) 15698 return true; 15699 15700 // C++ P0722: 15701 // A destroying operator delete shall be a usual deallocation function. 15702 if (MD && !MD->getParent()->isDependentContext() && 15703 MD->isDestroyingOperatorDelete() && 15704 !SemaRef.isUsualDeallocationFunction(MD)) { 15705 SemaRef.Diag(MD->getLocation(), 15706 diag::err_destroying_operator_delete_not_usual); 15707 return true; 15708 } 15709 15710 return false; 15711} 15712 15713/// CheckOverloadedOperatorDeclaration - Check whether the declaration 15714/// of this overloaded operator is well-formed. If so, returns false; 15715/// otherwise, emits appropriate diagnostics and returns true. 15716bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { 15717 assert(FnDecl && FnDecl->isOverloadedOperator() &&(static_cast<void> (0)) 15718 "Expected an overloaded operator declaration")(static_cast<void> (0)); 15719 15720 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); 15721 15722 // C++ [over.oper]p5: 15723 // The allocation and deallocation functions, operator new, 15724 // operator new[], operator delete and operator delete[], are 15725 // described completely in 3.7.3. The attributes and restrictions 15726 // found in the rest of this subclause do not apply to them unless 15727 // explicitly stated in 3.7.3. 15728 if (Op == OO_Delete || Op == OO_Array_Delete) 15729 return CheckOperatorDeleteDeclaration(*this, FnDecl); 15730 15731 if (Op == OO_New || Op == OO_Array_New) 15732 return CheckOperatorNewDeclaration(*this, FnDecl); 15733 15734 // C++ [over.oper]p6: 15735 // An operator function shall either be a non-static member 15736 // function or be a non-member function and have at least one 15737 // parameter whose type is a class, a reference to a class, an 15738 // enumeration, or a reference to an enumeration. 15739 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) { 15740 if (MethodDecl->isStatic()) 15741 return Diag(FnDecl->getLocation(), 15742 diag::err_operator_overload_static) << FnDecl->getDeclName(); 15743 } else { 15744 bool ClassOrEnumParam = false; 15745 for (auto Param : FnDecl->parameters()) { 15746 QualType ParamType = Param->getType().getNonReferenceType(); 15747 if (ParamType->isDependentType() || ParamType->isRecordType() || 15748 ParamType->isEnumeralType()) { 15749 ClassOrEnumParam = true; 15750 break; 15751 } 15752 } 15753 15754 if (!ClassOrEnumParam) 15755 return Diag(FnDecl->getLocation(), 15756 diag::err_operator_overload_needs_class_or_enum) 15757 << FnDecl->getDeclName(); 15758 } 15759 15760 // C++ [over.oper]p8: 15761 // An operator function cannot have default arguments (8.3.6), 15762 // except where explicitly stated below. 15763 // 15764 // Only the function-call operator allows default arguments 15765 // (C++ [over.call]p1). 15766 if (Op != OO_Call) { 15767 for (auto Param : FnDecl->parameters()) { 15768 if (Param->hasDefaultArg()) 15769 return Diag(Param->getLocation(), 15770 diag::err_operator_overload_default_arg) 15771 << FnDecl->getDeclName() << Param->getDefaultArgRange(); 15772 } 15773 } 15774 15775 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { 15776 { false, false, false } 15777#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ 15778 , { Unary, Binary, MemberOnly } 15779#include "clang/Basic/OperatorKinds.def" 15780 }; 15781 15782 bool CanBeUnaryOperator = OperatorUses[Op][0]; 15783 bool CanBeBinaryOperator = OperatorUses[Op][1]; 15784 bool MustBeMemberOperator = OperatorUses[Op][2]; 15785 15786 // C++ [over.oper]p8: 15787 // [...] Operator functions cannot have more or fewer parameters 15788 // than the number required for the corresponding operator, as 15789 // described in the rest of this subclause. 15790 unsigned NumParams = FnDecl->getNumParams() 15791 + (isa<CXXMethodDecl>(FnDecl)? 1 : 0); 15792 if (Op != OO_Call && 15793 ((NumParams == 1 && !CanBeUnaryOperator) || 15794 (NumParams == 2 && !CanBeBinaryOperator) || 15795 (NumParams < 1) || (NumParams > 2))) { 15796 // We have the wrong number of parameters. 15797 unsigned ErrorKind; 15798 if (CanBeUnaryOperator && CanBeBinaryOperator) { 15799 ErrorKind = 2; // 2 -> unary or binary. 15800 } else if (CanBeUnaryOperator) { 15801 ErrorKind = 0; // 0 -> unary 15802 } else { 15803 assert(CanBeBinaryOperator &&(static_cast<void> (0)) 15804 "All non-call overloaded operators are unary or binary!")(static_cast<void> (0)); 15805 ErrorKind = 1; // 1 -> binary 15806 } 15807 15808 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) 15809 << FnDecl->getDeclName() << NumParams << ErrorKind; 15810 } 15811 15812 // Overloaded operators other than operator() cannot be variadic. 15813 if (Op != OO_Call && 15814 FnDecl->getType()->castAs<FunctionProtoType>()->isVariadic()) { 15815 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) 15816 << FnDecl->getDeclName(); 15817 } 15818 15819 // Some operators must be non-static member functions. 15820 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) { 15821 return Diag(FnDecl->getLocation(), 15822 diag::err_operator_overload_must_be_member) 15823 << FnDecl->getDeclName(); 15824 } 15825 15826 // C++ [over.inc]p1: 15827 // The user-defined function called operator++ implements the 15828 // prefix and postfix ++ operator. If this function is a member 15829 // function with no parameters, or a non-member function with one 15830 // parameter of class or enumeration type, it defines the prefix 15831 // increment operator ++ for objects of that type. If the function 15832 // is a member function with one parameter (which shall be of type 15833 // int) or a non-member function with two parameters (the second 15834 // of which shall be of type int), it defines the postfix 15835 // increment operator ++ for objects of that type. 15836 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { 15837 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); 15838 QualType ParamType = LastParam->getType(); 15839 15840 if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) && 15841 !ParamType->isDependentType()) 15842 return Diag(LastParam->getLocation(), 15843 diag::err_operator_overload_post_incdec_must_be_int) 15844 << LastParam->getType() << (Op == OO_MinusMinus); 15845 } 15846 15847 return false; 15848} 15849 15850static bool 15851checkLiteralOperatorTemplateParameterList(Sema &SemaRef, 15852 FunctionTemplateDecl *TpDecl) { 15853 TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters(); 15854 15855 // Must have one or two template parameters. 15856 if (TemplateParams->size() == 1) { 15857 NonTypeTemplateParmDecl *PmDecl = 15858 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(0)); 15859 15860 // The template parameter must be a char parameter pack. 15861 if (PmDecl && PmDecl->isTemplateParameterPack() && 15862 SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy)) 15863 return false; 15864 15865 // C++20 [over.literal]p5: 15866 // A string literal operator template is a literal operator template 15867 // whose template-parameter-list comprises a single non-type 15868 // template-parameter of class type. 15869 // 15870 // As a DR resolution, we also allow placeholders for deduced class 15871 // template specializations. 15872 if (SemaRef.getLangOpts().CPlusPlus20 && 15873 !PmDecl->isTemplateParameterPack() && 15874 (PmDecl->getType()->isRecordType() || 15875 PmDecl->getType()->getAs<DeducedTemplateSpecializationType>())) 15876 return false; 15877 } else if (TemplateParams->size() == 2) { 15878 TemplateTypeParmDecl *PmType = 15879 dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(0)); 15880 NonTypeTemplateParmDecl *PmArgs = 15881 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(1)); 15882 15883 // The second template parameter must be a parameter pack with the 15884 // first template parameter as its type. 15885 if (PmType && PmArgs && !PmType->isTemplateParameterPack() && 15886 PmArgs->isTemplateParameterPack()) { 15887 const TemplateTypeParmType *TArgs = 15888 PmArgs->getType()->getAs<TemplateTypeParmType>(); 15889 if (TArgs && TArgs->getDepth() == PmType->getDepth() && 15890 TArgs->getIndex() == PmType->getIndex()) { 15891 if (!SemaRef.inTemplateInstantiation()) 15892 SemaRef.Diag(TpDecl->getLocation(), 15893 diag::ext_string_literal_operator_template); 15894 return false; 15895 } 15896 } 15897 } 15898 15899 SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(), 15900 diag::err_literal_operator_template) 15901 << TpDecl->getTemplateParameters()->getSourceRange(); 15902 return true; 15903} 15904 15905/// CheckLiteralOperatorDeclaration - Check whether the declaration 15906/// of this literal operator function is well-formed. If so, returns 15907/// false; otherwise, emits appropriate diagnostics and returns true. 15908bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) { 15909 if (isa<CXXMethodDecl>(FnDecl)) { 15910 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace) 15911 << FnDecl->getDeclName(); 15912 return true; 15913 } 15914 15915 if (FnDecl->isExternC()) { 15916 Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c); 15917 if (const LinkageSpecDecl *LSD = 15918 FnDecl->getDeclContext()->getExternCContext()) 15919 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); 15920 return true; 15921 } 15922 15923 // This might be the definition of a literal operator template. 15924 FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate(); 15925 15926 // This might be a specialization of a literal operator template. 15927 if (!TpDecl) 15928 TpDecl = FnDecl->getPrimaryTemplate(); 15929 15930 // template <char...> type operator "" name() and 15931 // template <class T, T...> type operator "" name() are the only valid 15932 // template signatures, and the only valid signatures with no parameters. 15933 // 15934 // C++20 also allows template <SomeClass T> type operator "" name(). 15935 if (TpDecl) { 15936 if (FnDecl->param_size() != 0) { 15937 Diag(FnDecl->getLocation(), 15938 diag::err_literal_operator_template_with_params); 15939 return true; 15940 } 15941 15942 if (checkLiteralOperatorTemplateParameterList(*this, TpDecl)) 15943 return true; 15944 15945 } else if (FnDecl->param_size() == 1) { 15946 const ParmVarDecl *Param = FnDecl->getParamDecl(0); 15947 15948 QualType ParamType = Param->getType().getUnqualifiedType(); 15949 15950 // Only unsigned long long int, long double, any character type, and const 15951 // char * are allowed as the only parameters. 15952 if (ParamType->isSpecificBuiltinType(BuiltinType::ULongLong) || 15953 ParamType->isSpecificBuiltinType(BuiltinType::LongDouble) || 15954 Context.hasSameType(ParamType, Context.CharTy) || 15955 Context.hasSameType(ParamType, Context.WideCharTy) || 15956 Context.hasSameType(ParamType, Context.Char8Ty) || 15957 Context.hasSameType(ParamType, Context.Char16Ty) || 15958 Context.hasSameType(ParamType, Context.Char32Ty)) { 15959 } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) { 15960 QualType InnerType = Ptr->getPointeeType(); 15961 15962 // Pointer parameter must be a const char *. 15963 if (!(Context.hasSameType(InnerType.getUnqualifiedType(), 15964 Context.CharTy) && 15965 InnerType.isConstQualified() && !InnerType.isVolatileQualified())) { 15966 Diag(Param->getSourceRange().getBegin(), 15967 diag::err_literal_operator_param) 15968 << ParamType << "'const char *'" << Param->getSourceRange(); 15969 return true; 15970 } 15971 15972 } else if (ParamType->isRealFloatingType()) { 15973 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) 15974 << ParamType << Context.LongDoubleTy << Param->getSourceRange(); 15975 return true; 15976 15977 } else if (ParamType->isIntegerType()) { 15978 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) 15979 << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange(); 15980 return true; 15981 15982 } else { 15983 Diag(Param->getSourceRange().getBegin(), 15984 diag::err_literal_operator_invalid_param) 15985 << ParamType << Param->getSourceRange(); 15986 return true; 15987 } 15988 15989 } else if (FnDecl->param_size() == 2) { 15990 FunctionDecl::param_iterator Param = FnDecl->param_begin(); 15991 15992 // First, verify that the first parameter is correct. 15993 15994 QualType FirstParamType = (*Param)->getType().getUnqualifiedType(); 15995 15996 // Two parameter function must have a pointer to const as a 15997 // first parameter; let's strip those qualifiers. 15998 const PointerType *PT = FirstParamType->getAs<PointerType>(); 15999 16000 if (!PT) { 16001 Diag((*Param)->getSourceRange().getBegin(), 16002 diag::err_literal_operator_param) 16003 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 16004 return true; 16005 } 16006 16007 QualType PointeeType = PT->getPointeeType(); 16008 // First parameter must be const 16009 if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) { 16010 Diag((*Param)->getSourceRange().getBegin(), 16011 diag::err_literal_operator_param) 16012 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 16013 return true; 16014 } 16015 16016 QualType InnerType = PointeeType.getUnqualifiedType(); 16017 // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and 16018 // const char32_t* are allowed as the first parameter to a two-parameter 16019 // function 16020 if (!(Context.hasSameType(InnerType, Context.CharTy) || 16021 Context.hasSameType(InnerType, Context.WideCharTy) || 16022 Context.hasSameType(InnerType, Context.Char8Ty) || 16023 Context.hasSameType(InnerType, Context.Char16Ty) || 16024 Context.hasSameType(InnerType, Context.Char32Ty))) { 16025 Diag((*Param)->getSourceRange().getBegin(), 16026 diag::err_literal_operator_param) 16027 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 16028 return true; 16029 } 16030 16031 // Move on to the second and final parameter. 16032 ++Param; 16033 16034 // The second parameter must be a std::size_t. 16035 QualType SecondParamType = (*Param)->getType().getUnqualifiedType(); 16036 if (!Context.hasSameType(SecondParamType, Context.getSizeType())) { 16037 Diag((*Param)->getSourceRange().getBegin(), 16038 diag::err_literal_operator_param) 16039 << SecondParamType << Context.getSizeType() 16040 << (*Param)->getSourceRange(); 16041 return true; 16042 } 16043 } else { 16044 Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count); 16045 return true; 16046 } 16047 16048 // Parameters are good. 16049 16050 // A parameter-declaration-clause containing a default argument is not 16051 // equivalent to any of the permitted forms. 16052 for (auto Param : FnDecl->parameters()) { 16053 if (Param->hasDefaultArg()) { 16054 Diag(Param->getDefaultArgRange().getBegin(), 16055 diag::err_literal_operator_default_argument) 16056 << Param->getDefaultArgRange(); 16057 break; 16058 } 16059 } 16060 16061 StringRef LiteralName 16062 = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName(); 16063 if (LiteralName[0] != '_' && 16064 !getSourceManager().isInSystemHeader(FnDecl->getLocation())) { 16065 // C++11 [usrlit.suffix]p1: 16066 // Literal suffix identifiers that do not start with an underscore 16067 // are reserved for future standardization. 16068 Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved) 16069 << StringLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName); 16070 } 16071 16072 return false; 16073} 16074 16075/// ActOnStartLinkageSpecification - Parsed the beginning of a C++ 16076/// linkage specification, including the language and (if present) 16077/// the '{'. ExternLoc is the location of the 'extern', Lang is the 16078/// language string literal. LBraceLoc, if valid, provides the location of 16079/// the '{' brace. Otherwise, this linkage specification does not 16080/// have any braces. 16081Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, 16082 Expr *LangStr, 16083 SourceLocation LBraceLoc) { 16084 StringLiteral *Lit = cast<StringLiteral>(LangStr); 16085 if (!Lit->isAscii()) { 16086 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii) 16087 << LangStr->getSourceRange(); 16088 return nullptr; 16089 } 16090 16091 StringRef Lang = Lit->getString(); 16092 LinkageSpecDecl::LanguageIDs Language; 16093 if (Lang == "C") 16094 Language = LinkageSpecDecl::lang_c; 16095 else if (Lang == "C++") 16096 Language = LinkageSpecDecl::lang_cxx; 16097 else { 16098 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown) 16099 << LangStr->getSourceRange(); 16100 return nullptr; 16101 } 16102 16103 // FIXME: Add all the various semantics of linkage specifications 16104 16105 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc, 16106 LangStr->getExprLoc(), Language, 16107 LBraceLoc.isValid()); 16108 CurContext->addDecl(D); 16109 PushDeclContext(S, D); 16110 return D; 16111} 16112 16113/// ActOnFinishLinkageSpecification - Complete the definition of 16114/// the C++ linkage specification LinkageSpec. If RBraceLoc is 16115/// valid, it's the position of the closing '}' brace in a linkage 16116/// specification that uses braces. 16117Decl *Sema::ActOnFinishLinkageSpecification(Scope *S, 16118 Decl *LinkageSpec, 16119 SourceLocation RBraceLoc) { 16120 if (RBraceLoc.isValid()) { 16121 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec); 16122 LSDecl->setRBraceLoc(RBraceLoc); 16123 } 16124 PopDeclContext(); 16125 return LinkageSpec; 16126} 16127 16128Decl *Sema::ActOnEmptyDeclaration(Scope *S, 16129 const ParsedAttributesView &AttrList, 16130 SourceLocation SemiLoc) { 16131 Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc); 16132 // Attribute declarations appertain to empty declaration so we handle 16133 // them here. 16134 ProcessDeclAttributeList(S, ED, AttrList); 16135 16136 CurContext->addDecl(ED); 16137 return ED; 16138} 16139 16140/// Perform semantic analysis for the variable declaration that 16141/// occurs within a C++ catch clause, returning the newly-created 16142/// variable. 16143VarDecl *Sema::BuildExceptionDeclaration(Scope *S, 16144 TypeSourceInfo *TInfo, 16145 SourceLocation StartLoc, 16146 SourceLocation Loc, 16147 IdentifierInfo *Name) { 16148 bool Invalid = false; 16149 QualType ExDeclType = TInfo->getType(); 16150 16151 // Arrays and functions decay. 16152 if (ExDeclType->isArrayType()) 16153 ExDeclType = Context.getArrayDecayedType(ExDeclType); 16154 else if (ExDeclType->isFunctionType()) 16155 ExDeclType = Context.getPointerType(ExDeclType); 16156 16157 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. 16158 // The exception-declaration shall not denote a pointer or reference to an 16159 // incomplete type, other than [cv] void*. 16160 // N2844 forbids rvalue references. 16161 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) { 16162 Diag(Loc, diag::err_catch_rvalue_ref); 16163 Invalid = true; 16164 } 16165 16166 if (ExDeclType->isVariablyModifiedType()) { 16167 Diag(Loc, diag::err_catch_variably_modified) << ExDeclType; 16168 Invalid = true; 16169 } 16170 16171 QualType BaseType = ExDeclType; 16172 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference 16173 unsigned DK = diag::err_catch_incomplete; 16174 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { 16175 BaseType = Ptr->getPointeeType(); 16176 Mode = 1; 16177 DK = diag::err_catch_incomplete_ptr; 16178 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) { 16179 // For the purpose of error recovery, we treat rvalue refs like lvalue refs. 16180 BaseType = Ref->getPointeeType(); 16181 Mode = 2; 16182 DK = diag::err_catch_incomplete_ref; 16183 } 16184 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && 16185 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK)) 16186 Invalid = true; 16187 16188 if (!Invalid && Mode != 1 && BaseType->isSizelessType()) { 16189 Diag(Loc, diag::err_catch_sizeless) << (Mode == 2 ? 1 : 0) << BaseType; 16190 Invalid = true; 16191 } 16192 16193 if (!Invalid && !ExDeclType->isDependentType() && 16194 RequireNonAbstractType(Loc, ExDeclType, 16195 diag::err_abstract_type_in_decl, 16196 AbstractVariableType)) 16197 Invalid = true; 16198 16199 // Only the non-fragile NeXT runtime currently supports C++ catches 16200 // of ObjC types, and no runtime supports catching ObjC types by value. 16201 if (!Invalid && getLangOpts().ObjC) { 16202 QualType T = ExDeclType; 16203 if (const ReferenceType *RT = T->getAs<ReferenceType>()) 16204 T = RT->getPointeeType(); 16205 16206 if (T->isObjCObjectType()) { 16207 Diag(Loc, diag::err_objc_object_catch); 16208 Invalid = true; 16209 } else if (T->isObjCObjectPointerType()) { 16210 // FIXME: should this be a test for macosx-fragile specifically? 16211 if (getLangOpts().ObjCRuntime.isFragile()) 16212 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile); 16213 } 16214 } 16215 16216 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name, 16217 ExDeclType, TInfo, SC_None); 16218 ExDecl->setExceptionVariable(true); 16219 16220 // In ARC, infer 'retaining' for variables of retainable type. 16221 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl)) 16222 Invalid = true; 16223 16224 if (!Invalid && !ExDeclType->isDependentType()) { 16225 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) { 16226 // Insulate this from anything else we might currently be parsing. 16227 EnterExpressionEvaluationContext scope( 16228 *this, ExpressionEvaluationContext::PotentiallyEvaluated); 16229 16230 // C++ [except.handle]p16: 16231 // The object declared in an exception-declaration or, if the 16232 // exception-declaration does not specify a name, a temporary (12.2) is 16233 // copy-initialized (8.5) from the exception object. [...] 16234 // The object is destroyed when the handler exits, after the destruction 16235 // of any automatic objects initialized within the handler. 16236 // 16237 // We just pretend to initialize the object with itself, then make sure 16238 // it can be destroyed later. 16239 QualType initType = Context.getExceptionObjectType(ExDeclType); 16240 16241 InitializedEntity entity = 16242 InitializedEntity::InitializeVariable(ExDecl); 16243 InitializationKind initKind = 16244 InitializationKind::CreateCopy(Loc, SourceLocation()); 16245 16246 Expr *opaqueValue = 16247 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary); 16248 InitializationSequence sequence(*this, entity, initKind, opaqueValue); 16249 ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue); 16250 if (result.isInvalid()) 16251 Invalid = true; 16252 else { 16253 // If the constructor used was non-trivial, set this as the 16254 // "initializer". 16255 CXXConstructExpr *construct = result.getAs<CXXConstructExpr>(); 16256 if (!construct->getConstructor()->isTrivial()) { 16257 Expr *init = MaybeCreateExprWithCleanups(construct); 16258 ExDecl->setInit(init); 16259 } 16260 16261 // And make sure it's destructable. 16262 FinalizeVarWithDestructor(ExDecl, recordType); 16263 } 16264 } 16265 } 16266 16267 if (Invalid) 16268 ExDecl->setInvalidDecl(); 16269 16270 return ExDecl; 16271} 16272 16273/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch 16274/// handler. 16275Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { 16276 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 16277 bool Invalid = D.isInvalidType(); 16278 16279 // Check for unexpanded parameter packs. 16280 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 16281 UPPC_ExceptionType)) { 16282 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 16283 D.getIdentifierLoc()); 16284 Invalid = true; 16285 } 16286 16287 IdentifierInfo *II = D.getIdentifier(); 16288 if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(), 16289 LookupOrdinaryName, 16290 ForVisibleRedeclaration)) { 16291 // The scope should be freshly made just for us. There is just no way 16292 // it contains any previous declaration, except for function parameters in 16293 // a function-try-block's catch statement. 16294 assert(!S->isDeclScope(PrevDecl))(static_cast<void> (0)); 16295 if (isDeclInScope(PrevDecl, CurContext, S)) { 16296 Diag(D.getIdentifierLoc(), diag::err_redefinition) 16297 << D.getIdentifier(); 16298 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 16299 Invalid = true; 16300 } else if (PrevDecl->isTemplateParameter()) 16301 // Maybe we will complain about the shadowed template parameter. 16302 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 16303 } 16304 16305 if (D.getCXXScopeSpec().isSet() && !Invalid) { 16306 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) 16307 << D.getCXXScopeSpec().getRange(); 16308 Invalid = true; 16309 } 16310 16311 VarDecl *ExDecl = BuildExceptionDeclaration( 16312 S, TInfo, D.getBeginLoc(), D.getIdentifierLoc(), D.getIdentifier()); 16313 if (Invalid) 16314 ExDecl->setInvalidDecl(); 16315 16316 // Add the exception declaration into this scope. 16317 if (II) 16318 PushOnScopeChains(ExDecl, S); 16319 else 16320 CurContext->addDecl(ExDecl); 16321 16322 ProcessDeclAttributes(S, ExDecl, D); 16323 return ExDecl; 16324} 16325 16326Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc, 16327 Expr *AssertExpr, 16328 Expr *AssertMessageExpr, 16329 SourceLocation RParenLoc) { 16330 StringLiteral *AssertMessage = 16331 AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr; 16332 16333 if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression)) 16334 return nullptr; 16335 16336 return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr, 16337 AssertMessage, RParenLoc, false); 16338} 16339 16340Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc, 16341 Expr *AssertExpr, 16342 StringLiteral *AssertMessage, 16343 SourceLocation RParenLoc, 16344 bool Failed) { 16345 assert(AssertExpr != nullptr && "Expected non-null condition")(static_cast<void> (0)); 16346 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() && 16347 !Failed) { 16348 // In a static_assert-declaration, the constant-expression shall be a 16349 // constant expression that can be contextually converted to bool. 16350 ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr); 16351 if (Converted.isInvalid()) 16352 Failed = true; 16353 16354 ExprResult FullAssertExpr = 16355 ActOnFinishFullExpr(Converted.get(), StaticAssertLoc, 16356 /*DiscardedValue*/ false, 16357 /*IsConstexpr*/ true); 16358 if (FullAssertExpr.isInvalid()) 16359 Failed = true; 16360 else 16361 AssertExpr = FullAssertExpr.get(); 16362 16363 llvm::APSInt Cond; 16364 if (!Failed && VerifyIntegerConstantExpression( 16365 AssertExpr, &Cond, 16366 diag::err_static_assert_expression_is_not_constant) 16367 .isInvalid()) 16368 Failed = true; 16369 16370 if (!Failed && !Cond) { 16371 SmallString<256> MsgBuffer; 16372 llvm::raw_svector_ostream Msg(MsgBuffer); 16373 if (AssertMessage) 16374 AssertMessage->printPretty(Msg, nullptr, getPrintingPolicy()); 16375 16376 Expr *InnerCond = nullptr; 16377 std::string InnerCondDescription; 16378 std::tie(InnerCond, InnerCondDescription) = 16379 findFailedBooleanCondition(Converted.get()); 16380 if (InnerCond && isa<ConceptSpecializationExpr>(InnerCond)) { 16381 // Drill down into concept specialization expressions to see why they 16382 // weren't satisfied. 16383 Diag(StaticAssertLoc, diag::err_static_assert_failed) 16384 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange(); 16385 ConstraintSatisfaction Satisfaction; 16386 if (!CheckConstraintSatisfaction(InnerCond, Satisfaction)) 16387 DiagnoseUnsatisfiedConstraint(Satisfaction); 16388 } else if (InnerCond && !isa<CXXBoolLiteralExpr>(InnerCond) 16389 && !isa<IntegerLiteral>(InnerCond)) { 16390 Diag(StaticAssertLoc, diag::err_static_assert_requirement_failed) 16391 << InnerCondDescription << !AssertMessage 16392 << Msg.str() << InnerCond->getSourceRange(); 16393 } else { 16394 Diag(StaticAssertLoc, diag::err_static_assert_failed) 16395 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange(); 16396 } 16397 Failed = true; 16398 } 16399 } else { 16400 ExprResult FullAssertExpr = ActOnFinishFullExpr(AssertExpr, StaticAssertLoc, 16401 /*DiscardedValue*/false, 16402 /*IsConstexpr*/true); 16403 if (FullAssertExpr.isInvalid()) 16404 Failed = true; 16405 else 16406 AssertExpr = FullAssertExpr.get(); 16407 } 16408 16409 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc, 16410 AssertExpr, AssertMessage, RParenLoc, 16411 Failed); 16412 16413 CurContext->addDecl(Decl); 16414 return Decl; 16415} 16416 16417/// Perform semantic analysis of the given friend type declaration. 16418/// 16419/// \returns A friend declaration that. 16420FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart, 16421 SourceLocation FriendLoc, 16422 TypeSourceInfo *TSInfo) { 16423 assert(TSInfo && "NULL TypeSourceInfo for friend type declaration")(static_cast<void> (0)); 16424 16425 QualType T = TSInfo->getType(); 16426 SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange(); 16427 16428 // C++03 [class.friend]p2: 16429 // An elaborated-type-specifier shall be used in a friend declaration 16430 // for a class.* 16431 // 16432 // * The class-key of the elaborated-type-specifier is required. 16433 if (!CodeSynthesisContexts.empty()) { 16434 // Do not complain about the form of friend template types during any kind 16435 // of code synthesis. For template instantiation, we will have complained 16436 // when the template was defined. 16437 } else { 16438 if (!T->isElaboratedTypeSpecifier()) { 16439 // If we evaluated the type to a record type, suggest putting 16440 // a tag in front. 16441 if (const RecordType *RT = T->getAs<RecordType>()) { 16442 RecordDecl *RD = RT->getDecl(); 16443 16444 SmallString<16> InsertionText(" "); 16445 InsertionText += RD->getKindName(); 16446 16447 Diag(TypeRange.getBegin(), 16448 getLangOpts().CPlusPlus11 ? 16449 diag::warn_cxx98_compat_unelaborated_friend_type : 16450 diag::ext_unelaborated_friend_type) 16451 << (unsigned) RD->getTagKind() 16452 << T 16453 << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc), 16454 InsertionText); 16455 } else { 16456 Diag(FriendLoc, 16457 getLangOpts().CPlusPlus11 ? 16458 diag::warn_cxx98_compat_nonclass_type_friend : 16459 diag::ext_nonclass_type_friend) 16460 << T 16461 << TypeRange; 16462 } 16463 } else if (T->getAs<EnumType>()) { 16464 Diag(FriendLoc, 16465 getLangOpts().CPlusPlus11 ? 16466 diag::warn_cxx98_compat_enum_friend : 16467 diag::ext_enum_friend) 16468 << T 16469 << TypeRange; 16470 } 16471 16472 // C++11 [class.friend]p3: 16473 // A friend declaration that does not declare a function shall have one 16474 // of the following forms: 16475 // friend elaborated-type-specifier ; 16476 // friend simple-type-specifier ; 16477 // friend typename-specifier ; 16478 if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc) 16479 Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T; 16480 } 16481 16482 // If the type specifier in a friend declaration designates a (possibly 16483 // cv-qualified) class type, that class is declared as a friend; otherwise, 16484 // the friend declaration is ignored. 16485 return FriendDecl::Create(Context, CurContext, 16486 TSInfo->getTypeLoc().getBeginLoc(), TSInfo, 16487 FriendLoc); 16488} 16489 16490/// Handle a friend tag declaration where the scope specifier was 16491/// templated. 16492Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc, 16493 unsigned TagSpec, SourceLocation TagLoc, 16494 CXXScopeSpec &SS, IdentifierInfo *Name, 16495 SourceLocation NameLoc, 16496 const ParsedAttributesView &Attr, 16497 MultiTemplateParamsArg TempParamLists) { 16498 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 16499 16500 bool IsMemberSpecialization = false; 16501 bool Invalid = false; 16502 16503 if (TemplateParameterList *TemplateParams = 16504 MatchTemplateParametersToScopeSpecifier( 16505 TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true, 16506 IsMemberSpecialization, Invalid)) { 16507 if (TemplateParams->size() > 0) { 16508 // This is a declaration of a class template. 16509 if (Invalid) 16510 return nullptr; 16511 16512 return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name, 16513 NameLoc, Attr, TemplateParams, AS_public, 16514 /*ModulePrivateLoc=*/SourceLocation(), 16515 FriendLoc, TempParamLists.size() - 1, 16516 TempParamLists.data()).get(); 16517 } else { 16518 // The "template<>" header is extraneous. 16519 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) 16520 << TypeWithKeyword::getTagTypeKindName(Kind) << Name; 16521 IsMemberSpecialization = true; 16522 } 16523 } 16524 16525 if (Invalid) return nullptr; 16526 16527 bool isAllExplicitSpecializations = true; 16528 for (unsigned I = TempParamLists.size(); I-- > 0; ) { 16529 if (TempParamLists[I]->size()) { 16530 isAllExplicitSpecializations = false; 16531 break; 16532 } 16533 } 16534 16535 // FIXME: don't ignore attributes. 16536 16537 // If it's explicit specializations all the way down, just forget 16538 // about the template header and build an appropriate non-templated 16539 // friend. TODO: for source fidelity, remember the headers. 16540 if (isAllExplicitSpecializations) { 16541 if (SS.isEmpty()) { 16542 bool Owned = false; 16543 bool IsDependent = false; 16544 return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc, 16545 Attr, AS_public, 16546 /*ModulePrivateLoc=*/SourceLocation(), 16547 MultiTemplateParamsArg(), Owned, IsDependent, 16548 /*ScopedEnumKWLoc=*/SourceLocation(), 16549 /*ScopedEnumUsesClassTag=*/false, 16550 /*UnderlyingType=*/TypeResult(), 16551 /*IsTypeSpecifier=*/false, 16552 /*IsTemplateParamOrArg=*/false); 16553 } 16554 16555 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 16556 ElaboratedTypeKeyword Keyword 16557 = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 16558 QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc, 16559 *Name, NameLoc); 16560 if (T.isNull()) 16561 return nullptr; 16562 16563 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 16564 if (isa<DependentNameType>(T)) { 16565 DependentNameTypeLoc TL = 16566 TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 16567 TL.setElaboratedKeywordLoc(TagLoc); 16568 TL.setQualifierLoc(QualifierLoc); 16569 TL.setNameLoc(NameLoc); 16570 } else { 16571 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>(); 16572 TL.setElaboratedKeywordLoc(TagLoc); 16573 TL.setQualifierLoc(QualifierLoc); 16574 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc); 16575 } 16576 16577 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, 16578 TSI, FriendLoc, TempParamLists); 16579 Friend->setAccess(AS_public); 16580 CurContext->addDecl(Friend); 16581 return Friend; 16582 } 16583 16584 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?")(static_cast<void> (0)); 16585 16586 16587 16588 // Handle the case of a templated-scope friend class. e.g. 16589 // template <class T> class A<T>::B; 16590 // FIXME: we don't support these right now. 16591 Diag(NameLoc, diag::warn_template_qualified_friend_unsupported) 16592 << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext); 16593 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 16594 QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name); 16595 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 16596 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 16597 TL.setElaboratedKeywordLoc(TagLoc); 16598 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 16599 TL.setNameLoc(NameLoc); 16600 16601 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, 16602 TSI, FriendLoc, TempParamLists); 16603 Friend->setAccess(AS_public); 16604 Friend->setUnsupportedFriend(true); 16605 CurContext->addDecl(Friend); 16606 return Friend; 16607} 16608 16609/// Handle a friend type declaration. This works in tandem with 16610/// ActOnTag. 16611/// 16612/// Notes on friend class templates: 16613/// 16614/// We generally treat friend class declarations as if they were 16615/// declaring a class. So, for example, the elaborated type specifier 16616/// in a friend declaration is required to obey the restrictions of a 16617/// class-head (i.e. no typedefs in the scope chain), template 16618/// parameters are required to match up with simple template-ids, &c. 16619/// However, unlike when declaring a template specialization, it's 16620/// okay to refer to a template specialization without an empty 16621/// template parameter declaration, e.g. 16622/// friend class A<T>::B<unsigned>; 16623/// We permit this as a special case; if there are any template 16624/// parameters present at all, require proper matching, i.e. 16625/// template <> template \<class T> friend class A<int>::B; 16626Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, 16627 MultiTemplateParamsArg TempParams) { 16628 SourceLocation Loc = DS.getBeginLoc(); 16629 16630 assert(DS.isFriendSpecified())(static_cast<void> (0)); 16631 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified)(static_cast<void> (0)); 16632 16633 // C++ [class.friend]p3: 16634 // A friend declaration that does not declare a function shall have one of 16635 // the following forms: 16636 // friend elaborated-type-specifier ; 16637 // friend simple-type-specifier ; 16638 // friend typename-specifier ; 16639 // 16640 // Any declaration with a type qualifier does not have that form. (It's 16641 // legal to specify a qualified type as a friend, you just can't write the 16642 // keywords.) 16643 if (DS.getTypeQualifiers()) { 16644 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 16645 Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const"; 16646 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 16647 Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile"; 16648 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) 16649 Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict"; 16650 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 16651 Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic"; 16652 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) 16653 Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned"; 16654 } 16655 16656 // Try to convert the decl specifier to a type. This works for 16657 // friend templates because ActOnTag never produces a ClassTemplateDecl 16658 // for a TUK_Friend. 16659 Declarator TheDeclarator(DS, DeclaratorContext::Member); 16660 TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S); 16661 QualType T = TSI->getType(); 16662 if (TheDeclarator.isInvalidType()) 16663 return nullptr; 16664 16665 if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration)) 16666 return nullptr; 16667 16668 // This is definitely an error in C++98. It's probably meant to 16669 // be forbidden in C++0x, too, but the specification is just 16670 // poorly written. 16671 // 16672 // The problem is with declarations like the following: 16673 // template <T> friend A<T>::foo; 16674 // where deciding whether a class C is a friend or not now hinges 16675 // on whether there exists an instantiation of A that causes 16676 // 'foo' to equal C. There are restrictions on class-heads 16677 // (which we declare (by fiat) elaborated friend declarations to 16678 // be) that makes this tractable. 16679 // 16680 // FIXME: handle "template <> friend class A<T>;", which 16681 // is possibly well-formed? Who even knows? 16682 if (TempParams.size() && !T->isElaboratedTypeSpecifier()) { 16683 Diag(Loc, diag::err_tagless_friend_type_template) 16684 << DS.getSourceRange(); 16685 return nullptr; 16686 } 16687 16688 // C++98 [class.friend]p1: A friend of a class is a function 16689 // or class that is not a member of the class . . . 16690 // This is fixed in DR77, which just barely didn't make the C++03 16691 // deadline. It's also a very silly restriction that seriously 16692 // affects inner classes and which nobody else seems to implement; 16693 // thus we never diagnose it, not even in -pedantic. 16694 // 16695 // But note that we could warn about it: it's always useless to 16696 // friend one of your own members (it's not, however, worthless to 16697 // friend a member of an arbitrary specialization of your template). 16698 16699 Decl *D; 16700 if (!TempParams.empty()) 16701 D = FriendTemplateDecl::Create(Context, CurContext, Loc, 16702 TempParams, 16703 TSI, 16704 DS.getFriendSpecLoc()); 16705 else 16706 D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI); 16707 16708 if (!D) 16709 return nullptr; 16710 16711 D->setAccess(AS_public); 16712 CurContext->addDecl(D); 16713 16714 return D; 16715} 16716 16717NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, 16718 MultiTemplateParamsArg TemplateParams) { 16719 const DeclSpec &DS = D.getDeclSpec(); 16720 16721 assert(DS.isFriendSpecified())(static_cast<void> (0)); 16722 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified)(static_cast<void> (0)); 16723 16724 SourceLocation Loc = D.getIdentifierLoc(); 16725 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 16726 16727 // C++ [class.friend]p1 16728 // A friend of a class is a function or class.... 16729 // Note that this sees through typedefs, which is intended. 16730 // It *doesn't* see through dependent types, which is correct 16731 // according to [temp.arg.type]p3: 16732 // If a declaration acquires a function type through a 16733 // type dependent on a template-parameter and this causes 16734 // a declaration that does not use the syntactic form of a 16735 // function declarator to have a function type, the program 16736 // is ill-formed. 16737 if (!TInfo->getType()->isFunctionType()) { 16738 Diag(Loc, diag::err_unexpected_friend); 16739 16740 // It might be worthwhile to try to recover by creating an 16741 // appropriate declaration. 16742 return nullptr; 16743 } 16744 16745 // C++ [namespace.memdef]p3 16746 // - If a friend declaration in a non-local class first declares a 16747 // class or function, the friend class or function is a member 16748 // of the innermost enclosing namespace. 16749 // - The name of the friend is not found by simple name lookup 16750 // until a matching declaration is provided in that namespace 16751 // scope (either before or after the class declaration granting 16752 // friendship). 16753 // - If a friend function is called, its name may be found by the 16754 // name lookup that considers functions from namespaces and 16755 // classes associated with the types of the function arguments. 16756 // - When looking for a prior declaration of a class or a function 16757 // declared as a friend, scopes outside the innermost enclosing 16758 // namespace scope are not considered. 16759 16760 CXXScopeSpec &SS = D.getCXXScopeSpec(); 16761 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 16762 assert(NameInfo.getName())(static_cast<void> (0)); 16763 16764 // Check for unexpanded parameter packs. 16765 if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) || 16766 DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) || 16767 DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration)) 16768 return nullptr; 16769 16770 // The context we found the declaration in, or in which we should 16771 // create the declaration. 16772 DeclContext *DC; 16773 Scope *DCScope = S; 16774 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 16775 ForExternalRedeclaration); 16776 16777 // There are five cases here. 16778 // - There's no scope specifier and we're in a local class. Only look 16779 // for functions declared in the immediately-enclosing block scope. 16780 // We recover from invalid scope qualifiers as if they just weren't there. 16781 FunctionDecl *FunctionContainingLocalClass = nullptr; 16782 if ((SS.isInvalid() || !SS.isSet()) && 16783 (FunctionContainingLocalClass = 16784 cast<CXXRecordDecl>(CurContext)->isLocalClass())) { 16785 // C++11 [class.friend]p11: 16786 // If a friend declaration appears in a local class and the name 16787 // specified is an unqualified name, a prior declaration is 16788 // looked up without considering scopes that are outside the 16789 // innermost enclosing non-class scope. For a friend function 16790 // declaration, if there is no prior declaration, the program is 16791 // ill-formed. 16792 16793 // Find the innermost enclosing non-class scope. This is the block 16794 // scope containing the local class definition (or for a nested class, 16795 // the outer local class). 16796 DCScope = S->getFnParent(); 16797 16798 // Look up the function name in the scope. 16799 Previous.clear(LookupLocalFriendName); 16800 LookupName(Previous, S, /*AllowBuiltinCreation*/false); 16801 16802 if (!Previous.empty()) { 16803 // All possible previous declarations must have the same context: 16804 // either they were declared at block scope or they are members of 16805 // one of the enclosing local classes. 16806 DC = Previous.getRepresentativeDecl()->getDeclContext(); 16807 } else { 16808 // This is ill-formed, but provide the context that we would have 16809 // declared the function in, if we were permitted to, for error recovery. 16810 DC = FunctionContainingLocalClass; 16811 } 16812 adjustContextForLocalExternDecl(DC); 16813 16814 // C++ [class.friend]p6: 16815 // A function can be defined in a friend declaration of a class if and 16816 // only if the class is a non-local class (9.8), the function name is 16817 // unqualified, and the function has namespace scope. 16818 if (D.isFunctionDefinition()) { 16819 Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class); 16820 } 16821 16822 // - There's no scope specifier, in which case we just go to the 16823 // appropriate scope and look for a function or function template 16824 // there as appropriate. 16825 } else if (SS.isInvalid() || !SS.isSet()) { 16826 // C++11 [namespace.memdef]p3: 16827 // If the name in a friend declaration is neither qualified nor 16828 // a template-id and the declaration is a function or an 16829 // elaborated-type-specifier, the lookup to determine whether 16830 // the entity has been previously declared shall not consider 16831 // any scopes outside the innermost enclosing namespace. 16832 bool isTemplateId = 16833 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId; 16834 16835 // Find the appropriate context according to the above. 16836 DC = CurContext; 16837 16838 // Skip class contexts. If someone can cite chapter and verse 16839 // for this behavior, that would be nice --- it's what GCC and 16840 // EDG do, and it seems like a reasonable intent, but the spec 16841 // really only says that checks for unqualified existing 16842 // declarations should stop at the nearest enclosing namespace, 16843 // not that they should only consider the nearest enclosing 16844 // namespace. 16845 while (DC->isRecord()) 16846 DC = DC->getParent(); 16847 16848 DeclContext *LookupDC = DC->getNonTransparentContext(); 16849 while (true) { 16850 LookupQualifiedName(Previous, LookupDC); 16851 16852 if (!Previous.empty()) { 16853 DC = LookupDC; 16854 break; 16855 } 16856 16857 if (isTemplateId) { 16858 if (isa<TranslationUnitDecl>(LookupDC)) break; 16859 } else { 16860 if (LookupDC->isFileContext()) break; 16861 } 16862 LookupDC = LookupDC->getParent(); 16863 } 16864 16865 DCScope = getScopeForDeclContext(S, DC); 16866 16867 // - There's a non-dependent scope specifier, in which case we 16868 // compute it and do a previous lookup there for a function 16869 // or function template. 16870 } else if (!SS.getScopeRep()->isDependent()) { 16871 DC = computeDeclContext(SS); 16872 if (!DC) return nullptr; 16873 16874 if (RequireCompleteDeclContext(SS, DC)) return nullptr; 16875 16876 LookupQualifiedName(Previous, DC); 16877 16878 // C++ [class.friend]p1: A friend of a class is a function or 16879 // class that is not a member of the class . . . 16880 if (DC->Equals(CurContext)) 16881 Diag(DS.getFriendSpecLoc(), 16882 getLangOpts().CPlusPlus11 ? 16883 diag::warn_cxx98_compat_friend_is_member : 16884 diag::err_friend_is_member); 16885 16886 if (D.isFunctionDefinition()) { 16887 // C++ [class.friend]p6: 16888 // A function can be defined in a friend declaration of a class if and 16889 // only if the class is a non-local class (9.8), the function name is 16890 // unqualified, and the function has namespace scope. 16891 // 16892 // FIXME: We should only do this if the scope specifier names the 16893 // innermost enclosing namespace; otherwise the fixit changes the 16894 // meaning of the code. 16895 SemaDiagnosticBuilder DB 16896 = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def); 16897 16898 DB << SS.getScopeRep(); 16899 if (DC->isFileContext()) 16900 DB << FixItHint::CreateRemoval(SS.getRange()); 16901 SS.clear(); 16902 } 16903 16904 // - There's a scope specifier that does not match any template 16905 // parameter lists, in which case we use some arbitrary context, 16906 // create a method or method template, and wait for instantiation. 16907 // - There's a scope specifier that does match some template 16908 // parameter lists, which we don't handle right now. 16909 } else { 16910 if (D.isFunctionDefinition()) { 16911 // C++ [class.friend]p6: 16912 // A function can be defined in a friend declaration of a class if and 16913 // only if the class is a non-local class (9.8), the function name is 16914 // unqualified, and the function has namespace scope. 16915 Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def) 16916 << SS.getScopeRep(); 16917 } 16918 16919 DC = CurContext; 16920 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?")(static_cast<void> (0)); 16921 } 16922 16923 if (!DC->isRecord()) { 16924 int DiagArg = -1; 16925 switch (D.getName().getKind()) { 16926 case UnqualifiedIdKind::IK_ConstructorTemplateId: 16927 case UnqualifiedIdKind::IK_ConstructorName: 16928 DiagArg = 0; 16929 break; 16930 case UnqualifiedIdKind::IK_DestructorName: 16931 DiagArg = 1; 16932 break; 16933 case UnqualifiedIdKind::IK_ConversionFunctionId: 16934 DiagArg = 2; 16935 break; 16936 case UnqualifiedIdKind::IK_DeductionGuideName: 16937 DiagArg = 3; 16938 break; 16939 case UnqualifiedIdKind::IK_Identifier: 16940 case UnqualifiedIdKind::IK_ImplicitSelfParam: 16941 case UnqualifiedIdKind::IK_LiteralOperatorId: 16942 case UnqualifiedIdKind::IK_OperatorFunctionId: 16943 case UnqualifiedIdKind::IK_TemplateId: 16944 break; 16945 } 16946 // This implies that it has to be an operator or function. 16947 if (DiagArg >= 0) { 16948 Diag(Loc, diag::err_introducing_special_friend) << DiagArg; 16949 return nullptr; 16950 } 16951 } 16952 16953 // FIXME: This is an egregious hack to cope with cases where the scope stack 16954 // does not contain the declaration context, i.e., in an out-of-line 16955 // definition of a class. 16956 Scope FakeDCScope(S, Scope::DeclScope, Diags); 16957 if (!DCScope) { 16958 FakeDCScope.setEntity(DC); 16959 DCScope = &FakeDCScope; 16960 } 16961 16962 bool AddToScope = true; 16963 NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous, 16964 TemplateParams, AddToScope); 16965 if (!ND) return nullptr; 16966 16967 assert(ND->getLexicalDeclContext() == CurContext)(static_cast<void> (0)); 16968 16969 // If we performed typo correction, we might have added a scope specifier 16970 // and changed the decl context. 16971 DC = ND->getDeclContext(); 16972 16973 // Add the function declaration to the appropriate lookup tables, 16974 // adjusting the redeclarations list as necessary. We don't 16975 // want to do this yet if the friending class is dependent. 16976 // 16977 // Also update the scope-based lookup if the target context's 16978 // lookup context is in lexical scope. 16979 if (!CurContext->isDependentContext()) { 16980 DC = DC->getRedeclContext(); 16981 DC->makeDeclVisibleInContext(ND); 16982 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 16983 PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false); 16984 } 16985 16986 FriendDecl *FrD = FriendDecl::Create(Context, CurContext, 16987 D.getIdentifierLoc(), ND, 16988 DS.getFriendSpecLoc()); 16989 FrD->setAccess(AS_public); 16990 CurContext->addDecl(FrD); 16991 16992 if (ND->isInvalidDecl()) { 16993 FrD->setInvalidDecl(); 16994 } else { 16995 if (DC->isRecord()) CheckFriendAccess(ND); 16996 16997 FunctionDecl *FD; 16998 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 16999 FD = FTD->getTemplatedDecl(); 17000 else 17001 FD = cast<FunctionDecl>(ND); 17002 17003 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a 17004 // default argument expression, that declaration shall be a definition 17005 // and shall be the only declaration of the function or function 17006 // template in the translation unit. 17007 if (functionDeclHasDefaultArgument(FD)) { 17008 // We can't look at FD->getPreviousDecl() because it may not have been set 17009 // if we're in a dependent context. If the function is known to be a 17010 // redeclaration, we will have narrowed Previous down to the right decl. 17011 if (D.isRedeclaration()) { 17012 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); 17013 Diag(Previous.getRepresentativeDecl()->getLocation(), 17014 diag::note_previous_declaration); 17015 } else if (!D.isFunctionDefinition()) 17016 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def); 17017 } 17018 17019 // Mark templated-scope function declarations as unsupported. 17020 if (FD->getNumTemplateParameterLists() && SS.isValid()) { 17021 Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported) 17022 << SS.getScopeRep() << SS.getRange() 17023 << cast<CXXRecordDecl>(CurContext); 17024 FrD->setUnsupportedFriend(true); 17025 } 17026 } 17027 17028 warnOnReservedIdentifier(ND); 17029 17030 return ND; 17031} 17032 17033void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) { 17034 AdjustDeclIfTemplate(Dcl); 17035 17036 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl); 17037 if (!Fn) { 17038 Diag(DelLoc, diag::err_deleted_non_function); 17039 return; 17040 } 17041 17042 // Deleted function does not have a body. 17043 Fn->setWillHaveBody(false); 17044 17045 if (const FunctionDecl *Prev = Fn->getPreviousDecl()) { 17046 // Don't consider the implicit declaration we generate for explicit 17047 // specializations. FIXME: Do not generate these implicit declarations. 17048 if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization || 17049 Prev->getPreviousDecl()) && 17050 !Prev->isDefined()) { 17051 Diag(DelLoc, diag::err_deleted_decl_not_first); 17052 Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(), 17053 Prev->isImplicit() ? diag::note_previous_implicit_declaration 17054 : diag::note_previous_declaration); 17055 // We can't recover from this; the declaration might have already 17056 // been used. 17057 Fn->setInvalidDecl(); 17058 return; 17059 } 17060 17061 // To maintain the invariant that functions are only deleted on their first 17062 // declaration, mark the implicitly-instantiated declaration of the 17063 // explicitly-specialized function as deleted instead of marking the 17064 // instantiated redeclaration. 17065 Fn = Fn->getCanonicalDecl(); 17066 } 17067 17068 // dllimport/dllexport cannot be deleted. 17069 if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) { 17070 Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr; 17071 Fn->setInvalidDecl(); 17072 } 17073 17074 // C++11 [basic.start.main]p3: 17075 // A program that defines main as deleted [...] is ill-formed. 17076 if (Fn->isMain()) 17077 Diag(DelLoc, diag::err_deleted_main); 17078 17079 // C++11 [dcl.fct.def.delete]p4: 17080 // A deleted function is implicitly inline. 17081 Fn->setImplicitlyInline(); 17082 Fn->setDeletedAsWritten(); 17083} 17084 17085void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) { 17086 if (!Dcl || Dcl->isInvalidDecl()) 17087 return; 17088 17089 auto *FD = dyn_cast<FunctionDecl>(Dcl); 17090 if (!FD) { 17091 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Dcl)) { 17092 if (getDefaultedFunctionKind(FTD->getTemplatedDecl()).isComparison()) { 17093 Diag(DefaultLoc, diag::err_defaulted_comparison_template); 17094 return; 17095 } 17096 } 17097 17098 Diag(DefaultLoc, diag::err_default_special_members) 17099 << getLangOpts().CPlusPlus20; 17100 return; 17101 } 17102 17103 // Reject if this can't possibly be a defaultable function. 17104 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); 17105 if (!DefKind && 17106 // A dependent function that doesn't locally look defaultable can 17107 // still instantiate to a defaultable function if it's a constructor 17108 // or assignment operator. 17109 (!FD->isDependentContext() || 17110 (!isa<CXXConstructorDecl>(FD) && 17111 FD->getDeclName().getCXXOverloadedOperator() != OO_Equal))) { 17112 Diag(DefaultLoc, diag::err_default_special_members) 17113 << getLangOpts().CPlusPlus20; 17114 return; 17115 } 17116 17117 if (DefKind.isComparison() && 17118 !isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 17119 Diag(FD->getLocation(), diag::err_defaulted_comparison_out_of_class) 17120 << (int)DefKind.asComparison(); 17121 return; 17122 } 17123 17124 // Issue compatibility warning. We already warned if the operator is 17125 // 'operator<=>' when parsing the '<=>' token. 17126 if (DefKind.isComparison() && 17127 DefKind.asComparison() != DefaultedComparisonKind::ThreeWay) { 17128 Diag(DefaultLoc, getLangOpts().CPlusPlus20 17129 ? diag::warn_cxx17_compat_defaulted_comparison 17130 : diag::ext_defaulted_comparison); 17131 } 17132 17133 FD->setDefaulted(); 17134 FD->setExplicitlyDefaulted(); 17135 17136 // Defer checking functions that are defaulted in a dependent context. 17137 if (FD->isDependentContext()) 17138 return; 17139 17140 // Unset that we will have a body for this function. We might not, 17141 // if it turns out to be trivial, and we don't need this marking now 17142 // that we've marked it as defaulted. 17143 FD->setWillHaveBody(false); 17144 17145 // If this definition appears within the record, do the checking when 17146 // the record is complete. This is always the case for a defaulted 17147 // comparison. 17148 if (DefKind.isComparison()) 17149 return; 17150 auto *MD = cast<CXXMethodDecl>(FD); 17151 17152 const FunctionDecl *Primary = FD; 17153 if (const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) 17154 // Ask the template instantiation pattern that actually had the 17155 // '= default' on it. 17156 Primary = Pattern; 17157 17158 // If the method was defaulted on its first declaration, we will have 17159 // already performed the checking in CheckCompletedCXXClass. Such a 17160 // declaration doesn't trigger an implicit definition. 17161 if (Primary->getCanonicalDecl()->isDefaulted()) 17162 return; 17163 17164 // FIXME: Once we support defining comparisons out of class, check for a 17165 // defaulted comparison here. 17166 if (CheckExplicitlyDefaultedSpecialMember(MD, DefKind.asSpecialMember())) 17167 MD->setInvalidDecl(); 17168 else 17169 DefineDefaultedFunction(*this, MD, DefaultLoc); 17170} 17171 17172static void SearchForReturnInStmt(Sema &Self, Stmt *S) { 17173 for (Stmt *SubStmt : S->children()) { 17174 if (!SubStmt) 17175 continue; 17176 if (isa<ReturnStmt>(SubStmt)) 17177 Self.Diag(SubStmt->getBeginLoc(), 17178 diag::err_return_in_constructor_handler); 17179 if (!isa<Expr>(SubStmt)) 17180 SearchForReturnInStmt(Self, SubStmt); 17181 } 17182} 17183 17184void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { 17185 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { 17186 CXXCatchStmt *Handler = TryBlock->getHandler(I); 17187 SearchForReturnInStmt(*this, Handler); 17188 } 17189} 17190 17191bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New, 17192 const CXXMethodDecl *Old) { 17193 const auto *NewFT = New->getType()->castAs<FunctionProtoType>(); 17194 const auto *OldFT = Old->getType()->castAs<FunctionProtoType>(); 17195 17196 if (OldFT->hasExtParameterInfos()) { 17197 for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I) 17198 // A parameter of the overriding method should be annotated with noescape 17199 // if the corresponding parameter of the overridden method is annotated. 17200 if (OldFT->getExtParameterInfo(I).isNoEscape() && 17201 !NewFT->getExtParameterInfo(I).isNoEscape()) { 17202 Diag(New->getParamDecl(I)->getLocation(), 17203 diag::warn_overriding_method_missing_noescape); 17204 Diag(Old->getParamDecl(I)->getLocation(), 17205 diag::note_overridden_marked_noescape); 17206 } 17207 } 17208 17209 // Virtual overrides must have the same code_seg. 17210 const auto *OldCSA = Old->getAttr<CodeSegAttr>(); 17211 const auto *NewCSA = New->getAttr<CodeSegAttr>(); 17212 if ((NewCSA || OldCSA) && 17213 (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) { 17214 Diag(New->getLocation(), diag::err_mismatched_code_seg_override); 17215 Diag(Old->getLocation(), diag::note_previous_declaration); 17216 return true; 17217 } 17218 17219 CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv(); 17220 17221 // If the calling conventions match, everything is fine 17222 if (NewCC == OldCC) 17223 return false; 17224 17225 // If the calling conventions mismatch because the new function is static, 17226 // suppress the calling convention mismatch error; the error about static 17227 // function override (err_static_overrides_virtual from 17228 // Sema::CheckFunctionDeclaration) is more clear. 17229 if (New->getStorageClass() == SC_Static) 17230 return false; 17231 17232 Diag(New->getLocation(), 17233 diag::err_conflicting_overriding_cc_attributes) 17234 << New->getDeclName() << New->getType() << Old->getType(); 17235 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 17236 return true; 17237} 17238 17239bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New, 17240 const CXXMethodDecl *Old) { 17241 QualType NewTy = New->getType()->castAs<FunctionType>()->getReturnType(); 17242 QualType OldTy = Old->getType()->castAs<FunctionType>()->getReturnType(); 17243 17244 if (Context.hasSameType(NewTy, OldTy) || 17245 NewTy->isDependentType() || OldTy->isDependentType()) 17246 return false; 17247 17248 // Check if the return types are covariant 17249 QualType NewClassTy, OldClassTy; 17250 17251 /// Both types must be pointers or references to classes. 17252 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) { 17253 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) { 17254 NewClassTy = NewPT->getPointeeType(); 17255 OldClassTy = OldPT->getPointeeType(); 17256 } 17257 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) { 17258 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) { 17259 if (NewRT->getTypeClass() == OldRT->getTypeClass()) { 17260 NewClassTy = NewRT->getPointeeType(); 17261 OldClassTy = OldRT->getPointeeType(); 17262 } 17263 } 17264 } 17265 17266 // The return types aren't either both pointers or references to a class type. 17267 if (NewClassTy.isNull()) { 17268 Diag(New->getLocation(), 17269 diag::err_different_return_type_for_overriding_virtual_function) 17270 << New->getDeclName() << NewTy << OldTy 17271 << New->getReturnTypeSourceRange(); 17272 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 17273 << Old->getReturnTypeSourceRange(); 17274 17275 return true; 17276 } 17277 17278 if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) { 17279 // C++14 [class.virtual]p8: 17280 // If the class type in the covariant return type of D::f differs from 17281 // that of B::f, the class type in the return type of D::f shall be 17282 // complete at the point of declaration of D::f or shall be the class 17283 // type D. 17284 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) { 17285 if (!RT->isBeingDefined() && 17286 RequireCompleteType(New->getLocation(), NewClassTy, 17287 diag::err_covariant_return_incomplete, 17288 New->getDeclName())) 17289 return true; 17290 } 17291 17292 // Check if the new class derives from the old class. 17293 if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) { 17294 Diag(New->getLocation(), diag::err_covariant_return_not_derived) 17295 << New->getDeclName() << NewTy << OldTy 17296 << New->getReturnTypeSourceRange(); 17297 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 17298 << Old->getReturnTypeSourceRange(); 17299 return true; 17300 } 17301 17302 // Check if we the conversion from derived to base is valid. 17303 if (CheckDerivedToBaseConversion( 17304 NewClassTy, OldClassTy, 17305 diag::err_covariant_return_inaccessible_base, 17306 diag::err_covariant_return_ambiguous_derived_to_base_conv, 17307 New->getLocation(), New->getReturnTypeSourceRange(), 17308 New->getDeclName(), nullptr)) { 17309 // FIXME: this note won't trigger for delayed access control 17310 // diagnostics, and it's impossible to get an undelayed error 17311 // here from access control during the original parse because 17312 // the ParsingDeclSpec/ParsingDeclarator are still in scope. 17313 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 17314 << Old->getReturnTypeSourceRange(); 17315 return true; 17316 } 17317 } 17318 17319 // The qualifiers of the return types must be the same. 17320 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) { 17321 Diag(New->getLocation(), 17322 diag::err_covariant_return_type_different_qualifications) 17323 << New->getDeclName() << NewTy << OldTy 17324 << New->getReturnTypeSourceRange(); 17325 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 17326 << Old->getReturnTypeSourceRange(); 17327 return true; 17328 } 17329 17330 17331 // The new class type must have the same or less qualifiers as the old type. 17332 if (NewClassTy.isMoreQualifiedThan(OldClassTy)) { 17333 Diag(New->getLocation(), 17334 diag::err_covariant_return_type_class_type_more_qualified) 17335 << New->getDeclName() << NewTy << OldTy 17336 << New->getReturnTypeSourceRange(); 17337 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 17338 << Old->getReturnTypeSourceRange(); 17339 return true; 17340 } 17341 17342 return false; 17343} 17344 17345/// Mark the given method pure. 17346/// 17347/// \param Method the method to be marked pure. 17348/// 17349/// \param InitRange the source range that covers the "0" initializer. 17350bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) { 17351 SourceLocation EndLoc = InitRange.getEnd(); 17352 if (EndLoc.isValid()) 17353 Method->setRangeEnd(EndLoc); 17354 17355 if (Method->isVirtual() || Method->getParent()->isDependentContext()) { 17356 Method->setPure(); 17357 return false; 17358 } 17359 17360 if (!Method->isInvalidDecl()) 17361 Diag(Method->getLocation(), diag::err_non_virtual_pure) 17362 << Method->getDeclName() << InitRange; 17363 return true; 17364} 17365 17366void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) { 17367 if (D->getFriendObjectKind()) 17368 Diag(D->getLocation(), diag::err_pure_friend); 17369 else if (auto *M = dyn_cast<CXXMethodDecl>(D)) 17370 CheckPureMethod(M, ZeroLoc); 17371 else 17372 Diag(D->getLocation(), diag::err_illegal_initializer); 17373} 17374 17375/// Determine whether the given declaration is a global variable or 17376/// static data member. 17377static bool isNonlocalVariable(const Decl *D) { 17378 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D)) 17379 return Var->hasGlobalStorage(); 17380 17381 return false; 17382} 17383 17384/// Invoked when we are about to parse an initializer for the declaration 17385/// 'Dcl'. 17386/// 17387/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a 17388/// static data member of class X, names should be looked up in the scope of 17389/// class X. If the declaration had a scope specifier, a scope will have 17390/// been created and passed in for this purpose. Otherwise, S will be null. 17391void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) { 17392 // If there is no declaration, there was an error parsing it. 17393 if (!D || D->isInvalidDecl()) 17394 return; 17395 17396 // We will always have a nested name specifier here, but this declaration 17397 // might not be out of line if the specifier names the current namespace: 17398 // extern int n; 17399 // int ::n = 0; 17400 if (S && D->isOutOfLine()) 17401 EnterDeclaratorContext(S, D->getDeclContext()); 17402 17403 // If we are parsing the initializer for a static data member, push a 17404 // new expression evaluation context that is associated with this static 17405 // data member. 17406 if (isNonlocalVariable(D)) 17407 PushExpressionEvaluationContext( 17408 ExpressionEvaluationContext::PotentiallyEvaluated, D); 17409} 17410 17411/// Invoked after we are finished parsing an initializer for the declaration D. 17412void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) { 17413 // If there is no declaration, there was an error parsing it. 17414 if (!D || D->isInvalidDecl()) 17415 return; 17416 17417 if (isNonlocalVariable(D)) 17418 PopExpressionEvaluationContext(); 17419 17420 if (S && D->isOutOfLine()) 17421 ExitDeclaratorContext(S); 17422} 17423 17424/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a 17425/// C++ if/switch/while/for statement. 17426/// e.g: "if (int x = f()) {...}" 17427DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) { 17428 // C++ 6.4p2: 17429 // The declarator shall not specify a function or an array. 17430 // The type-specifier-seq shall not contain typedef and shall not declare a 17431 // new class or enumeration. 17432 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&(static_cast<void> (0)) 17433 "Parser allowed 'typedef' as storage class of condition decl.")(static_cast<void> (0)); 17434 17435 Decl *Dcl = ActOnDeclarator(S, D); 17436 if (!Dcl) 17437 return true; 17438 17439 if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function. 17440 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type) 17441 << D.getSourceRange(); 17442 return true; 17443 } 17444 17445 return Dcl; 17446} 17447 17448void Sema::LoadExternalVTableUses() { 17449 if (!ExternalSource) 17450 return; 17451 17452 SmallVector<ExternalVTableUse, 4> VTables; 17453 ExternalSource->ReadUsedVTables(VTables); 17454 SmallVector<VTableUse, 4> NewUses; 17455 for (unsigned I = 0, N = VTables.size(); I != N; ++I) { 17456 llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos 17457 = VTablesUsed.find(VTables[I].Record); 17458 // Even if a definition wasn't required before, it may be required now. 17459 if (Pos != VTablesUsed.end()) { 17460 if (!Pos->second && VTables[I].DefinitionRequired) 17461 Pos->second = true; 17462 continue; 17463 } 17464 17465 VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired; 17466 NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location)); 17467 } 17468 17469 VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end()); 17470} 17471 17472void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, 17473 bool DefinitionRequired) { 17474 // Ignore any vtable uses in unevaluated operands or for classes that do 17475 // not have a vtable. 17476 if (!Class->isDynamicClass() || Class->isDependentContext() || 17477 CurContext->isDependentContext() || isUnevaluatedContext()) 17478 return; 17479 // Do not mark as used if compiling for the device outside of the target 17480 // region. 17481 if (TUKind != TU_Prefix && LangOpts.OpenMP && LangOpts.OpenMPIsDevice && 17482 !isInOpenMPDeclareTargetContext() && 17483 !isInOpenMPTargetExecutionDirective()) { 17484 if (!DefinitionRequired) 17485 MarkVirtualMembersReferenced(Loc, Class); 17486 return; 17487 } 17488 17489 // Try to insert this class into the map. 17490 LoadExternalVTableUses(); 17491 Class = Class->getCanonicalDecl(); 17492 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool> 17493 Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired)); 17494 if (!Pos.second) { 17495 // If we already had an entry, check to see if we are promoting this vtable 17496 // to require a definition. If so, we need to reappend to the VTableUses 17497 // list, since we may have already processed the first entry. 17498 if (DefinitionRequired && !Pos.first->second) { 17499 Pos.first->second = true; 17500 } else { 17501 // Otherwise, we can early exit. 17502 return; 17503 } 17504 } else { 17505 // The Microsoft ABI requires that we perform the destructor body 17506 // checks (i.e. operator delete() lookup) when the vtable is marked used, as 17507 // the deleting destructor is emitted with the vtable, not with the 17508 // destructor definition as in the Itanium ABI. 17509 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 17510 CXXDestructorDecl *DD = Class->getDestructor(); 17511 if (DD && DD->isVirtual() && !DD->isDeleted()) { 17512 if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) { 17513 // If this is an out-of-line declaration, marking it referenced will 17514 // not do anything. Manually call CheckDestructor to look up operator 17515 // delete(). 17516 ContextRAII SavedContext(*this, DD); 17517 CheckDestructor(DD); 17518 } else { 17519 MarkFunctionReferenced(Loc, Class->getDestructor()); 17520 } 17521 } 17522 } 17523 } 17524 17525 // Local classes need to have their virtual members marked 17526 // immediately. For all other classes, we mark their virtual members 17527 // at the end of the translation unit. 17528 if (Class->isLocalClass()) 17529 MarkVirtualMembersReferenced(Loc, Class); 17530 else 17531 VTableUses.push_back(std::make_pair(Class, Loc)); 17532} 17533 17534bool Sema::DefineUsedVTables() { 17535 LoadExternalVTableUses(); 17536 if (VTableUses.empty()) 17537 return false; 17538 17539 // Note: The VTableUses vector could grow as a result of marking 17540 // the members of a class as "used", so we check the size each 17541 // time through the loop and prefer indices (which are stable) to 17542 // iterators (which are not). 17543 bool DefinedAnything = false; 17544 for (unsigned I = 0; I != VTableUses.size(); ++I) { 17545 CXXRecordDecl *Class = VTableUses[I].first->getDefinition(); 17546 if (!Class) 17547 continue; 17548 TemplateSpecializationKind ClassTSK = 17549 Class->getTemplateSpecializationKind(); 17550 17551 SourceLocation Loc = VTableUses[I].second; 17552 17553 bool DefineVTable = true; 17554 17555 // If this class has a key function, but that key function is 17556 // defined in another translation unit, we don't need to emit the 17557 // vtable even though we're using it. 17558 const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class); 17559 if (KeyFunction && !KeyFunction->hasBody()) { 17560 // The key function is in another translation unit. 17561 DefineVTable = false; 17562 TemplateSpecializationKind TSK = 17563 KeyFunction->getTemplateSpecializationKind(); 17564 assert(TSK != TSK_ExplicitInstantiationDefinition &&(static_cast<void> (0)) 17565 TSK != TSK_ImplicitInstantiation &&(static_cast<void> (0)) 17566 "Instantiations don't have key functions")(static_cast<void> (0)); 17567 (void)TSK; 17568 } else if (!KeyFunction) { 17569 // If we have a class with no key function that is the subject 17570 // of an explicit instantiation declaration, suppress the 17571 // vtable; it will live with the explicit instantiation 17572 // definition. 17573 bool IsExplicitInstantiationDeclaration = 17574 ClassTSK == TSK_ExplicitInstantiationDeclaration; 17575 for (auto R : Class->redecls()) { 17576 TemplateSpecializationKind TSK 17577 = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind(); 17578 if (TSK == TSK_ExplicitInstantiationDeclaration) 17579 IsExplicitInstantiationDeclaration = true; 17580 else if (TSK == TSK_ExplicitInstantiationDefinition) { 17581 IsExplicitInstantiationDeclaration = false; 17582 break; 17583 } 17584 } 17585 17586 if (IsExplicitInstantiationDeclaration) 17587 DefineVTable = false; 17588 } 17589 17590 // The exception specifications for all virtual members may be needed even 17591 // if we are not providing an authoritative form of the vtable in this TU. 17592 // We may choose to emit it available_externally anyway. 17593 if (!DefineVTable) { 17594 MarkVirtualMemberExceptionSpecsNeeded(Loc, Class); 17595 continue; 17596 } 17597 17598 // Mark all of the virtual members of this class as referenced, so 17599 // that we can build a vtable. Then, tell the AST consumer that a 17600 // vtable for this class is required. 17601 DefinedAnything = true; 17602 MarkVirtualMembersReferenced(Loc, Class); 17603 CXXRecordDecl *Canonical = Class->getCanonicalDecl(); 17604 if (VTablesUsed[Canonical]) 17605 Consumer.HandleVTable(Class); 17606 17607 // Warn if we're emitting a weak vtable. The vtable will be weak if there is 17608 // no key function or the key function is inlined. Don't warn in C++ ABIs 17609 // that lack key functions, since the user won't be able to make one. 17610 if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() && 17611 Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation) { 17612 const FunctionDecl *KeyFunctionDef = nullptr; 17613 if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) && 17614 KeyFunctionDef->isInlined())) { 17615 Diag(Class->getLocation(), 17616 ClassTSK == TSK_ExplicitInstantiationDefinition 17617 ? diag::warn_weak_template_vtable 17618 : diag::warn_weak_vtable) 17619 << Class; 17620 } 17621 } 17622 } 17623 VTableUses.clear(); 17624 17625 return DefinedAnything; 17626} 17627 17628void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc, 17629 const CXXRecordDecl *RD) { 17630 for (const auto *I : RD->methods()) 17631 if (I->isVirtual() && !I->isPure()) 17632 ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>()); 17633} 17634 17635void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, 17636 const CXXRecordDecl *RD, 17637 bool ConstexprOnly) { 17638 // Mark all functions which will appear in RD's vtable as used. 17639 CXXFinalOverriderMap FinalOverriders; 17640 RD->getFinalOverriders(FinalOverriders); 17641 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(), 17642 E = FinalOverriders.end(); 17643 I != E; ++I) { 17644 for (OverridingMethods::const_iterator OI = I->second.begin(), 17645 OE = I->second.end(); 17646 OI != OE; ++OI) { 17647 assert(OI->second.size() > 0 && "no final overrider")(static_cast<void> (0)); 17648 CXXMethodDecl *Overrider = OI->second.front().Method; 17649 17650 // C++ [basic.def.odr]p2: 17651 // [...] A virtual member function is used if it is not pure. [...] 17652 if (!Overrider->isPure() && (!ConstexprOnly || Overrider->isConstexpr())) 17653 MarkFunctionReferenced(Loc, Overrider); 17654 } 17655 } 17656 17657 // Only classes that have virtual bases need a VTT. 17658 if (RD->getNumVBases() == 0) 17659 return; 17660 17661 for (const auto &I : RD->bases()) { 17662 const auto *Base = 17663 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 17664 if (Base->getNumVBases() == 0) 17665 continue; 17666 MarkVirtualMembersReferenced(Loc, Base); 17667 } 17668} 17669 17670/// SetIvarInitializers - This routine builds initialization ASTs for the 17671/// Objective-C implementation whose ivars need be initialized. 17672void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) { 17673 if (!getLangOpts().CPlusPlus) 17674 return; 17675 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) { 17676 SmallVector<ObjCIvarDecl*, 8> ivars; 17677 CollectIvarsToConstructOrDestruct(OID, ivars); 17678 if (ivars.empty()) 17679 return; 17680 SmallVector<CXXCtorInitializer*, 32> AllToInit; 17681 for (unsigned i = 0; i < ivars.size(); i++) { 17682 FieldDecl *Field = ivars[i]; 17683 if (Field->isInvalidDecl()) 17684 continue; 17685 17686 CXXCtorInitializer *Member; 17687 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field); 17688 InitializationKind InitKind = 17689 InitializationKind::CreateDefault(ObjCImplementation->getLocation()); 17690 17691 InitializationSequence InitSeq(*this, InitEntity, InitKind, None); 17692 ExprResult MemberInit = 17693 InitSeq.Perform(*this, InitEntity, InitKind, None); 17694 MemberInit = MaybeCreateExprWithCleanups(MemberInit); 17695 // Note, MemberInit could actually come back empty if no initialization 17696 // is required (e.g., because it would call a trivial default constructor) 17697 if (!MemberInit.get() || MemberInit.isInvalid()) 17698 continue; 17699 17700 Member = 17701 new (Context) CXXCtorInitializer(Context, Field, SourceLocation(), 17702 SourceLocation(), 17703 MemberInit.getAs<Expr>(), 17704 SourceLocation()); 17705 AllToInit.push_back(Member); 17706 17707 // Be sure that the destructor is accessible and is marked as referenced. 17708 if (const RecordType *RecordTy = 17709 Context.getBaseElementType(Field->getType()) 17710 ->getAs<RecordType>()) { 17711 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); 17712 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { 17713 MarkFunctionReferenced(Field->getLocation(), Destructor); 17714 CheckDestructorAccess(Field->getLocation(), Destructor, 17715 PDiag(diag::err_access_dtor_ivar) 17716 << Context.getBaseElementType(Field->getType())); 17717 } 17718 } 17719 } 17720 ObjCImplementation->setIvarInitializers(Context, 17721 AllToInit.data(), AllToInit.size()); 17722 } 17723} 17724 17725static 17726void DelegatingCycleHelper(CXXConstructorDecl* Ctor, 17727 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid, 17728 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid, 17729 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current, 17730 Sema &S) { 17731 if (Ctor->isInvalidDecl()) 17732 return; 17733 17734 CXXConstructorDecl *Target = Ctor->getTargetConstructor(); 17735 17736 // Target may not be determinable yet, for instance if this is a dependent 17737 // call in an uninstantiated template. 17738 if (Target) { 17739 const FunctionDecl *FNTarget = nullptr; 17740 (void)Target->hasBody(FNTarget); 17741 Target = const_cast<CXXConstructorDecl*>( 17742 cast_or_null<CXXConstructorDecl>(FNTarget)); 17743 } 17744 17745 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(), 17746 // Avoid dereferencing a null pointer here. 17747 *TCanonical = Target? Target->getCanonicalDecl() : nullptr; 17748 17749 if (!Current.insert(Canonical).second) 17750 return; 17751 17752 // We know that beyond here, we aren't chaining into a cycle. 17753 if (!Target || !Target->isDelegatingConstructor() || 17754 Target->isInvalidDecl() || Valid.count(TCanonical)) { 17755 Valid.insert(Current.begin(), Current.end()); 17756 Current.clear(); 17757 // We've hit a cycle. 17758 } else if (TCanonical == Canonical || Invalid.count(TCanonical) || 17759 Current.count(TCanonical)) { 17760 // If we haven't diagnosed this cycle yet, do so now. 17761 if (!Invalid.count(TCanonical)) { 17762 S.Diag((*Ctor->init_begin())->getSourceLocation(), 17763 diag::warn_delegating_ctor_cycle) 17764 << Ctor; 17765 17766 // Don't add a note for a function delegating directly to itself. 17767 if (TCanonical != Canonical) 17768 S.Diag(Target->getLocation(), diag::note_it_delegates_to); 17769 17770 CXXConstructorDecl *C = Target; 17771 while (C->getCanonicalDecl() != Canonical) { 17772 const FunctionDecl *FNTarget = nullptr; 17773 (void)C->getTargetConstructor()->hasBody(FNTarget); 17774 assert(FNTarget && "Ctor cycle through bodiless function")(static_cast<void> (0)); 17775 17776 C = const_cast<CXXConstructorDecl*>( 17777 cast<CXXConstructorDecl>(FNTarget)); 17778 S.Diag(C->getLocation(), diag::note_which_delegates_to); 17779 } 17780 } 17781 17782 Invalid.insert(Current.begin(), Current.end()); 17783 Current.clear(); 17784 } else { 17785 DelegatingCycleHelper(Target, Valid, Invalid, Current, S); 17786 } 17787} 17788 17789 17790void Sema::CheckDelegatingCtorCycles() { 17791 llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current; 17792 17793 for (DelegatingCtorDeclsType::iterator 17794 I = DelegatingCtorDecls.begin(ExternalSource), 17795 E = DelegatingCtorDecls.end(); 17796 I != E; ++I) 17797 DelegatingCycleHelper(*I, Valid, Invalid, Current, *this); 17798 17799 for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI) 17800 (*CI)->setInvalidDecl(); 17801} 17802 17803namespace { 17804 /// AST visitor that finds references to the 'this' expression. 17805 class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> { 17806 Sema &S; 17807 17808 public: 17809 explicit FindCXXThisExpr(Sema &S) : S(S) { } 17810 17811 bool VisitCXXThisExpr(CXXThisExpr *E) { 17812 S.Diag(E->getLocation(), diag::err_this_static_member_func) 17813 << E->isImplicit(); 17814 return false; 17815 } 17816 }; 17817} 17818 17819bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) { 17820 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); 17821 if (!TSInfo) 17822 return false; 17823 17824 TypeLoc TL = TSInfo->getTypeLoc(); 17825 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); 17826 if (!ProtoTL) 17827 return false; 17828 17829 // C++11 [expr.prim.general]p3: 17830 // [The expression this] shall not appear before the optional 17831 // cv-qualifier-seq and it shall not appear within the declaration of a 17832 // static member function (although its type and value category are defined 17833 // within a static member function as they are within a non-static member 17834 // function). [ Note: this is because declaration matching does not occur 17835 // until the complete declarator is known. - end note ] 17836 const FunctionProtoType *Proto = ProtoTL.getTypePtr(); 17837 FindCXXThisExpr Finder(*this); 17838 17839 // If the return type came after the cv-qualifier-seq, check it now. 17840 if (Proto->hasTrailingReturn() && 17841 !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc())) 17842 return true; 17843 17844 // Check the exception specification. 17845 if (checkThisInStaticMemberFunctionExceptionSpec(Method)) 17846 return true; 17847 17848 // Check the trailing requires clause 17849 if (Expr *E = Method->getTrailingRequiresClause()) 17850 if (!Finder.TraverseStmt(E)) 17851 return true; 17852 17853 return checkThisInStaticMemberFunctionAttributes(Method); 17854} 17855 17856bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) { 17857 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); 17858 if (!TSInfo) 17859 return false; 17860 17861 TypeLoc TL = TSInfo->getTypeLoc(); 17862 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); 17863 if (!ProtoTL) 17864 return false; 17865 17866 const FunctionProtoType *Proto = ProtoTL.getTypePtr(); 17867 FindCXXThisExpr Finder(*this); 17868 17869 switch (Proto->getExceptionSpecType()) { 17870 case EST_Unparsed: 17871 case EST_Uninstantiated: 17872 case EST_Unevaluated: 17873 case EST_BasicNoexcept: 17874 case EST_NoThrow: 17875 case EST_DynamicNone: 17876 case EST_MSAny: 17877 case EST_None: 17878 break; 17879 17880 case EST_DependentNoexcept: 17881 case EST_NoexceptFalse: 17882 case EST_NoexceptTrue: 17883 if (!Finder.TraverseStmt(Proto->getNoexceptExpr())) 17884 return true; 17885 LLVM_FALLTHROUGH[[gnu::fallthrough]]; 17886 17887 case EST_Dynamic: 17888 for (const auto &E : Proto->exceptions()) { 17889 if (!Finder.TraverseType(E)) 17890 return true; 17891 } 17892 break; 17893 } 17894 17895 return false; 17896} 17897 17898bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) { 17899 FindCXXThisExpr Finder(*this); 17900 17901 // Check attributes. 17902 for (const auto *A : Method->attrs()) { 17903 // FIXME: This should be emitted by tblgen. 17904 Expr *Arg = nullptr; 17905 ArrayRef<Expr *> Args; 17906 if (const auto *G = dyn_cast<GuardedByAttr>(A)) 17907 Arg = G->getArg(); 17908 else if (const auto *G = dyn_cast<PtGuardedByAttr>(A)) 17909 Arg = G->getArg(); 17910 else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A)) 17911 Args = llvm::makeArrayRef(AA->args_begin(), AA->args_size()); 17912 else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A)) 17913 Args = llvm::makeArrayRef(AB->args_begin(), AB->args_size()); 17914 else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) { 17915 Arg = ETLF->getSuccessValue(); 17916 Args = llvm::makeArrayRef(ETLF->args_begin(), ETLF->args_size()); 17917 } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) { 17918 Arg = STLF->getSuccessValue(); 17919 Args = llvm::makeArrayRef(STLF->args_begin(), STLF->args_size()); 17920 } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A)) 17921 Arg = LR->getArg(); 17922 else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A)) 17923 Args = llvm::makeArrayRef(LE->args_begin(), LE->args_size()); 17924 else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A)) 17925 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size()); 17926 else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A)) 17927 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size()); 17928 else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A)) 17929 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size()); 17930 else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A)) 17931 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size()); 17932 17933 if (Arg && !Finder.TraverseStmt(Arg)) 17934 return true; 17935 17936 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 17937 if (!Finder.TraverseStmt(Args[I])) 17938 return true; 17939 } 17940 } 17941 17942 return false; 17943} 17944 17945void Sema::checkExceptionSpecification( 17946 bool IsTopLevel, ExceptionSpecificationType EST, 17947 ArrayRef<ParsedType> DynamicExceptions, 17948 ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr, 17949 SmallVectorImpl<QualType> &Exceptions, 17950 FunctionProtoType::ExceptionSpecInfo &ESI) { 17951 Exceptions.clear(); 17952 ESI.Type = EST; 17953 if (EST == EST_Dynamic) { 17954 Exceptions.reserve(DynamicExceptions.size()); 17955 for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) { 17956 // FIXME: Preserve type source info. 17957 QualType ET = GetTypeFromParser(DynamicExceptions[ei]); 17958 17959 if (IsTopLevel) { 17960 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 17961 collectUnexpandedParameterPacks(ET, Unexpanded); 17962 if (!Unexpanded.empty()) { 17963 DiagnoseUnexpandedParameterPacks( 17964 DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType, 17965 Unexpanded); 17966 continue; 17967 } 17968 } 17969 17970 // Check that the type is valid for an exception spec, and 17971 // drop it if not. 17972 if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei])) 17973 Exceptions.push_back(ET); 17974 } 17975 ESI.Exceptions = Exceptions; 17976 return; 17977 } 17978 17979 if (isComputedNoexcept(EST)) { 17980 assert((NoexceptExpr->isTypeDependent() ||(static_cast<void> (0)) 17981 NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==(static_cast<void> (0)) 17982 Context.BoolTy) &&(static_cast<void> (0)) 17983 "Parser should have made sure that the expression is boolean")(static_cast<void> (0)); 17984 if (IsTopLevel && DiagnoseUnexpandedParameterPack(NoexceptExpr)) { 17985 ESI.Type = EST_BasicNoexcept; 17986 return; 17987 } 17988 17989 ESI.NoexceptExpr = NoexceptExpr; 17990 return; 17991 } 17992} 17993 17994void Sema::actOnDelayedExceptionSpecification(Decl *MethodD, 17995 ExceptionSpecificationType EST, 17996 SourceRange SpecificationRange, 17997 ArrayRef<ParsedType> DynamicExceptions, 17998 ArrayRef<SourceRange> DynamicExceptionRanges, 17999 Expr *NoexceptExpr) { 18000 if (!MethodD) 18001 return; 18002 18003 // Dig out the method we're referring to. 18004 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD)) 18005 MethodD = FunTmpl->getTemplatedDecl(); 18006 18007 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD); 18008 if (!Method) 18009 return; 18010 18011 // Check the exception specification. 18012 llvm::SmallVector<QualType, 4> Exceptions; 18013 FunctionProtoType::ExceptionSpecInfo ESI; 18014 checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions, 18015 DynamicExceptionRanges, NoexceptExpr, Exceptions, 18016 ESI); 18017 18018 // Update the exception specification on the function type. 18019 Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true); 18020 18021 if (Method->isStatic()) 18022 checkThisInStaticMemberFunctionExceptionSpec(Method); 18023 18024 if (Method->isVirtual()) { 18025 // Check overrides, which we previously had to delay. 18026 for (const CXXMethodDecl *O : Method->overridden_methods()) 18027 CheckOverridingFunctionExceptionSpec(Method, O); 18028 } 18029} 18030 18031/// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class. 18032/// 18033MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record, 18034 SourceLocation DeclStart, Declarator &D, 18035 Expr *BitWidth, 18036 InClassInitStyle InitStyle, 18037 AccessSpecifier AS, 18038 const ParsedAttr &MSPropertyAttr) { 18039 IdentifierInfo *II = D.getIdentifier(); 18040 if (!II) { 18041 Diag(DeclStart, diag::err_anonymous_property); 18042 return nullptr; 18043 } 18044 SourceLocation Loc = D.getIdentifierLoc(); 18045 18046 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 18047 QualType T = TInfo->getType(); 18048 if (getLangOpts().CPlusPlus) { 18049 CheckExtraCXXDefaultArguments(D); 18050 18051 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 18052 UPPC_DataMemberType)) { 18053 D.setInvalidType(); 18054 T = Context.IntTy; 18055 TInfo = Context.getTrivialTypeSourceInfo(T, Loc); 18056 } 18057 } 18058 18059 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 18060 18061 if (D.getDeclSpec().isInlineSpecified()) 18062 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) 18063 << getLangOpts().CPlusPlus17; 18064 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 18065 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 18066 diag::err_invalid_thread) 18067 << DeclSpec::getSpecifierName(TSCS); 18068 18069 // Check to see if this name was declared as a member previously 18070 NamedDecl *PrevDecl = nullptr; 18071 LookupResult Previous(*this, II, Loc, LookupMemberName, 18072 ForVisibleRedeclaration); 18073 LookupName(Previous, S); 18074 switch (Previous.getResultKind()) { 18075 case LookupResult::Found: 18076 case LookupResult::FoundUnresolvedValue: 18077 PrevDecl = Previous.getAsSingle<NamedDecl>(); 18078 break; 18079 18080 case LookupResult::FoundOverloaded: 18081 PrevDecl = Previous.getRepresentativeDecl(); 18082 break; 18083 18084 case LookupResult::NotFound: 18085 case LookupResult::NotFoundInCurrentInstantiation: 18086 case LookupResult::Ambiguous: 18087 break; 18088 } 18089 18090 if (PrevDecl && PrevDecl->isTemplateParameter()) { 18091 // Maybe we will complain about the shadowed template parameter. 18092 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 18093 // Just pretend that we didn't see the previous declaration. 18094 PrevDecl = nullptr; 18095 } 18096 18097 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) 18098 PrevDecl = nullptr; 18099 18100 SourceLocation TSSL = D.getBeginLoc(); 18101 MSPropertyDecl *NewPD = 18102 MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL, 18103 MSPropertyAttr.getPropertyDataGetter(), 18104 MSPropertyAttr.getPropertyDataSetter()); 18105 ProcessDeclAttributes(TUScope, NewPD, D); 18106 NewPD->setAccess(AS); 18107 18108 if (NewPD->isInvalidDecl()) 18109 Record->setInvalidDecl(); 18110 18111 if (D.getDeclSpec().isModulePrivateSpecified()) 18112 NewPD->setModulePrivate(); 18113 18114 if (NewPD->isInvalidDecl() && PrevDecl) { 18115 // Don't introduce NewFD into scope; there's already something 18116 // with the same name in the same scope. 18117 } else if (II) { 18118 PushOnScopeChains(NewPD, S); 18119 } else 18120 Record->addDecl(NewPD); 18121 18122 return NewPD; 18123} 18124 18125void Sema::ActOnStartFunctionDeclarationDeclarator( 18126 Declarator &Declarator, unsigned TemplateParameterDepth) { 18127 auto &Info = InventedParameterInfos.emplace_back(); 18128 TemplateParameterList *ExplicitParams = nullptr; 18129 ArrayRef<TemplateParameterList *> ExplicitLists = 18130 Declarator.getTemplateParameterLists(); 18131 if (!ExplicitLists.empty()) { 18132 bool IsMemberSpecialization, IsInvalid; 18133 ExplicitParams = MatchTemplateParametersToScopeSpecifier( 18134 Declarator.getBeginLoc(), Declarator.getIdentifierLoc(), 18135 Declarator.getCXXScopeSpec(), /*TemplateId=*/nullptr, 18136 ExplicitLists, /*IsFriend=*/false, IsMemberSpecialization, IsInvalid, 18137 /*SuppressDiagnostic=*/true); 18138 } 18139 if (ExplicitParams) { 18140 Info.AutoTemplateParameterDepth = ExplicitParams->getDepth(); 18141 for (NamedDecl *Param : *ExplicitParams) 18142 Info.TemplateParams.push_back(Param); 18143 Info.NumExplicitTemplateParams = ExplicitParams->size(); 18144 } else { 18145 Info.AutoTemplateParameterDepth = TemplateParameterDepth; 18146 Info.NumExplicitTemplateParams = 0; 18147 } 18148} 18149 18150void Sema::ActOnFinishFunctionDeclarationDeclarator(Declarator &Declarator) { 18151 auto &FSI = InventedParameterInfos.back(); 18152 if (FSI.TemplateParams.size() > FSI.NumExplicitTemplateParams) { 18153 if (FSI.NumExplicitTemplateParams != 0) { 18154 TemplateParameterList *ExplicitParams = 18155 Declarator.getTemplateParameterLists().back(); 18156 Declarator.setInventedTemplateParameterList( 18157 TemplateParameterList::Create( 18158 Context, ExplicitParams->getTemplateLoc(), 18159 ExplicitParams->getLAngleLoc(), FSI.TemplateParams, 18160 ExplicitParams->getRAngleLoc(), 18161 ExplicitParams->getRequiresClause())); 18162 } else { 18163 Declarator.setInventedTemplateParameterList( 18164 TemplateParameterList::Create( 18165 Context, SourceLocation(), SourceLocation(), FSI.TemplateParams, 18166 SourceLocation(), /*RequiresClause=*/nullptr)); 18167 } 18168 } 18169 InventedParameterInfos.pop_back(); 18170}

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/include/clang/AST/Decl.h

1//===- Decl.h - Classes for representing declarations -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the Decl subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CLANG_AST_DECL_H
14#define LLVM_CLANG_AST_DECL_H
15
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContextAllocate.h"
18#include "clang/AST/DeclAccessPair.h"
19#include "clang/AST/DeclBase.h"
20#include "clang/AST/DeclarationName.h"
21#include "clang/AST/ExternalASTSource.h"
22#include "clang/AST/NestedNameSpecifier.h"
23#include "clang/AST/Redeclarable.h"
24#include "clang/AST/Type.h"
25#include "clang/Basic/AddressSpaces.h"
26#include "clang/Basic/Diagnostic.h"
27#include "clang/Basic/IdentifierTable.h"
28#include "clang/Basic/LLVM.h"
29#include "clang/Basic/Linkage.h"
30#include "clang/Basic/OperatorKinds.h"
31#include "clang/Basic/PartialDiagnostic.h"
32#include "clang/Basic/PragmaKinds.h"
33#include "clang/Basic/SourceLocation.h"
34#include "clang/Basic/Specifiers.h"
35#include "clang/Basic/Visibility.h"
36#include "llvm/ADT/APSInt.h"
37#include "llvm/ADT/ArrayRef.h"
38#include "llvm/ADT/Optional.h"
39#include "llvm/ADT/PointerIntPair.h"
40#include "llvm/ADT/PointerUnion.h"
41#include "llvm/ADT/StringRef.h"
42#include "llvm/ADT/iterator_range.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/TrailingObjects.h"
46#include <cassert>
47#include <cstddef>
48#include <cstdint>
49#include <string>
50#include <utility>
51
52namespace clang {
53
54class ASTContext;
55struct ASTTemplateArgumentListInfo;
56class Attr;
57class CompoundStmt;
58class DependentFunctionTemplateSpecializationInfo;
59class EnumDecl;
60class Expr;
61class FunctionTemplateDecl;
62class FunctionTemplateSpecializationInfo;
63class FunctionTypeLoc;
64class LabelStmt;
65class MemberSpecializationInfo;
66class Module;
67class NamespaceDecl;
68class ParmVarDecl;
69class RecordDecl;
70class Stmt;
71class StringLiteral;
72class TagDecl;
73class TemplateArgumentList;
74class TemplateArgumentListInfo;
75class TemplateParameterList;
76class TypeAliasTemplateDecl;
77class TypeLoc;
78class UnresolvedSetImpl;
79class VarTemplateDecl;
80
81/// The top declaration context.
82class TranslationUnitDecl : public Decl,
83 public DeclContext,
84 public Redeclarable<TranslationUnitDecl> {
85 using redeclarable_base = Redeclarable<TranslationUnitDecl>;
86
87 TranslationUnitDecl *getNextRedeclarationImpl() override {
88 return getNextRedeclaration();
89 }
90
91 TranslationUnitDecl *getPreviousDeclImpl() override {
92 return getPreviousDecl();
93 }
94
95 TranslationUnitDecl *getMostRecentDeclImpl() override {
96 return getMostRecentDecl();
97 }
98
99 ASTContext &Ctx;
100
101 /// The (most recently entered) anonymous namespace for this
102 /// translation unit, if one has been created.
103 NamespaceDecl *AnonymousNamespace = nullptr;
104
105 explicit TranslationUnitDecl(ASTContext &ctx);
106
107 virtual void anchor();
108
109public:
110 using redecl_range = redeclarable_base::redecl_range;
111 using redecl_iterator = redeclarable_base::redecl_iterator;
112
113 using redeclarable_base::getMostRecentDecl;
114 using redeclarable_base::getPreviousDecl;
115 using redeclarable_base::isFirstDecl;
116 using redeclarable_base::redecls;
117 using redeclarable_base::redecls_begin;
118 using redeclarable_base::redecls_end;
119
120 ASTContext &getASTContext() const { return Ctx; }
121
122 NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
123 void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
124
125 static TranslationUnitDecl *Create(ASTContext &C);
126
127 // Implement isa/cast/dyncast/etc.
128 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
129 static bool classofKind(Kind K) { return K == TranslationUnit; }
130 static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
131 return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
132 }
133 static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
134 return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
135 }
136};
137
138/// Represents a `#pragma comment` line. Always a child of
139/// TranslationUnitDecl.
140class PragmaCommentDecl final
141 : public Decl,
142 private llvm::TrailingObjects<PragmaCommentDecl, char> {
143 friend class ASTDeclReader;
144 friend class ASTDeclWriter;
145 friend TrailingObjects;
146
147 PragmaMSCommentKind CommentKind;
148
149 PragmaCommentDecl(TranslationUnitDecl *TU, SourceLocation CommentLoc,
150 PragmaMSCommentKind CommentKind)
151 : Decl(PragmaComment, TU, CommentLoc), CommentKind(CommentKind) {}
152
153 virtual void anchor();
154
155public:
156 static PragmaCommentDecl *Create(const ASTContext &C, TranslationUnitDecl *DC,
157 SourceLocation CommentLoc,
158 PragmaMSCommentKind CommentKind,
159 StringRef Arg);
160 static PragmaCommentDecl *CreateDeserialized(ASTContext &C, unsigned ID,
161 unsigned ArgSize);
162
163 PragmaMSCommentKind getCommentKind() const { return CommentKind; }
164
165 StringRef getArg() const { return getTrailingObjects<char>(); }
166
167 // Implement isa/cast/dyncast/etc.
168 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
169 static bool classofKind(Kind K) { return K == PragmaComment; }
170};
171
172/// Represents a `#pragma detect_mismatch` line. Always a child of
173/// TranslationUnitDecl.
174class PragmaDetectMismatchDecl final
175 : public Decl,
176 private llvm::TrailingObjects<PragmaDetectMismatchDecl, char> {
177 friend class ASTDeclReader;
178 friend class ASTDeclWriter;
179 friend TrailingObjects;
180
181 size_t ValueStart;
182
183 PragmaDetectMismatchDecl(TranslationUnitDecl *TU, SourceLocation Loc,
184 size_t ValueStart)
185 : Decl(PragmaDetectMismatch, TU, Loc), ValueStart(ValueStart) {}
186
187 virtual void anchor();
188
189public:
190 static PragmaDetectMismatchDecl *Create(const ASTContext &C,
191 TranslationUnitDecl *DC,
192 SourceLocation Loc, StringRef Name,
193 StringRef Value);
194 static PragmaDetectMismatchDecl *
195 CreateDeserialized(ASTContext &C, unsigned ID, unsigned NameValueSize);
196
197 StringRef getName() const { return getTrailingObjects<char>(); }
198 StringRef getValue() const { return getTrailingObjects<char>() + ValueStart; }
199
200 // Implement isa/cast/dyncast/etc.
201 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
202 static bool classofKind(Kind K) { return K == PragmaDetectMismatch; }
203};
204
205/// Declaration context for names declared as extern "C" in C++. This
206/// is neither the semantic nor lexical context for such declarations, but is
207/// used to check for conflicts with other extern "C" declarations. Example:
208///
209/// \code
210/// namespace N { extern "C" void f(); } // #1
211/// void N::f() {} // #2
212/// namespace M { extern "C" void f(); } // #3
213/// \endcode
214///
215/// The semantic context of #1 is namespace N and its lexical context is the
216/// LinkageSpecDecl; the semantic context of #2 is namespace N and its lexical
217/// context is the TU. However, both declarations are also visible in the
218/// extern "C" context.
219///
220/// The declaration at #3 finds it is a redeclaration of \c N::f through
221/// lookup in the extern "C" context.
222class ExternCContextDecl : public Decl, public DeclContext {
223 explicit ExternCContextDecl(TranslationUnitDecl *TU)
224 : Decl(ExternCContext, TU, SourceLocation()),
225 DeclContext(ExternCContext) {}
226
227 virtual void anchor();
228
229public:
230 static ExternCContextDecl *Create(const ASTContext &C,
231 TranslationUnitDecl *TU);
232
233 // Implement isa/cast/dyncast/etc.
234 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
235 static bool classofKind(Kind K) { return K == ExternCContext; }
236 static DeclContext *castToDeclContext(const ExternCContextDecl *D) {
237 return static_cast<DeclContext *>(const_cast<ExternCContextDecl*>(D));
238 }
239 static ExternCContextDecl *castFromDeclContext(const DeclContext *DC) {
240 return static_cast<ExternCContextDecl *>(const_cast<DeclContext*>(DC));
241 }
242};
243
244/// This represents a decl that may have a name. Many decls have names such
245/// as ObjCMethodDecl, but not \@class, etc.
246///
247/// Note that not every NamedDecl is actually named (e.g., a struct might
248/// be anonymous), and not every name is an identifier.
249class NamedDecl : public Decl {
250 /// The name of this declaration, which is typically a normal
251 /// identifier but may also be a special kind of name (C++
252 /// constructor, Objective-C selector, etc.)
253 DeclarationName Name;
254
255 virtual void anchor();
256
257private:
258 NamedDecl *getUnderlyingDeclImpl() LLVM_READONLY__attribute__((__pure__));
259
260protected:
261 NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
262 : Decl(DK, DC, L), Name(N) {}
263
264public:
265 /// Get the identifier that names this declaration, if there is one.
266 ///
267 /// This will return NULL if this declaration has no name (e.g., for
268 /// an unnamed class) or if the name is a special name (C++ constructor,
269 /// Objective-C selector, etc.).
270 IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
271
272 /// Get the name of identifier for this declaration as a StringRef.
273 ///
274 /// This requires that the declaration have a name and that it be a simple
275 /// identifier.
276 StringRef getName() const {
277 assert(Name.isIdentifier() && "Name is not a simple identifier")(static_cast<void> (0));
278 return getIdentifier() ? getIdentifier()->getName() : "";
279 }
280
281 /// Get a human-readable name for the declaration, even if it is one of the
282 /// special kinds of names (C++ constructor, Objective-C selector, etc).
283 ///
284 /// Creating this name requires expensive string manipulation, so it should
285 /// be called only when performance doesn't matter. For simple declarations,
286 /// getNameAsCString() should suffice.
287 //
288 // FIXME: This function should be renamed to indicate that it is not just an
289 // alternate form of getName(), and clients should move as appropriate.
290 //
291 // FIXME: Deprecated, move clients to getName().
292 std::string getNameAsString() const { return Name.getAsString(); }
293
294 /// Pretty-print the unqualified name of this declaration. Can be overloaded
295 /// by derived classes to provide a more user-friendly name when appropriate.
296 virtual void printName(raw_ostream &os) const;
297
298 /// Get the actual, stored name of the declaration, which may be a special
299 /// name.
300 ///
301 /// Note that generally in diagnostics, the non-null \p NamedDecl* itself
302 /// should be sent into the diagnostic instead of using the result of
303 /// \p getDeclName().
304 ///
305 /// A \p DeclarationName in a diagnostic will just be streamed to the output,
306 /// which will directly result in a call to \p DeclarationName::print.
307 ///
308 /// A \p NamedDecl* in a diagnostic will also ultimately result in a call to
309 /// \p DeclarationName::print, but with two customisation points along the
310 /// way (\p getNameForDiagnostic and \p printName). These are used to print
311 /// the template arguments if any, and to provide a user-friendly name for
312 /// some entities (such as unnamed variables and anonymous records).
313 DeclarationName getDeclName() const { return Name; }
314
315 /// Set the name of this declaration.
316 void setDeclName(DeclarationName N) { Name = N; }
317
318 /// Returns a human-readable qualified name for this declaration, like
319 /// A::B::i, for i being member of namespace A::B.
320 ///
321 /// If the declaration is not a member of context which can be named (record,
322 /// namespace), it will return the same result as printName().
323 ///
324 /// Creating this name is expensive, so it should be called only when
325 /// performance doesn't matter.
326 void printQualifiedName(raw_ostream &OS) const;
327 void printQualifiedName(raw_ostream &OS, const PrintingPolicy &Policy) const;
328
329 /// Print only the nested name specifier part of a fully-qualified name,
330 /// including the '::' at the end. E.g.
331 /// when `printQualifiedName(D)` prints "A::B::i",
332 /// this function prints "A::B::".
333 void printNestedNameSpecifier(raw_ostream &OS) const;
334 void printNestedNameSpecifier(raw_ostream &OS,
335 const PrintingPolicy &Policy) const;
336
337 // FIXME: Remove string version.
338 std::string getQualifiedNameAsString() const;
339
340 /// Appends a human-readable name for this declaration into the given stream.
341 ///
342 /// This is the method invoked by Sema when displaying a NamedDecl
343 /// in a diagnostic. It does not necessarily produce the same
344 /// result as printName(); for example, class template
345 /// specializations are printed with their template arguments.
346 virtual void getNameForDiagnostic(raw_ostream &OS,
347 const PrintingPolicy &Policy,
348 bool Qualified) const;
349
350 /// Determine whether this declaration, if known to be well-formed within
351 /// its context, will replace the declaration OldD if introduced into scope.
352 ///
353 /// A declaration will replace another declaration if, for example, it is
354 /// a redeclaration of the same variable or function, but not if it is a
355 /// declaration of a different kind (function vs. class) or an overloaded
356 /// function.
357 ///
358 /// \param IsKnownNewer \c true if this declaration is known to be newer
359 /// than \p OldD (for instance, if this declaration is newly-created).
360 bool declarationReplaces(NamedDecl *OldD, bool IsKnownNewer = true) const;
361
362 /// Determine whether this declaration has linkage.
363 bool hasLinkage() const;
364
365 using Decl::isModulePrivate;
366 using Decl::setModulePrivate;
367
368 /// Determine whether this declaration is a C++ class member.
369 bool isCXXClassMember() const {
370 const DeclContext *DC = getDeclContext();
371
372 // C++0x [class.mem]p1:
373 // The enumerators of an unscoped enumeration defined in
374 // the class are members of the class.
375 if (isa<EnumDecl>(DC))
376 DC = DC->getRedeclContext();
377
378 return DC->isRecord();
379 }
380
381 /// Determine whether the given declaration is an instance member of
382 /// a C++ class.
383 bool isCXXInstanceMember() const;
384
385 /// Determine if the declaration obeys the reserved identifier rules of the
386 /// given language.
387 ReservedIdentifierStatus isReserved(const LangOptions &LangOpts) const;
388
389 /// Determine what kind of linkage this entity has.
390 ///
391 /// This is not the linkage as defined by the standard or the codegen notion
392 /// of linkage. It is just an implementation detail that is used to compute
393 /// those.
394 Linkage getLinkageInternal() const;
395
396 /// Get the linkage from a semantic point of view. Entities in
397 /// anonymous namespaces are external (in c++98).
398 Linkage getFormalLinkage() const {
399 return clang::getFormalLinkage(getLinkageInternal());
400 }
401
402 /// True if this decl has external linkage.
403 bool hasExternalFormalLinkage() const {
404 return isExternalFormalLinkage(getLinkageInternal());
405 }
406
407 bool isExternallyVisible() const {
408 return clang::isExternallyVisible(getLinkageInternal());
409 }
410
411 /// Determine whether this declaration can be redeclared in a
412 /// different translation unit.
413 bool isExternallyDeclarable() const {
414 return isExternallyVisible() && !getOwningModuleForLinkage();
415 }
416
417 /// Determines the visibility of this entity.
418 Visibility getVisibility() const {
419 return getLinkageAndVisibility().getVisibility();
420 }
421
422 /// Determines the linkage and visibility of this entity.
423 LinkageInfo getLinkageAndVisibility() const;
424
425 /// Kinds of explicit visibility.
426 enum ExplicitVisibilityKind {
427 /// Do an LV computation for, ultimately, a type.
428 /// Visibility may be restricted by type visibility settings and
429 /// the visibility of template arguments.
430 VisibilityForType,
431
432 /// Do an LV computation for, ultimately, a non-type declaration.
433 /// Visibility may be restricted by value visibility settings and
434 /// the visibility of template arguments.
435 VisibilityForValue
436 };
437
438 /// If visibility was explicitly specified for this
439 /// declaration, return that visibility.
440 Optional<Visibility>
441 getExplicitVisibility(ExplicitVisibilityKind kind) const;
442
443 /// True if the computed linkage is valid. Used for consistency
444 /// checking. Should always return true.
445 bool isLinkageValid() const;
446
447 /// True if something has required us to compute the linkage
448 /// of this declaration.
449 ///
450 /// Language features which can retroactively change linkage (like a
451 /// typedef name for linkage purposes) may need to consider this,
452 /// but hopefully only in transitory ways during parsing.
453 bool hasLinkageBeenComputed() const {
454 return hasCachedLinkage();
455 }
456
457 /// Looks through UsingDecls and ObjCCompatibleAliasDecls for
458 /// the underlying named decl.
459 NamedDecl *getUnderlyingDecl() {
460 // Fast-path the common case.
461 if (this->getKind() != UsingShadow &&
462 this->getKind() != ConstructorUsingShadow &&
463 this->getKind() != ObjCCompatibleAlias &&
464 this->getKind() != NamespaceAlias)
465 return this;
466
467 return getUnderlyingDeclImpl();
468 }
469 const NamedDecl *getUnderlyingDecl() const {
470 return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
471 }
472
473 NamedDecl *getMostRecentDecl() {
474 return cast<NamedDecl>(static_cast<Decl *>(this)->getMostRecentDecl());
475 }
476 const NamedDecl *getMostRecentDecl() const {
477 return const_cast<NamedDecl*>(this)->getMostRecentDecl();
478 }
479
480 ObjCStringFormatFamily getObjCFStringFormattingFamily() const;
481
482 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
483 static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; }
484};
485
486inline raw_ostream &operator<<(raw_ostream &OS, const NamedDecl &ND) {
487 ND.printName(OS);
488 return OS;
489}
490
491/// Represents the declaration of a label. Labels also have a
492/// corresponding LabelStmt, which indicates the position that the label was
493/// defined at. For normal labels, the location of the decl is the same as the
494/// location of the statement. For GNU local labels (__label__), the decl
495/// location is where the __label__ is.
496class LabelDecl : public NamedDecl {
497 LabelStmt *TheStmt;
498 StringRef MSAsmName;
499 bool MSAsmNameResolved = false;
500
501 /// For normal labels, this is the same as the main declaration
502 /// label, i.e., the location of the identifier; for GNU local labels,
503 /// this is the location of the __label__ keyword.
504 SourceLocation LocStart;
505
506 LabelDecl(DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II,
507 LabelStmt *S, SourceLocation StartL)
508 : NamedDecl(Label, DC, IdentL, II), TheStmt(S), LocStart(StartL) {}
509
510 void anchor() override;
511
512public:
513 static LabelDecl *Create(ASTContext &C, DeclContext *DC,
514 SourceLocation IdentL, IdentifierInfo *II);
515 static LabelDecl *Create(ASTContext &C, DeclContext *DC,
516 SourceLocation IdentL, IdentifierInfo *II,
517 SourceLocation GnuLabelL);
518 static LabelDecl *CreateDeserialized(ASTContext &C, unsigned ID);
519
520 LabelStmt *getStmt() const { return TheStmt; }
521 void setStmt(LabelStmt *T) { TheStmt = T; }
522
523 bool isGnuLocal() const { return LocStart != getLocation(); }
524 void setLocStart(SourceLocation L) { LocStart = L; }
525
526 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
527 return SourceRange(LocStart, getLocation());
528 }
529
530 bool isMSAsmLabel() const { return !MSAsmName.empty(); }
531 bool isResolvedMSAsmLabel() const { return isMSAsmLabel() && MSAsmNameResolved; }
532 void setMSAsmLabel(StringRef Name);
533 StringRef getMSAsmLabel() const { return MSAsmName; }
534 void setMSAsmLabelResolved() { MSAsmNameResolved = true; }
535
536 // Implement isa/cast/dyncast/etc.
537 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
538 static bool classofKind(Kind K) { return K == Label; }
539};
540
541/// Represent a C++ namespace.
542class NamespaceDecl : public NamedDecl, public DeclContext,
543 public Redeclarable<NamespaceDecl>
544{
545 /// The starting location of the source range, pointing
546 /// to either the namespace or the inline keyword.
547 SourceLocation LocStart;
548
549 /// The ending location of the source range.
550 SourceLocation RBraceLoc;
551
552 /// A pointer to either the anonymous namespace that lives just inside
553 /// this namespace or to the first namespace in the chain (the latter case
554 /// only when this is not the first in the chain), along with a
555 /// boolean value indicating whether this is an inline namespace.
556 llvm::PointerIntPair<NamespaceDecl *, 1, bool> AnonOrFirstNamespaceAndInline;
557
558 NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
559 SourceLocation StartLoc, SourceLocation IdLoc,
560 IdentifierInfo *Id, NamespaceDecl *PrevDecl);
561
562 using redeclarable_base = Redeclarable<NamespaceDecl>;
563
564 NamespaceDecl *getNextRedeclarationImpl() override;
565 NamespaceDecl *getPreviousDeclImpl() override;
566 NamespaceDecl *getMostRecentDeclImpl() override;
567
568public:
569 friend class ASTDeclReader;
570 friend class ASTDeclWriter;
571
572 static NamespaceDecl *Create(ASTContext &C, DeclContext *DC,
573 bool Inline, SourceLocation StartLoc,
574 SourceLocation IdLoc, IdentifierInfo *Id,
575 NamespaceDecl *PrevDecl);
576
577 static NamespaceDecl *CreateDeserialized(ASTContext &C, unsigned ID);
578
579 using redecl_range = redeclarable_base::redecl_range;
580 using redecl_iterator = redeclarable_base::redecl_iterator;
581
582 using redeclarable_base::redecls_begin;
583 using redeclarable_base::redecls_end;
584 using redeclarable_base::redecls;
585 using redeclarable_base::getPreviousDecl;
586 using redeclarable_base::getMostRecentDecl;
587 using redeclarable_base::isFirstDecl;
588
589 /// Returns true if this is an anonymous namespace declaration.
590 ///
591 /// For example:
592 /// \code
593 /// namespace {
594 /// ...
595 /// };
596 /// \endcode
597 /// q.v. C++ [namespace.unnamed]
598 bool isAnonymousNamespace() const {
599 return !getIdentifier();
600 }
601
602 /// Returns true if this is an inline namespace declaration.
603 bool isInline() const {
604 return AnonOrFirstNamespaceAndInline.getInt();
605 }
606
607 /// Set whether this is an inline namespace declaration.
608 void setInline(bool Inline) {
609 AnonOrFirstNamespaceAndInline.setInt(Inline);
610 }
611
612 /// Returns true if the inline qualifier for \c Name is redundant.
613 bool isRedundantInlineQualifierFor(DeclarationName Name) const {
614 if (!isInline())
615 return false;
616 auto X = lookup(Name);
617 // We should not perform a lookup within a transparent context, so find a
618 // non-transparent parent context.
619 auto Y = getParent()->getNonTransparentContext()->lookup(Name);
620 return std::distance(X.begin(), X.end()) ==
621 std::distance(Y.begin(), Y.end());
622 }
623
624 /// Get the original (first) namespace declaration.
625 NamespaceDecl *getOriginalNamespace();
626
627 /// Get the original (first) namespace declaration.
628 const NamespaceDecl *getOriginalNamespace() const;
629
630 /// Return true if this declaration is an original (first) declaration
631 /// of the namespace. This is false for non-original (subsequent) namespace
632 /// declarations and anonymous namespaces.
633 bool isOriginalNamespace() const;
634
635 /// Retrieve the anonymous namespace nested inside this namespace,
636 /// if any.
637 NamespaceDecl *getAnonymousNamespace() const {
638 return getOriginalNamespace()->AnonOrFirstNamespaceAndInline.getPointer();
639 }
640
641 void setAnonymousNamespace(NamespaceDecl *D) {
642 getOriginalNamespace()->AnonOrFirstNamespaceAndInline.setPointer(D);
643 }
644
645 /// Retrieves the canonical declaration of this namespace.
646 NamespaceDecl *getCanonicalDecl() override {
647 return getOriginalNamespace();
648 }
649 const NamespaceDecl *getCanonicalDecl() const {
650 return getOriginalNamespace();
651 }
652
653 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
654 return SourceRange(LocStart, RBraceLoc);
655 }
656
657 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return LocStart; }
658 SourceLocation getRBraceLoc() const { return RBraceLoc; }
659 void setLocStart(SourceLocation L) { LocStart = L; }
660 void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
661
662 // Implement isa/cast/dyncast/etc.
663 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
664 static bool classofKind(Kind K) { return K == Namespace; }
665 static DeclContext *castToDeclContext(const NamespaceDecl *D) {
666 return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
667 }
668 static NamespaceDecl *castFromDeclContext(const DeclContext *DC) {
669 return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
670 }
671};
672
673/// Represent the declaration of a variable (in which case it is
674/// an lvalue) a function (in which case it is a function designator) or
675/// an enum constant.
676class ValueDecl : public NamedDecl {
677 QualType DeclType;
678
679 void anchor() override;
680
681protected:
682 ValueDecl(Kind DK, DeclContext *DC, SourceLocation L,
683 DeclarationName N, QualType T)
684 : NamedDecl(DK, DC, L, N), DeclType(T) {}
685
686public:
687 QualType getType() const { return DeclType; }
688 void setType(QualType newType) { DeclType = newType; }
689
690 /// Determine whether this symbol is weakly-imported,
691 /// or declared with the weak or weak-ref attr.
692 bool isWeak() const;
693
694 // Implement isa/cast/dyncast/etc.
695 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
696 static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; }
697};
698
699/// A struct with extended info about a syntactic
700/// name qualifier, to be used for the case of out-of-line declarations.
701struct QualifierInfo {
702 NestedNameSpecifierLoc QualifierLoc;
703
704 /// The number of "outer" template parameter lists.
705 /// The count includes all of the template parameter lists that were matched
706 /// against the template-ids occurring into the NNS and possibly (in the
707 /// case of an explicit specialization) a final "template <>".
708 unsigned NumTemplParamLists = 0;
709
710 /// A new-allocated array of size NumTemplParamLists,
711 /// containing pointers to the "outer" template parameter lists.
712 /// It includes all of the template parameter lists that were matched
713 /// against the template-ids occurring into the NNS and possibly (in the
714 /// case of an explicit specialization) a final "template <>".
715 TemplateParameterList** TemplParamLists = nullptr;
716
717 QualifierInfo() = default;
718 QualifierInfo(const QualifierInfo &) = delete;
719 QualifierInfo& operator=(const QualifierInfo &) = delete;
720
721 /// Sets info about "outer" template parameter lists.
722 void setTemplateParameterListsInfo(ASTContext &Context,
723 ArrayRef<TemplateParameterList *> TPLists);
724};
725
726/// Represents a ValueDecl that came out of a declarator.
727/// Contains type source information through TypeSourceInfo.
728class DeclaratorDecl : public ValueDecl {
729 // A struct representing a TInfo, a trailing requires-clause and a syntactic
730 // qualifier, to be used for the (uncommon) case of out-of-line declarations
731 // and constrained function decls.
732 struct ExtInfo : public QualifierInfo {
733 TypeSourceInfo *TInfo;
734 Expr *TrailingRequiresClause = nullptr;
735 };
736
737 llvm::PointerUnion<TypeSourceInfo *, ExtInfo *> DeclInfo;
738
739 /// The start of the source range for this declaration,
740 /// ignoring outer template declarations.
741 SourceLocation InnerLocStart;
742
743 bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); }
744 ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); }
745 const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); }
746
747protected:
748 DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L,
749 DeclarationName N, QualType T, TypeSourceInfo *TInfo,
750 SourceLocation StartL)
751 : ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo), InnerLocStart(StartL) {}
752
753public:
754 friend class ASTDeclReader;
755 friend class ASTDeclWriter;
756
757 TypeSourceInfo *getTypeSourceInfo() const {
758 return hasExtInfo()
759 ? getExtInfo()->TInfo
760 : DeclInfo.get<TypeSourceInfo*>();
761 }
762
763 void setTypeSourceInfo(TypeSourceInfo *TI) {
764 if (hasExtInfo())
765 getExtInfo()->TInfo = TI;
766 else
767 DeclInfo = TI;
768 }
769
770 /// Return start of source range ignoring outer template declarations.
771 SourceLocation getInnerLocStart() const { return InnerLocStart; }
772 void setInnerLocStart(SourceLocation L) { InnerLocStart = L; }
773
774 /// Return start of source range taking into account any outer template
775 /// declarations.
776 SourceLocation getOuterLocStart() const;
777
778 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
779
780 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
781 return getOuterLocStart();
782 }
783
784 /// Retrieve the nested-name-specifier that qualifies the name of this
785 /// declaration, if it was present in the source.
786 NestedNameSpecifier *getQualifier() const {
787 return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
788 : nullptr;
789 }
790
791 /// Retrieve the nested-name-specifier (with source-location
792 /// information) that qualifies the name of this declaration, if it was
793 /// present in the source.
794 NestedNameSpecifierLoc getQualifierLoc() const {
795 return hasExtInfo() ? getExtInfo()->QualifierLoc
796 : NestedNameSpecifierLoc();
797 }
798
799 void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
800
801 /// \brief Get the constraint-expression introduced by the trailing
802 /// requires-clause in the function/member declaration, or null if no
803 /// requires-clause was provided.
804 Expr *getTrailingRequiresClause() {
805 return hasExtInfo() ? getExtInfo()->TrailingRequiresClause
806 : nullptr;
807 }
808
809 const Expr *getTrailingRequiresClause() const {
810 return hasExtInfo() ? getExtInfo()->TrailingRequiresClause
811 : nullptr;
812 }
813
814 void setTrailingRequiresClause(Expr *TrailingRequiresClause);
815
816 unsigned getNumTemplateParameterLists() const {
817 return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
818 }
819
820 TemplateParameterList *getTemplateParameterList(unsigned index) const {
821 assert(index < getNumTemplateParameterLists())(static_cast<void> (0));
822 return getExtInfo()->TemplParamLists[index];
823 }
824
825 void setTemplateParameterListsInfo(ASTContext &Context,
826 ArrayRef<TemplateParameterList *> TPLists);
827
828 SourceLocation getTypeSpecStartLoc() const;
829 SourceLocation getTypeSpecEndLoc() const;
830
831 // Implement isa/cast/dyncast/etc.
832 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
833 static bool classofKind(Kind K) {
834 return K >= firstDeclarator && K <= lastDeclarator;
835 }
836};
837
838/// Structure used to store a statement, the constant value to
839/// which it was evaluated (if any), and whether or not the statement
840/// is an integral constant expression (if known).
841struct EvaluatedStmt {
842 /// Whether this statement was already evaluated.
843 bool WasEvaluated : 1;
844
845 /// Whether this statement is being evaluated.
846 bool IsEvaluating : 1;
847
848 /// Whether this variable is known to have constant initialization. This is
849 /// currently only computed in C++, for static / thread storage duration
850 /// variables that might have constant initialization and for variables that
851 /// are usable in constant expressions.
852 bool HasConstantInitialization : 1;
853
854 /// Whether this variable is known to have constant destruction. That is,
855 /// whether running the destructor on the initial value is a side-effect
856 /// (and doesn't inspect any state that might have changed during program
857 /// execution). This is currently only computed if the destructor is
858 /// non-trivial.
859 bool HasConstantDestruction : 1;
860
861 /// In C++98, whether the initializer is an ICE. This affects whether the
862 /// variable is usable in constant expressions.
863 bool HasICEInit : 1;
864 bool CheckedForICEInit : 1;
865
866 Stmt *Value;
867 APValue Evaluated;
868
869 EvaluatedStmt()
870 : WasEvaluated(false), IsEvaluating(false),
871 HasConstantInitialization(false), HasConstantDestruction(false),
872 HasICEInit(false), CheckedForICEInit(false) {}
873};
874
875/// Represents a variable declaration or definition.
876class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
877public:
878 /// Initialization styles.
879 enum InitializationStyle {
880 /// C-style initialization with assignment
881 CInit,
882
883 /// Call-style initialization (C++98)
884 CallInit,
885
886 /// Direct list-initialization (C++11)
887 ListInit
888 };
889
890 /// Kinds of thread-local storage.
891 enum TLSKind {
892 /// Not a TLS variable.
893 TLS_None,
894
895 /// TLS with a known-constant initializer.
896 TLS_Static,
897
898 /// TLS with a dynamic initializer.
899 TLS_Dynamic
900 };
901
902 /// Return the string used to specify the storage class \p SC.
903 ///
904 /// It is illegal to call this function with SC == None.
905 static const char *getStorageClassSpecifierString(StorageClass SC);
906
907protected:
908 // A pointer union of Stmt * and EvaluatedStmt *. When an EvaluatedStmt, we
909 // have allocated the auxiliary struct of information there.
910 //
911 // TODO: It is a bit unfortunate to use a PointerUnion inside the VarDecl for
912 // this as *many* VarDecls are ParmVarDecls that don't have default
913 // arguments. We could save some space by moving this pointer union to be
914 // allocated in trailing space when necessary.
915 using InitType = llvm::PointerUnion<Stmt *, EvaluatedStmt *>;
916
917 /// The initializer for this variable or, for a ParmVarDecl, the
918 /// C++ default argument.
919 mutable InitType Init;
920
921private:
922 friend class ASTDeclReader;
923 friend class ASTNodeImporter;
924 friend class StmtIteratorBase;
925
926 class VarDeclBitfields {
927 friend class ASTDeclReader;
928 friend class VarDecl;
929
930 unsigned SClass : 3;
931 unsigned TSCSpec : 2;
932 unsigned InitStyle : 2;
933
934 /// Whether this variable is an ARC pseudo-__strong variable; see
935 /// isARCPseudoStrong() for details.
936 unsigned ARCPseudoStrong : 1;
937 };
938 enum { NumVarDeclBits = 8 };
939
940protected:
941 enum { NumParameterIndexBits = 8 };
942
943 enum DefaultArgKind {
944 DAK_None,
945 DAK_Unparsed,
946 DAK_Uninstantiated,
947 DAK_Normal
948 };
949
950 enum { NumScopeDepthOrObjCQualsBits = 7 };
951
952 class ParmVarDeclBitfields {
953 friend class ASTDeclReader;
954 friend class ParmVarDecl;
955
956 unsigned : NumVarDeclBits;
957
958 /// Whether this parameter inherits a default argument from a
959 /// prior declaration.
960 unsigned HasInheritedDefaultArg : 1;
961
962 /// Describes the kind of default argument for this parameter. By default
963 /// this is none. If this is normal, then the default argument is stored in
964 /// the \c VarDecl initializer expression unless we were unable to parse
965 /// (even an invalid) expression for the default argument.
966 unsigned DefaultArgKind : 2;
967
968 /// Whether this parameter undergoes K&R argument promotion.
969 unsigned IsKNRPromoted : 1;
970
971 /// Whether this parameter is an ObjC method parameter or not.
972 unsigned IsObjCMethodParam : 1;
973
974 /// If IsObjCMethodParam, a Decl::ObjCDeclQualifier.
975 /// Otherwise, the number of function parameter scopes enclosing
976 /// the function parameter scope in which this parameter was
977 /// declared.
978 unsigned ScopeDepthOrObjCQuals : NumScopeDepthOrObjCQualsBits;
979
980 /// The number of parameters preceding this parameter in the
981 /// function parameter scope in which it was declared.
982 unsigned ParameterIndex : NumParameterIndexBits;
983 };
984
985 class NonParmVarDeclBitfields {
986 friend class ASTDeclReader;
987 friend class ImplicitParamDecl;
988 friend class VarDecl;
989
990 unsigned : NumVarDeclBits;
991
992 // FIXME: We need something similar to CXXRecordDecl::DefinitionData.
993 /// Whether this variable is a definition which was demoted due to
994 /// module merge.
995 unsigned IsThisDeclarationADemotedDefinition : 1;
996
997 /// Whether this variable is the exception variable in a C++ catch
998 /// or an Objective-C @catch statement.
999 unsigned ExceptionVar : 1;
1000
1001 /// Whether this local variable could be allocated in the return
1002 /// slot of its function, enabling the named return value optimization
1003 /// (NRVO).
1004 unsigned NRVOVariable : 1;
1005
1006 /// Whether this variable is the for-range-declaration in a C++0x
1007 /// for-range statement.
1008 unsigned CXXForRangeDecl : 1;
1009
1010 /// Whether this variable is the for-in loop declaration in Objective-C.
1011 unsigned ObjCForDecl : 1;
1012
1013 /// Whether this variable is (C++1z) inline.
1014 unsigned IsInline : 1;
1015
1016 /// Whether this variable has (C++1z) inline explicitly specified.
1017 unsigned IsInlineSpecified : 1;
1018
1019 /// Whether this variable is (C++0x) constexpr.
1020 unsigned IsConstexpr : 1;
1021
1022 /// Whether this variable is the implicit variable for a lambda
1023 /// init-capture.
1024 unsigned IsInitCapture : 1;
1025
1026 /// Whether this local extern variable's previous declaration was
1027 /// declared in the same block scope. This controls whether we should merge
1028 /// the type of this declaration with its previous declaration.
1029 unsigned PreviousDeclInSameBlockScope : 1;
1030
1031 /// Defines kind of the ImplicitParamDecl: 'this', 'self', 'vtt', '_cmd' or
1032 /// something else.
1033 unsigned ImplicitParamKind : 3;
1034
1035 unsigned EscapingByref : 1;
1036 };
1037
1038 union {
1039 unsigned AllBits;
1040 VarDeclBitfields VarDeclBits;
1041 ParmVarDeclBitfields ParmVarDeclBits;
1042 NonParmVarDeclBitfields NonParmVarDeclBits;
1043 };
1044
1045 VarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1046 SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
1047 TypeSourceInfo *TInfo, StorageClass SC);
1048
1049 using redeclarable_base = Redeclarable<VarDecl>;
1050
1051 VarDecl *getNextRedeclarationImpl() override {
1052 return getNextRedeclaration();
1053 }
1054
1055 VarDecl *getPreviousDeclImpl() override {
1056 return getPreviousDecl();
1057 }
1058
1059 VarDecl *getMostRecentDeclImpl() override {
1060 return getMostRecentDecl();
1061 }
1062
1063public:
1064 using redecl_range = redeclarable_base::redecl_range;
1065 using redecl_iterator = redeclarable_base::redecl_iterator;
1066
1067 using redeclarable_base::redecls_begin;
1068 using redeclarable_base::redecls_end;
1069 using redeclarable_base::redecls;
1070 using redeclarable_base::getPreviousDecl;
1071 using redeclarable_base::getMostRecentDecl;
1072 using redeclarable_base::isFirstDecl;
1073
1074 static VarDecl *Create(ASTContext &C, DeclContext *DC,
1075 SourceLocation StartLoc, SourceLocation IdLoc,
1076 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1077 StorageClass S);
1078
1079 static VarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1080
1081 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
1082
1083 /// Returns the storage class as written in the source. For the
1084 /// computed linkage of symbol, see getLinkage.
1085 StorageClass getStorageClass() const {
1086 return (StorageClass) VarDeclBits.SClass;
1087 }
1088 void setStorageClass(StorageClass SC);
1089
1090 void setTSCSpec(ThreadStorageClassSpecifier TSC) {
1091 VarDeclBits.TSCSpec = TSC;
1092 assert(VarDeclBits.TSCSpec == TSC && "truncation")(static_cast<void> (0));
1093 }
1094 ThreadStorageClassSpecifier getTSCSpec() const {
1095 return static_cast<ThreadStorageClassSpecifier>(VarDeclBits.TSCSpec);
1096 }
1097 TLSKind getTLSKind() const;
1098
1099 /// Returns true if a variable with function scope is a non-static local
1100 /// variable.
1101 bool hasLocalStorage() const {
1102 if (getStorageClass() == SC_None) {
1103 // OpenCL v1.2 s6.5.3: The __constant or constant address space name is
1104 // used to describe variables allocated in global memory and which are
1105 // accessed inside a kernel(s) as read-only variables. As such, variables
1106 // in constant address space cannot have local storage.
1107 if (getType().getAddressSpace() == LangAS::opencl_constant)
1108 return false;
1109 // Second check is for C++11 [dcl.stc]p4.
1110 return !isFileVarDecl() && getTSCSpec() == TSCS_unspecified;
1111 }
1112
1113 // Global Named Register (GNU extension)
1114 if (getStorageClass() == SC_Register && !isLocalVarDeclOrParm())
1115 return false;
1116
1117 // Return true for: Auto, Register.
1118 // Return false for: Extern, Static, PrivateExtern, OpenCLWorkGroupLocal.
1119
1120 return getStorageClass() >= SC_Auto;
1121 }
1122
1123 /// Returns true if a variable with function scope is a static local
1124 /// variable.
1125 bool isStaticLocal() const {
1126 return (getStorageClass() == SC_Static ||
1127 // C++11 [dcl.stc]p4
1128 (getStorageClass() == SC_None && getTSCSpec() == TSCS_thread_local))
1129 && !isFileVarDecl();
1130 }
1131
1132 /// Returns true if a variable has extern or __private_extern__
1133 /// storage.
1134 bool hasExternalStorage() const {
1135 return getStorageClass() == SC_Extern ||
1136 getStorageClass() == SC_PrivateExtern;
1137 }
1138
1139 /// Returns true for all variables that do not have local storage.
1140 ///
1141 /// This includes all global variables as well as static variables declared
1142 /// within a function.
1143 bool hasGlobalStorage() const { return !hasLocalStorage(); }
1144
1145 /// Get the storage duration of this variable, per C++ [basic.stc].
1146 StorageDuration getStorageDuration() const {
1147 return hasLocalStorage() ? SD_Automatic :
1148 getTSCSpec() ? SD_Thread : SD_Static;
1149 }
1150
1151 /// Compute the language linkage.
1152 LanguageLinkage getLanguageLinkage() const;
1153
1154 /// Determines whether this variable is a variable with external, C linkage.
1155 bool isExternC() const;
1156
1157 /// Determines whether this variable's context is, or is nested within,
1158 /// a C++ extern "C" linkage spec.
1159 bool isInExternCContext() const;
1160
1161 /// Determines whether this variable's context is, or is nested within,
1162 /// a C++ extern "C++" linkage spec.
1163 bool isInExternCXXContext() const;
1164
1165 /// Returns true for local variable declarations other than parameters.
1166 /// Note that this includes static variables inside of functions. It also
1167 /// includes variables inside blocks.
1168 ///
1169 /// void foo() { int x; static int y; extern int z; }
1170 bool isLocalVarDecl() const {
1171 if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1172 return false;
1173 if (const DeclContext *DC = getLexicalDeclContext())
1174 return DC->getRedeclContext()->isFunctionOrMethod();
1175 return false;
1176 }
1177
1178 /// Similar to isLocalVarDecl but also includes parameters.
1179 bool isLocalVarDeclOrParm() const {
1180 return isLocalVarDecl() || getKind() == Decl::ParmVar;
1181 }
1182
1183 /// Similar to isLocalVarDecl, but excludes variables declared in blocks.
1184 bool isFunctionOrMethodVarDecl() const {
1185 if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1186 return false;
1187 const DeclContext *DC = getLexicalDeclContext()->getRedeclContext();
1188 return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block;
1189 }
1190
1191 /// Determines whether this is a static data member.
1192 ///
1193 /// This will only be true in C++, and applies to, e.g., the
1194 /// variable 'x' in:
1195 /// \code
1196 /// struct S {
1197 /// static int x;
1198 /// };
1199 /// \endcode
1200 bool isStaticDataMember() const {
1201 // If it wasn't static, it would be a FieldDecl.
1202 return getKind() != Decl::ParmVar && getDeclContext()->isRecord();
1203 }
1204
1205 VarDecl *getCanonicalDecl() override;
1206 const VarDecl *getCanonicalDecl() const {
1207 return const_cast<VarDecl*>(this)->getCanonicalDecl();
1208 }
1209
1210 enum DefinitionKind {
1211 /// This declaration is only a declaration.
1212 DeclarationOnly,
1213
1214 /// This declaration is a tentative definition.
1215 TentativeDefinition,
1216
1217 /// This declaration is definitely a definition.
1218 Definition
1219 };
1220
1221 /// Check whether this declaration is a definition. If this could be
1222 /// a tentative definition (in C), don't check whether there's an overriding
1223 /// definition.
1224 DefinitionKind isThisDeclarationADefinition(ASTContext &) const;
1225 DefinitionKind isThisDeclarationADefinition() const {
1226 return isThisDeclarationADefinition(getASTContext());
1227 }
1228
1229 /// Check whether this variable is defined in this translation unit.
1230 DefinitionKind hasDefinition(ASTContext &) const;
1231 DefinitionKind hasDefinition() const {
1232 return hasDefinition(getASTContext());
1233 }
1234
1235 /// Get the tentative definition that acts as the real definition in a TU.
1236 /// Returns null if there is a proper definition available.
1237 VarDecl *getActingDefinition();
1238 const VarDecl *getActingDefinition() const {
1239 return const_cast<VarDecl*>(this)->getActingDefinition();
1240 }
1241
1242 /// Get the real (not just tentative) definition for this declaration.
1243 VarDecl *getDefinition(ASTContext &);
1244 const VarDecl *getDefinition(ASTContext &C) const {
1245 return const_cast<VarDecl*>(this)->getDefinition(C);
1246 }
1247 VarDecl *getDefinition() {
1248 return getDefinition(getASTContext());
1249 }
1250 const VarDecl *getDefinition() const {
1251 return const_cast<VarDecl*>(this)->getDefinition();
1252 }
1253
1254 /// Determine whether this is or was instantiated from an out-of-line
1255 /// definition of a static data member.
1256 bool isOutOfLine() const override;
1257
1258 /// Returns true for file scoped variable declaration.
1259 bool isFileVarDecl() const {
1260 Kind K = getKind();
1261 if (K == ParmVar || K == ImplicitParam)
1262 return false;
1263
1264 if (getLexicalDeclContext()->getRedeclContext()->isFileContext())
1265 return true;
1266
1267 if (isStaticDataMember())
1268 return true;
1269
1270 return false;
1271 }
1272
1273 /// Get the initializer for this variable, no matter which
1274 /// declaration it is attached to.
1275 const Expr *getAnyInitializer() const {
1276 const VarDecl *D;
1277 return getAnyInitializer(D);
1278 }
1279
1280 /// Get the initializer for this variable, no matter which
1281 /// declaration it is attached to. Also get that declaration.
1282 const Expr *getAnyInitializer(const VarDecl *&D) const;
1283
1284 bool hasInit() const;
1285 const Expr *getInit() const {
1286 return const_cast<VarDecl *>(this)->getInit();
1287 }
1288 Expr *getInit();
1289
1290 /// Retrieve the address of the initializer expression.
1291 Stmt **getInitAddress();
1292
1293 void setInit(Expr *I);
1294
1295 /// Get the initializing declaration of this variable, if any. This is
1296 /// usually the definition, except that for a static data member it can be
1297 /// the in-class declaration.
1298 VarDecl *getInitializingDeclaration();
1299 const VarDecl *getInitializingDeclaration() const {
1300 return const_cast<VarDecl *>(this)->getInitializingDeclaration();
1301 }
1302
1303 /// Determine whether this variable's value might be usable in a
1304 /// constant expression, according to the relevant language standard.
1305 /// This only checks properties of the declaration, and does not check
1306 /// whether the initializer is in fact a constant expression.
1307 ///
1308 /// This corresponds to C++20 [expr.const]p3's notion of a
1309 /// "potentially-constant" variable.
1310 bool mightBeUsableInConstantExpressions(const ASTContext &C) const;
1311
1312 /// Determine whether this variable's value can be used in a
1313 /// constant expression, according to the relevant language standard,
1314 /// including checking whether it was initialized by a constant expression.
1315 bool isUsableInConstantExpressions(const ASTContext &C) const;
1316
1317 EvaluatedStmt *ensureEvaluatedStmt() const;
1318 EvaluatedStmt *getEvaluatedStmt() const;
1319
1320 /// Attempt to evaluate the value of the initializer attached to this
1321 /// declaration, and produce notes explaining why it cannot be evaluated.
1322 /// Returns a pointer to the value if evaluation succeeded, 0 otherwise.
1323 APValue *evaluateValue() const;
1324
1325private:
1326 APValue *evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
1327 bool IsConstantInitialization) const;
1328
1329public:
1330 /// Return the already-evaluated value of this variable's
1331 /// initializer, or NULL if the value is not yet known. Returns pointer
1332 /// to untyped APValue if the value could not be evaluated.
1333 APValue *getEvaluatedValue() const;
1334
1335 /// Evaluate the destruction of this variable to determine if it constitutes
1336 /// constant destruction.
1337 ///
1338 /// \pre hasConstantInitialization()
1339 /// \return \c true if this variable has constant destruction, \c false if
1340 /// not.
1341 bool evaluateDestruction(SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
1342
1343 /// Determine whether this variable has constant initialization.
1344 ///
1345 /// This is only set in two cases: when the language semantics require
1346 /// constant initialization (globals in C and some globals in C++), and when
1347 /// the variable is usable in constant expressions (constexpr, const int, and
1348 /// reference variables in C++).
1349 bool hasConstantInitialization() const;
1350
1351 /// Determine whether the initializer of this variable is an integer constant
1352 /// expression. For use in C++98, where this affects whether the variable is
1353 /// usable in constant expressions.
1354 bool hasICEInitializer(const ASTContext &Context) const;
1355
1356 /// Evaluate the initializer of this variable to determine whether it's a
1357 /// constant initializer. Should only be called once, after completing the
1358 /// definition of the variable.
1359 bool checkForConstantInitialization(
1360 SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
1361
1362 void setInitStyle(InitializationStyle Style) {
1363 VarDeclBits.InitStyle = Style;
1364 }
1365
1366 /// The style of initialization for this declaration.
1367 ///
1368 /// C-style initialization is "int x = 1;". Call-style initialization is
1369 /// a C++98 direct-initializer, e.g. "int x(1);". The Init expression will be
1370 /// the expression inside the parens or a "ClassType(a,b,c)" class constructor
1371 /// expression for class types. List-style initialization is C++11 syntax,
1372 /// e.g. "int x{1};". Clients can distinguish between different forms of
1373 /// initialization by checking this value. In particular, "int x = {1};" is
1374 /// C-style, "int x({1})" is call-style, and "int x{1};" is list-style; the
1375 /// Init expression in all three cases is an InitListExpr.
1376 InitializationStyle getInitStyle() const {
1377 return static_cast<InitializationStyle>(VarDeclBits.InitStyle);
1378 }
1379
1380 /// Whether the initializer is a direct-initializer (list or call).
1381 bool isDirectInit() const {
1382 return getInitStyle() != CInit;
1383 }
1384
1385 /// If this definition should pretend to be a declaration.
1386 bool isThisDeclarationADemotedDefinition() const {
1387 return isa<ParmVarDecl>(this) ? false :
1388 NonParmVarDeclBits.IsThisDeclarationADemotedDefinition;
1389 }
1390
1391 /// This is a definition which should be demoted to a declaration.
1392 ///
1393 /// In some cases (mostly module merging) we can end up with two visible
1394 /// definitions one of which needs to be demoted to a declaration to keep
1395 /// the AST invariants.
1396 void demoteThisDefinitionToDeclaration() {
1397 assert(isThisDeclarationADefinition() && "Not a definition!")(static_cast<void> (0));
1398 assert(!isa<ParmVarDecl>(this) && "Cannot demote ParmVarDecls!")(static_cast<void> (0));
1399 NonParmVarDeclBits.IsThisDeclarationADemotedDefinition = 1;
1400 }
1401
1402 /// Determine whether this variable is the exception variable in a
1403 /// C++ catch statememt or an Objective-C \@catch statement.
1404 bool isExceptionVariable() const {
1405 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.ExceptionVar;
1406 }
1407 void setExceptionVariable(bool EV) {
1408 assert(!isa<ParmVarDecl>(this))(static_cast<void> (0));
1409 NonParmVarDeclBits.ExceptionVar = EV;
1410 }
1411
1412 /// Determine whether this local variable can be used with the named
1413 /// return value optimization (NRVO).
1414 ///
1415 /// The named return value optimization (NRVO) works by marking certain
1416 /// non-volatile local variables of class type as NRVO objects. These
1417 /// locals can be allocated within the return slot of their containing
1418 /// function, in which case there is no need to copy the object to the
1419 /// return slot when returning from the function. Within the function body,
1420 /// each return that returns the NRVO object will have this variable as its
1421 /// NRVO candidate.
1422 bool isNRVOVariable() const {
1423 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.NRVOVariable;
1424 }
1425 void setNRVOVariable(bool NRVO) {
1426 assert(!isa<ParmVarDecl>(this))(static_cast<void> (0));
1427 NonParmVarDeclBits.NRVOVariable = NRVO;
1428 }
1429
1430 /// Determine whether this variable is the for-range-declaration in
1431 /// a C++0x for-range statement.
1432 bool isCXXForRangeDecl() const {
1433 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.CXXForRangeDecl;
1434 }
1435 void setCXXForRangeDecl(bool FRD) {
1436 assert(!isa<ParmVarDecl>(this))(static_cast<void> (0));
1437 NonParmVarDeclBits.CXXForRangeDecl = FRD;
1438 }
1439
1440 /// Determine whether this variable is a for-loop declaration for a
1441 /// for-in statement in Objective-C.
1442 bool isObjCForDecl() const {
1443 return NonParmVarDeclBits.ObjCForDecl;
1444 }
1445
1446 void setObjCForDecl(bool FRD) {
1447 NonParmVarDeclBits.ObjCForDecl = FRD;
1448 }
1449
1450 /// Determine whether this variable is an ARC pseudo-__strong variable. A
1451 /// pseudo-__strong variable has a __strong-qualified type but does not
1452 /// actually retain the object written into it. Generally such variables are
1453 /// also 'const' for safety. There are 3 cases where this will be set, 1) if
1454 /// the variable is annotated with the objc_externally_retained attribute, 2)
1455 /// if its 'self' in a non-init method, or 3) if its the variable in an for-in
1456 /// loop.
1457 bool isARCPseudoStrong() const { return VarDeclBits.ARCPseudoStrong; }
1458 void setARCPseudoStrong(bool PS) { VarDeclBits.ARCPseudoStrong = PS; }
1459
1460 /// Whether this variable is (C++1z) inline.
1461 bool isInline() const {
1462 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInline;
1463 }
1464 bool isInlineSpecified() const {
1465 return isa<ParmVarDecl>(this) ? false
1466 : NonParmVarDeclBits.IsInlineSpecified;
1467 }
1468 void setInlineSpecified() {
1469 assert(!isa<ParmVarDecl>(this))(static_cast<void> (0));
1470 NonParmVarDeclBits.IsInline = true;
1471 NonParmVarDeclBits.IsInlineSpecified = true;
1472 }
1473 void setImplicitlyInline() {
1474 assert(!isa<ParmVarDecl>(this))(static_cast<void> (0));
1475 NonParmVarDeclBits.IsInline = true;
1476 }
1477
1478 /// Whether this variable is (C++11) constexpr.
1479 bool isConstexpr() const {
1480 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsConstexpr;
1481 }
1482 void setConstexpr(bool IC) {
1483 assert(!isa<ParmVarDecl>(this))(static_cast<void> (0));
1484 NonParmVarDeclBits.IsConstexpr = IC;
1485 }
1486
1487 /// Whether this variable is the implicit variable for a lambda init-capture.
1488 bool isInitCapture() const {
1489 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInitCapture;
1490 }
1491 void setInitCapture(bool IC) {
1492 assert(!isa<ParmVarDecl>(this))(static_cast<void> (0));
1493 NonParmVarDeclBits.IsInitCapture = IC;
1494 }
1495
1496 /// Determine whether this variable is actually a function parameter pack or
1497 /// init-capture pack.
1498 bool isParameterPack() const;
1499
1500 /// Whether this local extern variable declaration's previous declaration
1501 /// was declared in the same block scope. Only correct in C++.
1502 bool isPreviousDeclInSameBlockScope() const {
1503 return isa<ParmVarDecl>(this)
1504 ? false
1505 : NonParmVarDeclBits.PreviousDeclInSameBlockScope;
1506 }
1507 void setPreviousDeclInSameBlockScope(bool Same) {
1508 assert(!isa<ParmVarDecl>(this))(static_cast<void> (0));
1509 NonParmVarDeclBits.PreviousDeclInSameBlockScope = Same;
1510 }
1511
1512 /// Indicates the capture is a __block variable that is captured by a block
1513 /// that can potentially escape (a block for which BlockDecl::doesNotEscape
1514 /// returns false).
1515 bool isEscapingByref() const;
1516
1517 /// Indicates the capture is a __block variable that is never captured by an
1518 /// escaping block.
1519 bool isNonEscapingByref() const;
1520
1521 void setEscapingByref() {
1522 NonParmVarDeclBits.EscapingByref = true;
1523 }
1524
1525 /// Determines if this variable's alignment is dependent.
1526 bool hasDependentAlignment() const;
1527
1528 /// Retrieve the variable declaration from which this variable could
1529 /// be instantiated, if it is an instantiation (rather than a non-template).
1530 VarDecl *getTemplateInstantiationPattern() const;
1531
1532 /// If this variable is an instantiated static data member of a
1533 /// class template specialization, returns the templated static data member
1534 /// from which it was instantiated.
1535 VarDecl *getInstantiatedFromStaticDataMember() const;
1536
1537 /// If this variable is an instantiation of a variable template or a
1538 /// static data member of a class template, determine what kind of
1539 /// template specialization or instantiation this is.
1540 TemplateSpecializationKind getTemplateSpecializationKind() const;
1541
1542 /// Get the template specialization kind of this variable for the purposes of
1543 /// template instantiation. This differs from getTemplateSpecializationKind()
1544 /// for an instantiation of a class-scope explicit specialization.
1545 TemplateSpecializationKind
1546 getTemplateSpecializationKindForInstantiation() const;
1547
1548 /// If this variable is an instantiation of a variable template or a
1549 /// static data member of a class template, determine its point of
1550 /// instantiation.
1551 SourceLocation getPointOfInstantiation() const;
1552
1553 /// If this variable is an instantiation of a static data member of a
1554 /// class template specialization, retrieves the member specialization
1555 /// information.
1556 MemberSpecializationInfo *getMemberSpecializationInfo() const;
1557
1558 /// For a static data member that was instantiated from a static
1559 /// data member of a class template, set the template specialiation kind.
1560 void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
1561 SourceLocation PointOfInstantiation = SourceLocation());
1562
1563 /// Specify that this variable is an instantiation of the
1564 /// static data member VD.
1565 void setInstantiationOfStaticDataMember(VarDecl *VD,
1566 TemplateSpecializationKind TSK);
1567
1568 /// Retrieves the variable template that is described by this
1569 /// variable declaration.
1570 ///
1571 /// Every variable template is represented as a VarTemplateDecl and a
1572 /// VarDecl. The former contains template properties (such as
1573 /// the template parameter lists) while the latter contains the
1574 /// actual description of the template's
1575 /// contents. VarTemplateDecl::getTemplatedDecl() retrieves the
1576 /// VarDecl that from a VarTemplateDecl, while
1577 /// getDescribedVarTemplate() retrieves the VarTemplateDecl from
1578 /// a VarDecl.
1579 VarTemplateDecl *getDescribedVarTemplate() const;
1580
1581 void setDescribedVarTemplate(VarTemplateDecl *Template);
1582
1583 // Is this variable known to have a definition somewhere in the complete
1584 // program? This may be true even if the declaration has internal linkage and
1585 // has no definition within this source file.
1586 bool isKnownToBeDefined() const;
1587
1588 /// Is destruction of this variable entirely suppressed? If so, the variable
1589 /// need not have a usable destructor at all.
1590 bool isNoDestroy(const ASTContext &) const;
1591
1592 /// Would the destruction of this variable have any effect, and if so, what
1593 /// kind?
1594 QualType::DestructionKind needsDestruction(const ASTContext &Ctx) const;
1595
1596 // Implement isa/cast/dyncast/etc.
1597 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1598 static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; }
1599};
1600
1601class ImplicitParamDecl : public VarDecl {
1602 void anchor() override;
1603
1604public:
1605 /// Defines the kind of the implicit parameter: is this an implicit parameter
1606 /// with pointer to 'this', 'self', '_cmd', virtual table pointers, captured
1607 /// context or something else.
1608 enum ImplicitParamKind : unsigned {
1609 /// Parameter for Objective-C 'self' argument
1610 ObjCSelf,
1611
1612 /// Parameter for Objective-C '_cmd' argument
1613 ObjCCmd,
1614
1615 /// Parameter for C++ 'this' argument
1616 CXXThis,
1617
1618 /// Parameter for C++ virtual table pointers
1619 CXXVTT,
1620
1621 /// Parameter for captured context
1622 CapturedContext,
1623
1624 /// Other implicit parameter
1625 Other,
1626 };
1627
1628 /// Create implicit parameter.
1629 static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC,
1630 SourceLocation IdLoc, IdentifierInfo *Id,
1631 QualType T, ImplicitParamKind ParamKind);
1632 static ImplicitParamDecl *Create(ASTContext &C, QualType T,
1633 ImplicitParamKind ParamKind);
1634
1635 static ImplicitParamDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1636
1637 ImplicitParamDecl(ASTContext &C, DeclContext *DC, SourceLocation IdLoc,
1638 IdentifierInfo *Id, QualType Type,
1639 ImplicitParamKind ParamKind)
1640 : VarDecl(ImplicitParam, C, DC, IdLoc, IdLoc, Id, Type,
1641 /*TInfo=*/nullptr, SC_None) {
1642 NonParmVarDeclBits.ImplicitParamKind = ParamKind;
1643 setImplicit();
1644 }
1645
1646 ImplicitParamDecl(ASTContext &C, QualType Type, ImplicitParamKind ParamKind)
1647 : VarDecl(ImplicitParam, C, /*DC=*/nullptr, SourceLocation(),
1648 SourceLocation(), /*Id=*/nullptr, Type,
1649 /*TInfo=*/nullptr, SC_None) {
1650 NonParmVarDeclBits.ImplicitParamKind = ParamKind;
1651 setImplicit();
1652 }
1653
1654 /// Returns the implicit parameter kind.
1655 ImplicitParamKind getParameterKind() const {
1656 return static_cast<ImplicitParamKind>(NonParmVarDeclBits.ImplicitParamKind);
1657 }
1658
1659 // Implement isa/cast/dyncast/etc.
1660 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1661 static bool classofKind(Kind K) { return K == ImplicitParam; }
1662};
1663
1664/// Represents a parameter to a function.
1665class ParmVarDecl : public VarDecl {
1666public:
1667 enum { MaxFunctionScopeDepth = 255 };
1668 enum { MaxFunctionScopeIndex = 255 };
1669
1670protected:
1671 ParmVarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1672 SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
1673 TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
1674 : VarDecl(DK, C, DC, StartLoc, IdLoc, Id, T, TInfo, S) {
1675 assert(ParmVarDeclBits.HasInheritedDefaultArg == false)(static_cast<void> (0));
1676 assert(ParmVarDeclBits.DefaultArgKind == DAK_None)(static_cast<void> (0));
1677 assert(ParmVarDeclBits.IsKNRPromoted == false)(static_cast<void> (0));
1678 assert(ParmVarDeclBits.IsObjCMethodParam == false)(static_cast<void> (0));
1679 setDefaultArg(DefArg);
1680 }
1681
1682public:
1683 static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
1684 SourceLocation StartLoc,
1685 SourceLocation IdLoc, IdentifierInfo *Id,
1686 QualType T, TypeSourceInfo *TInfo,
1687 StorageClass S, Expr *DefArg);
1688
1689 static ParmVarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1690
1691 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
1692
1693 void setObjCMethodScopeInfo(unsigned parameterIndex) {
1694 ParmVarDeclBits.IsObjCMethodParam = true;
1695 setParameterIndex(parameterIndex);
1696 }
1697
1698 void setScopeInfo(unsigned scopeDepth, unsigned parameterIndex) {
1699 assert(!ParmVarDeclBits.IsObjCMethodParam)(static_cast<void> (0));
1700
1701 ParmVarDeclBits.ScopeDepthOrObjCQuals = scopeDepth;
1702 assert(ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth(static_cast<void> (0))
1703 && "truncation!")(static_cast<void> (0));
1704
1705 setParameterIndex(parameterIndex);
1706 }
1707
1708 bool isObjCMethodParameter() const {
1709 return ParmVarDeclBits.IsObjCMethodParam;
1710 }
1711
1712 /// Determines whether this parameter is destroyed in the callee function.
1713 bool isDestroyedInCallee() const;
1714
1715 unsigned getFunctionScopeDepth() const {
1716 if (ParmVarDeclBits.IsObjCMethodParam) return 0;
1717 return ParmVarDeclBits.ScopeDepthOrObjCQuals;
1718 }
1719
1720 static constexpr unsigned getMaxFunctionScopeDepth() {
1721 return (1u << NumScopeDepthOrObjCQualsBits) - 1;
1722 }
1723
1724 /// Returns the index of this parameter in its prototype or method scope.
1725 unsigned getFunctionScopeIndex() const {
1726 return getParameterIndex();
1727 }
1728
1729 ObjCDeclQualifier getObjCDeclQualifier() const {
1730 if (!ParmVarDeclBits.IsObjCMethodParam) return OBJC_TQ_None;
1731 return ObjCDeclQualifier(ParmVarDeclBits.ScopeDepthOrObjCQuals);
1732 }
1733 void setObjCDeclQualifier(ObjCDeclQualifier QTVal) {
1734 assert(ParmVarDeclBits.IsObjCMethodParam)(static_cast<void> (0));
1735 ParmVarDeclBits.ScopeDepthOrObjCQuals = QTVal;
1736 }
1737
1738 /// True if the value passed to this parameter must undergo
1739 /// K&R-style default argument promotion:
1740 ///
1741 /// C99 6.5.2.2.
1742 /// If the expression that denotes the called function has a type
1743 /// that does not include a prototype, the integer promotions are
1744 /// performed on each argument, and arguments that have type float
1745 /// are promoted to double.
1746 bool isKNRPromoted() const {
1747 return ParmVarDeclBits.IsKNRPromoted;
1748 }
1749 void setKNRPromoted(bool promoted) {
1750 ParmVarDeclBits.IsKNRPromoted = promoted;
1751 }
1752
1753 Expr *getDefaultArg();
1754 const Expr *getDefaultArg() const {
1755 return const_cast<ParmVarDecl *>(this)->getDefaultArg();
1756 }
1757
1758 void setDefaultArg(Expr *defarg);
1759
1760 /// Retrieve the source range that covers the entire default
1761 /// argument.
1762 SourceRange getDefaultArgRange() const;
1763 void setUninstantiatedDefaultArg(Expr *arg);
1764 Expr *getUninstantiatedDefaultArg();
1765 const Expr *getUninstantiatedDefaultArg() const {
1766 return const_cast<ParmVarDecl *>(this)->getUninstantiatedDefaultArg();
1767 }
1768
1769 /// Determines whether this parameter has a default argument,
1770 /// either parsed or not.
1771 bool hasDefaultArg() const;
1772
1773 /// Determines whether this parameter has a default argument that has not
1774 /// yet been parsed. This will occur during the processing of a C++ class
1775 /// whose member functions have default arguments, e.g.,
1776 /// @code
1777 /// class X {
1778 /// public:
1779 /// void f(int x = 17); // x has an unparsed default argument now
1780 /// }; // x has a regular default argument now
1781 /// @endcode
1782 bool hasUnparsedDefaultArg() const {
1783 return ParmVarDeclBits.DefaultArgKind == DAK_Unparsed;
1784 }
1785
1786 bool hasUninstantiatedDefaultArg() const {
1787 return ParmVarDeclBits.DefaultArgKind == DAK_Uninstantiated;
1788 }
1789
1790 /// Specify that this parameter has an unparsed default argument.
1791 /// The argument will be replaced with a real default argument via
1792 /// setDefaultArg when the class definition enclosing the function
1793 /// declaration that owns this default argument is completed.
1794 void setUnparsedDefaultArg() {
1795 ParmVarDeclBits.DefaultArgKind = DAK_Unparsed;
1796 }
1797
1798 bool hasInheritedDefaultArg() const {
1799 return ParmVarDeclBits.HasInheritedDefaultArg;
1800 }
1801
1802 void setHasInheritedDefaultArg(bool I = true) {
1803 ParmVarDeclBits.HasInheritedDefaultArg = I;
1804 }
1805
1806 QualType getOriginalType() const;
1807
1808 /// Sets the function declaration that owns this
1809 /// ParmVarDecl. Since ParmVarDecls are often created before the
1810 /// FunctionDecls that own them, this routine is required to update
1811 /// the DeclContext appropriately.
1812 void setOwningFunction(DeclContext *FD) { setDeclContext(FD); }
1813
1814 // Implement isa/cast/dyncast/etc.
1815 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1816 static bool classofKind(Kind K) { return K == ParmVar; }
1817
1818private:
1819 enum { ParameterIndexSentinel = (1 << NumParameterIndexBits) - 1 };
1820
1821 void setParameterIndex(unsigned parameterIndex) {
1822 if (parameterIndex >= ParameterIndexSentinel) {
1823 setParameterIndexLarge(parameterIndex);
1824 return;
1825 }
1826
1827 ParmVarDeclBits.ParameterIndex = parameterIndex;
1828 assert(ParmVarDeclBits.ParameterIndex == parameterIndex && "truncation!")(static_cast<void> (0));
1829 }
1830 unsigned getParameterIndex() const {
1831 unsigned d = ParmVarDeclBits.ParameterIndex;
1832 return d == ParameterIndexSentinel ? getParameterIndexLarge() : d;
1833 }
1834
1835 void setParameterIndexLarge(unsigned parameterIndex);
1836 unsigned getParameterIndexLarge() const;
1837};
1838
1839enum class MultiVersionKind {
1840 None,
1841 Target,
1842 CPUSpecific,
1843 CPUDispatch
1844};
1845
1846/// Represents a function declaration or definition.
1847///
1848/// Since a given function can be declared several times in a program,
1849/// there may be several FunctionDecls that correspond to that
1850/// function. Only one of those FunctionDecls will be found when
1851/// traversing the list of declarations in the context of the
1852/// FunctionDecl (e.g., the translation unit); this FunctionDecl
1853/// contains all of the information known about the function. Other,
1854/// previous declarations of the function are available via the
1855/// getPreviousDecl() chain.
1856class FunctionDecl : public DeclaratorDecl,
1857 public DeclContext,
1858 public Redeclarable<FunctionDecl> {
1859 // This class stores some data in DeclContext::FunctionDeclBits
1860 // to save some space. Use the provided accessors to access it.
1861public:
1862 /// The kind of templated function a FunctionDecl can be.
1863 enum TemplatedKind {
1864 // Not templated.
1865 TK_NonTemplate,
1866 // The pattern in a function template declaration.
1867 TK_FunctionTemplate,
1868 // A non-template function that is an instantiation or explicit
1869 // specialization of a member of a templated class.
1870 TK_MemberSpecialization,
1871 // An instantiation or explicit specialization of a function template.
1872 // Note: this might have been instantiated from a templated class if it
1873 // is a class-scope explicit specialization.
1874 TK_FunctionTemplateSpecialization,
1875 // A function template specialization that hasn't yet been resolved to a
1876 // particular specialized function template.
1877 TK_DependentFunctionTemplateSpecialization
1878 };
1879
1880 /// Stashed information about a defaulted function definition whose body has
1881 /// not yet been lazily generated.
1882 class DefaultedFunctionInfo final
1883 : llvm::TrailingObjects<DefaultedFunctionInfo, DeclAccessPair> {
1884 friend TrailingObjects;
1885 unsigned NumLookups;
1886
1887 public:
1888 static DefaultedFunctionInfo *Create(ASTContext &Context,
1889 ArrayRef<DeclAccessPair> Lookups);
1890 /// Get the unqualified lookup results that should be used in this
1891 /// defaulted function definition.
1892 ArrayRef<DeclAccessPair> getUnqualifiedLookups() const {
1893 return {getTrailingObjects<DeclAccessPair>(), NumLookups};
1894 }
1895 };
1896
1897private:
1898 /// A new[]'d array of pointers to VarDecls for the formal
1899 /// parameters of this function. This is null if a prototype or if there are
1900 /// no formals.
1901 ParmVarDecl **ParamInfo = nullptr;
1902
1903 /// The active member of this union is determined by
1904 /// FunctionDeclBits.HasDefaultedFunctionInfo.
1905 union {
1906 /// The body of the function.
1907 LazyDeclStmtPtr Body;
1908 /// Information about a future defaulted function definition.
1909 DefaultedFunctionInfo *DefaultedInfo;
1910 };
1911
1912 unsigned ODRHash;
1913
1914 /// End part of this FunctionDecl's source range.
1915 ///
1916 /// We could compute the full range in getSourceRange(). However, when we're
1917 /// dealing with a function definition deserialized from a PCH/AST file,
1918 /// we can only compute the full range once the function body has been
1919 /// de-serialized, so it's far better to have the (sometimes-redundant)
1920 /// EndRangeLoc.
1921 SourceLocation EndRangeLoc;
1922
1923 /// The template or declaration that this declaration
1924 /// describes or was instantiated from, respectively.
1925 ///
1926 /// For non-templates, this value will be NULL. For function
1927 /// declarations that describe a function template, this will be a
1928 /// pointer to a FunctionTemplateDecl. For member functions
1929 /// of class template specializations, this will be a MemberSpecializationInfo
1930 /// pointer containing information about the specialization.
1931 /// For function template specializations, this will be a
1932 /// FunctionTemplateSpecializationInfo, which contains information about
1933 /// the template being specialized and the template arguments involved in
1934 /// that specialization.
1935 llvm::PointerUnion<FunctionTemplateDecl *,
1936 MemberSpecializationInfo *,
1937 FunctionTemplateSpecializationInfo *,
1938 DependentFunctionTemplateSpecializationInfo *>
1939 TemplateOrSpecialization;
1940
1941 /// Provides source/type location info for the declaration name embedded in
1942 /// the DeclaratorDecl base class.
1943 DeclarationNameLoc DNLoc;
1944
1945 /// Specify that this function declaration is actually a function
1946 /// template specialization.
1947 ///
1948 /// \param C the ASTContext.
1949 ///
1950 /// \param Template the function template that this function template
1951 /// specialization specializes.
1952 ///
1953 /// \param TemplateArgs the template arguments that produced this
1954 /// function template specialization from the template.
1955 ///
1956 /// \param InsertPos If non-NULL, the position in the function template
1957 /// specialization set where the function template specialization data will
1958 /// be inserted.
1959 ///
1960 /// \param TSK the kind of template specialization this is.
1961 ///
1962 /// \param TemplateArgsAsWritten location info of template arguments.
1963 ///
1964 /// \param PointOfInstantiation point at which the function template
1965 /// specialization was first instantiated.
1966 void setFunctionTemplateSpecialization(ASTContext &C,
1967 FunctionTemplateDecl *Template,
1968 const TemplateArgumentList *TemplateArgs,
1969 void *InsertPos,
1970 TemplateSpecializationKind TSK,
1971 const TemplateArgumentListInfo *TemplateArgsAsWritten,
1972 SourceLocation PointOfInstantiation);
1973
1974 /// Specify that this record is an instantiation of the
1975 /// member function FD.
1976 void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD,
1977 TemplateSpecializationKind TSK);
1978
1979 void setParams(ASTContext &C, ArrayRef<ParmVarDecl *> NewParamInfo);
1980
1981 // This is unfortunately needed because ASTDeclWriter::VisitFunctionDecl
1982 // need to access this bit but we want to avoid making ASTDeclWriter
1983 // a friend of FunctionDeclBitfields just for this.
1984 bool isDeletedBit() const { return FunctionDeclBits.IsDeleted; }
1985
1986 /// Whether an ODRHash has been stored.
1987 bool hasODRHash() const { return FunctionDeclBits.HasODRHash; }
1988
1989 /// State that an ODRHash has been stored.
1990 void setHasODRHash(bool B = true) { FunctionDeclBits.HasODRHash = B; }
1991
1992protected:
1993 FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1994 const DeclarationNameInfo &NameInfo, QualType T,
1995 TypeSourceInfo *TInfo, StorageClass S, bool UsesFPIntrin,
1996 bool isInlineSpecified, ConstexprSpecKind ConstexprKind,
1997 Expr *TrailingRequiresClause = nullptr);
1998
1999 using redeclarable_base = Redeclarable<FunctionDecl>;
2000
2001 FunctionDecl *getNextRedeclarationImpl() override {
2002 return getNextRedeclaration();
2003 }
2004
2005 FunctionDecl *getPreviousDeclImpl() override {
2006 return getPreviousDecl();
2007 }
2008
2009 FunctionDecl *getMostRecentDeclImpl() override {
2010 return getMostRecentDecl();
2011 }
2012
2013public:
2014 friend class ASTDeclReader;
2015 friend class ASTDeclWriter;
2016
2017 using redecl_range = redeclarable_base::redecl_range;
2018 using redecl_iterator = redeclarable_base::redecl_iterator;
2019
2020 using redeclarable_base::redecls_begin;
2021 using redeclarable_base::redecls_end;
2022 using redeclarable_base::redecls;
2023 using redeclarable_base::getPreviousDecl;
2024 using redeclarable_base::getMostRecentDecl;
2025 using redeclarable_base::isFirstDecl;
2026
2027 static FunctionDecl *
2028 Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
2029 SourceLocation NLoc, DeclarationName N, QualType T,
2030 TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin = false,
2031 bool isInlineSpecified = false, bool hasWrittenPrototype = true,
2032 ConstexprSpecKind ConstexprKind = ConstexprSpecKind::Unspecified,
2033 Expr *TrailingRequiresClause = nullptr) {
2034 DeclarationNameInfo NameInfo(N, NLoc);
2035 return FunctionDecl::Create(C, DC, StartLoc, NameInfo, T, TInfo, SC,
2036 UsesFPIntrin, isInlineSpecified,
2037 hasWrittenPrototype, ConstexprKind,
2038 TrailingRequiresClause);
2039 }
2040
2041 static FunctionDecl *
2042 Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
2043 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2044 StorageClass SC, bool UsesFPIntrin, bool isInlineSpecified,
2045 bool hasWrittenPrototype, ConstexprSpecKind ConstexprKind,
2046 Expr *TrailingRequiresClause);
2047
2048 static FunctionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2049
2050 DeclarationNameInfo getNameInfo() const {
2051 return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
2052 }
2053
2054 void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy,
2055 bool Qualified) const override;
2056
2057 void setRangeEnd(SourceLocation E) { EndRangeLoc = E; }
2058
2059 /// Returns the location of the ellipsis of a variadic function.
2060 SourceLocation getEllipsisLoc() const {
2061 const auto *FPT = getType()->getAs<FunctionProtoType>();
2062 if (FPT && FPT->isVariadic())
2063 return FPT->getEllipsisLoc();
2064 return SourceLocation();
2065 }
2066
2067 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
2068
2069 // Function definitions.
2070 //
2071 // A function declaration may be:
2072 // - a non defining declaration,
2073 // - a definition. A function may be defined because:
2074 // - it has a body, or will have it in the case of late parsing.
2075 // - it has an uninstantiated body. The body does not exist because the
2076 // function is not used yet, but the declaration is considered a
2077 // definition and does not allow other definition of this function.
2078 // - it does not have a user specified body, but it does not allow
2079 // redefinition, because it is deleted/defaulted or is defined through
2080 // some other mechanism (alias, ifunc).
2081
2082 /// Returns true if the function has a body.
2083 ///
2084 /// The function body might be in any of the (re-)declarations of this
2085 /// function. The variant that accepts a FunctionDecl pointer will set that
2086 /// function declaration to the actual declaration containing the body (if
2087 /// there is one).
2088 bool hasBody(const FunctionDecl *&Definition) const;
2089
2090 bool hasBody() const override {
2091 const FunctionDecl* Definition;
2092 return hasBody(Definition);
2093 }
2094
2095 /// Returns whether the function has a trivial body that does not require any
2096 /// specific codegen.
2097 bool hasTrivialBody() const;
2098
2099 /// Returns true if the function has a definition that does not need to be
2100 /// instantiated.
2101 ///
2102 /// The variant that accepts a FunctionDecl pointer will set that function
2103 /// declaration to the declaration that is a definition (if there is one).
2104 ///
2105 /// \param CheckForPendingFriendDefinition If \c true, also check for friend
2106 /// declarations that were instantiataed from function definitions.
2107 /// Such a declaration behaves as if it is a definition for the
2108 /// purpose of redefinition checking, but isn't actually a "real"
2109 /// definition until its body is instantiated.
2110 bool isDefined(const FunctionDecl *&Definition,
2111 bool CheckForPendingFriendDefinition = false) const;
2112
2113 bool isDefined() const {
2114 const FunctionDecl* Definition;
2115 return isDefined(Definition);
2116 }
2117
2118 /// Get the definition for this declaration.
2119 FunctionDecl *getDefinition() {
2120 const FunctionDecl *Definition;
2121 if (isDefined(Definition))
2122 return const_cast<FunctionDecl *>(Definition);
2123 return nullptr;
2124 }
2125 const FunctionDecl *getDefinition() const {
2126 return const_cast<FunctionDecl *>(this)->getDefinition();
2127 }
2128
2129 /// Retrieve the body (definition) of the function. The function body might be
2130 /// in any of the (re-)declarations of this function. The variant that accepts
2131 /// a FunctionDecl pointer will set that function declaration to the actual
2132 /// declaration containing the body (if there is one).
2133 /// NOTE: For checking if there is a body, use hasBody() instead, to avoid
2134 /// unnecessary AST de-serialization of the body.
2135 Stmt *getBody(const FunctionDecl *&Definition) const;
2136
2137 Stmt *getBody() const override {
2138 const FunctionDecl* Definition;
2139 return getBody(Definition);
2140 }
2141
2142 /// Returns whether this specific declaration of the function is also a
2143 /// definition that does not contain uninstantiated body.
2144 ///
2145 /// This does not determine whether the function has been defined (e.g., in a
2146 /// previous definition); for that information, use isDefined.
2147 ///
2148 /// Note: the function declaration does not become a definition until the
2149 /// parser reaches the definition, if called before, this function will return
2150 /// `false`.
2151 bool isThisDeclarationADefinition() const {
2152 return isDeletedAsWritten() || isDefaulted() ||
2153 doesThisDeclarationHaveABody() || hasSkippedBody() ||
2154 willHaveBody() || hasDefiningAttr();
2155 }
2156
2157 /// Determine whether this specific declaration of the function is a friend
2158 /// declaration that was instantiated from a function definition. Such
2159 /// declarations behave like definitions in some contexts.
2160 bool isThisDeclarationInstantiatedFromAFriendDefinition() const;
2161
2162 /// Returns whether this specific declaration of the function has a body.
2163 bool doesThisDeclarationHaveABody() const {
2164 return (!FunctionDeclBits.HasDefaultedFunctionInfo && Body) ||
2165 isLateTemplateParsed();
2166 }
2167
2168 void setBody(Stmt *B);
2169 void setLazyBody(uint64_t Offset) {
2170 FunctionDeclBits.HasDefaultedFunctionInfo = false;
2171 Body = LazyDeclStmtPtr(Offset);
2172 }
2173
2174 void setDefaultedFunctionInfo(DefaultedFunctionInfo *Info);
2175 DefaultedFunctionInfo *getDefaultedFunctionInfo() const;
2176
2177 /// Whether this function is variadic.
2178 bool isVariadic() const;
2179
2180 /// Whether this function is marked as virtual explicitly.
2181 bool isVirtualAsWritten() const {
2182 return FunctionDeclBits.IsVirtualAsWritten;
2183 }
2184
2185 /// State that this function is marked as virtual explicitly.
2186 void setVirtualAsWritten(bool V) { FunctionDeclBits.IsVirtualAsWritten = V; }
2187
2188 /// Whether this virtual function is pure, i.e. makes the containing class
2189 /// abstract.
2190 bool isPure() const { return FunctionDeclBits.IsPure; }
2191 void setPure(bool P = true);
2192
2193 /// Whether this templated function will be late parsed.
2194 bool isLateTemplateParsed() const {
2195 return FunctionDeclBits.IsLateTemplateParsed;
2196 }
2197
2198 /// State that this templated function will be late parsed.
2199 void setLateTemplateParsed(bool ILT = true) {
2200 FunctionDeclBits.IsLateTemplateParsed = ILT;
2201 }
2202
2203 /// Whether this function is "trivial" in some specialized C++ senses.
2204 /// Can only be true for default constructors, copy constructors,
2205 /// copy assignment operators, and destructors. Not meaningful until
2206 /// the class has been fully built by Sema.
2207 bool isTrivial() const { return FunctionDeclBits.IsTrivial; }
2208 void setTrivial(bool IT) { FunctionDeclBits.IsTrivial = IT; }
2209
2210 bool isTrivialForCall() const { return FunctionDeclBits.IsTrivialForCall; }
2211 void setTrivialForCall(bool IT) { FunctionDeclBits.IsTrivialForCall = IT; }
2212
2213 /// Whether this function is defaulted. Valid for e.g.
2214 /// special member functions, defaulted comparisions (not methods!).
2215 bool isDefaulted() const { return FunctionDeclBits.IsDefaulted; }
2216 void setDefaulted(bool D = true) { FunctionDeclBits.IsDefaulted = D; }
2217
2218 /// Whether this function is explicitly defaulted.
2219 bool isExplicitlyDefaulted() const {
2220 return FunctionDeclBits.IsExplicitlyDefaulted;
2221 }
2222
2223 /// State that this function is explicitly defaulted.
2224 void setExplicitlyDefaulted(bool ED = true) {
2225 FunctionDeclBits.IsExplicitlyDefaulted = ED;
2226 }
2227
2228 /// True if this method is user-declared and was not
2229 /// deleted or defaulted on its first declaration.
2230 bool isUserProvided() const {
2231 auto *DeclAsWritten = this;
2232 if (FunctionDecl *Pattern = getTemplateInstantiationPattern())
2233 DeclAsWritten = Pattern;
2234 return !(DeclAsWritten->isDeleted() ||
2235 DeclAsWritten->getCanonicalDecl()->isDefaulted());
2236 }
2237
2238 /// Whether falling off this function implicitly returns null/zero.
2239 /// If a more specific implicit return value is required, front-ends
2240 /// should synthesize the appropriate return statements.
2241 bool hasImplicitReturnZero() const {
2242 return FunctionDeclBits.HasImplicitReturnZero;
2243 }
2244
2245 /// State that falling off this function implicitly returns null/zero.
2246 /// If a more specific implicit return value is required, front-ends
2247 /// should synthesize the appropriate return statements.
2248 void setHasImplicitReturnZero(bool IRZ) {
2249 FunctionDeclBits.HasImplicitReturnZero = IRZ;
2250 }
2251
2252 /// Whether this function has a prototype, either because one
2253 /// was explicitly written or because it was "inherited" by merging
2254 /// a declaration without a prototype with a declaration that has a
2255 /// prototype.
2256 bool hasPrototype() const {
2257 return hasWrittenPrototype() || hasInheritedPrototype();
2258 }
2259
2260 /// Whether this function has a written prototype.
2261 bool hasWrittenPrototype() const {
2262 return FunctionDeclBits.HasWrittenPrototype;
2263 }
2264
2265 /// State that this function has a written prototype.
2266 void setHasWrittenPrototype(bool P = true) {
2267 FunctionDeclBits.HasWrittenPrototype = P;
2268 }
2269
2270 /// Whether this function inherited its prototype from a
2271 /// previous declaration.
2272 bool hasInheritedPrototype() const {
2273 return FunctionDeclBits.HasInheritedPrototype;
2274 }
2275
2276 /// State that this function inherited its prototype from a
2277 /// previous declaration.
2278 void setHasInheritedPrototype(bool P = true) {
2279 FunctionDeclBits.HasInheritedPrototype = P;
2280 }
2281
2282 /// Whether this is a (C++11) constexpr function or constexpr constructor.
2283 bool isConstexpr() const {
2284 return getConstexprKind() != ConstexprSpecKind::Unspecified;
2285 }
2286 void setConstexprKind(ConstexprSpecKind CSK) {
2287 FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(CSK);
2288 }
2289 ConstexprSpecKind getConstexprKind() const {
2290 return static_cast<ConstexprSpecKind>(FunctionDeclBits.ConstexprKind);
2291 }
2292 bool isConstexprSpecified() const {
2293 return getConstexprKind() == ConstexprSpecKind::Constexpr;
2294 }
2295 bool isConsteval() const {
2296 return getConstexprKind() == ConstexprSpecKind::Consteval;
2297 }
2298
2299 /// Whether the instantiation of this function is pending.
2300 /// This bit is set when the decision to instantiate this function is made
2301 /// and unset if and when the function body is created. That leaves out
2302 /// cases where instantiation did not happen because the template definition
2303 /// was not seen in this TU. This bit remains set in those cases, under the
2304 /// assumption that the instantiation will happen in some other TU.
2305 bool instantiationIsPending() const {
2306 return FunctionDeclBits.InstantiationIsPending;
2307 }
2308
2309 /// State that the instantiation of this function is pending.
2310 /// (see instantiationIsPending)
2311 void setInstantiationIsPending(bool IC) {
2312 FunctionDeclBits.InstantiationIsPending = IC;
2313 }
2314
2315 /// Indicates the function uses __try.
2316 bool usesSEHTry() const { return FunctionDeclBits.UsesSEHTry; }
2317 void setUsesSEHTry(bool UST) { FunctionDeclBits.UsesSEHTry = UST; }
2318
2319 /// Whether this function has been deleted.
2320 ///
2321 /// A function that is "deleted" (via the C++0x "= delete" syntax)
2322 /// acts like a normal function, except that it cannot actually be
2323 /// called or have its address taken. Deleted functions are
2324 /// typically used in C++ overload resolution to attract arguments
2325 /// whose type or lvalue/rvalue-ness would permit the use of a
2326 /// different overload that would behave incorrectly. For example,
2327 /// one might use deleted functions to ban implicit conversion from
2328 /// a floating-point number to an Integer type:
2329 ///
2330 /// @code
2331 /// struct Integer {
2332 /// Integer(long); // construct from a long
2333 /// Integer(double) = delete; // no construction from float or double
2334 /// Integer(long double) = delete; // no construction from long double
2335 /// };
2336 /// @endcode
2337 // If a function is deleted, its first declaration must be.
2338 bool isDeleted() const {
2339 return getCanonicalDecl()->FunctionDeclBits.IsDeleted;
2340 }
2341
2342 bool isDeletedAsWritten() const {
2343 return FunctionDeclBits.IsDeleted && !isDefaulted();
2344 }
2345
2346 void setDeletedAsWritten(bool D = true) { FunctionDeclBits.IsDeleted = D; }
2347
2348 /// Determines whether this function is "main", which is the
2349 /// entry point into an executable program.
2350 bool isMain() const;
2351
2352 /// Determines whether this function is a MSVCRT user defined entry
2353 /// point.
2354 bool isMSVCRTEntryPoint() const;
2355
2356 /// Determines whether this operator new or delete is one
2357 /// of the reserved global placement operators:
2358 /// void *operator new(size_t, void *);
2359 /// void *operator new[](size_t, void *);
2360 /// void operator delete(void *, void *);
2361 /// void operator delete[](void *, void *);
2362 /// These functions have special behavior under [new.delete.placement]:
2363 /// These functions are reserved, a C++ program may not define
2364 /// functions that displace the versions in the Standard C++ library.
2365 /// The provisions of [basic.stc.dynamic] do not apply to these
2366 /// reserved placement forms of operator new and operator delete.
2367 ///
2368 /// This function must be an allocation or deallocation function.
2369 bool isReservedGlobalPlacementOperator() const;
2370
2371 /// Determines whether this function is one of the replaceable
2372 /// global allocation functions:
2373 /// void *operator new(size_t);
2374 /// void *operator new(size_t, const std::nothrow_t &) noexcept;
2375 /// void *operator new[](size_t);
2376 /// void *operator new[](size_t, const std::nothrow_t &) noexcept;
2377 /// void operator delete(void *) noexcept;
2378 /// void operator delete(void *, std::size_t) noexcept; [C++1y]
2379 /// void operator delete(void *, const std::nothrow_t &) noexcept;
2380 /// void operator delete[](void *) noexcept;
2381 /// void operator delete[](void *, std::size_t) noexcept; [C++1y]
2382 /// void operator delete[](void *, const std::nothrow_t &) noexcept;
2383 /// These functions have special behavior under C++1y [expr.new]:
2384 /// An implementation is allowed to omit a call to a replaceable global
2385 /// allocation function. [...]
2386 ///
2387 /// If this function is an aligned allocation/deallocation function, return
2388 /// the parameter number of the requested alignment through AlignmentParam.
2389 ///
2390 /// If this function is an allocation/deallocation function that takes
2391 /// the `std::nothrow_t` tag, return true through IsNothrow,
2392 bool isReplaceableGlobalAllocationFunction(
2393 Optional<unsigned> *AlignmentParam = nullptr,
2394 bool *IsNothrow = nullptr) const;
2395
2396 /// Determine if this function provides an inline implementation of a builtin.
2397 bool isInlineBuiltinDeclaration() const;
2398
2399 /// Determine whether this is a destroying operator delete.
2400 bool isDestroyingOperatorDelete() const;
2401
2402 /// Compute the language linkage.
2403 LanguageLinkage getLanguageLinkage() const;
2404
2405 /// Determines whether this function is a function with
2406 /// external, C linkage.
2407 bool isExternC() const;
2408
2409 /// Determines whether this function's context is, or is nested within,
2410 /// a C++ extern "C" linkage spec.
2411 bool isInExternCContext() const;
2412
2413 /// Determines whether this function's context is, or is nested within,
2414 /// a C++ extern "C++" linkage spec.
2415 bool isInExternCXXContext() const;
2416
2417 /// Determines whether this is a global function.
2418 bool isGlobal() const;
2419
2420 /// Determines whether this function is known to be 'noreturn', through
2421 /// an attribute on its declaration or its type.
2422 bool isNoReturn() const;
2423
2424 /// True if the function was a definition but its body was skipped.
2425 bool hasSkippedBody() const { return FunctionDeclBits.HasSkippedBody; }
2426 void setHasSkippedBody(bool Skipped = true) {
2427 FunctionDeclBits.HasSkippedBody = Skipped;
2428 }
2429
2430 /// True if this function will eventually have a body, once it's fully parsed.
2431 bool willHaveBody() const { return FunctionDeclBits.WillHaveBody; }
2432 void setWillHaveBody(bool V = true) { FunctionDeclBits.WillHaveBody = V; }
2433
2434 /// True if this function is considered a multiversioned function.
2435 bool isMultiVersion() const {
2436 return getCanonicalDecl()->FunctionDeclBits.IsMultiVersion;
2437 }
2438
2439 /// Sets the multiversion state for this declaration and all of its
2440 /// redeclarations.
2441 void setIsMultiVersion(bool V = true) {
2442 getCanonicalDecl()->FunctionDeclBits.IsMultiVersion = V;
2443 }
2444
2445 /// Gets the kind of multiversioning attribute this declaration has. Note that
2446 /// this can return a value even if the function is not multiversion, such as
2447 /// the case of 'target'.
2448 MultiVersionKind getMultiVersionKind() const;
2449
2450
2451 /// True if this function is a multiversioned dispatch function as a part of
2452 /// the cpu_specific/cpu_dispatch functionality.
2453 bool isCPUDispatchMultiVersion() const;
2454 /// True if this function is a multiversioned processor specific function as a
2455 /// part of the cpu_specific/cpu_dispatch functionality.
2456 bool isCPUSpecificMultiVersion() const;
2457
2458 /// True if this function is a multiversioned dispatch function as a part of
2459 /// the target functionality.
2460 bool isTargetMultiVersion() const;
2461
2462 /// \brief Get the associated-constraints of this function declaration.
2463 /// Currently, this will either be a vector of size 1 containing the
2464 /// trailing-requires-clause or an empty vector.
2465 ///
2466 /// Use this instead of getTrailingRequiresClause for concepts APIs that
2467 /// accept an ArrayRef of constraint expressions.
2468 void getAssociatedConstraints(SmallVectorImpl<const Expr *> &AC) const {
2469 if (auto *TRC = getTrailingRequiresClause())
2470 AC.push_back(TRC);
2471 }
2472
2473 void setPreviousDeclaration(FunctionDecl * PrevDecl);
2474
2475 FunctionDecl *getCanonicalDecl() override;
2476 const FunctionDecl *getCanonicalDecl() const {
2477 return const_cast<FunctionDecl*>(this)->getCanonicalDecl();
2478 }
2479
2480 unsigned getBuiltinID(bool ConsiderWrapperFunctions = false) const;
2481
2482 // ArrayRef interface to parameters.
2483 ArrayRef<ParmVarDecl *> parameters() const {
2484 return {ParamInfo, getNumParams()};
2485 }
2486 MutableArrayRef<ParmVarDecl *> parameters() {
2487 return {ParamInfo, getNumParams()};
2488 }
2489
2490 // Iterator access to formal parameters.
2491 using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
2492 using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
2493
2494 bool param_empty() const { return parameters().empty(); }
2495 param_iterator param_begin() { return parameters().begin(); }
2496 param_iterator param_end() { return parameters().end(); }
2497 param_const_iterator param_begin() const { return parameters().begin(); }
2498 param_const_iterator param_end() const { return parameters().end(); }
2499 size_t param_size() const { return parameters().size(); }
2500
2501 /// Return the number of parameters this function must have based on its
2502 /// FunctionType. This is the length of the ParamInfo array after it has been
2503 /// created.
2504 unsigned getNumParams() const;
2505
2506 const ParmVarDecl *getParamDecl(unsigned i) const {
2507 assert(i < getNumParams() && "Illegal param #")(static_cast<void> (0));
2508 return ParamInfo[i];
2509 }
2510 ParmVarDecl *getParamDecl(unsigned i) {
2511 assert(i < getNumParams() && "Illegal param #")(static_cast<void> (0));
2512 return ParamInfo[i];
2513 }
2514 void setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
2515 setParams(getASTContext(), NewParamInfo);
2516 }
2517
2518 /// Returns the minimum number of arguments needed to call this function. This
2519 /// may be fewer than the number of function parameters, if some of the
2520 /// parameters have default arguments (in C++).
2521 unsigned getMinRequiredArguments() const;
2522
2523 /// Determine whether this function has a single parameter, or multiple
2524 /// parameters where all but the first have default arguments.
2525 ///
2526 /// This notion is used in the definition of copy/move constructors and
2527 /// initializer list constructors. Note that, unlike getMinRequiredArguments,
2528 /// parameter packs are not treated specially here.
2529 bool hasOneParamOrDefaultArgs() const;
2530
2531 /// Find the source location information for how the type of this function
2532 /// was written. May be absent (for example if the function was declared via
2533 /// a typedef) and may contain a different type from that of the function
2534 /// (for example if the function type was adjusted by an attribute).
2535 FunctionTypeLoc getFunctionTypeLoc() const;
2536
2537 QualType getReturnType() const {
2538 return getType()->castAs<FunctionType>()->getReturnType();
2539 }
2540
2541 /// Attempt to compute an informative source range covering the
2542 /// function return type. This may omit qualifiers and other information with
2543 /// limited representation in the AST.
2544 SourceRange getReturnTypeSourceRange() const;
2545
2546 /// Attempt to compute an informative source range covering the
2547 /// function parameters, including the ellipsis of a variadic function.
2548 /// The source range excludes the parentheses, and is invalid if there are
2549 /// no parameters and no ellipsis.
2550 SourceRange getParametersSourceRange() const;
2551
2552 /// Get the declared return type, which may differ from the actual return
2553 /// type if the return type is deduced.
2554 QualType getDeclaredReturnType() const {
2555 auto *TSI = getTypeSourceInfo();
2556 QualType T = TSI ? TSI->getType() : getType();
2557 return T->castAs<FunctionType>()->getReturnType();
2558 }
2559
2560 /// Gets the ExceptionSpecificationType as declared.
2561 ExceptionSpecificationType getExceptionSpecType() const {
2562 auto *TSI = getTypeSourceInfo();
2563 QualType T = TSI ? TSI->getType() : getType();
2564 const auto *FPT = T->getAs<FunctionProtoType>();
2565 return FPT ? FPT->getExceptionSpecType() : EST_None;
2566 }
2567
2568 /// Attempt to compute an informative source range covering the
2569 /// function exception specification, if any.
2570 SourceRange getExceptionSpecSourceRange() const;
2571
2572 /// Determine the type of an expression that calls this function.
2573 QualType getCallResultType() const {
2574 return getType()->castAs<FunctionType>()->getCallResultType(
2575 getASTContext());
2576 }
2577
2578 /// Returns the storage class as written in the source. For the
2579 /// computed linkage of symbol, see getLinkage.
2580 StorageClass getStorageClass() const {
2581 return static_cast<StorageClass>(FunctionDeclBits.SClass);
2582 }
2583
2584 /// Sets the storage class as written in the source.
2585 void setStorageClass(StorageClass SClass) {
2586 FunctionDeclBits.SClass = SClass;
2587 }
2588
2589 /// Determine whether the "inline" keyword was specified for this
2590 /// function.
2591 bool isInlineSpecified() const { return FunctionDeclBits.IsInlineSpecified; }
2592
2593 /// Set whether the "inline" keyword was specified for this function.
2594 void setInlineSpecified(bool I) {
2595 FunctionDeclBits.IsInlineSpecified = I;
2596 FunctionDeclBits.IsInline = I;
2597 }
2598
2599 /// Determine whether the function was declared in source context
2600 /// that requires constrained FP intrinsics
2601 bool UsesFPIntrin() const { return FunctionDeclBits.UsesFPIntrin; }
2602
2603 /// Set whether the function was declared in source context
2604 /// that requires constrained FP intrinsics
2605 void setUsesFPIntrin(bool I) { FunctionDeclBits.UsesFPIntrin = I; }
2606
2607 /// Flag that this function is implicitly inline.
2608 void setImplicitlyInline(bool I = true) { FunctionDeclBits.IsInline = I; }
2609
2610 /// Determine whether this function should be inlined, because it is
2611 /// either marked "inline" or "constexpr" or is a member function of a class
2612 /// that was defined in the class body.
2613 bool isInlined() const { return FunctionDeclBits.IsInline; }
2614
2615 bool isInlineDefinitionExternallyVisible() const;
2616
2617 bool isMSExternInline() const;
2618
2619 bool doesDeclarationForceExternallyVisibleDefinition() const;
2620
2621 bool isStatic() const { return getStorageClass() == SC_Static; }
2622
2623 /// Whether this function declaration represents an C++ overloaded
2624 /// operator, e.g., "operator+".
2625 bool isOverloadedOperator() const {
2626 return getOverloadedOperator() != OO_None;
2627 }
2628
2629 OverloadedOperatorKind getOverloadedOperator() const;
2630
2631 const IdentifierInfo *getLiteralIdentifier() const;
2632
2633 /// If this function is an instantiation of a member function
2634 /// of a class template specialization, retrieves the function from
2635 /// which it was instantiated.
2636 ///
2637 /// This routine will return non-NULL for (non-templated) member
2638 /// functions of class templates and for instantiations of function
2639 /// templates. For example, given:
2640 ///
2641 /// \code
2642 /// template<typename T>
2643 /// struct X {
2644 /// void f(T);
2645 /// };
2646 /// \endcode
2647 ///
2648 /// The declaration for X<int>::f is a (non-templated) FunctionDecl
2649 /// whose parent is the class template specialization X<int>. For
2650 /// this declaration, getInstantiatedFromFunction() will return
2651 /// the FunctionDecl X<T>::A. When a complete definition of
2652 /// X<int>::A is required, it will be instantiated from the
2653 /// declaration returned by getInstantiatedFromMemberFunction().
2654 FunctionDecl *getInstantiatedFromMemberFunction() const;
2655
2656 /// What kind of templated function this is.
2657 TemplatedKind getTemplatedKind() const;
2658
2659 /// If this function is an instantiation of a member function of a
2660 /// class template specialization, retrieves the member specialization
2661 /// information.
2662 MemberSpecializationInfo *getMemberSpecializationInfo() const;
2663
2664 /// Specify that this record is an instantiation of the
2665 /// member function FD.
2666 void setInstantiationOfMemberFunction(FunctionDecl *FD,
2667 TemplateSpecializationKind TSK) {
2668 setInstantiationOfMemberFunction(getASTContext(), FD, TSK);
2669 }
2670
2671 /// Retrieves the function template that is described by this
2672 /// function declaration.
2673 ///
2674 /// Every function template is represented as a FunctionTemplateDecl
2675 /// and a FunctionDecl (or something derived from FunctionDecl). The
2676 /// former contains template properties (such as the template
2677 /// parameter lists) while the latter contains the actual
2678 /// description of the template's
2679 /// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
2680 /// FunctionDecl that describes the function template,
2681 /// getDescribedFunctionTemplate() retrieves the
2682 /// FunctionTemplateDecl from a FunctionDecl.
2683 FunctionTemplateDecl *getDescribedFunctionTemplate() const;
2684
2685 void setDescribedFunctionTemplate(FunctionTemplateDecl *Template);
2686
2687 /// Determine whether this function is a function template
2688 /// specialization.
2689 bool isFunctionTemplateSpecialization() const {
2690 return getPrimaryTemplate() != nullptr;
2691 }
2692
2693 /// If this function is actually a function template specialization,
2694 /// retrieve information about this function template specialization.
2695 /// Otherwise, returns NULL.
2696 FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const;
2697
2698 /// Determines whether this function is a function template
2699 /// specialization or a member of a class template specialization that can
2700 /// be implicitly instantiated.
2701 bool isImplicitlyInstantiable() const;
2702
2703 /// Determines if the given function was instantiated from a
2704 /// function template.
2705 bool isTemplateInstantiation() const;
2706
2707 /// Retrieve the function declaration from which this function could
2708 /// be instantiated, if it is an instantiation (rather than a non-template
2709 /// or a specialization, for example).
2710 ///
2711 /// If \p ForDefinition is \c false, explicit specializations will be treated
2712 /// as if they were implicit instantiations. This will then find the pattern
2713 /// corresponding to non-definition portions of the declaration, such as
2714 /// default arguments and the exception specification.
2715 FunctionDecl *
2716 getTemplateInstantiationPattern(bool ForDefinition = true) const;
2717
2718 /// Retrieve the primary template that this function template
2719 /// specialization either specializes or was instantiated from.
2720 ///
2721 /// If this function declaration is not a function template specialization,
2722 /// returns NULL.
2723 FunctionTemplateDecl *getPrimaryTemplate() const;
2724
2725 /// Retrieve the template arguments used to produce this function
2726 /// template specialization from the primary template.
2727 ///
2728 /// If this function declaration is not a function template specialization,
2729 /// returns NULL.
2730 const TemplateArgumentList *getTemplateSpecializationArgs() const;
2731
2732 /// Retrieve the template argument list as written in the sources,
2733 /// if any.
2734 ///
2735 /// If this function declaration is not a function template specialization
2736 /// or if it had no explicit template argument list, returns NULL.
2737 /// Note that it an explicit template argument list may be written empty,
2738 /// e.g., template<> void foo<>(char* s);
2739 const ASTTemplateArgumentListInfo*
2740 getTemplateSpecializationArgsAsWritten() const;
2741
2742 /// Specify that this function declaration is actually a function
2743 /// template specialization.
2744 ///
2745 /// \param Template the function template that this function template
2746 /// specialization specializes.
2747 ///
2748 /// \param TemplateArgs the template arguments that produced this
2749 /// function template specialization from the template.
2750 ///
2751 /// \param InsertPos If non-NULL, the position in the function template
2752 /// specialization set where the function template specialization data will
2753 /// be inserted.
2754 ///
2755 /// \param TSK the kind of template specialization this is.
2756 ///
2757 /// \param TemplateArgsAsWritten location info of template arguments.
2758 ///
2759 /// \param PointOfInstantiation point at which the function template
2760 /// specialization was first instantiated.
2761 void setFunctionTemplateSpecialization(FunctionTemplateDecl *Template,
2762 const TemplateArgumentList *TemplateArgs,
2763 void *InsertPos,
2764 TemplateSpecializationKind TSK = TSK_ImplicitInstantiation,
2765 const TemplateArgumentListInfo *TemplateArgsAsWritten = nullptr,
2766 SourceLocation PointOfInstantiation = SourceLocation()) {
2767 setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs,
2768 InsertPos, TSK, TemplateArgsAsWritten,
2769 PointOfInstantiation);
2770 }
2771
2772 /// Specifies that this function declaration is actually a
2773 /// dependent function template specialization.
2774 void setDependentTemplateSpecialization(ASTContext &Context,
2775 const UnresolvedSetImpl &Templates,
2776 const TemplateArgumentListInfo &TemplateArgs);
2777
2778 DependentFunctionTemplateSpecializationInfo *
2779 getDependentSpecializationInfo() const;
2780
2781 /// Determine what kind of template instantiation this function
2782 /// represents.
2783 TemplateSpecializationKind getTemplateSpecializationKind() const;
2784
2785 /// Determine the kind of template specialization this function represents
2786 /// for the purpose of template instantiation.
2787 TemplateSpecializationKind
2788 getTemplateSpecializationKindForInstantiation() const;
2789
2790 /// Determine what kind of template instantiation this function
2791 /// represents.
2792 void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2793 SourceLocation PointOfInstantiation = SourceLocation());
2794
2795 /// Retrieve the (first) point of instantiation of a function template
2796 /// specialization or a member of a class template specialization.
2797 ///
2798 /// \returns the first point of instantiation, if this function was
2799 /// instantiated from a template; otherwise, returns an invalid source
2800 /// location.
2801 SourceLocation getPointOfInstantiation() const;
2802
2803 /// Determine whether this is or was instantiated from an out-of-line
2804 /// definition of a member function.
2805 bool isOutOfLine() const override;
2806
2807 /// Identify a memory copying or setting function.
2808 /// If the given function is a memory copy or setting function, returns
2809 /// the corresponding Builtin ID. If the function is not a memory function,
2810 /// returns 0.
2811 unsigned getMemoryFunctionKind() const;
2812
2813 /// Returns ODRHash of the function. This value is calculated and
2814 /// stored on first call, then the stored value returned on the other calls.
2815 unsigned getODRHash();
2816
2817 /// Returns cached ODRHash of the function. This must have been previously
2818 /// computed and stored.
2819 unsigned getODRHash() const;
2820
2821 // Implement isa/cast/dyncast/etc.
2822 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2823 static bool classofKind(Kind K) {
2824 return K >= firstFunction && K <= lastFunction;
2825 }
2826 static DeclContext *castToDeclContext(const FunctionDecl *D) {
2827 return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
2828 }
2829 static FunctionDecl *castFromDeclContext(const DeclContext *DC) {
2830 return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
2831 }
2832};
2833
2834/// Represents a member of a struct/union/class.
2835class FieldDecl : public DeclaratorDecl, public Mergeable<FieldDecl> {
2836 unsigned BitField : 1;
2837 unsigned Mutable : 1;
2838 mutable unsigned CachedFieldIndex : 30;
2839
2840 /// The kinds of value we can store in InitializerOrBitWidth.
2841 ///
2842 /// Note that this is compatible with InClassInitStyle except for
2843 /// ISK_CapturedVLAType.
2844 enum InitStorageKind {
2845 /// If the pointer is null, there's nothing special. Otherwise,
2846 /// this is a bitfield and the pointer is the Expr* storing the
2847 /// bit-width.
2848 ISK_NoInit = (unsigned) ICIS_NoInit,
2849
2850 /// The pointer is an (optional due to delayed parsing) Expr*
2851 /// holding the copy-initializer.
2852 ISK_InClassCopyInit = (unsigned) ICIS_CopyInit,
2853
2854 /// The pointer is an (optional due to delayed parsing) Expr*
2855 /// holding the list-initializer.
2856 ISK_InClassListInit = (unsigned) ICIS_ListInit,
2857
2858 /// The pointer is a VariableArrayType* that's been captured;
2859 /// the enclosing context is a lambda or captured statement.
2860 ISK_CapturedVLAType,
2861 };
2862
2863 /// If this is a bitfield with a default member initializer, this
2864 /// structure is used to represent the two expressions.
2865 struct InitAndBitWidth {
2866 Expr *Init;
2867 Expr *BitWidth;
2868 };
2869
2870 /// Storage for either the bit-width, the in-class initializer, or
2871 /// both (via InitAndBitWidth), or the captured variable length array bound.
2872 ///
2873 /// If the storage kind is ISK_InClassCopyInit or
2874 /// ISK_InClassListInit, but the initializer is null, then this
2875 /// field has an in-class initializer that has not yet been parsed
2876 /// and attached.
2877 // FIXME: Tail-allocate this to reduce the size of FieldDecl in the
2878 // overwhelmingly common case that we have none of these things.
2879 llvm::PointerIntPair<void *, 2, InitStorageKind> InitStorage;
2880
2881protected:
2882 FieldDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
2883 SourceLocation IdLoc, IdentifierInfo *Id,
2884 QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2885 InClassInitStyle InitStyle)
2886 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2887 BitField(false), Mutable(Mutable), CachedFieldIndex(0),
2888 InitStorage(nullptr, (InitStorageKind) InitStyle) {
2889 if (BW)
2890 setBitWidth(BW);
2891 }
2892
2893public:
2894 friend class ASTDeclReader;
2895 friend class ASTDeclWriter;
2896
2897 static FieldDecl *Create(const ASTContext &C, DeclContext *DC,
2898 SourceLocation StartLoc, SourceLocation IdLoc,
2899 IdentifierInfo *Id, QualType T,
2900 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2901 InClassInitStyle InitStyle);
2902
2903 static FieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2904
2905 /// Returns the index of this field within its record,
2906 /// as appropriate for passing to ASTRecordLayout::getFieldOffset.
2907 unsigned getFieldIndex() const;
2908
2909 /// Determines whether this field is mutable (C++ only).
2910 bool isMutable() const { return Mutable; }
2911
2912 /// Determines whether this field is a bitfield.
2913 bool isBitField() const { return BitField; }
2914
2915 /// Determines whether this is an unnamed bitfield.
2916 bool isUnnamedBitfield() const { return isBitField() && !getDeclName(); }
2917
2918 /// Determines whether this field is a
2919 /// representative for an anonymous struct or union. Such fields are
2920 /// unnamed and are implicitly generated by the implementation to
2921 /// store the data for the anonymous union or struct.
2922 bool isAnonymousStructOrUnion() const;
2923
2924 Expr *getBitWidth() const {
2925 if (!BitField)
2926 return nullptr;
2927 void *Ptr = InitStorage.getPointer();
2928 if (getInClassInitStyle())
2929 return static_cast<InitAndBitWidth*>(Ptr)->BitWidth;
2930 return static_cast<Expr*>(Ptr);
2931 }
2932
2933 unsigned getBitWidthValue(const ASTContext &Ctx) const;
2934
2935 /// Set the bit-field width for this member.
2936 // Note: used by some clients (i.e., do not remove it).
2937 void setBitWidth(Expr *Width) {
2938 assert(!hasCapturedVLAType() && !BitField &&(static_cast<void> (0))
2939 "bit width or captured type already set")(static_cast<void> (0));
2940 assert(Width && "no bit width specified")(static_cast<void> (0));
2941 InitStorage.setPointer(
2942 InitStorage.getInt()
2943 ? new (getASTContext())
2944 InitAndBitWidth{getInClassInitializer(), Width}
2945 : static_cast<void*>(Width));
2946 BitField = true;
2947 }
2948
2949 /// Remove the bit-field width from this member.
2950 // Note: used by some clients (i.e., do not remove it).
2951 void removeBitWidth() {
2952 assert(isBitField() && "no bitfield width to remove")(static_cast<void> (0));
2953 InitStorage.setPointer(getInClassInitializer());
2954 BitField = false;
2955 }
2956
2957 /// Is this a zero-length bit-field? Such bit-fields aren't really bit-fields
2958 /// at all and instead act as a separator between contiguous runs of other
2959 /// bit-fields.
2960 bool isZeroLengthBitField(const ASTContext &Ctx) const;
2961
2962 /// Determine if this field is a subobject of zero size, that is, either a
2963 /// zero-length bit-field or a field of empty class type with the
2964 /// [[no_unique_address]] attribute.
2965 bool isZeroSize(const ASTContext &Ctx) const;
2966
2967 /// Get the kind of (C++11) default member initializer that this field has.
2968 InClassInitStyle getInClassInitStyle() const {
2969 InitStorageKind storageKind = InitStorage.getInt();
2970 return (storageKind == ISK_CapturedVLAType
2971 ? ICIS_NoInit : (InClassInitStyle) storageKind);
2972 }
2973
2974 /// Determine whether this member has a C++11 default member initializer.
2975 bool hasInClassInitializer() const {
2976 return getInClassInitStyle() != ICIS_NoInit;
27
Assuming the condition is false
28
Returning zero, which participates in a condition later
2977 }
2978
2979 /// Get the C++11 default member initializer for this member, or null if one
2980 /// has not been set. If a valid declaration has a default member initializer,
2981 /// but this returns null, then we have not parsed and attached it yet.
2982 Expr *getInClassInitializer() const {
2983 if (!hasInClassInitializer())
26
Calling 'FieldDecl::hasInClassInitializer'
29
Returning from 'FieldDecl::hasInClassInitializer'
30
Taking true branch
2984 return nullptr;
31
Returning null pointer, which participates in a condition later
2985 void *Ptr = InitStorage.getPointer();
2986 if (BitField)
2987 return static_cast<InitAndBitWidth*>(Ptr)->Init;
2988 return static_cast<Expr*>(Ptr);
2989 }
2990
2991 /// Set the C++11 in-class initializer for this member.
2992 void setInClassInitializer(Expr *Init) {
2993 assert(hasInClassInitializer() && !getInClassInitializer())(static_cast<void> (0));
2994 if (BitField)
2995 static_cast<InitAndBitWidth*>(InitStorage.getPointer())->Init = Init;
2996 else
2997 InitStorage.setPointer(Init);
2998 }
2999
3000 /// Remove the C++11 in-class initializer from this member.
3001 void removeInClassInitializer() {
3002 assert(hasInClassInitializer() && "no initializer to remove")(static_cast<void> (0));
3003 InitStorage.setPointerAndInt(getBitWidth(), ISK_NoInit);
3004 }
3005
3006 /// Determine whether this member captures the variable length array
3007 /// type.
3008 bool hasCapturedVLAType() const {
3009 return InitStorage.getInt() == ISK_CapturedVLAType;
3010 }
3011
3012 /// Get the captured variable length array type.
3013 const VariableArrayType *getCapturedVLAType() const {
3014 return hasCapturedVLAType() ? static_cast<const VariableArrayType *>(
3015 InitStorage.getPointer())
3016 : nullptr;
3017 }
3018
3019 /// Set the captured variable length array type for this field.
3020 void setCapturedVLAType(const VariableArrayType *VLAType);
3021
3022 /// Returns the parent of this field declaration, which
3023 /// is the struct in which this field is defined.
3024 ///
3025 /// Returns null if this is not a normal class/struct field declaration, e.g.
3026 /// ObjCAtDefsFieldDecl, ObjCIvarDecl.
3027 const RecordDecl *getParent() const {
3028 return dyn_cast<RecordDecl>(getDeclContext());
3029 }
3030
3031 RecordDecl *getParent() {
3032 return dyn_cast<RecordDecl>(getDeclContext());
3033 }
3034
3035 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
3036
3037 /// Retrieves the canonical declaration of this field.
3038 FieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
3039 const FieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
3040
3041 // Implement isa/cast/dyncast/etc.
3042 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3043 static bool classofKind(Kind K) { return K >= firstField && K <= lastField; }
3044};
3045
3046/// An instance of this object exists for each enum constant
3047/// that is defined. For example, in "enum X {a,b}", each of a/b are
3048/// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a
3049/// TagType for the X EnumDecl.
3050class EnumConstantDecl : public ValueDecl, public Mergeable<EnumConstantDecl> {
3051 Stmt *Init; // an integer constant expression
3052 llvm::APSInt Val; // The value.
3053
3054protected:
3055 EnumConstantDecl(DeclContext *DC, SourceLocation L,
3056 IdentifierInfo *Id, QualType T, Expr *E,
3057 const llvm::APSInt &V)
3058 : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {}
3059
3060public:
3061 friend class StmtIteratorBase;
3062
3063 static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC,
3064 SourceLocation L, IdentifierInfo *Id,
3065 QualType T, Expr *E,
3066 const llvm::APSInt &V);
3067 static EnumConstantDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3068
3069 const Expr *getInitExpr() const { return (const Expr*) Init; }
3070 Expr *getInitExpr() { return (Expr*) Init; }
3071 const llvm::APSInt &getInitVal() const { return Val; }
3072
3073 void setInitExpr(Expr *E) { Init = (Stmt*) E; }
3074 void setInitVal(const llvm::APSInt &V) { Val = V; }
3075
3076 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
3077
3078 /// Retrieves the canonical declaration of this enumerator.
3079 EnumConstantDecl *getCanonicalDecl() override { return getFirstDecl(); }
3080 const EnumConstantDecl *getCanonicalDecl() const { return getFirstDecl(); }
3081
3082 // Implement isa/cast/dyncast/etc.
3083 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3084 static bool classofKind(Kind K) { return K == EnumConstant; }
3085};
3086
3087/// Represents a field injected from an anonymous union/struct into the parent
3088/// scope. These are always implicit.
3089class IndirectFieldDecl : public ValueDecl,
3090 public Mergeable<IndirectFieldDecl> {
3091 NamedDecl **Chaining;
3092 unsigned ChainingSize;
3093
3094 IndirectFieldDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
3095 DeclarationName N, QualType T,
3096 MutableArrayRef<NamedDecl *> CH);
3097
3098 void anchor() override;
3099
3100public:
3101 friend class ASTDeclReader;
3102
3103 static IndirectFieldDecl *Create(ASTContext &C, DeclContext *DC,
3104 SourceLocation L, IdentifierInfo *Id,
3105 QualType T, llvm::MutableArrayRef<NamedDecl *> CH);
3106
3107 static IndirectFieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3108
3109 using chain_iterator = ArrayRef<NamedDecl *>::const_iterator;
3110
3111 ArrayRef<NamedDecl *> chain() const {
3112 return llvm::makeArrayRef(Chaining, ChainingSize);
3113 }
3114 chain_iterator chain_begin() const { return chain().begin(); }
3115 chain_iterator chain_end() const { return chain().end(); }
3116
3117 unsigned getChainingSize() const { return ChainingSize; }
3118
3119 FieldDecl *getAnonField() const {
3120 assert(chain().size() >= 2)(static_cast<void> (0));
3121 return cast<FieldDecl>(chain().back());
3122 }
3123
3124 VarDecl *getVarDecl() const {
3125 assert(chain().size() >= 2)(static_cast<void> (0));
3126 return dyn_cast<VarDecl>(chain().front());
3127 }
3128
3129 IndirectFieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
3130 const IndirectFieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
3131
3132 // Implement isa/cast/dyncast/etc.
3133 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3134 static bool classofKind(Kind K) { return K == IndirectField; }
3135};
3136
3137/// Represents a declaration of a type.
3138class TypeDecl : public NamedDecl {
3139 friend class ASTContext;
3140
3141 /// This indicates the Type object that represents
3142 /// this TypeDecl. It is a cache maintained by
3143 /// ASTContext::getTypedefType, ASTContext::getTagDeclType, and
3144 /// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl.
3145 mutable const Type *TypeForDecl = nullptr;
3146
3147 /// The start of the source range for this declaration.
3148 SourceLocation LocStart;
3149
3150 void anchor() override;
3151
3152protected:
3153 TypeDecl(Kind DK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
3154 SourceLocation StartL = SourceLocation())
3155 : NamedDecl(DK, DC, L, Id), LocStart(StartL) {}
3156
3157public:
3158 // Low-level accessor. If you just want the type defined by this node,
3159 // check out ASTContext::getTypeDeclType or one of
3160 // ASTContext::getTypedefType, ASTContext::getRecordType, etc. if you
3161 // already know the specific kind of node this is.
3162 const Type *getTypeForDecl() const { return TypeForDecl; }
3163 void setTypeForDecl(const Type *TD) { TypeForDecl = TD; }
3164
3165 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return LocStart; }
3166 void setLocStart(SourceLocation L) { LocStart = L; }
3167 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
3168 if (LocStart.isValid())
3169 return SourceRange(LocStart, getLocation());
3170 else
3171 return SourceRange(getLocation());
3172 }
3173
3174 // Implement isa/cast/dyncast/etc.
3175 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3176 static bool classofKind(Kind K) { return K >= firstType && K <= lastType; }
3177};
3178
3179/// Base class for declarations which introduce a typedef-name.
3180class TypedefNameDecl : public TypeDecl, public Redeclarable<TypedefNameDecl> {
3181 struct alignas(8) ModedTInfo {
3182 TypeSourceInfo *first;
3183 QualType second;
3184 };
3185
3186 /// If int part is 0, we have not computed IsTransparentTag.
3187 /// Otherwise, IsTransparentTag is (getInt() >> 1).
3188 mutable llvm::PointerIntPair<
3189 llvm::PointerUnion<TypeSourceInfo *, ModedTInfo *>, 2>
3190 MaybeModedTInfo;
3191
3192 void anchor() override;
3193
3194protected:
3195 TypedefNameDecl(Kind DK, ASTContext &C, DeclContext *DC,
3196 SourceLocation StartLoc, SourceLocation IdLoc,
3197 IdentifierInfo *Id, TypeSourceInfo *TInfo)
3198 : TypeDecl(DK, DC, IdLoc, Id, StartLoc), redeclarable_base(C),
3199 MaybeModedTInfo(TInfo, 0) {}
3200
3201 using redeclarable_base = Redeclarable<TypedefNameDecl>;
3202
3203 TypedefNameDecl *getNextRedeclarationImpl() override {
3204 return getNextRedeclaration();
3205 }
3206
3207 TypedefNameDecl *getPreviousDeclImpl() override {
3208 return getPreviousDecl();
3209 }
3210
3211 TypedefNameDecl *getMostRecentDeclImpl() override {
3212 return getMostRecentDecl();
3213 }
3214
3215public:
3216 using redecl_range = redeclarable_base::redecl_range;
3217 using redecl_iterator = redeclarable_base::redecl_iterator;
3218
3219 using redeclarable_base::redecls_begin;
3220 using redeclarable_base::redecls_end;
3221 using redeclarable_base::redecls;
3222 using redeclarable_base::getPreviousDecl;
3223 using redeclarable_base::getMostRecentDecl;
3224 using redeclarable_base::isFirstDecl;
3225
3226 bool isModed() const {
3227 return MaybeModedTInfo.getPointer().is<ModedTInfo *>();
3228 }
3229
3230 TypeSourceInfo *getTypeSourceInfo() const {
3231 return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->first
3232 : MaybeModedTInfo.getPointer().get<TypeSourceInfo *>();
3233 }
3234
3235 QualType getUnderlyingType() const {
3236 return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->second
3237 : MaybeModedTInfo.getPointer()
3238 .get<TypeSourceInfo *>()
3239 ->getType();
3240 }
3241
3242 void setTypeSourceInfo(TypeSourceInfo *newType) {
3243 MaybeModedTInfo.setPointer(newType);
3244 }
3245
3246 void setModedTypeSourceInfo(TypeSourceInfo *unmodedTSI, QualType modedTy) {
3247 MaybeModedTInfo.setPointer(new (getASTContext(), 8)
3248 ModedTInfo({unmodedTSI, modedTy}));
3249 }
3250
3251 /// Retrieves the canonical declaration of this typedef-name.
3252 TypedefNameDecl *getCanonicalDecl() override { return getFirstDecl(); }
3253 const TypedefNameDecl *getCanonicalDecl() const { return getFirstDecl(); }
3254
3255 /// Retrieves the tag declaration for which this is the typedef name for
3256 /// linkage purposes, if any.
3257 ///
3258 /// \param AnyRedecl Look for the tag declaration in any redeclaration of
3259 /// this typedef declaration.
3260 TagDecl *getAnonDeclWithTypedefName(bool AnyRedecl = false) const;
3261
3262 /// Determines if this typedef shares a name and spelling location with its
3263 /// underlying tag type, as is the case with the NS_ENUM macro.
3264 bool isTransparentTag() const {
3265 if (MaybeModedTInfo.getInt())
3266 return MaybeModedTInfo.getInt() & 0x2;
3267 return isTransparentTagSlow();
3268 }
3269
3270 // Implement isa/cast/dyncast/etc.
3271 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3272 static bool classofKind(Kind K) {
3273 return K >= firstTypedefName && K <= lastTypedefName;
3274 }
3275
3276private:
3277 bool isTransparentTagSlow() const;
3278};
3279
3280/// Represents the declaration of a typedef-name via the 'typedef'
3281/// type specifier.
3282class TypedefDecl : public TypedefNameDecl {
3283 TypedefDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3284 SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
3285 : TypedefNameDecl(Typedef, C, DC, StartLoc, IdLoc, Id, TInfo) {}
3286
3287public:
3288 static TypedefDecl *Create(ASTContext &C, DeclContext *DC,
3289 SourceLocation StartLoc, SourceLocation IdLoc,
3290 IdentifierInfo *Id, TypeSourceInfo *TInfo);
3291 static TypedefDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3292
3293 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
3294
3295 // Implement isa/cast/dyncast/etc.
3296 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3297 static bool classofKind(Kind K) { return K == Typedef; }
3298};
3299
3300/// Represents the declaration of a typedef-name via a C++11
3301/// alias-declaration.
3302class TypeAliasDecl : public TypedefNameDecl {
3303 /// The template for which this is the pattern, if any.
3304 TypeAliasTemplateDecl *Template;
3305
3306 TypeAliasDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3307 SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
3308 : TypedefNameDecl(TypeAlias, C, DC, StartLoc, IdLoc, Id, TInfo),
3309 Template(nullptr) {}
3310
3311public:
3312 static TypeAliasDecl *Create(ASTContext &C, DeclContext *DC,
3313 SourceLocation StartLoc, SourceLocation IdLoc,
3314 IdentifierInfo *Id, TypeSourceInfo *TInfo);
3315 static TypeAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3316
3317 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
3318
3319 TypeAliasTemplateDecl *getDescribedAliasTemplate() const { return Template; }
3320 void setDescribedAliasTemplate(TypeAliasTemplateDecl *TAT) { Template = TAT; }
3321
3322 // Implement isa/cast/dyncast/etc.
3323 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3324 static bool classofKind(Kind K) { return K == TypeAlias; }
3325};
3326
3327/// Represents the declaration of a struct/union/class/enum.
3328class TagDecl : public TypeDecl,
3329 public DeclContext,
3330 public Redeclarable<TagDecl> {
3331 // This class stores some data in DeclContext::TagDeclBits
3332 // to save some space. Use the provided accessors to access it.
3333public:
3334 // This is really ugly.
3335 using TagKind = TagTypeKind;
3336
3337private:
3338 SourceRange BraceRange;
3339
3340 // A struct representing syntactic qualifier info,
3341 // to be used for the (uncommon) case of out-of-line declarations.
3342 using ExtInfo = QualifierInfo;
3343
3344 /// If the (out-of-line) tag declaration name
3345 /// is qualified, it points to the qualifier info (nns and range);
3346 /// otherwise, if the tag declaration is anonymous and it is part of
3347 /// a typedef or alias, it points to the TypedefNameDecl (used for mangling);
3348 /// otherwise, if the tag declaration is anonymous and it is used as a
3349 /// declaration specifier for variables, it points to the first VarDecl (used
3350 /// for mangling);
3351 /// otherwise, it is a null (TypedefNameDecl) pointer.
3352 llvm::PointerUnion<TypedefNameDecl *, ExtInfo *> TypedefNameDeclOrQualifier;
3353
3354 bool hasExtInfo() const { return TypedefNameDeclOrQualifier.is<ExtInfo *>(); }
3355 ExtInfo *getExtInfo() { return TypedefNameDeclOrQualifier.get<ExtInfo *>(); }
3356 const ExtInfo *getExtInfo() const {
3357 return TypedefNameDeclOrQualifier.get<ExtInfo *>();
3358 }
3359
3360protected:
3361 TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
3362 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
3363 SourceLocation StartL);
3364
3365 using redeclarable_base = Redeclarable<TagDecl>;
3366
3367 TagDecl *getNextRedeclarationImpl() override {
3368 return getNextRedeclaration();
3369 }
3370
3371 TagDecl *getPreviousDeclImpl() override {
3372 return getPreviousDecl();
3373 }
3374
3375 TagDecl *getMostRecentDeclImpl() override {
3376 return getMostRecentDecl();
3377 }
3378
3379 /// Completes the definition of this tag declaration.
3380 ///
3381 /// This is a helper function for derived classes.
3382 void completeDefinition();
3383
3384 /// True if this decl is currently being defined.
3385 void setBeingDefined(bool V = true) { TagDeclBits.IsBeingDefined = V; }
3386
3387 /// Indicates whether it is possible for declarations of this kind
3388 /// to have an out-of-date definition.
3389 ///
3390 /// This option is only enabled when modules are enabled.
3391 void setMayHaveOutOfDateDef(bool V = true) {
3392 TagDeclBits.MayHaveOutOfDateDef = V;
3393 }
3394
3395public:
3396 friend class ASTDeclReader;
3397 friend class ASTDeclWriter;
3398
3399 using redecl_range = redeclarable_base::redecl_range;
3400 using redecl_iterator = redeclarable_base::redecl_iterator;
3401
3402 using redeclarable_base::redecls_begin;
3403 using redeclarable_base::redecls_end;
3404 using redeclarable_base::redecls;
3405 using redeclarable_base::getPreviousDecl;
3406 using redeclarable_base::getMostRecentDecl;
3407 using redeclarable_base::isFirstDecl;
3408
3409 SourceRange getBraceRange() const { return BraceRange; }
3410 void setBraceRange(SourceRange R) { BraceRange = R; }
3411
3412 /// Return SourceLocation representing start of source
3413 /// range ignoring outer template declarations.
3414 SourceLocation getInnerLocStart() const { return getBeginLoc(); }
3415
3416 /// Return SourceLocation representing start of source
3417 /// range taking into account any outer template declarations.
3418 SourceLocation getOuterLocStart() const;
3419 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
3420
3421 TagDecl *getCanonicalDecl() override;
3422 const TagDecl *getCanonicalDecl() const {
3423 return const_cast<TagDecl*>(this)->getCanonicalDecl();
3424 }
3425
3426 /// Return true if this declaration is a completion definition of the type.
3427 /// Provided for consistency.
3428 bool isThisDeclarationADefinition() const {
3429 return isCompleteDefinition();
3430 }
3431
3432 /// Return true if this decl has its body fully specified.
3433 bool isCompleteDefinition() const { return TagDeclBits.IsCompleteDefinition; }
3434
3435 /// True if this decl has its body fully specified.
3436 void setCompleteDefinition(bool V = true) {
3437 TagDeclBits.IsCompleteDefinition = V;
3438 }
3439
3440 /// Return true if this complete decl is
3441 /// required to be complete for some existing use.
3442 bool isCompleteDefinitionRequired() const {
3443 return TagDeclBits.IsCompleteDefinitionRequired;
3444 }
3445
3446 /// True if this complete decl is
3447 /// required to be complete for some existing use.
3448 void setCompleteDefinitionRequired(bool V = true) {
3449 TagDeclBits.IsCompleteDefinitionRequired = V;
3450 }
3451
3452 /// Return true if this decl is currently being defined.
3453 bool isBeingDefined() const { return TagDeclBits.IsBeingDefined; }
3454
3455 /// True if this tag declaration is "embedded" (i.e., defined or declared
3456 /// for the very first time) in the syntax of a declarator.
3457 bool isEmbeddedInDeclarator() const {
3458 return TagDeclBits.IsEmbeddedInDeclarator;
3459 }
3460
3461 /// True if this tag declaration is "embedded" (i.e., defined or declared
3462 /// for the very first time) in the syntax of a declarator.
3463 void setEmbeddedInDeclarator(bool isInDeclarator) {
3464 TagDeclBits.IsEmbeddedInDeclarator = isInDeclarator;
3465 }
3466
3467 /// True if this tag is free standing, e.g. "struct foo;".
3468 bool isFreeStanding() const { return TagDeclBits.IsFreeStanding; }
3469
3470 /// True if this tag is free standing, e.g. "struct foo;".
3471 void setFreeStanding(bool isFreeStanding = true) {
3472 TagDeclBits.IsFreeStanding = isFreeStanding;
3473 }
3474
3475 /// Indicates whether it is possible for declarations of this kind
3476 /// to have an out-of-date definition.
3477 ///
3478 /// This option is only enabled when modules are enabled.
3479 bool mayHaveOutOfDateDef() const { return TagDeclBits.MayHaveOutOfDateDef; }
3480
3481 /// Whether this declaration declares a type that is
3482 /// dependent, i.e., a type that somehow depends on template
3483 /// parameters.
3484 bool isDependentType() const { return isDependentContext(); }
3485
3486 /// Starts the definition of this tag declaration.
3487 ///
3488 /// This method should be invoked at the beginning of the definition
3489 /// of this tag declaration. It will set the tag type into a state
3490 /// where it is in the process of being defined.
3491 void startDefinition();
3492
3493 /// Returns the TagDecl that actually defines this
3494 /// struct/union/class/enum. When determining whether or not a
3495 /// struct/union/class/enum has a definition, one should use this
3496 /// method as opposed to 'isDefinition'. 'isDefinition' indicates
3497 /// whether or not a specific TagDecl is defining declaration, not
3498 /// whether or not the struct/union/class/enum type is defined.
3499 /// This method returns NULL if there is no TagDecl that defines
3500 /// the struct/union/class/enum.
3501 TagDecl *getDefinition() const;
3502
3503 StringRef getKindName() const {
3504 return TypeWithKeyword::getTagTypeKindName(getTagKind());
3505 }
3506
3507 TagKind getTagKind() const {
3508 return static_cast<TagKind>(TagDeclBits.TagDeclKind);
3509 }
3510
3511 void setTagKind(TagKind TK) { TagDeclBits.TagDeclKind = TK; }
3512
3513 bool isStruct() const { return getTagKind() == TTK_Struct; }
3514 bool isInterface() const { return getTagKind() == TTK_Interface; }
3515 bool isClass() const { return getTagKind() == TTK_Class; }
3516 bool isUnion() const { return getTagKind() == TTK_Union; }
3517 bool isEnum() const { return getTagKind() == TTK_Enum; }
3518
3519 /// Is this tag type named, either directly or via being defined in
3520 /// a typedef of this type?
3521 ///
3522 /// C++11 [basic.link]p8:
3523 /// A type is said to have linkage if and only if:
3524 /// - it is a class or enumeration type that is named (or has a
3525 /// name for linkage purposes) and the name has linkage; ...
3526 /// C++11 [dcl.typedef]p9:
3527 /// If the typedef declaration defines an unnamed class (or enum),
3528 /// the first typedef-name declared by the declaration to be that
3529 /// class type (or enum type) is used to denote the class type (or
3530 /// enum type) for linkage purposes only.
3531 ///
3532 /// C does not have an analogous rule, but the same concept is
3533 /// nonetheless useful in some places.
3534 bool hasNameForLinkage() const {
3535 return (getDeclName() || getTypedefNameForAnonDecl());
3536 }
3537
3538 TypedefNameDecl *getTypedefNameForAnonDecl() const {
3539 return hasExtInfo() ? nullptr
3540 : TypedefNameDeclOrQualifier.get<TypedefNameDecl *>();
3541 }
3542
3543 void setTypedefNameForAnonDecl(TypedefNameDecl *TDD);
3544
3545 /// Retrieve the nested-name-specifier that qualifies the name of this
3546 /// declaration, if it was present in the source.
3547 NestedNameSpecifier *getQualifier() const {
3548 return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
3549 : nullptr;
3550 }
3551
3552 /// Retrieve the nested-name-specifier (with source-location
3553 /// information) that qualifies the name of this declaration, if it was
3554 /// present in the source.
3555 NestedNameSpecifierLoc getQualifierLoc() const {
3556 return hasExtInfo() ? getExtInfo()->QualifierLoc
3557 : NestedNameSpecifierLoc();
3558 }
3559
3560 void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
3561
3562 unsigned getNumTemplateParameterLists() const {
3563 return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
3564 }
3565
3566 TemplateParameterList *getTemplateParameterList(unsigned i) const {
3567 assert(i < getNumTemplateParameterLists())(static_cast<void> (0));
3568 return getExtInfo()->TemplParamLists[i];
3569 }
3570
3571 void setTemplateParameterListsInfo(ASTContext &Context,
3572 ArrayRef<TemplateParameterList *> TPLists);
3573
3574 // Implement isa/cast/dyncast/etc.
3575 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3576 static bool classofKind(Kind K) { return K >= firstTag && K <= lastTag; }
3577
3578 static DeclContext *castToDeclContext(const TagDecl *D) {
3579 return static_cast<DeclContext *>(const_cast<TagDecl*>(D));
3580 }
3581
3582 static TagDecl *castFromDeclContext(const DeclContext *DC) {
3583 return static_cast<TagDecl *>(const_cast<DeclContext*>(DC));
3584 }
3585};
3586
3587/// Represents an enum. In C++11, enums can be forward-declared
3588/// with a fixed underlying type, and in C we allow them to be forward-declared
3589/// with no underlying type as an extension.
3590class EnumDecl : public TagDecl {
3591 // This class stores some data in DeclContext::EnumDeclBits
3592 // to save some space. Use the provided accessors to access it.
3593
3594 /// This represent the integer type that the enum corresponds
3595 /// to for code generation purposes. Note that the enumerator constants may
3596 /// have a different type than this does.
3597 ///
3598 /// If the underlying integer type was explicitly stated in the source
3599 /// code, this is a TypeSourceInfo* for that type. Otherwise this type
3600 /// was automatically deduced somehow, and this is a Type*.
3601 ///
3602 /// Normally if IsFixed(), this would contain a TypeSourceInfo*, but in
3603 /// some cases it won't.
3604 ///
3605 /// The underlying type of an enumeration never has any qualifiers, so
3606 /// we can get away with just storing a raw Type*, and thus save an
3607 /// extra pointer when TypeSourceInfo is needed.
3608 llvm::PointerUnion<const Type *, TypeSourceInfo *> IntegerType;
3609
3610 /// The integer type that values of this type should
3611 /// promote to. In C, enumerators are generally of an integer type
3612 /// directly, but gcc-style large enumerators (and all enumerators
3613 /// in C++) are of the enum type instead.
3614 QualType PromotionType;
3615
3616 /// If this enumeration is an instantiation of a member enumeration
3617 /// of a class template specialization, this is the member specialization
3618 /// information.
3619 MemberSpecializationInfo *SpecializationInfo = nullptr;
3620
3621 /// Store the ODRHash after first calculation.
3622 /// The corresponding flag HasODRHash is in EnumDeclBits
3623 /// and can be accessed with the provided accessors.
3624 unsigned ODRHash;
3625
3626 EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3627 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
3628 bool Scoped, bool ScopedUsingClassTag, bool Fixed);
3629
3630 void anchor() override;
3631
3632 void setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3633 TemplateSpecializationKind TSK);
3634
3635 /// Sets the width in bits required to store all the
3636 /// non-negative enumerators of this enum.
3637 void setNumPositiveBits(unsigned Num) {
3638 EnumDeclBits.NumPositiveBits = Num;
3639 assert(EnumDeclBits.NumPositiveBits == Num && "can't store this bitcount")(static_cast<void> (0));
3640 }
3641
3642 /// Returns the width in bits required to store all the
3643 /// negative enumerators of this enum. (see getNumNegativeBits)
3644 void setNumNegativeBits(unsigned Num) { EnumDeclBits.NumNegativeBits = Num; }
3645
3646public:
3647 /// True if this tag declaration is a scoped enumeration. Only
3648 /// possible in C++11 mode.
3649 void setScoped(bool Scoped = true) { EnumDeclBits.IsScoped = Scoped; }
3650
3651 /// If this tag declaration is a scoped enum,
3652 /// then this is true if the scoped enum was declared using the class
3653 /// tag, false if it was declared with the struct tag. No meaning is
3654 /// associated if this tag declaration is not a scoped enum.
3655 void setScopedUsingClassTag(bool ScopedUCT = true) {
3656 EnumDeclBits.IsScopedUsingClassTag = ScopedUCT;
3657 }
3658
3659 /// True if this is an Objective-C, C++11, or
3660 /// Microsoft-style enumeration with a fixed underlying type.
3661 void setFixed(bool Fixed = true) { EnumDeclBits.IsFixed = Fixed; }
3662
3663private:
3664 /// True if a valid hash is stored in ODRHash.
3665 bool hasODRHash() const { return EnumDeclBits.HasODRHash; }
3666 void setHasODRHash(bool Hash = true) { EnumDeclBits.HasODRHash = Hash; }
3667
3668public:
3669 friend class ASTDeclReader;
3670
3671 EnumDecl *getCanonicalDecl() override {
3672 return cast<EnumDecl>(TagDecl::getCanonicalDecl());
3673 }
3674 const EnumDecl *getCanonicalDecl() const {
3675 return const_cast<EnumDecl*>(this)->getCanonicalDecl();
3676 }
3677
3678 EnumDecl *getPreviousDecl() {
3679 return cast_or_null<EnumDecl>(
3680 static_cast<TagDecl *>(this)->getPreviousDecl());
3681 }
3682 const EnumDecl *getPreviousDecl() const {
3683 return const_cast<EnumDecl*>(this)->getPreviousDecl();
3684 }
3685
3686 EnumDecl *getMostRecentDecl() {
3687 return cast<EnumDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
3688 }
3689 const EnumDecl *getMostRecentDecl() const {
3690 return const_cast<EnumDecl*>(this)->getMostRecentDecl();
3691 }
3692
3693 EnumDecl *getDefinition() const {
3694 return cast_or_null<EnumDecl>(TagDecl::getDefinition());
3695 }
3696
3697 static EnumDecl *Create(ASTContext &C, DeclContext *DC,
3698 SourceLocation StartLoc, SourceLocation IdLoc,
3699 IdentifierInfo *Id, EnumDecl *PrevDecl,
3700 bool IsScoped, bool IsScopedUsingClassTag,
3701 bool IsFixed);
3702 static EnumDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3703
3704 /// When created, the EnumDecl corresponds to a
3705 /// forward-declared enum. This method is used to mark the
3706 /// declaration as being defined; its enumerators have already been
3707 /// added (via DeclContext::addDecl). NewType is the new underlying
3708 /// type of the enumeration type.
3709 void completeDefinition(QualType NewType,
3710 QualType PromotionType,
3711 unsigned NumPositiveBits,
3712 unsigned NumNegativeBits);
3713
3714 // Iterates through the enumerators of this enumeration.
3715 using enumerator_iterator = specific_decl_iterator<EnumConstantDecl>;
3716 using enumerator_range =
3717 llvm::iterator_range<specific_decl_iterator<EnumConstantDecl>>;
3718
3719 enumerator_range enumerators() const {
3720 return enumerator_range(enumerator_begin(), enumerator_end());
3721 }
3722
3723 enumerator_iterator enumerator_begin() const {
3724 const EnumDecl *E = getDefinition();
3725 if (!E)
3726 E = this;
3727 return enumerator_iterator(E->decls_begin());
3728 }
3729
3730 enumerator_iterator enumerator_end() const {
3731 const EnumDecl *E = getDefinition();
3732 if (!E)
3733 E = this;
3734 return enumerator_iterator(E->decls_end());
3735 }
3736
3737 /// Return the integer type that enumerators should promote to.
3738 QualType getPromotionType() const { return PromotionType; }
3739
3740 /// Set the promotion type.
3741 void setPromotionType(QualType T) { PromotionType = T; }
3742
3743 /// Return the integer type this enum decl corresponds to.
3744 /// This returns a null QualType for an enum forward definition with no fixed
3745 /// underlying type.
3746 QualType getIntegerType() const {
3747 if (!IntegerType)
3748 return QualType();
3749 if (const Type *T = IntegerType.dyn_cast<const Type*>())
3750 return QualType(T, 0);
3751 return IntegerType.get<TypeSourceInfo*>()->getType().getUnqualifiedType();
3752 }
3753
3754 /// Set the underlying integer type.
3755 void setIntegerType(QualType T) { IntegerType = T.getTypePtrOrNull(); }
3756
3757 /// Set the underlying integer type source info.
3758 void setIntegerTypeSourceInfo(TypeSourceInfo *TInfo) { IntegerType = TInfo; }
3759
3760 /// Return the type source info for the underlying integer type,
3761 /// if no type source info exists, return 0.
3762 TypeSourceInfo *getIntegerTypeSourceInfo() const {
3763 return IntegerType.dyn_cast<TypeSourceInfo*>();
3764 }
3765
3766 /// Retrieve the source range that covers the underlying type if
3767 /// specified.
3768 SourceRange getIntegerTypeRange() const LLVM_READONLY__attribute__((__pure__));
3769
3770 /// Returns the width in bits required to store all the
3771 /// non-negative enumerators of this enum.
3772 unsigned getNumPositiveBits() const { return EnumDeclBits.NumPositiveBits; }
3773
3774 /// Returns the width in bits required to store all the
3775 /// negative enumerators of this enum. These widths include
3776 /// the rightmost leading 1; that is:
3777 ///
3778 /// MOST NEGATIVE ENUMERATOR PATTERN NUM NEGATIVE BITS
3779 /// ------------------------ ------- -----------------
3780 /// -1 1111111 1
3781 /// -10 1110110 5
3782 /// -101 1001011 8
3783 unsigned getNumNegativeBits() const { return EnumDeclBits.NumNegativeBits; }
3784
3785 /// Returns true if this is a C++11 scoped enumeration.
3786 bool isScoped() const { return EnumDeclBits.IsScoped; }
3787
3788 /// Returns true if this is a C++11 scoped enumeration.
3789 bool isScopedUsingClassTag() const {
3790 return EnumDeclBits.IsScopedUsingClassTag;
3791 }
3792
3793 /// Returns true if this is an Objective-C, C++11, or
3794 /// Microsoft-style enumeration with a fixed underlying type.
3795 bool isFixed() const { return EnumDeclBits.IsFixed; }
3796
3797 unsigned getODRHash();
3798
3799 /// Returns true if this can be considered a complete type.
3800 bool isComplete() const {
3801 // IntegerType is set for fixed type enums and non-fixed but implicitly
3802 // int-sized Microsoft enums.
3803 return isCompleteDefinition() || IntegerType;
3804 }
3805
3806 /// Returns true if this enum is either annotated with
3807 /// enum_extensibility(closed) or isn't annotated with enum_extensibility.
3808 bool isClosed() const;
3809
3810 /// Returns true if this enum is annotated with flag_enum and isn't annotated
3811 /// with enum_extensibility(open).
3812 bool isClosedFlag() const;
3813
3814 /// Returns true if this enum is annotated with neither flag_enum nor
3815 /// enum_extensibility(open).
3816 bool isClosedNonFlag() const;
3817
3818 /// Retrieve the enum definition from which this enumeration could
3819 /// be instantiated, if it is an instantiation (rather than a non-template).
3820 EnumDecl *getTemplateInstantiationPattern() const;
3821
3822 /// Returns the enumeration (declared within the template)
3823 /// from which this enumeration type was instantiated, or NULL if
3824 /// this enumeration was not instantiated from any template.
3825 EnumDecl *getInstantiatedFromMemberEnum() const;
3826
3827 /// If this enumeration is a member of a specialization of a
3828 /// templated class, determine what kind of template specialization
3829 /// or instantiation this is.
3830 TemplateSpecializationKind getTemplateSpecializationKind() const;
3831
3832 /// For an enumeration member that was instantiated from a member
3833 /// enumeration of a templated class, set the template specialiation kind.
3834 void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3835 SourceLocation PointOfInstantiation = SourceLocation());
3836
3837 /// If this enumeration is an instantiation of a member enumeration of
3838 /// a class template specialization, retrieves the member specialization
3839 /// information.
3840 MemberSpecializationInfo *getMemberSpecializationInfo() const {
3841 return SpecializationInfo;
3842 }
3843
3844 /// Specify that this enumeration is an instantiation of the
3845 /// member enumeration ED.
3846 void setInstantiationOfMemberEnum(EnumDecl *ED,
3847 TemplateSpecializationKind TSK) {
3848 setInstantiationOfMemberEnum(getASTContext(), ED, TSK);
3849 }
3850
3851 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3852 static bool classofKind(Kind K) { return K == Enum; }
3853};
3854
3855/// Represents a struct/union/class. For example:
3856/// struct X; // Forward declaration, no "body".
3857/// union Y { int A, B; }; // Has body with members A and B (FieldDecls).
3858/// This decl will be marked invalid if *any* members are invalid.
3859class RecordDecl : public TagDecl {
3860 // This class stores some data in DeclContext::RecordDeclBits
3861 // to save some space. Use the provided accessors to access it.
3862public:
3863 friend class DeclContext;
3864 /// Enum that represents the different ways arguments are passed to and
3865 /// returned from function calls. This takes into account the target-specific
3866 /// and version-specific rules along with the rules determined by the
3867 /// language.
3868 enum ArgPassingKind : unsigned {
3869 /// The argument of this type can be passed directly in registers.
3870 APK_CanPassInRegs,
3871
3872 /// The argument of this type cannot be passed directly in registers.
3873 /// Records containing this type as a subobject are not forced to be passed
3874 /// indirectly. This value is used only in C++. This value is required by
3875 /// C++ because, in uncommon situations, it is possible for a class to have
3876 /// only trivial copy/move constructors even when one of its subobjects has
3877 /// a non-trivial copy/move constructor (if e.g. the corresponding copy/move
3878 /// constructor in the derived class is deleted).
3879 APK_CannotPassInRegs,
3880
3881 /// The argument of this type cannot be passed directly in registers.
3882 /// Records containing this type as a subobject are forced to be passed
3883 /// indirectly.
3884 APK_CanNeverPassInRegs
3885 };
3886
3887protected:
3888 RecordDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
3889 SourceLocation StartLoc, SourceLocation IdLoc,
3890 IdentifierInfo *Id, RecordDecl *PrevDecl);
3891
3892public:
3893 static RecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
3894 SourceLocation StartLoc, SourceLocation IdLoc,
3895 IdentifierInfo *Id, RecordDecl* PrevDecl = nullptr);
3896 static RecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
3897
3898 RecordDecl *getPreviousDecl() {
3899 return cast_or_null<RecordDecl>(
3900 static_cast<TagDecl *>(this)->getPreviousDecl());
3901 }
3902 const RecordDecl *getPreviousDecl() const {
3903 return const_cast<RecordDecl*>(this)->getPreviousDecl();
3904 }
3905
3906 RecordDecl *getMostRecentDecl() {
3907 return cast<RecordDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
3908 }
3909 const RecordDecl *getMostRecentDecl() const {
3910 return const_cast<RecordDecl*>(this)->getMostRecentDecl();
3911 }
3912
3913 bool hasFlexibleArrayMember() const {
3914 return RecordDeclBits.HasFlexibleArrayMember;
3915 }
3916
3917 void setHasFlexibleArrayMember(bool V) {
3918 RecordDeclBits.HasFlexibleArrayMember = V;
3919 }
3920
3921 /// Whether this is an anonymous struct or union. To be an anonymous
3922 /// struct or union, it must have been declared without a name and
3923 /// there must be no objects of this type declared, e.g.,
3924 /// @code
3925 /// union { int i; float f; };
3926 /// @endcode
3927 /// is an anonymous union but neither of the following are:
3928 /// @code
3929 /// union X { int i; float f; };
3930 /// union { int i; float f; } obj;
3931 /// @endcode
3932 bool isAnonymousStructOrUnion() const {
3933 return RecordDeclBits.AnonymousStructOrUnion;
3934 }
3935
3936 void setAnonymousStructOrUnion(bool Anon) {
3937 RecordDeclBits.AnonymousStructOrUnion = Anon;
3938 }
3939
3940 bool hasObjectMember() const { return RecordDeclBits.HasObjectMember; }
3941 void setHasObjectMember(bool val) { RecordDeclBits.HasObjectMember = val; }
3942
3943 bool hasVolatileMember() const { return RecordDeclBits.HasVolatileMember; }
3944
3945 void setHasVolatileMember(bool val) {
3946 RecordDeclBits.HasVolatileMember = val;
3947 }
3948
3949 bool hasLoadedFieldsFromExternalStorage() const {
3950 return RecordDeclBits.LoadedFieldsFromExternalStorage;
3951 }
3952
3953 void setHasLoadedFieldsFromExternalStorage(bool val) const {
3954 RecordDeclBits.LoadedFieldsFromExternalStorage = val;
3955 }
3956
3957 /// Functions to query basic properties of non-trivial C structs.
3958 bool isNonTrivialToPrimitiveDefaultInitialize() const {
3959 return RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize;
3960 }
3961
3962 void setNonTrivialToPrimitiveDefaultInitialize(bool V) {
3963 RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize = V;
3964 }
3965
3966 bool isNonTrivialToPrimitiveCopy() const {
3967 return RecordDeclBits.NonTrivialToPrimitiveCopy;
3968 }
3969
3970 void setNonTrivialToPrimitiveCopy(bool V) {
3971 RecordDeclBits.NonTrivialToPrimitiveCopy = V;
3972 }
3973
3974 bool isNonTrivialToPrimitiveDestroy() const {
3975 return RecordDeclBits.NonTrivialToPrimitiveDestroy;
3976 }
3977
3978 void setNonTrivialToPrimitiveDestroy(bool V) {
3979 RecordDeclBits.NonTrivialToPrimitiveDestroy = V;
3980 }
3981
3982 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
3983 return RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion;
3984 }
3985
3986 void setHasNonTrivialToPrimitiveDefaultInitializeCUnion(bool V) {
3987 RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion = V;
3988 }
3989
3990 bool hasNonTrivialToPrimitiveDestructCUnion() const {
3991 return RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion;
3992 }
3993
3994 void setHasNonTrivialToPrimitiveDestructCUnion(bool V) {
3995 RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion = V;
3996 }
3997
3998 bool hasNonTrivialToPrimitiveCopyCUnion() const {
3999 return RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion;
4000 }
4001
4002 void setHasNonTrivialToPrimitiveCopyCUnion(bool V) {
4003 RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion = V;
4004 }
4005
4006 /// Determine whether this class can be passed in registers. In C++ mode,
4007 /// it must have at least one trivial, non-deleted copy or move constructor.
4008 /// FIXME: This should be set as part of completeDefinition.
4009 bool canPassInRegisters() const {
4010 return getArgPassingRestrictions() == APK_CanPassInRegs;
4011 }
4012
4013 ArgPassingKind getArgPassingRestrictions() const {
4014 return static_cast<ArgPassingKind>(RecordDeclBits.ArgPassingRestrictions);
4015 }
4016
4017 void setArgPassingRestrictions(ArgPassingKind Kind) {
4018 RecordDeclBits.ArgPassingRestrictions = Kind;
4019 }
4020
4021 bool isParamDestroyedInCallee() const {
4022 return RecordDeclBits.ParamDestroyedInCallee;
4023 }
4024
4025 void setParamDestroyedInCallee(bool V) {
4026 RecordDeclBits.ParamDestroyedInCallee = V;
4027 }
4028
4029 /// Determines whether this declaration represents the
4030 /// injected class name.
4031 ///
4032 /// The injected class name in C++ is the name of the class that
4033 /// appears inside the class itself. For example:
4034 ///
4035 /// \code
4036 /// struct C {
4037 /// // C is implicitly declared here as a synonym for the class name.
4038 /// };
4039 ///
4040 /// C::C c; // same as "C c;"
4041 /// \endcode
4042 bool isInjectedClassName() const;
4043
4044 /// Determine whether this record is a class describing a lambda
4045 /// function object.
4046 bool isLambda() const;
4047
4048 /// Determine whether this record is a record for captured variables in
4049 /// CapturedStmt construct.
4050 bool isCapturedRecord() const;
4051
4052 /// Mark the record as a record for captured variables in CapturedStmt
4053 /// construct.
4054 void setCapturedRecord();
4055
4056 /// Returns the RecordDecl that actually defines
4057 /// this struct/union/class. When determining whether or not a
4058 /// struct/union/class is completely defined, one should use this
4059 /// method as opposed to 'isCompleteDefinition'.
4060 /// 'isCompleteDefinition' indicates whether or not a specific
4061 /// RecordDecl is a completed definition, not whether or not the
4062 /// record type is defined. This method returns NULL if there is
4063 /// no RecordDecl that defines the struct/union/tag.
4064 RecordDecl *getDefinition() const {
4065 return cast_or_null<RecordDecl>(TagDecl::getDefinition());
4066 }
4067
4068 /// Returns whether this record is a union, or contains (at any nesting level)
4069 /// a union member. This is used by CMSE to warn about possible information
4070 /// leaks.
4071 bool isOrContainsUnion() const;
4072
4073 // Iterator access to field members. The field iterator only visits
4074 // the non-static data members of this class, ignoring any static
4075 // data members, functions, constructors, destructors, etc.
4076 using field_iterator = specific_decl_iterator<FieldDecl>;
4077 using field_range = llvm::iterator_range<specific_decl_iterator<FieldDecl>>;
4078
4079 field_range fields() const { return field_range(field_begin(), field_end()); }
4080 field_iterator field_begin() const;
4081
4082 field_iterator field_end() const {
4083 return field_iterator(decl_iterator());
4084 }
4085
4086 // Whether there are any fields (non-static data members) in this record.
4087 bool field_empty() const {
4088 return field_begin() == field_end();
4089 }
4090
4091 /// Note that the definition of this type is now complete.
4092 virtual void completeDefinition();
4093
4094 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4095 static bool classofKind(Kind K) {
4096 return K >= firstRecord && K <= lastRecord;
4097 }
4098
4099 /// Get whether or not this is an ms_struct which can
4100 /// be turned on with an attribute, pragma, or -mms-bitfields
4101 /// commandline option.
4102 bool isMsStruct(const ASTContext &C) const;
4103
4104 /// Whether we are allowed to insert extra padding between fields.
4105 /// These padding are added to help AddressSanitizer detect
4106 /// intra-object-overflow bugs.
4107 bool mayInsertExtraPadding(bool EmitRemark = false) const;
4108
4109 /// Finds the first data member which has a name.
4110 /// nullptr is returned if no named data member exists.
4111 const FieldDecl *findFirstNamedDataMember() const;
4112
4113private:
4114 /// Deserialize just the fields.
4115 void LoadFieldsFromExternalStorage() const;
4116};
4117
4118class FileScopeAsmDecl : public Decl {
4119 StringLiteral *AsmString;
4120 SourceLocation RParenLoc;
4121
4122 FileScopeAsmDecl(DeclContext *DC, StringLiteral *asmstring,
4123 SourceLocation StartL, SourceLocation EndL)
4124 : Decl(FileScopeAsm, DC, StartL), AsmString(asmstring), RParenLoc(EndL) {}
4125
4126 virtual void anchor();
4127
4128public:
4129 static FileScopeAsmDecl *Create(ASTContext &C, DeclContext *DC,
4130 StringLiteral *Str, SourceLocation AsmLoc,
4131 SourceLocation RParenLoc);
4132
4133 static FileScopeAsmDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4134
4135 SourceLocation getAsmLoc() const { return getLocation(); }
4136 SourceLocation getRParenLoc() const { return RParenLoc; }
4137 void setRParenLoc(SourceLocation L) { RParenLoc = L; }
4138 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
4139 return SourceRange(getAsmLoc(), getRParenLoc());
4140 }
4141
4142 const StringLiteral *getAsmString() const { return AsmString; }
4143 StringLiteral *getAsmString() { return AsmString; }
4144 void setAsmString(StringLiteral *Asm) { AsmString = Asm; }
4145
4146 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4147 static bool classofKind(Kind K) { return K == FileScopeAsm; }
4148};
4149
4150/// Represents a block literal declaration, which is like an
4151/// unnamed FunctionDecl. For example:
4152/// ^{ statement-body } or ^(int arg1, float arg2){ statement-body }
4153class BlockDecl : public Decl, public DeclContext {
4154 // This class stores some data in DeclContext::BlockDeclBits
4155 // to save some space. Use the provided accessors to access it.
4156public:
4157 /// A class which contains all the information about a particular
4158 /// captured value.
4159 class Capture {
4160 enum {
4161 flag_isByRef = 0x1,
4162 flag_isNested = 0x2
4163 };
4164
4165 /// The variable being captured.
4166 llvm::PointerIntPair<VarDecl*, 2> VariableAndFlags;
4167
4168 /// The copy expression, expressed in terms of a DeclRef (or
4169 /// BlockDeclRef) to the captured variable. Only required if the
4170 /// variable has a C++ class type.
4171 Expr *CopyExpr;
4172
4173 public:
4174 Capture(VarDecl *variable, bool byRef, bool nested, Expr *copy)
4175 : VariableAndFlags(variable,
4176 (byRef ? flag_isByRef : 0) | (nested ? flag_isNested : 0)),
4177 CopyExpr(copy) {}
4178
4179 /// The variable being captured.
4180 VarDecl *getVariable() const { return VariableAndFlags.getPointer(); }
4181
4182 /// Whether this is a "by ref" capture, i.e. a capture of a __block
4183 /// variable.
4184 bool isByRef() const { return VariableAndFlags.getInt() & flag_isByRef; }
4185
4186 bool isEscapingByref() const {
4187 return getVariable()->isEscapingByref();
4188 }
4189
4190 bool isNonEscapingByref() const {
4191 return getVariable()->isNonEscapingByref();
4192 }
4193
4194 /// Whether this is a nested capture, i.e. the variable captured
4195 /// is not from outside the immediately enclosing function/block.
4196 bool isNested() const { return VariableAndFlags.getInt() & flag_isNested; }
4197
4198 bool hasCopyExpr() const { return CopyExpr != nullptr; }
4199 Expr *getCopyExpr() const { return CopyExpr; }
4200 void setCopyExpr(Expr *e) { CopyExpr = e; }
4201 };
4202
4203private:
4204 /// A new[]'d array of pointers to ParmVarDecls for the formal
4205 /// parameters of this function. This is null if a prototype or if there are
4206 /// no formals.
4207 ParmVarDecl **ParamInfo = nullptr;
4208 unsigned NumParams = 0;
4209
4210 Stmt *Body = nullptr;
4211 TypeSourceInfo *SignatureAsWritten = nullptr;
4212
4213 const Capture *Captures = nullptr;
4214 unsigned NumCaptures = 0;
4215
4216 unsigned ManglingNumber = 0;
4217 Decl *ManglingContextDecl = nullptr;
4218
4219protected:
4220 BlockDecl(DeclContext *DC, SourceLocation CaretLoc);
4221
4222public:
4223 static BlockDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L);
4224 static BlockDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4225
4226 SourceLocation getCaretLocation() const { return getLocation(); }
4227
4228 bool isVariadic() const { return BlockDeclBits.IsVariadic; }
4229 void setIsVariadic(bool value) { BlockDeclBits.IsVariadic = value; }
4230
4231 CompoundStmt *getCompoundBody() const { return (CompoundStmt*) Body; }
4232 Stmt *getBody() const override { return (Stmt*) Body; }
4233 void setBody(CompoundStmt *B) { Body = (Stmt*) B; }
4234
4235 void setSignatureAsWritten(TypeSourceInfo *Sig) { SignatureAsWritten = Sig; }
4236 TypeSourceInfo *getSignatureAsWritten() const { return SignatureAsWritten; }
4237
4238 // ArrayRef access to formal parameters.
4239 ArrayRef<ParmVarDecl *> parameters() const {
4240 return {ParamInfo, getNumParams()};
4241 }
4242 MutableArrayRef<ParmVarDecl *> parameters() {
4243 return {ParamInfo, getNumParams()};
4244 }
4245
4246 // Iterator access to formal parameters.
4247 using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
4248 using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
4249
4250 bool param_empty() const { return parameters().empty(); }
4251 param_iterator param_begin() { return parameters().begin(); }
4252 param_iterator param_end() { return parameters().end(); }
4253 param_const_iterator param_begin() const { return parameters().begin(); }
4254 param_const_iterator param_end() const { return parameters().end(); }
4255 size_t param_size() const { return parameters().size(); }
4256
4257 unsigned getNumParams() const { return NumParams; }
4258
4259 const ParmVarDecl *getParamDecl(unsigned i) const {
4260 assert(i < getNumParams() && "Illegal param #")(static_cast<void> (0));
4261 return ParamInfo[i];
4262 }
4263 ParmVarDecl *getParamDecl(unsigned i) {
4264 assert(i < getNumParams() && "Illegal param #")(static_cast<void> (0));
4265 return ParamInfo[i];
4266 }
4267
4268 void setParams(ArrayRef<ParmVarDecl *> NewParamInfo);
4269
4270 /// True if this block (or its nested blocks) captures
4271 /// anything of local storage from its enclosing scopes.
4272 bool hasCaptures() const { return NumCaptures || capturesCXXThis(); }
4273
4274 /// Returns the number of captured variables.
4275 /// Does not include an entry for 'this'.
4276 unsigned getNumCaptures() const { return NumCaptures; }
4277
4278 using capture_const_iterator = ArrayRef<Capture>::const_iterator;
4279
4280 ArrayRef<Capture> captures() const { return {Captures, NumCaptures}; }
4281
4282 capture_const_iterator capture_begin() const { return captures().begin(); }
4283 capture_const_iterator capture_end() const { return captures().end(); }
4284
4285 bool capturesCXXThis() const { return BlockDeclBits.CapturesCXXThis; }
4286 void setCapturesCXXThis(bool B = true) { BlockDeclBits.CapturesCXXThis = B; }
4287
4288 bool blockMissingReturnType() const {
4289 return BlockDeclBits.BlockMissingReturnType;
4290 }
4291
4292 void setBlockMissingReturnType(bool val = true) {
4293 BlockDeclBits.BlockMissingReturnType = val;
4294 }
4295
4296 bool isConversionFromLambda() const {
4297 return BlockDeclBits.IsConversionFromLambda;
4298 }
4299
4300 void setIsConversionFromLambda(bool val = true) {
4301 BlockDeclBits.IsConversionFromLambda = val;
4302 }
4303
4304 bool doesNotEscape() const { return BlockDeclBits.DoesNotEscape; }
4305 void setDoesNotEscape(bool B = true) { BlockDeclBits.DoesNotEscape = B; }
4306
4307 bool canAvoidCopyToHeap() const {
4308 return BlockDeclBits.CanAvoidCopyToHeap;
4309 }
4310 void setCanAvoidCopyToHeap(bool B = true) {
4311 BlockDeclBits.CanAvoidCopyToHeap = B;
4312 }
4313
4314 bool capturesVariable(const VarDecl *var) const;
4315
4316 void setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4317 bool CapturesCXXThis);
4318
4319 unsigned getBlockManglingNumber() const { return ManglingNumber; }
4320
4321 Decl *getBlockManglingContextDecl() const { return ManglingContextDecl; }
4322
4323 void setBlockMangling(unsigned Number, Decl *Ctx) {
4324 ManglingNumber = Number;
4325 ManglingContextDecl = Ctx;
4326 }
4327
4328 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
4329
4330 // Implement isa/cast/dyncast/etc.
4331 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4332 static bool classofKind(Kind K) { return K == Block; }
4333 static DeclContext *castToDeclContext(const BlockDecl *D) {
4334 return static_cast<DeclContext *>(const_cast<BlockDecl*>(D));
4335 }
4336 static BlockDecl *castFromDeclContext(const DeclContext *DC) {
4337 return static_cast<BlockDecl *>(const_cast<DeclContext*>(DC));
4338 }
4339};
4340
4341/// Represents the body of a CapturedStmt, and serves as its DeclContext.
4342class CapturedDecl final
4343 : public Decl,
4344 public DeclContext,
4345 private llvm::TrailingObjects<CapturedDecl, ImplicitParamDecl *> {
4346protected:
4347 size_t numTrailingObjects(OverloadToken<ImplicitParamDecl>) {
4348 return NumParams;
4349 }
4350
4351private:
4352 /// The number of parameters to the outlined function.
4353 unsigned NumParams;
4354
4355 /// The position of context parameter in list of parameters.
4356 unsigned ContextParam;
4357
4358 /// The body of the outlined function.
4359 llvm::PointerIntPair<Stmt *, 1, bool> BodyAndNothrow;
4360
4361 explicit CapturedDecl(DeclContext *DC, unsigned NumParams);
4362
4363 ImplicitParamDecl *const *getParams() const {
4364 return getTrailingObjects<ImplicitParamDecl *>();
4365 }
4366
4367 ImplicitParamDecl **getParams() {
4368 return getTrailingObjects<ImplicitParamDecl *>();
4369 }
4370
4371public:
4372 friend class ASTDeclReader;
4373 friend class ASTDeclWriter;
4374 friend TrailingObjects;
4375
4376 static CapturedDecl *Create(ASTContext &C, DeclContext *DC,
4377 unsigned NumParams);
4378 static CapturedDecl *CreateDeserialized(ASTContext &C, unsigned ID,
4379 unsigned NumParams);
4380
4381 Stmt *getBody() const override;
4382 void setBody(Stmt *B);
4383
4384 bool isNothrow() const;
4385 void setNothrow(bool Nothrow = true);
4386
4387 unsigned getNumParams() const { return NumParams; }
4388
4389 ImplicitParamDecl *getParam(unsigned i) const {
4390 assert(i < NumParams)(static_cast<void> (0));
4391 return getParams()[i];
4392 }
4393 void setParam(unsigned i, ImplicitParamDecl *P) {
4394 assert(i < NumParams)(static_cast<void> (0));
4395 getParams()[i] = P;
4396 }
4397
4398 // ArrayRef interface to parameters.
4399 ArrayRef<ImplicitParamDecl *> parameters() const {
4400 return {getParams(), getNumParams()};
4401 }
4402 MutableArrayRef<ImplicitParamDecl *> parameters() {
4403 return {getParams(), getNumParams()};
4404 }
4405
4406 /// Retrieve the parameter containing captured variables.
4407 ImplicitParamDecl *getContextParam() const {
4408 assert(ContextParam < NumParams)(static_cast<void> (0));
4409 return getParam(ContextParam);
4410 }
4411 void setContextParam(unsigned i, ImplicitParamDecl *P) {
4412 assert(i < NumParams)(static_cast<void> (0));
4413 ContextParam = i;
4414 setParam(i, P);
4415 }
4416 unsigned getContextParamPosition() const { return ContextParam; }
4417
4418 using param_iterator = ImplicitParamDecl *const *;
4419 using param_range = llvm::iterator_range<param_iterator>;
4420
4421 /// Retrieve an iterator pointing to the first parameter decl.
4422 param_iterator param_begin() const { return getParams(); }
4423 /// Retrieve an iterator one past the last parameter decl.
4424 param_iterator param_end() const { return getParams() + NumParams; }
4425
4426 // Implement isa/cast/dyncast/etc.
4427 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4428 static bool classofKind(Kind K) { return K == Captured; }
4429 static DeclContext *castToDeclContext(const CapturedDecl *D) {
4430 return static_cast<DeclContext *>(const_cast<CapturedDecl *>(D));
4431 }
4432 static CapturedDecl *castFromDeclContext(const DeclContext *DC) {
4433 return static_cast<CapturedDecl *>(const_cast<DeclContext *>(DC));
4434 }
4435};
4436
4437/// Describes a module import declaration, which makes the contents
4438/// of the named module visible in the current translation unit.
4439///
4440/// An import declaration imports the named module (or submodule). For example:
4441/// \code
4442/// @import std.vector;
4443/// \endcode
4444///
4445/// Import declarations can also be implicitly generated from
4446/// \#include/\#import directives.
4447class ImportDecl final : public Decl,
4448 llvm::TrailingObjects<ImportDecl, SourceLocation> {
4449 friend class ASTContext;
4450 friend class ASTDeclReader;
4451 friend class ASTReader;
4452 friend TrailingObjects;
4453
4454 /// The imported module.
4455 Module *ImportedModule = nullptr;
4456
4457 /// The next import in the list of imports local to the translation
4458 /// unit being parsed (not loaded from an AST file).
4459 ///
4460 /// Includes a bit that indicates whether we have source-location information
4461 /// for each identifier in the module name.
4462 ///
4463 /// When the bit is false, we only have a single source location for the
4464 /// end of the import declaration.
4465 llvm::PointerIntPair<ImportDecl *, 1, bool> NextLocalImportAndComplete;
4466
4467 ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
4468 ArrayRef<SourceLocation> IdentifierLocs);
4469
4470 ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
4471 SourceLocation EndLoc);
4472
4473 ImportDecl(EmptyShell Empty) : Decl(Import, Empty) {}
4474
4475 bool isImportComplete() const { return NextLocalImportAndComplete.getInt(); }
4476
4477 void setImportComplete(bool C) { NextLocalImportAndComplete.setInt(C); }
4478
4479 /// The next import in the list of imports local to the translation
4480 /// unit being parsed (not loaded from an AST file).
4481 ImportDecl *getNextLocalImport() const {
4482 return NextLocalImportAndComplete.getPointer();
4483 }
4484
4485 void setNextLocalImport(ImportDecl *Import) {
4486 NextLocalImportAndComplete.setPointer(Import);
4487 }
4488
4489public:
4490 /// Create a new module import declaration.
4491 static ImportDecl *Create(ASTContext &C, DeclContext *DC,
4492 SourceLocation StartLoc, Module *Imported,
4493 ArrayRef<SourceLocation> IdentifierLocs);
4494
4495 /// Create a new module import declaration for an implicitly-generated
4496 /// import.
4497 static ImportDecl *CreateImplicit(ASTContext &C, DeclContext *DC,
4498 SourceLocation StartLoc, Module *Imported,
4499 SourceLocation EndLoc);
4500
4501 /// Create a new, deserialized module import declaration.
4502 static ImportDecl *CreateDeserialized(ASTContext &C, unsigned ID,
4503 unsigned NumLocations);
4504
4505 /// Retrieve the module that was imported by the import declaration.
4506 Module *getImportedModule() const { return ImportedModule; }
4507
4508 /// Retrieves the locations of each of the identifiers that make up
4509 /// the complete module name in the import declaration.
4510 ///
4511 /// This will return an empty array if the locations of the individual
4512 /// identifiers aren't available.
4513 ArrayRef<SourceLocation> getIdentifierLocs() const;
4514
4515 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
4516
4517 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4518 static bool classofKind(Kind K) { return K == Import; }
4519};
4520
4521/// Represents a C++ Modules TS module export declaration.
4522///
4523/// For example:
4524/// \code
4525/// export void foo();
4526/// \endcode
4527class ExportDecl final : public Decl, public DeclContext {
4528 virtual void anchor();
4529
4530private:
4531 friend class ASTDeclReader;
4532
4533 /// The source location for the right brace (if valid).
4534 SourceLocation RBraceLoc;
4535
4536 ExportDecl(DeclContext *DC, SourceLocation ExportLoc)
4537 : Decl(Export, DC, ExportLoc), DeclContext(Export),
4538 RBraceLoc(SourceLocation()) {}
4539
4540public:
4541 static ExportDecl *Create(ASTContext &C, DeclContext *DC,
4542 SourceLocation ExportLoc);
4543 static ExportDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4544
4545 SourceLocation getExportLoc() const { return getLocation(); }
4546 SourceLocation getRBraceLoc() const { return RBraceLoc; }
4547 void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
4548
4549 bool hasBraces() const { return RBraceLoc.isValid(); }
4550
4551 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
4552 if (hasBraces())
4553 return RBraceLoc;
4554 // No braces: get the end location of the (only) declaration in context
4555 // (if present).
4556 return decls_empty() ? getLocation() : decls_begin()->getEndLoc();
4557 }
4558
4559 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
4560 return SourceRange(getLocation(), getEndLoc());
4561 }
4562
4563 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4564 static bool classofKind(Kind K) { return K == Export; }
4565 static DeclContext *castToDeclContext(const ExportDecl *D) {
4566 return static_cast<DeclContext *>(const_cast<ExportDecl*>(D));
4567 }
4568 static ExportDecl *castFromDeclContext(const DeclContext *DC) {
4569 return static_cast<ExportDecl *>(const_cast<DeclContext*>(DC));
4570 }
4571};
4572
4573/// Represents an empty-declaration.
4574class EmptyDecl : public Decl {
4575 EmptyDecl(DeclContext *DC, SourceLocation L) : Decl(Empty, DC, L) {}
4576
4577 virtual void anchor();
4578
4579public:
4580 static EmptyDecl *Create(ASTContext &C, DeclContext *DC,
4581 SourceLocation L);
4582 static EmptyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4583
4584 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4585 static bool classofKind(Kind K) { return K == Empty; }
4586};
4587
4588/// Insertion operator for diagnostics. This allows sending NamedDecl's
4589/// into a diagnostic with <<.
4590inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
4591 const NamedDecl *ND) {
4592 PD.AddTaggedVal(reinterpret_cast<intptr_t>(ND),
4593 DiagnosticsEngine::ak_nameddecl);
4594 return PD;
4595}
4596
4597template<typename decl_type>
4598void Redeclarable<decl_type>::setPreviousDecl(decl_type *PrevDecl) {
4599 // Note: This routine is implemented here because we need both NamedDecl
4600 // and Redeclarable to be defined.
4601 assert(RedeclLink.isFirst() &&(static_cast<void> (0))
4602 "setPreviousDecl on a decl already in a redeclaration chain")(static_cast<void> (0));
4603
4604 if (PrevDecl) {
4605 // Point to previous. Make sure that this is actually the most recent
4606 // redeclaration, or we can build invalid chains. If the most recent
4607 // redeclaration is invalid, it won't be PrevDecl, but we want it anyway.
4608 First = PrevDecl->getFirstDecl();
4609 assert(First->RedeclLink.isFirst() && "Expected first")(static_cast<void> (0));
4610 decl_type *MostRecent = First->getNextRedeclaration();
4611 RedeclLink = PreviousDeclLink(cast<decl_type>(MostRecent));
4612
4613 // If the declaration was previously visible, a redeclaration of it remains
4614 // visible even if it wouldn't be visible by itself.
4615 static_cast<decl_type*>(this)->IdentifierNamespace |=
4616 MostRecent->getIdentifierNamespace() &
4617 (Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Type);
4618 } else {
4619 // Make this first.
4620 First = static_cast<decl_type*>(this);
4621 }
4622
4623 // First one will point to this one as latest.
4624 First->RedeclLink.setLatest(static_cast<decl_type*>(this));
4625
4626 assert(!isa<NamedDecl>(static_cast<decl_type*>(this)) ||(static_cast<void> (0))
4627 cast<NamedDecl>(static_cast<decl_type*>(this))->isLinkageValid())(static_cast<void> (0));
4628}
4629
4630// Inline function definitions.
4631
4632/// Check if the given decl is complete.
4633///
4634/// We use this function to break a cycle between the inline definitions in
4635/// Type.h and Decl.h.
4636inline bool IsEnumDeclComplete(EnumDecl *ED) {
4637 return ED->isComplete();
4638}
4639
4640/// Check if the given decl is scoped.
4641///
4642/// We use this function to break a cycle between the inline definitions in
4643/// Type.h and Decl.h.
4644inline bool IsEnumDeclScoped(EnumDecl *ED) {
4645 return ED->isScoped();
4646}
4647
4648/// OpenMP variants are mangled early based on their OpenMP context selector.
4649/// The new name looks likes this:
4650/// <name> + OpenMPVariantManglingSeparatorStr + <mangled OpenMP context>
4651static constexpr StringRef getOpenMPVariantManglingSeparatorStr() {
4652 return "$ompvariant";
4653}
4654
4655} // namespace clang
4656
4657#endif // LLVM_CLANG_AST_DECL_H

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/include/clang/Basic/Specifiers.h

1//===--- Specifiers.h - Declaration and Type Specifiers ---------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Defines various enumerations that describe declaration and
11/// type specifiers.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_BASIC_SPECIFIERS_H
16#define LLVM_CLANG_BASIC_SPECIFIERS_H
17
18#include "llvm/ADT/StringRef.h"
19#include "llvm/Support/DataTypes.h"
20#include "llvm/Support/ErrorHandling.h"
21
22namespace clang {
23
24 /// Define the meaning of possible values of the kind in ExplicitSpecifier.
25 enum class ExplicitSpecKind : unsigned {
26 ResolvedFalse,
27 ResolvedTrue,
28 Unresolved,
29 };
30
31 /// Define the kind of constexpr specifier.
32 enum class ConstexprSpecKind { Unspecified, Constexpr, Consteval, Constinit };
33
34 /// Specifies the width of a type, e.g., short, long, or long long.
35 enum class TypeSpecifierWidth { Unspecified, Short, Long, LongLong };
36
37 /// Specifies the signedness of a type, e.g., signed or unsigned.
38 enum class TypeSpecifierSign { Unspecified, Signed, Unsigned };
39
40 enum class TypeSpecifiersPipe { Unspecified, Pipe };
41
42 /// Specifies the kind of type.
43 enum TypeSpecifierType {
44 TST_unspecified,
45 TST_void,
46 TST_char,
47 TST_wchar, // C++ wchar_t
48 TST_char8, // C++20 char8_t (proposed)
49 TST_char16, // C++11 char16_t
50 TST_char32, // C++11 char32_t
51 TST_int,
52 TST_int128,
53 TST_extint, // Extended Int types.
54 TST_half, // OpenCL half, ARM NEON __fp16
55 TST_Float16, // C11 extension ISO/IEC TS 18661-3
56 TST_Accum, // ISO/IEC JTC1 SC22 WG14 N1169 Extension
57 TST_Fract,
58 TST_BFloat16,
59 TST_float,
60 TST_double,
61 TST_float128,
62 TST_bool, // _Bool
63 TST_decimal32, // _Decimal32
64 TST_decimal64, // _Decimal64
65 TST_decimal128, // _Decimal128
66 TST_enum,
67 TST_union,
68 TST_struct,
69 TST_class, // C++ class type
70 TST_interface, // C++ (Microsoft-specific) __interface type
71 TST_typename, // Typedef, C++ class-name or enum name, etc.
72 TST_typeofType,
73 TST_typeofExpr,
74 TST_decltype, // C++11 decltype
75 TST_underlyingType, // __underlying_type for C++11
76 TST_auto, // C++11 auto
77 TST_decltype_auto, // C++1y decltype(auto)
78 TST_auto_type, // __auto_type extension
79 TST_unknown_anytype, // __unknown_anytype extension
80 TST_atomic, // C11 _Atomic
81#define GENERIC_IMAGE_TYPE(ImgType, Id) TST_##ImgType##_t, // OpenCL image types
82#include "clang/Basic/OpenCLImageTypes.def"
83 TST_error // erroneous type
84 };
85
86 /// Structure that packs information about the type specifiers that
87 /// were written in a particular type specifier sequence.
88 struct WrittenBuiltinSpecs {
89 static_assert(TST_error < 1 << 6, "Type bitfield not wide enough for TST");
90 /*DeclSpec::TST*/ unsigned Type : 6;
91 /*DeclSpec::TSS*/ unsigned Sign : 2;
92 /*TypeSpecifierWidth*/ unsigned Width : 2;
93 unsigned ModeAttr : 1;
94 };
95
96 /// A C++ access specifier (public, private, protected), plus the
97 /// special value "none" which means different things in different contexts.
98 enum AccessSpecifier {
99 AS_public,
100 AS_protected,
101 AS_private,
102 AS_none
103 };
104
105 /// The categorization of expression values, currently following the
106 /// C++11 scheme.
107 enum ExprValueKind {
108 /// A pr-value expression (in the C++11 taxonomy)
109 /// produces a temporary value.
110 VK_PRValue,
111
112 /// An l-value expression is a reference to an object with
113 /// independent storage.
114 VK_LValue,
115
116 /// An x-value expression is a reference to an object with
117 /// independent storage but which can be "moved", i.e.
118 /// efficiently cannibalized for its resources.
119 VK_XValue
120 };
121
122 /// A further classification of the kind of object referenced by an
123 /// l-value or x-value.
124 enum ExprObjectKind {
125 /// An ordinary object is located at an address in memory.
126 OK_Ordinary,
127
128 /// A bitfield object is a bitfield on a C or C++ record.
129 OK_BitField,
130
131 /// A vector component is an element or range of elements on a vector.
132 OK_VectorComponent,
133
134 /// An Objective-C property is a logical field of an Objective-C
135 /// object which is read and written via Objective-C method calls.
136 OK_ObjCProperty,
137
138 /// An Objective-C array/dictionary subscripting which reads an
139 /// object or writes at the subscripted array/dictionary element via
140 /// Objective-C method calls.
141 OK_ObjCSubscript,
142
143 /// A matrix component is a single element of a matrix.
144 OK_MatrixComponent
145 };
146
147 /// The reason why a DeclRefExpr does not constitute an odr-use.
148 enum NonOdrUseReason {
149 /// This is an odr-use.
150 NOUR_None = 0,
151 /// This name appears in an unevaluated operand.
152 NOUR_Unevaluated,
153 /// This name appears as a potential result of an lvalue-to-rvalue
154 /// conversion that is a constant expression.
155 NOUR_Constant,
156 /// This name appears as a potential result of a discarded value
157 /// expression.
158 NOUR_Discarded,
159 };
160
161 /// Describes the kind of template specialization that a
162 /// particular template specialization declaration represents.
163 enum TemplateSpecializationKind {
164 /// This template specialization was formed from a template-id but
165 /// has not yet been declared, defined, or instantiated.
166 TSK_Undeclared = 0,
167 /// This template specialization was implicitly instantiated from a
168 /// template. (C++ [temp.inst]).
169 TSK_ImplicitInstantiation,
170 /// This template specialization was declared or defined by an
171 /// explicit specialization (C++ [temp.expl.spec]) or partial
172 /// specialization (C++ [temp.class.spec]).
173 TSK_ExplicitSpecialization,
174 /// This template specialization was instantiated from a template
175 /// due to an explicit instantiation declaration request
176 /// (C++11 [temp.explicit]).
177 TSK_ExplicitInstantiationDeclaration,
178 /// This template specialization was instantiated from a template
179 /// due to an explicit instantiation definition request
180 /// (C++ [temp.explicit]).
181 TSK_ExplicitInstantiationDefinition
182 };
183
184 /// Determine whether this template specialization kind refers
185 /// to an instantiation of an entity (as opposed to a non-template or
186 /// an explicit specialization).
187 inline bool isTemplateInstantiation(TemplateSpecializationKind Kind) {
188 return Kind != TSK_Undeclared && Kind != TSK_ExplicitSpecialization;
37
Assuming 'Kind' is not equal to TSK_Undeclared
38
Assuming 'Kind' is not equal to TSK_ExplicitSpecialization
39
Returning the value 1, which participates in a condition later
189 }
190
191 /// True if this template specialization kind is an explicit
192 /// specialization, explicit instantiation declaration, or explicit
193 /// instantiation definition.
194 inline bool isTemplateExplicitInstantiationOrSpecialization(
195 TemplateSpecializationKind Kind) {
196 switch (Kind) {
197 case TSK_ExplicitSpecialization:
198 case TSK_ExplicitInstantiationDeclaration:
199 case TSK_ExplicitInstantiationDefinition:
200 return true;
201
202 case TSK_Undeclared:
203 case TSK_ImplicitInstantiation:
204 return false;
205 }
206 llvm_unreachable("bad template specialization kind")__builtin_unreachable();
207 }
208
209 /// Thread storage-class-specifier.
210 enum ThreadStorageClassSpecifier {
211 TSCS_unspecified,
212 /// GNU __thread.
213 TSCS___thread,
214 /// C++11 thread_local. Implies 'static' at block scope, but not at
215 /// class scope.
216 TSCS_thread_local,
217 /// C11 _Thread_local. Must be combined with either 'static' or 'extern'
218 /// if used at block scope.
219 TSCS__Thread_local
220 };
221
222 /// Storage classes.
223 enum StorageClass {
224 // These are legal on both functions and variables.
225 SC_None,
226 SC_Extern,
227 SC_Static,
228 SC_PrivateExtern,
229
230 // These are only legal on variables.
231 SC_Auto,
232 SC_Register
233 };
234
235 /// Checks whether the given storage class is legal for functions.
236 inline bool isLegalForFunction(StorageClass SC) {
237 return SC <= SC_PrivateExtern;
238 }
239
240 /// Checks whether the given storage class is legal for variables.
241 inline bool isLegalForVariable(StorageClass SC) {
242 return true;
243 }
244
245 /// In-class initialization styles for non-static data members.
246 enum InClassInitStyle {
247 ICIS_NoInit, ///< No in-class initializer.
248 ICIS_CopyInit, ///< Copy initialization.
249 ICIS_ListInit ///< Direct list-initialization.
250 };
251
252 /// CallingConv - Specifies the calling convention that a function uses.
253 enum CallingConv {
254 CC_C, // __attribute__((cdecl))
255 CC_X86StdCall, // __attribute__((stdcall))
256 CC_X86FastCall, // __attribute__((fastcall))
257 CC_X86ThisCall, // __attribute__((thiscall))
258 CC_X86VectorCall, // __attribute__((vectorcall))
259 CC_X86Pascal, // __attribute__((pascal))
260 CC_Win64, // __attribute__((ms_abi))
261 CC_X86_64SysV, // __attribute__((sysv_abi))
262 CC_X86RegCall, // __attribute__((regcall))
263 CC_AAPCS, // __attribute__((pcs("aapcs")))
264 CC_AAPCS_VFP, // __attribute__((pcs("aapcs-vfp")))
265 CC_IntelOclBicc, // __attribute__((intel_ocl_bicc))
266 CC_SpirFunction, // default for OpenCL functions on SPIR target
267 CC_OpenCLKernel, // inferred for OpenCL kernels
268 CC_Swift, // __attribute__((swiftcall))
269 CC_SwiftAsync, // __attribute__((swiftasynccall))
270 CC_PreserveMost, // __attribute__((preserve_most))
271 CC_PreserveAll, // __attribute__((preserve_all))
272 CC_AArch64VectorCall, // __attribute__((aarch64_vector_pcs))
273 };
274
275 /// Checks whether the given calling convention supports variadic
276 /// calls. Unprototyped calls also use the variadic call rules.
277 inline bool supportsVariadicCall(CallingConv CC) {
278 switch (CC) {
279 case CC_X86StdCall:
280 case CC_X86FastCall:
281 case CC_X86ThisCall:
282 case CC_X86RegCall:
283 case CC_X86Pascal:
284 case CC_X86VectorCall:
285 case CC_SpirFunction:
286 case CC_OpenCLKernel:
287 case CC_Swift:
288 case CC_SwiftAsync:
289 return false;
290 default:
291 return true;
292 }
293 }
294
295 /// The storage duration for an object (per C++ [basic.stc]).
296 enum StorageDuration {
297 SD_FullExpression, ///< Full-expression storage duration (for temporaries).
298 SD_Automatic, ///< Automatic storage duration (most local variables).
299 SD_Thread, ///< Thread storage duration.
300 SD_Static, ///< Static storage duration.
301 SD_Dynamic ///< Dynamic storage duration.
302 };
303
304 /// Describes the nullability of a particular type.
305 enum class NullabilityKind : uint8_t {
306 /// Values of this type can never be null.
307 NonNull = 0,
308 /// Values of this type can be null.
309 Nullable,
310 /// Whether values of this type can be null is (explicitly)
311 /// unspecified. This captures a (fairly rare) case where we
312 /// can't conclude anything about the nullability of the type even
313 /// though it has been considered.
314 Unspecified,
315 // Generally behaves like Nullable, except when used in a block parameter
316 // that was imported into a swift async method. There, swift will assume
317 // that the parameter can get null even if no error occured. _Nullable
318 // parameters are assumed to only get null on error.
319 NullableResult,
320 };
321
322 /// Return true if \p L has a weaker nullability annotation than \p R. The
323 /// ordering is: Unspecified < Nullable < NonNull.
324 inline bool hasWeakerNullability(NullabilityKind L, NullabilityKind R) {
325 return uint8_t(L) > uint8_t(R);
326 }
327
328 /// Retrieve the spelling of the given nullability kind.
329 llvm::StringRef getNullabilitySpelling(NullabilityKind kind,
330 bool isContextSensitive = false);
331
332 /// Kinds of parameter ABI.
333 enum class ParameterABI {
334 /// This parameter uses ordinary ABI rules for its type.
335 Ordinary,
336
337 /// This parameter (which must have pointer type) is a Swift
338 /// indirect result parameter.
339 SwiftIndirectResult,
340
341 /// This parameter (which must have pointer-to-pointer type) uses
342 /// the special Swift error-result ABI treatment. There can be at
343 /// most one parameter on a given function that uses this treatment.
344 SwiftErrorResult,
345
346 /// This parameter (which must have pointer type) uses the special
347 /// Swift context-pointer ABI treatment. There can be at
348 /// most one parameter on a given function that uses this treatment.
349 SwiftContext,
350
351 /// This parameter (which must have pointer type) uses the special
352 /// Swift asynchronous context-pointer ABI treatment. There can be at
353 /// most one parameter on a given function that uses this treatment.
354 SwiftAsyncContext,
355 };
356
357 /// Assigned inheritance model for a class in the MS C++ ABI. Must match order
358 /// of spellings in MSInheritanceAttr.
359 enum class MSInheritanceModel {
360 Single = 0,
361 Multiple = 1,
362 Virtual = 2,
363 Unspecified = 3,
364 };
365
366 llvm::StringRef getParameterABISpelling(ParameterABI kind);
367
368 inline llvm::StringRef getAccessSpelling(AccessSpecifier AS) {
369 switch (AS) {
370 case AccessSpecifier::AS_public:
371 return "public";
372 case AccessSpecifier::AS_protected:
373 return "protected";
374 case AccessSpecifier::AS_private:
375 return "private";
376 case AccessSpecifier::AS_none:
377 return {};
378 }
379 llvm_unreachable("Unknown AccessSpecifier")__builtin_unreachable();
380 }
381} // end namespace clang
382
383#endif // LLVM_CLANG_BASIC_SPECIFIERS_H