File: | clang/lib/Sema/SemaDeclCXX.cpp |
Warning: | line 15358, column 20 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements semantic analysis for C++ declarations. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/AST/ASTConsumer.h" |
14 | #include "clang/AST/ASTContext.h" |
15 | #include "clang/AST/ASTLambda.h" |
16 | #include "clang/AST/ASTMutationListener.h" |
17 | #include "clang/AST/CXXInheritance.h" |
18 | #include "clang/AST/CharUnits.h" |
19 | #include "clang/AST/ComparisonCategories.h" |
20 | #include "clang/AST/EvaluatedExprVisitor.h" |
21 | #include "clang/AST/ExprCXX.h" |
22 | #include "clang/AST/RecordLayout.h" |
23 | #include "clang/AST/RecursiveASTVisitor.h" |
24 | #include "clang/AST/StmtVisitor.h" |
25 | #include "clang/AST/TypeLoc.h" |
26 | #include "clang/AST/TypeOrdering.h" |
27 | #include "clang/Basic/AttributeCommonInfo.h" |
28 | #include "clang/Basic/PartialDiagnostic.h" |
29 | #include "clang/Basic/TargetInfo.h" |
30 | #include "clang/Lex/LiteralSupport.h" |
31 | #include "clang/Lex/Preprocessor.h" |
32 | #include "clang/Sema/CXXFieldCollector.h" |
33 | #include "clang/Sema/DeclSpec.h" |
34 | #include "clang/Sema/Initialization.h" |
35 | #include "clang/Sema/Lookup.h" |
36 | #include "clang/Sema/ParsedTemplate.h" |
37 | #include "clang/Sema/Scope.h" |
38 | #include "clang/Sema/ScopeInfo.h" |
39 | #include "clang/Sema/SemaInternal.h" |
40 | #include "clang/Sema/Template.h" |
41 | #include "llvm/ADT/STLExtras.h" |
42 | #include "llvm/ADT/SmallString.h" |
43 | #include "llvm/ADT/StringExtras.h" |
44 | #include <map> |
45 | #include <set> |
46 | |
47 | using namespace clang; |
48 | |
49 | //===----------------------------------------------------------------------===// |
50 | // CheckDefaultArgumentVisitor |
51 | //===----------------------------------------------------------------------===// |
52 | |
53 | namespace { |
54 | /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses |
55 | /// the default argument of a parameter to determine whether it |
56 | /// contains any ill-formed subexpressions. For example, this will |
57 | /// diagnose the use of local variables or parameters within the |
58 | /// default argument expression. |
59 | class CheckDefaultArgumentVisitor |
60 | : public StmtVisitor<CheckDefaultArgumentVisitor, bool> { |
61 | Expr *DefaultArg; |
62 | Sema *S; |
63 | |
64 | public: |
65 | CheckDefaultArgumentVisitor(Expr *defarg, Sema *s) |
66 | : DefaultArg(defarg), S(s) {} |
67 | |
68 | bool VisitExpr(Expr *Node); |
69 | bool VisitDeclRefExpr(DeclRefExpr *DRE); |
70 | bool VisitCXXThisExpr(CXXThisExpr *ThisE); |
71 | bool VisitLambdaExpr(LambdaExpr *Lambda); |
72 | bool VisitPseudoObjectExpr(PseudoObjectExpr *POE); |
73 | }; |
74 | |
75 | /// VisitExpr - Visit all of the children of this expression. |
76 | bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) { |
77 | bool IsInvalid = false; |
78 | for (Stmt *SubStmt : Node->children()) |
79 | IsInvalid |= Visit(SubStmt); |
80 | return IsInvalid; |
81 | } |
82 | |
83 | /// VisitDeclRefExpr - Visit a reference to a declaration, to |
84 | /// determine whether this declaration can be used in the default |
85 | /// argument expression. |
86 | bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) { |
87 | NamedDecl *Decl = DRE->getDecl(); |
88 | if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) { |
89 | // C++ [dcl.fct.default]p9 |
90 | // Default arguments are evaluated each time the function is |
91 | // called. The order of evaluation of function arguments is |
92 | // unspecified. Consequently, parameters of a function shall not |
93 | // be used in default argument expressions, even if they are not |
94 | // evaluated. Parameters of a function declared before a default |
95 | // argument expression are in scope and can hide namespace and |
96 | // class member names. |
97 | return S->Diag(DRE->getBeginLoc(), |
98 | diag::err_param_default_argument_references_param) |
99 | << Param->getDeclName() << DefaultArg->getSourceRange(); |
100 | } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) { |
101 | // C++ [dcl.fct.default]p7 |
102 | // Local variables shall not be used in default argument |
103 | // expressions. |
104 | if (VDecl->isLocalVarDecl()) |
105 | return S->Diag(DRE->getBeginLoc(), |
106 | diag::err_param_default_argument_references_local) |
107 | << VDecl->getDeclName() << DefaultArg->getSourceRange(); |
108 | } |
109 | |
110 | return false; |
111 | } |
112 | |
113 | /// VisitCXXThisExpr - Visit a C++ "this" expression. |
114 | bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) { |
115 | // C++ [dcl.fct.default]p8: |
116 | // The keyword this shall not be used in a default argument of a |
117 | // member function. |
118 | return S->Diag(ThisE->getBeginLoc(), |
119 | diag::err_param_default_argument_references_this) |
120 | << ThisE->getSourceRange(); |
121 | } |
122 | |
123 | bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) { |
124 | bool Invalid = false; |
125 | for (PseudoObjectExpr::semantics_iterator |
126 | i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) { |
127 | Expr *E = *i; |
128 | |
129 | // Look through bindings. |
130 | if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { |
131 | E = OVE->getSourceExpr(); |
132 | assert(E && "pseudo-object binding without source expression?")((E && "pseudo-object binding without source expression?" ) ? static_cast<void> (0) : __assert_fail ("E && \"pseudo-object binding without source expression?\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 132, __PRETTY_FUNCTION__)); |
133 | } |
134 | |
135 | Invalid |= Visit(E); |
136 | } |
137 | return Invalid; |
138 | } |
139 | |
140 | bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) { |
141 | // C++11 [expr.lambda.prim]p13: |
142 | // A lambda-expression appearing in a default argument shall not |
143 | // implicitly or explicitly capture any entity. |
144 | if (Lambda->capture_begin() == Lambda->capture_end()) |
145 | return false; |
146 | |
147 | return S->Diag(Lambda->getBeginLoc(), diag::err_lambda_capture_default_arg); |
148 | } |
149 | } |
150 | |
151 | void |
152 | Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc, |
153 | const CXXMethodDecl *Method) { |
154 | // If we have an MSAny spec already, don't bother. |
155 | if (!Method || ComputedEST == EST_MSAny) |
156 | return; |
157 | |
158 | const FunctionProtoType *Proto |
159 | = Method->getType()->getAs<FunctionProtoType>(); |
160 | Proto = Self->ResolveExceptionSpec(CallLoc, Proto); |
161 | if (!Proto) |
162 | return; |
163 | |
164 | ExceptionSpecificationType EST = Proto->getExceptionSpecType(); |
165 | |
166 | // If we have a throw-all spec at this point, ignore the function. |
167 | if (ComputedEST == EST_None) |
168 | return; |
169 | |
170 | if (EST == EST_None && Method->hasAttr<NoThrowAttr>()) |
171 | EST = EST_BasicNoexcept; |
172 | |
173 | switch (EST) { |
174 | case EST_Unparsed: |
175 | case EST_Uninstantiated: |
176 | case EST_Unevaluated: |
177 | llvm_unreachable("should not see unresolved exception specs here")::llvm::llvm_unreachable_internal("should not see unresolved exception specs here" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 177); |
178 | |
179 | // If this function can throw any exceptions, make a note of that. |
180 | case EST_MSAny: |
181 | case EST_None: |
182 | // FIXME: Whichever we see last of MSAny and None determines our result. |
183 | // We should make a consistent, order-independent choice here. |
184 | ClearExceptions(); |
185 | ComputedEST = EST; |
186 | return; |
187 | case EST_NoexceptFalse: |
188 | ClearExceptions(); |
189 | ComputedEST = EST_None; |
190 | return; |
191 | // FIXME: If the call to this decl is using any of its default arguments, we |
192 | // need to search them for potentially-throwing calls. |
193 | // If this function has a basic noexcept, it doesn't affect the outcome. |
194 | case EST_BasicNoexcept: |
195 | case EST_NoexceptTrue: |
196 | case EST_NoThrow: |
197 | return; |
198 | // If we're still at noexcept(true) and there's a throw() callee, |
199 | // change to that specification. |
200 | case EST_DynamicNone: |
201 | if (ComputedEST == EST_BasicNoexcept) |
202 | ComputedEST = EST_DynamicNone; |
203 | return; |
204 | case EST_DependentNoexcept: |
205 | llvm_unreachable(::llvm::llvm_unreachable_internal("should not generate implicit declarations for dependent cases" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 206) |
206 | "should not generate implicit declarations for dependent cases")::llvm::llvm_unreachable_internal("should not generate implicit declarations for dependent cases" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 206); |
207 | case EST_Dynamic: |
208 | break; |
209 | } |
210 | assert(EST == EST_Dynamic && "EST case not considered earlier.")((EST == EST_Dynamic && "EST case not considered earlier." ) ? static_cast<void> (0) : __assert_fail ("EST == EST_Dynamic && \"EST case not considered earlier.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 210, __PRETTY_FUNCTION__)); |
211 | assert(ComputedEST != EST_None &&((ComputedEST != EST_None && "Shouldn't collect exceptions when throw-all is guaranteed." ) ? static_cast<void> (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 212, __PRETTY_FUNCTION__)) |
212 | "Shouldn't collect exceptions when throw-all is guaranteed.")((ComputedEST != EST_None && "Shouldn't collect exceptions when throw-all is guaranteed." ) ? static_cast<void> (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 212, __PRETTY_FUNCTION__)); |
213 | ComputedEST = EST_Dynamic; |
214 | // Record the exceptions in this function's exception specification. |
215 | for (const auto &E : Proto->exceptions()) |
216 | if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second) |
217 | Exceptions.push_back(E); |
218 | } |
219 | |
220 | void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) { |
221 | if (!E || ComputedEST == EST_MSAny) |
222 | return; |
223 | |
224 | // FIXME: |
225 | // |
226 | // C++0x [except.spec]p14: |
227 | // [An] implicit exception-specification specifies the type-id T if and |
228 | // only if T is allowed by the exception-specification of a function directly |
229 | // invoked by f's implicit definition; f shall allow all exceptions if any |
230 | // function it directly invokes allows all exceptions, and f shall allow no |
231 | // exceptions if every function it directly invokes allows no exceptions. |
232 | // |
233 | // Note in particular that if an implicit exception-specification is generated |
234 | // for a function containing a throw-expression, that specification can still |
235 | // be noexcept(true). |
236 | // |
237 | // Note also that 'directly invoked' is not defined in the standard, and there |
238 | // is no indication that we should only consider potentially-evaluated calls. |
239 | // |
240 | // Ultimately we should implement the intent of the standard: the exception |
241 | // specification should be the set of exceptions which can be thrown by the |
242 | // implicit definition. For now, we assume that any non-nothrow expression can |
243 | // throw any exception. |
244 | |
245 | if (Self->canThrow(E)) |
246 | ComputedEST = EST_None; |
247 | } |
248 | |
249 | bool |
250 | Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, |
251 | SourceLocation EqualLoc) { |
252 | if (RequireCompleteType(Param->getLocation(), Param->getType(), |
253 | diag::err_typecheck_decl_incomplete_type)) { |
254 | Param->setInvalidDecl(); |
255 | return true; |
256 | } |
257 | |
258 | // C++ [dcl.fct.default]p5 |
259 | // A default argument expression is implicitly converted (clause |
260 | // 4) to the parameter type. The default argument expression has |
261 | // the same semantic constraints as the initializer expression in |
262 | // a declaration of a variable of the parameter type, using the |
263 | // copy-initialization semantics (8.5). |
264 | InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, |
265 | Param); |
266 | InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(), |
267 | EqualLoc); |
268 | InitializationSequence InitSeq(*this, Entity, Kind, Arg); |
269 | ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg); |
270 | if (Result.isInvalid()) |
271 | return true; |
272 | Arg = Result.getAs<Expr>(); |
273 | |
274 | CheckCompletedExpr(Arg, EqualLoc); |
275 | Arg = MaybeCreateExprWithCleanups(Arg); |
276 | |
277 | // Okay: add the default argument to the parameter |
278 | Param->setDefaultArg(Arg); |
279 | |
280 | // We have already instantiated this parameter; provide each of the |
281 | // instantiations with the uninstantiated default argument. |
282 | UnparsedDefaultArgInstantiationsMap::iterator InstPos |
283 | = UnparsedDefaultArgInstantiations.find(Param); |
284 | if (InstPos != UnparsedDefaultArgInstantiations.end()) { |
285 | for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I) |
286 | InstPos->second[I]->setUninstantiatedDefaultArg(Arg); |
287 | |
288 | // We're done tracking this parameter's instantiations. |
289 | UnparsedDefaultArgInstantiations.erase(InstPos); |
290 | } |
291 | |
292 | return false; |
293 | } |
294 | |
295 | /// ActOnParamDefaultArgument - Check whether the default argument |
296 | /// provided for a function parameter is well-formed. If so, attach it |
297 | /// to the parameter declaration. |
298 | void |
299 | Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc, |
300 | Expr *DefaultArg) { |
301 | if (!param || !DefaultArg) |
302 | return; |
303 | |
304 | ParmVarDecl *Param = cast<ParmVarDecl>(param); |
305 | UnparsedDefaultArgLocs.erase(Param); |
306 | |
307 | // Default arguments are only permitted in C++ |
308 | if (!getLangOpts().CPlusPlus) { |
309 | Diag(EqualLoc, diag::err_param_default_argument) |
310 | << DefaultArg->getSourceRange(); |
311 | Param->setInvalidDecl(); |
312 | return; |
313 | } |
314 | |
315 | // Check for unexpanded parameter packs. |
316 | if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) { |
317 | Param->setInvalidDecl(); |
318 | return; |
319 | } |
320 | |
321 | // C++11 [dcl.fct.default]p3 |
322 | // A default argument expression [...] shall not be specified for a |
323 | // parameter pack. |
324 | if (Param->isParameterPack()) { |
325 | Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack) |
326 | << DefaultArg->getSourceRange(); |
327 | return; |
328 | } |
329 | |
330 | // Check that the default argument is well-formed |
331 | CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this); |
332 | if (DefaultArgChecker.Visit(DefaultArg)) { |
333 | Param->setInvalidDecl(); |
334 | return; |
335 | } |
336 | |
337 | SetParamDefaultArgument(Param, DefaultArg, EqualLoc); |
338 | } |
339 | |
340 | /// ActOnParamUnparsedDefaultArgument - We've seen a default |
341 | /// argument for a function parameter, but we can't parse it yet |
342 | /// because we're inside a class definition. Note that this default |
343 | /// argument will be parsed later. |
344 | void Sema::ActOnParamUnparsedDefaultArgument(Decl *param, |
345 | SourceLocation EqualLoc, |
346 | SourceLocation ArgLoc) { |
347 | if (!param) |
348 | return; |
349 | |
350 | ParmVarDecl *Param = cast<ParmVarDecl>(param); |
351 | Param->setUnparsedDefaultArg(); |
352 | UnparsedDefaultArgLocs[Param] = ArgLoc; |
353 | } |
354 | |
355 | /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of |
356 | /// the default argument for the parameter param failed. |
357 | void Sema::ActOnParamDefaultArgumentError(Decl *param, |
358 | SourceLocation EqualLoc) { |
359 | if (!param) |
360 | return; |
361 | |
362 | ParmVarDecl *Param = cast<ParmVarDecl>(param); |
363 | Param->setInvalidDecl(); |
364 | UnparsedDefaultArgLocs.erase(Param); |
365 | Param->setDefaultArg(new(Context) |
366 | OpaqueValueExpr(EqualLoc, |
367 | Param->getType().getNonReferenceType(), |
368 | VK_RValue)); |
369 | } |
370 | |
371 | /// CheckExtraCXXDefaultArguments - Check for any extra default |
372 | /// arguments in the declarator, which is not a function declaration |
373 | /// or definition and therefore is not permitted to have default |
374 | /// arguments. This routine should be invoked for every declarator |
375 | /// that is not a function declaration or definition. |
376 | void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { |
377 | // C++ [dcl.fct.default]p3 |
378 | // A default argument expression shall be specified only in the |
379 | // parameter-declaration-clause of a function declaration or in a |
380 | // template-parameter (14.1). It shall not be specified for a |
381 | // parameter pack. If it is specified in a |
382 | // parameter-declaration-clause, it shall not occur within a |
383 | // declarator or abstract-declarator of a parameter-declaration. |
384 | bool MightBeFunction = D.isFunctionDeclarationContext(); |
385 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { |
386 | DeclaratorChunk &chunk = D.getTypeObject(i); |
387 | if (chunk.Kind == DeclaratorChunk::Function) { |
388 | if (MightBeFunction) { |
389 | // This is a function declaration. It can have default arguments, but |
390 | // keep looking in case its return type is a function type with default |
391 | // arguments. |
392 | MightBeFunction = false; |
393 | continue; |
394 | } |
395 | for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e; |
396 | ++argIdx) { |
397 | ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param); |
398 | if (Param->hasUnparsedDefaultArg()) { |
399 | std::unique_ptr<CachedTokens> Toks = |
400 | std::move(chunk.Fun.Params[argIdx].DefaultArgTokens); |
401 | SourceRange SR; |
402 | if (Toks->size() > 1) |
403 | SR = SourceRange((*Toks)[1].getLocation(), |
404 | Toks->back().getLocation()); |
405 | else |
406 | SR = UnparsedDefaultArgLocs[Param]; |
407 | Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) |
408 | << SR; |
409 | } else if (Param->getDefaultArg()) { |
410 | Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) |
411 | << Param->getDefaultArg()->getSourceRange(); |
412 | Param->setDefaultArg(nullptr); |
413 | } |
414 | } |
415 | } else if (chunk.Kind != DeclaratorChunk::Paren) { |
416 | MightBeFunction = false; |
417 | } |
418 | } |
419 | } |
420 | |
421 | static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) { |
422 | for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) { |
423 | const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1); |
424 | if (!PVD->hasDefaultArg()) |
425 | return false; |
426 | if (!PVD->hasInheritedDefaultArg()) |
427 | return true; |
428 | } |
429 | return false; |
430 | } |
431 | |
432 | /// MergeCXXFunctionDecl - Merge two declarations of the same C++ |
433 | /// function, once we already know that they have the same |
434 | /// type. Subroutine of MergeFunctionDecl. Returns true if there was an |
435 | /// error, false otherwise. |
436 | bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, |
437 | Scope *S) { |
438 | bool Invalid = false; |
439 | |
440 | // The declaration context corresponding to the scope is the semantic |
441 | // parent, unless this is a local function declaration, in which case |
442 | // it is that surrounding function. |
443 | DeclContext *ScopeDC = New->isLocalExternDecl() |
444 | ? New->getLexicalDeclContext() |
445 | : New->getDeclContext(); |
446 | |
447 | // Find the previous declaration for the purpose of default arguments. |
448 | FunctionDecl *PrevForDefaultArgs = Old; |
449 | for (/**/; PrevForDefaultArgs; |
450 | // Don't bother looking back past the latest decl if this is a local |
451 | // extern declaration; nothing else could work. |
452 | PrevForDefaultArgs = New->isLocalExternDecl() |
453 | ? nullptr |
454 | : PrevForDefaultArgs->getPreviousDecl()) { |
455 | // Ignore hidden declarations. |
456 | if (!LookupResult::isVisible(*this, PrevForDefaultArgs)) |
457 | continue; |
458 | |
459 | if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) && |
460 | !New->isCXXClassMember()) { |
461 | // Ignore default arguments of old decl if they are not in |
462 | // the same scope and this is not an out-of-line definition of |
463 | // a member function. |
464 | continue; |
465 | } |
466 | |
467 | if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) { |
468 | // If only one of these is a local function declaration, then they are |
469 | // declared in different scopes, even though isDeclInScope may think |
470 | // they're in the same scope. (If both are local, the scope check is |
471 | // sufficient, and if neither is local, then they are in the same scope.) |
472 | continue; |
473 | } |
474 | |
475 | // We found the right previous declaration. |
476 | break; |
477 | } |
478 | |
479 | // C++ [dcl.fct.default]p4: |
480 | // For non-template functions, default arguments can be added in |
481 | // later declarations of a function in the same |
482 | // scope. Declarations in different scopes have completely |
483 | // distinct sets of default arguments. That is, declarations in |
484 | // inner scopes do not acquire default arguments from |
485 | // declarations in outer scopes, and vice versa. In a given |
486 | // function declaration, all parameters subsequent to a |
487 | // parameter with a default argument shall have default |
488 | // arguments supplied in this or previous declarations. A |
489 | // default argument shall not be redefined by a later |
490 | // declaration (not even to the same value). |
491 | // |
492 | // C++ [dcl.fct.default]p6: |
493 | // Except for member functions of class templates, the default arguments |
494 | // in a member function definition that appears outside of the class |
495 | // definition are added to the set of default arguments provided by the |
496 | // member function declaration in the class definition. |
497 | for (unsigned p = 0, NumParams = PrevForDefaultArgs |
498 | ? PrevForDefaultArgs->getNumParams() |
499 | : 0; |
500 | p < NumParams; ++p) { |
501 | ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p); |
502 | ParmVarDecl *NewParam = New->getParamDecl(p); |
503 | |
504 | bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false; |
505 | bool NewParamHasDfl = NewParam->hasDefaultArg(); |
506 | |
507 | if (OldParamHasDfl && NewParamHasDfl) { |
508 | unsigned DiagDefaultParamID = |
509 | diag::err_param_default_argument_redefinition; |
510 | |
511 | // MSVC accepts that default parameters be redefined for member functions |
512 | // of template class. The new default parameter's value is ignored. |
513 | Invalid = true; |
514 | if (getLangOpts().MicrosoftExt) { |
515 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New); |
516 | if (MD && MD->getParent()->getDescribedClassTemplate()) { |
517 | // Merge the old default argument into the new parameter. |
518 | NewParam->setHasInheritedDefaultArg(); |
519 | if (OldParam->hasUninstantiatedDefaultArg()) |
520 | NewParam->setUninstantiatedDefaultArg( |
521 | OldParam->getUninstantiatedDefaultArg()); |
522 | else |
523 | NewParam->setDefaultArg(OldParam->getInit()); |
524 | DiagDefaultParamID = diag::ext_param_default_argument_redefinition; |
525 | Invalid = false; |
526 | } |
527 | } |
528 | |
529 | // FIXME: If we knew where the '=' was, we could easily provide a fix-it |
530 | // hint here. Alternatively, we could walk the type-source information |
531 | // for NewParam to find the last source location in the type... but it |
532 | // isn't worth the effort right now. This is the kind of test case that |
533 | // is hard to get right: |
534 | // int f(int); |
535 | // void g(int (*fp)(int) = f); |
536 | // void g(int (*fp)(int) = &f); |
537 | Diag(NewParam->getLocation(), DiagDefaultParamID) |
538 | << NewParam->getDefaultArgRange(); |
539 | |
540 | // Look for the function declaration where the default argument was |
541 | // actually written, which may be a declaration prior to Old. |
542 | for (auto Older = PrevForDefaultArgs; |
543 | OldParam->hasInheritedDefaultArg(); /**/) { |
544 | Older = Older->getPreviousDecl(); |
545 | OldParam = Older->getParamDecl(p); |
546 | } |
547 | |
548 | Diag(OldParam->getLocation(), diag::note_previous_definition) |
549 | << OldParam->getDefaultArgRange(); |
550 | } else if (OldParamHasDfl) { |
551 | // Merge the old default argument into the new parameter unless the new |
552 | // function is a friend declaration in a template class. In the latter |
553 | // case the default arguments will be inherited when the friend |
554 | // declaration will be instantiated. |
555 | if (New->getFriendObjectKind() == Decl::FOK_None || |
556 | !New->getLexicalDeclContext()->isDependentContext()) { |
557 | // It's important to use getInit() here; getDefaultArg() |
558 | // strips off any top-level ExprWithCleanups. |
559 | NewParam->setHasInheritedDefaultArg(); |
560 | if (OldParam->hasUnparsedDefaultArg()) |
561 | NewParam->setUnparsedDefaultArg(); |
562 | else if (OldParam->hasUninstantiatedDefaultArg()) |
563 | NewParam->setUninstantiatedDefaultArg( |
564 | OldParam->getUninstantiatedDefaultArg()); |
565 | else |
566 | NewParam->setDefaultArg(OldParam->getInit()); |
567 | } |
568 | } else if (NewParamHasDfl) { |
569 | if (New->getDescribedFunctionTemplate()) { |
570 | // Paragraph 4, quoted above, only applies to non-template functions. |
571 | Diag(NewParam->getLocation(), |
572 | diag::err_param_default_argument_template_redecl) |
573 | << NewParam->getDefaultArgRange(); |
574 | Diag(PrevForDefaultArgs->getLocation(), |
575 | diag::note_template_prev_declaration) |
576 | << false; |
577 | } else if (New->getTemplateSpecializationKind() |
578 | != TSK_ImplicitInstantiation && |
579 | New->getTemplateSpecializationKind() != TSK_Undeclared) { |
580 | // C++ [temp.expr.spec]p21: |
581 | // Default function arguments shall not be specified in a declaration |
582 | // or a definition for one of the following explicit specializations: |
583 | // - the explicit specialization of a function template; |
584 | // - the explicit specialization of a member function template; |
585 | // - the explicit specialization of a member function of a class |
586 | // template where the class template specialization to which the |
587 | // member function specialization belongs is implicitly |
588 | // instantiated. |
589 | Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) |
590 | << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) |
591 | << New->getDeclName() |
592 | << NewParam->getDefaultArgRange(); |
593 | } else if (New->getDeclContext()->isDependentContext()) { |
594 | // C++ [dcl.fct.default]p6 (DR217): |
595 | // Default arguments for a member function of a class template shall |
596 | // be specified on the initial declaration of the member function |
597 | // within the class template. |
598 | // |
599 | // Reading the tea leaves a bit in DR217 and its reference to DR205 |
600 | // leads me to the conclusion that one cannot add default function |
601 | // arguments for an out-of-line definition of a member function of a |
602 | // dependent type. |
603 | int WhichKind = 2; |
604 | if (CXXRecordDecl *Record |
605 | = dyn_cast<CXXRecordDecl>(New->getDeclContext())) { |
606 | if (Record->getDescribedClassTemplate()) |
607 | WhichKind = 0; |
608 | else if (isa<ClassTemplatePartialSpecializationDecl>(Record)) |
609 | WhichKind = 1; |
610 | else |
611 | WhichKind = 2; |
612 | } |
613 | |
614 | Diag(NewParam->getLocation(), |
615 | diag::err_param_default_argument_member_template_redecl) |
616 | << WhichKind |
617 | << NewParam->getDefaultArgRange(); |
618 | } |
619 | } |
620 | } |
621 | |
622 | // DR1344: If a default argument is added outside a class definition and that |
623 | // default argument makes the function a special member function, the program |
624 | // is ill-formed. This can only happen for constructors. |
625 | if (isa<CXXConstructorDecl>(New) && |
626 | New->getMinRequiredArguments() < Old->getMinRequiredArguments()) { |
627 | CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)), |
628 | OldSM = getSpecialMember(cast<CXXMethodDecl>(Old)); |
629 | if (NewSM != OldSM) { |
630 | ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments()); |
631 | assert(NewParam->hasDefaultArg())((NewParam->hasDefaultArg()) ? static_cast<void> (0) : __assert_fail ("NewParam->hasDefaultArg()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 631, __PRETTY_FUNCTION__)); |
632 | Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special) |
633 | << NewParam->getDefaultArgRange() << NewSM; |
634 | Diag(Old->getLocation(), diag::note_previous_declaration); |
635 | } |
636 | } |
637 | |
638 | const FunctionDecl *Def; |
639 | // C++11 [dcl.constexpr]p1: If any declaration of a function or function |
640 | // template has a constexpr specifier then all its declarations shall |
641 | // contain the constexpr specifier. |
642 | if (New->getConstexprKind() != Old->getConstexprKind()) { |
643 | Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch) |
644 | << New << New->getConstexprKind() << Old->getConstexprKind(); |
645 | Diag(Old->getLocation(), diag::note_previous_declaration); |
646 | Invalid = true; |
647 | } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() && |
648 | Old->isDefined(Def) && |
649 | // If a friend function is inlined but does not have 'inline' |
650 | // specifier, it is a definition. Do not report attribute conflict |
651 | // in this case, redefinition will be diagnosed later. |
652 | (New->isInlineSpecified() || |
653 | New->getFriendObjectKind() == Decl::FOK_None)) { |
654 | // C++11 [dcl.fcn.spec]p4: |
655 | // If the definition of a function appears in a translation unit before its |
656 | // first declaration as inline, the program is ill-formed. |
657 | Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; |
658 | Diag(Def->getLocation(), diag::note_previous_definition); |
659 | Invalid = true; |
660 | } |
661 | |
662 | // C++17 [temp.deduct.guide]p3: |
663 | // Two deduction guide declarations in the same translation unit |
664 | // for the same class template shall not have equivalent |
665 | // parameter-declaration-clauses. |
666 | if (isa<CXXDeductionGuideDecl>(New) && |
667 | !New->isFunctionTemplateSpecialization()) { |
668 | Diag(New->getLocation(), diag::err_deduction_guide_redeclared); |
669 | Diag(Old->getLocation(), diag::note_previous_declaration); |
670 | } |
671 | |
672 | // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default |
673 | // argument expression, that declaration shall be a definition and shall be |
674 | // the only declaration of the function or function template in the |
675 | // translation unit. |
676 | if (Old->getFriendObjectKind() == Decl::FOK_Undeclared && |
677 | functionDeclHasDefaultArgument(Old)) { |
678 | Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); |
679 | Diag(Old->getLocation(), diag::note_previous_declaration); |
680 | Invalid = true; |
681 | } |
682 | |
683 | return Invalid; |
684 | } |
685 | |
686 | NamedDecl * |
687 | Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D, |
688 | MultiTemplateParamsArg TemplateParamLists) { |
689 | assert(D.isDecompositionDeclarator())((D.isDecompositionDeclarator()) ? static_cast<void> (0 ) : __assert_fail ("D.isDecompositionDeclarator()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 689, __PRETTY_FUNCTION__)); |
690 | const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); |
691 | |
692 | // The syntax only allows a decomposition declarator as a simple-declaration, |
693 | // a for-range-declaration, or a condition in Clang, but we parse it in more |
694 | // cases than that. |
695 | if (!D.mayHaveDecompositionDeclarator()) { |
696 | Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) |
697 | << Decomp.getSourceRange(); |
698 | return nullptr; |
699 | } |
700 | |
701 | if (!TemplateParamLists.empty()) { |
702 | // FIXME: There's no rule against this, but there are also no rules that |
703 | // would actually make it usable, so we reject it for now. |
704 | Diag(TemplateParamLists.front()->getTemplateLoc(), |
705 | diag::err_decomp_decl_template); |
706 | return nullptr; |
707 | } |
708 | |
709 | Diag(Decomp.getLSquareLoc(), |
710 | !getLangOpts().CPlusPlus17 |
711 | ? diag::ext_decomp_decl |
712 | : D.getContext() == DeclaratorContext::ConditionContext |
713 | ? diag::ext_decomp_decl_cond |
714 | : diag::warn_cxx14_compat_decomp_decl) |
715 | << Decomp.getSourceRange(); |
716 | |
717 | // The semantic context is always just the current context. |
718 | DeclContext *const DC = CurContext; |
719 | |
720 | // C++17 [dcl.dcl]/8: |
721 | // The decl-specifier-seq shall contain only the type-specifier auto |
722 | // and cv-qualifiers. |
723 | // C++2a [dcl.dcl]/8: |
724 | // If decl-specifier-seq contains any decl-specifier other than static, |
725 | // thread_local, auto, or cv-qualifiers, the program is ill-formed. |
726 | auto &DS = D.getDeclSpec(); |
727 | { |
728 | SmallVector<StringRef, 8> BadSpecifiers; |
729 | SmallVector<SourceLocation, 8> BadSpecifierLocs; |
730 | SmallVector<StringRef, 8> CPlusPlus20Specifiers; |
731 | SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs; |
732 | if (auto SCS = DS.getStorageClassSpec()) { |
733 | if (SCS == DeclSpec::SCS_static) { |
734 | CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS)); |
735 | CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc()); |
736 | } else { |
737 | BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS)); |
738 | BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc()); |
739 | } |
740 | } |
741 | if (auto TSCS = DS.getThreadStorageClassSpec()) { |
742 | CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS)); |
743 | CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc()); |
744 | } |
745 | if (DS.hasConstexprSpecifier()) { |
746 | BadSpecifiers.push_back( |
747 | DeclSpec::getSpecifierName(DS.getConstexprSpecifier())); |
748 | BadSpecifierLocs.push_back(DS.getConstexprSpecLoc()); |
749 | } |
750 | if (DS.isInlineSpecified()) { |
751 | BadSpecifiers.push_back("inline"); |
752 | BadSpecifierLocs.push_back(DS.getInlineSpecLoc()); |
753 | } |
754 | if (!BadSpecifiers.empty()) { |
755 | auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec); |
756 | Err << (int)BadSpecifiers.size() |
757 | << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " "); |
758 | // Don't add FixItHints to remove the specifiers; we do still respect |
759 | // them when building the underlying variable. |
760 | for (auto Loc : BadSpecifierLocs) |
761 | Err << SourceRange(Loc, Loc); |
762 | } else if (!CPlusPlus20Specifiers.empty()) { |
763 | auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(), |
764 | getLangOpts().CPlusPlus2a |
765 | ? diag::warn_cxx17_compat_decomp_decl_spec |
766 | : diag::ext_decomp_decl_spec); |
767 | Warn << (int)CPlusPlus20Specifiers.size() |
768 | << llvm::join(CPlusPlus20Specifiers.begin(), |
769 | CPlusPlus20Specifiers.end(), " "); |
770 | for (auto Loc : CPlusPlus20SpecifierLocs) |
771 | Warn << SourceRange(Loc, Loc); |
772 | } |
773 | // We can't recover from it being declared as a typedef. |
774 | if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) |
775 | return nullptr; |
776 | } |
777 | |
778 | // C++2a [dcl.struct.bind]p1: |
779 | // A cv that includes volatile is deprecated |
780 | if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) && |
781 | getLangOpts().CPlusPlus2a) |
782 | Diag(DS.getVolatileSpecLoc(), |
783 | diag::warn_deprecated_volatile_structured_binding); |
784 | |
785 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); |
786 | QualType R = TInfo->getType(); |
787 | |
788 | if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, |
789 | UPPC_DeclarationType)) |
790 | D.setInvalidType(); |
791 | |
792 | // The syntax only allows a single ref-qualifier prior to the decomposition |
793 | // declarator. No other declarator chunks are permitted. Also check the type |
794 | // specifier here. |
795 | if (DS.getTypeSpecType() != DeclSpec::TST_auto || |
796 | D.hasGroupingParens() || D.getNumTypeObjects() > 1 || |
797 | (D.getNumTypeObjects() == 1 && |
798 | D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) { |
799 | Diag(Decomp.getLSquareLoc(), |
800 | (D.hasGroupingParens() || |
801 | (D.getNumTypeObjects() && |
802 | D.getTypeObject(0).Kind == DeclaratorChunk::Paren)) |
803 | ? diag::err_decomp_decl_parens |
804 | : diag::err_decomp_decl_type) |
805 | << R; |
806 | |
807 | // In most cases, there's no actual problem with an explicitly-specified |
808 | // type, but a function type won't work here, and ActOnVariableDeclarator |
809 | // shouldn't be called for such a type. |
810 | if (R->isFunctionType()) |
811 | D.setInvalidType(); |
812 | } |
813 | |
814 | // Build the BindingDecls. |
815 | SmallVector<BindingDecl*, 8> Bindings; |
816 | |
817 | // Build the BindingDecls. |
818 | for (auto &B : D.getDecompositionDeclarator().bindings()) { |
819 | // Check for name conflicts. |
820 | DeclarationNameInfo NameInfo(B.Name, B.NameLoc); |
821 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, |
822 | ForVisibleRedeclaration); |
823 | LookupName(Previous, S, |
824 | /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit()); |
825 | |
826 | // It's not permitted to shadow a template parameter name. |
827 | if (Previous.isSingleResult() && |
828 | Previous.getFoundDecl()->isTemplateParameter()) { |
829 | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), |
830 | Previous.getFoundDecl()); |
831 | Previous.clear(); |
832 | } |
833 | |
834 | bool ConsiderLinkage = DC->isFunctionOrMethod() && |
835 | DS.getStorageClassSpec() == DeclSpec::SCS_extern; |
836 | FilterLookupForScope(Previous, DC, S, ConsiderLinkage, |
837 | /*AllowInlineNamespace*/false); |
838 | if (!Previous.empty()) { |
839 | auto *Old = Previous.getRepresentativeDecl(); |
840 | Diag(B.NameLoc, diag::err_redefinition) << B.Name; |
841 | Diag(Old->getLocation(), diag::note_previous_definition); |
842 | } |
843 | |
844 | auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name); |
845 | PushOnScopeChains(BD, S, true); |
846 | Bindings.push_back(BD); |
847 | ParsingInitForAutoVars.insert(BD); |
848 | } |
849 | |
850 | // There are no prior lookup results for the variable itself, because it |
851 | // is unnamed. |
852 | DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr, |
853 | Decomp.getLSquareLoc()); |
854 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, |
855 | ForVisibleRedeclaration); |
856 | |
857 | // Build the variable that holds the non-decomposed object. |
858 | bool AddToScope = true; |
859 | NamedDecl *New = |
860 | ActOnVariableDeclarator(S, D, DC, TInfo, Previous, |
861 | MultiTemplateParamsArg(), AddToScope, Bindings); |
862 | if (AddToScope) { |
863 | S->AddDecl(New); |
864 | CurContext->addHiddenDecl(New); |
865 | } |
866 | |
867 | if (isInOpenMPDeclareTargetContext()) |
868 | checkDeclIsAllowedInOpenMPTarget(nullptr, New); |
869 | |
870 | return New; |
871 | } |
872 | |
873 | static bool checkSimpleDecomposition( |
874 | Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src, |
875 | QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType, |
876 | llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) { |
877 | if ((int64_t)Bindings.size() != NumElems) { |
878 | S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) |
879 | << DecompType << (unsigned)Bindings.size() << NumElems.toString(10) |
880 | << (NumElems < Bindings.size()); |
881 | return true; |
882 | } |
883 | |
884 | unsigned I = 0; |
885 | for (auto *B : Bindings) { |
886 | SourceLocation Loc = B->getLocation(); |
887 | ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); |
888 | if (E.isInvalid()) |
889 | return true; |
890 | E = GetInit(Loc, E.get(), I++); |
891 | if (E.isInvalid()) |
892 | return true; |
893 | B->setBinding(ElemType, E.get()); |
894 | } |
895 | |
896 | return false; |
897 | } |
898 | |
899 | static bool checkArrayLikeDecomposition(Sema &S, |
900 | ArrayRef<BindingDecl *> Bindings, |
901 | ValueDecl *Src, QualType DecompType, |
902 | const llvm::APSInt &NumElems, |
903 | QualType ElemType) { |
904 | return checkSimpleDecomposition( |
905 | S, Bindings, Src, DecompType, NumElems, ElemType, |
906 | [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { |
907 | ExprResult E = S.ActOnIntegerConstant(Loc, I); |
908 | if (E.isInvalid()) |
909 | return ExprError(); |
910 | return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc); |
911 | }); |
912 | } |
913 | |
914 | static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, |
915 | ValueDecl *Src, QualType DecompType, |
916 | const ConstantArrayType *CAT) { |
917 | return checkArrayLikeDecomposition(S, Bindings, Src, DecompType, |
918 | llvm::APSInt(CAT->getSize()), |
919 | CAT->getElementType()); |
920 | } |
921 | |
922 | static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, |
923 | ValueDecl *Src, QualType DecompType, |
924 | const VectorType *VT) { |
925 | return checkArrayLikeDecomposition( |
926 | S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()), |
927 | S.Context.getQualifiedType(VT->getElementType(), |
928 | DecompType.getQualifiers())); |
929 | } |
930 | |
931 | static bool checkComplexDecomposition(Sema &S, |
932 | ArrayRef<BindingDecl *> Bindings, |
933 | ValueDecl *Src, QualType DecompType, |
934 | const ComplexType *CT) { |
935 | return checkSimpleDecomposition( |
936 | S, Bindings, Src, DecompType, llvm::APSInt::get(2), |
937 | S.Context.getQualifiedType(CT->getElementType(), |
938 | DecompType.getQualifiers()), |
939 | [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { |
940 | return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base); |
941 | }); |
942 | } |
943 | |
944 | static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy, |
945 | TemplateArgumentListInfo &Args) { |
946 | SmallString<128> SS; |
947 | llvm::raw_svector_ostream OS(SS); |
948 | bool First = true; |
949 | for (auto &Arg : Args.arguments()) { |
950 | if (!First) |
951 | OS << ", "; |
952 | Arg.getArgument().print(PrintingPolicy, OS); |
953 | First = false; |
954 | } |
955 | return OS.str(); |
956 | } |
957 | |
958 | static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup, |
959 | SourceLocation Loc, StringRef Trait, |
960 | TemplateArgumentListInfo &Args, |
961 | unsigned DiagID) { |
962 | auto DiagnoseMissing = [&] { |
963 | if (DiagID) |
964 | S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(), |
965 | Args); |
966 | return true; |
967 | }; |
968 | |
969 | // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine. |
970 | NamespaceDecl *Std = S.getStdNamespace(); |
971 | if (!Std) |
972 | return DiagnoseMissing(); |
973 | |
974 | // Look up the trait itself, within namespace std. We can diagnose various |
975 | // problems with this lookup even if we've been asked to not diagnose a |
976 | // missing specialization, because this can only fail if the user has been |
977 | // declaring their own names in namespace std or we don't support the |
978 | // standard library implementation in use. |
979 | LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait), |
980 | Loc, Sema::LookupOrdinaryName); |
981 | if (!S.LookupQualifiedName(Result, Std)) |
982 | return DiagnoseMissing(); |
983 | if (Result.isAmbiguous()) |
984 | return true; |
985 | |
986 | ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>(); |
987 | if (!TraitTD) { |
988 | Result.suppressDiagnostics(); |
989 | NamedDecl *Found = *Result.begin(); |
990 | S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait; |
991 | S.Diag(Found->getLocation(), diag::note_declared_at); |
992 | return true; |
993 | } |
994 | |
995 | // Build the template-id. |
996 | QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args); |
997 | if (TraitTy.isNull()) |
998 | return true; |
999 | if (!S.isCompleteType(Loc, TraitTy)) { |
1000 | if (DiagID) |
1001 | S.RequireCompleteType( |
1002 | Loc, TraitTy, DiagID, |
1003 | printTemplateArgs(S.Context.getPrintingPolicy(), Args)); |
1004 | return true; |
1005 | } |
1006 | |
1007 | CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl(); |
1008 | assert(RD && "specialization of class template is not a class?")((RD && "specialization of class template is not a class?" ) ? static_cast<void> (0) : __assert_fail ("RD && \"specialization of class template is not a class?\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 1008, __PRETTY_FUNCTION__)); |
1009 | |
1010 | // Look up the member of the trait type. |
1011 | S.LookupQualifiedName(TraitMemberLookup, RD); |
1012 | return TraitMemberLookup.isAmbiguous(); |
1013 | } |
1014 | |
1015 | static TemplateArgumentLoc |
1016 | getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T, |
1017 | uint64_t I) { |
1018 | TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T); |
1019 | return S.getTrivialTemplateArgumentLoc(Arg, T, Loc); |
1020 | } |
1021 | |
1022 | static TemplateArgumentLoc |
1023 | getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) { |
1024 | return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc); |
1025 | } |
1026 | |
1027 | namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; } |
1028 | |
1029 | static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T, |
1030 | llvm::APSInt &Size) { |
1031 | EnterExpressionEvaluationContext ContextRAII( |
1032 | S, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
1033 | |
1034 | DeclarationName Value = S.PP.getIdentifierInfo("value"); |
1035 | LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName); |
1036 | |
1037 | // Form template argument list for tuple_size<T>. |
1038 | TemplateArgumentListInfo Args(Loc, Loc); |
1039 | Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); |
1040 | |
1041 | // If there's no tuple_size specialization or the lookup of 'value' is empty, |
1042 | // it's not tuple-like. |
1043 | if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) || |
1044 | R.empty()) |
1045 | return IsTupleLike::NotTupleLike; |
1046 | |
1047 | // If we get this far, we've committed to the tuple interpretation, but |
1048 | // we can still fail if there actually isn't a usable ::value. |
1049 | |
1050 | struct ICEDiagnoser : Sema::VerifyICEDiagnoser { |
1051 | LookupResult &R; |
1052 | TemplateArgumentListInfo &Args; |
1053 | ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args) |
1054 | : R(R), Args(Args) {} |
1055 | void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) { |
1056 | S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant) |
1057 | << printTemplateArgs(S.Context.getPrintingPolicy(), Args); |
1058 | } |
1059 | } Diagnoser(R, Args); |
1060 | |
1061 | ExprResult E = |
1062 | S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false); |
1063 | if (E.isInvalid()) |
1064 | return IsTupleLike::Error; |
1065 | |
1066 | E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser, false); |
1067 | if (E.isInvalid()) |
1068 | return IsTupleLike::Error; |
1069 | |
1070 | return IsTupleLike::TupleLike; |
1071 | } |
1072 | |
1073 | /// \return std::tuple_element<I, T>::type. |
1074 | static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc, |
1075 | unsigned I, QualType T) { |
1076 | // Form template argument list for tuple_element<I, T>. |
1077 | TemplateArgumentListInfo Args(Loc, Loc); |
1078 | Args.addArgument( |
1079 | getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); |
1080 | Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); |
1081 | |
1082 | DeclarationName TypeDN = S.PP.getIdentifierInfo("type"); |
1083 | LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName); |
1084 | if (lookupStdTypeTraitMember( |
1085 | S, R, Loc, "tuple_element", Args, |
1086 | diag::err_decomp_decl_std_tuple_element_not_specialized)) |
1087 | return QualType(); |
1088 | |
1089 | auto *TD = R.getAsSingle<TypeDecl>(); |
1090 | if (!TD) { |
1091 | R.suppressDiagnostics(); |
1092 | S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized) |
1093 | << printTemplateArgs(S.Context.getPrintingPolicy(), Args); |
1094 | if (!R.empty()) |
1095 | S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at); |
1096 | return QualType(); |
1097 | } |
1098 | |
1099 | return S.Context.getTypeDeclType(TD); |
1100 | } |
1101 | |
1102 | namespace { |
1103 | struct BindingDiagnosticTrap { |
1104 | Sema &S; |
1105 | DiagnosticErrorTrap Trap; |
1106 | BindingDecl *BD; |
1107 | |
1108 | BindingDiagnosticTrap(Sema &S, BindingDecl *BD) |
1109 | : S(S), Trap(S.Diags), BD(BD) {} |
1110 | ~BindingDiagnosticTrap() { |
1111 | if (Trap.hasErrorOccurred()) |
1112 | S.Diag(BD->getLocation(), diag::note_in_binding_decl_init) << BD; |
1113 | } |
1114 | }; |
1115 | } |
1116 | |
1117 | static bool checkTupleLikeDecomposition(Sema &S, |
1118 | ArrayRef<BindingDecl *> Bindings, |
1119 | VarDecl *Src, QualType DecompType, |
1120 | const llvm::APSInt &TupleSize) { |
1121 | if ((int64_t)Bindings.size() != TupleSize) { |
1122 | S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) |
1123 | << DecompType << (unsigned)Bindings.size() << TupleSize.toString(10) |
1124 | << (TupleSize < Bindings.size()); |
1125 | return true; |
1126 | } |
1127 | |
1128 | if (Bindings.empty()) |
1129 | return false; |
1130 | |
1131 | DeclarationName GetDN = S.PP.getIdentifierInfo("get"); |
1132 | |
1133 | // [dcl.decomp]p3: |
1134 | // The unqualified-id get is looked up in the scope of E by class member |
1135 | // access lookup ... |
1136 | LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName); |
1137 | bool UseMemberGet = false; |
1138 | if (S.isCompleteType(Src->getLocation(), DecompType)) { |
1139 | if (auto *RD = DecompType->getAsCXXRecordDecl()) |
1140 | S.LookupQualifiedName(MemberGet, RD); |
1141 | if (MemberGet.isAmbiguous()) |
1142 | return true; |
1143 | // ... and if that finds at least one declaration that is a function |
1144 | // template whose first template parameter is a non-type parameter ... |
1145 | for (NamedDecl *D : MemberGet) { |
1146 | if (FunctionTemplateDecl *FTD = |
1147 | dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) { |
1148 | TemplateParameterList *TPL = FTD->getTemplateParameters(); |
1149 | if (TPL->size() != 0 && |
1150 | isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) { |
1151 | // ... the initializer is e.get<i>(). |
1152 | UseMemberGet = true; |
1153 | break; |
1154 | } |
1155 | } |
1156 | } |
1157 | } |
1158 | |
1159 | unsigned I = 0; |
1160 | for (auto *B : Bindings) { |
1161 | BindingDiagnosticTrap Trap(S, B); |
1162 | SourceLocation Loc = B->getLocation(); |
1163 | |
1164 | ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); |
1165 | if (E.isInvalid()) |
1166 | return true; |
1167 | |
1168 | // e is an lvalue if the type of the entity is an lvalue reference and |
1169 | // an xvalue otherwise |
1170 | if (!Src->getType()->isLValueReferenceType()) |
1171 | E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp, |
1172 | E.get(), nullptr, VK_XValue); |
1173 | |
1174 | TemplateArgumentListInfo Args(Loc, Loc); |
1175 | Args.addArgument( |
1176 | getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); |
1177 | |
1178 | if (UseMemberGet) { |
1179 | // if [lookup of member get] finds at least one declaration, the |
1180 | // initializer is e.get<i-1>(). |
1181 | E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false, |
1182 | CXXScopeSpec(), SourceLocation(), nullptr, |
1183 | MemberGet, &Args, nullptr); |
1184 | if (E.isInvalid()) |
1185 | return true; |
1186 | |
1187 | E = S.BuildCallExpr(nullptr, E.get(), Loc, None, Loc); |
1188 | } else { |
1189 | // Otherwise, the initializer is get<i-1>(e), where get is looked up |
1190 | // in the associated namespaces. |
1191 | Expr *Get = UnresolvedLookupExpr::Create( |
1192 | S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(), |
1193 | DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args, |
1194 | UnresolvedSetIterator(), UnresolvedSetIterator()); |
1195 | |
1196 | Expr *Arg = E.get(); |
1197 | E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc); |
1198 | } |
1199 | if (E.isInvalid()) |
1200 | return true; |
1201 | Expr *Init = E.get(); |
1202 | |
1203 | // Given the type T designated by std::tuple_element<i - 1, E>::type, |
1204 | QualType T = getTupleLikeElementType(S, Loc, I, DecompType); |
1205 | if (T.isNull()) |
1206 | return true; |
1207 | |
1208 | // each vi is a variable of type "reference to T" initialized with the |
1209 | // initializer, where the reference is an lvalue reference if the |
1210 | // initializer is an lvalue and an rvalue reference otherwise |
1211 | QualType RefType = |
1212 | S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName()); |
1213 | if (RefType.isNull()) |
1214 | return true; |
1215 | auto *RefVD = VarDecl::Create( |
1216 | S.Context, Src->getDeclContext(), Loc, Loc, |
1217 | B->getDeclName().getAsIdentifierInfo(), RefType, |
1218 | S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass()); |
1219 | RefVD->setLexicalDeclContext(Src->getLexicalDeclContext()); |
1220 | RefVD->setTSCSpec(Src->getTSCSpec()); |
1221 | RefVD->setImplicit(); |
1222 | if (Src->isInlineSpecified()) |
1223 | RefVD->setInlineSpecified(); |
1224 | RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD); |
1225 | |
1226 | InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD); |
1227 | InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc); |
1228 | InitializationSequence Seq(S, Entity, Kind, Init); |
1229 | E = Seq.Perform(S, Entity, Kind, Init); |
1230 | if (E.isInvalid()) |
1231 | return true; |
1232 | E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false); |
1233 | if (E.isInvalid()) |
1234 | return true; |
1235 | RefVD->setInit(E.get()); |
1236 | if (!E.get()->isValueDependent()) |
1237 | RefVD->checkInitIsICE(); |
1238 | |
1239 | E = S.BuildDeclarationNameExpr(CXXScopeSpec(), |
1240 | DeclarationNameInfo(B->getDeclName(), Loc), |
1241 | RefVD); |
1242 | if (E.isInvalid()) |
1243 | return true; |
1244 | |
1245 | B->setBinding(T, E.get()); |
1246 | I++; |
1247 | } |
1248 | |
1249 | return false; |
1250 | } |
1251 | |
1252 | /// Find the base class to decompose in a built-in decomposition of a class type. |
1253 | /// This base class search is, unfortunately, not quite like any other that we |
1254 | /// perform anywhere else in C++. |
1255 | static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc, |
1256 | const CXXRecordDecl *RD, |
1257 | CXXCastPath &BasePath) { |
1258 | auto BaseHasFields = [](const CXXBaseSpecifier *Specifier, |
1259 | CXXBasePath &Path) { |
1260 | return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields(); |
1261 | }; |
1262 | |
1263 | const CXXRecordDecl *ClassWithFields = nullptr; |
1264 | AccessSpecifier AS = AS_public; |
1265 | if (RD->hasDirectFields()) |
1266 | // [dcl.decomp]p4: |
1267 | // Otherwise, all of E's non-static data members shall be public direct |
1268 | // members of E ... |
1269 | ClassWithFields = RD; |
1270 | else { |
1271 | // ... or of ... |
1272 | CXXBasePaths Paths; |
1273 | Paths.setOrigin(const_cast<CXXRecordDecl*>(RD)); |
1274 | if (!RD->lookupInBases(BaseHasFields, Paths)) { |
1275 | // If no classes have fields, just decompose RD itself. (This will work |
1276 | // if and only if zero bindings were provided.) |
1277 | return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public); |
1278 | } |
1279 | |
1280 | CXXBasePath *BestPath = nullptr; |
1281 | for (auto &P : Paths) { |
1282 | if (!BestPath) |
1283 | BestPath = &P; |
1284 | else if (!S.Context.hasSameType(P.back().Base->getType(), |
1285 | BestPath->back().Base->getType())) { |
1286 | // ... the same ... |
1287 | S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) |
1288 | << false << RD << BestPath->back().Base->getType() |
1289 | << P.back().Base->getType(); |
1290 | return DeclAccessPair(); |
1291 | } else if (P.Access < BestPath->Access) { |
1292 | BestPath = &P; |
1293 | } |
1294 | } |
1295 | |
1296 | // ... unambiguous ... |
1297 | QualType BaseType = BestPath->back().Base->getType(); |
1298 | if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) { |
1299 | S.Diag(Loc, diag::err_decomp_decl_ambiguous_base) |
1300 | << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths); |
1301 | return DeclAccessPair(); |
1302 | } |
1303 | |
1304 | // ... [accessible, implied by other rules] base class of E. |
1305 | S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD), |
1306 | *BestPath, diag::err_decomp_decl_inaccessible_base); |
1307 | AS = BestPath->Access; |
1308 | |
1309 | ClassWithFields = BaseType->getAsCXXRecordDecl(); |
1310 | S.BuildBasePathArray(Paths, BasePath); |
1311 | } |
1312 | |
1313 | // The above search did not check whether the selected class itself has base |
1314 | // classes with fields, so check that now. |
1315 | CXXBasePaths Paths; |
1316 | if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) { |
1317 | S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) |
1318 | << (ClassWithFields == RD) << RD << ClassWithFields |
1319 | << Paths.front().back().Base->getType(); |
1320 | return DeclAccessPair(); |
1321 | } |
1322 | |
1323 | return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS); |
1324 | } |
1325 | |
1326 | static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, |
1327 | ValueDecl *Src, QualType DecompType, |
1328 | const CXXRecordDecl *OrigRD) { |
1329 | if (S.RequireCompleteType(Src->getLocation(), DecompType, |
1330 | diag::err_incomplete_type)) |
1331 | return true; |
1332 | |
1333 | CXXCastPath BasePath; |
1334 | DeclAccessPair BasePair = |
1335 | findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath); |
1336 | const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl()); |
1337 | if (!RD) |
1338 | return true; |
1339 | QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD), |
1340 | DecompType.getQualifiers()); |
1341 | |
1342 | auto DiagnoseBadNumberOfBindings = [&]() -> bool { |
1343 | unsigned NumFields = |
1344 | std::count_if(RD->field_begin(), RD->field_end(), |
1345 | [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); }); |
1346 | assert(Bindings.size() != NumFields)((Bindings.size() != NumFields) ? static_cast<void> (0) : __assert_fail ("Bindings.size() != NumFields", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 1346, __PRETTY_FUNCTION__)); |
1347 | S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) |
1348 | << DecompType << (unsigned)Bindings.size() << NumFields |
1349 | << (NumFields < Bindings.size()); |
1350 | return true; |
1351 | }; |
1352 | |
1353 | // all of E's non-static data members shall be [...] well-formed |
1354 | // when named as e.name in the context of the structured binding, |
1355 | // E shall not have an anonymous union member, ... |
1356 | unsigned I = 0; |
1357 | for (auto *FD : RD->fields()) { |
1358 | if (FD->isUnnamedBitfield()) |
1359 | continue; |
1360 | |
1361 | if (FD->isAnonymousStructOrUnion()) { |
1362 | S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member) |
1363 | << DecompType << FD->getType()->isUnionType(); |
1364 | S.Diag(FD->getLocation(), diag::note_declared_at); |
1365 | return true; |
1366 | } |
1367 | |
1368 | // We have a real field to bind. |
1369 | if (I >= Bindings.size()) |
1370 | return DiagnoseBadNumberOfBindings(); |
1371 | auto *B = Bindings[I++]; |
1372 | SourceLocation Loc = B->getLocation(); |
1373 | |
1374 | // The field must be accessible in the context of the structured binding. |
1375 | // We already checked that the base class is accessible. |
1376 | // FIXME: Add 'const' to AccessedEntity's classes so we can remove the |
1377 | // const_cast here. |
1378 | S.CheckStructuredBindingMemberAccess( |
1379 | Loc, const_cast<CXXRecordDecl *>(OrigRD), |
1380 | DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess( |
1381 | BasePair.getAccess(), FD->getAccess()))); |
1382 | |
1383 | // Initialize the binding to Src.FD. |
1384 | ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); |
1385 | if (E.isInvalid()) |
1386 | return true; |
1387 | E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase, |
1388 | VK_LValue, &BasePath); |
1389 | if (E.isInvalid()) |
1390 | return true; |
1391 | E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc, |
1392 | CXXScopeSpec(), FD, |
1393 | DeclAccessPair::make(FD, FD->getAccess()), |
1394 | DeclarationNameInfo(FD->getDeclName(), Loc)); |
1395 | if (E.isInvalid()) |
1396 | return true; |
1397 | |
1398 | // If the type of the member is T, the referenced type is cv T, where cv is |
1399 | // the cv-qualification of the decomposition expression. |
1400 | // |
1401 | // FIXME: We resolve a defect here: if the field is mutable, we do not add |
1402 | // 'const' to the type of the field. |
1403 | Qualifiers Q = DecompType.getQualifiers(); |
1404 | if (FD->isMutable()) |
1405 | Q.removeConst(); |
1406 | B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get()); |
1407 | } |
1408 | |
1409 | if (I != Bindings.size()) |
1410 | return DiagnoseBadNumberOfBindings(); |
1411 | |
1412 | return false; |
1413 | } |
1414 | |
1415 | void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) { |
1416 | QualType DecompType = DD->getType(); |
1417 | |
1418 | // If the type of the decomposition is dependent, then so is the type of |
1419 | // each binding. |
1420 | if (DecompType->isDependentType()) { |
1421 | for (auto *B : DD->bindings()) |
1422 | B->setType(Context.DependentTy); |
1423 | return; |
1424 | } |
1425 | |
1426 | DecompType = DecompType.getNonReferenceType(); |
1427 | ArrayRef<BindingDecl*> Bindings = DD->bindings(); |
1428 | |
1429 | // C++1z [dcl.decomp]/2: |
1430 | // If E is an array type [...] |
1431 | // As an extension, we also support decomposition of built-in complex and |
1432 | // vector types. |
1433 | if (auto *CAT = Context.getAsConstantArrayType(DecompType)) { |
1434 | if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT)) |
1435 | DD->setInvalidDecl(); |
1436 | return; |
1437 | } |
1438 | if (auto *VT = DecompType->getAs<VectorType>()) { |
1439 | if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT)) |
1440 | DD->setInvalidDecl(); |
1441 | return; |
1442 | } |
1443 | if (auto *CT = DecompType->getAs<ComplexType>()) { |
1444 | if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT)) |
1445 | DD->setInvalidDecl(); |
1446 | return; |
1447 | } |
1448 | |
1449 | // C++1z [dcl.decomp]/3: |
1450 | // if the expression std::tuple_size<E>::value is a well-formed integral |
1451 | // constant expression, [...] |
1452 | llvm::APSInt TupleSize(32); |
1453 | switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) { |
1454 | case IsTupleLike::Error: |
1455 | DD->setInvalidDecl(); |
1456 | return; |
1457 | |
1458 | case IsTupleLike::TupleLike: |
1459 | if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize)) |
1460 | DD->setInvalidDecl(); |
1461 | return; |
1462 | |
1463 | case IsTupleLike::NotTupleLike: |
1464 | break; |
1465 | } |
1466 | |
1467 | // C++1z [dcl.dcl]/8: |
1468 | // [E shall be of array or non-union class type] |
1469 | CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl(); |
1470 | if (!RD || RD->isUnion()) { |
1471 | Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type) |
1472 | << DD << !RD << DecompType; |
1473 | DD->setInvalidDecl(); |
1474 | return; |
1475 | } |
1476 | |
1477 | // C++1z [dcl.decomp]/4: |
1478 | // all of E's non-static data members shall be [...] direct members of |
1479 | // E or of the same unambiguous public base class of E, ... |
1480 | if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD)) |
1481 | DD->setInvalidDecl(); |
1482 | } |
1483 | |
1484 | /// Merge the exception specifications of two variable declarations. |
1485 | /// |
1486 | /// This is called when there's a redeclaration of a VarDecl. The function |
1487 | /// checks if the redeclaration might have an exception specification and |
1488 | /// validates compatibility and merges the specs if necessary. |
1489 | void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) { |
1490 | // Shortcut if exceptions are disabled. |
1491 | if (!getLangOpts().CXXExceptions) |
1492 | return; |
1493 | |
1494 | assert(Context.hasSameType(New->getType(), Old->getType()) &&((Context.hasSameType(New->getType(), Old->getType()) && "Should only be called if types are otherwise the same.") ? static_cast <void> (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 1495, __PRETTY_FUNCTION__)) |
1495 | "Should only be called if types are otherwise the same.")((Context.hasSameType(New->getType(), Old->getType()) && "Should only be called if types are otherwise the same.") ? static_cast <void> (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 1495, __PRETTY_FUNCTION__)); |
1496 | |
1497 | QualType NewType = New->getType(); |
1498 | QualType OldType = Old->getType(); |
1499 | |
1500 | // We're only interested in pointers and references to functions, as well |
1501 | // as pointers to member functions. |
1502 | if (const ReferenceType *R = NewType->getAs<ReferenceType>()) { |
1503 | NewType = R->getPointeeType(); |
1504 | OldType = OldType->getAs<ReferenceType>()->getPointeeType(); |
1505 | } else if (const PointerType *P = NewType->getAs<PointerType>()) { |
1506 | NewType = P->getPointeeType(); |
1507 | OldType = OldType->getAs<PointerType>()->getPointeeType(); |
1508 | } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) { |
1509 | NewType = M->getPointeeType(); |
1510 | OldType = OldType->getAs<MemberPointerType>()->getPointeeType(); |
1511 | } |
1512 | |
1513 | if (!NewType->isFunctionProtoType()) |
1514 | return; |
1515 | |
1516 | // There's lots of special cases for functions. For function pointers, system |
1517 | // libraries are hopefully not as broken so that we don't need these |
1518 | // workarounds. |
1519 | if (CheckEquivalentExceptionSpec( |
1520 | OldType->getAs<FunctionProtoType>(), Old->getLocation(), |
1521 | NewType->getAs<FunctionProtoType>(), New->getLocation())) { |
1522 | New->setInvalidDecl(); |
1523 | } |
1524 | } |
1525 | |
1526 | /// CheckCXXDefaultArguments - Verify that the default arguments for a |
1527 | /// function declaration are well-formed according to C++ |
1528 | /// [dcl.fct.default]. |
1529 | void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { |
1530 | unsigned NumParams = FD->getNumParams(); |
1531 | unsigned p; |
1532 | |
1533 | // Find first parameter with a default argument |
1534 | for (p = 0; p < NumParams; ++p) { |
1535 | ParmVarDecl *Param = FD->getParamDecl(p); |
1536 | if (Param->hasDefaultArg()) |
1537 | break; |
1538 | } |
1539 | |
1540 | // C++11 [dcl.fct.default]p4: |
1541 | // In a given function declaration, each parameter subsequent to a parameter |
1542 | // with a default argument shall have a default argument supplied in this or |
1543 | // a previous declaration or shall be a function parameter pack. A default |
1544 | // argument shall not be redefined by a later declaration (not even to the |
1545 | // same value). |
1546 | unsigned LastMissingDefaultArg = 0; |
1547 | for (; p < NumParams; ++p) { |
1548 | ParmVarDecl *Param = FD->getParamDecl(p); |
1549 | if (!Param->hasDefaultArg() && !Param->isParameterPack()) { |
1550 | if (Param->isInvalidDecl()) |
1551 | /* We already complained about this parameter. */; |
1552 | else if (Param->getIdentifier()) |
1553 | Diag(Param->getLocation(), |
1554 | diag::err_param_default_argument_missing_name) |
1555 | << Param->getIdentifier(); |
1556 | else |
1557 | Diag(Param->getLocation(), |
1558 | diag::err_param_default_argument_missing); |
1559 | |
1560 | LastMissingDefaultArg = p; |
1561 | } |
1562 | } |
1563 | |
1564 | if (LastMissingDefaultArg > 0) { |
1565 | // Some default arguments were missing. Clear out all of the |
1566 | // default arguments up to (and including) the last missing |
1567 | // default argument, so that we leave the function parameters |
1568 | // in a semantically valid state. |
1569 | for (p = 0; p <= LastMissingDefaultArg; ++p) { |
1570 | ParmVarDecl *Param = FD->getParamDecl(p); |
1571 | if (Param->hasDefaultArg()) { |
1572 | Param->setDefaultArg(nullptr); |
1573 | } |
1574 | } |
1575 | } |
1576 | } |
1577 | |
1578 | /// Check that the given type is a literal type. Issue a diagnostic if not, |
1579 | /// if Kind is Diagnose. |
1580 | /// \return \c true if a problem has been found (and optionally diagnosed). |
1581 | template <typename... Ts> |
1582 | static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind, |
1583 | SourceLocation Loc, QualType T, unsigned DiagID, |
1584 | Ts &&...DiagArgs) { |
1585 | if (T->isDependentType()) |
1586 | return false; |
1587 | |
1588 | switch (Kind) { |
1589 | case Sema::CheckConstexprKind::Diagnose: |
1590 | return SemaRef.RequireLiteralType(Loc, T, DiagID, |
1591 | std::forward<Ts>(DiagArgs)...); |
1592 | |
1593 | case Sema::CheckConstexprKind::CheckValid: |
1594 | return !T->isLiteralType(SemaRef.Context); |
1595 | } |
1596 | |
1597 | llvm_unreachable("unknown CheckConstexprKind")::llvm::llvm_unreachable_internal("unknown CheckConstexprKind" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 1597); |
1598 | } |
1599 | |
1600 | /// Determine whether a destructor cannot be constexpr due to |
1601 | static bool CheckConstexprDestructorSubobjects(Sema &SemaRef, |
1602 | const CXXDestructorDecl *DD, |
1603 | Sema::CheckConstexprKind Kind) { |
1604 | auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) { |
1605 | const CXXRecordDecl *RD = |
1606 | T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
1607 | if (!RD || RD->hasConstexprDestructor()) |
1608 | return true; |
1609 | |
1610 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
1611 | SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject) |
1612 | << DD->getConstexprKind() << !FD |
1613 | << (FD ? FD->getDeclName() : DeclarationName()) << T; |
1614 | SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject) |
1615 | << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T; |
1616 | } |
1617 | return false; |
1618 | }; |
1619 | |
1620 | const CXXRecordDecl *RD = DD->getParent(); |
1621 | for (const CXXBaseSpecifier &B : RD->bases()) |
1622 | if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr)) |
1623 | return false; |
1624 | for (const FieldDecl *FD : RD->fields()) |
1625 | if (!Check(FD->getLocation(), FD->getType(), FD)) |
1626 | return false; |
1627 | return true; |
1628 | } |
1629 | |
1630 | // CheckConstexprParameterTypes - Check whether a function's parameter types |
1631 | // are all literal types. If so, return true. If not, produce a suitable |
1632 | // diagnostic and return false. |
1633 | static bool CheckConstexprParameterTypes(Sema &SemaRef, |
1634 | const FunctionDecl *FD, |
1635 | Sema::CheckConstexprKind Kind) { |
1636 | unsigned ArgIndex = 0; |
1637 | const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>(); |
1638 | for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(), |
1639 | e = FT->param_type_end(); |
1640 | i != e; ++i, ++ArgIndex) { |
1641 | const ParmVarDecl *PD = FD->getParamDecl(ArgIndex); |
1642 | SourceLocation ParamLoc = PD->getLocation(); |
1643 | if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i, |
1644 | diag::err_constexpr_non_literal_param, ArgIndex + 1, |
1645 | PD->getSourceRange(), isa<CXXConstructorDecl>(FD), |
1646 | FD->isConsteval())) |
1647 | return false; |
1648 | } |
1649 | return true; |
1650 | } |
1651 | |
1652 | /// Get diagnostic %select index for tag kind for |
1653 | /// record diagnostic message. |
1654 | /// WARNING: Indexes apply to particular diagnostics only! |
1655 | /// |
1656 | /// \returns diagnostic %select index. |
1657 | static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) { |
1658 | switch (Tag) { |
1659 | case TTK_Struct: return 0; |
1660 | case TTK_Interface: return 1; |
1661 | case TTK_Class: return 2; |
1662 | default: llvm_unreachable("Invalid tag kind for record diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for record diagnostic!" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 1662); |
1663 | } |
1664 | } |
1665 | |
1666 | static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, |
1667 | Stmt *Body, |
1668 | Sema::CheckConstexprKind Kind); |
1669 | |
1670 | // Check whether a function declaration satisfies the requirements of a |
1671 | // constexpr function definition or a constexpr constructor definition. If so, |
1672 | // return true. If not, produce appropriate diagnostics (unless asked not to by |
1673 | // Kind) and return false. |
1674 | // |
1675 | // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360. |
1676 | bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD, |
1677 | CheckConstexprKind Kind) { |
1678 | const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); |
1679 | if (MD && MD->isInstance()) { |
1680 | // C++11 [dcl.constexpr]p4: |
1681 | // The definition of a constexpr constructor shall satisfy the following |
1682 | // constraints: |
1683 | // - the class shall not have any virtual base classes; |
1684 | // |
1685 | // FIXME: This only applies to constructors and destructors, not arbitrary |
1686 | // member functions. |
1687 | const CXXRecordDecl *RD = MD->getParent(); |
1688 | if (RD->getNumVBases()) { |
1689 | if (Kind == CheckConstexprKind::CheckValid) |
1690 | return false; |
1691 | |
1692 | Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base) |
1693 | << isa<CXXConstructorDecl>(NewFD) |
1694 | << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases(); |
1695 | for (const auto &I : RD->vbases()) |
1696 | Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here) |
1697 | << I.getSourceRange(); |
1698 | return false; |
1699 | } |
1700 | } |
1701 | |
1702 | if (!isa<CXXConstructorDecl>(NewFD)) { |
1703 | // C++11 [dcl.constexpr]p3: |
1704 | // The definition of a constexpr function shall satisfy the following |
1705 | // constraints: |
1706 | // - it shall not be virtual; (removed in C++20) |
1707 | const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD); |
1708 | if (Method && Method->isVirtual()) { |
1709 | if (getLangOpts().CPlusPlus2a) { |
1710 | if (Kind == CheckConstexprKind::Diagnose) |
1711 | Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual); |
1712 | } else { |
1713 | if (Kind == CheckConstexprKind::CheckValid) |
1714 | return false; |
1715 | |
1716 | Method = Method->getCanonicalDecl(); |
1717 | Diag(Method->getLocation(), diag::err_constexpr_virtual); |
1718 | |
1719 | // If it's not obvious why this function is virtual, find an overridden |
1720 | // function which uses the 'virtual' keyword. |
1721 | const CXXMethodDecl *WrittenVirtual = Method; |
1722 | while (!WrittenVirtual->isVirtualAsWritten()) |
1723 | WrittenVirtual = *WrittenVirtual->begin_overridden_methods(); |
1724 | if (WrittenVirtual != Method) |
1725 | Diag(WrittenVirtual->getLocation(), |
1726 | diag::note_overridden_virtual_function); |
1727 | return false; |
1728 | } |
1729 | } |
1730 | |
1731 | // - its return type shall be a literal type; |
1732 | QualType RT = NewFD->getReturnType(); |
1733 | if (CheckLiteralType(*this, Kind, NewFD->getLocation(), RT, |
1734 | diag::err_constexpr_non_literal_return, |
1735 | NewFD->isConsteval())) |
1736 | return false; |
1737 | } |
1738 | |
1739 | if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) { |
1740 | // A destructor can be constexpr only if the defaulted destructor could be; |
1741 | // we don't need to check the members and bases if we already know they all |
1742 | // have constexpr destructors. |
1743 | if (!Dtor->getParent()->defaultedDestructorIsConstexpr()) { |
1744 | if (Kind == CheckConstexprKind::CheckValid) |
1745 | return false; |
1746 | if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind)) |
1747 | return false; |
1748 | } |
1749 | } |
1750 | |
1751 | // - each of its parameter types shall be a literal type; |
1752 | if (!CheckConstexprParameterTypes(*this, NewFD, Kind)) |
1753 | return false; |
1754 | |
1755 | Stmt *Body = NewFD->getBody(); |
1756 | assert(Body &&((Body && "CheckConstexprFunctionDefinition called on function with no body" ) ? static_cast<void> (0) : __assert_fail ("Body && \"CheckConstexprFunctionDefinition called on function with no body\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 1757, __PRETTY_FUNCTION__)) |
1757 | "CheckConstexprFunctionDefinition called on function with no body")((Body && "CheckConstexprFunctionDefinition called on function with no body" ) ? static_cast<void> (0) : __assert_fail ("Body && \"CheckConstexprFunctionDefinition called on function with no body\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 1757, __PRETTY_FUNCTION__)); |
1758 | return CheckConstexprFunctionBody(*this, NewFD, Body, Kind); |
1759 | } |
1760 | |
1761 | /// Check the given declaration statement is legal within a constexpr function |
1762 | /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3. |
1763 | /// |
1764 | /// \return true if the body is OK (maybe only as an extension), false if we |
1765 | /// have diagnosed a problem. |
1766 | static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl, |
1767 | DeclStmt *DS, SourceLocation &Cxx1yLoc, |
1768 | Sema::CheckConstexprKind Kind) { |
1769 | // C++11 [dcl.constexpr]p3 and p4: |
1770 | // The definition of a constexpr function(p3) or constructor(p4) [...] shall |
1771 | // contain only |
1772 | for (const auto *DclIt : DS->decls()) { |
1773 | switch (DclIt->getKind()) { |
1774 | case Decl::StaticAssert: |
1775 | case Decl::Using: |
1776 | case Decl::UsingShadow: |
1777 | case Decl::UsingDirective: |
1778 | case Decl::UnresolvedUsingTypename: |
1779 | case Decl::UnresolvedUsingValue: |
1780 | // - static_assert-declarations |
1781 | // - using-declarations, |
1782 | // - using-directives, |
1783 | continue; |
1784 | |
1785 | case Decl::Typedef: |
1786 | case Decl::TypeAlias: { |
1787 | // - typedef declarations and alias-declarations that do not define |
1788 | // classes or enumerations, |
1789 | const auto *TN = cast<TypedefNameDecl>(DclIt); |
1790 | if (TN->getUnderlyingType()->isVariablyModifiedType()) { |
1791 | // Don't allow variably-modified types in constexpr functions. |
1792 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
1793 | TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc(); |
1794 | SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla) |
1795 | << TL.getSourceRange() << TL.getType() |
1796 | << isa<CXXConstructorDecl>(Dcl); |
1797 | } |
1798 | return false; |
1799 | } |
1800 | continue; |
1801 | } |
1802 | |
1803 | case Decl::Enum: |
1804 | case Decl::CXXRecord: |
1805 | // C++1y allows types to be defined, not just declared. |
1806 | if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) { |
1807 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
1808 | SemaRef.Diag(DS->getBeginLoc(), |
1809 | SemaRef.getLangOpts().CPlusPlus14 |
1810 | ? diag::warn_cxx11_compat_constexpr_type_definition |
1811 | : diag::ext_constexpr_type_definition) |
1812 | << isa<CXXConstructorDecl>(Dcl); |
1813 | } else if (!SemaRef.getLangOpts().CPlusPlus14) { |
1814 | return false; |
1815 | } |
1816 | } |
1817 | continue; |
1818 | |
1819 | case Decl::EnumConstant: |
1820 | case Decl::IndirectField: |
1821 | case Decl::ParmVar: |
1822 | // These can only appear with other declarations which are banned in |
1823 | // C++11 and permitted in C++1y, so ignore them. |
1824 | continue; |
1825 | |
1826 | case Decl::Var: |
1827 | case Decl::Decomposition: { |
1828 | // C++1y [dcl.constexpr]p3 allows anything except: |
1829 | // a definition of a variable of non-literal type or of static or |
1830 | // thread storage duration or [before C++2a] for which no |
1831 | // initialization is performed. |
1832 | const auto *VD = cast<VarDecl>(DclIt); |
1833 | if (VD->isThisDeclarationADefinition()) { |
1834 | if (VD->isStaticLocal()) { |
1835 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
1836 | SemaRef.Diag(VD->getLocation(), |
1837 | diag::err_constexpr_local_var_static) |
1838 | << isa<CXXConstructorDecl>(Dcl) |
1839 | << (VD->getTLSKind() == VarDecl::TLS_Dynamic); |
1840 | } |
1841 | return false; |
1842 | } |
1843 | if (CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(), |
1844 | diag::err_constexpr_local_var_non_literal_type, |
1845 | isa<CXXConstructorDecl>(Dcl))) |
1846 | return false; |
1847 | if (!VD->getType()->isDependentType() && |
1848 | !VD->hasInit() && !VD->isCXXForRangeDecl()) { |
1849 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
1850 | SemaRef.Diag( |
1851 | VD->getLocation(), |
1852 | SemaRef.getLangOpts().CPlusPlus2a |
1853 | ? diag::warn_cxx17_compat_constexpr_local_var_no_init |
1854 | : diag::ext_constexpr_local_var_no_init) |
1855 | << isa<CXXConstructorDecl>(Dcl); |
1856 | } else if (!SemaRef.getLangOpts().CPlusPlus2a) { |
1857 | return false; |
1858 | } |
1859 | continue; |
1860 | } |
1861 | } |
1862 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
1863 | SemaRef.Diag(VD->getLocation(), |
1864 | SemaRef.getLangOpts().CPlusPlus14 |
1865 | ? diag::warn_cxx11_compat_constexpr_local_var |
1866 | : diag::ext_constexpr_local_var) |
1867 | << isa<CXXConstructorDecl>(Dcl); |
1868 | } else if (!SemaRef.getLangOpts().CPlusPlus14) { |
1869 | return false; |
1870 | } |
1871 | continue; |
1872 | } |
1873 | |
1874 | case Decl::NamespaceAlias: |
1875 | case Decl::Function: |
1876 | // These are disallowed in C++11 and permitted in C++1y. Allow them |
1877 | // everywhere as an extension. |
1878 | if (!Cxx1yLoc.isValid()) |
1879 | Cxx1yLoc = DS->getBeginLoc(); |
1880 | continue; |
1881 | |
1882 | default: |
1883 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
1884 | SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) |
1885 | << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); |
1886 | } |
1887 | return false; |
1888 | } |
1889 | } |
1890 | |
1891 | return true; |
1892 | } |
1893 | |
1894 | /// Check that the given field is initialized within a constexpr constructor. |
1895 | /// |
1896 | /// \param Dcl The constexpr constructor being checked. |
1897 | /// \param Field The field being checked. This may be a member of an anonymous |
1898 | /// struct or union nested within the class being checked. |
1899 | /// \param Inits All declarations, including anonymous struct/union members and |
1900 | /// indirect members, for which any initialization was provided. |
1901 | /// \param Diagnosed Whether we've emitted the error message yet. Used to attach |
1902 | /// multiple notes for different members to the same error. |
1903 | /// \param Kind Whether we're diagnosing a constructor as written or determining |
1904 | /// whether the formal requirements are satisfied. |
1905 | /// \return \c false if we're checking for validity and the constructor does |
1906 | /// not satisfy the requirements on a constexpr constructor. |
1907 | static bool CheckConstexprCtorInitializer(Sema &SemaRef, |
1908 | const FunctionDecl *Dcl, |
1909 | FieldDecl *Field, |
1910 | llvm::SmallSet<Decl*, 16> &Inits, |
1911 | bool &Diagnosed, |
1912 | Sema::CheckConstexprKind Kind) { |
1913 | // In C++20 onwards, there's nothing to check for validity. |
1914 | if (Kind == Sema::CheckConstexprKind::CheckValid && |
1915 | SemaRef.getLangOpts().CPlusPlus2a) |
1916 | return true; |
1917 | |
1918 | if (Field->isInvalidDecl()) |
1919 | return true; |
1920 | |
1921 | if (Field->isUnnamedBitfield()) |
1922 | return true; |
1923 | |
1924 | // Anonymous unions with no variant members and empty anonymous structs do not |
1925 | // need to be explicitly initialized. FIXME: Anonymous structs that contain no |
1926 | // indirect fields don't need initializing. |
1927 | if (Field->isAnonymousStructOrUnion() && |
1928 | (Field->getType()->isUnionType() |
1929 | ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers() |
1930 | : Field->getType()->getAsCXXRecordDecl()->isEmpty())) |
1931 | return true; |
1932 | |
1933 | if (!Inits.count(Field)) { |
1934 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
1935 | if (!Diagnosed) { |
1936 | SemaRef.Diag(Dcl->getLocation(), |
1937 | SemaRef.getLangOpts().CPlusPlus2a |
1938 | ? diag::warn_cxx17_compat_constexpr_ctor_missing_init |
1939 | : diag::ext_constexpr_ctor_missing_init); |
1940 | Diagnosed = true; |
1941 | } |
1942 | SemaRef.Diag(Field->getLocation(), |
1943 | diag::note_constexpr_ctor_missing_init); |
1944 | } else if (!SemaRef.getLangOpts().CPlusPlus2a) { |
1945 | return false; |
1946 | } |
1947 | } else if (Field->isAnonymousStructOrUnion()) { |
1948 | const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl(); |
1949 | for (auto *I : RD->fields()) |
1950 | // If an anonymous union contains an anonymous struct of which any member |
1951 | // is initialized, all members must be initialized. |
1952 | if (!RD->isUnion() || Inits.count(I)) |
1953 | if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, |
1954 | Kind)) |
1955 | return false; |
1956 | } |
1957 | return true; |
1958 | } |
1959 | |
1960 | /// Check the provided statement is allowed in a constexpr function |
1961 | /// definition. |
1962 | static bool |
1963 | CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S, |
1964 | SmallVectorImpl<SourceLocation> &ReturnStmts, |
1965 | SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc, |
1966 | Sema::CheckConstexprKind Kind) { |
1967 | // - its function-body shall be [...] a compound-statement that contains only |
1968 | switch (S->getStmtClass()) { |
1969 | case Stmt::NullStmtClass: |
1970 | // - null statements, |
1971 | return true; |
1972 | |
1973 | case Stmt::DeclStmtClass: |
1974 | // - static_assert-declarations |
1975 | // - using-declarations, |
1976 | // - using-directives, |
1977 | // - typedef declarations and alias-declarations that do not define |
1978 | // classes or enumerations, |
1979 | if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind)) |
1980 | return false; |
1981 | return true; |
1982 | |
1983 | case Stmt::ReturnStmtClass: |
1984 | // - and exactly one return statement; |
1985 | if (isa<CXXConstructorDecl>(Dcl)) { |
1986 | // C++1y allows return statements in constexpr constructors. |
1987 | if (!Cxx1yLoc.isValid()) |
1988 | Cxx1yLoc = S->getBeginLoc(); |
1989 | return true; |
1990 | } |
1991 | |
1992 | ReturnStmts.push_back(S->getBeginLoc()); |
1993 | return true; |
1994 | |
1995 | case Stmt::CompoundStmtClass: { |
1996 | // C++1y allows compound-statements. |
1997 | if (!Cxx1yLoc.isValid()) |
1998 | Cxx1yLoc = S->getBeginLoc(); |
1999 | |
2000 | CompoundStmt *CompStmt = cast<CompoundStmt>(S); |
2001 | for (auto *BodyIt : CompStmt->body()) { |
2002 | if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts, |
2003 | Cxx1yLoc, Cxx2aLoc, Kind)) |
2004 | return false; |
2005 | } |
2006 | return true; |
2007 | } |
2008 | |
2009 | case Stmt::AttributedStmtClass: |
2010 | if (!Cxx1yLoc.isValid()) |
2011 | Cxx1yLoc = S->getBeginLoc(); |
2012 | return true; |
2013 | |
2014 | case Stmt::IfStmtClass: { |
2015 | // C++1y allows if-statements. |
2016 | if (!Cxx1yLoc.isValid()) |
2017 | Cxx1yLoc = S->getBeginLoc(); |
2018 | |
2019 | IfStmt *If = cast<IfStmt>(S); |
2020 | if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts, |
2021 | Cxx1yLoc, Cxx2aLoc, Kind)) |
2022 | return false; |
2023 | if (If->getElse() && |
2024 | !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts, |
2025 | Cxx1yLoc, Cxx2aLoc, Kind)) |
2026 | return false; |
2027 | return true; |
2028 | } |
2029 | |
2030 | case Stmt::WhileStmtClass: |
2031 | case Stmt::DoStmtClass: |
2032 | case Stmt::ForStmtClass: |
2033 | case Stmt::CXXForRangeStmtClass: |
2034 | case Stmt::ContinueStmtClass: |
2035 | // C++1y allows all of these. We don't allow them as extensions in C++11, |
2036 | // because they don't make sense without variable mutation. |
2037 | if (!SemaRef.getLangOpts().CPlusPlus14) |
2038 | break; |
2039 | if (!Cxx1yLoc.isValid()) |
2040 | Cxx1yLoc = S->getBeginLoc(); |
2041 | for (Stmt *SubStmt : S->children()) |
2042 | if (SubStmt && |
2043 | !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, |
2044 | Cxx1yLoc, Cxx2aLoc, Kind)) |
2045 | return false; |
2046 | return true; |
2047 | |
2048 | case Stmt::SwitchStmtClass: |
2049 | case Stmt::CaseStmtClass: |
2050 | case Stmt::DefaultStmtClass: |
2051 | case Stmt::BreakStmtClass: |
2052 | // C++1y allows switch-statements, and since they don't need variable |
2053 | // mutation, we can reasonably allow them in C++11 as an extension. |
2054 | if (!Cxx1yLoc.isValid()) |
2055 | Cxx1yLoc = S->getBeginLoc(); |
2056 | for (Stmt *SubStmt : S->children()) |
2057 | if (SubStmt && |
2058 | !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, |
2059 | Cxx1yLoc, Cxx2aLoc, Kind)) |
2060 | return false; |
2061 | return true; |
2062 | |
2063 | case Stmt::GCCAsmStmtClass: |
2064 | case Stmt::MSAsmStmtClass: |
2065 | // C++2a allows inline assembly statements. |
2066 | case Stmt::CXXTryStmtClass: |
2067 | if (Cxx2aLoc.isInvalid()) |
2068 | Cxx2aLoc = S->getBeginLoc(); |
2069 | for (Stmt *SubStmt : S->children()) { |
2070 | if (SubStmt && |
2071 | !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, |
2072 | Cxx1yLoc, Cxx2aLoc, Kind)) |
2073 | return false; |
2074 | } |
2075 | return true; |
2076 | |
2077 | case Stmt::CXXCatchStmtClass: |
2078 | // Do not bother checking the language mode (already covered by the |
2079 | // try block check). |
2080 | if (!CheckConstexprFunctionStmt(SemaRef, Dcl, |
2081 | cast<CXXCatchStmt>(S)->getHandlerBlock(), |
2082 | ReturnStmts, Cxx1yLoc, Cxx2aLoc, Kind)) |
2083 | return false; |
2084 | return true; |
2085 | |
2086 | default: |
2087 | if (!isa<Expr>(S)) |
2088 | break; |
2089 | |
2090 | // C++1y allows expression-statements. |
2091 | if (!Cxx1yLoc.isValid()) |
2092 | Cxx1yLoc = S->getBeginLoc(); |
2093 | return true; |
2094 | } |
2095 | |
2096 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
2097 | SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) |
2098 | << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); |
2099 | } |
2100 | return false; |
2101 | } |
2102 | |
2103 | /// Check the body for the given constexpr function declaration only contains |
2104 | /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4. |
2105 | /// |
2106 | /// \return true if the body is OK, false if we have found or diagnosed a |
2107 | /// problem. |
2108 | static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, |
2109 | Stmt *Body, |
2110 | Sema::CheckConstexprKind Kind) { |
2111 | SmallVector<SourceLocation, 4> ReturnStmts; |
2112 | |
2113 | if (isa<CXXTryStmt>(Body)) { |
2114 | // C++11 [dcl.constexpr]p3: |
2115 | // The definition of a constexpr function shall satisfy the following |
2116 | // constraints: [...] |
2117 | // - its function-body shall be = delete, = default, or a |
2118 | // compound-statement |
2119 | // |
2120 | // C++11 [dcl.constexpr]p4: |
2121 | // In the definition of a constexpr constructor, [...] |
2122 | // - its function-body shall not be a function-try-block; |
2123 | // |
2124 | // This restriction is lifted in C++2a, as long as inner statements also |
2125 | // apply the general constexpr rules. |
2126 | switch (Kind) { |
2127 | case Sema::CheckConstexprKind::CheckValid: |
2128 | if (!SemaRef.getLangOpts().CPlusPlus2a) |
2129 | return false; |
2130 | break; |
2131 | |
2132 | case Sema::CheckConstexprKind::Diagnose: |
2133 | SemaRef.Diag(Body->getBeginLoc(), |
2134 | !SemaRef.getLangOpts().CPlusPlus2a |
2135 | ? diag::ext_constexpr_function_try_block_cxx2a |
2136 | : diag::warn_cxx17_compat_constexpr_function_try_block) |
2137 | << isa<CXXConstructorDecl>(Dcl); |
2138 | break; |
2139 | } |
2140 | } |
2141 | |
2142 | // - its function-body shall be [...] a compound-statement that contains only |
2143 | // [... list of cases ...] |
2144 | // |
2145 | // Note that walking the children here is enough to properly check for |
2146 | // CompoundStmt and CXXTryStmt body. |
2147 | SourceLocation Cxx1yLoc, Cxx2aLoc; |
2148 | for (Stmt *SubStmt : Body->children()) { |
2149 | if (SubStmt && |
2150 | !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, |
2151 | Cxx1yLoc, Cxx2aLoc, Kind)) |
2152 | return false; |
2153 | } |
2154 | |
2155 | if (Kind == Sema::CheckConstexprKind::CheckValid) { |
2156 | // If this is only valid as an extension, report that we don't satisfy the |
2157 | // constraints of the current language. |
2158 | if ((Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus2a) || |
2159 | (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17)) |
2160 | return false; |
2161 | } else if (Cxx2aLoc.isValid()) { |
2162 | SemaRef.Diag(Cxx2aLoc, |
2163 | SemaRef.getLangOpts().CPlusPlus2a |
2164 | ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt |
2165 | : diag::ext_constexpr_body_invalid_stmt_cxx2a) |
2166 | << isa<CXXConstructorDecl>(Dcl); |
2167 | } else if (Cxx1yLoc.isValid()) { |
2168 | SemaRef.Diag(Cxx1yLoc, |
2169 | SemaRef.getLangOpts().CPlusPlus14 |
2170 | ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt |
2171 | : diag::ext_constexpr_body_invalid_stmt) |
2172 | << isa<CXXConstructorDecl>(Dcl); |
2173 | } |
2174 | |
2175 | if (const CXXConstructorDecl *Constructor |
2176 | = dyn_cast<CXXConstructorDecl>(Dcl)) { |
2177 | const CXXRecordDecl *RD = Constructor->getParent(); |
2178 | // DR1359: |
2179 | // - every non-variant non-static data member and base class sub-object |
2180 | // shall be initialized; |
2181 | // DR1460: |
2182 | // - if the class is a union having variant members, exactly one of them |
2183 | // shall be initialized; |
2184 | if (RD->isUnion()) { |
2185 | if (Constructor->getNumCtorInitializers() == 0 && |
2186 | RD->hasVariantMembers()) { |
2187 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
2188 | SemaRef.Diag( |
2189 | Dcl->getLocation(), |
2190 | SemaRef.getLangOpts().CPlusPlus2a |
2191 | ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init |
2192 | : diag::ext_constexpr_union_ctor_no_init); |
2193 | } else if (!SemaRef.getLangOpts().CPlusPlus2a) { |
2194 | return false; |
2195 | } |
2196 | } |
2197 | } else if (!Constructor->isDependentContext() && |
2198 | !Constructor->isDelegatingConstructor()) { |
2199 | assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases")((RD->getNumVBases() == 0 && "constexpr ctor with virtual bases" ) ? static_cast<void> (0) : __assert_fail ("RD->getNumVBases() == 0 && \"constexpr ctor with virtual bases\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 2199, __PRETTY_FUNCTION__)); |
2200 | |
2201 | // Skip detailed checking if we have enough initializers, and we would |
2202 | // allow at most one initializer per member. |
2203 | bool AnyAnonStructUnionMembers = false; |
2204 | unsigned Fields = 0; |
2205 | for (CXXRecordDecl::field_iterator I = RD->field_begin(), |
2206 | E = RD->field_end(); I != E; ++I, ++Fields) { |
2207 | if (I->isAnonymousStructOrUnion()) { |
2208 | AnyAnonStructUnionMembers = true; |
2209 | break; |
2210 | } |
2211 | } |
2212 | // DR1460: |
2213 | // - if the class is a union-like class, but is not a union, for each of |
2214 | // its anonymous union members having variant members, exactly one of |
2215 | // them shall be initialized; |
2216 | if (AnyAnonStructUnionMembers || |
2217 | Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) { |
2218 | // Check initialization of non-static data members. Base classes are |
2219 | // always initialized so do not need to be checked. Dependent bases |
2220 | // might not have initializers in the member initializer list. |
2221 | llvm::SmallSet<Decl*, 16> Inits; |
2222 | for (const auto *I: Constructor->inits()) { |
2223 | if (FieldDecl *FD = I->getMember()) |
2224 | Inits.insert(FD); |
2225 | else if (IndirectFieldDecl *ID = I->getIndirectMember()) |
2226 | Inits.insert(ID->chain_begin(), ID->chain_end()); |
2227 | } |
2228 | |
2229 | bool Diagnosed = false; |
2230 | for (auto *I : RD->fields()) |
2231 | if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, |
2232 | Kind)) |
2233 | return false; |
2234 | } |
2235 | } |
2236 | } else { |
2237 | if (ReturnStmts.empty()) { |
2238 | // C++1y doesn't require constexpr functions to contain a 'return' |
2239 | // statement. We still do, unless the return type might be void, because |
2240 | // otherwise if there's no return statement, the function cannot |
2241 | // be used in a core constant expression. |
2242 | bool OK = SemaRef.getLangOpts().CPlusPlus14 && |
2243 | (Dcl->getReturnType()->isVoidType() || |
2244 | Dcl->getReturnType()->isDependentType()); |
2245 | switch (Kind) { |
2246 | case Sema::CheckConstexprKind::Diagnose: |
2247 | SemaRef.Diag(Dcl->getLocation(), |
2248 | OK ? diag::warn_cxx11_compat_constexpr_body_no_return |
2249 | : diag::err_constexpr_body_no_return) |
2250 | << Dcl->isConsteval(); |
2251 | if (!OK) |
2252 | return false; |
2253 | break; |
2254 | |
2255 | case Sema::CheckConstexprKind::CheckValid: |
2256 | // The formal requirements don't include this rule in C++14, even |
2257 | // though the "must be able to produce a constant expression" rules |
2258 | // still imply it in some cases. |
2259 | if (!SemaRef.getLangOpts().CPlusPlus14) |
2260 | return false; |
2261 | break; |
2262 | } |
2263 | } else if (ReturnStmts.size() > 1) { |
2264 | switch (Kind) { |
2265 | case Sema::CheckConstexprKind::Diagnose: |
2266 | SemaRef.Diag( |
2267 | ReturnStmts.back(), |
2268 | SemaRef.getLangOpts().CPlusPlus14 |
2269 | ? diag::warn_cxx11_compat_constexpr_body_multiple_return |
2270 | : diag::ext_constexpr_body_multiple_return); |
2271 | for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I) |
2272 | SemaRef.Diag(ReturnStmts[I], |
2273 | diag::note_constexpr_body_previous_return); |
2274 | break; |
2275 | |
2276 | case Sema::CheckConstexprKind::CheckValid: |
2277 | if (!SemaRef.getLangOpts().CPlusPlus14) |
2278 | return false; |
2279 | break; |
2280 | } |
2281 | } |
2282 | } |
2283 | |
2284 | // C++11 [dcl.constexpr]p5: |
2285 | // if no function argument values exist such that the function invocation |
2286 | // substitution would produce a constant expression, the program is |
2287 | // ill-formed; no diagnostic required. |
2288 | // C++11 [dcl.constexpr]p3: |
2289 | // - every constructor call and implicit conversion used in initializing the |
2290 | // return value shall be one of those allowed in a constant expression. |
2291 | // C++11 [dcl.constexpr]p4: |
2292 | // - every constructor involved in initializing non-static data members and |
2293 | // base class sub-objects shall be a constexpr constructor. |
2294 | // |
2295 | // Note that this rule is distinct from the "requirements for a constexpr |
2296 | // function", so is not checked in CheckValid mode. |
2297 | SmallVector<PartialDiagnosticAt, 8> Diags; |
2298 | if (Kind == Sema::CheckConstexprKind::Diagnose && |
2299 | !Expr::isPotentialConstantExpr(Dcl, Diags)) { |
2300 | SemaRef.Diag(Dcl->getLocation(), |
2301 | diag::ext_constexpr_function_never_constant_expr) |
2302 | << isa<CXXConstructorDecl>(Dcl); |
2303 | for (size_t I = 0, N = Diags.size(); I != N; ++I) |
2304 | SemaRef.Diag(Diags[I].first, Diags[I].second); |
2305 | // Don't return false here: we allow this for compatibility in |
2306 | // system headers. |
2307 | } |
2308 | |
2309 | return true; |
2310 | } |
2311 | |
2312 | /// Get the class that is directly named by the current context. This is the |
2313 | /// class for which an unqualified-id in this scope could name a constructor |
2314 | /// or destructor. |
2315 | /// |
2316 | /// If the scope specifier denotes a class, this will be that class. |
2317 | /// If the scope specifier is empty, this will be the class whose |
2318 | /// member-specification we are currently within. Otherwise, there |
2319 | /// is no such class. |
2320 | CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) { |
2321 | assert(getLangOpts().CPlusPlus && "No class names in C!")((getLangOpts().CPlusPlus && "No class names in C!") ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 2321, __PRETTY_FUNCTION__)); |
2322 | |
2323 | if (SS && SS->isInvalid()) |
2324 | return nullptr; |
2325 | |
2326 | if (SS && SS->isNotEmpty()) { |
2327 | DeclContext *DC = computeDeclContext(*SS, true); |
2328 | return dyn_cast_or_null<CXXRecordDecl>(DC); |
2329 | } |
2330 | |
2331 | return dyn_cast_or_null<CXXRecordDecl>(CurContext); |
2332 | } |
2333 | |
2334 | /// isCurrentClassName - Determine whether the identifier II is the |
2335 | /// name of the class type currently being defined. In the case of |
2336 | /// nested classes, this will only return true if II is the name of |
2337 | /// the innermost class. |
2338 | bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S, |
2339 | const CXXScopeSpec *SS) { |
2340 | CXXRecordDecl *CurDecl = getCurrentClass(S, SS); |
2341 | return CurDecl && &II == CurDecl->getIdentifier(); |
2342 | } |
2343 | |
2344 | /// Determine whether the identifier II is a typo for the name of |
2345 | /// the class type currently being defined. If so, update it to the identifier |
2346 | /// that should have been used. |
2347 | bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) { |
2348 | assert(getLangOpts().CPlusPlus && "No class names in C!")((getLangOpts().CPlusPlus && "No class names in C!") ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 2348, __PRETTY_FUNCTION__)); |
2349 | |
2350 | if (!getLangOpts().SpellChecking) |
2351 | return false; |
2352 | |
2353 | CXXRecordDecl *CurDecl; |
2354 | if (SS && SS->isSet() && !SS->isInvalid()) { |
2355 | DeclContext *DC = computeDeclContext(*SS, true); |
2356 | CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC); |
2357 | } else |
2358 | CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext); |
2359 | |
2360 | if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() && |
2361 | 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName()) |
2362 | < II->getLength()) { |
2363 | II = CurDecl->getIdentifier(); |
2364 | return true; |
2365 | } |
2366 | |
2367 | return false; |
2368 | } |
2369 | |
2370 | /// Determine whether the given class is a base class of the given |
2371 | /// class, including looking at dependent bases. |
2372 | static bool findCircularInheritance(const CXXRecordDecl *Class, |
2373 | const CXXRecordDecl *Current) { |
2374 | SmallVector<const CXXRecordDecl*, 8> Queue; |
2375 | |
2376 | Class = Class->getCanonicalDecl(); |
2377 | while (true) { |
2378 | for (const auto &I : Current->bases()) { |
2379 | CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); |
2380 | if (!Base) |
2381 | continue; |
2382 | |
2383 | Base = Base->getDefinition(); |
2384 | if (!Base) |
2385 | continue; |
2386 | |
2387 | if (Base->getCanonicalDecl() == Class) |
2388 | return true; |
2389 | |
2390 | Queue.push_back(Base); |
2391 | } |
2392 | |
2393 | if (Queue.empty()) |
2394 | return false; |
2395 | |
2396 | Current = Queue.pop_back_val(); |
2397 | } |
2398 | |
2399 | return false; |
2400 | } |
2401 | |
2402 | /// Check the validity of a C++ base class specifier. |
2403 | /// |
2404 | /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics |
2405 | /// and returns NULL otherwise. |
2406 | CXXBaseSpecifier * |
2407 | Sema::CheckBaseSpecifier(CXXRecordDecl *Class, |
2408 | SourceRange SpecifierRange, |
2409 | bool Virtual, AccessSpecifier Access, |
2410 | TypeSourceInfo *TInfo, |
2411 | SourceLocation EllipsisLoc) { |
2412 | QualType BaseType = TInfo->getType(); |
2413 | |
2414 | // C++ [class.union]p1: |
2415 | // A union shall not have base classes. |
2416 | if (Class->isUnion()) { |
2417 | Diag(Class->getLocation(), diag::err_base_clause_on_union) |
2418 | << SpecifierRange; |
2419 | return nullptr; |
2420 | } |
2421 | |
2422 | if (EllipsisLoc.isValid() && |
2423 | !TInfo->getType()->containsUnexpandedParameterPack()) { |
2424 | Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) |
2425 | << TInfo->getTypeLoc().getSourceRange(); |
2426 | EllipsisLoc = SourceLocation(); |
2427 | } |
2428 | |
2429 | SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc(); |
2430 | |
2431 | if (BaseType->isDependentType()) { |
2432 | // Make sure that we don't have circular inheritance among our dependent |
2433 | // bases. For non-dependent bases, the check for completeness below handles |
2434 | // this. |
2435 | if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) { |
2436 | if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() || |
2437 | ((BaseDecl = BaseDecl->getDefinition()) && |
2438 | findCircularInheritance(Class, BaseDecl))) { |
2439 | Diag(BaseLoc, diag::err_circular_inheritance) |
2440 | << BaseType << Context.getTypeDeclType(Class); |
2441 | |
2442 | if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl()) |
2443 | Diag(BaseDecl->getLocation(), diag::note_previous_decl) |
2444 | << BaseType; |
2445 | |
2446 | return nullptr; |
2447 | } |
2448 | } |
2449 | |
2450 | return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, |
2451 | Class->getTagKind() == TTK_Class, |
2452 | Access, TInfo, EllipsisLoc); |
2453 | } |
2454 | |
2455 | // Base specifiers must be record types. |
2456 | if (!BaseType->isRecordType()) { |
2457 | Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; |
2458 | return nullptr; |
2459 | } |
2460 | |
2461 | // C++ [class.union]p1: |
2462 | // A union shall not be used as a base class. |
2463 | if (BaseType->isUnionType()) { |
2464 | Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; |
2465 | return nullptr; |
2466 | } |
2467 | |
2468 | // For the MS ABI, propagate DLL attributes to base class templates. |
2469 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { |
2470 | if (Attr *ClassAttr = getDLLAttr(Class)) { |
2471 | if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>( |
2472 | BaseType->getAsCXXRecordDecl())) { |
2473 | propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate, |
2474 | BaseLoc); |
2475 | } |
2476 | } |
2477 | } |
2478 | |
2479 | // C++ [class.derived]p2: |
2480 | // The class-name in a base-specifier shall not be an incompletely |
2481 | // defined class. |
2482 | if (RequireCompleteType(BaseLoc, BaseType, |
2483 | diag::err_incomplete_base_class, SpecifierRange)) { |
2484 | Class->setInvalidDecl(); |
2485 | return nullptr; |
2486 | } |
2487 | |
2488 | // If the base class is polymorphic or isn't empty, the new one is/isn't, too. |
2489 | RecordDecl *BaseDecl = BaseType->castAs<RecordType>()->getDecl(); |
2490 | assert(BaseDecl && "Record type has no declaration")((BaseDecl && "Record type has no declaration") ? static_cast <void> (0) : __assert_fail ("BaseDecl && \"Record type has no declaration\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 2490, __PRETTY_FUNCTION__)); |
2491 | BaseDecl = BaseDecl->getDefinition(); |
2492 | assert(BaseDecl && "Base type is not incomplete, but has no definition")((BaseDecl && "Base type is not incomplete, but has no definition" ) ? static_cast<void> (0) : __assert_fail ("BaseDecl && \"Base type is not incomplete, but has no definition\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 2492, __PRETTY_FUNCTION__)); |
2493 | CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl); |
2494 | assert(CXXBaseDecl && "Base type is not a C++ type")((CXXBaseDecl && "Base type is not a C++ type") ? static_cast <void> (0) : __assert_fail ("CXXBaseDecl && \"Base type is not a C++ type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 2494, __PRETTY_FUNCTION__)); |
2495 | |
2496 | // Microsoft docs say: |
2497 | // "If a base-class has a code_seg attribute, derived classes must have the |
2498 | // same attribute." |
2499 | const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>(); |
2500 | const auto *DerivedCSA = Class->getAttr<CodeSegAttr>(); |
2501 | if ((DerivedCSA || BaseCSA) && |
2502 | (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) { |
2503 | Diag(Class->getLocation(), diag::err_mismatched_code_seg_base); |
2504 | Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here) |
2505 | << CXXBaseDecl; |
2506 | return nullptr; |
2507 | } |
2508 | |
2509 | // A class which contains a flexible array member is not suitable for use as a |
2510 | // base class: |
2511 | // - If the layout determines that a base comes before another base, |
2512 | // the flexible array member would index into the subsequent base. |
2513 | // - If the layout determines that base comes before the derived class, |
2514 | // the flexible array member would index into the derived class. |
2515 | if (CXXBaseDecl->hasFlexibleArrayMember()) { |
2516 | Diag(BaseLoc, diag::err_base_class_has_flexible_array_member) |
2517 | << CXXBaseDecl->getDeclName(); |
2518 | return nullptr; |
2519 | } |
2520 | |
2521 | // C++ [class]p3: |
2522 | // If a class is marked final and it appears as a base-type-specifier in |
2523 | // base-clause, the program is ill-formed. |
2524 | if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) { |
2525 | Diag(BaseLoc, diag::err_class_marked_final_used_as_base) |
2526 | << CXXBaseDecl->getDeclName() |
2527 | << FA->isSpelledAsSealed(); |
2528 | Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at) |
2529 | << CXXBaseDecl->getDeclName() << FA->getRange(); |
2530 | return nullptr; |
2531 | } |
2532 | |
2533 | if (BaseDecl->isInvalidDecl()) |
2534 | Class->setInvalidDecl(); |
2535 | |
2536 | // Create the base specifier. |
2537 | return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, |
2538 | Class->getTagKind() == TTK_Class, |
2539 | Access, TInfo, EllipsisLoc); |
2540 | } |
2541 | |
2542 | /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is |
2543 | /// one entry in the base class list of a class specifier, for |
2544 | /// example: |
2545 | /// class foo : public bar, virtual private baz { |
2546 | /// 'public bar' and 'virtual private baz' are each base-specifiers. |
2547 | BaseResult |
2548 | Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, |
2549 | ParsedAttributes &Attributes, |
2550 | bool Virtual, AccessSpecifier Access, |
2551 | ParsedType basetype, SourceLocation BaseLoc, |
2552 | SourceLocation EllipsisLoc) { |
2553 | if (!classdecl) |
2554 | return true; |
2555 | |
2556 | AdjustDeclIfTemplate(classdecl); |
2557 | CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl); |
2558 | if (!Class) |
2559 | return true; |
2560 | |
2561 | // We haven't yet attached the base specifiers. |
2562 | Class->setIsParsingBaseSpecifiers(); |
2563 | |
2564 | // We do not support any C++11 attributes on base-specifiers yet. |
2565 | // Diagnose any attributes we see. |
2566 | for (const ParsedAttr &AL : Attributes) { |
2567 | if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) |
2568 | continue; |
2569 | Diag(AL.getLoc(), AL.getKind() == ParsedAttr::UnknownAttribute |
2570 | ? (unsigned)diag::warn_unknown_attribute_ignored |
2571 | : (unsigned)diag::err_base_specifier_attribute) |
2572 | << AL; |
2573 | } |
2574 | |
2575 | TypeSourceInfo *TInfo = nullptr; |
2576 | GetTypeFromParser(basetype, &TInfo); |
2577 | |
2578 | if (EllipsisLoc.isInvalid() && |
2579 | DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo, |
2580 | UPPC_BaseType)) |
2581 | return true; |
2582 | |
2583 | if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, |
2584 | Virtual, Access, TInfo, |
2585 | EllipsisLoc)) |
2586 | return BaseSpec; |
2587 | else |
2588 | Class->setInvalidDecl(); |
2589 | |
2590 | return true; |
2591 | } |
2592 | |
2593 | /// Use small set to collect indirect bases. As this is only used |
2594 | /// locally, there's no need to abstract the small size parameter. |
2595 | typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet; |
2596 | |
2597 | /// Recursively add the bases of Type. Don't add Type itself. |
2598 | static void |
2599 | NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set, |
2600 | const QualType &Type) |
2601 | { |
2602 | // Even though the incoming type is a base, it might not be |
2603 | // a class -- it could be a template parm, for instance. |
2604 | if (auto Rec = Type->getAs<RecordType>()) { |
2605 | auto Decl = Rec->getAsCXXRecordDecl(); |
2606 | |
2607 | // Iterate over its bases. |
2608 | for (const auto &BaseSpec : Decl->bases()) { |
2609 | QualType Base = Context.getCanonicalType(BaseSpec.getType()) |
2610 | .getUnqualifiedType(); |
2611 | if (Set.insert(Base).second) |
2612 | // If we've not already seen it, recurse. |
2613 | NoteIndirectBases(Context, Set, Base); |
2614 | } |
2615 | } |
2616 | } |
2617 | |
2618 | /// Performs the actual work of attaching the given base class |
2619 | /// specifiers to a C++ class. |
2620 | bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, |
2621 | MutableArrayRef<CXXBaseSpecifier *> Bases) { |
2622 | if (Bases.empty()) |
2623 | return false; |
2624 | |
2625 | // Used to keep track of which base types we have already seen, so |
2626 | // that we can properly diagnose redundant direct base types. Note |
2627 | // that the key is always the unqualified canonical type of the base |
2628 | // class. |
2629 | std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; |
2630 | |
2631 | // Used to track indirect bases so we can see if a direct base is |
2632 | // ambiguous. |
2633 | IndirectBaseSet IndirectBaseTypes; |
2634 | |
2635 | // Copy non-redundant base specifiers into permanent storage. |
2636 | unsigned NumGoodBases = 0; |
2637 | bool Invalid = false; |
2638 | for (unsigned idx = 0; idx < Bases.size(); ++idx) { |
2639 | QualType NewBaseType |
2640 | = Context.getCanonicalType(Bases[idx]->getType()); |
2641 | NewBaseType = NewBaseType.getLocalUnqualifiedType(); |
2642 | |
2643 | CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType]; |
2644 | if (KnownBase) { |
2645 | // C++ [class.mi]p3: |
2646 | // A class shall not be specified as a direct base class of a |
2647 | // derived class more than once. |
2648 | Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class) |
2649 | << KnownBase->getType() << Bases[idx]->getSourceRange(); |
2650 | |
2651 | // Delete the duplicate base class specifier; we're going to |
2652 | // overwrite its pointer later. |
2653 | Context.Deallocate(Bases[idx]); |
2654 | |
2655 | Invalid = true; |
2656 | } else { |
2657 | // Okay, add this new base class. |
2658 | KnownBase = Bases[idx]; |
2659 | Bases[NumGoodBases++] = Bases[idx]; |
2660 | |
2661 | // Note this base's direct & indirect bases, if there could be ambiguity. |
2662 | if (Bases.size() > 1) |
2663 | NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType); |
2664 | |
2665 | if (const RecordType *Record = NewBaseType->getAs<RecordType>()) { |
2666 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); |
2667 | if (Class->isInterface() && |
2668 | (!RD->isInterfaceLike() || |
2669 | KnownBase->getAccessSpecifier() != AS_public)) { |
2670 | // The Microsoft extension __interface does not permit bases that |
2671 | // are not themselves public interfaces. |
2672 | Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface) |
2673 | << getRecordDiagFromTagKind(RD->getTagKind()) << RD |
2674 | << RD->getSourceRange(); |
2675 | Invalid = true; |
2676 | } |
2677 | if (RD->hasAttr<WeakAttr>()) |
2678 | Class->addAttr(WeakAttr::CreateImplicit(Context)); |
2679 | } |
2680 | } |
2681 | } |
2682 | |
2683 | // Attach the remaining base class specifiers to the derived class. |
2684 | Class->setBases(Bases.data(), NumGoodBases); |
2685 | |
2686 | // Check that the only base classes that are duplicate are virtual. |
2687 | for (unsigned idx = 0; idx < NumGoodBases; ++idx) { |
2688 | // Check whether this direct base is inaccessible due to ambiguity. |
2689 | QualType BaseType = Bases[idx]->getType(); |
2690 | |
2691 | // Skip all dependent types in templates being used as base specifiers. |
2692 | // Checks below assume that the base specifier is a CXXRecord. |
2693 | if (BaseType->isDependentType()) |
2694 | continue; |
2695 | |
2696 | CanQualType CanonicalBase = Context.getCanonicalType(BaseType) |
2697 | .getUnqualifiedType(); |
2698 | |
2699 | if (IndirectBaseTypes.count(CanonicalBase)) { |
2700 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
2701 | /*DetectVirtual=*/true); |
2702 | bool found |
2703 | = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths); |
2704 | assert(found)((found) ? static_cast<void> (0) : __assert_fail ("found" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 2704, __PRETTY_FUNCTION__)); |
2705 | (void)found; |
2706 | |
2707 | if (Paths.isAmbiguous(CanonicalBase)) |
2708 | Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class) |
2709 | << BaseType << getAmbiguousPathsDisplayString(Paths) |
2710 | << Bases[idx]->getSourceRange(); |
2711 | else |
2712 | assert(Bases[idx]->isVirtual())((Bases[idx]->isVirtual()) ? static_cast<void> (0) : __assert_fail ("Bases[idx]->isVirtual()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 2712, __PRETTY_FUNCTION__)); |
2713 | } |
2714 | |
2715 | // Delete the base class specifier, since its data has been copied |
2716 | // into the CXXRecordDecl. |
2717 | Context.Deallocate(Bases[idx]); |
2718 | } |
2719 | |
2720 | return Invalid; |
2721 | } |
2722 | |
2723 | /// ActOnBaseSpecifiers - Attach the given base specifiers to the |
2724 | /// class, after checking whether there are any duplicate base |
2725 | /// classes. |
2726 | void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, |
2727 | MutableArrayRef<CXXBaseSpecifier *> Bases) { |
2728 | if (!ClassDecl || Bases.empty()) |
2729 | return; |
2730 | |
2731 | AdjustDeclIfTemplate(ClassDecl); |
2732 | AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases); |
2733 | } |
2734 | |
2735 | /// Determine whether the type \p Derived is a C++ class that is |
2736 | /// derived from the type \p Base. |
2737 | bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) { |
2738 | if (!getLangOpts().CPlusPlus) |
2739 | return false; |
2740 | |
2741 | CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); |
2742 | if (!DerivedRD) |
2743 | return false; |
2744 | |
2745 | CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); |
2746 | if (!BaseRD) |
2747 | return false; |
2748 | |
2749 | // If either the base or the derived type is invalid, don't try to |
2750 | // check whether one is derived from the other. |
2751 | if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl()) |
2752 | return false; |
2753 | |
2754 | // FIXME: In a modules build, do we need the entire path to be visible for us |
2755 | // to be able to use the inheritance relationship? |
2756 | if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) |
2757 | return false; |
2758 | |
2759 | return DerivedRD->isDerivedFrom(BaseRD); |
2760 | } |
2761 | |
2762 | /// Determine whether the type \p Derived is a C++ class that is |
2763 | /// derived from the type \p Base. |
2764 | bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base, |
2765 | CXXBasePaths &Paths) { |
2766 | if (!getLangOpts().CPlusPlus) |
2767 | return false; |
2768 | |
2769 | CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); |
2770 | if (!DerivedRD) |
2771 | return false; |
2772 | |
2773 | CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); |
2774 | if (!BaseRD) |
2775 | return false; |
2776 | |
2777 | if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) |
2778 | return false; |
2779 | |
2780 | return DerivedRD->isDerivedFrom(BaseRD, Paths); |
2781 | } |
2782 | |
2783 | static void BuildBasePathArray(const CXXBasePath &Path, |
2784 | CXXCastPath &BasePathArray) { |
2785 | // We first go backward and check if we have a virtual base. |
2786 | // FIXME: It would be better if CXXBasePath had the base specifier for |
2787 | // the nearest virtual base. |
2788 | unsigned Start = 0; |
2789 | for (unsigned I = Path.size(); I != 0; --I) { |
2790 | if (Path[I - 1].Base->isVirtual()) { |
2791 | Start = I - 1; |
2792 | break; |
2793 | } |
2794 | } |
2795 | |
2796 | // Now add all bases. |
2797 | for (unsigned I = Start, E = Path.size(); I != E; ++I) |
2798 | BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base)); |
2799 | } |
2800 | |
2801 | |
2802 | void Sema::BuildBasePathArray(const CXXBasePaths &Paths, |
2803 | CXXCastPath &BasePathArray) { |
2804 | assert(BasePathArray.empty() && "Base path array must be empty!")((BasePathArray.empty() && "Base path array must be empty!" ) ? static_cast<void> (0) : __assert_fail ("BasePathArray.empty() && \"Base path array must be empty!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 2804, __PRETTY_FUNCTION__)); |
2805 | assert(Paths.isRecordingPaths() && "Must record paths!")((Paths.isRecordingPaths() && "Must record paths!") ? static_cast<void> (0) : __assert_fail ("Paths.isRecordingPaths() && \"Must record paths!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 2805, __PRETTY_FUNCTION__)); |
2806 | return ::BuildBasePathArray(Paths.front(), BasePathArray); |
2807 | } |
2808 | /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base |
2809 | /// conversion (where Derived and Base are class types) is |
2810 | /// well-formed, meaning that the conversion is unambiguous (and |
2811 | /// that all of the base classes are accessible). Returns true |
2812 | /// and emits a diagnostic if the code is ill-formed, returns false |
2813 | /// otherwise. Loc is the location where this routine should point to |
2814 | /// if there is an error, and Range is the source range to highlight |
2815 | /// if there is an error. |
2816 | /// |
2817 | /// If either InaccessibleBaseID or AmbigiousBaseConvID are 0, then the |
2818 | /// diagnostic for the respective type of error will be suppressed, but the |
2819 | /// check for ill-formed code will still be performed. |
2820 | bool |
2821 | Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, |
2822 | unsigned InaccessibleBaseID, |
2823 | unsigned AmbigiousBaseConvID, |
2824 | SourceLocation Loc, SourceRange Range, |
2825 | DeclarationName Name, |
2826 | CXXCastPath *BasePath, |
2827 | bool IgnoreAccess) { |
2828 | // First, determine whether the path from Derived to Base is |
2829 | // ambiguous. This is slightly more expensive than checking whether |
2830 | // the Derived to Base conversion exists, because here we need to |
2831 | // explore multiple paths to determine if there is an ambiguity. |
2832 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
2833 | /*DetectVirtual=*/false); |
2834 | bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths); |
2835 | if (!DerivationOkay) |
2836 | return true; |
2837 | |
2838 | const CXXBasePath *Path = nullptr; |
2839 | if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) |
2840 | Path = &Paths.front(); |
2841 | |
2842 | // For MSVC compatibility, check if Derived directly inherits from Base. Clang |
2843 | // warns about this hierarchy under -Winaccessible-base, but MSVC allows the |
2844 | // user to access such bases. |
2845 | if (!Path && getLangOpts().MSVCCompat) { |
2846 | for (const CXXBasePath &PossiblePath : Paths) { |
2847 | if (PossiblePath.size() == 1) { |
2848 | Path = &PossiblePath; |
2849 | if (AmbigiousBaseConvID) |
2850 | Diag(Loc, diag::ext_ms_ambiguous_direct_base) |
2851 | << Base << Derived << Range; |
2852 | break; |
2853 | } |
2854 | } |
2855 | } |
2856 | |
2857 | if (Path) { |
2858 | if (!IgnoreAccess) { |
2859 | // Check that the base class can be accessed. |
2860 | switch ( |
2861 | CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) { |
2862 | case AR_inaccessible: |
2863 | return true; |
2864 | case AR_accessible: |
2865 | case AR_dependent: |
2866 | case AR_delayed: |
2867 | break; |
2868 | } |
2869 | } |
2870 | |
2871 | // Build a base path if necessary. |
2872 | if (BasePath) |
2873 | ::BuildBasePathArray(*Path, *BasePath); |
2874 | return false; |
2875 | } |
2876 | |
2877 | if (AmbigiousBaseConvID) { |
2878 | // We know that the derived-to-base conversion is ambiguous, and |
2879 | // we're going to produce a diagnostic. Perform the derived-to-base |
2880 | // search just one more time to compute all of the possible paths so |
2881 | // that we can print them out. This is more expensive than any of |
2882 | // the previous derived-to-base checks we've done, but at this point |
2883 | // performance isn't as much of an issue. |
2884 | Paths.clear(); |
2885 | Paths.setRecordingPaths(true); |
2886 | bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths); |
2887 | assert(StillOkay && "Can only be used with a derived-to-base conversion")((StillOkay && "Can only be used with a derived-to-base conversion" ) ? static_cast<void> (0) : __assert_fail ("StillOkay && \"Can only be used with a derived-to-base conversion\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 2887, __PRETTY_FUNCTION__)); |
2888 | (void)StillOkay; |
2889 | |
2890 | // Build up a textual representation of the ambiguous paths, e.g., |
2891 | // D -> B -> A, that will be used to illustrate the ambiguous |
2892 | // conversions in the diagnostic. We only print one of the paths |
2893 | // to each base class subobject. |
2894 | std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); |
2895 | |
2896 | Diag(Loc, AmbigiousBaseConvID) |
2897 | << Derived << Base << PathDisplayStr << Range << Name; |
2898 | } |
2899 | return true; |
2900 | } |
2901 | |
2902 | bool |
2903 | Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, |
2904 | SourceLocation Loc, SourceRange Range, |
2905 | CXXCastPath *BasePath, |
2906 | bool IgnoreAccess) { |
2907 | return CheckDerivedToBaseConversion( |
2908 | Derived, Base, diag::err_upcast_to_inaccessible_base, |
2909 | diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(), |
2910 | BasePath, IgnoreAccess); |
2911 | } |
2912 | |
2913 | |
2914 | /// Builds a string representing ambiguous paths from a |
2915 | /// specific derived class to different subobjects of the same base |
2916 | /// class. |
2917 | /// |
2918 | /// This function builds a string that can be used in error messages |
2919 | /// to show the different paths that one can take through the |
2920 | /// inheritance hierarchy to go from the derived class to different |
2921 | /// subobjects of a base class. The result looks something like this: |
2922 | /// @code |
2923 | /// struct D -> struct B -> struct A |
2924 | /// struct D -> struct C -> struct A |
2925 | /// @endcode |
2926 | std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { |
2927 | std::string PathDisplayStr; |
2928 | std::set<unsigned> DisplayedPaths; |
2929 | for (CXXBasePaths::paths_iterator Path = Paths.begin(); |
2930 | Path != Paths.end(); ++Path) { |
2931 | if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { |
2932 | // We haven't displayed a path to this particular base |
2933 | // class subobject yet. |
2934 | PathDisplayStr += "\n "; |
2935 | PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); |
2936 | for (CXXBasePath::const_iterator Element = Path->begin(); |
2937 | Element != Path->end(); ++Element) |
2938 | PathDisplayStr += " -> " + Element->Base->getType().getAsString(); |
2939 | } |
2940 | } |
2941 | |
2942 | return PathDisplayStr; |
2943 | } |
2944 | |
2945 | //===----------------------------------------------------------------------===// |
2946 | // C++ class member Handling |
2947 | //===----------------------------------------------------------------------===// |
2948 | |
2949 | /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon. |
2950 | bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc, |
2951 | SourceLocation ColonLoc, |
2952 | const ParsedAttributesView &Attrs) { |
2953 | assert(Access != AS_none && "Invalid kind for syntactic access specifier!")((Access != AS_none && "Invalid kind for syntactic access specifier!" ) ? static_cast<void> (0) : __assert_fail ("Access != AS_none && \"Invalid kind for syntactic access specifier!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 2953, __PRETTY_FUNCTION__)); |
2954 | AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext, |
2955 | ASLoc, ColonLoc); |
2956 | CurContext->addHiddenDecl(ASDecl); |
2957 | return ProcessAccessDeclAttributeList(ASDecl, Attrs); |
2958 | } |
2959 | |
2960 | /// CheckOverrideControl - Check C++11 override control semantics. |
2961 | void Sema::CheckOverrideControl(NamedDecl *D) { |
2962 | if (D->isInvalidDecl()) |
2963 | return; |
2964 | |
2965 | // We only care about "override" and "final" declarations. |
2966 | if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>()) |
2967 | return; |
2968 | |
2969 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); |
2970 | |
2971 | // We can't check dependent instance methods. |
2972 | if (MD && MD->isInstance() && |
2973 | (MD->getParent()->hasAnyDependentBases() || |
2974 | MD->getType()->isDependentType())) |
2975 | return; |
2976 | |
2977 | if (MD && !MD->isVirtual()) { |
2978 | // If we have a non-virtual method, check if if hides a virtual method. |
2979 | // (In that case, it's most likely the method has the wrong type.) |
2980 | SmallVector<CXXMethodDecl *, 8> OverloadedMethods; |
2981 | FindHiddenVirtualMethods(MD, OverloadedMethods); |
2982 | |
2983 | if (!OverloadedMethods.empty()) { |
2984 | if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { |
2985 | Diag(OA->getLocation(), |
2986 | diag::override_keyword_hides_virtual_member_function) |
2987 | << "override" << (OverloadedMethods.size() > 1); |
2988 | } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) { |
2989 | Diag(FA->getLocation(), |
2990 | diag::override_keyword_hides_virtual_member_function) |
2991 | << (FA->isSpelledAsSealed() ? "sealed" : "final") |
2992 | << (OverloadedMethods.size() > 1); |
2993 | } |
2994 | NoteHiddenVirtualMethods(MD, OverloadedMethods); |
2995 | MD->setInvalidDecl(); |
2996 | return; |
2997 | } |
2998 | // Fall through into the general case diagnostic. |
2999 | // FIXME: We might want to attempt typo correction here. |
3000 | } |
3001 | |
3002 | if (!MD || !MD->isVirtual()) { |
3003 | if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { |
3004 | Diag(OA->getLocation(), |
3005 | diag::override_keyword_only_allowed_on_virtual_member_functions) |
3006 | << "override" << FixItHint::CreateRemoval(OA->getLocation()); |
3007 | D->dropAttr<OverrideAttr>(); |
3008 | } |
3009 | if (FinalAttr *FA = D->getAttr<FinalAttr>()) { |
3010 | Diag(FA->getLocation(), |
3011 | diag::override_keyword_only_allowed_on_virtual_member_functions) |
3012 | << (FA->isSpelledAsSealed() ? "sealed" : "final") |
3013 | << FixItHint::CreateRemoval(FA->getLocation()); |
3014 | D->dropAttr<FinalAttr>(); |
3015 | } |
3016 | return; |
3017 | } |
3018 | |
3019 | // C++11 [class.virtual]p5: |
3020 | // If a function is marked with the virt-specifier override and |
3021 | // does not override a member function of a base class, the program is |
3022 | // ill-formed. |
3023 | bool HasOverriddenMethods = MD->size_overridden_methods() != 0; |
3024 | if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) |
3025 | Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding) |
3026 | << MD->getDeclName(); |
3027 | } |
3028 | |
3029 | void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D) { |
3030 | if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>()) |
3031 | return; |
3032 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); |
3033 | if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>()) |
3034 | return; |
3035 | |
3036 | SourceLocation Loc = MD->getLocation(); |
3037 | SourceLocation SpellingLoc = Loc; |
3038 | if (getSourceManager().isMacroArgExpansion(Loc)) |
3039 | SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin(); |
3040 | SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc); |
3041 | if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc)) |
3042 | return; |
3043 | |
3044 | if (MD->size_overridden_methods() > 0) { |
3045 | unsigned DiagID = isa<CXXDestructorDecl>(MD) |
3046 | ? diag::warn_destructor_marked_not_override_overriding |
3047 | : diag::warn_function_marked_not_override_overriding; |
3048 | Diag(MD->getLocation(), DiagID) << MD->getDeclName(); |
3049 | const CXXMethodDecl *OMD = *MD->begin_overridden_methods(); |
3050 | Diag(OMD->getLocation(), diag::note_overridden_virtual_function); |
3051 | } |
3052 | } |
3053 | |
3054 | /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member |
3055 | /// function overrides a virtual member function marked 'final', according to |
3056 | /// C++11 [class.virtual]p4. |
3057 | bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New, |
3058 | const CXXMethodDecl *Old) { |
3059 | FinalAttr *FA = Old->getAttr<FinalAttr>(); |
3060 | if (!FA) |
3061 | return false; |
3062 | |
3063 | Diag(New->getLocation(), diag::err_final_function_overridden) |
3064 | << New->getDeclName() |
3065 | << FA->isSpelledAsSealed(); |
3066 | Diag(Old->getLocation(), diag::note_overridden_virtual_function); |
3067 | return true; |
3068 | } |
3069 | |
3070 | static bool InitializationHasSideEffects(const FieldDecl &FD) { |
3071 | const Type *T = FD.getType()->getBaseElementTypeUnsafe(); |
3072 | // FIXME: Destruction of ObjC lifetime types has side-effects. |
3073 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
3074 | return !RD->isCompleteDefinition() || |
3075 | !RD->hasTrivialDefaultConstructor() || |
3076 | !RD->hasTrivialDestructor(); |
3077 | return false; |
3078 | } |
3079 | |
3080 | static const ParsedAttr *getMSPropertyAttr(const ParsedAttributesView &list) { |
3081 | ParsedAttributesView::const_iterator Itr = |
3082 | llvm::find_if(list, [](const ParsedAttr &AL) { |
3083 | return AL.isDeclspecPropertyAttribute(); |
3084 | }); |
3085 | if (Itr != list.end()) |
3086 | return &*Itr; |
3087 | return nullptr; |
3088 | } |
3089 | |
3090 | // Check if there is a field shadowing. |
3091 | void Sema::CheckShadowInheritedFields(const SourceLocation &Loc, |
3092 | DeclarationName FieldName, |
3093 | const CXXRecordDecl *RD, |
3094 | bool DeclIsField) { |
3095 | if (Diags.isIgnored(diag::warn_shadow_field, Loc)) |
3096 | return; |
3097 | |
3098 | // To record a shadowed field in a base |
3099 | std::map<CXXRecordDecl*, NamedDecl*> Bases; |
3100 | auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier, |
3101 | CXXBasePath &Path) { |
3102 | const auto Base = Specifier->getType()->getAsCXXRecordDecl(); |
3103 | // Record an ambiguous path directly |
3104 | if (Bases.find(Base) != Bases.end()) |
3105 | return true; |
3106 | for (const auto Field : Base->lookup(FieldName)) { |
3107 | if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) && |
3108 | Field->getAccess() != AS_private) { |
3109 | assert(Field->getAccess() != AS_none)((Field->getAccess() != AS_none) ? static_cast<void> (0) : __assert_fail ("Field->getAccess() != AS_none", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 3109, __PRETTY_FUNCTION__)); |
3110 | assert(Bases.find(Base) == Bases.end())((Bases.find(Base) == Bases.end()) ? static_cast<void> ( 0) : __assert_fail ("Bases.find(Base) == Bases.end()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 3110, __PRETTY_FUNCTION__)); |
3111 | Bases[Base] = Field; |
3112 | return true; |
3113 | } |
3114 | } |
3115 | return false; |
3116 | }; |
3117 | |
3118 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
3119 | /*DetectVirtual=*/true); |
3120 | if (!RD->lookupInBases(FieldShadowed, Paths)) |
3121 | return; |
3122 | |
3123 | for (const auto &P : Paths) { |
3124 | auto Base = P.back().Base->getType()->getAsCXXRecordDecl(); |
3125 | auto It = Bases.find(Base); |
3126 | // Skip duplicated bases |
3127 | if (It == Bases.end()) |
3128 | continue; |
3129 | auto BaseField = It->second; |
3130 | assert(BaseField->getAccess() != AS_private)((BaseField->getAccess() != AS_private) ? static_cast<void > (0) : __assert_fail ("BaseField->getAccess() != AS_private" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 3130, __PRETTY_FUNCTION__)); |
3131 | if (AS_none != |
3132 | CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) { |
3133 | Diag(Loc, diag::warn_shadow_field) |
3134 | << FieldName << RD << Base << DeclIsField; |
3135 | Diag(BaseField->getLocation(), diag::note_shadow_field); |
3136 | Bases.erase(It); |
3137 | } |
3138 | } |
3139 | } |
3140 | |
3141 | /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member |
3142 | /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the |
3143 | /// bitfield width if there is one, 'InitExpr' specifies the initializer if |
3144 | /// one has been parsed, and 'InitStyle' is set if an in-class initializer is |
3145 | /// present (but parsing it has been deferred). |
3146 | NamedDecl * |
3147 | Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, |
3148 | MultiTemplateParamsArg TemplateParameterLists, |
3149 | Expr *BW, const VirtSpecifiers &VS, |
3150 | InClassInitStyle InitStyle) { |
3151 | const DeclSpec &DS = D.getDeclSpec(); |
3152 | DeclarationNameInfo NameInfo = GetNameForDeclarator(D); |
3153 | DeclarationName Name = NameInfo.getName(); |
3154 | SourceLocation Loc = NameInfo.getLoc(); |
3155 | |
3156 | // For anonymous bitfields, the location should point to the type. |
3157 | if (Loc.isInvalid()) |
3158 | Loc = D.getBeginLoc(); |
3159 | |
3160 | Expr *BitWidth = static_cast<Expr*>(BW); |
3161 | |
3162 | assert(isa<CXXRecordDecl>(CurContext))((isa<CXXRecordDecl>(CurContext)) ? static_cast<void > (0) : __assert_fail ("isa<CXXRecordDecl>(CurContext)" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 3162, __PRETTY_FUNCTION__)); |
3163 | assert(!DS.isFriendSpecified())((!DS.isFriendSpecified()) ? static_cast<void> (0) : __assert_fail ("!DS.isFriendSpecified()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 3163, __PRETTY_FUNCTION__)); |
3164 | |
3165 | bool isFunc = D.isDeclarationOfFunction(); |
3166 | const ParsedAttr *MSPropertyAttr = |
3167 | getMSPropertyAttr(D.getDeclSpec().getAttributes()); |
3168 | |
3169 | if (cast<CXXRecordDecl>(CurContext)->isInterface()) { |
3170 | // The Microsoft extension __interface only permits public member functions |
3171 | // and prohibits constructors, destructors, operators, non-public member |
3172 | // functions, static methods and data members. |
3173 | unsigned InvalidDecl; |
3174 | bool ShowDeclName = true; |
3175 | if (!isFunc && |
3176 | (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr)) |
3177 | InvalidDecl = 0; |
3178 | else if (!isFunc) |
3179 | InvalidDecl = 1; |
3180 | else if (AS != AS_public) |
3181 | InvalidDecl = 2; |
3182 | else if (DS.getStorageClassSpec() == DeclSpec::SCS_static) |
3183 | InvalidDecl = 3; |
3184 | else switch (Name.getNameKind()) { |
3185 | case DeclarationName::CXXConstructorName: |
3186 | InvalidDecl = 4; |
3187 | ShowDeclName = false; |
3188 | break; |
3189 | |
3190 | case DeclarationName::CXXDestructorName: |
3191 | InvalidDecl = 5; |
3192 | ShowDeclName = false; |
3193 | break; |
3194 | |
3195 | case DeclarationName::CXXOperatorName: |
3196 | case DeclarationName::CXXConversionFunctionName: |
3197 | InvalidDecl = 6; |
3198 | break; |
3199 | |
3200 | default: |
3201 | InvalidDecl = 0; |
3202 | break; |
3203 | } |
3204 | |
3205 | if (InvalidDecl) { |
3206 | if (ShowDeclName) |
3207 | Diag(Loc, diag::err_invalid_member_in_interface) |
3208 | << (InvalidDecl-1) << Name; |
3209 | else |
3210 | Diag(Loc, diag::err_invalid_member_in_interface) |
3211 | << (InvalidDecl-1) << ""; |
3212 | return nullptr; |
3213 | } |
3214 | } |
3215 | |
3216 | // C++ 9.2p6: A member shall not be declared to have automatic storage |
3217 | // duration (auto, register) or with the extern storage-class-specifier. |
3218 | // C++ 7.1.1p8: The mutable specifier can be applied only to names of class |
3219 | // data members and cannot be applied to names declared const or static, |
3220 | // and cannot be applied to reference members. |
3221 | switch (DS.getStorageClassSpec()) { |
3222 | case DeclSpec::SCS_unspecified: |
3223 | case DeclSpec::SCS_typedef: |
3224 | case DeclSpec::SCS_static: |
3225 | break; |
3226 | case DeclSpec::SCS_mutable: |
3227 | if (isFunc) { |
3228 | Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); |
3229 | |
3230 | // FIXME: It would be nicer if the keyword was ignored only for this |
3231 | // declarator. Otherwise we could get follow-up errors. |
3232 | D.getMutableDeclSpec().ClearStorageClassSpecs(); |
3233 | } |
3234 | break; |
3235 | default: |
3236 | Diag(DS.getStorageClassSpecLoc(), |
3237 | diag::err_storageclass_invalid_for_member); |
3238 | D.getMutableDeclSpec().ClearStorageClassSpecs(); |
3239 | break; |
3240 | } |
3241 | |
3242 | bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || |
3243 | DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && |
3244 | !isFunc); |
3245 | |
3246 | if (DS.hasConstexprSpecifier() && isInstField) { |
3247 | SemaDiagnosticBuilder B = |
3248 | Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member); |
3249 | SourceLocation ConstexprLoc = DS.getConstexprSpecLoc(); |
3250 | if (InitStyle == ICIS_NoInit) { |
3251 | B << 0 << 0; |
3252 | if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) |
3253 | B << FixItHint::CreateRemoval(ConstexprLoc); |
3254 | else { |
3255 | B << FixItHint::CreateReplacement(ConstexprLoc, "const"); |
3256 | D.getMutableDeclSpec().ClearConstexprSpec(); |
3257 | const char *PrevSpec; |
3258 | unsigned DiagID; |
3259 | bool Failed = D.getMutableDeclSpec().SetTypeQual( |
3260 | DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts()); |
3261 | (void)Failed; |
3262 | assert(!Failed && "Making a constexpr member const shouldn't fail")((!Failed && "Making a constexpr member const shouldn't fail" ) ? static_cast<void> (0) : __assert_fail ("!Failed && \"Making a constexpr member const shouldn't fail\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 3262, __PRETTY_FUNCTION__)); |
3263 | } |
3264 | } else { |
3265 | B << 1; |
3266 | const char *PrevSpec; |
3267 | unsigned DiagID; |
3268 | if (D.getMutableDeclSpec().SetStorageClassSpec( |
3269 | *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID, |
3270 | Context.getPrintingPolicy())) { |
3271 | assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&((DS.getStorageClassSpec() == DeclSpec::SCS_mutable && "This is the only DeclSpec that should fail to be applied") ? static_cast<void> (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 3272, __PRETTY_FUNCTION__)) |
3272 | "This is the only DeclSpec that should fail to be applied")((DS.getStorageClassSpec() == DeclSpec::SCS_mutable && "This is the only DeclSpec that should fail to be applied") ? static_cast<void> (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 3272, __PRETTY_FUNCTION__)); |
3273 | B << 1; |
3274 | } else { |
3275 | B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static "); |
3276 | isInstField = false; |
3277 | } |
3278 | } |
3279 | } |
3280 | |
3281 | NamedDecl *Member; |
3282 | if (isInstField) { |
3283 | CXXScopeSpec &SS = D.getCXXScopeSpec(); |
3284 | |
3285 | // Data members must have identifiers for names. |
3286 | if (!Name.isIdentifier()) { |
3287 | Diag(Loc, diag::err_bad_variable_name) |
3288 | << Name; |
3289 | return nullptr; |
3290 | } |
3291 | |
3292 | IdentifierInfo *II = Name.getAsIdentifierInfo(); |
3293 | |
3294 | // Member field could not be with "template" keyword. |
3295 | // So TemplateParameterLists should be empty in this case. |
3296 | if (TemplateParameterLists.size()) { |
3297 | TemplateParameterList* TemplateParams = TemplateParameterLists[0]; |
3298 | if (TemplateParams->size()) { |
3299 | // There is no such thing as a member field template. |
3300 | Diag(D.getIdentifierLoc(), diag::err_template_member) |
3301 | << II |
3302 | << SourceRange(TemplateParams->getTemplateLoc(), |
3303 | TemplateParams->getRAngleLoc()); |
3304 | } else { |
3305 | // There is an extraneous 'template<>' for this member. |
3306 | Diag(TemplateParams->getTemplateLoc(), |
3307 | diag::err_template_member_noparams) |
3308 | << II |
3309 | << SourceRange(TemplateParams->getTemplateLoc(), |
3310 | TemplateParams->getRAngleLoc()); |
3311 | } |
3312 | return nullptr; |
3313 | } |
3314 | |
3315 | if (SS.isSet() && !SS.isInvalid()) { |
3316 | // The user provided a superfluous scope specifier inside a class |
3317 | // definition: |
3318 | // |
3319 | // class X { |
3320 | // int X::member; |
3321 | // }; |
3322 | if (DeclContext *DC = computeDeclContext(SS, false)) |
3323 | diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(), |
3324 | D.getName().getKind() == |
3325 | UnqualifiedIdKind::IK_TemplateId); |
3326 | else |
3327 | Diag(D.getIdentifierLoc(), diag::err_member_qualification) |
3328 | << Name << SS.getRange(); |
3329 | |
3330 | SS.clear(); |
3331 | } |
3332 | |
3333 | if (MSPropertyAttr) { |
3334 | Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D, |
3335 | BitWidth, InitStyle, AS, *MSPropertyAttr); |
3336 | if (!Member) |
3337 | return nullptr; |
3338 | isInstField = false; |
3339 | } else { |
3340 | Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, |
3341 | BitWidth, InitStyle, AS); |
3342 | if (!Member) |
3343 | return nullptr; |
3344 | } |
3345 | |
3346 | CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext)); |
3347 | } else { |
3348 | Member = HandleDeclarator(S, D, TemplateParameterLists); |
3349 | if (!Member) |
3350 | return nullptr; |
3351 | |
3352 | // Non-instance-fields can't have a bitfield. |
3353 | if (BitWidth) { |
3354 | if (Member->isInvalidDecl()) { |
3355 | // don't emit another diagnostic. |
3356 | } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) { |
3357 | // C++ 9.6p3: A bit-field shall not be a static member. |
3358 | // "static member 'A' cannot be a bit-field" |
3359 | Diag(Loc, diag::err_static_not_bitfield) |
3360 | << Name << BitWidth->getSourceRange(); |
3361 | } else if (isa<TypedefDecl>(Member)) { |
3362 | // "typedef member 'x' cannot be a bit-field" |
3363 | Diag(Loc, diag::err_typedef_not_bitfield) |
3364 | << Name << BitWidth->getSourceRange(); |
3365 | } else { |
3366 | // A function typedef ("typedef int f(); f a;"). |
3367 | // C++ 9.6p3: A bit-field shall have integral or enumeration type. |
3368 | Diag(Loc, diag::err_not_integral_type_bitfield) |
3369 | << Name << cast<ValueDecl>(Member)->getType() |
3370 | << BitWidth->getSourceRange(); |
3371 | } |
3372 | |
3373 | BitWidth = nullptr; |
3374 | Member->setInvalidDecl(); |
3375 | } |
3376 | |
3377 | NamedDecl *NonTemplateMember = Member; |
3378 | if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member)) |
3379 | NonTemplateMember = FunTmpl->getTemplatedDecl(); |
3380 | else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member)) |
3381 | NonTemplateMember = VarTmpl->getTemplatedDecl(); |
3382 | |
3383 | Member->setAccess(AS); |
3384 | |
3385 | // If we have declared a member function template or static data member |
3386 | // template, set the access of the templated declaration as well. |
3387 | if (NonTemplateMember != Member) |
3388 | NonTemplateMember->setAccess(AS); |
3389 | |
3390 | // C++ [temp.deduct.guide]p3: |
3391 | // A deduction guide [...] for a member class template [shall be |
3392 | // declared] with the same access [as the template]. |
3393 | if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) { |
3394 | auto *TD = DG->getDeducedTemplate(); |
3395 | // Access specifiers are only meaningful if both the template and the |
3396 | // deduction guide are from the same scope. |
3397 | if (AS != TD->getAccess() && |
3398 | TD->getDeclContext()->getRedeclContext()->Equals( |
3399 | DG->getDeclContext()->getRedeclContext())) { |
3400 | Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access); |
3401 | Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access) |
3402 | << TD->getAccess(); |
3403 | const AccessSpecDecl *LastAccessSpec = nullptr; |
3404 | for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) { |
3405 | if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D)) |
3406 | LastAccessSpec = AccessSpec; |
3407 | } |
3408 | assert(LastAccessSpec && "differing access with no access specifier")((LastAccessSpec && "differing access with no access specifier" ) ? static_cast<void> (0) : __assert_fail ("LastAccessSpec && \"differing access with no access specifier\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 3408, __PRETTY_FUNCTION__)); |
3409 | Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access) |
3410 | << AS; |
3411 | } |
3412 | } |
3413 | } |
3414 | |
3415 | if (VS.isOverrideSpecified()) |
3416 | Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc(), |
3417 | AttributeCommonInfo::AS_Keyword)); |
3418 | if (VS.isFinalSpecified()) |
3419 | Member->addAttr(FinalAttr::Create( |
3420 | Context, VS.getFinalLoc(), AttributeCommonInfo::AS_Keyword, |
3421 | static_cast<FinalAttr::Spelling>(VS.isFinalSpelledSealed()))); |
3422 | |
3423 | if (VS.getLastLocation().isValid()) { |
3424 | // Update the end location of a method that has a virt-specifiers. |
3425 | if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member)) |
3426 | MD->setRangeEnd(VS.getLastLocation()); |
3427 | } |
3428 | |
3429 | CheckOverrideControl(Member); |
3430 | |
3431 | assert((Name || isInstField) && "No identifier for non-field ?")(((Name || isInstField) && "No identifier for non-field ?" ) ? static_cast<void> (0) : __assert_fail ("(Name || isInstField) && \"No identifier for non-field ?\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 3431, __PRETTY_FUNCTION__)); |
3432 | |
3433 | if (isInstField) { |
3434 | FieldDecl *FD = cast<FieldDecl>(Member); |
3435 | FieldCollector->Add(FD); |
3436 | |
3437 | if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) { |
3438 | // Remember all explicit private FieldDecls that have a name, no side |
3439 | // effects and are not part of a dependent type declaration. |
3440 | if (!FD->isImplicit() && FD->getDeclName() && |
3441 | FD->getAccess() == AS_private && |
3442 | !FD->hasAttr<UnusedAttr>() && |
3443 | !FD->getParent()->isDependentContext() && |
3444 | !InitializationHasSideEffects(*FD)) |
3445 | UnusedPrivateFields.insert(FD); |
3446 | } |
3447 | } |
3448 | |
3449 | return Member; |
3450 | } |
3451 | |
3452 | namespace { |
3453 | class UninitializedFieldVisitor |
3454 | : public EvaluatedExprVisitor<UninitializedFieldVisitor> { |
3455 | Sema &S; |
3456 | // List of Decls to generate a warning on. Also remove Decls that become |
3457 | // initialized. |
3458 | llvm::SmallPtrSetImpl<ValueDecl*> &Decls; |
3459 | // List of base classes of the record. Classes are removed after their |
3460 | // initializers. |
3461 | llvm::SmallPtrSetImpl<QualType> &BaseClasses; |
3462 | // Vector of decls to be removed from the Decl set prior to visiting the |
3463 | // nodes. These Decls may have been initialized in the prior initializer. |
3464 | llvm::SmallVector<ValueDecl*, 4> DeclsToRemove; |
3465 | // If non-null, add a note to the warning pointing back to the constructor. |
3466 | const CXXConstructorDecl *Constructor; |
3467 | // Variables to hold state when processing an initializer list. When |
3468 | // InitList is true, special case initialization of FieldDecls matching |
3469 | // InitListFieldDecl. |
3470 | bool InitList; |
3471 | FieldDecl *InitListFieldDecl; |
3472 | llvm::SmallVector<unsigned, 4> InitFieldIndex; |
3473 | |
3474 | public: |
3475 | typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited; |
3476 | UninitializedFieldVisitor(Sema &S, |
3477 | llvm::SmallPtrSetImpl<ValueDecl*> &Decls, |
3478 | llvm::SmallPtrSetImpl<QualType> &BaseClasses) |
3479 | : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses), |
3480 | Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {} |
3481 | |
3482 | // Returns true if the use of ME is not an uninitialized use. |
3483 | bool IsInitListMemberExprInitialized(MemberExpr *ME, |
3484 | bool CheckReferenceOnly) { |
3485 | llvm::SmallVector<FieldDecl*, 4> Fields; |
3486 | bool ReferenceField = false; |
3487 | while (ME) { |
3488 | FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); |
3489 | if (!FD) |
3490 | return false; |
3491 | Fields.push_back(FD); |
3492 | if (FD->getType()->isReferenceType()) |
3493 | ReferenceField = true; |
3494 | ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts()); |
3495 | } |
3496 | |
3497 | // Binding a reference to an uninitialized field is not an |
3498 | // uninitialized use. |
3499 | if (CheckReferenceOnly && !ReferenceField) |
3500 | return true; |
3501 | |
3502 | llvm::SmallVector<unsigned, 4> UsedFieldIndex; |
3503 | // Discard the first field since it is the field decl that is being |
3504 | // initialized. |
3505 | for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) { |
3506 | UsedFieldIndex.push_back((*I)->getFieldIndex()); |
3507 | } |
3508 | |
3509 | for (auto UsedIter = UsedFieldIndex.begin(), |
3510 | UsedEnd = UsedFieldIndex.end(), |
3511 | OrigIter = InitFieldIndex.begin(), |
3512 | OrigEnd = InitFieldIndex.end(); |
3513 | UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { |
3514 | if (*UsedIter < *OrigIter) |
3515 | return true; |
3516 | if (*UsedIter > *OrigIter) |
3517 | break; |
3518 | } |
3519 | |
3520 | return false; |
3521 | } |
3522 | |
3523 | void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly, |
3524 | bool AddressOf) { |
3525 | if (isa<EnumConstantDecl>(ME->getMemberDecl())) |
3526 | return; |
3527 | |
3528 | // FieldME is the inner-most MemberExpr that is not an anonymous struct |
3529 | // or union. |
3530 | MemberExpr *FieldME = ME; |
3531 | |
3532 | bool AllPODFields = FieldME->getType().isPODType(S.Context); |
3533 | |
3534 | Expr *Base = ME; |
3535 | while (MemberExpr *SubME = |
3536 | dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) { |
3537 | |
3538 | if (isa<VarDecl>(SubME->getMemberDecl())) |
3539 | return; |
3540 | |
3541 | if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl())) |
3542 | if (!FD->isAnonymousStructOrUnion()) |
3543 | FieldME = SubME; |
3544 | |
3545 | if (!FieldME->getType().isPODType(S.Context)) |
3546 | AllPODFields = false; |
3547 | |
3548 | Base = SubME->getBase(); |
3549 | } |
3550 | |
3551 | if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts())) |
3552 | return; |
3553 | |
3554 | if (AddressOf && AllPODFields) |
3555 | return; |
3556 | |
3557 | ValueDecl* FoundVD = FieldME->getMemberDecl(); |
3558 | |
3559 | if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) { |
3560 | while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) { |
3561 | BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr()); |
3562 | } |
3563 | |
3564 | if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) { |
3565 | QualType T = BaseCast->getType(); |
3566 | if (T->isPointerType() && |
3567 | BaseClasses.count(T->getPointeeType())) { |
3568 | S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit) |
3569 | << T->getPointeeType() << FoundVD; |
3570 | } |
3571 | } |
3572 | } |
3573 | |
3574 | if (!Decls.count(FoundVD)) |
3575 | return; |
3576 | |
3577 | const bool IsReference = FoundVD->getType()->isReferenceType(); |
3578 | |
3579 | if (InitList && !AddressOf && FoundVD == InitListFieldDecl) { |
3580 | // Special checking for initializer lists. |
3581 | if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) { |
3582 | return; |
3583 | } |
3584 | } else { |
3585 | // Prevent double warnings on use of unbounded references. |
3586 | if (CheckReferenceOnly && !IsReference) |
3587 | return; |
3588 | } |
3589 | |
3590 | unsigned diag = IsReference |
3591 | ? diag::warn_reference_field_is_uninit |
3592 | : diag::warn_field_is_uninit; |
3593 | S.Diag(FieldME->getExprLoc(), diag) << FoundVD; |
3594 | if (Constructor) |
3595 | S.Diag(Constructor->getLocation(), |
3596 | diag::note_uninit_in_this_constructor) |
3597 | << (Constructor->isDefaultConstructor() && Constructor->isImplicit()); |
3598 | |
3599 | } |
3600 | |
3601 | void HandleValue(Expr *E, bool AddressOf) { |
3602 | E = E->IgnoreParens(); |
3603 | |
3604 | if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) { |
3605 | HandleMemberExpr(ME, false /*CheckReferenceOnly*/, |
3606 | AddressOf /*AddressOf*/); |
3607 | return; |
3608 | } |
3609 | |
3610 | if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { |
3611 | Visit(CO->getCond()); |
3612 | HandleValue(CO->getTrueExpr(), AddressOf); |
3613 | HandleValue(CO->getFalseExpr(), AddressOf); |
3614 | return; |
3615 | } |
3616 | |
3617 | if (BinaryConditionalOperator *BCO = |
3618 | dyn_cast<BinaryConditionalOperator>(E)) { |
3619 | Visit(BCO->getCond()); |
3620 | HandleValue(BCO->getFalseExpr(), AddressOf); |
3621 | return; |
3622 | } |
3623 | |
3624 | if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { |
3625 | HandleValue(OVE->getSourceExpr(), AddressOf); |
3626 | return; |
3627 | } |
3628 | |
3629 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { |
3630 | switch (BO->getOpcode()) { |
3631 | default: |
3632 | break; |
3633 | case(BO_PtrMemD): |
3634 | case(BO_PtrMemI): |
3635 | HandleValue(BO->getLHS(), AddressOf); |
3636 | Visit(BO->getRHS()); |
3637 | return; |
3638 | case(BO_Comma): |
3639 | Visit(BO->getLHS()); |
3640 | HandleValue(BO->getRHS(), AddressOf); |
3641 | return; |
3642 | } |
3643 | } |
3644 | |
3645 | Visit(E); |
3646 | } |
3647 | |
3648 | void CheckInitListExpr(InitListExpr *ILE) { |
3649 | InitFieldIndex.push_back(0); |
3650 | for (auto Child : ILE->children()) { |
3651 | if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) { |
3652 | CheckInitListExpr(SubList); |
3653 | } else { |
3654 | Visit(Child); |
3655 | } |
3656 | ++InitFieldIndex.back(); |
3657 | } |
3658 | InitFieldIndex.pop_back(); |
3659 | } |
3660 | |
3661 | void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor, |
3662 | FieldDecl *Field, const Type *BaseClass) { |
3663 | // Remove Decls that may have been initialized in the previous |
3664 | // initializer. |
3665 | for (ValueDecl* VD : DeclsToRemove) |
3666 | Decls.erase(VD); |
3667 | DeclsToRemove.clear(); |
3668 | |
3669 | Constructor = FieldConstructor; |
3670 | InitListExpr *ILE = dyn_cast<InitListExpr>(E); |
3671 | |
3672 | if (ILE && Field) { |
3673 | InitList = true; |
3674 | InitListFieldDecl = Field; |
3675 | InitFieldIndex.clear(); |
3676 | CheckInitListExpr(ILE); |
3677 | } else { |
3678 | InitList = false; |
3679 | Visit(E); |
3680 | } |
3681 | |
3682 | if (Field) |
3683 | Decls.erase(Field); |
3684 | if (BaseClass) |
3685 | BaseClasses.erase(BaseClass->getCanonicalTypeInternal()); |
3686 | } |
3687 | |
3688 | void VisitMemberExpr(MemberExpr *ME) { |
3689 | // All uses of unbounded reference fields will warn. |
3690 | HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/); |
3691 | } |
3692 | |
3693 | void VisitImplicitCastExpr(ImplicitCastExpr *E) { |
3694 | if (E->getCastKind() == CK_LValueToRValue) { |
3695 | HandleValue(E->getSubExpr(), false /*AddressOf*/); |
3696 | return; |
3697 | } |
3698 | |
3699 | Inherited::VisitImplicitCastExpr(E); |
3700 | } |
3701 | |
3702 | void VisitCXXConstructExpr(CXXConstructExpr *E) { |
3703 | if (E->getConstructor()->isCopyConstructor()) { |
3704 | Expr *ArgExpr = E->getArg(0); |
3705 | if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) |
3706 | if (ILE->getNumInits() == 1) |
3707 | ArgExpr = ILE->getInit(0); |
3708 | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) |
3709 | if (ICE->getCastKind() == CK_NoOp) |
3710 | ArgExpr = ICE->getSubExpr(); |
3711 | HandleValue(ArgExpr, false /*AddressOf*/); |
3712 | return; |
3713 | } |
3714 | Inherited::VisitCXXConstructExpr(E); |
3715 | } |
3716 | |
3717 | void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { |
3718 | Expr *Callee = E->getCallee(); |
3719 | if (isa<MemberExpr>(Callee)) { |
3720 | HandleValue(Callee, false /*AddressOf*/); |
3721 | for (auto Arg : E->arguments()) |
3722 | Visit(Arg); |
3723 | return; |
3724 | } |
3725 | |
3726 | Inherited::VisitCXXMemberCallExpr(E); |
3727 | } |
3728 | |
3729 | void VisitCallExpr(CallExpr *E) { |
3730 | // Treat std::move as a use. |
3731 | if (E->isCallToStdMove()) { |
3732 | HandleValue(E->getArg(0), /*AddressOf=*/false); |
3733 | return; |
3734 | } |
3735 | |
3736 | Inherited::VisitCallExpr(E); |
3737 | } |
3738 | |
3739 | void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { |
3740 | Expr *Callee = E->getCallee(); |
3741 | |
3742 | if (isa<UnresolvedLookupExpr>(Callee)) |
3743 | return Inherited::VisitCXXOperatorCallExpr(E); |
3744 | |
3745 | Visit(Callee); |
3746 | for (auto Arg : E->arguments()) |
3747 | HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/); |
3748 | } |
3749 | |
3750 | void VisitBinaryOperator(BinaryOperator *E) { |
3751 | // If a field assignment is detected, remove the field from the |
3752 | // uninitiailized field set. |
3753 | if (E->getOpcode() == BO_Assign) |
3754 | if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS())) |
3755 | if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) |
3756 | if (!FD->getType()->isReferenceType()) |
3757 | DeclsToRemove.push_back(FD); |
3758 | |
3759 | if (E->isCompoundAssignmentOp()) { |
3760 | HandleValue(E->getLHS(), false /*AddressOf*/); |
3761 | Visit(E->getRHS()); |
3762 | return; |
3763 | } |
3764 | |
3765 | Inherited::VisitBinaryOperator(E); |
3766 | } |
3767 | |
3768 | void VisitUnaryOperator(UnaryOperator *E) { |
3769 | if (E->isIncrementDecrementOp()) { |
3770 | HandleValue(E->getSubExpr(), false /*AddressOf*/); |
3771 | return; |
3772 | } |
3773 | if (E->getOpcode() == UO_AddrOf) { |
3774 | if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) { |
3775 | HandleValue(ME->getBase(), true /*AddressOf*/); |
3776 | return; |
3777 | } |
3778 | } |
3779 | |
3780 | Inherited::VisitUnaryOperator(E); |
3781 | } |
3782 | }; |
3783 | |
3784 | // Diagnose value-uses of fields to initialize themselves, e.g. |
3785 | // foo(foo) |
3786 | // where foo is not also a parameter to the constructor. |
3787 | // Also diagnose across field uninitialized use such as |
3788 | // x(y), y(x) |
3789 | // TODO: implement -Wuninitialized and fold this into that framework. |
3790 | static void DiagnoseUninitializedFields( |
3791 | Sema &SemaRef, const CXXConstructorDecl *Constructor) { |
3792 | |
3793 | if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit, |
3794 | Constructor->getLocation())) { |
3795 | return; |
3796 | } |
3797 | |
3798 | if (Constructor->isInvalidDecl()) |
3799 | return; |
3800 | |
3801 | const CXXRecordDecl *RD = Constructor->getParent(); |
3802 | |
3803 | if (RD->getDescribedClassTemplate()) |
3804 | return; |
3805 | |
3806 | // Holds fields that are uninitialized. |
3807 | llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields; |
3808 | |
3809 | // At the beginning, all fields are uninitialized. |
3810 | for (auto *I : RD->decls()) { |
3811 | if (auto *FD = dyn_cast<FieldDecl>(I)) { |
3812 | UninitializedFields.insert(FD); |
3813 | } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) { |
3814 | UninitializedFields.insert(IFD->getAnonField()); |
3815 | } |
3816 | } |
3817 | |
3818 | llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses; |
3819 | for (auto I : RD->bases()) |
3820 | UninitializedBaseClasses.insert(I.getType().getCanonicalType()); |
3821 | |
3822 | if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) |
3823 | return; |
3824 | |
3825 | UninitializedFieldVisitor UninitializedChecker(SemaRef, |
3826 | UninitializedFields, |
3827 | UninitializedBaseClasses); |
3828 | |
3829 | for (const auto *FieldInit : Constructor->inits()) { |
3830 | if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) |
3831 | break; |
3832 | |
3833 | Expr *InitExpr = FieldInit->getInit(); |
3834 | if (!InitExpr) |
3835 | continue; |
3836 | |
3837 | if (CXXDefaultInitExpr *Default = |
3838 | dyn_cast<CXXDefaultInitExpr>(InitExpr)) { |
3839 | InitExpr = Default->getExpr(); |
3840 | if (!InitExpr) |
3841 | continue; |
3842 | // In class initializers will point to the constructor. |
3843 | UninitializedChecker.CheckInitializer(InitExpr, Constructor, |
3844 | FieldInit->getAnyMember(), |
3845 | FieldInit->getBaseClass()); |
3846 | } else { |
3847 | UninitializedChecker.CheckInitializer(InitExpr, nullptr, |
3848 | FieldInit->getAnyMember(), |
3849 | FieldInit->getBaseClass()); |
3850 | } |
3851 | } |
3852 | } |
3853 | } // namespace |
3854 | |
3855 | /// Enter a new C++ default initializer scope. After calling this, the |
3856 | /// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if |
3857 | /// parsing or instantiating the initializer failed. |
3858 | void Sema::ActOnStartCXXInClassMemberInitializer() { |
3859 | // Create a synthetic function scope to represent the call to the constructor |
3860 | // that notionally surrounds a use of this initializer. |
3861 | PushFunctionScope(); |
3862 | } |
3863 | |
3864 | /// This is invoked after parsing an in-class initializer for a |
3865 | /// non-static C++ class member, and after instantiating an in-class initializer |
3866 | /// in a class template. Such actions are deferred until the class is complete. |
3867 | void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D, |
3868 | SourceLocation InitLoc, |
3869 | Expr *InitExpr) { |
3870 | // Pop the notional constructor scope we created earlier. |
3871 | PopFunctionScopeInfo(nullptr, D); |
3872 | |
3873 | FieldDecl *FD = dyn_cast<FieldDecl>(D); |
3874 | assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&(((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle () != ICIS_NoInit) && "must set init style when field is created" ) ? static_cast<void> (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 3875, __PRETTY_FUNCTION__)) |
3875 | "must set init style when field is created")(((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle () != ICIS_NoInit) && "must set init style when field is created" ) ? static_cast<void> (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 3875, __PRETTY_FUNCTION__)); |
3876 | |
3877 | if (!InitExpr) { |
3878 | D->setInvalidDecl(); |
3879 | if (FD) |
3880 | FD->removeInClassInitializer(); |
3881 | return; |
3882 | } |
3883 | |
3884 | if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) { |
3885 | FD->setInvalidDecl(); |
3886 | FD->removeInClassInitializer(); |
3887 | return; |
3888 | } |
3889 | |
3890 | ExprResult Init = InitExpr; |
3891 | if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) { |
3892 | InitializedEntity Entity = |
3893 | InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD); |
3894 | InitializationKind Kind = |
3895 | FD->getInClassInitStyle() == ICIS_ListInit |
3896 | ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(), |
3897 | InitExpr->getBeginLoc(), |
3898 | InitExpr->getEndLoc()) |
3899 | : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc); |
3900 | InitializationSequence Seq(*this, Entity, Kind, InitExpr); |
3901 | Init = Seq.Perform(*this, Entity, Kind, InitExpr); |
3902 | if (Init.isInvalid()) { |
3903 | FD->setInvalidDecl(); |
3904 | return; |
3905 | } |
3906 | } |
3907 | |
3908 | // C++11 [class.base.init]p7: |
3909 | // The initialization of each base and member constitutes a |
3910 | // full-expression. |
3911 | Init = ActOnFinishFullExpr(Init.get(), InitLoc, /*DiscardedValue*/ false); |
3912 | if (Init.isInvalid()) { |
3913 | FD->setInvalidDecl(); |
3914 | return; |
3915 | } |
3916 | |
3917 | InitExpr = Init.get(); |
3918 | |
3919 | FD->setInClassInitializer(InitExpr); |
3920 | } |
3921 | |
3922 | /// Find the direct and/or virtual base specifiers that |
3923 | /// correspond to the given base type, for use in base initialization |
3924 | /// within a constructor. |
3925 | static bool FindBaseInitializer(Sema &SemaRef, |
3926 | CXXRecordDecl *ClassDecl, |
3927 | QualType BaseType, |
3928 | const CXXBaseSpecifier *&DirectBaseSpec, |
3929 | const CXXBaseSpecifier *&VirtualBaseSpec) { |
3930 | // First, check for a direct base class. |
3931 | DirectBaseSpec = nullptr; |
3932 | for (const auto &Base : ClassDecl->bases()) { |
3933 | if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) { |
3934 | // We found a direct base of this type. That's what we're |
3935 | // initializing. |
3936 | DirectBaseSpec = &Base; |
3937 | break; |
3938 | } |
3939 | } |
3940 | |
3941 | // Check for a virtual base class. |
3942 | // FIXME: We might be able to short-circuit this if we know in advance that |
3943 | // there are no virtual bases. |
3944 | VirtualBaseSpec = nullptr; |
3945 | if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { |
3946 | // We haven't found a base yet; search the class hierarchy for a |
3947 | // virtual base class. |
3948 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
3949 | /*DetectVirtual=*/false); |
3950 | if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(), |
3951 | SemaRef.Context.getTypeDeclType(ClassDecl), |
3952 | BaseType, Paths)) { |
3953 | for (CXXBasePaths::paths_iterator Path = Paths.begin(); |
3954 | Path != Paths.end(); ++Path) { |
3955 | if (Path->back().Base->isVirtual()) { |
3956 | VirtualBaseSpec = Path->back().Base; |
3957 | break; |
3958 | } |
3959 | } |
3960 | } |
3961 | } |
3962 | |
3963 | return DirectBaseSpec || VirtualBaseSpec; |
3964 | } |
3965 | |
3966 | /// Handle a C++ member initializer using braced-init-list syntax. |
3967 | MemInitResult |
3968 | Sema::ActOnMemInitializer(Decl *ConstructorD, |
3969 | Scope *S, |
3970 | CXXScopeSpec &SS, |
3971 | IdentifierInfo *MemberOrBase, |
3972 | ParsedType TemplateTypeTy, |
3973 | const DeclSpec &DS, |
3974 | SourceLocation IdLoc, |
3975 | Expr *InitList, |
3976 | SourceLocation EllipsisLoc) { |
3977 | return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, |
3978 | DS, IdLoc, InitList, |
3979 | EllipsisLoc); |
3980 | } |
3981 | |
3982 | /// Handle a C++ member initializer using parentheses syntax. |
3983 | MemInitResult |
3984 | Sema::ActOnMemInitializer(Decl *ConstructorD, |
3985 | Scope *S, |
3986 | CXXScopeSpec &SS, |
3987 | IdentifierInfo *MemberOrBase, |
3988 | ParsedType TemplateTypeTy, |
3989 | const DeclSpec &DS, |
3990 | SourceLocation IdLoc, |
3991 | SourceLocation LParenLoc, |
3992 | ArrayRef<Expr *> Args, |
3993 | SourceLocation RParenLoc, |
3994 | SourceLocation EllipsisLoc) { |
3995 | Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc); |
3996 | return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, |
3997 | DS, IdLoc, List, EllipsisLoc); |
3998 | } |
3999 | |
4000 | namespace { |
4001 | |
4002 | // Callback to only accept typo corrections that can be a valid C++ member |
4003 | // intializer: either a non-static field member or a base class. |
4004 | class MemInitializerValidatorCCC final : public CorrectionCandidateCallback { |
4005 | public: |
4006 | explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl) |
4007 | : ClassDecl(ClassDecl) {} |
4008 | |
4009 | bool ValidateCandidate(const TypoCorrection &candidate) override { |
4010 | if (NamedDecl *ND = candidate.getCorrectionDecl()) { |
4011 | if (FieldDecl *Member = dyn_cast<FieldDecl>(ND)) |
4012 | return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl); |
4013 | return isa<TypeDecl>(ND); |
4014 | } |
4015 | return false; |
4016 | } |
4017 | |
4018 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
4019 | return std::make_unique<MemInitializerValidatorCCC>(*this); |
4020 | } |
4021 | |
4022 | private: |
4023 | CXXRecordDecl *ClassDecl; |
4024 | }; |
4025 | |
4026 | } |
4027 | |
4028 | ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl, |
4029 | CXXScopeSpec &SS, |
4030 | ParsedType TemplateTypeTy, |
4031 | IdentifierInfo *MemberOrBase) { |
4032 | if (SS.getScopeRep() || TemplateTypeTy) |
4033 | return nullptr; |
4034 | DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase); |
4035 | if (Result.empty()) |
4036 | return nullptr; |
4037 | ValueDecl *Member; |
4038 | if ((Member = dyn_cast<FieldDecl>(Result.front())) || |
4039 | (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) |
4040 | return Member; |
4041 | return nullptr; |
4042 | } |
4043 | |
4044 | /// Handle a C++ member initializer. |
4045 | MemInitResult |
4046 | Sema::BuildMemInitializer(Decl *ConstructorD, |
4047 | Scope *S, |
4048 | CXXScopeSpec &SS, |
4049 | IdentifierInfo *MemberOrBase, |
4050 | ParsedType TemplateTypeTy, |
4051 | const DeclSpec &DS, |
4052 | SourceLocation IdLoc, |
4053 | Expr *Init, |
4054 | SourceLocation EllipsisLoc) { |
4055 | ExprResult Res = CorrectDelayedTyposInExpr(Init); |
4056 | if (!Res.isUsable()) |
4057 | return true; |
4058 | Init = Res.get(); |
4059 | |
4060 | if (!ConstructorD) |
4061 | return true; |
4062 | |
4063 | AdjustDeclIfTemplate(ConstructorD); |
4064 | |
4065 | CXXConstructorDecl *Constructor |
4066 | = dyn_cast<CXXConstructorDecl>(ConstructorD); |
4067 | if (!Constructor) { |
4068 | // The user wrote a constructor initializer on a function that is |
4069 | // not a C++ constructor. Ignore the error for now, because we may |
4070 | // have more member initializers coming; we'll diagnose it just |
4071 | // once in ActOnMemInitializers. |
4072 | return true; |
4073 | } |
4074 | |
4075 | CXXRecordDecl *ClassDecl = Constructor->getParent(); |
4076 | |
4077 | // C++ [class.base.init]p2: |
4078 | // Names in a mem-initializer-id are looked up in the scope of the |
4079 | // constructor's class and, if not found in that scope, are looked |
4080 | // up in the scope containing the constructor's definition. |
4081 | // [Note: if the constructor's class contains a member with the |
4082 | // same name as a direct or virtual base class of the class, a |
4083 | // mem-initializer-id naming the member or base class and composed |
4084 | // of a single identifier refers to the class member. A |
4085 | // mem-initializer-id for the hidden base class may be specified |
4086 | // using a qualified name. ] |
4087 | |
4088 | // Look for a member, first. |
4089 | if (ValueDecl *Member = tryLookupCtorInitMemberDecl( |
4090 | ClassDecl, SS, TemplateTypeTy, MemberOrBase)) { |
4091 | if (EllipsisLoc.isValid()) |
4092 | Diag(EllipsisLoc, diag::err_pack_expansion_member_init) |
4093 | << MemberOrBase |
4094 | << SourceRange(IdLoc, Init->getSourceRange().getEnd()); |
4095 | |
4096 | return BuildMemberInitializer(Member, Init, IdLoc); |
4097 | } |
4098 | // It didn't name a member, so see if it names a class. |
4099 | QualType BaseType; |
4100 | TypeSourceInfo *TInfo = nullptr; |
4101 | |
4102 | if (TemplateTypeTy) { |
4103 | BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo); |
4104 | if (BaseType.isNull()) |
4105 | return true; |
4106 | } else if (DS.getTypeSpecType() == TST_decltype) { |
4107 | BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); |
4108 | } else if (DS.getTypeSpecType() == TST_decltype_auto) { |
4109 | Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); |
4110 | return true; |
4111 | } else { |
4112 | LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); |
4113 | LookupParsedName(R, S, &SS); |
4114 | |
4115 | TypeDecl *TyD = R.getAsSingle<TypeDecl>(); |
4116 | if (!TyD) { |
4117 | if (R.isAmbiguous()) return true; |
4118 | |
4119 | // We don't want access-control diagnostics here. |
4120 | R.suppressDiagnostics(); |
4121 | |
4122 | if (SS.isSet() && isDependentScopeSpecifier(SS)) { |
4123 | bool NotUnknownSpecialization = false; |
4124 | DeclContext *DC = computeDeclContext(SS, false); |
4125 | if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC)) |
4126 | NotUnknownSpecialization = !Record->hasAnyDependentBases(); |
4127 | |
4128 | if (!NotUnknownSpecialization) { |
4129 | // When the scope specifier can refer to a member of an unknown |
4130 | // specialization, we take it as a type name. |
4131 | BaseType = CheckTypenameType(ETK_None, SourceLocation(), |
4132 | SS.getWithLocInContext(Context), |
4133 | *MemberOrBase, IdLoc); |
4134 | if (BaseType.isNull()) |
4135 | return true; |
4136 | |
4137 | TInfo = Context.CreateTypeSourceInfo(BaseType); |
4138 | DependentNameTypeLoc TL = |
4139 | TInfo->getTypeLoc().castAs<DependentNameTypeLoc>(); |
4140 | if (!TL.isNull()) { |
4141 | TL.setNameLoc(IdLoc); |
4142 | TL.setElaboratedKeywordLoc(SourceLocation()); |
4143 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); |
4144 | } |
4145 | |
4146 | R.clear(); |
4147 | R.setLookupName(MemberOrBase); |
4148 | } |
4149 | } |
4150 | |
4151 | // If no results were found, try to correct typos. |
4152 | TypoCorrection Corr; |
4153 | MemInitializerValidatorCCC CCC(ClassDecl); |
4154 | if (R.empty() && BaseType.isNull() && |
4155 | (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, |
4156 | CCC, CTK_ErrorRecovery, ClassDecl))) { |
4157 | if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) { |
4158 | // We have found a non-static data member with a similar |
4159 | // name to what was typed; complain and initialize that |
4160 | // member. |
4161 | diagnoseTypo(Corr, |
4162 | PDiag(diag::err_mem_init_not_member_or_class_suggest) |
4163 | << MemberOrBase << true); |
4164 | return BuildMemberInitializer(Member, Init, IdLoc); |
4165 | } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) { |
4166 | const CXXBaseSpecifier *DirectBaseSpec; |
4167 | const CXXBaseSpecifier *VirtualBaseSpec; |
4168 | if (FindBaseInitializer(*this, ClassDecl, |
4169 | Context.getTypeDeclType(Type), |
4170 | DirectBaseSpec, VirtualBaseSpec)) { |
4171 | // We have found a direct or virtual base class with a |
4172 | // similar name to what was typed; complain and initialize |
4173 | // that base class. |
4174 | diagnoseTypo(Corr, |
4175 | PDiag(diag::err_mem_init_not_member_or_class_suggest) |
4176 | << MemberOrBase << false, |
4177 | PDiag() /*Suppress note, we provide our own.*/); |
4178 | |
4179 | const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec |
4180 | : VirtualBaseSpec; |
4181 | Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here) |
4182 | << BaseSpec->getType() << BaseSpec->getSourceRange(); |
4183 | |
4184 | TyD = Type; |
4185 | } |
4186 | } |
4187 | } |
4188 | |
4189 | if (!TyD && BaseType.isNull()) { |
4190 | Diag(IdLoc, diag::err_mem_init_not_member_or_class) |
4191 | << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd()); |
4192 | return true; |
4193 | } |
4194 | } |
4195 | |
4196 | if (BaseType.isNull()) { |
4197 | BaseType = Context.getTypeDeclType(TyD); |
4198 | MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false); |
4199 | if (SS.isSet()) { |
4200 | BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(), |
4201 | BaseType); |
4202 | TInfo = Context.CreateTypeSourceInfo(BaseType); |
4203 | ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>(); |
4204 | TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc); |
4205 | TL.setElaboratedKeywordLoc(SourceLocation()); |
4206 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); |
4207 | } |
4208 | } |
4209 | } |
4210 | |
4211 | if (!TInfo) |
4212 | TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc); |
4213 | |
4214 | return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc); |
4215 | } |
4216 | |
4217 | MemInitResult |
4218 | Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init, |
4219 | SourceLocation IdLoc) { |
4220 | FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member); |
4221 | IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member); |
4222 | assert((DirectMember || IndirectMember) &&(((DirectMember || IndirectMember) && "Member must be a FieldDecl or IndirectFieldDecl" ) ? static_cast<void> (0) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 4223, __PRETTY_FUNCTION__)) |
4223 | "Member must be a FieldDecl or IndirectFieldDecl")(((DirectMember || IndirectMember) && "Member must be a FieldDecl or IndirectFieldDecl" ) ? static_cast<void> (0) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 4223, __PRETTY_FUNCTION__)); |
4224 | |
4225 | if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) |
4226 | return true; |
4227 | |
4228 | if (Member->isInvalidDecl()) |
4229 | return true; |
4230 | |
4231 | MultiExprArg Args; |
4232 | if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { |
4233 | Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); |
4234 | } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { |
4235 | Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); |
4236 | } else { |
4237 | // Template instantiation doesn't reconstruct ParenListExprs for us. |
4238 | Args = Init; |
4239 | } |
4240 | |
4241 | SourceRange InitRange = Init->getSourceRange(); |
4242 | |
4243 | if (Member->getType()->isDependentType() || Init->isTypeDependent()) { |
4244 | // Can't check initialization for a member of dependent type or when |
4245 | // any of the arguments are type-dependent expressions. |
4246 | DiscardCleanupsInEvaluationContext(); |
4247 | } else { |
4248 | bool InitList = false; |
4249 | if (isa<InitListExpr>(Init)) { |
4250 | InitList = true; |
4251 | Args = Init; |
4252 | } |
4253 | |
4254 | // Initialize the member. |
4255 | InitializedEntity MemberEntity = |
4256 | DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr) |
4257 | : InitializedEntity::InitializeMember(IndirectMember, |
4258 | nullptr); |
4259 | InitializationKind Kind = |
4260 | InitList ? InitializationKind::CreateDirectList( |
4261 | IdLoc, Init->getBeginLoc(), Init->getEndLoc()) |
4262 | : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(), |
4263 | InitRange.getEnd()); |
4264 | |
4265 | InitializationSequence InitSeq(*this, MemberEntity, Kind, Args); |
4266 | ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, |
4267 | nullptr); |
4268 | if (MemberInit.isInvalid()) |
4269 | return true; |
4270 | |
4271 | // C++11 [class.base.init]p7: |
4272 | // The initialization of each base and member constitutes a |
4273 | // full-expression. |
4274 | MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(), |
4275 | /*DiscardedValue*/ false); |
4276 | if (MemberInit.isInvalid()) |
4277 | return true; |
4278 | |
4279 | Init = MemberInit.get(); |
4280 | } |
4281 | |
4282 | if (DirectMember) { |
4283 | return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc, |
4284 | InitRange.getBegin(), Init, |
4285 | InitRange.getEnd()); |
4286 | } else { |
4287 | return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc, |
4288 | InitRange.getBegin(), Init, |
4289 | InitRange.getEnd()); |
4290 | } |
4291 | } |
4292 | |
4293 | MemInitResult |
4294 | Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init, |
4295 | CXXRecordDecl *ClassDecl) { |
4296 | SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin(); |
4297 | if (!LangOpts.CPlusPlus11) |
4298 | return Diag(NameLoc, diag::err_delegating_ctor) |
4299 | << TInfo->getTypeLoc().getLocalSourceRange(); |
4300 | Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor); |
4301 | |
4302 | bool InitList = true; |
4303 | MultiExprArg Args = Init; |
4304 | if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { |
4305 | InitList = false; |
4306 | Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); |
4307 | } |
4308 | |
4309 | SourceRange InitRange = Init->getSourceRange(); |
4310 | // Initialize the object. |
4311 | InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation( |
4312 | QualType(ClassDecl->getTypeForDecl(), 0)); |
4313 | InitializationKind Kind = |
4314 | InitList ? InitializationKind::CreateDirectList( |
4315 | NameLoc, Init->getBeginLoc(), Init->getEndLoc()) |
4316 | : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(), |
4317 | InitRange.getEnd()); |
4318 | InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args); |
4319 | ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind, |
4320 | Args, nullptr); |
4321 | if (DelegationInit.isInvalid()) |
4322 | return true; |
4323 | |
4324 | assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&((cast<CXXConstructExpr>(DelegationInit.get())->getConstructor () && "Delegating constructor with no target?") ? static_cast <void> (0) : __assert_fail ("cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && \"Delegating constructor with no target?\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 4325, __PRETTY_FUNCTION__)) |
4325 | "Delegating constructor with no target?")((cast<CXXConstructExpr>(DelegationInit.get())->getConstructor () && "Delegating constructor with no target?") ? static_cast <void> (0) : __assert_fail ("cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && \"Delegating constructor with no target?\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 4325, __PRETTY_FUNCTION__)); |
4326 | |
4327 | // C++11 [class.base.init]p7: |
4328 | // The initialization of each base and member constitutes a |
4329 | // full-expression. |
4330 | DelegationInit = ActOnFinishFullExpr( |
4331 | DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false); |
4332 | if (DelegationInit.isInvalid()) |
4333 | return true; |
4334 | |
4335 | // If we are in a dependent context, template instantiation will |
4336 | // perform this type-checking again. Just save the arguments that we |
4337 | // received in a ParenListExpr. |
4338 | // FIXME: This isn't quite ideal, since our ASTs don't capture all |
4339 | // of the information that we have about the base |
4340 | // initializer. However, deconstructing the ASTs is a dicey process, |
4341 | // and this approach is far more likely to get the corner cases right. |
4342 | if (CurContext->isDependentContext()) |
4343 | DelegationInit = Init; |
4344 | |
4345 | return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(), |
4346 | DelegationInit.getAs<Expr>(), |
4347 | InitRange.getEnd()); |
4348 | } |
4349 | |
4350 | MemInitResult |
4351 | Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, |
4352 | Expr *Init, CXXRecordDecl *ClassDecl, |
4353 | SourceLocation EllipsisLoc) { |
4354 | SourceLocation BaseLoc |
4355 | = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin(); |
4356 | |
4357 | if (!BaseType->isDependentType() && !BaseType->isRecordType()) |
4358 | return Diag(BaseLoc, diag::err_base_init_does_not_name_class) |
4359 | << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); |
4360 | |
4361 | // C++ [class.base.init]p2: |
4362 | // [...] Unless the mem-initializer-id names a nonstatic data |
4363 | // member of the constructor's class or a direct or virtual base |
4364 | // of that class, the mem-initializer is ill-formed. A |
4365 | // mem-initializer-list can initialize a base class using any |
4366 | // name that denotes that base class type. |
4367 | bool Dependent = BaseType->isDependentType() || Init->isTypeDependent(); |
4368 | |
4369 | SourceRange InitRange = Init->getSourceRange(); |
4370 | if (EllipsisLoc.isValid()) { |
4371 | // This is a pack expansion. |
4372 | if (!BaseType->containsUnexpandedParameterPack()) { |
4373 | Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) |
4374 | << SourceRange(BaseLoc, InitRange.getEnd()); |
4375 | |
4376 | EllipsisLoc = SourceLocation(); |
4377 | } |
4378 | } else { |
4379 | // Check for any unexpanded parameter packs. |
4380 | if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer)) |
4381 | return true; |
4382 | |
4383 | if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) |
4384 | return true; |
4385 | } |
4386 | |
4387 | // Check for direct and virtual base classes. |
4388 | const CXXBaseSpecifier *DirectBaseSpec = nullptr; |
4389 | const CXXBaseSpecifier *VirtualBaseSpec = nullptr; |
4390 | if (!Dependent) { |
4391 | if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0), |
4392 | BaseType)) |
4393 | return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl); |
4394 | |
4395 | FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec, |
4396 | VirtualBaseSpec); |
4397 | |
4398 | // C++ [base.class.init]p2: |
4399 | // Unless the mem-initializer-id names a nonstatic data member of the |
4400 | // constructor's class or a direct or virtual base of that class, the |
4401 | // mem-initializer is ill-formed. |
4402 | if (!DirectBaseSpec && !VirtualBaseSpec) { |
4403 | // If the class has any dependent bases, then it's possible that |
4404 | // one of those types will resolve to the same type as |
4405 | // BaseType. Therefore, just treat this as a dependent base |
4406 | // class initialization. FIXME: Should we try to check the |
4407 | // initialization anyway? It seems odd. |
4408 | if (ClassDecl->hasAnyDependentBases()) |
4409 | Dependent = true; |
4410 | else |
4411 | return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) |
4412 | << BaseType << Context.getTypeDeclType(ClassDecl) |
4413 | << BaseTInfo->getTypeLoc().getLocalSourceRange(); |
4414 | } |
4415 | } |
4416 | |
4417 | if (Dependent) { |
4418 | DiscardCleanupsInEvaluationContext(); |
4419 | |
4420 | return new (Context) CXXCtorInitializer(Context, BaseTInfo, |
4421 | /*IsVirtual=*/false, |
4422 | InitRange.getBegin(), Init, |
4423 | InitRange.getEnd(), EllipsisLoc); |
4424 | } |
4425 | |
4426 | // C++ [base.class.init]p2: |
4427 | // If a mem-initializer-id is ambiguous because it designates both |
4428 | // a direct non-virtual base class and an inherited virtual base |
4429 | // class, the mem-initializer is ill-formed. |
4430 | if (DirectBaseSpec && VirtualBaseSpec) |
4431 | return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) |
4432 | << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); |
4433 | |
4434 | const CXXBaseSpecifier *BaseSpec = DirectBaseSpec; |
4435 | if (!BaseSpec) |
4436 | BaseSpec = VirtualBaseSpec; |
4437 | |
4438 | // Initialize the base. |
4439 | bool InitList = true; |
4440 | MultiExprArg Args = Init; |
4441 | if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { |
4442 | InitList = false; |
4443 | Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); |
4444 | } |
4445 | |
4446 | InitializedEntity BaseEntity = |
4447 | InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec); |
4448 | InitializationKind Kind = |
4449 | InitList ? InitializationKind::CreateDirectList(BaseLoc) |
4450 | : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(), |
4451 | InitRange.getEnd()); |
4452 | InitializationSequence InitSeq(*this, BaseEntity, Kind, Args); |
4453 | ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr); |
4454 | if (BaseInit.isInvalid()) |
4455 | return true; |
4456 | |
4457 | // C++11 [class.base.init]p7: |
4458 | // The initialization of each base and member constitutes a |
4459 | // full-expression. |
4460 | BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(), |
4461 | /*DiscardedValue*/ false); |
4462 | if (BaseInit.isInvalid()) |
4463 | return true; |
4464 | |
4465 | // If we are in a dependent context, template instantiation will |
4466 | // perform this type-checking again. Just save the arguments that we |
4467 | // received in a ParenListExpr. |
4468 | // FIXME: This isn't quite ideal, since our ASTs don't capture all |
4469 | // of the information that we have about the base |
4470 | // initializer. However, deconstructing the ASTs is a dicey process, |
4471 | // and this approach is far more likely to get the corner cases right. |
4472 | if (CurContext->isDependentContext()) |
4473 | BaseInit = Init; |
4474 | |
4475 | return new (Context) CXXCtorInitializer(Context, BaseTInfo, |
4476 | BaseSpec->isVirtual(), |
4477 | InitRange.getBegin(), |
4478 | BaseInit.getAs<Expr>(), |
4479 | InitRange.getEnd(), EllipsisLoc); |
4480 | } |
4481 | |
4482 | // Create a static_cast\<T&&>(expr). |
4483 | static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) { |
4484 | if (T.isNull()) T = E->getType(); |
4485 | QualType TargetType = SemaRef.BuildReferenceType( |
4486 | T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName()); |
4487 | SourceLocation ExprLoc = E->getBeginLoc(); |
4488 | TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo( |
4489 | TargetType, ExprLoc); |
4490 | |
4491 | return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E, |
4492 | SourceRange(ExprLoc, ExprLoc), |
4493 | E->getSourceRange()).get(); |
4494 | } |
4495 | |
4496 | /// ImplicitInitializerKind - How an implicit base or member initializer should |
4497 | /// initialize its base or member. |
4498 | enum ImplicitInitializerKind { |
4499 | IIK_Default, |
4500 | IIK_Copy, |
4501 | IIK_Move, |
4502 | IIK_Inherit |
4503 | }; |
4504 | |
4505 | static bool |
4506 | BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, |
4507 | ImplicitInitializerKind ImplicitInitKind, |
4508 | CXXBaseSpecifier *BaseSpec, |
4509 | bool IsInheritedVirtualBase, |
4510 | CXXCtorInitializer *&CXXBaseInit) { |
4511 | InitializedEntity InitEntity |
4512 | = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec, |
4513 | IsInheritedVirtualBase); |
4514 | |
4515 | ExprResult BaseInit; |
4516 | |
4517 | switch (ImplicitInitKind) { |
4518 | case IIK_Inherit: |
4519 | case IIK_Default: { |
4520 | InitializationKind InitKind |
4521 | = InitializationKind::CreateDefault(Constructor->getLocation()); |
4522 | InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None); |
4523 | BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None); |
4524 | break; |
4525 | } |
4526 | |
4527 | case IIK_Move: |
4528 | case IIK_Copy: { |
4529 | bool Moving = ImplicitInitKind == IIK_Move; |
4530 | ParmVarDecl *Param = Constructor->getParamDecl(0); |
4531 | QualType ParamType = Param->getType().getNonReferenceType(); |
4532 | |
4533 | Expr *CopyCtorArg = |
4534 | DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), |
4535 | SourceLocation(), Param, false, |
4536 | Constructor->getLocation(), ParamType, |
4537 | VK_LValue, nullptr); |
4538 | |
4539 | SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg)); |
4540 | |
4541 | // Cast to the base class to avoid ambiguities. |
4542 | QualType ArgTy = |
4543 | SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(), |
4544 | ParamType.getQualifiers()); |
4545 | |
4546 | if (Moving) { |
4547 | CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg); |
4548 | } |
4549 | |
4550 | CXXCastPath BasePath; |
4551 | BasePath.push_back(BaseSpec); |
4552 | CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy, |
4553 | CK_UncheckedDerivedToBase, |
4554 | Moving ? VK_XValue : VK_LValue, |
4555 | &BasePath).get(); |
4556 | |
4557 | InitializationKind InitKind |
4558 | = InitializationKind::CreateDirect(Constructor->getLocation(), |
4559 | SourceLocation(), SourceLocation()); |
4560 | InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg); |
4561 | BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg); |
4562 | break; |
4563 | } |
4564 | } |
4565 | |
4566 | BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit); |
4567 | if (BaseInit.isInvalid()) |
4568 | return true; |
4569 | |
4570 | CXXBaseInit = |
4571 | new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, |
4572 | SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(), |
4573 | SourceLocation()), |
4574 | BaseSpec->isVirtual(), |
4575 | SourceLocation(), |
4576 | BaseInit.getAs<Expr>(), |
4577 | SourceLocation(), |
4578 | SourceLocation()); |
4579 | |
4580 | return false; |
4581 | } |
4582 | |
4583 | static bool RefersToRValueRef(Expr *MemRef) { |
4584 | ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl(); |
4585 | return Referenced->getType()->isRValueReferenceType(); |
4586 | } |
4587 | |
4588 | static bool |
4589 | BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, |
4590 | ImplicitInitializerKind ImplicitInitKind, |
4591 | FieldDecl *Field, IndirectFieldDecl *Indirect, |
4592 | CXXCtorInitializer *&CXXMemberInit) { |
4593 | if (Field->isInvalidDecl()) |
4594 | return true; |
4595 | |
4596 | SourceLocation Loc = Constructor->getLocation(); |
4597 | |
4598 | if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) { |
4599 | bool Moving = ImplicitInitKind == IIK_Move; |
4600 | ParmVarDecl *Param = Constructor->getParamDecl(0); |
4601 | QualType ParamType = Param->getType().getNonReferenceType(); |
4602 | |
4603 | // Suppress copying zero-width bitfields. |
4604 | if (Field->isZeroLengthBitField(SemaRef.Context)) |
4605 | return false; |
4606 | |
4607 | Expr *MemberExprBase = |
4608 | DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), |
4609 | SourceLocation(), Param, false, |
4610 | Loc, ParamType, VK_LValue, nullptr); |
4611 | |
4612 | SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase)); |
4613 | |
4614 | if (Moving) { |
4615 | MemberExprBase = CastForMoving(SemaRef, MemberExprBase); |
4616 | } |
4617 | |
4618 | // Build a reference to this field within the parameter. |
4619 | CXXScopeSpec SS; |
4620 | LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc, |
4621 | Sema::LookupMemberName); |
4622 | MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect) |
4623 | : cast<ValueDecl>(Field), AS_public); |
4624 | MemberLookup.resolveKind(); |
4625 | ExprResult CtorArg |
4626 | = SemaRef.BuildMemberReferenceExpr(MemberExprBase, |
4627 | ParamType, Loc, |
4628 | /*IsArrow=*/false, |
4629 | SS, |
4630 | /*TemplateKWLoc=*/SourceLocation(), |
4631 | /*FirstQualifierInScope=*/nullptr, |
4632 | MemberLookup, |
4633 | /*TemplateArgs=*/nullptr, |
4634 | /*S*/nullptr); |
4635 | if (CtorArg.isInvalid()) |
4636 | return true; |
4637 | |
4638 | // C++11 [class.copy]p15: |
4639 | // - if a member m has rvalue reference type T&&, it is direct-initialized |
4640 | // with static_cast<T&&>(x.m); |
4641 | if (RefersToRValueRef(CtorArg.get())) { |
4642 | CtorArg = CastForMoving(SemaRef, CtorArg.get()); |
4643 | } |
4644 | |
4645 | InitializedEntity Entity = |
4646 | Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, |
4647 | /*Implicit*/ true) |
4648 | : InitializedEntity::InitializeMember(Field, nullptr, |
4649 | /*Implicit*/ true); |
4650 | |
4651 | // Direct-initialize to use the copy constructor. |
4652 | InitializationKind InitKind = |
4653 | InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation()); |
4654 | |
4655 | Expr *CtorArgE = CtorArg.getAs<Expr>(); |
4656 | InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE); |
4657 | ExprResult MemberInit = |
4658 | InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1)); |
4659 | MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); |
4660 | if (MemberInit.isInvalid()) |
4661 | return true; |
4662 | |
4663 | if (Indirect) |
4664 | CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( |
4665 | SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc); |
4666 | else |
4667 | CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( |
4668 | SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc); |
4669 | return false; |
4670 | } |
4671 | |
4672 | assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&(((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit ) && "Unhandled implicit init kind!") ? static_cast< void> (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 4673, __PRETTY_FUNCTION__)) |
4673 | "Unhandled implicit init kind!")(((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit ) && "Unhandled implicit init kind!") ? static_cast< void> (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 4673, __PRETTY_FUNCTION__)); |
4674 | |
4675 | QualType FieldBaseElementType = |
4676 | SemaRef.Context.getBaseElementType(Field->getType()); |
4677 | |
4678 | if (FieldBaseElementType->isRecordType()) { |
4679 | InitializedEntity InitEntity = |
4680 | Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, |
4681 | /*Implicit*/ true) |
4682 | : InitializedEntity::InitializeMember(Field, nullptr, |
4683 | /*Implicit*/ true); |
4684 | InitializationKind InitKind = |
4685 | InitializationKind::CreateDefault(Loc); |
4686 | |
4687 | InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None); |
4688 | ExprResult MemberInit = |
4689 | InitSeq.Perform(SemaRef, InitEntity, InitKind, None); |
4690 | |
4691 | MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); |
4692 | if (MemberInit.isInvalid()) |
4693 | return true; |
4694 | |
4695 | if (Indirect) |
4696 | CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, |
4697 | Indirect, Loc, |
4698 | Loc, |
4699 | MemberInit.get(), |
4700 | Loc); |
4701 | else |
4702 | CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, |
4703 | Field, Loc, Loc, |
4704 | MemberInit.get(), |
4705 | Loc); |
4706 | return false; |
4707 | } |
4708 | |
4709 | if (!Field->getParent()->isUnion()) { |
4710 | if (FieldBaseElementType->isReferenceType()) { |
4711 | SemaRef.Diag(Constructor->getLocation(), |
4712 | diag::err_uninitialized_member_in_ctor) |
4713 | << (int)Constructor->isImplicit() |
4714 | << SemaRef.Context.getTagDeclType(Constructor->getParent()) |
4715 | << 0 << Field->getDeclName(); |
4716 | SemaRef.Diag(Field->getLocation(), diag::note_declared_at); |
4717 | return true; |
4718 | } |
4719 | |
4720 | if (FieldBaseElementType.isConstQualified()) { |
4721 | SemaRef.Diag(Constructor->getLocation(), |
4722 | diag::err_uninitialized_member_in_ctor) |
4723 | << (int)Constructor->isImplicit() |
4724 | << SemaRef.Context.getTagDeclType(Constructor->getParent()) |
4725 | << 1 << Field->getDeclName(); |
4726 | SemaRef.Diag(Field->getLocation(), diag::note_declared_at); |
4727 | return true; |
4728 | } |
4729 | } |
4730 | |
4731 | if (FieldBaseElementType.hasNonTrivialObjCLifetime()) { |
4732 | // ARC and Weak: |
4733 | // Default-initialize Objective-C pointers to NULL. |
4734 | CXXMemberInit |
4735 | = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field, |
4736 | Loc, Loc, |
4737 | new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()), |
4738 | Loc); |
4739 | return false; |
4740 | } |
4741 | |
4742 | // Nothing to initialize. |
4743 | CXXMemberInit = nullptr; |
4744 | return false; |
4745 | } |
4746 | |
4747 | namespace { |
4748 | struct BaseAndFieldInfo { |
4749 | Sema &S; |
4750 | CXXConstructorDecl *Ctor; |
4751 | bool AnyErrorsInInits; |
4752 | ImplicitInitializerKind IIK; |
4753 | llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields; |
4754 | SmallVector<CXXCtorInitializer*, 8> AllToInit; |
4755 | llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember; |
4756 | |
4757 | BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits) |
4758 | : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) { |
4759 | bool Generated = Ctor->isImplicit() || Ctor->isDefaulted(); |
4760 | if (Ctor->getInheritedConstructor()) |
4761 | IIK = IIK_Inherit; |
4762 | else if (Generated && Ctor->isCopyConstructor()) |
4763 | IIK = IIK_Copy; |
4764 | else if (Generated && Ctor->isMoveConstructor()) |
4765 | IIK = IIK_Move; |
4766 | else |
4767 | IIK = IIK_Default; |
4768 | } |
4769 | |
4770 | bool isImplicitCopyOrMove() const { |
4771 | switch (IIK) { |
4772 | case IIK_Copy: |
4773 | case IIK_Move: |
4774 | return true; |
4775 | |
4776 | case IIK_Default: |
4777 | case IIK_Inherit: |
4778 | return false; |
4779 | } |
4780 | |
4781 | llvm_unreachable("Invalid ImplicitInitializerKind!")::llvm::llvm_unreachable_internal("Invalid ImplicitInitializerKind!" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 4781); |
4782 | } |
4783 | |
4784 | bool addFieldInitializer(CXXCtorInitializer *Init) { |
4785 | AllToInit.push_back(Init); |
4786 | |
4787 | // Check whether this initializer makes the field "used". |
4788 | if (Init->getInit()->HasSideEffects(S.Context)) |
4789 | S.UnusedPrivateFields.remove(Init->getAnyMember()); |
4790 | |
4791 | return false; |
4792 | } |
4793 | |
4794 | bool isInactiveUnionMember(FieldDecl *Field) { |
4795 | RecordDecl *Record = Field->getParent(); |
4796 | if (!Record->isUnion()) |
4797 | return false; |
4798 | |
4799 | if (FieldDecl *Active = |
4800 | ActiveUnionMember.lookup(Record->getCanonicalDecl())) |
4801 | return Active != Field->getCanonicalDecl(); |
4802 | |
4803 | // In an implicit copy or move constructor, ignore any in-class initializer. |
4804 | if (isImplicitCopyOrMove()) |
4805 | return true; |
4806 | |
4807 | // If there's no explicit initialization, the field is active only if it |
4808 | // has an in-class initializer... |
4809 | if (Field->hasInClassInitializer()) |
4810 | return false; |
4811 | // ... or it's an anonymous struct or union whose class has an in-class |
4812 | // initializer. |
4813 | if (!Field->isAnonymousStructOrUnion()) |
4814 | return true; |
4815 | CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl(); |
4816 | return !FieldRD->hasInClassInitializer(); |
4817 | } |
4818 | |
4819 | /// Determine whether the given field is, or is within, a union member |
4820 | /// that is inactive (because there was an initializer given for a different |
4821 | /// member of the union, or because the union was not initialized at all). |
4822 | bool isWithinInactiveUnionMember(FieldDecl *Field, |
4823 | IndirectFieldDecl *Indirect) { |
4824 | if (!Indirect) |
4825 | return isInactiveUnionMember(Field); |
4826 | |
4827 | for (auto *C : Indirect->chain()) { |
4828 | FieldDecl *Field = dyn_cast<FieldDecl>(C); |
4829 | if (Field && isInactiveUnionMember(Field)) |
4830 | return true; |
4831 | } |
4832 | return false; |
4833 | } |
4834 | }; |
4835 | } |
4836 | |
4837 | /// Determine whether the given type is an incomplete or zero-lenfgth |
4838 | /// array type. |
4839 | static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) { |
4840 | if (T->isIncompleteArrayType()) |
4841 | return true; |
4842 | |
4843 | while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) { |
4844 | if (!ArrayT->getSize()) |
4845 | return true; |
4846 | |
4847 | T = ArrayT->getElementType(); |
4848 | } |
4849 | |
4850 | return false; |
4851 | } |
4852 | |
4853 | static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info, |
4854 | FieldDecl *Field, |
4855 | IndirectFieldDecl *Indirect = nullptr) { |
4856 | if (Field->isInvalidDecl()) |
4857 | return false; |
4858 | |
4859 | // Overwhelmingly common case: we have a direct initializer for this field. |
4860 | if (CXXCtorInitializer *Init = |
4861 | Info.AllBaseFields.lookup(Field->getCanonicalDecl())) |
4862 | return Info.addFieldInitializer(Init); |
4863 | |
4864 | // C++11 [class.base.init]p8: |
4865 | // if the entity is a non-static data member that has a |
4866 | // brace-or-equal-initializer and either |
4867 | // -- the constructor's class is a union and no other variant member of that |
4868 | // union is designated by a mem-initializer-id or |
4869 | // -- the constructor's class is not a union, and, if the entity is a member |
4870 | // of an anonymous union, no other member of that union is designated by |
4871 | // a mem-initializer-id, |
4872 | // the entity is initialized as specified in [dcl.init]. |
4873 | // |
4874 | // We also apply the same rules to handle anonymous structs within anonymous |
4875 | // unions. |
4876 | if (Info.isWithinInactiveUnionMember(Field, Indirect)) |
4877 | return false; |
4878 | |
4879 | if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) { |
4880 | ExprResult DIE = |
4881 | SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field); |
4882 | if (DIE.isInvalid()) |
4883 | return true; |
4884 | |
4885 | auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true); |
4886 | SemaRef.checkInitializerLifetime(Entity, DIE.get()); |
4887 | |
4888 | CXXCtorInitializer *Init; |
4889 | if (Indirect) |
4890 | Init = new (SemaRef.Context) |
4891 | CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(), |
4892 | SourceLocation(), DIE.get(), SourceLocation()); |
4893 | else |
4894 | Init = new (SemaRef.Context) |
4895 | CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(), |
4896 | SourceLocation(), DIE.get(), SourceLocation()); |
4897 | return Info.addFieldInitializer(Init); |
4898 | } |
4899 | |
4900 | // Don't initialize incomplete or zero-length arrays. |
4901 | if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType())) |
4902 | return false; |
4903 | |
4904 | // Don't try to build an implicit initializer if there were semantic |
4905 | // errors in any of the initializers (and therefore we might be |
4906 | // missing some that the user actually wrote). |
4907 | if (Info.AnyErrorsInInits) |
4908 | return false; |
4909 | |
4910 | CXXCtorInitializer *Init = nullptr; |
4911 | if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, |
4912 | Indirect, Init)) |
4913 | return true; |
4914 | |
4915 | if (!Init) |
4916 | return false; |
4917 | |
4918 | return Info.addFieldInitializer(Init); |
4919 | } |
4920 | |
4921 | bool |
4922 | Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor, |
4923 | CXXCtorInitializer *Initializer) { |
4924 | assert(Initializer->isDelegatingInitializer())((Initializer->isDelegatingInitializer()) ? static_cast< void> (0) : __assert_fail ("Initializer->isDelegatingInitializer()" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 4924, __PRETTY_FUNCTION__)); |
4925 | Constructor->setNumCtorInitializers(1); |
4926 | CXXCtorInitializer **initializer = |
4927 | new (Context) CXXCtorInitializer*[1]; |
4928 | memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*)); |
4929 | Constructor->setCtorInitializers(initializer); |
4930 | |
4931 | if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) { |
4932 | MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor); |
4933 | DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation()); |
4934 | } |
4935 | |
4936 | DelegatingCtorDecls.push_back(Constructor); |
4937 | |
4938 | DiagnoseUninitializedFields(*this, Constructor); |
4939 | |
4940 | return false; |
4941 | } |
4942 | |
4943 | bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors, |
4944 | ArrayRef<CXXCtorInitializer *> Initializers) { |
4945 | if (Constructor->isDependentContext()) { |
4946 | // Just store the initializers as written, they will be checked during |
4947 | // instantiation. |
4948 | if (!Initializers.empty()) { |
4949 | Constructor->setNumCtorInitializers(Initializers.size()); |
4950 | CXXCtorInitializer **baseOrMemberInitializers = |
4951 | new (Context) CXXCtorInitializer*[Initializers.size()]; |
4952 | memcpy(baseOrMemberInitializers, Initializers.data(), |
4953 | Initializers.size() * sizeof(CXXCtorInitializer*)); |
4954 | Constructor->setCtorInitializers(baseOrMemberInitializers); |
4955 | } |
4956 | |
4957 | // Let template instantiation know whether we had errors. |
4958 | if (AnyErrors) |
4959 | Constructor->setInvalidDecl(); |
4960 | |
4961 | return false; |
4962 | } |
4963 | |
4964 | BaseAndFieldInfo Info(*this, Constructor, AnyErrors); |
4965 | |
4966 | // We need to build the initializer AST according to order of construction |
4967 | // and not what user specified in the Initializers list. |
4968 | CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition(); |
4969 | if (!ClassDecl) |
4970 | return true; |
4971 | |
4972 | bool HadError = false; |
4973 | |
4974 | for (unsigned i = 0; i < Initializers.size(); i++) { |
4975 | CXXCtorInitializer *Member = Initializers[i]; |
4976 | |
4977 | if (Member->isBaseInitializer()) |
4978 | Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member; |
4979 | else { |
4980 | Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member; |
4981 | |
4982 | if (IndirectFieldDecl *F = Member->getIndirectMember()) { |
4983 | for (auto *C : F->chain()) { |
4984 | FieldDecl *FD = dyn_cast<FieldDecl>(C); |
4985 | if (FD && FD->getParent()->isUnion()) |
4986 | Info.ActiveUnionMember.insert(std::make_pair( |
4987 | FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); |
4988 | } |
4989 | } else if (FieldDecl *FD = Member->getMember()) { |
4990 | if (FD->getParent()->isUnion()) |
4991 | Info.ActiveUnionMember.insert(std::make_pair( |
4992 | FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); |
4993 | } |
4994 | } |
4995 | } |
4996 | |
4997 | // Keep track of the direct virtual bases. |
4998 | llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases; |
4999 | for (auto &I : ClassDecl->bases()) { |
5000 | if (I.isVirtual()) |
5001 | DirectVBases.insert(&I); |
5002 | } |
5003 | |
5004 | // Push virtual bases before others. |
5005 | for (auto &VBase : ClassDecl->vbases()) { |
5006 | if (CXXCtorInitializer *Value |
5007 | = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) { |
5008 | // [class.base.init]p7, per DR257: |
5009 | // A mem-initializer where the mem-initializer-id names a virtual base |
5010 | // class is ignored during execution of a constructor of any class that |
5011 | // is not the most derived class. |
5012 | if (ClassDecl->isAbstract()) { |
5013 | // FIXME: Provide a fixit to remove the base specifier. This requires |
5014 | // tracking the location of the associated comma for a base specifier. |
5015 | Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored) |
5016 | << VBase.getType() << ClassDecl; |
5017 | DiagnoseAbstractType(ClassDecl); |
5018 | } |
5019 | |
5020 | Info.AllToInit.push_back(Value); |
5021 | } else if (!AnyErrors && !ClassDecl->isAbstract()) { |
5022 | // [class.base.init]p8, per DR257: |
5023 | // If a given [...] base class is not named by a mem-initializer-id |
5024 | // [...] and the entity is not a virtual base class of an abstract |
5025 | // class, then [...] the entity is default-initialized. |
5026 | bool IsInheritedVirtualBase = !DirectVBases.count(&VBase); |
5027 | CXXCtorInitializer *CXXBaseInit; |
5028 | if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, |
5029 | &VBase, IsInheritedVirtualBase, |
5030 | CXXBaseInit)) { |
5031 | HadError = true; |
5032 | continue; |
5033 | } |
5034 | |
5035 | Info.AllToInit.push_back(CXXBaseInit); |
5036 | } |
5037 | } |
5038 | |
5039 | // Non-virtual bases. |
5040 | for (auto &Base : ClassDecl->bases()) { |
5041 | // Virtuals are in the virtual base list and already constructed. |
5042 | if (Base.isVirtual()) |
5043 | continue; |
5044 | |
5045 | if (CXXCtorInitializer *Value |
5046 | = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) { |
5047 | Info.AllToInit.push_back(Value); |
5048 | } else if (!AnyErrors) { |
5049 | CXXCtorInitializer *CXXBaseInit; |
5050 | if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, |
5051 | &Base, /*IsInheritedVirtualBase=*/false, |
5052 | CXXBaseInit)) { |
5053 | HadError = true; |
5054 | continue; |
5055 | } |
5056 | |
5057 | Info.AllToInit.push_back(CXXBaseInit); |
5058 | } |
5059 | } |
5060 | |
5061 | // Fields. |
5062 | for (auto *Mem : ClassDecl->decls()) { |
5063 | if (auto *F = dyn_cast<FieldDecl>(Mem)) { |
5064 | // C++ [class.bit]p2: |
5065 | // A declaration for a bit-field that omits the identifier declares an |
5066 | // unnamed bit-field. Unnamed bit-fields are not members and cannot be |
5067 | // initialized. |
5068 | if (F->isUnnamedBitfield()) |
5069 | continue; |
5070 | |
5071 | // If we're not generating the implicit copy/move constructor, then we'll |
5072 | // handle anonymous struct/union fields based on their individual |
5073 | // indirect fields. |
5074 | if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove()) |
5075 | continue; |
5076 | |
5077 | if (CollectFieldInitializer(*this, Info, F)) |
5078 | HadError = true; |
5079 | continue; |
5080 | } |
5081 | |
5082 | // Beyond this point, we only consider default initialization. |
5083 | if (Info.isImplicitCopyOrMove()) |
5084 | continue; |
5085 | |
5086 | if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) { |
5087 | if (F->getType()->isIncompleteArrayType()) { |
5088 | assert(ClassDecl->hasFlexibleArrayMember() &&((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid" ) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 5089, __PRETTY_FUNCTION__)) |
5089 | "Incomplete array type is not valid")((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid" ) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 5089, __PRETTY_FUNCTION__)); |
5090 | continue; |
5091 | } |
5092 | |
5093 | // Initialize each field of an anonymous struct individually. |
5094 | if (CollectFieldInitializer(*this, Info, F->getAnonField(), F)) |
5095 | HadError = true; |
5096 | |
5097 | continue; |
5098 | } |
5099 | } |
5100 | |
5101 | unsigned NumInitializers = Info.AllToInit.size(); |
5102 | if (NumInitializers > 0) { |
5103 | Constructor->setNumCtorInitializers(NumInitializers); |
5104 | CXXCtorInitializer **baseOrMemberInitializers = |
5105 | new (Context) CXXCtorInitializer*[NumInitializers]; |
5106 | memcpy(baseOrMemberInitializers, Info.AllToInit.data(), |
5107 | NumInitializers * sizeof(CXXCtorInitializer*)); |
5108 | Constructor->setCtorInitializers(baseOrMemberInitializers); |
5109 | |
5110 | // Constructors implicitly reference the base and member |
5111 | // destructors. |
5112 | MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(), |
5113 | Constructor->getParent()); |
5114 | } |
5115 | |
5116 | return HadError; |
5117 | } |
5118 | |
5119 | static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) { |
5120 | if (const RecordType *RT = Field->getType()->getAs<RecordType>()) { |
5121 | const RecordDecl *RD = RT->getDecl(); |
5122 | if (RD->isAnonymousStructOrUnion()) { |
5123 | for (auto *Field : RD->fields()) |
5124 | PopulateKeysForFields(Field, IdealInits); |
5125 | return; |
5126 | } |
5127 | } |
5128 | IdealInits.push_back(Field->getCanonicalDecl()); |
5129 | } |
5130 | |
5131 | static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) { |
5132 | return Context.getCanonicalType(BaseType).getTypePtr(); |
5133 | } |
5134 | |
5135 | static const void *GetKeyForMember(ASTContext &Context, |
5136 | CXXCtorInitializer *Member) { |
5137 | if (!Member->isAnyMemberInitializer()) |
5138 | return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0)); |
5139 | |
5140 | return Member->getAnyMember()->getCanonicalDecl(); |
5141 | } |
5142 | |
5143 | static void DiagnoseBaseOrMemInitializerOrder( |
5144 | Sema &SemaRef, const CXXConstructorDecl *Constructor, |
5145 | ArrayRef<CXXCtorInitializer *> Inits) { |
5146 | if (Constructor->getDeclContext()->isDependentContext()) |
5147 | return; |
5148 | |
5149 | // Don't check initializers order unless the warning is enabled at the |
5150 | // location of at least one initializer. |
5151 | bool ShouldCheckOrder = false; |
5152 | for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { |
5153 | CXXCtorInitializer *Init = Inits[InitIndex]; |
5154 | if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order, |
5155 | Init->getSourceLocation())) { |
5156 | ShouldCheckOrder = true; |
5157 | break; |
5158 | } |
5159 | } |
5160 | if (!ShouldCheckOrder) |
5161 | return; |
5162 | |
5163 | // Build the list of bases and members in the order that they'll |
5164 | // actually be initialized. The explicit initializers should be in |
5165 | // this same order but may be missing things. |
5166 | SmallVector<const void*, 32> IdealInitKeys; |
5167 | |
5168 | const CXXRecordDecl *ClassDecl = Constructor->getParent(); |
5169 | |
5170 | // 1. Virtual bases. |
5171 | for (const auto &VBase : ClassDecl->vbases()) |
5172 | IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType())); |
5173 | |
5174 | // 2. Non-virtual bases. |
5175 | for (const auto &Base : ClassDecl->bases()) { |
5176 | if (Base.isVirtual()) |
5177 | continue; |
5178 | IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType())); |
5179 | } |
5180 | |
5181 | // 3. Direct fields. |
5182 | for (auto *Field : ClassDecl->fields()) { |
5183 | if (Field->isUnnamedBitfield()) |
5184 | continue; |
5185 | |
5186 | PopulateKeysForFields(Field, IdealInitKeys); |
5187 | } |
5188 | |
5189 | unsigned NumIdealInits = IdealInitKeys.size(); |
5190 | unsigned IdealIndex = 0; |
5191 | |
5192 | CXXCtorInitializer *PrevInit = nullptr; |
5193 | for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { |
5194 | CXXCtorInitializer *Init = Inits[InitIndex]; |
5195 | const void *InitKey = GetKeyForMember(SemaRef.Context, Init); |
5196 | |
5197 | // Scan forward to try to find this initializer in the idealized |
5198 | // initializers list. |
5199 | for (; IdealIndex != NumIdealInits; ++IdealIndex) |
5200 | if (InitKey == IdealInitKeys[IdealIndex]) |
5201 | break; |
5202 | |
5203 | // If we didn't find this initializer, it must be because we |
5204 | // scanned past it on a previous iteration. That can only |
5205 | // happen if we're out of order; emit a warning. |
5206 | if (IdealIndex == NumIdealInits && PrevInit) { |
5207 | Sema::SemaDiagnosticBuilder D = |
5208 | SemaRef.Diag(PrevInit->getSourceLocation(), |
5209 | diag::warn_initializer_out_of_order); |
5210 | |
5211 | if (PrevInit->isAnyMemberInitializer()) |
5212 | D << 0 << PrevInit->getAnyMember()->getDeclName(); |
5213 | else |
5214 | D << 1 << PrevInit->getTypeSourceInfo()->getType(); |
5215 | |
5216 | if (Init->isAnyMemberInitializer()) |
5217 | D << 0 << Init->getAnyMember()->getDeclName(); |
5218 | else |
5219 | D << 1 << Init->getTypeSourceInfo()->getType(); |
5220 | |
5221 | // Move back to the initializer's location in the ideal list. |
5222 | for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex) |
5223 | if (InitKey == IdealInitKeys[IdealIndex]) |
5224 | break; |
5225 | |
5226 | assert(IdealIndex < NumIdealInits &&((IdealIndex < NumIdealInits && "initializer not found in initializer list" ) ? static_cast<void> (0) : __assert_fail ("IdealIndex < NumIdealInits && \"initializer not found in initializer list\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 5227, __PRETTY_FUNCTION__)) |
5227 | "initializer not found in initializer list")((IdealIndex < NumIdealInits && "initializer not found in initializer list" ) ? static_cast<void> (0) : __assert_fail ("IdealIndex < NumIdealInits && \"initializer not found in initializer list\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 5227, __PRETTY_FUNCTION__)); |
5228 | } |
5229 | |
5230 | PrevInit = Init; |
5231 | } |
5232 | } |
5233 | |
5234 | namespace { |
5235 | bool CheckRedundantInit(Sema &S, |
5236 | CXXCtorInitializer *Init, |
5237 | CXXCtorInitializer *&PrevInit) { |
5238 | if (!PrevInit) { |
5239 | PrevInit = Init; |
5240 | return false; |
5241 | } |
5242 | |
5243 | if (FieldDecl *Field = Init->getAnyMember()) |
5244 | S.Diag(Init->getSourceLocation(), |
5245 | diag::err_multiple_mem_initialization) |
5246 | << Field->getDeclName() |
5247 | << Init->getSourceRange(); |
5248 | else { |
5249 | const Type *BaseClass = Init->getBaseClass(); |
5250 | assert(BaseClass && "neither field nor base")((BaseClass && "neither field nor base") ? static_cast <void> (0) : __assert_fail ("BaseClass && \"neither field nor base\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 5250, __PRETTY_FUNCTION__)); |
5251 | S.Diag(Init->getSourceLocation(), |
5252 | diag::err_multiple_base_initialization) |
5253 | << QualType(BaseClass, 0) |
5254 | << Init->getSourceRange(); |
5255 | } |
5256 | S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer) |
5257 | << 0 << PrevInit->getSourceRange(); |
5258 | |
5259 | return true; |
5260 | } |
5261 | |
5262 | typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry; |
5263 | typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap; |
5264 | |
5265 | bool CheckRedundantUnionInit(Sema &S, |
5266 | CXXCtorInitializer *Init, |
5267 | RedundantUnionMap &Unions) { |
5268 | FieldDecl *Field = Init->getAnyMember(); |
5269 | RecordDecl *Parent = Field->getParent(); |
5270 | NamedDecl *Child = Field; |
5271 | |
5272 | while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) { |
5273 | if (Parent->isUnion()) { |
5274 | UnionEntry &En = Unions[Parent]; |
5275 | if (En.first && En.first != Child) { |
5276 | S.Diag(Init->getSourceLocation(), |
5277 | diag::err_multiple_mem_union_initialization) |
5278 | << Field->getDeclName() |
5279 | << Init->getSourceRange(); |
5280 | S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer) |
5281 | << 0 << En.second->getSourceRange(); |
5282 | return true; |
5283 | } |
5284 | if (!En.first) { |
5285 | En.first = Child; |
5286 | En.second = Init; |
5287 | } |
5288 | if (!Parent->isAnonymousStructOrUnion()) |
5289 | return false; |
5290 | } |
5291 | |
5292 | Child = Parent; |
5293 | Parent = cast<RecordDecl>(Parent->getDeclContext()); |
5294 | } |
5295 | |
5296 | return false; |
5297 | } |
5298 | } |
5299 | |
5300 | /// ActOnMemInitializers - Handle the member initializers for a constructor. |
5301 | void Sema::ActOnMemInitializers(Decl *ConstructorDecl, |
5302 | SourceLocation ColonLoc, |
5303 | ArrayRef<CXXCtorInitializer*> MemInits, |
5304 | bool AnyErrors) { |
5305 | if (!ConstructorDecl) |
5306 | return; |
5307 | |
5308 | AdjustDeclIfTemplate(ConstructorDecl); |
5309 | |
5310 | CXXConstructorDecl *Constructor |
5311 | = dyn_cast<CXXConstructorDecl>(ConstructorDecl); |
5312 | |
5313 | if (!Constructor) { |
5314 | Diag(ColonLoc, diag::err_only_constructors_take_base_inits); |
5315 | return; |
5316 | } |
5317 | |
5318 | // Mapping for the duplicate initializers check. |
5319 | // For member initializers, this is keyed with a FieldDecl*. |
5320 | // For base initializers, this is keyed with a Type*. |
5321 | llvm::DenseMap<const void *, CXXCtorInitializer *> Members; |
5322 | |
5323 | // Mapping for the inconsistent anonymous-union initializers check. |
5324 | RedundantUnionMap MemberUnions; |
5325 | |
5326 | bool HadError = false; |
5327 | for (unsigned i = 0; i < MemInits.size(); i++) { |
5328 | CXXCtorInitializer *Init = MemInits[i]; |
5329 | |
5330 | // Set the source order index. |
5331 | Init->setSourceOrder(i); |
5332 | |
5333 | if (Init->isAnyMemberInitializer()) { |
5334 | const void *Key = GetKeyForMember(Context, Init); |
5335 | if (CheckRedundantInit(*this, Init, Members[Key]) || |
5336 | CheckRedundantUnionInit(*this, Init, MemberUnions)) |
5337 | HadError = true; |
5338 | } else if (Init->isBaseInitializer()) { |
5339 | const void *Key = GetKeyForMember(Context, Init); |
5340 | if (CheckRedundantInit(*this, Init, Members[Key])) |
5341 | HadError = true; |
5342 | } else { |
5343 | assert(Init->isDelegatingInitializer())((Init->isDelegatingInitializer()) ? static_cast<void> (0) : __assert_fail ("Init->isDelegatingInitializer()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 5343, __PRETTY_FUNCTION__)); |
5344 | // This must be the only initializer |
5345 | if (MemInits.size() != 1) { |
5346 | Diag(Init->getSourceLocation(), |
5347 | diag::err_delegating_initializer_alone) |
5348 | << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange(); |
5349 | // We will treat this as being the only initializer. |
5350 | } |
5351 | SetDelegatingInitializer(Constructor, MemInits[i]); |
5352 | // Return immediately as the initializer is set. |
5353 | return; |
5354 | } |
5355 | } |
5356 | |
5357 | if (HadError) |
5358 | return; |
5359 | |
5360 | DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits); |
5361 | |
5362 | SetCtorInitializers(Constructor, AnyErrors, MemInits); |
5363 | |
5364 | DiagnoseUninitializedFields(*this, Constructor); |
5365 | } |
5366 | |
5367 | void |
5368 | Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location, |
5369 | CXXRecordDecl *ClassDecl) { |
5370 | // Ignore dependent contexts. Also ignore unions, since their members never |
5371 | // have destructors implicitly called. |
5372 | if (ClassDecl->isDependentContext() || ClassDecl->isUnion()) |
5373 | return; |
5374 | |
5375 | // FIXME: all the access-control diagnostics are positioned on the |
5376 | // field/base declaration. That's probably good; that said, the |
5377 | // user might reasonably want to know why the destructor is being |
5378 | // emitted, and we currently don't say. |
5379 | |
5380 | // Non-static data members. |
5381 | for (auto *Field : ClassDecl->fields()) { |
5382 | if (Field->isInvalidDecl()) |
5383 | continue; |
5384 | |
5385 | // Don't destroy incomplete or zero-length arrays. |
5386 | if (isIncompleteOrZeroLengthArrayType(Context, Field->getType())) |
5387 | continue; |
5388 | |
5389 | QualType FieldType = Context.getBaseElementType(Field->getType()); |
5390 | |
5391 | const RecordType* RT = FieldType->getAs<RecordType>(); |
5392 | if (!RT) |
5393 | continue; |
5394 | |
5395 | CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); |
5396 | if (FieldClassDecl->isInvalidDecl()) |
5397 | continue; |
5398 | if (FieldClassDecl->hasIrrelevantDestructor()) |
5399 | continue; |
5400 | // The destructor for an implicit anonymous union member is never invoked. |
5401 | if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) |
5402 | continue; |
5403 | |
5404 | CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl); |
5405 | assert(Dtor && "No dtor found for FieldClassDecl!")((Dtor && "No dtor found for FieldClassDecl!") ? static_cast <void> (0) : __assert_fail ("Dtor && \"No dtor found for FieldClassDecl!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 5405, __PRETTY_FUNCTION__)); |
5406 | CheckDestructorAccess(Field->getLocation(), Dtor, |
5407 | PDiag(diag::err_access_dtor_field) |
5408 | << Field->getDeclName() |
5409 | << FieldType); |
5410 | |
5411 | MarkFunctionReferenced(Location, Dtor); |
5412 | DiagnoseUseOfDecl(Dtor, Location); |
5413 | } |
5414 | |
5415 | // We only potentially invoke the destructors of potentially constructed |
5416 | // subobjects. |
5417 | bool VisitVirtualBases = !ClassDecl->isAbstract(); |
5418 | |
5419 | llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases; |
5420 | |
5421 | // Bases. |
5422 | for (const auto &Base : ClassDecl->bases()) { |
5423 | // Bases are always records in a well-formed non-dependent class. |
5424 | const RecordType *RT = Base.getType()->getAs<RecordType>(); |
5425 | |
5426 | // Remember direct virtual bases. |
5427 | if (Base.isVirtual()) { |
5428 | if (!VisitVirtualBases) |
5429 | continue; |
5430 | DirectVirtualBases.insert(RT); |
5431 | } |
5432 | |
5433 | CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); |
5434 | // If our base class is invalid, we probably can't get its dtor anyway. |
5435 | if (BaseClassDecl->isInvalidDecl()) |
5436 | continue; |
5437 | if (BaseClassDecl->hasIrrelevantDestructor()) |
5438 | continue; |
5439 | |
5440 | CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); |
5441 | assert(Dtor && "No dtor found for BaseClassDecl!")((Dtor && "No dtor found for BaseClassDecl!") ? static_cast <void> (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 5441, __PRETTY_FUNCTION__)); |
5442 | |
5443 | // FIXME: caret should be on the start of the class name |
5444 | CheckDestructorAccess(Base.getBeginLoc(), Dtor, |
5445 | PDiag(diag::err_access_dtor_base) |
5446 | << Base.getType() << Base.getSourceRange(), |
5447 | Context.getTypeDeclType(ClassDecl)); |
5448 | |
5449 | MarkFunctionReferenced(Location, Dtor); |
5450 | DiagnoseUseOfDecl(Dtor, Location); |
5451 | } |
5452 | |
5453 | if (!VisitVirtualBases) |
5454 | return; |
5455 | |
5456 | // Virtual bases. |
5457 | for (const auto &VBase : ClassDecl->vbases()) { |
5458 | // Bases are always records in a well-formed non-dependent class. |
5459 | const RecordType *RT = VBase.getType()->castAs<RecordType>(); |
5460 | |
5461 | // Ignore direct virtual bases. |
5462 | if (DirectVirtualBases.count(RT)) |
5463 | continue; |
5464 | |
5465 | CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); |
5466 | // If our base class is invalid, we probably can't get its dtor anyway. |
5467 | if (BaseClassDecl->isInvalidDecl()) |
5468 | continue; |
5469 | if (BaseClassDecl->hasIrrelevantDestructor()) |
5470 | continue; |
5471 | |
5472 | CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); |
5473 | assert(Dtor && "No dtor found for BaseClassDecl!")((Dtor && "No dtor found for BaseClassDecl!") ? static_cast <void> (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 5473, __PRETTY_FUNCTION__)); |
5474 | if (CheckDestructorAccess( |
5475 | ClassDecl->getLocation(), Dtor, |
5476 | PDiag(diag::err_access_dtor_vbase) |
5477 | << Context.getTypeDeclType(ClassDecl) << VBase.getType(), |
5478 | Context.getTypeDeclType(ClassDecl)) == |
5479 | AR_accessible) { |
5480 | CheckDerivedToBaseConversion( |
5481 | Context.getTypeDeclType(ClassDecl), VBase.getType(), |
5482 | diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(), |
5483 | SourceRange(), DeclarationName(), nullptr); |
5484 | } |
5485 | |
5486 | MarkFunctionReferenced(Location, Dtor); |
5487 | DiagnoseUseOfDecl(Dtor, Location); |
5488 | } |
5489 | } |
5490 | |
5491 | void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) { |
5492 | if (!CDtorDecl) |
5493 | return; |
5494 | |
5495 | if (CXXConstructorDecl *Constructor |
5496 | = dyn_cast<CXXConstructorDecl>(CDtorDecl)) { |
5497 | SetCtorInitializers(Constructor, /*AnyErrors=*/false); |
5498 | DiagnoseUninitializedFields(*this, Constructor); |
5499 | } |
5500 | } |
5501 | |
5502 | bool Sema::isAbstractType(SourceLocation Loc, QualType T) { |
5503 | if (!getLangOpts().CPlusPlus) |
5504 | return false; |
5505 | |
5506 | const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl(); |
5507 | if (!RD) |
5508 | return false; |
5509 | |
5510 | // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a |
5511 | // class template specialization here, but doing so breaks a lot of code. |
5512 | |
5513 | // We can't answer whether something is abstract until it has a |
5514 | // definition. If it's currently being defined, we'll walk back |
5515 | // over all the declarations when we have a full definition. |
5516 | const CXXRecordDecl *Def = RD->getDefinition(); |
5517 | if (!Def || Def->isBeingDefined()) |
5518 | return false; |
5519 | |
5520 | return RD->isAbstract(); |
5521 | } |
5522 | |
5523 | bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, |
5524 | TypeDiagnoser &Diagnoser) { |
5525 | if (!isAbstractType(Loc, T)) |
5526 | return false; |
5527 | |
5528 | T = Context.getBaseElementType(T); |
5529 | Diagnoser.diagnose(*this, Loc, T); |
5530 | DiagnoseAbstractType(T->getAsCXXRecordDecl()); |
5531 | return true; |
5532 | } |
5533 | |
5534 | void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) { |
5535 | // Check if we've already emitted the list of pure virtual functions |
5536 | // for this class. |
5537 | if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) |
5538 | return; |
5539 | |
5540 | // If the diagnostic is suppressed, don't emit the notes. We're only |
5541 | // going to emit them once, so try to attach them to a diagnostic we're |
5542 | // actually going to show. |
5543 | if (Diags.isLastDiagnosticIgnored()) |
5544 | return; |
5545 | |
5546 | CXXFinalOverriderMap FinalOverriders; |
5547 | RD->getFinalOverriders(FinalOverriders); |
5548 | |
5549 | // Keep a set of seen pure methods so we won't diagnose the same method |
5550 | // more than once. |
5551 | llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods; |
5552 | |
5553 | for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), |
5554 | MEnd = FinalOverriders.end(); |
5555 | M != MEnd; |
5556 | ++M) { |
5557 | for (OverridingMethods::iterator SO = M->second.begin(), |
5558 | SOEnd = M->second.end(); |
5559 | SO != SOEnd; ++SO) { |
5560 | // C++ [class.abstract]p4: |
5561 | // A class is abstract if it contains or inherits at least one |
5562 | // pure virtual function for which the final overrider is pure |
5563 | // virtual. |
5564 | |
5565 | // |
5566 | if (SO->second.size() != 1) |
5567 | continue; |
5568 | |
5569 | if (!SO->second.front().Method->isPure()) |
5570 | continue; |
5571 | |
5572 | if (!SeenPureMethods.insert(SO->second.front().Method).second) |
5573 | continue; |
5574 | |
5575 | Diag(SO->second.front().Method->getLocation(), |
5576 | diag::note_pure_virtual_function) |
5577 | << SO->second.front().Method->getDeclName() << RD->getDeclName(); |
5578 | } |
5579 | } |
5580 | |
5581 | if (!PureVirtualClassDiagSet) |
5582 | PureVirtualClassDiagSet.reset(new RecordDeclSetTy); |
5583 | PureVirtualClassDiagSet->insert(RD); |
5584 | } |
5585 | |
5586 | namespace { |
5587 | struct AbstractUsageInfo { |
5588 | Sema &S; |
5589 | CXXRecordDecl *Record; |
5590 | CanQualType AbstractType; |
5591 | bool Invalid; |
5592 | |
5593 | AbstractUsageInfo(Sema &S, CXXRecordDecl *Record) |
5594 | : S(S), Record(Record), |
5595 | AbstractType(S.Context.getCanonicalType( |
5596 | S.Context.getTypeDeclType(Record))), |
5597 | Invalid(false) {} |
5598 | |
5599 | void DiagnoseAbstractType() { |
5600 | if (Invalid) return; |
5601 | S.DiagnoseAbstractType(Record); |
5602 | Invalid = true; |
5603 | } |
5604 | |
5605 | void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel); |
5606 | }; |
5607 | |
5608 | struct CheckAbstractUsage { |
5609 | AbstractUsageInfo &Info; |
5610 | const NamedDecl *Ctx; |
5611 | |
5612 | CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx) |
5613 | : Info(Info), Ctx(Ctx) {} |
5614 | |
5615 | void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) { |
5616 | switch (TL.getTypeLocClass()) { |
5617 | #define ABSTRACT_TYPELOC(CLASS, PARENT) |
5618 | #define TYPELOC(CLASS, PARENT) \ |
5619 | case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break; |
5620 | #include "clang/AST/TypeLocNodes.def" |
5621 | } |
5622 | } |
5623 | |
5624 | void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) { |
5625 | Visit(TL.getReturnLoc(), Sema::AbstractReturnType); |
5626 | for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) { |
5627 | if (!TL.getParam(I)) |
5628 | continue; |
5629 | |
5630 | TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo(); |
5631 | if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType); |
5632 | } |
5633 | } |
5634 | |
5635 | void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) { |
5636 | Visit(TL.getElementLoc(), Sema::AbstractArrayType); |
5637 | } |
5638 | |
5639 | void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) { |
5640 | // Visit the type parameters from a permissive context. |
5641 | for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { |
5642 | TemplateArgumentLoc TAL = TL.getArgLoc(I); |
5643 | if (TAL.getArgument().getKind() == TemplateArgument::Type) |
5644 | if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo()) |
5645 | Visit(TSI->getTypeLoc(), Sema::AbstractNone); |
5646 | // TODO: other template argument types? |
5647 | } |
5648 | } |
5649 | |
5650 | // Visit pointee types from a permissive context. |
5651 | #define CheckPolymorphic(Type)void Check(Type TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getNextTypeLoc (), Sema::AbstractNone); } \ |
5652 | void Check(Type TL, Sema::AbstractDiagSelID Sel) { \ |
5653 | Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \ |
5654 | } |
5655 | CheckPolymorphic(PointerTypeLoc)void Check(PointerTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit (TL.getNextTypeLoc(), Sema::AbstractNone); } |
5656 | CheckPolymorphic(ReferenceTypeLoc)void Check(ReferenceTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); } |
5657 | CheckPolymorphic(MemberPointerTypeLoc)void Check(MemberPointerTypeLoc TL, Sema::AbstractDiagSelID Sel ) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); } |
5658 | CheckPolymorphic(BlockPointerTypeLoc)void Check(BlockPointerTypeLoc TL, Sema::AbstractDiagSelID Sel ) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); } |
5659 | CheckPolymorphic(AtomicTypeLoc)void Check(AtomicTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit (TL.getNextTypeLoc(), Sema::AbstractNone); } |
5660 | |
5661 | /// Handle all the types we haven't given a more specific |
5662 | /// implementation for above. |
5663 | void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) { |
5664 | // Every other kind of type that we haven't called out already |
5665 | // that has an inner type is either (1) sugar or (2) contains that |
5666 | // inner type in some way as a subobject. |
5667 | if (TypeLoc Next = TL.getNextTypeLoc()) |
5668 | return Visit(Next, Sel); |
5669 | |
5670 | // If there's no inner type and we're in a permissive context, |
5671 | // don't diagnose. |
5672 | if (Sel == Sema::AbstractNone) return; |
5673 | |
5674 | // Check whether the type matches the abstract type. |
5675 | QualType T = TL.getType(); |
5676 | if (T->isArrayType()) { |
5677 | Sel = Sema::AbstractArrayType; |
5678 | T = Info.S.Context.getBaseElementType(T); |
5679 | } |
5680 | CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType(); |
5681 | if (CT != Info.AbstractType) return; |
5682 | |
5683 | // It matched; do some magic. |
5684 | if (Sel == Sema::AbstractArrayType) { |
5685 | Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type) |
5686 | << T << TL.getSourceRange(); |
5687 | } else { |
5688 | Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl) |
5689 | << Sel << T << TL.getSourceRange(); |
5690 | } |
5691 | Info.DiagnoseAbstractType(); |
5692 | } |
5693 | }; |
5694 | |
5695 | void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL, |
5696 | Sema::AbstractDiagSelID Sel) { |
5697 | CheckAbstractUsage(*this, D).Visit(TL, Sel); |
5698 | } |
5699 | |
5700 | } |
5701 | |
5702 | /// Check for invalid uses of an abstract type in a method declaration. |
5703 | static void CheckAbstractClassUsage(AbstractUsageInfo &Info, |
5704 | CXXMethodDecl *MD) { |
5705 | // No need to do the check on definitions, which require that |
5706 | // the return/param types be complete. |
5707 | if (MD->doesThisDeclarationHaveABody()) |
5708 | return; |
5709 | |
5710 | // For safety's sake, just ignore it if we don't have type source |
5711 | // information. This should never happen for non-implicit methods, |
5712 | // but... |
5713 | if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) |
5714 | Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone); |
5715 | } |
5716 | |
5717 | /// Check for invalid uses of an abstract type within a class definition. |
5718 | static void CheckAbstractClassUsage(AbstractUsageInfo &Info, |
5719 | CXXRecordDecl *RD) { |
5720 | for (auto *D : RD->decls()) { |
5721 | if (D->isImplicit()) continue; |
5722 | |
5723 | // Methods and method templates. |
5724 | if (isa<CXXMethodDecl>(D)) { |
5725 | CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D)); |
5726 | } else if (isa<FunctionTemplateDecl>(D)) { |
5727 | FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl(); |
5728 | CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD)); |
5729 | |
5730 | // Fields and static variables. |
5731 | } else if (isa<FieldDecl>(D)) { |
5732 | FieldDecl *FD = cast<FieldDecl>(D); |
5733 | if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) |
5734 | Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType); |
5735 | } else if (isa<VarDecl>(D)) { |
5736 | VarDecl *VD = cast<VarDecl>(D); |
5737 | if (TypeSourceInfo *TSI = VD->getTypeSourceInfo()) |
5738 | Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType); |
5739 | |
5740 | // Nested classes and class templates. |
5741 | } else if (isa<CXXRecordDecl>(D)) { |
5742 | CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D)); |
5743 | } else if (isa<ClassTemplateDecl>(D)) { |
5744 | CheckAbstractClassUsage(Info, |
5745 | cast<ClassTemplateDecl>(D)->getTemplatedDecl()); |
5746 | } |
5747 | } |
5748 | } |
5749 | |
5750 | static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) { |
5751 | Attr *ClassAttr = getDLLAttr(Class); |
5752 | if (!ClassAttr) |
5753 | return; |
5754 | |
5755 | assert(ClassAttr->getKind() == attr::DLLExport)((ClassAttr->getKind() == attr::DLLExport) ? static_cast< void> (0) : __assert_fail ("ClassAttr->getKind() == attr::DLLExport" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 5755, __PRETTY_FUNCTION__)); |
5756 | |
5757 | TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); |
5758 | |
5759 | if (TSK == TSK_ExplicitInstantiationDeclaration) |
5760 | // Don't go any further if this is just an explicit instantiation |
5761 | // declaration. |
5762 | return; |
5763 | |
5764 | if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) |
5765 | S.MarkVTableUsed(Class->getLocation(), Class, true); |
5766 | |
5767 | for (Decl *Member : Class->decls()) { |
5768 | // Defined static variables that are members of an exported base |
5769 | // class must be marked export too. |
5770 | auto *VD = dyn_cast<VarDecl>(Member); |
5771 | if (VD && Member->getAttr<DLLExportAttr>() && |
5772 | VD->getStorageClass() == SC_Static && |
5773 | TSK == TSK_ImplicitInstantiation) |
5774 | S.MarkVariableReferenced(VD->getLocation(), VD); |
5775 | |
5776 | auto *MD = dyn_cast<CXXMethodDecl>(Member); |
5777 | if (!MD) |
5778 | continue; |
5779 | |
5780 | if (Member->getAttr<DLLExportAttr>()) { |
5781 | if (MD->isUserProvided()) { |
5782 | // Instantiate non-default class member functions ... |
5783 | |
5784 | // .. except for certain kinds of template specializations. |
5785 | if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited()) |
5786 | continue; |
5787 | |
5788 | S.MarkFunctionReferenced(Class->getLocation(), MD); |
5789 | |
5790 | // The function will be passed to the consumer when its definition is |
5791 | // encountered. |
5792 | } else if (!MD->isTrivial() || MD->isExplicitlyDefaulted() || |
5793 | MD->isCopyAssignmentOperator() || |
5794 | MD->isMoveAssignmentOperator()) { |
5795 | // Synthesize and instantiate non-trivial implicit methods, explicitly |
5796 | // defaulted methods, and the copy and move assignment operators. The |
5797 | // latter are exported even if they are trivial, because the address of |
5798 | // an operator can be taken and should compare equal across libraries. |
5799 | DiagnosticErrorTrap Trap(S.Diags); |
5800 | S.MarkFunctionReferenced(Class->getLocation(), MD); |
5801 | if (Trap.hasErrorOccurred()) { |
5802 | S.Diag(ClassAttr->getLocation(), diag::note_due_to_dllexported_class) |
5803 | << Class << !S.getLangOpts().CPlusPlus11; |
5804 | break; |
5805 | } |
5806 | |
5807 | // There is no later point when we will see the definition of this |
5808 | // function, so pass it to the consumer now. |
5809 | S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); |
5810 | } |
5811 | } |
5812 | } |
5813 | } |
5814 | |
5815 | static void checkForMultipleExportedDefaultConstructors(Sema &S, |
5816 | CXXRecordDecl *Class) { |
5817 | // Only the MS ABI has default constructor closures, so we don't need to do |
5818 | // this semantic checking anywhere else. |
5819 | if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft()) |
5820 | return; |
5821 | |
5822 | CXXConstructorDecl *LastExportedDefaultCtor = nullptr; |
5823 | for (Decl *Member : Class->decls()) { |
5824 | // Look for exported default constructors. |
5825 | auto *CD = dyn_cast<CXXConstructorDecl>(Member); |
5826 | if (!CD || !CD->isDefaultConstructor()) |
5827 | continue; |
5828 | auto *Attr = CD->getAttr<DLLExportAttr>(); |
5829 | if (!Attr) |
5830 | continue; |
5831 | |
5832 | // If the class is non-dependent, mark the default arguments as ODR-used so |
5833 | // that we can properly codegen the constructor closure. |
5834 | if (!Class->isDependentContext()) { |
5835 | for (ParmVarDecl *PD : CD->parameters()) { |
5836 | (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD); |
5837 | S.DiscardCleanupsInEvaluationContext(); |
5838 | } |
5839 | } |
5840 | |
5841 | if (LastExportedDefaultCtor) { |
5842 | S.Diag(LastExportedDefaultCtor->getLocation(), |
5843 | diag::err_attribute_dll_ambiguous_default_ctor) |
5844 | << Class; |
5845 | S.Diag(CD->getLocation(), diag::note_entity_declared_at) |
5846 | << CD->getDeclName(); |
5847 | return; |
5848 | } |
5849 | LastExportedDefaultCtor = CD; |
5850 | } |
5851 | } |
5852 | |
5853 | void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) { |
5854 | // Mark any compiler-generated routines with the implicit code_seg attribute. |
5855 | for (auto *Method : Class->methods()) { |
5856 | if (Method->isUserProvided()) |
5857 | continue; |
5858 | if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true)) |
5859 | Method->addAttr(A); |
5860 | } |
5861 | } |
5862 | |
5863 | /// Check class-level dllimport/dllexport attribute. |
5864 | void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) { |
5865 | Attr *ClassAttr = getDLLAttr(Class); |
5866 | |
5867 | // MSVC inherits DLL attributes to partial class template specializations. |
5868 | if (Context.getTargetInfo().getCXXABI().isMicrosoft() && !ClassAttr) { |
5869 | if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) { |
5870 | if (Attr *TemplateAttr = |
5871 | getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) { |
5872 | auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext())); |
5873 | A->setInherited(true); |
5874 | ClassAttr = A; |
5875 | } |
5876 | } |
5877 | } |
5878 | |
5879 | if (!ClassAttr) |
5880 | return; |
5881 | |
5882 | if (!Class->isExternallyVisible()) { |
5883 | Diag(Class->getLocation(), diag::err_attribute_dll_not_extern) |
5884 | << Class << ClassAttr; |
5885 | return; |
5886 | } |
5887 | |
5888 | if (Context.getTargetInfo().getCXXABI().isMicrosoft() && |
5889 | !ClassAttr->isInherited()) { |
5890 | // Diagnose dll attributes on members of class with dll attribute. |
5891 | for (Decl *Member : Class->decls()) { |
5892 | if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member)) |
5893 | continue; |
5894 | InheritableAttr *MemberAttr = getDLLAttr(Member); |
5895 | if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl()) |
5896 | continue; |
5897 | |
5898 | Diag(MemberAttr->getLocation(), |
5899 | diag::err_attribute_dll_member_of_dll_class) |
5900 | << MemberAttr << ClassAttr; |
5901 | Diag(ClassAttr->getLocation(), diag::note_previous_attribute); |
5902 | Member->setInvalidDecl(); |
5903 | } |
5904 | } |
5905 | |
5906 | if (Class->getDescribedClassTemplate()) |
5907 | // Don't inherit dll attribute until the template is instantiated. |
5908 | return; |
5909 | |
5910 | // The class is either imported or exported. |
5911 | const bool ClassExported = ClassAttr->getKind() == attr::DLLExport; |
5912 | |
5913 | // Check if this was a dllimport attribute propagated from a derived class to |
5914 | // a base class template specialization. We don't apply these attributes to |
5915 | // static data members. |
5916 | const bool PropagatedImport = |
5917 | !ClassExported && |
5918 | cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate(); |
5919 | |
5920 | TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); |
5921 | |
5922 | // Ignore explicit dllexport on explicit class template instantiation |
5923 | // declarations, except in MinGW mode. |
5924 | if (ClassExported && !ClassAttr->isInherited() && |
5925 | TSK == TSK_ExplicitInstantiationDeclaration && |
5926 | !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { |
5927 | Class->dropAttr<DLLExportAttr>(); |
5928 | return; |
5929 | } |
5930 | |
5931 | // Force declaration of implicit members so they can inherit the attribute. |
5932 | ForceDeclarationOfImplicitMembers(Class); |
5933 | |
5934 | // FIXME: MSVC's docs say all bases must be exportable, but this doesn't |
5935 | // seem to be true in practice? |
5936 | |
5937 | for (Decl *Member : Class->decls()) { |
5938 | VarDecl *VD = dyn_cast<VarDecl>(Member); |
5939 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member); |
5940 | |
5941 | // Only methods and static fields inherit the attributes. |
5942 | if (!VD && !MD) |
5943 | continue; |
5944 | |
5945 | if (MD) { |
5946 | // Don't process deleted methods. |
5947 | if (MD->isDeleted()) |
5948 | continue; |
5949 | |
5950 | if (MD->isInlined()) { |
5951 | // MinGW does not import or export inline methods. But do it for |
5952 | // template instantiations. |
5953 | if (!Context.getTargetInfo().getCXXABI().isMicrosoft() && |
5954 | !Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment() && |
5955 | TSK != TSK_ExplicitInstantiationDeclaration && |
5956 | TSK != TSK_ExplicitInstantiationDefinition) |
5957 | continue; |
5958 | |
5959 | // MSVC versions before 2015 don't export the move assignment operators |
5960 | // and move constructor, so don't attempt to import/export them if |
5961 | // we have a definition. |
5962 | auto *Ctor = dyn_cast<CXXConstructorDecl>(MD); |
5963 | if ((MD->isMoveAssignmentOperator() || |
5964 | (Ctor && Ctor->isMoveConstructor())) && |
5965 | !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015)) |
5966 | continue; |
5967 | |
5968 | // MSVC2015 doesn't export trivial defaulted x-tor but copy assign |
5969 | // operator is exported anyway. |
5970 | if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && |
5971 | (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial()) |
5972 | continue; |
5973 | } |
5974 | } |
5975 | |
5976 | // Don't apply dllimport attributes to static data members of class template |
5977 | // instantiations when the attribute is propagated from a derived class. |
5978 | if (VD && PropagatedImport) |
5979 | continue; |
5980 | |
5981 | if (!cast<NamedDecl>(Member)->isExternallyVisible()) |
5982 | continue; |
5983 | |
5984 | if (!getDLLAttr(Member)) { |
5985 | InheritableAttr *NewAttr = nullptr; |
5986 | |
5987 | // Do not export/import inline function when -fno-dllexport-inlines is |
5988 | // passed. But add attribute for later local static var check. |
5989 | if (!getLangOpts().DllExportInlines && MD && MD->isInlined() && |
5990 | TSK != TSK_ExplicitInstantiationDeclaration && |
5991 | TSK != TSK_ExplicitInstantiationDefinition) { |
5992 | if (ClassExported) { |
5993 | NewAttr = ::new (getASTContext()) |
5994 | DLLExportStaticLocalAttr(getASTContext(), *ClassAttr); |
5995 | } else { |
5996 | NewAttr = ::new (getASTContext()) |
5997 | DLLImportStaticLocalAttr(getASTContext(), *ClassAttr); |
5998 | } |
5999 | } else { |
6000 | NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); |
6001 | } |
6002 | |
6003 | NewAttr->setInherited(true); |
6004 | Member->addAttr(NewAttr); |
6005 | |
6006 | if (MD) { |
6007 | // Propagate DLLAttr to friend re-declarations of MD that have already |
6008 | // been constructed. |
6009 | for (FunctionDecl *FD = MD->getMostRecentDecl(); FD; |
6010 | FD = FD->getPreviousDecl()) { |
6011 | if (FD->getFriendObjectKind() == Decl::FOK_None) |
6012 | continue; |
6013 | assert(!getDLLAttr(FD) &&((!getDLLAttr(FD) && "friend re-decl should not already have a DLLAttr" ) ? static_cast<void> (0) : __assert_fail ("!getDLLAttr(FD) && \"friend re-decl should not already have a DLLAttr\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 6014, __PRETTY_FUNCTION__)) |
6014 | "friend re-decl should not already have a DLLAttr")((!getDLLAttr(FD) && "friend re-decl should not already have a DLLAttr" ) ? static_cast<void> (0) : __assert_fail ("!getDLLAttr(FD) && \"friend re-decl should not already have a DLLAttr\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaDeclCXX.cpp" , 6014, __PRETTY_FUNCTION__)); |
6015 | NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); |
6016 | NewAttr->setInherited(true); |
6017 | FD->addAttr(NewAttr); |
6018 | } |
6019 | } |
6020 | } |
6021 | } |
6022 | |
6023 | if (ClassExported) |
6024 | DelayedDllExportClasses.push_back(Class); |
6025 | } |
6026 | |
6027 | /// Perform propagation of DLL attributes from a derived class to a |
6028 | /// templated base class for MS compatibility. |
6029 | void Sema::propagateDLLAttrToBaseClassTemplate( |
6030 | CXXRecordDecl *Class, Attr *ClassAttr, |
6031 | ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) { |
6032 | if (getDLLAttr( |
6033 | BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) { |
6034 | // If the base class template has a DLL attribute, don't try to change it. |
6035 | return; |
6036 | } |
6037 | |
6038 | auto TSK = BaseTemplateSpec->getSpecializationKind(); |
6039 | if (!getDLLAttr(BaseTemplateSpec) && |
6040 | (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration || |
6041 | TSK == TSK_ImplicitInstantiation)) { |
6042 | // The template hasn't been instantiated yet (or it has, but only as an |
6043 | // explicit instantiation declaration or implicit instantiation, which means |
6044 | // we haven't codegenned any members yet), so propagate the attribute. |
6045 | auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); |
6046 | NewAttr->setInherited(true); |
6047 | BaseTemplateSpec->addAttr(NewAttr); |
6048 | |
6049 | // If this was an import, mark that we propagated it from a derived class to |
6050 | // a base class template specialization. |
6051 | if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr)) |
6052 | ImportAttr->setPropagatedToBaseTemplate(); |
6053 | |
6054 | // If the template is already instantiated, checkDLLAttributeRedeclaration() |
6055 | // needs to be run again to work see the new attribute. Otherwise this will |
6056 | // get run whenever the template is instantiated. |
6057 | if (TSK != TSK_Undeclared) |
6058 | checkClassLevelDLLAttribute(BaseTemplateSpec); |
6059 | |
6060 | return; |
6061 | } |
6062 | |
6063 | if (getDLLAttr(BaseTemplateSpec)) { |
6064 | // The template has already been specialized or instantiated with an |
6065 | // attribute, explicitly or through propagation. We should not try to change |
6066 | // it. |
6067 | return; |
6068 | } |
6069 | |
6070 | // The template was previously instantiated or explicitly specialized without |
6071 | // a dll attribute, It's too late for us to add an attribute, so warn that |
6072 | // this is unsupported. |
6073 | Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class) |
6074 | << BaseTemplateSpec->isExplicitSpecialization(); |
6075 | Diag(ClassAttr->getLocation(), diag::note_attribute); |
6076 | if (BaseTemplateSpec->isExplicitSpecialization()) { |
6077 | Diag(BaseTemplateSpec->getLocation(), |
6078 | diag::note_template_class_explicit_specialization_was_here) |
6079 | << BaseTemplateSpec; |
6080 | } else { |
6081 | Diag(BaseTemplateSpec->getPointOfInstantiation(), |
6082 | diag::note_template_class_instantiation_was_here) |
6083 | << BaseTemplateSpec; |
6084 | } |
6085 | } |
6086 | |
6087 | /// Determine the kind of defaulting that would be done for a given function. |
6088 | /// |
6089 | /// If the function is both a default constructor and a copy / move constructor |
6090 | /// (due to having a default argument for the first parameter), this picks |
6091 | /// CXXDefaultConstructor. |
6092 | /// |
6093 | /// FIXME: Check that case is properly handled by all callers. |
6094 | Sema::DefaultedFunctionKind |
6095 | Sema::getDefaultedFunctionKind(const FunctionDecl *FD) { |
6096 | if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { |
6097 | if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(FD)) { |
6098 | if (Ctor->isDefaultConstructor()) |
6099 | return Sema::CXXDefaultConstructor; |
6100 | |
6101 | if (Ctor->isCopyConstructor()) |
6102 | return Sema::CXXCopyConstructor; |
6103 | |
6104 | if (Ctor->isMoveConstructor()) |
6105 | return Sema::CXXMoveConstructor; |
6106 | } |
6107 | |
6108 | if (MD->isCopyAssignmentOperator()) |
6109 | return Sema::CXXCopyAssignment; |
6110 | |
6111 | if (MD->isMoveAssignmentOperator()) |
6112 | return Sema::CXXMoveAssignment; |
6113 | |
6114 | if (isa<CXXDestructorDecl>(FD)) |
6115 | return Sema::CXXDestructor; |
6116 | } |
6117 | |
6118 | switch (FD->getDeclName().getCXXOverloadedOperator()) { |
6119 | case OO_EqualEqual: |
6120 | return DefaultedComparisonKind::Equal; |
6121 | |
6122 | case OO_ExclaimEqual: |
6123 | return DefaultedComparisonKind::NotEqual; |
6124 | |
6125 | case OO_Spaceship: |
6126 | // No point allowing this if <=> doesn't exist in the current language mode. |
6127 | if (!getLangOpts().CPlusPlus2a) |
6128 | break; |
6129 | return DefaultedComparisonKind::ThreeWay; |
6130 | |
6131 | case OO_Less: |