Bug Summary

File:clang/lib/Sema/SemaDeclCXX.cpp
Warning:line 5460, column 56
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaDeclCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-11/lib/clang/11.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/include -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-11/lib/clang/11.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-03-09-184146-41876-1 -x c++ /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp

/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp

1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for C++ declarations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTConsumer.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/ASTLambda.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/ComparisonCategories.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/AST/TypeOrdering.h"
27#include "clang/Basic/AttributeCommonInfo.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/LiteralSupport.h"
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Sema/CXXFieldCollector.h"
33#include "clang/Sema/DeclSpec.h"
34#include "clang/Sema/Initialization.h"
35#include "clang/Sema/Lookup.h"
36#include "clang/Sema/ParsedTemplate.h"
37#include "clang/Sema/Scope.h"
38#include "clang/Sema/ScopeInfo.h"
39#include "clang/Sema/SemaInternal.h"
40#include "clang/Sema/Template.h"
41#include "llvm/ADT/STLExtras.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/StringExtras.h"
44#include <map>
45#include <set>
46
47using namespace clang;
48
49//===----------------------------------------------------------------------===//
50// CheckDefaultArgumentVisitor
51//===----------------------------------------------------------------------===//
52
53namespace {
54 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
55 /// the default argument of a parameter to determine whether it
56 /// contains any ill-formed subexpressions. For example, this will
57 /// diagnose the use of local variables or parameters within the
58 /// default argument expression.
59 class CheckDefaultArgumentVisitor
60 : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
61 Expr *DefaultArg;
62 Sema *S;
63
64 public:
65 CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
66 : DefaultArg(defarg), S(s) {}
67
68 bool VisitExpr(Expr *Node);
69 bool VisitDeclRefExpr(DeclRefExpr *DRE);
70 bool VisitCXXThisExpr(CXXThisExpr *ThisE);
71 bool VisitLambdaExpr(LambdaExpr *Lambda);
72 bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
73 };
74
75 /// VisitExpr - Visit all of the children of this expression.
76 bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
77 bool IsInvalid = false;
78 for (Stmt *SubStmt : Node->children())
79 IsInvalid |= Visit(SubStmt);
80 return IsInvalid;
81 }
82
83 /// VisitDeclRefExpr - Visit a reference to a declaration, to
84 /// determine whether this declaration can be used in the default
85 /// argument expression.
86 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
87 NamedDecl *Decl = DRE->getDecl();
88 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
89 // C++ [dcl.fct.default]p9
90 // Default arguments are evaluated each time the function is
91 // called. The order of evaluation of function arguments is
92 // unspecified. Consequently, parameters of a function shall not
93 // be used in default argument expressions, even if they are not
94 // evaluated. Parameters of a function declared before a default
95 // argument expression are in scope and can hide namespace and
96 // class member names.
97 return S->Diag(DRE->getBeginLoc(),
98 diag::err_param_default_argument_references_param)
99 << Param->getDeclName() << DefaultArg->getSourceRange();
100 } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
101 // C++ [dcl.fct.default]p7
102 // Local variables shall not be used in default argument
103 // expressions.
104 if (VDecl->isLocalVarDecl())
105 return S->Diag(DRE->getBeginLoc(),
106 diag::err_param_default_argument_references_local)
107 << VDecl->getDeclName() << DefaultArg->getSourceRange();
108 }
109
110 return false;
111 }
112
113 /// VisitCXXThisExpr - Visit a C++ "this" expression.
114 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
115 // C++ [dcl.fct.default]p8:
116 // The keyword this shall not be used in a default argument of a
117 // member function.
118 return S->Diag(ThisE->getBeginLoc(),
119 diag::err_param_default_argument_references_this)
120 << ThisE->getSourceRange();
121 }
122
123 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
124 bool Invalid = false;
125 for (PseudoObjectExpr::semantics_iterator
126 i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
127 Expr *E = *i;
128
129 // Look through bindings.
130 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
131 E = OVE->getSourceExpr();
132 assert(E && "pseudo-object binding without source expression?")((E && "pseudo-object binding without source expression?"
) ? static_cast<void> (0) : __assert_fail ("E && \"pseudo-object binding without source expression?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 132, __PRETTY_FUNCTION__))
;
133 }
134
135 Invalid |= Visit(E);
136 }
137 return Invalid;
138 }
139
140 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
141 // C++11 [expr.lambda.prim]p13:
142 // A lambda-expression appearing in a default argument shall not
143 // implicitly or explicitly capture any entity.
144 if (Lambda->capture_begin() == Lambda->capture_end())
145 return false;
146
147 return S->Diag(Lambda->getBeginLoc(), diag::err_lambda_capture_default_arg);
148 }
149}
150
151void
152Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
153 const CXXMethodDecl *Method) {
154 // If we have an MSAny spec already, don't bother.
155 if (!Method || ComputedEST == EST_MSAny)
156 return;
157
158 const FunctionProtoType *Proto
159 = Method->getType()->getAs<FunctionProtoType>();
160 Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
161 if (!Proto)
162 return;
163
164 ExceptionSpecificationType EST = Proto->getExceptionSpecType();
165
166 // If we have a throw-all spec at this point, ignore the function.
167 if (ComputedEST == EST_None)
168 return;
169
170 if (EST == EST_None && Method->hasAttr<NoThrowAttr>())
171 EST = EST_BasicNoexcept;
172
173 switch (EST) {
174 case EST_Unparsed:
175 case EST_Uninstantiated:
176 case EST_Unevaluated:
177 llvm_unreachable("should not see unresolved exception specs here")::llvm::llvm_unreachable_internal("should not see unresolved exception specs here"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 177)
;
178
179 // If this function can throw any exceptions, make a note of that.
180 case EST_MSAny:
181 case EST_None:
182 // FIXME: Whichever we see last of MSAny and None determines our result.
183 // We should make a consistent, order-independent choice here.
184 ClearExceptions();
185 ComputedEST = EST;
186 return;
187 case EST_NoexceptFalse:
188 ClearExceptions();
189 ComputedEST = EST_None;
190 return;
191 // FIXME: If the call to this decl is using any of its default arguments, we
192 // need to search them for potentially-throwing calls.
193 // If this function has a basic noexcept, it doesn't affect the outcome.
194 case EST_BasicNoexcept:
195 case EST_NoexceptTrue:
196 case EST_NoThrow:
197 return;
198 // If we're still at noexcept(true) and there's a throw() callee,
199 // change to that specification.
200 case EST_DynamicNone:
201 if (ComputedEST == EST_BasicNoexcept)
202 ComputedEST = EST_DynamicNone;
203 return;
204 case EST_DependentNoexcept:
205 llvm_unreachable(::llvm::llvm_unreachable_internal("should not generate implicit declarations for dependent cases"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 206)
206 "should not generate implicit declarations for dependent cases")::llvm::llvm_unreachable_internal("should not generate implicit declarations for dependent cases"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 206)
;
207 case EST_Dynamic:
208 break;
209 }
210 assert(EST == EST_Dynamic && "EST case not considered earlier.")((EST == EST_Dynamic && "EST case not considered earlier."
) ? static_cast<void> (0) : __assert_fail ("EST == EST_Dynamic && \"EST case not considered earlier.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 210, __PRETTY_FUNCTION__))
;
211 assert(ComputedEST != EST_None &&((ComputedEST != EST_None && "Shouldn't collect exceptions when throw-all is guaranteed."
) ? static_cast<void> (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 212, __PRETTY_FUNCTION__))
212 "Shouldn't collect exceptions when throw-all is guaranteed.")((ComputedEST != EST_None && "Shouldn't collect exceptions when throw-all is guaranteed."
) ? static_cast<void> (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 212, __PRETTY_FUNCTION__))
;
213 ComputedEST = EST_Dynamic;
214 // Record the exceptions in this function's exception specification.
215 for (const auto &E : Proto->exceptions())
216 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
217 Exceptions.push_back(E);
218}
219
220void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) {
221 if (!S || ComputedEST == EST_MSAny)
222 return;
223
224 // FIXME:
225 //
226 // C++0x [except.spec]p14:
227 // [An] implicit exception-specification specifies the type-id T if and
228 // only if T is allowed by the exception-specification of a function directly
229 // invoked by f's implicit definition; f shall allow all exceptions if any
230 // function it directly invokes allows all exceptions, and f shall allow no
231 // exceptions if every function it directly invokes allows no exceptions.
232 //
233 // Note in particular that if an implicit exception-specification is generated
234 // for a function containing a throw-expression, that specification can still
235 // be noexcept(true).
236 //
237 // Note also that 'directly invoked' is not defined in the standard, and there
238 // is no indication that we should only consider potentially-evaluated calls.
239 //
240 // Ultimately we should implement the intent of the standard: the exception
241 // specification should be the set of exceptions which can be thrown by the
242 // implicit definition. For now, we assume that any non-nothrow expression can
243 // throw any exception.
244
245 if (Self->canThrow(S))
246 ComputedEST = EST_None;
247}
248
249bool
250Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
251 SourceLocation EqualLoc) {
252 if (RequireCompleteType(Param->getLocation(), Param->getType(),
253 diag::err_typecheck_decl_incomplete_type)) {
254 Param->setInvalidDecl();
255 return true;
256 }
257
258 // C++ [dcl.fct.default]p5
259 // A default argument expression is implicitly converted (clause
260 // 4) to the parameter type. The default argument expression has
261 // the same semantic constraints as the initializer expression in
262 // a declaration of a variable of the parameter type, using the
263 // copy-initialization semantics (8.5).
264 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
265 Param);
266 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
267 EqualLoc);
268 InitializationSequence InitSeq(*this, Entity, Kind, Arg);
269 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
270 if (Result.isInvalid())
271 return true;
272 Arg = Result.getAs<Expr>();
273
274 CheckCompletedExpr(Arg, EqualLoc);
275 Arg = MaybeCreateExprWithCleanups(Arg);
276
277 // Okay: add the default argument to the parameter
278 Param->setDefaultArg(Arg);
279
280 // We have already instantiated this parameter; provide each of the
281 // instantiations with the uninstantiated default argument.
282 UnparsedDefaultArgInstantiationsMap::iterator InstPos
283 = UnparsedDefaultArgInstantiations.find(Param);
284 if (InstPos != UnparsedDefaultArgInstantiations.end()) {
285 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
286 InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
287
288 // We're done tracking this parameter's instantiations.
289 UnparsedDefaultArgInstantiations.erase(InstPos);
290 }
291
292 return false;
293}
294
295/// ActOnParamDefaultArgument - Check whether the default argument
296/// provided for a function parameter is well-formed. If so, attach it
297/// to the parameter declaration.
298void
299Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
300 Expr *DefaultArg) {
301 if (!param || !DefaultArg)
302 return;
303
304 ParmVarDecl *Param = cast<ParmVarDecl>(param);
305 UnparsedDefaultArgLocs.erase(Param);
306
307 // Default arguments are only permitted in C++
308 if (!getLangOpts().CPlusPlus) {
309 Diag(EqualLoc, diag::err_param_default_argument)
310 << DefaultArg->getSourceRange();
311 Param->setInvalidDecl();
312 return;
313 }
314
315 // Check for unexpanded parameter packs.
316 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
317 Param->setInvalidDecl();
318 return;
319 }
320
321 // C++11 [dcl.fct.default]p3
322 // A default argument expression [...] shall not be specified for a
323 // parameter pack.
324 if (Param->isParameterPack()) {
325 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
326 << DefaultArg->getSourceRange();
327 return;
328 }
329
330 // Check that the default argument is well-formed
331 CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
332 if (DefaultArgChecker.Visit(DefaultArg)) {
333 Param->setInvalidDecl();
334 return;
335 }
336
337 SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
338}
339
340/// ActOnParamUnparsedDefaultArgument - We've seen a default
341/// argument for a function parameter, but we can't parse it yet
342/// because we're inside a class definition. Note that this default
343/// argument will be parsed later.
344void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
345 SourceLocation EqualLoc,
346 SourceLocation ArgLoc) {
347 if (!param)
348 return;
349
350 ParmVarDecl *Param = cast<ParmVarDecl>(param);
351 Param->setUnparsedDefaultArg();
352 UnparsedDefaultArgLocs[Param] = ArgLoc;
353}
354
355/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
356/// the default argument for the parameter param failed.
357void Sema::ActOnParamDefaultArgumentError(Decl *param,
358 SourceLocation EqualLoc) {
359 if (!param)
360 return;
361
362 ParmVarDecl *Param = cast<ParmVarDecl>(param);
363 Param->setInvalidDecl();
364 UnparsedDefaultArgLocs.erase(Param);
365 Param->setDefaultArg(new(Context)
366 OpaqueValueExpr(EqualLoc,
367 Param->getType().getNonReferenceType(),
368 VK_RValue));
369}
370
371/// CheckExtraCXXDefaultArguments - Check for any extra default
372/// arguments in the declarator, which is not a function declaration
373/// or definition and therefore is not permitted to have default
374/// arguments. This routine should be invoked for every declarator
375/// that is not a function declaration or definition.
376void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
377 // C++ [dcl.fct.default]p3
378 // A default argument expression shall be specified only in the
379 // parameter-declaration-clause of a function declaration or in a
380 // template-parameter (14.1). It shall not be specified for a
381 // parameter pack. If it is specified in a
382 // parameter-declaration-clause, it shall not occur within a
383 // declarator or abstract-declarator of a parameter-declaration.
384 bool MightBeFunction = D.isFunctionDeclarationContext();
385 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
386 DeclaratorChunk &chunk = D.getTypeObject(i);
387 if (chunk.Kind == DeclaratorChunk::Function) {
388 if (MightBeFunction) {
389 // This is a function declaration. It can have default arguments, but
390 // keep looking in case its return type is a function type with default
391 // arguments.
392 MightBeFunction = false;
393 continue;
394 }
395 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
396 ++argIdx) {
397 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
398 if (Param->hasUnparsedDefaultArg()) {
399 std::unique_ptr<CachedTokens> Toks =
400 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens);
401 SourceRange SR;
402 if (Toks->size() > 1)
403 SR = SourceRange((*Toks)[1].getLocation(),
404 Toks->back().getLocation());
405 else
406 SR = UnparsedDefaultArgLocs[Param];
407 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
408 << SR;
409 } else if (Param->getDefaultArg()) {
410 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
411 << Param->getDefaultArg()->getSourceRange();
412 Param->setDefaultArg(nullptr);
413 }
414 }
415 } else if (chunk.Kind != DeclaratorChunk::Paren) {
416 MightBeFunction = false;
417 }
418 }
419}
420
421static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
422 for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
423 const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
424 if (!PVD->hasDefaultArg())
425 return false;
426 if (!PVD->hasInheritedDefaultArg())
427 return true;
428 }
429 return false;
430}
431
432/// MergeCXXFunctionDecl - Merge two declarations of the same C++
433/// function, once we already know that they have the same
434/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
435/// error, false otherwise.
436bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
437 Scope *S) {
438 bool Invalid = false;
439
440 // The declaration context corresponding to the scope is the semantic
441 // parent, unless this is a local function declaration, in which case
442 // it is that surrounding function.
443 DeclContext *ScopeDC = New->isLocalExternDecl()
444 ? New->getLexicalDeclContext()
445 : New->getDeclContext();
446
447 // Find the previous declaration for the purpose of default arguments.
448 FunctionDecl *PrevForDefaultArgs = Old;
449 for (/**/; PrevForDefaultArgs;
450 // Don't bother looking back past the latest decl if this is a local
451 // extern declaration; nothing else could work.
452 PrevForDefaultArgs = New->isLocalExternDecl()
453 ? nullptr
454 : PrevForDefaultArgs->getPreviousDecl()) {
455 // Ignore hidden declarations.
456 if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
457 continue;
458
459 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
460 !New->isCXXClassMember()) {
461 // Ignore default arguments of old decl if they are not in
462 // the same scope and this is not an out-of-line definition of
463 // a member function.
464 continue;
465 }
466
467 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
468 // If only one of these is a local function declaration, then they are
469 // declared in different scopes, even though isDeclInScope may think
470 // they're in the same scope. (If both are local, the scope check is
471 // sufficient, and if neither is local, then they are in the same scope.)
472 continue;
473 }
474
475 // We found the right previous declaration.
476 break;
477 }
478
479 // C++ [dcl.fct.default]p4:
480 // For non-template functions, default arguments can be added in
481 // later declarations of a function in the same
482 // scope. Declarations in different scopes have completely
483 // distinct sets of default arguments. That is, declarations in
484 // inner scopes do not acquire default arguments from
485 // declarations in outer scopes, and vice versa. In a given
486 // function declaration, all parameters subsequent to a
487 // parameter with a default argument shall have default
488 // arguments supplied in this or previous declarations. A
489 // default argument shall not be redefined by a later
490 // declaration (not even to the same value).
491 //
492 // C++ [dcl.fct.default]p6:
493 // Except for member functions of class templates, the default arguments
494 // in a member function definition that appears outside of the class
495 // definition are added to the set of default arguments provided by the
496 // member function declaration in the class definition.
497 for (unsigned p = 0, NumParams = PrevForDefaultArgs
498 ? PrevForDefaultArgs->getNumParams()
499 : 0;
500 p < NumParams; ++p) {
501 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p);
502 ParmVarDecl *NewParam = New->getParamDecl(p);
503
504 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false;
505 bool NewParamHasDfl = NewParam->hasDefaultArg();
506
507 if (OldParamHasDfl && NewParamHasDfl) {
508 unsigned DiagDefaultParamID =
509 diag::err_param_default_argument_redefinition;
510
511 // MSVC accepts that default parameters be redefined for member functions
512 // of template class. The new default parameter's value is ignored.
513 Invalid = true;
514 if (getLangOpts().MicrosoftExt) {
515 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New);
516 if (MD && MD->getParent()->getDescribedClassTemplate()) {
517 // Merge the old default argument into the new parameter.
518 NewParam->setHasInheritedDefaultArg();
519 if (OldParam->hasUninstantiatedDefaultArg())
520 NewParam->setUninstantiatedDefaultArg(
521 OldParam->getUninstantiatedDefaultArg());
522 else
523 NewParam->setDefaultArg(OldParam->getInit());
524 DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
525 Invalid = false;
526 }
527 }
528
529 // FIXME: If we knew where the '=' was, we could easily provide a fix-it
530 // hint here. Alternatively, we could walk the type-source information
531 // for NewParam to find the last source location in the type... but it
532 // isn't worth the effort right now. This is the kind of test case that
533 // is hard to get right:
534 // int f(int);
535 // void g(int (*fp)(int) = f);
536 // void g(int (*fp)(int) = &f);
537 Diag(NewParam->getLocation(), DiagDefaultParamID)
538 << NewParam->getDefaultArgRange();
539
540 // Look for the function declaration where the default argument was
541 // actually written, which may be a declaration prior to Old.
542 for (auto Older = PrevForDefaultArgs;
543 OldParam->hasInheritedDefaultArg(); /**/) {
544 Older = Older->getPreviousDecl();
545 OldParam = Older->getParamDecl(p);
546 }
547
548 Diag(OldParam->getLocation(), diag::note_previous_definition)
549 << OldParam->getDefaultArgRange();
550 } else if (OldParamHasDfl) {
551 // Merge the old default argument into the new parameter unless the new
552 // function is a friend declaration in a template class. In the latter
553 // case the default arguments will be inherited when the friend
554 // declaration will be instantiated.
555 if (New->getFriendObjectKind() == Decl::FOK_None ||
556 !New->getLexicalDeclContext()->isDependentContext()) {
557 // It's important to use getInit() here; getDefaultArg()
558 // strips off any top-level ExprWithCleanups.
559 NewParam->setHasInheritedDefaultArg();
560 if (OldParam->hasUnparsedDefaultArg())
561 NewParam->setUnparsedDefaultArg();
562 else if (OldParam->hasUninstantiatedDefaultArg())
563 NewParam->setUninstantiatedDefaultArg(
564 OldParam->getUninstantiatedDefaultArg());
565 else
566 NewParam->setDefaultArg(OldParam->getInit());
567 }
568 } else if (NewParamHasDfl) {
569 if (New->getDescribedFunctionTemplate()) {
570 // Paragraph 4, quoted above, only applies to non-template functions.
571 Diag(NewParam->getLocation(),
572 diag::err_param_default_argument_template_redecl)
573 << NewParam->getDefaultArgRange();
574 Diag(PrevForDefaultArgs->getLocation(),
575 diag::note_template_prev_declaration)
576 << false;
577 } else if (New->getTemplateSpecializationKind()
578 != TSK_ImplicitInstantiation &&
579 New->getTemplateSpecializationKind() != TSK_Undeclared) {
580 // C++ [temp.expr.spec]p21:
581 // Default function arguments shall not be specified in a declaration
582 // or a definition for one of the following explicit specializations:
583 // - the explicit specialization of a function template;
584 // - the explicit specialization of a member function template;
585 // - the explicit specialization of a member function of a class
586 // template where the class template specialization to which the
587 // member function specialization belongs is implicitly
588 // instantiated.
589 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
590 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
591 << New->getDeclName()
592 << NewParam->getDefaultArgRange();
593 } else if (New->getDeclContext()->isDependentContext()) {
594 // C++ [dcl.fct.default]p6 (DR217):
595 // Default arguments for a member function of a class template shall
596 // be specified on the initial declaration of the member function
597 // within the class template.
598 //
599 // Reading the tea leaves a bit in DR217 and its reference to DR205
600 // leads me to the conclusion that one cannot add default function
601 // arguments for an out-of-line definition of a member function of a
602 // dependent type.
603 int WhichKind = 2;
604 if (CXXRecordDecl *Record
605 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
606 if (Record->getDescribedClassTemplate())
607 WhichKind = 0;
608 else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
609 WhichKind = 1;
610 else
611 WhichKind = 2;
612 }
613
614 Diag(NewParam->getLocation(),
615 diag::err_param_default_argument_member_template_redecl)
616 << WhichKind
617 << NewParam->getDefaultArgRange();
618 }
619 }
620 }
621
622 // DR1344: If a default argument is added outside a class definition and that
623 // default argument makes the function a special member function, the program
624 // is ill-formed. This can only happen for constructors.
625 if (isa<CXXConstructorDecl>(New) &&
626 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
627 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
628 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
629 if (NewSM != OldSM) {
630 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
631 assert(NewParam->hasDefaultArg())((NewParam->hasDefaultArg()) ? static_cast<void> (0)
: __assert_fail ("NewParam->hasDefaultArg()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 631, __PRETTY_FUNCTION__))
;
632 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
633 << NewParam->getDefaultArgRange() << NewSM;
634 Diag(Old->getLocation(), diag::note_previous_declaration);
635 }
636 }
637
638 const FunctionDecl *Def;
639 // C++11 [dcl.constexpr]p1: If any declaration of a function or function
640 // template has a constexpr specifier then all its declarations shall
641 // contain the constexpr specifier.
642 if (New->getConstexprKind() != Old->getConstexprKind()) {
643 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
644 << New << New->getConstexprKind() << Old->getConstexprKind();
645 Diag(Old->getLocation(), diag::note_previous_declaration);
646 Invalid = true;
647 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
648 Old->isDefined(Def) &&
649 // If a friend function is inlined but does not have 'inline'
650 // specifier, it is a definition. Do not report attribute conflict
651 // in this case, redefinition will be diagnosed later.
652 (New->isInlineSpecified() ||
653 New->getFriendObjectKind() == Decl::FOK_None)) {
654 // C++11 [dcl.fcn.spec]p4:
655 // If the definition of a function appears in a translation unit before its
656 // first declaration as inline, the program is ill-formed.
657 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
658 Diag(Def->getLocation(), diag::note_previous_definition);
659 Invalid = true;
660 }
661
662 // C++17 [temp.deduct.guide]p3:
663 // Two deduction guide declarations in the same translation unit
664 // for the same class template shall not have equivalent
665 // parameter-declaration-clauses.
666 if (isa<CXXDeductionGuideDecl>(New) &&
667 !New->isFunctionTemplateSpecialization()) {
668 Diag(New->getLocation(), diag::err_deduction_guide_redeclared);
669 Diag(Old->getLocation(), diag::note_previous_declaration);
670 }
671
672 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
673 // argument expression, that declaration shall be a definition and shall be
674 // the only declaration of the function or function template in the
675 // translation unit.
676 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
677 functionDeclHasDefaultArgument(Old)) {
678 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
679 Diag(Old->getLocation(), diag::note_previous_declaration);
680 Invalid = true;
681 }
682
683 return Invalid;
684}
685
686NamedDecl *
687Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D,
688 MultiTemplateParamsArg TemplateParamLists) {
689 assert(D.isDecompositionDeclarator())((D.isDecompositionDeclarator()) ? static_cast<void> (0
) : __assert_fail ("D.isDecompositionDeclarator()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 689, __PRETTY_FUNCTION__))
;
690 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
691
692 // The syntax only allows a decomposition declarator as a simple-declaration,
693 // a for-range-declaration, or a condition in Clang, but we parse it in more
694 // cases than that.
695 if (!D.mayHaveDecompositionDeclarator()) {
696 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
697 << Decomp.getSourceRange();
698 return nullptr;
699 }
700
701 if (!TemplateParamLists.empty()) {
702 // FIXME: There's no rule against this, but there are also no rules that
703 // would actually make it usable, so we reject it for now.
704 Diag(TemplateParamLists.front()->getTemplateLoc(),
705 diag::err_decomp_decl_template);
706 return nullptr;
707 }
708
709 Diag(Decomp.getLSquareLoc(),
710 !getLangOpts().CPlusPlus17
711 ? diag::ext_decomp_decl
712 : D.getContext() == DeclaratorContext::ConditionContext
713 ? diag::ext_decomp_decl_cond
714 : diag::warn_cxx14_compat_decomp_decl)
715 << Decomp.getSourceRange();
716
717 // The semantic context is always just the current context.
718 DeclContext *const DC = CurContext;
719
720 // C++17 [dcl.dcl]/8:
721 // The decl-specifier-seq shall contain only the type-specifier auto
722 // and cv-qualifiers.
723 // C++2a [dcl.dcl]/8:
724 // If decl-specifier-seq contains any decl-specifier other than static,
725 // thread_local, auto, or cv-qualifiers, the program is ill-formed.
726 auto &DS = D.getDeclSpec();
727 {
728 SmallVector<StringRef, 8> BadSpecifiers;
729 SmallVector<SourceLocation, 8> BadSpecifierLocs;
730 SmallVector<StringRef, 8> CPlusPlus20Specifiers;
731 SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs;
732 if (auto SCS = DS.getStorageClassSpec()) {
733 if (SCS == DeclSpec::SCS_static) {
734 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS));
735 CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc());
736 } else {
737 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS));
738 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc());
739 }
740 }
741 if (auto TSCS = DS.getThreadStorageClassSpec()) {
742 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS));
743 CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc());
744 }
745 if (DS.hasConstexprSpecifier()) {
746 BadSpecifiers.push_back(
747 DeclSpec::getSpecifierName(DS.getConstexprSpecifier()));
748 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc());
749 }
750 if (DS.isInlineSpecified()) {
751 BadSpecifiers.push_back("inline");
752 BadSpecifierLocs.push_back(DS.getInlineSpecLoc());
753 }
754 if (!BadSpecifiers.empty()) {
755 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec);
756 Err << (int)BadSpecifiers.size()
757 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " ");
758 // Don't add FixItHints to remove the specifiers; we do still respect
759 // them when building the underlying variable.
760 for (auto Loc : BadSpecifierLocs)
761 Err << SourceRange(Loc, Loc);
762 } else if (!CPlusPlus20Specifiers.empty()) {
763 auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(),
764 getLangOpts().CPlusPlus2a
765 ? diag::warn_cxx17_compat_decomp_decl_spec
766 : diag::ext_decomp_decl_spec);
767 Warn << (int)CPlusPlus20Specifiers.size()
768 << llvm::join(CPlusPlus20Specifiers.begin(),
769 CPlusPlus20Specifiers.end(), " ");
770 for (auto Loc : CPlusPlus20SpecifierLocs)
771 Warn << SourceRange(Loc, Loc);
772 }
773 // We can't recover from it being declared as a typedef.
774 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
775 return nullptr;
776 }
777
778 // C++2a [dcl.struct.bind]p1:
779 // A cv that includes volatile is deprecated
780 if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) &&
781 getLangOpts().CPlusPlus2a)
782 Diag(DS.getVolatileSpecLoc(),
783 diag::warn_deprecated_volatile_structured_binding);
784
785 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
786 QualType R = TInfo->getType();
787
788 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
789 UPPC_DeclarationType))
790 D.setInvalidType();
791
792 // The syntax only allows a single ref-qualifier prior to the decomposition
793 // declarator. No other declarator chunks are permitted. Also check the type
794 // specifier here.
795 if (DS.getTypeSpecType() != DeclSpec::TST_auto ||
796 D.hasGroupingParens() || D.getNumTypeObjects() > 1 ||
797 (D.getNumTypeObjects() == 1 &&
798 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) {
799 Diag(Decomp.getLSquareLoc(),
800 (D.hasGroupingParens() ||
801 (D.getNumTypeObjects() &&
802 D.getTypeObject(0).Kind == DeclaratorChunk::Paren))
803 ? diag::err_decomp_decl_parens
804 : diag::err_decomp_decl_type)
805 << R;
806
807 // In most cases, there's no actual problem with an explicitly-specified
808 // type, but a function type won't work here, and ActOnVariableDeclarator
809 // shouldn't be called for such a type.
810 if (R->isFunctionType())
811 D.setInvalidType();
812 }
813
814 // Build the BindingDecls.
815 SmallVector<BindingDecl*, 8> Bindings;
816
817 // Build the BindingDecls.
818 for (auto &B : D.getDecompositionDeclarator().bindings()) {
819 // Check for name conflicts.
820 DeclarationNameInfo NameInfo(B.Name, B.NameLoc);
821 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
822 ForVisibleRedeclaration);
823 LookupName(Previous, S,
824 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit());
825
826 // It's not permitted to shadow a template parameter name.
827 if (Previous.isSingleResult() &&
828 Previous.getFoundDecl()->isTemplateParameter()) {
829 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
830 Previous.getFoundDecl());
831 Previous.clear();
832 }
833
834 bool ConsiderLinkage = DC->isFunctionOrMethod() &&
835 DS.getStorageClassSpec() == DeclSpec::SCS_extern;
836 FilterLookupForScope(Previous, DC, S, ConsiderLinkage,
837 /*AllowInlineNamespace*/false);
838 if (!Previous.empty()) {
839 auto *Old = Previous.getRepresentativeDecl();
840 Diag(B.NameLoc, diag::err_redefinition) << B.Name;
841 Diag(Old->getLocation(), diag::note_previous_definition);
842 }
843
844 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name);
845 PushOnScopeChains(BD, S, true);
846 Bindings.push_back(BD);
847 ParsingInitForAutoVars.insert(BD);
848 }
849
850 // There are no prior lookup results for the variable itself, because it
851 // is unnamed.
852 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr,
853 Decomp.getLSquareLoc());
854 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
855 ForVisibleRedeclaration);
856
857 // Build the variable that holds the non-decomposed object.
858 bool AddToScope = true;
859 NamedDecl *New =
860 ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
861 MultiTemplateParamsArg(), AddToScope, Bindings);
862 if (AddToScope) {
863 S->AddDecl(New);
864 CurContext->addHiddenDecl(New);
865 }
866
867 if (isInOpenMPDeclareTargetContext())
868 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
869
870 return New;
871}
872
873static bool checkSimpleDecomposition(
874 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src,
875 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType,
876 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) {
877 if ((int64_t)Bindings.size() != NumElems) {
878 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
879 << DecompType << (unsigned)Bindings.size() << NumElems.toString(10)
880 << (NumElems < Bindings.size());
881 return true;
882 }
883
884 unsigned I = 0;
885 for (auto *B : Bindings) {
886 SourceLocation Loc = B->getLocation();
887 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
888 if (E.isInvalid())
889 return true;
890 E = GetInit(Loc, E.get(), I++);
891 if (E.isInvalid())
892 return true;
893 B->setBinding(ElemType, E.get());
894 }
895
896 return false;
897}
898
899static bool checkArrayLikeDecomposition(Sema &S,
900 ArrayRef<BindingDecl *> Bindings,
901 ValueDecl *Src, QualType DecompType,
902 const llvm::APSInt &NumElems,
903 QualType ElemType) {
904 return checkSimpleDecomposition(
905 S, Bindings, Src, DecompType, NumElems, ElemType,
906 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
907 ExprResult E = S.ActOnIntegerConstant(Loc, I);
908 if (E.isInvalid())
909 return ExprError();
910 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc);
911 });
912}
913
914static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
915 ValueDecl *Src, QualType DecompType,
916 const ConstantArrayType *CAT) {
917 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType,
918 llvm::APSInt(CAT->getSize()),
919 CAT->getElementType());
920}
921
922static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
923 ValueDecl *Src, QualType DecompType,
924 const VectorType *VT) {
925 return checkArrayLikeDecomposition(
926 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()),
927 S.Context.getQualifiedType(VT->getElementType(),
928 DecompType.getQualifiers()));
929}
930
931static bool checkComplexDecomposition(Sema &S,
932 ArrayRef<BindingDecl *> Bindings,
933 ValueDecl *Src, QualType DecompType,
934 const ComplexType *CT) {
935 return checkSimpleDecomposition(
936 S, Bindings, Src, DecompType, llvm::APSInt::get(2),
937 S.Context.getQualifiedType(CT->getElementType(),
938 DecompType.getQualifiers()),
939 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
940 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base);
941 });
942}
943
944static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy,
945 TemplateArgumentListInfo &Args) {
946 SmallString<128> SS;
947 llvm::raw_svector_ostream OS(SS);
948 bool First = true;
949 for (auto &Arg : Args.arguments()) {
950 if (!First)
951 OS << ", ";
952 Arg.getArgument().print(PrintingPolicy, OS);
953 First = false;
954 }
955 return std::string(OS.str());
956}
957
958static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup,
959 SourceLocation Loc, StringRef Trait,
960 TemplateArgumentListInfo &Args,
961 unsigned DiagID) {
962 auto DiagnoseMissing = [&] {
963 if (DiagID)
964 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(),
965 Args);
966 return true;
967 };
968
969 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine.
970 NamespaceDecl *Std = S.getStdNamespace();
971 if (!Std)
972 return DiagnoseMissing();
973
974 // Look up the trait itself, within namespace std. We can diagnose various
975 // problems with this lookup even if we've been asked to not diagnose a
976 // missing specialization, because this can only fail if the user has been
977 // declaring their own names in namespace std or we don't support the
978 // standard library implementation in use.
979 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait),
980 Loc, Sema::LookupOrdinaryName);
981 if (!S.LookupQualifiedName(Result, Std))
982 return DiagnoseMissing();
983 if (Result.isAmbiguous())
984 return true;
985
986 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>();
987 if (!TraitTD) {
988 Result.suppressDiagnostics();
989 NamedDecl *Found = *Result.begin();
990 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait;
991 S.Diag(Found->getLocation(), diag::note_declared_at);
992 return true;
993 }
994
995 // Build the template-id.
996 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args);
997 if (TraitTy.isNull())
998 return true;
999 if (!S.isCompleteType(Loc, TraitTy)) {
1000 if (DiagID)
1001 S.RequireCompleteType(
1002 Loc, TraitTy, DiagID,
1003 printTemplateArgs(S.Context.getPrintingPolicy(), Args));
1004 return true;
1005 }
1006
1007 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl();
1008 assert(RD && "specialization of class template is not a class?")((RD && "specialization of class template is not a class?"
) ? static_cast<void> (0) : __assert_fail ("RD && \"specialization of class template is not a class?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 1008, __PRETTY_FUNCTION__))
;
1009
1010 // Look up the member of the trait type.
1011 S.LookupQualifiedName(TraitMemberLookup, RD);
1012 return TraitMemberLookup.isAmbiguous();
1013}
1014
1015static TemplateArgumentLoc
1016getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T,
1017 uint64_t I) {
1018 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T);
1019 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc);
1020}
1021
1022static TemplateArgumentLoc
1023getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) {
1024 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc);
1025}
1026
1027namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; }
1028
1029static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T,
1030 llvm::APSInt &Size) {
1031 EnterExpressionEvaluationContext ContextRAII(
1032 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1033
1034 DeclarationName Value = S.PP.getIdentifierInfo("value");
1035 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName);
1036
1037 // Form template argument list for tuple_size<T>.
1038 TemplateArgumentListInfo Args(Loc, Loc);
1039 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1040
1041 // If there's no tuple_size specialization or the lookup of 'value' is empty,
1042 // it's not tuple-like.
1043 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) ||
1044 R.empty())
1045 return IsTupleLike::NotTupleLike;
1046
1047 // If we get this far, we've committed to the tuple interpretation, but
1048 // we can still fail if there actually isn't a usable ::value.
1049
1050 struct ICEDiagnoser : Sema::VerifyICEDiagnoser {
1051 LookupResult &R;
1052 TemplateArgumentListInfo &Args;
1053 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args)
1054 : R(R), Args(Args) {}
1055 void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
1056 S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant)
1057 << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1058 }
1059 } Diagnoser(R, Args);
1060
1061 ExprResult E =
1062 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false);
1063 if (E.isInvalid())
1064 return IsTupleLike::Error;
1065
1066 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser, false);
1067 if (E.isInvalid())
1068 return IsTupleLike::Error;
1069
1070 return IsTupleLike::TupleLike;
1071}
1072
1073/// \return std::tuple_element<I, T>::type.
1074static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc,
1075 unsigned I, QualType T) {
1076 // Form template argument list for tuple_element<I, T>.
1077 TemplateArgumentListInfo Args(Loc, Loc);
1078 Args.addArgument(
1079 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1080 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1081
1082 DeclarationName TypeDN = S.PP.getIdentifierInfo("type");
1083 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName);
1084 if (lookupStdTypeTraitMember(
1085 S, R, Loc, "tuple_element", Args,
1086 diag::err_decomp_decl_std_tuple_element_not_specialized))
1087 return QualType();
1088
1089 auto *TD = R.getAsSingle<TypeDecl>();
1090 if (!TD) {
1091 R.suppressDiagnostics();
1092 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized)
1093 << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1094 if (!R.empty())
1095 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at);
1096 return QualType();
1097 }
1098
1099 return S.Context.getTypeDeclType(TD);
1100}
1101
1102namespace {
1103struct BindingDiagnosticTrap {
1104 Sema &S;
1105 DiagnosticErrorTrap Trap;
1106 BindingDecl *BD;
1107
1108 BindingDiagnosticTrap(Sema &S, BindingDecl *BD)
1109 : S(S), Trap(S.Diags), BD(BD) {}
1110 ~BindingDiagnosticTrap() {
1111 if (Trap.hasErrorOccurred())
1112 S.Diag(BD->getLocation(), diag::note_in_binding_decl_init) << BD;
1113 }
1114};
1115}
1116
1117static bool checkTupleLikeDecomposition(Sema &S,
1118 ArrayRef<BindingDecl *> Bindings,
1119 VarDecl *Src, QualType DecompType,
1120 const llvm::APSInt &TupleSize) {
1121 if ((int64_t)Bindings.size() != TupleSize) {
1122 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1123 << DecompType << (unsigned)Bindings.size() << TupleSize.toString(10)
1124 << (TupleSize < Bindings.size());
1125 return true;
1126 }
1127
1128 if (Bindings.empty())
1129 return false;
1130
1131 DeclarationName GetDN = S.PP.getIdentifierInfo("get");
1132
1133 // [dcl.decomp]p3:
1134 // The unqualified-id get is looked up in the scope of E by class member
1135 // access lookup ...
1136 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName);
1137 bool UseMemberGet = false;
1138 if (S.isCompleteType(Src->getLocation(), DecompType)) {
1139 if (auto *RD = DecompType->getAsCXXRecordDecl())
1140 S.LookupQualifiedName(MemberGet, RD);
1141 if (MemberGet.isAmbiguous())
1142 return true;
1143 // ... and if that finds at least one declaration that is a function
1144 // template whose first template parameter is a non-type parameter ...
1145 for (NamedDecl *D : MemberGet) {
1146 if (FunctionTemplateDecl *FTD =
1147 dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) {
1148 TemplateParameterList *TPL = FTD->getTemplateParameters();
1149 if (TPL->size() != 0 &&
1150 isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) {
1151 // ... the initializer is e.get<i>().
1152 UseMemberGet = true;
1153 break;
1154 }
1155 }
1156 }
1157 }
1158
1159 unsigned I = 0;
1160 for (auto *B : Bindings) {
1161 BindingDiagnosticTrap Trap(S, B);
1162 SourceLocation Loc = B->getLocation();
1163
1164 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1165 if (E.isInvalid())
1166 return true;
1167
1168 // e is an lvalue if the type of the entity is an lvalue reference and
1169 // an xvalue otherwise
1170 if (!Src->getType()->isLValueReferenceType())
1171 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp,
1172 E.get(), nullptr, VK_XValue);
1173
1174 TemplateArgumentListInfo Args(Loc, Loc);
1175 Args.addArgument(
1176 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1177
1178 if (UseMemberGet) {
1179 // if [lookup of member get] finds at least one declaration, the
1180 // initializer is e.get<i-1>().
1181 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false,
1182 CXXScopeSpec(), SourceLocation(), nullptr,
1183 MemberGet, &Args, nullptr);
1184 if (E.isInvalid())
1185 return true;
1186
1187 E = S.BuildCallExpr(nullptr, E.get(), Loc, None, Loc);
1188 } else {
1189 // Otherwise, the initializer is get<i-1>(e), where get is looked up
1190 // in the associated namespaces.
1191 Expr *Get = UnresolvedLookupExpr::Create(
1192 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(),
1193 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args,
1194 UnresolvedSetIterator(), UnresolvedSetIterator());
1195
1196 Expr *Arg = E.get();
1197 E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc);
1198 }
1199 if (E.isInvalid())
1200 return true;
1201 Expr *Init = E.get();
1202
1203 // Given the type T designated by std::tuple_element<i - 1, E>::type,
1204 QualType T = getTupleLikeElementType(S, Loc, I, DecompType);
1205 if (T.isNull())
1206 return true;
1207
1208 // each vi is a variable of type "reference to T" initialized with the
1209 // initializer, where the reference is an lvalue reference if the
1210 // initializer is an lvalue and an rvalue reference otherwise
1211 QualType RefType =
1212 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName());
1213 if (RefType.isNull())
1214 return true;
1215 auto *RefVD = VarDecl::Create(
1216 S.Context, Src->getDeclContext(), Loc, Loc,
1217 B->getDeclName().getAsIdentifierInfo(), RefType,
1218 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass());
1219 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext());
1220 RefVD->setTSCSpec(Src->getTSCSpec());
1221 RefVD->setImplicit();
1222 if (Src->isInlineSpecified())
1223 RefVD->setInlineSpecified();
1224 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD);
1225
1226 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD);
1227 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc);
1228 InitializationSequence Seq(S, Entity, Kind, Init);
1229 E = Seq.Perform(S, Entity, Kind, Init);
1230 if (E.isInvalid())
1231 return true;
1232 E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false);
1233 if (E.isInvalid())
1234 return true;
1235 RefVD->setInit(E.get());
1236 if (!E.get()->isValueDependent())
1237 RefVD->checkInitIsICE();
1238
1239 E = S.BuildDeclarationNameExpr(CXXScopeSpec(),
1240 DeclarationNameInfo(B->getDeclName(), Loc),
1241 RefVD);
1242 if (E.isInvalid())
1243 return true;
1244
1245 B->setBinding(T, E.get());
1246 I++;
1247 }
1248
1249 return false;
1250}
1251
1252/// Find the base class to decompose in a built-in decomposition of a class type.
1253/// This base class search is, unfortunately, not quite like any other that we
1254/// perform anywhere else in C++.
1255static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc,
1256 const CXXRecordDecl *RD,
1257 CXXCastPath &BasePath) {
1258 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier,
1259 CXXBasePath &Path) {
1260 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields();
1261 };
1262
1263 const CXXRecordDecl *ClassWithFields = nullptr;
1264 AccessSpecifier AS = AS_public;
1265 if (RD->hasDirectFields())
1266 // [dcl.decomp]p4:
1267 // Otherwise, all of E's non-static data members shall be public direct
1268 // members of E ...
1269 ClassWithFields = RD;
1270 else {
1271 // ... or of ...
1272 CXXBasePaths Paths;
1273 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD));
1274 if (!RD->lookupInBases(BaseHasFields, Paths)) {
1275 // If no classes have fields, just decompose RD itself. (This will work
1276 // if and only if zero bindings were provided.)
1277 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public);
1278 }
1279
1280 CXXBasePath *BestPath = nullptr;
1281 for (auto &P : Paths) {
1282 if (!BestPath)
1283 BestPath = &P;
1284 else if (!S.Context.hasSameType(P.back().Base->getType(),
1285 BestPath->back().Base->getType())) {
1286 // ... the same ...
1287 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1288 << false << RD << BestPath->back().Base->getType()
1289 << P.back().Base->getType();
1290 return DeclAccessPair();
1291 } else if (P.Access < BestPath->Access) {
1292 BestPath = &P;
1293 }
1294 }
1295
1296 // ... unambiguous ...
1297 QualType BaseType = BestPath->back().Base->getType();
1298 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) {
1299 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base)
1300 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths);
1301 return DeclAccessPair();
1302 }
1303
1304 // ... [accessible, implied by other rules] base class of E.
1305 S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD),
1306 *BestPath, diag::err_decomp_decl_inaccessible_base);
1307 AS = BestPath->Access;
1308
1309 ClassWithFields = BaseType->getAsCXXRecordDecl();
1310 S.BuildBasePathArray(Paths, BasePath);
1311 }
1312
1313 // The above search did not check whether the selected class itself has base
1314 // classes with fields, so check that now.
1315 CXXBasePaths Paths;
1316 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) {
1317 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1318 << (ClassWithFields == RD) << RD << ClassWithFields
1319 << Paths.front().back().Base->getType();
1320 return DeclAccessPair();
1321 }
1322
1323 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS);
1324}
1325
1326static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
1327 ValueDecl *Src, QualType DecompType,
1328 const CXXRecordDecl *OrigRD) {
1329 if (S.RequireCompleteType(Src->getLocation(), DecompType,
1330 diag::err_incomplete_type))
1331 return true;
1332
1333 CXXCastPath BasePath;
1334 DeclAccessPair BasePair =
1335 findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath);
1336 const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl());
1337 if (!RD)
1338 return true;
1339 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD),
1340 DecompType.getQualifiers());
1341
1342 auto DiagnoseBadNumberOfBindings = [&]() -> bool {
1343 unsigned NumFields =
1344 std::count_if(RD->field_begin(), RD->field_end(),
1345 [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); });
1346 assert(Bindings.size() != NumFields)((Bindings.size() != NumFields) ? static_cast<void> (0)
: __assert_fail ("Bindings.size() != NumFields", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 1346, __PRETTY_FUNCTION__))
;
1347 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1348 << DecompType << (unsigned)Bindings.size() << NumFields
1349 << (NumFields < Bindings.size());
1350 return true;
1351 };
1352
1353 // all of E's non-static data members shall be [...] well-formed
1354 // when named as e.name in the context of the structured binding,
1355 // E shall not have an anonymous union member, ...
1356 unsigned I = 0;
1357 for (auto *FD : RD->fields()) {
1358 if (FD->isUnnamedBitfield())
1359 continue;
1360
1361 if (FD->isAnonymousStructOrUnion()) {
1362 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member)
1363 << DecompType << FD->getType()->isUnionType();
1364 S.Diag(FD->getLocation(), diag::note_declared_at);
1365 return true;
1366 }
1367
1368 // We have a real field to bind.
1369 if (I >= Bindings.size())
1370 return DiagnoseBadNumberOfBindings();
1371 auto *B = Bindings[I++];
1372 SourceLocation Loc = B->getLocation();
1373
1374 // The field must be accessible in the context of the structured binding.
1375 // We already checked that the base class is accessible.
1376 // FIXME: Add 'const' to AccessedEntity's classes so we can remove the
1377 // const_cast here.
1378 S.CheckStructuredBindingMemberAccess(
1379 Loc, const_cast<CXXRecordDecl *>(OrigRD),
1380 DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess(
1381 BasePair.getAccess(), FD->getAccess())));
1382
1383 // Initialize the binding to Src.FD.
1384 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1385 if (E.isInvalid())
1386 return true;
1387 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase,
1388 VK_LValue, &BasePath);
1389 if (E.isInvalid())
1390 return true;
1391 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc,
1392 CXXScopeSpec(), FD,
1393 DeclAccessPair::make(FD, FD->getAccess()),
1394 DeclarationNameInfo(FD->getDeclName(), Loc));
1395 if (E.isInvalid())
1396 return true;
1397
1398 // If the type of the member is T, the referenced type is cv T, where cv is
1399 // the cv-qualification of the decomposition expression.
1400 //
1401 // FIXME: We resolve a defect here: if the field is mutable, we do not add
1402 // 'const' to the type of the field.
1403 Qualifiers Q = DecompType.getQualifiers();
1404 if (FD->isMutable())
1405 Q.removeConst();
1406 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get());
1407 }
1408
1409 if (I != Bindings.size())
1410 return DiagnoseBadNumberOfBindings();
1411
1412 return false;
1413}
1414
1415void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) {
1416 QualType DecompType = DD->getType();
1417
1418 // If the type of the decomposition is dependent, then so is the type of
1419 // each binding.
1420 if (DecompType->isDependentType()) {
1421 for (auto *B : DD->bindings())
1422 B->setType(Context.DependentTy);
1423 return;
1424 }
1425
1426 DecompType = DecompType.getNonReferenceType();
1427 ArrayRef<BindingDecl*> Bindings = DD->bindings();
1428
1429 // C++1z [dcl.decomp]/2:
1430 // If E is an array type [...]
1431 // As an extension, we also support decomposition of built-in complex and
1432 // vector types.
1433 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) {
1434 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT))
1435 DD->setInvalidDecl();
1436 return;
1437 }
1438 if (auto *VT = DecompType->getAs<VectorType>()) {
1439 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT))
1440 DD->setInvalidDecl();
1441 return;
1442 }
1443 if (auto *CT = DecompType->getAs<ComplexType>()) {
1444 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT))
1445 DD->setInvalidDecl();
1446 return;
1447 }
1448
1449 // C++1z [dcl.decomp]/3:
1450 // if the expression std::tuple_size<E>::value is a well-formed integral
1451 // constant expression, [...]
1452 llvm::APSInt TupleSize(32);
1453 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) {
1454 case IsTupleLike::Error:
1455 DD->setInvalidDecl();
1456 return;
1457
1458 case IsTupleLike::TupleLike:
1459 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize))
1460 DD->setInvalidDecl();
1461 return;
1462
1463 case IsTupleLike::NotTupleLike:
1464 break;
1465 }
1466
1467 // C++1z [dcl.dcl]/8:
1468 // [E shall be of array or non-union class type]
1469 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl();
1470 if (!RD || RD->isUnion()) {
1471 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type)
1472 << DD << !RD << DecompType;
1473 DD->setInvalidDecl();
1474 return;
1475 }
1476
1477 // C++1z [dcl.decomp]/4:
1478 // all of E's non-static data members shall be [...] direct members of
1479 // E or of the same unambiguous public base class of E, ...
1480 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD))
1481 DD->setInvalidDecl();
1482}
1483
1484/// Merge the exception specifications of two variable declarations.
1485///
1486/// This is called when there's a redeclaration of a VarDecl. The function
1487/// checks if the redeclaration might have an exception specification and
1488/// validates compatibility and merges the specs if necessary.
1489void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
1490 // Shortcut if exceptions are disabled.
1491 if (!getLangOpts().CXXExceptions)
1492 return;
1493
1494 assert(Context.hasSameType(New->getType(), Old->getType()) &&((Context.hasSameType(New->getType(), Old->getType()) &&
"Should only be called if types are otherwise the same.") ? static_cast
<void> (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 1495, __PRETTY_FUNCTION__))
1495 "Should only be called if types are otherwise the same.")((Context.hasSameType(New->getType(), Old->getType()) &&
"Should only be called if types are otherwise the same.") ? static_cast
<void> (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 1495, __PRETTY_FUNCTION__))
;
1496
1497 QualType NewType = New->getType();
1498 QualType OldType = Old->getType();
1499
1500 // We're only interested in pointers and references to functions, as well
1501 // as pointers to member functions.
1502 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
1503 NewType = R->getPointeeType();
1504 OldType = OldType->castAs<ReferenceType>()->getPointeeType();
1505 } else if (const PointerType *P = NewType->getAs<PointerType>()) {
1506 NewType = P->getPointeeType();
1507 OldType = OldType->castAs<PointerType>()->getPointeeType();
1508 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
1509 NewType = M->getPointeeType();
1510 OldType = OldType->castAs<MemberPointerType>()->getPointeeType();
1511 }
1512
1513 if (!NewType->isFunctionProtoType())
1514 return;
1515
1516 // There's lots of special cases for functions. For function pointers, system
1517 // libraries are hopefully not as broken so that we don't need these
1518 // workarounds.
1519 if (CheckEquivalentExceptionSpec(
1520 OldType->getAs<FunctionProtoType>(), Old->getLocation(),
1521 NewType->getAs<FunctionProtoType>(), New->getLocation())) {
1522 New->setInvalidDecl();
1523 }
1524}
1525
1526/// CheckCXXDefaultArguments - Verify that the default arguments for a
1527/// function declaration are well-formed according to C++
1528/// [dcl.fct.default].
1529void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
1530 unsigned NumParams = FD->getNumParams();
1531 unsigned p;
1532
1533 // Find first parameter with a default argument
1534 for (p = 0; p < NumParams; ++p) {
1535 ParmVarDecl *Param = FD->getParamDecl(p);
1536 if (Param->hasDefaultArg())
1537 break;
1538 }
1539
1540 // C++11 [dcl.fct.default]p4:
1541 // In a given function declaration, each parameter subsequent to a parameter
1542 // with a default argument shall have a default argument supplied in this or
1543 // a previous declaration or shall be a function parameter pack. A default
1544 // argument shall not be redefined by a later declaration (not even to the
1545 // same value).
1546 unsigned LastMissingDefaultArg = 0;
1547 for (; p < NumParams; ++p) {
1548 ParmVarDecl *Param = FD->getParamDecl(p);
1549 if (!Param->hasDefaultArg() && !Param->isParameterPack()) {
1550 if (Param->isInvalidDecl())
1551 /* We already complained about this parameter. */;
1552 else if (Param->getIdentifier())
1553 Diag(Param->getLocation(),
1554 diag::err_param_default_argument_missing_name)
1555 << Param->getIdentifier();
1556 else
1557 Diag(Param->getLocation(),
1558 diag::err_param_default_argument_missing);
1559
1560 LastMissingDefaultArg = p;
1561 }
1562 }
1563
1564 if (LastMissingDefaultArg > 0) {
1565 // Some default arguments were missing. Clear out all of the
1566 // default arguments up to (and including) the last missing
1567 // default argument, so that we leave the function parameters
1568 // in a semantically valid state.
1569 for (p = 0; p <= LastMissingDefaultArg; ++p) {
1570 ParmVarDecl *Param = FD->getParamDecl(p);
1571 if (Param->hasDefaultArg()) {
1572 Param->setDefaultArg(nullptr);
1573 }
1574 }
1575 }
1576}
1577
1578/// Check that the given type is a literal type. Issue a diagnostic if not,
1579/// if Kind is Diagnose.
1580/// \return \c true if a problem has been found (and optionally diagnosed).
1581template <typename... Ts>
1582static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind,
1583 SourceLocation Loc, QualType T, unsigned DiagID,
1584 Ts &&...DiagArgs) {
1585 if (T->isDependentType())
1586 return false;
1587
1588 switch (Kind) {
1589 case Sema::CheckConstexprKind::Diagnose:
1590 return SemaRef.RequireLiteralType(Loc, T, DiagID,
1591 std::forward<Ts>(DiagArgs)...);
1592
1593 case Sema::CheckConstexprKind::CheckValid:
1594 return !T->isLiteralType(SemaRef.Context);
1595 }
1596
1597 llvm_unreachable("unknown CheckConstexprKind")::llvm::llvm_unreachable_internal("unknown CheckConstexprKind"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 1597)
;
1598}
1599
1600/// Determine whether a destructor cannot be constexpr due to
1601static bool CheckConstexprDestructorSubobjects(Sema &SemaRef,
1602 const CXXDestructorDecl *DD,
1603 Sema::CheckConstexprKind Kind) {
1604 auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) {
1605 const CXXRecordDecl *RD =
1606 T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1607 if (!RD || RD->hasConstexprDestructor())
1608 return true;
1609
1610 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1611 SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject)
1612 << DD->getConstexprKind() << !FD
1613 << (FD ? FD->getDeclName() : DeclarationName()) << T;
1614 SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject)
1615 << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T;
1616 }
1617 return false;
1618 };
1619
1620 const CXXRecordDecl *RD = DD->getParent();
1621 for (const CXXBaseSpecifier &B : RD->bases())
1622 if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr))
1623 return false;
1624 for (const FieldDecl *FD : RD->fields())
1625 if (!Check(FD->getLocation(), FD->getType(), FD))
1626 return false;
1627 return true;
1628}
1629
1630/// Check whether a function's parameter types are all literal types. If so,
1631/// return true. If not, produce a suitable diagnostic and return false.
1632static bool CheckConstexprParameterTypes(Sema &SemaRef,
1633 const FunctionDecl *FD,
1634 Sema::CheckConstexprKind Kind) {
1635 unsigned ArgIndex = 0;
1636 const auto *FT = FD->getType()->castAs<FunctionProtoType>();
1637 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
1638 e = FT->param_type_end();
1639 i != e; ++i, ++ArgIndex) {
1640 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
1641 SourceLocation ParamLoc = PD->getLocation();
1642 if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i,
1643 diag::err_constexpr_non_literal_param, ArgIndex + 1,
1644 PD->getSourceRange(), isa<CXXConstructorDecl>(FD),
1645 FD->isConsteval()))
1646 return false;
1647 }
1648 return true;
1649}
1650
1651/// Check whether a function's return type is a literal type. If so, return
1652/// true. If not, produce a suitable diagnostic and return false.
1653static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD,
1654 Sema::CheckConstexprKind Kind) {
1655 if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(),
1656 diag::err_constexpr_non_literal_return,
1657 FD->isConsteval()))
1658 return false;
1659 return true;
1660}
1661
1662/// Get diagnostic %select index for tag kind for
1663/// record diagnostic message.
1664/// WARNING: Indexes apply to particular diagnostics only!
1665///
1666/// \returns diagnostic %select index.
1667static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
1668 switch (Tag) {
1669 case TTK_Struct: return 0;
1670 case TTK_Interface: return 1;
1671 case TTK_Class: return 2;
1672 default: llvm_unreachable("Invalid tag kind for record diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for record diagnostic!"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 1672)
;
1673 }
1674}
1675
1676static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
1677 Stmt *Body,
1678 Sema::CheckConstexprKind Kind);
1679
1680// Check whether a function declaration satisfies the requirements of a
1681// constexpr function definition or a constexpr constructor definition. If so,
1682// return true. If not, produce appropriate diagnostics (unless asked not to by
1683// Kind) and return false.
1684//
1685// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
1686bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD,
1687 CheckConstexprKind Kind) {
1688 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
1689 if (MD && MD->isInstance()) {
1690 // C++11 [dcl.constexpr]p4:
1691 // The definition of a constexpr constructor shall satisfy the following
1692 // constraints:
1693 // - the class shall not have any virtual base classes;
1694 //
1695 // FIXME: This only applies to constructors and destructors, not arbitrary
1696 // member functions.
1697 const CXXRecordDecl *RD = MD->getParent();
1698 if (RD->getNumVBases()) {
1699 if (Kind == CheckConstexprKind::CheckValid)
1700 return false;
1701
1702 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
1703 << isa<CXXConstructorDecl>(NewFD)
1704 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
1705 for (const auto &I : RD->vbases())
1706 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
1707 << I.getSourceRange();
1708 return false;
1709 }
1710 }
1711
1712 if (!isa<CXXConstructorDecl>(NewFD)) {
1713 // C++11 [dcl.constexpr]p3:
1714 // The definition of a constexpr function shall satisfy the following
1715 // constraints:
1716 // - it shall not be virtual; (removed in C++20)
1717 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
1718 if (Method && Method->isVirtual()) {
1719 if (getLangOpts().CPlusPlus2a) {
1720 if (Kind == CheckConstexprKind::Diagnose)
1721 Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual);
1722 } else {
1723 if (Kind == CheckConstexprKind::CheckValid)
1724 return false;
1725
1726 Method = Method->getCanonicalDecl();
1727 Diag(Method->getLocation(), diag::err_constexpr_virtual);
1728
1729 // If it's not obvious why this function is virtual, find an overridden
1730 // function which uses the 'virtual' keyword.
1731 const CXXMethodDecl *WrittenVirtual = Method;
1732 while (!WrittenVirtual->isVirtualAsWritten())
1733 WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
1734 if (WrittenVirtual != Method)
1735 Diag(WrittenVirtual->getLocation(),
1736 diag::note_overridden_virtual_function);
1737 return false;
1738 }
1739 }
1740
1741 // - its return type shall be a literal type;
1742 if (!CheckConstexprReturnType(*this, NewFD, Kind))
1743 return false;
1744 }
1745
1746 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) {
1747 // A destructor can be constexpr only if the defaulted destructor could be;
1748 // we don't need to check the members and bases if we already know they all
1749 // have constexpr destructors.
1750 if (!Dtor->getParent()->defaultedDestructorIsConstexpr()) {
1751 if (Kind == CheckConstexprKind::CheckValid)
1752 return false;
1753 if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind))
1754 return false;
1755 }
1756 }
1757
1758 // - each of its parameter types shall be a literal type;
1759 if (!CheckConstexprParameterTypes(*this, NewFD, Kind))
1760 return false;
1761
1762 Stmt *Body = NewFD->getBody();
1763 assert(Body &&((Body && "CheckConstexprFunctionDefinition called on function with no body"
) ? static_cast<void> (0) : __assert_fail ("Body && \"CheckConstexprFunctionDefinition called on function with no body\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 1764, __PRETTY_FUNCTION__))
1764 "CheckConstexprFunctionDefinition called on function with no body")((Body && "CheckConstexprFunctionDefinition called on function with no body"
) ? static_cast<void> (0) : __assert_fail ("Body && \"CheckConstexprFunctionDefinition called on function with no body\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 1764, __PRETTY_FUNCTION__))
;
1765 return CheckConstexprFunctionBody(*this, NewFD, Body, Kind);
1766}
1767
1768/// Check the given declaration statement is legal within a constexpr function
1769/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
1770///
1771/// \return true if the body is OK (maybe only as an extension), false if we
1772/// have diagnosed a problem.
1773static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
1774 DeclStmt *DS, SourceLocation &Cxx1yLoc,
1775 Sema::CheckConstexprKind Kind) {
1776 // C++11 [dcl.constexpr]p3 and p4:
1777 // The definition of a constexpr function(p3) or constructor(p4) [...] shall
1778 // contain only
1779 for (const auto *DclIt : DS->decls()) {
1780 switch (DclIt->getKind()) {
1781 case Decl::StaticAssert:
1782 case Decl::Using:
1783 case Decl::UsingShadow:
1784 case Decl::UsingDirective:
1785 case Decl::UnresolvedUsingTypename:
1786 case Decl::UnresolvedUsingValue:
1787 // - static_assert-declarations
1788 // - using-declarations,
1789 // - using-directives,
1790 continue;
1791
1792 case Decl::Typedef:
1793 case Decl::TypeAlias: {
1794 // - typedef declarations and alias-declarations that do not define
1795 // classes or enumerations,
1796 const auto *TN = cast<TypedefNameDecl>(DclIt);
1797 if (TN->getUnderlyingType()->isVariablyModifiedType()) {
1798 // Don't allow variably-modified types in constexpr functions.
1799 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1800 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
1801 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
1802 << TL.getSourceRange() << TL.getType()
1803 << isa<CXXConstructorDecl>(Dcl);
1804 }
1805 return false;
1806 }
1807 continue;
1808 }
1809
1810 case Decl::Enum:
1811 case Decl::CXXRecord:
1812 // C++1y allows types to be defined, not just declared.
1813 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) {
1814 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1815 SemaRef.Diag(DS->getBeginLoc(),
1816 SemaRef.getLangOpts().CPlusPlus14
1817 ? diag::warn_cxx11_compat_constexpr_type_definition
1818 : diag::ext_constexpr_type_definition)
1819 << isa<CXXConstructorDecl>(Dcl);
1820 } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1821 return false;
1822 }
1823 }
1824 continue;
1825
1826 case Decl::EnumConstant:
1827 case Decl::IndirectField:
1828 case Decl::ParmVar:
1829 // These can only appear with other declarations which are banned in
1830 // C++11 and permitted in C++1y, so ignore them.
1831 continue;
1832
1833 case Decl::Var:
1834 case Decl::Decomposition: {
1835 // C++1y [dcl.constexpr]p3 allows anything except:
1836 // a definition of a variable of non-literal type or of static or
1837 // thread storage duration or [before C++2a] for which no
1838 // initialization is performed.
1839 const auto *VD = cast<VarDecl>(DclIt);
1840 if (VD->isThisDeclarationADefinition()) {
1841 if (VD->isStaticLocal()) {
1842 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1843 SemaRef.Diag(VD->getLocation(),
1844 diag::err_constexpr_local_var_static)
1845 << isa<CXXConstructorDecl>(Dcl)
1846 << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
1847 }
1848 return false;
1849 }
1850 if (CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(),
1851 diag::err_constexpr_local_var_non_literal_type,
1852 isa<CXXConstructorDecl>(Dcl)))
1853 return false;
1854 if (!VD->getType()->isDependentType() &&
1855 !VD->hasInit() && !VD->isCXXForRangeDecl()) {
1856 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1857 SemaRef.Diag(
1858 VD->getLocation(),
1859 SemaRef.getLangOpts().CPlusPlus2a
1860 ? diag::warn_cxx17_compat_constexpr_local_var_no_init
1861 : diag::ext_constexpr_local_var_no_init)
1862 << isa<CXXConstructorDecl>(Dcl);
1863 } else if (!SemaRef.getLangOpts().CPlusPlus2a) {
1864 return false;
1865 }
1866 continue;
1867 }
1868 }
1869 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1870 SemaRef.Diag(VD->getLocation(),
1871 SemaRef.getLangOpts().CPlusPlus14
1872 ? diag::warn_cxx11_compat_constexpr_local_var
1873 : diag::ext_constexpr_local_var)
1874 << isa<CXXConstructorDecl>(Dcl);
1875 } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1876 return false;
1877 }
1878 continue;
1879 }
1880
1881 case Decl::NamespaceAlias:
1882 case Decl::Function:
1883 // These are disallowed in C++11 and permitted in C++1y. Allow them
1884 // everywhere as an extension.
1885 if (!Cxx1yLoc.isValid())
1886 Cxx1yLoc = DS->getBeginLoc();
1887 continue;
1888
1889 default:
1890 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1891 SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
1892 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
1893 }
1894 return false;
1895 }
1896 }
1897
1898 return true;
1899}
1900
1901/// Check that the given field is initialized within a constexpr constructor.
1902///
1903/// \param Dcl The constexpr constructor being checked.
1904/// \param Field The field being checked. This may be a member of an anonymous
1905/// struct or union nested within the class being checked.
1906/// \param Inits All declarations, including anonymous struct/union members and
1907/// indirect members, for which any initialization was provided.
1908/// \param Diagnosed Whether we've emitted the error message yet. Used to attach
1909/// multiple notes for different members to the same error.
1910/// \param Kind Whether we're diagnosing a constructor as written or determining
1911/// whether the formal requirements are satisfied.
1912/// \return \c false if we're checking for validity and the constructor does
1913/// not satisfy the requirements on a constexpr constructor.
1914static bool CheckConstexprCtorInitializer(Sema &SemaRef,
1915 const FunctionDecl *Dcl,
1916 FieldDecl *Field,
1917 llvm::SmallSet<Decl*, 16> &Inits,
1918 bool &Diagnosed,
1919 Sema::CheckConstexprKind Kind) {
1920 // In C++20 onwards, there's nothing to check for validity.
1921 if (Kind == Sema::CheckConstexprKind::CheckValid &&
1922 SemaRef.getLangOpts().CPlusPlus2a)
1923 return true;
1924
1925 if (Field->isInvalidDecl())
1926 return true;
1927
1928 if (Field->isUnnamedBitfield())
1929 return true;
1930
1931 // Anonymous unions with no variant members and empty anonymous structs do not
1932 // need to be explicitly initialized. FIXME: Anonymous structs that contain no
1933 // indirect fields don't need initializing.
1934 if (Field->isAnonymousStructOrUnion() &&
1935 (Field->getType()->isUnionType()
1936 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
1937 : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
1938 return true;
1939
1940 if (!Inits.count(Field)) {
1941 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1942 if (!Diagnosed) {
1943 SemaRef.Diag(Dcl->getLocation(),
1944 SemaRef.getLangOpts().CPlusPlus2a
1945 ? diag::warn_cxx17_compat_constexpr_ctor_missing_init
1946 : diag::ext_constexpr_ctor_missing_init);
1947 Diagnosed = true;
1948 }
1949 SemaRef.Diag(Field->getLocation(),
1950 diag::note_constexpr_ctor_missing_init);
1951 } else if (!SemaRef.getLangOpts().CPlusPlus2a) {
1952 return false;
1953 }
1954 } else if (Field->isAnonymousStructOrUnion()) {
1955 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
1956 for (auto *I : RD->fields())
1957 // If an anonymous union contains an anonymous struct of which any member
1958 // is initialized, all members must be initialized.
1959 if (!RD->isUnion() || Inits.count(I))
1960 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
1961 Kind))
1962 return false;
1963 }
1964 return true;
1965}
1966
1967/// Check the provided statement is allowed in a constexpr function
1968/// definition.
1969static bool
1970CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
1971 SmallVectorImpl<SourceLocation> &ReturnStmts,
1972 SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc,
1973 Sema::CheckConstexprKind Kind) {
1974 // - its function-body shall be [...] a compound-statement that contains only
1975 switch (S->getStmtClass()) {
1976 case Stmt::NullStmtClass:
1977 // - null statements,
1978 return true;
1979
1980 case Stmt::DeclStmtClass:
1981 // - static_assert-declarations
1982 // - using-declarations,
1983 // - using-directives,
1984 // - typedef declarations and alias-declarations that do not define
1985 // classes or enumerations,
1986 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind))
1987 return false;
1988 return true;
1989
1990 case Stmt::ReturnStmtClass:
1991 // - and exactly one return statement;
1992 if (isa<CXXConstructorDecl>(Dcl)) {
1993 // C++1y allows return statements in constexpr constructors.
1994 if (!Cxx1yLoc.isValid())
1995 Cxx1yLoc = S->getBeginLoc();
1996 return true;
1997 }
1998
1999 ReturnStmts.push_back(S->getBeginLoc());
2000 return true;
2001
2002 case Stmt::CompoundStmtClass: {
2003 // C++1y allows compound-statements.
2004 if (!Cxx1yLoc.isValid())
2005 Cxx1yLoc = S->getBeginLoc();
2006
2007 CompoundStmt *CompStmt = cast<CompoundStmt>(S);
2008 for (auto *BodyIt : CompStmt->body()) {
2009 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
2010 Cxx1yLoc, Cxx2aLoc, Kind))
2011 return false;
2012 }
2013 return true;
2014 }
2015
2016 case Stmt::AttributedStmtClass:
2017 if (!Cxx1yLoc.isValid())
2018 Cxx1yLoc = S->getBeginLoc();
2019 return true;
2020
2021 case Stmt::IfStmtClass: {
2022 // C++1y allows if-statements.
2023 if (!Cxx1yLoc.isValid())
2024 Cxx1yLoc = S->getBeginLoc();
2025
2026 IfStmt *If = cast<IfStmt>(S);
2027 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
2028 Cxx1yLoc, Cxx2aLoc, Kind))
2029 return false;
2030 if (If->getElse() &&
2031 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
2032 Cxx1yLoc, Cxx2aLoc, Kind))
2033 return false;
2034 return true;
2035 }
2036
2037 case Stmt::WhileStmtClass:
2038 case Stmt::DoStmtClass:
2039 case Stmt::ForStmtClass:
2040 case Stmt::CXXForRangeStmtClass:
2041 case Stmt::ContinueStmtClass:
2042 // C++1y allows all of these. We don't allow them as extensions in C++11,
2043 // because they don't make sense without variable mutation.
2044 if (!SemaRef.getLangOpts().CPlusPlus14)
2045 break;
2046 if (!Cxx1yLoc.isValid())
2047 Cxx1yLoc = S->getBeginLoc();
2048 for (Stmt *SubStmt : S->children())
2049 if (SubStmt &&
2050 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2051 Cxx1yLoc, Cxx2aLoc, Kind))
2052 return false;
2053 return true;
2054
2055 case Stmt::SwitchStmtClass:
2056 case Stmt::CaseStmtClass:
2057 case Stmt::DefaultStmtClass:
2058 case Stmt::BreakStmtClass:
2059 // C++1y allows switch-statements, and since they don't need variable
2060 // mutation, we can reasonably allow them in C++11 as an extension.
2061 if (!Cxx1yLoc.isValid())
2062 Cxx1yLoc = S->getBeginLoc();
2063 for (Stmt *SubStmt : S->children())
2064 if (SubStmt &&
2065 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2066 Cxx1yLoc, Cxx2aLoc, Kind))
2067 return false;
2068 return true;
2069
2070 case Stmt::GCCAsmStmtClass:
2071 case Stmt::MSAsmStmtClass:
2072 // C++2a allows inline assembly statements.
2073 case Stmt::CXXTryStmtClass:
2074 if (Cxx2aLoc.isInvalid())
2075 Cxx2aLoc = S->getBeginLoc();
2076 for (Stmt *SubStmt : S->children()) {
2077 if (SubStmt &&
2078 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2079 Cxx1yLoc, Cxx2aLoc, Kind))
2080 return false;
2081 }
2082 return true;
2083
2084 case Stmt::CXXCatchStmtClass:
2085 // Do not bother checking the language mode (already covered by the
2086 // try block check).
2087 if (!CheckConstexprFunctionStmt(SemaRef, Dcl,
2088 cast<CXXCatchStmt>(S)->getHandlerBlock(),
2089 ReturnStmts, Cxx1yLoc, Cxx2aLoc, Kind))
2090 return false;
2091 return true;
2092
2093 default:
2094 if (!isa<Expr>(S))
2095 break;
2096
2097 // C++1y allows expression-statements.
2098 if (!Cxx1yLoc.isValid())
2099 Cxx1yLoc = S->getBeginLoc();
2100 return true;
2101 }
2102
2103 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2104 SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
2105 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2106 }
2107 return false;
2108}
2109
2110/// Check the body for the given constexpr function declaration only contains
2111/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
2112///
2113/// \return true if the body is OK, false if we have found or diagnosed a
2114/// problem.
2115static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
2116 Stmt *Body,
2117 Sema::CheckConstexprKind Kind) {
2118 SmallVector<SourceLocation, 4> ReturnStmts;
2119
2120 if (isa<CXXTryStmt>(Body)) {
2121 // C++11 [dcl.constexpr]p3:
2122 // The definition of a constexpr function shall satisfy the following
2123 // constraints: [...]
2124 // - its function-body shall be = delete, = default, or a
2125 // compound-statement
2126 //
2127 // C++11 [dcl.constexpr]p4:
2128 // In the definition of a constexpr constructor, [...]
2129 // - its function-body shall not be a function-try-block;
2130 //
2131 // This restriction is lifted in C++2a, as long as inner statements also
2132 // apply the general constexpr rules.
2133 switch (Kind) {
2134 case Sema::CheckConstexprKind::CheckValid:
2135 if (!SemaRef.getLangOpts().CPlusPlus2a)
2136 return false;
2137 break;
2138
2139 case Sema::CheckConstexprKind::Diagnose:
2140 SemaRef.Diag(Body->getBeginLoc(),
2141 !SemaRef.getLangOpts().CPlusPlus2a
2142 ? diag::ext_constexpr_function_try_block_cxx2a
2143 : diag::warn_cxx17_compat_constexpr_function_try_block)
2144 << isa<CXXConstructorDecl>(Dcl);
2145 break;
2146 }
2147 }
2148
2149 // - its function-body shall be [...] a compound-statement that contains only
2150 // [... list of cases ...]
2151 //
2152 // Note that walking the children here is enough to properly check for
2153 // CompoundStmt and CXXTryStmt body.
2154 SourceLocation Cxx1yLoc, Cxx2aLoc;
2155 for (Stmt *SubStmt : Body->children()) {
2156 if (SubStmt &&
2157 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2158 Cxx1yLoc, Cxx2aLoc, Kind))
2159 return false;
2160 }
2161
2162 if (Kind == Sema::CheckConstexprKind::CheckValid) {
2163 // If this is only valid as an extension, report that we don't satisfy the
2164 // constraints of the current language.
2165 if ((Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus2a) ||
2166 (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17))
2167 return false;
2168 } else if (Cxx2aLoc.isValid()) {
2169 SemaRef.Diag(Cxx2aLoc,
2170 SemaRef.getLangOpts().CPlusPlus2a
2171 ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt
2172 : diag::ext_constexpr_body_invalid_stmt_cxx2a)
2173 << isa<CXXConstructorDecl>(Dcl);
2174 } else if (Cxx1yLoc.isValid()) {
2175 SemaRef.Diag(Cxx1yLoc,
2176 SemaRef.getLangOpts().CPlusPlus14
2177 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
2178 : diag::ext_constexpr_body_invalid_stmt)
2179 << isa<CXXConstructorDecl>(Dcl);
2180 }
2181
2182 if (const CXXConstructorDecl *Constructor
2183 = dyn_cast<CXXConstructorDecl>(Dcl)) {
2184 const CXXRecordDecl *RD = Constructor->getParent();
2185 // DR1359:
2186 // - every non-variant non-static data member and base class sub-object
2187 // shall be initialized;
2188 // DR1460:
2189 // - if the class is a union having variant members, exactly one of them
2190 // shall be initialized;
2191 if (RD->isUnion()) {
2192 if (Constructor->getNumCtorInitializers() == 0 &&
2193 RD->hasVariantMembers()) {
2194 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2195 SemaRef.Diag(
2196 Dcl->getLocation(),
2197 SemaRef.getLangOpts().CPlusPlus2a
2198 ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init
2199 : diag::ext_constexpr_union_ctor_no_init);
2200 } else if (!SemaRef.getLangOpts().CPlusPlus2a) {
2201 return false;
2202 }
2203 }
2204 } else if (!Constructor->isDependentContext() &&
2205 !Constructor->isDelegatingConstructor()) {
2206 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases")((RD->getNumVBases() == 0 && "constexpr ctor with virtual bases"
) ? static_cast<void> (0) : __assert_fail ("RD->getNumVBases() == 0 && \"constexpr ctor with virtual bases\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 2206, __PRETTY_FUNCTION__))
;
2207
2208 // Skip detailed checking if we have enough initializers, and we would
2209 // allow at most one initializer per member.
2210 bool AnyAnonStructUnionMembers = false;
2211 unsigned Fields = 0;
2212 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
2213 E = RD->field_end(); I != E; ++I, ++Fields) {
2214 if (I->isAnonymousStructOrUnion()) {
2215 AnyAnonStructUnionMembers = true;
2216 break;
2217 }
2218 }
2219 // DR1460:
2220 // - if the class is a union-like class, but is not a union, for each of
2221 // its anonymous union members having variant members, exactly one of
2222 // them shall be initialized;
2223 if (AnyAnonStructUnionMembers ||
2224 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
2225 // Check initialization of non-static data members. Base classes are
2226 // always initialized so do not need to be checked. Dependent bases
2227 // might not have initializers in the member initializer list.
2228 llvm::SmallSet<Decl*, 16> Inits;
2229 for (const auto *I: Constructor->inits()) {
2230 if (FieldDecl *FD = I->getMember())
2231 Inits.insert(FD);
2232 else if (IndirectFieldDecl *ID = I->getIndirectMember())
2233 Inits.insert(ID->chain_begin(), ID->chain_end());
2234 }
2235
2236 bool Diagnosed = false;
2237 for (auto *I : RD->fields())
2238 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
2239 Kind))
2240 return false;
2241 }
2242 }
2243 } else {
2244 if (ReturnStmts.empty()) {
2245 // C++1y doesn't require constexpr functions to contain a 'return'
2246 // statement. We still do, unless the return type might be void, because
2247 // otherwise if there's no return statement, the function cannot
2248 // be used in a core constant expression.
2249 bool OK = SemaRef.getLangOpts().CPlusPlus14 &&
2250 (Dcl->getReturnType()->isVoidType() ||
2251 Dcl->getReturnType()->isDependentType());
2252 switch (Kind) {
2253 case Sema::CheckConstexprKind::Diagnose:
2254 SemaRef.Diag(Dcl->getLocation(),
2255 OK ? diag::warn_cxx11_compat_constexpr_body_no_return
2256 : diag::err_constexpr_body_no_return)
2257 << Dcl->isConsteval();
2258 if (!OK)
2259 return false;
2260 break;
2261
2262 case Sema::CheckConstexprKind::CheckValid:
2263 // The formal requirements don't include this rule in C++14, even
2264 // though the "must be able to produce a constant expression" rules
2265 // still imply it in some cases.
2266 if (!SemaRef.getLangOpts().CPlusPlus14)
2267 return false;
2268 break;
2269 }
2270 } else if (ReturnStmts.size() > 1) {
2271 switch (Kind) {
2272 case Sema::CheckConstexprKind::Diagnose:
2273 SemaRef.Diag(
2274 ReturnStmts.back(),
2275 SemaRef.getLangOpts().CPlusPlus14
2276 ? diag::warn_cxx11_compat_constexpr_body_multiple_return
2277 : diag::ext_constexpr_body_multiple_return);
2278 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
2279 SemaRef.Diag(ReturnStmts[I],
2280 diag::note_constexpr_body_previous_return);
2281 break;
2282
2283 case Sema::CheckConstexprKind::CheckValid:
2284 if (!SemaRef.getLangOpts().CPlusPlus14)
2285 return false;
2286 break;
2287 }
2288 }
2289 }
2290
2291 // C++11 [dcl.constexpr]p5:
2292 // if no function argument values exist such that the function invocation
2293 // substitution would produce a constant expression, the program is
2294 // ill-formed; no diagnostic required.
2295 // C++11 [dcl.constexpr]p3:
2296 // - every constructor call and implicit conversion used in initializing the
2297 // return value shall be one of those allowed in a constant expression.
2298 // C++11 [dcl.constexpr]p4:
2299 // - every constructor involved in initializing non-static data members and
2300 // base class sub-objects shall be a constexpr constructor.
2301 //
2302 // Note that this rule is distinct from the "requirements for a constexpr
2303 // function", so is not checked in CheckValid mode.
2304 SmallVector<PartialDiagnosticAt, 8> Diags;
2305 if (Kind == Sema::CheckConstexprKind::Diagnose &&
2306 !Expr::isPotentialConstantExpr(Dcl, Diags)) {
2307 SemaRef.Diag(Dcl->getLocation(),
2308 diag::ext_constexpr_function_never_constant_expr)
2309 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2310 for (size_t I = 0, N = Diags.size(); I != N; ++I)
2311 SemaRef.Diag(Diags[I].first, Diags[I].second);
2312 // Don't return false here: we allow this for compatibility in
2313 // system headers.
2314 }
2315
2316 return true;
2317}
2318
2319/// Get the class that is directly named by the current context. This is the
2320/// class for which an unqualified-id in this scope could name a constructor
2321/// or destructor.
2322///
2323/// If the scope specifier denotes a class, this will be that class.
2324/// If the scope specifier is empty, this will be the class whose
2325/// member-specification we are currently within. Otherwise, there
2326/// is no such class.
2327CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) {
2328 assert(getLangOpts().CPlusPlus && "No class names in C!")((getLangOpts().CPlusPlus && "No class names in C!") ?
static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 2328, __PRETTY_FUNCTION__))
;
2329
2330 if (SS && SS->isInvalid())
2331 return nullptr;
2332
2333 if (SS && SS->isNotEmpty()) {
2334 DeclContext *DC = computeDeclContext(*SS, true);
2335 return dyn_cast_or_null<CXXRecordDecl>(DC);
2336 }
2337
2338 return dyn_cast_or_null<CXXRecordDecl>(CurContext);
2339}
2340
2341/// isCurrentClassName - Determine whether the identifier II is the
2342/// name of the class type currently being defined. In the case of
2343/// nested classes, this will only return true if II is the name of
2344/// the innermost class.
2345bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S,
2346 const CXXScopeSpec *SS) {
2347 CXXRecordDecl *CurDecl = getCurrentClass(S, SS);
2348 return CurDecl && &II == CurDecl->getIdentifier();
2349}
2350
2351/// Determine whether the identifier II is a typo for the name of
2352/// the class type currently being defined. If so, update it to the identifier
2353/// that should have been used.
2354bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
2355 assert(getLangOpts().CPlusPlus && "No class names in C!")((getLangOpts().CPlusPlus && "No class names in C!") ?
static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 2355, __PRETTY_FUNCTION__))
;
2356
2357 if (!getLangOpts().SpellChecking)
2358 return false;
2359
2360 CXXRecordDecl *CurDecl;
2361 if (SS && SS->isSet() && !SS->isInvalid()) {
2362 DeclContext *DC = computeDeclContext(*SS, true);
2363 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2364 } else
2365 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2366
2367 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
2368 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
2369 < II->getLength()) {
2370 II = CurDecl->getIdentifier();
2371 return true;
2372 }
2373
2374 return false;
2375}
2376
2377/// Determine whether the given class is a base class of the given
2378/// class, including looking at dependent bases.
2379static bool findCircularInheritance(const CXXRecordDecl *Class,
2380 const CXXRecordDecl *Current) {
2381 SmallVector<const CXXRecordDecl*, 8> Queue;
2382
2383 Class = Class->getCanonicalDecl();
2384 while (true) {
2385 for (const auto &I : Current->bases()) {
2386 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
2387 if (!Base)
2388 continue;
2389
2390 Base = Base->getDefinition();
2391 if (!Base)
2392 continue;
2393
2394 if (Base->getCanonicalDecl() == Class)
2395 return true;
2396
2397 Queue.push_back(Base);
2398 }
2399
2400 if (Queue.empty())
2401 return false;
2402
2403 Current = Queue.pop_back_val();
2404 }
2405
2406 return false;
2407}
2408
2409/// Check the validity of a C++ base class specifier.
2410///
2411/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
2412/// and returns NULL otherwise.
2413CXXBaseSpecifier *
2414Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
2415 SourceRange SpecifierRange,
2416 bool Virtual, AccessSpecifier Access,
2417 TypeSourceInfo *TInfo,
2418 SourceLocation EllipsisLoc) {
2419 QualType BaseType = TInfo->getType();
2420
2421 // C++ [class.union]p1:
2422 // A union shall not have base classes.
2423 if (Class->isUnion()) {
2424 Diag(Class->getLocation(), diag::err_base_clause_on_union)
2425 << SpecifierRange;
2426 return nullptr;
2427 }
2428
2429 if (EllipsisLoc.isValid() &&
2430 !TInfo->getType()->containsUnexpandedParameterPack()) {
2431 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2432 << TInfo->getTypeLoc().getSourceRange();
2433 EllipsisLoc = SourceLocation();
2434 }
2435
2436 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
2437
2438 if (BaseType->isDependentType()) {
2439 // Make sure that we don't have circular inheritance among our dependent
2440 // bases. For non-dependent bases, the check for completeness below handles
2441 // this.
2442 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
2443 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
2444 ((BaseDecl = BaseDecl->getDefinition()) &&
2445 findCircularInheritance(Class, BaseDecl))) {
2446 Diag(BaseLoc, diag::err_circular_inheritance)
2447 << BaseType << Context.getTypeDeclType(Class);
2448
2449 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
2450 Diag(BaseDecl->getLocation(), diag::note_previous_decl)
2451 << BaseType;
2452
2453 return nullptr;
2454 }
2455 }
2456
2457 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2458 Class->getTagKind() == TTK_Class,
2459 Access, TInfo, EllipsisLoc);
2460 }
2461
2462 // Base specifiers must be record types.
2463 if (!BaseType->isRecordType()) {
2464 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
2465 return nullptr;
2466 }
2467
2468 // C++ [class.union]p1:
2469 // A union shall not be used as a base class.
2470 if (BaseType->isUnionType()) {
2471 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
2472 return nullptr;
2473 }
2474
2475 // For the MS ABI, propagate DLL attributes to base class templates.
2476 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2477 if (Attr *ClassAttr = getDLLAttr(Class)) {
2478 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
2479 BaseType->getAsCXXRecordDecl())) {
2480 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate,
2481 BaseLoc);
2482 }
2483 }
2484 }
2485
2486 // C++ [class.derived]p2:
2487 // The class-name in a base-specifier shall not be an incompletely
2488 // defined class.
2489 if (RequireCompleteType(BaseLoc, BaseType,
2490 diag::err_incomplete_base_class, SpecifierRange)) {
2491 Class->setInvalidDecl();
2492 return nullptr;
2493 }
2494
2495 // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
2496 RecordDecl *BaseDecl = BaseType->castAs<RecordType>()->getDecl();
2497 assert(BaseDecl && "Record type has no declaration")((BaseDecl && "Record type has no declaration") ? static_cast
<void> (0) : __assert_fail ("BaseDecl && \"Record type has no declaration\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 2497, __PRETTY_FUNCTION__))
;
2498 BaseDecl = BaseDecl->getDefinition();
2499 assert(BaseDecl && "Base type is not incomplete, but has no definition")((BaseDecl && "Base type is not incomplete, but has no definition"
) ? static_cast<void> (0) : __assert_fail ("BaseDecl && \"Base type is not incomplete, but has no definition\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 2499, __PRETTY_FUNCTION__))
;
2500 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
2501 assert(CXXBaseDecl && "Base type is not a C++ type")((CXXBaseDecl && "Base type is not a C++ type") ? static_cast
<void> (0) : __assert_fail ("CXXBaseDecl && \"Base type is not a C++ type\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 2501, __PRETTY_FUNCTION__))
;
2502
2503 // Microsoft docs say:
2504 // "If a base-class has a code_seg attribute, derived classes must have the
2505 // same attribute."
2506 const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>();
2507 const auto *DerivedCSA = Class->getAttr<CodeSegAttr>();
2508 if ((DerivedCSA || BaseCSA) &&
2509 (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) {
2510 Diag(Class->getLocation(), diag::err_mismatched_code_seg_base);
2511 Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here)
2512 << CXXBaseDecl;
2513 return nullptr;
2514 }
2515
2516 // A class which contains a flexible array member is not suitable for use as a
2517 // base class:
2518 // - If the layout determines that a base comes before another base,
2519 // the flexible array member would index into the subsequent base.
2520 // - If the layout determines that base comes before the derived class,
2521 // the flexible array member would index into the derived class.
2522 if (CXXBaseDecl->hasFlexibleArrayMember()) {
2523 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
2524 << CXXBaseDecl->getDeclName();
2525 return nullptr;
2526 }
2527
2528 // C++ [class]p3:
2529 // If a class is marked final and it appears as a base-type-specifier in
2530 // base-clause, the program is ill-formed.
2531 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
2532 Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
2533 << CXXBaseDecl->getDeclName()
2534 << FA->isSpelledAsSealed();
2535 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
2536 << CXXBaseDecl->getDeclName() << FA->getRange();
2537 return nullptr;
2538 }
2539
2540 if (BaseDecl->isInvalidDecl())
2541 Class->setInvalidDecl();
2542
2543 // Create the base specifier.
2544 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2545 Class->getTagKind() == TTK_Class,
2546 Access, TInfo, EllipsisLoc);
2547}
2548
2549/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
2550/// one entry in the base class list of a class specifier, for
2551/// example:
2552/// class foo : public bar, virtual private baz {
2553/// 'public bar' and 'virtual private baz' are each base-specifiers.
2554BaseResult
2555Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
2556 ParsedAttributes &Attributes,
2557 bool Virtual, AccessSpecifier Access,
2558 ParsedType basetype, SourceLocation BaseLoc,
2559 SourceLocation EllipsisLoc) {
2560 if (!classdecl)
2561 return true;
2562
2563 AdjustDeclIfTemplate(classdecl);
2564 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
2565 if (!Class)
2566 return true;
2567
2568 // We haven't yet attached the base specifiers.
2569 Class->setIsParsingBaseSpecifiers();
2570
2571 // We do not support any C++11 attributes on base-specifiers yet.
2572 // Diagnose any attributes we see.
2573 for (const ParsedAttr &AL : Attributes) {
2574 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
2575 continue;
2576 Diag(AL.getLoc(), AL.getKind() == ParsedAttr::UnknownAttribute
2577 ? (unsigned)diag::warn_unknown_attribute_ignored
2578 : (unsigned)diag::err_base_specifier_attribute)
2579 << AL;
2580 }
2581
2582 TypeSourceInfo *TInfo = nullptr;
2583 GetTypeFromParser(basetype, &TInfo);
2584
2585 if (EllipsisLoc.isInvalid() &&
2586 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
2587 UPPC_BaseType))
2588 return true;
2589
2590 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
2591 Virtual, Access, TInfo,
2592 EllipsisLoc))
2593 return BaseSpec;
2594 else
2595 Class->setInvalidDecl();
2596
2597 return true;
2598}
2599
2600/// Use small set to collect indirect bases. As this is only used
2601/// locally, there's no need to abstract the small size parameter.
2602typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
2603
2604/// Recursively add the bases of Type. Don't add Type itself.
2605static void
2606NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
2607 const QualType &Type)
2608{
2609 // Even though the incoming type is a base, it might not be
2610 // a class -- it could be a template parm, for instance.
2611 if (auto Rec = Type->getAs<RecordType>()) {
2612 auto Decl = Rec->getAsCXXRecordDecl();
2613
2614 // Iterate over its bases.
2615 for (const auto &BaseSpec : Decl->bases()) {
2616 QualType Base = Context.getCanonicalType(BaseSpec.getType())
2617 .getUnqualifiedType();
2618 if (Set.insert(Base).second)
2619 // If we've not already seen it, recurse.
2620 NoteIndirectBases(Context, Set, Base);
2621 }
2622 }
2623}
2624
2625/// Performs the actual work of attaching the given base class
2626/// specifiers to a C++ class.
2627bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class,
2628 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2629 if (Bases.empty())
2630 return false;
2631
2632 // Used to keep track of which base types we have already seen, so
2633 // that we can properly diagnose redundant direct base types. Note
2634 // that the key is always the unqualified canonical type of the base
2635 // class.
2636 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
2637
2638 // Used to track indirect bases so we can see if a direct base is
2639 // ambiguous.
2640 IndirectBaseSet IndirectBaseTypes;
2641
2642 // Copy non-redundant base specifiers into permanent storage.
2643 unsigned NumGoodBases = 0;
2644 bool Invalid = false;
2645 for (unsigned idx = 0; idx < Bases.size(); ++idx) {
2646 QualType NewBaseType
2647 = Context.getCanonicalType(Bases[idx]->getType());
2648 NewBaseType = NewBaseType.getLocalUnqualifiedType();
2649
2650 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
2651 if (KnownBase) {
2652 // C++ [class.mi]p3:
2653 // A class shall not be specified as a direct base class of a
2654 // derived class more than once.
2655 Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class)
2656 << KnownBase->getType() << Bases[idx]->getSourceRange();
2657
2658 // Delete the duplicate base class specifier; we're going to
2659 // overwrite its pointer later.
2660 Context.Deallocate(Bases[idx]);
2661
2662 Invalid = true;
2663 } else {
2664 // Okay, add this new base class.
2665 KnownBase = Bases[idx];
2666 Bases[NumGoodBases++] = Bases[idx];
2667
2668 // Note this base's direct & indirect bases, if there could be ambiguity.
2669 if (Bases.size() > 1)
2670 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
2671
2672 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
2673 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2674 if (Class->isInterface() &&
2675 (!RD->isInterfaceLike() ||
2676 KnownBase->getAccessSpecifier() != AS_public)) {
2677 // The Microsoft extension __interface does not permit bases that
2678 // are not themselves public interfaces.
2679 Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface)
2680 << getRecordDiagFromTagKind(RD->getTagKind()) << RD
2681 << RD->getSourceRange();
2682 Invalid = true;
2683 }
2684 if (RD->hasAttr<WeakAttr>())
2685 Class->addAttr(WeakAttr::CreateImplicit(Context));
2686 }
2687 }
2688 }
2689
2690 // Attach the remaining base class specifiers to the derived class.
2691 Class->setBases(Bases.data(), NumGoodBases);
2692
2693 // Check that the only base classes that are duplicate are virtual.
2694 for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
2695 // Check whether this direct base is inaccessible due to ambiguity.
2696 QualType BaseType = Bases[idx]->getType();
2697
2698 // Skip all dependent types in templates being used as base specifiers.
2699 // Checks below assume that the base specifier is a CXXRecord.
2700 if (BaseType->isDependentType())
2701 continue;
2702
2703 CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
2704 .getUnqualifiedType();
2705
2706 if (IndirectBaseTypes.count(CanonicalBase)) {
2707 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2708 /*DetectVirtual=*/true);
2709 bool found
2710 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
2711 assert(found)((found) ? static_cast<void> (0) : __assert_fail ("found"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 2711, __PRETTY_FUNCTION__))
;
2712 (void)found;
2713
2714 if (Paths.isAmbiguous(CanonicalBase))
2715 Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class)
2716 << BaseType << getAmbiguousPathsDisplayString(Paths)
2717 << Bases[idx]->getSourceRange();
2718 else
2719 assert(Bases[idx]->isVirtual())((Bases[idx]->isVirtual()) ? static_cast<void> (0) :
__assert_fail ("Bases[idx]->isVirtual()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 2719, __PRETTY_FUNCTION__))
;
2720 }
2721
2722 // Delete the base class specifier, since its data has been copied
2723 // into the CXXRecordDecl.
2724 Context.Deallocate(Bases[idx]);
2725 }
2726
2727 return Invalid;
2728}
2729
2730/// ActOnBaseSpecifiers - Attach the given base specifiers to the
2731/// class, after checking whether there are any duplicate base
2732/// classes.
2733void Sema::ActOnBaseSpecifiers(Decl *ClassDecl,
2734 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2735 if (!ClassDecl || Bases.empty())
2736 return;
2737
2738 AdjustDeclIfTemplate(ClassDecl);
2739 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases);
2740}
2741
2742/// Determine whether the type \p Derived is a C++ class that is
2743/// derived from the type \p Base.
2744bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) {
2745 if (!getLangOpts().CPlusPlus)
2746 return false;
2747
2748 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2749 if (!DerivedRD)
2750 return false;
2751
2752 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2753 if (!BaseRD)
2754 return false;
2755
2756 // If either the base or the derived type is invalid, don't try to
2757 // check whether one is derived from the other.
2758 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
2759 return false;
2760
2761 // FIXME: In a modules build, do we need the entire path to be visible for us
2762 // to be able to use the inheritance relationship?
2763 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2764 return false;
2765
2766 return DerivedRD->isDerivedFrom(BaseRD);
2767}
2768
2769/// Determine whether the type \p Derived is a C++ class that is
2770/// derived from the type \p Base.
2771bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
2772 CXXBasePaths &Paths) {
2773 if (!getLangOpts().CPlusPlus)
2774 return false;
2775
2776 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2777 if (!DerivedRD)
2778 return false;
2779
2780 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2781 if (!BaseRD)
2782 return false;
2783
2784 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2785 return false;
2786
2787 return DerivedRD->isDerivedFrom(BaseRD, Paths);
2788}
2789
2790static void BuildBasePathArray(const CXXBasePath &Path,
2791 CXXCastPath &BasePathArray) {
2792 // We first go backward and check if we have a virtual base.
2793 // FIXME: It would be better if CXXBasePath had the base specifier for
2794 // the nearest virtual base.
2795 unsigned Start = 0;
2796 for (unsigned I = Path.size(); I != 0; --I) {
2797 if (Path[I - 1].Base->isVirtual()) {
2798 Start = I - 1;
2799 break;
2800 }
2801 }
2802
2803 // Now add all bases.
2804 for (unsigned I = Start, E = Path.size(); I != E; ++I)
2805 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
2806}
2807
2808
2809void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
2810 CXXCastPath &BasePathArray) {
2811 assert(BasePathArray.empty() && "Base path array must be empty!")((BasePathArray.empty() && "Base path array must be empty!"
) ? static_cast<void> (0) : __assert_fail ("BasePathArray.empty() && \"Base path array must be empty!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 2811, __PRETTY_FUNCTION__))
;
2812 assert(Paths.isRecordingPaths() && "Must record paths!")((Paths.isRecordingPaths() && "Must record paths!") ?
static_cast<void> (0) : __assert_fail ("Paths.isRecordingPaths() && \"Must record paths!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 2812, __PRETTY_FUNCTION__))
;
2813 return ::BuildBasePathArray(Paths.front(), BasePathArray);
2814}
2815/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
2816/// conversion (where Derived and Base are class types) is
2817/// well-formed, meaning that the conversion is unambiguous (and
2818/// that all of the base classes are accessible). Returns true
2819/// and emits a diagnostic if the code is ill-formed, returns false
2820/// otherwise. Loc is the location where this routine should point to
2821/// if there is an error, and Range is the source range to highlight
2822/// if there is an error.
2823///
2824/// If either InaccessibleBaseID or AmbigiousBaseConvID are 0, then the
2825/// diagnostic for the respective type of error will be suppressed, but the
2826/// check for ill-formed code will still be performed.
2827bool
2828Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2829 unsigned InaccessibleBaseID,
2830 unsigned AmbigiousBaseConvID,
2831 SourceLocation Loc, SourceRange Range,
2832 DeclarationName Name,
2833 CXXCastPath *BasePath,
2834 bool IgnoreAccess) {
2835 // First, determine whether the path from Derived to Base is
2836 // ambiguous. This is slightly more expensive than checking whether
2837 // the Derived to Base conversion exists, because here we need to
2838 // explore multiple paths to determine if there is an ambiguity.
2839 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2840 /*DetectVirtual=*/false);
2841 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2842 if (!DerivationOkay)
2843 return true;
2844
2845 const CXXBasePath *Path = nullptr;
2846 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType()))
2847 Path = &Paths.front();
2848
2849 // For MSVC compatibility, check if Derived directly inherits from Base. Clang
2850 // warns about this hierarchy under -Winaccessible-base, but MSVC allows the
2851 // user to access such bases.
2852 if (!Path && getLangOpts().MSVCCompat) {
2853 for (const CXXBasePath &PossiblePath : Paths) {
2854 if (PossiblePath.size() == 1) {
2855 Path = &PossiblePath;
2856 if (AmbigiousBaseConvID)
2857 Diag(Loc, diag::ext_ms_ambiguous_direct_base)
2858 << Base << Derived << Range;
2859 break;
2860 }
2861 }
2862 }
2863
2864 if (Path) {
2865 if (!IgnoreAccess) {
2866 // Check that the base class can be accessed.
2867 switch (
2868 CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) {
2869 case AR_inaccessible:
2870 return true;
2871 case AR_accessible:
2872 case AR_dependent:
2873 case AR_delayed:
2874 break;
2875 }
2876 }
2877
2878 // Build a base path if necessary.
2879 if (BasePath)
2880 ::BuildBasePathArray(*Path, *BasePath);
2881 return false;
2882 }
2883
2884 if (AmbigiousBaseConvID) {
2885 // We know that the derived-to-base conversion is ambiguous, and
2886 // we're going to produce a diagnostic. Perform the derived-to-base
2887 // search just one more time to compute all of the possible paths so
2888 // that we can print them out. This is more expensive than any of
2889 // the previous derived-to-base checks we've done, but at this point
2890 // performance isn't as much of an issue.
2891 Paths.clear();
2892 Paths.setRecordingPaths(true);
2893 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2894 assert(StillOkay && "Can only be used with a derived-to-base conversion")((StillOkay && "Can only be used with a derived-to-base conversion"
) ? static_cast<void> (0) : __assert_fail ("StillOkay && \"Can only be used with a derived-to-base conversion\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 2894, __PRETTY_FUNCTION__))
;
2895 (void)StillOkay;
2896
2897 // Build up a textual representation of the ambiguous paths, e.g.,
2898 // D -> B -> A, that will be used to illustrate the ambiguous
2899 // conversions in the diagnostic. We only print one of the paths
2900 // to each base class subobject.
2901 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2902
2903 Diag(Loc, AmbigiousBaseConvID)
2904 << Derived << Base << PathDisplayStr << Range << Name;
2905 }
2906 return true;
2907}
2908
2909bool
2910Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2911 SourceLocation Loc, SourceRange Range,
2912 CXXCastPath *BasePath,
2913 bool IgnoreAccess) {
2914 return CheckDerivedToBaseConversion(
2915 Derived, Base, diag::err_upcast_to_inaccessible_base,
2916 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(),
2917 BasePath, IgnoreAccess);
2918}
2919
2920
2921/// Builds a string representing ambiguous paths from a
2922/// specific derived class to different subobjects of the same base
2923/// class.
2924///
2925/// This function builds a string that can be used in error messages
2926/// to show the different paths that one can take through the
2927/// inheritance hierarchy to go from the derived class to different
2928/// subobjects of a base class. The result looks something like this:
2929/// @code
2930/// struct D -> struct B -> struct A
2931/// struct D -> struct C -> struct A
2932/// @endcode
2933std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
2934 std::string PathDisplayStr;
2935 std::set<unsigned> DisplayedPaths;
2936 for (CXXBasePaths::paths_iterator Path = Paths.begin();
2937 Path != Paths.end(); ++Path) {
2938 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
2939 // We haven't displayed a path to this particular base
2940 // class subobject yet.
2941 PathDisplayStr += "\n ";
2942 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
2943 for (CXXBasePath::const_iterator Element = Path->begin();
2944 Element != Path->end(); ++Element)
2945 PathDisplayStr += " -> " + Element->Base->getType().getAsString();
2946 }
2947 }
2948
2949 return PathDisplayStr;
2950}
2951
2952//===----------------------------------------------------------------------===//
2953// C++ class member Handling
2954//===----------------------------------------------------------------------===//
2955
2956/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
2957bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc,
2958 SourceLocation ColonLoc,
2959 const ParsedAttributesView &Attrs) {
2960 assert(Access != AS_none && "Invalid kind for syntactic access specifier!")((Access != AS_none && "Invalid kind for syntactic access specifier!"
) ? static_cast<void> (0) : __assert_fail ("Access != AS_none && \"Invalid kind for syntactic access specifier!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 2960, __PRETTY_FUNCTION__))
;
2961 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
2962 ASLoc, ColonLoc);
2963 CurContext->addHiddenDecl(ASDecl);
2964 return ProcessAccessDeclAttributeList(ASDecl, Attrs);
2965}
2966
2967/// CheckOverrideControl - Check C++11 override control semantics.
2968void Sema::CheckOverrideControl(NamedDecl *D) {
2969 if (D->isInvalidDecl())
2970 return;
2971
2972 // We only care about "override" and "final" declarations.
2973 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
2974 return;
2975
2976 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
2977
2978 // We can't check dependent instance methods.
2979 if (MD && MD->isInstance() &&
2980 (MD->getParent()->hasAnyDependentBases() ||
2981 MD->getType()->isDependentType()))
2982 return;
2983
2984 if (MD && !MD->isVirtual()) {
2985 // If we have a non-virtual method, check if if hides a virtual method.
2986 // (In that case, it's most likely the method has the wrong type.)
2987 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
2988 FindHiddenVirtualMethods(MD, OverloadedMethods);
2989
2990 if (!OverloadedMethods.empty()) {
2991 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
2992 Diag(OA->getLocation(),
2993 diag::override_keyword_hides_virtual_member_function)
2994 << "override" << (OverloadedMethods.size() > 1);
2995 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
2996 Diag(FA->getLocation(),
2997 diag::override_keyword_hides_virtual_member_function)
2998 << (FA->isSpelledAsSealed() ? "sealed" : "final")
2999 << (OverloadedMethods.size() > 1);
3000 }
3001 NoteHiddenVirtualMethods(MD, OverloadedMethods);
3002 MD->setInvalidDecl();
3003 return;
3004 }
3005 // Fall through into the general case diagnostic.
3006 // FIXME: We might want to attempt typo correction here.
3007 }
3008
3009 if (!MD || !MD->isVirtual()) {
3010 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
3011 Diag(OA->getLocation(),
3012 diag::override_keyword_only_allowed_on_virtual_member_functions)
3013 << "override" << FixItHint::CreateRemoval(OA->getLocation());
3014 D->dropAttr<OverrideAttr>();
3015 }
3016 if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
3017 Diag(FA->getLocation(),
3018 diag::override_keyword_only_allowed_on_virtual_member_functions)
3019 << (FA->isSpelledAsSealed() ? "sealed" : "final")
3020 << FixItHint::CreateRemoval(FA->getLocation());
3021 D->dropAttr<FinalAttr>();
3022 }
3023 return;
3024 }
3025
3026 // C++11 [class.virtual]p5:
3027 // If a function is marked with the virt-specifier override and
3028 // does not override a member function of a base class, the program is
3029 // ill-formed.
3030 bool HasOverriddenMethods = MD->size_overridden_methods() != 0;
3031 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
3032 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
3033 << MD->getDeclName();
3034}
3035
3036void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D) {
3037 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
3038 return;
3039 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
3040 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>())
3041 return;
3042
3043 SourceLocation Loc = MD->getLocation();
3044 SourceLocation SpellingLoc = Loc;
3045 if (getSourceManager().isMacroArgExpansion(Loc))
3046 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin();
3047 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
3048 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
3049 return;
3050
3051 if (MD->size_overridden_methods() > 0) {
3052 unsigned DiagID = isa<CXXDestructorDecl>(MD)
3053 ? diag::warn_destructor_marked_not_override_overriding
3054 : diag::warn_function_marked_not_override_overriding;
3055 Diag(MD->getLocation(), DiagID) << MD->getDeclName();
3056 const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
3057 Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
3058 }
3059}
3060
3061/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
3062/// function overrides a virtual member function marked 'final', according to
3063/// C++11 [class.virtual]p4.
3064bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
3065 const CXXMethodDecl *Old) {
3066 FinalAttr *FA = Old->getAttr<FinalAttr>();
3067 if (!FA)
3068 return false;
3069
3070 Diag(New->getLocation(), diag::err_final_function_overridden)
3071 << New->getDeclName()
3072 << FA->isSpelledAsSealed();
3073 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3074 return true;
3075}
3076
3077static bool InitializationHasSideEffects(const FieldDecl &FD) {
3078 const Type *T = FD.getType()->getBaseElementTypeUnsafe();
3079 // FIXME: Destruction of ObjC lifetime types has side-effects.
3080 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3081 return !RD->isCompleteDefinition() ||
3082 !RD->hasTrivialDefaultConstructor() ||
3083 !RD->hasTrivialDestructor();
3084 return false;
3085}
3086
3087static const ParsedAttr *getMSPropertyAttr(const ParsedAttributesView &list) {
3088 ParsedAttributesView::const_iterator Itr =
3089 llvm::find_if(list, [](const ParsedAttr &AL) {
3090 return AL.isDeclspecPropertyAttribute();
3091 });
3092 if (Itr != list.end())
3093 return &*Itr;
3094 return nullptr;
3095}
3096
3097// Check if there is a field shadowing.
3098void Sema::CheckShadowInheritedFields(const SourceLocation &Loc,
3099 DeclarationName FieldName,
3100 const CXXRecordDecl *RD,
3101 bool DeclIsField) {
3102 if (Diags.isIgnored(diag::warn_shadow_field, Loc))
3103 return;
3104
3105 // To record a shadowed field in a base
3106 std::map<CXXRecordDecl*, NamedDecl*> Bases;
3107 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier,
3108 CXXBasePath &Path) {
3109 const auto Base = Specifier->getType()->getAsCXXRecordDecl();
3110 // Record an ambiguous path directly
3111 if (Bases.find(Base) != Bases.end())
3112 return true;
3113 for (const auto Field : Base->lookup(FieldName)) {
3114 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) &&
3115 Field->getAccess() != AS_private) {
3116 assert(Field->getAccess() != AS_none)((Field->getAccess() != AS_none) ? static_cast<void>
(0) : __assert_fail ("Field->getAccess() != AS_none", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 3116, __PRETTY_FUNCTION__))
;
3117 assert(Bases.find(Base) == Bases.end())((Bases.find(Base) == Bases.end()) ? static_cast<void> (
0) : __assert_fail ("Bases.find(Base) == Bases.end()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 3117, __PRETTY_FUNCTION__))
;
3118 Bases[Base] = Field;
3119 return true;
3120 }
3121 }
3122 return false;
3123 };
3124
3125 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3126 /*DetectVirtual=*/true);
3127 if (!RD->lookupInBases(FieldShadowed, Paths))
3128 return;
3129
3130 for (const auto &P : Paths) {
3131 auto Base = P.back().Base->getType()->getAsCXXRecordDecl();
3132 auto It = Bases.find(Base);
3133 // Skip duplicated bases
3134 if (It == Bases.end())
3135 continue;
3136 auto BaseField = It->second;
3137 assert(BaseField->getAccess() != AS_private)((BaseField->getAccess() != AS_private) ? static_cast<void
> (0) : __assert_fail ("BaseField->getAccess() != AS_private"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 3137, __PRETTY_FUNCTION__))
;
3138 if (AS_none !=
3139 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) {
3140 Diag(Loc, diag::warn_shadow_field)
3141 << FieldName << RD << Base << DeclIsField;
3142 Diag(BaseField->getLocation(), diag::note_shadow_field);
3143 Bases.erase(It);
3144 }
3145 }
3146}
3147
3148/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
3149/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
3150/// bitfield width if there is one, 'InitExpr' specifies the initializer if
3151/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
3152/// present (but parsing it has been deferred).
3153NamedDecl *
3154Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
3155 MultiTemplateParamsArg TemplateParameterLists,
3156 Expr *BW, const VirtSpecifiers &VS,
3157 InClassInitStyle InitStyle) {
3158 const DeclSpec &DS = D.getDeclSpec();
3159 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3160 DeclarationName Name = NameInfo.getName();
3161 SourceLocation Loc = NameInfo.getLoc();
3162
3163 // For anonymous bitfields, the location should point to the type.
3164 if (Loc.isInvalid())
3165 Loc = D.getBeginLoc();
3166
3167 Expr *BitWidth = static_cast<Expr*>(BW);
3168
3169 assert(isa<CXXRecordDecl>(CurContext))((isa<CXXRecordDecl>(CurContext)) ? static_cast<void
> (0) : __assert_fail ("isa<CXXRecordDecl>(CurContext)"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 3169, __PRETTY_FUNCTION__))
;
3170 assert(!DS.isFriendSpecified())((!DS.isFriendSpecified()) ? static_cast<void> (0) : __assert_fail
("!DS.isFriendSpecified()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 3170, __PRETTY_FUNCTION__))
;
3171
3172 bool isFunc = D.isDeclarationOfFunction();
3173 const ParsedAttr *MSPropertyAttr =
3174 getMSPropertyAttr(D.getDeclSpec().getAttributes());
3175
3176 if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
3177 // The Microsoft extension __interface only permits public member functions
3178 // and prohibits constructors, destructors, operators, non-public member
3179 // functions, static methods and data members.
3180 unsigned InvalidDecl;
3181 bool ShowDeclName = true;
3182 if (!isFunc &&
3183 (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr))
3184 InvalidDecl = 0;
3185 else if (!isFunc)
3186 InvalidDecl = 1;
3187 else if (AS != AS_public)
3188 InvalidDecl = 2;
3189 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
3190 InvalidDecl = 3;
3191 else switch (Name.getNameKind()) {
3192 case DeclarationName::CXXConstructorName:
3193 InvalidDecl = 4;
3194 ShowDeclName = false;
3195 break;
3196
3197 case DeclarationName::CXXDestructorName:
3198 InvalidDecl = 5;
3199 ShowDeclName = false;
3200 break;
3201
3202 case DeclarationName::CXXOperatorName:
3203 case DeclarationName::CXXConversionFunctionName:
3204 InvalidDecl = 6;
3205 break;
3206
3207 default:
3208 InvalidDecl = 0;
3209 break;
3210 }
3211
3212 if (InvalidDecl) {
3213 if (ShowDeclName)
3214 Diag(Loc, diag::err_invalid_member_in_interface)
3215 << (InvalidDecl-1) << Name;
3216 else
3217 Diag(Loc, diag::err_invalid_member_in_interface)
3218 << (InvalidDecl-1) << "";
3219 return nullptr;
3220 }
3221 }
3222
3223 // C++ 9.2p6: A member shall not be declared to have automatic storage
3224 // duration (auto, register) or with the extern storage-class-specifier.
3225 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
3226 // data members and cannot be applied to names declared const or static,
3227 // and cannot be applied to reference members.
3228 switch (DS.getStorageClassSpec()) {
3229 case DeclSpec::SCS_unspecified:
3230 case DeclSpec::SCS_typedef:
3231 case DeclSpec::SCS_static:
3232 break;
3233 case DeclSpec::SCS_mutable:
3234 if (isFunc) {
3235 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
3236
3237 // FIXME: It would be nicer if the keyword was ignored only for this
3238 // declarator. Otherwise we could get follow-up errors.
3239 D.getMutableDeclSpec().ClearStorageClassSpecs();
3240 }
3241 break;
3242 default:
3243 Diag(DS.getStorageClassSpecLoc(),
3244 diag::err_storageclass_invalid_for_member);
3245 D.getMutableDeclSpec().ClearStorageClassSpecs();
3246 break;
3247 }
3248
3249 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
3250 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
3251 !isFunc);
3252
3253 if (DS.hasConstexprSpecifier() && isInstField) {
3254 SemaDiagnosticBuilder B =
3255 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
3256 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
3257 if (InitStyle == ICIS_NoInit) {
3258 B << 0 << 0;
3259 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
3260 B << FixItHint::CreateRemoval(ConstexprLoc);
3261 else {
3262 B << FixItHint::CreateReplacement(ConstexprLoc, "const");
3263 D.getMutableDeclSpec().ClearConstexprSpec();
3264 const char *PrevSpec;
3265 unsigned DiagID;
3266 bool Failed = D.getMutableDeclSpec().SetTypeQual(
3267 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
3268 (void)Failed;
3269 assert(!Failed && "Making a constexpr member const shouldn't fail")((!Failed && "Making a constexpr member const shouldn't fail"
) ? static_cast<void> (0) : __assert_fail ("!Failed && \"Making a constexpr member const shouldn't fail\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 3269, __PRETTY_FUNCTION__))
;
3270 }
3271 } else {
3272 B << 1;
3273 const char *PrevSpec;
3274 unsigned DiagID;
3275 if (D.getMutableDeclSpec().SetStorageClassSpec(
3276 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
3277 Context.getPrintingPolicy())) {
3278 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&((DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
"This is the only DeclSpec that should fail to be applied") ?
static_cast<void> (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 3279, __PRETTY_FUNCTION__))
3279 "This is the only DeclSpec that should fail to be applied")((DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
"This is the only DeclSpec that should fail to be applied") ?
static_cast<void> (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 3279, __PRETTY_FUNCTION__))
;
3280 B << 1;
3281 } else {
3282 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
3283 isInstField = false;
3284 }
3285 }
3286 }
3287
3288 NamedDecl *Member;
3289 if (isInstField) {
3290 CXXScopeSpec &SS = D.getCXXScopeSpec();
3291
3292 // Data members must have identifiers for names.
3293 if (!Name.isIdentifier()) {
3294 Diag(Loc, diag::err_bad_variable_name)
3295 << Name;
3296 return nullptr;
3297 }
3298
3299 IdentifierInfo *II = Name.getAsIdentifierInfo();
3300
3301 // Member field could not be with "template" keyword.
3302 // So TemplateParameterLists should be empty in this case.
3303 if (TemplateParameterLists.size()) {
3304 TemplateParameterList* TemplateParams = TemplateParameterLists[0];
3305 if (TemplateParams->size()) {
3306 // There is no such thing as a member field template.
3307 Diag(D.getIdentifierLoc(), diag::err_template_member)
3308 << II
3309 << SourceRange(TemplateParams->getTemplateLoc(),
3310 TemplateParams->getRAngleLoc());
3311 } else {
3312 // There is an extraneous 'template<>' for this member.
3313 Diag(TemplateParams->getTemplateLoc(),
3314 diag::err_template_member_noparams)
3315 << II
3316 << SourceRange(TemplateParams->getTemplateLoc(),
3317 TemplateParams->getRAngleLoc());
3318 }
3319 return nullptr;
3320 }
3321
3322 if (SS.isSet() && !SS.isInvalid()) {
3323 // The user provided a superfluous scope specifier inside a class
3324 // definition:
3325 //
3326 // class X {
3327 // int X::member;
3328 // };
3329 if (DeclContext *DC = computeDeclContext(SS, false))
3330 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(),
3331 D.getName().getKind() ==
3332 UnqualifiedIdKind::IK_TemplateId);
3333 else
3334 Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3335 << Name << SS.getRange();
3336
3337 SS.clear();
3338 }
3339
3340 if (MSPropertyAttr) {
3341 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3342 BitWidth, InitStyle, AS, *MSPropertyAttr);
3343 if (!Member)
3344 return nullptr;
3345 isInstField = false;
3346 } else {
3347 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3348 BitWidth, InitStyle, AS);
3349 if (!Member)
3350 return nullptr;
3351 }
3352
3353 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext));
3354 } else {
3355 Member = HandleDeclarator(S, D, TemplateParameterLists);
3356 if (!Member)
3357 return nullptr;
3358
3359 // Non-instance-fields can't have a bitfield.
3360 if (BitWidth) {
3361 if (Member->isInvalidDecl()) {
3362 // don't emit another diagnostic.
3363 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
3364 // C++ 9.6p3: A bit-field shall not be a static member.
3365 // "static member 'A' cannot be a bit-field"
3366 Diag(Loc, diag::err_static_not_bitfield)
3367 << Name << BitWidth->getSourceRange();
3368 } else if (isa<TypedefDecl>(Member)) {
3369 // "typedef member 'x' cannot be a bit-field"
3370 Diag(Loc, diag::err_typedef_not_bitfield)
3371 << Name << BitWidth->getSourceRange();
3372 } else {
3373 // A function typedef ("typedef int f(); f a;").
3374 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3375 Diag(Loc, diag::err_not_integral_type_bitfield)
3376 << Name << cast<ValueDecl>(Member)->getType()
3377 << BitWidth->getSourceRange();
3378 }
3379
3380 BitWidth = nullptr;
3381 Member->setInvalidDecl();
3382 }
3383
3384 NamedDecl *NonTemplateMember = Member;
3385 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
3386 NonTemplateMember = FunTmpl->getTemplatedDecl();
3387 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
3388 NonTemplateMember = VarTmpl->getTemplatedDecl();
3389
3390 Member->setAccess(AS);
3391
3392 // If we have declared a member function template or static data member
3393 // template, set the access of the templated declaration as well.
3394 if (NonTemplateMember != Member)
3395 NonTemplateMember->setAccess(AS);
3396
3397 // C++ [temp.deduct.guide]p3:
3398 // A deduction guide [...] for a member class template [shall be
3399 // declared] with the same access [as the template].
3400 if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) {
3401 auto *TD = DG->getDeducedTemplate();
3402 // Access specifiers are only meaningful if both the template and the
3403 // deduction guide are from the same scope.
3404 if (AS != TD->getAccess() &&
3405 TD->getDeclContext()->getRedeclContext()->Equals(
3406 DG->getDeclContext()->getRedeclContext())) {
3407 Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access);
3408 Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access)
3409 << TD->getAccess();
3410 const AccessSpecDecl *LastAccessSpec = nullptr;
3411 for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) {
3412 if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D))
3413 LastAccessSpec = AccessSpec;
3414 }
3415 assert(LastAccessSpec && "differing access with no access specifier")((LastAccessSpec && "differing access with no access specifier"
) ? static_cast<void> (0) : __assert_fail ("LastAccessSpec && \"differing access with no access specifier\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 3415, __PRETTY_FUNCTION__))
;
3416 Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access)
3417 << AS;
3418 }
3419 }
3420 }
3421
3422 if (VS.isOverrideSpecified())
3423 Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc(),
3424 AttributeCommonInfo::AS_Keyword));
3425 if (VS.isFinalSpecified())
3426 Member->addAttr(FinalAttr::Create(
3427 Context, VS.getFinalLoc(), AttributeCommonInfo::AS_Keyword,
3428 static_cast<FinalAttr::Spelling>(VS.isFinalSpelledSealed())));
3429
3430 if (VS.getLastLocation().isValid()) {
3431 // Update the end location of a method that has a virt-specifiers.
3432 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
3433 MD->setRangeEnd(VS.getLastLocation());
3434 }
3435
3436 CheckOverrideControl(Member);
3437
3438 assert((Name || isInstField) && "No identifier for non-field ?")(((Name || isInstField) && "No identifier for non-field ?"
) ? static_cast<void> (0) : __assert_fail ("(Name || isInstField) && \"No identifier for non-field ?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 3438, __PRETTY_FUNCTION__))
;
3439
3440 if (isInstField) {
3441 FieldDecl *FD = cast<FieldDecl>(Member);
3442 FieldCollector->Add(FD);
3443
3444 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
3445 // Remember all explicit private FieldDecls that have a name, no side
3446 // effects and are not part of a dependent type declaration.
3447 if (!FD->isImplicit() && FD->getDeclName() &&
3448 FD->getAccess() == AS_private &&
3449 !FD->hasAttr<UnusedAttr>() &&
3450 !FD->getParent()->isDependentContext() &&
3451 !InitializationHasSideEffects(*FD))
3452 UnusedPrivateFields.insert(FD);
3453 }
3454 }
3455
3456 return Member;
3457}
3458
3459namespace {
3460 class UninitializedFieldVisitor
3461 : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
3462 Sema &S;
3463 // List of Decls to generate a warning on. Also remove Decls that become
3464 // initialized.
3465 llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
3466 // List of base classes of the record. Classes are removed after their
3467 // initializers.
3468 llvm::SmallPtrSetImpl<QualType> &BaseClasses;
3469 // Vector of decls to be removed from the Decl set prior to visiting the
3470 // nodes. These Decls may have been initialized in the prior initializer.
3471 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
3472 // If non-null, add a note to the warning pointing back to the constructor.
3473 const CXXConstructorDecl *Constructor;
3474 // Variables to hold state when processing an initializer list. When
3475 // InitList is true, special case initialization of FieldDecls matching
3476 // InitListFieldDecl.
3477 bool InitList;
3478 FieldDecl *InitListFieldDecl;
3479 llvm::SmallVector<unsigned, 4> InitFieldIndex;
3480
3481 public:
3482 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
3483 UninitializedFieldVisitor(Sema &S,
3484 llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
3485 llvm::SmallPtrSetImpl<QualType> &BaseClasses)
3486 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
3487 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
3488
3489 // Returns true if the use of ME is not an uninitialized use.
3490 bool IsInitListMemberExprInitialized(MemberExpr *ME,
3491 bool CheckReferenceOnly) {
3492 llvm::SmallVector<FieldDecl*, 4> Fields;
3493 bool ReferenceField = false;
3494 while (ME) {
3495 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
3496 if (!FD)
3497 return false;
3498 Fields.push_back(FD);
3499 if (FD->getType()->isReferenceType())
3500 ReferenceField = true;
3501 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
3502 }
3503
3504 // Binding a reference to an uninitialized field is not an
3505 // uninitialized use.
3506 if (CheckReferenceOnly && !ReferenceField)
3507 return true;
3508
3509 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
3510 // Discard the first field since it is the field decl that is being
3511 // initialized.
3512 for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) {
3513 UsedFieldIndex.push_back((*I)->getFieldIndex());
3514 }
3515
3516 for (auto UsedIter = UsedFieldIndex.begin(),
3517 UsedEnd = UsedFieldIndex.end(),
3518 OrigIter = InitFieldIndex.begin(),
3519 OrigEnd = InitFieldIndex.end();
3520 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
3521 if (*UsedIter < *OrigIter)
3522 return true;
3523 if (*UsedIter > *OrigIter)
3524 break;
3525 }
3526
3527 return false;
3528 }
3529
3530 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
3531 bool AddressOf) {
3532 if (isa<EnumConstantDecl>(ME->getMemberDecl()))
3533 return;
3534
3535 // FieldME is the inner-most MemberExpr that is not an anonymous struct
3536 // or union.
3537 MemberExpr *FieldME = ME;
3538
3539 bool AllPODFields = FieldME->getType().isPODType(S.Context);
3540
3541 Expr *Base = ME;
3542 while (MemberExpr *SubME =
3543 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
3544
3545 if (isa<VarDecl>(SubME->getMemberDecl()))
3546 return;
3547
3548 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
3549 if (!FD->isAnonymousStructOrUnion())
3550 FieldME = SubME;
3551
3552 if (!FieldME->getType().isPODType(S.Context))
3553 AllPODFields = false;
3554
3555 Base = SubME->getBase();
3556 }
3557
3558 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts()))
3559 return;
3560
3561 if (AddressOf && AllPODFields)
3562 return;
3563
3564 ValueDecl* FoundVD = FieldME->getMemberDecl();
3565
3566 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
3567 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
3568 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
3569 }
3570
3571 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
3572 QualType T = BaseCast->getType();
3573 if (T->isPointerType() &&
3574 BaseClasses.count(T->getPointeeType())) {
3575 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
3576 << T->getPointeeType() << FoundVD;
3577 }
3578 }
3579 }
3580
3581 if (!Decls.count(FoundVD))
3582 return;
3583
3584 const bool IsReference = FoundVD->getType()->isReferenceType();
3585
3586 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
3587 // Special checking for initializer lists.
3588 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
3589 return;
3590 }
3591 } else {
3592 // Prevent double warnings on use of unbounded references.
3593 if (CheckReferenceOnly && !IsReference)
3594 return;
3595 }
3596
3597 unsigned diag = IsReference
3598 ? diag::warn_reference_field_is_uninit
3599 : diag::warn_field_is_uninit;
3600 S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
3601 if (Constructor)
3602 S.Diag(Constructor->getLocation(),
3603 diag::note_uninit_in_this_constructor)
3604 << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
3605
3606 }
3607
3608 void HandleValue(Expr *E, bool AddressOf) {
3609 E = E->IgnoreParens();
3610
3611 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3612 HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
3613 AddressOf /*AddressOf*/);
3614 return;
3615 }
3616
3617 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3618 Visit(CO->getCond());
3619 HandleValue(CO->getTrueExpr(), AddressOf);
3620 HandleValue(CO->getFalseExpr(), AddressOf);
3621 return;
3622 }
3623
3624 if (BinaryConditionalOperator *BCO =
3625 dyn_cast<BinaryConditionalOperator>(E)) {
3626 Visit(BCO->getCond());
3627 HandleValue(BCO->getFalseExpr(), AddressOf);
3628 return;
3629 }
3630
3631 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
3632 HandleValue(OVE->getSourceExpr(), AddressOf);
3633 return;
3634 }
3635
3636 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3637 switch (BO->getOpcode()) {
3638 default:
3639 break;
3640 case(BO_PtrMemD):
3641 case(BO_PtrMemI):
3642 HandleValue(BO->getLHS(), AddressOf);
3643 Visit(BO->getRHS());
3644 return;
3645 case(BO_Comma):
3646 Visit(BO->getLHS());
3647 HandleValue(BO->getRHS(), AddressOf);
3648 return;
3649 }
3650 }
3651
3652 Visit(E);
3653 }
3654
3655 void CheckInitListExpr(InitListExpr *ILE) {
3656 InitFieldIndex.push_back(0);
3657 for (auto Child : ILE->children()) {
3658 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
3659 CheckInitListExpr(SubList);
3660 } else {
3661 Visit(Child);
3662 }
3663 ++InitFieldIndex.back();
3664 }
3665 InitFieldIndex.pop_back();
3666 }
3667
3668 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
3669 FieldDecl *Field, const Type *BaseClass) {
3670 // Remove Decls that may have been initialized in the previous
3671 // initializer.
3672 for (ValueDecl* VD : DeclsToRemove)
3673 Decls.erase(VD);
3674 DeclsToRemove.clear();
3675
3676 Constructor = FieldConstructor;
3677 InitListExpr *ILE = dyn_cast<InitListExpr>(E);
3678
3679 if (ILE && Field) {
3680 InitList = true;
3681 InitListFieldDecl = Field;
3682 InitFieldIndex.clear();
3683 CheckInitListExpr(ILE);
3684 } else {
3685 InitList = false;
3686 Visit(E);
3687 }
3688
3689 if (Field)
3690 Decls.erase(Field);
3691 if (BaseClass)
3692 BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
3693 }
3694
3695 void VisitMemberExpr(MemberExpr *ME) {
3696 // All uses of unbounded reference fields will warn.
3697 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
3698 }
3699
3700 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
3701 if (E->getCastKind() == CK_LValueToRValue) {
3702 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3703 return;
3704 }
3705
3706 Inherited::VisitImplicitCastExpr(E);
3707 }
3708
3709 void VisitCXXConstructExpr(CXXConstructExpr *E) {
3710 if (E->getConstructor()->isCopyConstructor()) {
3711 Expr *ArgExpr = E->getArg(0);
3712 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
3713 if (ILE->getNumInits() == 1)
3714 ArgExpr = ILE->getInit(0);
3715 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
3716 if (ICE->getCastKind() == CK_NoOp)
3717 ArgExpr = ICE->getSubExpr();
3718 HandleValue(ArgExpr, false /*AddressOf*/);
3719 return;
3720 }
3721 Inherited::VisitCXXConstructExpr(E);
3722 }
3723
3724 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3725 Expr *Callee = E->getCallee();
3726 if (isa<MemberExpr>(Callee)) {
3727 HandleValue(Callee, false /*AddressOf*/);
3728 for (auto Arg : E->arguments())
3729 Visit(Arg);
3730 return;
3731 }
3732
3733 Inherited::VisitCXXMemberCallExpr(E);
3734 }
3735
3736 void VisitCallExpr(CallExpr *E) {
3737 // Treat std::move as a use.
3738 if (E->isCallToStdMove()) {
3739 HandleValue(E->getArg(0), /*AddressOf=*/false);
3740 return;
3741 }
3742
3743 Inherited::VisitCallExpr(E);
3744 }
3745
3746 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
3747 Expr *Callee = E->getCallee();
3748
3749 if (isa<UnresolvedLookupExpr>(Callee))
3750 return Inherited::VisitCXXOperatorCallExpr(E);
3751
3752 Visit(Callee);
3753 for (auto Arg : E->arguments())
3754 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
3755 }
3756
3757 void VisitBinaryOperator(BinaryOperator *E) {
3758 // If a field assignment is detected, remove the field from the
3759 // uninitiailized field set.
3760 if (E->getOpcode() == BO_Assign)
3761 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
3762 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3763 if (!FD->getType()->isReferenceType())
3764 DeclsToRemove.push_back(FD);
3765
3766 if (E->isCompoundAssignmentOp()) {
3767 HandleValue(E->getLHS(), false /*AddressOf*/);
3768 Visit(E->getRHS());
3769 return;
3770 }
3771
3772 Inherited::VisitBinaryOperator(E);
3773 }
3774
3775 void VisitUnaryOperator(UnaryOperator *E) {
3776 if (E->isIncrementDecrementOp()) {
3777 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3778 return;
3779 }
3780 if (E->getOpcode() == UO_AddrOf) {
3781 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
3782 HandleValue(ME->getBase(), true /*AddressOf*/);
3783 return;
3784 }
3785 }
3786
3787 Inherited::VisitUnaryOperator(E);
3788 }
3789 };
3790
3791 // Diagnose value-uses of fields to initialize themselves, e.g.
3792 // foo(foo)
3793 // where foo is not also a parameter to the constructor.
3794 // Also diagnose across field uninitialized use such as
3795 // x(y), y(x)
3796 // TODO: implement -Wuninitialized and fold this into that framework.
3797 static void DiagnoseUninitializedFields(
3798 Sema &SemaRef, const CXXConstructorDecl *Constructor) {
3799
3800 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
3801 Constructor->getLocation())) {
3802 return;
3803 }
3804
3805 if (Constructor->isInvalidDecl())
3806 return;
3807
3808 const CXXRecordDecl *RD = Constructor->getParent();
3809
3810 if (RD->isDependentContext())
3811 return;
3812
3813 // Holds fields that are uninitialized.
3814 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
3815
3816 // At the beginning, all fields are uninitialized.
3817 for (auto *I : RD->decls()) {
3818 if (auto *FD = dyn_cast<FieldDecl>(I)) {
3819 UninitializedFields.insert(FD);
3820 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
3821 UninitializedFields.insert(IFD->getAnonField());
3822 }
3823 }
3824
3825 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
3826 for (auto I : RD->bases())
3827 UninitializedBaseClasses.insert(I.getType().getCanonicalType());
3828
3829 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3830 return;
3831
3832 UninitializedFieldVisitor UninitializedChecker(SemaRef,
3833 UninitializedFields,
3834 UninitializedBaseClasses);
3835
3836 for (const auto *FieldInit : Constructor->inits()) {
3837 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3838 break;
3839
3840 Expr *InitExpr = FieldInit->getInit();
3841 if (!InitExpr)
3842 continue;
3843
3844 if (CXXDefaultInitExpr *Default =
3845 dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
3846 InitExpr = Default->getExpr();
3847 if (!InitExpr)
3848 continue;
3849 // In class initializers will point to the constructor.
3850 UninitializedChecker.CheckInitializer(InitExpr, Constructor,
3851 FieldInit->getAnyMember(),
3852 FieldInit->getBaseClass());
3853 } else {
3854 UninitializedChecker.CheckInitializer(InitExpr, nullptr,
3855 FieldInit->getAnyMember(),
3856 FieldInit->getBaseClass());
3857 }
3858 }
3859 }
3860} // namespace
3861
3862/// Enter a new C++ default initializer scope. After calling this, the
3863/// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
3864/// parsing or instantiating the initializer failed.
3865void Sema::ActOnStartCXXInClassMemberInitializer() {
3866 // Create a synthetic function scope to represent the call to the constructor
3867 // that notionally surrounds a use of this initializer.
3868 PushFunctionScope();
3869}
3870
3871void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) {
3872 if (!D.isFunctionDeclarator())
3873 return;
3874 auto &FTI = D.getFunctionTypeInfo();
3875 if (!FTI.Params)
3876 return;
3877 for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params,
3878 FTI.NumParams)) {
3879 auto *ParamDecl = cast<NamedDecl>(Param.Param);
3880 if (ParamDecl->getDeclName())
3881 PushOnScopeChains(ParamDecl, S, /*AddToContext=*/false);
3882 }
3883}
3884
3885ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) {
3886 if (ConstraintExpr.isInvalid())
3887 return ExprError();
3888 return CorrectDelayedTyposInExpr(ConstraintExpr);
3889}
3890
3891/// This is invoked after parsing an in-class initializer for a
3892/// non-static C++ class member, and after instantiating an in-class initializer
3893/// in a class template. Such actions are deferred until the class is complete.
3894void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
3895 SourceLocation InitLoc,
3896 Expr *InitExpr) {
3897 // Pop the notional constructor scope we created earlier.
3898 PopFunctionScopeInfo(nullptr, D);
3899
3900 FieldDecl *FD = dyn_cast<FieldDecl>(D);
3901 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&(((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle
() != ICIS_NoInit) && "must set init style when field is created"
) ? static_cast<void> (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 3902, __PRETTY_FUNCTION__))
3902 "must set init style when field is created")(((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle
() != ICIS_NoInit) && "must set init style when field is created"
) ? static_cast<void> (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 3902, __PRETTY_FUNCTION__))
;
3903
3904 if (!InitExpr) {
3905 D->setInvalidDecl();
3906 if (FD)
3907 FD->removeInClassInitializer();
3908 return;
3909 }
3910
3911 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
3912 FD->setInvalidDecl();
3913 FD->removeInClassInitializer();
3914 return;
3915 }
3916
3917 ExprResult Init = InitExpr;
3918 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
3919 InitializedEntity Entity =
3920 InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD);
3921 InitializationKind Kind =
3922 FD->getInClassInitStyle() == ICIS_ListInit
3923 ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(),
3924 InitExpr->getBeginLoc(),
3925 InitExpr->getEndLoc())
3926 : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc);
3927 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
3928 Init = Seq.Perform(*this, Entity, Kind, InitExpr);
3929 if (Init.isInvalid()) {
3930 FD->setInvalidDecl();
3931 return;
3932 }
3933 }
3934
3935 // C++11 [class.base.init]p7:
3936 // The initialization of each base and member constitutes a
3937 // full-expression.
3938 Init = ActOnFinishFullExpr(Init.get(), InitLoc, /*DiscardedValue*/ false);
3939 if (Init.isInvalid()) {
3940 FD->setInvalidDecl();
3941 return;
3942 }
3943
3944 InitExpr = Init.get();
3945
3946 FD->setInClassInitializer(InitExpr);
3947}
3948
3949/// Find the direct and/or virtual base specifiers that
3950/// correspond to the given base type, for use in base initialization
3951/// within a constructor.
3952static bool FindBaseInitializer(Sema &SemaRef,
3953 CXXRecordDecl *ClassDecl,
3954 QualType BaseType,
3955 const CXXBaseSpecifier *&DirectBaseSpec,
3956 const CXXBaseSpecifier *&VirtualBaseSpec) {
3957 // First, check for a direct base class.
3958 DirectBaseSpec = nullptr;
3959 for (const auto &Base : ClassDecl->bases()) {
3960 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
3961 // We found a direct base of this type. That's what we're
3962 // initializing.
3963 DirectBaseSpec = &Base;
3964 break;
3965 }
3966 }
3967
3968 // Check for a virtual base class.
3969 // FIXME: We might be able to short-circuit this if we know in advance that
3970 // there are no virtual bases.
3971 VirtualBaseSpec = nullptr;
3972 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
3973 // We haven't found a base yet; search the class hierarchy for a
3974 // virtual base class.
3975 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3976 /*DetectVirtual=*/false);
3977 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(),
3978 SemaRef.Context.getTypeDeclType(ClassDecl),
3979 BaseType, Paths)) {
3980 for (CXXBasePaths::paths_iterator Path = Paths.begin();
3981 Path != Paths.end(); ++Path) {
3982 if (Path->back().Base->isVirtual()) {
3983 VirtualBaseSpec = Path->back().Base;
3984 break;
3985 }
3986 }
3987 }
3988 }
3989
3990 return DirectBaseSpec || VirtualBaseSpec;
3991}
3992
3993/// Handle a C++ member initializer using braced-init-list syntax.
3994MemInitResult
3995Sema::ActOnMemInitializer(Decl *ConstructorD,
3996 Scope *S,
3997 CXXScopeSpec &SS,
3998 IdentifierInfo *MemberOrBase,
3999 ParsedType TemplateTypeTy,
4000 const DeclSpec &DS,
4001 SourceLocation IdLoc,
4002 Expr *InitList,
4003 SourceLocation EllipsisLoc) {
4004 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4005 DS, IdLoc, InitList,
4006 EllipsisLoc);
4007}
4008
4009/// Handle a C++ member initializer using parentheses syntax.
4010MemInitResult
4011Sema::ActOnMemInitializer(Decl *ConstructorD,
4012 Scope *S,
4013 CXXScopeSpec &SS,
4014 IdentifierInfo *MemberOrBase,
4015 ParsedType TemplateTypeTy,
4016 const DeclSpec &DS,
4017 SourceLocation IdLoc,
4018 SourceLocation LParenLoc,
4019 ArrayRef<Expr *> Args,
4020 SourceLocation RParenLoc,
4021 SourceLocation EllipsisLoc) {
4022 Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc);
4023 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4024 DS, IdLoc, List, EllipsisLoc);
4025}
4026
4027namespace {
4028
4029// Callback to only accept typo corrections that can be a valid C++ member
4030// intializer: either a non-static field member or a base class.
4031class MemInitializerValidatorCCC final : public CorrectionCandidateCallback {
4032public:
4033 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
4034 : ClassDecl(ClassDecl) {}
4035
4036 bool ValidateCandidate(const TypoCorrection &candidate) override {
4037 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
4038 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
4039 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
4040 return isa<TypeDecl>(ND);
4041 }
4042 return false;
4043 }
4044
4045 std::unique_ptr<CorrectionCandidateCallback> clone() override {
4046 return std::make_unique<MemInitializerValidatorCCC>(*this);
4047 }
4048
4049private:
4050 CXXRecordDecl *ClassDecl;
4051};
4052
4053}
4054
4055ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl,
4056 CXXScopeSpec &SS,
4057 ParsedType TemplateTypeTy,
4058 IdentifierInfo *MemberOrBase) {
4059 if (SS.getScopeRep() || TemplateTypeTy)
4060 return nullptr;
4061 DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
4062 if (Result.empty())
4063 return nullptr;
4064 ValueDecl *Member;
4065 if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
4066 (Member = dyn_cast<IndirectFieldDecl>(Result.front())))
4067 return Member;
4068 return nullptr;
4069}
4070
4071/// Handle a C++ member initializer.
4072MemInitResult
4073Sema::BuildMemInitializer(Decl *ConstructorD,
4074 Scope *S,
4075 CXXScopeSpec &SS,
4076 IdentifierInfo *MemberOrBase,
4077 ParsedType TemplateTypeTy,
4078 const DeclSpec &DS,
4079 SourceLocation IdLoc,
4080 Expr *Init,
4081 SourceLocation EllipsisLoc) {
4082 ExprResult Res = CorrectDelayedTyposInExpr(Init);
4083 if (!Res.isUsable())
4084 return true;
4085 Init = Res.get();
4086
4087 if (!ConstructorD)
4088 return true;
4089
4090 AdjustDeclIfTemplate(ConstructorD);
4091
4092 CXXConstructorDecl *Constructor
4093 = dyn_cast<CXXConstructorDecl>(ConstructorD);
4094 if (!Constructor) {
4095 // The user wrote a constructor initializer on a function that is
4096 // not a C++ constructor. Ignore the error for now, because we may
4097 // have more member initializers coming; we'll diagnose it just
4098 // once in ActOnMemInitializers.
4099 return true;
4100 }
4101
4102 CXXRecordDecl *ClassDecl = Constructor->getParent();
4103
4104 // C++ [class.base.init]p2:
4105 // Names in a mem-initializer-id are looked up in the scope of the
4106 // constructor's class and, if not found in that scope, are looked
4107 // up in the scope containing the constructor's definition.
4108 // [Note: if the constructor's class contains a member with the
4109 // same name as a direct or virtual base class of the class, a
4110 // mem-initializer-id naming the member or base class and composed
4111 // of a single identifier refers to the class member. A
4112 // mem-initializer-id for the hidden base class may be specified
4113 // using a qualified name. ]
4114
4115 // Look for a member, first.
4116 if (ValueDecl *Member = tryLookupCtorInitMemberDecl(
4117 ClassDecl, SS, TemplateTypeTy, MemberOrBase)) {
4118 if (EllipsisLoc.isValid())
4119 Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
4120 << MemberOrBase
4121 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
4122
4123 return BuildMemberInitializer(Member, Init, IdLoc);
4124 }
4125 // It didn't name a member, so see if it names a class.
4126 QualType BaseType;
4127 TypeSourceInfo *TInfo = nullptr;
4128
4129 if (TemplateTypeTy) {
4130 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
4131 if (BaseType.isNull())
4132 return true;
4133 } else if (DS.getTypeSpecType() == TST_decltype) {
4134 BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
4135 } else if (DS.getTypeSpecType() == TST_decltype_auto) {
4136 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
4137 return true;
4138 } else {
4139 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
4140 LookupParsedName(R, S, &SS);
4141
4142 TypeDecl *TyD = R.getAsSingle<TypeDecl>();
4143 if (!TyD) {
4144 if (R.isAmbiguous()) return true;
4145
4146 // We don't want access-control diagnostics here.
4147 R.suppressDiagnostics();
4148
4149 if (SS.isSet() && isDependentScopeSpecifier(SS)) {
4150 bool NotUnknownSpecialization = false;
4151 DeclContext *DC = computeDeclContext(SS, false);
4152 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
4153 NotUnknownSpecialization = !Record->hasAnyDependentBases();
4154
4155 if (!NotUnknownSpecialization) {
4156 // When the scope specifier can refer to a member of an unknown
4157 // specialization, we take it as a type name.
4158 BaseType = CheckTypenameType(ETK_None, SourceLocation(),
4159 SS.getWithLocInContext(Context),
4160 *MemberOrBase, IdLoc);
4161 if (BaseType.isNull())
4162 return true;
4163
4164 TInfo = Context.CreateTypeSourceInfo(BaseType);
4165 DependentNameTypeLoc TL =
4166 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>();
4167 if (!TL.isNull()) {
4168 TL.setNameLoc(IdLoc);
4169 TL.setElaboratedKeywordLoc(SourceLocation());
4170 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4171 }
4172
4173 R.clear();
4174 R.setLookupName(MemberOrBase);
4175 }
4176 }
4177
4178 // If no results were found, try to correct typos.
4179 TypoCorrection Corr;
4180 MemInitializerValidatorCCC CCC(ClassDecl);
4181 if (R.empty() && BaseType.isNull() &&
4182 (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
4183 CCC, CTK_ErrorRecovery, ClassDecl))) {
4184 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
4185 // We have found a non-static data member with a similar
4186 // name to what was typed; complain and initialize that
4187 // member.
4188 diagnoseTypo(Corr,
4189 PDiag(diag::err_mem_init_not_member_or_class_suggest)
4190 << MemberOrBase << true);
4191 return BuildMemberInitializer(Member, Init, IdLoc);
4192 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
4193 const CXXBaseSpecifier *DirectBaseSpec;
4194 const CXXBaseSpecifier *VirtualBaseSpec;
4195 if (FindBaseInitializer(*this, ClassDecl,
4196 Context.getTypeDeclType(Type),
4197 DirectBaseSpec, VirtualBaseSpec)) {
4198 // We have found a direct or virtual base class with a
4199 // similar name to what was typed; complain and initialize
4200 // that base class.
4201 diagnoseTypo(Corr,
4202 PDiag(diag::err_mem_init_not_member_or_class_suggest)
4203 << MemberOrBase << false,
4204 PDiag() /*Suppress note, we provide our own.*/);
4205
4206 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
4207 : VirtualBaseSpec;
4208 Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here)
4209 << BaseSpec->getType() << BaseSpec->getSourceRange();
4210
4211 TyD = Type;
4212 }
4213 }
4214 }
4215
4216 if (!TyD && BaseType.isNull()) {
4217 Diag(IdLoc, diag::err_mem_init_not_member_or_class)
4218 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
4219 return true;
4220 }
4221 }
4222
4223 if (BaseType.isNull()) {
4224 BaseType = Context.getTypeDeclType(TyD);
4225 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
4226 if (SS.isSet()) {
4227 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
4228 BaseType);
4229 TInfo = Context.CreateTypeSourceInfo(BaseType);
4230 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>();
4231 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
4232 TL.setElaboratedKeywordLoc(SourceLocation());
4233 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4234 }
4235 }
4236 }
4237
4238 if (!TInfo)
4239 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
4240
4241 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
4242}
4243
4244MemInitResult
4245Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
4246 SourceLocation IdLoc) {
4247 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
4248 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
4249 assert((DirectMember || IndirectMember) &&(((DirectMember || IndirectMember) && "Member must be a FieldDecl or IndirectFieldDecl"
) ? static_cast<void> (0) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 4250, __PRETTY_FUNCTION__))
4250 "Member must be a FieldDecl or IndirectFieldDecl")(((DirectMember || IndirectMember) && "Member must be a FieldDecl or IndirectFieldDecl"
) ? static_cast<void> (0) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 4250, __PRETTY_FUNCTION__))
;
4251
4252 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4253 return true;
4254
4255 if (Member->isInvalidDecl())
4256 return true;
4257
4258 MultiExprArg Args;
4259 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4260 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4261 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
4262 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
4263 } else {
4264 // Template instantiation doesn't reconstruct ParenListExprs for us.
4265 Args = Init;
4266 }
4267
4268 SourceRange InitRange = Init->getSourceRange();
4269
4270 if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
4271 // Can't check initialization for a member of dependent type or when
4272 // any of the arguments are type-dependent expressions.
4273 DiscardCleanupsInEvaluationContext();
4274 } else {
4275 bool InitList = false;
4276 if (isa<InitListExpr>(Init)) {
4277 InitList = true;
4278 Args = Init;
4279 }
4280
4281 // Initialize the member.
4282 InitializedEntity MemberEntity =
4283 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
4284 : InitializedEntity::InitializeMember(IndirectMember,
4285 nullptr);
4286 InitializationKind Kind =
4287 InitList ? InitializationKind::CreateDirectList(
4288 IdLoc, Init->getBeginLoc(), Init->getEndLoc())
4289 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
4290 InitRange.getEnd());
4291
4292 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
4293 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
4294 nullptr);
4295 if (MemberInit.isInvalid())
4296 return true;
4297
4298 // C++11 [class.base.init]p7:
4299 // The initialization of each base and member constitutes a
4300 // full-expression.
4301 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(),
4302 /*DiscardedValue*/ false);
4303 if (MemberInit.isInvalid())
4304 return true;
4305
4306 Init = MemberInit.get();
4307 }
4308
4309 if (DirectMember) {
4310 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
4311 InitRange.getBegin(), Init,
4312 InitRange.getEnd());
4313 } else {
4314 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
4315 InitRange.getBegin(), Init,
4316 InitRange.getEnd());
4317 }
4318}
4319
4320MemInitResult
4321Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
4322 CXXRecordDecl *ClassDecl) {
4323 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
4324 if (!LangOpts.CPlusPlus11)
4325 return Diag(NameLoc, diag::err_delegating_ctor)
4326 << TInfo->getTypeLoc().getLocalSourceRange();
4327 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
4328
4329 bool InitList = true;
4330 MultiExprArg Args = Init;
4331 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4332 InitList = false;
4333 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4334 }
4335
4336 SourceRange InitRange = Init->getSourceRange();
4337 // Initialize the object.
4338 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
4339 QualType(ClassDecl->getTypeForDecl(), 0));
4340 InitializationKind Kind =
4341 InitList ? InitializationKind::CreateDirectList(
4342 NameLoc, Init->getBeginLoc(), Init->getEndLoc())
4343 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
4344 InitRange.getEnd());
4345 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
4346 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
4347 Args, nullptr);
4348 if (DelegationInit.isInvalid())
4349 return true;
4350
4351 assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&((cast<CXXConstructExpr>(DelegationInit.get())->getConstructor
() && "Delegating constructor with no target?") ? static_cast
<void> (0) : __assert_fail ("cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && \"Delegating constructor with no target?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 4352, __PRETTY_FUNCTION__))
4352 "Delegating constructor with no target?")((cast<CXXConstructExpr>(DelegationInit.get())->getConstructor
() && "Delegating constructor with no target?") ? static_cast
<void> (0) : __assert_fail ("cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && \"Delegating constructor with no target?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 4352, __PRETTY_FUNCTION__))
;
4353
4354 // C++11 [class.base.init]p7:
4355 // The initialization of each base and member constitutes a
4356 // full-expression.
4357 DelegationInit = ActOnFinishFullExpr(
4358 DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false);
4359 if (DelegationInit.isInvalid())
4360 return true;
4361
4362 // If we are in a dependent context, template instantiation will
4363 // perform this type-checking again. Just save the arguments that we
4364 // received in a ParenListExpr.
4365 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4366 // of the information that we have about the base
4367 // initializer. However, deconstructing the ASTs is a dicey process,
4368 // and this approach is far more likely to get the corner cases right.
4369 if (CurContext->isDependentContext())
4370 DelegationInit = Init;
4371
4372 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
4373 DelegationInit.getAs<Expr>(),
4374 InitRange.getEnd());
4375}
4376
4377MemInitResult
4378Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
4379 Expr *Init, CXXRecordDecl *ClassDecl,
4380 SourceLocation EllipsisLoc) {
4381 SourceLocation BaseLoc
4382 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
4383
4384 if (!BaseType->isDependentType() && !BaseType->isRecordType())
4385 return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
4386 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4387
4388 // C++ [class.base.init]p2:
4389 // [...] Unless the mem-initializer-id names a nonstatic data
4390 // member of the constructor's class or a direct or virtual base
4391 // of that class, the mem-initializer is ill-formed. A
4392 // mem-initializer-list can initialize a base class using any
4393 // name that denotes that base class type.
4394 bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
4395
4396 SourceRange InitRange = Init->getSourceRange();
4397 if (EllipsisLoc.isValid()) {
4398 // This is a pack expansion.
4399 if (!BaseType->containsUnexpandedParameterPack()) {
4400 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
4401 << SourceRange(BaseLoc, InitRange.getEnd());
4402
4403 EllipsisLoc = SourceLocation();
4404 }
4405 } else {
4406 // Check for any unexpanded parameter packs.
4407 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
4408 return true;
4409
4410 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4411 return true;
4412 }
4413
4414 // Check for direct and virtual base classes.
4415 const CXXBaseSpecifier *DirectBaseSpec = nullptr;
4416 const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
4417 if (!Dependent) {
4418 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
4419 BaseType))
4420 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
4421
4422 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
4423 VirtualBaseSpec);
4424
4425 // C++ [base.class.init]p2:
4426 // Unless the mem-initializer-id names a nonstatic data member of the
4427 // constructor's class or a direct or virtual base of that class, the
4428 // mem-initializer is ill-formed.
4429 if (!DirectBaseSpec && !VirtualBaseSpec) {
4430 // If the class has any dependent bases, then it's possible that
4431 // one of those types will resolve to the same type as
4432 // BaseType. Therefore, just treat this as a dependent base
4433 // class initialization. FIXME: Should we try to check the
4434 // initialization anyway? It seems odd.
4435 if (ClassDecl->hasAnyDependentBases())
4436 Dependent = true;
4437 else
4438 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
4439 << BaseType << Context.getTypeDeclType(ClassDecl)
4440 << BaseTInfo->getTypeLoc().getLocalSourceRange();
4441 }
4442 }
4443
4444 if (Dependent) {
4445 DiscardCleanupsInEvaluationContext();
4446
4447 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4448 /*IsVirtual=*/false,
4449 InitRange.getBegin(), Init,
4450 InitRange.getEnd(), EllipsisLoc);
4451 }
4452
4453 // C++ [base.class.init]p2:
4454 // If a mem-initializer-id is ambiguous because it designates both
4455 // a direct non-virtual base class and an inherited virtual base
4456 // class, the mem-initializer is ill-formed.
4457 if (DirectBaseSpec && VirtualBaseSpec)
4458 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
4459 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4460
4461 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
4462 if (!BaseSpec)
4463 BaseSpec = VirtualBaseSpec;
4464
4465 // Initialize the base.
4466 bool InitList = true;
4467 MultiExprArg Args = Init;
4468 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4469 InitList = false;
4470 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4471 }
4472
4473 InitializedEntity BaseEntity =
4474 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
4475 InitializationKind Kind =
4476 InitList ? InitializationKind::CreateDirectList(BaseLoc)
4477 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
4478 InitRange.getEnd());
4479 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
4480 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
4481 if (BaseInit.isInvalid())
4482 return true;
4483
4484 // C++11 [class.base.init]p7:
4485 // The initialization of each base and member constitutes a
4486 // full-expression.
4487 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(),
4488 /*DiscardedValue*/ false);
4489 if (BaseInit.isInvalid())
4490 return true;
4491
4492 // If we are in a dependent context, template instantiation will
4493 // perform this type-checking again. Just save the arguments that we
4494 // received in a ParenListExpr.
4495 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4496 // of the information that we have about the base
4497 // initializer. However, deconstructing the ASTs is a dicey process,
4498 // and this approach is far more likely to get the corner cases right.
4499 if (CurContext->isDependentContext())
4500 BaseInit = Init;
4501
4502 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4503 BaseSpec->isVirtual(),
4504 InitRange.getBegin(),
4505 BaseInit.getAs<Expr>(),
4506 InitRange.getEnd(), EllipsisLoc);
4507}
4508
4509// Create a static_cast\<T&&>(expr).
4510static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
4511 if (T.isNull()) T = E->getType();
4512 QualType TargetType = SemaRef.BuildReferenceType(
4513 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
4514 SourceLocation ExprLoc = E->getBeginLoc();
4515 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
4516 TargetType, ExprLoc);
4517
4518 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
4519 SourceRange(ExprLoc, ExprLoc),
4520 E->getSourceRange()).get();
4521}
4522
4523/// ImplicitInitializerKind - How an implicit base or member initializer should
4524/// initialize its base or member.
4525enum ImplicitInitializerKind {
4526 IIK_Default,
4527 IIK_Copy,
4528 IIK_Move,
4529 IIK_Inherit
4530};
4531
4532static bool
4533BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4534 ImplicitInitializerKind ImplicitInitKind,
4535 CXXBaseSpecifier *BaseSpec,
4536 bool IsInheritedVirtualBase,
4537 CXXCtorInitializer *&CXXBaseInit) {
4538 InitializedEntity InitEntity
4539 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
4540 IsInheritedVirtualBase);
4541
4542 ExprResult BaseInit;
4543
4544 switch (ImplicitInitKind) {
4545 case IIK_Inherit:
4546 case IIK_Default: {
4547 InitializationKind InitKind
4548 = InitializationKind::CreateDefault(Constructor->getLocation());
4549 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4550 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4551 break;
4552 }
4553
4554 case IIK_Move:
4555 case IIK_Copy: {
4556 bool Moving = ImplicitInitKind == IIK_Move;
4557 ParmVarDecl *Param = Constructor->getParamDecl(0);
4558 QualType ParamType = Param->getType().getNonReferenceType();
4559
4560 Expr *CopyCtorArg =
4561 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4562 SourceLocation(), Param, false,
4563 Constructor->getLocation(), ParamType,
4564 VK_LValue, nullptr);
4565
4566 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
4567
4568 // Cast to the base class to avoid ambiguities.
4569 QualType ArgTy =
4570 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
4571 ParamType.getQualifiers());
4572
4573 if (Moving) {
4574 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
4575 }
4576
4577 CXXCastPath BasePath;
4578 BasePath.push_back(BaseSpec);
4579 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
4580 CK_UncheckedDerivedToBase,
4581 Moving ? VK_XValue : VK_LValue,
4582 &BasePath).get();
4583
4584 InitializationKind InitKind
4585 = InitializationKind::CreateDirect(Constructor->getLocation(),
4586 SourceLocation(), SourceLocation());
4587 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
4588 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
4589 break;
4590 }
4591 }
4592
4593 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
4594 if (BaseInit.isInvalid())
4595 return true;
4596
4597 CXXBaseInit =
4598 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4599 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
4600 SourceLocation()),
4601 BaseSpec->isVirtual(),
4602 SourceLocation(),
4603 BaseInit.getAs<Expr>(),
4604 SourceLocation(),
4605 SourceLocation());
4606
4607 return false;
4608}
4609
4610static bool RefersToRValueRef(Expr *MemRef) {
4611 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
4612 return Referenced->getType()->isRValueReferenceType();
4613}
4614
4615static bool
4616BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4617 ImplicitInitializerKind ImplicitInitKind,
4618 FieldDecl *Field, IndirectFieldDecl *Indirect,
4619 CXXCtorInitializer *&CXXMemberInit) {
4620 if (Field->isInvalidDecl())
4621 return true;
4622
4623 SourceLocation Loc = Constructor->getLocation();
4624
4625 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
4626 bool Moving = ImplicitInitKind == IIK_Move;
4627 ParmVarDecl *Param = Constructor->getParamDecl(0);
4628 QualType ParamType = Param->getType().getNonReferenceType();
4629
4630 // Suppress copying zero-width bitfields.
4631 if (Field->isZeroLengthBitField(SemaRef.Context))
4632 return false;
4633
4634 Expr *MemberExprBase =
4635 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4636 SourceLocation(), Param, false,
4637 Loc, ParamType, VK_LValue, nullptr);
4638
4639 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
4640
4641 if (Moving) {
4642 MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
4643 }
4644
4645 // Build a reference to this field within the parameter.
4646 CXXScopeSpec SS;
4647 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
4648 Sema::LookupMemberName);
4649 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
4650 : cast<ValueDecl>(Field), AS_public);
4651 MemberLookup.resolveKind();
4652 ExprResult CtorArg
4653 = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
4654 ParamType, Loc,
4655 /*IsArrow=*/false,
4656 SS,
4657 /*TemplateKWLoc=*/SourceLocation(),
4658 /*FirstQualifierInScope=*/nullptr,
4659 MemberLookup,
4660 /*TemplateArgs=*/nullptr,
4661 /*S*/nullptr);
4662 if (CtorArg.isInvalid())
4663 return true;
4664
4665 // C++11 [class.copy]p15:
4666 // - if a member m has rvalue reference type T&&, it is direct-initialized
4667 // with static_cast<T&&>(x.m);
4668 if (RefersToRValueRef(CtorArg.get())) {
4669 CtorArg = CastForMoving(SemaRef, CtorArg.get());
4670 }
4671
4672 InitializedEntity Entity =
4673 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4674 /*Implicit*/ true)
4675 : InitializedEntity::InitializeMember(Field, nullptr,
4676 /*Implicit*/ true);
4677
4678 // Direct-initialize to use the copy constructor.
4679 InitializationKind InitKind =
4680 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
4681
4682 Expr *CtorArgE = CtorArg.getAs<Expr>();
4683 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE);
4684 ExprResult MemberInit =
4685 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1));
4686 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4687 if (MemberInit.isInvalid())
4688 return true;
4689
4690 if (Indirect)
4691 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4692 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4693 else
4694 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4695 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4696 return false;
4697 }
4698
4699 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&(((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit
) && "Unhandled implicit init kind!") ? static_cast<
void> (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 4700, __PRETTY_FUNCTION__))
4700 "Unhandled implicit init kind!")(((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit
) && "Unhandled implicit init kind!") ? static_cast<
void> (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 4700, __PRETTY_FUNCTION__))
;
4701
4702 QualType FieldBaseElementType =
4703 SemaRef.Context.getBaseElementType(Field->getType());
4704
4705 if (FieldBaseElementType->isRecordType()) {
4706 InitializedEntity InitEntity =
4707 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4708 /*Implicit*/ true)
4709 : InitializedEntity::InitializeMember(Field, nullptr,
4710 /*Implicit*/ true);
4711 InitializationKind InitKind =
4712 InitializationKind::CreateDefault(Loc);
4713
4714 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4715 ExprResult MemberInit =
4716 InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4717
4718 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4719 if (MemberInit.isInvalid())
4720 return true;
4721
4722 if (Indirect)
4723 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4724 Indirect, Loc,
4725 Loc,
4726 MemberInit.get(),
4727 Loc);
4728 else
4729 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4730 Field, Loc, Loc,
4731 MemberInit.get(),
4732 Loc);
4733 return false;
4734 }
4735
4736 if (!Field->getParent()->isUnion()) {
4737 if (FieldBaseElementType->isReferenceType()) {
4738 SemaRef.Diag(Constructor->getLocation(),
4739 diag::err_uninitialized_member_in_ctor)
4740 << (int)Constructor->isImplicit()
4741 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4742 << 0 << Field->getDeclName();
4743 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4744 return true;
4745 }
4746
4747 if (FieldBaseElementType.isConstQualified()) {
4748 SemaRef.Diag(Constructor->getLocation(),
4749 diag::err_uninitialized_member_in_ctor)
4750 << (int)Constructor->isImplicit()
4751 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4752 << 1 << Field->getDeclName();
4753 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4754 return true;
4755 }
4756 }
4757
4758 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) {
4759 // ARC and Weak:
4760 // Default-initialize Objective-C pointers to NULL.
4761 CXXMemberInit
4762 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
4763 Loc, Loc,
4764 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
4765 Loc);
4766 return false;
4767 }
4768
4769 // Nothing to initialize.
4770 CXXMemberInit = nullptr;
4771 return false;
4772}
4773
4774namespace {
4775struct BaseAndFieldInfo {
4776 Sema &S;
4777 CXXConstructorDecl *Ctor;
4778 bool AnyErrorsInInits;
4779 ImplicitInitializerKind IIK;
4780 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
4781 SmallVector<CXXCtorInitializer*, 8> AllToInit;
4782 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
4783
4784 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
4785 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
4786 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
4787 if (Ctor->getInheritedConstructor())
4788 IIK = IIK_Inherit;
4789 else if (Generated && Ctor->isCopyConstructor())
4790 IIK = IIK_Copy;
4791 else if (Generated && Ctor->isMoveConstructor())
4792 IIK = IIK_Move;
4793 else
4794 IIK = IIK_Default;
4795 }
4796
4797 bool isImplicitCopyOrMove() const {
4798 switch (IIK) {
4799 case IIK_Copy:
4800 case IIK_Move:
4801 return true;
4802
4803 case IIK_Default:
4804 case IIK_Inherit:
4805 return false;
4806 }
4807
4808 llvm_unreachable("Invalid ImplicitInitializerKind!")::llvm::llvm_unreachable_internal("Invalid ImplicitInitializerKind!"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 4808)
;
4809 }
4810
4811 bool addFieldInitializer(CXXCtorInitializer *Init) {
4812 AllToInit.push_back(Init);
4813
4814 // Check whether this initializer makes the field "used".
4815 if (Init->getInit()->HasSideEffects(S.Context))
4816 S.UnusedPrivateFields.remove(Init->getAnyMember());
4817
4818 return false;
4819 }
4820
4821 bool isInactiveUnionMember(FieldDecl *Field) {
4822 RecordDecl *Record = Field->getParent();
4823 if (!Record->isUnion())
4824 return false;
4825
4826 if (FieldDecl *Active =
4827 ActiveUnionMember.lookup(Record->getCanonicalDecl()))
4828 return Active != Field->getCanonicalDecl();
4829
4830 // In an implicit copy or move constructor, ignore any in-class initializer.
4831 if (isImplicitCopyOrMove())
4832 return true;
4833
4834 // If there's no explicit initialization, the field is active only if it
4835 // has an in-class initializer...
4836 if (Field->hasInClassInitializer())
4837 return false;
4838 // ... or it's an anonymous struct or union whose class has an in-class
4839 // initializer.
4840 if (!Field->isAnonymousStructOrUnion())
4841 return true;
4842 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
4843 return !FieldRD->hasInClassInitializer();
4844 }
4845
4846 /// Determine whether the given field is, or is within, a union member
4847 /// that is inactive (because there was an initializer given for a different
4848 /// member of the union, or because the union was not initialized at all).
4849 bool isWithinInactiveUnionMember(FieldDecl *Field,
4850 IndirectFieldDecl *Indirect) {
4851 if (!Indirect)
4852 return isInactiveUnionMember(Field);
4853
4854 for (auto *C : Indirect->chain()) {
4855 FieldDecl *Field = dyn_cast<FieldDecl>(C);
4856 if (Field && isInactiveUnionMember(Field))
4857 return true;
4858 }
4859 return false;
4860 }
4861};
4862}
4863
4864/// Determine whether the given type is an incomplete or zero-lenfgth
4865/// array type.
4866static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
4867 if (T->isIncompleteArrayType())
4868 return true;
4869
4870 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
4871 if (!ArrayT->getSize())
4872 return true;
4873
4874 T = ArrayT->getElementType();
4875 }
4876
4877 return false;
4878}
4879
4880static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
4881 FieldDecl *Field,
4882 IndirectFieldDecl *Indirect = nullptr) {
4883 if (Field->isInvalidDecl())
4884 return false;
4885
4886 // Overwhelmingly common case: we have a direct initializer for this field.
4887 if (CXXCtorInitializer *Init =
4888 Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
4889 return Info.addFieldInitializer(Init);
4890
4891 // C++11 [class.base.init]p8:
4892 // if the entity is a non-static data member that has a
4893 // brace-or-equal-initializer and either
4894 // -- the constructor's class is a union and no other variant member of that
4895 // union is designated by a mem-initializer-id or
4896 // -- the constructor's class is not a union, and, if the entity is a member
4897 // of an anonymous union, no other member of that union is designated by
4898 // a mem-initializer-id,
4899 // the entity is initialized as specified in [dcl.init].
4900 //
4901 // We also apply the same rules to handle anonymous structs within anonymous
4902 // unions.
4903 if (Info.isWithinInactiveUnionMember(Field, Indirect))
4904 return false;
4905
4906 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
4907 ExprResult DIE =
4908 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
4909 if (DIE.isInvalid())
4910 return true;
4911
4912 auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true);
4913 SemaRef.checkInitializerLifetime(Entity, DIE.get());
4914
4915 CXXCtorInitializer *Init;
4916 if (Indirect)
4917 Init = new (SemaRef.Context)
4918 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
4919 SourceLocation(), DIE.get(), SourceLocation());
4920 else
4921 Init = new (SemaRef.Context)
4922 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
4923 SourceLocation(), DIE.get(), SourceLocation());
4924 return Info.addFieldInitializer(Init);
4925 }
4926
4927 // Don't initialize incomplete or zero-length arrays.
4928 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
4929 return false;
4930
4931 // Don't try to build an implicit initializer if there were semantic
4932 // errors in any of the initializers (and therefore we might be
4933 // missing some that the user actually wrote).
4934 if (Info.AnyErrorsInInits)
4935 return false;
4936
4937 CXXCtorInitializer *Init = nullptr;
4938 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
4939 Indirect, Init))
4940 return true;
4941
4942 if (!Init)
4943 return false;
4944
4945 return Info.addFieldInitializer(Init);
4946}
4947
4948bool
4949Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
4950 CXXCtorInitializer *Initializer) {
4951 assert(Initializer->isDelegatingInitializer())((Initializer->isDelegatingInitializer()) ? static_cast<
void> (0) : __assert_fail ("Initializer->isDelegatingInitializer()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 4951, __PRETTY_FUNCTION__))
;
4952 Constructor->setNumCtorInitializers(1);
4953 CXXCtorInitializer **initializer =
4954 new (Context) CXXCtorInitializer*[1];
4955 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
4956 Constructor->setCtorInitializers(initializer);
4957
4958 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
4959 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
4960 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
4961 }
4962
4963 DelegatingCtorDecls.push_back(Constructor);
4964
4965 DiagnoseUninitializedFields(*this, Constructor);
4966
4967 return false;
4968}
4969
4970bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
4971 ArrayRef<CXXCtorInitializer *> Initializers) {
4972 if (Constructor->isDependentContext()) {
4973 // Just store the initializers as written, they will be checked during
4974 // instantiation.
4975 if (!Initializers.empty()) {
4976 Constructor->setNumCtorInitializers(Initializers.size());
4977 CXXCtorInitializer **baseOrMemberInitializers =
4978 new (Context) CXXCtorInitializer*[Initializers.size()];
4979 memcpy(baseOrMemberInitializers, Initializers.data(),
4980 Initializers.size() * sizeof(CXXCtorInitializer*));
4981 Constructor->setCtorInitializers(baseOrMemberInitializers);
4982 }
4983
4984 // Let template instantiation know whether we had errors.
4985 if (AnyErrors)
4986 Constructor->setInvalidDecl();
4987
4988 return false;
4989 }
4990
4991 BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
4992
4993 // We need to build the initializer AST according to order of construction
4994 // and not what user specified in the Initializers list.
4995 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
4996 if (!ClassDecl)
4997 return true;
4998
4999 bool HadError = false;
5000
5001 for (unsigned i = 0; i < Initializers.size(); i++) {
5002 CXXCtorInitializer *Member = Initializers[i];
5003
5004 if (Member->isBaseInitializer())
5005 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
5006 else {
5007 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
5008
5009 if (IndirectFieldDecl *F = Member->getIndirectMember()) {
5010 for (auto *C : F->chain()) {
5011 FieldDecl *FD = dyn_cast<FieldDecl>(C);
5012 if (FD && FD->getParent()->isUnion())
5013 Info.ActiveUnionMember.insert(std::make_pair(
5014 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5015 }
5016 } else if (FieldDecl *FD = Member->getMember()) {
5017 if (FD->getParent()->isUnion())
5018 Info.ActiveUnionMember.insert(std::make_pair(
5019 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5020 }
5021 }
5022 }
5023
5024 // Keep track of the direct virtual bases.
5025 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
5026 for (auto &I : ClassDecl->bases()) {
5027 if (I.isVirtual())
5028 DirectVBases.insert(&I);
5029 }
5030
5031 // Push virtual bases before others.
5032 for (auto &VBase : ClassDecl->vbases()) {
5033 if (CXXCtorInitializer *Value
5034 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
5035 // [class.base.init]p7, per DR257:
5036 // A mem-initializer where the mem-initializer-id names a virtual base
5037 // class is ignored during execution of a constructor of any class that
5038 // is not the most derived class.
5039 if (ClassDecl->isAbstract()) {
5040 // FIXME: Provide a fixit to remove the base specifier. This requires
5041 // tracking the location of the associated comma for a base specifier.
5042 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
5043 << VBase.getType() << ClassDecl;
5044 DiagnoseAbstractType(ClassDecl);
5045 }
5046
5047 Info.AllToInit.push_back(Value);
5048 } else if (!AnyErrors && !ClassDecl->isAbstract()) {
5049 // [class.base.init]p8, per DR257:
5050 // If a given [...] base class is not named by a mem-initializer-id
5051 // [...] and the entity is not a virtual base class of an abstract
5052 // class, then [...] the entity is default-initialized.
5053 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
5054 CXXCtorInitializer *CXXBaseInit;
5055 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5056 &VBase, IsInheritedVirtualBase,
5057 CXXBaseInit)) {
5058 HadError = true;
5059 continue;
5060 }
5061
5062 Info.AllToInit.push_back(CXXBaseInit);
5063 }
5064 }
5065
5066 // Non-virtual bases.
5067 for (auto &Base : ClassDecl->bases()) {
5068 // Virtuals are in the virtual base list and already constructed.
5069 if (Base.isVirtual())
5070 continue;
5071
5072 if (CXXCtorInitializer *Value
5073 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
5074 Info.AllToInit.push_back(Value);
5075 } else if (!AnyErrors) {
5076 CXXCtorInitializer *CXXBaseInit;
5077 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5078 &Base, /*IsInheritedVirtualBase=*/false,
5079 CXXBaseInit)) {
5080 HadError = true;
5081 continue;
5082 }
5083
5084 Info.AllToInit.push_back(CXXBaseInit);
5085 }
5086 }
5087
5088 // Fields.
5089 for (auto *Mem : ClassDecl->decls()) {
5090 if (auto *F = dyn_cast<FieldDecl>(Mem)) {
5091 // C++ [class.bit]p2:
5092 // A declaration for a bit-field that omits the identifier declares an
5093 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
5094 // initialized.
5095 if (F->isUnnamedBitfield())
5096 continue;
5097
5098 // If we're not generating the implicit copy/move constructor, then we'll
5099 // handle anonymous struct/union fields based on their individual
5100 // indirect fields.
5101 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
5102 continue;
5103
5104 if (CollectFieldInitializer(*this, Info, F))
5105 HadError = true;
5106 continue;
5107 }
5108
5109 // Beyond this point, we only consider default initialization.
5110 if (Info.isImplicitCopyOrMove())
5111 continue;
5112
5113 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
5114 if (F->getType()->isIncompleteArrayType()) {
5115 assert(ClassDecl->hasFlexibleArrayMember() &&((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 5116, __PRETTY_FUNCTION__))
5116 "Incomplete array type is not valid")((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 5116, __PRETTY_FUNCTION__))
;
5117 continue;
5118 }
5119
5120 // Initialize each field of an anonymous struct individually.
5121 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
5122 HadError = true;
5123
5124 continue;
5125 }
5126 }
5127
5128 unsigned NumInitializers = Info.AllToInit.size();
5129 if (NumInitializers > 0) {
5130 Constructor->setNumCtorInitializers(NumInitializers);
5131 CXXCtorInitializer **baseOrMemberInitializers =
5132 new (Context) CXXCtorInitializer*[NumInitializers];
5133 memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
5134 NumInitializers * sizeof(CXXCtorInitializer*));
5135 Constructor->setCtorInitializers(baseOrMemberInitializers);
5136
5137 // Constructors implicitly reference the base and member
5138 // destructors.
5139 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
5140 Constructor->getParent());
5141 }
5142
5143 return HadError;
5144}
5145
5146static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
5147 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
5148 const RecordDecl *RD = RT->getDecl();
5149 if (RD->isAnonymousStructOrUnion()) {
5150 for (auto *Field : RD->fields())
5151 PopulateKeysForFields(Field, IdealInits);
5152 return;
5153 }
5154 }
5155 IdealInits.push_back(Field->getCanonicalDecl());
5156}
5157
5158static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
5159 return Context.getCanonicalType(BaseType).getTypePtr();
5160}
5161
5162static const void *GetKeyForMember(ASTContext &Context,
5163 CXXCtorInitializer *Member) {
5164 if (!Member->isAnyMemberInitializer())
5165 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
5166
5167 return Member->getAnyMember()->getCanonicalDecl();
5168}
5169
5170static void DiagnoseBaseOrMemInitializerOrder(
5171 Sema &SemaRef, const CXXConstructorDecl *Constructor,
5172 ArrayRef<CXXCtorInitializer *> Inits) {
5173 if (Constructor->getDeclContext()->isDependentContext())
5174 return;
5175
5176 // Don't check initializers order unless the warning is enabled at the
5177 // location of at least one initializer.
5178 bool ShouldCheckOrder = false;
5179 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5180 CXXCtorInitializer *Init = Inits[InitIndex];
5181 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
5182 Init->getSourceLocation())) {
5183 ShouldCheckOrder = true;
5184 break;
5185 }
5186 }
5187 if (!ShouldCheckOrder)
5188 return;
5189
5190 // Build the list of bases and members in the order that they'll
5191 // actually be initialized. The explicit initializers should be in
5192 // this same order but may be missing things.
5193 SmallVector<const void*, 32> IdealInitKeys;
5194
5195 const CXXRecordDecl *ClassDecl = Constructor->getParent();
5196
5197 // 1. Virtual bases.
5198 for (const auto &VBase : ClassDecl->vbases())
5199 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
5200
5201 // 2. Non-virtual bases.
5202 for (const auto &Base : ClassDecl->bases()) {
5203 if (Base.isVirtual())
5204 continue;
5205 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
5206 }
5207
5208 // 3. Direct fields.
5209 for (auto *Field : ClassDecl->fields()) {
5210 if (Field->isUnnamedBitfield())
5211 continue;
5212
5213 PopulateKeysForFields(Field, IdealInitKeys);
5214 }
5215
5216 unsigned NumIdealInits = IdealInitKeys.size();
5217 unsigned IdealIndex = 0;
5218
5219 CXXCtorInitializer *PrevInit = nullptr;
5220 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5221 CXXCtorInitializer *Init = Inits[InitIndex];
5222 const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
5223
5224 // Scan forward to try to find this initializer in the idealized
5225 // initializers list.
5226 for (; IdealIndex != NumIdealInits; ++IdealIndex)
5227 if (InitKey == IdealInitKeys[IdealIndex])
5228 break;
5229
5230 // If we didn't find this initializer, it must be because we
5231 // scanned past it on a previous iteration. That can only
5232 // happen if we're out of order; emit a warning.
5233 if (IdealIndex == NumIdealInits && PrevInit) {
5234 Sema::SemaDiagnosticBuilder D =
5235 SemaRef.Diag(PrevInit->getSourceLocation(),
5236 diag::warn_initializer_out_of_order);
5237
5238 if (PrevInit->isAnyMemberInitializer())
5239 D << 0 << PrevInit->getAnyMember()->getDeclName();
5240 else
5241 D << 1 << PrevInit->getTypeSourceInfo()->getType();
5242
5243 if (Init->isAnyMemberInitializer())
5244 D << 0 << Init->getAnyMember()->getDeclName();
5245 else
5246 D << 1 << Init->getTypeSourceInfo()->getType();
5247
5248 // Move back to the initializer's location in the ideal list.
5249 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
5250 if (InitKey == IdealInitKeys[IdealIndex])
5251 break;
5252
5253 assert(IdealIndex < NumIdealInits &&((IdealIndex < NumIdealInits && "initializer not found in initializer list"
) ? static_cast<void> (0) : __assert_fail ("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 5254, __PRETTY_FUNCTION__))
5254 "initializer not found in initializer list")((IdealIndex < NumIdealInits && "initializer not found in initializer list"
) ? static_cast<void> (0) : __assert_fail ("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 5254, __PRETTY_FUNCTION__))
;
5255 }
5256
5257 PrevInit = Init;
5258 }
5259}
5260
5261namespace {
5262bool CheckRedundantInit(Sema &S,
5263 CXXCtorInitializer *Init,
5264 CXXCtorInitializer *&PrevInit) {
5265 if (!PrevInit) {
5266 PrevInit = Init;
5267 return false;
5268 }
5269
5270 if (FieldDecl *Field = Init->getAnyMember())
5271 S.Diag(Init->getSourceLocation(),
5272 diag::err_multiple_mem_initialization)
5273 << Field->getDeclName()
5274 << Init->getSourceRange();
5275 else {
5276 const Type *BaseClass = Init->getBaseClass();
5277 assert(BaseClass && "neither field nor base")((BaseClass && "neither field nor base") ? static_cast
<void> (0) : __assert_fail ("BaseClass && \"neither field nor base\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 5277, __PRETTY_FUNCTION__))
;
5278 S.Diag(Init->getSourceLocation(),
5279 diag::err_multiple_base_initialization)
5280 << QualType(BaseClass, 0)
5281 << Init->getSourceRange();
5282 }
5283 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
5284 << 0 << PrevInit->getSourceRange();
5285
5286 return true;
5287}
5288
5289typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
5290typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
5291
5292bool CheckRedundantUnionInit(Sema &S,
5293 CXXCtorInitializer *Init,
5294 RedundantUnionMap &Unions) {
5295 FieldDecl *Field = Init->getAnyMember();
5296 RecordDecl *Parent = Field->getParent();
5297 NamedDecl *Child = Field;
5298
5299 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
5300 if (Parent->isUnion()) {
5301 UnionEntry &En = Unions[Parent];
5302 if (En.first && En.first != Child) {
5303 S.Diag(Init->getSourceLocation(),
5304 diag::err_multiple_mem_union_initialization)
5305 << Field->getDeclName()
5306 << Init->getSourceRange();
5307 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
5308 << 0 << En.second->getSourceRange();
5309 return true;
5310 }
5311 if (!En.first) {
5312 En.first = Child;
5313 En.second = Init;
5314 }
5315 if (!Parent->isAnonymousStructOrUnion())
5316 return false;
5317 }
5318
5319 Child = Parent;
5320 Parent = cast<RecordDecl>(Parent->getDeclContext());
5321 }
5322
5323 return false;
5324}
5325}
5326
5327/// ActOnMemInitializers - Handle the member initializers for a constructor.
5328void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
5329 SourceLocation ColonLoc,
5330 ArrayRef<CXXCtorInitializer*> MemInits,
5331 bool AnyErrors) {
5332 if (!ConstructorDecl)
5333 return;
5334
5335 AdjustDeclIfTemplate(ConstructorDecl);
5336
5337 CXXConstructorDecl *Constructor
5338 = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
5339
5340 if (!Constructor) {
5341 Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
5342 return;
5343 }
5344
5345 // Mapping for the duplicate initializers check.
5346 // For member initializers, this is keyed with a FieldDecl*.
5347 // For base initializers, this is keyed with a Type*.
5348 llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
5349
5350 // Mapping for the inconsistent anonymous-union initializers check.
5351 RedundantUnionMap MemberUnions;
5352
5353 bool HadError = false;
5354 for (unsigned i = 0; i < MemInits.size(); i++) {
5355 CXXCtorInitializer *Init = MemInits[i];
5356
5357 // Set the source order index.
5358 Init->setSourceOrder(i);
5359
5360 if (Init->isAnyMemberInitializer()) {
5361 const void *Key = GetKeyForMember(Context, Init);
5362 if (CheckRedundantInit(*this, Init, Members[Key]) ||
5363 CheckRedundantUnionInit(*this, Init, MemberUnions))
5364 HadError = true;
5365 } else if (Init->isBaseInitializer()) {
5366 const void *Key = GetKeyForMember(Context, Init);
5367 if (CheckRedundantInit(*this, Init, Members[Key]))
5368 HadError = true;
5369 } else {
5370 assert(Init->isDelegatingInitializer())((Init->isDelegatingInitializer()) ? static_cast<void>
(0) : __assert_fail ("Init->isDelegatingInitializer()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 5370, __PRETTY_FUNCTION__))
;
5371 // This must be the only initializer
5372 if (MemInits.size() != 1) {
5373 Diag(Init->getSourceLocation(),
5374 diag::err_delegating_initializer_alone)
5375 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
5376 // We will treat this as being the only initializer.
5377 }
5378 SetDelegatingInitializer(Constructor, MemInits[i]);
5379 // Return immediately as the initializer is set.
5380 return;
5381 }
5382 }
5383
5384 if (HadError)
5385 return;
5386
5387 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
5388
5389 SetCtorInitializers(Constructor, AnyErrors, MemInits);
5390
5391 DiagnoseUninitializedFields(*this, Constructor);
5392}
5393
5394void
5395Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
5396 CXXRecordDecl *ClassDecl) {
5397 // Ignore dependent contexts. Also ignore unions, since their members never
5398 // have destructors implicitly called.
5399 if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
17
Assuming the condition is false
18
Calling 'TagDecl::isUnion'
21
Returning from 'TagDecl::isUnion'
22
Taking false branch
5400 return;
5401
5402 // FIXME: all the access-control diagnostics are positioned on the
5403 // field/base declaration. That's probably good; that said, the
5404 // user might reasonably want to know why the destructor is being
5405 // emitted, and we currently don't say.
5406
5407 // Non-static data members.
5408 for (auto *Field : ClassDecl->fields()) {
5409 if (Field->isInvalidDecl())
5410 continue;
5411
5412 // Don't destroy incomplete or zero-length arrays.
5413 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
5414 continue;
5415
5416 QualType FieldType = Context.getBaseElementType(Field->getType());
5417
5418 const RecordType* RT = FieldType->getAs<RecordType>();
5419 if (!RT)
5420 continue;
5421
5422 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5423 if (FieldClassDecl->isInvalidDecl())
5424 continue;
5425 if (FieldClassDecl->hasIrrelevantDestructor())
5426 continue;
5427 // The destructor for an implicit anonymous union member is never invoked.
5428 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
5429 continue;
5430
5431 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
5432 assert(Dtor && "No dtor found for FieldClassDecl!")((Dtor && "No dtor found for FieldClassDecl!") ? static_cast
<void> (0) : __assert_fail ("Dtor && \"No dtor found for FieldClassDecl!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 5432, __PRETTY_FUNCTION__))
;
5433 CheckDestructorAccess(Field->getLocation(), Dtor,
5434 PDiag(diag::err_access_dtor_field)
5435 << Field->getDeclName()
5436 << FieldType);
5437
5438 MarkFunctionReferenced(Location, Dtor);
5439 DiagnoseUseOfDecl(Dtor, Location);
5440 }
5441
5442 // We only potentially invoke the destructors of potentially constructed
5443 // subobjects.
5444 bool VisitVirtualBases = !ClassDecl->isAbstract();
23
Assuming the condition is false
5445
5446 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
5447
5448 // Bases.
5449 for (const auto &Base : ClassDecl->bases()) {
24
Assuming '__begin1' is not equal to '__end1'
5450 // Bases are always records in a well-formed non-dependent class.
5451 const RecordType *RT = Base.getType()->getAs<RecordType>();
25
Assuming the object is not a 'RecordType'
26
'RT' initialized to a null pointer value
5452
5453 // Remember direct virtual bases.
5454 if (Base.isVirtual()) {
27
Assuming the condition is false
28
Taking false branch
5455 if (!VisitVirtualBases)
5456 continue;
5457 DirectVirtualBases.insert(RT);
5458 }
5459
5460 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
29
Called C++ object pointer is null
5461 // If our base class is invalid, we probably can't get its dtor anyway.
5462 if (BaseClassDecl->isInvalidDecl())
5463 continue;
5464 if (BaseClassDecl->hasIrrelevantDestructor())
5465 continue;
5466
5467 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5468 assert(Dtor && "No dtor found for BaseClassDecl!")((Dtor && "No dtor found for BaseClassDecl!") ? static_cast
<void> (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 5468, __PRETTY_FUNCTION__))
;
5469
5470 // FIXME: caret should be on the start of the class name
5471 CheckDestructorAccess(Base.getBeginLoc(), Dtor,
5472 PDiag(diag::err_access_dtor_base)
5473 << Base.getType() << Base.getSourceRange(),
5474 Context.getTypeDeclType(ClassDecl));
5475
5476 MarkFunctionReferenced(Location, Dtor);
5477 DiagnoseUseOfDecl(Dtor, Location);
5478 }
5479
5480 if (!VisitVirtualBases)
5481 return;
5482
5483 // Virtual bases.
5484 for (const auto &VBase : ClassDecl->vbases()) {
5485 // Bases are always records in a well-formed non-dependent class.
5486 const RecordType *RT = VBase.getType()->castAs<RecordType>();
5487
5488 // Ignore direct virtual bases.
5489 if (DirectVirtualBases.count(RT))
5490 continue;
5491
5492 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5493 // If our base class is invalid, we probably can't get its dtor anyway.
5494 if (BaseClassDecl->isInvalidDecl())
5495 continue;
5496 if (BaseClassDecl->hasIrrelevantDestructor())
5497 continue;
5498
5499 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5500 assert(Dtor && "No dtor found for BaseClassDecl!")((Dtor && "No dtor found for BaseClassDecl!") ? static_cast
<void> (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 5500, __PRETTY_FUNCTION__))
;
5501 if (CheckDestructorAccess(
5502 ClassDecl->getLocation(), Dtor,
5503 PDiag(diag::err_access_dtor_vbase)
5504 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
5505 Context.getTypeDeclType(ClassDecl)) ==
5506 AR_accessible) {
5507 CheckDerivedToBaseConversion(
5508 Context.getTypeDeclType(ClassDecl), VBase.getType(),
5509 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
5510 SourceRange(), DeclarationName(), nullptr);
5511 }
5512
5513 MarkFunctionReferenced(Location, Dtor);
5514 DiagnoseUseOfDecl(Dtor, Location);
5515 }
5516}
5517
5518void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
5519 if (!CDtorDecl)
5520 return;
5521
5522 if (CXXConstructorDecl *Constructor
5523 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
5524 SetCtorInitializers(Constructor, /*AnyErrors=*/false);
5525 DiagnoseUninitializedFields(*this, Constructor);
5526 }
5527}
5528
5529bool Sema::isAbstractType(SourceLocation Loc, QualType T) {
5530 if (!getLangOpts().CPlusPlus)
5531 return false;
5532
5533 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl();
5534 if (!RD)
5535 return false;
5536
5537 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a
5538 // class template specialization here, but doing so breaks a lot of code.
5539
5540 // We can't answer whether something is abstract until it has a
5541 // definition. If it's currently being defined, we'll walk back
5542 // over all the declarations when we have a full definition.
5543 const CXXRecordDecl *Def = RD->getDefinition();
5544 if (!Def || Def->isBeingDefined())
5545 return false;
5546
5547 return RD->isAbstract();
5548}
5549
5550bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
5551 TypeDiagnoser &Diagnoser) {
5552 if (!isAbstractType(Loc, T))
5553 return false;
5554
5555 T = Context.getBaseElementType(T);
5556 Diagnoser.diagnose(*this, Loc, T);
5557 DiagnoseAbstractType(T->getAsCXXRecordDecl());
5558 return true;
5559}
5560
5561void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
5562 // Check if we've already emitted the list of pure virtual functions
5563 // for this class.
5564 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
5565 return;
5566
5567 // If the diagnostic is suppressed, don't emit the notes. We're only
5568 // going to emit them once, so try to attach them to a diagnostic we're
5569 // actually going to show.
5570 if (Diags.isLastDiagnosticIgnored())
5571 return;
5572
5573 CXXFinalOverriderMap FinalOverriders;
5574 RD->getFinalOverriders(FinalOverriders);
5575
5576 // Keep a set of seen pure methods so we won't diagnose the same method
5577 // more than once.
5578 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
5579
5580 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
5581 MEnd = FinalOverriders.end();
5582 M != MEnd;
5583 ++M) {
5584 for (OverridingMethods::iterator SO = M->second.begin(),
5585 SOEnd = M->second.end();
5586 SO != SOEnd; ++SO) {
5587 // C++ [class.abstract]p4:
5588 // A class is abstract if it contains or inherits at least one
5589 // pure virtual function for which the final overrider is pure
5590 // virtual.
5591
5592 //
5593 if (SO->second.size() != 1)
5594 continue;
5595
5596 if (!SO->second.front().Method->isPure())
5597 continue;
5598
5599 if (!SeenPureMethods.insert(SO->second.front().Method).second)
5600 continue;
5601
5602 Diag(SO->second.front().Method->getLocation(),
5603 diag::note_pure_virtual_function)
5604 << SO->second.front().Method->getDeclName() << RD->getDeclName();
5605 }
5606 }
5607
5608 if (!PureVirtualClassDiagSet)
5609 PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
5610 PureVirtualClassDiagSet->insert(RD);
5611}
5612
5613namespace {
5614struct AbstractUsageInfo {
5615 Sema &S;
5616 CXXRecordDecl *Record;
5617 CanQualType AbstractType;
5618 bool Invalid;
5619
5620 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
5621 : S(S), Record(Record),
5622 AbstractType(S.Context.getCanonicalType(
5623 S.Context.getTypeDeclType(Record))),
5624 Invalid(false) {}
5625
5626 void DiagnoseAbstractType() {
5627 if (Invalid) return;
5628 S.DiagnoseAbstractType(Record);
5629 Invalid = true;
5630 }
5631
5632 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
5633};
5634
5635struct CheckAbstractUsage {
5636 AbstractUsageInfo &Info;
5637 const NamedDecl *Ctx;
5638
5639 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
5640 : Info(Info), Ctx(Ctx) {}
5641
5642 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5643 switch (TL.getTypeLocClass()) {
5644#define ABSTRACT_TYPELOC(CLASS, PARENT)
5645#define TYPELOC(CLASS, PARENT) \
5646 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
5647#include "clang/AST/TypeLocNodes.def"
5648 }
5649 }
5650
5651 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5652 Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
5653 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
5654 if (!TL.getParam(I))
5655 continue;
5656
5657 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
5658 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
5659 }
5660 }
5661
5662 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5663 Visit(TL.getElementLoc(), Sema::AbstractArrayType);
5664 }
5665
5666 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5667 // Visit the type parameters from a permissive context.
5668 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
5669 TemplateArgumentLoc TAL = TL.getArgLoc(I);
5670 if (TAL.getArgument().getKind() == TemplateArgument::Type)
5671 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
5672 Visit(TSI->getTypeLoc(), Sema::AbstractNone);
5673 // TODO: other template argument types?
5674 }
5675 }
5676
5677 // Visit pointee types from a permissive context.
5678#define CheckPolymorphic(Type)void Check(Type TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getNextTypeLoc
(), Sema::AbstractNone); }
\
5679 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
5680 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
5681 }
5682 CheckPolymorphic(PointerTypeLoc)void Check(PointerTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5683 CheckPolymorphic(ReferenceTypeLoc)void Check(ReferenceTypeLoc TL, Sema::AbstractDiagSelID Sel) {
Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5684 CheckPolymorphic(MemberPointerTypeLoc)void Check(MemberPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5685 CheckPolymorphic(BlockPointerTypeLoc)void Check(BlockPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5686 CheckPolymorphic(AtomicTypeLoc)void Check(AtomicTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5687
5688 /// Handle all the types we haven't given a more specific
5689 /// implementation for above.
5690 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5691 // Every other kind of type that we haven't called out already
5692 // that has an inner type is either (1) sugar or (2) contains that
5693 // inner type in some way as a subobject.
5694 if (TypeLoc Next = TL.getNextTypeLoc())
5695 return Visit(Next, Sel);
5696
5697 // If there's no inner type and we're in a permissive context,
5698 // don't diagnose.
5699 if (Sel == Sema::AbstractNone) return;
5700
5701 // Check whether the type matches the abstract type.
5702 QualType T = TL.getType();
5703 if (T->isArrayType()) {
5704 Sel = Sema::AbstractArrayType;
5705 T = Info.S.Context.getBaseElementType(T);
5706 }
5707 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
5708 if (CT != Info.AbstractType) return;
5709
5710 // It matched; do some magic.
5711 if (Sel == Sema::AbstractArrayType) {
5712 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
5713 << T << TL.getSourceRange();
5714 } else {
5715 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
5716 << Sel << T << TL.getSourceRange();
5717 }
5718 Info.DiagnoseAbstractType();
5719 }
5720};
5721
5722void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
5723 Sema::AbstractDiagSelID Sel) {
5724 CheckAbstractUsage(*this, D).Visit(TL, Sel);
5725}
5726
5727}
5728
5729/// Check for invalid uses of an abstract type in a method declaration.
5730static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5731 CXXMethodDecl *MD) {
5732 // No need to do the check on definitions, which require that
5733 // the return/param types be complete.
5734 if (MD->doesThisDeclarationHaveABody())
5735 return;
5736
5737 // For safety's sake, just ignore it if we don't have type source
5738 // information. This should never happen for non-implicit methods,
5739 // but...
5740 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
5741 Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
5742}
5743
5744/// Check for invalid uses of an abstract type within a class definition.
5745static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5746 CXXRecordDecl *RD) {
5747 for (auto *D : RD->decls()) {
5748 if (D->isImplicit()) continue;
5749
5750 // Methods and method templates.
5751 if (isa<CXXMethodDecl>(D)) {
5752 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
5753 } else if (isa<FunctionTemplateDecl>(D)) {
5754 FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
5755 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
5756
5757 // Fields and static variables.
5758 } else if (isa<FieldDecl>(D)) {
5759 FieldDecl *FD = cast<FieldDecl>(D);
5760 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
5761 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
5762 } else if (isa<VarDecl>(D)) {
5763 VarDecl *VD = cast<VarDecl>(D);
5764 if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
5765 Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
5766
5767 // Nested classes and class templates.
5768 } else if (isa<CXXRecordDecl>(D)) {
5769 CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
5770 } else if (isa<ClassTemplateDecl>(D)) {
5771 CheckAbstractClassUsage(Info,
5772 cast<ClassTemplateDecl>(D)->getTemplatedDecl());
5773 }
5774 }
5775}
5776
5777static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) {
5778 Attr *ClassAttr = getDLLAttr(Class);
5779 if (!ClassAttr)
5780 return;
5781
5782 assert(ClassAttr->getKind() == attr::DLLExport)((ClassAttr->getKind() == attr::DLLExport) ? static_cast<
void> (0) : __assert_fail ("ClassAttr->getKind() == attr::DLLExport"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 5782, __PRETTY_FUNCTION__))
;
5783
5784 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
5785
5786 if (TSK == TSK_ExplicitInstantiationDeclaration)
5787 // Don't go any further if this is just an explicit instantiation
5788 // declaration.
5789 return;
5790
5791 if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
5792 S.MarkVTableUsed(Class->getLocation(), Class, true);
5793
5794 for (Decl *Member : Class->decls()) {
5795 // Defined static variables that are members of an exported base
5796 // class must be marked export too.
5797 auto *VD = dyn_cast<VarDecl>(Member);
5798 if (VD && Member->getAttr<DLLExportAttr>() &&
5799 VD->getStorageClass() == SC_Static &&
5800 TSK == TSK_ImplicitInstantiation)
5801 S.MarkVariableReferenced(VD->getLocation(), VD);
5802
5803 auto *MD = dyn_cast<CXXMethodDecl>(Member);
5804 if (!MD)
5805 continue;
5806
5807 if (Member->getAttr<DLLExportAttr>()) {
5808 if (MD->isUserProvided()) {
5809 // Instantiate non-default class member functions ...
5810
5811 // .. except for certain kinds of template specializations.
5812 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
5813 continue;
5814
5815 S.MarkFunctionReferenced(Class->getLocation(), MD);
5816
5817 // The function will be passed to the consumer when its definition is
5818 // encountered.
5819 } else if (!MD->isTrivial() || MD->isExplicitlyDefaulted() ||
5820 MD->isCopyAssignmentOperator() ||
5821 MD->isMoveAssignmentOperator()) {
5822 // Synthesize and instantiate non-trivial implicit methods, explicitly
5823 // defaulted methods, and the copy and move assignment operators. The
5824 // latter are exported even if they are trivial, because the address of
5825 // an operator can be taken and should compare equal across libraries.
5826 DiagnosticErrorTrap Trap(S.Diags);
5827 S.MarkFunctionReferenced(Class->getLocation(), MD);
5828 if (Trap.hasErrorOccurred()) {
5829 S.Diag(ClassAttr->getLocation(), diag::note_due_to_dllexported_class)
5830 << Class << !S.getLangOpts().CPlusPlus11;
5831 break;
5832 }
5833
5834 // There is no later point when we will see the definition of this
5835 // function, so pass it to the consumer now.
5836 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
5837 }
5838 }
5839 }
5840}
5841
5842static void checkForMultipleExportedDefaultConstructors(Sema &S,
5843 CXXRecordDecl *Class) {
5844 // Only the MS ABI has default constructor closures, so we don't need to do
5845 // this semantic checking anywhere else.
5846 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft())
5847 return;
5848
5849 CXXConstructorDecl *LastExportedDefaultCtor = nullptr;
5850 for (Decl *Member : Class->decls()) {
5851 // Look for exported default constructors.
5852 auto *CD = dyn_cast<CXXConstructorDecl>(Member);
5853 if (!CD || !CD->isDefaultConstructor())
5854 continue;
5855 auto *Attr = CD->getAttr<DLLExportAttr>();
5856 if (!Attr)
5857 continue;
5858
5859 // If the class is non-dependent, mark the default arguments as ODR-used so
5860 // that we can properly codegen the constructor closure.
5861 if (!Class->isDependentContext()) {
5862 for (ParmVarDecl *PD : CD->parameters()) {
5863 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD);
5864 S.DiscardCleanupsInEvaluationContext();
5865 }
5866 }
5867
5868 if (LastExportedDefaultCtor) {
5869 S.Diag(LastExportedDefaultCtor->getLocation(),
5870 diag::err_attribute_dll_ambiguous_default_ctor)
5871 << Class;
5872 S.Diag(CD->getLocation(), diag::note_entity_declared_at)
5873 << CD->getDeclName();
5874 return;
5875 }
5876 LastExportedDefaultCtor = CD;
5877 }
5878}
5879
5880void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) {
5881 // Mark any compiler-generated routines with the implicit code_seg attribute.
5882 for (auto *Method : Class->methods()) {
5883 if (Method->isUserProvided())
5884 continue;
5885 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
5886 Method->addAttr(A);
5887 }
5888}
5889
5890/// Check class-level dllimport/dllexport attribute.
5891void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) {
5892 Attr *ClassAttr = getDLLAttr(Class);
5893
5894 // MSVC inherits DLL attributes to partial class template specializations.
5895 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && !ClassAttr) {
5896 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) {
5897 if (Attr *TemplateAttr =
5898 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) {
5899 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext()));
5900 A->setInherited(true);
5901 ClassAttr = A;
5902 }
5903 }
5904 }
5905
5906 if (!ClassAttr)
5907 return;
5908
5909 if (!Class->isExternallyVisible()) {
5910 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern)
5911 << Class << ClassAttr;
5912 return;
5913 }
5914
5915 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5916 !ClassAttr->isInherited()) {
5917 // Diagnose dll attributes on members of class with dll attribute.
5918 for (Decl *Member : Class->decls()) {
5919 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member))
5920 continue;
5921 InheritableAttr *MemberAttr = getDLLAttr(Member);
5922 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl())
5923 continue;
5924
5925 Diag(MemberAttr->getLocation(),
5926 diag::err_attribute_dll_member_of_dll_class)
5927 << MemberAttr << ClassAttr;
5928 Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
5929 Member->setInvalidDecl();
5930 }
5931 }
5932
5933 if (Class->getDescribedClassTemplate())
5934 // Don't inherit dll attribute until the template is instantiated.
5935 return;
5936
5937 // The class is either imported or exported.
5938 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
5939
5940 // Check if this was a dllimport attribute propagated from a derived class to
5941 // a base class template specialization. We don't apply these attributes to
5942 // static data members.
5943 const bool PropagatedImport =
5944 !ClassExported &&
5945 cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate();
5946
5947 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
5948
5949 // Ignore explicit dllexport on explicit class template instantiation
5950 // declarations, except in MinGW mode.
5951 if (ClassExported && !ClassAttr->isInherited() &&
5952 TSK == TSK_ExplicitInstantiationDeclaration &&
5953 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
5954 Class->dropAttr<DLLExportAttr>();
5955 return;
5956 }
5957
5958 // Force declaration of implicit members so they can inherit the attribute.
5959 ForceDeclarationOfImplicitMembers(Class);
5960
5961 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
5962 // seem to be true in practice?
5963
5964 for (Decl *Member : Class->decls()) {
5965 VarDecl *VD = dyn_cast<VarDecl>(Member);
5966 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
5967
5968 // Only methods and static fields inherit the attributes.
5969 if (!VD && !MD)
5970 continue;
5971
5972 if (MD) {
5973 // Don't process deleted methods.
5974 if (MD->isDeleted())
5975 continue;
5976
5977 if (MD->isInlined()) {
5978 // MinGW does not import or export inline methods. But do it for
5979 // template instantiations.
5980 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5981 !Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment() &&
5982 TSK != TSK_ExplicitInstantiationDeclaration &&
5983 TSK != TSK_ExplicitInstantiationDefinition)
5984 continue;
5985
5986 // MSVC versions before 2015 don't export the move assignment operators
5987 // and move constructor, so don't attempt to import/export them if
5988 // we have a definition.
5989 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD);
5990 if ((MD->isMoveAssignmentOperator() ||
5991 (Ctor && Ctor->isMoveConstructor())) &&
5992 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015))
5993 continue;
5994
5995 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign
5996 // operator is exported anyway.
5997 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
5998 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial())
5999 continue;
6000 }
6001 }
6002
6003 // Don't apply dllimport attributes to static data members of class template
6004 // instantiations when the attribute is propagated from a derived class.
6005 if (VD && PropagatedImport)
6006 continue;
6007
6008 if (!cast<NamedDecl>(Member)->isExternallyVisible())
6009 continue;
6010
6011 if (!getDLLAttr(Member)) {
6012 InheritableAttr *NewAttr = nullptr;
6013
6014 // Do not export/import inline function when -fno-dllexport-inlines is
6015 // passed. But add attribute for later local static var check.
6016 if (!getLangOpts().DllExportInlines && MD && MD->isInlined() &&
6017 TSK != TSK_ExplicitInstantiationDeclaration &&
6018 TSK != TSK_ExplicitInstantiationDefinition) {
6019 if (ClassExported) {
6020 NewAttr = ::new (getASTContext())
6021 DLLExportStaticLocalAttr(getASTContext(), *ClassAttr);
6022 } else {
6023 NewAttr = ::new (getASTContext())
6024 DLLImportStaticLocalAttr(getASTContext(), *ClassAttr);
6025 }
6026 } else {
6027 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6028 }
6029
6030 NewAttr->setInherited(true);
6031 Member->addAttr(NewAttr);
6032
6033 if (MD) {
6034 // Propagate DLLAttr to friend re-declarations of MD that have already
6035 // been constructed.
6036 for (FunctionDecl *FD = MD->getMostRecentDecl(); FD;
6037 FD = FD->getPreviousDecl()) {
6038 if (FD->getFriendObjectKind() == Decl::FOK_None)
6039 continue;
6040 assert(!getDLLAttr(FD) &&((!getDLLAttr(FD) && "friend re-decl should not already have a DLLAttr"
) ? static_cast<void> (0) : __assert_fail ("!getDLLAttr(FD) && \"friend re-decl should not already have a DLLAttr\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 6041, __PRETTY_FUNCTION__))
6041 "friend re-decl should not already have a DLLAttr")((!getDLLAttr(FD) && "friend re-decl should not already have a DLLAttr"
) ? static_cast<void> (0) : __assert_fail ("!getDLLAttr(FD) && \"friend re-decl should not already have a DLLAttr\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 6041, __PRETTY_FUNCTION__))
;
6042 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6043 NewAttr->setInherited(true);
6044 FD->addAttr(NewAttr);
6045 }
6046 }
6047 }
6048 }
6049
6050 if (ClassExported)
6051 DelayedDllExportClasses.push_back(Class);
6052}
6053
6054/// Perform propagation of DLL attributes from a derived class to a
6055/// templated base class for MS compatibility.
6056void Sema::propagateDLLAttrToBaseClassTemplate(
6057 CXXRecordDecl *Class, Attr *ClassAttr,
6058 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
6059 if (getDLLAttr(
6060 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
6061 // If the base class template has a DLL attribute, don't try to change it.
6062 return;
6063 }
6064
6065 auto TSK = BaseTemplateSpec->getSpecializationKind();
6066 if (!getDLLAttr(BaseTemplateSpec) &&
6067 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration ||
6068 TSK == TSK_ImplicitInstantiation)) {
6069 // The template hasn't been instantiated yet (or it has, but only as an
6070 // explicit instantiation declaration or implicit instantiation, which means
6071 // we haven't codegenned any members yet), so propagate the attribute.
6072 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6073 NewAttr->setInherited(true);
6074 BaseTemplateSpec->addAttr(NewAttr);
6075
6076 // If this was an import, mark that we propagated it from a derived class to
6077 // a base class template specialization.
6078 if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr))
6079 ImportAttr->setPropagatedToBaseTemplate();
6080
6081 // If the template is already instantiated, checkDLLAttributeRedeclaration()
6082 // needs to be run again to work see the new attribute. Otherwise this will
6083 // get run whenever the template is instantiated.
6084 if (TSK != TSK_Undeclared)
6085 checkClassLevelDLLAttribute(BaseTemplateSpec);
6086
6087 return;
6088 }
6089
6090 if (getDLLAttr(BaseTemplateSpec)) {
6091 // The template has already been specialized or instantiated with an
6092 // attribute, explicitly or through propagation. We should not try to change
6093 // it.
6094 return;
6095 }
6096
6097 // The template was previously instantiated or explicitly specialized without
6098 // a dll attribute, It's too late for us to add an attribute, so warn that
6099 // this is unsupported.
6100 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
6101 << BaseTemplateSpec->isExplicitSpecialization();
6102 Diag(ClassAttr->getLocation(), diag::note_attribute);
6103 if (BaseTemplateSpec->isExplicitSpecialization()) {
6104 Diag(BaseTemplateSpec->getLocation(),
6105 diag::note_template_class_explicit_specialization_was_here)
6106 << BaseTemplateSpec;
6107 } else {
6108 Diag(BaseTemplateSpec->getPointOfInstantiation(),
6109 diag::note_template_class_instantiation_was_here)
6110 << BaseTemplateSpec;
6111 }
6112}
6113
6114/// Determine the kind of defaulting that would be done for a given function.
6115///
6116/// If the function is both a default constructor and a copy / move constructor
6117/// (due to having a default argument for the first parameter), this picks
6118/// CXXDefaultConstructor.
6119///
6120/// FIXME: Check that case is properly handled by all callers.
6121Sema::DefaultedFunctionKind
6122Sema::getDefaultedFunctionKind(const FunctionDecl *FD) {
6123 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
6124 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(FD)) {
6125 if (Ctor->isDefaultConstructor())
6126 return Sema::CXXDefaultConstructor;
6127
6128 if (Ctor->isCopyConstructor())
6129 return Sema::CXXCopyConstructor;
6130
6131 if (Ctor->isMoveConstructor())
6132 return Sema::CXXMoveConstructor;
6133 }
6134
6135 if (MD->isCopyAssignmentOperator())
6136 return Sema::CXXCopyAssignment;
6137
6138 if (MD->isMoveAssignmentOperator())
6139 return Sema::CXXMoveAssignment;
6140
6141 if (isa<CXXDestructorDecl>(FD))
6142 return Sema::CXXDestructor;
6143 }
6144
6145 switch (FD->getDeclName().getCXXOverloadedOperator()) {
6146 case OO_EqualEqual:
6147 return DefaultedComparisonKind::Equal;
6148
6149 case OO_ExclaimEqual:
6150 return DefaultedComparisonKind::NotEqual;
6151
6152 case OO_Spaceship:
6153 // No point allowing this if <=> doesn't exist in the current language mode.
6154 if (!getLangOpts().CPlusPlus2a)
6155 break;
6156 return DefaultedComparisonKind::ThreeWay;
6157
6158 case OO_Less:
6159 case OO_LessEqual:
6160 case OO_Greater:
6161 case OO_GreaterEqual:
6162 // No point allowing this if <=> doesn't exist in the current language mode.
6163 if (!getLangOpts().CPlusPlus2a)
6164 break;
6165 return DefaultedComparisonKind::Relational;
6166
6167 default:
6168 break;
6169 }
6170
6171 // Not defaultable.
6172 return DefaultedFunctionKind();
6173}
6174
6175static void DefineImplicitSpecialMember(Sema &S, CXXMethodDecl *MD,
6176 SourceLocation DefaultLoc) {
6177 switch (S.getSpecialMember(MD)) {
4
Control jumps to 'case CXXDestructor:' at line 6188
6178 case Sema::CXXDefaultConstructor:
6179 S.DefineImplicitDefaultConstructor(DefaultLoc,
6180 cast<CXXConstructorDecl>(MD));
6181 break;
6182 case Sema::CXXCopyConstructor:
6183 S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
6184 break;
6185 case Sema::CXXCopyAssignment:
6186 S.DefineImplicitCopyAssignment(DefaultLoc, MD);
6187 break;
6188 case Sema::CXXDestructor:
6189 S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
5
'MD' is a 'CXXDestructorDecl'
6
Calling 'Sema::DefineImplicitDestructor'
6190 break;
6191 case Sema::CXXMoveConstructor:
6192 S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
6193 break;
6194 case Sema::CXXMoveAssignment:
6195 S.DefineImplicitMoveAssignment(DefaultLoc, MD);
6196 break;
6197 case Sema::CXXInvalid:
6198 llvm_unreachable("Invalid special member.")::llvm::llvm_unreachable_internal("Invalid special member.", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 6198)
;
6199 }
6200}
6201
6202/// Determine whether a type is permitted to be passed or returned in
6203/// registers, per C++ [class.temporary]p3.
6204static bool canPassInRegisters(Sema &S, CXXRecordDecl *D,
6205 TargetInfo::CallingConvKind CCK) {
6206 if (D->isDependentType() || D->isInvalidDecl())
6207 return false;
6208
6209 // Clang <= 4 used the pre-C++11 rule, which ignores move operations.
6210 // The PS4 platform ABI follows the behavior of Clang 3.2.
6211 if (CCK == TargetInfo::CCK_ClangABI4OrPS4)
6212 return !D->hasNonTrivialDestructorForCall() &&
6213 !D->hasNonTrivialCopyConstructorForCall();
6214
6215 if (CCK == TargetInfo::CCK_MicrosoftWin64) {
6216 bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false;
6217 bool DtorIsTrivialForCall = false;
6218
6219 // If a class has at least one non-deleted, trivial copy constructor, it
6220 // is passed according to the C ABI. Otherwise, it is passed indirectly.
6221 //
6222 // Note: This permits classes with non-trivial copy or move ctors to be
6223 // passed in registers, so long as they *also* have a trivial copy ctor,
6224 // which is non-conforming.
6225 if (D->needsImplicitCopyConstructor()) {
6226 if (!D->defaultedCopyConstructorIsDeleted()) {
6227 if (D->hasTrivialCopyConstructor())
6228 CopyCtorIsTrivial = true;
6229 if (D->hasTrivialCopyConstructorForCall())
6230 CopyCtorIsTrivialForCall = true;
6231 }
6232 } else {
6233 for (const CXXConstructorDecl *CD : D->ctors()) {
6234 if (CD->isCopyConstructor() && !CD->isDeleted()) {
6235 if (CD->isTrivial())
6236 CopyCtorIsTrivial = true;
6237 if (CD->isTrivialForCall())
6238 CopyCtorIsTrivialForCall = true;
6239 }
6240 }
6241 }
6242
6243 if (D->needsImplicitDestructor()) {
6244 if (!D->defaultedDestructorIsDeleted() &&
6245 D->hasTrivialDestructorForCall())
6246 DtorIsTrivialForCall = true;
6247 } else if (const auto *DD = D->getDestructor()) {
6248 if (!DD->isDeleted() && DD->isTrivialForCall())
6249 DtorIsTrivialForCall = true;
6250 }
6251
6252 // If the copy ctor and dtor are both trivial-for-calls, pass direct.
6253 if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall)
6254 return true;
6255
6256 // If a class has a destructor, we'd really like to pass it indirectly
6257 // because it allows us to elide copies. Unfortunately, MSVC makes that
6258 // impossible for small types, which it will pass in a single register or
6259 // stack slot. Most objects with dtors are large-ish, so handle that early.
6260 // We can't call out all large objects as being indirect because there are
6261 // multiple x64 calling conventions and the C++ ABI code shouldn't dictate
6262 // how we pass large POD types.
6263
6264 // Note: This permits small classes with nontrivial destructors to be
6265 // passed in registers, which is non-conforming.
6266 bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
6267 uint64_t TypeSize = isAArch64 ? 128 : 64;
6268
6269 if (CopyCtorIsTrivial &&
6270 S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize)
6271 return true;
6272 return false;
6273 }
6274
6275 // Per C++ [class.temporary]p3, the relevant condition is:
6276 // each copy constructor, move constructor, and destructor of X is
6277 // either trivial or deleted, and X has at least one non-deleted copy
6278 // or move constructor
6279 bool HasNonDeletedCopyOrMove = false;
6280
6281 if (D->needsImplicitCopyConstructor() &&
6282 !D->defaultedCopyConstructorIsDeleted()) {
6283 if (!D->hasTrivialCopyConstructorForCall())
6284 return false;
6285 HasNonDeletedCopyOrMove = true;
6286 }
6287
6288 if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() &&
6289 !D->defaultedMoveConstructorIsDeleted()) {
6290 if (!D->hasTrivialMoveConstructorForCall())
6291 return false;
6292 HasNonDeletedCopyOrMove = true;
6293 }
6294
6295 if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() &&
6296 !D->hasTrivialDestructorForCall())
6297 return false;
6298
6299 for (const CXXMethodDecl *MD : D->methods()) {
6300 if (MD->isDeleted())
6301 continue;
6302
6303 auto *CD = dyn_cast<CXXConstructorDecl>(MD);
6304 if (CD && CD->isCopyOrMoveConstructor())
6305 HasNonDeletedCopyOrMove = true;
6306 else if (!isa<CXXDestructorDecl>(MD))
6307 continue;
6308
6309 if (!MD->isTrivialForCall())
6310 return false;
6311 }
6312
6313 return HasNonDeletedCopyOrMove;
6314}
6315
6316/// Perform semantic checks on a class definition that has been
6317/// completing, introducing implicitly-declared members, checking for
6318/// abstract types, etc.
6319///
6320/// \param S The scope in which the class was parsed. Null if we didn't just
6321/// parse a class definition.
6322/// \param Record The completed class.
6323void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
6324 if (!Record)
6325 return;
6326
6327 if (Record->isAbstract() && !Record->isInvalidDecl()) {
6328 AbstractUsageInfo Info(*this, Record);
6329 CheckAbstractClassUsage(Info, Record);
6330 }
6331
6332 // If this is not an aggregate type and has no user-declared constructor,
6333 // complain about any non-static data members of reference or const scalar
6334 // type, since they will never get initializers.
6335 if (!Record->isInvalidDecl() && !Record->isDependentType() &&
6336 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
6337 !Record->isLambda()) {
6338 bool Complained = false;
6339 for (const auto *F : Record->fields()) {
6340 if (F->hasInClassInitializer() || F->isUnnamedBitfield())
6341 continue;
6342
6343 if (F->getType()->isReferenceType() ||
6344 (F->getType().isConstQualified() && F->getType()->isScalarType())) {
6345 if (!Complained) {
6346 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
6347 << Record->getTagKind() << Record;
6348 Complained = true;
6349 }
6350
6351 Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
6352 << F->getType()->isReferenceType()
6353 << F->getDeclName();
6354 }
6355 }
6356 }
6357
6358 if (Record->getIdentifier()) {
6359 // C++ [class.mem]p13:
6360 // If T is the name of a class, then each of the following shall have a
6361 // name different from T:
6362 // - every member of every anonymous union that is a member of class T.
6363 //
6364 // C++ [class.mem]p14:
6365 // In addition, if class T has a user-declared constructor (12.1), every
6366 // non-static data member of class T shall have a name different from T.
6367 DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
6368 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6369 ++I) {
6370 NamedDecl *D = (*I)->getUnderlyingDecl();
6371 if (((isa<FieldDecl>(D) || isa<UnresolvedUsingValueDecl>(D)) &&
6372 Record->hasUserDeclaredConstructor()) ||
6373 isa<IndirectFieldDecl>(D)) {
6374 Diag((*I)->getLocation(), diag::err_member_name_of_class)
6375 << D->getDeclName();
6376 break;
6377 }
6378 }
6379 }
6380
6381 // Warn if the class has virtual methods but non-virtual public destructor.
6382 if (Record->isPolymorphic() && !Record->isDependentType()) {
6383 CXXDestructorDecl *dtor = Record->getDestructor();
6384 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
6385 !Record->hasAttr<FinalAttr>())
6386 Diag(dtor ? dtor->getLocation() : Record->getLocation(),
6387 diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
6388 }
6389
6390 if (Record->isAbstract()) {
6391 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
6392 Diag(Record->getLocation(), diag::warn_abstract_final_class)
6393 << FA->isSpelledAsSealed();
6394 DiagnoseAbstractType(Record);
6395 }
6396 }
6397
6398 // Warn if the class has a final destructor but is not itself marked final.
6399 if (!Record->hasAttr<FinalAttr>()) {
6400 if (const CXXDestructorDecl *dtor = Record->getDestructor()) {
6401 if (const FinalAttr *FA = dtor->getAttr<FinalAttr>()) {
6402 Diag(FA->getLocation(), diag::warn_final_dtor_non_final_class)
6403 << FA->isSpelledAsSealed()
6404 << FixItHint::CreateInsertion(
6405 getLocForEndOfToken(Record->getLocation()),
6406 (FA->isSpelledAsSealed() ? " sealed" : " final"));
6407 Diag(Record->getLocation(),
6408 diag::note_final_dtor_non_final_class_silence)
6409 << Context.getRecordType(Record) << FA->isSpelledAsSealed();
6410 }
6411 }
6412 }
6413
6414 // See if trivial_abi has to be dropped.
6415 if (Record->hasAttr<TrivialABIAttr>())
6416 checkIllFormedTrivialABIStruct(*Record);
6417
6418 // Set HasTrivialSpecialMemberForCall if the record has attribute
6419 // "trivial_abi".
6420 bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>();
6421
6422 if (HasTrivialABI)
6423 Record->setHasTrivialSpecialMemberForCall();
6424
6425 // Explicitly-defaulted secondary comparison functions (!=, <, <=, >, >=).
6426 // We check these last because they can depend on the properties of the
6427 // primary comparison functions (==, <=>).
6428 llvm::SmallVector<FunctionDecl*, 5> DefaultedSecondaryComparisons;
6429
6430 auto CheckForDefaultedFunction = [&](FunctionDecl *FD) {
6431 if (!FD || FD->isInvalidDecl() || !FD->isExplicitlyDefaulted())
6432 return;
6433
6434 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD);
6435 if (DFK.asComparison() == DefaultedComparisonKind::NotEqual ||
6436 DFK.asComparison() == DefaultedComparisonKind::Relational)
6437 DefaultedSecondaryComparisons.push_back(FD);
6438 else
6439 CheckExplicitlyDefaultedFunction(S, FD);
6440 };
6441
6442 auto CompleteMemberFunction = [&](CXXMethodDecl *M) {
6443 // Check whether the explicitly-defaulted members are valid.
6444 CheckForDefaultedFunction(M);
6445
6446 // Skip the rest of the checks for a member of a dependent class.
6447 if (Record->isDependentType())
6448 return;
6449
6450 // For an explicitly defaulted or deleted special member, we defer
6451 // determining triviality until the class is complete. That time is now!
6452 CXXSpecialMember CSM = getSpecialMember(M);
6453 if (!M->isImplicit() && !M->isUserProvided()) {
6454 if (CSM != CXXInvalid) {
6455 M->setTrivial(SpecialMemberIsTrivial(M, CSM));
6456 // Inform the class that we've finished declaring this member.
6457 Record->finishedDefaultedOrDeletedMember(M);
6458 M->setTrivialForCall(
6459 HasTrivialABI ||
6460 SpecialMemberIsTrivial(M, CSM, TAH_ConsiderTrivialABI));
6461 Record->setTrivialForCallFlags(M);
6462 }
6463 }
6464
6465 // Set triviality for the purpose of calls if this is a user-provided
6466 // copy/move constructor or destructor.
6467 if ((CSM == CXXCopyConstructor || CSM == CXXMoveConstructor ||
6468 CSM == CXXDestructor) && M->isUserProvided()) {
6469 M->setTrivialForCall(HasTrivialABI);
6470 Record->setTrivialForCallFlags(M);
6471 }
6472
6473 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() &&
6474 M->hasAttr<DLLExportAttr>()) {
6475 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
6476 M->isTrivial() &&
6477 (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor ||
6478 CSM == CXXDestructor))
6479 M->dropAttr<DLLExportAttr>();
6480
6481 if (M->hasAttr<DLLExportAttr>()) {
6482 // Define after any fields with in-class initializers have been parsed.
6483 DelayedDllExportMemberFunctions.push_back(M);
6484 }
6485 }
6486
6487 // Define defaulted constexpr virtual functions that override a base class
6488 // function right away.
6489 // FIXME: We can defer doing this until the vtable is marked as used.
6490 if (M->isDefaulted() && M->isConstexpr() && M->size_overridden_methods())
6491 DefineImplicitSpecialMember(*this, M, M->getLocation());
6492 };
6493
6494 // Check the destructor before any other member function. We need to
6495 // determine whether it's trivial in order to determine whether the claas
6496 // type is a literal type, which is a prerequisite for determining whether
6497 // other special member functions are valid and whether they're implicitly
6498 // 'constexpr'.
6499 if (CXXDestructorDecl *Dtor = Record->getDestructor())
6500 CompleteMemberFunction(Dtor);
6501
6502 bool HasMethodWithOverrideControl = false,
6503 HasOverridingMethodWithoutOverrideControl = false;
6504 for (auto *D : Record->decls()) {
6505 if (auto *M = dyn_cast<CXXMethodDecl>(D)) {
6506 // FIXME: We could do this check for dependent types with non-dependent
6507 // bases.
6508 if (!Record->isDependentType()) {
6509 // See if a method overloads virtual methods in a base
6510 // class without overriding any.
6511 if (!M->isStatic())
6512 DiagnoseHiddenVirtualMethods(M);
6513 if (M->hasAttr<OverrideAttr>())
6514 HasMethodWithOverrideControl = true;
6515 else if (M->size_overridden_methods() > 0)
6516 HasOverridingMethodWithoutOverrideControl = true;
6517 }
6518
6519 if (!isa<CXXDestructorDecl>(M))
6520 CompleteMemberFunction(M);
6521 } else if (auto *F = dyn_cast<FriendDecl>(D)) {
6522 CheckForDefaultedFunction(
6523 dyn_cast_or_null<FunctionDecl>(F->getFriendDecl()));
6524 }
6525 }
6526
6527 if (HasMethodWithOverrideControl &&
6528 HasOverridingMethodWithoutOverrideControl) {
6529 // At least one method has the 'override' control declared.
6530 // Diagnose all other overridden methods which do not have 'override'
6531 // specified on them.
6532 for (auto *M : Record->methods())
6533 DiagnoseAbsenceOfOverrideControl(M);
6534 }
6535
6536 // Check the defaulted secondary comparisons after any other member functions.
6537 for (FunctionDecl *FD : DefaultedSecondaryComparisons)
6538 CheckExplicitlyDefaultedFunction(S, FD);
6539
6540 // ms_struct is a request to use the same ABI rules as MSVC. Check
6541 // whether this class uses any C++ features that are implemented
6542 // completely differently in MSVC, and if so, emit a diagnostic.
6543 // That diagnostic defaults to an error, but we allow projects to
6544 // map it down to a warning (or ignore it). It's a fairly common
6545 // practice among users of the ms_struct pragma to mass-annotate
6546 // headers, sweeping up a bunch of types that the project doesn't
6547 // really rely on MSVC-compatible layout for. We must therefore
6548 // support "ms_struct except for C++ stuff" as a secondary ABI.
6549 if (Record->isMsStruct(Context) &&
6550 (Record->isPolymorphic() || Record->getNumBases())) {
6551 Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
6552 }
6553
6554 checkClassLevelDLLAttribute(Record);
6555 checkClassLevelCodeSegAttribute(Record);
6556
6557 bool ClangABICompat4 =
6558 Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4;
6559 TargetInfo::CallingConvKind CCK =
6560 Context.getTargetInfo().getCallingConvKind(ClangABICompat4);
6561 bool CanPass = canPassInRegisters(*this, Record, CCK);
6562
6563 // Do not change ArgPassingRestrictions if it has already been set to
6564 // APK_CanNeverPassInRegs.
6565 if (Record->getArgPassingRestrictions() != RecordDecl::APK_CanNeverPassInRegs)
6566 Record->setArgPassingRestrictions(CanPass
6567 ? RecordDecl::APK_CanPassInRegs
6568 : RecordDecl::APK_CannotPassInRegs);
6569
6570 // If canPassInRegisters returns true despite the record having a non-trivial
6571 // destructor, the record is destructed in the callee. This happens only when
6572 // the record or one of its subobjects has a field annotated with trivial_abi
6573 // or a field qualified with ObjC __strong/__weak.
6574 if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee())
6575 Record->setParamDestroyedInCallee(true);
6576 else if (Record->hasNonTrivialDestructor())
6577 Record->setParamDestroyedInCallee(CanPass);
6578
6579 if (getLangOpts().ForceEmitVTables) {
6580 // If we want to emit all the vtables, we need to mark it as used. This
6581 // is especially required for cases like vtable assumption loads.
6582 MarkVTableUsed(Record->getInnerLocStart(), Record);
6583 }
6584}
6585
6586/// Look up the special member function that would be called by a special
6587/// member function for a subobject of class type.
6588///
6589/// \param Class The class type of the subobject.
6590/// \param CSM The kind of special member function.
6591/// \param FieldQuals If the subobject is a field, its cv-qualifiers.
6592/// \param ConstRHS True if this is a copy operation with a const object
6593/// on its RHS, that is, if the argument to the outer special member
6594/// function is 'const' and this is not a field marked 'mutable'.
6595static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember(
6596 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
6597 unsigned FieldQuals, bool ConstRHS) {
6598 unsigned LHSQuals = 0;
6599 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
6600 LHSQuals = FieldQuals;
6601
6602 unsigned RHSQuals = FieldQuals;
6603 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
6604 RHSQuals = 0;
6605 else if (ConstRHS)
6606 RHSQuals |= Qualifiers::Const;
6607
6608 return S.LookupSpecialMember(Class, CSM,
6609 RHSQuals & Qualifiers::Const,
6610 RHSQuals & Qualifiers::Volatile,
6611 false,
6612 LHSQuals & Qualifiers::Const,
6613 LHSQuals & Qualifiers::Volatile);
6614}
6615
6616class Sema::InheritedConstructorInfo {
6617 Sema &S;
6618 SourceLocation UseLoc;
6619
6620 /// A mapping from the base classes through which the constructor was
6621 /// inherited to the using shadow declaration in that base class (or a null
6622 /// pointer if the constructor was declared in that base class).
6623 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *>
6624 InheritedFromBases;
6625
6626public:
6627 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc,
6628 ConstructorUsingShadowDecl *Shadow)
6629 : S(S), UseLoc(UseLoc) {
6630 bool DiagnosedMultipleConstructedBases = false;
6631 CXXRecordDecl *ConstructedBase = nullptr;
6632 UsingDecl *ConstructedBaseUsing = nullptr;
6633
6634 // Find the set of such base class subobjects and check that there's a
6635 // unique constructed subobject.
6636 for (auto *D : Shadow->redecls()) {
6637 auto *DShadow = cast<ConstructorUsingShadowDecl>(D);
6638 auto *DNominatedBase = DShadow->getNominatedBaseClass();
6639 auto *DConstructedBase = DShadow->getConstructedBaseClass();
6640
6641 InheritedFromBases.insert(
6642 std::make_pair(DNominatedBase->getCanonicalDecl(),
6643 DShadow->getNominatedBaseClassShadowDecl()));
6644 if (DShadow->constructsVirtualBase())
6645 InheritedFromBases.insert(
6646 std::make_pair(DConstructedBase->getCanonicalDecl(),
6647 DShadow->getConstructedBaseClassShadowDecl()));
6648 else
6649 assert(DNominatedBase == DConstructedBase)((DNominatedBase == DConstructedBase) ? static_cast<void>
(0) : __assert_fail ("DNominatedBase == DConstructedBase", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 6649, __PRETTY_FUNCTION__))
;
6650
6651 // [class.inhctor.init]p2:
6652 // If the constructor was inherited from multiple base class subobjects
6653 // of type B, the program is ill-formed.
6654 if (!ConstructedBase) {
6655 ConstructedBase = DConstructedBase;
6656 ConstructedBaseUsing = D->getUsingDecl();
6657 } else if (ConstructedBase != DConstructedBase &&
6658 !Shadow->isInvalidDecl()) {
6659 if (!DiagnosedMultipleConstructedBases) {
6660 S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor)
6661 << Shadow->getTargetDecl();
6662 S.Diag(ConstructedBaseUsing->getLocation(),
6663 diag::note_ambiguous_inherited_constructor_using)
6664 << ConstructedBase;
6665 DiagnosedMultipleConstructedBases = true;
6666 }
6667 S.Diag(D->getUsingDecl()->getLocation(),
6668 diag::note_ambiguous_inherited_constructor_using)
6669 << DConstructedBase;
6670 }
6671 }
6672
6673 if (DiagnosedMultipleConstructedBases)
6674 Shadow->setInvalidDecl();
6675 }
6676
6677 /// Find the constructor to use for inherited construction of a base class,
6678 /// and whether that base class constructor inherits the constructor from a
6679 /// virtual base class (in which case it won't actually invoke it).
6680 std::pair<CXXConstructorDecl *, bool>
6681 findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const {
6682 auto It = InheritedFromBases.find(Base->getCanonicalDecl());
6683 if (It == InheritedFromBases.end())
6684 return std::make_pair(nullptr, false);
6685
6686 // This is an intermediary class.
6687 if (It->second)
6688 return std::make_pair(
6689 S.findInheritingConstructor(UseLoc, Ctor, It->second),
6690 It->second->constructsVirtualBase());
6691
6692 // This is the base class from which the constructor was inherited.
6693 return std::make_pair(Ctor, false);
6694 }
6695};
6696
6697/// Is the special member function which would be selected to perform the
6698/// specified operation on the specified class type a constexpr constructor?
6699static bool
6700specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
6701 Sema::CXXSpecialMember CSM, unsigned Quals,
6702 bool ConstRHS,
6703 CXXConstructorDecl *InheritedCtor = nullptr,
6704 Sema::InheritedConstructorInfo *Inherited = nullptr) {
6705 // If we're inheriting a constructor, see if we need to call it for this base
6706 // class.
6707 if (InheritedCtor) {
6708 assert(CSM == Sema::CXXDefaultConstructor)((CSM == Sema::CXXDefaultConstructor) ? static_cast<void>
(0) : __assert_fail ("CSM == Sema::CXXDefaultConstructor", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 6708, __PRETTY_FUNCTION__))
;
6709 auto BaseCtor =
6710 Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first;
6711 if (BaseCtor)
6712 return BaseCtor->isConstexpr();
6713 }
6714
6715 if (CSM == Sema::CXXDefaultConstructor)
6716 return ClassDecl->hasConstexprDefaultConstructor();
6717 if (CSM == Sema::CXXDestructor)
6718 return ClassDecl->hasConstexprDestructor();
6719
6720 Sema::SpecialMemberOverloadResult SMOR =
6721 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS);
6722 if (!SMOR.getMethod())
6723 // A constructor we wouldn't select can't be "involved in initializing"
6724 // anything.
6725 return true;
6726 return SMOR.getMethod()->isConstexpr();
6727}
6728
6729/// Determine whether the specified special member function would be constexpr
6730/// if it were implicitly defined.
6731static bool defaultedSpecialMemberIsConstexpr(
6732 Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM,
6733 bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr,
6734 Sema::InheritedConstructorInfo *Inherited = nullptr) {
6735 if (!S.getLangOpts().CPlusPlus11)
6736 return false;
6737
6738 // C++11 [dcl.constexpr]p4:
6739 // In the definition of a constexpr constructor [...]
6740 bool Ctor = true;
6741 switch (CSM) {
6742 case Sema::CXXDefaultConstructor:
6743 if (Inherited)
6744 break;
6745 // Since default constructor lookup is essentially trivial (and cannot
6746 // involve, for instance, template instantiation), we compute whether a
6747 // defaulted default constructor is constexpr directly within CXXRecordDecl.
6748 //
6749 // This is important for performance; we need to know whether the default
6750 // constructor is constexpr to determine whether the type is a literal type.
6751 return ClassDecl->defaultedDefaultConstructorIsConstexpr();
6752
6753 case Sema::CXXCopyConstructor:
6754 case Sema::CXXMoveConstructor:
6755 // For copy or move constructors, we need to perform overload resolution.
6756 break;
6757
6758 case Sema::CXXCopyAssignment:
6759 case Sema::CXXMoveAssignment:
6760 if (!S.getLangOpts().CPlusPlus14)
6761 return false;
6762 // In C++1y, we need to perform overload resolution.
6763 Ctor = false;
6764 break;
6765
6766 case Sema::CXXDestructor:
6767 return ClassDecl->defaultedDestructorIsConstexpr();
6768
6769 case Sema::CXXInvalid:
6770 return false;
6771 }
6772
6773 // -- if the class is a non-empty union, or for each non-empty anonymous
6774 // union member of a non-union class, exactly one non-static data member
6775 // shall be initialized; [DR1359]
6776 //
6777 // If we squint, this is guaranteed, since exactly one non-static data member
6778 // will be initialized (if the constructor isn't deleted), we just don't know
6779 // which one.
6780 if (Ctor && ClassDecl->isUnion())
6781 return CSM == Sema::CXXDefaultConstructor
6782 ? ClassDecl->hasInClassInitializer() ||
6783 !ClassDecl->hasVariantMembers()
6784 : true;
6785
6786 // -- the class shall not have any virtual base classes;
6787 if (Ctor && ClassDecl->getNumVBases())
6788 return false;
6789
6790 // C++1y [class.copy]p26:
6791 // -- [the class] is a literal type, and
6792 if (!Ctor && !ClassDecl->isLiteral())
6793 return false;
6794
6795 // -- every constructor involved in initializing [...] base class
6796 // sub-objects shall be a constexpr constructor;
6797 // -- the assignment operator selected to copy/move each direct base
6798 // class is a constexpr function, and
6799 for (const auto &B : ClassDecl->bases()) {
6800 const RecordType *BaseType = B.getType()->getAs<RecordType>();
6801 if (!BaseType) continue;
6802
6803 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6804 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg,
6805 InheritedCtor, Inherited))
6806 return false;
6807 }
6808
6809 // -- every constructor involved in initializing non-static data members
6810 // [...] shall be a constexpr constructor;
6811 // -- every non-static data member and base class sub-object shall be
6812 // initialized
6813 // -- for each non-static data member of X that is of class type (or array
6814 // thereof), the assignment operator selected to copy/move that member is
6815 // a constexpr function
6816 for (const auto *F : ClassDecl->fields()) {
6817 if (F->isInvalidDecl())
6818 continue;
6819 if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer())
6820 continue;
6821 QualType BaseType = S.Context.getBaseElementType(F->getType());
6822 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
6823 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6824 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
6825 BaseType.getCVRQualifiers(),
6826 ConstArg && !F->isMutable()))
6827 return false;
6828 } else if (CSM == Sema::CXXDefaultConstructor) {
6829 return false;
6830 }
6831 }
6832
6833 // All OK, it's constexpr!
6834 return true;
6835}
6836
6837namespace {
6838/// RAII object to register a defaulted function as having its exception
6839/// specification computed.
6840struct ComputingExceptionSpec {
6841 Sema &S;
6842
6843 ComputingExceptionSpec(Sema &S, FunctionDecl *FD, SourceLocation Loc)
6844 : S(S) {
6845 Sema::CodeSynthesisContext Ctx;
6846 Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation;
6847 Ctx.PointOfInstantiation = Loc;
6848 Ctx.Entity = FD;
6849 S.pushCodeSynthesisContext(Ctx);
6850 }
6851 ~ComputingExceptionSpec() {
6852 S.popCodeSynthesisContext();
6853 }
6854};
6855}
6856
6857static Sema::ImplicitExceptionSpecification
6858ComputeDefaultedSpecialMemberExceptionSpec(
6859 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
6860 Sema::InheritedConstructorInfo *ICI);
6861
6862static Sema::ImplicitExceptionSpecification
6863ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc,
6864 FunctionDecl *FD,
6865 Sema::DefaultedComparisonKind DCK);
6866
6867static Sema::ImplicitExceptionSpecification
6868computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, FunctionDecl *FD) {
6869 auto DFK = S.getDefaultedFunctionKind(FD);
6870 if (DFK.isSpecialMember())
6871 return ComputeDefaultedSpecialMemberExceptionSpec(
6872 S, Loc, cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), nullptr);
6873 if (DFK.isComparison())
6874 return ComputeDefaultedComparisonExceptionSpec(S, Loc, FD,
6875 DFK.asComparison());
6876
6877 auto *CD = cast<CXXConstructorDecl>(FD);
6878 assert(CD->getInheritedConstructor() &&((CD->getInheritedConstructor() && "only defaulted functions and inherited constructors have implicit "
"exception specs") ? static_cast<void> (0) : __assert_fail
("CD->getInheritedConstructor() && \"only defaulted functions and inherited constructors have implicit \" \"exception specs\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 6880, __PRETTY_FUNCTION__))
6879 "only defaulted functions and inherited constructors have implicit "((CD->getInheritedConstructor() && "only defaulted functions and inherited constructors have implicit "
"exception specs") ? static_cast<void> (0) : __assert_fail
("CD->getInheritedConstructor() && \"only defaulted functions and inherited constructors have implicit \" \"exception specs\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 6880, __PRETTY_FUNCTION__))
6880 "exception specs")((CD->getInheritedConstructor() && "only defaulted functions and inherited constructors have implicit "
"exception specs") ? static_cast<void> (0) : __assert_fail
("CD->getInheritedConstructor() && \"only defaulted functions and inherited constructors have implicit \" \"exception specs\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 6880, __PRETTY_FUNCTION__))
;
6881 Sema::InheritedConstructorInfo ICI(
6882 S, Loc, CD->getInheritedConstructor().getShadowDecl());
6883 return ComputeDefaultedSpecialMemberExceptionSpec(
6884 S, Loc, CD, Sema::CXXDefaultConstructor, &ICI);
6885}
6886
6887static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
6888 CXXMethodDecl *MD) {
6889 FunctionProtoType::ExtProtoInfo EPI;
6890
6891 // Build an exception specification pointing back at this member.
6892 EPI.ExceptionSpec.Type = EST_Unevaluated;
6893 EPI.ExceptionSpec.SourceDecl = MD;
6894
6895 // Set the calling convention to the default for C++ instance methods.
6896 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
6897 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
6898 /*IsCXXMethod=*/true));
6899 return EPI;
6900}
6901
6902void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD) {
6903 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
6904 if (FPT->getExceptionSpecType() != EST_Unevaluated)
6905 return;
6906
6907 // Evaluate the exception specification.
6908 auto IES = computeImplicitExceptionSpec(*this, Loc, FD);
6909 auto ESI = IES.getExceptionSpec();
6910
6911 // Update the type of the special member to use it.
6912 UpdateExceptionSpec(FD, ESI);
6913}
6914
6915void Sema::CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *FD) {
6916 assert(FD->isExplicitlyDefaulted() && "not explicitly-defaulted")((FD->isExplicitlyDefaulted() && "not explicitly-defaulted"
) ? static_cast<void> (0) : __assert_fail ("FD->isExplicitlyDefaulted() && \"not explicitly-defaulted\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 6916, __PRETTY_FUNCTION__))
;
6917
6918 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD);
6919 if (!DefKind) {
6920 assert(FD->getDeclContext()->isDependentContext())((FD->getDeclContext()->isDependentContext()) ? static_cast
<void> (0) : __assert_fail ("FD->getDeclContext()->isDependentContext()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 6920, __PRETTY_FUNCTION__))
;
6921 return;
6922 }
6923
6924 if (DefKind.isSpecialMember()
6925 ? CheckExplicitlyDefaultedSpecialMember(cast<CXXMethodDecl>(FD),
6926 DefKind.asSpecialMember())
6927 : CheckExplicitlyDefaultedComparison(S, FD, DefKind.asComparison()))
6928 FD->setInvalidDecl();
6929}
6930
6931bool Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD,
6932 CXXSpecialMember CSM) {
6933 CXXRecordDecl *RD = MD->getParent();
6934
6935 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&((MD->isExplicitlyDefaulted() && CSM != CXXInvalid
&& "not an explicitly-defaulted special member") ? static_cast
<void> (0) : __assert_fail ("MD->isExplicitlyDefaulted() && CSM != CXXInvalid && \"not an explicitly-defaulted special member\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 6936, __PRETTY_FUNCTION__))
6936 "not an explicitly-defaulted special member")((MD->isExplicitlyDefaulted() && CSM != CXXInvalid
&& "not an explicitly-defaulted special member") ? static_cast
<void> (0) : __assert_fail ("MD->isExplicitlyDefaulted() && CSM != CXXInvalid && \"not an explicitly-defaulted special member\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 6936, __PRETTY_FUNCTION__))
;
6937
6938 // Defer all checking for special members of a dependent type.
6939 if (RD->isDependentType())
6940 return false;
6941
6942 // Whether this was the first-declared instance of the constructor.
6943 // This affects whether we implicitly add an exception spec and constexpr.
6944 bool First = MD == MD->getCanonicalDecl();
6945
6946 bool HadError = false;
6947
6948 // C++11 [dcl.fct.def.default]p1:
6949 // A function that is explicitly defaulted shall
6950 // -- be a special member function [...] (checked elsewhere),
6951 // -- have the same type (except for ref-qualifiers, and except that a
6952 // copy operation can take a non-const reference) as an implicit
6953 // declaration, and
6954 // -- not have default arguments.
6955 // C++2a changes the second bullet to instead delete the function if it's
6956 // defaulted on its first declaration, unless it's "an assignment operator,
6957 // and its return type differs or its parameter type is not a reference".
6958 bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus2a && First;
6959 bool ShouldDeleteForTypeMismatch = false;
6960 unsigned ExpectedParams = 1;
6961 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
6962 ExpectedParams = 0;
6963 if (MD->getNumParams() != ExpectedParams) {
6964 // This checks for default arguments: a copy or move constructor with a
6965 // default argument is classified as a default constructor, and assignment
6966 // operations and destructors can't have default arguments.
6967 Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
6968 << CSM << MD->getSourceRange();
6969 HadError = true;
6970 } else if (MD->isVariadic()) {
6971 if (DeleteOnTypeMismatch)
6972 ShouldDeleteForTypeMismatch = true;
6973 else {
6974 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
6975 << CSM << MD->getSourceRange();
6976 HadError = true;
6977 }
6978 }
6979
6980 const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
6981
6982 bool CanHaveConstParam = false;
6983 if (CSM == CXXCopyConstructor)
6984 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
6985 else if (CSM == CXXCopyAssignment)
6986 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
6987
6988 QualType ReturnType = Context.VoidTy;
6989 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
6990 // Check for return type matching.
6991 ReturnType = Type->getReturnType();
6992
6993 QualType DeclType = Context.getTypeDeclType(RD);
6994 DeclType = Context.getAddrSpaceQualType(DeclType, MD->getMethodQualifiers().getAddressSpace());
6995 QualType ExpectedReturnType = Context.getLValueReferenceType(DeclType);
6996
6997 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
6998 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
6999 << (CSM == CXXMoveAssignment) << ExpectedReturnType;
7000 HadError = true;
7001 }
7002
7003 // A defaulted special member cannot have cv-qualifiers.
7004 if (Type->getMethodQuals().hasConst() || Type->getMethodQuals().hasVolatile()) {
7005 if (DeleteOnTypeMismatch)
7006 ShouldDeleteForTypeMismatch = true;
7007 else {
7008 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
7009 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14;
7010 HadError = true;
7011 }
7012 }
7013 }
7014
7015 // Check for parameter type matching.
7016 QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType();
7017 bool HasConstParam = false;
7018 if (ExpectedParams && ArgType->isReferenceType()) {
7019 // Argument must be reference to possibly-const T.
7020 QualType ReferentType = ArgType->getPointeeType();
7021 HasConstParam = ReferentType.isConstQualified();
7022
7023 if (ReferentType.isVolatileQualified()) {
7024 if (DeleteOnTypeMismatch)
7025 ShouldDeleteForTypeMismatch = true;
7026 else {
7027 Diag(MD->getLocation(),
7028 diag::err_defaulted_special_member_volatile_param) << CSM;
7029 HadError = true;
7030 }
7031 }
7032
7033 if (HasConstParam && !CanHaveConstParam) {
7034 if (DeleteOnTypeMismatch)
7035 ShouldDeleteForTypeMismatch = true;
7036 else if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
7037 Diag(MD->getLocation(),
7038 diag::err_defaulted_special_member_copy_const_param)
7039 << (CSM == CXXCopyAssignment);
7040 // FIXME: Explain why this special member can't be const.
7041 HadError = true;
7042 } else {
7043 Diag(MD->getLocation(),
7044 diag::err_defaulted_special_member_move_const_param)
7045 << (CSM == CXXMoveAssignment);
7046 HadError = true;
7047 }
7048 }
7049 } else if (ExpectedParams) {
7050 // A copy assignment operator can take its argument by value, but a
7051 // defaulted one cannot.
7052 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument")((CSM == CXXCopyAssignment && "unexpected non-ref argument"
) ? static_cast<void> (0) : __assert_fail ("CSM == CXXCopyAssignment && \"unexpected non-ref argument\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 7052, __PRETTY_FUNCTION__))
;
7053 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
7054 HadError = true;
7055 }
7056
7057 // C++11 [dcl.fct.def.default]p2:
7058 // An explicitly-defaulted function may be declared constexpr only if it
7059 // would have been implicitly declared as constexpr,
7060 // Do not apply this rule to members of class templates, since core issue 1358
7061 // makes such functions always instantiate to constexpr functions. For
7062 // functions which cannot be constexpr (for non-constructors in C++11 and for
7063 // destructors in C++14 and C++17), this is checked elsewhere.
7064 //
7065 // FIXME: This should not apply if the member is deleted.
7066 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
7067 HasConstParam);
7068 if ((getLangOpts().CPlusPlus2a ||
7069 (getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD)
7070 : isa<CXXConstructorDecl>(MD))) &&
7071 MD->isConstexpr() && !Constexpr &&
7072 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
7073 Diag(MD->getBeginLoc(), MD->isConsteval()
7074 ? diag::err_incorrect_defaulted_consteval
7075 : diag::err_incorrect_defaulted_constexpr)
7076 << CSM;
7077 // FIXME: Explain why the special member can't be constexpr.
7078 HadError = true;
7079 }
7080
7081 if (First) {
7082 // C++2a [dcl.fct.def.default]p3:
7083 // If a function is explicitly defaulted on its first declaration, it is
7084 // implicitly considered to be constexpr if the implicit declaration
7085 // would be.
7086 MD->setConstexprKind(
7087 Constexpr ? (MD->isConsteval() ? CSK_consteval : CSK_constexpr)
7088 : CSK_unspecified);
7089
7090 if (!Type->hasExceptionSpec()) {
7091 // C++2a [except.spec]p3:
7092 // If a declaration of a function does not have a noexcept-specifier
7093 // [and] is defaulted on its first declaration, [...] the exception
7094 // specification is as specified below
7095 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
7096 EPI.ExceptionSpec.Type = EST_Unevaluated;
7097 EPI.ExceptionSpec.SourceDecl = MD;
7098 MD->setType(Context.getFunctionType(ReturnType,
7099 llvm::makeArrayRef(&ArgType,
7100 ExpectedParams),
7101 EPI));
7102 }
7103 }
7104
7105 if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) {
7106 if (First) {
7107 SetDeclDeleted(MD, MD->getLocation());
7108 if (!inTemplateInstantiation() && !HadError) {
7109 Diag(MD->getLocation(), diag::warn_defaulted_method_deleted) << CSM;
7110 if (ShouldDeleteForTypeMismatch) {
7111 Diag(MD->getLocation(), diag::note_deleted_type_mismatch) << CSM;
7112 } else {
7113 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
7114 }
7115 }
7116 if (ShouldDeleteForTypeMismatch && !HadError) {
7117 Diag(MD->getLocation(),
7118 diag::warn_cxx17_compat_defaulted_method_type_mismatch) << CSM;
7119 }
7120 } else {
7121 // C++11 [dcl.fct.def.default]p4:
7122 // [For a] user-provided explicitly-defaulted function [...] if such a
7123 // function is implicitly defined as deleted, the program is ill-formed.
7124 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
7125 assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl")((!ShouldDeleteForTypeMismatch && "deleted non-first decl"
) ? static_cast<void> (0) : __assert_fail ("!ShouldDeleteForTypeMismatch && \"deleted non-first decl\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 7125, __PRETTY_FUNCTION__))
;
7126 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
7127 HadError = true;
7128 }
7129 }
7130
7131 return HadError;
7132}
7133
7134namespace {
7135/// Helper class for building and checking a defaulted comparison.
7136///
7137/// Defaulted functions are built in two phases:
7138///
7139/// * First, the set of operations that the function will perform are
7140/// identified, and some of them are checked. If any of the checked
7141/// operations is invalid in certain ways, the comparison function is
7142/// defined as deleted and no body is built.
7143/// * Then, if the function is not defined as deleted, the body is built.
7144///
7145/// This is accomplished by performing two visitation steps over the eventual
7146/// body of the function.
7147template<typename Derived, typename ResultList, typename Result,
7148 typename Subobject>
7149class DefaultedComparisonVisitor {
7150public:
7151 using DefaultedComparisonKind = Sema::DefaultedComparisonKind;
7152
7153 DefaultedComparisonVisitor(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
7154 DefaultedComparisonKind DCK)
7155 : S(S), RD(RD), FD(FD), DCK(DCK) {
7156 if (auto *Info = FD->getDefaultedFunctionInfo()) {
7157 // FIXME: Change CreateOverloadedBinOp to take an ArrayRef instead of an
7158 // UnresolvedSet to avoid this copy.
7159 Fns.assign(Info->getUnqualifiedLookups().begin(),
7160 Info->getUnqualifiedLookups().end());
7161 }
7162 }
7163
7164 ResultList visit() {
7165 // The type of an lvalue naming a parameter of this function.
7166 QualType ParamLvalType =
7167 FD->getParamDecl(0)->getType().getNonReferenceType();
7168
7169 ResultList Results;
7170
7171 switch (DCK) {
7172 case DefaultedComparisonKind::None:
7173 llvm_unreachable("not a defaulted comparison")::llvm::llvm_unreachable_internal("not a defaulted comparison"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 7173)
;
7174
7175 case DefaultedComparisonKind::Equal:
7176 case DefaultedComparisonKind::ThreeWay:
7177 getDerived().visitSubobjects(Results, RD, ParamLvalType.getQualifiers());
7178 return Results;
7179
7180 case DefaultedComparisonKind::NotEqual:
7181 case DefaultedComparisonKind::Relational:
7182 Results.add(getDerived().visitExpandedSubobject(
7183 ParamLvalType, getDerived().getCompleteObject()));
7184 return Results;
7185 }
7186 llvm_unreachable("")::llvm::llvm_unreachable_internal("", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 7186)
;
7187 }
7188
7189protected:
7190 Derived &getDerived() { return static_cast<Derived&>(*this); }
7191
7192 /// Visit the expanded list of subobjects of the given type, as specified in
7193 /// C++2a [class.compare.default].
7194 ///
7195 /// \return \c true if the ResultList object said we're done, \c false if not.
7196 bool visitSubobjects(ResultList &Results, CXXRecordDecl *Record,
7197 Qualifiers Quals) {
7198 // C++2a [class.compare.default]p4:
7199 // The direct base class subobjects of C
7200 for (CXXBaseSpecifier &Base : Record->bases())
7201 if (Results.add(getDerived().visitSubobject(
7202 S.Context.getQualifiedType(Base.getType(), Quals),
7203 getDerived().getBase(&Base))))
7204 return true;
7205
7206 // followed by the non-static data members of C
7207 for (FieldDecl *Field : Record->fields()) {
7208 // Recursively expand anonymous structs.
7209 if (Field->isAnonymousStructOrUnion()) {
7210 if (visitSubobjects(Results, Field->getType()->getAsCXXRecordDecl(),
7211 Quals))
7212 return true;
7213 continue;
7214 }
7215
7216 // Figure out the type of an lvalue denoting this field.
7217 Qualifiers FieldQuals = Quals;
7218 if (Field->isMutable())
7219 FieldQuals.removeConst();
7220 QualType FieldType =
7221 S.Context.getQualifiedType(Field->getType(), FieldQuals);
7222
7223 if (Results.add(getDerived().visitSubobject(
7224 FieldType, getDerived().getField(Field))))
7225 return true;
7226 }
7227
7228 // form a list of subobjects.
7229 return false;
7230 }
7231
7232 Result visitSubobject(QualType Type, Subobject Subobj) {
7233 // In that list, any subobject of array type is recursively expanded
7234 const ArrayType *AT = S.Context.getAsArrayType(Type);
7235 if (auto *CAT = dyn_cast_or_null<ConstantArrayType>(AT))
7236 return getDerived().visitSubobjectArray(CAT->getElementType(),
7237 CAT->getSize(), Subobj);
7238 return getDerived().visitExpandedSubobject(Type, Subobj);
7239 }
7240
7241 Result visitSubobjectArray(QualType Type, const llvm::APInt &Size,
7242 Subobject Subobj) {
7243 return getDerived().visitSubobject(Type, Subobj);
7244 }
7245
7246protected:
7247 Sema &S;
7248 CXXRecordDecl *RD;
7249 FunctionDecl *FD;
7250 DefaultedComparisonKind DCK;
7251 UnresolvedSet<16> Fns;
7252};
7253
7254/// Information about a defaulted comparison, as determined by
7255/// DefaultedComparisonAnalyzer.
7256struct DefaultedComparisonInfo {
7257 bool Deleted = false;
7258 bool Constexpr = true;
7259 ComparisonCategoryType Category = ComparisonCategoryType::StrongOrdering;
7260
7261 static DefaultedComparisonInfo deleted() {
7262 DefaultedComparisonInfo Deleted;
7263 Deleted.Deleted = true;
7264 return Deleted;
7265 }
7266
7267 bool add(const DefaultedComparisonInfo &R) {
7268 Deleted |= R.Deleted;
7269 Constexpr &= R.Constexpr;
7270 Category = commonComparisonType(Category, R.Category);
7271 return Deleted;
7272 }
7273};
7274
7275/// An element in the expanded list of subobjects of a defaulted comparison, as
7276/// specified in C++2a [class.compare.default]p4.
7277struct DefaultedComparisonSubobject {
7278 enum { CompleteObject, Member, Base } Kind;
7279 NamedDecl *Decl;
7280 SourceLocation Loc;
7281};
7282
7283/// A visitor over the notional body of a defaulted comparison that determines
7284/// whether that body would be deleted or constexpr.
7285class DefaultedComparisonAnalyzer
7286 : public DefaultedComparisonVisitor<DefaultedComparisonAnalyzer,
7287 DefaultedComparisonInfo,
7288 DefaultedComparisonInfo,
7289 DefaultedComparisonSubobject> {
7290public:
7291 enum DiagnosticKind { NoDiagnostics, ExplainDeleted, ExplainConstexpr };
7292
7293private:
7294 DiagnosticKind Diagnose;
7295
7296public:
7297 using Base = DefaultedComparisonVisitor;
7298 using Result = DefaultedComparisonInfo;
7299 using Subobject = DefaultedComparisonSubobject;
7300
7301 friend Base;
7302
7303 DefaultedComparisonAnalyzer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
7304 DefaultedComparisonKind DCK,
7305 DiagnosticKind Diagnose = NoDiagnostics)
7306 : Base(S, RD, FD, DCK), Diagnose(Diagnose) {}
7307
7308 Result visit() {
7309 if ((DCK == DefaultedComparisonKind::Equal ||
7310 DCK == DefaultedComparisonKind::ThreeWay) &&
7311 RD->hasVariantMembers()) {
7312 // C++2a [class.compare.default]p2 [P2002R0]:
7313 // A defaulted comparison operator function for class C is defined as
7314 // deleted if [...] C has variant members.
7315 if (Diagnose == ExplainDeleted) {
7316 S.Diag(FD->getLocation(), diag::note_defaulted_comparison_union)
7317 << FD << RD->isUnion() << RD;
7318 }
7319 return Result::deleted();
7320 }
7321
7322 return Base::visit();
7323 }
7324
7325private:
7326 Subobject getCompleteObject() {
7327 return Subobject{Subobject::CompleteObject, nullptr, FD->getLocation()};
7328 }
7329
7330 Subobject getBase(CXXBaseSpecifier *Base) {
7331 return Subobject{Subobject::Base, Base->getType()->getAsCXXRecordDecl(),
7332 Base->getBaseTypeLoc()};
7333 }
7334
7335 Subobject getField(FieldDecl *Field) {
7336 return Subobject{Subobject::Member, Field, Field->getLocation()};
7337 }
7338
7339 Result visitExpandedSubobject(QualType Type, Subobject Subobj) {
7340 // C++2a [class.compare.default]p2 [P2002R0]:
7341 // A defaulted <=> or == operator function for class C is defined as
7342 // deleted if any non-static data member of C is of reference type
7343 if (Type->isReferenceType()) {
7344 if (Diagnose == ExplainDeleted) {
7345 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_reference_member)
7346 << FD << RD;
7347 }
7348 return Result::deleted();
7349 }
7350
7351 // [...] Let xi be an lvalue denoting the ith element [...]
7352 OpaqueValueExpr Xi(FD->getLocation(), Type, VK_LValue);
7353 Expr *Args[] = {&Xi, &Xi};
7354
7355 // All operators start by trying to apply that same operator recursively.
7356 OverloadedOperatorKind OO = FD->getOverloadedOperator();
7357 assert(OO != OO_None && "not an overloaded operator!")((OO != OO_None && "not an overloaded operator!") ? static_cast
<void> (0) : __assert_fail ("OO != OO_None && \"not an overloaded operator!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 7357, __PRETTY_FUNCTION__))
;
7358 return visitBinaryOperator(OO, Args, Subobj);
7359 }
7360
7361 Result
7362 visitBinaryOperator(OverloadedOperatorKind OO, ArrayRef<Expr *> Args,
7363 Subobject Subobj,
7364 OverloadCandidateSet *SpaceshipCandidates = nullptr) {
7365 // Note that there is no need to consider rewritten candidates here if
7366 // we've already found there is no viable 'operator<=>' candidate (and are
7367 // considering synthesizing a '<=>' from '==' and '<').
7368 OverloadCandidateSet CandidateSet(
7369 FD->getLocation(), OverloadCandidateSet::CSK_Operator,
7370 OverloadCandidateSet::OperatorRewriteInfo(
7371 OO, /*AllowRewrittenCandidates=*/!SpaceshipCandidates));
7372
7373 /// C++2a [class.compare.default]p1 [P2002R0]:
7374 /// [...] the defaulted function itself is never a candidate for overload
7375 /// resolution [...]
7376 CandidateSet.exclude(FD);
7377
7378 if (Args[0]->getType()->isOverloadableType())
7379 S.LookupOverloadedBinOp(CandidateSet, OO, Fns, Args);
7380 else {
7381 // FIXME: We determine whether this is a valid expression by checking to
7382 // see if there's a viable builtin operator candidate for it. That isn't
7383 // really what the rules ask us to do, but should give the right results.
7384 S.AddBuiltinOperatorCandidates(OO, FD->getLocation(), Args, CandidateSet);
7385 }
7386
7387 Result R;
7388
7389 OverloadCandidateSet::iterator Best;
7390 switch (CandidateSet.BestViableFunction(S, FD->getLocation(), Best)) {
7391 case OR_Success: {
7392 // C++2a [class.compare.secondary]p2 [P2002R0]:
7393 // The operator function [...] is defined as deleted if [...] the
7394 // candidate selected by overload resolution is not a rewritten
7395 // candidate.
7396 if ((DCK == DefaultedComparisonKind::NotEqual ||
7397 DCK == DefaultedComparisonKind::Relational) &&
7398 !Best->RewriteKind) {
7399 if (Diagnose == ExplainDeleted) {
7400 S.Diag(Best->Function->getLocation(),
7401 diag::note_defaulted_comparison_not_rewritten_callee)
7402 << FD;
7403 }
7404 return Result::deleted();
7405 }
7406
7407 // Throughout C++2a [class.compare]: if overload resolution does not
7408 // result in a usable function, the candidate function is defined as
7409 // deleted. This requires that we selected an accessible function.
7410 //
7411 // Note that this only considers the access of the function when named
7412 // within the type of the subobject, and not the access path for any
7413 // derived-to-base conversion.
7414 CXXRecordDecl *ArgClass = Args[0]->getType()->getAsCXXRecordDecl();
7415 if (ArgClass && Best->FoundDecl.getDecl() &&
7416 Best->FoundDecl.getDecl()->isCXXClassMember()) {
7417 QualType ObjectType = Subobj.Kind == Subobject::Member
7418 ? Args[0]->getType()
7419 : S.Context.getRecordType(RD);
7420 if (!S.isMemberAccessibleForDeletion(
7421 ArgClass, Best->FoundDecl, ObjectType, Subobj.Loc,
7422 Diagnose == ExplainDeleted
7423 ? S.PDiag(diag::note_defaulted_comparison_inaccessible)
7424 << FD << Subobj.Kind << Subobj.Decl
7425 : S.PDiag()))
7426 return Result::deleted();
7427 }
7428
7429 // C++2a [class.compare.default]p3 [P2002R0]:
7430 // A defaulted comparison function is constexpr-compatible if [...]
7431 // no overlod resolution performed [...] results in a non-constexpr
7432 // function.
7433 if (FunctionDecl *BestFD = Best->Function) {
7434 assert(!BestFD->isDeleted() && "wrong overload resolution result")((!BestFD->isDeleted() && "wrong overload resolution result"
) ? static_cast<void> (0) : __assert_fail ("!BestFD->isDeleted() && \"wrong overload resolution result\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 7434, __PRETTY_FUNCTION__))
;
7435 // If it's not constexpr, explain why not.
7436 if (Diagnose == ExplainConstexpr && !BestFD->isConstexpr()) {
7437 if (Subobj.Kind != Subobject::CompleteObject)
7438 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_not_constexpr)
7439 << Subobj.Kind << Subobj.Decl;
7440 S.Diag(BestFD->getLocation(),
7441 diag::note_defaulted_comparison_not_constexpr_here);
7442 // Bail out after explaining; we don't want any more notes.
7443 return Result::deleted();
7444 }
7445 R.Constexpr &= BestFD->isConstexpr();
7446 }
7447
7448 if (OO == OO_Spaceship && FD->getReturnType()->isUndeducedAutoType()) {
7449 if (auto *BestFD = Best->Function) {
7450 // If any callee has an undeduced return type, deduce it now.
7451 // FIXME: It's not clear how a failure here should be handled. For
7452 // now, we produce an eager diagnostic, because that is forward
7453 // compatible with most (all?) other reasonable options.
7454 if (BestFD->getReturnType()->isUndeducedType() &&
7455 S.DeduceReturnType(BestFD, FD->getLocation(),
7456 /*Diagnose=*/false)) {
7457 // Don't produce a duplicate error when asked to explain why the
7458 // comparison is deleted: we diagnosed that when initially checking
7459 // the defaulted operator.
7460 if (Diagnose == NoDiagnostics) {
7461 S.Diag(
7462 FD->getLocation(),
7463 diag::err_defaulted_comparison_cannot_deduce_undeduced_auto)
7464 << Subobj.Kind << Subobj.Decl;
7465 S.Diag(
7466 Subobj.Loc,
7467 diag::note_defaulted_comparison_cannot_deduce_undeduced_auto)
7468 << Subobj.Kind << Subobj.Decl;
7469 S.Diag(BestFD->getLocation(),
7470 diag::note_defaulted_comparison_cannot_deduce_callee)
7471 << Subobj.Kind << Subobj.Decl;
7472 }
7473 return Result::deleted();
7474 }
7475 if (auto *Info = S.Context.CompCategories.lookupInfoForType(
7476 BestFD->getCallResultType())) {
7477 R.Category = Info->Kind;
7478 } else {
7479 if (Diagnose == ExplainDeleted) {
7480 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_cannot_deduce)
7481 << Subobj.Kind << Subobj.Decl
7482 << BestFD->getCallResultType().withoutLocalFastQualifiers();
7483 S.Diag(BestFD->getLocation(),
7484 diag::note_defaulted_comparison_cannot_deduce_callee)
7485 << Subobj.Kind << Subobj.Decl;
7486 }
7487 return Result::deleted();
7488 }
7489 } else {
7490 Optional<ComparisonCategoryType> Cat =
7491 getComparisonCategoryForBuiltinCmp(Args[0]->getType());
7492 assert(Cat && "no category for builtin comparison?")((Cat && "no category for builtin comparison?") ? static_cast
<void> (0) : __assert_fail ("Cat && \"no category for builtin comparison?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 7492, __PRETTY_FUNCTION__))
;
7493 R.Category = *Cat;
7494 }
7495 }
7496
7497 // Note that we might be rewriting to a different operator. That call is
7498 // not considered until we come to actually build the comparison function.
7499 break;
7500 }
7501
7502 case OR_Ambiguous:
7503 if (Diagnose == ExplainDeleted) {
7504 unsigned Kind = 0;
7505 if (FD->getOverloadedOperator() == OO_Spaceship && OO != OO_Spaceship)
7506 Kind = OO == OO_EqualEqual ? 1 : 2;
7507 CandidateSet.NoteCandidates(
7508 PartialDiagnosticAt(
7509 Subobj.Loc, S.PDiag(diag::note_defaulted_comparison_ambiguous)
7510 << FD << Kind << Subobj.Kind << Subobj.Decl),
7511 S, OCD_AmbiguousCandidates, Args);
7512 }
7513 R = Result::deleted();
7514 break;
7515
7516 case OR_Deleted:
7517 if (Diagnose == ExplainDeleted) {
7518 if ((DCK == DefaultedComparisonKind::NotEqual ||
7519 DCK == DefaultedComparisonKind::Relational) &&
7520 !Best->RewriteKind) {
7521 S.Diag(Best->Function->getLocation(),
7522 diag::note_defaulted_comparison_not_rewritten_callee)
7523 << FD;
7524 } else {
7525 S.Diag(Subobj.Loc,
7526 diag::note_defaulted_comparison_calls_deleted)
7527 << FD << Subobj.Kind << Subobj.Decl;
7528 S.NoteDeletedFunction(Best->Function);
7529 }
7530 }
7531 R = Result::deleted();
7532 break;
7533
7534 case OR_No_Viable_Function:
7535 // If there's no usable candidate, we're done unless we can rewrite a
7536 // '<=>' in terms of '==' and '<'.
7537 if (OO == OO_Spaceship &&
7538 S.Context.CompCategories.lookupInfoForType(FD->getReturnType())) {
7539 // For any kind of comparison category return type, we need a usable
7540 // '==' and a usable '<'.
7541 if (!R.add(visitBinaryOperator(OO_EqualEqual, Args, Subobj,
7542 &CandidateSet)))
7543 R.add(visitBinaryOperator(OO_Less, Args, Subobj, &CandidateSet));
7544 break;
7545 }
7546
7547 if (Diagnose == ExplainDeleted) {
7548 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_no_viable_function)
7549 << FD << Subobj.Kind << Subobj.Decl;
7550
7551 // For a three-way comparison, list both the candidates for the
7552 // original operator and the candidates for the synthesized operator.
7553 if (SpaceshipCandidates) {
7554 SpaceshipCandidates->NoteCandidates(
7555 S, Args,
7556 SpaceshipCandidates->CompleteCandidates(S, OCD_AllCandidates,
7557 Args, FD->getLocation()));
7558 S.Diag(Subobj.Loc,
7559 diag::note_defaulted_comparison_no_viable_function_synthesized)
7560 << (OO == OO_EqualEqual ? 0 : 1);
7561 }
7562
7563 CandidateSet.NoteCandidates(
7564 S, Args,
7565 CandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args,
7566 FD->getLocation()));
7567 }
7568 R = Result::deleted();
7569 break;
7570 }
7571
7572 return R;
7573 }
7574};
7575
7576/// A list of statements.
7577struct StmtListResult {
7578 bool IsInvalid = false;
7579 llvm::SmallVector<Stmt*, 16> Stmts;
7580
7581 bool add(const StmtResult &S) {
7582 IsInvalid |= S.isInvalid();
7583 if (IsInvalid)
7584 return true;
7585 Stmts.push_back(S.get());
7586 return false;
7587 }
7588};
7589
7590/// A visitor over the notional body of a defaulted comparison that synthesizes
7591/// the actual body.
7592class DefaultedComparisonSynthesizer
7593 : public DefaultedComparisonVisitor<DefaultedComparisonSynthesizer,
7594 StmtListResult, StmtResult,
7595 std::pair<ExprResult, ExprResult>> {
7596 SourceLocation Loc;
7597 unsigned ArrayDepth = 0;
7598
7599public:
7600 using Base = DefaultedComparisonVisitor;
7601 using ExprPair = std::pair<ExprResult, ExprResult>;
7602
7603 friend Base;
7604
7605 DefaultedComparisonSynthesizer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
7606 DefaultedComparisonKind DCK,
7607 SourceLocation BodyLoc)
7608 : Base(S, RD, FD, DCK), Loc(BodyLoc) {}
7609
7610 /// Build a suitable function body for this defaulted comparison operator.
7611 StmtResult build() {
7612 Sema::CompoundScopeRAII CompoundScope(S);
7613
7614 StmtListResult Stmts = visit();
7615 if (Stmts.IsInvalid)
7616 return StmtError();
7617
7618 ExprResult RetVal;
7619 switch (DCK) {
7620 case DefaultedComparisonKind::None:
7621 llvm_unreachable("not a defaulted comparison")::llvm::llvm_unreachable_internal("not a defaulted comparison"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 7621)
;
7622
7623 case DefaultedComparisonKind::Equal: {
7624 // C++2a [class.eq]p3:
7625 // [...] compar[e] the corresponding elements [...] until the first
7626 // index i where xi == yi yields [...] false. If no such index exists,
7627 // V is true. Otherwise, V is false.
7628 //
7629 // Join the comparisons with '&&'s and return the result. Use a right
7630 // fold (traversing the conditions right-to-left), because that
7631 // short-circuits more naturally.
7632 auto OldStmts = std::move(Stmts.Stmts);
7633 Stmts.Stmts.clear();
7634 ExprResult CmpSoFar;
7635 // Finish a particular comparison chain.
7636 auto FinishCmp = [&] {
7637 if (Expr *Prior = CmpSoFar.get()) {
7638 // Convert the last expression to 'return ...;'
7639 if (RetVal.isUnset() && Stmts.Stmts.empty())
7640 RetVal = CmpSoFar;
7641 // Convert any prior comparison to 'if (!(...)) return false;'
7642 else if (Stmts.add(buildIfNotCondReturnFalse(Prior)))
7643 return true;
7644 CmpSoFar = ExprResult();
7645 }
7646 return false;
7647 };
7648 for (Stmt *EAsStmt : llvm::reverse(OldStmts)) {
7649 Expr *E = dyn_cast<Expr>(EAsStmt);
7650 if (!E) {
7651 // Found an array comparison.
7652 if (FinishCmp() || Stmts.add(EAsStmt))
7653 return StmtError();
7654 continue;
7655 }
7656
7657 if (CmpSoFar.isUnset()) {
7658 CmpSoFar = E;
7659 continue;
7660 }
7661 CmpSoFar = S.CreateBuiltinBinOp(Loc, BO_LAnd, E, CmpSoFar.get());
7662 if (CmpSoFar.isInvalid())
7663 return StmtError();
7664 }
7665 if (FinishCmp())
7666 return StmtError();
7667 std::reverse(Stmts.Stmts.begin(), Stmts.Stmts.end());
7668 // If no such index exists, V is true.
7669 if (RetVal.isUnset())
7670 RetVal = S.ActOnCXXBoolLiteral(Loc, tok::kw_true);
7671 break;
7672 }
7673
7674 case DefaultedComparisonKind::ThreeWay: {
7675 // Per C++2a [class.spaceship]p3, as a fallback add:
7676 // return static_cast<R>(std::strong_ordering::equal);
7677 QualType StrongOrdering = S.CheckComparisonCategoryType(
7678 ComparisonCategoryType::StrongOrdering, Loc,
7679 Sema::ComparisonCategoryUsage::DefaultedOperator);
7680 if (StrongOrdering.isNull())
7681 return StmtError();
7682 VarDecl *EqualVD = S.Context.CompCategories.getInfoForType(StrongOrdering)
7683 .getValueInfo(ComparisonCategoryResult::Equal)
7684 ->VD;
7685 RetVal = getDecl(EqualVD);
7686 if (RetVal.isInvalid())
7687 return StmtError();
7688 RetVal = buildStaticCastToR(RetVal.get());
7689 break;
7690 }
7691
7692 case DefaultedComparisonKind::NotEqual:
7693 case DefaultedComparisonKind::Relational:
7694 RetVal = cast<Expr>(Stmts.Stmts.pop_back_val());
7695 break;
7696 }
7697
7698 // Build the final return statement.
7699 if (RetVal.isInvalid())
7700 return StmtError();
7701 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, RetVal.get());
7702 if (ReturnStmt.isInvalid())
7703 return StmtError();
7704 Stmts.Stmts.push_back(ReturnStmt.get());
7705
7706 return S.ActOnCompoundStmt(Loc, Loc, Stmts.Stmts, /*IsStmtExpr=*/false);
7707 }
7708
7709private:
7710 ExprResult getDecl(ValueDecl *VD) {
7711 return S.BuildDeclarationNameExpr(
7712 CXXScopeSpec(), DeclarationNameInfo(VD->getDeclName(), Loc), VD);
7713 }
7714
7715 ExprResult getParam(unsigned I) {
7716 ParmVarDecl *PD = FD->getParamDecl(I);
7717 return getDecl(PD);
7718 }
7719
7720 ExprPair getCompleteObject() {
7721 unsigned Param = 0;
7722 ExprResult LHS;
7723 if (isa<CXXMethodDecl>(FD)) {
7724 // LHS is '*this'.
7725 LHS = S.ActOnCXXThis(Loc);
7726 if (!LHS.isInvalid())
7727 LHS = S.CreateBuiltinUnaryOp(Loc, UO_Deref, LHS.get());
7728 } else {
7729 LHS = getParam(Param++);
7730 }
7731 ExprResult RHS = getParam(Param++);
7732 assert(Param == FD->getNumParams())((Param == FD->getNumParams()) ? static_cast<void> (
0) : __assert_fail ("Param == FD->getNumParams()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 7732, __PRETTY_FUNCTION__))
;
7733 return {LHS, RHS};
7734 }
7735
7736 ExprPair getBase(CXXBaseSpecifier *Base) {
7737 ExprPair Obj = getCompleteObject();
7738 if (Obj.first.isInvalid() || Obj.second.isInvalid())
7739 return {ExprError(), ExprError()};
7740 CXXCastPath Path = {Base};
7741 return {S.ImpCastExprToType(Obj.first.get(), Base->getType(),
7742 CK_DerivedToBase, VK_LValue, &Path),
7743 S.ImpCastExprToType(Obj.second.get(), Base->getType(),
7744 CK_DerivedToBase, VK_LValue, &Path)};
7745 }
7746
7747 ExprPair getField(FieldDecl *Field) {
7748 ExprPair Obj = getCompleteObject();
7749 if (Obj.first.isInvalid() || Obj.second.isInvalid())
7750 return {ExprError(), ExprError()};
7751
7752 DeclAccessPair Found = DeclAccessPair::make(Field, Field->getAccess());
7753 DeclarationNameInfo NameInfo(Field->getDeclName(), Loc);
7754 return {S.BuildFieldReferenceExpr(Obj.first.get(), /*IsArrow=*/false, Loc,
7755 CXXScopeSpec(), Field, Found, NameInfo),
7756 S.BuildFieldReferenceExpr(Obj.second.get(), /*IsArrow=*/false, Loc,
7757 CXXScopeSpec(), Field, Found, NameInfo)};
7758 }
7759
7760 // FIXME: When expanding a subobject, register a note in the code synthesis
7761 // stack to say which subobject we're comparing.
7762
7763 StmtResult buildIfNotCondReturnFalse(ExprResult Cond) {
7764 if (Cond.isInvalid())
7765 return StmtError();
7766
7767 ExprResult NotCond = S.CreateBuiltinUnaryOp(Loc, UO_LNot, Cond.get());
7768 if (NotCond.isInvalid())
7769 return StmtError();
7770
7771 ExprResult False = S.ActOnCXXBoolLiteral(Loc, tok::kw_false);
7772 assert(!False.isInvalid() && "should never fail")((!False.isInvalid() && "should never fail") ? static_cast
<void> (0) : __assert_fail ("!False.isInvalid() && \"should never fail\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 7772, __PRETTY_FUNCTION__))
;
7773 StmtResult ReturnFalse = S.BuildReturnStmt(Loc, False.get());
7774 if (ReturnFalse.isInvalid())
7775 return StmtError();
7776
7777 return S.ActOnIfStmt(Loc, false, nullptr,
7778 S.ActOnCondition(nullptr, Loc, NotCond.get(),
7779 Sema::ConditionKind::Boolean),
7780 ReturnFalse.get(), SourceLocation(), nullptr);
7781 }
7782
7783 StmtResult visitSubobjectArray(QualType Type, llvm::APInt Size,
7784 ExprPair Subobj) {
7785 QualType SizeType = S.Context.getSizeType();
7786 Size = Size.zextOrTrunc(S.Context.getTypeSize(SizeType));
7787
7788 // Build 'size_t i$n = 0'.
7789 IdentifierInfo *IterationVarName = nullptr;
7790 {
7791 SmallString<8> Str;
7792 llvm::raw_svector_ostream OS(Str);
7793 OS << "i" << ArrayDepth;
7794 IterationVarName = &S.Context.Idents.get(OS.str());
7795 }
7796 VarDecl *IterationVar = VarDecl::Create(
7797 S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType,
7798 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None);
7799 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7800 IterationVar->setInit(
7801 IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7802 Stmt *Init = new (S.Context) DeclStmt(DeclGroupRef(IterationVar), Loc, Loc);
7803
7804 auto IterRef = [&] {
7805 ExprResult Ref = S.BuildDeclarationNameExpr(
7806 CXXScopeSpec(), DeclarationNameInfo(IterationVarName, Loc),
7807 IterationVar);
7808 assert(!Ref.isInvalid() && "can't reference our own variable?")((!Ref.isInvalid() && "can't reference our own variable?"
) ? static_cast<void> (0) : __assert_fail ("!Ref.isInvalid() && \"can't reference our own variable?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 7808, __PRETTY_FUNCTION__))
;
7809 return Ref.get();
7810 };
7811
7812 // Build 'i$n != Size'.
7813 ExprResult Cond = S.CreateBuiltinBinOp(
7814 Loc, BO_NE, IterRef(),
7815 IntegerLiteral::Create(S.Context, Size, SizeType, Loc));
7816 assert(!Cond.isInvalid() && "should never fail")((!Cond.isInvalid() && "should never fail") ? static_cast
<void> (0) : __assert_fail ("!Cond.isInvalid() && \"should never fail\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 7816, __PRETTY_FUNCTION__))
;
7817
7818 // Build '++i$n'.
7819 ExprResult Inc = S.CreateBuiltinUnaryOp(Loc, UO_PreInc, IterRef());
7820 assert(!Inc.isInvalid() && "should never fail")((!Inc.isInvalid() && "should never fail") ? static_cast
<void> (0) : __assert_fail ("!Inc.isInvalid() && \"should never fail\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 7820, __PRETTY_FUNCTION__))
;
7821
7822 // Build 'a[i$n]' and 'b[i$n]'.
7823 auto Index = [&](ExprResult E) {
7824 if (E.isInvalid())
7825 return ExprError();
7826 return S.CreateBuiltinArraySubscriptExpr(E.get(), Loc, IterRef(), Loc);
7827 };
7828 Subobj.first = Index(Subobj.first);
7829 Subobj.second = Index(Subobj.second);
7830
7831 // Compare the array elements.
7832 ++ArrayDepth;
7833 StmtResult Substmt = visitSubobject(Type, Subobj);
7834 --ArrayDepth;
7835
7836 if (Substmt.isInvalid())
7837 return StmtError();
7838
7839 // For the inner level of an 'operator==', build 'if (!cmp) return false;'.
7840 // For outer levels or for an 'operator<=>' we already have a suitable
7841 // statement that returns as necessary.
7842 if (Expr *ElemCmp = dyn_cast<Expr>(Substmt.get())) {
7843 assert(DCK == DefaultedComparisonKind::Equal &&((DCK == DefaultedComparisonKind::Equal && "should have non-expression statement"
) ? static_cast<void> (0) : __assert_fail ("DCK == DefaultedComparisonKind::Equal && \"should have non-expression statement\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 7844, __PRETTY_FUNCTION__))
7844 "should have non-expression statement")((DCK == DefaultedComparisonKind::Equal && "should have non-expression statement"
) ? static_cast<void> (0) : __assert_fail ("DCK == DefaultedComparisonKind::Equal && \"should have non-expression statement\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 7844, __PRETTY_FUNCTION__))
;
7845 Substmt = buildIfNotCondReturnFalse(ElemCmp);
7846 if (Substmt.isInvalid())
7847 return StmtError();
7848 }
7849
7850 // Build 'for (...) ...'
7851 return S.ActOnForStmt(Loc, Loc, Init,
7852 S.ActOnCondition(nullptr, Loc, Cond.get(),
7853 Sema::ConditionKind::Boolean),
7854 S.MakeFullDiscardedValueExpr(Inc.get()), Loc,
7855 Substmt.get());
7856 }
7857
7858 StmtResult visitExpandedSubobject(QualType Type, ExprPair Obj) {
7859 if (Obj.first.isInvalid() || Obj.second.isInvalid())
7860 return StmtError();
7861
7862 OverloadedOperatorKind OO = FD->getOverloadedOperator();
7863 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(OO);
7864 ExprResult Op;
7865 if (Type->isOverloadableType())
7866 Op = S.CreateOverloadedBinOp(Loc, Opc, Fns, Obj.first.get(),
7867 Obj.second.get(), /*PerformADL=*/true,
7868 /*AllowRewrittenCandidates=*/true, FD);
7869 else
7870 Op = S.CreateBuiltinBinOp(Loc, Opc, Obj.first.get(), Obj.second.get());
7871 if (Op.isInvalid())
7872 return StmtError();
7873
7874 switch (DCK) {
7875 case DefaultedComparisonKind::None:
7876 llvm_unreachable("not a defaulted comparison")::llvm::llvm_unreachable_internal("not a defaulted comparison"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 7876)
;
7877
7878 case DefaultedComparisonKind::Equal:
7879 // Per C++2a [class.eq]p2, each comparison is individually contextually
7880 // converted to bool.
7881 Op = S.PerformContextuallyConvertToBool(Op.get());
7882 if (Op.isInvalid())
7883 return StmtError();
7884 return Op.get();
7885
7886 case DefaultedComparisonKind::ThreeWay: {
7887 // Per C++2a [class.spaceship]p3, form:
7888 // if (R cmp = static_cast<R>(op); cmp != 0)
7889 // return cmp;
7890 QualType R = FD->getReturnType();
7891 Op = buildStaticCastToR(Op.get());
7892 if (Op.isInvalid())
7893 return StmtError();
7894
7895 // R cmp = ...;
7896 IdentifierInfo *Name = &S.Context.Idents.get("cmp");
7897 VarDecl *VD =
7898 VarDecl::Create(S.Context, S.CurContext, Loc, Loc, Name, R,
7899 S.Context.getTrivialTypeSourceInfo(R, Loc), SC_None);
7900 S.AddInitializerToDecl(VD, Op.get(), /*DirectInit=*/false);
7901 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(VD), Loc, Loc);
7902
7903 // cmp != 0
7904 ExprResult VDRef = getDecl(VD);
7905 if (VDRef.isInvalid())
7906 return StmtError();
7907 llvm::APInt ZeroVal(S.Context.getIntWidth(S.Context.IntTy), 0);
7908 Expr *Zero =
7909 IntegerLiteral::Create(S.Context, ZeroVal, S.Context.IntTy, Loc);
7910 ExprResult Comp;
7911 if (VDRef.get()->getType()->isOverloadableType())
7912 Comp = S.CreateOverloadedBinOp(Loc, BO_NE, Fns, VDRef.get(), Zero, true,
7913 true, FD);
7914 else
7915 Comp = S.CreateBuiltinBinOp(Loc, BO_NE, VDRef.get(), Zero);
7916 if (Comp.isInvalid())
7917 return StmtError();
7918 Sema::ConditionResult Cond = S.ActOnCondition(
7919 nullptr, Loc, Comp.get(), Sema::ConditionKind::Boolean);
7920 if (Cond.isInvalid())
7921 return StmtError();
7922
7923 // return cmp;
7924 VDRef = getDecl(VD);
7925 if (VDRef.isInvalid())
7926 return StmtError();
7927 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, VDRef.get());
7928 if (ReturnStmt.isInvalid())
7929 return StmtError();
7930
7931 // if (...)
7932 return S.ActOnIfStmt(Loc, /*IsConstexpr=*/false, InitStmt, Cond,
7933 ReturnStmt.get(), /*ElseLoc=*/SourceLocation(),
7934 /*Else=*/nullptr);
7935 }
7936
7937 case DefaultedComparisonKind::NotEqual:
7938 case DefaultedComparisonKind::Relational:
7939 // C++2a [class.compare.secondary]p2:
7940 // Otherwise, the operator function yields x @ y.
7941 return Op.get();
7942 }
7943 llvm_unreachable("")::llvm::llvm_unreachable_internal("", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 7943)
;
7944 }
7945
7946 /// Build "static_cast<R>(E)".
7947 ExprResult buildStaticCastToR(Expr *E) {
7948 QualType R = FD->getReturnType();
7949 assert(!R->isUndeducedType() && "type should have been deduced already")((!R->isUndeducedType() && "type should have been deduced already"
) ? static_cast<void> (0) : __assert_fail ("!R->isUndeducedType() && \"type should have been deduced already\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 7949, __PRETTY_FUNCTION__))
;
7950
7951 // Don't bother forming a no-op cast in the common case.
7952 if (E->isRValue() && S.Context.hasSameType(E->getType(), R))
7953 return E;
7954 return S.BuildCXXNamedCast(Loc, tok::kw_static_cast,
7955 S.Context.getTrivialTypeSourceInfo(R, Loc), E,
7956 SourceRange(Loc, Loc), SourceRange(Loc, Loc));
7957 }
7958};
7959}
7960
7961/// Perform the unqualified lookups that might be needed to form a defaulted
7962/// comparison function for the given operator.
7963static void lookupOperatorsForDefaultedComparison(Sema &Self, Scope *S,
7964 UnresolvedSetImpl &Operators,
7965 OverloadedOperatorKind Op) {
7966 auto Lookup = [&](OverloadedOperatorKind OO) {
7967 Self.LookupOverloadedOperatorName(OO, S, QualType(), QualType(), Operators);
7968 };
7969
7970 // Every defaulted operator looks up itself.
7971 Lookup(Op);
7972 // ... and the rewritten form of itself, if any.
7973 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(Op))
7974 Lookup(ExtraOp);
7975
7976 // For 'operator<=>', we also form a 'cmp != 0' expression, and might
7977 // synthesize a three-way comparison from '<' and '=='. In a dependent
7978 // context, we also need to look up '==' in case we implicitly declare a
7979 // defaulted 'operator=='.
7980 if (Op == OO_Spaceship) {
7981 Lookup(OO_ExclaimEqual);
7982 Lookup(OO_Less);
7983 Lookup(OO_EqualEqual);
7984 }
7985}
7986
7987bool Sema::CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *FD,
7988 DefaultedComparisonKind DCK) {
7989 assert(DCK != DefaultedComparisonKind::None && "not a defaulted comparison")((DCK != DefaultedComparisonKind::None && "not a defaulted comparison"
) ? static_cast<void> (0) : __assert_fail ("DCK != DefaultedComparisonKind::None && \"not a defaulted comparison\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 7989, __PRETTY_FUNCTION__))
;
7990
7991 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext());
7992 assert(RD && "defaulted comparison is not defaulted in a class")((RD && "defaulted comparison is not defaulted in a class"
) ? static_cast<void> (0) : __assert_fail ("RD && \"defaulted comparison is not defaulted in a class\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 7992, __PRETTY_FUNCTION__))
;
7993
7994 // Perform any unqualified lookups we're going to need to default this
7995 // function.
7996 if (S) {
7997 UnresolvedSet<32> Operators;
7998 lookupOperatorsForDefaultedComparison(*this, S, Operators,
7999 FD->getOverloadedOperator());
8000 FD->setDefaultedFunctionInfo(FunctionDecl::DefaultedFunctionInfo::Create(
8001 Context, Operators.pairs()));
8002 }
8003
8004 // C++2a [class.compare.default]p1:
8005 // A defaulted comparison operator function for some class C shall be a
8006 // non-template function declared in the member-specification of C that is
8007 // -- a non-static const member of C having one parameter of type
8008 // const C&, or
8009 // -- a friend of C having two parameters of type const C& or two
8010 // parameters of type C.
8011 QualType ExpectedParmType1 = Context.getRecordType(RD);
8012 QualType ExpectedParmType2 =
8013 Context.getLValueReferenceType(ExpectedParmType1.withConst());
8014 if (isa<CXXMethodDecl>(FD))
8015 ExpectedParmType1 = ExpectedParmType2;
8016 for (const ParmVarDecl *Param : FD->parameters()) {
8017 if (!Param->getType()->isDependentType() &&
8018 !Context.hasSameType(Param->getType(), ExpectedParmType1) &&
8019 !Context.hasSameType(Param->getType(), ExpectedParmType2)) {
8020 // Don't diagnose an implicit 'operator=='; we will have diagnosed the
8021 // corresponding defaulted 'operator<=>' already.
8022 if (!FD->isImplicit()) {
8023 Diag(FD->getLocation(), diag::err_defaulted_comparison_param)
8024 << (int)DCK << Param->getType() << ExpectedParmType1
8025 << !isa<CXXMethodDecl>(FD)
8026 << ExpectedParmType2 << Param->getSourceRange();
8027 }
8028 return true;
8029 }
8030 }
8031 if (FD->getNumParams() == 2 &&
8032 !Context.hasSameType(FD->getParamDecl(0)->getType(),
8033 FD->getParamDecl(1)->getType())) {
8034 if (!FD->isImplicit()) {
8035 Diag(FD->getLocation(), diag::err_defaulted_comparison_param_mismatch)
8036 << (int)DCK
8037 << FD->getParamDecl(0)->getType()
8038 << FD->getParamDecl(0)->getSourceRange()
8039 << FD->getParamDecl(1)->getType()
8040 << FD->getParamDecl(1)->getSourceRange();
8041 }
8042 return true;
8043 }
8044
8045 // ... non-static const member ...
8046 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
8047 assert(!MD->isStatic() && "comparison function cannot be a static member")((!MD->isStatic() && "comparison function cannot be a static member"
) ? static_cast<void> (0) : __assert_fail ("!MD->isStatic() && \"comparison function cannot be a static member\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 8047, __PRETTY_FUNCTION__))
;
8048 if (!MD->isConst()) {
8049 SourceLocation InsertLoc;
8050 if (FunctionTypeLoc Loc = MD->getFunctionTypeLoc())
8051 InsertLoc = getLocForEndOfToken(Loc.getRParenLoc());
8052 // Don't diagnose an implicit 'operator=='; we will have diagnosed the
8053 // corresponding defaulted 'operator<=>' already.
8054 if (!MD->isImplicit()) {
8055 Diag(MD->getLocation(), diag::err_defaulted_comparison_non_const)
8056 << (int)DCK << FixItHint::CreateInsertion(InsertLoc, " const");
8057 }
8058
8059 // Add the 'const' to the type to recover.
8060 const auto *FPT = MD->getType()->castAs<FunctionProtoType>();
8061 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8062 EPI.TypeQuals.addConst();
8063 MD->setType(Context.getFunctionType(FPT->getReturnType(),
8064 FPT->getParamTypes(), EPI));
8065 }
8066 } else {
8067 // A non-member function declared in a class must be a friend.
8068 assert(FD->getFriendObjectKind() && "expected a friend declaration")((FD->getFriendObjectKind() && "expected a friend declaration"
) ? static_cast<void> (0) : __assert_fail ("FD->getFriendObjectKind() && \"expected a friend declaration\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 8068, __PRETTY_FUNCTION__))
;
8069 }
8070
8071 // C++2a [class.eq]p1, [class.rel]p1:
8072 // A [defaulted comparison other than <=>] shall have a declared return
8073 // type bool.
8074 if (DCK != DefaultedComparisonKind::ThreeWay &&
8075 !FD->getDeclaredReturnType()->isDependentType() &&
8076 !Context.hasSameType(FD->getDeclaredReturnType(), Context.BoolTy)) {
8077 Diag(FD->getLocation(), diag::err_defaulted_comparison_return_type_not_bool)
8078 << (int)DCK << FD->getDeclaredReturnType() << Context.BoolTy
8079 << FD->getReturnTypeSourceRange();
8080 return true;
8081 }
8082 // C++2a [class.spaceship]p2 [P2002R0]:
8083 // Let R be the declared return type [...]. If R is auto, [...]. Otherwise,
8084 // R shall not contain a placeholder type.
8085 if (DCK == DefaultedComparisonKind::ThreeWay &&
8086 FD->getDeclaredReturnType()->getContainedDeducedType() &&
8087 !Context.hasSameType(FD->getDeclaredReturnType(),
8088 Context.getAutoDeductType())) {
8089 Diag(FD->getLocation(),
8090 diag::err_defaulted_comparison_deduced_return_type_not_auto)
8091 << (int)DCK << FD->getDeclaredReturnType() << Context.AutoDeductTy
8092 << FD->getReturnTypeSourceRange();
8093 return true;
8094 }
8095
8096 // For a defaulted function in a dependent class, defer all remaining checks
8097 // until instantiation.
8098 if (RD->isDependentType())
8099 return false;
8100
8101 // Determine whether the function should be defined as deleted.
8102 DefaultedComparisonInfo Info =
8103 DefaultedComparisonAnalyzer(*this, RD, FD, DCK).visit();
8104
8105 bool First = FD == FD->getCanonicalDecl();
8106
8107 // If we want to delete the function, then do so; there's nothing else to
8108 // check in that case.
8109 if (Info.Deleted) {
8110 if (!First) {
8111 // C++11 [dcl.fct.def.default]p4:
8112 // [For a] user-provided explicitly-defaulted function [...] if such a
8113 // function is implicitly defined as deleted, the program is ill-formed.
8114 //
8115 // This is really just a consequence of the general rule that you can
8116 // only delete a function on its first declaration.
8117 Diag(FD->getLocation(), diag::err_non_first_default_compare_deletes)
8118 << FD->isImplicit() << (int)DCK;
8119 DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
8120 DefaultedComparisonAnalyzer::ExplainDeleted)
8121 .visit();
8122 return true;
8123 }
8124
8125 SetDeclDeleted(FD, FD->getLocation());
8126 if (!inTemplateInstantiation() && !FD->isImplicit()) {
8127 Diag(FD->getLocation(), diag::warn_defaulted_comparison_deleted)
8128 << (int)DCK;
8129 DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
8130 DefaultedComparisonAnalyzer::ExplainDeleted)
8131 .visit();
8132 }
8133 return false;
8134 }
8135
8136 // C++2a [class.spaceship]p2:
8137 // The return type is deduced as the common comparison type of R0, R1, ...
8138 if (DCK == DefaultedComparisonKind::ThreeWay &&
8139 FD->getDeclaredReturnType()->isUndeducedAutoType()) {
8140 SourceLocation RetLoc = FD->getReturnTypeSourceRange().getBegin();
8141 if (RetLoc.isInvalid())
8142 RetLoc = FD->getBeginLoc();
8143 // FIXME: Should we really care whether we have the complete type and the
8144 // 'enumerator' constants here? A forward declaration seems sufficient.
8145 QualType Cat = CheckComparisonCategoryType(
8146 Info.Category, RetLoc, ComparisonCategoryUsage::DefaultedOperator);
8147 if (Cat.isNull())
8148 return true;
8149 Context.adjustDeducedFunctionResultType(
8150 FD, SubstAutoType(FD->getDeclaredReturnType(), Cat));
8151 }
8152
8153 // C++2a [dcl.fct.def.default]p3 [P2002R0]:
8154 // An explicitly-defaulted function that is not defined as deleted may be
8155 // declared constexpr or consteval only if it is constexpr-compatible.
8156 // C++2a [class.compare.default]p3 [P2002R0]:
8157 // A defaulted comparison function is constexpr-compatible if it satisfies
8158 // the requirements for a constexpr function [...]
8159 // The only relevant requirements are that the parameter and return types are
8160 // literal types. The remaining conditions are checked by the analyzer.
8161 if (FD->isConstexpr()) {
8162 if (CheckConstexprReturnType(*this, FD, CheckConstexprKind::Diagnose) &&
8163 CheckConstexprParameterTypes(*this, FD, CheckConstexprKind::Diagnose) &&
8164 !Info.Constexpr) {
8165 Diag(FD->getBeginLoc(),
8166 diag::err_incorrect_defaulted_comparison_constexpr)
8167 << FD->isImplicit() << (int)DCK << FD->isConsteval();
8168 DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
8169 DefaultedComparisonAnalyzer::ExplainConstexpr)
8170 .visit();
8171 }
8172 }
8173
8174 // C++2a [dcl.fct.def.default]p3 [P2002R0]:
8175 // If a constexpr-compatible function is explicitly defaulted on its first
8176 // declaration, it is implicitly considered to be constexpr.
8177 // FIXME: Only applying this to the first declaration seems problematic, as
8178 // simple reorderings can affect the meaning of the program.
8179 if (First && !FD->isConstexpr() && Info.Constexpr)
8180 FD->setConstexprKind(CSK_constexpr);
8181
8182 // C++2a [except.spec]p3:
8183 // If a declaration of a function does not have a noexcept-specifier
8184 // [and] is defaulted on its first declaration, [...] the exception
8185 // specification is as specified below
8186 if (FD->getExceptionSpecType() == EST_None) {
8187 auto *FPT = FD->getType()->castAs<FunctionProtoType>();
8188 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8189 EPI.ExceptionSpec.Type = EST_Unevaluated;
8190 EPI.ExceptionSpec.SourceDecl = FD;
8191 FD->setType(Context.getFunctionType(FPT->getReturnType(),
8192 FPT->getParamTypes(), EPI));
8193 }
8194
8195 return false;
8196}
8197
8198void Sema::DeclareImplicitEqualityComparison(CXXRecordDecl *RD,
8199 FunctionDecl *Spaceship) {
8200 Sema::CodeSynthesisContext Ctx;
8201 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringImplicitEqualityComparison;
8202 Ctx.PointOfInstantiation = Spaceship->getEndLoc();
8203 Ctx.Entity = Spaceship;
8204 pushCodeSynthesisContext(Ctx);
8205
8206 if (FunctionDecl *EqualEqual = SubstSpaceshipAsEqualEqual(RD, Spaceship))
8207 EqualEqual->setImplicit();
8208
8209 popCodeSynthesisContext();
8210}
8211
8212void Sema::DefineDefaultedComparison(SourceLocation UseLoc, FunctionDecl *FD,
8213 DefaultedComparisonKind DCK) {
8214 assert(FD->isDefaulted() && !FD->isDeleted() &&((FD->isDefaulted() && !FD->isDeleted() &&
!FD->doesThisDeclarationHaveABody()) ? static_cast<void
> (0) : __assert_fail ("FD->isDefaulted() && !FD->isDeleted() && !FD->doesThisDeclarationHaveABody()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 8215, __PRETTY_FUNCTION__))
8215 !FD->doesThisDeclarationHaveABody())((FD->isDefaulted() && !FD->isDeleted() &&
!FD->doesThisDeclarationHaveABody()) ? static_cast<void
> (0) : __assert_fail ("FD->isDefaulted() && !FD->isDeleted() && !FD->doesThisDeclarationHaveABody()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 8215, __PRETTY_FUNCTION__))
;
8216 if (FD->willHaveBody() || FD->isInvalidDecl())
8217 return;
8218
8219 SynthesizedFunctionScope Scope(*this, FD);
8220
8221 // Add a context note for diagnostics produced after this point.
8222 Scope.addContextNote(UseLoc);
8223
8224 {
8225 // Build and set up the function body.
8226 CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent());
8227 SourceLocation BodyLoc =
8228 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation();
8229 StmtResult Body =
8230 DefaultedComparisonSynthesizer(*this, RD, FD, DCK, BodyLoc).build();
8231 if (Body.isInvalid()) {
8232 FD->setInvalidDecl();
8233 return;
8234 }
8235 FD->setBody(Body.get());
8236 FD->markUsed(Context);
8237 }
8238
8239 // The exception specification is needed because we are defining the
8240 // function. Note that this will reuse the body we just built.
8241 ResolveExceptionSpec(UseLoc, FD->getType()->castAs<FunctionProtoType>());
8242
8243 if (ASTMutationListener *L = getASTMutationListener())
8244 L->CompletedImplicitDefinition(FD);
8245}
8246
8247static Sema::ImplicitExceptionSpecification
8248ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc,
8249 FunctionDecl *FD,
8250 Sema::DefaultedComparisonKind DCK) {
8251 ComputingExceptionSpec CES(S, FD, Loc);
8252 Sema::ImplicitExceptionSpecification ExceptSpec(S);
8253
8254 if (FD->isInvalidDecl())
8255 return ExceptSpec;
8256
8257 // The common case is that we just defined the comparison function. In that
8258 // case, just look at whether the body can throw.
8259 if (FD->hasBody()) {
8260 ExceptSpec.CalledStmt(FD->getBody());
8261 } else {
8262 // Otherwise, build a body so we can check it. This should ideally only
8263 // happen when we're not actually marking the function referenced. (This is
8264 // only really important for efficiency: we don't want to build and throw
8265 // away bodies for comparison functions more than we strictly need to.)
8266
8267 // Pretend to synthesize the function body in an unevaluated context.
8268 // Note that we can't actually just go ahead and define the function here:
8269 // we are not permitted to mark its callees as referenced.
8270 Sema::SynthesizedFunctionScope Scope(S, FD);
8271 EnterExpressionEvaluationContext Context(
8272 S, Sema::ExpressionEvaluationContext::Unevaluated);
8273
8274 CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent());
8275 SourceLocation BodyLoc =
8276 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation();
8277 StmtResult Body =
8278 DefaultedComparisonSynthesizer(S, RD, FD, DCK, BodyLoc).build();
8279 if (!Body.isInvalid())
8280 ExceptSpec.CalledStmt(Body.get());
8281
8282 // FIXME: Can we hold onto this body and just transform it to potentially
8283 // evaluated when we're asked to define the function rather than rebuilding
8284 // it? Either that, or we should only build the bits of the body that we
8285 // need (the expressions, not the statements).
8286 }
8287
8288 return ExceptSpec;
8289}
8290
8291void Sema::CheckDelayedMemberExceptionSpecs() {
8292 decltype(DelayedOverridingExceptionSpecChecks) Overriding;
8293 decltype(DelayedEquivalentExceptionSpecChecks) Equivalent;
8294
8295 std::swap(Overriding, DelayedOverridingExceptionSpecChecks);
8296 std::swap(Equivalent, DelayedEquivalentExceptionSpecChecks);
8297
8298 // Perform any deferred checking of exception specifications for virtual
8299 // destructors.
8300 for (auto &Check : Overriding)
8301 CheckOverridingFunctionExceptionSpec(Check.first, Check.second);
8302
8303 // Perform any deferred checking of exception specifications for befriended
8304 // special members.
8305 for (auto &Check : Equivalent)
8306 CheckEquivalentExceptionSpec(Check.second, Check.first);
8307}
8308
8309namespace {
8310/// CRTP base class for visiting operations performed by a special member
8311/// function (or inherited constructor).
8312template<typename Derived>
8313struct SpecialMemberVisitor {
8314 Sema &S;
8315 CXXMethodDecl *MD;
8316 Sema::CXXSpecialMember CSM;
8317 Sema::InheritedConstructorInfo *ICI;
8318
8319 // Properties of the special member, computed for convenience.
8320 bool IsConstructor = false, IsAssignment = false, ConstArg = false;
8321
8322 SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
8323 Sema::InheritedConstructorInfo *ICI)
8324 : S(S), MD(MD), CSM(CSM), ICI(ICI) {
8325 switch (CSM) {
8326 case Sema::CXXDefaultConstructor:
8327 case Sema::CXXCopyConstructor:
8328 case Sema::CXXMoveConstructor:
8329 IsConstructor = true;
8330 break;
8331 case Sema::CXXCopyAssignment:
8332 case Sema::CXXMoveAssignment:
8333 IsAssignment = true;
8334 break;
8335 case Sema::CXXDestructor:
8336 break;
8337 case Sema::CXXInvalid:
8338 llvm_unreachable("invalid special member kind")::llvm::llvm_unreachable_internal("invalid special member kind"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 8338)
;
8339 }
8340
8341 if (MD->getNumParams()) {
8342 if (const ReferenceType *RT =
8343 MD->getParamDecl(0)->getType()->getAs<ReferenceType>())
8344 ConstArg = RT->getPointeeType().isConstQualified();
8345 }
8346 }
8347
8348 Derived &getDerived() { return static_cast<Derived&>(*this); }
8349
8350 /// Is this a "move" special member?
8351 bool isMove() const {
8352 return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment;
8353 }
8354
8355 /// Look up the corresponding special member in the given class.
8356 Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class,
8357 unsigned Quals, bool IsMutable) {
8358 return lookupCallFromSpecialMember(S, Class, CSM, Quals,
8359 ConstArg && !IsMutable);
8360 }
8361
8362 /// Look up the constructor for the specified base class to see if it's
8363 /// overridden due to this being an inherited constructor.
8364 Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) {
8365 if (!ICI)
8366 return {};
8367 assert(CSM == Sema::CXXDefaultConstructor)((CSM == Sema::CXXDefaultConstructor) ? static_cast<void>
(0) : __assert_fail ("CSM == Sema::CXXDefaultConstructor", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 8367, __PRETTY_FUNCTION__))
;
8368 auto *BaseCtor =
8369 cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor();
8370 if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first)
8371 return MD;
8372 return {};
8373 }
8374
8375 /// A base or member subobject.
8376 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
8377
8378 /// Get the location to use for a subobject in diagnostics.
8379 static SourceLocation getSubobjectLoc(Subobject Subobj) {
8380 // FIXME: For an indirect virtual base, the direct base leading to
8381 // the indirect virtual base would be a more useful choice.
8382 if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>())
8383 return B->getBaseTypeLoc();
8384 else
8385 return Subobj.get<FieldDecl*>()->getLocation();
8386 }
8387
8388 enum BasesToVisit {
8389 /// Visit all non-virtual (direct) bases.
8390 VisitNonVirtualBases,
8391 /// Visit all direct bases, virtual or not.
8392 VisitDirectBases,
8393 /// Visit all non-virtual bases, and all virtual bases if the class
8394 /// is not abstract.
8395 VisitPotentiallyConstructedBases,
8396 /// Visit all direct or virtual bases.
8397 VisitAllBases
8398 };
8399
8400 // Visit the bases and members of the class.
8401 bool visit(BasesToVisit Bases) {
8402 CXXRecordDecl *RD = MD->getParent();
8403
8404 if (Bases == VisitPotentiallyConstructedBases)
8405 Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases;
8406
8407 for (auto &B : RD->bases())
8408 if ((Bases == VisitDirectBases || !B.isVirtual()) &&
8409 getDerived().visitBase(&B))
8410 return true;
8411
8412 if (Bases == VisitAllBases)
8413 for (auto &B : RD->vbases())
8414 if (getDerived().visitBase(&B))
8415 return true;
8416
8417 for (auto *F : RD->fields())
8418 if (!F->isInvalidDecl() && !F->isUnnamedBitfield() &&
8419 getDerived().visitField(F))
8420 return true;
8421
8422 return false;
8423 }
8424};
8425}
8426
8427namespace {
8428struct SpecialMemberDeletionInfo
8429 : SpecialMemberVisitor<SpecialMemberDeletionInfo> {
8430 bool Diagnose;
8431
8432 SourceLocation Loc;
8433
8434 bool AllFieldsAreConst;
8435
8436 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
8437 Sema::CXXSpecialMember CSM,
8438 Sema::InheritedConstructorInfo *ICI, bool Diagnose)
8439 : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose),
8440 Loc(MD->getLocation()), AllFieldsAreConst(true) {}
8441
8442 bool inUnion() const { return MD->getParent()->isUnion(); }
8443
8444 Sema::CXXSpecialMember getEffectiveCSM() {
8445 return ICI ? Sema::CXXInvalid : CSM;
8446 }
8447
8448 bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType);
8449
8450 bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); }
8451 bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); }
8452
8453 bool shouldDeleteForBase(CXXBaseSpecifier *Base);
8454 bool shouldDeleteForField(FieldDecl *FD);
8455 bool shouldDeleteForAllConstMembers();
8456
8457 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
8458 unsigned Quals);
8459 bool shouldDeleteForSubobjectCall(Subobject Subobj,
8460 Sema::SpecialMemberOverloadResult SMOR,
8461 bool IsDtorCallInCtor);
8462
8463 bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
8464};
8465}
8466
8467/// Is the given special member inaccessible when used on the given
8468/// sub-object.
8469bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
8470 CXXMethodDecl *target) {
8471 /// If we're operating on a base class, the object type is the
8472 /// type of this special member.
8473 QualType objectTy;
8474 AccessSpecifier access = target->getAccess();
8475 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
8476 objectTy = S.Context.getTypeDeclType(MD->getParent());
8477 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
8478
8479 // If we're operating on a field, the object type is the type of the field.
8480 } else {
8481 objectTy = S.Context.getTypeDeclType(target->getParent());
8482 }
8483
8484 return S.isMemberAccessibleForDeletion(
8485 target->getParent(), DeclAccessPair::make(target, access), objectTy);
8486}
8487
8488/// Check whether we should delete a special member due to the implicit
8489/// definition containing a call to a special member of a subobject.
8490bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
8491 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR,
8492 bool IsDtorCallInCtor) {
8493 CXXMethodDecl *Decl = SMOR.getMethod();
8494 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
8495
8496 int DiagKind = -1;
8497
8498 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
8499 DiagKind = !Decl ? 0 : 1;
8500 else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
8501 DiagKind = 2;
8502 else if (!isAccessible(Subobj, Decl))
8503 DiagKind = 3;
8504 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
8505 !Decl->isTrivial()) {
8506 // A member of a union must have a trivial corresponding special member.
8507 // As a weird special case, a destructor call from a union's constructor
8508 // must be accessible and non-deleted, but need not be trivial. Such a
8509 // destructor is never actually called, but is semantically checked as
8510 // if it were.
8511 DiagKind = 4;
8512 }
8513
8514 if (DiagKind == -1)
8515 return false;
8516
8517 if (Diagnose) {
8518 if (Field) {
8519 S.Diag(Field->getLocation(),
8520 diag::note_deleted_special_member_class_subobject)
8521 << getEffectiveCSM() << MD->getParent() << /*IsField*/true
8522 << Field << DiagKind << IsDtorCallInCtor << /*IsObjCPtr*/false;
8523 } else {
8524 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
8525 S.Diag(Base->getBeginLoc(),
8526 diag::note_deleted_special_member_class_subobject)
8527 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false
8528 << Base->getType() << DiagKind << IsDtorCallInCtor
8529 << /*IsObjCPtr*/false;
8530 }
8531
8532 if (DiagKind == 1)
8533 S.NoteDeletedFunction(Decl);
8534 // FIXME: Explain inaccessibility if DiagKind == 3.
8535 }
8536
8537 return true;
8538}
8539
8540/// Check whether we should delete a special member function due to having a
8541/// direct or virtual base class or non-static data member of class type M.
8542bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
8543 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
8544 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
8545 bool IsMutable = Field && Field->isMutable();
8546
8547 // C++11 [class.ctor]p5:
8548 // -- any direct or virtual base class, or non-static data member with no
8549 // brace-or-equal-initializer, has class type M (or array thereof) and
8550 // either M has no default constructor or overload resolution as applied
8551 // to M's default constructor results in an ambiguity or in a function
8552 // that is deleted or inaccessible
8553 // C++11 [class.copy]p11, C++11 [class.copy]p23:
8554 // -- a direct or virtual base class B that cannot be copied/moved because
8555 // overload resolution, as applied to B's corresponding special member,
8556 // results in an ambiguity or a function that is deleted or inaccessible
8557 // from the defaulted special member
8558 // C++11 [class.dtor]p5:
8559 // -- any direct or virtual base class [...] has a type with a destructor
8560 // that is deleted or inaccessible
8561 if (!(CSM == Sema::CXXDefaultConstructor &&
8562 Field && Field->hasInClassInitializer()) &&
8563 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable),
8564 false))
8565 return true;
8566
8567 // C++11 [class.ctor]p5, C++11 [class.copy]p11:
8568 // -- any direct or virtual base class or non-static data member has a
8569 // type with a destructor that is deleted or inaccessible
8570 if (IsConstructor) {
8571 Sema::SpecialMemberOverloadResult SMOR =
8572 S.LookupSpecialMember(Class, Sema::CXXDestructor,
8573 false, false, false, false, false);
8574 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
8575 return true;
8576 }
8577
8578 return false;
8579}
8580
8581bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember(
8582 FieldDecl *FD, QualType FieldType) {
8583 // The defaulted special functions are defined as deleted if this is a variant
8584 // member with a non-trivial ownership type, e.g., ObjC __strong or __weak
8585 // type under ARC.
8586 if (!FieldType.hasNonTrivialObjCLifetime())
8587 return false;
8588
8589 // Don't make the defaulted default constructor defined as deleted if the
8590 // member has an in-class initializer.
8591 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer())
8592 return false;
8593
8594 if (Diagnose) {
8595 auto *ParentClass = cast<CXXRecordDecl>(FD->getParent());
8596 S.Diag(FD->getLocation(),
8597 diag::note_deleted_special_member_class_subobject)
8598 << getEffectiveCSM() << ParentClass << /*IsField*/true
8599 << FD << 4 << /*IsDtorCallInCtor*/false << /*IsObjCPtr*/true;
8600 }
8601
8602 return true;
8603}
8604
8605/// Check whether we should delete a special member function due to the class
8606/// having a particular direct or virtual base class.
8607bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
8608 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
8609 // If program is correct, BaseClass cannot be null, but if it is, the error
8610 // must be reported elsewhere.
8611 if (!BaseClass)
8612 return false;
8613 // If we have an inheriting constructor, check whether we're calling an
8614 // inherited constructor instead of a default constructor.
8615 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
8616 if (auto *BaseCtor = SMOR.getMethod()) {
8617 // Note that we do not check access along this path; other than that,
8618 // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false);
8619 // FIXME: Check that the base has a usable destructor! Sink this into
8620 // shouldDeleteForClassSubobject.
8621 if (BaseCtor->isDeleted() && Diagnose) {
8622 S.Diag(Base->getBeginLoc(),
8623 diag::note_deleted_special_member_class_subobject)
8624 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false
8625 << Base->getType() << /*Deleted*/ 1 << /*IsDtorCallInCtor*/ false
8626 << /*IsObjCPtr*/false;
8627 S.NoteDeletedFunction(BaseCtor);
8628 }
8629 return BaseCtor->isDeleted();
8630 }
8631 return shouldDeleteForClassSubobject(BaseClass, Base, 0);
8632}
8633
8634/// Check whether we should delete a special member function due to the class
8635/// having a particular non-static data member.
8636bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
8637 QualType FieldType = S.Context.getBaseElementType(FD->getType());
8638 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
8639
8640 if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType))
8641 return true;
8642
8643 if (CSM == Sema::CXXDefaultConstructor) {
8644 // For a default constructor, all references must be initialized in-class
8645 // and, if a union, it must have a non-const member.
8646 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
8647 if (Diagnose)
8648 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
8649 << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0;
8650 return true;
8651 }
8652 // C++11 [class.ctor]p5: any non-variant non-static data member of
8653 // const-qualified type (or array thereof) with no
8654 // brace-or-equal-initializer does not have a user-provided default
8655 // constructor.
8656 if (!inUnion() && FieldType.isConstQualified() &&
8657 !FD->hasInClassInitializer() &&
8658 (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
8659 if (Diagnose)
8660 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
8661 << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1;
8662 return true;
8663 }
8664
8665 if (inUnion() && !FieldType.isConstQualified())
8666 AllFieldsAreConst = false;
8667 } else if (CSM == Sema::CXXCopyConstructor) {
8668 // For a copy constructor, data members must not be of rvalue reference
8669 // type.
8670 if (FieldType->isRValueReferenceType()) {
8671 if (Diagnose)
8672 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
8673 << MD->getParent() << FD << FieldType;
8674 return true;
8675 }
8676 } else if (IsAssignment) {
8677 // For an assignment operator, data members must not be of reference type.
8678 if (FieldType->isReferenceType()) {
8679 if (Diagnose)
8680 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
8681 << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0;
8682 return true;
8683 }
8684 if (!FieldRecord && FieldType.isConstQualified()) {
8685 // C++11 [class.copy]p23:
8686 // -- a non-static data member of const non-class type (or array thereof)
8687 if (Diagnose)
8688 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
8689 << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1;
8690 return true;
8691 }
8692 }
8693
8694 if (FieldRecord) {
8695 // Some additional restrictions exist on the variant members.
8696 if (!inUnion() && FieldRecord->isUnion() &&
8697 FieldRecord->isAnonymousStructOrUnion()) {
8698 bool AllVariantFieldsAreConst = true;
8699
8700 // FIXME: Handle anonymous unions declared within anonymous unions.
8701 for (auto *UI : FieldRecord->fields()) {
8702 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
8703
8704 if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType))
8705 return true;
8706
8707 if (!UnionFieldType.isConstQualified())
8708 AllVariantFieldsAreConst = false;
8709
8710 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
8711 if (UnionFieldRecord &&
8712 shouldDeleteForClassSubobject(UnionFieldRecord, UI,
8713 UnionFieldType.getCVRQualifiers()))
8714 return true;
8715 }
8716
8717 // At least one member in each anonymous union must be non-const
8718 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
8719 !FieldRecord->field_empty()) {
8720 if (Diagnose)
8721 S.Diag(FieldRecord->getLocation(),
8722 diag::note_deleted_default_ctor_all_const)
8723 << !!ICI << MD->getParent() << /*anonymous union*/1;
8724 return true;
8725 }
8726
8727 // Don't check the implicit member of the anonymous union type.
8728 // This is technically non-conformant, but sanity demands it.
8729 return false;
8730 }
8731
8732 if (shouldDeleteForClassSubobject(FieldRecord, FD,
8733 FieldType.getCVRQualifiers()))
8734 return true;
8735 }
8736
8737 return false;
8738}
8739
8740/// C++11 [class.ctor] p5:
8741/// A defaulted default constructor for a class X is defined as deleted if
8742/// X is a union and all of its variant members are of const-qualified type.
8743bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
8744 // This is a silly definition, because it gives an empty union a deleted
8745 // default constructor. Don't do that.
8746 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) {
8747 bool AnyFields = false;
8748 for (auto *F : MD->getParent()->fields())
8749 if ((AnyFields = !F->isUnnamedBitfield()))
8750 break;
8751 if (!AnyFields)
8752 return false;
8753 if (Diagnose)
8754 S.Diag(MD->getParent()->getLocation(),
8755 diag::note_deleted_default_ctor_all_const)
8756 << !!ICI << MD->getParent() << /*not anonymous union*/0;
8757 return true;
8758 }
8759 return false;
8760}
8761
8762/// Determine whether a defaulted special member function should be defined as
8763/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
8764/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
8765bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
8766 InheritedConstructorInfo *ICI,
8767 bool Diagnose) {
8768 if (MD->isInvalidDecl())
8769 return false;
8770 CXXRecordDecl *RD = MD->getParent();
8771 assert(!RD->isDependentType() && "do deletion after instantiation")((!RD->isDependentType() && "do deletion after instantiation"
) ? static_cast<void> (0) : __assert_fail ("!RD->isDependentType() && \"do deletion after instantiation\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 8771, __PRETTY_FUNCTION__))
;
8772 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
8773 return false;
8774
8775 // C++11 [expr.lambda.prim]p19:
8776 // The closure type associated with a lambda-expression has a
8777 // deleted (8.4.3) default constructor and a deleted copy
8778 // assignment operator.
8779 // C++2a adds back these operators if the lambda has no lambda-capture.
8780 if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() &&
8781 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
8782 if (Diagnose)
8783 Diag(RD->getLocation(), diag::note_lambda_decl);
8784 return true;
8785 }
8786
8787 // For an anonymous struct or union, the copy and assignment special members
8788 // will never be used, so skip the check. For an anonymous union declared at
8789 // namespace scope, the constructor and destructor are used.
8790 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
8791 RD->isAnonymousStructOrUnion())
8792 return false;
8793
8794 // C++11 [class.copy]p7, p18:
8795 // If the class definition declares a move constructor or move assignment
8796 // operator, an implicitly declared copy constructor or copy assignment
8797 // operator is defined as deleted.
8798 if (MD->isImplicit() &&
8799 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
8800 CXXMethodDecl *UserDeclaredMove = nullptr;
8801
8802 // In Microsoft mode up to MSVC 2013, a user-declared move only causes the
8803 // deletion of the corresponding copy operation, not both copy operations.
8804 // MSVC 2015 has adopted the standards conforming behavior.
8805 bool DeletesOnlyMatchingCopy =
8806 getLangOpts().MSVCCompat &&
8807 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015);
8808
8809 if (RD->hasUserDeclaredMoveConstructor() &&
8810 (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) {
8811 if (!Diagnose) return true;
8812
8813 // Find any user-declared move constructor.
8814 for (auto *I : RD->ctors()) {
8815 if (I->isMoveConstructor()) {
8816 UserDeclaredMove = I;
8817 break;
8818 }
8819 }
8820 assert(UserDeclaredMove)((UserDeclaredMove) ? static_cast<void> (0) : __assert_fail
("UserDeclaredMove", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 8820, __PRETTY_FUNCTION__))
;
8821 } else if (RD->hasUserDeclaredMoveAssignment() &&
8822 (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) {
8823 if (!Diagnose) return true;
8824
8825 // Find any user-declared move assignment operator.
8826 for (auto *I : RD->methods()) {
8827 if (I->isMoveAssignmentOperator()) {
8828 UserDeclaredMove = I;
8829 break;
8830 }
8831 }
8832 assert(UserDeclaredMove)((UserDeclaredMove) ? static_cast<void> (0) : __assert_fail
("UserDeclaredMove", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 8832, __PRETTY_FUNCTION__))
;
8833 }
8834
8835 if (UserDeclaredMove) {
8836 Diag(UserDeclaredMove->getLocation(),
8837 diag::note_deleted_copy_user_declared_move)
8838 << (CSM == CXXCopyAssignment) << RD
8839 << UserDeclaredMove->isMoveAssignmentOperator();
8840 return true;
8841 }
8842 }
8843
8844 // Do access control from the special member function
8845 ContextRAII MethodContext(*this, MD);
8846
8847 // C++11 [class.dtor]p5:
8848 // -- for a virtual destructor, lookup of the non-array deallocation function
8849 // results in an ambiguity or in a function that is deleted or inaccessible
8850 if (CSM == CXXDestructor && MD->isVirtual()) {
8851 FunctionDecl *OperatorDelete = nullptr;
8852 DeclarationName Name =
8853 Context.DeclarationNames.getCXXOperatorName(OO_Delete);
8854 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
8855 OperatorDelete, /*Diagnose*/false)) {
8856 if (Diagnose)
8857 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
8858 return true;
8859 }
8860 }
8861
8862 SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose);
8863
8864 // Per DR1611, do not consider virtual bases of constructors of abstract
8865 // classes, since we are not going to construct them.
8866 // Per DR1658, do not consider virtual bases of destructors of abstract
8867 // classes either.
8868 // Per DR2180, for assignment operators we only assign (and thus only
8869 // consider) direct bases.
8870 if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases
8871 : SMI.VisitPotentiallyConstructedBases))
8872 return true;
8873
8874 if (SMI.shouldDeleteForAllConstMembers())
8875 return true;
8876
8877 if (getLangOpts().CUDA) {
8878 // We should delete the special member in CUDA mode if target inference
8879 // failed.
8880 // For inherited constructors (non-null ICI), CSM may be passed so that MD
8881 // is treated as certain special member, which may not reflect what special
8882 // member MD really is. However inferCUDATargetForImplicitSpecialMember
8883 // expects CSM to match MD, therefore recalculate CSM.
8884 assert(ICI || CSM == getSpecialMember(MD))((ICI || CSM == getSpecialMember(MD)) ? static_cast<void>
(0) : __assert_fail ("ICI || CSM == getSpecialMember(MD)", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 8884, __PRETTY_FUNCTION__))
;
8885 auto RealCSM = CSM;
8886 if (ICI)
8887 RealCSM = getSpecialMember(MD);
8888
8889 return inferCUDATargetForImplicitSpecialMember(RD, RealCSM, MD,
8890 SMI.ConstArg, Diagnose);
8891 }
8892
8893 return false;
8894}
8895
8896void Sema::DiagnoseDeletedDefaultedFunction(FunctionDecl *FD) {
8897 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD);
8898 assert(DFK && "not a defaultable function")((DFK && "not a defaultable function") ? static_cast<
void> (0) : __assert_fail ("DFK && \"not a defaultable function\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 8898, __PRETTY_FUNCTION__))
;
8899 assert(FD->isDefaulted() && FD->isDeleted() && "not defaulted and deleted")((FD->isDefaulted() && FD->isDeleted() &&
"not defaulted and deleted") ? static_cast<void> (0) :
__assert_fail ("FD->isDefaulted() && FD->isDeleted() && \"not defaulted and deleted\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 8899, __PRETTY_FUNCTION__))
;
8900
8901 if (DFK.isSpecialMember()) {
8902 ShouldDeleteSpecialMember(cast<CXXMethodDecl>(FD), DFK.asSpecialMember(),
8903 nullptr, /*Diagnose=*/true);
8904 } else {
8905 DefaultedComparisonAnalyzer(
8906 *this, cast<CXXRecordDecl>(FD->getLexicalDeclContext()), FD,
8907 DFK.asComparison(), DefaultedComparisonAnalyzer::ExplainDeleted)
8908 .visit();
8909 }
8910}
8911
8912/// Perform lookup for a special member of the specified kind, and determine
8913/// whether it is trivial. If the triviality can be determined without the
8914/// lookup, skip it. This is intended for use when determining whether a
8915/// special member of a containing object is trivial, and thus does not ever
8916/// perform overload resolution for default constructors.
8917///
8918/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
8919/// member that was most likely to be intended to be trivial, if any.
8920///
8921/// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to
8922/// determine whether the special member is trivial.
8923static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
8924 Sema::CXXSpecialMember CSM, unsigned Quals,
8925 bool ConstRHS,
8926 Sema::TrivialABIHandling TAH,
8927 CXXMethodDecl **Selected) {
8928 if (Selected)
8929 *Selected = nullptr;
8930
8931 switch (CSM) {
8932 case Sema::CXXInvalid:
8933 llvm_unreachable("not a special member")::llvm::llvm_unreachable_internal("not a special member", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 8933)
;
8934
8935 case Sema::CXXDefaultConstructor:
8936 // C++11 [class.ctor]p5:
8937 // A default constructor is trivial if:
8938 // - all the [direct subobjects] have trivial default constructors
8939 //
8940 // Note, no overload resolution is performed in this case.
8941 if (RD->hasTrivialDefaultConstructor())
8942 return true;
8943
8944 if (Selected) {
8945 // If there's a default constructor which could have been trivial, dig it
8946 // out. Otherwise, if there's any user-provided default constructor, point
8947 // to that as an example of why there's not a trivial one.
8948 CXXConstructorDecl *DefCtor = nullptr;
8949 if (RD->needsImplicitDefaultConstructor())
8950 S.DeclareImplicitDefaultConstructor(RD);
8951 for (auto *CI : RD->ctors()) {
8952 if (!CI->isDefaultConstructor())
8953 continue;
8954 DefCtor = CI;
8955 if (!DefCtor->isUserProvided())
8956 break;
8957 }
8958
8959 *Selected = DefCtor;
8960 }
8961
8962 return false;
8963
8964 case Sema::CXXDestructor:
8965 // C++11 [class.dtor]p5:
8966 // A destructor is trivial if:
8967 // - all the direct [subobjects] have trivial destructors
8968 if (RD->hasTrivialDestructor() ||
8969 (TAH == Sema::TAH_ConsiderTrivialABI &&
8970 RD->hasTrivialDestructorForCall()))
8971 return true;
8972
8973 if (Selected) {
8974 if (RD->needsImplicitDestructor())
8975 S.DeclareImplicitDestructor(RD);
8976 *Selected = RD->getDestructor();
8977 }
8978
8979 return false;
8980
8981 case Sema::CXXCopyConstructor:
8982 // C++11 [class.copy]p12:
8983 // A copy constructor is trivial if:
8984 // - the constructor selected to copy each direct [subobject] is trivial
8985 if (RD->hasTrivialCopyConstructor() ||
8986 (TAH == Sema::TAH_ConsiderTrivialABI &&
8987 RD->hasTrivialCopyConstructorForCall())) {
8988 if (Quals == Qualifiers::Const)
8989 // We must either select the trivial copy constructor or reach an
8990 // ambiguity; no need to actually perform overload resolution.
8991 return true;
8992 } else if (!Selected) {
8993 return false;
8994 }
8995 // In C++98, we are not supposed to perform overload resolution here, but we
8996 // treat that as a language defect, as suggested on cxx-abi-dev, to treat
8997 // cases like B as having a non-trivial copy constructor:
8998 // struct A { template<typename T> A(T&); };
8999 // struct B { mutable A a; };
9000 goto NeedOverloadResolution;
9001
9002 case Sema::CXXCopyAssignment:
9003 // C++11 [class.copy]p25:
9004 // A copy assignment operator is trivial if:
9005 // - the assignment operator selected to copy each direct [subobject] is
9006 // trivial
9007 if (RD->hasTrivialCopyAssignment()) {
9008 if (Quals == Qualifiers::Const)
9009 return true;
9010 } else if (!Selected) {
9011 return false;
9012 }
9013 // In C++98, we are not supposed to perform overload resolution here, but we
9014 // treat that as a language defect.
9015 goto NeedOverloadResolution;
9016
9017 case Sema::CXXMoveConstructor:
9018 case Sema::CXXMoveAssignment:
9019 NeedOverloadResolution:
9020 Sema::SpecialMemberOverloadResult SMOR =
9021 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS);
9022
9023 // The standard doesn't describe how to behave if the lookup is ambiguous.
9024 // We treat it as not making the member non-trivial, just like the standard
9025 // mandates for the default constructor. This should rarely matter, because
9026 // the member will also be deleted.
9027 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
9028 return true;
9029
9030 if (!SMOR.getMethod()) {
9031 assert(SMOR.getKind() ==((SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted
) ? static_cast<void> (0) : __assert_fail ("SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 9032, __PRETTY_FUNCTION__))
9032 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)((SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted
) ? static_cast<void> (0) : __assert_fail ("SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 9032, __PRETTY_FUNCTION__))
;
9033 return false;
9034 }
9035
9036 // We deliberately don't check if we found a deleted special member. We're
9037 // not supposed to!
9038 if (Selected)
9039 *Selected = SMOR.getMethod();
9040
9041 if (TAH == Sema::TAH_ConsiderTrivialABI &&
9042 (CSM == Sema::CXXCopyConstructor || CSM == Sema::CXXMoveConstructor))
9043 return SMOR.getMethod()->isTrivialForCall();
9044 return SMOR.getMethod()->isTrivial();
9045 }
9046
9047 llvm_unreachable("unknown special method kind")::llvm::llvm_unreachable_internal("unknown special method kind"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 9047)
;
9048}
9049
9050static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
9051 for (auto *CI : RD->ctors())
9052 if (!CI->isImplicit())
9053 return CI;
9054
9055 // Look for constructor templates.
9056 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
9057 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
9058 if (CXXConstructorDecl *CD =
9059 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
9060 return CD;
9061 }
9062
9063 return nullptr;
9064}
9065
9066/// The kind of subobject we are checking for triviality. The values of this
9067/// enumeration are used in diagnostics.
9068enum TrivialSubobjectKind {
9069 /// The subobject is a base class.
9070 TSK_BaseClass,
9071 /// The subobject is a non-static data member.
9072 TSK_Field,
9073 /// The object is actually the complete object.
9074 TSK_CompleteObject
9075};
9076
9077/// Check whether the special member selected for a given type would be trivial.
9078static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
9079 QualType SubType, bool ConstRHS,
9080 Sema::CXXSpecialMember CSM,
9081 TrivialSubobjectKind Kind,
9082 Sema::TrivialABIHandling TAH, bool Diagnose) {
9083 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
9084 if (!SubRD)
9085 return true;
9086
9087 CXXMethodDecl *Selected;
9088 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
9089 ConstRHS, TAH, Diagnose ? &Selected : nullptr))
9090 return true;
9091
9092 if (Diagnose) {
9093 if (ConstRHS)
9094 SubType.addConst();
9095
9096 if (!Selected && CSM == Sema::CXXDefaultConstructor) {
9097 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
9098 << Kind << SubType.getUnqualifiedType();
9099 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
9100 S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
9101 } else if (!Selected)
9102 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
9103 << Kind << SubType.getUnqualifiedType() << CSM << SubType;
9104 else if (Selected->isUserProvided()) {
9105 if (Kind == TSK_CompleteObject)
9106 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
9107 << Kind << SubType.getUnqualifiedType() << CSM;
9108 else {
9109 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
9110 << Kind << SubType.getUnqualifiedType() << CSM;
9111 S.Diag(Selected->getLocation(), diag::note_declared_at);
9112 }
9113 } else {
9114 if (Kind != TSK_CompleteObject)
9115 S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
9116 << Kind << SubType.getUnqualifiedType() << CSM;
9117
9118 // Explain why the defaulted or deleted special member isn't trivial.
9119 S.SpecialMemberIsTrivial(Selected, CSM, Sema::TAH_IgnoreTrivialABI,
9120 Diagnose);
9121 }
9122 }
9123
9124 return false;
9125}
9126
9127/// Check whether the members of a class type allow a special member to be
9128/// trivial.
9129static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
9130 Sema::CXXSpecialMember CSM,
9131 bool ConstArg,
9132 Sema::TrivialABIHandling TAH,
9133 bool Diagnose) {
9134 for (const auto *FI : RD->fields()) {
9135 if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
9136 continue;
9137
9138 QualType FieldType = S.Context.getBaseElementType(FI->getType());
9139
9140 // Pretend anonymous struct or union members are members of this class.
9141 if (FI->isAnonymousStructOrUnion()) {
9142 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
9143 CSM, ConstArg, TAH, Diagnose))
9144 return false;
9145 continue;
9146 }
9147
9148 // C++11 [class.ctor]p5:
9149 // A default constructor is trivial if [...]
9150 // -- no non-static data member of its class has a
9151 // brace-or-equal-initializer
9152 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
9153 if (Diagnose)
9154 S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << FI;
9155 return false;
9156 }
9157
9158 // Objective C ARC 4.3.5:
9159 // [...] nontrivally ownership-qualified types are [...] not trivially
9160 // default constructible, copy constructible, move constructible, copy
9161 // assignable, move assignable, or destructible [...]
9162 if (FieldType.hasNonTrivialObjCLifetime()) {
9163 if (Diagnose)
9164 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
9165 << RD << FieldType.getObjCLifetime();
9166 return false;
9167 }
9168
9169 bool ConstRHS = ConstArg && !FI->isMutable();
9170 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
9171 CSM, TSK_Field, TAH, Diagnose))
9172 return false;
9173 }
9174
9175 return true;
9176}
9177
9178/// Diagnose why the specified class does not have a trivial special member of
9179/// the given kind.
9180void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
9181 QualType Ty = Context.getRecordType(RD);
9182
9183 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment);
9184 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
9185 TSK_CompleteObject, TAH_IgnoreTrivialABI,
9186 /*Diagnose*/true);
9187}
9188
9189/// Determine whether a defaulted or deleted special member function is trivial,
9190/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
9191/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
9192bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
9193 TrivialABIHandling TAH, bool Diagnose) {
9194 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough")((!MD->isUserProvided() && CSM != CXXInvalid &&
"not special enough") ? static_cast<void> (0) : __assert_fail
("!MD->isUserProvided() && CSM != CXXInvalid && \"not special enough\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 9194, __PRETTY_FUNCTION__))
;
9195
9196 CXXRecordDecl *RD = MD->getParent();
9197
9198 bool ConstArg = false;
9199
9200 // C++11 [class.copy]p12, p25: [DR1593]
9201 // A [special member] is trivial if [...] its parameter-type-list is
9202 // equivalent to the parameter-type-list of an implicit declaration [...]
9203 switch (CSM) {
9204 case CXXDefaultConstructor:
9205 case CXXDestructor:
9206 // Trivial default constructors and destructors cannot have parameters.
9207 break;
9208
9209 case CXXCopyConstructor:
9210 case CXXCopyAssignment: {
9211 // Trivial copy operations always have const, non-volatile parameter types.
9212 ConstArg = true;
9213 const ParmVarDecl *Param0 = MD->getParamDecl(0);
9214 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
9215 if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
9216 if (Diagnose)
9217 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
9218 << Param0->getSourceRange() << Param0->getType()
9219 << Context.getLValueReferenceType(
9220 Context.getRecordType(RD).withConst());
9221 return false;
9222 }
9223 break;
9224 }
9225
9226 case CXXMoveConstructor:
9227 case CXXMoveAssignment: {
9228 // Trivial move operations always have non-cv-qualified parameters.
9229 const ParmVarDecl *Param0 = MD->getParamDecl(0);
9230 const RValueReferenceType *RT =
9231 Param0->getType()->getAs<RValueReferenceType>();
9232 if (!RT || RT->getPointeeType().getCVRQualifiers()) {
9233 if (Diagnose)
9234 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
9235 << Param0->getSourceRange() << Param0->getType()
9236 << Context.getRValueReferenceType(Context.getRecordType(RD));
9237 return false;
9238 }
9239 break;
9240 }
9241
9242 case CXXInvalid:
9243 llvm_unreachable("not a special member")::llvm::llvm_unreachable_internal("not a special member", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 9243)
;
9244 }
9245
9246 if (MD->getMinRequiredArguments() < MD->getNumParams()) {
9247 if (Diagnose)
9248 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
9249 diag::note_nontrivial_default_arg)
9250 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
9251 return false;
9252 }
9253 if (MD->isVariadic()) {
9254 if (Diagnose)
9255 Diag(MD->getLocation(), diag::note_nontrivial_variadic);
9256 return false;
9257 }
9258
9259 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
9260 // A copy/move [constructor or assignment operator] is trivial if
9261 // -- the [member] selected to copy/move each direct base class subobject
9262 // is trivial
9263 //
9264 // C++11 [class.copy]p12, C++11 [class.copy]p25:
9265 // A [default constructor or destructor] is trivial if
9266 // -- all the direct base classes have trivial [default constructors or
9267 // destructors]
9268 for (const auto &BI : RD->bases())
9269 if (!checkTrivialSubobjectCall(*this, BI.getBeginLoc(), BI.getType(),
9270 ConstArg, CSM, TSK_BaseClass, TAH, Diagnose))
9271 return false;
9272
9273 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
9274 // A copy/move [constructor or assignment operator] for a class X is
9275 // trivial if
9276 // -- for each non-static data member of X that is of class type (or array
9277 // thereof), the constructor selected to copy/move that member is
9278 // trivial
9279 //
9280 // C++11 [class.copy]p12, C++11 [class.copy]p25:
9281 // A [default constructor or destructor] is trivial if
9282 // -- for all of the non-static data members of its class that are of class
9283 // type (or array thereof), each such class has a trivial [default
9284 // constructor or destructor]
9285 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, TAH, Diagnose))
9286 return false;
9287
9288 // C++11 [class.dtor]p5:
9289 // A destructor is trivial if [...]
9290 // -- the destructor is not virtual
9291 if (CSM == CXXDestructor && MD->isVirtual()) {
9292 if (Diagnose)
9293 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
9294 return false;
9295 }
9296
9297 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
9298 // A [special member] for class X is trivial if [...]
9299 // -- class X has no virtual functions and no virtual base classes
9300 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
9301 if (!Diagnose)
9302 return false;
9303
9304 if (RD->getNumVBases()) {
9305 // Check for virtual bases. We already know that the corresponding
9306 // member in all bases is trivial, so vbases must all be direct.
9307 CXXBaseSpecifier &BS = *RD->vbases_begin();
9308 assert(BS.isVirtual())((BS.isVirtual()) ? static_cast<void> (0) : __assert_fail
("BS.isVirtual()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 9308, __PRETTY_FUNCTION__))
;
9309 Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1;
9310 return false;
9311 }
9312
9313 // Must have a virtual method.
9314 for (const auto *MI : RD->methods()) {
9315 if (MI->isVirtual()) {
9316 SourceLocation MLoc = MI->getBeginLoc();
9317 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
9318 return false;
9319 }
9320 }
9321
9322 llvm_unreachable("dynamic class with no vbases and no virtual functions")::llvm::llvm_unreachable_internal("dynamic class with no vbases and no virtual functions"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 9322)
;
9323 }
9324
9325 // Looks like it's trivial!
9326 return true;
9327}
9328
9329namespace {
9330struct FindHiddenVirtualMethod {
9331 Sema *S;
9332 CXXMethodDecl *Method;
9333 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
9334 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
9335
9336private:
9337 /// Check whether any most overridden method from MD in Methods
9338 static bool CheckMostOverridenMethods(
9339 const CXXMethodDecl *MD,
9340 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) {
9341 if (MD->size_overridden_methods() == 0)
9342 return Methods.count(MD->getCanonicalDecl());
9343 for (const CXXMethodDecl *O : MD->overridden_methods())
9344 if (CheckMostOverridenMethods(O, Methods))
9345 return true;
9346 return false;
9347 }
9348
9349public:
9350 /// Member lookup function that determines whether a given C++
9351 /// method overloads virtual methods in a base class without overriding any,
9352 /// to be used with CXXRecordDecl::lookupInBases().
9353 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
9354 RecordDecl *BaseRecord =
9355 Specifier->getType()->castAs<RecordType>()->getDecl();
9356
9357 DeclarationName Name = Method->getDeclName();
9358 assert(Name.getNameKind() == DeclarationName::Identifier)((Name.getNameKind() == DeclarationName::Identifier) ? static_cast
<void> (0) : __assert_fail ("Name.getNameKind() == DeclarationName::Identifier"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 9358, __PRETTY_FUNCTION__))
;
9359
9360 bool foundSameNameMethod = false;
9361 SmallVector<CXXMethodDecl *, 8> overloadedMethods;
9362 for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
9363 Path.Decls = Path.Decls.slice(1)) {
9364 NamedDecl *D = Path.Decls.front();
9365 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
9366 MD = MD->getCanonicalDecl();
9367 foundSameNameMethod = true;
9368 // Interested only in hidden virtual methods.
9369 if (!MD->isVirtual())
9370 continue;
9371 // If the method we are checking overrides a method from its base
9372 // don't warn about the other overloaded methods. Clang deviates from
9373 // GCC by only diagnosing overloads of inherited virtual functions that
9374 // do not override any other virtual functions in the base. GCC's
9375 // -Woverloaded-virtual diagnoses any derived function hiding a virtual
9376 // function from a base class. These cases may be better served by a
9377 // warning (not specific to virtual functions) on call sites when the
9378 // call would select a different function from the base class, were it
9379 // visible.
9380 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example.
9381 if (!S->IsOverload(Method, MD, false))
9382 return true;
9383 // Collect the overload only if its hidden.
9384 if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods))
9385 overloadedMethods.push_back(MD);
9386 }
9387 }
9388
9389 if (foundSameNameMethod)
9390 OverloadedMethods.append(overloadedMethods.begin(),
9391 overloadedMethods.end());
9392 return foundSameNameMethod;
9393 }
9394};
9395} // end anonymous namespace
9396
9397/// Add the most overriden methods from MD to Methods
9398static void AddMostOverridenMethods(const CXXMethodDecl *MD,
9399 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
9400 if (MD->size_overridden_methods() == 0)
9401 Methods.insert(MD->getCanonicalDecl());
9402 else
9403 for (const CXXMethodDecl *O : MD->overridden_methods())
9404 AddMostOverridenMethods(O, Methods);
9405}
9406
9407/// Check if a method overloads virtual methods in a base class without
9408/// overriding any.
9409void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
9410 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
9411 if (!MD->getDeclName().isIdentifier())
9412 return;
9413
9414 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
9415 /*bool RecordPaths=*/false,
9416 /*bool DetectVirtual=*/false);
9417 FindHiddenVirtualMethod FHVM;
9418 FHVM.Method = MD;
9419 FHVM.S = this;
9420
9421 // Keep the base methods that were overridden or introduced in the subclass
9422 // by 'using' in a set. A base method not in this set is hidden.
9423 CXXRecordDecl *DC = MD->getParent();
9424 DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
9425 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
9426 NamedDecl *ND = *I;
9427 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
9428 ND = shad->getTargetDecl();
9429 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
9430 AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods);
9431 }
9432
9433 if (DC->lookupInBases(FHVM, Paths))
9434 OverloadedMethods = FHVM.OverloadedMethods;
9435}
9436
9437void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
9438 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
9439 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
9440 CXXMethodDecl *overloadedMD = OverloadedMethods[i];
9441 PartialDiagnostic PD = PDiag(
9442 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
9443 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
9444 Diag(overloadedMD->getLocation(), PD);
9445 }
9446}
9447
9448/// Diagnose methods which overload virtual methods in a base class
9449/// without overriding any.
9450void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
9451 if (MD->isInvalidDecl())
9452 return;
9453
9454 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
9455 return;
9456
9457 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
9458 FindHiddenVirtualMethods(MD, OverloadedMethods);
9459 if (!OverloadedMethods.empty()) {
9460 Diag(MD->getLocation(), diag::warn_overloaded_virtual)
9461 << MD << (OverloadedMethods.size() > 1);
9462
9463 NoteHiddenVirtualMethods(MD, OverloadedMethods);
9464 }
9465}
9466
9467void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) {
9468 auto PrintDiagAndRemoveAttr = [&]() {
9469 // No diagnostics if this is a template instantiation.
9470 if (!isTemplateInstantiation(RD.getTemplateSpecializationKind()))
9471 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(),
9472 diag::ext_cannot_use_trivial_abi) << &RD;
9473 RD.dropAttr<TrivialABIAttr>();
9474 };
9475
9476 // Ill-formed if the struct has virtual functions.
9477 if (RD.isPolymorphic()) {
9478 PrintDiagAndRemoveAttr();
9479 return;
9480 }
9481
9482 for (const auto &B : RD.bases()) {
9483 // Ill-formed if the base class is non-trivial for the purpose of calls or a
9484 // virtual base.
9485 if ((!B.getType()->isDependentType() &&
9486 !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) ||
9487 B.isVirtual()) {
9488 PrintDiagAndRemoveAttr();
9489 return;
9490 }
9491 }
9492
9493 for (const auto *FD : RD.fields()) {
9494 // Ill-formed if the field is an ObjectiveC pointer or of a type that is
9495 // non-trivial for the purpose of calls.
9496 QualType FT = FD->getType();
9497 if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) {
9498 PrintDiagAndRemoveAttr();
9499 return;
9500 }
9501
9502 if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>())
9503 if (!RT->isDependentType() &&
9504 !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) {
9505 PrintDiagAndRemoveAttr();
9506 return;
9507 }
9508 }
9509}
9510
9511void Sema::ActOnFinishCXXMemberSpecification(
9512 Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac,
9513 SourceLocation RBrac, const ParsedAttributesView &AttrList) {
9514 if (!TagDecl)
9515 return;
9516
9517 AdjustDeclIfTemplate(TagDecl);
9518
9519 for (const ParsedAttr &AL : AttrList) {
9520 if (AL.getKind() != ParsedAttr::AT_Visibility)
9521 continue;
9522 AL.setInvalid();
9523 Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) << AL;
9524 }
9525
9526 ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
9527 // strict aliasing violation!
9528 reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
9529 FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
9530
9531 CheckCompletedCXXClass(S, cast<CXXRecordDecl>(TagDecl));
9532}
9533
9534/// Find the equality comparison functions that should be implicitly declared
9535/// in a given class definition, per C++2a [class.compare.default]p3.
9536static void findImplicitlyDeclaredEqualityComparisons(
9537 ASTContext &Ctx, CXXRecordDecl *RD,
9538 llvm::SmallVectorImpl<FunctionDecl *> &Spaceships) {
9539 DeclarationName EqEq = Ctx.DeclarationNames.getCXXOperatorName(OO_EqualEqual);
9540 if (!RD->lookup(EqEq).empty())
9541 // Member operator== explicitly declared: no implicit operator==s.
9542 return;
9543
9544 // Traverse friends looking for an '==' or a '<=>'.
9545 for (FriendDecl *Friend : RD->friends()) {
9546 FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Friend->getFriendDecl());
9547 if (!FD) continue;
9548
9549 if (FD->getOverloadedOperator() == OO_EqualEqual) {
9550 // Friend operator== explicitly declared: no implicit operator==s.
9551 Spaceships.clear();
9552 return;
9553 }
9554
9555 if (FD->getOverloadedOperator() == OO_Spaceship &&
9556 FD->isExplicitlyDefaulted())
9557 Spaceships.push_back(FD);
9558 }
9559
9560 // Look for members named 'operator<=>'.
9561 DeclarationName Cmp = Ctx.DeclarationNames.getCXXOperatorName(OO_Spaceship);
9562 for (NamedDecl *ND : RD->lookup(Cmp)) {
9563 // Note that we could find a non-function here (either a function template
9564 // or a using-declaration). Neither case results in an implicit
9565 // 'operator=='.
9566 if (auto *FD = dyn_cast<FunctionDecl>(ND))
9567 if (FD->isExplicitlyDefaulted())
9568 Spaceships.push_back(FD);
9569 }
9570}
9571
9572/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
9573/// special functions, such as the default constructor, copy
9574/// constructor, or destructor, to the given C++ class (C++
9575/// [special]p1). This routine can only be executed just before the
9576/// definition of the class is complete.
9577void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
9578 if (ClassDecl->needsImplicitDefaultConstructor()) {
9579 ++getASTContext().NumImplicitDefaultConstructors;
9580
9581 if (ClassDecl->hasInheritedConstructor())
9582 DeclareImplicitDefaultConstructor(ClassDecl);
9583 }
9584
9585 if (ClassDecl->needsImplicitCopyConstructor()) {
9586 ++getASTContext().NumImplicitCopyConstructors;
9587
9588 // If the properties or semantics of the copy constructor couldn't be
9589 // determined while the class was being declared, force a declaration
9590 // of it now.
9591 if (ClassDecl->needsOverloadResolutionForCopyConstructor() ||
9592 ClassDecl->hasInheritedConstructor())
9593 DeclareImplicitCopyConstructor(ClassDecl);
9594 // For the MS ABI we need to know whether the copy ctor is deleted. A
9595 // prerequisite for deleting the implicit copy ctor is that the class has a
9596 // move ctor or move assignment that is either user-declared or whose
9597 // semantics are inherited from a subobject. FIXME: We should provide a more
9598 // direct way for CodeGen to ask whether the constructor was deleted.
9599 else if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
9600 (ClassDecl->hasUserDeclaredMoveConstructor() ||
9601 ClassDecl->needsOverloadResolutionForMoveConstructor() ||
9602 ClassDecl->hasUserDeclaredMoveAssignment() ||
9603 ClassDecl->needsOverloadResolutionForMoveAssignment()))
9604 DeclareImplicitCopyConstructor(ClassDecl);
9605 }
9606
9607 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
9608 ++getASTContext().NumImplicitMoveConstructors;
9609
9610 if (ClassDecl->needsOverloadResolutionForMoveConstructor() ||
9611 ClassDecl->hasInheritedConstructor())
9612 DeclareImplicitMoveConstructor(ClassDecl);
9613 }
9614
9615 if (ClassDecl->needsImplicitCopyAssignment()) {
9616 ++getASTContext().NumImplicitCopyAssignmentOperators;
9617
9618 // If we have a dynamic class, then the copy assignment operator may be
9619 // virtual, so we have to declare it immediately. This ensures that, e.g.,
9620 // it shows up in the right place in the vtable and that we diagnose
9621 // problems with the implicit exception specification.
9622 if (ClassDecl->isDynamicClass() ||
9623 ClassDecl->needsOverloadResolutionForCopyAssignment() ||
9624 ClassDecl->hasInheritedAssignment())
9625 DeclareImplicitCopyAssignment(ClassDecl);
9626 }
9627
9628 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
9629 ++getASTContext().NumImplicitMoveAssignmentOperators;
9630
9631 // Likewise for the move assignment operator.
9632 if (ClassDecl->isDynamicClass() ||
9633 ClassDecl->needsOverloadResolutionForMoveAssignment() ||
9634 ClassDecl->hasInheritedAssignment())
9635 DeclareImplicitMoveAssignment(ClassDecl);
9636 }
9637
9638 if (ClassDecl->needsImplicitDestructor()) {
9639 ++getASTContext().NumImplicitDestructors;
9640
9641 // If we have a dynamic class, then the destructor may be virtual, so we
9642 // have to declare the destructor immediately. This ensures that, e.g., it
9643 // shows up in the right place in the vtable and that we diagnose problems
9644 // with the implicit exception specification.
9645 if (ClassDecl->isDynamicClass() ||
9646 ClassDecl->needsOverloadResolutionForDestructor())
9647 DeclareImplicitDestructor(ClassDecl);
9648 }
9649
9650 // C++2a [class.compare.default]p3:
9651 // If the member-specification does not explicitly declare any member or
9652 // friend named operator==, an == operator function is declared implicitly
9653 // for each defaulted three-way comparison operator function defined in the
9654 // member-specification
9655 // FIXME: Consider doing this lazily.
9656 if (getLangOpts().CPlusPlus2a) {
9657 llvm::SmallVector<FunctionDecl*, 4> DefaultedSpaceships;
9658 findImplicitlyDeclaredEqualityComparisons(Context, ClassDecl,
9659 DefaultedSpaceships);
9660 for (auto *FD : DefaultedSpaceships)
9661 DeclareImplicitEqualityComparison(ClassDecl, FD);
9662 }
9663}
9664
9665unsigned Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
9666 if (!D)
9667 return 0;
9668
9669 // The order of template parameters is not important here. All names
9670 // get added to the same scope.
9671 SmallVector<TemplateParameterList *, 4> ParameterLists;
9672
9673 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
9674 D = TD->getTemplatedDecl();
9675
9676 if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
9677 ParameterLists.push_back(PSD->getTemplateParameters());
9678
9679 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
9680 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
9681 ParameterLists.push_back(DD->getTemplateParameterList(i));
9682
9683 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
9684 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
9685 ParameterLists.push_back(FTD->getTemplateParameters());
9686 }
9687 }
9688
9689 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
9690 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
9691 ParameterLists.push_back(TD->getTemplateParameterList(i));
9692
9693 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
9694 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
9695 ParameterLists.push_back(CTD->getTemplateParameters());
9696 }
9697 }
9698
9699 unsigned Count = 0;
9700 for (TemplateParameterList *Params : ParameterLists) {
9701 if (Params->size() > 0)
9702 // Ignore explicit specializations; they don't contribute to the template
9703 // depth.
9704 ++Count;
9705 for (NamedDecl *Param : *Params) {
9706 if (Param->getDeclName()) {
9707 S->AddDecl(Param);
9708 IdResolver.AddDecl(Param);
9709 }
9710 }
9711 }
9712
9713 return Count;
9714}
9715
9716void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
9717 if (!RecordD) return;
9718 AdjustDeclIfTemplate(RecordD);
9719 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
9720 PushDeclContext(S, Record);
9721}
9722
9723void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
9724 if (!RecordD) return;
9725 PopDeclContext();
9726}
9727
9728/// This is used to implement the constant expression evaluation part of the
9729/// attribute enable_if extension. There is nothing in standard C++ which would
9730/// require reentering parameters.
9731void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
9732 if (!Param)
9733 return;
9734
9735 S->AddDecl(Param);
9736 if (Param->getDeclName())
9737 IdResolver.AddDecl(Param);
9738}
9739
9740/// ActOnStartDelayedCXXMethodDeclaration - We have completed
9741/// parsing a top-level (non-nested) C++ class, and we are now
9742/// parsing those parts of the given Method declaration that could
9743/// not be parsed earlier (C++ [class.mem]p2), such as default
9744/// arguments. This action should enter the scope of the given
9745/// Method declaration as if we had just parsed the qualified method
9746/// name. However, it should not bring the parameters into scope;
9747/// that will be performed by ActOnDelayedCXXMethodParameter.
9748void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
9749}
9750
9751/// ActOnDelayedCXXMethodParameter - We've already started a delayed
9752/// C++ method declaration. We're (re-)introducing the given
9753/// function parameter into scope for use in parsing later parts of
9754/// the method declaration. For example, we could see an
9755/// ActOnParamDefaultArgument event for this parameter.
9756void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
9757 if (!ParamD)
9758 return;
9759
9760 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
9761
9762 // If this parameter has an unparsed default argument, clear it out
9763 // to make way for the parsed default argument.
9764 if (Param->hasUnparsedDefaultArg())
9765 Param->setDefaultArg(nullptr);
9766
9767 S->AddDecl(Param);
9768 if (Param->getDeclName())
9769 IdResolver.AddDecl(Param);
9770}
9771
9772/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
9773/// processing the delayed method declaration for Method. The method
9774/// declaration is now considered finished. There may be a separate
9775/// ActOnStartOfFunctionDef action later (not necessarily
9776/// immediately!) for this method, if it was also defined inside the
9777/// class body.
9778void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
9779 if (!MethodD)
9780 return;
9781
9782 AdjustDeclIfTemplate(MethodD);
9783
9784 FunctionDecl *Method = cast<FunctionDecl>(MethodD);
9785
9786 // Now that we have our default arguments, check the constructor
9787 // again. It could produce additional diagnostics or affect whether
9788 // the class has implicitly-declared destructors, among other
9789 // things.
9790 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
9791 CheckConstructor(Constructor);
9792
9793 // Check the default arguments, which we may have added.
9794 if (!Method->isInvalidDecl())
9795 CheckCXXDefaultArguments(Method);
9796}
9797
9798// Emit the given diagnostic for each non-address-space qualifier.
9799// Common part of CheckConstructorDeclarator and CheckDestructorDeclarator.
9800static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) {
9801 const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
9802 if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) {
9803 bool DiagOccured = false;
9804 FTI.MethodQualifiers->forEachQualifier(
9805 [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName,
9806 SourceLocation SL) {
9807 // This diagnostic should be emitted on any qualifier except an addr
9808 // space qualifier. However, forEachQualifier currently doesn't visit
9809 // addr space qualifiers, so there's no way to write this condition
9810 // right now; we just diagnose on everything.
9811 S.Diag(SL, DiagID) << QualName << SourceRange(SL);
9812 DiagOccured = true;
9813 });
9814 if (DiagOccured)
9815 D.setInvalidType();
9816 }
9817}
9818
9819/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
9820/// the well-formedness of the constructor declarator @p D with type @p
9821/// R. If there are any errors in the declarator, this routine will
9822/// emit diagnostics and set the invalid bit to true. In any case, the type
9823/// will be updated to reflect a well-formed type for the constructor and
9824/// returned.
9825QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
9826 StorageClass &SC) {
9827 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
9828
9829 // C++ [class.ctor]p3:
9830 // A constructor shall not be virtual (10.3) or static (9.4). A
9831 // constructor can be invoked for a const, volatile or const
9832 // volatile object. A constructor shall not be declared const,
9833 // volatile, or const volatile (9.3.2).
9834 if (isVirtual) {
9835 if (!D.isInvalidType())
9836 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
9837 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
9838 << SourceRange(D.getIdentifierLoc());
9839 D.setInvalidType();
9840 }
9841 if (SC == SC_Static) {
9842 if (!D.isInvalidType())
9843 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
9844 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
9845 << SourceRange(D.getIdentifierLoc());
9846 D.setInvalidType();
9847 SC = SC_None;
9848 }
9849
9850 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
9851 diagnoseIgnoredQualifiers(
9852 diag::err_constructor_return_type, TypeQuals, SourceLocation(),
9853 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
9854 D.getDeclSpec().getRestrictSpecLoc(),
9855 D.getDeclSpec().getAtomicSpecLoc());
9856 D.setInvalidType();
9857 }
9858
9859 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor);
9860
9861 // C++0x [class.ctor]p4:
9862 // A constructor shall not be declared with a ref-qualifier.
9863 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
9864 if (FTI.hasRefQualifier()) {
9865 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
9866 << FTI.RefQualifierIsLValueRef
9867 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
9868 D.setInvalidType();
9869 }
9870
9871 // Rebuild the function type "R" without any type qualifiers (in
9872 // case any of the errors above fired) and with "void" as the
9873 // return type, since constructors don't have return types.
9874 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>();
9875 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
9876 return R;
9877
9878 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
9879 EPI.TypeQuals = Qualifiers();
9880 EPI.RefQualifier = RQ_None;
9881
9882 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI);
9883}
9884
9885/// CheckConstructor - Checks a fully-formed constructor for
9886/// well-formedness, issuing any diagnostics required. Returns true if
9887/// the constructor declarator is invalid.
9888void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
9889 CXXRecordDecl *ClassDecl
9890 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
9891 if (!ClassDecl)
9892 return Constructor->setInvalidDecl();
9893
9894 // C++ [class.copy]p3:
9895 // A declaration of a constructor for a class X is ill-formed if
9896 // its first parameter is of type (optionally cv-qualified) X and
9897 // either there are no other parameters or else all other
9898 // parameters have default arguments.
9899 if (!Constructor->isInvalidDecl() &&
9900 ((Constructor->getNumParams() == 1) ||
9901 (Constructor->getNumParams() > 1 &&
9902 Constructor->getParamDecl(1)->hasDefaultArg())) &&
9903 Constructor->getTemplateSpecializationKind()
9904 != TSK_ImplicitInstantiation) {
9905 QualType ParamType = Constructor->getParamDecl(0)->getType();
9906 QualType ClassTy = Context.getTagDeclType(ClassDecl);
9907 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
9908 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
9909 const char *ConstRef
9910 = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
9911 : " const &";
9912 Diag(ParamLoc, diag::err_constructor_byvalue_arg)
9913 << FixItHint::CreateInsertion(ParamLoc, ConstRef);
9914
9915 // FIXME: Rather that making the constructor invalid, we should endeavor
9916 // to fix the type.
9917 Constructor->setInvalidDecl();
9918 }
9919 }
9920}
9921
9922/// CheckDestructor - Checks a fully-formed destructor definition for
9923/// well-formedness, issuing any diagnostics required. Returns true
9924/// on error.
9925bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
9926 CXXRecordDecl *RD = Destructor->getParent();
9927
9928 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
9929 SourceLocation Loc;
9930
9931 if (!Destructor->isImplicit())
9932 Loc = Destructor->getLocation();
9933 else
9934 Loc = RD->getLocation();
9935
9936 // If we have a virtual destructor, look up the deallocation function
9937 if (FunctionDecl *OperatorDelete =
9938 FindDeallocationFunctionForDestructor(Loc, RD)) {
9939 Expr *ThisArg = nullptr;
9940
9941 // If the notional 'delete this' expression requires a non-trivial
9942 // conversion from 'this' to the type of a destroying operator delete's
9943 // first parameter, perform that conversion now.
9944 if (OperatorDelete->isDestroyingOperatorDelete()) {
9945 QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
9946 if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) {
9947 // C++ [class.dtor]p13:
9948 // ... as if for the expression 'delete this' appearing in a
9949 // non-virtual destructor of the destructor's class.
9950 ContextRAII SwitchContext(*this, Destructor);
9951 ExprResult This =
9952 ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation());
9953 assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?")((!This.isInvalid() && "couldn't form 'this' expr in dtor?"
) ? static_cast<void> (0) : __assert_fail ("!This.isInvalid() && \"couldn't form 'this' expr in dtor?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 9953, __PRETTY_FUNCTION__))
;
9954 This = PerformImplicitConversion(This.get(), ParamType, AA_Passing);
9955 if (This.isInvalid()) {
9956 // FIXME: Register this as a context note so that it comes out
9957 // in the right order.
9958 Diag(Loc, diag::note_implicit_delete_this_in_destructor_here);
9959 return true;
9960 }
9961 ThisArg = This.get();
9962 }
9963 }
9964
9965 DiagnoseUseOfDecl(OperatorDelete, Loc);
9966 MarkFunctionReferenced(Loc, OperatorDelete);
9967 Destructor->setOperatorDelete(OperatorDelete, ThisArg);
9968 }
9969 }
9970
9971 return false;
9972}
9973
9974/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
9975/// the well-formednes of the destructor declarator @p D with type @p
9976/// R. If there are any errors in the declarator, this routine will
9977/// emit diagnostics and set the declarator to invalid. Even if this happens,
9978/// will be updated to reflect a well-formed type for the destructor and
9979/// returned.
9980QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
9981 StorageClass& SC) {
9982 // C++ [class.dtor]p1:
9983 // [...] A typedef-name that names a class is a class-name
9984 // (7.1.3); however, a typedef-name that names a class shall not
9985 // be used as the identifier in the declarator for a destructor
9986 // declaration.
9987 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
9988 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
9989 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name)
9990 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
9991 else if (const TemplateSpecializationType *TST =
9992 DeclaratorType->getAs<TemplateSpecializationType>())
9993 if (TST->isTypeAlias())
9994 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name)
9995 << DeclaratorType << 1;
9996
9997 // C++ [class.dtor]p2:
9998 // A destructor is used to destroy objects of its class type. A
9999 // destructor takes no parameters, and no return type can be
10000 // specified for it (not even void). The address of a destructor
10001 // shall not be taken. A destructor shall not be static. A
10002 // destructor can be invoked for a const, volatile or const
10003 // volatile object. A destructor shall not be declared const,
10004 // volatile or const volatile (9.3.2).
10005 if (SC == SC_Static) {
10006 if (!D.isInvalidType())
10007 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
10008 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
10009 << SourceRange(D.getIdentifierLoc())
10010 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
10011
10012 SC = SC_None;
10013 }
10014 if (!D.isInvalidType()) {
10015 // Destructors don't have return types, but the parser will
10016 // happily parse something like:
10017 //
10018 // class X {
10019 // float ~X();
10020 // };
10021 //
10022 // The return type will be eliminated later.
10023 if (D.getDeclSpec().hasTypeSpecifier())
10024 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
10025 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
10026 << SourceRange(D.getIdentifierLoc());
10027 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
10028 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
10029 SourceLocation(),
10030 D.getDeclSpec().getConstSpecLoc(),
10031 D.getDeclSpec().getVolatileSpecLoc(),
10032 D.getDeclSpec().getRestrictSpecLoc(),
10033 D.getDeclSpec().getAtomicSpecLoc());
10034 D.setInvalidType();
10035 }
10036 }
10037
10038 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor);
10039
10040 // C++0x [class.dtor]p2:
10041 // A destructor shall not be declared with a ref-qualifier.
10042 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10043 if (FTI.hasRefQualifier()) {
10044 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
10045 << FTI.RefQualifierIsLValueRef
10046 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
10047 D.setInvalidType();
10048 }
10049
10050 // Make sure we don't have any parameters.
10051 if (FTIHasNonVoidParameters(FTI)) {
10052 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
10053
10054 // Delete the parameters.
10055 FTI.freeParams();
10056 D.setInvalidType();
10057 }
10058
10059 // Make sure the destructor isn't variadic.
10060 if (FTI.isVariadic) {
10061 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
10062 D.setInvalidType();
10063 }
10064
10065 // Rebuild the function type "R" without any type qualifiers or
10066 // parameters (in case any of the errors above fired) and with
10067 // "void" as the return type, since destructors don't have return
10068 // types.
10069 if (!D.isInvalidType())
10070 return R;
10071
10072 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>();
10073 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
10074 EPI.Variadic = false;
10075 EPI.TypeQuals = Qualifiers();
10076 EPI.RefQualifier = RQ_None;
10077 return Context.getFunctionType(Context.VoidTy, None, EPI);
10078}
10079
10080static void extendLeft(SourceRange &R, SourceRange Before) {
10081 if (Before.isInvalid())
10082 return;
10083 R.setBegin(Before.getBegin());
10084 if (R.getEnd().isInvalid())
10085 R.setEnd(Before.getEnd());
10086}
10087
10088static void extendRight(SourceRange &R, SourceRange After) {
10089 if (After.isInvalid())
10090 return;
10091 if (R.getBegin().isInvalid())
10092 R.setBegin(After.getBegin());
10093 R.setEnd(After.getEnd());
10094}
10095
10096/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
10097/// well-formednes of the conversion function declarator @p D with
10098/// type @p R. If there are any errors in the declarator, this routine
10099/// will emit diagnostics and return true. Otherwise, it will return
10100/// false. Either way, the type @p R will be updated to reflect a
10101/// well-formed type for the conversion operator.
10102void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
10103 StorageClass& SC) {
10104 // C++ [class.conv.fct]p1:
10105 // Neither parameter types nor return type can be specified. The
10106 // type of a conversion function (8.3.5) is "function taking no
10107 // parameter returning conversion-type-id."
10108 if (SC == SC_Static) {
10109 if (!D.isInvalidType())
10110 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
10111 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
10112 << D.getName().getSourceRange();
10113 D.setInvalidType();
10114 SC = SC_None;
10115 }
10116
10117 TypeSourceInfo *ConvTSI = nullptr;
10118 QualType ConvType =
10119 GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI);
10120
10121 const DeclSpec &DS = D.getDeclSpec();
10122 if (DS.hasTypeSpecifier() && !D.isInvalidType()) {
10123 // Conversion functions don't have return types, but the parser will
10124 // happily parse something like:
10125 //
10126 // class X {
10127 // float operator bool();
10128 // };
10129 //
10130 // The return type will be changed later anyway.
10131 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
10132 << SourceRange(DS.getTypeSpecTypeLoc())
10133 << SourceRange(D.getIdentifierLoc());
10134 D.setInvalidType();
10135 } else if (DS.getTypeQualifiers() && !D.isInvalidType()) {
10136 // It's also plausible that the user writes type qualifiers in the wrong
10137 // place, such as:
10138 // struct S { const operator int(); };
10139 // FIXME: we could provide a fixit to move the qualifiers onto the
10140 // conversion type.
10141 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
10142 << SourceRange(D.getIdentifierLoc()) << 0;
10143 D.setInvalidType();
10144 }
10145
10146 const auto *Proto = R->castAs<FunctionProtoType>();
10147
10148 // Make sure we don't have any parameters.
10149 if (Proto->getNumParams() > 0) {
10150 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
10151
10152 // Delete the parameters.
10153 D.getFunctionTypeInfo().freeParams();
10154 D.setInvalidType();
10155 } else if (Proto->isVariadic()) {
10156 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
10157 D.setInvalidType();
10158 }
10159
10160 // Diagnose "&operator bool()" and other such nonsense. This
10161 // is actually a gcc extension which we don't support.
10162 if (Proto->getReturnType() != ConvType) {
10163 bool NeedsTypedef = false;
10164 SourceRange Before, After;
10165
10166 // Walk the chunks and extract information on them for our diagnostic.
10167 bool PastFunctionChunk = false;
10168 for (auto &Chunk : D.type_objects()) {
10169 switch (Chunk.Kind) {
10170 case DeclaratorChunk::Function:
10171 if (!PastFunctionChunk) {
10172 if (Chunk.Fun.HasTrailingReturnType) {
10173 TypeSourceInfo *TRT = nullptr;
10174 GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT);
10175 if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange());
10176 }
10177 PastFunctionChunk = true;
10178 break;
10179 }
10180 LLVM_FALLTHROUGH[[gnu::fallthrough]];
10181 case DeclaratorChunk::Array:
10182 NeedsTypedef = true;
10183 extendRight(After, Chunk.getSourceRange());
10184 break;
10185
10186 case DeclaratorChunk::Pointer:
10187 case DeclaratorChunk::BlockPointer:
10188 case DeclaratorChunk::Reference:
10189 case DeclaratorChunk::MemberPointer:
10190 case DeclaratorChunk::Pipe:
10191 extendLeft(Before, Chunk.getSourceRange());
10192 break;
10193
10194 case DeclaratorChunk::Paren:
10195 extendLeft(Before, Chunk.Loc);
10196 extendRight(After, Chunk.EndLoc);
10197 break;
10198 }
10199 }
10200
10201 SourceLocation Loc = Before.isValid() ? Before.getBegin() :
10202 After.isValid() ? After.getBegin() :
10203 D.getIdentifierLoc();
10204 auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl);
10205 DB << Before << After;
10206
10207 if (!NeedsTypedef) {
10208 DB << /*don't need a typedef*/0;
10209
10210 // If we can provide a correct fix-it hint, do so.
10211 if (After.isInvalid() && ConvTSI) {
10212 SourceLocation InsertLoc =
10213 getLocForEndOfToken(ConvTSI->getTypeLoc().getEndLoc());
10214 DB << FixItHint::CreateInsertion(InsertLoc, " ")
10215 << FixItHint::CreateInsertionFromRange(
10216 InsertLoc, CharSourceRange::getTokenRange(Before))
10217 << FixItHint::CreateRemoval(Before);
10218 }
10219 } else if (!Proto->getReturnType()->isDependentType()) {
10220 DB << /*typedef*/1 << Proto->getReturnType();
10221 } else if (getLangOpts().CPlusPlus11) {
10222 DB << /*alias template*/2 << Proto->getReturnType();
10223 } else {
10224 DB << /*might not be fixable*/3;
10225 }
10226
10227 // Recover by incorporating the other type chunks into the result type.
10228 // Note, this does *not* change the name of the function. This is compatible
10229 // with the GCC extension:
10230 // struct S { &operator int(); } s;
10231 // int &r = s.operator int(); // ok in GCC
10232 // S::operator int&() {} // error in GCC, function name is 'operator int'.
10233 ConvType = Proto->getReturnType();
10234 }
10235
10236 // C++ [class.conv.fct]p4:
10237 // The conversion-type-id shall not represent a function type nor
10238 // an array type.
10239 if (ConvType->isArrayType()) {
10240 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
10241 ConvType = Context.getPointerType(ConvType);
10242 D.setInvalidType();
10243 } else if (ConvType->isFunctionType()) {
10244 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
10245 ConvType = Context.getPointerType(ConvType);
10246 D.setInvalidType();
10247 }
10248
10249 // Rebuild the function type "R" without any parameters (in case any
10250 // of the errors above fired) and with the conversion type as the
10251 // return type.
10252 if (D.isInvalidType())
10253 R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
10254
10255 // C++0x explicit conversion operators.
10256 if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus2a)
10257 Diag(DS.getExplicitSpecLoc(),
10258 getLangOpts().CPlusPlus11
10259 ? diag::warn_cxx98_compat_explicit_conversion_functions
10260 : diag::ext_explicit_conversion_functions)
10261 << SourceRange(DS.getExplicitSpecRange());
10262}
10263
10264/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
10265/// the declaration of the given C++ conversion function. This routine
10266/// is responsible for recording the conversion function in the C++
10267/// class, if possible.
10268Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
10269 assert(Conversion && "Expected to receive a conversion function declaration")((Conversion && "Expected to receive a conversion function declaration"
) ? static_cast<void> (0) : __assert_fail ("Conversion && \"Expected to receive a conversion function declaration\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 10269, __PRETTY_FUNCTION__))
;
10270
10271 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
10272
10273 // Make sure we aren't redeclaring the conversion function.
10274 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
10275
10276 // C++ [class.conv.fct]p1:
10277 // [...] A conversion function is never used to convert a
10278 // (possibly cv-qualified) object to the (possibly cv-qualified)
10279 // same object type (or a reference to it), to a (possibly
10280 // cv-qualified) base class of that type (or a reference to it),
10281 // or to (possibly cv-qualified) void.
10282 // FIXME: Suppress this warning if the conversion function ends up being a
10283 // virtual function that overrides a virtual function in a base class.
10284 QualType ClassType
10285 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
10286 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
10287 ConvType = ConvTypeRef->getPointeeType();
10288 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
10289 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
10290 /* Suppress diagnostics for instantiations. */;
10291 else if (ConvType->isRecordType()) {
10292 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
10293 if (ConvType == ClassType)
10294 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
10295 << ClassType;
10296 else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType))
10297 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
10298 << ClassType << ConvType;
10299 } else if (ConvType->isVoidType()) {
10300 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
10301 << ClassType << ConvType;
10302 }
10303
10304 if (FunctionTemplateDecl *ConversionTemplate
10305 = Conversion->getDescribedFunctionTemplate())
10306 return ConversionTemplate;
10307
10308 return Conversion;
10309}
10310
10311namespace {
10312/// Utility class to accumulate and print a diagnostic listing the invalid
10313/// specifier(s) on a declaration.
10314struct BadSpecifierDiagnoser {
10315 BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID)
10316 : S(S), Diagnostic(S.Diag(Loc, DiagID)) {}
10317 ~BadSpecifierDiagnoser() {
10318 Diagnostic << Specifiers;
10319 }
10320
10321 template<typename T> void check(SourceLocation SpecLoc, T Spec) {
10322 return check(SpecLoc, DeclSpec::getSpecifierName(Spec));
10323 }
10324 void check(SourceLocation SpecLoc, DeclSpec::TST Spec) {
10325 return check(SpecLoc,
10326 DeclSpec::getSpecifierName(Spec, S.getPrintingPolicy()));
10327 }
10328 void check(SourceLocation SpecLoc, const char *Spec) {
10329 if (SpecLoc.isInvalid()) return;
10330 Diagnostic << SourceRange(SpecLoc, SpecLoc);
10331 if (!Specifiers.empty()) Specifiers += " ";
10332 Specifiers += Spec;
10333 }
10334
10335 Sema &S;
10336 Sema::SemaDiagnosticBuilder Diagnostic;
10337 std::string Specifiers;
10338};
10339}
10340
10341/// Check the validity of a declarator that we parsed for a deduction-guide.
10342/// These aren't actually declarators in the grammar, so we need to check that
10343/// the user didn't specify any pieces that are not part of the deduction-guide
10344/// grammar.
10345void Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R,
10346 StorageClass &SC) {
10347 TemplateName GuidedTemplate = D.getName().TemplateName.get().get();
10348 TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl();
10349 assert(GuidedTemplateDecl && "missing template decl for deduction guide")((GuidedTemplateDecl && "missing template decl for deduction guide"
) ? static_cast<void> (0) : __assert_fail ("GuidedTemplateDecl && \"missing template decl for deduction guide\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 10349, __PRETTY_FUNCTION__))
;
10350
10351 // C++ [temp.deduct.guide]p3:
10352 // A deduction-gide shall be declared in the same scope as the
10353 // corresponding class template.
10354 if (!CurContext->getRedeclContext()->Equals(
10355 GuidedTemplateDecl->getDeclContext()->getRedeclContext())) {
10356 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope)
10357 << GuidedTemplateDecl;
10358 Diag(GuidedTemplateDecl->getLocation(), diag::note_template_decl_here);
10359 }
10360
10361 auto &DS = D.getMutableDeclSpec();
10362 // We leave 'friend' and 'virtual' to be rejected in the normal way.
10363 if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() ||
10364 DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() ||
10365 DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) {
10366 BadSpecifierDiagnoser Diagnoser(
10367 *this, D.getIdentifierLoc(),
10368 diag::err_deduction_guide_invalid_specifier);
10369
10370 Diagnoser.check(DS.getStorageClassSpecLoc(), DS.getStorageClassSpec());
10371 DS.ClearStorageClassSpecs();
10372 SC = SC_None;
10373
10374 // 'explicit' is permitted.
10375 Diagnoser.check(DS.getInlineSpecLoc(), "inline");
10376 Diagnoser.check(DS.getNoreturnSpecLoc(), "_Noreturn");
10377 Diagnoser.check(DS.getConstexprSpecLoc(), "constexpr");
10378 DS.ClearConstexprSpec();
10379
10380 Diagnoser.check(DS.getConstSpecLoc(), "const");
10381 Diagnoser.check(DS.getRestrictSpecLoc(), "__restrict");
10382 Diagnoser.check(DS.getVolatileSpecLoc(), "volatile");
10383 Diagnoser.check(DS.getAtomicSpecLoc(), "_Atomic");
10384 Diagnoser.check(DS.getUnalignedSpecLoc(), "__unaligned");
10385 DS.ClearTypeQualifiers();
10386
10387 Diagnoser.check(DS.getTypeSpecComplexLoc(), DS.getTypeSpecComplex());
10388 Diagnoser.check(DS.getTypeSpecSignLoc(), DS.getTypeSpecSign());
10389 Diagnoser.check(DS.getTypeSpecWidthLoc(), DS.getTypeSpecWidth());
10390 Diagnoser.check(DS.getTypeSpecTypeLoc(), DS.getTypeSpecType());
10391 DS.ClearTypeSpecType();
10392 }
10393
10394 if (D.isInvalidType())
10395 return;
10396
10397 // Check the declarator is simple enough.
10398 bool FoundFunction = false;
10399 for (const DeclaratorChunk &Chunk : llvm::reverse(D.type_objects())) {
10400 if (Chunk.Kind == DeclaratorChunk::Paren)
10401 continue;
10402 if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) {
10403 Diag(D.getDeclSpec().getBeginLoc(),
10404 diag::err_deduction_guide_with_complex_decl)
10405 << D.getSourceRange();
10406 break;
10407 }
10408 if (!Chunk.Fun.hasTrailingReturnType()) {
10409 Diag(D.getName().getBeginLoc(),
10410 diag::err_deduction_guide_no_trailing_return_type);
10411 break;
10412 }
10413
10414 // Check that the return type is written as a specialization of
10415 // the template specified as the deduction-guide's name.
10416 ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType();
10417 TypeSourceInfo *TSI = nullptr;
10418 QualType RetTy = GetTypeFromParser(TrailingReturnType, &TSI);
10419 assert(TSI && "deduction guide has valid type but invalid return type?")((TSI && "deduction guide has valid type but invalid return type?"
) ? static_cast<void> (0) : __assert_fail ("TSI && \"deduction guide has valid type but invalid return type?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 10419, __PRETTY_FUNCTION__))
;
10420 bool AcceptableReturnType = false;
10421 bool MightInstantiateToSpecialization = false;
10422 if (auto RetTST =
10423 TSI->getTypeLoc().getAs<TemplateSpecializationTypeLoc>()) {
10424 TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName();
10425 bool TemplateMatches =
10426 Context.hasSameTemplateName(SpecifiedName, GuidedTemplate);
10427 if (SpecifiedName.getKind() == TemplateName::Template && TemplateMatches)
10428 AcceptableReturnType = true;
10429 else {
10430 // This could still instantiate to the right type, unless we know it
10431 // names the wrong class template.
10432 auto *TD = SpecifiedName.getAsTemplateDecl();
10433 MightInstantiateToSpecialization = !(TD && isa<ClassTemplateDecl>(TD) &&
10434 !TemplateMatches);
10435 }
10436 } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) {
10437 MightInstantiateToSpecialization = true;
10438 }
10439
10440 if (!AcceptableReturnType) {
10441 Diag(TSI->getTypeLoc().getBeginLoc(),
10442 diag::err_deduction_guide_bad_trailing_return_type)
10443 << GuidedTemplate << TSI->getType()
10444 << MightInstantiateToSpecialization
10445 << TSI->getTypeLoc().getSourceRange();
10446 }
10447
10448 // Keep going to check that we don't have any inner declarator pieces (we
10449 // could still have a function returning a pointer to a function).
10450 FoundFunction = true;
10451 }
10452
10453 if (D.isFunctionDefinition())
10454 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function);
10455}
10456
10457//===----------------------------------------------------------------------===//
10458// Namespace Handling
10459//===----------------------------------------------------------------------===//
10460
10461/// Diagnose a mismatch in 'inline' qualifiers when a namespace is
10462/// reopened.
10463static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
10464 SourceLocation Loc,
10465 IdentifierInfo *II, bool *IsInline,
10466 NamespaceDecl *PrevNS) {
10467 assert(*IsInline != PrevNS->isInline())((*IsInline != PrevNS->isInline()) ? static_cast<void>
(0) : __assert_fail ("*IsInline != PrevNS->isInline()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 10467, __PRETTY_FUNCTION__))
;
10468
10469 // HACK: Work around a bug in libstdc++4.6's <atomic>, where
10470 // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
10471 // inline namespaces, with the intention of bringing names into namespace std.
10472 //
10473 // We support this just well enough to get that case working; this is not
10474 // sufficient to support reopening namespaces as inline in general.
10475 if (*IsInline && II && II->getName().startswith("__atomic") &&
10476 S.getSourceManager().isInSystemHeader(Loc)) {
10477 // Mark all prior declarations of the namespace as inline.
10478 for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
10479 NS = NS->getPreviousDecl())
10480 NS->setInline(*IsInline);
10481 // Patch up the lookup table for the containing namespace. This isn't really
10482 // correct, but it's good enough for this particular case.
10483 for (auto *I : PrevNS->decls())
10484 if (auto *ND = dyn_cast<NamedDecl>(I))
10485 PrevNS->getParent()->makeDeclVisibleInContext(ND);
10486 return;
10487 }
10488
10489 if (PrevNS->isInline())
10490 // The user probably just forgot the 'inline', so suggest that it
10491 // be added back.
10492 S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
10493 << FixItHint::CreateInsertion(KeywordLoc, "inline ");
10494 else
10495 S.Diag(Loc, diag::err_inline_namespace_mismatch);
10496
10497 S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
10498 *IsInline = PrevNS->isInline();
10499}
10500
10501/// ActOnStartNamespaceDef - This is called at the start of a namespace
10502/// definition.
10503Decl *Sema::ActOnStartNamespaceDef(
10504 Scope *NamespcScope, SourceLocation InlineLoc, SourceLocation NamespaceLoc,
10505 SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation LBrace,
10506 const ParsedAttributesView &AttrList, UsingDirectiveDecl *&UD) {
10507 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
10508 // For anonymous namespace, take the location of the left brace.
10509 SourceLocation Loc = II ? IdentLoc : LBrace;
10510 bool IsInline = InlineLoc.isValid();
10511 bool IsInvalid = false;
10512 bool IsStd = false;
10513 bool AddToKnown = false;
10514 Scope *DeclRegionScope = NamespcScope->getParent();
10515
10516 NamespaceDecl *PrevNS = nullptr;
10517 if (II) {
10518 // C++ [namespace.def]p2:
10519 // The identifier in an original-namespace-definition shall not
10520 // have been previously defined in the declarative region in
10521 // which the original-namespace-definition appears. The
10522 // identifier in an original-namespace-definition is the name of
10523 // the namespace. Subsequently in that declarative region, it is
10524 // treated as an original-namespace-name.
10525 //
10526 // Since namespace names are unique in their scope, and we don't
10527 // look through using directives, just look for any ordinary names
10528 // as if by qualified name lookup.
10529 LookupResult R(*this, II, IdentLoc, LookupOrdinaryName,
10530 ForExternalRedeclaration);
10531 LookupQualifiedName(R, CurContext->getRedeclContext());
10532 NamedDecl *PrevDecl =
10533 R.isSingleResult() ? R.getRepresentativeDecl() : nullptr;
10534 PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
10535
10536 if (PrevNS) {
10537 // This is an extended namespace definition.
10538 if (IsInline != PrevNS->isInline())
10539 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
10540 &IsInline, PrevNS);
10541 } else if (PrevDecl) {
10542 // This is an invalid name redefinition.
10543 Diag(Loc, diag::err_redefinition_different_kind)
10544 << II;
10545 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10546 IsInvalid = true;
10547 // Continue on to push Namespc as current DeclContext and return it.
10548 } else if (II->isStr("std") &&
10549 CurContext->getRedeclContext()->isTranslationUnit()) {
10550 // This is the first "real" definition of the namespace "std", so update
10551 // our cache of the "std" namespace to point at this definition.
10552 PrevNS = getStdNamespace();
10553 IsStd = true;
10554 AddToKnown = !IsInline;
10555 } else {
10556 // We've seen this namespace for the first time.
10557 AddToKnown = !IsInline;
10558 }
10559 } else {
10560 // Anonymous namespaces.
10561
10562 // Determine whether the parent already has an anonymous namespace.
10563 DeclContext *Parent = CurContext->getRedeclContext();
10564 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
10565 PrevNS = TU->getAnonymousNamespace();
10566 } else {
10567 NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
10568 PrevNS = ND->getAnonymousNamespace();
10569 }
10570
10571 if (PrevNS && IsInline != PrevNS->isInline())
10572 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
10573 &IsInline, PrevNS);
10574 }
10575
10576 NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
10577 StartLoc, Loc, II, PrevNS);
10578 if (IsInvalid)
10579 Namespc->setInvalidDecl();
10580
10581 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
10582 AddPragmaAttributes(DeclRegionScope, Namespc);
10583
10584 // FIXME: Should we be merging attributes?
10585 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
10586 PushNamespaceVisibilityAttr(Attr, Loc);
10587
10588 if (IsStd)
10589 StdNamespace = Namespc;
10590 if (AddToKnown)
10591 KnownNamespaces[Namespc] = false;
10592
10593 if (II) {
10594 PushOnScopeChains(Namespc, DeclRegionScope);
10595 } else {
10596 // Link the anonymous namespace into its parent.
10597 DeclContext *Parent = CurContext->getRedeclContext();
10598 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
10599 TU->setAnonymousNamespace(Namespc);
10600 } else {
10601 cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
10602 }
10603
10604 CurContext->addDecl(Namespc);
10605
10606 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition
10607 // behaves as if it were replaced by
10608 // namespace unique { /* empty body */ }
10609 // using namespace unique;
10610 // namespace unique { namespace-body }
10611 // where all occurrences of 'unique' in a translation unit are
10612 // replaced by the same identifier and this identifier differs
10613 // from all other identifiers in the entire program.
10614
10615 // We just create the namespace with an empty name and then add an
10616 // implicit using declaration, just like the standard suggests.
10617 //
10618 // CodeGen enforces the "universally unique" aspect by giving all
10619 // declarations semantically contained within an anonymous
10620 // namespace internal linkage.
10621
10622 if (!PrevNS) {
10623 UD = UsingDirectiveDecl::Create(Context, Parent,
10624 /* 'using' */ LBrace,
10625 /* 'namespace' */ SourceLocation(),
10626 /* qualifier */ NestedNameSpecifierLoc(),
10627 /* identifier */ SourceLocation(),
10628 Namespc,
10629 /* Ancestor */ Parent);
10630 UD->setImplicit();
10631 Parent->addDecl(UD);
10632 }
10633 }
10634
10635 ActOnDocumentableDecl(Namespc);
10636
10637 // Although we could have an invalid decl (i.e. the namespace name is a
10638 // redefinition), push it as current DeclContext and try to continue parsing.
10639 // FIXME: We should be able to push Namespc here, so that the each DeclContext
10640 // for the namespace has the declarations that showed up in that particular
10641 // namespace definition.
10642 PushDeclContext(NamespcScope, Namespc);
10643 return Namespc;
10644}
10645
10646/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
10647/// is a namespace alias, returns the namespace it points to.
10648static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
10649 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
10650 return AD->getNamespace();
10651 return dyn_cast_or_null<NamespaceDecl>(D);
10652}
10653
10654/// ActOnFinishNamespaceDef - This callback is called after a namespace is
10655/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
10656void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
10657 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
10658 assert(Namespc && "Invalid parameter, expected NamespaceDecl")((Namespc && "Invalid parameter, expected NamespaceDecl"
) ? static_cast<void> (0) : __assert_fail ("Namespc && \"Invalid parameter, expected NamespaceDecl\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 10658, __PRETTY_FUNCTION__))
;
10659 Namespc->setRBraceLoc(RBrace);
10660 PopDeclContext();
10661 if (Namespc->hasAttr<VisibilityAttr>())
10662 PopPragmaVisibility(true, RBrace);
10663 // If this namespace contains an export-declaration, export it now.
10664 if (DeferredExportedNamespaces.erase(Namespc))
10665 Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported);
10666}
10667
10668CXXRecordDecl *Sema::getStdBadAlloc() const {
10669 return cast_or_null<CXXRecordDecl>(
10670 StdBadAlloc.get(Context.getExternalSource()));
10671}
10672
10673EnumDecl *Sema::getStdAlignValT() const {
10674 return cast_or_null<EnumDecl>(StdAlignValT.get(Context.getExternalSource()));
10675}
10676
10677NamespaceDecl *Sema::getStdNamespace() const {
10678 return cast_or_null<NamespaceDecl>(
10679 StdNamespace.get(Context.getExternalSource()));
10680}
10681
10682NamespaceDecl *Sema::lookupStdExperimentalNamespace() {
10683 if (!StdExperimentalNamespaceCache) {
10684 if (auto Std = getStdNamespace()) {
10685 LookupResult Result(*this, &PP.getIdentifierTable().get("experimental"),
10686 SourceLocation(), LookupNamespaceName);
10687 if (!LookupQualifiedName(Result, Std) ||
10688 !(StdExperimentalNamespaceCache =
10689 Result.getAsSingle<NamespaceDecl>()))
10690 Result.suppressDiagnostics();
10691 }
10692 }
10693 return StdExperimentalNamespaceCache;
10694}
10695
10696namespace {
10697
10698enum UnsupportedSTLSelect {
10699 USS_InvalidMember,
10700 USS_MissingMember,
10701 USS_NonTrivial,
10702 USS_Other
10703};
10704
10705struct InvalidSTLDiagnoser {
10706 Sema &S;
10707 SourceLocation Loc;
10708 QualType TyForDiags;
10709
10710 QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "",
10711 const VarDecl *VD = nullptr) {
10712 {
10713 auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported)
10714 << TyForDiags << ((int)Sel);
10715 if (Sel == USS_InvalidMember || Sel == USS_MissingMember) {
10716 assert(!Name.empty())((!Name.empty()) ? static_cast<void> (0) : __assert_fail
("!Name.empty()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 10716, __PRETTY_FUNCTION__))
;
10717 D << Name;
10718 }
10719 }
10720 if (Sel == USS_InvalidMember) {
10721 S.Diag(VD->getLocation(), diag::note_var_declared_here)
10722 << VD << VD->getSourceRange();
10723 }
10724 return QualType();
10725 }
10726};
10727} // namespace
10728
10729QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind,
10730 SourceLocation Loc,
10731 ComparisonCategoryUsage Usage) {
10732 assert(getLangOpts().CPlusPlus &&((getLangOpts().CPlusPlus && "Looking for comparison category type outside of C++."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"Looking for comparison category type outside of C++.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 10733, __PRETTY_FUNCTION__))
10733 "Looking for comparison category type outside of C++.")((getLangOpts().CPlusPlus && "Looking for comparison category type outside of C++."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"Looking for comparison category type outside of C++.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 10733, __PRETTY_FUNCTION__))
;
10734
10735 // Use an elaborated type for diagnostics which has a name containing the
10736 // prepended 'std' namespace but not any inline namespace names.
10737 auto TyForDiags = [&](ComparisonCategoryInfo *Info) {
10738 auto *NNS =
10739 NestedNameSpecifier::Create(Context, nullptr, getStdNamespace());
10740 return Context.getElaboratedType(ETK_None, NNS, Info->getType());
10741 };
10742
10743 // Check if we've already successfully checked the comparison category type
10744 // before. If so, skip checking it again.
10745 ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind);
10746 if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)]) {
10747 // The only thing we need to check is that the type has a reachable
10748 // definition in the current context.
10749 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type))
10750 return QualType();
10751
10752 return Info->getType();
10753 }
10754
10755 // If lookup failed
10756 if (!Info) {
10757 std::string NameForDiags = "std::";
10758 NameForDiags += ComparisonCategories::getCategoryString(Kind);
10759 Diag(Loc, diag::err_implied_comparison_category_type_not_found)
10760 << NameForDiags << (int)Usage;
10761 return QualType();
10762 }
10763
10764 assert(Info->Kind == Kind)((Info->Kind == Kind) ? static_cast<void> (0) : __assert_fail
("Info->Kind == Kind", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 10764, __PRETTY_FUNCTION__))
;
10765 assert(Info->Record)((Info->Record) ? static_cast<void> (0) : __assert_fail
("Info->Record", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 10765, __PRETTY_FUNCTION__))
;
10766
10767 // Update the Record decl in case we encountered a forward declaration on our
10768 // first pass. FIXME: This is a bit of a hack.
10769 if (Info->Record->hasDefinition())
10770 Info->Record = Info->Record->getDefinition();
10771
10772 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type))
10773 return QualType();
10774
10775 InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags(Info)};
10776
10777 if (!Info->Record->isTriviallyCopyable())
10778 return UnsupportedSTLError(USS_NonTrivial);
10779
10780 for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) {
10781 CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl();
10782 // Tolerate empty base classes.
10783 if (Base->isEmpty())
10784 continue;
10785 // Reject STL implementations which have at least one non-empty base.
10786 return UnsupportedSTLError();
10787 }
10788
10789 // Check that the STL has implemented the types using a single integer field.
10790 // This expectation allows better codegen for builtin operators. We require:
10791 // (1) The class has exactly one field.
10792 // (2) The field is an integral or enumeration type.
10793 auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end();
10794 if (std::distance(FIt, FEnd) != 1 ||
10795 !FIt->getType()->isIntegralOrEnumerationType()) {
10796 return UnsupportedSTLError();
10797 }
10798
10799 // Build each of the require values and store them in Info.
10800 for (ComparisonCategoryResult CCR :
10801 ComparisonCategories::getPossibleResultsForType(Kind)) {
10802 StringRef MemName = ComparisonCategories::getResultString(CCR);
10803 ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(CCR);
10804
10805 if (!ValInfo)
10806 return UnsupportedSTLError(USS_MissingMember, MemName);
10807
10808 VarDecl *VD = ValInfo->VD;
10809 assert(VD && "should not be null!")((VD && "should not be null!") ? static_cast<void>
(0) : __assert_fail ("VD && \"should not be null!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 10809, __PRETTY_FUNCTION__))
;
10810
10811 // Attempt to diagnose reasons why the STL definition of this type
10812 // might be foobar, including it failing to be a constant expression.
10813 // TODO Handle more ways the lookup or result can be invalid.
10814 if (!VD->isStaticDataMember() || !VD->isConstexpr() || !VD->hasInit() ||
10815 !VD->checkInitIsICE())
10816 return UnsupportedSTLError(USS_InvalidMember, MemName, VD);
10817
10818 // Attempt to evaluate the var decl as a constant expression and extract
10819 // the value of its first field as a ICE. If this fails, the STL
10820 // implementation is not supported.
10821 if (!ValInfo->hasValidIntValue())
10822 return UnsupportedSTLError();
10823
10824 MarkVariableReferenced(Loc, VD);
10825 }
10826
10827 // We've successfully built the required types and expressions. Update
10828 // the cache and return the newly cached value.
10829 FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true;
10830 return Info->getType();
10831}
10832
10833/// Retrieve the special "std" namespace, which may require us to
10834/// implicitly define the namespace.
10835NamespaceDecl *Sema::getOrCreateStdNamespace() {
10836 if (!StdNamespace) {
10837 // The "std" namespace has not yet been defined, so build one implicitly.
10838 StdNamespace = NamespaceDecl::Create(Context,
10839 Context.getTranslationUnitDecl(),
10840 /*Inline=*/false,
10841 SourceLocation(), SourceLocation(),
10842 &PP.getIdentifierTable().get("std"),
10843 /*PrevDecl=*/nullptr);
10844 getStdNamespace()->setImplicit(true);
10845 }
10846
10847 return getStdNamespace();
10848}
10849
10850bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
10851 assert(getLangOpts().CPlusPlus &&((getLangOpts().CPlusPlus && "Looking for std::initializer_list outside of C++."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"Looking for std::initializer_list outside of C++.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 10852, __PRETTY_FUNCTION__))
10852 "Looking for std::initializer_list outside of C++.")((getLangOpts().CPlusPlus && "Looking for std::initializer_list outside of C++."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"Looking for std::initializer_list outside of C++.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 10852, __PRETTY_FUNCTION__))
;
10853
10854 // We're looking for implicit instantiations of
10855 // template <typename E> class std::initializer_list.
10856
10857 if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
10858 return false;
10859
10860 ClassTemplateDecl *Template = nullptr;
10861 const TemplateArgument *Arguments = nullptr;
10862
10863 if (const RecordType *RT = Ty->getAs<RecordType>()) {
10864
10865 ClassTemplateSpecializationDecl *Specialization =
10866 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
10867 if (!Specialization)
10868 return false;
10869
10870 Template = Specialization->getSpecializedTemplate();
10871 Arguments = Specialization->getTemplateArgs().data();
10872 } else if (const TemplateSpecializationType *TST =
10873 Ty->getAs<TemplateSpecializationType>()) {
10874 Template = dyn_cast_or_null<ClassTemplateDecl>(
10875 TST->getTemplateName().getAsTemplateDecl());
10876 Arguments = TST->getArgs();
10877 }
10878 if (!Template)
10879 return false;
10880
10881 if (!StdInitializerList) {
10882 // Haven't recognized std::initializer_list yet, maybe this is it.
10883 CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
10884 if (TemplateClass->getIdentifier() !=
10885 &PP.getIdentifierTable().get("initializer_list") ||
10886 !getStdNamespace()->InEnclosingNamespaceSetOf(
10887 TemplateClass->getDeclContext()))
10888 return false;
10889 // This is a template called std::initializer_list, but is it the right
10890 // template?
10891 TemplateParameterList *Params = Template->getTemplateParameters();
10892 if (Params->getMinRequiredArguments() != 1)
10893 return false;
10894 if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
10895 return false;
10896
10897 // It's the right template.
10898 StdInitializerList = Template;
10899 }
10900
10901 if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl())
10902 return false;
10903
10904 // This is an instance of std::initializer_list. Find the argument type.
10905 if (Element)
10906 *Element = Arguments[0].getAsType();
10907 return true;
10908}
10909
10910static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
10911 NamespaceDecl *Std = S.getStdNamespace();
10912 if (!Std) {
10913 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
10914 return nullptr;
10915 }
10916
10917 LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
10918 Loc, Sema::LookupOrdinaryName);
10919 if (!S.LookupQualifiedName(Result, Std)) {
10920 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
10921 return nullptr;
10922 }
10923 ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
10924 if (!Template) {
10925 Result.suppressDiagnostics();
10926 // We found something weird. Complain about the first thing we found.
10927 NamedDecl *Found = *Result.begin();
10928 S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
10929 return nullptr;
10930 }
10931
10932 // We found some template called std::initializer_list. Now verify that it's
10933 // correct.
10934 TemplateParameterList *Params = Template->getTemplateParameters();
10935 if (Params->getMinRequiredArguments() != 1 ||
10936 !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
10937 S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
10938 return nullptr;
10939 }
10940
10941 return Template;
10942}
10943
10944QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
10945 if (!StdInitializerList) {
10946 StdInitializerList = LookupStdInitializerList(*this, Loc);
10947 if (!StdInitializerList)
10948 return QualType();
10949 }
10950
10951 TemplateArgumentListInfo Args(Loc, Loc);
10952 Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
10953 Context.getTrivialTypeSourceInfo(Element,
10954 Loc)));
10955 return Context.getCanonicalType(
10956 CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
10957}
10958
10959bool Sema::isInitListConstructor(const FunctionDecl *Ctor) {
10960 // C++ [dcl.init.list]p2:
10961 // A constructor is an initializer-list constructor if its first parameter
10962 // is of type std::initializer_list<E> or reference to possibly cv-qualified
10963 // std::initializer_list<E> for some type E, and either there are no other
10964 // parameters or else all other parameters have default arguments.
10965 if (Ctor->getNumParams() < 1 ||
10966 (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
10967 return false;
10968
10969 QualType ArgType = Ctor->getParamDecl(0)->getType();
10970 if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
10971 ArgType = RT->getPointeeType().getUnqualifiedType();
10972
10973 return isStdInitializerList(ArgType, nullptr);
10974}
10975
10976/// Determine whether a using statement is in a context where it will be
10977/// apply in all contexts.
10978static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
10979 switch (CurContext->getDeclKind()) {
10980 case Decl::TranslationUnit:
10981 return true;
10982 case Decl::LinkageSpec:
10983 return IsUsingDirectiveInToplevelContext(CurContext->getParent());
10984 default:
10985 return false;
10986 }
10987}
10988
10989namespace {
10990
10991// Callback to only accept typo corrections that are namespaces.
10992class NamespaceValidatorCCC final : public CorrectionCandidateCallback {
10993public:
10994 bool ValidateCandidate(const TypoCorrection &candidate) override {
10995 if (NamedDecl *ND = candidate.getCorrectionDecl())
10996 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
10997 return false;
10998 }
10999
11000 std::unique_ptr<CorrectionCandidateCallback> clone() override {
11001 return std::make_unique<NamespaceValidatorCCC>(*this);
11002 }
11003};
11004
11005}
11006
11007static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
11008 CXXScopeSpec &SS,
11009 SourceLocation IdentLoc,
11010 IdentifierInfo *Ident) {
11011 R.clear();
11012 NamespaceValidatorCCC CCC{};
11013 if (TypoCorrection Corrected =
11014 S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS, CCC,
11015 Sema::CTK_ErrorRecovery)) {
11016 if (DeclContext *DC = S.computeDeclContext(SS, false)) {
11017 std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
11018 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
11019 Ident->getName().equals(CorrectedStr);
11020 S.diagnoseTypo(Corrected,
11021 S.PDiag(diag::err_using_directive_member_suggest)
11022 << Ident << DC << DroppedSpecifier << SS.getRange(),
11023 S.PDiag(diag::note_namespace_defined_here));
11024 } else {
11025 S.diagnoseTypo(Corrected,
11026 S.PDiag(diag::err_using_directive_suggest) << Ident,
11027 S.PDiag(diag::note_namespace_defined_here));
11028 }
11029 R.addDecl(Corrected.getFoundDecl());
11030 return true;
11031 }
11032 return false;
11033}
11034
11035Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc,
11036 SourceLocation NamespcLoc, CXXScopeSpec &SS,
11037 SourceLocation IdentLoc,
11038 IdentifierInfo *NamespcName,
11039 const ParsedAttributesView &AttrList) {
11040 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.")((!SS.isInvalid() && "Invalid CXXScopeSpec.") ? static_cast
<void> (0) : __assert_fail ("!SS.isInvalid() && \"Invalid CXXScopeSpec.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 11040, __PRETTY_FUNCTION__))
;
11041 assert(NamespcName && "Invalid NamespcName.")((NamespcName && "Invalid NamespcName.") ? static_cast
<void> (0) : __assert_fail ("NamespcName && \"Invalid NamespcName.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 11041, __PRETTY_FUNCTION__))
;
11042 assert(IdentLoc.isValid() && "Invalid NamespceName location.")((IdentLoc.isValid() && "Invalid NamespceName location."
) ? static_cast<void> (0) : __assert_fail ("IdentLoc.isValid() && \"Invalid NamespceName location.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 11042, __PRETTY_FUNCTION__))
;
11043
11044 // This can only happen along a recovery path.
11045 while (S->isTemplateParamScope())
11046 S = S->getParent();
11047 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.")((S->getFlags() & Scope::DeclScope && "Invalid Scope."
) ? static_cast<void> (0) : __assert_fail ("S->getFlags() & Scope::DeclScope && \"Invalid Scope.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 11047, __PRETTY_FUNCTION__))
;
11048
11049 UsingDirectiveDecl *UDir = nullptr;
11050 NestedNameSpecifier *Qualifier = nullptr;
11051 if (SS.isSet())
11052 Qualifier = SS.getScopeRep();
11053
11054 // Lookup namespace name.
11055 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
11056 LookupParsedName(R, S, &SS);
11057 if (R.isAmbiguous())
11058 return nullptr;
11059
11060 if (R.empty()) {
11061 R.clear();
11062 // Allow "using namespace std;" or "using namespace ::std;" even if
11063 // "std" hasn't been defined yet, for GCC compatibility.
11064 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
11065 NamespcName->isStr("std")) {
11066 Diag(IdentLoc, diag::ext_using_undefined_std);
11067 R.addDecl(getOrCreateStdNamespace());
11068 R.resolveKind();
11069 }
11070 // Otherwise, attempt typo correction.
11071 else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
11072 }
11073
11074 if (!R.empty()) {
11075 NamedDecl *Named = R.getRepresentativeDecl();
11076 NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>();
11077 assert(NS && "expected namespace decl")((NS && "expected namespace decl") ? static_cast<void
> (0) : __assert_fail ("NS && \"expected namespace decl\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 11077, __PRETTY_FUNCTION__))
;
11078
11079 // The use of a nested name specifier may trigger deprecation warnings.
11080 DiagnoseUseOfDecl(Named, IdentLoc);
11081
11082 // C++ [namespace.udir]p1:
11083 // A using-directive specifies that the names in the nominated
11084 // namespace can be used in the scope in which the
11085 // using-directive appears after the using-directive. During
11086 // unqualified name lookup (3.4.1), the names appear as if they
11087 // were declared in the nearest enclosing namespace which
11088 // contains both the using-directive and the nominated
11089 // namespace. [Note: in this context, "contains" means "contains
11090 // directly or indirectly". ]
11091
11092 // Find enclosing context containing both using-directive and
11093 // nominated namespace.
11094 DeclContext *CommonAncestor = NS;
11095 while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
11096 CommonAncestor = CommonAncestor->getParent();
11097
11098 UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
11099 SS.getWithLocInContext(Context),
11100 IdentLoc, Named, CommonAncestor);
11101
11102 if (IsUsingDirectiveInToplevelContext(CurContext) &&
11103 !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
11104 Diag(IdentLoc, diag::warn_using_directive_in_header);
11105 }
11106
11107 PushUsingDirective(S, UDir);
11108 } else {
11109 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
11110 }
11111
11112 if (UDir)
11113 ProcessDeclAttributeList(S, UDir, AttrList);
11114
11115 return UDir;
11116}
11117
11118void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
11119 // If the scope has an associated entity and the using directive is at
11120 // namespace or translation unit scope, add the UsingDirectiveDecl into
11121 // its lookup structure so qualified name lookup can find it.
11122 DeclContext *Ctx = S->getEntity();
11123 if (Ctx && !Ctx->isFunctionOrMethod())
11124 Ctx->addDecl(UDir);
11125 else
11126 // Otherwise, it is at block scope. The using-directives will affect lookup
11127 // only to the end of the scope.
11128 S->PushUsingDirective(UDir);
11129}
11130
11131Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS,
11132 SourceLocation UsingLoc,
11133 SourceLocation TypenameLoc, CXXScopeSpec &SS,
11134 UnqualifiedId &Name,
11135 SourceLocation EllipsisLoc,
11136 const ParsedAttributesView &AttrList) {
11137 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.")((S->getFlags() & Scope::DeclScope && "Invalid Scope."
) ? static_cast<void> (0) : __assert_fail ("S->getFlags() & Scope::DeclScope && \"Invalid Scope.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 11137, __PRETTY_FUNCTION__))
;
11138
11139 if (SS.isEmpty()) {
11140 Diag(Name.getBeginLoc(), diag::err_using_requires_qualname);
11141 return nullptr;
11142 }
11143
11144 switch (Name.getKind()) {
11145 case UnqualifiedIdKind::IK_ImplicitSelfParam:
11146 case UnqualifiedIdKind::IK_Identifier:
11147 case UnqualifiedIdKind::IK_OperatorFunctionId:
11148 case UnqualifiedIdKind::IK_LiteralOperatorId:
11149 case UnqualifiedIdKind::IK_ConversionFunctionId:
11150 break;
11151
11152 case UnqualifiedIdKind::IK_ConstructorName:
11153 case UnqualifiedIdKind::IK_ConstructorTemplateId:
11154 // C++11 inheriting constructors.
11155 Diag(Name.getBeginLoc(),
11156 getLangOpts().CPlusPlus11
11157 ? diag::warn_cxx98_compat_using_decl_constructor
11158 : diag::err_using_decl_constructor)
11159 << SS.getRange();
11160
11161 if (getLangOpts().CPlusPlus11) break;
11162
11163 return nullptr;
11164
11165 case UnqualifiedIdKind::IK_DestructorName:
11166 Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange();
11167 return nullptr;
11168
11169 case UnqualifiedIdKind::IK_TemplateId:
11170 Diag(Name.getBeginLoc(), diag::err_using_decl_template_id)
11171 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
11172 return nullptr;
11173
11174 case UnqualifiedIdKind::IK_DeductionGuideName:
11175 llvm_unreachable("cannot parse qualified deduction guide name")::llvm::llvm_unreachable_internal("cannot parse qualified deduction guide name"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 11175)
;
11176 }
11177
11178 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
11179 DeclarationName TargetName = TargetNameInfo.getName();
11180 if (!TargetName)
11181 return nullptr;
11182
11183 // Warn about access declarations.
11184 if (UsingLoc.isInvalid()) {
11185 Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11
11186 ? diag::err_access_decl
11187 : diag::warn_access_decl_deprecated)
11188 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
11189 }
11190
11191 if (EllipsisLoc.isInvalid()) {
11192 if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
11193 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
11194 return nullptr;
11195 } else {
11196 if (!SS.getScopeRep()->containsUnexpandedParameterPack() &&
11197 !TargetNameInfo.containsUnexpandedParameterPack()) {
11198 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
11199 << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc());
11200 EllipsisLoc = SourceLocation();
11201 }
11202 }
11203
11204 NamedDecl *UD =
11205 BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc,
11206 SS, TargetNameInfo, EllipsisLoc, AttrList,
11207 /*IsInstantiation*/false);
11208 if (UD)
11209 PushOnScopeChains(UD, S, /*AddToContext*/ false);
11210
11211 return UD;
11212}
11213
11214/// Determine whether a using declaration considers the given
11215/// declarations as "equivalent", e.g., if they are redeclarations of
11216/// the same entity or are both typedefs of the same type.
11217static bool
11218IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) {
11219 if (D1->getCanonicalDecl() == D2->getCanonicalDecl())
11220 return true;
11221
11222 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
11223 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2))
11224 return Context.hasSameType(TD1->getUnderlyingType(),
11225 TD2->getUnderlyingType());
11226
11227 return false;
11228}
11229
11230
11231/// Determines whether to create a using shadow decl for a particular
11232/// decl, given the set of decls existing prior to this using lookup.
11233bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
11234 const LookupResult &Previous,
11235 UsingShadowDecl *&PrevShadow) {
11236 // Diagnose finding a decl which is not from a base class of the
11237 // current class. We do this now because there are cases where this
11238 // function will silently decide not to build a shadow decl, which
11239 // will pre-empt further diagnostics.
11240 //
11241 // We don't need to do this in C++11 because we do the check once on
11242 // the qualifier.
11243 //
11244 // FIXME: diagnose the following if we care enough:
11245 // struct A { int foo; };
11246 // struct B : A { using A::foo; };
11247 // template <class T> struct C : A {};
11248 // template <class T> struct D : C<T> { using B::foo; } // <---
11249 // This is invalid (during instantiation) in C++03 because B::foo
11250 // resolves to the using decl in B, which is not a base class of D<T>.
11251 // We can't diagnose it immediately because C<T> is an unknown
11252 // specialization. The UsingShadowDecl in D<T> then points directly
11253 // to A::foo, which will look well-formed when we instantiate.
11254 // The right solution is to not collapse the shadow-decl chain.
11255 if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
11256 DeclContext *OrigDC = Orig->getDeclContext();
11257
11258 // Handle enums and anonymous structs.
11259 if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
11260 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
11261 while (OrigRec->isAnonymousStructOrUnion())
11262 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
11263
11264 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
11265 if (OrigDC == CurContext) {
11266 Diag(Using->getLocation(),
11267 diag::err_using_decl_nested_name_specifier_is_current_class)
11268 << Using->getQualifierLoc().getSourceRange();
11269 Diag(Orig->getLocation(), diag::note_using_decl_target);
11270 Using->setInvalidDecl();
11271 return true;
11272 }
11273
11274 Diag(Using->getQualifierLoc().getBeginLoc(),
11275 diag::err_using_decl_nested_name_specifier_is_not_base_class)
11276 << Using->getQualifier()
11277 << cast<CXXRecordDecl>(CurContext)
11278 << Using->getQualifierLoc().getSourceRange();
11279 Diag(Orig->getLocation(), diag::note_using_decl_target);
11280 Using->setInvalidDecl();
11281 return true;
11282 }
11283 }
11284
11285 if (Previous.empty()) return false;
11286
11287 NamedDecl *Target = Orig;
11288 if (isa<UsingShadowDecl>(Target))
11289 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
11290
11291 // If the target happens to be one of the previous declarations, we
11292 // don't have a conflict.
11293 //
11294 // FIXME: but we might be increasing its access, in which case we
11295 // should redeclare it.
11296 NamedDecl *NonTag = nullptr, *Tag = nullptr;
11297 bool FoundEquivalentDecl = false;
11298 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
11299 I != E; ++I) {
11300 NamedDecl *D = (*I)->getUnderlyingDecl();
11301 // We can have UsingDecls in our Previous results because we use the same
11302 // LookupResult for checking whether the UsingDecl itself is a valid
11303 // redeclaration.
11304 if (isa<UsingDecl>(D) || isa<UsingPackDecl>(D))
11305 continue;
11306
11307 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
11308 // C++ [class.mem]p19:
11309 // If T is the name of a class, then [every named member other than
11310 // a non-static data member] shall have a name different from T
11311 if (RD->isInjectedClassName() && !isa<FieldDecl>(Target) &&
11312 !isa<IndirectFieldDecl>(Target) &&
11313 !isa<UnresolvedUsingValueDecl>(Target) &&
11314 DiagnoseClassNameShadow(
11315 CurContext,
11316 DeclarationNameInfo(Using->getDeclName(), Using->getLocation())))
11317 return true;
11318 }
11319
11320 if (IsEquivalentForUsingDecl(Context, D, Target)) {
11321 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I))
11322 PrevShadow = Shadow;
11323 FoundEquivalentDecl = true;
11324 } else if (isEquivalentInternalLinkageDeclaration(D, Target)) {
11325 // We don't conflict with an existing using shadow decl of an equivalent
11326 // declaration, but we're not a redeclaration of it.
11327 FoundEquivalentDecl = true;
11328 }
11329
11330 if (isVisible(D))
11331 (isa<TagDecl>(D) ? Tag : NonTag) = D;
11332 }
11333
11334 if (FoundEquivalentDecl)
11335 return false;
11336
11337 if (FunctionDecl *FD = Target->getAsFunction()) {
11338 NamedDecl *OldDecl = nullptr;
11339 switch (CheckOverload(nullptr, FD, Previous, OldDecl,
11340 /*IsForUsingDecl*/ true)) {
11341 case Ovl_Overload:
11342 return false;
11343
11344 case Ovl_NonFunction:
11345 Diag(Using->getLocation(), diag::err_using_decl_conflict);
11346 break;
11347
11348 // We found a decl with the exact signature.
11349 case Ovl_Match:
11350 // If we're in a record, we want to hide the target, so we
11351 // return true (without a diagnostic) to tell the caller not to
11352 // build a shadow decl.
11353 if (CurContext->isRecord())
11354 return true;
11355
11356 // If we're not in a record, this is an error.
11357 Diag(Using->getLocation(), diag::err_using_decl_conflict);
11358 break;
11359 }
11360
11361 Diag(Target->getLocation(), diag::note_using_decl_target);
11362 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
11363 Using->setInvalidDecl();
11364 return true;
11365 }
11366
11367 // Target is not a function.
11368
11369 if (isa<TagDecl>(Target)) {
11370 // No conflict between a tag and a non-tag.
11371 if (!Tag) return false;
11372
11373 Diag(Using->getLocation(), diag::err_using_decl_conflict);
11374 Diag(Target->getLocation(), diag::note_using_decl_target);
11375 Diag(Tag->getLocation(), diag::note_using_decl_conflict);
11376 Using->setInvalidDecl();
11377 return true;
11378 }
11379
11380 // No conflict between a tag and a non-tag.
11381 if (!NonTag) return false;
11382
11383 Diag(Using->getLocation(), diag::err_using_decl_conflict);
11384 Diag(Target->getLocation(), diag::note_using_decl_target);
11385 Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
11386 Using->setInvalidDecl();
11387 return true;
11388}
11389
11390/// Determine whether a direct base class is a virtual base class.
11391static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) {
11392 if (!Derived->getNumVBases())
11393 return false;
11394 for (auto &B : Derived->bases())
11395 if (B.getType()->getAsCXXRecordDecl() == Base)
11396 return B.isVirtual();
11397 llvm_unreachable("not a direct base class")::llvm::llvm_unreachable_internal("not a direct base class", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 11397)
;
11398}
11399
11400/// Builds a shadow declaration corresponding to a 'using' declaration.
11401UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
11402 UsingDecl *UD,
11403 NamedDecl *Orig,
11404 UsingShadowDecl *PrevDecl) {
11405 // If we resolved to another shadow declaration, just coalesce them.
11406 NamedDecl *Target = Orig;
11407 if (isa<UsingShadowDecl>(Target)) {
11408 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
11409 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration")((!isa<UsingShadowDecl>(Target) && "nested shadow declaration"
) ? static_cast<void> (0) : __assert_fail ("!isa<UsingShadowDecl>(Target) && \"nested shadow declaration\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 11409, __PRETTY_FUNCTION__))
;
11410 }
11411
11412 NamedDecl *NonTemplateTarget = Target;
11413 if (auto *TargetTD = dyn_cast<TemplateDecl>(Target))
11414 NonTemplateTarget = TargetTD->getTemplatedDecl();
11415
11416 UsingShadowDecl *Shadow;
11417 if (NonTemplateTarget && isa<CXXConstructorDecl>(NonTemplateTarget)) {
11418 bool IsVirtualBase =
11419 isVirtualDirectBase(cast<CXXRecordDecl>(CurContext),
11420 UD->getQualifier()->getAsRecordDecl());
11421 Shadow = ConstructorUsingShadowDecl::Create(
11422 Context, CurContext, UD->getLocation(), UD, Orig, IsVirtualBase);
11423 } else {
11424 Shadow = UsingShadowDecl::Create(Context, CurContext, UD->getLocation(), UD,
11425 Target);
11426 }
11427 UD->addShadowDecl(Shadow);
11428
11429 Shadow->setAccess(UD->getAccess());
11430 if (Orig->isInvalidDecl() || UD->isInvalidDecl())
11431 Shadow->setInvalidDecl();
11432
11433 Shadow->setPreviousDecl(PrevDecl);
11434
11435 if (S)
11436 PushOnScopeChains(Shadow, S);
11437 else
11438 CurContext->addDecl(Shadow);
11439
11440
11441 return Shadow;
11442}
11443
11444/// Hides a using shadow declaration. This is required by the current
11445/// using-decl implementation when a resolvable using declaration in a
11446/// class is followed by a declaration which would hide or override
11447/// one or more of the using decl's targets; for example:
11448///
11449/// struct Base { void foo(int); };
11450/// struct Derived : Base {
11451/// using Base::foo;
11452/// void foo(int);
11453/// };
11454///
11455/// The governing language is C++03 [namespace.udecl]p12:
11456///
11457/// When a using-declaration brings names from a base class into a
11458/// derived class scope, member functions in the derived class
11459/// override and/or hide member functions with the same name and
11460/// parameter types in a base class (rather than conflicting).
11461///
11462/// There are two ways to implement this:
11463/// (1) optimistically create shadow decls when they're not hidden
11464/// by existing declarations, or
11465/// (2) don't create any shadow decls (or at least don't make them
11466/// visible) until we've fully parsed/instantiated the class.
11467/// The problem with (1) is that we might have to retroactively remove
11468/// a shadow decl, which requires several O(n) operations because the
11469/// decl structures are (very reasonably) not designed for removal.
11470/// (2) avoids this but is very fiddly and phase-dependent.
11471void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
11472 if (Shadow->getDeclName().getNameKind() ==
11473 DeclarationName::CXXConversionFunctionName)
11474 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
11475
11476 // Remove it from the DeclContext...
11477 Shadow->getDeclContext()->removeDecl(Shadow);
11478
11479 // ...and the scope, if applicable...
11480 if (S) {
11481 S->RemoveDecl(Shadow);
11482 IdResolver.RemoveDecl(Shadow);
11483 }
11484
11485 // ...and the using decl.
11486 Shadow->getUsingDecl()->removeShadowDecl(Shadow);
11487
11488 // TODO: complain somehow if Shadow was used. It shouldn't
11489 // be possible for this to happen, because...?
11490}
11491
11492/// Find the base specifier for a base class with the given type.
11493static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived,
11494 QualType DesiredBase,
11495 bool &AnyDependentBases) {
11496 // Check whether the named type is a direct base class.
11497 CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified()
11498 .getUnqualifiedType();
11499 for (auto &Base : Derived->bases()) {
11500 CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified();
11501 if (CanonicalDesiredBase == BaseType)
11502 return &Base;
11503 if (BaseType->isDependentType())
11504 AnyDependentBases = true;
11505 }
11506 return nullptr;
11507}
11508
11509namespace {
11510class UsingValidatorCCC final : public CorrectionCandidateCallback {
11511public:
11512 UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation,
11513 NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf)
11514 : HasTypenameKeyword(HasTypenameKeyword),
11515 IsInstantiation(IsInstantiation), OldNNS(NNS),
11516 RequireMemberOf(RequireMemberOf) {}
11517
11518 bool ValidateCandidate(const TypoCorrection &Candidate) override {
11519 NamedDecl *ND = Candidate.getCorrectionDecl();
11520
11521 // Keywords are not valid here.
11522 if (!ND || isa<NamespaceDecl>(ND))
11523 return false;
11524
11525 // Completely unqualified names are invalid for a 'using' declaration.
11526 if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
11527 return false;
11528
11529 // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would
11530 // reject.
11531
11532 if (RequireMemberOf) {
11533 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
11534 if (FoundRecord && FoundRecord->isInjectedClassName()) {
11535 // No-one ever wants a using-declaration to name an injected-class-name
11536 // of a base class, unless they're declaring an inheriting constructor.
11537 ASTContext &Ctx = ND->getASTContext();
11538 if (!Ctx.getLangOpts().CPlusPlus11)
11539 return false;
11540 QualType FoundType = Ctx.getRecordType(FoundRecord);
11541
11542 // Check that the injected-class-name is named as a member of its own
11543 // type; we don't want to suggest 'using Derived::Base;', since that
11544 // means something else.
11545 NestedNameSpecifier *Specifier =
11546 Candidate.WillReplaceSpecifier()
11547 ? Candidate.getCorrectionSpecifier()
11548 : OldNNS;
11549 if (!Specifier->getAsType() ||
11550 !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType))
11551 return false;
11552
11553 // Check that this inheriting constructor declaration actually names a
11554 // direct base class of the current class.
11555 bool AnyDependentBases = false;
11556 if (!findDirectBaseWithType(RequireMemberOf,
11557 Ctx.getRecordType(FoundRecord),
11558 AnyDependentBases) &&
11559 !AnyDependentBases)
11560 return false;
11561 } else {
11562 auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext());
11563 if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD))
11564 return false;
11565
11566 // FIXME: Check that the base class member is accessible?
11567 }
11568 } else {
11569 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
11570 if (FoundRecord && FoundRecord->isInjectedClassName())
11571 return false;
11572 }
11573
11574 if (isa<TypeDecl>(ND))
11575 return HasTypenameKeyword || !IsInstantiation;
11576
11577 return !HasTypenameKeyword;
11578 }
11579
11580 std::unique_ptr<CorrectionCandidateCallback> clone() override {
11581 return std::make_unique<UsingValidatorCCC>(*this);
11582 }
11583
11584private:
11585 bool HasTypenameKeyword;
11586 bool IsInstantiation;
11587 NestedNameSpecifier *OldNNS;
11588 CXXRecordDecl *RequireMemberOf;
11589};
11590} // end anonymous namespace
11591
11592/// Builds a using declaration.
11593///
11594/// \param IsInstantiation - Whether this call arises from an
11595/// instantiation of an unresolved using declaration. We treat
11596/// the lookup differently for these declarations.
11597NamedDecl *Sema::BuildUsingDeclaration(
11598 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc,
11599 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS,
11600 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc,
11601 const ParsedAttributesView &AttrList, bool IsInstantiation) {
11602 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.")((!SS.isInvalid() && "Invalid CXXScopeSpec.") ? static_cast
<void> (0) : __assert_fail ("!SS.isInvalid() && \"Invalid CXXScopeSpec.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 11602, __PRETTY_FUNCTION__))
;
11603 SourceLocation IdentLoc = NameInfo.getLoc();
11604 assert(IdentLoc.isValid() && "Invalid TargetName location.")((IdentLoc.isValid() && "Invalid TargetName location."
) ? static_cast<void> (0) : __assert_fail ("IdentLoc.isValid() && \"Invalid TargetName location.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 11604, __PRETTY_FUNCTION__))
;
11605
11606 // FIXME: We ignore attributes for now.
11607
11608 // For an inheriting constructor declaration, the name of the using
11609 // declaration is the name of a constructor in this class, not in the
11610 // base class.
11611 DeclarationNameInfo UsingName = NameInfo;
11612 if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName)
11613 if (auto *RD = dyn_cast<CXXRecordDecl>(CurContext))
11614 UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
11615 Context.getCanonicalType(Context.getRecordType(RD))));
11616
11617 // Do the redeclaration lookup in the current scope.
11618 LookupResult Previous(*this, UsingName, LookupUsingDeclName,
11619 ForVisibleRedeclaration);
11620 Previous.setHideTags(false);
11621 if (S) {
11622 LookupName(Previous, S);
11623
11624 // It is really dumb that we have to do this.
11625 LookupResult::Filter F = Previous.makeFilter();
11626 while (F.hasNext()) {
11627 NamedDecl *D = F.next();
11628 if (!isDeclInScope(D, CurContext, S))
11629 F.erase();
11630 // If we found a local extern declaration that's not ordinarily visible,
11631 // and this declaration is being added to a non-block scope, ignore it.
11632 // We're only checking for scope conflicts here, not also for violations
11633 // of the linkage rules.
11634 else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() &&
11635 !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary))
11636 F.erase();
11637 }
11638 F.done();
11639 } else {
11640 assert(IsInstantiation && "no scope in non-instantiation")((IsInstantiation && "no scope in non-instantiation")
? static_cast<void> (0) : __assert_fail ("IsInstantiation && \"no scope in non-instantiation\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 11640, __PRETTY_FUNCTION__))
;
11641 if (CurContext->isRecord())
11642 LookupQualifiedName(Previous, CurContext);
11643 else {
11644 // No redeclaration check is needed here; in non-member contexts we
11645 // diagnosed all possible conflicts with other using-declarations when
11646 // building the template:
11647 //
11648 // For a dependent non-type using declaration, the only valid case is
11649 // if we instantiate to a single enumerator. We check for conflicts
11650 // between shadow declarations we introduce, and we check in the template
11651 // definition for conflicts between a non-type using declaration and any
11652 // other declaration, which together covers all cases.
11653 //
11654 // A dependent typename using declaration will never successfully
11655 // instantiate, since it will always name a class member, so we reject
11656 // that in the template definition.
11657 }
11658 }
11659
11660 // Check for invalid redeclarations.
11661 if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
11662 SS, IdentLoc, Previous))
11663 return nullptr;
11664
11665 // Check for bad qualifiers.
11666 if (CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo,
11667 IdentLoc))
11668 return nullptr;
11669
11670 DeclContext *LookupContext = computeDeclContext(SS);
11671 NamedDecl *D;
11672 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
11673 if (!LookupContext || EllipsisLoc.isValid()) {
11674 if (HasTypenameKeyword) {
11675 // FIXME: not all declaration name kinds are legal here
11676 D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
11677 UsingLoc, TypenameLoc,
11678 QualifierLoc,
11679 IdentLoc, NameInfo.getName(),
11680 EllipsisLoc);
11681 } else {
11682 D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
11683 QualifierLoc, NameInfo, EllipsisLoc);
11684 }
11685 D->setAccess(AS);
11686 CurContext->addDecl(D);
11687 return D;
11688 }
11689
11690 auto Build = [&](bool Invalid) {
11691 UsingDecl *UD =
11692 UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
11693 UsingName, HasTypenameKeyword);
11694 UD->setAccess(AS);
11695 CurContext->addDecl(UD);
11696 UD->setInvalidDecl(Invalid);
11697 return UD;
11698 };
11699 auto BuildInvalid = [&]{ return Build(true); };
11700 auto BuildValid = [&]{ return Build(false); };
11701
11702 if (RequireCompleteDeclContext(SS, LookupContext))
11703 return BuildInvalid();
11704
11705 // Look up the target name.
11706 LookupResult R(*this, NameInfo, LookupOrdinaryName);
11707
11708 // Unlike most lookups, we don't always want to hide tag
11709 // declarations: tag names are visible through the using declaration
11710 // even if hidden by ordinary names, *except* in a dependent context
11711 // where it's important for the sanity of two-phase lookup.
11712 if (!IsInstantiation)
11713 R.setHideTags(false);
11714
11715 // For the purposes of this lookup, we have a base object type
11716 // equal to that of the current context.
11717 if (CurContext->isRecord()) {
11718 R.setBaseObjectType(
11719 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
11720 }
11721
11722 LookupQualifiedName(R, LookupContext);
11723
11724 // Try to correct typos if possible. If constructor name lookup finds no
11725 // results, that means the named class has no explicit constructors, and we
11726 // suppressed declaring implicit ones (probably because it's dependent or
11727 // invalid).
11728 if (R.empty() &&
11729 NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) {
11730 // HACK: Work around a bug in libstdc++'s detection of ::gets. Sometimes
11731 // it will believe that glibc provides a ::gets in cases where it does not,
11732 // and will try to pull it into namespace std with a using-declaration.
11733 // Just ignore the using-declaration in that case.
11734 auto *II = NameInfo.getName().getAsIdentifierInfo();
11735 if (getLangOpts().CPlusPlus14 && II && II->isStr("gets") &&
11736 CurContext->isStdNamespace() &&
11737 isa<TranslationUnitDecl>(LookupContext) &&
11738 getSourceManager().isInSystemHeader(UsingLoc))
11739 return nullptr;
11740 UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(),
11741 dyn_cast<CXXRecordDecl>(CurContext));
11742 if (TypoCorrection Corrected =
11743 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
11744 CTK_ErrorRecovery)) {
11745 // We reject candidates where DroppedSpecifier == true, hence the
11746 // literal '0' below.
11747 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
11748 << NameInfo.getName() << LookupContext << 0
11749 << SS.getRange());
11750
11751 // If we picked a correction with no attached Decl we can't do anything
11752 // useful with it, bail out.
11753 NamedDecl *ND = Corrected.getCorrectionDecl();
11754 if (!ND)
11755 return BuildInvalid();
11756
11757 // If we corrected to an inheriting constructor, handle it as one.
11758 auto *RD = dyn_cast<CXXRecordDecl>(ND);
11759 if (RD && RD->isInjectedClassName()) {
11760 // The parent of the injected class name is the class itself.
11761 RD = cast<CXXRecordDecl>(RD->getParent());
11762
11763 // Fix up the information we'll use to build the using declaration.
11764 if (Corrected.WillReplaceSpecifier()) {
11765 NestedNameSpecifierLocBuilder Builder;
11766 Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
11767 QualifierLoc.getSourceRange());
11768 QualifierLoc = Builder.getWithLocInContext(Context);
11769 }
11770
11771 // In this case, the name we introduce is the name of a derived class
11772 // constructor.
11773 auto *CurClass = cast<CXXRecordDecl>(CurContext);
11774 UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
11775 Context.getCanonicalType(Context.getRecordType(CurClass))));
11776 UsingName.setNamedTypeInfo(nullptr);
11777 for (auto *Ctor : LookupConstructors(RD))
11778 R.addDecl(Ctor);
11779 R.resolveKind();
11780 } else {
11781 // FIXME: Pick up all the declarations if we found an overloaded
11782 // function.
11783 UsingName.setName(ND->getDeclName());
11784 R.addDecl(ND);
11785 }
11786 } else {
11787 Diag(IdentLoc, diag::err_no_member)
11788 << NameInfo.getName() << LookupContext << SS.getRange();
11789 return BuildInvalid();
11790 }
11791 }
11792
11793 if (R.isAmbiguous())
11794 return BuildInvalid();
11795
11796 if (HasTypenameKeyword) {
11797 // If we asked for a typename and got a non-type decl, error out.
11798 if (!R.getAsSingle<TypeDecl>()) {
11799 Diag(IdentLoc, diag::err_using_typename_non_type);
11800 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
11801 Diag((*I)->getUnderlyingDecl()->getLocation(),
11802 diag::note_using_decl_target);
11803 return BuildInvalid();
11804 }
11805 } else {
11806 // If we asked for a non-typename and we got a type, error out,
11807 // but only if this is an instantiation of an unresolved using
11808 // decl. Otherwise just silently find the type name.
11809 if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
11810 Diag(IdentLoc, diag::err_using_dependent_value_is_type);
11811 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
11812 return BuildInvalid();
11813 }
11814 }
11815
11816 // C++14 [namespace.udecl]p6:
11817 // A using-declaration shall not name a namespace.
11818 if (R.getAsSingle<NamespaceDecl>()) {
11819 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
11820 << SS.getRange();
11821 return BuildInvalid();
11822 }
11823
11824 // C++14 [namespace.udecl]p7:
11825 // A using-declaration shall not name a scoped enumerator.
11826 if (auto *ED = R.getAsSingle<EnumConstantDecl>()) {
11827 if (cast<EnumDecl>(ED->getDeclContext())->isScoped()) {
11828 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_scoped_enum)
11829 << SS.getRange();
11830 return BuildInvalid();
11831 }
11832 }
11833
11834 UsingDecl *UD = BuildValid();
11835
11836 // Some additional rules apply to inheriting constructors.
11837 if (UsingName.getName().getNameKind() ==
11838 DeclarationName::CXXConstructorName) {
11839 // Suppress access diagnostics; the access check is instead performed at the
11840 // point of use for an inheriting constructor.
11841 R.suppressDiagnostics();
11842 if (CheckInheritingConstructorUsingDecl(UD))
11843 return UD;
11844 }
11845
11846 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
11847 UsingShadowDecl *PrevDecl = nullptr;
11848 if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl))
11849 BuildUsingShadowDecl(S, UD, *I, PrevDecl);
11850 }
11851
11852 return UD;
11853}
11854
11855NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom,
11856 ArrayRef<NamedDecl *> Expansions) {
11857 assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) ||((isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || isa
<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || isa<
UsingPackDecl>(InstantiatedFrom)) ? static_cast<void>
(0) : __assert_fail ("isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || isa<UsingPackDecl>(InstantiatedFrom)"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 11859, __PRETTY_FUNCTION__))
11858 isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) ||((isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || isa
<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || isa<
UsingPackDecl>(InstantiatedFrom)) ? static_cast<void>
(0) : __assert_fail ("isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || isa<UsingPackDecl>(InstantiatedFrom)"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 11859, __PRETTY_FUNCTION__))
11859 isa<UsingPackDecl>(InstantiatedFrom))((isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || isa
<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || isa<
UsingPackDecl>(InstantiatedFrom)) ? static_cast<void>
(0) : __assert_fail ("isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || isa<UsingPackDecl>(InstantiatedFrom)"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 11859, __PRETTY_FUNCTION__))
;
11860
11861 auto *UPD =
11862 UsingPackDecl::Create(Context, CurContext, InstantiatedFrom, Expansions);
11863 UPD->setAccess(InstantiatedFrom->getAccess());
11864 CurContext->addDecl(UPD);
11865 return UPD;
11866}
11867
11868/// Additional checks for a using declaration referring to a constructor name.
11869bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
11870 assert(!UD->hasTypename() && "expecting a constructor name")((!UD->hasTypename() && "expecting a constructor name"
) ? static_cast<void> (0) : __assert_fail ("!UD->hasTypename() && \"expecting a constructor name\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 11870, __PRETTY_FUNCTION__))
;
11871
11872 const Type *SourceType = UD->getQualifier()->getAsType();
11873 assert(SourceType &&((SourceType && "Using decl naming constructor doesn't have type in scope spec."
) ? static_cast<void> (0) : __assert_fail ("SourceType && \"Using decl naming constructor doesn't have type in scope spec.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 11874, __PRETTY_FUNCTION__))
11874 "Using decl naming constructor doesn't have type in scope spec.")((SourceType && "Using decl naming constructor doesn't have type in scope spec."
) ? static_cast<void> (0) : __assert_fail ("SourceType && \"Using decl naming constructor doesn't have type in scope spec.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 11874, __PRETTY_FUNCTION__))
;
11875 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
11876
11877 // Check whether the named type is a direct base class.
11878 bool AnyDependentBases = false;
11879 auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0),
11880 AnyDependentBases);
11881 if (!Base && !AnyDependentBases) {
11882 Diag(UD->getUsingLoc(),
11883 diag::err_using_decl_constructor_not_in_direct_base)
11884 << UD->getNameInfo().getSourceRange()
11885 << QualType(SourceType, 0) << TargetClass;
11886 UD->setInvalidDecl();
11887 return true;
11888 }
11889
11890 if (Base)
11891 Base->setInheritConstructors();
11892
11893 return false;
11894}
11895
11896/// Checks that the given using declaration is not an invalid
11897/// redeclaration. Note that this is checking only for the using decl
11898/// itself, not for any ill-formedness among the UsingShadowDecls.
11899bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
11900 bool HasTypenameKeyword,
11901 const CXXScopeSpec &SS,
11902 SourceLocation NameLoc,
11903 const LookupResult &Prev) {
11904 NestedNameSpecifier *Qual = SS.getScopeRep();
11905
11906 // C++03 [namespace.udecl]p8:
11907 // C++0x [namespace.udecl]p10:
11908 // A using-declaration is a declaration and can therefore be used
11909 // repeatedly where (and only where) multiple declarations are
11910 // allowed.
11911 //
11912 // That's in non-member contexts.
11913 if (!CurContext->getRedeclContext()->isRecord()) {
11914 // A dependent qualifier outside a class can only ever resolve to an
11915 // enumeration type. Therefore it conflicts with any other non-type
11916 // declaration in the same scope.
11917 // FIXME: How should we check for dependent type-type conflicts at block
11918 // scope?
11919 if (Qual->isDependent() && !HasTypenameKeyword) {
11920 for (auto *D : Prev) {
11921 if (!isa<TypeDecl>(D) && !isa<UsingDecl>(D) && !isa<UsingPackDecl>(D)) {
11922 bool OldCouldBeEnumerator =
11923 isa<UnresolvedUsingValueDecl>(D) || isa<EnumConstantDecl>(D);
11924 Diag(NameLoc,
11925 OldCouldBeEnumerator ? diag::err_redefinition
11926 : diag::err_redefinition_different_kind)
11927 << Prev.getLookupName();
11928 Diag(D->getLocation(), diag::note_previous_definition);
11929 return true;
11930 }
11931 }
11932 }
11933 return false;
11934 }
11935
11936 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
11937 NamedDecl *D = *I;
11938
11939 bool DTypename;
11940 NestedNameSpecifier *DQual;
11941 if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
11942 DTypename = UD->hasTypename();
11943 DQual = UD->getQualifier();
11944 } else if (UnresolvedUsingValueDecl *UD
11945 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
11946 DTypename = false;
11947 DQual = UD->getQualifier();
11948 } else if (UnresolvedUsingTypenameDecl *UD
11949 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
11950 DTypename = true;
11951 DQual = UD->getQualifier();
11952 } else continue;
11953
11954 // using decls differ if one says 'typename' and the other doesn't.
11955 // FIXME: non-dependent using decls?
11956 if (HasTypenameKeyword != DTypename) continue;
11957
11958 // using decls differ if they name different scopes (but note that
11959 // template instantiation can cause this check to trigger when it
11960 // didn't before instantiation).
11961 if (Context.getCanonicalNestedNameSpecifier(Qual) !=
11962 Context.getCanonicalNestedNameSpecifier(DQual))
11963 continue;
11964
11965 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
11966 Diag(D->getLocation(), diag::note_using_decl) << 1;
11967 return true;
11968 }
11969
11970 return false;
11971}
11972
11973
11974/// Checks that the given nested-name qualifier used in a using decl
11975/// in the current context is appropriately related to the current
11976/// scope. If an error is found, diagnoses it and returns true.
11977bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
11978 bool HasTypename,
11979 const CXXScopeSpec &SS,
11980 const DeclarationNameInfo &NameInfo,
11981 SourceLocation NameLoc) {
11982 DeclContext *NamedContext = computeDeclContext(SS);
11983
11984 if (!CurContext->isRecord()) {
11985 // C++03 [namespace.udecl]p3:
11986 // C++0x [namespace.udecl]p8:
11987 // A using-declaration for a class member shall be a member-declaration.
11988
11989 // If we weren't able to compute a valid scope, it might validly be a
11990 // dependent class scope or a dependent enumeration unscoped scope. If
11991 // we have a 'typename' keyword, the scope must resolve to a class type.
11992 if ((HasTypename && !NamedContext) ||
11993 (NamedContext && NamedContext->getRedeclContext()->isRecord())) {
11994 auto *RD = NamedContext
11995 ? cast<CXXRecordDecl>(NamedContext->getRedeclContext())
11996 : nullptr;
11997 if (RD && RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), RD))
11998 RD = nullptr;
11999
12000 Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
12001 << SS.getRange();
12002
12003 // If we have a complete, non-dependent source type, try to suggest a
12004 // way to get the same effect.
12005 if (!RD)
12006 return true;
12007
12008 // Find what this using-declaration was referring to.
12009 LookupResult R(*this, NameInfo, LookupOrdinaryName);
12010 R.setHideTags(false);
12011 R.suppressDiagnostics();
12012 LookupQualifiedName(R, RD);
12013
12014 if (R.getAsSingle<TypeDecl>()) {
12015 if (getLangOpts().CPlusPlus11) {
12016 // Convert 'using X::Y;' to 'using Y = X::Y;'.
12017 Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround)
12018 << 0 // alias declaration
12019 << FixItHint::CreateInsertion(SS.getBeginLoc(),
12020 NameInfo.getName().getAsString() +
12021 " = ");
12022 } else {
12023 // Convert 'using X::Y;' to 'typedef X::Y Y;'.
12024 SourceLocation InsertLoc = getLocForEndOfToken(NameInfo.getEndLoc());
12025 Diag(InsertLoc, diag::note_using_decl_class_member_workaround)
12026 << 1 // typedef declaration
12027 << FixItHint::CreateReplacement(UsingLoc, "typedef")
12028 << FixItHint::CreateInsertion(
12029 InsertLoc, " " + NameInfo.getName().getAsString());
12030 }
12031 } else if (R.getAsSingle<VarDecl>()) {
12032 // Don't provide a fixit outside C++11 mode; we don't want to suggest
12033 // repeating the type of the static data member here.
12034 FixItHint FixIt;
12035 if (getLangOpts().CPlusPlus11) {
12036 // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
12037 FixIt = FixItHint::CreateReplacement(
12038 UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = ");
12039 }
12040
12041 Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
12042 << 2 // reference declaration
12043 << FixIt;
12044 } else if (R.getAsSingle<EnumConstantDecl>()) {
12045 // Don't provide a fixit outside C++11 mode; we don't want to suggest
12046 // repeating the type of the enumeration here, and we can't do so if
12047 // the type is anonymous.
12048 FixItHint FixIt;
12049 if (getLangOpts().CPlusPlus11) {
12050 // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
12051 FixIt = FixItHint::CreateReplacement(
12052 UsingLoc,
12053 "constexpr auto " + NameInfo.getName().getAsString() + " = ");
12054 }
12055
12056 Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
12057 << (getLangOpts().CPlusPlus11 ? 4 : 3) // const[expr] variable
12058 << FixIt;
12059 }
12060 return true;
12061 }
12062
12063 // Otherwise, this might be valid.
12064 return false;
12065 }
12066
12067 // The current scope is a record.
12068
12069 // If the named context is dependent, we can't decide much.
12070 if (!NamedContext) {
12071 // FIXME: in C++0x, we can diagnose if we can prove that the
12072 // nested-name-specifier does not refer to a base class, which is
12073 // still possible in some cases.
12074
12075 // Otherwise we have to conservatively report that things might be
12076 // okay.
12077 return false;
12078 }
12079
12080 if (!NamedContext->isRecord()) {
12081 // Ideally this would point at the last name in the specifier,
12082 // but we don't have that level of source info.
12083 Diag(SS.getRange().getBegin(),
12084 diag::err_using_decl_nested_name_specifier_is_not_class)
12085 << SS.getScopeRep() << SS.getRange();
12086 return true;
12087 }
12088
12089 if (!NamedContext->isDependentContext() &&
12090 RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
12091 return true;
12092
12093 if (getLangOpts().CPlusPlus11) {
12094 // C++11 [namespace.udecl]p3:
12095 // In a using-declaration used as a member-declaration, the
12096 // nested-name-specifier shall name a base class of the class
12097 // being defined.
12098
12099 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
12100 cast<CXXRecordDecl>(NamedContext))) {
12101 if (CurContext == NamedContext) {
12102 Diag(NameLoc,
12103 diag::err_using_decl_nested_name_specifier_is_current_class)
12104 << SS.getRange();
12105 return true;
12106 }
12107
12108 if (!cast<CXXRecordDecl>(NamedContext)->isInvalidDecl()) {
12109 Diag(SS.getRange().getBegin(),
12110 diag::err_using_decl_nested_name_specifier_is_not_base_class)
12111 << SS.getScopeRep()
12112 << cast<CXXRecordDecl>(CurContext)
12113 << SS.getRange();
12114 }
12115 return true;
12116 }
12117
12118 return false;
12119 }
12120
12121 // C++03 [namespace.udecl]p4:
12122 // A using-declaration used as a member-declaration shall refer
12123 // to a member of a base class of the class being defined [etc.].
12124
12125 // Salient point: SS doesn't have to name a base class as long as
12126 // lookup only finds members from base classes. Therefore we can
12127 // diagnose here only if we can prove that that can't happen,
12128 // i.e. if the class hierarchies provably don't intersect.
12129
12130 // TODO: it would be nice if "definitely valid" results were cached
12131 // in the UsingDecl and UsingShadowDecl so that these checks didn't
12132 // need to be repeated.
12133
12134 llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases;
12135 auto Collect = [&Bases](const CXXRecordDecl *Base) {
12136 Bases.insert(Base);
12137 return true;
12138 };
12139
12140 // Collect all bases. Return false if we find a dependent base.
12141 if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect))
12142 return false;
12143
12144 // Returns true if the base is dependent or is one of the accumulated base
12145 // classes.
12146 auto IsNotBase = [&Bases](const CXXRecordDecl *Base) {
12147 return !Bases.count(Base);
12148 };
12149
12150 // Return false if the class has a dependent base or if it or one
12151 // of its bases is present in the base set of the current context.
12152 if (Bases.count(cast<CXXRecordDecl>(NamedContext)) ||
12153 !cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase))
12154 return false;
12155
12156 Diag(SS.getRange().getBegin(),
12157 diag::err_using_decl_nested_name_specifier_is_not_base_class)
12158 << SS.getScopeRep()
12159 << cast<CXXRecordDecl>(CurContext)
12160 << SS.getRange();
12161
12162 return true;
12163}
12164
12165Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS,
12166 MultiTemplateParamsArg TemplateParamLists,
12167 SourceLocation UsingLoc, UnqualifiedId &Name,
12168 const ParsedAttributesView &AttrList,
12169 TypeResult Type, Decl *DeclFromDeclSpec) {
12170 // Skip up to the relevant declaration scope.
12171 while (S->isTemplateParamScope())
12172 S = S->getParent();
12173 assert((S->getFlags() & Scope::DeclScope) &&(((S->getFlags() & Scope::DeclScope) && "got alias-declaration outside of declaration scope"
) ? static_cast<void> (0) : __assert_fail ("(S->getFlags() & Scope::DeclScope) && \"got alias-declaration outside of declaration scope\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 12174, __PRETTY_FUNCTION__))
12174 "got alias-declaration outside of declaration scope")(((S->getFlags() & Scope::DeclScope) && "got alias-declaration outside of declaration scope"
) ? static_cast<void> (0) : __assert_fail ("(S->getFlags() & Scope::DeclScope) && \"got alias-declaration outside of declaration scope\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 12174, __PRETTY_FUNCTION__))
;
12175
12176 if (Type.isInvalid())
12177 return nullptr;
12178
12179 bool Invalid = false;
12180 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
12181 TypeSourceInfo *TInfo = nullptr;
12182 GetTypeFromParser(Type.get(), &TInfo);
12183
12184 if (DiagnoseClassNameShadow(CurContext, NameInfo))
12185 return nullptr;
12186
12187 if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
12188 UPPC_DeclarationType)) {
12189 Invalid = true;
12190 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
12191 TInfo->getTypeLoc().getBeginLoc());
12192 }
12193
12194 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
12195 TemplateParamLists.size()
12196 ? forRedeclarationInCurContext()
12197 : ForVisibleRedeclaration);
12198 LookupName(Previous, S);
12199
12200 // Warn about shadowing the name of a template parameter.
12201 if (Previous.isSingleResult() &&
12202 Previous.getFoundDecl()->isTemplateParameter()) {
12203 DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
12204 Previous.clear();
12205 }
12206
12207 assert(Name.Kind == UnqualifiedIdKind::IK_Identifier &&((Name.Kind == UnqualifiedIdKind::IK_Identifier && "name in alias declaration must be an identifier"
) ? static_cast<void> (0) : __assert_fail ("Name.Kind == UnqualifiedIdKind::IK_Identifier && \"name in alias declaration must be an identifier\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 12208, __PRETTY_FUNCTION__))
12208 "name in alias declaration must be an identifier")((Name.Kind == UnqualifiedIdKind::IK_Identifier && "name in alias declaration must be an identifier"
) ? static_cast<void> (0) : __assert_fail ("Name.Kind == UnqualifiedIdKind::IK_Identifier && \"name in alias declaration must be an identifier\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 12208, __PRETTY_FUNCTION__))
;
12209 TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
12210 Name.StartLocation,
12211 Name.Identifier, TInfo);
12212
12213 NewTD->setAccess(AS);
12214
12215 if (Invalid)
12216 NewTD->setInvalidDecl();
12217
12218 ProcessDeclAttributeList(S, NewTD, AttrList);
12219 AddPragmaAttributes(S, NewTD);
12220
12221 CheckTypedefForVariablyModifiedType(S, NewTD);
12222 Invalid |= NewTD->isInvalidDecl();
12223
12224 bool Redeclaration = false;
12225
12226 NamedDecl *NewND;
12227 if (TemplateParamLists.size()) {
12228 TypeAliasTemplateDecl *OldDecl = nullptr;
12229 TemplateParameterList *OldTemplateParams = nullptr;
12230
12231 if (TemplateParamLists.size() != 1) {
12232 Diag(UsingLoc, diag::err_alias_template_extra_headers)
12233 << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
12234 TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
12235 }
12236 TemplateParameterList *TemplateParams = TemplateParamLists[0];
12237
12238 // Check that we can declare a template here.
12239 if (CheckTemplateDeclScope(S, TemplateParams))
12240 return nullptr;
12241
12242 // Only consider previous declarations in the same scope.
12243 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
12244 /*ExplicitInstantiationOrSpecialization*/false);
12245 if (!Previous.empty()) {
12246 Redeclaration = true;
12247
12248 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
12249 if (!OldDecl && !Invalid) {
12250 Diag(UsingLoc, diag::err_redefinition_different_kind)
12251 << Name.Identifier;
12252
12253 NamedDecl *OldD = Previous.getRepresentativeDecl();
12254 if (OldD->getLocation().isValid())
12255 Diag(OldD->getLocation(), diag::note_previous_definition);
12256
12257 Invalid = true;
12258 }
12259
12260 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
12261 if (TemplateParameterListsAreEqual(TemplateParams,
12262 OldDecl->getTemplateParameters(),
12263 /*Complain=*/true,
12264 TPL_TemplateMatch))
12265 OldTemplateParams =
12266 OldDecl->getMostRecentDecl()->getTemplateParameters();
12267 else
12268 Invalid = true;
12269
12270 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
12271 if (!Invalid &&
12272 !Context.hasSameType(OldTD->getUnderlyingType(),
12273 NewTD->getUnderlyingType())) {
12274 // FIXME: The C++0x standard does not clearly say this is ill-formed,
12275 // but we can't reasonably accept it.
12276 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
12277 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
12278 if (OldTD->getLocation().isValid())
12279 Diag(OldTD->getLocation(), diag::note_previous_definition);
12280 Invalid = true;
12281 }
12282 }
12283 }
12284
12285 // Merge any previous default template arguments into our parameters,
12286 // and check the parameter list.
12287 if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
12288 TPC_TypeAliasTemplate))
12289 return nullptr;
12290
12291 TypeAliasTemplateDecl *NewDecl =
12292 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
12293 Name.Identifier, TemplateParams,
12294 NewTD);
12295 NewTD->setDescribedAliasTemplate(NewDecl);
12296
12297 NewDecl->setAccess(AS);
12298
12299 if (Invalid)
12300 NewDecl->setInvalidDecl();
12301 else if (OldDecl) {
12302 NewDecl->setPreviousDecl(OldDecl);
12303 CheckRedeclarationModuleOwnership(NewDecl, OldDecl);
12304 }
12305
12306 NewND = NewDecl;
12307 } else {
12308 if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) {
12309 setTagNameForLinkagePurposes(TD, NewTD);
12310 handleTagNumbering(TD, S);
12311 }
12312 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
12313 NewND = NewTD;
12314 }
12315
12316 PushOnScopeChains(NewND, S);
12317 ActOnDocumentableDecl(NewND);
12318 return NewND;
12319}
12320
12321Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc,
12322 SourceLocation AliasLoc,
12323 IdentifierInfo *Alias, CXXScopeSpec &SS,
12324 SourceLocation IdentLoc,
12325 IdentifierInfo *Ident) {
12326
12327 // Lookup the namespace name.
12328 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
12329 LookupParsedName(R, S, &SS);
12330
12331 if (R.isAmbiguous())
12332 return nullptr;
12333
12334 if (R.empty()) {
12335 if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
12336 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
12337 return nullptr;
12338 }
12339 }
12340 assert(!R.isAmbiguous() && !R.empty())((!R.isAmbiguous() && !R.empty()) ? static_cast<void
> (0) : __assert_fail ("!R.isAmbiguous() && !R.empty()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 12340, __PRETTY_FUNCTION__))
;
12341 NamedDecl *ND = R.getRepresentativeDecl();
12342
12343 // Check if we have a previous declaration with the same name.
12344 LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName,
12345 ForVisibleRedeclaration);
12346 LookupName(PrevR, S);
12347
12348 // Check we're not shadowing a template parameter.
12349 if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) {
12350 DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl());
12351 PrevR.clear();
12352 }
12353
12354 // Filter out any other lookup result from an enclosing scope.
12355 FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false,
12356 /*AllowInlineNamespace*/false);
12357
12358 // Find the previous declaration and check that we can redeclare it.
12359 NamespaceAliasDecl *Prev = nullptr;
12360 if (PrevR.isSingleResult()) {
12361 NamedDecl *PrevDecl = PrevR.getRepresentativeDecl();
12362 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
12363 // We already have an alias with the same name that points to the same
12364 // namespace; check that it matches.
12365 if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) {
12366 Prev = AD;
12367 } else if (isVisible(PrevDecl)) {
12368 Diag(AliasLoc, diag::err_redefinition_different_namespace_alias)
12369 << Alias;
12370 Diag(AD->getLocation(), diag::note_previous_namespace_alias)
12371 << AD->getNamespace();
12372 return nullptr;
12373 }
12374 } else if (isVisible(PrevDecl)) {
12375 unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl())
12376 ? diag::err_redefinition
12377 : diag::err_redefinition_different_kind;
12378 Diag(AliasLoc, DiagID) << Alias;
12379 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
12380 return nullptr;
12381 }
12382 }
12383
12384 // The use of a nested name specifier may trigger deprecation warnings.
12385 DiagnoseUseOfDecl(ND, IdentLoc);
12386
12387 NamespaceAliasDecl *AliasDecl =
12388 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
12389 Alias, SS.getWithLocInContext(Context),
12390 IdentLoc, ND);
12391 if (Prev)
12392 AliasDecl->setPreviousDecl(Prev);
12393
12394 PushOnScopeChains(AliasDecl, S);
12395 return AliasDecl;
12396}
12397
12398namespace {
12399struct SpecialMemberExceptionSpecInfo
12400 : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> {
12401 SourceLocation Loc;
12402 Sema::ImplicitExceptionSpecification ExceptSpec;
12403
12404 SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD,
12405 Sema::CXXSpecialMember CSM,
12406 Sema::InheritedConstructorInfo *ICI,
12407 SourceLocation Loc)
12408 : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {}
12409
12410 bool visitBase(CXXBaseSpecifier *Base);
12411 bool visitField(FieldDecl *FD);
12412
12413 void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
12414 unsigned Quals);
12415
12416 void visitSubobjectCall(Subobject Subobj,
12417 Sema::SpecialMemberOverloadResult SMOR);
12418};
12419}
12420
12421bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) {
12422 auto *RT = Base->getType()->getAs<RecordType>();
12423 if (!RT)
12424 return false;
12425
12426 auto *BaseClass = cast<CXXRecordDecl>(RT->getDecl());
12427 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
12428 if (auto *BaseCtor = SMOR.getMethod()) {
12429 visitSubobjectCall(Base, BaseCtor);
12430 return false;
12431 }
12432
12433 visitClassSubobject(BaseClass, Base, 0);
12434 return false;
12435}
12436
12437bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) {
12438 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) {
12439 Expr *E = FD->getInClassInitializer();
12440 if (!E)
12441 // FIXME: It's a little wasteful to build and throw away a
12442 // CXXDefaultInitExpr here.
12443 // FIXME: We should have a single context note pointing at Loc, and
12444 // this location should be MD->getLocation() instead, since that's
12445 // the location where we actually use the default init expression.
12446 E = S.BuildCXXDefaultInitExpr(Loc, FD).get();
12447 if (E)
12448 ExceptSpec.CalledExpr(E);
12449 } else if (auto *RT = S.Context.getBaseElementType(FD->getType())
12450 ->getAs<RecordType>()) {
12451 visitClassSubobject(cast<CXXRecordDecl>(RT->getDecl()), FD,
12452 FD->getType().getCVRQualifiers());
12453 }
12454 return false;
12455}
12456
12457void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class,
12458 Subobject Subobj,
12459 unsigned Quals) {
12460 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
12461 bool IsMutable = Field && Field->isMutable();
12462 visitSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable));
12463}
12464
12465void SpecialMemberExceptionSpecInfo::visitSubobjectCall(
12466 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) {
12467 // Note, if lookup fails, it doesn't matter what exception specification we
12468 // choose because the special member will be deleted.
12469 if (CXXMethodDecl *MD = SMOR.getMethod())
12470 ExceptSpec.CalledDecl(getSubobjectLoc(Subobj), MD);
12471}
12472
12473bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) {
12474 llvm::APSInt Result;
12475 ExprResult Converted = CheckConvertedConstantExpression(
12476 ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEK_ExplicitBool);
12477 ExplicitSpec.setExpr(Converted.get());
12478 if (Converted.isUsable() && !Converted.get()->isValueDependent()) {
12479 ExplicitSpec.setKind(Result.getBoolValue()
12480 ? ExplicitSpecKind::ResolvedTrue
12481 : ExplicitSpecKind::ResolvedFalse);
12482 return true;
12483 }
12484 ExplicitSpec.setKind(ExplicitSpecKind::Unresolved);
12485 return false;
12486}
12487
12488ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) {
12489 ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved);
12490 if (!ExplicitExpr->isTypeDependent())
12491 tryResolveExplicitSpecifier(ES);
12492 return ES;
12493}
12494
12495static Sema::ImplicitExceptionSpecification
12496ComputeDefaultedSpecialMemberExceptionSpec(
12497 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
12498 Sema::InheritedConstructorInfo *ICI) {
12499 ComputingExceptionSpec CES(S, MD, Loc);
12500
12501 CXXRecordDecl *ClassDecl = MD->getParent();
12502
12503 // C++ [except.spec]p14:
12504 // An implicitly declared special member function (Clause 12) shall have an
12505 // exception-specification. [...]
12506 SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation());
12507 if (ClassDecl->isInvalidDecl())
12508 return Info.ExceptSpec;
12509
12510 // FIXME: If this diagnostic fires, we're probably missing a check for
12511 // attempting to resolve an exception specification before it's known
12512 // at a higher level.
12513 if (S.RequireCompleteType(MD->getLocation(),
12514 S.Context.getRecordType(ClassDecl),
12515 diag::err_exception_spec_incomplete_type))
12516 return Info.ExceptSpec;
12517
12518 // C++1z [except.spec]p7:
12519 // [Look for exceptions thrown by] a constructor selected [...] to
12520 // initialize a potentially constructed subobject,
12521 // C++1z [except.spec]p8:
12522 // The exception specification for an implicitly-declared destructor, or a
12523 // destructor without a noexcept-specifier, is potentially-throwing if and
12524 // only if any of the destructors for any of its potentially constructed
12525 // subojects is potentially throwing.
12526 // FIXME: We respect the first rule but ignore the "potentially constructed"
12527 // in the second rule to resolve a core issue (no number yet) that would have
12528 // us reject:
12529 // struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; };
12530 // struct B : A {};
12531 // struct C : B { void f(); };
12532 // ... due to giving B::~B() a non-throwing exception specification.
12533 Info.visit(Info.IsConstructor ? Info.VisitPotentiallyConstructedBases
12534 : Info.VisitAllBases);
12535
12536 return Info.ExceptSpec;
12537}
12538
12539namespace {
12540/// RAII object to register a special member as being currently declared.
12541struct DeclaringSpecialMember {
12542 Sema &S;
12543 Sema::SpecialMemberDecl D;
12544 Sema::ContextRAII SavedContext;
12545 bool WasAlreadyBeingDeclared;
12546
12547 DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
12548 : S(S), D(RD, CSM), SavedContext(S, RD) {
12549 WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second;
12550 if (WasAlreadyBeingDeclared)
12551 // This almost never happens, but if it does, ensure that our cache
12552 // doesn't contain a stale result.
12553 S.SpecialMemberCache.clear();
12554 else {
12555 // Register a note to be produced if we encounter an error while
12556 // declaring the special member.
12557 Sema::CodeSynthesisContext Ctx;
12558 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember;
12559 // FIXME: We don't have a location to use here. Using the class's
12560 // location maintains the fiction that we declare all special members
12561 // with the class, but (1) it's not clear that lying about that helps our
12562 // users understand what's going on, and (2) there may be outer contexts
12563 // on the stack (some of which are relevant) and printing them exposes
12564 // our lies.
12565 Ctx.PointOfInstantiation = RD->getLocation();
12566 Ctx.Entity = RD;
12567 Ctx.SpecialMember = CSM;
12568 S.pushCodeSynthesisContext(Ctx);
12569 }
12570 }
12571 ~DeclaringSpecialMember() {
12572 if (!WasAlreadyBeingDeclared) {
12573 S.SpecialMembersBeingDeclared.erase(D);
12574 S.popCodeSynthesisContext();
12575 }
12576 }
12577
12578 /// Are we already trying to declare this special member?
12579 bool isAlreadyBeingDeclared() const {
12580 return WasAlreadyBeingDeclared;
12581 }
12582};
12583}
12584
12585void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) {
12586 // Look up any existing declarations, but don't trigger declaration of all
12587 // implicit special members with this name.
12588 DeclarationName Name = FD->getDeclName();
12589 LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName,
12590 ForExternalRedeclaration);
12591 for (auto *D : FD->getParent()->lookup(Name))
12592 if (auto *Acceptable = R.getAcceptableDecl(D))
12593 R.addDecl(Acceptable);
12594 R.resolveKind();
12595 R.suppressDiagnostics();
12596
12597 CheckFunctionDeclaration(S, FD, R, /*IsMemberSpecialization*/false);
12598}
12599
12600void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem,
12601 QualType ResultTy,
12602 ArrayRef<QualType> Args) {
12603 // Build an exception specification pointing back at this constructor.
12604 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, SpecialMem);
12605
12606 LangAS AS = getDefaultCXXMethodAddrSpace();
12607 if (AS != LangAS::Default) {
12608 EPI.TypeQuals.addAddressSpace(AS);
12609 }
12610
12611 auto QT = Context.getFunctionType(ResultTy, Args, EPI);
12612 SpecialMem->setType(QT);
12613}
12614
12615CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
12616 CXXRecordDecl *ClassDecl) {
12617 // C++ [class.ctor]p5:
12618 // A default constructor for a class X is a constructor of class X
12619 // that can be called without an argument. If there is no
12620 // user-declared constructor for class X, a default constructor is
12621 // implicitly declared. An implicitly-declared default constructor
12622 // is an inline public member of its class.
12623 assert(ClassDecl->needsImplicitDefaultConstructor() &&((ClassDecl->needsImplicitDefaultConstructor() && "Should not build implicit default constructor!"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->needsImplicitDefaultConstructor() && \"Should not build implicit default constructor!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 12624, __PRETTY_FUNCTION__))
12624 "Should not build implicit default constructor!")((ClassDecl->needsImplicitDefaultConstructor() && "Should not build implicit default constructor!"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->needsImplicitDefaultConstructor() && \"Should not build implicit default constructor!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 12624, __PRETTY_FUNCTION__))
;
12625
12626 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
12627 if (DSM.isAlreadyBeingDeclared())
12628 return nullptr;
12629
12630 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
12631 CXXDefaultConstructor,
12632 false);
12633
12634 // Create the actual constructor declaration.
12635 CanQualType ClassType
12636 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
12637 SourceLocation ClassLoc = ClassDecl->getLocation();
12638 DeclarationName Name
12639 = Context.DeclarationNames.getCXXConstructorName(ClassType);
12640 DeclarationNameInfo NameInfo(Name, ClassLoc);
12641 CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
12642 Context, ClassDecl, ClassLoc, NameInfo, /*Type*/ QualType(),
12643 /*TInfo=*/nullptr, ExplicitSpecifier(),
12644 /*isInline=*/true, /*isImplicitlyDeclared=*/true,
12645 Constexpr ? CSK_constexpr : CSK_unspecified);
12646 DefaultCon->setAccess(AS_public);
12647 DefaultCon->setDefaulted();
12648
12649 if (getLangOpts().CUDA) {
12650 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor,
12651 DefaultCon,
12652 /* ConstRHS */ false,
12653 /* Diagnose */ false);
12654 }
12655
12656 setupImplicitSpecialMemberType(DefaultCon, Context.VoidTy, None);
12657
12658 // We don't need to use SpecialMemberIsTrivial here; triviality for default
12659 // constructors is easy to compute.
12660 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
12661
12662 // Note that we have declared this constructor.
12663 ++getASTContext().NumImplicitDefaultConstructorsDeclared;
12664
12665 Scope *S = getScopeForContext(ClassDecl);
12666 CheckImplicitSpecialMemberDeclaration(S, DefaultCon);
12667
12668 if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
12669 SetDeclDeleted(DefaultCon, ClassLoc);
12670
12671 if (S)
12672 PushOnScopeChains(DefaultCon, S, false);
12673 ClassDecl->addDecl(DefaultCon);
12674
12675 return DefaultCon;
12676}
12677
12678void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
12679 CXXConstructorDecl *Constructor) {
12680 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&(((Constructor->isDefaulted() && Constructor->isDefaultConstructor
() && !Constructor->doesThisDeclarationHaveABody()
&& !Constructor->isDeleted()) && "DefineImplicitDefaultConstructor - call it for implicit default ctor"
) ? static_cast<void> (0) : __assert_fail ("(Constructor->isDefaulted() && Constructor->isDefaultConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()) && \"DefineImplicitDefaultConstructor - call it for implicit default ctor\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 12683, __PRETTY_FUNCTION__))
12681 !Constructor->doesThisDeclarationHaveABody() &&(((Constructor->isDefaulted() && Constructor->isDefaultConstructor
() && !Constructor->doesThisDeclarationHaveABody()
&& !Constructor->isDeleted()) && "DefineImplicitDefaultConstructor - call it for implicit default ctor"
) ? static_cast<void> (0) : __assert_fail ("(Constructor->isDefaulted() && Constructor->isDefaultConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()) && \"DefineImplicitDefaultConstructor - call it for implicit default ctor\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 12683, __PRETTY_FUNCTION__))
12682 !Constructor->isDeleted()) &&(((Constructor->isDefaulted() && Constructor->isDefaultConstructor
() && !Constructor->doesThisDeclarationHaveABody()
&& !Constructor->isDeleted()) && "DefineImplicitDefaultConstructor - call it for implicit default ctor"
) ? static_cast<void> (0) : __assert_fail ("(Constructor->isDefaulted() && Constructor->isDefaultConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()) && \"DefineImplicitDefaultConstructor - call it for implicit default ctor\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 12683, __PRETTY_FUNCTION__))
12683 "DefineImplicitDefaultConstructor - call it for implicit default ctor")(((Constructor->isDefaulted() && Constructor->isDefaultConstructor
() && !Constructor->doesThisDeclarationHaveABody()
&& !Constructor->isDeleted()) && "DefineImplicitDefaultConstructor - call it for implicit default ctor"
) ? static_cast<void> (0) : __assert_fail ("(Constructor->isDefaulted() && Constructor->isDefaultConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()) && \"DefineImplicitDefaultConstructor - call it for implicit default ctor\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 12683, __PRETTY_FUNCTION__))
;
12684 if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
12685 return;
12686
12687 CXXRecordDecl *ClassDecl = Constructor->getParent();
12688 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor")((ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl && \"DefineImplicitDefaultConstructor - invalid constructor\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 12688, __PRETTY_FUNCTION__))
;
12689
12690 SynthesizedFunctionScope Scope(*this, Constructor);
12691
12692 // The exception specification is needed because we are defining the
12693 // function.
12694 ResolveExceptionSpec(CurrentLocation,
12695 Constructor->getType()->castAs<FunctionProtoType>());
12696 MarkVTableUsed(CurrentLocation, ClassDecl);
12697
12698 // Add a context note for diagnostics produced after this point.
12699 Scope.addContextNote(CurrentLocation);
12700
12701 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) {
12702 Constructor->setInvalidDecl();
12703 return;
12704 }
12705
12706 SourceLocation Loc = Constructor->getEndLoc().isValid()
12707 ? Constructor->getEndLoc()
12708 : Constructor->getLocation();
12709 Constructor->setBody(new (Context) CompoundStmt(Loc));
12710 Constructor->markUsed(Context);
12711
12712 if (ASTMutationListener *L = getASTMutationListener()) {
12713 L->CompletedImplicitDefinition(Constructor);
12714 }
12715
12716 DiagnoseUninitializedFields(*this, Constructor);
12717}
12718
12719void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
12720 // Perform any delayed checks on exception specifications.
12721 CheckDelayedMemberExceptionSpecs();
12722}
12723
12724/// Find or create the fake constructor we synthesize to model constructing an
12725/// object of a derived class via a constructor of a base class.
12726CXXConstructorDecl *
12727Sema::findInheritingConstructor(SourceLocation Loc,
12728 CXXConstructorDecl *BaseCtor,
12729 ConstructorUsingShadowDecl *Shadow) {
12730 CXXRecordDecl *Derived = Shadow->getParent();
12731 SourceLocation UsingLoc = Shadow->getLocation();
12732
12733 // FIXME: Add a new kind of DeclarationName for an inherited constructor.
12734 // For now we use the name of the base class constructor as a member of the
12735 // derived class to indicate a (fake) inherited constructor name.
12736 DeclarationName Name = BaseCtor->getDeclName();
12737
12738 // Check to see if we already have a fake constructor for this inherited
12739 // constructor call.
12740 for (NamedDecl *Ctor : Derived->lookup(Name))
12741 if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor)
12742 ->getInheritedConstructor()
12743 .getConstructor(),
12744 BaseCtor))
12745 return cast<CXXConstructorDecl>(Ctor);
12746
12747 DeclarationNameInfo NameInfo(Name, UsingLoc);
12748 TypeSourceInfo *TInfo =
12749 Context.getTrivialTypeSourceInfo(BaseCtor->getType(), UsingLoc);
12750 FunctionProtoTypeLoc ProtoLoc =
12751 TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
12752
12753 // Check the inherited constructor is valid and find the list of base classes
12754 // from which it was inherited.
12755 InheritedConstructorInfo ICI(*this, Loc, Shadow);
12756
12757 bool Constexpr =
12758 BaseCtor->isConstexpr() &&
12759 defaultedSpecialMemberIsConstexpr(*this, Derived, CXXDefaultConstructor,
12760 false, BaseCtor, &ICI);
12761
12762 CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
12763 Context, Derived, UsingLoc, NameInfo, TInfo->getType(), TInfo,
12764 BaseCtor->getExplicitSpecifier(), /*isInline=*/true,
12765 /*isImplicitlyDeclared=*/true,
12766 Constexpr ? BaseCtor->getConstexprKind() : CSK_unspecified,
12767 InheritedConstructor(Shadow, BaseCtor),
12768 BaseCtor->getTrailingRequiresClause());
12769 if (Shadow->isInvalidDecl())
12770 DerivedCtor->setInvalidDecl();
12771
12772 // Build an unevaluated exception specification for this fake constructor.
12773 const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>();
12774 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
12775 EPI.ExceptionSpec.Type = EST_Unevaluated;
12776 EPI.ExceptionSpec.SourceDecl = DerivedCtor;
12777 DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(),
12778 FPT->getParamTypes(), EPI));
12779
12780 // Build the parameter declarations.
12781 SmallVector<ParmVarDecl *, 16> ParamDecls;
12782 for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) {
12783 TypeSourceInfo *TInfo =
12784 Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc);
12785 ParmVarDecl *PD = ParmVarDecl::Create(
12786 Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr,
12787 FPT->getParamType(I), TInfo, SC_None, /*DefArg=*/nullptr);
12788 PD->setScopeInfo(0, I);
12789 PD->setImplicit();
12790 // Ensure attributes are propagated onto parameters (this matters for
12791 // format, pass_object_size, ...).
12792 mergeDeclAttributes(PD, BaseCtor->getParamDecl(I));
12793 ParamDecls.push_back(PD);
12794 ProtoLoc.setParam(I, PD);
12795 }
12796
12797 // Set up the new constructor.
12798 assert(!BaseCtor->isDeleted() && "should not use deleted constructor")((!BaseCtor->isDeleted() && "should not use deleted constructor"
) ? static_cast<void> (0) : __assert_fail ("!BaseCtor->isDeleted() && \"should not use deleted constructor\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 12798, __PRETTY_FUNCTION__))
;
12799 DerivedCtor->setAccess(BaseCtor->getAccess());
12800 DerivedCtor->setParams(ParamDecls);
12801 Derived->addDecl(DerivedCtor);
12802
12803 if (ShouldDeleteSpecialMember(DerivedCtor, CXXDefaultConstructor, &ICI))
12804 SetDeclDeleted(DerivedCtor, UsingLoc);
12805
12806 return DerivedCtor;
12807}
12808
12809void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) {
12810 InheritedConstructorInfo ICI(*this, Ctor->getLocation(),
12811 Ctor->getInheritedConstructor().getShadowDecl());
12812 ShouldDeleteSpecialMember(Ctor, CXXDefaultConstructor, &ICI,
12813 /*Diagnose*/true);
12814}
12815
12816void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
12817 CXXConstructorDecl *Constructor) {
12818 CXXRecordDecl *ClassDecl = Constructor->getParent();
12819 assert(Constructor->getInheritedConstructor() &&((Constructor->getInheritedConstructor() && !Constructor
->doesThisDeclarationHaveABody() && !Constructor->
isDeleted()) ? static_cast<void> (0) : __assert_fail ("Constructor->getInheritedConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 12821, __PRETTY_FUNCTION__))
12820 !Constructor->doesThisDeclarationHaveABody() &&((Constructor->getInheritedConstructor() && !Constructor
->doesThisDeclarationHaveABody() && !Constructor->
isDeleted()) ? static_cast<void> (0) : __assert_fail ("Constructor->getInheritedConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 12821, __PRETTY_FUNCTION__))
12821 !Constructor->isDeleted())((Constructor->getInheritedConstructor() && !Constructor
->doesThisDeclarationHaveABody() && !Constructor->
isDeleted()) ? static_cast<void> (0) : __assert_fail ("Constructor->getInheritedConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 12821, __PRETTY_FUNCTION__))
;
12822 if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
12823 return;
12824
12825 // Initializations are performed "as if by a defaulted default constructor",
12826 // so enter the appropriate scope.
12827 SynthesizedFunctionScope Scope(*this, Constructor);
12828
12829 // The exception specification is needed because we are defining the
12830 // function.
12831 ResolveExceptionSpec(CurrentLocation,
12832 Constructor->getType()->castAs<FunctionProtoType>());
12833 MarkVTableUsed(CurrentLocation, ClassDecl);
12834
12835 // Add a context note for diagnostics produced after this point.
12836 Scope.addContextNote(CurrentLocation);
12837
12838 ConstructorUsingShadowDecl *Shadow =
12839 Constructor->getInheritedConstructor().getShadowDecl();
12840 CXXConstructorDecl *InheritedCtor =
12841 Constructor->getInheritedConstructor().getConstructor();
12842
12843 // [class.inhctor.init]p1:
12844 // initialization proceeds as if a defaulted default constructor is used to
12845 // initialize the D object and each base class subobject from which the
12846 // constructor was inherited
12847
12848 InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow);
12849 CXXRecordDecl *RD = Shadow->getParent();
12850 SourceLocation InitLoc = Shadow->getLocation();
12851
12852 // Build explicit initializers for all base classes from which the
12853 // constructor was inherited.
12854 SmallVector<CXXCtorInitializer*, 8> Inits;
12855 for (bool VBase : {false, true}) {
12856 for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) {
12857 if (B.isVirtual() != VBase)
12858 continue;
12859
12860 auto *BaseRD = B.getType()->getAsCXXRecordDecl();
12861 if (!BaseRD)
12862 continue;
12863
12864 auto BaseCtor = ICI.findConstructorForBase(BaseRD, InheritedCtor);
12865 if (!BaseCtor.first)
12866 continue;
12867
12868 MarkFunctionReferenced(CurrentLocation, BaseCtor.first);
12869 ExprResult Init = new (Context) CXXInheritedCtorInitExpr(
12870 InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second);
12871
12872 auto *TInfo = Context.getTrivialTypeSourceInfo(B.getType(), InitLoc);
12873 Inits.push_back(new (Context) CXXCtorInitializer(
12874 Context, TInfo, VBase, InitLoc, Init.get(), InitLoc,
12875 SourceLocation()));
12876 }
12877 }
12878
12879 // We now proceed as if for a defaulted default constructor, with the relevant
12880 // initializers replaced.
12881
12882 if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Inits)) {
12883 Constructor->setInvalidDecl();
12884 return;
12885 }
12886
12887 Constructor->setBody(new (Context) CompoundStmt(InitLoc));
12888 Constructor->markUsed(Context);
12889
12890 if (ASTMutationListener *L = getASTMutationListener()) {
12891 L->CompletedImplicitDefinition(Constructor);
12892 }
12893
12894 DiagnoseUninitializedFields(*this, Constructor);
12895}
12896
12897CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
12898 // C++ [class.dtor]p2:
12899 // If a class has no user-declared destructor, a destructor is
12900 // declared implicitly. An implicitly-declared destructor is an
12901 // inline public member of its class.
12902 assert(ClassDecl->needsImplicitDestructor())((ClassDecl->needsImplicitDestructor()) ? static_cast<void
> (0) : __assert_fail ("ClassDecl->needsImplicitDestructor()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 12902, __PRETTY_FUNCTION__))
;
12903
12904 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
12905 if (DSM.isAlreadyBeingDeclared())
12906 return nullptr;
12907
12908 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
12909 CXXDestructor,
12910 false);
12911
12912 // Create the actual destructor declaration.
12913 CanQualType ClassType
12914 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
12915 SourceLocation ClassLoc = ClassDecl->getLocation();
12916 DeclarationName Name
12917 = Context.DeclarationNames.getCXXDestructorName(ClassType);
12918 DeclarationNameInfo NameInfo(Name, ClassLoc);
12919 CXXDestructorDecl *Destructor =
12920 CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
12921 QualType(), nullptr, /*isInline=*/true,
12922 /*isImplicitlyDeclared=*/true,
12923 Constexpr ? CSK_constexpr : CSK_unspecified);
12924 Destructor->setAccess(AS_public);
12925 Destructor->setDefaulted();
12926
12927 if (getLangOpts().CUDA) {
12928 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor,
12929 Destructor,
12930 /* ConstRHS */ false,
12931 /* Diagnose */ false);
12932 }
12933
12934 setupImplicitSpecialMemberType(Destructor, Context.VoidTy, None);
12935
12936 // We don't need to use SpecialMemberIsTrivial here; triviality for
12937 // destructors is easy to compute.
12938 Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
12939 Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() ||
12940 ClassDecl->hasTrivialDestructorForCall());
12941
12942 // Note that we have declared this destructor.
12943 ++getASTContext().NumImplicitDestructorsDeclared;
12944
12945 Scope *S = getScopeForContext(ClassDecl);
12946 CheckImplicitSpecialMemberDeclaration(S, Destructor);
12947
12948 // We can't check whether an implicit destructor is deleted before we complete
12949 // the definition of the class, because its validity depends on the alignment
12950 // of the class. We'll check this from ActOnFields once the class is complete.
12951 if (ClassDecl->isCompleteDefinition() &&
12952 ShouldDeleteSpecialMember(Destructor, CXXDestructor))
12953 SetDeclDeleted(Destructor, ClassLoc);
12954
12955 // Introduce this destructor into its scope.
12956 if (S)
12957 PushOnScopeChains(Destructor, S, false);
12958 ClassDecl->addDecl(Destructor);
12959
12960 return Destructor;
12961}
12962
12963void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
12964 CXXDestructorDecl *Destructor) {
12965 assert((Destructor->isDefaulted() &&(((Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody
() && !Destructor->isDeleted()) && "DefineImplicitDestructor - call it for implicit default dtor"
) ? static_cast<void> (0) : __assert_fail ("(Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody() && !Destructor->isDeleted()) && \"DefineImplicitDestructor - call it for implicit default dtor\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 12968, __PRETTY_FUNCTION__))
7
Assuming the condition is true
8
Assuming the condition is true
9
Assuming the condition is true
10
'?' condition is true
12966 !Destructor->doesThisDeclarationHaveABody() &&(((Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody
() && !Destructor->isDeleted()) && "DefineImplicitDestructor - call it for implicit default dtor"
) ? static_cast<void> (0) : __assert_fail ("(Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody() && !Destructor->isDeleted()) && \"DefineImplicitDestructor - call it for implicit default dtor\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 12968, __PRETTY_FUNCTION__))
12967 !Destructor->isDeleted()) &&(((Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody
() && !Destructor->isDeleted()) && "DefineImplicitDestructor - call it for implicit default dtor"
) ? static_cast<void> (0) : __assert_fail ("(Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody() && !Destructor->isDeleted()) && \"DefineImplicitDestructor - call it for implicit default dtor\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 12968, __PRETTY_FUNCTION__))
12968 "DefineImplicitDestructor - call it for implicit default dtor")(((Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody
() && !Destructor->isDeleted()) && "DefineImplicitDestructor - call it for implicit default dtor"
) ? static_cast<void> (0) : __assert_fail ("(Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody() && !Destructor->isDeleted()) && \"DefineImplicitDestructor - call it for implicit default dtor\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 12968, __PRETTY_FUNCTION__))
;
12969 if (Destructor->willHaveBody() || Destructor->isInvalidDecl())
11
Assuming the condition is false
12
Assuming the condition is false
13
Taking false branch
12970 return;
12971
12972 CXXRecordDecl *ClassDecl = Destructor->getParent();
12973 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor")((ClassDecl && "DefineImplicitDestructor - invalid destructor"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl && \"DefineImplicitDestructor - invalid destructor\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 12973, __PRETTY_FUNCTION__))
;
14
'?' condition is true
12974
12975 SynthesizedFunctionScope Scope(*this, Destructor);
12976
12977 // The exception specification is needed because we are defining the
12978 // function.
12979 ResolveExceptionSpec(CurrentLocation,
12980 Destructor->getType()->castAs<FunctionProtoType>());
15
The object is a 'FunctionProtoType'
12981 MarkVTableUsed(CurrentLocation, ClassDecl);
12982
12983 // Add a context note for diagnostics produced after this point.
12984 Scope.addContextNote(CurrentLocation);
12985
12986 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
16
Calling 'Sema::MarkBaseAndMemberDestructorsReferenced'
12987 Destructor->getParent());
12988
12989 if (CheckDestructor(Destructor)) {
12990 Destructor->setInvalidDecl();
12991 return;
12992 }
12993
12994 SourceLocation Loc = Destructor->getEndLoc().isValid()
12995 ? Destructor->getEndLoc()
12996 : Destructor->getLocation();
12997 Destructor->setBody(new (Context) CompoundStmt(Loc));
12998 Destructor->markUsed(Context);
12999
13000 if (ASTMutationListener *L = getASTMutationListener()) {
13001 L->CompletedImplicitDefinition(Destructor);
13002 }
13003}
13004
13005/// Perform any semantic analysis which needs to be delayed until all
13006/// pending class member declarations have been parsed.
13007void Sema::ActOnFinishCXXMemberDecls() {
13008 // If the context is an invalid C++ class, just suppress these checks.
13009 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
13010 if (Record->isInvalidDecl()) {
13011 DelayedOverridingExceptionSpecChecks.clear();
13012 DelayedEquivalentExceptionSpecChecks.clear();
13013 return;
13014 }
13015 checkForMultipleExportedDefaultConstructors(*this, Record);
13016 }
13017}
13018
13019void Sema::ActOnFinishCXXNonNestedClass() {
13020 referenceDLLExportedClassMethods();
13021
13022 if (!DelayedDllExportMemberFunctions.empty()) {
1
Taking true branch
13023 SmallVector<CXXMethodDecl*, 4> WorkList;
13024 std::swap(DelayedDllExportMemberFunctions, WorkList);
13025 for (CXXMethodDecl *M : WorkList) {
2
Assuming '__begin2' is not equal to '__end2'
13026 DefineImplicitSpecialMember(*this, M, M->getLocation());
3
Calling 'DefineImplicitSpecialMember'
13027
13028 // Pass the method to the consumer to get emitted. This is not necessary
13029 // for explicit instantiation definitions, as they will get emitted
13030 // anyway.
13031 if (M->getParent()->getTemplateSpecializationKind() !=
13032 TSK_ExplicitInstantiationDefinition)
13033 ActOnFinishInlineFunctionDef(M);
13034 }
13035 }
13036}
13037
13038void Sema::referenceDLLExportedClassMethods() {
13039 if (!DelayedDllExportClasses.empty()) {
13040 // Calling ReferenceDllExportedMembers might cause the current function to
13041 // be called again, so use a local copy of DelayedDllExportClasses.
13042 SmallVector<CXXRecordDecl *, 4> WorkList;
13043 std::swap(DelayedDllExportClasses, WorkList);
13044 for (CXXRecordDecl *Class : WorkList)
13045 ReferenceDllExportedMembers(*this, Class);
13046 }
13047}
13048
13049void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) {
13050 assert(getLangOpts().CPlusPlus11 &&((getLangOpts().CPlusPlus11 && "adjusting dtor exception specs was introduced in c++11"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus11 && \"adjusting dtor exception specs was introduced in c++11\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 13051, __PRETTY_FUNCTION__))
13051 "adjusting dtor exception specs was introduced in c++11")((getLangOpts().CPlusPlus11 && "adjusting dtor exception specs was introduced in c++11"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus11 && \"adjusting dtor exception specs was introduced in c++11\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 13051, __PRETTY_FUNCTION__))
;
13052
13053 if (Destructor->isDependentContext())
13054 return;
13055
13056 // C++11 [class.dtor]p3:
13057 // A declaration of a destructor that does not have an exception-
13058 // specification is implicitly considered to have the same exception-
13059 // specification as an implicit declaration.
13060 const auto *DtorType = Destructor->getType()->castAs<FunctionProtoType>();
13061 if (DtorType->hasExceptionSpec())
13062 return;
13063
13064 // Replace the destructor's type, building off the existing one. Fortunately,
13065 // the only thing of interest in the destructor type is its extended info.
13066 // The return and arguments are fixed.
13067 FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
13068 EPI.ExceptionSpec.Type = EST_Unevaluated;
13069 EPI.ExceptionSpec.SourceDecl = Destructor;
13070 Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
13071
13072 // FIXME: If the destructor has a body that could throw, and the newly created
13073 // spec doesn't allow exceptions, we should emit a warning, because this
13074 // change in behavior can break conforming C++03 programs at runtime.
13075 // However, we don't have a body or an exception specification yet, so it
13076 // needs to be done somewhere else.
13077}
13078
13079namespace {
13080/// An abstract base class for all helper classes used in building the
13081// copy/move operators. These classes serve as factory functions and help us
13082// avoid using the same Expr* in the AST twice.
13083class ExprBuilder {
13084 ExprBuilder(const ExprBuilder&) = delete;
13085 ExprBuilder &operator=(const ExprBuilder&) = delete;
13086
13087protected:
13088 static Expr *assertNotNull(Expr *E) {
13089 assert(E && "Expression construction must not fail.")((E && "Expression construction must not fail.") ? static_cast
<void> (0) : __assert_fail ("E && \"Expression construction must not fail.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 13089, __PRETTY_FUNCTION__))
;
13090 return E;
13091 }
13092
13093public:
13094 ExprBuilder() {}
13095 virtual ~ExprBuilder() {}
13096
13097 virtual Expr *build(Sema &S, SourceLocation Loc) const = 0;
13098};
13099
13100class RefBuilder: public ExprBuilder {
13101 VarDecl *Var;
13102 QualType VarType;
13103
13104public:
13105 Expr *build(Sema &S, SourceLocation Loc) const override {
13106 return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc));
13107 }
13108
13109 RefBuilder(VarDecl *Var, QualType VarType)
13110 : Var(Var), VarType(VarType) {}
13111};
13112
13113class ThisBuilder: public ExprBuilder {
13114public:
13115 Expr *build(Sema &S, SourceLocation Loc) const override {
13116 return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>());
13117 }
13118};
13119
13120class CastBuilder: public ExprBuilder {
13121 const ExprBuilder &Builder;
13122 QualType Type;
13123 ExprValueKind Kind;
13124 const CXXCastPath &Path;
13125
13126public:
13127 Expr *build(Sema &S, SourceLocation Loc) const override {
13128 return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type,
13129 CK_UncheckedDerivedToBase, Kind,
13130 &Path).get());
13131 }
13132
13133 CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind,
13134 const CXXCastPath &Path)
13135 : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {}
13136};
13137
13138class DerefBuilder: public ExprBuilder {
13139 const ExprBuilder &Builder;
13140
13141public:
13142 Expr *build(Sema &S, SourceLocation Loc) const override {
13143 return assertNotNull(
13144 S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get());
13145 }
13146
13147 DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
13148};
13149
13150class MemberBuilder: public ExprBuilder {
13151 const ExprBuilder &Builder;
13152 QualType Type;
13153 CXXScopeSpec SS;
13154 bool IsArrow;
13155 LookupResult &MemberLookup;
13156
13157public:
13158 Expr *build(Sema &S, SourceLocation Loc) const override {
13159 return assertNotNull(S.BuildMemberReferenceExpr(
13160 Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(),
13161 nullptr, MemberLookup, nullptr, nullptr).get());
13162 }
13163
13164 MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow,
13165 LookupResult &MemberLookup)
13166 : Builder(Builder), Type(Type), IsArrow(IsArrow),
13167 MemberLookup(MemberLookup) {}
13168};
13169
13170class MoveCastBuilder: public ExprBuilder {
13171 const ExprBuilder &Builder;
13172
13173public:
13174 Expr *build(Sema &S, SourceLocation Loc) const override {
13175 return assertNotNull(CastForMoving(S, Builder.build(S, Loc)));
13176 }
13177
13178 MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
13179};
13180
13181class LvalueConvBuilder: public ExprBuilder {
13182 const ExprBuilder &Builder;
13183
13184public:
13185 Expr *build(Sema &S, SourceLocation Loc) const override {
13186 return assertNotNull(
13187 S.DefaultLvalueConversion(Builder.build(S, Loc)).get());
13188 }
13189
13190 LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
13191};
13192
13193class SubscriptBuilder: public ExprBuilder {
13194 const ExprBuilder &Base;
13195 const ExprBuilder &Index;
13196
13197public:
13198 Expr *build(Sema &S, SourceLocation Loc) const override {
13199 return assertNotNull(S.CreateBuiltinArraySubscriptExpr(
13200 Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get());
13201 }
13202
13203 SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index)
13204 : Base(Base), Index(Index) {}
13205};
13206
13207} // end anonymous namespace
13208
13209/// When generating a defaulted copy or move assignment operator, if a field
13210/// should be copied with __builtin_memcpy rather than via explicit assignments,
13211/// do so. This optimization only applies for arrays of scalars, and for arrays
13212/// of class type where the selected copy/move-assignment operator is trivial.
13213static StmtResult
13214buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
13215 const ExprBuilder &ToB, const ExprBuilder &FromB) {
13216 // Compute the size of the memory buffer to be copied.
13217 QualType SizeType = S.Context.getSizeType();
13218 llvm::APInt Size(S.Context.getTypeSize(SizeType),
13219 S.Context.getTypeSizeInChars(T).getQuantity());
13220
13221 // Take the address of the field references for "from" and "to". We
13222 // directly construct UnaryOperators here because semantic analysis
13223 // does not permit us to take the address of an xvalue.
13224 Expr *From = FromB.build(S, Loc);
13225 From = new (S.Context) UnaryOperator(From, UO_AddrOf,
13226 S.Context.getPointerType(From->getType()),
13227 VK_RValue, OK_Ordinary, Loc, false);
13228 Expr *To = ToB.build(S, Loc);
13229 To = new (S.Context) UnaryOperator(To, UO_AddrOf,
13230 S.Context.getPointerType(To->getType()),
13231 VK_RValue, OK_Ordinary, Loc, false);
13232
13233 const Type *E = T->getBaseElementTypeUnsafe();
13234 bool NeedsCollectableMemCpy =
13235 E->isRecordType() &&
13236 E->castAs<RecordType>()->getDecl()->hasObjectMember();
13237
13238 // Create a reference to the __builtin_objc_memmove_collectable function
13239 StringRef MemCpyName = NeedsCollectableMemCpy ?
13240 "__builtin_objc_memmove_collectable" :
13241 "__builtin_memcpy";
13242 LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
13243 Sema::LookupOrdinaryName);
13244 S.LookupName(R, S.TUScope, true);
13245
13246 FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
13247 if (!MemCpy)
13248 // Something went horribly wrong earlier, and we will have complained
13249 // about it.
13250 return StmtError();
13251
13252 ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
13253 VK_RValue, Loc, nullptr);
13254 assert(MemCpyRef.isUsable() && "Builtin reference cannot fail")((MemCpyRef.isUsable() && "Builtin reference cannot fail"
) ? static_cast<void> (0) : __assert_fail ("MemCpyRef.isUsable() && \"Builtin reference cannot fail\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 13254, __PRETTY_FUNCTION__))
;
13255
13256 Expr *CallArgs[] = {
13257 To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
13258 };
13259 ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(),
13260 Loc, CallArgs, Loc);
13261
13262 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!")((!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!"
) ? static_cast<void> (0) : __assert_fail ("!Call.isInvalid() && \"Call to __builtin_memcpy cannot fail!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 13262, __PRETTY_FUNCTION__))
;
13263 return Call.getAs<Stmt>();
13264}
13265
13266/// Builds a statement that copies/moves the given entity from \p From to
13267/// \c To.
13268///
13269/// This routine is used to copy/move the members of a class with an
13270/// implicitly-declared copy/move assignment operator. When the entities being
13271/// copied are arrays, this routine builds for loops to copy them.
13272///
13273/// \param S The Sema object used for type-checking.
13274///
13275/// \param Loc The location where the implicit copy/move is being generated.
13276///
13277/// \param T The type of the expressions being copied/moved. Both expressions
13278/// must have this type.
13279///
13280/// \param To The expression we are copying/moving to.
13281///
13282/// \param From The expression we are copying/moving from.
13283///
13284/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
13285/// Otherwise, it's a non-static member subobject.
13286///
13287/// \param Copying Whether we're copying or moving.
13288///
13289/// \param Depth Internal parameter recording the depth of the recursion.
13290///
13291/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
13292/// if a memcpy should be used instead.
13293static StmtResult
13294buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
13295 const ExprBuilder &To, const ExprBuilder &From,
13296 bool CopyingBaseSubobject, bool Copying,
13297 unsigned Depth = 0) {
13298 // C++11 [class.copy]p28:
13299 // Each subobject is assigned in the manner appropriate to its type:
13300 //
13301 // - if the subobject is of class type, as if by a call to operator= with
13302 // the subobject as the object expression and the corresponding
13303 // subobject of x as a single function argument (as if by explicit
13304 // qualification; that is, ignoring any possible virtual overriding
13305 // functions in more derived classes);
13306 //
13307 // C++03 [class.copy]p13:
13308 // - if the subobject is of class type, the copy assignment operator for
13309 // the class is used (as if by explicit qualification; that is,
13310 // ignoring any possible virtual overriding functions in more derived
13311 // classes);
13312 if (const RecordType *RecordTy = T->getAs<RecordType>()) {
13313 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
13314
13315 // Look for operator=.
13316 DeclarationName Name
13317 = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
13318 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
13319 S.LookupQualifiedName(OpLookup, ClassDecl, false);
13320
13321 // Prior to C++11, filter out any result that isn't a copy/move-assignment
13322 // operator.
13323 if (!S.getLangOpts().CPlusPlus11) {
13324 LookupResult::Filter F = OpLookup.makeFilter();
13325 while (F.hasNext()) {
13326 NamedDecl *D = F.next();
13327 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
13328 if (Method->isCopyAssignmentOperator() ||
13329 (!Copying && Method->isMoveAssignmentOperator()))
13330 continue;
13331
13332 F.erase();
13333 }
13334 F.done();
13335 }
13336
13337 // Suppress the protected check (C++ [class.protected]) for each of the
13338 // assignment operators we found. This strange dance is required when
13339 // we're assigning via a base classes's copy-assignment operator. To
13340 // ensure that we're getting the right base class subobject (without
13341 // ambiguities), we need to cast "this" to that subobject type; to
13342 // ensure that we don't go through the virtual call mechanism, we need
13343 // to qualify the operator= name with the base class (see below). However,
13344 // this means that if the base class has a protected copy assignment
13345 // operator, the protected member access check will fail. So, we
13346 // rewrite "protected" access to "public" access in this case, since we
13347 // know by construction that we're calling from a derived class.
13348 if (CopyingBaseSubobject) {
13349 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
13350 L != LEnd; ++L) {
13351 if (L.getAccess() == AS_protected)
13352 L.setAccess(AS_public);
13353 }
13354 }
13355
13356 // Create the nested-name-specifier that will be used to qualify the
13357 // reference to operator=; this is required to suppress the virtual
13358 // call mechanism.
13359 CXXScopeSpec SS;
13360 const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
13361 SS.MakeTrivial(S.Context,
13362 NestedNameSpecifier::Create(S.Context, nullptr, false,
13363 CanonicalT),
13364 Loc);
13365
13366 // Create the reference to operator=.
13367 ExprResult OpEqualRef
13368 = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*IsArrow=*/false,
13369 SS, /*TemplateKWLoc=*/SourceLocation(),
13370 /*FirstQualifierInScope=*/nullptr,
13371 OpLookup,
13372 /*TemplateArgs=*/nullptr, /*S*/nullptr,
13373 /*SuppressQualifierCheck=*/true);
13374 if (OpEqualRef.isInvalid())
13375 return StmtError();
13376
13377 // Build the call to the assignment operator.
13378
13379 Expr *FromInst = From.build(S, Loc);
13380 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr,
13381 OpEqualRef.getAs<Expr>(),
13382 Loc, FromInst, Loc);
13383 if (Call.isInvalid())
13384 return StmtError();
13385
13386 // If we built a call to a trivial 'operator=' while copying an array,
13387 // bail out. We'll replace the whole shebang with a memcpy.
13388 CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
13389 if (CE && CE->getMethodDecl()->isTrivial() && Depth)
13390 return StmtResult((Stmt*)nullptr);
13391
13392 // Convert to an expression-statement, and clean up any produced
13393 // temporaries.
13394 return S.ActOnExprStmt(Call);
13395 }
13396
13397 // - if the subobject is of scalar type, the built-in assignment
13398 // operator is used.
13399 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
13400 if (!ArrayTy) {
13401 ExprResult Assignment = S.CreateBuiltinBinOp(
13402 Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc));
13403 if (Assignment.isInvalid())
13404 return StmtError();
13405 return S.ActOnExprStmt(Assignment);
13406 }
13407
13408 // - if the subobject is an array, each element is assigned, in the
13409 // manner appropriate to the element type;
13410
13411 // Construct a loop over the array bounds, e.g.,
13412 //
13413 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
13414 //
13415 // that will copy each of the array elements.
13416 QualType SizeType = S.Context.getSizeType();
13417
13418 // Create the iteration variable.
13419 IdentifierInfo *IterationVarName = nullptr;
13420 {
13421 SmallString<8> Str;
13422 llvm::raw_svector_ostream OS(Str);
13423 OS << "__i" << Depth;
13424 IterationVarName = &S.Context.Idents.get(OS.str());
13425 }
13426 VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
13427 IterationVarName, SizeType,
13428 S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
13429 SC_None);
13430
13431 // Initialize the iteration variable to zero.
13432 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
13433 IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
13434
13435 // Creates a reference to the iteration variable.
13436 RefBuilder IterationVarRef(IterationVar, SizeType);
13437 LvalueConvBuilder IterationVarRefRVal(IterationVarRef);
13438
13439 // Create the DeclStmt that holds the iteration variable.
13440 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
13441
13442 // Subscript the "from" and "to" expressions with the iteration variable.
13443 SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal);
13444 MoveCastBuilder FromIndexMove(FromIndexCopy);
13445 const ExprBuilder *FromIndex;
13446 if (Copying)
13447 FromIndex = &FromIndexCopy;
13448 else
13449 FromIndex = &FromIndexMove;
13450
13451 SubscriptBuilder ToIndex(To, IterationVarRefRVal);
13452
13453 // Build the copy/move for an individual element of the array.
13454 StmtResult Copy =
13455 buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
13456 ToIndex, *FromIndex, CopyingBaseSubobject,
13457 Copying, Depth + 1);
13458 // Bail out if copying fails or if we determined that we should use memcpy.
13459 if (Copy.isInvalid() || !Copy.get())
13460 return Copy;
13461
13462 // Create the comparison against the array bound.
13463 llvm::APInt Upper
13464 = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
13465 Expr *Comparison
13466 = new (S.Context) BinaryOperator(IterationVarRefRVal.build(S, Loc),
13467 IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
13468 BO_NE, S.Context.BoolTy,
13469 VK_RValue, OK_Ordinary, Loc, FPOptions());
13470
13471 // Create the pre-increment of the iteration variable. We can determine
13472 // whether the increment will overflow based on the value of the array
13473 // bound.
13474 Expr *Increment = new (S.Context)
13475 UnaryOperator(IterationVarRef.build(S, Loc), UO_PreInc, SizeType,
13476 VK_LValue, OK_Ordinary, Loc, Upper.isMaxValue());
13477
13478 // Construct the loop that copies all elements of this array.
13479 return S.ActOnForStmt(
13480 Loc, Loc, InitStmt,
13481 S.ActOnCondition(nullptr, Loc, Comparison, Sema::ConditionKind::Boolean),
13482 S.MakeFullDiscardedValueExpr(Increment), Loc, Copy.get());
13483}
13484
13485static StmtResult
13486buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
13487 const ExprBuilder &To, const ExprBuilder &From,
13488 bool CopyingBaseSubobject, bool Copying) {
13489 // Maybe we should use a memcpy?
13490 if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
13491 T.isTriviallyCopyableType(S.Context))
13492 return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
13493
13494 StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
13495 CopyingBaseSubobject,
13496 Copying, 0));
13497
13498 // If we ended up picking a trivial assignment operator for an array of a
13499 // non-trivially-copyable class type, just emit a memcpy.
13500 if (!Result.isInvalid() && !Result.get())
13501 return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
13502
13503 return Result;
13504}
13505
13506CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
13507 // Note: The following rules are largely analoguous to the copy
13508 // constructor rules. Note that virtual bases are not taken into account
13509 // for determining the argument type of the operator. Note also that
13510 // operators taking an object instead of a reference are allowed.
13511 assert(ClassDecl->needsImplicitCopyAssignment())((ClassDecl->needsImplicitCopyAssignment()) ? static_cast<
void> (0) : __assert_fail ("ClassDecl->needsImplicitCopyAssignment()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 13511, __PRETTY_FUNCTION__))
;
13512
13513 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
13514 if (DSM.isAlreadyBeingDeclared())
13515 return nullptr;
13516
13517 QualType ArgType = Context.getTypeDeclType(ClassDecl);
13518 LangAS AS = getDefaultCXXMethodAddrSpace();
13519 if (AS != LangAS::Default)
13520 ArgType = Context.getAddrSpaceQualType(ArgType, AS);
13521 QualType RetType = Context.getLValueReferenceType(ArgType);
13522 bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
13523 if (Const)
13524 ArgType = ArgType.withConst();
13525
13526 ArgType = Context.getLValueReferenceType(ArgType);
13527
13528 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
13529 CXXCopyAssignment,
13530 Const);
13531
13532 // An implicitly-declared copy assignment operator is an inline public
13533 // member of its class.
13534 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
13535 SourceLocation ClassLoc = ClassDecl->getLocation();
13536 DeclarationNameInfo NameInfo(Name, ClassLoc);
13537 CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create(
13538 Context, ClassDecl, ClassLoc, NameInfo, QualType(),
13539 /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
13540 /*isInline=*/true, Constexpr ? CSK_constexpr : CSK_unspecified,
13541 SourceLocation());
13542 CopyAssignment->setAccess(AS_public);
13543 CopyAssignment->setDefaulted();
13544 CopyAssignment->setImplicit();
13545
13546 if (getLangOpts().CUDA) {
13547 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment,
13548 CopyAssignment,
13549 /* ConstRHS */ Const,
13550 /* Diagnose */ false);
13551 }
13552
13553 setupImplicitSpecialMemberType(CopyAssignment, RetType, ArgType);
13554
13555 // Add the parameter to the operator.
13556 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
13557 ClassLoc, ClassLoc,
13558 /*Id=*/nullptr, ArgType,
13559 /*TInfo=*/nullptr, SC_None,
13560 nullptr);
13561 CopyAssignment->setParams(FromParam);
13562
13563 CopyAssignment->setTrivial(
13564 ClassDecl->needsOverloadResolutionForCopyAssignment()
13565 ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
13566 : ClassDecl->hasTrivialCopyAssignment());
13567
13568 // Note that we have added this copy-assignment operator.
13569 ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared;
13570
13571 Scope *S = getScopeForContext(ClassDecl);
13572 CheckImplicitSpecialMemberDeclaration(S, CopyAssignment);
13573
13574 if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
13575 SetDeclDeleted(CopyAssignment, ClassLoc);
13576
13577 if (S)
13578 PushOnScopeChains(CopyAssignment, S, false);
13579 ClassDecl->addDecl(CopyAssignment);
13580
13581 return CopyAssignment;
13582}
13583
13584/// Diagnose an implicit copy operation for a class which is odr-used, but
13585/// which is deprecated because the class has a user-declared copy constructor,
13586/// copy assignment operator, or destructor.
13587static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) {
13588 assert(CopyOp->isImplicit())((CopyOp->isImplicit()) ? static_cast<void> (0) : __assert_fail
("CopyOp->isImplicit()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 13588, __PRETTY_FUNCTION__))
;
13589
13590 CXXRecordDecl *RD = CopyOp->getParent();
13591 CXXMethodDecl *UserDeclaredOperation = nullptr;
13592
13593 // In Microsoft mode, assignment operations don't affect constructors and
13594 // vice versa.
13595 if (RD->hasUserDeclaredDestructor()) {
13596 UserDeclaredOperation = RD->getDestructor();
13597 } else if (!isa<CXXConstructorDecl>(CopyOp) &&
13598 RD->hasUserDeclaredCopyConstructor() &&
13599 !S.getLangOpts().MSVCCompat) {
13600 // Find any user-declared copy constructor.
13601 for (auto *I : RD->ctors()) {
13602 if (I->isCopyConstructor()) {
13603 UserDeclaredOperation = I;
13604 break;
13605 }
13606 }
13607 assert(UserDeclaredOperation)((UserDeclaredOperation) ? static_cast<void> (0) : __assert_fail
("UserDeclaredOperation", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 13607, __PRETTY_FUNCTION__))
;
13608 } else if (isa<CXXConstructorDecl>(CopyOp) &&
13609 RD->hasUserDeclaredCopyAssignment() &&
13610 !S.getLangOpts().MSVCCompat) {
13611 // Find any user-declared move assignment operator.
13612 for (auto *I : RD->methods()) {
13613 if (I->isCopyAssignmentOperator()) {
13614 UserDeclaredOperation = I;
13615 break;
13616 }
13617 }
13618 assert(UserDeclaredOperation)((UserDeclaredOperation) ? static_cast<void> (0) : __assert_fail
("UserDeclaredOperation", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 13618, __PRETTY_FUNCTION__))
;
13619 }
13620
13621 if (UserDeclaredOperation && UserDeclaredOperation->isUserProvided()) {
13622 S.Diag(UserDeclaredOperation->getLocation(),
13623 isa<CXXDestructorDecl>(UserDeclaredOperation)
13624 ? diag::warn_deprecated_copy_dtor_operation
13625 : diag::warn_deprecated_copy_operation)
13626 << RD << /*copy assignment*/ !isa<CXXConstructorDecl>(CopyOp);
13627 }
13628}
13629
13630void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
13631 CXXMethodDecl *CopyAssignOperator) {
13632 assert((CopyAssignOperator->isDefaulted() &&(((CopyAssignOperator->isDefaulted() && CopyAssignOperator
->isOverloadedOperator() && CopyAssignOperator->
getOverloadedOperator() == OO_Equal && !CopyAssignOperator
->doesThisDeclarationHaveABody() && !CopyAssignOperator
->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 13637, __PRETTY_FUNCTION__))
13633 CopyAssignOperator->isOverloadedOperator() &&(((CopyAssignOperator->isDefaulted() && CopyAssignOperator
->isOverloadedOperator() && CopyAssignOperator->
getOverloadedOperator() == OO_Equal && !CopyAssignOperator
->doesThisDeclarationHaveABody() && !CopyAssignOperator
->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 13637, __PRETTY_FUNCTION__))
13634 CopyAssignOperator->getOverloadedOperator() == OO_Equal &&(((CopyAssignOperator->isDefaulted() && CopyAssignOperator
->isOverloadedOperator() && CopyAssignOperator->
getOverloadedOperator() == OO_Equal && !CopyAssignOperator
->doesThisDeclarationHaveABody() && !CopyAssignOperator
->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 13637, __PRETTY_FUNCTION__))
13635 !CopyAssignOperator->doesThisDeclarationHaveABody() &&(((CopyAssignOperator->isDefaulted() && CopyAssignOperator
->isOverloadedOperator() && CopyAssignOperator->
getOverloadedOperator() == OO_Equal && !CopyAssignOperator
->doesThisDeclarationHaveABody() && !CopyAssignOperator
->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 13637, __PRETTY_FUNCTION__))
13636 !CopyAssignOperator->isDeleted()) &&(((CopyAssignOperator->isDefaulted() && CopyAssignOperator
->isOverloadedOperator() && CopyAssignOperator->
getOverloadedOperator() == OO_Equal && !CopyAssignOperator
->doesThisDeclarationHaveABody() && !CopyAssignOperator
->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 13637, __PRETTY_FUNCTION__))
13637 "DefineImplicitCopyAssignment called for wrong function")(((CopyAssignOperator->isDefaulted() && CopyAssignOperator
->isOverloadedOperator() && CopyAssignOperator->
getOverloadedOperator() == OO_Equal && !CopyAssignOperator
->doesThisDeclarationHaveABody() && !CopyAssignOperator
->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 13637, __PRETTY_FUNCTION__))
;
13638 if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl())
13639 return;
13640
13641 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
13642 if (ClassDecl->isInvalidDecl()) {
13643 CopyAssignOperator->setInvalidDecl();
13644 return;
13645 }
13646
13647 SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
13648
13649 // The exception specification is needed because we are defining the
13650 // function.
13651 ResolveExceptionSpec(CurrentLocation,
13652 CopyAssignOperator->getType()->castAs<FunctionProtoType>());
13653
13654 // Add a context note for diagnostics produced after this point.
13655 Scope.addContextNote(CurrentLocation);
13656
13657 // C++11 [class.copy]p18:
13658 // The [definition of an implicitly declared copy assignment operator] is
13659 // deprecated if the class has a user-declared copy constructor or a
13660 // user-declared destructor.
13661 if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
13662 diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator);
13663
13664 // C++0x [class.copy]p30:
13665 // The implicitly-defined or explicitly-defaulted copy assignment operator
13666 // for a non-union class X performs memberwise copy assignment of its
13667 // subobjects. The direct base classes of X are assigned first, in the
13668 // order of their declaration in the base-specifier-list, and then the
13669 // immediate non-static data members of X are assigned, in the order in
13670 // which they were declared in the class definition.
13671
13672 // The statements that form the synthesized function body.
13673 SmallVector<Stmt*, 8> Statements;
13674
13675 // The parameter for the "other" object, which we are copying from.
13676 ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
13677 Qualifiers OtherQuals = Other->getType().getQualifiers();
13678 QualType OtherRefType = Other->getType();
13679 if (const LValueReferenceType *OtherRef
13680 = OtherRefType->getAs<LValueReferenceType>()) {
13681 OtherRefType = OtherRef->getPointeeType();
13682 OtherQuals = OtherRefType.getQualifiers();
13683 }
13684
13685 // Our location for everything implicitly-generated.
13686 SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid()
13687 ? CopyAssignOperator->getEndLoc()
13688 : CopyAssignOperator->getLocation();
13689
13690 // Builds a DeclRefExpr for the "other" object.
13691 RefBuilder OtherRef(Other, OtherRefType);
13692
13693 // Builds the "this" pointer.
13694 ThisBuilder This;
13695
13696 // Assign base classes.
13697 bool Invalid = false;
13698 for (auto &Base : ClassDecl->bases()) {
13699 // Form the assignment:
13700 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
13701 QualType BaseType = Base.getType().getUnqualifiedType();
13702 if (!BaseType->isRecordType()) {
13703 Invalid = true;
13704 continue;
13705 }
13706
13707 CXXCastPath BasePath;
13708 BasePath.push_back(&Base);
13709
13710 // Construct the "from" expression, which is an implicit cast to the
13711 // appropriately-qualified base type.
13712 CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals),
13713 VK_LValue, BasePath);
13714
13715 // Dereference "this".
13716 DerefBuilder DerefThis(This);
13717 CastBuilder To(DerefThis,
13718 Context.getQualifiedType(
13719 BaseType, CopyAssignOperator->getMethodQualifiers()),
13720 VK_LValue, BasePath);
13721
13722 // Build the copy.
13723 StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
13724 To, From,
13725 /*CopyingBaseSubobject=*/true,
13726 /*Copying=*/true);
13727 if (Copy.isInvalid()) {
13728 CopyAssignOperator->setInvalidDecl();
13729 return;
13730 }
13731
13732 // Success! Record the copy.
13733 Statements.push_back(Copy.getAs<Expr>());
13734 }
13735
13736 // Assign non-static members.
13737 for (auto *Field : ClassDecl->fields()) {
13738 // FIXME: We should form some kind of AST representation for the implied
13739 // memcpy in a union copy operation.
13740 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
13741 continue;
13742
13743 if (Field->isInvalidDecl()) {
13744 Invalid = true;
13745 continue;
13746 }
13747
13748 // Check for members of reference type; we can't copy those.
13749 if (Field->getType()->isReferenceType()) {
13750 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
13751 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
13752 Diag(Field->getLocation(), diag::note_declared_at);
13753 Invalid = true;
13754 continue;
13755 }
13756
13757 // Check for members of const-qualified, non-class type.
13758 QualType BaseType = Context.getBaseElementType(Field->getType());
13759 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
13760 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
13761 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
13762 Diag(Field->getLocation(), diag::note_declared_at);
13763 Invalid = true;
13764 continue;
13765 }
13766
13767 // Suppress assigning zero-width bitfields.
13768 if (Field->isZeroLengthBitField(Context))
13769 continue;
13770
13771 QualType FieldType = Field->getType().getNonReferenceType();
13772 if (FieldType->isIncompleteArrayType()) {
13773 assert(ClassDecl->hasFlexibleArrayMember() &&((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 13774, __PRETTY_FUNCTION__))
13774 "Incomplete array type is not valid")((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 13774, __PRETTY_FUNCTION__))
;
13775 continue;
13776 }
13777
13778 // Build references to the field in the object we're copying from and to.
13779 CXXScopeSpec SS; // Intentionally empty
13780 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
13781 LookupMemberName);
13782 MemberLookup.addDecl(Field);
13783 MemberLookup.resolveKind();
13784
13785 MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup);
13786
13787 MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup);
13788
13789 // Build the copy of this field.
13790 StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
13791 To, From,
13792 /*CopyingBaseSubobject=*/false,
13793 /*Copying=*/true);
13794 if (Copy.isInvalid()) {
13795 CopyAssignOperator->setInvalidDecl();
13796 return;
13797 }
13798
13799 // Success! Record the copy.
13800 Statements.push_back(Copy.getAs<Stmt>());
13801 }
13802
13803 if (!Invalid) {
13804 // Add a "return *this;"
13805 ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
13806
13807 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
13808 if (Return.isInvalid())
13809 Invalid = true;
13810 else
13811 Statements.push_back(Return.getAs<Stmt>());
13812 }
13813
13814 if (Invalid) {
13815 CopyAssignOperator->setInvalidDecl();
13816 return;
13817 }
13818
13819 StmtResult Body;
13820 {
13821 CompoundScopeRAII CompoundScope(*this);
13822 Body = ActOnCompoundStmt(Loc, Loc, Statements,
13823 /*isStmtExpr=*/false);
13824 assert(!Body.isInvalid() && "Compound statement creation cannot fail")((!Body.isInvalid() && "Compound statement creation cannot fail"
) ? static_cast<void> (0) : __assert_fail ("!Body.isInvalid() && \"Compound statement creation cannot fail\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 13824, __PRETTY_FUNCTION__))
;
13825 }
13826 CopyAssignOperator->setBody(Body.getAs<Stmt>());
13827 CopyAssignOperator->markUsed(Context);
13828
13829 if (ASTMutationListener *L = getASTMutationListener()) {
13830 L->CompletedImplicitDefinition(CopyAssignOperator);
13831 }
13832}
13833
13834CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
13835 assert(ClassDecl->needsImplicitMoveAssignment())((ClassDecl->needsImplicitMoveAssignment()) ? static_cast<
void> (0) : __assert_fail ("ClassDecl->needsImplicitMoveAssignment()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 13835, __PRETTY_FUNCTION__))
;
13836
13837 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
13838 if (DSM.isAlreadyBeingDeclared())
13839 return nullptr;
13840
13841 // Note: The following rules are largely analoguous to the move
13842 // constructor rules.
13843
13844 QualType ArgType = Context.getTypeDeclType(ClassDecl);
13845 LangAS AS = getDefaultCXXMethodAddrSpace();
13846 if (AS != LangAS::Default)
13847 ArgType = Context.getAddrSpaceQualType(ArgType, AS);
13848 QualType RetType = Context.getLValueReferenceType(ArgType);
13849 ArgType = Context.getRValueReferenceType(ArgType);
13850
13851 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
13852 CXXMoveAssignment,
13853 false);
13854
13855 // An implicitly-declared move assignment operator is an inline public
13856 // member of its class.
13857 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
13858 SourceLocation ClassLoc = ClassDecl->getLocation();
13859 DeclarationNameInfo NameInfo(Name, ClassLoc);
13860 CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create(
13861 Context, ClassDecl, ClassLoc, NameInfo, QualType(),
13862 /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
13863 /*isInline=*/true, Constexpr ? CSK_constexpr : CSK_unspecified,
13864 SourceLocation());
13865 MoveAssignment->setAccess(AS_public);
13866 MoveAssignment->setDefaulted();
13867 MoveAssignment->setImplicit();
13868
13869 if (getLangOpts().CUDA) {
13870 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment,
13871 MoveAssignment,
13872 /* ConstRHS */ false,
13873 /* Diagnose */ false);
13874 }
13875
13876 // Build an exception specification pointing back at this member.
13877 FunctionProtoType::ExtProtoInfo EPI =
13878 getImplicitMethodEPI(*this, MoveAssignment);
13879 MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
13880
13881 // Add the parameter to the operator.
13882 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
13883 ClassLoc, ClassLoc,
13884 /*Id=*/nullptr, ArgType,
13885 /*TInfo=*/nullptr, SC_None,
13886 nullptr);
13887 MoveAssignment->setParams(FromParam);
13888
13889 MoveAssignment->setTrivial(
13890 ClassDecl->needsOverloadResolutionForMoveAssignment()
13891 ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
13892 : ClassDecl->hasTrivialMoveAssignment());
13893
13894 // Note that we have added this copy-assignment operator.
13895 ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared;
13896
13897 Scope *S = getScopeForContext(ClassDecl);
13898 CheckImplicitSpecialMemberDeclaration(S, MoveAssignment);
13899
13900 if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
13901 ClassDecl->setImplicitMoveAssignmentIsDeleted();
13902 SetDeclDeleted(MoveAssignment, ClassLoc);
13903 }
13904
13905 if (S)
13906 PushOnScopeChains(MoveAssignment, S, false);
13907 ClassDecl->addDecl(MoveAssignment);
13908
13909 return MoveAssignment;
13910}
13911
13912/// Check if we're implicitly defining a move assignment operator for a class
13913/// with virtual bases. Such a move assignment might move-assign the virtual
13914/// base multiple times.
13915static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class,
13916 SourceLocation CurrentLocation) {
13917 assert(!Class->isDependentContext() && "should not define dependent move")((!Class->isDependentContext() && "should not define dependent move"
) ? static_cast<void> (0) : __assert_fail ("!Class->isDependentContext() && \"should not define dependent move\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 13917, __PRETTY_FUNCTION__))
;
13918
13919 // Only a virtual base could get implicitly move-assigned multiple times.
13920 // Only a non-trivial move assignment can observe this. We only want to
13921 // diagnose if we implicitly define an assignment operator that assigns
13922 // two base classes, both of which move-assign the same virtual base.
13923 if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() ||
13924 Class->getNumBases() < 2)
13925 return;
13926
13927 llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist;
13928 typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap;
13929 VBaseMap VBases;
13930
13931 for (auto &BI : Class->bases()) {
13932 Worklist.push_back(&BI);
13933 while (!Worklist.empty()) {
13934 CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val();
13935 CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
13936
13937 // If the base has no non-trivial move assignment operators,
13938 // we don't care about moves from it.
13939 if (!Base->hasNonTrivialMoveAssignment())
13940 continue;
13941
13942 // If there's nothing virtual here, skip it.
13943 if (!BaseSpec->isVirtual() && !Base->getNumVBases())
13944 continue;
13945
13946 // If we're not actually going to call a move assignment for this base,
13947 // or the selected move assignment is trivial, skip it.
13948 Sema::SpecialMemberOverloadResult SMOR =
13949 S.LookupSpecialMember(Base, Sema::CXXMoveAssignment,
13950 /*ConstArg*/false, /*VolatileArg*/false,
13951 /*RValueThis*/true, /*ConstThis*/false,
13952 /*VolatileThis*/false);
13953 if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() ||
13954 !SMOR.getMethod()->isMoveAssignmentOperator())
13955 continue;
13956
13957 if (BaseSpec->isVirtual()) {
13958 // We're going to move-assign this virtual base, and its move
13959 // assignment operator is not trivial. If this can happen for
13960 // multiple distinct direct bases of Class, diagnose it. (If it
13961 // only happens in one base, we'll diagnose it when synthesizing
13962 // that base class's move assignment operator.)
13963 CXXBaseSpecifier *&Existing =
13964 VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI))
13965 .first->second;
13966 if (Existing && Existing != &BI) {
13967 S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times)
13968 << Class << Base;
13969 S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here)
13970 << (Base->getCanonicalDecl() ==
13971 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl())
13972 << Base << Existing->getType() << Existing->getSourceRange();
13973 S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here)
13974 << (Base->getCanonicalDecl() ==
13975 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl())
13976 << Base << BI.getType() << BaseSpec->getSourceRange();
13977
13978 // Only diagnose each vbase once.
13979 Existing = nullptr;
13980 }
13981 } else {
13982 // Only walk over bases that have defaulted move assignment operators.
13983 // We assume that any user-provided move assignment operator handles
13984 // the multiple-moves-of-vbase case itself somehow.
13985 if (!SMOR.getMethod()->isDefaulted())
13986 continue;
13987
13988 // We're going to move the base classes of Base. Add them to the list.
13989 for (auto &BI : Base->bases())
13990 Worklist.push_back(&BI);
13991 }
13992 }
13993 }
13994}
13995
13996void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
13997 CXXMethodDecl *MoveAssignOperator) {
13998 assert((MoveAssignOperator->isDefaulted() &&(((MoveAssignOperator->isDefaulted() && MoveAssignOperator
->isOverloadedOperator() && MoveAssignOperator->
getOverloadedOperator() == OO_Equal && !MoveAssignOperator
->doesThisDeclarationHaveABody() && !MoveAssignOperator
->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14003, __PRETTY_FUNCTION__))
13999 MoveAssignOperator->isOverloadedOperator() &&(((MoveAssignOperator->isDefaulted() && MoveAssignOperator
->isOverloadedOperator() && MoveAssignOperator->
getOverloadedOperator() == OO_Equal && !MoveAssignOperator
->doesThisDeclarationHaveABody() && !MoveAssignOperator
->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14003, __PRETTY_FUNCTION__))
14000 MoveAssignOperator->getOverloadedOperator() == OO_Equal &&(((MoveAssignOperator->isDefaulted() && MoveAssignOperator
->isOverloadedOperator() && MoveAssignOperator->
getOverloadedOperator() == OO_Equal && !MoveAssignOperator
->doesThisDeclarationHaveABody() && !MoveAssignOperator
->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14003, __PRETTY_FUNCTION__))
14001 !MoveAssignOperator->doesThisDeclarationHaveABody() &&(((MoveAssignOperator->isDefaulted() && MoveAssignOperator
->isOverloadedOperator() && MoveAssignOperator->
getOverloadedOperator() == OO_Equal && !MoveAssignOperator
->doesThisDeclarationHaveABody() && !MoveAssignOperator
->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14003, __PRETTY_FUNCTION__))
14002 !MoveAssignOperator->isDeleted()) &&(((MoveAssignOperator->isDefaulted() && MoveAssignOperator
->isOverloadedOperator() && MoveAssignOperator->
getOverloadedOperator() == OO_Equal && !MoveAssignOperator
->doesThisDeclarationHaveABody() && !MoveAssignOperator
->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14003, __PRETTY_FUNCTION__))
14003 "DefineImplicitMoveAssignment called for wrong function")(((MoveAssignOperator->isDefaulted() && MoveAssignOperator
->isOverloadedOperator() && MoveAssignOperator->
getOverloadedOperator() == OO_Equal && !MoveAssignOperator
->doesThisDeclarationHaveABody() && !MoveAssignOperator
->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14003, __PRETTY_FUNCTION__))
;
14004 if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl())
14005 return;
14006
14007 CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
14008 if (ClassDecl->isInvalidDecl()) {
14009 MoveAssignOperator->setInvalidDecl();
14010 return;
14011 }
14012
14013 // C++0x [class.copy]p28:
14014 // The implicitly-defined or move assignment operator for a non-union class
14015 // X performs memberwise move assignment of its subobjects. The direct base
14016 // classes of X are assigned first, in the order of their declaration in the
14017 // base-specifier-list, and then the immediate non-static data members of X
14018 // are assigned, in the order in which they were declared in the class
14019 // definition.
14020
14021 // Issue a warning if our implicit move assignment operator will move
14022 // from a virtual base more than once.
14023 checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation);
14024
14025 SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
14026
14027 // The exception specification is needed because we are defining the
14028 // function.
14029 ResolveExceptionSpec(CurrentLocation,
14030 MoveAssignOperator->getType()->castAs<FunctionProtoType>());
14031
14032 // Add a context note for diagnostics produced after this point.
14033 Scope.addContextNote(CurrentLocation);
14034
14035 // The statements that form the synthesized function body.
14036 SmallVector<Stmt*, 8> Statements;
14037
14038 // The parameter for the "other" object, which we are move from.
14039 ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
14040 QualType OtherRefType =
14041 Other->getType()->castAs<RValueReferenceType>()->getPointeeType();
14042
14043 // Our location for everything implicitly-generated.
14044 SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid()
14045 ? MoveAssignOperator->getEndLoc()
14046 : MoveAssignOperator->getLocation();
14047
14048 // Builds a reference to the "other" object.
14049 RefBuilder OtherRef(Other, OtherRefType);
14050 // Cast to rvalue.
14051 MoveCastBuilder MoveOther(OtherRef);
14052
14053 // Builds the "this" pointer.
14054 ThisBuilder This;
14055
14056 // Assign base classes.
14057 bool Invalid = false;
14058 for (auto &Base : ClassDecl->bases()) {
14059 // C++11 [class.copy]p28:
14060 // It is unspecified whether subobjects representing virtual base classes
14061 // are assigned more than once by the implicitly-defined copy assignment
14062 // operator.
14063 // FIXME: Do not assign to a vbase that will be assigned by some other base
14064 // class. For a move-assignment, this can result in the vbase being moved
14065 // multiple times.
14066
14067 // Form the assignment:
14068 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
14069 QualType BaseType = Base.getType().getUnqualifiedType();
14070 if (!BaseType->isRecordType()) {
14071 Invalid = true;
14072 continue;
14073 }
14074
14075 CXXCastPath BasePath;
14076 BasePath.push_back(&Base);
14077
14078 // Construct the "from" expression, which is an implicit cast to the
14079 // appropriately-qualified base type.
14080 CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath);
14081
14082 // Dereference "this".
14083 DerefBuilder DerefThis(This);
14084
14085 // Implicitly cast "this" to the appropriately-qualified base type.
14086 CastBuilder To(DerefThis,
14087 Context.getQualifiedType(
14088 BaseType, MoveAssignOperator->getMethodQualifiers()),
14089 VK_LValue, BasePath);
14090
14091 // Build the move.
14092 StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
14093 To, From,
14094 /*CopyingBaseSubobject=*/true,
14095 /*Copying=*/false);
14096 if (Move.isInvalid()) {
14097 MoveAssignOperator->setInvalidDecl();
14098 return;
14099 }
14100
14101 // Success! Record the move.
14102 Statements.push_back(Move.getAs<Expr>());
14103 }
14104
14105 // Assign non-static members.
14106 for (auto *Field : ClassDecl->fields()) {
14107 // FIXME: We should form some kind of AST representation for the implied
14108 // memcpy in a union copy operation.
14109 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
14110 continue;
14111
14112 if (Field->isInvalidDecl()) {
14113 Invalid = true;
14114 continue;
14115 }
14116
14117 // Check for members of reference type; we can't move those.
14118 if (Field->getType()->isReferenceType()) {
14119 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14120 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
14121 Diag(Field->getLocation(), diag::note_declared_at);
14122 Invalid = true;
14123 continue;
14124 }
14125
14126 // Check for members of const-qualified, non-class type.
14127 QualType BaseType = Context.getBaseElementType(Field->getType());
14128 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
14129 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14130 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
14131 Diag(Field->getLocation(), diag::note_declared_at);
14132 Invalid = true;
14133 continue;
14134 }
14135
14136 // Suppress assigning zero-width bitfields.
14137 if (Field->isZeroLengthBitField(Context))
14138 continue;
14139
14140 QualType FieldType = Field->getType().getNonReferenceType();
14141 if (FieldType->isIncompleteArrayType()) {
14142 assert(ClassDecl->hasFlexibleArrayMember() &&((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14143, __PRETTY_FUNCTION__))
14143 "Incomplete array type is not valid")((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14143, __PRETTY_FUNCTION__))
;
14144 continue;
14145 }
14146
14147 // Build references to the field in the object we're copying from and to.
14148 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
14149 LookupMemberName);
14150 MemberLookup.addDecl(Field);
14151 MemberLookup.resolveKind();
14152 MemberBuilder From(MoveOther, OtherRefType,
14153 /*IsArrow=*/false, MemberLookup);
14154 MemberBuilder To(This, getCurrentThisType(),
14155 /*IsArrow=*/true, MemberLookup);
14156
14157 assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue((!From.build(*this, Loc)->isLValue() && "Member reference with rvalue base must be rvalue except for reference "
"members, which aren't allowed for move assignment.") ? static_cast
<void> (0) : __assert_fail ("!From.build(*this, Loc)->isLValue() && \"Member reference with rvalue base must be rvalue except for reference \" \"members, which aren't allowed for move assignment.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14159, __PRETTY_FUNCTION__))
14158 "Member reference with rvalue base must be rvalue except for reference "((!From.build(*this, Loc)->isLValue() && "Member reference with rvalue base must be rvalue except for reference "
"members, which aren't allowed for move assignment.") ? static_cast
<void> (0) : __assert_fail ("!From.build(*this, Loc)->isLValue() && \"Member reference with rvalue base must be rvalue except for reference \" \"members, which aren't allowed for move assignment.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14159, __PRETTY_FUNCTION__))
14159 "members, which aren't allowed for move assignment.")((!From.build(*this, Loc)->isLValue() && "Member reference with rvalue base must be rvalue except for reference "
"members, which aren't allowed for move assignment.") ? static_cast
<void> (0) : __assert_fail ("!From.build(*this, Loc)->isLValue() && \"Member reference with rvalue base must be rvalue except for reference \" \"members, which aren't allowed for move assignment.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14159, __PRETTY_FUNCTION__))
;
14160
14161 // Build the move of this field.
14162 StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
14163 To, From,
14164 /*CopyingBaseSubobject=*/false,
14165 /*Copying=*/false);
14166 if (Move.isInvalid()) {
14167 MoveAssignOperator->setInvalidDecl();
14168 return;
14169 }
14170
14171 // Success! Record the copy.
14172 Statements.push_back(Move.getAs<Stmt>());
14173 }
14174
14175 if (!Invalid) {
14176 // Add a "return *this;"
14177 ExprResult ThisObj =
14178 CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
14179
14180 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
14181 if (Return.isInvalid())
14182 Invalid = true;
14183 else
14184 Statements.push_back(Return.getAs<Stmt>());
14185 }
14186
14187 if (Invalid) {
14188 MoveAssignOperator->setInvalidDecl();
14189 return;
14190 }
14191
14192 StmtResult Body;
14193 {
14194 CompoundScopeRAII CompoundScope(*this);
14195 Body = ActOnCompoundStmt(Loc, Loc, Statements,
14196 /*isStmtExpr=*/false);
14197 assert(!Body.isInvalid() && "Compound statement creation cannot fail")((!Body.isInvalid() && "Compound statement creation cannot fail"
) ? static_cast<void> (0) : __assert_fail ("!Body.isInvalid() && \"Compound statement creation cannot fail\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14197, __PRETTY_FUNCTION__))
;
14198 }
14199 MoveAssignOperator->setBody(Body.getAs<Stmt>());
14200 MoveAssignOperator->markUsed(Context);
14201
14202 if (ASTMutationListener *L = getASTMutationListener()) {
14203 L->CompletedImplicitDefinition(MoveAssignOperator);
14204 }
14205}
14206
14207CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
14208 CXXRecordDecl *ClassDecl) {
14209 // C++ [class.copy]p4:
14210 // If the class definition does not explicitly declare a copy
14211 // constructor, one is declared implicitly.
14212 assert(ClassDecl->needsImplicitCopyConstructor())((ClassDecl->needsImplicitCopyConstructor()) ? static_cast
<void> (0) : __assert_fail ("ClassDecl->needsImplicitCopyConstructor()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14212, __PRETTY_FUNCTION__))
;
14213
14214 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
14215 if (DSM.isAlreadyBeingDeclared())
14216 return nullptr;
14217
14218 QualType ClassType = Context.getTypeDeclType(ClassDecl);
14219 QualType ArgType = ClassType;
14220 bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
14221 if (Const)
14222 ArgType = ArgType.withConst();
14223
14224 LangAS AS = getDefaultCXXMethodAddrSpace();
14225 if (AS != LangAS::Default)
14226 ArgType = Context.getAddrSpaceQualType(ArgType, AS);
14227
14228 ArgType = Context.getLValueReferenceType(ArgType);
14229
14230 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
14231 CXXCopyConstructor,
14232 Const);
14233
14234 DeclarationName Name
14235 = Context.DeclarationNames.getCXXConstructorName(
14236 Context.getCanonicalType(ClassType));
14237 SourceLocation ClassLoc = ClassDecl->getLocation();
14238 DeclarationNameInfo NameInfo(Name, ClassLoc);
14239
14240 // An implicitly-declared copy constructor is an inline public
14241 // member of its class.
14242 CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
14243 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
14244 ExplicitSpecifier(),
14245 /*isInline=*/true,
14246 /*isImplicitlyDeclared=*/true,
14247 Constexpr ? CSK_constexpr : CSK_unspecified);
14248 CopyConstructor->setAccess(AS_public);
14249 CopyConstructor->setDefaulted();
14250
14251 if (getLangOpts().CUDA) {
14252 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor,
14253 CopyConstructor,
14254 /* ConstRHS */ Const,
14255 /* Diagnose */ false);
14256 }
14257
14258 setupImplicitSpecialMemberType(CopyConstructor, Context.VoidTy, ArgType);
14259
14260 // Add the parameter to the constructor.
14261 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
14262 ClassLoc, ClassLoc,
14263 /*IdentifierInfo=*/nullptr,
14264 ArgType, /*TInfo=*/nullptr,
14265 SC_None, nullptr);
14266 CopyConstructor->setParams(FromParam);
14267
14268 CopyConstructor->setTrivial(
14269 ClassDecl->needsOverloadResolutionForCopyConstructor()
14270 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
14271 : ClassDecl->hasTrivialCopyConstructor());
14272
14273 CopyConstructor->setTrivialForCall(
14274 ClassDecl->hasAttr<TrivialABIAttr>() ||
14275 (ClassDecl->needsOverloadResolutionForCopyConstructor()
14276 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor,
14277 TAH_ConsiderTrivialABI)
14278 : ClassDecl->hasTrivialCopyConstructorForCall()));
14279
14280 // Note that we have declared this constructor.
14281 ++getASTContext().NumImplicitCopyConstructorsDeclared;
14282
14283 Scope *S = getScopeForContext(ClassDecl);
14284 CheckImplicitSpecialMemberDeclaration(S, CopyConstructor);
14285
14286 if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor)) {
14287 ClassDecl->setImplicitCopyConstructorIsDeleted();
14288 SetDeclDeleted(CopyConstructor, ClassLoc);
14289 }
14290
14291 if (S)
14292 PushOnScopeChains(CopyConstructor, S, false);
14293 ClassDecl->addDecl(CopyConstructor);
14294
14295 return CopyConstructor;
14296}
14297
14298void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
14299 CXXConstructorDecl *CopyConstructor) {
14300 assert((CopyConstructor->isDefaulted() &&(((CopyConstructor->isDefaulted() && CopyConstructor
->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody
() && !CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? static_cast<void> (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14304, __PRETTY_FUNCTION__))
14301 CopyConstructor->isCopyConstructor() &&(((CopyConstructor->isDefaulted() && CopyConstructor
->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody
() && !CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? static_cast<void> (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14304, __PRETTY_FUNCTION__))
14302 !CopyConstructor->doesThisDeclarationHaveABody() &&(((CopyConstructor->isDefaulted() && CopyConstructor
->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody
() && !CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? static_cast<void> (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14304, __PRETTY_FUNCTION__))
14303 !CopyConstructor->isDeleted()) &&(((CopyConstructor->isDefaulted() && CopyConstructor
->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody
() && !CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? static_cast<void> (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14304, __PRETTY_FUNCTION__))
14304 "DefineImplicitCopyConstructor - call it for implicit copy ctor")(((CopyConstructor->isDefaulted() && CopyConstructor
->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody
() && !CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? static_cast<void> (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14304, __PRETTY_FUNCTION__))
;
14305 if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl())
14306 return;
14307
14308 CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
14309 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor")((ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl && \"DefineImplicitCopyConstructor - invalid constructor\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14309, __PRETTY_FUNCTION__))
;
14310
14311 SynthesizedFunctionScope Scope(*this, CopyConstructor);
14312
14313 // The exception specification is needed because we are defining the
14314 // function.
14315 ResolveExceptionSpec(CurrentLocation,
14316 CopyConstructor->getType()->castAs<FunctionProtoType>());
14317 MarkVTableUsed(CurrentLocation, ClassDecl);
14318
14319 // Add a context note for diagnostics produced after this point.
14320 Scope.addContextNote(CurrentLocation);
14321
14322 // C++11 [class.copy]p7:
14323 // The [definition of an implicitly declared copy constructor] is
14324 // deprecated if the class has a user-declared copy assignment operator
14325 // or a user-declared destructor.
14326 if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
14327 diagnoseDeprecatedCopyOperation(*this, CopyConstructor);
14328
14329 if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false)) {
14330 CopyConstructor->setInvalidDecl();
14331 } else {
14332 SourceLocation Loc = CopyConstructor->getEndLoc().isValid()
14333 ? CopyConstructor->getEndLoc()
14334 : CopyConstructor->getLocation();
14335 Sema::CompoundScopeRAII CompoundScope(*this);
14336 CopyConstructor->setBody(
14337 ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>());
14338 CopyConstructor->markUsed(Context);
14339 }
14340
14341 if (ASTMutationListener *L = getASTMutationListener()) {
14342 L->CompletedImplicitDefinition(CopyConstructor);
14343 }
14344}
14345
14346CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
14347 CXXRecordDecl *ClassDecl) {
14348 assert(ClassDecl->needsImplicitMoveConstructor())((ClassDecl->needsImplicitMoveConstructor()) ? static_cast
<void> (0) : __assert_fail ("ClassDecl->needsImplicitMoveConstructor()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14348, __PRETTY_FUNCTION__))
;
14349
14350 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
14351 if (DSM.isAlreadyBeingDeclared())
14352 return nullptr;
14353
14354 QualType ClassType = Context.getTypeDeclType(ClassDecl);
14355
14356 QualType ArgType = ClassType;
14357 LangAS AS = getDefaultCXXMethodAddrSpace();
14358 if (AS != LangAS::Default)
14359 ArgType = Context.getAddrSpaceQualType(ClassType, AS);
14360 ArgType = Context.getRValueReferenceType(ArgType);
14361
14362 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
14363 CXXMoveConstructor,
14364 false);
14365
14366 DeclarationName Name
14367 = Context.DeclarationNames.getCXXConstructorName(
14368 Context.getCanonicalType(ClassType));
14369 SourceLocation ClassLoc = ClassDecl->getLocation();
14370 DeclarationNameInfo NameInfo(Name, ClassLoc);
14371
14372 // C++11 [class.copy]p11:
14373 // An implicitly-declared copy/move constructor is an inline public
14374 // member of its class.
14375 CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
14376 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
14377 ExplicitSpecifier(),
14378 /*isInline=*/true,
14379 /*isImplicitlyDeclared=*/true,
14380 Constexpr ? CSK_constexpr : CSK_unspecified);
14381 MoveConstructor->setAccess(AS_public);
14382 MoveConstructor->setDefaulted();
14383
14384 if (getLangOpts().CUDA) {
14385 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor,
14386 MoveConstructor,
14387 /* ConstRHS */ false,
14388 /* Diagnose */ false);
14389 }
14390
14391 setupImplicitSpecialMemberType(MoveConstructor, Context.VoidTy, ArgType);
14392
14393 // Add the parameter to the constructor.
14394 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
14395 ClassLoc, ClassLoc,
14396 /*IdentifierInfo=*/nullptr,
14397 ArgType, /*TInfo=*/nullptr,
14398 SC_None, nullptr);
14399 MoveConstructor->setParams(FromParam);
14400
14401 MoveConstructor->setTrivial(
14402 ClassDecl->needsOverloadResolutionForMoveConstructor()
14403 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
14404 : ClassDecl->hasTrivialMoveConstructor());
14405
14406 MoveConstructor->setTrivialForCall(
14407 ClassDecl->hasAttr<TrivialABIAttr>() ||
14408 (ClassDecl->needsOverloadResolutionForMoveConstructor()
14409 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor,
14410 TAH_ConsiderTrivialABI)
14411 : ClassDecl->hasTrivialMoveConstructorForCall()));
14412
14413 // Note that we have declared this constructor.
14414 ++getASTContext().NumImplicitMoveConstructorsDeclared;
14415
14416 Scope *S = getScopeForContext(ClassDecl);
14417 CheckImplicitSpecialMemberDeclaration(S, MoveConstructor);
14418
14419 if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
14420 ClassDecl->setImplicitMoveConstructorIsDeleted();
14421 SetDeclDeleted(MoveConstructor, ClassLoc);
14422 }
14423
14424 if (S)
14425 PushOnScopeChains(MoveConstructor, S, false);
14426 ClassDecl->addDecl(MoveConstructor);
14427
14428 return MoveConstructor;
14429}
14430
14431void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
14432 CXXConstructorDecl *MoveConstructor) {
14433 assert((MoveConstructor->isDefaulted() &&(((MoveConstructor->isDefaulted() && MoveConstructor
->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody
() && !MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? static_cast<void> (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14437, __PRETTY_FUNCTION__))
14434 MoveConstructor->isMoveConstructor() &&(((MoveConstructor->isDefaulted() && MoveConstructor
->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody
() && !MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? static_cast<void> (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14437, __PRETTY_FUNCTION__))
14435 !MoveConstructor->doesThisDeclarationHaveABody() &&(((MoveConstructor->isDefaulted() && MoveConstructor
->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody
() && !MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? static_cast<void> (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14437, __PRETTY_FUNCTION__))
14436 !MoveConstructor->isDeleted()) &&(((MoveConstructor->isDefaulted() && MoveConstructor
->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody
() && !MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? static_cast<void> (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14437, __PRETTY_FUNCTION__))
14437 "DefineImplicitMoveConstructor - call it for implicit move ctor")(((MoveConstructor->isDefaulted() && MoveConstructor
->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody
() && !MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? static_cast<void> (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14437, __PRETTY_FUNCTION__))
;
14438 if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl())
14439 return;
14440
14441 CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
14442 assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor")((ClassDecl && "DefineImplicitMoveConstructor - invalid constructor"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl && \"DefineImplicitMoveConstructor - invalid constructor\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14442, __PRETTY_FUNCTION__))
;
14443
14444 SynthesizedFunctionScope Scope(*this, MoveConstructor);
14445
14446 // The exception specification is needed because we are defining the
14447 // function.
14448 ResolveExceptionSpec(CurrentLocation,
14449 MoveConstructor->getType()->castAs<FunctionProtoType>());
14450 MarkVTableUsed(CurrentLocation, ClassDecl);
14451
14452 // Add a context note for diagnostics produced after this point.
14453 Scope.addContextNote(CurrentLocation);
14454
14455 if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false)) {
14456 MoveConstructor->setInvalidDecl();
14457 } else {
14458 SourceLocation Loc = MoveConstructor->getEndLoc().isValid()
14459 ? MoveConstructor->getEndLoc()
14460 : MoveConstructor->getLocation();
14461 Sema::CompoundScopeRAII CompoundScope(*this);
14462 MoveConstructor->setBody(ActOnCompoundStmt(
14463 Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>());
14464 MoveConstructor->markUsed(Context);
14465 }
14466
14467 if (ASTMutationListener *L = getASTMutationListener()) {
14468 L->CompletedImplicitDefinition(MoveConstructor);
14469 }
14470}
14471
14472bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
14473 return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
14474}
14475
14476void Sema::DefineImplicitLambdaToFunctionPointerConversion(
14477 SourceLocation CurrentLocation,
14478 CXXConversionDecl *Conv) {
14479 SynthesizedFunctionScope Scope(*this, Conv);
14480 assert(!Conv->getReturnType()->isUndeducedType())((!Conv->getReturnType()->isUndeducedType()) ? static_cast
<void> (0) : __assert_fail ("!Conv->getReturnType()->isUndeducedType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14480, __PRETTY_FUNCTION__))
;
14481
14482 CXXRecordDecl *Lambda = Conv->getParent();
14483 FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
14484 FunctionDecl *Invoker = Lambda->getLambdaStaticInvoker();
14485
14486 if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) {
14487 CallOp = InstantiateFunctionDeclaration(
14488 CallOp->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation);
14489 if (!CallOp)
14490 return;
14491
14492 Invoker = InstantiateFunctionDeclaration(
14493 Invoker->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation);
14494 if (!Invoker)
14495 return;
14496 }
14497
14498 if (CallOp->isInvalidDecl())
14499 return;
14500
14501 // Mark the call operator referenced (and add to pending instantiations
14502 // if necessary).
14503 // For both the conversion and static-invoker template specializations
14504 // we construct their body's in this function, so no need to add them
14505 // to the PendingInstantiations.
14506 MarkFunctionReferenced(CurrentLocation, CallOp);
14507
14508 // Fill in the __invoke function with a dummy implementation. IR generation
14509 // will fill in the actual details. Update its type in case it contained
14510 // an 'auto'.
14511 Invoker->markUsed(Context);
14512 Invoker->setReferenced();
14513 Invoker->setType(Conv->getReturnType()->getPointeeType());
14514 Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation()));
14515
14516 // Construct the body of the conversion function { return __invoke; }.
14517 Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(),
14518 VK_LValue, Conv->getLocation());
14519 assert(FunctionRef && "Can't refer to __invoke function?")((FunctionRef && "Can't refer to __invoke function?")
? static_cast<void> (0) : __assert_fail ("FunctionRef && \"Can't refer to __invoke function?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14519, __PRETTY_FUNCTION__))
;
14520 Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get();
14521 Conv->setBody(CompoundStmt::Create(Context, Return, Conv->getLocation(),
14522 Conv->getLocation()));
14523 Conv->markUsed(Context);
14524 Conv->setReferenced();
14525
14526 if (ASTMutationListener *L = getASTMutationListener()) {
14527 L->CompletedImplicitDefinition(Conv);
14528 L->CompletedImplicitDefinition(Invoker);
14529 }
14530}
14531
14532
14533
14534void Sema::DefineImplicitLambdaToBlockPointerConversion(
14535 SourceLocation CurrentLocation,
14536 CXXConversionDecl *Conv)
14537{
14538 assert(!Conv->getParent()->isGenericLambda())((!Conv->getParent()->isGenericLambda()) ? static_cast<
void> (0) : __assert_fail ("!Conv->getParent()->isGenericLambda()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14538, __PRETTY_FUNCTION__))
;
14539
14540 SynthesizedFunctionScope Scope(*this, Conv);
14541
14542 // Copy-initialize the lambda object as needed to capture it.
14543 Expr *This = ActOnCXXThis(CurrentLocation).get();
14544 Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get();
14545
14546 ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
14547 Conv->getLocation(),
14548 Conv, DerefThis);
14549
14550 // If we're not under ARC, make sure we still get the _Block_copy/autorelease
14551 // behavior. Note that only the general conversion function does this
14552 // (since it's unusable otherwise); in the case where we inline the
14553 // block literal, it has block literal lifetime semantics.
14554 if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
14555 BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
14556 CK_CopyAndAutoreleaseBlockObject,
14557 BuildBlock.get(), nullptr, VK_RValue);
14558
14559 if (BuildBlock.isInvalid()) {
14560 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
14561 Conv->setInvalidDecl();
14562 return;
14563 }
14564
14565 // Create the return statement that returns the block from the conversion
14566 // function.
14567 StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get());
14568 if (Return.isInvalid()) {
14569 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
14570 Conv->setInvalidDecl();
14571 return;
14572 }
14573
14574 // Set the body of the conversion function.
14575 Stmt *ReturnS = Return.get();
14576 Conv->setBody(CompoundStmt::Create(Context, ReturnS, Conv->getLocation(),
14577 Conv->getLocation()));
14578 Conv->markUsed(Context);
14579
14580 // We're done; notify the mutation listener, if any.
14581 if (ASTMutationListener *L = getASTMutationListener()) {
14582 L->CompletedImplicitDefinition(Conv);
14583 }
14584}
14585
14586/// Determine whether the given list arguments contains exactly one
14587/// "real" (non-default) argument.
14588static bool hasOneRealArgument(MultiExprArg Args) {
14589 switch (Args.size()) {
14590 case 0:
14591 return false;
14592
14593 default:
14594 if (!Args[1]->isDefaultArgument())
14595 return false;
14596
14597 LLVM_FALLTHROUGH[[gnu::fallthrough]];
14598 case 1:
14599 return !Args[0]->isDefaultArgument();
14600 }
14601
14602 return false;
14603}
14604
14605ExprResult
14606Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
14607 NamedDecl *FoundDecl,
14608 CXXConstructorDecl *Constructor,
14609 MultiExprArg ExprArgs,
14610 bool HadMultipleCandidates,
14611 bool IsListInitialization,
14612 bool IsStdInitListInitialization,
14613 bool RequiresZeroInit,
14614 unsigned ConstructKind,
14615 SourceRange ParenRange) {
14616 bool Elidable = false;
14617
14618 // C++0x [class.copy]p34:
14619 // When certain criteria are met, an implementation is allowed to
14620 // omit the copy/move construction of a class object, even if the
14621 // copy/move constructor and/or destructor for the object have
14622 // side effects. [...]
14623 // - when a temporary class object that has not been bound to a
14624 // reference (12.2) would be copied/moved to a class object
14625 // with the same cv-unqualified type, the copy/move operation
14626 // can be omitted by constructing the temporary object
14627 // directly into the target of the omitted copy/move
14628 if (ConstructKind == CXXConstructExpr::CK_Complete && Constructor &&
14629 Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
14630 Expr *SubExpr = ExprArgs[0];
14631 Elidable = SubExpr->isTemporaryObject(
14632 Context, cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
14633 }
14634
14635 return BuildCXXConstructExpr(ConstructLoc, DeclInitType,
14636 FoundDecl, Constructor,
14637 Elidable, ExprArgs, HadMultipleCandidates,
14638 IsListInitialization,
14639 IsStdInitListInitialization, RequiresZeroInit,
14640 ConstructKind, ParenRange);
14641}
14642
14643ExprResult
14644Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
14645 NamedDecl *FoundDecl,
14646 CXXConstructorDecl *Constructor,
14647 bool Elidable,
14648 MultiExprArg ExprArgs,
14649 bool HadMultipleCandidates,
14650 bool IsListInitialization,
14651 bool IsStdInitListInitialization,
14652 bool RequiresZeroInit,
14653 unsigned ConstructKind,
14654 SourceRange ParenRange) {
14655 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) {
14656 Constructor = findInheritingConstructor(ConstructLoc, Constructor, Shadow);
14657 if (DiagnoseUseOfDecl(Constructor, ConstructLoc))
14658 return ExprError();
14659 }
14660
14661 return BuildCXXConstructExpr(
14662 ConstructLoc, DeclInitType, Constructor, Elidable, ExprArgs,
14663 HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization,
14664 RequiresZeroInit, ConstructKind, ParenRange);
14665}
14666
14667/// BuildCXXConstructExpr - Creates a complete call to a constructor,
14668/// including handling of its default argument expressions.
14669ExprResult
14670Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
14671 CXXConstructorDecl *Constructor,
14672 bool Elidable,
14673 MultiExprArg ExprArgs,
14674 bool HadMultipleCandidates,
14675 bool IsListInitialization,
14676 bool IsStdInitListInitialization,
14677 bool RequiresZeroInit,
14678 unsigned ConstructKind,
14679 SourceRange ParenRange) {
14680 assert(declaresSameEntity(((declaresSameEntity( Constructor->getParent(), DeclInitType
->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&
"given constructor for wrong type") ? static_cast<void>
(0) : __assert_fail ("declaresSameEntity( Constructor->getParent(), DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && \"given constructor for wrong type\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14683, __PRETTY_FUNCTION__))
14681 Constructor->getParent(),((declaresSameEntity( Constructor->getParent(), DeclInitType
->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&
"given constructor for wrong type") ? static_cast<void>
(0) : __assert_fail ("declaresSameEntity( Constructor->getParent(), DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && \"given constructor for wrong type\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14683, __PRETTY_FUNCTION__))
14682 DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&((declaresSameEntity( Constructor->getParent(), DeclInitType
->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&
"given constructor for wrong type") ? static_cast<void>
(0) : __assert_fail ("declaresSameEntity( Constructor->getParent(), DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && \"given constructor for wrong type\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14683, __PRETTY_FUNCTION__))
14683 "given constructor for wrong type")((declaresSameEntity( Constructor->getParent(), DeclInitType
->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&
"given constructor for wrong type") ? static_cast<void>
(0) : __assert_fail ("declaresSameEntity( Constructor->getParent(), DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && \"given constructor for wrong type\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14683, __PRETTY_FUNCTION__))
;
14684 MarkFunctionReferenced(ConstructLoc, Constructor);
14685 if (getLangOpts().CUDA && !CheckCUDACall(ConstructLoc, Constructor))
14686 return ExprError();
14687
14688 return CXXConstructExpr::Create(
14689 Context, DeclInitType, ConstructLoc, Constructor, Elidable,
14690 ExprArgs, HadMultipleCandidates, IsListInitialization,
14691 IsStdInitListInitialization, RequiresZeroInit,
14692 static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
14693 ParenRange);
14694}
14695
14696ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
14697 assert(Field->hasInClassInitializer())((Field->hasInClassInitializer()) ? static_cast<void>
(0) : __assert_fail ("Field->hasInClassInitializer()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14697, __PRETTY_FUNCTION__))
;
14698
14699 // If we already have the in-class initializer nothing needs to be done.
14700 if (Field->getInClassInitializer())
14701 return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext);
14702
14703 // If we might have already tried and failed to instantiate, don't try again.
14704 if (Field->isInvalidDecl())
14705 return ExprError();
14706
14707 // Maybe we haven't instantiated the in-class initializer. Go check the
14708 // pattern FieldDecl to see if it has one.
14709 CXXRecordDecl *ParentRD = cast<CXXRecordDecl>(Field->getParent());
14710
14711 if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
14712 CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
14713 DeclContext::lookup_result Lookup =
14714 ClassPattern->lookup(Field->getDeclName());
14715
14716 // Lookup can return at most two results: the pattern for the field, or the
14717 // injected class name of the parent record. No other member can have the
14718 // same name as the field.
14719 // In modules mode, lookup can return multiple results (coming from
14720 // different modules).
14721 assert((getLangOpts().Modules || (!Lookup.empty() && Lookup.size() <= 2)) &&(((getLangOpts().Modules || (!Lookup.empty() && Lookup
.size() <= 2)) && "more than two lookup results for field name"
) ? static_cast<void> (0) : __assert_fail ("(getLangOpts().Modules || (!Lookup.empty() && Lookup.size() <= 2)) && \"more than two lookup results for field name\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14722, __PRETTY_FUNCTION__))
14722 "more than two lookup results for field name")(((getLangOpts().Modules || (!Lookup.empty() && Lookup
.size() <= 2)) && "more than two lookup results for field name"
) ? static_cast<void> (0) : __assert_fail ("(getLangOpts().Modules || (!Lookup.empty() && Lookup.size() <= 2)) && \"more than two lookup results for field name\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14722, __PRETTY_FUNCTION__))
;
14723 FieldDecl *Pattern = dyn_cast<FieldDecl>(Lookup[0]);
14724 if (!Pattern) {
14725 assert(isa<CXXRecordDecl>(Lookup[0]) &&((isa<CXXRecordDecl>(Lookup[0]) && "cannot have other non-field member with same name"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXRecordDecl>(Lookup[0]) && \"cannot have other non-field member with same name\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14726, __PRETTY_FUNCTION__))
14726 "cannot have other non-field member with same name")((isa<CXXRecordDecl>(Lookup[0]) && "cannot have other non-field member with same name"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXRecordDecl>(Lookup[0]) && \"cannot have other non-field member with same name\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14726, __PRETTY_FUNCTION__))
;
14727 for (auto L : Lookup)
14728 if (isa<FieldDecl>(L)) {
14729 Pattern = cast<FieldDecl>(L);
14730 break;
14731 }
14732 assert(Pattern && "We must have set the Pattern!")((Pattern && "We must have set the Pattern!") ? static_cast
<void> (0) : __assert_fail ("Pattern && \"We must have set the Pattern!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 14732, __PRETTY_FUNCTION__))
;
14733 }
14734
14735 if (!Pattern->hasInClassInitializer() ||
14736 InstantiateInClassInitializer(Loc, Field, Pattern,
14737 getTemplateInstantiationArgs(Field))) {
14738 // Don't diagnose this again.
14739 Field->setInvalidDecl();
14740 return ExprError();
14741 }
14742 return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext);
14743 }
14744
14745 // DR1351:
14746 // If the brace-or-equal-initializer of a non-static data member
14747 // invokes a defaulted default constructor of its class or of an
14748 // enclosing class in a potentially evaluated subexpression, the
14749 // program is ill-formed.
14750 //
14751 // This resolution is unworkable: the exception specification of the
14752 // default constructor can be needed in an unevaluated context, in
14753 // particular, in the operand of a noexcept-expression, and we can be
14754 // unable to compute an exception specification for an enclosed class.
14755 //
14756 // Any attempt to resolve the exception specification of a defaulted default
14757 // constructor before the initializer is lexically complete will ultimately
14758 // come here at which point we can diagnose it.
14759 RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
14760 Diag(Loc, diag::err_in_class_initializer_not_yet_parsed)
14761 << OutermostClass << Field;
14762 Diag(Field->getEndLoc(), diag::note_in_class_initializer_not_yet_parsed);
14763 // Recover by marking the field invalid, unless we're in a SFINAE context.
14764 if (!isSFINAEContext())
14765 Field->setInvalidDecl();
14766 return ExprError();
14767}
14768
14769void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
14770 if (VD->isInvalidDecl()) return;
14771
14772 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
14773 if (ClassDecl->isInvalidDecl()) return;
14774 if (ClassDecl->hasIrrelevantDestructor()) return;
14775 if (ClassDecl->isDependentContext()) return;
14776
14777 if (VD->isNoDestroy(getASTContext()))
14778 return;
14779
14780 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
14781
14782 // If this is an array, we'll require the destructor during initialization, so
14783 // we can skip over this. We still want to emit exit-time destructor warnings
14784 // though.
14785 if (!VD->getType()->isArrayType()) {
14786 MarkFunctionReferenced(VD->getLocation(), Destructor);
14787 CheckDestructorAccess(VD->getLocation(), Destructor,
14788 PDiag(diag::err_access_dtor_var)
14789 << VD->getDeclName() << VD->getType());
14790 DiagnoseUseOfDecl(Destructor, VD->getLocation());
14791 }
14792
14793 if (Destructor->isTrivial()) return;
14794
14795 // If the destructor is constexpr, check whether the variable has constant
14796 // destruction now.
14797 if (Destructor->isConstexpr()) {
14798 bool HasConstantInit = false;
14799 if (VD->getInit() && !VD->getInit()->isValueDependent())
14800 HasConstantInit = VD->evaluateValue();
14801 SmallVector<PartialDiagnosticAt, 8> Notes;
14802 if (!VD->evaluateDestruction(Notes) && VD->isConstexpr() &&
14803 HasConstantInit) {
14804 Diag(VD->getLocation(),
14805 diag::err_constexpr_var_requires_const_destruction) << VD;
14806 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
14807 Diag(Notes[I].first, Notes[I].second);
14808 }
14809 }
14810
14811 if (!VD->hasGlobalStorage()) return;
14812
14813 // Emit warning for non-trivial dtor in global scope (a real global,
14814 // class-static, function-static).
14815 Diag(VD->getLocation(), diag::warn_exit_time_destructor);
14816
14817 // TODO: this should be re-enabled for static locals by !CXAAtExit
14818 if (!VD->isStaticLocal())
14819 Diag(VD->getLocation(), diag::warn_global_destructor);
14820}
14821
14822/// Given a constructor and the set of arguments provided for the
14823/// constructor, convert the arguments and add any required default arguments
14824/// to form a proper call to this constructor.
14825///
14826/// \returns true if an error occurred, false otherwise.
14827bool
14828Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
14829 MultiExprArg ArgsPtr,
14830 SourceLocation Loc,
14831 SmallVectorImpl<Expr*> &ConvertedArgs,
14832 bool AllowExplicit,
14833 bool IsListInitialization) {
14834 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
14835 unsigned NumArgs = ArgsPtr.size();
14836 Expr **Args = ArgsPtr.data();
14837
14838 const auto *Proto = Constructor->getType()->castAs<FunctionProtoType>();
14839 unsigned NumParams = Proto->getNumParams();
14840
14841 // If too few arguments are available, we'll fill in the rest with defaults.
14842 if (NumArgs < NumParams)
14843 ConvertedArgs.reserve(NumParams);
14844 else
14845 ConvertedArgs.reserve(NumArgs);
14846
14847 VariadicCallType CallType =
14848 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
14849 SmallVector<Expr *, 8> AllArgs;
14850 bool Invalid = GatherArgumentsForCall(Loc, Constructor,
14851 Proto, 0,
14852 llvm::makeArrayRef(Args, NumArgs),
14853 AllArgs,
14854 CallType, AllowExplicit,
14855 IsListInitialization);
14856 ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
14857
14858 DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
14859
14860 CheckConstructorCall(Constructor,
14861 llvm::makeArrayRef(AllArgs.data(), AllArgs.size()),
14862 Proto, Loc);
14863
14864 return Invalid;
14865}
14866
14867static inline bool
14868CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
14869 const FunctionDecl *FnDecl) {
14870 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
14871 if (isa<NamespaceDecl>(DC)) {
14872 return SemaRef.Diag(FnDecl->getLocation(),
14873 diag::err_operator_new_delete_declared_in_namespace)
14874 << FnDecl->getDeclName();
14875 }
14876
14877 if (isa<TranslationUnitDecl>(DC) &&
14878 FnDecl->getStorageClass() == SC_Static) {
14879 return SemaRef.Diag(FnDecl->getLocation(),
14880 diag::err_operator_new_delete_declared_static)
14881 << FnDecl->getDeclName();
14882 }
14883
14884 return false;
14885}
14886
14887static QualType
14888RemoveAddressSpaceFromPtr(Sema &SemaRef, const PointerType *PtrTy) {
14889 QualType QTy = PtrTy->getPointeeType();
14890 QTy = SemaRef.Context.removeAddrSpaceQualType(QTy);
14891 return SemaRef.Context.getPointerType(QTy);
14892}
14893
14894static inline bool
14895CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
14896 CanQualType ExpectedResultType,
14897 CanQualType ExpectedFirstParamType,
14898 unsigned DependentParamTypeDiag,
14899 unsigned InvalidParamTypeDiag) {
14900 QualType ResultType =
14901 FnDecl->getType()->castAs<FunctionType>()->getReturnType();
14902
14903 // Check that the result type is not dependent.
14904 if (ResultType->isDependentType())
14905 return SemaRef.Diag(FnDecl->getLocation(),
14906 diag::err_operator_new_delete_dependent_result_type)
14907 << FnDecl->getDeclName() << ExpectedResultType;
14908
14909 // The operator is valid on any address space for OpenCL.
14910 if (SemaRef.getLangOpts().OpenCLCPlusPlus) {
14911 if (auto *PtrTy = ResultType->getAs<PointerType>()) {
14912 ResultType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy);
14913 }
14914 }
14915
14916 // Check that the result type is what we expect.
14917 if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
14918 return SemaRef.Diag(FnDecl->getLocation(),
14919 diag::err_operator_new_delete_invalid_result_type)
14920 << FnDecl->getDeclName() << ExpectedResultType;
14921
14922 // A function template must have at least 2 parameters.
14923 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
14924 return SemaRef.Diag(FnDecl->getLocation(),
14925 diag::err_operator_new_delete_template_too_few_parameters)
14926 << FnDecl->getDeclName();
14927
14928 // The function decl must have at least 1 parameter.
14929 if (FnDecl->getNumParams() == 0)
14930 return SemaRef.Diag(FnDecl->getLocation(),
14931 diag::err_operator_new_delete_too_few_parameters)
14932 << FnDecl->getDeclName();
14933
14934 // Check the first parameter type is not dependent.
14935 QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
14936 if (FirstParamType->isDependentType())
14937 return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
14938 << FnDecl->getDeclName() << ExpectedFirstParamType;
14939
14940 // Check that the first parameter type is what we expect.
14941 if (SemaRef.getLangOpts().OpenCLCPlusPlus) {
14942 // The operator is valid on any address space for OpenCL.
14943 if (auto *PtrTy =
14944 FnDecl->getParamDecl(0)->getType()->getAs<PointerType>()) {
14945 FirstParamType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy);
14946 }
14947 }
14948 if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
14949 ExpectedFirstParamType)
14950 return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
14951 << FnDecl->getDeclName() << ExpectedFirstParamType;
14952
14953 return false;
14954}
14955
14956static bool
14957CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
14958 // C++ [basic.stc.dynamic.allocation]p1:
14959 // A program is ill-formed if an allocation function is declared in a
14960 // namespace scope other than global scope or declared static in global
14961 // scope.
14962 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
14963 return true;
14964
14965 CanQualType SizeTy =
14966 SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
14967
14968 // C++ [basic.stc.dynamic.allocation]p1:
14969 // The return type shall be void*. The first parameter shall have type
14970 // std::size_t.
14971 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
14972 SizeTy,
14973 diag::err_operator_new_dependent_param_type,
14974 diag::err_operator_new_param_type))
14975 return true;
14976
14977 // C++ [basic.stc.dynamic.allocation]p1:
14978 // The first parameter shall not have an associated default argument.
14979 if (FnDecl->getParamDecl(0)->hasDefaultArg())
14980 return SemaRef.Diag(FnDecl->getLocation(),
14981 diag::err_operator_new_default_arg)
14982 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
14983
14984 return false;
14985}
14986
14987static bool
14988CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
14989 // C++ [basic.stc.dynamic.deallocation]p1:
14990 // A program is ill-formed if deallocation functions are declared in a
14991 // namespace scope other than global scope or declared static in global
14992 // scope.
14993 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
14994 return true;
14995
14996 auto *MD = dyn_cast<CXXMethodDecl>(FnDecl);
14997
14998 // C++ P0722:
14999 // Within a class C, the first parameter of a destroying operator delete
15000 // shall be of type C *. The first parameter of any other deallocation
15001 // function shall be of type void *.
15002 CanQualType ExpectedFirstParamType =
15003 MD && MD->isDestroyingOperatorDelete()
15004 ? SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType(
15005 SemaRef.Context.getRecordType(MD->getParent())))
15006 : SemaRef.Context.VoidPtrTy;
15007
15008 // C++ [basic.stc.dynamic.deallocation]p2:
15009 // Each deallocation function shall return void
15010 if (CheckOperatorNewDeleteTypes(
15011 SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType,
15012 diag::err_operator_delete_dependent_param_type,
15013 diag::err_operator_delete_param_type))
15014 return true;
15015
15016 // C++ P0722:
15017 // A destroying operator delete shall be a usual deallocation function.
15018 if (MD && !MD->getParent()->isDependentContext() &&
15019 MD->isDestroyingOperatorDelete() &&
15020 !SemaRef.isUsualDeallocationFunction(MD)) {
15021 SemaRef.Diag(MD->getLocation(),
15022 diag::err_destroying_operator_delete_not_usual);
15023 return true;
15024 }
15025
15026 return false;
15027}
15028
15029/// CheckOverloadedOperatorDeclaration - Check whether the declaration
15030/// of this overloaded operator is well-formed. If so, returns false;
15031/// otherwise, emits appropriate diagnostics and returns true.
15032bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
15033 assert(FnDecl && FnDecl->isOverloadedOperator() &&((FnDecl && FnDecl->isOverloadedOperator() &&
"Expected an overloaded operator declaration") ? static_cast
<void> (0) : __assert_fail ("FnDecl && FnDecl->isOverloadedOperator() && \"Expected an overloaded operator declaration\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 15034, __PRETTY_FUNCTION__))
15034 "Expected an overloaded operator declaration")((FnDecl && FnDecl->isOverloadedOperator() &&
"Expected an overloaded operator declaration") ? static_cast
<void> (0) : __assert_fail ("FnDecl && FnDecl->isOverloadedOperator() && \"Expected an overloaded operator declaration\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 15034, __PRETTY_FUNCTION__))
;
15035
15036 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
15037
15038 // C++ [over.oper]p5:
15039 // The allocation and deallocation functions, operator new,
15040 // operator new[], operator delete and operator delete[], are
15041 // described completely in 3.7.3. The attributes and restrictions
15042 // found in the rest of this subclause do not apply to them unless
15043 // explicitly stated in 3.7.3.
15044 if (Op == OO_Delete || Op == OO_Array_Delete)
15045 return CheckOperatorDeleteDeclaration(*this, FnDecl);
15046
15047 if (Op == OO_New || Op == OO_Array_New)
15048 return CheckOperatorNewDeclaration(*this, FnDecl);
15049
15050 // C++ [over.oper]p6:
15051 // An operator function shall either be a non-static member
15052 // function or be a non-member function and have at least one
15053 // parameter whose type is a class, a reference to a class, an
15054 // enumeration, or a reference to an enumeration.
15055 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
15056 if (MethodDecl->isStatic())
15057 return Diag(FnDecl->getLocation(),
15058 diag::err_operator_overload_static) << FnDecl->getDeclName();
15059 } else {
15060 bool ClassOrEnumParam = false;
15061 for (auto Param : FnDecl->parameters()) {
15062 QualType ParamType = Param->getType().getNonReferenceType();
15063 if (ParamType->isDependentType() || ParamType->isRecordType() ||
15064 ParamType->isEnumeralType()) {
15065 ClassOrEnumParam = true;
15066 break;
15067 }
15068 }
15069
15070 if (!ClassOrEnumParam)
15071 return Diag(FnDecl->getLocation(),
15072 diag::err_operator_overload_needs_class_or_enum)
15073 << FnDecl->getDeclName();
15074 }
15075
15076 // C++ [over.oper]p8:
15077 // An operator function cannot have default arguments (8.3.6),
15078 // except where explicitly stated below.
15079 //
15080 // Only the function-call operator allows default arguments
15081 // (C++ [over.call]p1).
15082 if (Op != OO_Call) {
15083 for (auto Param : FnDecl->parameters()) {
15084 if (Param->hasDefaultArg())
15085 return Diag(Param->getLocation(),
15086 diag::err_operator_overload_default_arg)
15087 << FnDecl->getDeclName() << Param->getDefaultArgRange();
15088 }
15089 }
15090
15091 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
15092 { false, false, false }
15093#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
15094 , { Unary, Binary, MemberOnly }
15095#include "clang/Basic/OperatorKinds.def"
15096 };
15097
15098 bool CanBeUnaryOperator = OperatorUses[Op][0];
15099 bool CanBeBinaryOperator = OperatorUses[Op][1];
15100 bool MustBeMemberOperator = OperatorUses[Op][2];
15101
15102 // C++ [over.oper]p8:
15103 // [...] Operator functions cannot have more or fewer parameters
15104 // than the number required for the corresponding operator, as
15105 // described in the rest of this subclause.
15106 unsigned NumParams = FnDecl->getNumParams()
15107 + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
15108 if (Op != OO_Call &&
15109 ((NumParams == 1 && !CanBeUnaryOperator) ||
15110 (NumParams == 2 && !CanBeBinaryOperator) ||
15111 (NumParams < 1) || (NumParams > 2))) {
15112 // We have the wrong number of parameters.
15113 unsigned ErrorKind;
15114 if (CanBeUnaryOperator && CanBeBinaryOperator) {
15115 ErrorKind = 2; // 2 -> unary or binary.
15116 } else if (CanBeUnaryOperator) {
15117 ErrorKind = 0; // 0 -> unary
15118 } else {
15119 assert(CanBeBinaryOperator &&((CanBeBinaryOperator && "All non-call overloaded operators are unary or binary!"
) ? static_cast<void> (0) : __assert_fail ("CanBeBinaryOperator && \"All non-call overloaded operators are unary or binary!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 15120, __PRETTY_FUNCTION__))
15120 "All non-call overloaded operators are unary or binary!")((CanBeBinaryOperator && "All non-call overloaded operators are unary or binary!"
) ? static_cast<void> (0) : __assert_fail ("CanBeBinaryOperator && \"All non-call overloaded operators are unary or binary!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 15120, __PRETTY_FUNCTION__))
;
15121 ErrorKind = 1; // 1 -> binary
15122 }
15123
15124 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
15125 << FnDecl->getDeclName() << NumParams << ErrorKind;
15126 }
15127
15128 // Overloaded operators other than operator() cannot be variadic.
15129 if (Op != OO_Call &&
15130 FnDecl->getType()->castAs<FunctionProtoType>()->isVariadic()) {
15131 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
15132 << FnDecl->getDeclName();
15133 }
15134
15135 // Some operators must be non-static member functions.
15136 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
15137 return Diag(FnDecl->getLocation(),
15138 diag::err_operator_overload_must_be_member)
15139 << FnDecl->getDeclName();
15140 }
15141
15142 // C++ [over.inc]p1:
15143 // The user-defined function called operator++ implements the
15144 // prefix and postfix ++ operator. If this function is a member
15145 // function with no parameters, or a non-member function with one
15146 // parameter of class or enumeration type, it defines the prefix
15147 // increment operator ++ for objects of that type. If the function
15148 // is a member function with one parameter (which shall be of type
15149 // int) or a non-member function with two parameters (the second
15150 // of which shall be of type int), it defines the postfix
15151 // increment operator ++ for objects of that type.
15152 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
15153 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
15154 QualType ParamType = LastParam->getType();
15155
15156 if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) &&
15157 !ParamType->isDependentType())
15158 return Diag(LastParam->getLocation(),
15159 diag::err_operator_overload_post_incdec_must_be_int)
15160 << LastParam->getType() << (Op == OO_MinusMinus);
15161 }
15162
15163 return false;
15164}
15165
15166static bool
15167checkLiteralOperatorTemplateParameterList(Sema &SemaRef,
15168 FunctionTemplateDecl *TpDecl) {
15169 TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters();
15170
15171 // Must have one or two template parameters.
15172 if (TemplateParams->size() == 1) {
15173 NonTypeTemplateParmDecl *PmDecl =
15174 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(0));
15175
15176 // The template parameter must be a char parameter pack.
15177 if (PmDecl && PmDecl->isTemplateParameterPack() &&
15178 SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy))
15179 return false;
15180
15181 } else if (TemplateParams->size() == 2) {
15182 TemplateTypeParmDecl *PmType =
15183 dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(0));
15184 NonTypeTemplateParmDecl *PmArgs =
15185 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(1));
15186
15187 // The second template parameter must be a parameter pack with the
15188 // first template parameter as its type.
15189 if (PmType && PmArgs && !PmType->isTemplateParameterPack() &&
15190 PmArgs->isTemplateParameterPack()) {
15191 const TemplateTypeParmType *TArgs =
15192 PmArgs->getType()->getAs<TemplateTypeParmType>();
15193 if (TArgs && TArgs->getDepth() == PmType->getDepth() &&
15194 TArgs->getIndex() == PmType->getIndex()) {
15195 if (!SemaRef.inTemplateInstantiation())
15196 SemaRef.Diag(TpDecl->getLocation(),
15197 diag::ext_string_literal_operator_template);
15198 return false;
15199 }
15200 }
15201 }
15202
15203 SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(),
15204 diag::err_literal_operator_template)
15205 << TpDecl->getTemplateParameters()->getSourceRange();
15206 return true;
15207}
15208
15209/// CheckLiteralOperatorDeclaration - Check whether the declaration
15210/// of this literal operator function is well-formed. If so, returns
15211/// false; otherwise, emits appropriate diagnostics and returns true.
15212bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
15213 if (isa<CXXMethodDecl>(FnDecl)) {
15214 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
15215 << FnDecl->getDeclName();
15216 return true;
15217 }
15218
15219 if (FnDecl->isExternC()) {
15220 Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
15221 if (const LinkageSpecDecl *LSD =
15222 FnDecl->getDeclContext()->getExternCContext())
15223 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
15224 return true;
15225 }
15226
15227 // This might be the definition of a literal operator template.
15228 FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
15229
15230 // This might be a specialization of a literal operator template.
15231 if (!TpDecl)
15232 TpDecl = FnDecl->getPrimaryTemplate();
15233
15234 // template <char...> type operator "" name() and
15235 // template <class T, T...> type operator "" name() are the only valid
15236 // template signatures, and the only valid signatures with no parameters.
15237 if (TpDecl) {
15238 if (FnDecl->param_size() != 0) {
15239 Diag(FnDecl->getLocation(),
15240 diag::err_literal_operator_template_with_params);
15241 return true;
15242 }
15243
15244 if (checkLiteralOperatorTemplateParameterList(*this, TpDecl))
15245 return true;
15246
15247 } else if (FnDecl->param_size() == 1) {
15248 const ParmVarDecl *Param = FnDecl->getParamDecl(0);
15249
15250 QualType ParamType = Param->getType().getUnqualifiedType();
15251
15252 // Only unsigned long long int, long double, any character type, and const
15253 // char * are allowed as the only parameters.
15254 if (ParamType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
15255 ParamType->isSpecificBuiltinType(BuiltinType::LongDouble) ||
15256 Context.hasSameType(ParamType, Context.CharTy) ||
15257 Context.hasSameType(ParamType, Context.WideCharTy) ||
15258 Context.hasSameType(ParamType, Context.Char8Ty) ||
15259 Context.hasSameType(ParamType, Context.Char16Ty) ||
15260 Context.hasSameType(ParamType, Context.Char32Ty)) {
15261 } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) {
15262 QualType InnerType = Ptr->getPointeeType();
15263
15264 // Pointer parameter must be a const char *.
15265 if (!(Context.hasSameType(InnerType.getUnqualifiedType(),
15266 Context.CharTy) &&
15267 InnerType.isConstQualified() && !InnerType.isVolatileQualified())) {
15268 Diag(Param->getSourceRange().getBegin(),
15269 diag::err_literal_operator_param)
15270 << ParamType << "'const char *'" << Param->getSourceRange();
15271 return true;
15272 }
15273
15274 } else if (ParamType->isRealFloatingType()) {
15275 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
15276 << ParamType << Context.LongDoubleTy << Param->getSourceRange();
15277 return true;
15278
15279 } else if (ParamType->isIntegerType()) {
15280 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
15281 << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange();
15282 return true;
15283
15284 } else {
15285 Diag(Param->getSourceRange().getBegin(),
15286 diag::err_literal_operator_invalid_param)
15287 << ParamType << Param->getSourceRange();
15288 return true;
15289 }
15290
15291 } else if (FnDecl->param_size() == 2) {
15292 FunctionDecl::param_iterator Param = FnDecl->param_begin();
15293
15294 // First, verify that the first parameter is correct.
15295
15296 QualType FirstParamType = (*Param)->getType().getUnqualifiedType();
15297
15298 // Two parameter function must have a pointer to const as a
15299 // first parameter; let's strip those qualifiers.
15300 const PointerType *PT = FirstParamType->getAs<PointerType>();
15301
15302 if (!PT) {
15303 Diag((*Param)->getSourceRange().getBegin(),
15304 diag::err_literal_operator_param)
15305 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
15306 return true;
15307 }
15308
15309 QualType PointeeType = PT->getPointeeType();
15310 // First parameter must be const
15311 if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) {
15312 Diag((*Param)->getSourceRange().getBegin(),
15313 diag::err_literal_operator_param)
15314 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
15315 return true;
15316 }
15317
15318 QualType InnerType = PointeeType.getUnqualifiedType();
15319 // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and
15320 // const char32_t* are allowed as the first parameter to a two-parameter
15321 // function
15322 if (!(Context.hasSameType(InnerType, Context.CharTy) ||
15323 Context.hasSameType(InnerType, Context.WideCharTy) ||
15324 Context.hasSameType(InnerType, Context.Char8Ty) ||
15325 Context.hasSameType(InnerType, Context.Char16Ty) ||
15326 Context.hasSameType(InnerType, Context.Char32Ty))) {
15327 Diag((*Param)->getSourceRange().getBegin(),
15328 diag::err_literal_operator_param)
15329 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
15330 return true;
15331 }
15332
15333 // Move on to the second and final parameter.
15334 ++Param;
15335
15336 // The second parameter must be a std::size_t.
15337 QualType SecondParamType = (*Param)->getType().getUnqualifiedType();
15338 if (!Context.hasSameType(SecondParamType, Context.getSizeType())) {
15339 Diag((*Param)->getSourceRange().getBegin(),
15340 diag::err_literal_operator_param)
15341 << SecondParamType << Context.getSizeType()
15342 << (*Param)->getSourceRange();
15343 return true;
15344 }
15345 } else {
15346 Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count);
15347 return true;
15348 }
15349
15350 // Parameters are good.
15351
15352 // A parameter-declaration-clause containing a default argument is not
15353 // equivalent to any of the permitted forms.
15354 for (auto Param : FnDecl->parameters()) {
15355 if (Param->hasDefaultArg()) {
15356 Diag(Param->getDefaultArgRange().getBegin(),
15357 diag::err_literal_operator_default_argument)
15358 << Param->getDefaultArgRange();
15359 break;
15360 }
15361 }
15362
15363 StringRef LiteralName
15364 = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
15365 if (LiteralName[0] != '_' &&
15366 !getSourceManager().isInSystemHeader(FnDecl->getLocation())) {
15367 // C++11 [usrlit.suffix]p1:
15368 // Literal suffix identifiers that do not start with an underscore
15369 // are reserved for future standardization.
15370 Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
15371 << StringLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
15372 }
15373
15374 return false;
15375}
15376
15377/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
15378/// linkage specification, including the language and (if present)
15379/// the '{'. ExternLoc is the location of the 'extern', Lang is the
15380/// language string literal. LBraceLoc, if valid, provides the location of
15381/// the '{' brace. Otherwise, this linkage specification does not
15382/// have any braces.
15383Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
15384 Expr *LangStr,
15385 SourceLocation LBraceLoc) {
15386 StringLiteral *Lit = cast<StringLiteral>(LangStr);
15387 if (!Lit->isAscii()) {
15388 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii)
15389 << LangStr->getSourceRange();
15390 return nullptr;
15391 }
15392
15393 StringRef Lang = Lit->getString();
15394 LinkageSpecDecl::LanguageIDs Language;
15395 if (Lang == "C")
15396 Language = LinkageSpecDecl::lang_c;
15397 else if (Lang == "C++")
15398 Language = LinkageSpecDecl::lang_cxx;
15399 else {
15400 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown)
15401 << LangStr->getSourceRange();
15402 return nullptr;
15403 }
15404
15405 // FIXME: Add all the various semantics of linkage specifications
15406
15407 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc,
15408 LangStr->getExprLoc(), Language,
15409 LBraceLoc.isValid());
15410 CurContext->addDecl(D);
15411 PushDeclContext(S, D);
15412 return D;
15413}
15414
15415/// ActOnFinishLinkageSpecification - Complete the definition of
15416/// the C++ linkage specification LinkageSpec. If RBraceLoc is
15417/// valid, it's the position of the closing '}' brace in a linkage
15418/// specification that uses braces.
15419Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
15420 Decl *LinkageSpec,
15421 SourceLocation RBraceLoc) {
15422 if (RBraceLoc.isValid()) {
15423 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
15424 LSDecl->setRBraceLoc(RBraceLoc);
15425 }
15426 PopDeclContext();
15427 return LinkageSpec;
15428}
15429
15430Decl *Sema::ActOnEmptyDeclaration(Scope *S,
15431 const ParsedAttributesView &AttrList,
15432 SourceLocation SemiLoc) {
15433 Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
15434 // Attribute declarations appertain to empty declaration so we handle
15435 // them here.
15436 ProcessDeclAttributeList(S, ED, AttrList);
15437
15438 CurContext->addDecl(ED);
15439 return ED;
15440}
15441
15442/// Perform semantic analysis for the variable declaration that
15443/// occurs within a C++ catch clause, returning the newly-created
15444/// variable.
15445VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
15446 TypeSourceInfo *TInfo,
15447 SourceLocation StartLoc,
15448 SourceLocation Loc,
15449 IdentifierInfo *Name) {
15450 bool Invalid = false;
15451 QualType ExDeclType = TInfo->getType();
15452
15453 // Arrays and functions decay.
15454 if (ExDeclType->isArrayType())
15455 ExDeclType = Context.getArrayDecayedType(ExDeclType);
15456 else if (ExDeclType->isFunctionType())
15457 ExDeclType = Context.getPointerType(ExDeclType);
15458
15459 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
15460 // The exception-declaration shall not denote a pointer or reference to an
15461 // incomplete type, other than [cv] void*.
15462 // N2844 forbids rvalue references.
15463 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
15464 Diag(Loc, diag::err_catch_rvalue_ref);
15465 Invalid = true;
15466 }
15467
15468 if (ExDeclType->isVariablyModifiedType()) {
15469 Diag(Loc, diag::err_catch_variably_modified) << ExDeclType;
15470 Invalid = true;
15471 }
15472
15473 QualType BaseType = ExDeclType;
15474 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
15475 unsigned DK = diag::err_catch_incomplete;
15476 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
15477 BaseType = Ptr->getPointeeType();
15478 Mode = 1;
15479 DK = diag::err_catch_incomplete_ptr;
15480 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
15481 // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
15482 BaseType = Ref->getPointeeType();
15483 Mode = 2;
15484 DK = diag::err_catch_incomplete_ref;
15485 }
15486 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
15487 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
15488 Invalid = true;
15489
15490 if (!Invalid && !ExDeclType->isDependentType() &&
15491 RequireNonAbstractType(Loc, ExDeclType,
15492 diag::err_abstract_type_in_decl,
15493 AbstractVariableType))
15494 Invalid = true;
15495
15496 // Only the non-fragile NeXT runtime currently supports C++ catches
15497 // of ObjC types, and no runtime supports catching ObjC types by value.
15498 if (!Invalid && getLangOpts().ObjC) {
15499 QualType T = ExDeclType;
15500 if (const ReferenceType *RT = T->getAs<ReferenceType>())
15501 T = RT->getPointeeType();
15502
15503 if (T->isObjCObjectType()) {
15504 Diag(Loc, diag::err_objc_object_catch);
15505 Invalid = true;
15506 } else if (T->isObjCObjectPointerType()) {
15507 // FIXME: should this be a test for macosx-fragile specifically?
15508 if (getLangOpts().ObjCRuntime.isFragile())
15509 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
15510 }
15511 }
15512
15513 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
15514 ExDeclType, TInfo, SC_None);
15515 ExDecl->setExceptionVariable(true);
15516
15517 // In ARC, infer 'retaining' for variables of retainable type.
15518 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
15519 Invalid = true;
15520
15521 if (!Invalid && !ExDeclType->isDependentType()) {
15522 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
15523 // Insulate this from anything else we might currently be parsing.
15524 EnterExpressionEvaluationContext scope(
15525 *this, ExpressionEvaluationContext::PotentiallyEvaluated);
15526
15527 // C++ [except.handle]p16:
15528 // The object declared in an exception-declaration or, if the
15529 // exception-declaration does not specify a name, a temporary (12.2) is
15530 // copy-initialized (8.5) from the exception object. [...]
15531 // The object is destroyed when the handler exits, after the destruction
15532 // of any automatic objects initialized within the handler.
15533 //
15534 // We just pretend to initialize the object with itself, then make sure
15535 // it can be destroyed later.
15536 QualType initType = Context.getExceptionObjectType(ExDeclType);
15537
15538 InitializedEntity entity =
15539 InitializedEntity::InitializeVariable(ExDecl);
15540 InitializationKind initKind =
15541 InitializationKind::CreateCopy(Loc, SourceLocation());
15542
15543 Expr *opaqueValue =
15544 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
15545 InitializationSequence sequence(*this, entity, initKind, opaqueValue);
15546 ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
15547 if (result.isInvalid())
15548 Invalid = true;
15549 else {
15550 // If the constructor used was non-trivial, set this as the
15551 // "initializer".
15552 CXXConstructExpr *construct = result.getAs<CXXConstructExpr>();
15553 if (!construct->getConstructor()->isTrivial()) {
15554 Expr *init = MaybeCreateExprWithCleanups(construct);
15555 ExDecl->setInit(init);
15556 }
15557
15558 // And make sure it's destructable.
15559 FinalizeVarWithDestructor(ExDecl, recordType);
15560 }
15561 }
15562 }
15563
15564 if (Invalid)
15565 ExDecl->setInvalidDecl();
15566
15567 return ExDecl;
15568}
15569
15570/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
15571/// handler.
15572Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
15573 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
15574 bool Invalid = D.isInvalidType();
15575
15576 // Check for unexpanded parameter packs.
15577 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
15578 UPPC_ExceptionType)) {
15579 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
15580 D.getIdentifierLoc());
15581 Invalid = true;
15582 }
15583
15584 IdentifierInfo *II = D.getIdentifier();
15585 if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
15586 LookupOrdinaryName,
15587 ForVisibleRedeclaration)) {
15588 // The scope should be freshly made just for us. There is just no way
15589 // it contains any previous declaration, except for function parameters in
15590 // a function-try-block's catch statement.
15591 assert(!S->isDeclScope(PrevDecl))((!S->isDeclScope(PrevDecl)) ? static_cast<void> (0)
: __assert_fail ("!S->isDeclScope(PrevDecl)", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 15591, __PRETTY_FUNCTION__))
;
15592 if (isDeclInScope(PrevDecl, CurContext, S)) {
15593 Diag(D.getIdentifierLoc(), diag::err_redefinition)
15594 << D.getIdentifier();
15595 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
15596 Invalid = true;
15597 } else if (PrevDecl->isTemplateParameter())
15598 // Maybe we will complain about the shadowed template parameter.
15599 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
15600 }
15601
15602 if (D.getCXXScopeSpec().isSet() && !Invalid) {
15603 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
15604 << D.getCXXScopeSpec().getRange();
15605 Invalid = true;
15606 }
15607
15608 VarDecl *ExDecl = BuildExceptionDeclaration(
15609 S, TInfo, D.getBeginLoc(), D.getIdentifierLoc(), D.getIdentifier());
15610 if (Invalid)
15611 ExDecl->setInvalidDecl();
15612
15613 // Add the exception declaration into this scope.
15614 if (II)
15615 PushOnScopeChains(ExDecl, S);
15616 else
15617 CurContext->addDecl(ExDecl);
15618
15619 ProcessDeclAttributes(S, ExDecl, D);
15620 return ExDecl;
15621}
15622
15623Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
15624 Expr *AssertExpr,
15625 Expr *AssertMessageExpr,
15626 SourceLocation RParenLoc) {
15627 StringLiteral *AssertMessage =
15628 AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr;
15629
15630 if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
15631 return nullptr;
15632
15633 return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
15634 AssertMessage, RParenLoc, false);
15635}
15636
15637Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
15638 Expr *AssertExpr,
15639 StringLiteral *AssertMessage,
15640 SourceLocation RParenLoc,
15641 bool Failed) {
15642 assert(AssertExpr != nullptr && "Expected non-null condition")((AssertExpr != nullptr && "Expected non-null condition"
) ? static_cast<void> (0) : __assert_fail ("AssertExpr != nullptr && \"Expected non-null condition\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 15642, __PRETTY_FUNCTION__))
;
15643 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
15644 !Failed) {
15645 // In a static_assert-declaration, the constant-expression shall be a
15646 // constant expression that can be contextually converted to bool.
15647 ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
15648 if (Converted.isInvalid())
15649 Failed = true;
15650
15651 ExprResult FullAssertExpr =
15652 ActOnFinishFullExpr(Converted.get(), StaticAssertLoc,
15653 /*DiscardedValue*/ false,
15654 /*IsConstexpr*/ true);
15655 if (FullAssertExpr.isInvalid())
15656 Failed = true;
15657 else
15658 AssertExpr = FullAssertExpr.get();
15659
15660 llvm::APSInt Cond;
15661 if (!Failed && VerifyIntegerConstantExpression(AssertExpr, &Cond,
15662 diag::err_static_assert_expression_is_not_constant,
15663 /*AllowFold=*/false).isInvalid())
15664 Failed = true;
15665
15666 if (!Failed && !Cond) {
15667 SmallString<256> MsgBuffer;
15668 llvm::raw_svector_ostream Msg(MsgBuffer);
15669 if (AssertMessage)
15670 AssertMessage->printPretty(Msg, nullptr, getPrintingPolicy());
15671
15672 Expr *InnerCond = nullptr;
15673 std::string InnerCondDescription;
15674 std::tie(InnerCond, InnerCondDescription) =
15675 findFailedBooleanCondition(Converted.get());
15676 if (InnerCond && isa<ConceptSpecializationExpr>(InnerCond)) {
15677 // Drill down into concept specialization expressions to see why they
15678 // weren't satisfied.
15679 Diag(StaticAssertLoc, diag::err_static_assert_failed)
15680 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
15681 ConstraintSatisfaction Satisfaction;
15682 if (!CheckConstraintSatisfaction(InnerCond, Satisfaction))
15683 DiagnoseUnsatisfiedConstraint(Satisfaction);
15684 } else if (InnerCond && !isa<CXXBoolLiteralExpr>(InnerCond)
15685 && !isa<IntegerLiteral>(InnerCond)) {
15686 Diag(StaticAssertLoc, diag::err_static_assert_requirement_failed)
15687 << InnerCondDescription << !AssertMessage
15688 << Msg.str() << InnerCond->getSourceRange();
15689 } else {
15690 Diag(StaticAssertLoc, diag::err_static_assert_failed)
15691 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
15692 }
15693 Failed = true;
15694 }
15695 } else {
15696 ExprResult FullAssertExpr = ActOnFinishFullExpr(AssertExpr, StaticAssertLoc,
15697 /*DiscardedValue*/false,
15698 /*IsConstexpr*/true);
15699 if (FullAssertExpr.isInvalid())
15700 Failed = true;
15701 else
15702 AssertExpr = FullAssertExpr.get();
15703 }
15704
15705 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
15706 AssertExpr, AssertMessage, RParenLoc,
15707 Failed);
15708
15709 CurContext->addDecl(Decl);
15710 return Decl;
15711}
15712
15713/// Perform semantic analysis of the given friend type declaration.
15714///
15715/// \returns A friend declaration that.
15716FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
15717 SourceLocation FriendLoc,
15718 TypeSourceInfo *TSInfo) {
15719 assert(TSInfo && "NULL TypeSourceInfo for friend type declaration")((TSInfo && "NULL TypeSourceInfo for friend type declaration"
) ? static_cast<void> (0) : __assert_fail ("TSInfo && \"NULL TypeSourceInfo for friend type declaration\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 15719, __PRETTY_FUNCTION__))
;
15720
15721 QualType T = TSInfo->getType();
15722 SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
15723
15724 // C++03 [class.friend]p2:
15725 // An elaborated-type-specifier shall be used in a friend declaration
15726 // for a class.*
15727 //
15728 // * The class-key of the elaborated-type-specifier is required.
15729 if (!CodeSynthesisContexts.empty()) {
15730 // Do not complain about the form of friend template types during any kind
15731 // of code synthesis. For template instantiation, we will have complained
15732 // when the template was defined.
15733 } else {
15734 if (!T->isElaboratedTypeSpecifier()) {
15735 // If we evaluated the type to a record type, suggest putting
15736 // a tag in front.
15737 if (const RecordType *RT = T->getAs<RecordType>()) {
15738 RecordDecl *RD = RT->getDecl();
15739
15740 SmallString<16> InsertionText(" ");
15741 InsertionText += RD->getKindName();
15742
15743 Diag(TypeRange.getBegin(),
15744 getLangOpts().CPlusPlus11 ?
15745 diag::warn_cxx98_compat_unelaborated_friend_type :
15746 diag::ext_unelaborated_friend_type)
15747 << (unsigned) RD->getTagKind()
15748 << T
15749 << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc),
15750 InsertionText);
15751 } else {
15752 Diag(FriendLoc,
15753 getLangOpts().CPlusPlus11 ?
15754 diag::warn_cxx98_compat_nonclass_type_friend :
15755 diag::ext_nonclass_type_friend)
15756 << T
15757 << TypeRange;
15758 }
15759 } else if (T->getAs<EnumType>()) {
15760 Diag(FriendLoc,
15761 getLangOpts().CPlusPlus11 ?
15762 diag::warn_cxx98_compat_enum_friend :
15763 diag::ext_enum_friend)
15764 << T
15765 << TypeRange;
15766 }
15767
15768 // C++11 [class.friend]p3:
15769 // A friend declaration that does not declare a function shall have one
15770 // of the following forms:
15771 // friend elaborated-type-specifier ;
15772 // friend simple-type-specifier ;
15773 // friend typename-specifier ;
15774 if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
15775 Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
15776 }
15777
15778 // If the type specifier in a friend declaration designates a (possibly
15779 // cv-qualified) class type, that class is declared as a friend; otherwise,
15780 // the friend declaration is ignored.
15781 return FriendDecl::Create(Context, CurContext,
15782 TSInfo->getTypeLoc().getBeginLoc(), TSInfo,
15783 FriendLoc);
15784}
15785
15786/// Handle a friend tag declaration where the scope specifier was
15787/// templated.
15788Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
15789 unsigned TagSpec, SourceLocation TagLoc,
15790 CXXScopeSpec &SS, IdentifierInfo *Name,
15791 SourceLocation NameLoc,
15792 const ParsedAttributesView &Attr,
15793 MultiTemplateParamsArg TempParamLists) {
15794 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
15795
15796 bool IsMemberSpecialization = false;
15797 bool Invalid = false;
15798
15799 if (TemplateParameterList *TemplateParams =
15800 MatchTemplateParametersToScopeSpecifier(
15801 TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true,
15802 IsMemberSpecialization, Invalid)) {
15803 if (TemplateParams->size() > 0) {
15804 // This is a declaration of a class template.
15805 if (Invalid)
15806 return nullptr;
15807
15808 return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name,
15809 NameLoc, Attr, TemplateParams, AS_public,
15810 /*ModulePrivateLoc=*/SourceLocation(),
15811 FriendLoc, TempParamLists.size() - 1,
15812 TempParamLists.data()).get();
15813 } else {
15814 // The "template<>" header is extraneous.
15815 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
15816 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
15817 IsMemberSpecialization = true;
15818 }
15819 }
15820
15821 if (Invalid) return nullptr;
15822
15823 bool isAllExplicitSpecializations = true;
15824 for (unsigned I = TempParamLists.size(); I-- > 0; ) {
15825 if (TempParamLists[I]->size()) {
15826 isAllExplicitSpecializations = false;
15827 break;
15828 }
15829 }
15830
15831 // FIXME: don't ignore attributes.
15832
15833 // If it's explicit specializations all the way down, just forget
15834 // about the template header and build an appropriate non-templated
15835 // friend. TODO: for source fidelity, remember the headers.
15836 if (isAllExplicitSpecializations) {
15837 if (SS.isEmpty()) {
15838 bool Owned = false;
15839 bool IsDependent = false;
15840 return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
15841 Attr, AS_public,
15842 /*ModulePrivateLoc=*/SourceLocation(),
15843 MultiTemplateParamsArg(), Owned, IsDependent,
15844 /*ScopedEnumKWLoc=*/SourceLocation(),
15845 /*ScopedEnumUsesClassTag=*/false,
15846 /*UnderlyingType=*/TypeResult(),
15847 /*IsTypeSpecifier=*/false,
15848 /*IsTemplateParamOrArg=*/false);
15849 }
15850
15851 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
15852 ElaboratedTypeKeyword Keyword
15853 = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
15854 QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
15855 *Name, NameLoc);
15856 if (T.isNull())
15857 return nullptr;
15858
15859 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
15860 if (isa<DependentNameType>(T)) {
15861 DependentNameTypeLoc TL =
15862 TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
15863 TL.setElaboratedKeywordLoc(TagLoc);
15864 TL.setQualifierLoc(QualifierLoc);
15865 TL.setNameLoc(NameLoc);
15866 } else {
15867 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
15868 TL.setElaboratedKeywordLoc(TagLoc);
15869 TL.setQualifierLoc(QualifierLoc);
15870 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
15871 }
15872
15873 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
15874 TSI, FriendLoc, TempParamLists);
15875 Friend->setAccess(AS_public);
15876 CurContext->addDecl(Friend);
15877 return Friend;
15878 }
15879
15880 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?")((SS.isNotEmpty() && "valid templated tag with no SS and no direct?"
) ? static_cast<void> (0) : __assert_fail ("SS.isNotEmpty() && \"valid templated tag with no SS and no direct?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 15880, __PRETTY_FUNCTION__))
;
15881
15882
15883
15884 // Handle the case of a templated-scope friend class. e.g.
15885 // template <class T> class A<T>::B;
15886 // FIXME: we don't support these right now.
15887 Diag(NameLoc, diag::warn_template_qualified_friend_unsupported)
15888 << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext);
15889 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
15890 QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
15891 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
15892 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
15893 TL.setElaboratedKeywordLoc(TagLoc);
15894 TL.setQualifierLoc(SS.getWithLocInContext(Context));
15895 TL.setNameLoc(NameLoc);
15896
15897 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
15898 TSI, FriendLoc, TempParamLists);
15899 Friend->setAccess(AS_public);
15900 Friend->setUnsupportedFriend(true);
15901 CurContext->addDecl(Friend);
15902 return Friend;
15903}
15904
15905/// Handle a friend type declaration. This works in tandem with
15906/// ActOnTag.
15907///
15908/// Notes on friend class templates:
15909///
15910/// We generally treat friend class declarations as if they were
15911/// declaring a class. So, for example, the elaborated type specifier
15912/// in a friend declaration is required to obey the restrictions of a
15913/// class-head (i.e. no typedefs in the scope chain), template
15914/// parameters are required to match up with simple template-ids, &c.
15915/// However, unlike when declaring a template specialization, it's
15916/// okay to refer to a template specialization without an empty
15917/// template parameter declaration, e.g.
15918/// friend class A<T>::B<unsigned>;
15919/// We permit this as a special case; if there are any template
15920/// parameters present at all, require proper matching, i.e.
15921/// template <> template \<class T> friend class A<int>::B;
15922Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
15923 MultiTemplateParamsArg TempParams) {
15924 SourceLocation Loc = DS.getBeginLoc();
15925
15926 assert(DS.isFriendSpecified())((DS.isFriendSpecified()) ? static_cast<void> (0) : __assert_fail
("DS.isFriendSpecified()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 15926, __PRETTY_FUNCTION__))
;
15927 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified)((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) ? static_cast
<void> (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_unspecified"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 15927, __PRETTY_FUNCTION__))
;
15928
15929 // C++ [class.friend]p3:
15930 // A friend declaration that does not declare a function shall have one of
15931 // the following forms:
15932 // friend elaborated-type-specifier ;
15933 // friend simple-type-specifier ;
15934 // friend typename-specifier ;
15935 //
15936 // Any declaration with a type qualifier does not have that form. (It's
15937 // legal to specify a qualified type as a friend, you just can't write the
15938 // keywords.)
15939 if (DS.getTypeQualifiers()) {
15940 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
15941 Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const";
15942 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
15943 Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile";
15944 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
15945 Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict";
15946 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
15947 Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic";
15948 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
15949 Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned";
15950 }
15951
15952 // Try to convert the decl specifier to a type. This works for
15953 // friend templates because ActOnTag never produces a ClassTemplateDecl
15954 // for a TUK_Friend.
15955 Declarator TheDeclarator(DS, DeclaratorContext::MemberContext);
15956 TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
15957 QualType T = TSI->getType();
15958 if (TheDeclarator.isInvalidType())
15959 return nullptr;
15960
15961 if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
15962 return nullptr;
15963
15964 // This is definitely an error in C++98. It's probably meant to
15965 // be forbidden in C++0x, too, but the specification is just
15966 // poorly written.
15967 //
15968 // The problem is with declarations like the following:
15969 // template <T> friend A<T>::foo;
15970 // where deciding whether a class C is a friend or not now hinges
15971 // on whether there exists an instantiation of A that causes
15972 // 'foo' to equal C. There are restrictions on class-heads
15973 // (which we declare (by fiat) elaborated friend declarations to
15974 // be) that makes this tractable.
15975 //
15976 // FIXME: handle "template <> friend class A<T>;", which
15977 // is possibly well-formed? Who even knows?
15978 if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
15979 Diag(Loc, diag::err_tagless_friend_type_template)
15980 << DS.getSourceRange();
15981 return nullptr;
15982 }
15983
15984 // C++98 [class.friend]p1: A friend of a class is a function
15985 // or class that is not a member of the class . . .
15986 // This is fixed in DR77, which just barely didn't make the C++03
15987 // deadline. It's also a very silly restriction that seriously
15988 // affects inner classes and which nobody else seems to implement;
15989 // thus we never diagnose it, not even in -pedantic.
15990 //
15991 // But note that we could warn about it: it's always useless to
15992 // friend one of your own members (it's not, however, worthless to
15993 // friend a member of an arbitrary specialization of your template).
15994
15995 Decl *D;
15996 if (!TempParams.empty())
15997 D = FriendTemplateDecl::Create(Context, CurContext, Loc,
15998 TempParams,
15999 TSI,
16000 DS.getFriendSpecLoc());
16001 else
16002 D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
16003
16004 if (!D)
16005 return nullptr;
16006
16007 D->setAccess(AS_public);
16008 CurContext->addDecl(D);
16009
16010 return D;
16011}
16012
16013NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
16014 MultiTemplateParamsArg TemplateParams) {
16015 const DeclSpec &DS = D.getDeclSpec();
16016
16017 assert(DS.isFriendSpecified())((DS.isFriendSpecified()) ? static_cast<void> (0) : __assert_fail
("DS.isFriendSpecified()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 16017, __PRETTY_FUNCTION__))
;
16018 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified)((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) ? static_cast
<void> (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_unspecified"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 16018, __PRETTY_FUNCTION__))
;
16019
16020 SourceLocation Loc = D.getIdentifierLoc();
16021 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16022
16023 // C++ [class.friend]p1
16024 // A friend of a class is a function or class....
16025 // Note that this sees through typedefs, which is intended.
16026 // It *doesn't* see through dependent types, which is correct
16027 // according to [temp.arg.type]p3:
16028 // If a declaration acquires a function type through a
16029 // type dependent on a template-parameter and this causes
16030 // a declaration that does not use the syntactic form of a
16031 // function declarator to have a function type, the program
16032 // is ill-formed.
16033 if (!TInfo->getType()->isFunctionType()) {
16034 Diag(Loc, diag::err_unexpected_friend);
16035
16036 // It might be worthwhile to try to recover by creating an
16037 // appropriate declaration.
16038 return nullptr;
16039 }
16040
16041 // C++ [namespace.memdef]p3
16042 // - If a friend declaration in a non-local class first declares a
16043 // class or function, the friend class or function is a member
16044 // of the innermost enclosing namespace.
16045 // - The name of the friend is not found by simple name lookup
16046 // until a matching declaration is provided in that namespace
16047 // scope (either before or after the class declaration granting
16048 // friendship).
16049 // - If a friend function is called, its name may be found by the
16050 // name lookup that considers functions from namespaces and
16051 // classes associated with the types of the function arguments.
16052 // - When looking for a prior declaration of a class or a function
16053 // declared as a friend, scopes outside the innermost enclosing
16054 // namespace scope are not considered.
16055
16056 CXXScopeSpec &SS = D.getCXXScopeSpec();
16057 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
16058 assert(NameInfo.getName())((NameInfo.getName()) ? static_cast<void> (0) : __assert_fail
("NameInfo.getName()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 16058, __PRETTY_FUNCTION__))
;
16059
16060 // Check for unexpanded parameter packs.
16061 if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
16062 DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
16063 DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
16064 return nullptr;
16065
16066 // The context we found the declaration in, or in which we should
16067 // create the declaration.
16068 DeclContext *DC;
16069 Scope *DCScope = S;
16070 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
16071 ForExternalRedeclaration);
16072
16073 // There are five cases here.
16074 // - There's no scope specifier and we're in a local class. Only look
16075 // for functions declared in the immediately-enclosing block scope.
16076 // We recover from invalid scope qualifiers as if they just weren't there.
16077 FunctionDecl *FunctionContainingLocalClass = nullptr;
16078 if ((SS.isInvalid() || !SS.isSet()) &&
16079 (FunctionContainingLocalClass =
16080 cast<CXXRecordDecl>(CurContext)->isLocalClass())) {
16081 // C++11 [class.friend]p11:
16082 // If a friend declaration appears in a local class and the name
16083 // specified is an unqualified name, a prior declaration is
16084 // looked up without considering scopes that are outside the
16085 // innermost enclosing non-class scope. For a friend function
16086 // declaration, if there is no prior declaration, the program is
16087 // ill-formed.
16088
16089 // Find the innermost enclosing non-class scope. This is the block
16090 // scope containing the local class definition (or for a nested class,
16091 // the outer local class).
16092 DCScope = S->getFnParent();
16093
16094 // Look up the function name in the scope.
16095 Previous.clear(LookupLocalFriendName);
16096 LookupName(Previous, S, /*AllowBuiltinCreation*/false);
16097
16098 if (!Previous.empty()) {
16099 // All possible previous declarations must have the same context:
16100 // either they were declared at block scope or they are members of
16101 // one of the enclosing local classes.
16102 DC = Previous.getRepresentativeDecl()->getDeclContext();
16103 } else {
16104 // This is ill-formed, but provide the context that we would have
16105 // declared the function in, if we were permitted to, for error recovery.
16106 DC = FunctionContainingLocalClass;
16107 }
16108 adjustContextForLocalExternDecl(DC);
16109
16110 // C++ [class.friend]p6:
16111 // A function can be defined in a friend declaration of a class if and
16112 // only if the class is a non-local class (9.8), the function name is
16113 // unqualified, and the function has namespace scope.
16114 if (D.isFunctionDefinition()) {
16115 Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
16116 }
16117
16118 // - There's no scope specifier, in which case we just go to the
16119 // appropriate scope and look for a function or function template
16120 // there as appropriate.
16121 } else if (SS.isInvalid() || !SS.isSet()) {
16122 // C++11 [namespace.memdef]p3:
16123 // If the name in a friend declaration is neither qualified nor
16124 // a template-id and the declaration is a function or an
16125 // elaborated-type-specifier, the lookup to determine whether
16126 // the entity has been previously declared shall not consider
16127 // any scopes outside the innermost enclosing namespace.
16128 bool isTemplateId =
16129 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId;
16130
16131 // Find the appropriate context according to the above.
16132 DC = CurContext;
16133
16134 // Skip class contexts. If someone can cite chapter and verse
16135 // for this behavior, that would be nice --- it's what GCC and
16136 // EDG do, and it seems like a reasonable intent, but the spec
16137 // really only says that checks for unqualified existing
16138 // declarations should stop at the nearest enclosing namespace,
16139 // not that they should only consider the nearest enclosing
16140 // namespace.
16141 while (DC->isRecord())
16142 DC = DC->getParent();
16143
16144 DeclContext *LookupDC = DC;
16145 while (LookupDC->isTransparentContext())
16146 LookupDC = LookupDC->getParent();
16147
16148 while (true) {
16149 LookupQualifiedName(Previous, LookupDC);
16150
16151 if (!Previous.empty()) {
16152 DC = LookupDC;
16153 break;
16154 }
16155
16156 if (isTemplateId) {
16157 if (isa<TranslationUnitDecl>(LookupDC)) break;
16158 } else {
16159 if (LookupDC->isFileContext()) break;
16160 }
16161 LookupDC = LookupDC->getParent();
16162 }
16163
16164 DCScope = getScopeForDeclContext(S, DC);
16165
16166 // - There's a non-dependent scope specifier, in which case we
16167 // compute it and do a previous lookup there for a function
16168 // or function template.
16169 } else if (!SS.getScopeRep()->isDependent()) {
16170 DC = computeDeclContext(SS);
16171 if (!DC) return nullptr;
16172
16173 if (RequireCompleteDeclContext(SS, DC)) return nullptr;
16174
16175 LookupQualifiedName(Previous, DC);
16176
16177 // C++ [class.friend]p1: A friend of a class is a function or
16178 // class that is not a member of the class . . .
16179 if (DC->Equals(CurContext))
16180 Diag(DS.getFriendSpecLoc(),
16181 getLangOpts().CPlusPlus11 ?
16182 diag::warn_cxx98_compat_friend_is_member :
16183 diag::err_friend_is_member);
16184
16185 if (D.isFunctionDefinition()) {
16186 // C++ [class.friend]p6:
16187 // A function can be defined in a friend declaration of a class if and
16188 // only if the class is a non-local class (9.8), the function name is
16189 // unqualified, and the function has namespace scope.
16190 //
16191 // FIXME: We should only do this if the scope specifier names the
16192 // innermost enclosing namespace; otherwise the fixit changes the
16193 // meaning of the code.
16194 SemaDiagnosticBuilder DB
16195 = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
16196
16197 DB << SS.getScopeRep();
16198 if (DC->isFileContext())
16199 DB << FixItHint::CreateRemoval(SS.getRange());
16200 SS.clear();
16201 }
16202
16203 // - There's a scope specifier that does not match any template
16204 // parameter lists, in which case we use some arbitrary context,
16205 // create a method or method template, and wait for instantiation.
16206 // - There's a scope specifier that does match some template
16207 // parameter lists, which we don't handle right now.
16208 } else {
16209 if (D.isFunctionDefinition()) {
16210 // C++ [class.friend]p6:
16211 // A function can be defined in a friend declaration of a class if and
16212 // only if the class is a non-local class (9.8), the function name is
16213 // unqualified, and the function has namespace scope.
16214 Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
16215 << SS.getScopeRep();
16216 }
16217
16218 DC = CurContext;
16219 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?")((isa<CXXRecordDecl>(DC) && "friend declaration not in class?"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXRecordDecl>(DC) && \"friend declaration not in class?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 16219, __PRETTY_FUNCTION__))
;
16220 }
16221
16222 if (!DC->isRecord()) {
16223 int DiagArg = -1;
16224 switch (D.getName().getKind()) {
16225 case UnqualifiedIdKind::IK_ConstructorTemplateId:
16226 case UnqualifiedIdKind::IK_ConstructorName:
16227 DiagArg = 0;
16228 break;
16229 case UnqualifiedIdKind::IK_DestructorName:
16230 DiagArg = 1;
16231 break;
16232 case UnqualifiedIdKind::IK_ConversionFunctionId:
16233 DiagArg = 2;
16234 break;
16235 case UnqualifiedIdKind::IK_DeductionGuideName:
16236 DiagArg = 3;
16237 break;
16238 case UnqualifiedIdKind::IK_Identifier:
16239 case UnqualifiedIdKind::IK_ImplicitSelfParam:
16240 case UnqualifiedIdKind::IK_LiteralOperatorId:
16241 case UnqualifiedIdKind::IK_OperatorFunctionId:
16242 case UnqualifiedIdKind::IK_TemplateId:
16243 break;
16244 }
16245 // This implies that it has to be an operator or function.
16246 if (DiagArg >= 0) {
16247 Diag(Loc, diag::err_introducing_special_friend) << DiagArg;
16248 return nullptr;
16249 }
16250 }
16251
16252 // FIXME: This is an egregious hack to cope with cases where the scope stack
16253 // does not contain the declaration context, i.e., in an out-of-line
16254 // definition of a class.
16255 Scope FakeDCScope(S, Scope::DeclScope, Diags);
16256 if (!DCScope) {
16257 FakeDCScope.setEntity(DC);
16258 DCScope = &FakeDCScope;
16259 }
16260
16261 bool AddToScope = true;
16262 NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
16263 TemplateParams, AddToScope);
16264 if (!ND) return nullptr;
16265
16266 assert(ND->getLexicalDeclContext() == CurContext)((ND->getLexicalDeclContext() == CurContext) ? static_cast
<void> (0) : __assert_fail ("ND->getLexicalDeclContext() == CurContext"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 16266, __PRETTY_FUNCTION__))
;
16267
16268 // If we performed typo correction, we might have added a scope specifier
16269 // and changed the decl context.
16270 DC = ND->getDeclContext();
16271
16272 // Add the function declaration to the appropriate lookup tables,
16273 // adjusting the redeclarations list as necessary. We don't
16274 // want to do this yet if the friending class is dependent.
16275 //
16276 // Also update the scope-based lookup if the target context's
16277 // lookup context is in lexical scope.
16278 if (!CurContext->isDependentContext()) {
16279 DC = DC->getRedeclContext();
16280 DC->makeDeclVisibleInContext(ND);
16281 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
16282 PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
16283 }
16284
16285 FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
16286 D.getIdentifierLoc(), ND,
16287 DS.getFriendSpecLoc());
16288 FrD->setAccess(AS_public);
16289 CurContext->addDecl(FrD);
16290
16291 if (ND->isInvalidDecl()) {
16292 FrD->setInvalidDecl();
16293 } else {
16294 if (DC->isRecord()) CheckFriendAccess(ND);
16295
16296 FunctionDecl *FD;
16297 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
16298 FD = FTD->getTemplatedDecl();
16299 else
16300 FD = cast<FunctionDecl>(ND);
16301
16302 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
16303 // default argument expression, that declaration shall be a definition
16304 // and shall be the only declaration of the function or function
16305 // template in the translation unit.
16306 if (functionDeclHasDefaultArgument(FD)) {
16307 // We can't look at FD->getPreviousDecl() because it may not have been set
16308 // if we're in a dependent context. If the function is known to be a
16309 // redeclaration, we will have narrowed Previous down to the right decl.
16310 if (D.isRedeclaration()) {
16311 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
16312 Diag(Previous.getRepresentativeDecl()->getLocation(),
16313 diag::note_previous_declaration);
16314 } else if (!D.isFunctionDefinition())
16315 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
16316 }
16317
16318 // Mark templated-scope function declarations as unsupported.
16319 if (FD->getNumTemplateParameterLists() && SS.isValid()) {
16320 Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported)
16321 << SS.getScopeRep() << SS.getRange()
16322 << cast<CXXRecordDecl>(CurContext);
16323 FrD->setUnsupportedFriend(true);
16324 }
16325 }
16326
16327 return ND;
16328}
16329
16330void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
16331 AdjustDeclIfTemplate(Dcl);
16332
16333 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
16334 if (!Fn) {
16335 Diag(DelLoc, diag::err_deleted_non_function);
16336 return;
16337 }
16338
16339 // Deleted function does not have a body.
16340 Fn->setWillHaveBody(false);
16341
16342 if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
16343 // Don't consider the implicit declaration we generate for explicit
16344 // specializations. FIXME: Do not generate these implicit declarations.
16345 if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization ||
16346 Prev->getPreviousDecl()) &&
16347 !Prev->isDefined()) {
16348 Diag(DelLoc, diag::err_deleted_decl_not_first);
16349 Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(),
16350 Prev->isImplicit() ? diag::note_previous_implicit_declaration
16351 : diag::note_previous_declaration);
16352 }
16353 // If the declaration wasn't the first, we delete the function anyway for
16354 // recovery.
16355 Fn = Fn->getCanonicalDecl();
16356 }
16357
16358 // dllimport/dllexport cannot be deleted.
16359 if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) {
16360 Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr;
16361 Fn->setInvalidDecl();
16362 }
16363
16364 if (Fn->isDeleted())
16365 return;
16366
16367 // C++11 [basic.start.main]p3:
16368 // A program that defines main as deleted [...] is ill-formed.
16369 if (Fn->isMain())
16370 Diag(DelLoc, diag::err_deleted_main);
16371
16372 // C++11 [dcl.fct.def.delete]p4:
16373 // A deleted function is implicitly inline.
16374 Fn->setImplicitlyInline();
16375 Fn->setDeletedAsWritten();
16376
16377 // See if we're deleting a function which is already known to override a
16378 // non-deleted virtual function.
16379 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
16380 bool IssuedDiagnostic = false;
16381 for (const CXXMethodDecl *O : MD->overridden_methods()) {
16382 if (!(*MD->begin_overridden_methods())->isDeleted()) {
16383 if (!IssuedDiagnostic) {
16384 Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
16385 IssuedDiagnostic = true;
16386 }
16387 Diag(O->getLocation(), diag::note_overridden_virtual_function);
16388 }
16389 }
16390 // If this function was implicitly deleted because it was defaulted,
16391 // explain why it was deleted.
16392 if (IssuedDiagnostic && MD->isDefaulted())
16393 DiagnoseDeletedDefaultedFunction(MD);
16394 }
16395}
16396
16397void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
16398 if (!Dcl || Dcl->isInvalidDecl())
16399 return;
16400
16401 auto *FD = dyn_cast<FunctionDecl>(Dcl);
16402 if (!FD) {
16403 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Dcl)) {
16404 if (getDefaultedFunctionKind(FTD->getTemplatedDecl()).isComparison()) {
16405 Diag(DefaultLoc, diag::err_defaulted_comparison_template);
16406 return;
16407 }
16408 }
16409
16410 Diag(DefaultLoc, diag::err_default_special_members)
16411 << getLangOpts().CPlusPlus2a;
16412 return;
16413 }
16414
16415 // Reject if this can't possibly be a defaultable function.
16416 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD);
16417 if (!DefKind &&
16418 // A dependent function that doesn't locally look defaultable can
16419 // still instantiate to a defaultable function if it's a constructor
16420 // or assignment operator.
16421 (!FD->isDependentContext() ||
16422 (!isa<CXXConstructorDecl>(FD) &&
16423 FD->getDeclName().getCXXOverloadedOperator() != OO_Equal))) {
16424 Diag(DefaultLoc, diag::err_default_special_members)
16425 << getLangOpts().CPlusPlus2a;
16426 return;
16427 }
16428
16429 if (DefKind.isComparison() &&
16430 !isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
16431 Diag(FD->getLocation(), diag::err_defaulted_comparison_out_of_class)
16432 << (int)DefKind.asComparison();
16433 return;
16434 }
16435
16436 // Issue compatibility warning. We already warned if the operator is
16437 // 'operator<=>' when parsing the '<=>' token.
16438 if (DefKind.isComparison() &&
16439 DefKind.asComparison() != DefaultedComparisonKind::ThreeWay) {
16440 Diag(DefaultLoc, getLangOpts().CPlusPlus2a
16441 ? diag::warn_cxx17_compat_defaulted_comparison
16442 : diag::ext_defaulted_comparison);
16443 }
16444
16445 FD->setDefaulted();
16446 FD->setExplicitlyDefaulted();
16447
16448 // Defer checking functions that are defaulted in a dependent context.
16449 if (FD->isDependentContext())
16450 return;
16451
16452 // Unset that we will have a body for this function. We might not,
16453 // if it turns out to be trivial, and we don't need this marking now
16454 // that we've marked it as defaulted.
16455 FD->setWillHaveBody(false);
16456
16457 // If this definition appears within the record, do the checking when
16458 // the record is complete. This is always the case for a defaulted
16459 // comparison.
16460 if (DefKind.isComparison())
16461 return;
16462 auto *MD = cast<CXXMethodDecl>(FD);
16463
16464 const FunctionDecl *Primary = FD;
16465 if (const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
16466 // Ask the template instantiation pattern that actually had the
16467 // '= default' on it.
16468 Primary = Pattern;
16469
16470 // If the method was defaulted on its first declaration, we will have
16471 // already performed the checking in CheckCompletedCXXClass. Such a
16472 // declaration doesn't trigger an implicit definition.
16473 if (Primary->getCanonicalDecl()->isDefaulted())
16474 return;
16475
16476 if (CheckExplicitlyDefaultedSpecialMember(MD, DefKind.asSpecialMember()))
16477 MD->setInvalidDecl();
16478 else
16479 DefineImplicitSpecialMember(*this, MD, DefaultLoc);
16480}
16481
16482static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
16483 for (Stmt *SubStmt : S->children()) {
16484 if (!SubStmt)
16485 continue;
16486 if (isa<ReturnStmt>(SubStmt))
16487 Self.Diag(SubStmt->getBeginLoc(),
16488 diag::err_return_in_constructor_handler);
16489 if (!isa<Expr>(SubStmt))
16490 SearchForReturnInStmt(Self, SubStmt);
16491 }
16492}
16493
16494void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
16495 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
16496 CXXCatchStmt *Handler = TryBlock->getHandler(I);
16497 SearchForReturnInStmt(*this, Handler);
16498 }
16499}
16500
16501bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
16502 const CXXMethodDecl *Old) {
16503 const auto *NewFT = New->getType()->castAs<FunctionProtoType>();
16504 const auto *OldFT = Old->getType()->castAs<FunctionProtoType>();
16505
16506 if (OldFT->hasExtParameterInfos()) {
16507 for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I)
16508 // A parameter of the overriding method should be annotated with noescape
16509 // if the corresponding parameter of the overridden method is annotated.
16510 if (OldFT->getExtParameterInfo(I).isNoEscape() &&
16511 !NewFT->getExtParameterInfo(I).isNoEscape()) {
16512 Diag(New->getParamDecl(I)->getLocation(),
16513 diag::warn_overriding_method_missing_noescape);
16514 Diag(Old->getParamDecl(I)->getLocation(),
16515 diag::note_overridden_marked_noescape);
16516 }
16517 }
16518
16519 // Virtual overrides must have the same code_seg.
16520 const auto *OldCSA = Old->getAttr<CodeSegAttr>();
16521 const auto *NewCSA = New->getAttr<CodeSegAttr>();
16522 if ((NewCSA || OldCSA) &&
16523 (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) {
16524 Diag(New->getLocation(), diag::err_mismatched_code_seg_override);
16525 Diag(Old->getLocation(), diag::note_previous_declaration);
16526 return true;
16527 }
16528
16529 CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
16530
16531 // If the calling conventions match, everything is fine
16532 if (NewCC == OldCC)
16533 return false;
16534
16535 // If the calling conventions mismatch because the new function is static,
16536 // suppress the calling convention mismatch error; the error about static
16537 // function override (err_static_overrides_virtual from
16538 // Sema::CheckFunctionDeclaration) is more clear.
16539 if (New->getStorageClass() == SC_Static)
16540 return false;
16541
16542 Diag(New->getLocation(),
16543 diag::err_conflicting_overriding_cc_attributes)
16544 << New->getDeclName() << New->getType() << Old->getType();
16545 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
16546 return true;
16547}
16548
16549bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
16550 const CXXMethodDecl *Old) {
16551 QualType NewTy = New->getType()->castAs<FunctionType>()->getReturnType();
16552 QualType OldTy = Old->getType()->castAs<FunctionType>()->getReturnType();
16553
16554 if (Context.hasSameType(NewTy, OldTy) ||
16555 NewTy->isDependentType() || OldTy->isDependentType())
16556 return false;
16557
16558 // Check if the return types are covariant
16559 QualType NewClassTy, OldClassTy;
16560
16561 /// Both types must be pointers or references to classes.
16562 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
16563 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
16564 NewClassTy = NewPT->getPointeeType();
16565 OldClassTy = OldPT->getPointeeType();
16566 }
16567 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
16568 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
16569 if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
16570 NewClassTy = NewRT->getPointeeType();
16571 OldClassTy = OldRT->getPointeeType();
16572 }
16573 }
16574 }
16575
16576 // The return types aren't either both pointers or references to a class type.
16577 if (NewClassTy.isNull()) {
16578 Diag(New->getLocation(),
16579 diag::err_different_return_type_for_overriding_virtual_function)
16580 << New->getDeclName() << NewTy << OldTy
16581 << New->getReturnTypeSourceRange();
16582 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
16583 << Old->getReturnTypeSourceRange();
16584
16585 return true;
16586 }
16587
16588 if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
16589 // C++14 [class.virtual]p8:
16590 // If the class type in the covariant return type of D::f differs from
16591 // that of B::f, the class type in the return type of D::f shall be
16592 // complete at the point of declaration of D::f or shall be the class
16593 // type D.
16594 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
16595 if (!RT->isBeingDefined() &&
16596 RequireCompleteType(New->getLocation(), NewClassTy,
16597 diag::err_covariant_return_incomplete,
16598 New->getDeclName()))
16599 return true;
16600 }
16601
16602 // Check if the new class derives from the old class.
16603 if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) {
16604 Diag(New->getLocation(), diag::err_covariant_return_not_derived)
16605 << New->getDeclName() << NewTy << OldTy
16606 << New->getReturnTypeSourceRange();
16607 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
16608 << Old->getReturnTypeSourceRange();
16609 return true;
16610 }
16611
16612 // Check if we the conversion from derived to base is valid.
16613 if (CheckDerivedToBaseConversion(
16614 NewClassTy, OldClassTy,
16615 diag::err_covariant_return_inaccessible_base,
16616 diag::err_covariant_return_ambiguous_derived_to_base_conv,
16617 New->getLocation(), New->getReturnTypeSourceRange(),
16618 New->getDeclName(), nullptr)) {
16619 // FIXME: this note won't trigger for delayed access control
16620 // diagnostics, and it's impossible to get an undelayed error
16621 // here from access control during the original parse because
16622 // the ParsingDeclSpec/ParsingDeclarator are still in scope.
16623 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
16624 << Old->getReturnTypeSourceRange();
16625 return true;
16626 }
16627 }
16628
16629 // The qualifiers of the return types must be the same.
16630 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
16631 Diag(New->getLocation(),
16632 diag::err_covariant_return_type_different_qualifications)
16633 << New->getDeclName() << NewTy << OldTy
16634 << New->getReturnTypeSourceRange();
16635 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
16636 << Old->getReturnTypeSourceRange();
16637 return true;
16638 }
16639
16640
16641 // The new class type must have the same or less qualifiers as the old type.
16642 if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
16643 Diag(New->getLocation(),
16644 diag::err_covariant_return_type_class_type_more_qualified)
16645 << New->getDeclName() << NewTy << OldTy
16646 << New->getReturnTypeSourceRange();
16647 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
16648 << Old->getReturnTypeSourceRange();
16649 return true;
16650 }
16651
16652 return false;
16653}
16654
16655/// Mark the given method pure.
16656///
16657/// \param Method the method to be marked pure.
16658///
16659/// \param InitRange the source range that covers the "0" initializer.
16660bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
16661 SourceLocation EndLoc = InitRange.getEnd();
16662 if (EndLoc.isValid())
16663 Method->setRangeEnd(EndLoc);
16664
16665 if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
16666 Method->setPure();
16667 return false;
16668 }
16669
16670 if (!Method->isInvalidDecl())
16671 Diag(Method->getLocation(), diag::err_non_virtual_pure)
16672 << Method->getDeclName() << InitRange;
16673 return true;
16674}
16675
16676void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) {
16677 if (D->getFriendObjectKind())
16678 Diag(D->getLocation(), diag::err_pure_friend);
16679 else if (auto *M = dyn_cast<CXXMethodDecl>(D))
16680 CheckPureMethod(M, ZeroLoc);
16681 else
16682 Diag(D->getLocation(), diag::err_illegal_initializer);
16683}
16684
16685/// Determine whether the given declaration is a global variable or
16686/// static data member.
16687static bool isNonlocalVariable(const Decl *D) {
16688 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
16689 return Var->hasGlobalStorage();
16690
16691 return false;
16692}
16693
16694/// Invoked when we are about to parse an initializer for the declaration
16695/// 'Dcl'.
16696///
16697/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
16698/// static data member of class X, names should be looked up in the scope of
16699/// class X. If the declaration had a scope specifier, a scope will have
16700/// been created and passed in for this purpose. Otherwise, S will be null.
16701void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
16702 // If there is no declaration, there was an error parsing it.
16703 if (!D || D->isInvalidDecl())
16704 return;
16705
16706 // We will always have a nested name specifier here, but this declaration
16707 // might not be out of line if the specifier names the current namespace:
16708 // extern int n;
16709 // int ::n = 0;
16710 if (S && D->isOutOfLine())
16711 EnterDeclaratorContext(S, D->getDeclContext());
16712
16713 // If we are parsing the initializer for a static data member, push a
16714 // new expression evaluation context that is associated with this static
16715 // data member.
16716 if (isNonlocalVariable(D))
16717 PushExpressionEvaluationContext(
16718 ExpressionEvaluationContext::PotentiallyEvaluated, D);
16719}
16720
16721/// Invoked after we are finished parsing an initializer for the declaration D.
16722void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
16723 // If there is no declaration, there was an error parsing it.
16724 if (!D || D->isInvalidDecl())
16725 return;
16726
16727 if (isNonlocalVariable(D))
16728 PopExpressionEvaluationContext();
16729
16730 if (S && D->isOutOfLine())
16731 ExitDeclaratorContext(S);
16732}
16733
16734/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
16735/// C++ if/switch/while/for statement.
16736/// e.g: "if (int x = f()) {...}"
16737DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
16738 // C++ 6.4p2:
16739 // The declarator shall not specify a function or an array.
16740 // The type-specifier-seq shall not contain typedef and shall not declare a
16741 // new class or enumeration.
16742 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&((D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef
&& "Parser allowed 'typedef' as storage class of condition decl."
) ? static_cast<void> (0) : __assert_fail ("D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class of condition decl.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 16743, __PRETTY_FUNCTION__))
16743 "Parser allowed 'typedef' as storage class of condition decl.")((D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef
&& "Parser allowed 'typedef' as storage class of condition decl."
) ? static_cast<void> (0) : __assert_fail ("D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class of condition decl.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 16743, __PRETTY_FUNCTION__))
;
16744
16745 Decl *Dcl = ActOnDeclarator(S, D);
16746 if (!Dcl)
16747 return true;
16748
16749 if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
16750 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
16751 << D.getSourceRange();
16752 return true;
16753 }
16754
16755 return Dcl;
16756}
16757
16758void Sema::LoadExternalVTableUses() {
16759 if (!ExternalSource)
16760 return;
16761
16762 SmallVector<ExternalVTableUse, 4> VTables;
16763 ExternalSource->ReadUsedVTables(VTables);
16764 SmallVector<VTableUse, 4> NewUses;
16765 for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
16766 llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
16767 = VTablesUsed.find(VTables[I].Record);
16768 // Even if a definition wasn't required before, it may be required now.
16769 if (Pos != VTablesUsed.end()) {
16770 if (!Pos->second && VTables[I].DefinitionRequired)
16771 Pos->second = true;
16772 continue;
16773 }
16774
16775 VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
16776 NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
16777 }
16778
16779 VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
16780}
16781
16782void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
16783 bool DefinitionRequired) {
16784 // Ignore any vtable uses in unevaluated operands or for classes that do
16785 // not have a vtable.
16786 if (!Class->isDynamicClass() || Class->isDependentContext() ||
16787 CurContext->isDependentContext() || isUnevaluatedContext())
16788 return;
16789 // Do not mark as used if compiling for the device outside of the target
16790 // region.
16791 if (TUKind != TU_Prefix && LangOpts.OpenMP && LangOpts.OpenMPIsDevice &&
16792 !isInOpenMPDeclareTargetContext() &&
16793 !isInOpenMPTargetExecutionDirective()) {
16794 if (!DefinitionRequired)
16795 MarkVirtualMembersReferenced(Loc, Class);
16796 return;
16797 }
16798
16799 // Try to insert this class into the map.
16800 LoadExternalVTableUses();
16801 Class = Class->getCanonicalDecl();
16802 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
16803 Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
16804 if (!Pos.second) {
16805 // If we already had an entry, check to see if we are promoting this vtable
16806 // to require a definition. If so, we need to reappend to the VTableUses
16807 // list, since we may have already processed the first entry.
16808 if (DefinitionRequired && !Pos.first->second) {
16809 Pos.first->second = true;
16810 } else {
16811 // Otherwise, we can early exit.
16812 return;
16813 }
16814 } else {
16815 // The Microsoft ABI requires that we perform the destructor body
16816 // checks (i.e. operator delete() lookup) when the vtable is marked used, as
16817 // the deleting destructor is emitted with the vtable, not with the
16818 // destructor definition as in the Itanium ABI.
16819 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
16820 CXXDestructorDecl *DD = Class->getDestructor();
16821 if (DD && DD->isVirtual() && !DD->isDeleted()) {
16822 if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) {
16823 // If this is an out-of-line declaration, marking it referenced will
16824 // not do anything. Manually call CheckDestructor to look up operator
16825 // delete().
16826 ContextRAII SavedContext(*this, DD);
16827 CheckDestructor(DD);
16828 } else {
16829 MarkFunctionReferenced(Loc, Class->getDestructor());
16830 }
16831 }
16832 }
16833 }
16834
16835 // Local classes need to have their virtual members marked
16836 // immediately. For all other classes, we mark their virtual members
16837 // at the end of the translation unit.
16838 if (Class->isLocalClass())
16839 MarkVirtualMembersReferenced(Loc, Class);
16840 else
16841 VTableUses.push_back(std::make_pair(Class, Loc));
16842}
16843
16844bool Sema::DefineUsedVTables() {
16845 LoadExternalVTableUses();
16846 if (VTableUses.empty())
16847 return false;
16848
16849 // Note: The VTableUses vector could grow as a result of marking
16850 // the members of a class as "used", so we check the size each
16851 // time through the loop and prefer indices (which are stable) to
16852 // iterators (which are not).
16853 bool DefinedAnything = false;
16854 for (unsigned I = 0; I != VTableUses.size(); ++I) {
16855 CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
16856 if (!Class)
16857 continue;
16858 TemplateSpecializationKind ClassTSK =
16859 Class->getTemplateSpecializationKind();
16860
16861 SourceLocation Loc = VTableUses[I].second;
16862
16863 bool DefineVTable = true;
16864
16865 // If this class has a key function, but that key function is
16866 // defined in another translation unit, we don't need to emit the
16867 // vtable even though we're using it.
16868 const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
16869 if (KeyFunction && !KeyFunction->hasBody()) {
16870 // The key function is in another translation unit.
16871 DefineVTable = false;
16872 TemplateSpecializationKind TSK =
16873 KeyFunction->getTemplateSpecializationKind();
16874 assert(TSK != TSK_ExplicitInstantiationDefinition &&((TSK != TSK_ExplicitInstantiationDefinition && TSK !=
TSK_ImplicitInstantiation && "Instantiations don't have key functions"
) ? static_cast<void> (0) : __assert_fail ("TSK != TSK_ExplicitInstantiationDefinition && TSK != TSK_ImplicitInstantiation && \"Instantiations don't have key functions\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 16876, __PRETTY_FUNCTION__))
16875 TSK != TSK_ImplicitInstantiation &&((TSK != TSK_ExplicitInstantiationDefinition && TSK !=
TSK_ImplicitInstantiation && "Instantiations don't have key functions"
) ? static_cast<void> (0) : __assert_fail ("TSK != TSK_ExplicitInstantiationDefinition && TSK != TSK_ImplicitInstantiation && \"Instantiations don't have key functions\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 16876, __PRETTY_FUNCTION__))
16876 "Instantiations don't have key functions")((TSK != TSK_ExplicitInstantiationDefinition && TSK !=
TSK_ImplicitInstantiation && "Instantiations don't have key functions"
) ? static_cast<void> (0) : __assert_fail ("TSK != TSK_ExplicitInstantiationDefinition && TSK != TSK_ImplicitInstantiation && \"Instantiations don't have key functions\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 16876, __PRETTY_FUNCTION__))
;
16877 (void)TSK;
16878 } else if (!KeyFunction) {
16879 // If we have a class with no key function that is the subject
16880 // of an explicit instantiation declaration, suppress the
16881 // vtable; it will live with the explicit instantiation
16882 // definition.
16883 bool IsExplicitInstantiationDeclaration =
16884 ClassTSK == TSK_ExplicitInstantiationDeclaration;
16885 for (auto R : Class->redecls()) {
16886 TemplateSpecializationKind TSK
16887 = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind();
16888 if (TSK == TSK_ExplicitInstantiationDeclaration)
16889 IsExplicitInstantiationDeclaration = true;
16890 else if (TSK == TSK_ExplicitInstantiationDefinition) {
16891 IsExplicitInstantiationDeclaration = false;
16892 break;
16893 }
16894 }
16895
16896 if (IsExplicitInstantiationDeclaration)
16897 DefineVTable = false;
16898 }
16899
16900 // The exception specifications for all virtual members may be needed even
16901 // if we are not providing an authoritative form of the vtable in this TU.
16902 // We may choose to emit it available_externally anyway.
16903 if (!DefineVTable) {
16904 MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
16905 continue;
16906 }
16907
16908 // Mark all of the virtual members of this class as referenced, so
16909 // that we can build a vtable. Then, tell the AST consumer that a
16910 // vtable for this class is required.
16911 DefinedAnything = true;
16912 MarkVirtualMembersReferenced(Loc, Class);
16913 CXXRecordDecl *Canonical = Class->getCanonicalDecl();
16914 if (VTablesUsed[Canonical])
16915 Consumer.HandleVTable(Class);
16916
16917 // Warn if we're emitting a weak vtable. The vtable will be weak if there is
16918 // no key function or the key function is inlined. Don't warn in C++ ABIs
16919 // that lack key functions, since the user won't be able to make one.
16920 if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() &&
16921 Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation) {
16922 const FunctionDecl *KeyFunctionDef = nullptr;
16923 if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) &&
16924 KeyFunctionDef->isInlined())) {
16925 Diag(Class->getLocation(),
16926 ClassTSK == TSK_ExplicitInstantiationDefinition
16927 ? diag::warn_weak_template_vtable
16928 : diag::warn_weak_vtable)
16929 << Class;
16930 }
16931 }
16932 }
16933 VTableUses.clear();
16934
16935 return DefinedAnything;
16936}
16937
16938void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
16939 const CXXRecordDecl *RD) {
16940 for (const auto *I : RD->methods())
16941 if (I->isVirtual() && !I->isPure())
16942 ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>());
16943}
16944
16945void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
16946 const CXXRecordDecl *RD,
16947 bool ConstexprOnly) {
16948 // Mark all functions which will appear in RD's vtable as used.
16949 CXXFinalOverriderMap FinalOverriders;
16950 RD->getFinalOverriders(FinalOverriders);
16951 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
16952 E = FinalOverriders.end();
16953 I != E; ++I) {
16954 for (OverridingMethods::const_iterator OI = I->second.begin(),
16955 OE = I->second.end();
16956 OI != OE; ++OI) {
16957 assert(OI->second.size() > 0 && "no final overrider")((OI->second.size() > 0 && "no final overrider"
) ? static_cast<void> (0) : __assert_fail ("OI->second.size() > 0 && \"no final overrider\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 16957, __PRETTY_FUNCTION__))
;
16958 CXXMethodDecl *Overrider = OI->second.front().Method;
16959
16960 // C++ [basic.def.odr]p2:
16961 // [...] A virtual member function is used if it is not pure. [...]
16962 if (!Overrider->isPure() && (!ConstexprOnly || Overrider->isConstexpr()))
16963 MarkFunctionReferenced(Loc, Overrider);
16964 }
16965 }
16966
16967 // Only classes that have virtual bases need a VTT.
16968 if (RD->getNumVBases() == 0)
16969 return;
16970
16971 for (const auto &I : RD->bases()) {
16972 const auto *Base =
16973 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
16974 if (Base->getNumVBases() == 0)
16975 continue;
16976 MarkVirtualMembersReferenced(Loc, Base);
16977 }
16978}
16979
16980/// SetIvarInitializers - This routine builds initialization ASTs for the
16981/// Objective-C implementation whose ivars need be initialized.
16982void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
16983 if (!getLangOpts().CPlusPlus)
16984 return;
16985 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
16986 SmallVector<ObjCIvarDecl*, 8> ivars;
16987 CollectIvarsToConstructOrDestruct(OID, ivars);
16988 if (ivars.empty())
16989 return;
16990 SmallVector<CXXCtorInitializer*, 32> AllToInit;
16991 for (unsigned i = 0; i < ivars.size(); i++) {
16992 FieldDecl *Field = ivars[i];
16993 if (Field->isInvalidDecl())
16994 continue;
16995
16996 CXXCtorInitializer *Member;
16997 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
16998 InitializationKind InitKind =
16999 InitializationKind::CreateDefault(ObjCImplementation->getLocation());
17000
17001 InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
17002 ExprResult MemberInit =
17003 InitSeq.Perform(*this, InitEntity, InitKind, None);
17004 MemberInit = MaybeCreateExprWithCleanups(MemberInit);
17005 // Note, MemberInit could actually come back empty if no initialization
17006 // is required (e.g., because it would call a trivial default constructor)
17007 if (!MemberInit.get() || MemberInit.isInvalid())
17008 continue;
17009
17010 Member =
17011 new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
17012 SourceLocation(),
17013 MemberInit.getAs<Expr>(),
17014 SourceLocation());
17015 AllToInit.push_back(Member);
17016
17017 // Be sure that the destructor is accessible and is marked as referenced.
17018 if (const RecordType *RecordTy =
17019 Context.getBaseElementType(Field->getType())
17020 ->getAs<RecordType>()) {
17021 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
17022 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
17023 MarkFunctionReferenced(Field->getLocation(), Destructor);
17024 CheckDestructorAccess(Field->getLocation(), Destructor,
17025 PDiag(diag::err_access_dtor_ivar)
17026 << Context.getBaseElementType(Field->getType()));
17027 }
17028 }
17029 }
17030 ObjCImplementation->setIvarInitializers(Context,
17031 AllToInit.data(), AllToInit.size());
17032 }
17033}
17034
17035static
17036void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
17037 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid,
17038 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid,
17039 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current,
17040 Sema &S) {
17041 if (Ctor->isInvalidDecl())
17042 return;
17043
17044 CXXConstructorDecl *Target = Ctor->getTargetConstructor();
17045
17046 // Target may not be determinable yet, for instance if this is a dependent
17047 // call in an uninstantiated template.
17048 if (Target) {
17049 const FunctionDecl *FNTarget = nullptr;
17050 (void)Target->hasBody(FNTarget);
17051 Target = const_cast<CXXConstructorDecl*>(
17052 cast_or_null<CXXConstructorDecl>(FNTarget));
17053 }
17054
17055 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
17056 // Avoid dereferencing a null pointer here.
17057 *TCanonical = Target? Target->getCanonicalDecl() : nullptr;
17058
17059 if (!Current.insert(Canonical).second)
17060 return;
17061
17062 // We know that beyond here, we aren't chaining into a cycle.
17063 if (!Target || !Target->isDelegatingConstructor() ||
17064 Target->isInvalidDecl() || Valid.count(TCanonical)) {
17065 Valid.insert(Current.begin(), Current.end());
17066 Current.clear();
17067 // We've hit a cycle.
17068 } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
17069 Current.count(TCanonical)) {
17070 // If we haven't diagnosed this cycle yet, do so now.
17071 if (!Invalid.count(TCanonical)) {
17072 S.Diag((*Ctor->init_begin())->getSourceLocation(),
17073 diag::warn_delegating_ctor_cycle)
17074 << Ctor;
17075
17076 // Don't add a note for a function delegating directly to itself.
17077 if (TCanonical != Canonical)
17078 S.Diag(Target->getLocation(), diag::note_it_delegates_to);
17079
17080 CXXConstructorDecl *C = Target;
17081 while (C->getCanonicalDecl() != Canonical) {
17082 const FunctionDecl *FNTarget = nullptr;
17083 (void)C->getTargetConstructor()->hasBody(FNTarget);
17084 assert(FNTarget && "Ctor cycle through bodiless function")((FNTarget && "Ctor cycle through bodiless function")
? static_cast<void> (0) : __assert_fail ("FNTarget && \"Ctor cycle through bodiless function\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 17084, __PRETTY_FUNCTION__))
;
17085
17086 C = const_cast<CXXConstructorDecl*>(
17087 cast<CXXConstructorDecl>(FNTarget));
17088 S.Diag(C->getLocation(), diag::note_which_delegates_to);
17089 }
17090 }
17091
17092 Invalid.insert(Current.begin(), Current.end());
17093 Current.clear();
17094 } else {
17095 DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
17096 }
17097}
17098
17099
17100void Sema::CheckDelegatingCtorCycles() {
17101 llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
17102
17103 for (DelegatingCtorDeclsType::iterator
17104 I = DelegatingCtorDecls.begin(ExternalSource),
17105 E = DelegatingCtorDecls.end();
17106 I != E; ++I)
17107 DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
17108
17109 for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
17110 (*CI)->setInvalidDecl();
17111}
17112
17113namespace {
17114 /// AST visitor that finds references to the 'this' expression.
17115 class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
17116 Sema &S;
17117
17118 public:
17119 explicit FindCXXThisExpr(Sema &S) : S(S) { }
17120
17121 bool VisitCXXThisExpr(CXXThisExpr *E) {
17122 S.Diag(E->getLocation(), diag::err_this_static_member_func)
17123 << E->isImplicit();
17124 return false;
17125 }
17126 };
17127}
17128
17129bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
17130 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
17131 if (!TSInfo)
17132 return false;
17133
17134 TypeLoc TL = TSInfo->getTypeLoc();
17135 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
17136 if (!ProtoTL)
17137 return false;
17138
17139 // C++11 [expr.prim.general]p3:
17140 // [The expression this] shall not appear before the optional
17141 // cv-qualifier-seq and it shall not appear within the declaration of a
17142 // static member function (although its type and value category are defined
17143 // within a static member function as they are within a non-static member
17144 // function). [ Note: this is because declaration matching does not occur
17145 // until the complete declarator is known. - end note ]
17146 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
17147 FindCXXThisExpr Finder(*this);
17148
17149 // If the return type came after the cv-qualifier-seq, check it now.
17150 if (Proto->hasTrailingReturn() &&
17151 !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc()))
17152 return true;
17153
17154 // Check the exception specification.
17155 if (checkThisInStaticMemberFunctionExceptionSpec(Method))
17156 return true;
17157
17158 // Check the trailing requires clause
17159 if (Expr *E = Method->getTrailingRequiresClause())
17160 if (!Finder.TraverseStmt(E))
17161 return true;
17162
17163 return checkThisInStaticMemberFunctionAttributes(Method);
17164}
17165
17166bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
17167 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
17168 if (!TSInfo)
17169 return false;
17170
17171 TypeLoc TL = TSInfo->getTypeLoc();
17172 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
17173 if (!ProtoTL)
17174 return false;
17175
17176 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
17177 FindCXXThisExpr Finder(*this);
17178
17179 switch (Proto->getExceptionSpecType()) {
17180 case EST_Unparsed:
17181 case EST_Uninstantiated:
17182 case EST_Unevaluated:
17183 case EST_BasicNoexcept:
17184 case EST_NoThrow:
17185 case EST_DynamicNone:
17186 case EST_MSAny:
17187 case EST_None:
17188 break;
17189
17190 case EST_DependentNoexcept:
17191 case EST_NoexceptFalse:
17192 case EST_NoexceptTrue:
17193 if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
17194 return true;
17195 LLVM_FALLTHROUGH[[gnu::fallthrough]];
17196
17197 case EST_Dynamic:
17198 for (const auto &E : Proto->exceptions()) {
17199 if (!Finder.TraverseType(E))
17200 return true;
17201 }
17202 break;
17203 }
17204
17205 return false;
17206}
17207
17208bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
17209 FindCXXThisExpr Finder(*this);
17210
17211 // Check attributes.
17212 for (const auto *A : Method->attrs()) {
17213 // FIXME: This should be emitted by tblgen.
17214 Expr *Arg = nullptr;
17215 ArrayRef<Expr *> Args;
17216 if (const auto *G = dyn_cast<GuardedByAttr>(A))
17217 Arg = G->getArg();
17218 else if (const auto *G = dyn_cast<PtGuardedByAttr>(A))
17219 Arg = G->getArg();
17220 else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A))
17221 Args = llvm::makeArrayRef(AA->args_begin(), AA->args_size());
17222 else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A))
17223 Args = llvm::makeArrayRef(AB->args_begin(), AB->args_size());
17224 else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) {
17225 Arg = ETLF->getSuccessValue();
17226 Args = llvm::makeArrayRef(ETLF->args_begin(), ETLF->args_size());
17227 } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) {
17228 Arg = STLF->getSuccessValue();
17229 Args = llvm::makeArrayRef(STLF->args_begin(), STLF->args_size());
17230 } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A))
17231 Arg = LR->getArg();
17232 else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A))
17233 Args = llvm::makeArrayRef(LE->args_begin(), LE->args_size());
17234 else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A))
17235 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
17236 else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A))
17237 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
17238 else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A))
17239 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
17240 else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A))
17241 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
17242
17243 if (Arg && !Finder.TraverseStmt(Arg))
17244 return true;
17245
17246 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
17247 if (!Finder.TraverseStmt(Args[I]))
17248 return true;
17249 }
17250 }
17251
17252 return false;
17253}
17254
17255void Sema::checkExceptionSpecification(
17256 bool IsTopLevel, ExceptionSpecificationType EST,
17257 ArrayRef<ParsedType> DynamicExceptions,
17258 ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr,
17259 SmallVectorImpl<QualType> &Exceptions,
17260 FunctionProtoType::ExceptionSpecInfo &ESI) {
17261 Exceptions.clear();
17262 ESI.Type = EST;
17263 if (EST == EST_Dynamic) {
17264 Exceptions.reserve(DynamicExceptions.size());
17265 for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
17266 // FIXME: Preserve type source info.
17267 QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
17268
17269 if (IsTopLevel) {
17270 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
17271 collectUnexpandedParameterPacks(ET, Unexpanded);
17272 if (!Unexpanded.empty()) {
17273 DiagnoseUnexpandedParameterPacks(
17274 DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType,
17275 Unexpanded);
17276 continue;
17277 }
17278 }
17279
17280 // Check that the type is valid for an exception spec, and
17281 // drop it if not.
17282 if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
17283 Exceptions.push_back(ET);
17284 }
17285 ESI.Exceptions = Exceptions;
17286 return;
17287 }
17288
17289 if (isComputedNoexcept(EST)) {
17290 assert((NoexceptExpr->isTypeDependent() ||(((NoexceptExpr->isTypeDependent() || NoexceptExpr->getType
()->getCanonicalTypeUnqualified() == Context.BoolTy) &&
"Parser should have made sure that the expression is boolean"
) ? static_cast<void> (0) : __assert_fail ("(NoexceptExpr->isTypeDependent() || NoexceptExpr->getType()->getCanonicalTypeUnqualified() == Context.BoolTy) && \"Parser should have made sure that the expression is boolean\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 17293, __PRETTY_FUNCTION__))
17291 NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==(((NoexceptExpr->isTypeDependent() || NoexceptExpr->getType
()->getCanonicalTypeUnqualified() == Context.BoolTy) &&
"Parser should have made sure that the expression is boolean"
) ? static_cast<void> (0) : __assert_fail ("(NoexceptExpr->isTypeDependent() || NoexceptExpr->getType()->getCanonicalTypeUnqualified() == Context.BoolTy) && \"Parser should have made sure that the expression is boolean\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 17293, __PRETTY_FUNCTION__))
17292 Context.BoolTy) &&(((NoexceptExpr->isTypeDependent() || NoexceptExpr->getType
()->getCanonicalTypeUnqualified() == Context.BoolTy) &&
"Parser should have made sure that the expression is boolean"
) ? static_cast<void> (0) : __assert_fail ("(NoexceptExpr->isTypeDependent() || NoexceptExpr->getType()->getCanonicalTypeUnqualified() == Context.BoolTy) && \"Parser should have made sure that the expression is boolean\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 17293, __PRETTY_FUNCTION__))
17293 "Parser should have made sure that the expression is boolean")(((NoexceptExpr->isTypeDependent() || NoexceptExpr->getType
()->getCanonicalTypeUnqualified() == Context.BoolTy) &&
"Parser should have made sure that the expression is boolean"
) ? static_cast<void> (0) : __assert_fail ("(NoexceptExpr->isTypeDependent() || NoexceptExpr->getType()->getCanonicalTypeUnqualified() == Context.BoolTy) && \"Parser should have made sure that the expression is boolean\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/Sema/SemaDeclCXX.cpp"
, 17293, __PRETTY_FUNCTION__))
;
17294 if (IsTopLevel && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
17295 ESI.Type = EST_BasicNoexcept;
17296 return;
17297 }
17298
17299 ESI.NoexceptExpr = NoexceptExpr;
17300 return;
17301 }
17302}
17303
17304void Sema::actOnDelayedExceptionSpecification(Decl *MethodD,
17305 ExceptionSpecificationType EST,
17306 SourceRange SpecificationRange,
17307 ArrayRef<ParsedType> DynamicExceptions,
17308 ArrayRef<SourceRange> DynamicExceptionRanges,
17309 Expr *NoexceptExpr) {
17310 if (!MethodD)
17311 return;
17312
17313 // Dig out the method we're referring to.
17314 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD))
17315 MethodD = FunTmpl->getTemplatedDecl();
17316
17317 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD);
17318 if (!Method)
17319 return;
17320
17321 // Check the exception specification.
17322 llvm::SmallVector<QualType, 4> Exceptions;
17323 FunctionProtoType::ExceptionSpecInfo ESI;
17324 checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions,
17325 DynamicExceptionRanges, NoexceptExpr, Exceptions,
17326 ESI);
17327
17328 // Update the exception specification on the function type.
17329 Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true);
17330
17331 if (Method->isStatic())
17332 checkThisInStaticMemberFunctionExceptionSpec(Method);
17333
17334 if (Method->isVirtual()) {
17335 // Check overrides, which we previously had to delay.
17336 for (const CXXMethodDecl *O : Method->overridden_methods())
17337 CheckOverridingFunctionExceptionSpec(Method, O);
17338 }
17339}
17340
17341/// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
17342///
17343MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
17344 SourceLocation DeclStart, Declarator &D,
17345 Expr *BitWidth,
17346 InClassInitStyle InitStyle,
17347 AccessSpecifier AS,
17348 const ParsedAttr &MSPropertyAttr) {
17349 IdentifierInfo *II = D.getIdentifier();
17350 if (!II) {
17351 Diag(DeclStart, diag::err_anonymous_property);
17352 return nullptr;
17353 }
17354 SourceLocation Loc = D.getIdentifierLoc();
17355
17356 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
17357 QualType T = TInfo->getType();
17358 if (getLangOpts().CPlusPlus) {
17359 CheckExtraCXXDefaultArguments(D);
17360
17361 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
17362 UPPC_DataMemberType)) {
17363 D.setInvalidType();
17364 T = Context.IntTy;
17365 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
17366 }
17367 }
17368
17369 DiagnoseFunctionSpecifiers(D.getDeclSpec());
17370
17371 if (D.getDeclSpec().isInlineSpecified())
17372 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
17373 << getLangOpts().CPlusPlus17;
17374 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
17375 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
17376 diag::err_invalid_thread)
17377 << DeclSpec::getSpecifierName(TSCS);
17378
17379 // Check to see if this name was declared as a member previously
17380 NamedDecl *PrevDecl = nullptr;
17381 LookupResult Previous(*this, II, Loc, LookupMemberName,
17382 ForVisibleRedeclaration);
17383 LookupName(Previous, S);
17384 switch (Previous.getResultKind()) {
17385 case LookupResult::Found:
17386 case LookupResult::FoundUnresolvedValue:
17387 PrevDecl = Previous.getAsSingle<NamedDecl>();
17388 break;
17389
17390 case LookupResult::FoundOverloaded:
17391 PrevDecl = Previous.getRepresentativeDecl();
17392 break;
17393
17394 case LookupResult::NotFound:
17395 case LookupResult::NotFoundInCurrentInstantiation:
17396 case LookupResult::Ambiguous:
17397 break;
17398 }
17399
17400 if (PrevDecl && PrevDecl->isTemplateParameter()) {
17401 // Maybe we will complain about the shadowed template parameter.
17402 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
17403 // Just pretend that we didn't see the previous declaration.
17404 PrevDecl = nullptr;
17405 }
17406
17407 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
17408 PrevDecl = nullptr;
17409
17410 SourceLocation TSSL = D.getBeginLoc();
17411 MSPropertyDecl *NewPD =
17412 MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL,
17413 MSPropertyAttr.getPropertyDataGetter(),
17414 MSPropertyAttr.getPropertyDataSetter());
17415 ProcessDeclAttributes(TUScope, NewPD, D);
17416 NewPD->setAccess(AS);
17417
17418 if (NewPD->isInvalidDecl())
17419 Record->setInvalidDecl();
17420
17421 if (D.getDeclSpec().isModulePrivateSpecified())
17422 NewPD->setModulePrivate();
17423
17424 if (NewPD->isInvalidDecl() && PrevDecl) {
17425 // Don't introduce NewFD into scope; there's already something
17426 // with the same name in the same scope.
17427 } else if (II) {
17428 PushOnScopeChains(NewPD, S);
17429 } else
17430 Record->addDecl(NewPD);
17431
17432 return NewPD;
17433}
17434
17435void Sema::ActOnStartFunctionDeclarationDeclarator(
17436 Declarator &Declarator, unsigned TemplateParameterDepth) {
17437 auto &Info = InventedParameterInfos.emplace_back();
17438 TemplateParameterList *ExplicitParams = nullptr;
17439 ArrayRef<TemplateParameterList *> ExplicitLists =
17440 Declarator.getTemplateParameterLists();
17441 if (!ExplicitLists.empty()) {
17442 bool IsMemberSpecialization, IsInvalid;
17443 ExplicitParams = MatchTemplateParametersToScopeSpecifier(
17444 Declarator.getBeginLoc(), Declarator.getIdentifierLoc(),
17445 Declarator.getCXXScopeSpec(), /*TemplateId=*/nullptr,
17446 ExplicitLists, /*IsFriend=*/false, IsMemberSpecialization, IsInvalid,
17447 /*SuppressDiagnostic=*/true);
17448 }
17449 if (ExplicitParams) {
17450 Info.AutoTemplateParameterDepth = ExplicitParams->getDepth();
17451 for (NamedDecl *Param : *ExplicitParams)
17452 Info.TemplateParams.push_back(Param);
17453 Info.NumExplicitTemplateParams = ExplicitParams->size();
17454 } else {
17455 Info.AutoTemplateParameterDepth = TemplateParameterDepth;
17456 Info.NumExplicitTemplateParams = 0;
17457 }
17458}
17459
17460void Sema::ActOnFinishFunctionDeclarationDeclarator(Declarator &Declarator) {
17461 auto &FSI = InventedParameterInfos.back();
17462 if (FSI.TemplateParams.size() > FSI.NumExplicitTemplateParams) {
17463 if (FSI.NumExplicitTemplateParams != 0) {
17464 TemplateParameterList *ExplicitParams =
17465 Declarator.getTemplateParameterLists().back();
17466 Declarator.setInventedTemplateParameterList(
17467 TemplateParameterList::Create(
17468 Context, ExplicitParams->getTemplateLoc(),
17469 ExplicitParams->getLAngleLoc(), FSI.TemplateParams,
17470 ExplicitParams->getRAngleLoc(),
17471 ExplicitParams->getRequiresClause()));
17472 } else {
17473 Declarator.setInventedTemplateParameterList(
17474 TemplateParameterList::Create(
17475 Context, SourceLocation(), SourceLocation(), FSI.TemplateParams,
17476 SourceLocation(), /*RequiresClause=*/nullptr));
17477 }
17478 }
17479 InventedParameterInfos.pop_back();
17480}

/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h

1//===- Decl.h - Classes for representing declarations -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the Decl subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CLANG_AST_DECL_H
14#define LLVM_CLANG_AST_DECL_H
15
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContextAllocate.h"
18#include "clang/AST/DeclAccessPair.h"
19#include "clang/AST/DeclBase.h"
20#include "clang/AST/DeclarationName.h"
21#include "clang/AST/ExternalASTSource.h"
22#include "clang/AST/NestedNameSpecifier.h"
23#include "clang/AST/Redeclarable.h"
24#include "clang/AST/Type.h"
25#include "clang/Basic/AddressSpaces.h"
26#include "clang/Basic/Diagnostic.h"
27#include "clang/Basic/IdentifierTable.h"
28#include "clang/Basic/LLVM.h"
29#include "clang/Basic/Linkage.h"
30#include "clang/Basic/OperatorKinds.h"
31#include "clang/Basic/PartialDiagnostic.h"
32#include "clang/Basic/PragmaKinds.h"
33#include "clang/Basic/SourceLocation.h"
34#include "clang/Basic/Specifiers.h"
35#include "clang/Basic/Visibility.h"
36#include "llvm/ADT/APSInt.h"
37#include "llvm/ADT/ArrayRef.h"
38#include "llvm/ADT/Optional.h"
39#include "llvm/ADT/PointerIntPair.h"
40#include "llvm/ADT/PointerUnion.h"
41#include "llvm/ADT/StringRef.h"
42#include "llvm/ADT/iterator_range.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/TrailingObjects.h"
46#include <cassert>
47#include <cstddef>
48#include <cstdint>
49#include <string>
50#include <utility>
51
52namespace clang {
53
54class ASTContext;
55struct ASTTemplateArgumentListInfo;
56class Attr;
57class CompoundStmt;
58class DependentFunctionTemplateSpecializationInfo;
59class EnumDecl;
60class Expr;
61class FunctionTemplateDecl;
62class FunctionTemplateSpecializationInfo;
63class FunctionTypeLoc;
64class LabelStmt;
65class MemberSpecializationInfo;
66class Module;
67class NamespaceDecl;
68class ParmVarDecl;
69class RecordDecl;
70class Stmt;
71class StringLiteral;
72class TagDecl;
73class TemplateArgumentList;
74class TemplateArgumentListInfo;
75class TemplateParameterList;
76class TypeAliasTemplateDecl;
77class TypeLoc;
78class UnresolvedSetImpl;
79class VarTemplateDecl;
80
81/// The top declaration context.
82class TranslationUnitDecl : public Decl, public DeclContext {
83 ASTContext &Ctx;
84
85 /// The (most recently entered) anonymous namespace for this
86 /// translation unit, if one has been created.
87 NamespaceDecl *AnonymousNamespace = nullptr;
88
89 explicit TranslationUnitDecl(ASTContext &ctx);
90
91 virtual void anchor();
92
93public:
94 ASTContext &getASTContext() const { return Ctx; }
95
96 NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
97 void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
98
99 static TranslationUnitDecl *Create(ASTContext &C);
100
101 // Implement isa/cast/dyncast/etc.
102 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
103 static bool classofKind(Kind K) { return K == TranslationUnit; }
104 static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
105 return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
106 }
107 static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
108 return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
109 }
110};
111
112/// Represents a `#pragma comment` line. Always a child of
113/// TranslationUnitDecl.
114class PragmaCommentDecl final
115 : public Decl,
116 private llvm::TrailingObjects<PragmaCommentDecl, char> {
117 friend class ASTDeclReader;
118 friend class ASTDeclWriter;
119 friend TrailingObjects;
120
121 PragmaMSCommentKind CommentKind;
122
123 PragmaCommentDecl(TranslationUnitDecl *TU, SourceLocation CommentLoc,
124 PragmaMSCommentKind CommentKind)
125 : Decl(PragmaComment, TU, CommentLoc), CommentKind(CommentKind) {}
126
127 virtual void anchor();
128
129public:
130 static PragmaCommentDecl *Create(const ASTContext &C, TranslationUnitDecl *DC,
131 SourceLocation CommentLoc,
132 PragmaMSCommentKind CommentKind,
133 StringRef Arg);
134 static PragmaCommentDecl *CreateDeserialized(ASTContext &C, unsigned ID,
135 unsigned ArgSize);
136
137 PragmaMSCommentKind getCommentKind() const { return CommentKind; }
138
139 StringRef getArg() const { return getTrailingObjects<char>(); }
140
141 // Implement isa/cast/dyncast/etc.
142 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
143 static bool classofKind(Kind K) { return K == PragmaComment; }
144};
145
146/// Represents a `#pragma detect_mismatch` line. Always a child of
147/// TranslationUnitDecl.
148class PragmaDetectMismatchDecl final
149 : public Decl,
150 private llvm::TrailingObjects<PragmaDetectMismatchDecl, char> {
151 friend class ASTDeclReader;
152 friend class ASTDeclWriter;
153 friend TrailingObjects;
154
155 size_t ValueStart;
156
157 PragmaDetectMismatchDecl(TranslationUnitDecl *TU, SourceLocation Loc,
158 size_t ValueStart)
159 : Decl(PragmaDetectMismatch, TU, Loc), ValueStart(ValueStart) {}
160
161 virtual void anchor();
162
163public:
164 static PragmaDetectMismatchDecl *Create(const ASTContext &C,
165 TranslationUnitDecl *DC,
166 SourceLocation Loc, StringRef Name,
167 StringRef Value);
168 static PragmaDetectMismatchDecl *
169 CreateDeserialized(ASTContext &C, unsigned ID, unsigned NameValueSize);
170
171 StringRef getName() const { return getTrailingObjects<char>(); }
172 StringRef getValue() const { return getTrailingObjects<char>() + ValueStart; }
173
174 // Implement isa/cast/dyncast/etc.
175 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
176 static bool classofKind(Kind K) { return K == PragmaDetectMismatch; }
177};
178
179/// Declaration context for names declared as extern "C" in C++. This
180/// is neither the semantic nor lexical context for such declarations, but is
181/// used to check for conflicts with other extern "C" declarations. Example:
182///
183/// \code
184/// namespace N { extern "C" void f(); } // #1
185/// void N::f() {} // #2
186/// namespace M { extern "C" void f(); } // #3
187/// \endcode
188///
189/// The semantic context of #1 is namespace N and its lexical context is the
190/// LinkageSpecDecl; the semantic context of #2 is namespace N and its lexical
191/// context is the TU. However, both declarations are also visible in the
192/// extern "C" context.
193///
194/// The declaration at #3 finds it is a redeclaration of \c N::f through
195/// lookup in the extern "C" context.
196class ExternCContextDecl : public Decl, public DeclContext {
197 explicit ExternCContextDecl(TranslationUnitDecl *TU)
198 : Decl(ExternCContext, TU, SourceLocation()),
199 DeclContext(ExternCContext) {}
200
201 virtual void anchor();
202
203public:
204 static ExternCContextDecl *Create(const ASTContext &C,
205 TranslationUnitDecl *TU);
206
207 // Implement isa/cast/dyncast/etc.
208 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
209 static bool classofKind(Kind K) { return K == ExternCContext; }
210 static DeclContext *castToDeclContext(const ExternCContextDecl *D) {
211 return static_cast<DeclContext *>(const_cast<ExternCContextDecl*>(D));
212 }
213 static ExternCContextDecl *castFromDeclContext(const DeclContext *DC) {
214 return static_cast<ExternCContextDecl *>(const_cast<DeclContext*>(DC));
215 }
216};
217
218/// This represents a decl that may have a name. Many decls have names such
219/// as ObjCMethodDecl, but not \@class, etc.
220///
221/// Note that not every NamedDecl is actually named (e.g., a struct might
222/// be anonymous), and not every name is an identifier.
223class NamedDecl : public Decl {
224 /// The name of this declaration, which is typically a normal
225 /// identifier but may also be a special kind of name (C++
226 /// constructor, Objective-C selector, etc.)
227 DeclarationName Name;
228
229 virtual void anchor();
230
231private:
232 NamedDecl *getUnderlyingDeclImpl() LLVM_READONLY__attribute__((__pure__));
233
234protected:
235 NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
236 : Decl(DK, DC, L), Name(N) {}
237
238public:
239 /// Get the identifier that names this declaration, if there is one.
240 ///
241 /// This will return NULL if this declaration has no name (e.g., for
242 /// an unnamed class) or if the name is a special name (C++ constructor,
243 /// Objective-C selector, etc.).
244 IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
245
246 /// Get the name of identifier for this declaration as a StringRef.
247 ///
248 /// This requires that the declaration have a name and that it be a simple
249 /// identifier.
250 StringRef getName() const {
251 assert(Name.isIdentifier() && "Name is not a simple identifier")((Name.isIdentifier() && "Name is not a simple identifier"
) ? static_cast<void> (0) : __assert_fail ("Name.isIdentifier() && \"Name is not a simple identifier\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 251, __PRETTY_FUNCTION__))
;
252 return getIdentifier() ? getIdentifier()->getName() : "";
253 }
254
255 /// Get a human-readable name for the declaration, even if it is one of the
256 /// special kinds of names (C++ constructor, Objective-C selector, etc).
257 ///
258 /// Creating this name requires expensive string manipulation, so it should
259 /// be called only when performance doesn't matter. For simple declarations,
260 /// getNameAsCString() should suffice.
261 //
262 // FIXME: This function should be renamed to indicate that it is not just an
263 // alternate form of getName(), and clients should move as appropriate.
264 //
265 // FIXME: Deprecated, move clients to getName().
266 std::string getNameAsString() const { return Name.getAsString(); }
267
268 virtual void printName(raw_ostream &os) const;
269
270 /// Get the actual, stored name of the declaration, which may be a special
271 /// name.
272 DeclarationName getDeclName() const { return Name; }
273
274 /// Set the name of this declaration.
275 void setDeclName(DeclarationName N) { Name = N; }
276
277 /// Returns a human-readable qualified name for this declaration, like
278 /// A::B::i, for i being member of namespace A::B.
279 ///
280 /// If the declaration is not a member of context which can be named (record,
281 /// namespace), it will return the same result as printName().
282 ///
283 /// Creating this name is expensive, so it should be called only when
284 /// performance doesn't matter.
285 void printQualifiedName(raw_ostream &OS) const;
286 void printQualifiedName(raw_ostream &OS, const PrintingPolicy &Policy) const;
287
288 /// Print only the nested name specifier part of a fully-qualified name,
289 /// including the '::' at the end. E.g.
290 /// when `printQualifiedName(D)` prints "A::B::i",
291 /// this function prints "A::B::".
292 void printNestedNameSpecifier(raw_ostream &OS) const;
293 void printNestedNameSpecifier(raw_ostream &OS,
294 const PrintingPolicy &Policy) const;
295
296 // FIXME: Remove string version.
297 std::string getQualifiedNameAsString() const;
298
299 /// Appends a human-readable name for this declaration into the given stream.
300 ///
301 /// This is the method invoked by Sema when displaying a NamedDecl
302 /// in a diagnostic. It does not necessarily produce the same
303 /// result as printName(); for example, class template
304 /// specializations are printed with their template arguments.
305 virtual void getNameForDiagnostic(raw_ostream &OS,
306 const PrintingPolicy &Policy,
307 bool Qualified) const;
308
309 /// Determine whether this declaration, if known to be well-formed within
310 /// its context, will replace the declaration OldD if introduced into scope.
311 ///
312 /// A declaration will replace another declaration if, for example, it is
313 /// a redeclaration of the same variable or function, but not if it is a
314 /// declaration of a different kind (function vs. class) or an overloaded
315 /// function.
316 ///
317 /// \param IsKnownNewer \c true if this declaration is known to be newer
318 /// than \p OldD (for instance, if this declaration is newly-created).
319 bool declarationReplaces(NamedDecl *OldD, bool IsKnownNewer = true) const;
320
321 /// Determine whether this declaration has linkage.
322 bool hasLinkage() const;
323
324 using Decl::isModulePrivate;
325 using Decl::setModulePrivate;
326
327 /// Determine whether this declaration is a C++ class member.
328 bool isCXXClassMember() const {
329 const DeclContext *DC = getDeclContext();
330
331 // C++0x [class.mem]p1:
332 // The enumerators of an unscoped enumeration defined in
333 // the class are members of the class.
334 if (isa<EnumDecl>(DC))
335 DC = DC->getRedeclContext();
336
337 return DC->isRecord();
338 }
339
340 /// Determine whether the given declaration is an instance member of
341 /// a C++ class.
342 bool isCXXInstanceMember() const;
343
344 /// Determine what kind of linkage this entity has.
345 ///
346 /// This is not the linkage as defined by the standard or the codegen notion
347 /// of linkage. It is just an implementation detail that is used to compute
348 /// those.
349 Linkage getLinkageInternal() const;
350
351 /// Get the linkage from a semantic point of view. Entities in
352 /// anonymous namespaces are external (in c++98).
353 Linkage getFormalLinkage() const {
354 return clang::getFormalLinkage(getLinkageInternal());
355 }
356
357 /// True if this decl has external linkage.
358 bool hasExternalFormalLinkage() const {
359 return isExternalFormalLinkage(getLinkageInternal());
360 }
361
362 bool isExternallyVisible() const {
363 return clang::isExternallyVisible(getLinkageInternal());
364 }
365
366 /// Determine whether this declaration can be redeclared in a
367 /// different translation unit.
368 bool isExternallyDeclarable() const {
369 return isExternallyVisible() && !getOwningModuleForLinkage();
370 }
371
372 /// Determines the visibility of this entity.
373 Visibility getVisibility() const {
374 return getLinkageAndVisibility().getVisibility();
375 }
376
377 /// Determines the linkage and visibility of this entity.
378 LinkageInfo getLinkageAndVisibility() const;
379
380 /// Kinds of explicit visibility.
381 enum ExplicitVisibilityKind {
382 /// Do an LV computation for, ultimately, a type.
383 /// Visibility may be restricted by type visibility settings and
384 /// the visibility of template arguments.
385 VisibilityForType,
386
387 /// Do an LV computation for, ultimately, a non-type declaration.
388 /// Visibility may be restricted by value visibility settings and
389 /// the visibility of template arguments.
390 VisibilityForValue
391 };
392
393 /// If visibility was explicitly specified for this
394 /// declaration, return that visibility.
395 Optional<Visibility>
396 getExplicitVisibility(ExplicitVisibilityKind kind) const;
397
398 /// True if the computed linkage is valid. Used for consistency
399 /// checking. Should always return true.
400 bool isLinkageValid() const;
401
402 /// True if something has required us to compute the linkage
403 /// of this declaration.
404 ///
405 /// Language features which can retroactively change linkage (like a
406 /// typedef name for linkage purposes) may need to consider this,
407 /// but hopefully only in transitory ways during parsing.
408 bool hasLinkageBeenComputed() const {
409 return hasCachedLinkage();
410 }
411
412 /// Looks through UsingDecls and ObjCCompatibleAliasDecls for
413 /// the underlying named decl.
414 NamedDecl *getUnderlyingDecl() {
415 // Fast-path the common case.
416 if (this->getKind() != UsingShadow &&
417 this->getKind() != ConstructorUsingShadow &&
418 this->getKind() != ObjCCompatibleAlias &&
419 this->getKind() != NamespaceAlias)
420 return this;
421
422 return getUnderlyingDeclImpl();
423 }
424 const NamedDecl *getUnderlyingDecl() const {
425 return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
426 }
427
428 NamedDecl *getMostRecentDecl() {
429 return cast<NamedDecl>(static_cast<Decl *>(this)->getMostRecentDecl());
430 }
431 const NamedDecl *getMostRecentDecl() const {
432 return const_cast<NamedDecl*>(this)->getMostRecentDecl();
433 }
434
435 ObjCStringFormatFamily getObjCFStringFormattingFamily() const;
436
437 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
438 static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; }
439};
440
441inline raw_ostream &operator<<(raw_ostream &OS, const NamedDecl &ND) {
442 ND.printName(OS);
443 return OS;
444}
445
446/// Represents the declaration of a label. Labels also have a
447/// corresponding LabelStmt, which indicates the position that the label was
448/// defined at. For normal labels, the location of the decl is the same as the
449/// location of the statement. For GNU local labels (__label__), the decl
450/// location is where the __label__ is.
451class LabelDecl : public NamedDecl {
452 LabelStmt *TheStmt;
453 StringRef MSAsmName;
454 bool MSAsmNameResolved = false;
455
456 /// For normal labels, this is the same as the main declaration
457 /// label, i.e., the location of the identifier; for GNU local labels,
458 /// this is the location of the __label__ keyword.
459 SourceLocation LocStart;
460
461 LabelDecl(DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II,
462 LabelStmt *S, SourceLocation StartL)
463 : NamedDecl(Label, DC, IdentL, II), TheStmt(S), LocStart(StartL) {}
464
465 void anchor() override;
466
467public:
468 static LabelDecl *Create(ASTContext &C, DeclContext *DC,
469 SourceLocation IdentL, IdentifierInfo *II);
470 static LabelDecl *Create(ASTContext &C, DeclContext *DC,
471 SourceLocation IdentL, IdentifierInfo *II,
472 SourceLocation GnuLabelL);
473 static LabelDecl *CreateDeserialized(ASTContext &C, unsigned ID);
474
475 LabelStmt *getStmt() const { return TheStmt; }
476 void setStmt(LabelStmt *T) { TheStmt = T; }
477
478 bool isGnuLocal() const { return LocStart != getLocation(); }
479 void setLocStart(SourceLocation L) { LocStart = L; }
480
481 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
482 return SourceRange(LocStart, getLocation());
483 }
484
485 bool isMSAsmLabel() const { return !MSAsmName.empty(); }
486 bool isResolvedMSAsmLabel() const { return isMSAsmLabel() && MSAsmNameResolved; }
487 void setMSAsmLabel(StringRef Name);
488 StringRef getMSAsmLabel() const { return MSAsmName; }
489 void setMSAsmLabelResolved() { MSAsmNameResolved = true; }
490
491 // Implement isa/cast/dyncast/etc.
492 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
493 static bool classofKind(Kind K) { return K == Label; }
494};
495
496/// Represent a C++ namespace.
497class NamespaceDecl : public NamedDecl, public DeclContext,
498 public Redeclarable<NamespaceDecl>
499{
500 /// The starting location of the source range, pointing
501 /// to either the namespace or the inline keyword.
502 SourceLocation LocStart;
503
504 /// The ending location of the source range.
505 SourceLocation RBraceLoc;
506
507 /// A pointer to either the anonymous namespace that lives just inside
508 /// this namespace or to the first namespace in the chain (the latter case
509 /// only when this is not the first in the chain), along with a
510 /// boolean value indicating whether this is an inline namespace.
511 llvm::PointerIntPair<NamespaceDecl *, 1, bool> AnonOrFirstNamespaceAndInline;
512
513 NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
514 SourceLocation StartLoc, SourceLocation IdLoc,
515 IdentifierInfo *Id, NamespaceDecl *PrevDecl);
516
517 using redeclarable_base = Redeclarable<NamespaceDecl>;
518
519 NamespaceDecl *getNextRedeclarationImpl() override;
520 NamespaceDecl *getPreviousDeclImpl() override;
521 NamespaceDecl *getMostRecentDeclImpl() override;
522
523public:
524 friend class ASTDeclReader;
525 friend class ASTDeclWriter;
526
527 static NamespaceDecl *Create(ASTContext &C, DeclContext *DC,
528 bool Inline, SourceLocation StartLoc,
529 SourceLocation IdLoc, IdentifierInfo *Id,
530 NamespaceDecl *PrevDecl);
531
532 static NamespaceDecl *CreateDeserialized(ASTContext &C, unsigned ID);
533
534 using redecl_range = redeclarable_base::redecl_range;
535 using redecl_iterator = redeclarable_base::redecl_iterator;
536
537 using redeclarable_base::redecls_begin;
538 using redeclarable_base::redecls_end;
539 using redeclarable_base::redecls;
540 using redeclarable_base::getPreviousDecl;
541 using redeclarable_base::getMostRecentDecl;
542 using redeclarable_base::isFirstDecl;
543
544 /// Returns true if this is an anonymous namespace declaration.
545 ///
546 /// For example:
547 /// \code
548 /// namespace {
549 /// ...
550 /// };
551 /// \endcode
552 /// q.v. C++ [namespace.unnamed]
553 bool isAnonymousNamespace() const {
554 return !getIdentifier();
555 }
556
557 /// Returns true if this is an inline namespace declaration.
558 bool isInline() const {
559 return AnonOrFirstNamespaceAndInline.getInt();
560 }
561
562 /// Set whether this is an inline namespace declaration.
563 void setInline(bool Inline) {
564 AnonOrFirstNamespaceAndInline.setInt(Inline);
565 }
566
567 /// Get the original (first) namespace declaration.
568 NamespaceDecl *getOriginalNamespace();
569
570 /// Get the original (first) namespace declaration.
571 const NamespaceDecl *getOriginalNamespace() const;
572
573 /// Return true if this declaration is an original (first) declaration
574 /// of the namespace. This is false for non-original (subsequent) namespace
575 /// declarations and anonymous namespaces.
576 bool isOriginalNamespace() const;
577
578 /// Retrieve the anonymous namespace nested inside this namespace,
579 /// if any.
580 NamespaceDecl *getAnonymousNamespace() const {
581 return getOriginalNamespace()->AnonOrFirstNamespaceAndInline.getPointer();
582 }
583
584 void setAnonymousNamespace(NamespaceDecl *D) {
585 getOriginalNamespace()->AnonOrFirstNamespaceAndInline.setPointer(D);
586 }
587
588 /// Retrieves the canonical declaration of this namespace.
589 NamespaceDecl *getCanonicalDecl() override {
590 return getOriginalNamespace();
591 }
592 const NamespaceDecl *getCanonicalDecl() const {
593 return getOriginalNamespace();
594 }
595
596 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
597 return SourceRange(LocStart, RBraceLoc);
598 }
599
600 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return LocStart; }
601 SourceLocation getRBraceLoc() const { return RBraceLoc; }
602 void setLocStart(SourceLocation L) { LocStart = L; }
603 void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
604
605 // Implement isa/cast/dyncast/etc.
606 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
607 static bool classofKind(Kind K) { return K == Namespace; }
608 static DeclContext *castToDeclContext(const NamespaceDecl *D) {
609 return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
610 }
611 static NamespaceDecl *castFromDeclContext(const DeclContext *DC) {
612 return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
613 }
614};
615
616/// Represent the declaration of a variable (in which case it is
617/// an lvalue) a function (in which case it is a function designator) or
618/// an enum constant.
619class ValueDecl : public NamedDecl {
620 QualType DeclType;
621
622 void anchor() override;
623
624protected:
625 ValueDecl(Kind DK, DeclContext *DC, SourceLocation L,
626 DeclarationName N, QualType T)
627 : NamedDecl(DK, DC, L, N), DeclType(T) {}
628
629public:
630 QualType getType() const { return DeclType; }
631 void setType(QualType newType) { DeclType = newType; }
632
633 /// Determine whether this symbol is weakly-imported,
634 /// or declared with the weak or weak-ref attr.
635 bool isWeak() const;
636
637 // Implement isa/cast/dyncast/etc.
638 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
639 static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; }
640};
641
642/// A struct with extended info about a syntactic
643/// name qualifier, to be used for the case of out-of-line declarations.
644struct QualifierInfo {
645 NestedNameSpecifierLoc QualifierLoc;
646
647 /// The number of "outer" template parameter lists.
648 /// The count includes all of the template parameter lists that were matched
649 /// against the template-ids occurring into the NNS and possibly (in the
650 /// case of an explicit specialization) a final "template <>".
651 unsigned NumTemplParamLists = 0;
652
653 /// A new-allocated array of size NumTemplParamLists,
654 /// containing pointers to the "outer" template parameter lists.
655 /// It includes all of the template parameter lists that were matched
656 /// against the template-ids occurring into the NNS and possibly (in the
657 /// case of an explicit specialization) a final "template <>".
658 TemplateParameterList** TemplParamLists = nullptr;
659
660 QualifierInfo() = default;
661 QualifierInfo(const QualifierInfo &) = delete;
662 QualifierInfo& operator=(const QualifierInfo &) = delete;
663
664 /// Sets info about "outer" template parameter lists.
665 void setTemplateParameterListsInfo(ASTContext &Context,
666 ArrayRef<TemplateParameterList *> TPLists);
667};
668
669/// Represents a ValueDecl that came out of a declarator.
670/// Contains type source information through TypeSourceInfo.
671class DeclaratorDecl : public ValueDecl {
672 // A struct representing a TInfo, a trailing requires-clause and a syntactic
673 // qualifier, to be used for the (uncommon) case of out-of-line declarations
674 // and constrained function decls.
675 struct ExtInfo : public QualifierInfo {
676 TypeSourceInfo *TInfo;
677 Expr *TrailingRequiresClause = nullptr;
678 };
679
680 llvm::PointerUnion<TypeSourceInfo *, ExtInfo *> DeclInfo;
681
682 /// The start of the source range for this declaration,
683 /// ignoring outer template declarations.
684 SourceLocation InnerLocStart;
685
686 bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); }
687 ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); }
688 const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); }
689
690protected:
691 DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L,
692 DeclarationName N, QualType T, TypeSourceInfo *TInfo,
693 SourceLocation StartL)
694 : ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo), InnerLocStart(StartL) {}
695
696public:
697 friend class ASTDeclReader;
698 friend class ASTDeclWriter;
699
700 TypeSourceInfo *getTypeSourceInfo() const {
701 return hasExtInfo()
702 ? getExtInfo()->TInfo
703 : DeclInfo.get<TypeSourceInfo*>();
704 }
705
706 void setTypeSourceInfo(TypeSourceInfo *TI) {
707 if (hasExtInfo())
708 getExtInfo()->TInfo = TI;
709 else
710 DeclInfo = TI;
711 }
712
713 /// Return start of source range ignoring outer template declarations.
714 SourceLocation getInnerLocStart() const { return InnerLocStart; }
715 void setInnerLocStart(SourceLocation L) { InnerLocStart = L; }
716
717 /// Return start of source range taking into account any outer template
718 /// declarations.
719 SourceLocation getOuterLocStart() const;
720
721 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
722
723 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
724 return getOuterLocStart();
725 }
726
727 /// Retrieve the nested-name-specifier that qualifies the name of this
728 /// declaration, if it was present in the source.
729 NestedNameSpecifier *getQualifier() const {
730 return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
731 : nullptr;
732 }
733
734 /// Retrieve the nested-name-specifier (with source-location
735 /// information) that qualifies the name of this declaration, if it was
736 /// present in the source.
737 NestedNameSpecifierLoc getQualifierLoc() const {
738 return hasExtInfo() ? getExtInfo()->QualifierLoc
739 : NestedNameSpecifierLoc();
740 }
741
742 void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
743
744 /// \brief Get the constraint-expression introduced by the trailing
745 /// requires-clause in the function/member declaration, or null if no
746 /// requires-clause was provided.
747 Expr *getTrailingRequiresClause() {
748 return hasExtInfo() ? getExtInfo()->TrailingRequiresClause
749 : nullptr;
750 }
751
752 const Expr *getTrailingRequiresClause() const {
753 return hasExtInfo() ? getExtInfo()->TrailingRequiresClause
754 : nullptr;
755 }
756
757 void setTrailingRequiresClause(Expr *TrailingRequiresClause);
758
759 unsigned getNumTemplateParameterLists() const {
760 return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
761 }
762
763 TemplateParameterList *getTemplateParameterList(unsigned index) const {
764 assert(index < getNumTemplateParameterLists())((index < getNumTemplateParameterLists()) ? static_cast<
void> (0) : __assert_fail ("index < getNumTemplateParameterLists()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 764, __PRETTY_FUNCTION__))
;
765 return getExtInfo()->TemplParamLists[index];
766 }
767
768 void setTemplateParameterListsInfo(ASTContext &Context,
769 ArrayRef<TemplateParameterList *> TPLists);
770
771 SourceLocation getTypeSpecStartLoc() const;
772 SourceLocation getTypeSpecEndLoc() const;
773
774 // Implement isa/cast/dyncast/etc.
775 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
776 static bool classofKind(Kind K) {
777 return K >= firstDeclarator && K <= lastDeclarator;
778 }
779};
780
781/// Structure used to store a statement, the constant value to
782/// which it was evaluated (if any), and whether or not the statement
783/// is an integral constant expression (if known).
784struct EvaluatedStmt {
785 /// Whether this statement was already evaluated.
786 bool WasEvaluated : 1;
787
788 /// Whether this statement is being evaluated.
789 bool IsEvaluating : 1;
790
791 /// Whether we already checked whether this statement was an
792 /// integral constant expression.
793 bool CheckedICE : 1;
794
795 /// Whether we are checking whether this statement is an
796 /// integral constant expression.
797 bool CheckingICE : 1;
798
799 /// Whether this statement is an integral constant expression,
800 /// or in C++11, whether the statement is a constant expression. Only
801 /// valid if CheckedICE is true.
802 bool IsICE : 1;
803
804 /// Whether this variable is known to have constant destruction. That is,
805 /// whether running the destructor on the initial value is a side-effect
806 /// (and doesn't inspect any state that might have changed during program
807 /// execution). This is currently only computed if the destructor is
808 /// non-trivial.
809 bool HasConstantDestruction : 1;
810
811 Stmt *Value;
812 APValue Evaluated;
813
814 EvaluatedStmt()
815 : WasEvaluated(false), IsEvaluating(false), CheckedICE(false),
816 CheckingICE(false), IsICE(false), HasConstantDestruction(false) {}
817};
818
819/// Represents a variable declaration or definition.
820class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
821public:
822 /// Initialization styles.
823 enum InitializationStyle {
824 /// C-style initialization with assignment
825 CInit,
826
827 /// Call-style initialization (C++98)
828 CallInit,
829
830 /// Direct list-initialization (C++11)
831 ListInit
832 };
833
834 /// Kinds of thread-local storage.
835 enum TLSKind {
836 /// Not a TLS variable.
837 TLS_None,
838
839 /// TLS with a known-constant initializer.
840 TLS_Static,
841
842 /// TLS with a dynamic initializer.
843 TLS_Dynamic
844 };
845
846 /// Return the string used to specify the storage class \p SC.
847 ///
848 /// It is illegal to call this function with SC == None.
849 static const char *getStorageClassSpecifierString(StorageClass SC);
850
851protected:
852 // A pointer union of Stmt * and EvaluatedStmt *. When an EvaluatedStmt, we
853 // have allocated the auxiliary struct of information there.
854 //
855 // TODO: It is a bit unfortunate to use a PointerUnion inside the VarDecl for
856 // this as *many* VarDecls are ParmVarDecls that don't have default
857 // arguments. We could save some space by moving this pointer union to be
858 // allocated in trailing space when necessary.
859 using InitType = llvm::PointerUnion<Stmt *, EvaluatedStmt *>;
860
861 /// The initializer for this variable or, for a ParmVarDecl, the
862 /// C++ default argument.
863 mutable InitType Init;
864
865private:
866 friend class ASTDeclReader;
867 friend class ASTNodeImporter;
868 friend class StmtIteratorBase;
869
870 class VarDeclBitfields {
871 friend class ASTDeclReader;
872 friend class VarDecl;
873
874 unsigned SClass : 3;
875 unsigned TSCSpec : 2;
876 unsigned InitStyle : 2;
877
878 /// Whether this variable is an ARC pseudo-__strong variable; see
879 /// isARCPseudoStrong() for details.
880 unsigned ARCPseudoStrong : 1;
881 };
882 enum { NumVarDeclBits = 8 };
883
884protected:
885 enum { NumParameterIndexBits = 8 };
886
887 enum DefaultArgKind {
888 DAK_None,
889 DAK_Unparsed,
890 DAK_Uninstantiated,
891 DAK_Normal
892 };
893
894 enum { NumScopeDepthOrObjCQualsBits = 7 };
895
896 class ParmVarDeclBitfields {
897 friend class ASTDeclReader;
898 friend class ParmVarDecl;
899
900 unsigned : NumVarDeclBits;
901
902 /// Whether this parameter inherits a default argument from a
903 /// prior declaration.
904 unsigned HasInheritedDefaultArg : 1;
905
906 /// Describes the kind of default argument for this parameter. By default
907 /// this is none. If this is normal, then the default argument is stored in
908 /// the \c VarDecl initializer expression unless we were unable to parse
909 /// (even an invalid) expression for the default argument.
910 unsigned DefaultArgKind : 2;
911
912 /// Whether this parameter undergoes K&R argument promotion.
913 unsigned IsKNRPromoted : 1;
914
915 /// Whether this parameter is an ObjC method parameter or not.
916 unsigned IsObjCMethodParam : 1;
917
918 /// If IsObjCMethodParam, a Decl::ObjCDeclQualifier.
919 /// Otherwise, the number of function parameter scopes enclosing
920 /// the function parameter scope in which this parameter was
921 /// declared.
922 unsigned ScopeDepthOrObjCQuals : NumScopeDepthOrObjCQualsBits;
923
924 /// The number of parameters preceding this parameter in the
925 /// function parameter scope in which it was declared.
926 unsigned ParameterIndex : NumParameterIndexBits;
927 };
928
929 class NonParmVarDeclBitfields {
930 friend class ASTDeclReader;
931 friend class ImplicitParamDecl;
932 friend class VarDecl;
933
934 unsigned : NumVarDeclBits;
935
936 // FIXME: We need something similar to CXXRecordDecl::DefinitionData.
937 /// Whether this variable is a definition which was demoted due to
938 /// module merge.
939 unsigned IsThisDeclarationADemotedDefinition : 1;
940
941 /// Whether this variable is the exception variable in a C++ catch
942 /// or an Objective-C @catch statement.
943 unsigned ExceptionVar : 1;
944
945 /// Whether this local variable could be allocated in the return
946 /// slot of its function, enabling the named return value optimization
947 /// (NRVO).
948 unsigned NRVOVariable : 1;
949
950 /// Whether this variable is the for-range-declaration in a C++0x
951 /// for-range statement.
952 unsigned CXXForRangeDecl : 1;
953
954 /// Whether this variable is the for-in loop declaration in Objective-C.
955 unsigned ObjCForDecl : 1;
956
957 /// Whether this variable is (C++1z) inline.
958 unsigned IsInline : 1;
959
960 /// Whether this variable has (C++1z) inline explicitly specified.
961 unsigned IsInlineSpecified : 1;
962
963 /// Whether this variable is (C++0x) constexpr.
964 unsigned IsConstexpr : 1;
965
966 /// Whether this variable is the implicit variable for a lambda
967 /// init-capture.
968 unsigned IsInitCapture : 1;
969
970 /// Whether this local extern variable's previous declaration was
971 /// declared in the same block scope. This controls whether we should merge
972 /// the type of this declaration with its previous declaration.
973 unsigned PreviousDeclInSameBlockScope : 1;
974
975 /// Defines kind of the ImplicitParamDecl: 'this', 'self', 'vtt', '_cmd' or
976 /// something else.
977 unsigned ImplicitParamKind : 3;
978
979 unsigned EscapingByref : 1;
980 };
981
982 union {
983 unsigned AllBits;
984 VarDeclBitfields VarDeclBits;
985 ParmVarDeclBitfields ParmVarDeclBits;
986 NonParmVarDeclBitfields NonParmVarDeclBits;
987 };
988
989 VarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
990 SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
991 TypeSourceInfo *TInfo, StorageClass SC);
992
993 using redeclarable_base = Redeclarable<VarDecl>;
994
995 VarDecl *getNextRedeclarationImpl() override {
996 return getNextRedeclaration();
997 }
998
999 VarDecl *getPreviousDeclImpl() override {
1000 return getPreviousDecl();
1001 }
1002
1003 VarDecl *getMostRecentDeclImpl() override {
1004 return getMostRecentDecl();
1005 }
1006
1007public:
1008 using redecl_range = redeclarable_base::redecl_range;
1009 using redecl_iterator = redeclarable_base::redecl_iterator;
1010
1011 using redeclarable_base::redecls_begin;
1012 using redeclarable_base::redecls_end;
1013 using redeclarable_base::redecls;
1014 using redeclarable_base::getPreviousDecl;
1015 using redeclarable_base::getMostRecentDecl;
1016 using redeclarable_base::isFirstDecl;
1017
1018 static VarDecl *Create(ASTContext &C, DeclContext *DC,
1019 SourceLocation StartLoc, SourceLocation IdLoc,
1020 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1021 StorageClass S);
1022
1023 static VarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1024
1025 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
1026
1027 /// Returns the storage class as written in the source. For the
1028 /// computed linkage of symbol, see getLinkage.
1029 StorageClass getStorageClass() const {
1030 return (StorageClass) VarDeclBits.SClass;
1031 }
1032 void setStorageClass(StorageClass SC);
1033
1034 void setTSCSpec(ThreadStorageClassSpecifier TSC) {
1035 VarDeclBits.TSCSpec = TSC;
1036 assert(VarDeclBits.TSCSpec == TSC && "truncation")((VarDeclBits.TSCSpec == TSC && "truncation") ? static_cast
<void> (0) : __assert_fail ("VarDeclBits.TSCSpec == TSC && \"truncation\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 1036, __PRETTY_FUNCTION__))
;
1037 }
1038 ThreadStorageClassSpecifier getTSCSpec() const {
1039 return static_cast<ThreadStorageClassSpecifier>(VarDeclBits.TSCSpec);
1040 }
1041 TLSKind getTLSKind() const;
1042
1043 /// Returns true if a variable with function scope is a non-static local
1044 /// variable.
1045 bool hasLocalStorage() const {
1046 if (getStorageClass() == SC_None) {
1047 // OpenCL v1.2 s6.5.3: The __constant or constant address space name is
1048 // used to describe variables allocated in global memory and which are
1049 // accessed inside a kernel(s) as read-only variables. As such, variables
1050 // in constant address space cannot have local storage.
1051 if (getType().getAddressSpace() == LangAS::opencl_constant)
1052 return false;
1053 // Second check is for C++11 [dcl.stc]p4.
1054 return !isFileVarDecl() && getTSCSpec() == TSCS_unspecified;
1055 }
1056
1057 // Global Named Register (GNU extension)
1058 if (getStorageClass() == SC_Register && !isLocalVarDeclOrParm())
1059 return false;
1060
1061 // Return true for: Auto, Register.
1062 // Return false for: Extern, Static, PrivateExtern, OpenCLWorkGroupLocal.
1063
1064 return getStorageClass() >= SC_Auto;
1065 }
1066
1067 /// Returns true if a variable with function scope is a static local
1068 /// variable.
1069 bool isStaticLocal() const {
1070 return (getStorageClass() == SC_Static ||
1071 // C++11 [dcl.stc]p4
1072 (getStorageClass() == SC_None && getTSCSpec() == TSCS_thread_local))
1073 && !isFileVarDecl();
1074 }
1075
1076 /// Returns true if a variable has extern or __private_extern__
1077 /// storage.
1078 bool hasExternalStorage() const {
1079 return getStorageClass() == SC_Extern ||
1080 getStorageClass() == SC_PrivateExtern;
1081 }
1082
1083 /// Returns true for all variables that do not have local storage.
1084 ///
1085 /// This includes all global variables as well as static variables declared
1086 /// within a function.
1087 bool hasGlobalStorage() const { return !hasLocalStorage(); }
1088
1089 /// Get the storage duration of this variable, per C++ [basic.stc].
1090 StorageDuration getStorageDuration() const {
1091 return hasLocalStorage() ? SD_Automatic :
1092 getTSCSpec() ? SD_Thread : SD_Static;
1093 }
1094
1095 /// Compute the language linkage.
1096 LanguageLinkage getLanguageLinkage() const;
1097
1098 /// Determines whether this variable is a variable with external, C linkage.
1099 bool isExternC() const;
1100
1101 /// Determines whether this variable's context is, or is nested within,
1102 /// a C++ extern "C" linkage spec.
1103 bool isInExternCContext() const;
1104
1105 /// Determines whether this variable's context is, or is nested within,
1106 /// a C++ extern "C++" linkage spec.
1107 bool isInExternCXXContext() const;
1108
1109 /// Returns true for local variable declarations other than parameters.
1110 /// Note that this includes static variables inside of functions. It also
1111 /// includes variables inside blocks.
1112 ///
1113 /// void foo() { int x; static int y; extern int z; }
1114 bool isLocalVarDecl() const {
1115 if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1116 return false;
1117 if (const DeclContext *DC = getLexicalDeclContext())
1118 return DC->getRedeclContext()->isFunctionOrMethod();
1119 return false;
1120 }
1121
1122 /// Similar to isLocalVarDecl but also includes parameters.
1123 bool isLocalVarDeclOrParm() const {
1124 return isLocalVarDecl() || getKind() == Decl::ParmVar;
1125 }
1126
1127 /// Similar to isLocalVarDecl, but excludes variables declared in blocks.
1128 bool isFunctionOrMethodVarDecl() const {
1129 if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1130 return false;
1131 const DeclContext *DC = getLexicalDeclContext()->getRedeclContext();
1132 return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block;
1133 }
1134
1135 /// Determines whether this is a static data member.
1136 ///
1137 /// This will only be true in C++, and applies to, e.g., the
1138 /// variable 'x' in:
1139 /// \code
1140 /// struct S {
1141 /// static int x;
1142 /// };
1143 /// \endcode
1144 bool isStaticDataMember() const {
1145 // If it wasn't static, it would be a FieldDecl.
1146 return getKind() != Decl::ParmVar && getDeclContext()->isRecord();
1147 }
1148
1149 VarDecl *getCanonicalDecl() override;
1150 const VarDecl *getCanonicalDecl() const {
1151 return const_cast<VarDecl*>(this)->getCanonicalDecl();
1152 }
1153
1154 enum DefinitionKind {
1155 /// This declaration is only a declaration.
1156 DeclarationOnly,
1157
1158 /// This declaration is a tentative definition.
1159 TentativeDefinition,
1160
1161 /// This declaration is definitely a definition.
1162 Definition
1163 };
1164
1165 /// Check whether this declaration is a definition. If this could be
1166 /// a tentative definition (in C), don't check whether there's an overriding
1167 /// definition.
1168 DefinitionKind isThisDeclarationADefinition(ASTContext &) const;
1169 DefinitionKind isThisDeclarationADefinition() const {
1170 return isThisDeclarationADefinition(getASTContext());
1171 }
1172
1173 /// Check whether this variable is defined in this translation unit.
1174 DefinitionKind hasDefinition(ASTContext &) const;
1175 DefinitionKind hasDefinition() const {
1176 return hasDefinition(getASTContext());
1177 }
1178
1179 /// Get the tentative definition that acts as the real definition in a TU.
1180 /// Returns null if there is a proper definition available.
1181 VarDecl *getActingDefinition();
1182 const VarDecl *getActingDefinition() const {
1183 return const_cast<VarDecl*>(this)->getActingDefinition();
1184 }
1185
1186 /// Get the real (not just tentative) definition for this declaration.
1187 VarDecl *getDefinition(ASTContext &);
1188 const VarDecl *getDefinition(ASTContext &C) const {
1189 return const_cast<VarDecl*>(this)->getDefinition(C);
1190 }
1191 VarDecl *getDefinition() {
1192 return getDefinition(getASTContext());
1193 }
1194 const VarDecl *getDefinition() const {
1195 return const_cast<VarDecl*>(this)->getDefinition();
1196 }
1197
1198 /// Determine whether this is or was instantiated from an out-of-line
1199 /// definition of a static data member.
1200 bool isOutOfLine() const override;
1201
1202 /// Returns true for file scoped variable declaration.
1203 bool isFileVarDecl() const {
1204 Kind K = getKind();
1205 if (K == ParmVar || K == ImplicitParam)
1206 return false;
1207
1208 if (getLexicalDeclContext()->getRedeclContext()->isFileContext())
1209 return true;
1210
1211 if (isStaticDataMember())
1212 return true;
1213
1214 return false;
1215 }
1216
1217 /// Get the initializer for this variable, no matter which
1218 /// declaration it is attached to.
1219 const Expr *getAnyInitializer() const {
1220 const VarDecl *D;
1221 return getAnyInitializer(D);
1222 }
1223
1224 /// Get the initializer for this variable, no matter which
1225 /// declaration it is attached to. Also get that declaration.
1226 const Expr *getAnyInitializer(const VarDecl *&D) const;
1227
1228 bool hasInit() const;
1229 const Expr *getInit() const {
1230 return const_cast<VarDecl *>(this)->getInit();
1231 }
1232 Expr *getInit();
1233
1234 /// Retrieve the address of the initializer expression.
1235 Stmt **getInitAddress();
1236
1237 void setInit(Expr *I);
1238
1239 /// Get the initializing declaration of this variable, if any. This is
1240 /// usually the definition, except that for a static data member it can be
1241 /// the in-class declaration.
1242 VarDecl *getInitializingDeclaration();
1243 const VarDecl *getInitializingDeclaration() const {
1244 return const_cast<VarDecl *>(this)->getInitializingDeclaration();
1245 }
1246
1247 /// Determine whether this variable's value might be usable in a
1248 /// constant expression, according to the relevant language standard.
1249 /// This only checks properties of the declaration, and does not check
1250 /// whether the initializer is in fact a constant expression.
1251 bool mightBeUsableInConstantExpressions(ASTContext &C) const;
1252
1253 /// Determine whether this variable's value can be used in a
1254 /// constant expression, according to the relevant language standard,
1255 /// including checking whether it was initialized by a constant expression.
1256 bool isUsableInConstantExpressions(ASTContext &C) const;
1257
1258 EvaluatedStmt *ensureEvaluatedStmt() const;
1259
1260 /// Attempt to evaluate the value of the initializer attached to this
1261 /// declaration, and produce notes explaining why it cannot be evaluated or is
1262 /// not a constant expression. Returns a pointer to the value if evaluation
1263 /// succeeded, 0 otherwise.
1264 APValue *evaluateValue() const;
1265 APValue *evaluateValue(SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
1266
1267 /// Return the already-evaluated value of this variable's
1268 /// initializer, or NULL if the value is not yet known. Returns pointer
1269 /// to untyped APValue if the value could not be evaluated.
1270 APValue *getEvaluatedValue() const;
1271
1272 /// Evaluate the destruction of this variable to determine if it constitutes
1273 /// constant destruction.
1274 ///
1275 /// \pre isInitICE()
1276 /// \return \c true if this variable has constant destruction, \c false if
1277 /// not.
1278 bool evaluateDestruction(SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
1279
1280 /// Determines whether it is already known whether the
1281 /// initializer is an integral constant expression or not.
1282 bool isInitKnownICE() const;
1283
1284 /// Determines whether the initializer is an integral constant
1285 /// expression, or in C++11, whether the initializer is a constant
1286 /// expression.
1287 ///
1288 /// \pre isInitKnownICE()
1289 bool isInitICE() const;
1290
1291 /// Determine whether the value of the initializer attached to this
1292 /// declaration is an integral constant expression.
1293 bool checkInitIsICE() const;
1294
1295 void setInitStyle(InitializationStyle Style) {
1296 VarDeclBits.InitStyle = Style;
1297 }
1298
1299 /// The style of initialization for this declaration.
1300 ///
1301 /// C-style initialization is "int x = 1;". Call-style initialization is
1302 /// a C++98 direct-initializer, e.g. "int x(1);". The Init expression will be
1303 /// the expression inside the parens or a "ClassType(a,b,c)" class constructor
1304 /// expression for class types. List-style initialization is C++11 syntax,
1305 /// e.g. "int x{1};". Clients can distinguish between different forms of
1306 /// initialization by checking this value. In particular, "int x = {1};" is
1307 /// C-style, "int x({1})" is call-style, and "int x{1};" is list-style; the
1308 /// Init expression in all three cases is an InitListExpr.
1309 InitializationStyle getInitStyle() const {
1310 return static_cast<InitializationStyle>(VarDeclBits.InitStyle);
1311 }
1312
1313 /// Whether the initializer is a direct-initializer (list or call).
1314 bool isDirectInit() const {
1315 return getInitStyle() != CInit;
1316 }
1317
1318 /// If this definition should pretend to be a declaration.
1319 bool isThisDeclarationADemotedDefinition() const {
1320 return isa<ParmVarDecl>(this) ? false :
1321 NonParmVarDeclBits.IsThisDeclarationADemotedDefinition;
1322 }
1323
1324 /// This is a definition which should be demoted to a declaration.
1325 ///
1326 /// In some cases (mostly module merging) we can end up with two visible
1327 /// definitions one of which needs to be demoted to a declaration to keep
1328 /// the AST invariants.
1329 void demoteThisDefinitionToDeclaration() {
1330 assert(isThisDeclarationADefinition() && "Not a definition!")((isThisDeclarationADefinition() && "Not a definition!"
) ? static_cast<void> (0) : __assert_fail ("isThisDeclarationADefinition() && \"Not a definition!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 1330, __PRETTY_FUNCTION__))
;
1331 assert(!isa<ParmVarDecl>(this) && "Cannot demote ParmVarDecls!")((!isa<ParmVarDecl>(this) && "Cannot demote ParmVarDecls!"
) ? static_cast<void> (0) : __assert_fail ("!isa<ParmVarDecl>(this) && \"Cannot demote ParmVarDecls!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 1331, __PRETTY_FUNCTION__))
;
1332 NonParmVarDeclBits.IsThisDeclarationADemotedDefinition = 1;
1333 }
1334
1335 /// Determine whether this variable is the exception variable in a
1336 /// C++ catch statememt or an Objective-C \@catch statement.
1337 bool isExceptionVariable() const {
1338 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.ExceptionVar;
1339 }
1340 void setExceptionVariable(bool EV) {
1341 assert(!isa<ParmVarDecl>(this))((!isa<ParmVarDecl>(this)) ? static_cast<void> (0
) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 1341, __PRETTY_FUNCTION__))
;
1342 NonParmVarDeclBits.ExceptionVar = EV;
1343 }
1344
1345 /// Determine whether this local variable can be used with the named
1346 /// return value optimization (NRVO).
1347 ///
1348 /// The named return value optimization (NRVO) works by marking certain
1349 /// non-volatile local variables of class type as NRVO objects. These
1350 /// locals can be allocated within the return slot of their containing
1351 /// function, in which case there is no need to copy the object to the
1352 /// return slot when returning from the function. Within the function body,
1353 /// each return that returns the NRVO object will have this variable as its
1354 /// NRVO candidate.
1355 bool isNRVOVariable() const {
1356 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.NRVOVariable;
1357 }
1358 void setNRVOVariable(bool NRVO) {
1359 assert(!isa<ParmVarDecl>(this))((!isa<ParmVarDecl>(this)) ? static_cast<void> (0
) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 1359, __PRETTY_FUNCTION__))
;
1360 NonParmVarDeclBits.NRVOVariable = NRVO;
1361 }
1362
1363 /// Determine whether this variable is the for-range-declaration in
1364 /// a C++0x for-range statement.
1365 bool isCXXForRangeDecl() const {
1366 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.CXXForRangeDecl;
1367 }
1368 void setCXXForRangeDecl(bool FRD) {
1369 assert(!isa<ParmVarDecl>(this))((!isa<ParmVarDecl>(this)) ? static_cast<void> (0
) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 1369, __PRETTY_FUNCTION__))
;
1370 NonParmVarDeclBits.CXXForRangeDecl = FRD;
1371 }
1372
1373 /// Determine whether this variable is a for-loop declaration for a
1374 /// for-in statement in Objective-C.
1375 bool isObjCForDecl() const {
1376 return NonParmVarDeclBits.ObjCForDecl;
1377 }
1378
1379 void setObjCForDecl(bool FRD) {
1380 NonParmVarDeclBits.ObjCForDecl = FRD;
1381 }
1382
1383 /// Determine whether this variable is an ARC pseudo-__strong variable. A
1384 /// pseudo-__strong variable has a __strong-qualified type but does not
1385 /// actually retain the object written into it. Generally such variables are
1386 /// also 'const' for safety. There are 3 cases where this will be set, 1) if
1387 /// the variable is annotated with the objc_externally_retained attribute, 2)
1388 /// if its 'self' in a non-init method, or 3) if its the variable in an for-in
1389 /// loop.
1390 bool isARCPseudoStrong() const { return VarDeclBits.ARCPseudoStrong; }
1391 void setARCPseudoStrong(bool PS) { VarDeclBits.ARCPseudoStrong = PS; }
1392
1393 /// Whether this variable is (C++1z) inline.
1394 bool isInline() const {
1395 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInline;
1396 }
1397 bool isInlineSpecified() const {
1398 return isa<ParmVarDecl>(this) ? false
1399 : NonParmVarDeclBits.IsInlineSpecified;
1400 }
1401 void setInlineSpecified() {
1402 assert(!isa<ParmVarDecl>(this))((!isa<ParmVarDecl>(this)) ? static_cast<void> (0
) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 1402, __PRETTY_FUNCTION__))
;
1403 NonParmVarDeclBits.IsInline = true;
1404 NonParmVarDeclBits.IsInlineSpecified = true;
1405 }
1406 void setImplicitlyInline() {
1407 assert(!isa<ParmVarDecl>(this))((!isa<ParmVarDecl>(this)) ? static_cast<void> (0
) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 1407, __PRETTY_FUNCTION__))
;
1408 NonParmVarDeclBits.IsInline = true;
1409 }
1410
1411 /// Whether this variable is (C++11) constexpr.
1412 bool isConstexpr() const {
1413 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsConstexpr;
1414 }
1415 void setConstexpr(bool IC) {
1416 assert(!isa<ParmVarDecl>(this))((!isa<ParmVarDecl>(this)) ? static_cast<void> (0
) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 1416, __PRETTY_FUNCTION__))
;
1417 NonParmVarDeclBits.IsConstexpr = IC;
1418 }
1419
1420 /// Whether this variable is the implicit variable for a lambda init-capture.
1421 bool isInitCapture() const {
1422 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInitCapture;
1423 }
1424 void setInitCapture(bool IC) {
1425 assert(!isa<ParmVarDecl>(this))((!isa<ParmVarDecl>(this)) ? static_cast<void> (0
) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 1425, __PRETTY_FUNCTION__))
;
1426 NonParmVarDeclBits.IsInitCapture = IC;
1427 }
1428
1429 /// Determine whether this variable is actually a function parameter pack or
1430 /// init-capture pack.
1431 bool isParameterPack() const;
1432
1433 /// Whether this local extern variable declaration's previous declaration
1434 /// was declared in the same block scope. Only correct in C++.
1435 bool isPreviousDeclInSameBlockScope() const {
1436 return isa<ParmVarDecl>(this)
1437 ? false
1438 : NonParmVarDeclBits.PreviousDeclInSameBlockScope;
1439 }
1440 void setPreviousDeclInSameBlockScope(bool Same) {
1441 assert(!isa<ParmVarDecl>(this))((!isa<ParmVarDecl>(this)) ? static_cast<void> (0
) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 1441, __PRETTY_FUNCTION__))
;
1442 NonParmVarDeclBits.PreviousDeclInSameBlockScope = Same;
1443 }
1444
1445 /// Indicates the capture is a __block variable that is captured by a block
1446 /// that can potentially escape (a block for which BlockDecl::doesNotEscape
1447 /// returns false).
1448 bool isEscapingByref() const;
1449
1450 /// Indicates the capture is a __block variable that is never captured by an
1451 /// escaping block.
1452 bool isNonEscapingByref() const;
1453
1454 void setEscapingByref() {
1455 NonParmVarDeclBits.EscapingByref = true;
1456 }
1457
1458 /// Retrieve the variable declaration from which this variable could
1459 /// be instantiated, if it is an instantiation (rather than a non-template).
1460 VarDecl *getTemplateInstantiationPattern() const;
1461
1462 /// If this variable is an instantiated static data member of a
1463 /// class template specialization, returns the templated static data member
1464 /// from which it was instantiated.
1465 VarDecl *getInstantiatedFromStaticDataMember() const;
1466
1467 /// If this variable is an instantiation of a variable template or a
1468 /// static data member of a class template, determine what kind of
1469 /// template specialization or instantiation this is.
1470 TemplateSpecializationKind getTemplateSpecializationKind() const;
1471
1472 /// Get the template specialization kind of this variable for the purposes of
1473 /// template instantiation. This differs from getTemplateSpecializationKind()
1474 /// for an instantiation of a class-scope explicit specialization.
1475 TemplateSpecializationKind
1476 getTemplateSpecializationKindForInstantiation() const;
1477
1478 /// If this variable is an instantiation of a variable template or a
1479 /// static data member of a class template, determine its point of
1480 /// instantiation.
1481 SourceLocation getPointOfInstantiation() const;
1482
1483 /// If this variable is an instantiation of a static data member of a
1484 /// class template specialization, retrieves the member specialization
1485 /// information.
1486 MemberSpecializationInfo *getMemberSpecializationInfo() const;
1487
1488 /// For a static data member that was instantiated from a static
1489 /// data member of a class template, set the template specialiation kind.
1490 void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
1491 SourceLocation PointOfInstantiation = SourceLocation());
1492
1493 /// Specify that this variable is an instantiation of the
1494 /// static data member VD.
1495 void setInstantiationOfStaticDataMember(VarDecl *VD,
1496 TemplateSpecializationKind TSK);
1497
1498 /// Retrieves the variable template that is described by this
1499 /// variable declaration.
1500 ///
1501 /// Every variable template is represented as a VarTemplateDecl and a
1502 /// VarDecl. The former contains template properties (such as
1503 /// the template parameter lists) while the latter contains the
1504 /// actual description of the template's
1505 /// contents. VarTemplateDecl::getTemplatedDecl() retrieves the
1506 /// VarDecl that from a VarTemplateDecl, while
1507 /// getDescribedVarTemplate() retrieves the VarTemplateDecl from
1508 /// a VarDecl.
1509 VarTemplateDecl *getDescribedVarTemplate() const;
1510
1511 void setDescribedVarTemplate(VarTemplateDecl *Template);
1512
1513 // Is this variable known to have a definition somewhere in the complete
1514 // program? This may be true even if the declaration has internal linkage and
1515 // has no definition within this source file.
1516 bool isKnownToBeDefined() const;
1517
1518 /// Is destruction of this variable entirely suppressed? If so, the variable
1519 /// need not have a usable destructor at all.
1520 bool isNoDestroy(const ASTContext &) const;
1521
1522 /// Would the destruction of this variable have any effect, and if so, what
1523 /// kind?
1524 QualType::DestructionKind needsDestruction(const ASTContext &Ctx) const;
1525
1526 // Implement isa/cast/dyncast/etc.
1527 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1528 static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; }
1529};
1530
1531class ImplicitParamDecl : public VarDecl {
1532 void anchor() override;
1533
1534public:
1535 /// Defines the kind of the implicit parameter: is this an implicit parameter
1536 /// with pointer to 'this', 'self', '_cmd', virtual table pointers, captured
1537 /// context or something else.
1538 enum ImplicitParamKind : unsigned {
1539 /// Parameter for Objective-C 'self' argument
1540 ObjCSelf,
1541
1542 /// Parameter for Objective-C '_cmd' argument
1543 ObjCCmd,
1544
1545 /// Parameter for C++ 'this' argument
1546 CXXThis,
1547
1548 /// Parameter for C++ virtual table pointers
1549 CXXVTT,
1550
1551 /// Parameter for captured context
1552 CapturedContext,
1553
1554 /// Other implicit parameter
1555 Other,
1556 };
1557
1558 /// Create implicit parameter.
1559 static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC,
1560 SourceLocation IdLoc, IdentifierInfo *Id,
1561 QualType T, ImplicitParamKind ParamKind);
1562 static ImplicitParamDecl *Create(ASTContext &C, QualType T,
1563 ImplicitParamKind ParamKind);
1564
1565 static ImplicitParamDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1566
1567 ImplicitParamDecl(ASTContext &C, DeclContext *DC, SourceLocation IdLoc,
1568 IdentifierInfo *Id, QualType Type,
1569 ImplicitParamKind ParamKind)
1570 : VarDecl(ImplicitParam, C, DC, IdLoc, IdLoc, Id, Type,
1571 /*TInfo=*/nullptr, SC_None) {
1572 NonParmVarDeclBits.ImplicitParamKind = ParamKind;
1573 setImplicit();
1574 }
1575
1576 ImplicitParamDecl(ASTContext &C, QualType Type, ImplicitParamKind ParamKind)
1577 : VarDecl(ImplicitParam, C, /*DC=*/nullptr, SourceLocation(),
1578 SourceLocation(), /*Id=*/nullptr, Type,
1579 /*TInfo=*/nullptr, SC_None) {
1580 NonParmVarDeclBits.ImplicitParamKind = ParamKind;
1581 setImplicit();
1582 }
1583
1584 /// Returns the implicit parameter kind.
1585 ImplicitParamKind getParameterKind() const {
1586 return static_cast<ImplicitParamKind>(NonParmVarDeclBits.ImplicitParamKind);
1587 }
1588
1589 // Implement isa/cast/dyncast/etc.
1590 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1591 static bool classofKind(Kind K) { return K == ImplicitParam; }
1592};
1593
1594/// Represents a parameter to a function.
1595class ParmVarDecl : public VarDecl {
1596public:
1597 enum { MaxFunctionScopeDepth = 255 };
1598 enum { MaxFunctionScopeIndex = 255 };
1599
1600protected:
1601 ParmVarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1602 SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
1603 TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
1604 : VarDecl(DK, C, DC, StartLoc, IdLoc, Id, T, TInfo, S) {
1605 assert(ParmVarDeclBits.HasInheritedDefaultArg == false)((ParmVarDeclBits.HasInheritedDefaultArg == false) ? static_cast
<void> (0) : __assert_fail ("ParmVarDeclBits.HasInheritedDefaultArg == false"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 1605, __PRETTY_FUNCTION__))
;
1606 assert(ParmVarDeclBits.DefaultArgKind == DAK_None)((ParmVarDeclBits.DefaultArgKind == DAK_None) ? static_cast<
void> (0) : __assert_fail ("ParmVarDeclBits.DefaultArgKind == DAK_None"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 1606, __PRETTY_FUNCTION__))
;
1607 assert(ParmVarDeclBits.IsKNRPromoted == false)((ParmVarDeclBits.IsKNRPromoted == false) ? static_cast<void
> (0) : __assert_fail ("ParmVarDeclBits.IsKNRPromoted == false"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 1607, __PRETTY_FUNCTION__))
;
1608 assert(ParmVarDeclBits.IsObjCMethodParam == false)((ParmVarDeclBits.IsObjCMethodParam == false) ? static_cast<
void> (0) : __assert_fail ("ParmVarDeclBits.IsObjCMethodParam == false"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 1608, __PRETTY_FUNCTION__))
;
1609 setDefaultArg(DefArg);
1610 }
1611
1612public:
1613 static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
1614 SourceLocation StartLoc,
1615 SourceLocation IdLoc, IdentifierInfo *Id,
1616 QualType T, TypeSourceInfo *TInfo,
1617 StorageClass S, Expr *DefArg);
1618
1619 static ParmVarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1620
1621 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
1622
1623 void setObjCMethodScopeInfo(unsigned parameterIndex) {
1624 ParmVarDeclBits.IsObjCMethodParam = true;
1625 setParameterIndex(parameterIndex);
1626 }
1627
1628 void setScopeInfo(unsigned scopeDepth, unsigned parameterIndex) {
1629 assert(!ParmVarDeclBits.IsObjCMethodParam)((!ParmVarDeclBits.IsObjCMethodParam) ? static_cast<void>
(0) : __assert_fail ("!ParmVarDeclBits.IsObjCMethodParam", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 1629, __PRETTY_FUNCTION__))
;
1630
1631 ParmVarDeclBits.ScopeDepthOrObjCQuals = scopeDepth;
1632 assert(ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth((ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth &&
"truncation!") ? static_cast<void> (0) : __assert_fail
("ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth && \"truncation!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 1633, __PRETTY_FUNCTION__))
1633 && "truncation!")((ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth &&
"truncation!") ? static_cast<void> (0) : __assert_fail
("ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth && \"truncation!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 1633, __PRETTY_FUNCTION__))
;
1634
1635 setParameterIndex(parameterIndex);
1636 }
1637
1638 bool isObjCMethodParameter() const {
1639 return ParmVarDeclBits.IsObjCMethodParam;
1640 }
1641
1642 unsigned getFunctionScopeDepth() const {
1643 if (ParmVarDeclBits.IsObjCMethodParam) return 0;
1644 return ParmVarDeclBits.ScopeDepthOrObjCQuals;
1645 }
1646
1647 static constexpr unsigned getMaxFunctionScopeDepth() {
1648 return (1u << NumScopeDepthOrObjCQualsBits) - 1;
1649 }
1650
1651 /// Returns the index of this parameter in its prototype or method scope.
1652 unsigned getFunctionScopeIndex() const {
1653 return getParameterIndex();
1654 }
1655
1656 ObjCDeclQualifier getObjCDeclQualifier() const {
1657 if (!ParmVarDeclBits.IsObjCMethodParam) return OBJC_TQ_None;
1658 return ObjCDeclQualifier(ParmVarDeclBits.ScopeDepthOrObjCQuals);
1659 }
1660 void setObjCDeclQualifier(ObjCDeclQualifier QTVal) {
1661 assert(ParmVarDeclBits.IsObjCMethodParam)((ParmVarDeclBits.IsObjCMethodParam) ? static_cast<void>
(0) : __assert_fail ("ParmVarDeclBits.IsObjCMethodParam", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 1661, __PRETTY_FUNCTION__))
;
1662 ParmVarDeclBits.ScopeDepthOrObjCQuals = QTVal;
1663 }
1664
1665 /// True if the value passed to this parameter must undergo
1666 /// K&R-style default argument promotion:
1667 ///
1668 /// C99 6.5.2.2.
1669 /// If the expression that denotes the called function has a type
1670 /// that does not include a prototype, the integer promotions are
1671 /// performed on each argument, and arguments that have type float
1672 /// are promoted to double.
1673 bool isKNRPromoted() const {
1674 return ParmVarDeclBits.IsKNRPromoted;
1675 }
1676 void setKNRPromoted(bool promoted) {
1677 ParmVarDeclBits.IsKNRPromoted = promoted;
1678 }
1679
1680 Expr *getDefaultArg();
1681 const Expr *getDefaultArg() const {
1682 return const_cast<ParmVarDecl *>(this)->getDefaultArg();
1683 }
1684
1685 void setDefaultArg(Expr *defarg);
1686
1687 /// Retrieve the source range that covers the entire default
1688 /// argument.
1689 SourceRange getDefaultArgRange() const;
1690 void setUninstantiatedDefaultArg(Expr *arg);
1691 Expr *getUninstantiatedDefaultArg();
1692 const Expr *getUninstantiatedDefaultArg() const {
1693 return const_cast<ParmVarDecl *>(this)->getUninstantiatedDefaultArg();
1694 }
1695
1696 /// Determines whether this parameter has a default argument,
1697 /// either parsed or not.
1698 bool hasDefaultArg() const;
1699
1700 /// Determines whether this parameter has a default argument that has not
1701 /// yet been parsed. This will occur during the processing of a C++ class
1702 /// whose member functions have default arguments, e.g.,
1703 /// @code
1704 /// class X {
1705 /// public:
1706 /// void f(int x = 17); // x has an unparsed default argument now
1707 /// }; // x has a regular default argument now
1708 /// @endcode
1709 bool hasUnparsedDefaultArg() const {
1710 return ParmVarDeclBits.DefaultArgKind == DAK_Unparsed;
1711 }
1712
1713 bool hasUninstantiatedDefaultArg() const {
1714 return ParmVarDeclBits.DefaultArgKind == DAK_Uninstantiated;
1715 }
1716
1717 /// Specify that this parameter has an unparsed default argument.
1718 /// The argument will be replaced with a real default argument via
1719 /// setDefaultArg when the class definition enclosing the function
1720 /// declaration that owns this default argument is completed.
1721 void setUnparsedDefaultArg() {
1722 ParmVarDeclBits.DefaultArgKind = DAK_Unparsed;
1723 }
1724
1725 bool hasInheritedDefaultArg() const {
1726 return ParmVarDeclBits.HasInheritedDefaultArg;
1727 }
1728
1729 void setHasInheritedDefaultArg(bool I = true) {
1730 ParmVarDeclBits.HasInheritedDefaultArg = I;
1731 }
1732
1733 QualType getOriginalType() const;
1734
1735 /// Sets the function declaration that owns this
1736 /// ParmVarDecl. Since ParmVarDecls are often created before the
1737 /// FunctionDecls that own them, this routine is required to update
1738 /// the DeclContext appropriately.
1739 void setOwningFunction(DeclContext *FD) { setDeclContext(FD); }
1740
1741 // Implement isa/cast/dyncast/etc.
1742 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1743 static bool classofKind(Kind K) { return K == ParmVar; }
1744
1745private:
1746 enum { ParameterIndexSentinel = (1 << NumParameterIndexBits) - 1 };
1747
1748 void setParameterIndex(unsigned parameterIndex) {
1749 if (parameterIndex >= ParameterIndexSentinel) {
1750 setParameterIndexLarge(parameterIndex);
1751 return;
1752 }
1753
1754 ParmVarDeclBits.ParameterIndex = parameterIndex;
1755 assert(ParmVarDeclBits.ParameterIndex == parameterIndex && "truncation!")((ParmVarDeclBits.ParameterIndex == parameterIndex &&
"truncation!") ? static_cast<void> (0) : __assert_fail
("ParmVarDeclBits.ParameterIndex == parameterIndex && \"truncation!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 1755, __PRETTY_FUNCTION__))
;
1756 }
1757 unsigned getParameterIndex() const {
1758 unsigned d = ParmVarDeclBits.ParameterIndex;
1759 return d == ParameterIndexSentinel ? getParameterIndexLarge() : d;
1760 }
1761
1762 void setParameterIndexLarge(unsigned parameterIndex);
1763 unsigned getParameterIndexLarge() const;
1764};
1765
1766enum class MultiVersionKind {
1767 None,
1768 Target,
1769 CPUSpecific,
1770 CPUDispatch
1771};
1772
1773/// Represents a function declaration or definition.
1774///
1775/// Since a given function can be declared several times in a program,
1776/// there may be several FunctionDecls that correspond to that
1777/// function. Only one of those FunctionDecls will be found when
1778/// traversing the list of declarations in the context of the
1779/// FunctionDecl (e.g., the translation unit); this FunctionDecl
1780/// contains all of the information known about the function. Other,
1781/// previous declarations of the function are available via the
1782/// getPreviousDecl() chain.
1783class FunctionDecl : public DeclaratorDecl,
1784 public DeclContext,
1785 public Redeclarable<FunctionDecl> {
1786 // This class stores some data in DeclContext::FunctionDeclBits
1787 // to save some space. Use the provided accessors to access it.
1788public:
1789 /// The kind of templated function a FunctionDecl can be.
1790 enum TemplatedKind {
1791 // Not templated.
1792 TK_NonTemplate,
1793 // The pattern in a function template declaration.
1794 TK_FunctionTemplate,
1795 // A non-template function that is an instantiation or explicit
1796 // specialization of a member of a templated class.
1797 TK_MemberSpecialization,
1798 // An instantiation or explicit specialization of a function template.
1799 // Note: this might have been instantiated from a templated class if it
1800 // is a class-scope explicit specialization.
1801 TK_FunctionTemplateSpecialization,
1802 // A function template specialization that hasn't yet been resolved to a
1803 // particular specialized function template.
1804 TK_DependentFunctionTemplateSpecialization
1805 };
1806
1807 /// Stashed information about a defaulted function definition whose body has
1808 /// not yet been lazily generated.
1809 class DefaultedFunctionInfo final
1810 : llvm::TrailingObjects<DefaultedFunctionInfo, DeclAccessPair> {
1811 friend TrailingObjects;
1812 unsigned NumLookups;
1813
1814 public:
1815 static DefaultedFunctionInfo *Create(ASTContext &Context,
1816 ArrayRef<DeclAccessPair> Lookups);
1817 /// Get the unqualified lookup results that should be used in this
1818 /// defaulted function definition.
1819 ArrayRef<DeclAccessPair> getUnqualifiedLookups() const {
1820 return {getTrailingObjects<DeclAccessPair>(), NumLookups};
1821 }
1822 };
1823
1824private:
1825 /// A new[]'d array of pointers to VarDecls for the formal
1826 /// parameters of this function. This is null if a prototype or if there are
1827 /// no formals.
1828 ParmVarDecl **ParamInfo = nullptr;
1829
1830 /// The active member of this union is determined by
1831 /// FunctionDeclBits.HasDefaultedFunctionInfo.
1832 union {
1833 /// The body of the function.
1834 LazyDeclStmtPtr Body;
1835 /// Information about a future defaulted function definition.
1836 DefaultedFunctionInfo *DefaultedInfo;
1837 };
1838
1839 unsigned ODRHash;
1840
1841 /// End part of this FunctionDecl's source range.
1842 ///
1843 /// We could compute the full range in getSourceRange(). However, when we're
1844 /// dealing with a function definition deserialized from a PCH/AST file,
1845 /// we can only compute the full range once the function body has been
1846 /// de-serialized, so it's far better to have the (sometimes-redundant)
1847 /// EndRangeLoc.
1848 SourceLocation EndRangeLoc;
1849
1850 /// The template or declaration that this declaration
1851 /// describes or was instantiated from, respectively.
1852 ///
1853 /// For non-templates, this value will be NULL. For function
1854 /// declarations that describe a function template, this will be a
1855 /// pointer to a FunctionTemplateDecl. For member functions
1856 /// of class template specializations, this will be a MemberSpecializationInfo
1857 /// pointer containing information about the specialization.
1858 /// For function template specializations, this will be a
1859 /// FunctionTemplateSpecializationInfo, which contains information about
1860 /// the template being specialized and the template arguments involved in
1861 /// that specialization.
1862 llvm::PointerUnion<FunctionTemplateDecl *,
1863 MemberSpecializationInfo *,
1864 FunctionTemplateSpecializationInfo *,
1865 DependentFunctionTemplateSpecializationInfo *>
1866 TemplateOrSpecialization;
1867
1868 /// Provides source/type location info for the declaration name embedded in
1869 /// the DeclaratorDecl base class.
1870 DeclarationNameLoc DNLoc;
1871
1872 /// Specify that this function declaration is actually a function
1873 /// template specialization.
1874 ///
1875 /// \param C the ASTContext.
1876 ///
1877 /// \param Template the function template that this function template
1878 /// specialization specializes.
1879 ///
1880 /// \param TemplateArgs the template arguments that produced this
1881 /// function template specialization from the template.
1882 ///
1883 /// \param InsertPos If non-NULL, the position in the function template
1884 /// specialization set where the function template specialization data will
1885 /// be inserted.
1886 ///
1887 /// \param TSK the kind of template specialization this is.
1888 ///
1889 /// \param TemplateArgsAsWritten location info of template arguments.
1890 ///
1891 /// \param PointOfInstantiation point at which the function template
1892 /// specialization was first instantiated.
1893 void setFunctionTemplateSpecialization(ASTContext &C,
1894 FunctionTemplateDecl *Template,
1895 const TemplateArgumentList *TemplateArgs,
1896 void *InsertPos,
1897 TemplateSpecializationKind TSK,
1898 const TemplateArgumentListInfo *TemplateArgsAsWritten,
1899 SourceLocation PointOfInstantiation);
1900
1901 /// Specify that this record is an instantiation of the
1902 /// member function FD.
1903 void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD,
1904 TemplateSpecializationKind TSK);
1905
1906 void setParams(ASTContext &C, ArrayRef<ParmVarDecl *> NewParamInfo);
1907
1908 // This is unfortunately needed because ASTDeclWriter::VisitFunctionDecl
1909 // need to access this bit but we want to avoid making ASTDeclWriter
1910 // a friend of FunctionDeclBitfields just for this.
1911 bool isDeletedBit() const { return FunctionDeclBits.IsDeleted; }
1912
1913 /// Whether an ODRHash has been stored.
1914 bool hasODRHash() const { return FunctionDeclBits.HasODRHash; }
1915
1916 /// State that an ODRHash has been stored.
1917 void setHasODRHash(bool B = true) { FunctionDeclBits.HasODRHash = B; }
1918
1919protected:
1920 FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1921 const DeclarationNameInfo &NameInfo, QualType T,
1922 TypeSourceInfo *TInfo, StorageClass S, bool isInlineSpecified,
1923 ConstexprSpecKind ConstexprKind,
1924 Expr *TrailingRequiresClause = nullptr);
1925
1926 using redeclarable_base = Redeclarable<FunctionDecl>;
1927
1928 FunctionDecl *getNextRedeclarationImpl() override {
1929 return getNextRedeclaration();
1930 }
1931
1932 FunctionDecl *getPreviousDeclImpl() override {
1933 return getPreviousDecl();
1934 }
1935
1936 FunctionDecl *getMostRecentDeclImpl() override {
1937 return getMostRecentDecl();
1938 }
1939
1940public:
1941 friend class ASTDeclReader;
1942 friend class ASTDeclWriter;
1943
1944 using redecl_range = redeclarable_base::redecl_range;
1945 using redecl_iterator = redeclarable_base::redecl_iterator;
1946
1947 using redeclarable_base::redecls_begin;
1948 using redeclarable_base::redecls_end;
1949 using redeclarable_base::redecls;
1950 using redeclarable_base::getPreviousDecl;
1951 using redeclarable_base::getMostRecentDecl;
1952 using redeclarable_base::isFirstDecl;
1953
1954 static FunctionDecl *
1955 Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1956 SourceLocation NLoc, DeclarationName N, QualType T,
1957 TypeSourceInfo *TInfo, StorageClass SC, bool isInlineSpecified = false,
1958 bool hasWrittenPrototype = true,
1959 ConstexprSpecKind ConstexprKind = CSK_unspecified,
1960 Expr *TrailingRequiresClause = nullptr) {
1961 DeclarationNameInfo NameInfo(N, NLoc);
1962 return FunctionDecl::Create(C, DC, StartLoc, NameInfo, T, TInfo, SC,
1963 isInlineSpecified, hasWrittenPrototype,
1964 ConstexprKind, TrailingRequiresClause);
1965 }
1966
1967 static FunctionDecl *Create(ASTContext &C, DeclContext *DC,
1968 SourceLocation StartLoc,
1969 const DeclarationNameInfo &NameInfo, QualType T,
1970 TypeSourceInfo *TInfo, StorageClass SC,
1971 bool isInlineSpecified, bool hasWrittenPrototype,
1972 ConstexprSpecKind ConstexprKind,
1973 Expr *TrailingRequiresClause);
1974
1975 static FunctionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1976
1977 DeclarationNameInfo getNameInfo() const {
1978 return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
1979 }
1980
1981 void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy,
1982 bool Qualified) const override;
1983
1984 void setRangeEnd(SourceLocation E) { EndRangeLoc = E; }
1985
1986 /// Returns the location of the ellipsis of a variadic function.
1987 SourceLocation getEllipsisLoc() const {
1988 const auto *FPT = getType()->getAs<FunctionProtoType>();
1989 if (FPT && FPT->isVariadic())
1990 return FPT->getEllipsisLoc();
1991 return SourceLocation();
1992 }
1993
1994 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
1995
1996 // Function definitions.
1997 //
1998 // A function declaration may be:
1999 // - a non defining declaration,
2000 // - a definition. A function may be defined because:
2001 // - it has a body, or will have it in the case of late parsing.
2002 // - it has an uninstantiated body. The body does not exist because the
2003 // function is not used yet, but the declaration is considered a
2004 // definition and does not allow other definition of this function.
2005 // - it does not have a user specified body, but it does not allow
2006 // redefinition, because it is deleted/defaulted or is defined through
2007 // some other mechanism (alias, ifunc).
2008
2009 /// Returns true if the function has a body.
2010 ///
2011 /// The function body might be in any of the (re-)declarations of this
2012 /// function. The variant that accepts a FunctionDecl pointer will set that
2013 /// function declaration to the actual declaration containing the body (if
2014 /// there is one).
2015 bool hasBody(const FunctionDecl *&Definition) const;
2016
2017 bool hasBody() const override {
2018 const FunctionDecl* Definition;
2019 return hasBody(Definition);
2020 }
2021
2022 /// Returns whether the function has a trivial body that does not require any
2023 /// specific codegen.
2024 bool hasTrivialBody() const;
2025
2026 /// Returns true if the function has a definition that does not need to be
2027 /// instantiated.
2028 ///
2029 /// The variant that accepts a FunctionDecl pointer will set that function
2030 /// declaration to the declaration that is a definition (if there is one).
2031 bool isDefined(const FunctionDecl *&Definition) const;
2032
2033 virtual bool isDefined() const {
2034 const FunctionDecl* Definition;
2035 return isDefined(Definition);
2036 }
2037
2038 /// Get the definition for this declaration.
2039 FunctionDecl *getDefinition() {
2040 const FunctionDecl *Definition;
2041 if (isDefined(Definition))
2042 return const_cast<FunctionDecl *>(Definition);
2043 return nullptr;
2044 }
2045 const FunctionDecl *getDefinition() const {
2046 return const_cast<FunctionDecl *>(this)->getDefinition();
2047 }
2048
2049 /// Retrieve the body (definition) of the function. The function body might be
2050 /// in any of the (re-)declarations of this function. The variant that accepts
2051 /// a FunctionDecl pointer will set that function declaration to the actual
2052 /// declaration containing the body (if there is one).
2053 /// NOTE: For checking if there is a body, use hasBody() instead, to avoid
2054 /// unnecessary AST de-serialization of the body.
2055 Stmt *getBody(const FunctionDecl *&Definition) const;
2056
2057 Stmt *getBody() const override {
2058 const FunctionDecl* Definition;
2059 return getBody(Definition);
2060 }
2061
2062 /// Returns whether this specific declaration of the function is also a
2063 /// definition that does not contain uninstantiated body.
2064 ///
2065 /// This does not determine whether the function has been defined (e.g., in a
2066 /// previous definition); for that information, use isDefined.
2067 ///
2068 /// Note: the function declaration does not become a definition until the
2069 /// parser reaches the definition, if called before, this function will return
2070 /// `false`.
2071 bool isThisDeclarationADefinition() const {
2072 return isDeletedAsWritten() || isDefaulted() ||
2073 doesThisDeclarationHaveABody() || hasSkippedBody() ||
2074 willHaveBody() || hasDefiningAttr();
2075 }
2076
2077 /// Returns whether this specific declaration of the function has a body.
2078 bool doesThisDeclarationHaveABody() const {
2079 return (!FunctionDeclBits.HasDefaultedFunctionInfo && Body) ||
2080 isLateTemplateParsed();
2081 }
2082
2083 void setBody(Stmt *B);
2084 void setLazyBody(uint64_t Offset) {
2085 FunctionDeclBits.HasDefaultedFunctionInfo = false;
2086 Body = LazyDeclStmtPtr(Offset);
2087 }
2088
2089 void setDefaultedFunctionInfo(DefaultedFunctionInfo *Info);
2090 DefaultedFunctionInfo *getDefaultedFunctionInfo() const;
2091
2092 /// Whether this function is variadic.
2093 bool isVariadic() const;
2094
2095 /// Whether this function is marked as virtual explicitly.
2096 bool isVirtualAsWritten() const {
2097 return FunctionDeclBits.IsVirtualAsWritten;
2098 }
2099
2100 /// State that this function is marked as virtual explicitly.
2101 void setVirtualAsWritten(bool V) { FunctionDeclBits.IsVirtualAsWritten = V; }
2102
2103 /// Whether this virtual function is pure, i.e. makes the containing class
2104 /// abstract.
2105 bool isPure() const { return FunctionDeclBits.IsPure; }
2106 void setPure(bool P = true);
2107
2108 /// Whether this templated function will be late parsed.
2109 bool isLateTemplateParsed() const {
2110 return FunctionDeclBits.IsLateTemplateParsed;
2111 }
2112
2113 /// State that this templated function will be late parsed.
2114 void setLateTemplateParsed(bool ILT = true) {
2115 FunctionDeclBits.IsLateTemplateParsed = ILT;
2116 }
2117
2118 /// Whether this function is "trivial" in some specialized C++ senses.
2119 /// Can only be true for default constructors, copy constructors,
2120 /// copy assignment operators, and destructors. Not meaningful until
2121 /// the class has been fully built by Sema.
2122 bool isTrivial() const { return FunctionDeclBits.IsTrivial; }
2123 void setTrivial(bool IT) { FunctionDeclBits.IsTrivial = IT; }
2124
2125 bool isTrivialForCall() const { return FunctionDeclBits.IsTrivialForCall; }
2126 void setTrivialForCall(bool IT) { FunctionDeclBits.IsTrivialForCall = IT; }
2127
2128 /// Whether this function is defaulted per C++0x. Only valid for
2129 /// special member functions.
2130 bool isDefaulted() const { return FunctionDeclBits.IsDefaulted; }
2131 void setDefaulted(bool D = true) { FunctionDeclBits.IsDefaulted = D; }
2132
2133 /// Whether this function is explicitly defaulted per C++0x. Only valid
2134 /// for special member functions.
2135 bool isExplicitlyDefaulted() const {
2136 return FunctionDeclBits.IsExplicitlyDefaulted;
2137 }
2138
2139 /// State that this function is explicitly defaulted per C++0x. Only valid
2140 /// for special member functions.
2141 void setExplicitlyDefaulted(bool ED = true) {
2142 FunctionDeclBits.IsExplicitlyDefaulted = ED;
2143 }
2144
2145 /// True if this method is user-declared and was not
2146 /// deleted or defaulted on its first declaration.
2147 bool isUserProvided() const {
2148 auto *DeclAsWritten = this;
2149 if (FunctionDecl *Pattern = getTemplateInstantiationPattern())
2150 DeclAsWritten = Pattern;
2151 return !(DeclAsWritten->isDeleted() ||
2152 DeclAsWritten->getCanonicalDecl()->isDefaulted());
2153 }
2154
2155 /// Whether falling off this function implicitly returns null/zero.
2156 /// If a more specific implicit return value is required, front-ends
2157 /// should synthesize the appropriate return statements.
2158 bool hasImplicitReturnZero() const {
2159 return FunctionDeclBits.HasImplicitReturnZero;
2160 }
2161
2162 /// State that falling off this function implicitly returns null/zero.
2163 /// If a more specific implicit return value is required, front-ends
2164 /// should synthesize the appropriate return statements.
2165 void setHasImplicitReturnZero(bool IRZ) {
2166 FunctionDeclBits.HasImplicitReturnZero = IRZ;
2167 }
2168
2169 /// Whether this function has a prototype, either because one
2170 /// was explicitly written or because it was "inherited" by merging
2171 /// a declaration without a prototype with a declaration that has a
2172 /// prototype.
2173 bool hasPrototype() const {
2174 return hasWrittenPrototype() || hasInheritedPrototype();
2175 }
2176
2177 /// Whether this function has a written prototype.
2178 bool hasWrittenPrototype() const {
2179 return FunctionDeclBits.HasWrittenPrototype;
2180 }
2181
2182 /// State that this function has a written prototype.
2183 void setHasWrittenPrototype(bool P = true) {
2184 FunctionDeclBits.HasWrittenPrototype = P;
2185 }
2186
2187 /// Whether this function inherited its prototype from a
2188 /// previous declaration.
2189 bool hasInheritedPrototype() const {
2190 return FunctionDeclBits.HasInheritedPrototype;
2191 }
2192
2193 /// State that this function inherited its prototype from a
2194 /// previous declaration.
2195 void setHasInheritedPrototype(bool P = true) {
2196 FunctionDeclBits.HasInheritedPrototype = P;
2197 }
2198
2199 /// Whether this is a (C++11) constexpr function or constexpr constructor.
2200 bool isConstexpr() const {
2201 return FunctionDeclBits.ConstexprKind != CSK_unspecified;
2202 }
2203 void setConstexprKind(ConstexprSpecKind CSK) {
2204 FunctionDeclBits.ConstexprKind = CSK;
2205 }
2206 ConstexprSpecKind getConstexprKind() const {
2207 return static_cast<ConstexprSpecKind>(FunctionDeclBits.ConstexprKind);
2208 }
2209 bool isConstexprSpecified() const {
2210 return FunctionDeclBits.ConstexprKind == CSK_constexpr;
2211 }
2212 bool isConsteval() const {
2213 return FunctionDeclBits.ConstexprKind == CSK_consteval;
2214 }
2215
2216 /// Whether the instantiation of this function is pending.
2217 /// This bit is set when the decision to instantiate this function is made
2218 /// and unset if and when the function body is created. That leaves out
2219 /// cases where instantiation did not happen because the template definition
2220 /// was not seen in this TU. This bit remains set in those cases, under the
2221 /// assumption that the instantiation will happen in some other TU.
2222 bool instantiationIsPending() const {
2223 return FunctionDeclBits.InstantiationIsPending;
2224 }
2225
2226 /// State that the instantiation of this function is pending.
2227 /// (see instantiationIsPending)
2228 void setInstantiationIsPending(bool IC) {
2229 FunctionDeclBits.InstantiationIsPending = IC;
2230 }
2231
2232 /// Indicates the function uses __try.
2233 bool usesSEHTry() const { return FunctionDeclBits.UsesSEHTry; }
2234 void setUsesSEHTry(bool UST) { FunctionDeclBits.UsesSEHTry = UST; }
2235
2236 /// Indicates the function uses Floating Point constrained intrinsics
2237 bool usesFPIntrin() const { return FunctionDeclBits.UsesFPIntrin; }
2238 void setUsesFPIntrin(bool Val) { FunctionDeclBits.UsesFPIntrin = Val; }
2239
2240 /// Whether this function has been deleted.
2241 ///
2242 /// A function that is "deleted" (via the C++0x "= delete" syntax)
2243 /// acts like a normal function, except that it cannot actually be
2244 /// called or have its address taken. Deleted functions are
2245 /// typically used in C++ overload resolution to attract arguments
2246 /// whose type or lvalue/rvalue-ness would permit the use of a
2247 /// different overload that would behave incorrectly. For example,
2248 /// one might use deleted functions to ban implicit conversion from
2249 /// a floating-point number to an Integer type:
2250 ///
2251 /// @code
2252 /// struct Integer {
2253 /// Integer(long); // construct from a long
2254 /// Integer(double) = delete; // no construction from float or double
2255 /// Integer(long double) = delete; // no construction from long double
2256 /// };
2257 /// @endcode
2258 // If a function is deleted, its first declaration must be.
2259 bool isDeleted() const {
2260 return getCanonicalDecl()->FunctionDeclBits.IsDeleted;
2261 }
2262
2263 bool isDeletedAsWritten() const {
2264 return FunctionDeclBits.IsDeleted && !isDefaulted();
2265 }
2266
2267 void setDeletedAsWritten(bool D = true) { FunctionDeclBits.IsDeleted = D; }
2268
2269 /// Determines whether this function is "main", which is the
2270 /// entry point into an executable program.
2271 bool isMain() const;
2272
2273 /// Determines whether this function is a MSVCRT user defined entry
2274 /// point.
2275 bool isMSVCRTEntryPoint() const;
2276
2277 /// Determines whether this operator new or delete is one
2278 /// of the reserved global placement operators:
2279 /// void *operator new(size_t, void *);
2280 /// void *operator new[](size_t, void *);
2281 /// void operator delete(void *, void *);
2282 /// void operator delete[](void *, void *);
2283 /// These functions have special behavior under [new.delete.placement]:
2284 /// These functions are reserved, a C++ program may not define
2285 /// functions that displace the versions in the Standard C++ library.
2286 /// The provisions of [basic.stc.dynamic] do not apply to these
2287 /// reserved placement forms of operator new and operator delete.
2288 ///
2289 /// This function must be an allocation or deallocation function.
2290 bool isReservedGlobalPlacementOperator() const;
2291
2292 /// Determines whether this function is one of the replaceable
2293 /// global allocation functions:
2294 /// void *operator new(size_t);
2295 /// void *operator new(size_t, const std::nothrow_t &) noexcept;
2296 /// void *operator new[](size_t);
2297 /// void *operator new[](size_t, const std::nothrow_t &) noexcept;
2298 /// void operator delete(void *) noexcept;
2299 /// void operator delete(void *, std::size_t) noexcept; [C++1y]
2300 /// void operator delete(void *, const std::nothrow_t &) noexcept;
2301 /// void operator delete[](void *) noexcept;
2302 /// void operator delete[](void *, std::size_t) noexcept; [C++1y]
2303 /// void operator delete[](void *, const std::nothrow_t &) noexcept;
2304 /// These functions have special behavior under C++1y [expr.new]:
2305 /// An implementation is allowed to omit a call to a replaceable global
2306 /// allocation function. [...]
2307 ///
2308 /// If this function is an aligned allocation/deallocation function, return
2309 /// the parameter number of the requested alignment through AlignmentParam.
2310 ///
2311 /// If this function is an allocation/deallocation function that takes
2312 /// the `std::nothrow_t` tag, return true through IsNothrow,
2313 bool isReplaceableGlobalAllocationFunction(
2314 Optional<unsigned> *AlignmentParam = nullptr,
2315 bool *IsNothrow = nullptr) const;
2316
2317 /// Determine if this function provides an inline implementation of a builtin.
2318 bool isInlineBuiltinDeclaration() const;
2319
2320 /// Determine whether this is a destroying operator delete.
2321 bool isDestroyingOperatorDelete() const;
2322
2323 /// Compute the language linkage.
2324 LanguageLinkage getLanguageLinkage() const;
2325
2326 /// Determines whether this function is a function with
2327 /// external, C linkage.
2328 bool isExternC() const;
2329
2330 /// Determines whether this function's context is, or is nested within,
2331 /// a C++ extern "C" linkage spec.
2332 bool isInExternCContext() const;
2333
2334 /// Determines whether this function's context is, or is nested within,
2335 /// a C++ extern "C++" linkage spec.
2336 bool isInExternCXXContext() const;
2337
2338 /// Determines whether this is a global function.
2339 bool isGlobal() const;
2340
2341 /// Determines whether this function is known to be 'noreturn', through
2342 /// an attribute on its declaration or its type.
2343 bool isNoReturn() const;
2344
2345 /// True if the function was a definition but its body was skipped.
2346 bool hasSkippedBody() const { return FunctionDeclBits.HasSkippedBody; }
2347 void setHasSkippedBody(bool Skipped = true) {
2348 FunctionDeclBits.HasSkippedBody = Skipped;
2349 }
2350
2351 /// True if this function will eventually have a body, once it's fully parsed.
2352 bool willHaveBody() const { return FunctionDeclBits.WillHaveBody; }
2353 void setWillHaveBody(bool V = true) { FunctionDeclBits.WillHaveBody = V; }
2354
2355 /// True if this function is considered a multiversioned function.
2356 bool isMultiVersion() const {
2357 return getCanonicalDecl()->FunctionDeclBits.IsMultiVersion;
2358 }
2359
2360 /// Sets the multiversion state for this declaration and all of its
2361 /// redeclarations.
2362 void setIsMultiVersion(bool V = true) {
2363 getCanonicalDecl()->FunctionDeclBits.IsMultiVersion = V;
2364 }
2365
2366 /// Gets the kind of multiversioning attribute this declaration has. Note that
2367 /// this can return a value even if the function is not multiversion, such as
2368 /// the case of 'target'.
2369 MultiVersionKind getMultiVersionKind() const;
2370
2371
2372 /// True if this function is a multiversioned dispatch function as a part of
2373 /// the cpu_specific/cpu_dispatch functionality.
2374 bool isCPUDispatchMultiVersion() const;
2375 /// True if this function is a multiversioned processor specific function as a
2376 /// part of the cpu_specific/cpu_dispatch functionality.
2377 bool isCPUSpecificMultiVersion() const;
2378
2379 /// True if this function is a multiversioned dispatch function as a part of
2380 /// the target functionality.
2381 bool isTargetMultiVersion() const;
2382
2383 /// \brief Get the associated-constraints of this function declaration.
2384 /// Currently, this will either be a vector of size 1 containing the
2385 /// trailing-requires-clause or an empty vector.
2386 ///
2387 /// Use this instead of getTrailingRequiresClause for concepts APIs that
2388 /// accept an ArrayRef of constraint expressions.
2389 void getAssociatedConstraints(SmallVectorImpl<const Expr *> &AC) const {
2390 if (auto *TRC = getTrailingRequiresClause())
2391 AC.push_back(TRC);
2392 }
2393
2394 void setPreviousDeclaration(FunctionDecl * PrevDecl);
2395
2396 FunctionDecl *getCanonicalDecl() override;
2397 const FunctionDecl *getCanonicalDecl() const {
2398 return const_cast<FunctionDecl*>(this)->getCanonicalDecl();
2399 }
2400
2401 unsigned getBuiltinID(bool ConsiderWrapperFunctions = false) const;
2402
2403 // ArrayRef interface to parameters.
2404 ArrayRef<ParmVarDecl *> parameters() const {
2405 return {ParamInfo, getNumParams()};
2406 }
2407 MutableArrayRef<ParmVarDecl *> parameters() {
2408 return {ParamInfo, getNumParams()};
2409 }
2410
2411 // Iterator access to formal parameters.
2412 using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
2413 using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
2414
2415 bool param_empty() const { return parameters().empty(); }
2416 param_iterator param_begin() { return parameters().begin(); }
2417 param_iterator param_end() { return parameters().end(); }
2418 param_const_iterator param_begin() const { return parameters().begin(); }
2419 param_const_iterator param_end() const { return parameters().end(); }
2420 size_t param_size() const { return parameters().size(); }
2421
2422 /// Return the number of parameters this function must have based on its
2423 /// FunctionType. This is the length of the ParamInfo array after it has been
2424 /// created.
2425 unsigned getNumParams() const;
2426
2427 const ParmVarDecl *getParamDecl(unsigned i) const {
2428 assert(i < getNumParams() && "Illegal param #")((i < getNumParams() && "Illegal param #") ? static_cast
<void> (0) : __assert_fail ("i < getNumParams() && \"Illegal param #\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 2428, __PRETTY_FUNCTION__))
;
2429 return ParamInfo[i];
2430 }
2431 ParmVarDecl *getParamDecl(unsigned i) {
2432 assert(i < getNumParams() && "Illegal param #")((i < getNumParams() && "Illegal param #") ? static_cast
<void> (0) : __assert_fail ("i < getNumParams() && \"Illegal param #\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 2432, __PRETTY_FUNCTION__))
;
2433 return ParamInfo[i];
2434 }
2435 void setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
2436 setParams(getASTContext(), NewParamInfo);
2437 }
2438
2439 /// Returns the minimum number of arguments needed to call this function. This
2440 /// may be fewer than the number of function parameters, if some of the
2441 /// parameters have default arguments (in C++).
2442 unsigned getMinRequiredArguments() const;
2443
2444 /// Find the source location information for how the type of this function
2445 /// was written. May be absent (for example if the function was declared via
2446 /// a typedef) and may contain a different type from that of the function
2447 /// (for example if the function type was adjusted by an attribute).
2448 FunctionTypeLoc getFunctionTypeLoc() const;
2449
2450 QualType getReturnType() const {
2451 return getType()->castAs<FunctionType>()->getReturnType();
2452 }
2453
2454 /// Attempt to compute an informative source range covering the
2455 /// function return type. This may omit qualifiers and other information with
2456 /// limited representation in the AST.
2457 SourceRange getReturnTypeSourceRange() const;
2458
2459 /// Attempt to compute an informative source range covering the
2460 /// function parameters, including the ellipsis of a variadic function.
2461 /// The source range excludes the parentheses, and is invalid if there are
2462 /// no parameters and no ellipsis.
2463 SourceRange getParametersSourceRange() const;
2464
2465 /// Get the declared return type, which may differ from the actual return
2466 /// type if the return type is deduced.
2467 QualType getDeclaredReturnType() const {
2468 auto *TSI = getTypeSourceInfo();
2469 QualType T = TSI ? TSI->getType() : getType();
2470 return T->castAs<FunctionType>()->getReturnType();
2471 }
2472
2473 /// Gets the ExceptionSpecificationType as declared.
2474 ExceptionSpecificationType getExceptionSpecType() const {
2475 auto *TSI = getTypeSourceInfo();
2476 QualType T = TSI ? TSI->getType() : getType();
2477 const auto *FPT = T->getAs<FunctionProtoType>();
2478 return FPT ? FPT->getExceptionSpecType() : EST_None;
2479 }
2480
2481 /// Attempt to compute an informative source range covering the
2482 /// function exception specification, if any.
2483 SourceRange getExceptionSpecSourceRange() const;
2484
2485 /// Determine the type of an expression that calls this function.
2486 QualType getCallResultType() const {
2487 return getType()->castAs<FunctionType>()->getCallResultType(
2488 getASTContext());
2489 }
2490
2491 /// Returns the storage class as written in the source. For the
2492 /// computed linkage of symbol, see getLinkage.
2493 StorageClass getStorageClass() const {
2494 return static_cast<StorageClass>(FunctionDeclBits.SClass);
2495 }
2496
2497 /// Sets the storage class as written in the source.
2498 void setStorageClass(StorageClass SClass) {
2499 FunctionDeclBits.SClass = SClass;
2500 }
2501
2502 /// Determine whether the "inline" keyword was specified for this
2503 /// function.
2504 bool isInlineSpecified() const { return FunctionDeclBits.IsInlineSpecified; }
2505
2506 /// Set whether the "inline" keyword was specified for this function.
2507 void setInlineSpecified(bool I) {
2508 FunctionDeclBits.IsInlineSpecified = I;
2509 FunctionDeclBits.IsInline = I;
2510 }
2511
2512 /// Flag that this function is implicitly inline.
2513 void setImplicitlyInline(bool I = true) { FunctionDeclBits.IsInline = I; }
2514
2515 /// Determine whether this function should be inlined, because it is
2516 /// either marked "inline" or "constexpr" or is a member function of a class
2517 /// that was defined in the class body.
2518 bool isInlined() const { return FunctionDeclBits.IsInline; }
2519
2520 bool isInlineDefinitionExternallyVisible() const;
2521
2522 bool isMSExternInline() const;
2523
2524 bool doesDeclarationForceExternallyVisibleDefinition() const;
2525
2526 bool isStatic() const { return getStorageClass() == SC_Static; }
2527
2528 /// Whether this function declaration represents an C++ overloaded
2529 /// operator, e.g., "operator+".
2530 bool isOverloadedOperator() const {
2531 return getOverloadedOperator() != OO_None;
2532 }
2533
2534 OverloadedOperatorKind getOverloadedOperator() const;
2535
2536 const IdentifierInfo *getLiteralIdentifier() const;
2537
2538 /// If this function is an instantiation of a member function
2539 /// of a class template specialization, retrieves the function from
2540 /// which it was instantiated.
2541 ///
2542 /// This routine will return non-NULL for (non-templated) member
2543 /// functions of class templates and for instantiations of function
2544 /// templates. For example, given:
2545 ///
2546 /// \code
2547 /// template<typename T>
2548 /// struct X {
2549 /// void f(T);
2550 /// };
2551 /// \endcode
2552 ///
2553 /// The declaration for X<int>::f is a (non-templated) FunctionDecl
2554 /// whose parent is the class template specialization X<int>. For
2555 /// this declaration, getInstantiatedFromFunction() will return
2556 /// the FunctionDecl X<T>::A. When a complete definition of
2557 /// X<int>::A is required, it will be instantiated from the
2558 /// declaration returned by getInstantiatedFromMemberFunction().
2559 FunctionDecl *getInstantiatedFromMemberFunction() const;
2560
2561 /// What kind of templated function this is.
2562 TemplatedKind getTemplatedKind() const;
2563
2564 /// If this function is an instantiation of a member function of a
2565 /// class template specialization, retrieves the member specialization
2566 /// information.
2567 MemberSpecializationInfo *getMemberSpecializationInfo() const;
2568
2569 /// Specify that this record is an instantiation of the
2570 /// member function FD.
2571 void setInstantiationOfMemberFunction(FunctionDecl *FD,
2572 TemplateSpecializationKind TSK) {
2573 setInstantiationOfMemberFunction(getASTContext(), FD, TSK);
2574 }
2575
2576 /// Retrieves the function template that is described by this
2577 /// function declaration.
2578 ///
2579 /// Every function template is represented as a FunctionTemplateDecl
2580 /// and a FunctionDecl (or something derived from FunctionDecl). The
2581 /// former contains template properties (such as the template
2582 /// parameter lists) while the latter contains the actual
2583 /// description of the template's
2584 /// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
2585 /// FunctionDecl that describes the function template,
2586 /// getDescribedFunctionTemplate() retrieves the
2587 /// FunctionTemplateDecl from a FunctionDecl.
2588 FunctionTemplateDecl *getDescribedFunctionTemplate() const;
2589
2590 void setDescribedFunctionTemplate(FunctionTemplateDecl *Template);
2591
2592 /// Determine whether this function is a function template
2593 /// specialization.
2594 bool isFunctionTemplateSpecialization() const {
2595 return getPrimaryTemplate() != nullptr;
2596 }
2597
2598 /// If this function is actually a function template specialization,
2599 /// retrieve information about this function template specialization.
2600 /// Otherwise, returns NULL.
2601 FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const;
2602
2603 /// Determines whether this function is a function template
2604 /// specialization or a member of a class template specialization that can
2605 /// be implicitly instantiated.
2606 bool isImplicitlyInstantiable() const;
2607
2608 /// Determines if the given function was instantiated from a
2609 /// function template.
2610 bool isTemplateInstantiation() const;
2611
2612 /// Retrieve the function declaration from which this function could
2613 /// be instantiated, if it is an instantiation (rather than a non-template
2614 /// or a specialization, for example).
2615 FunctionDecl *getTemplateInstantiationPattern() const;
2616
2617 /// Retrieve the primary template that this function template
2618 /// specialization either specializes or was instantiated from.
2619 ///
2620 /// If this function declaration is not a function template specialization,
2621 /// returns NULL.
2622 FunctionTemplateDecl *getPrimaryTemplate() const;
2623
2624 /// Retrieve the template arguments used to produce this function
2625 /// template specialization from the primary template.
2626 ///
2627 /// If this function declaration is not a function template specialization,
2628 /// returns NULL.
2629 const TemplateArgumentList *getTemplateSpecializationArgs() const;
2630
2631 /// Retrieve the template argument list as written in the sources,
2632 /// if any.
2633 ///
2634 /// If this function declaration is not a function template specialization
2635 /// or if it had no explicit template argument list, returns NULL.
2636 /// Note that it an explicit template argument list may be written empty,
2637 /// e.g., template<> void foo<>(char* s);
2638 const ASTTemplateArgumentListInfo*
2639 getTemplateSpecializationArgsAsWritten() const;
2640
2641 /// Specify that this function declaration is actually a function
2642 /// template specialization.
2643 ///
2644 /// \param Template the function template that this function template
2645 /// specialization specializes.
2646 ///
2647 /// \param TemplateArgs the template arguments that produced this
2648 /// function template specialization from the template.
2649 ///
2650 /// \param InsertPos If non-NULL, the position in the function template
2651 /// specialization set where the function template specialization data will
2652 /// be inserted.
2653 ///
2654 /// \param TSK the kind of template specialization this is.
2655 ///
2656 /// \param TemplateArgsAsWritten location info of template arguments.
2657 ///
2658 /// \param PointOfInstantiation point at which the function template
2659 /// specialization was first instantiated.
2660 void setFunctionTemplateSpecialization(FunctionTemplateDecl *Template,
2661 const TemplateArgumentList *TemplateArgs,
2662 void *InsertPos,
2663 TemplateSpecializationKind TSK = TSK_ImplicitInstantiation,
2664 const TemplateArgumentListInfo *TemplateArgsAsWritten = nullptr,
2665 SourceLocation PointOfInstantiation = SourceLocation()) {
2666 setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs,
2667 InsertPos, TSK, TemplateArgsAsWritten,
2668 PointOfInstantiation);
2669 }
2670
2671 /// Specifies that this function declaration is actually a
2672 /// dependent function template specialization.
2673 void setDependentTemplateSpecialization(ASTContext &Context,
2674 const UnresolvedSetImpl &Templates,
2675 const TemplateArgumentListInfo &TemplateArgs);
2676
2677 DependentFunctionTemplateSpecializationInfo *
2678 getDependentSpecializationInfo() const;
2679
2680 /// Determine what kind of template instantiation this function
2681 /// represents.
2682 TemplateSpecializationKind getTemplateSpecializationKind() const;
2683
2684 /// Determine the kind of template specialization this function represents
2685 /// for the purpose of template instantiation.
2686 TemplateSpecializationKind
2687 getTemplateSpecializationKindForInstantiation() const;
2688
2689 /// Determine what kind of template instantiation this function
2690 /// represents.
2691 void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2692 SourceLocation PointOfInstantiation = SourceLocation());
2693
2694 /// Retrieve the (first) point of instantiation of a function template
2695 /// specialization or a member of a class template specialization.
2696 ///
2697 /// \returns the first point of instantiation, if this function was
2698 /// instantiated from a template; otherwise, returns an invalid source
2699 /// location.
2700 SourceLocation getPointOfInstantiation() const;
2701
2702 /// Determine whether this is or was instantiated from an out-of-line
2703 /// definition of a member function.
2704 bool isOutOfLine() const override;
2705
2706 /// Identify a memory copying or setting function.
2707 /// If the given function is a memory copy or setting function, returns
2708 /// the corresponding Builtin ID. If the function is not a memory function,
2709 /// returns 0.
2710 unsigned getMemoryFunctionKind() const;
2711
2712 /// Returns ODRHash of the function. This value is calculated and
2713 /// stored on first call, then the stored value returned on the other calls.
2714 unsigned getODRHash();
2715
2716 /// Returns cached ODRHash of the function. This must have been previously
2717 /// computed and stored.
2718 unsigned getODRHash() const;
2719
2720 // Implement isa/cast/dyncast/etc.
2721 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2722 static bool classofKind(Kind K) {
2723 return K >= firstFunction && K <= lastFunction;
2724 }
2725 static DeclContext *castToDeclContext(const FunctionDecl *D) {
2726 return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
2727 }
2728 static FunctionDecl *castFromDeclContext(const DeclContext *DC) {
2729 return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
2730 }
2731};
2732
2733/// Represents a member of a struct/union/class.
2734class FieldDecl : public DeclaratorDecl, public Mergeable<FieldDecl> {
2735 unsigned BitField : 1;
2736 unsigned Mutable : 1;
2737 mutable unsigned CachedFieldIndex : 30;
2738
2739 /// The kinds of value we can store in InitializerOrBitWidth.
2740 ///
2741 /// Note that this is compatible with InClassInitStyle except for
2742 /// ISK_CapturedVLAType.
2743 enum InitStorageKind {
2744 /// If the pointer is null, there's nothing special. Otherwise,
2745 /// this is a bitfield and the pointer is the Expr* storing the
2746 /// bit-width.
2747 ISK_NoInit = (unsigned) ICIS_NoInit,
2748
2749 /// The pointer is an (optional due to delayed parsing) Expr*
2750 /// holding the copy-initializer.
2751 ISK_InClassCopyInit = (unsigned) ICIS_CopyInit,
2752
2753 /// The pointer is an (optional due to delayed parsing) Expr*
2754 /// holding the list-initializer.
2755 ISK_InClassListInit = (unsigned) ICIS_ListInit,
2756
2757 /// The pointer is a VariableArrayType* that's been captured;
2758 /// the enclosing context is a lambda or captured statement.
2759 ISK_CapturedVLAType,
2760 };
2761
2762 /// If this is a bitfield with a default member initializer, this
2763 /// structure is used to represent the two expressions.
2764 struct InitAndBitWidth {
2765 Expr *Init;
2766 Expr *BitWidth;
2767 };
2768
2769 /// Storage for either the bit-width, the in-class initializer, or
2770 /// both (via InitAndBitWidth), or the captured variable length array bound.
2771 ///
2772 /// If the storage kind is ISK_InClassCopyInit or
2773 /// ISK_InClassListInit, but the initializer is null, then this
2774 /// field has an in-class initializer that has not yet been parsed
2775 /// and attached.
2776 // FIXME: Tail-allocate this to reduce the size of FieldDecl in the
2777 // overwhelmingly common case that we have none of these things.
2778 llvm::PointerIntPair<void *, 2, InitStorageKind> InitStorage;
2779
2780protected:
2781 FieldDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
2782 SourceLocation IdLoc, IdentifierInfo *Id,
2783 QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2784 InClassInitStyle InitStyle)
2785 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2786 BitField(false), Mutable(Mutable), CachedFieldIndex(0),
2787 InitStorage(nullptr, (InitStorageKind) InitStyle) {
2788 if (BW)
2789 setBitWidth(BW);
2790 }
2791
2792public:
2793 friend class ASTDeclReader;
2794 friend class ASTDeclWriter;
2795
2796 static FieldDecl *Create(const ASTContext &C, DeclContext *DC,
2797 SourceLocation StartLoc, SourceLocation IdLoc,
2798 IdentifierInfo *Id, QualType T,
2799 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2800 InClassInitStyle InitStyle);
2801
2802 static FieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2803
2804 /// Returns the index of this field within its record,
2805 /// as appropriate for passing to ASTRecordLayout::getFieldOffset.
2806 unsigned getFieldIndex() const;
2807
2808 /// Determines whether this field is mutable (C++ only).
2809 bool isMutable() const { return Mutable; }
2810
2811 /// Determines whether this field is a bitfield.
2812 bool isBitField() const { return BitField; }
2813
2814 /// Determines whether this is an unnamed bitfield.
2815 bool isUnnamedBitfield() const { return isBitField() && !getDeclName(); }
2816
2817 /// Determines whether this field is a
2818 /// representative for an anonymous struct or union. Such fields are
2819 /// unnamed and are implicitly generated by the implementation to
2820 /// store the data for the anonymous union or struct.
2821 bool isAnonymousStructOrUnion() const;
2822
2823 Expr *getBitWidth() const {
2824 if (!BitField)
2825 return nullptr;
2826 void *Ptr = InitStorage.getPointer();
2827 if (getInClassInitStyle())
2828 return static_cast<InitAndBitWidth*>(Ptr)->BitWidth;
2829 return static_cast<Expr*>(Ptr);
2830 }
2831
2832 unsigned getBitWidthValue(const ASTContext &Ctx) const;
2833
2834 /// Set the bit-field width for this member.
2835 // Note: used by some clients (i.e., do not remove it).
2836 void setBitWidth(Expr *Width) {
2837 assert(!hasCapturedVLAType() && !BitField &&((!hasCapturedVLAType() && !BitField && "bit width or captured type already set"
) ? static_cast<void> (0) : __assert_fail ("!hasCapturedVLAType() && !BitField && \"bit width or captured type already set\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 2838, __PRETTY_FUNCTION__))
2838 "bit width or captured type already set")((!hasCapturedVLAType() && !BitField && "bit width or captured type already set"
) ? static_cast<void> (0) : __assert_fail ("!hasCapturedVLAType() && !BitField && \"bit width or captured type already set\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 2838, __PRETTY_FUNCTION__))
;
2839 assert(Width && "no bit width specified")((Width && "no bit width specified") ? static_cast<
void> (0) : __assert_fail ("Width && \"no bit width specified\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 2839, __PRETTY_FUNCTION__))
;
2840 InitStorage.setPointer(
2841 InitStorage.getInt()
2842 ? new (getASTContext())
2843 InitAndBitWidth{getInClassInitializer(), Width}
2844 : static_cast<void*>(Width));
2845 BitField = true;
2846 }
2847
2848 /// Remove the bit-field width from this member.
2849 // Note: used by some clients (i.e., do not remove it).
2850 void removeBitWidth() {
2851 assert(isBitField() && "no bitfield width to remove")((isBitField() && "no bitfield width to remove") ? static_cast
<void> (0) : __assert_fail ("isBitField() && \"no bitfield width to remove\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 2851, __PRETTY_FUNCTION__))
;
2852 InitStorage.setPointer(getInClassInitializer());
2853 BitField = false;
2854 }
2855
2856 /// Is this a zero-length bit-field? Such bit-fields aren't really bit-fields
2857 /// at all and instead act as a separator between contiguous runs of other
2858 /// bit-fields.
2859 bool isZeroLengthBitField(const ASTContext &Ctx) const;
2860
2861 /// Determine if this field is a subobject of zero size, that is, either a
2862 /// zero-length bit-field or a field of empty class type with the
2863 /// [[no_unique_address]] attribute.
2864 bool isZeroSize(const ASTContext &Ctx) const;
2865
2866 /// Get the kind of (C++11) default member initializer that this field has.
2867 InClassInitStyle getInClassInitStyle() const {
2868 InitStorageKind storageKind = InitStorage.getInt();
2869 return (storageKind == ISK_CapturedVLAType
2870 ? ICIS_NoInit : (InClassInitStyle) storageKind);
2871 }
2872
2873 /// Determine whether this member has a C++11 default member initializer.
2874 bool hasInClassInitializer() const {
2875 return getInClassInitStyle() != ICIS_NoInit;
2876 }
2877
2878 /// Get the C++11 default member initializer for this member, or null if one
2879 /// has not been set. If a valid declaration has a default member initializer,
2880 /// but this returns null, then we have not parsed and attached it yet.
2881 Expr *getInClassInitializer() const {
2882 if (!hasInClassInitializer())
2883 return nullptr;
2884 void *Ptr = InitStorage.getPointer();
2885 if (BitField)
2886 return static_cast<InitAndBitWidth*>(Ptr)->Init;
2887 return static_cast<Expr*>(Ptr);
2888 }
2889
2890 /// Set the C++11 in-class initializer for this member.
2891 void setInClassInitializer(Expr *Init) {
2892 assert(hasInClassInitializer() && !getInClassInitializer())((hasInClassInitializer() && !getInClassInitializer()
) ? static_cast<void> (0) : __assert_fail ("hasInClassInitializer() && !getInClassInitializer()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 2892, __PRETTY_FUNCTION__))
;
2893 if (BitField)
2894 static_cast<InitAndBitWidth*>(InitStorage.getPointer())->Init = Init;
2895 else
2896 InitStorage.setPointer(Init);
2897 }
2898
2899 /// Remove the C++11 in-class initializer from this member.
2900 void removeInClassInitializer() {
2901 assert(hasInClassInitializer() && "no initializer to remove")((hasInClassInitializer() && "no initializer to remove"
) ? static_cast<void> (0) : __assert_fail ("hasInClassInitializer() && \"no initializer to remove\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 2901, __PRETTY_FUNCTION__))
;
2902 InitStorage.setPointerAndInt(getBitWidth(), ISK_NoInit);
2903 }
2904
2905 /// Determine whether this member captures the variable length array
2906 /// type.
2907 bool hasCapturedVLAType() const {
2908 return InitStorage.getInt() == ISK_CapturedVLAType;
2909 }
2910
2911 /// Get the captured variable length array type.
2912 const VariableArrayType *getCapturedVLAType() const {
2913 return hasCapturedVLAType() ? static_cast<const VariableArrayType *>(
2914 InitStorage.getPointer())
2915 : nullptr;
2916 }
2917
2918 /// Set the captured variable length array type for this field.
2919 void setCapturedVLAType(const VariableArrayType *VLAType);
2920
2921 /// Returns the parent of this field declaration, which
2922 /// is the struct in which this field is defined.
2923 const RecordDecl *getParent() const {
2924 return cast<RecordDecl>(getDeclContext());
2925 }
2926
2927 RecordDecl *getParent() {
2928 return cast<RecordDecl>(getDeclContext());
2929 }
2930
2931 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
2932
2933 /// Retrieves the canonical declaration of this field.
2934 FieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
2935 const FieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
2936
2937 // Implement isa/cast/dyncast/etc.
2938 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2939 static bool classofKind(Kind K) { return K >= firstField && K <= lastField; }
2940};
2941
2942/// An instance of this object exists for each enum constant
2943/// that is defined. For example, in "enum X {a,b}", each of a/b are
2944/// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a
2945/// TagType for the X EnumDecl.
2946class EnumConstantDecl : public ValueDecl, public Mergeable<EnumConstantDecl> {
2947 Stmt *Init; // an integer constant expression
2948 llvm::APSInt Val; // The value.
2949
2950protected:
2951 EnumConstantDecl(DeclContext *DC, SourceLocation L,
2952 IdentifierInfo *Id, QualType T, Expr *E,
2953 const llvm::APSInt &V)
2954 : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {}
2955
2956public:
2957 friend class StmtIteratorBase;
2958
2959 static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC,
2960 SourceLocation L, IdentifierInfo *Id,
2961 QualType T, Expr *E,
2962 const llvm::APSInt &V);
2963 static EnumConstantDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2964
2965 const Expr *getInitExpr() const { return (const Expr*) Init; }
2966 Expr *getInitExpr() { return (Expr*) Init; }
2967 const llvm::APSInt &getInitVal() const { return Val; }
2968
2969 void setInitExpr(Expr *E) { Init = (Stmt*) E; }
2970 void setInitVal(const llvm::APSInt &V) { Val = V; }
2971
2972 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
2973
2974 /// Retrieves the canonical declaration of this enumerator.
2975 EnumConstantDecl *getCanonicalDecl() override { return getFirstDecl(); }
2976 const EnumConstantDecl *getCanonicalDecl() const { return getFirstDecl(); }
2977
2978 // Implement isa/cast/dyncast/etc.
2979 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2980 static bool classofKind(Kind K) { return K == EnumConstant; }
2981};
2982
2983/// Represents a field injected from an anonymous union/struct into the parent
2984/// scope. These are always implicit.
2985class IndirectFieldDecl : public ValueDecl,
2986 public Mergeable<IndirectFieldDecl> {
2987 NamedDecl **Chaining;
2988 unsigned ChainingSize;
2989
2990 IndirectFieldDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
2991 DeclarationName N, QualType T,
2992 MutableArrayRef<NamedDecl *> CH);
2993
2994 void anchor() override;
2995
2996public:
2997 friend class ASTDeclReader;
2998
2999 static IndirectFieldDecl *Create(ASTContext &C, DeclContext *DC,
3000 SourceLocation L, IdentifierInfo *Id,
3001 QualType T, llvm::MutableArrayRef<NamedDecl *> CH);
3002
3003 static IndirectFieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3004
3005 using chain_iterator = ArrayRef<NamedDecl *>::const_iterator;
3006
3007 ArrayRef<NamedDecl *> chain() const {
3008 return llvm::makeArrayRef(Chaining, ChainingSize);
3009 }
3010 chain_iterator chain_begin() const { return chain().begin(); }
3011 chain_iterator chain_end() const { return chain().end(); }
3012
3013 unsigned getChainingSize() const { return ChainingSize; }
3014
3015 FieldDecl *getAnonField() const {
3016 assert(chain().size() >= 2)((chain().size() >= 2) ? static_cast<void> (0) : __assert_fail
("chain().size() >= 2", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 3016, __PRETTY_FUNCTION__))
;
3017 return cast<FieldDecl>(chain().back());
3018 }
3019
3020 VarDecl *getVarDecl() const {
3021 assert(chain().size() >= 2)((chain().size() >= 2) ? static_cast<void> (0) : __assert_fail
("chain().size() >= 2", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 3021, __PRETTY_FUNCTION__))
;
3022 return dyn_cast<VarDecl>(chain().front());
3023 }
3024
3025 IndirectFieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
3026 const IndirectFieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
3027
3028 // Implement isa/cast/dyncast/etc.
3029 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3030 static bool classofKind(Kind K) { return K == IndirectField; }
3031};
3032
3033/// Represents a declaration of a type.
3034class TypeDecl : public NamedDecl {
3035 friend class ASTContext;
3036
3037 /// This indicates the Type object that represents
3038 /// this TypeDecl. It is a cache maintained by
3039 /// ASTContext::getTypedefType, ASTContext::getTagDeclType, and
3040 /// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl.
3041 mutable const Type *TypeForDecl = nullptr;
3042
3043 /// The start of the source range for this declaration.
3044 SourceLocation LocStart;
3045
3046 void anchor() override;
3047
3048protected:
3049 TypeDecl(Kind DK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
3050 SourceLocation StartL = SourceLocation())
3051 : NamedDecl(DK, DC, L, Id), LocStart(StartL) {}
3052
3053public:
3054 // Low-level accessor. If you just want the type defined by this node,
3055 // check out ASTContext::getTypeDeclType or one of
3056 // ASTContext::getTypedefType, ASTContext::getRecordType, etc. if you
3057 // already know the specific kind of node this is.
3058 const Type *getTypeForDecl() const { return TypeForDecl; }
3059 void setTypeForDecl(const Type *TD) { TypeForDecl = TD; }
3060
3061 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return LocStart; }
3062 void setLocStart(SourceLocation L) { LocStart = L; }
3063 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
3064 if (LocStart.isValid())
3065 return SourceRange(LocStart, getLocation());
3066 else
3067 return SourceRange(getLocation());
3068 }
3069
3070 // Implement isa/cast/dyncast/etc.
3071 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3072 static bool classofKind(Kind K) { return K >= firstType && K <= lastType; }
3073};
3074
3075/// Base class for declarations which introduce a typedef-name.
3076class TypedefNameDecl : public TypeDecl, public Redeclarable<TypedefNameDecl> {
3077 struct alignas(8) ModedTInfo {
3078 TypeSourceInfo *first;
3079 QualType second;
3080 };
3081
3082 /// If int part is 0, we have not computed IsTransparentTag.
3083 /// Otherwise, IsTransparentTag is (getInt() >> 1).
3084 mutable llvm::PointerIntPair<
3085 llvm::PointerUnion<TypeSourceInfo *, ModedTInfo *>, 2>
3086 MaybeModedTInfo;
3087
3088 void anchor() override;
3089
3090protected:
3091 TypedefNameDecl(Kind DK, ASTContext &C, DeclContext *DC,
3092 SourceLocation StartLoc, SourceLocation IdLoc,
3093 IdentifierInfo *Id, TypeSourceInfo *TInfo)
3094 : TypeDecl(DK, DC, IdLoc, Id, StartLoc), redeclarable_base(C),
3095 MaybeModedTInfo(TInfo, 0) {}
3096
3097 using redeclarable_base = Redeclarable<TypedefNameDecl>;
3098
3099 TypedefNameDecl *getNextRedeclarationImpl() override {
3100 return getNextRedeclaration();
3101 }
3102
3103 TypedefNameDecl *getPreviousDeclImpl() override {
3104 return getPreviousDecl();
3105 }
3106
3107 TypedefNameDecl *getMostRecentDeclImpl() override {
3108 return getMostRecentDecl();
3109 }
3110
3111public:
3112 using redecl_range = redeclarable_base::redecl_range;
3113 using redecl_iterator = redeclarable_base::redecl_iterator;
3114
3115 using redeclarable_base::redecls_begin;
3116 using redeclarable_base::redecls_end;
3117 using redeclarable_base::redecls;
3118 using redeclarable_base::getPreviousDecl;
3119 using redeclarable_base::getMostRecentDecl;
3120 using redeclarable_base::isFirstDecl;
3121
3122 bool isModed() const {
3123 return MaybeModedTInfo.getPointer().is<ModedTInfo *>();
3124 }
3125
3126 TypeSourceInfo *getTypeSourceInfo() const {
3127 return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->first
3128 : MaybeModedTInfo.getPointer().get<TypeSourceInfo *>();
3129 }
3130
3131 QualType getUnderlyingType() const {
3132 return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->second
3133 : MaybeModedTInfo.getPointer()
3134 .get<TypeSourceInfo *>()
3135 ->getType();
3136 }
3137
3138 void setTypeSourceInfo(TypeSourceInfo *newType) {
3139 MaybeModedTInfo.setPointer(newType);
3140 }
3141
3142 void setModedTypeSourceInfo(TypeSourceInfo *unmodedTSI, QualType modedTy) {
3143 MaybeModedTInfo.setPointer(new (getASTContext(), 8)
3144 ModedTInfo({unmodedTSI, modedTy}));
3145 }
3146
3147 /// Retrieves the canonical declaration of this typedef-name.
3148 TypedefNameDecl *getCanonicalDecl() override { return getFirstDecl(); }
3149 const TypedefNameDecl *getCanonicalDecl() const { return getFirstDecl(); }
3150
3151 /// Retrieves the tag declaration for which this is the typedef name for
3152 /// linkage purposes, if any.
3153 ///
3154 /// \param AnyRedecl Look for the tag declaration in any redeclaration of
3155 /// this typedef declaration.
3156 TagDecl *getAnonDeclWithTypedefName(bool AnyRedecl = false) const;
3157
3158 /// Determines if this typedef shares a name and spelling location with its
3159 /// underlying tag type, as is the case with the NS_ENUM macro.
3160 bool isTransparentTag() const {
3161 if (MaybeModedTInfo.getInt())
3162 return MaybeModedTInfo.getInt() & 0x2;
3163 return isTransparentTagSlow();
3164 }
3165
3166 // Implement isa/cast/dyncast/etc.
3167 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3168 static bool classofKind(Kind K) {
3169 return K >= firstTypedefName && K <= lastTypedefName;
3170 }
3171
3172private:
3173 bool isTransparentTagSlow() const;
3174};
3175
3176/// Represents the declaration of a typedef-name via the 'typedef'
3177/// type specifier.
3178class TypedefDecl : public TypedefNameDecl {
3179 TypedefDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3180 SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
3181 : TypedefNameDecl(Typedef, C, DC, StartLoc, IdLoc, Id, TInfo) {}
3182
3183public:
3184 static TypedefDecl *Create(ASTContext &C, DeclContext *DC,
3185 SourceLocation StartLoc, SourceLocation IdLoc,
3186 IdentifierInfo *Id, TypeSourceInfo *TInfo);
3187 static TypedefDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3188
3189 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
3190
3191 // Implement isa/cast/dyncast/etc.
3192 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3193 static bool classofKind(Kind K) { return K == Typedef; }
3194};
3195
3196/// Represents the declaration of a typedef-name via a C++11
3197/// alias-declaration.
3198class TypeAliasDecl : public TypedefNameDecl {
3199 /// The template for which this is the pattern, if any.
3200 TypeAliasTemplateDecl *Template;
3201
3202 TypeAliasDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3203 SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
3204 : TypedefNameDecl(TypeAlias, C, DC, StartLoc, IdLoc, Id, TInfo),
3205 Template(nullptr) {}
3206
3207public:
3208 static TypeAliasDecl *Create(ASTContext &C, DeclContext *DC,
3209 SourceLocation StartLoc, SourceLocation IdLoc,
3210 IdentifierInfo *Id, TypeSourceInfo *TInfo);
3211 static TypeAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3212
3213 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
3214
3215 TypeAliasTemplateDecl *getDescribedAliasTemplate() const { return Template; }
3216 void setDescribedAliasTemplate(TypeAliasTemplateDecl *TAT) { Template = TAT; }
3217
3218 // Implement isa/cast/dyncast/etc.
3219 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3220 static bool classofKind(Kind K) { return K == TypeAlias; }
3221};
3222
3223/// Represents the declaration of a struct/union/class/enum.
3224class TagDecl : public TypeDecl,
3225 public DeclContext,
3226 public Redeclarable<TagDecl> {
3227 // This class stores some data in DeclContext::TagDeclBits
3228 // to save some space. Use the provided accessors to access it.
3229public:
3230 // This is really ugly.
3231 using TagKind = TagTypeKind;
3232
3233private:
3234 SourceRange BraceRange;
3235
3236 // A struct representing syntactic qualifier info,
3237 // to be used for the (uncommon) case of out-of-line declarations.
3238 using ExtInfo = QualifierInfo;
3239
3240 /// If the (out-of-line) tag declaration name
3241 /// is qualified, it points to the qualifier info (nns and range);
3242 /// otherwise, if the tag declaration is anonymous and it is part of
3243 /// a typedef or alias, it points to the TypedefNameDecl (used for mangling);
3244 /// otherwise, if the tag declaration is anonymous and it is used as a
3245 /// declaration specifier for variables, it points to the first VarDecl (used
3246 /// for mangling);
3247 /// otherwise, it is a null (TypedefNameDecl) pointer.
3248 llvm::PointerUnion<TypedefNameDecl *, ExtInfo *> TypedefNameDeclOrQualifier;
3249
3250 bool hasExtInfo() const { return TypedefNameDeclOrQualifier.is<ExtInfo *>(); }
3251 ExtInfo *getExtInfo() { return TypedefNameDeclOrQualifier.get<ExtInfo *>(); }
3252 const ExtInfo *getExtInfo() const {
3253 return TypedefNameDeclOrQualifier.get<ExtInfo *>();
3254 }
3255
3256protected:
3257 TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
3258 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
3259 SourceLocation StartL);
3260
3261 using redeclarable_base = Redeclarable<TagDecl>;
3262
3263 TagDecl *getNextRedeclarationImpl() override {
3264 return getNextRedeclaration();
3265 }
3266
3267 TagDecl *getPreviousDeclImpl() override {
3268 return getPreviousDecl();
3269 }
3270
3271 TagDecl *getMostRecentDeclImpl() override {
3272 return getMostRecentDecl();
3273 }
3274
3275 /// Completes the definition of this tag declaration.
3276 ///
3277 /// This is a helper function for derived classes.
3278 void completeDefinition();
3279
3280 /// True if this decl is currently being defined.
3281 void setBeingDefined(bool V = true) { TagDeclBits.IsBeingDefined = V; }
3282
3283 /// Indicates whether it is possible for declarations of this kind
3284 /// to have an out-of-date definition.
3285 ///
3286 /// This option is only enabled when modules are enabled.
3287 void setMayHaveOutOfDateDef(bool V = true) {
3288 TagDeclBits.MayHaveOutOfDateDef = V;
3289 }
3290
3291public:
3292 friend class ASTDeclReader;
3293 friend class ASTDeclWriter;
3294
3295 using redecl_range = redeclarable_base::redecl_range;
3296 using redecl_iterator = redeclarable_base::redecl_iterator;
3297
3298 using redeclarable_base::redecls_begin;
3299 using redeclarable_base::redecls_end;
3300 using redeclarable_base::redecls;
3301 using redeclarable_base::getPreviousDecl;
3302 using redeclarable_base::getMostRecentDecl;
3303 using redeclarable_base::isFirstDecl;
3304
3305 SourceRange getBraceRange() const { return BraceRange; }
3306 void setBraceRange(SourceRange R) { BraceRange = R; }
3307
3308 /// Return SourceLocation representing start of source
3309 /// range ignoring outer template declarations.
3310 SourceLocation getInnerLocStart() const { return getBeginLoc(); }
3311
3312 /// Return SourceLocation representing start of source
3313 /// range taking into account any outer template declarations.
3314 SourceLocation getOuterLocStart() const;
3315 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
3316
3317 TagDecl *getCanonicalDecl() override;
3318 const TagDecl *getCanonicalDecl() const {
3319 return const_cast<TagDecl*>(this)->getCanonicalDecl();
3320 }
3321
3322 /// Return true if this declaration is a completion definition of the type.
3323 /// Provided for consistency.
3324 bool isThisDeclarationADefinition() const {
3325 return isCompleteDefinition();
3326 }
3327
3328 /// Return true if this decl has its body fully specified.
3329 bool isCompleteDefinition() const { return TagDeclBits.IsCompleteDefinition; }
3330
3331 /// True if this decl has its body fully specified.
3332 void setCompleteDefinition(bool V = true) {
3333 TagDeclBits.IsCompleteDefinition = V;
3334 }
3335
3336 /// Return true if this complete decl is
3337 /// required to be complete for some existing use.
3338 bool isCompleteDefinitionRequired() const {
3339 return TagDeclBits.IsCompleteDefinitionRequired;
3340 }
3341
3342 /// True if this complete decl is
3343 /// required to be complete for some existing use.
3344 void setCompleteDefinitionRequired(bool V = true) {
3345 TagDeclBits.IsCompleteDefinitionRequired = V;
3346 }
3347
3348 /// Return true if this decl is currently being defined.
3349 bool isBeingDefined() const { return TagDeclBits.IsBeingDefined; }
3350
3351 /// True if this tag declaration is "embedded" (i.e., defined or declared
3352 /// for the very first time) in the syntax of a declarator.
3353 bool isEmbeddedInDeclarator() const {
3354 return TagDeclBits.IsEmbeddedInDeclarator;
3355 }
3356
3357 /// True if this tag declaration is "embedded" (i.e., defined or declared
3358 /// for the very first time) in the syntax of a declarator.
3359 void setEmbeddedInDeclarator(bool isInDeclarator) {
3360 TagDeclBits.IsEmbeddedInDeclarator = isInDeclarator;
3361 }
3362
3363 /// True if this tag is free standing, e.g. "struct foo;".
3364 bool isFreeStanding() const { return TagDeclBits.IsFreeStanding; }
3365
3366 /// True if this tag is free standing, e.g. "struct foo;".
3367 void setFreeStanding(bool isFreeStanding = true) {
3368 TagDeclBits.IsFreeStanding = isFreeStanding;
3369 }
3370
3371 /// Indicates whether it is possible for declarations of this kind
3372 /// to have an out-of-date definition.
3373 ///
3374 /// This option is only enabled when modules are enabled.
3375 bool mayHaveOutOfDateDef() const { return TagDeclBits.MayHaveOutOfDateDef; }
3376
3377 /// Whether this declaration declares a type that is
3378 /// dependent, i.e., a type that somehow depends on template
3379 /// parameters.
3380 bool isDependentType() const { return isDependentContext(); }
3381
3382 /// Starts the definition of this tag declaration.
3383 ///
3384 /// This method should be invoked at the beginning of the definition
3385 /// of this tag declaration. It will set the tag type into a state
3386 /// where it is in the process of being defined.
3387 void startDefinition();
3388
3389 /// Returns the TagDecl that actually defines this
3390 /// struct/union/class/enum. When determining whether or not a
3391 /// struct/union/class/enum has a definition, one should use this
3392 /// method as opposed to 'isDefinition'. 'isDefinition' indicates
3393 /// whether or not a specific TagDecl is defining declaration, not
3394 /// whether or not the struct/union/class/enum type is defined.
3395 /// This method returns NULL if there is no TagDecl that defines
3396 /// the struct/union/class/enum.
3397 TagDecl *getDefinition() const;
3398
3399 StringRef getKindName() const {
3400 return TypeWithKeyword::getTagTypeKindName(getTagKind());
3401 }
3402
3403 TagKind getTagKind() const {
3404 return static_cast<TagKind>(TagDeclBits.TagDeclKind);
3405 }
3406
3407 void setTagKind(TagKind TK) { TagDeclBits.TagDeclKind = TK; }
3408
3409 bool isStruct() const { return getTagKind() == TTK_Struct; }
3410 bool isInterface() const { return getTagKind() == TTK_Interface; }
3411 bool isClass() const { return getTagKind() == TTK_Class; }
3412 bool isUnion() const { return getTagKind() == TTK_Union; }
19
Assuming the condition is false
20
Returning zero, which participates in a condition later
3413 bool isEnum() const { return getTagKind() == TTK_Enum; }
3414
3415 /// Is this tag type named, either directly or via being defined in
3416 /// a typedef of this type?
3417 ///
3418 /// C++11 [basic.link]p8:
3419 /// A type is said to have linkage if and only if:
3420 /// - it is a class or enumeration type that is named (or has a
3421 /// name for linkage purposes) and the name has linkage; ...
3422 /// C++11 [dcl.typedef]p9:
3423 /// If the typedef declaration defines an unnamed class (or enum),
3424 /// the first typedef-name declared by the declaration to be that
3425 /// class type (or enum type) is used to denote the class type (or
3426 /// enum type) for linkage purposes only.
3427 ///
3428 /// C does not have an analogous rule, but the same concept is
3429 /// nonetheless useful in some places.
3430 bool hasNameForLinkage() const {
3431 return (getDeclName() || getTypedefNameForAnonDecl());
3432 }
3433
3434 TypedefNameDecl *getTypedefNameForAnonDecl() const {
3435 return hasExtInfo() ? nullptr
3436 : TypedefNameDeclOrQualifier.get<TypedefNameDecl *>();
3437 }
3438
3439 void setTypedefNameForAnonDecl(TypedefNameDecl *TDD);
3440
3441 /// Retrieve the nested-name-specifier that qualifies the name of this
3442 /// declaration, if it was present in the source.
3443 NestedNameSpecifier *getQualifier() const {
3444 return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
3445 : nullptr;
3446 }
3447
3448 /// Retrieve the nested-name-specifier (with source-location
3449 /// information) that qualifies the name of this declaration, if it was
3450 /// present in the source.
3451 NestedNameSpecifierLoc getQualifierLoc() const {
3452 return hasExtInfo() ? getExtInfo()->QualifierLoc
3453 : NestedNameSpecifierLoc();
3454 }
3455
3456 void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
3457
3458 unsigned getNumTemplateParameterLists() const {
3459 return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
3460 }
3461
3462 TemplateParameterList *getTemplateParameterList(unsigned i) const {
3463 assert(i < getNumTemplateParameterLists())((i < getNumTemplateParameterLists()) ? static_cast<void
> (0) : __assert_fail ("i < getNumTemplateParameterLists()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 3463, __PRETTY_FUNCTION__))
;
3464 return getExtInfo()->TemplParamLists[i];
3465 }
3466
3467 void setTemplateParameterListsInfo(ASTContext &Context,
3468 ArrayRef<TemplateParameterList *> TPLists);
3469
3470 // Implement isa/cast/dyncast/etc.
3471 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3472 static bool classofKind(Kind K) { return K >= firstTag && K <= lastTag; }
3473
3474 static DeclContext *castToDeclContext(const TagDecl *D) {
3475 return static_cast<DeclContext *>(const_cast<TagDecl*>(D));
3476 }
3477
3478 static TagDecl *castFromDeclContext(const DeclContext *DC) {
3479 return static_cast<TagDecl *>(const_cast<DeclContext*>(DC));
3480 }
3481};
3482
3483/// Represents an enum. In C++11, enums can be forward-declared
3484/// with a fixed underlying type, and in C we allow them to be forward-declared
3485/// with no underlying type as an extension.
3486class EnumDecl : public TagDecl {
3487 // This class stores some data in DeclContext::EnumDeclBits
3488 // to save some space. Use the provided accessors to access it.
3489
3490 /// This represent the integer type that the enum corresponds
3491 /// to for code generation purposes. Note that the enumerator constants may
3492 /// have a different type than this does.
3493 ///
3494 /// If the underlying integer type was explicitly stated in the source
3495 /// code, this is a TypeSourceInfo* for that type. Otherwise this type
3496 /// was automatically deduced somehow, and this is a Type*.
3497 ///
3498 /// Normally if IsFixed(), this would contain a TypeSourceInfo*, but in
3499 /// some cases it won't.
3500 ///
3501 /// The underlying type of an enumeration never has any qualifiers, so
3502 /// we can get away with just storing a raw Type*, and thus save an
3503 /// extra pointer when TypeSourceInfo is needed.
3504 llvm::PointerUnion<const Type *, TypeSourceInfo *> IntegerType;
3505
3506 /// The integer type that values of this type should
3507 /// promote to. In C, enumerators are generally of an integer type
3508 /// directly, but gcc-style large enumerators (and all enumerators
3509 /// in C++) are of the enum type instead.
3510 QualType PromotionType;
3511
3512 /// If this enumeration is an instantiation of a member enumeration
3513 /// of a class template specialization, this is the member specialization
3514 /// information.
3515 MemberSpecializationInfo *SpecializationInfo = nullptr;
3516
3517 /// Store the ODRHash after first calculation.
3518 /// The corresponding flag HasODRHash is in EnumDeclBits
3519 /// and can be accessed with the provided accessors.
3520 unsigned ODRHash;
3521
3522 EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3523 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
3524 bool Scoped, bool ScopedUsingClassTag, bool Fixed);
3525
3526 void anchor() override;
3527
3528 void setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3529 TemplateSpecializationKind TSK);
3530
3531 /// Sets the width in bits required to store all the
3532 /// non-negative enumerators of this enum.
3533 void setNumPositiveBits(unsigned Num) {
3534 EnumDeclBits.NumPositiveBits = Num;
3535 assert(EnumDeclBits.NumPositiveBits == Num && "can't store this bitcount")((EnumDeclBits.NumPositiveBits == Num && "can't store this bitcount"
) ? static_cast<void> (0) : __assert_fail ("EnumDeclBits.NumPositiveBits == Num && \"can't store this bitcount\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 3535, __PRETTY_FUNCTION__))
;
3536 }
3537
3538 /// Returns the width in bits required to store all the
3539 /// negative enumerators of this enum. (see getNumNegativeBits)
3540 void setNumNegativeBits(unsigned Num) { EnumDeclBits.NumNegativeBits = Num; }
3541
3542 /// True if this tag declaration is a scoped enumeration. Only
3543 /// possible in C++11 mode.
3544 void setScoped(bool Scoped = true) { EnumDeclBits.IsScoped = Scoped; }
3545
3546 /// If this tag declaration is a scoped enum,
3547 /// then this is true if the scoped enum was declared using the class
3548 /// tag, false if it was declared with the struct tag. No meaning is
3549 /// associated if this tag declaration is not a scoped enum.
3550 void setScopedUsingClassTag(bool ScopedUCT = true) {
3551 EnumDeclBits.IsScopedUsingClassTag = ScopedUCT;
3552 }
3553
3554 /// True if this is an Objective-C, C++11, or
3555 /// Microsoft-style enumeration with a fixed underlying type.
3556 void setFixed(bool Fixed = true) { EnumDeclBits.IsFixed = Fixed; }
3557
3558 /// True if a valid hash is stored in ODRHash.
3559 bool hasODRHash() const { return EnumDeclBits.HasODRHash; }
3560 void setHasODRHash(bool Hash = true) { EnumDeclBits.HasODRHash = Hash; }
3561
3562public:
3563 friend class ASTDeclReader;
3564
3565 EnumDecl *getCanonicalDecl() override {
3566 return cast<EnumDecl>(TagDecl::getCanonicalDecl());
3567 }
3568 const EnumDecl *getCanonicalDecl() const {
3569 return const_cast<EnumDecl*>(this)->getCanonicalDecl();
3570 }
3571
3572 EnumDecl *getPreviousDecl() {
3573 return cast_or_null<EnumDecl>(
3574 static_cast<TagDecl *>(this)->getPreviousDecl());
3575 }
3576 const EnumDecl *getPreviousDecl() const {
3577 return const_cast<EnumDecl*>(this)->getPreviousDecl();
3578 }
3579
3580 EnumDecl *getMostRecentDecl() {
3581 return cast<EnumDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
3582 }
3583 const EnumDecl *getMostRecentDecl() const {
3584 return const_cast<EnumDecl*>(this)->getMostRecentDecl();
3585 }
3586
3587 EnumDecl *getDefinition() const {
3588 return cast_or_null<EnumDecl>(TagDecl::getDefinition());
3589 }
3590
3591 static EnumDecl *Create(ASTContext &C, DeclContext *DC,
3592 SourceLocation StartLoc, SourceLocation IdLoc,
3593 IdentifierInfo *Id, EnumDecl *PrevDecl,
3594 bool IsScoped, bool IsScopedUsingClassTag,
3595 bool IsFixed);
3596 static EnumDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3597
3598 /// When created, the EnumDecl corresponds to a
3599 /// forward-declared enum. This method is used to mark the
3600 /// declaration as being defined; its enumerators have already been
3601 /// added (via DeclContext::addDecl). NewType is the new underlying
3602 /// type of the enumeration type.
3603 void completeDefinition(QualType NewType,
3604 QualType PromotionType,
3605 unsigned NumPositiveBits,
3606 unsigned NumNegativeBits);
3607
3608 // Iterates through the enumerators of this enumeration.
3609 using enumerator_iterator = specific_decl_iterator<EnumConstantDecl>;
3610 using enumerator_range =
3611 llvm::iterator_range<specific_decl_iterator<EnumConstantDecl>>;
3612
3613 enumerator_range enumerators() const {
3614 return enumerator_range(enumerator_begin(), enumerator_end());
3615 }
3616
3617 enumerator_iterator enumerator_begin() const {
3618 const EnumDecl *E = getDefinition();
3619 if (!E)
3620 E = this;
3621 return enumerator_iterator(E->decls_begin());
3622 }
3623
3624 enumerator_iterator enumerator_end() const {
3625 const EnumDecl *E = getDefinition();
3626 if (!E)
3627 E = this;
3628 return enumerator_iterator(E->decls_end());
3629 }
3630
3631 /// Return the integer type that enumerators should promote to.
3632 QualType getPromotionType() const { return PromotionType; }
3633
3634 /// Set the promotion type.
3635 void setPromotionType(QualType T) { PromotionType = T; }
3636
3637 /// Return the integer type this enum decl corresponds to.
3638 /// This returns a null QualType for an enum forward definition with no fixed
3639 /// underlying type.
3640 QualType getIntegerType() const {
3641 if (!IntegerType)
3642 return QualType();
3643 if (const Type *T = IntegerType.dyn_cast<const Type*>())
3644 return QualType(T, 0);
3645 return IntegerType.get<TypeSourceInfo*>()->getType().getUnqualifiedType();
3646 }
3647
3648 /// Set the underlying integer type.
3649 void setIntegerType(QualType T) { IntegerType = T.getTypePtrOrNull(); }
3650
3651 /// Set the underlying integer type source info.
3652 void setIntegerTypeSourceInfo(TypeSourceInfo *TInfo) { IntegerType = TInfo; }
3653
3654 /// Return the type source info for the underlying integer type,
3655 /// if no type source info exists, return 0.
3656 TypeSourceInfo *getIntegerTypeSourceInfo() const {
3657 return IntegerType.dyn_cast<TypeSourceInfo*>();
3658 }
3659
3660 /// Retrieve the source range that covers the underlying type if
3661 /// specified.
3662 SourceRange getIntegerTypeRange() const LLVM_READONLY__attribute__((__pure__));
3663
3664 /// Returns the width in bits required to store all the
3665 /// non-negative enumerators of this enum.
3666 unsigned getNumPositiveBits() const { return EnumDeclBits.NumPositiveBits; }
3667
3668 /// Returns the width in bits required to store all the
3669 /// negative enumerators of this enum. These widths include
3670 /// the rightmost leading 1; that is:
3671 ///
3672 /// MOST NEGATIVE ENUMERATOR PATTERN NUM NEGATIVE BITS
3673 /// ------------------------ ------- -----------------
3674 /// -1 1111111 1
3675 /// -10 1110110 5
3676 /// -101 1001011 8
3677 unsigned getNumNegativeBits() const { return EnumDeclBits.NumNegativeBits; }
3678
3679 /// Returns true if this is a C++11 scoped enumeration.
3680 bool isScoped() const { return EnumDeclBits.IsScoped; }
3681
3682 /// Returns true if this is a C++11 scoped enumeration.
3683 bool isScopedUsingClassTag() const {
3684 return EnumDeclBits.IsScopedUsingClassTag;
3685 }
3686
3687 /// Returns true if this is an Objective-C, C++11, or
3688 /// Microsoft-style enumeration with a fixed underlying type.
3689 bool isFixed() const { return EnumDeclBits.IsFixed; }
3690
3691 unsigned getODRHash();
3692
3693 /// Returns true if this can be considered a complete type.
3694 bool isComplete() const {
3695 // IntegerType is set for fixed type enums and non-fixed but implicitly
3696 // int-sized Microsoft enums.
3697 return isCompleteDefinition() || IntegerType;
3698 }
3699
3700 /// Returns true if this enum is either annotated with
3701 /// enum_extensibility(closed) or isn't annotated with enum_extensibility.
3702 bool isClosed() const;
3703
3704 /// Returns true if this enum is annotated with flag_enum and isn't annotated
3705 /// with enum_extensibility(open).
3706 bool isClosedFlag() const;
3707
3708 /// Returns true if this enum is annotated with neither flag_enum nor
3709 /// enum_extensibility(open).
3710 bool isClosedNonFlag() const;
3711
3712 /// Retrieve the enum definition from which this enumeration could
3713 /// be instantiated, if it is an instantiation (rather than a non-template).
3714 EnumDecl *getTemplateInstantiationPattern() const;
3715
3716 /// Returns the enumeration (declared within the template)
3717 /// from which this enumeration type was instantiated, or NULL if
3718 /// this enumeration was not instantiated from any template.
3719 EnumDecl *getInstantiatedFromMemberEnum() const;
3720
3721 /// If this enumeration is a member of a specialization of a
3722 /// templated class, determine what kind of template specialization
3723 /// or instantiation this is.
3724 TemplateSpecializationKind getTemplateSpecializationKind() const;
3725
3726 /// For an enumeration member that was instantiated from a member
3727 /// enumeration of a templated class, set the template specialiation kind.
3728 void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3729 SourceLocation PointOfInstantiation = SourceLocation());
3730
3731 /// If this enumeration is an instantiation of a member enumeration of
3732 /// a class template specialization, retrieves the member specialization
3733 /// information.
3734 MemberSpecializationInfo *getMemberSpecializationInfo() const {
3735 return SpecializationInfo;
3736 }
3737
3738 /// Specify that this enumeration is an instantiation of the
3739 /// member enumeration ED.
3740 void setInstantiationOfMemberEnum(EnumDecl *ED,
3741 TemplateSpecializationKind TSK) {
3742 setInstantiationOfMemberEnum(getASTContext(), ED, TSK);
3743 }
3744
3745 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3746 static bool classofKind(Kind K) { return K == Enum; }
3747};
3748
3749/// Represents a struct/union/class. For example:
3750/// struct X; // Forward declaration, no "body".
3751/// union Y { int A, B; }; // Has body with members A and B (FieldDecls).
3752/// This decl will be marked invalid if *any* members are invalid.
3753class RecordDecl : public TagDecl {
3754 // This class stores some data in DeclContext::RecordDeclBits
3755 // to save some space. Use the provided accessors to access it.
3756public:
3757 friend class DeclContext;
3758 /// Enum that represents the different ways arguments are passed to and
3759 /// returned from function calls. This takes into account the target-specific
3760 /// and version-specific rules along with the rules determined by the
3761 /// language.
3762 enum ArgPassingKind : unsigned {
3763 /// The argument of this type can be passed directly in registers.
3764 APK_CanPassInRegs,
3765
3766 /// The argument of this type cannot be passed directly in registers.
3767 /// Records containing this type as a subobject are not forced to be passed
3768 /// indirectly. This value is used only in C++. This value is required by
3769 /// C++ because, in uncommon situations, it is possible for a class to have
3770 /// only trivial copy/move constructors even when one of its subobjects has
3771 /// a non-trivial copy/move constructor (if e.g. the corresponding copy/move
3772 /// constructor in the derived class is deleted).
3773 APK_CannotPassInRegs,
3774
3775 /// The argument of this type cannot be passed directly in registers.
3776 /// Records containing this type as a subobject are forced to be passed
3777 /// indirectly.
3778 APK_CanNeverPassInRegs
3779 };
3780
3781protected:
3782 RecordDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
3783 SourceLocation StartLoc, SourceLocation IdLoc,
3784 IdentifierInfo *Id, RecordDecl *PrevDecl);
3785
3786public:
3787 static RecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
3788 SourceLocation StartLoc, SourceLocation IdLoc,
3789 IdentifierInfo *Id, RecordDecl* PrevDecl = nullptr);
3790 static RecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
3791
3792 RecordDecl *getPreviousDecl() {
3793 return cast_or_null<RecordDecl>(
3794 static_cast<TagDecl *>(this)->getPreviousDecl());
3795 }
3796 const RecordDecl *getPreviousDecl() const {
3797 return const_cast<RecordDecl*>(this)->getPreviousDecl();
3798 }
3799
3800 RecordDecl *getMostRecentDecl() {
3801 return cast<RecordDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
3802 }
3803 const RecordDecl *getMostRecentDecl() const {
3804 return const_cast<RecordDecl*>(this)->getMostRecentDecl();
3805 }
3806
3807 bool hasFlexibleArrayMember() const {
3808 return RecordDeclBits.HasFlexibleArrayMember;
3809 }
3810
3811 void setHasFlexibleArrayMember(bool V) {
3812 RecordDeclBits.HasFlexibleArrayMember = V;
3813 }
3814
3815 /// Whether this is an anonymous struct or union. To be an anonymous
3816 /// struct or union, it must have been declared without a name and
3817 /// there must be no objects of this type declared, e.g.,
3818 /// @code
3819 /// union { int i; float f; };
3820 /// @endcode
3821 /// is an anonymous union but neither of the following are:
3822 /// @code
3823 /// union X { int i; float f; };
3824 /// union { int i; float f; } obj;
3825 /// @endcode
3826 bool isAnonymousStructOrUnion() const {
3827 return RecordDeclBits.AnonymousStructOrUnion;
3828 }
3829
3830 void setAnonymousStructOrUnion(bool Anon) {
3831 RecordDeclBits.AnonymousStructOrUnion = Anon;
3832 }
3833
3834 bool hasObjectMember() const { return RecordDeclBits.HasObjectMember; }
3835 void setHasObjectMember(bool val) { RecordDeclBits.HasObjectMember = val; }
3836
3837 bool hasVolatileMember() const { return RecordDeclBits.HasVolatileMember; }
3838
3839 void setHasVolatileMember(bool val) {
3840 RecordDeclBits.HasVolatileMember = val;
3841 }
3842
3843 bool hasLoadedFieldsFromExternalStorage() const {
3844 return RecordDeclBits.LoadedFieldsFromExternalStorage;
3845 }
3846
3847 void setHasLoadedFieldsFromExternalStorage(bool val) const {
3848 RecordDeclBits.LoadedFieldsFromExternalStorage = val;
3849 }
3850
3851 /// Functions to query basic properties of non-trivial C structs.
3852 bool isNonTrivialToPrimitiveDefaultInitialize() const {
3853 return RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize;
3854 }
3855
3856 void setNonTrivialToPrimitiveDefaultInitialize(bool V) {
3857 RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize = V;
3858 }
3859
3860 bool isNonTrivialToPrimitiveCopy() const {
3861 return RecordDeclBits.NonTrivialToPrimitiveCopy;
3862 }
3863
3864 void setNonTrivialToPrimitiveCopy(bool V) {
3865 RecordDeclBits.NonTrivialToPrimitiveCopy = V;
3866 }
3867
3868 bool isNonTrivialToPrimitiveDestroy() const {
3869 return RecordDeclBits.NonTrivialToPrimitiveDestroy;
3870 }
3871
3872 void setNonTrivialToPrimitiveDestroy(bool V) {
3873 RecordDeclBits.NonTrivialToPrimitiveDestroy = V;
3874 }
3875
3876 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
3877 return RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion;
3878 }
3879
3880 void setHasNonTrivialToPrimitiveDefaultInitializeCUnion(bool V) {
3881 RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion = V;
3882 }
3883
3884 bool hasNonTrivialToPrimitiveDestructCUnion() const {
3885 return RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion;
3886 }
3887
3888 void setHasNonTrivialToPrimitiveDestructCUnion(bool V) {
3889 RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion = V;
3890 }
3891
3892 bool hasNonTrivialToPrimitiveCopyCUnion() const {
3893 return RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion;
3894 }
3895
3896 void setHasNonTrivialToPrimitiveCopyCUnion(bool V) {
3897 RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion = V;
3898 }
3899
3900 /// Determine whether this class can be passed in registers. In C++ mode,
3901 /// it must have at least one trivial, non-deleted copy or move constructor.
3902 /// FIXME: This should be set as part of completeDefinition.
3903 bool canPassInRegisters() const {
3904 return getArgPassingRestrictions() == APK_CanPassInRegs;
3905 }
3906
3907 ArgPassingKind getArgPassingRestrictions() const {
3908 return static_cast<ArgPassingKind>(RecordDeclBits.ArgPassingRestrictions);
3909 }
3910
3911 void setArgPassingRestrictions(ArgPassingKind Kind) {
3912 RecordDeclBits.ArgPassingRestrictions = Kind;
3913 }
3914
3915 bool isParamDestroyedInCallee() const {
3916 return RecordDeclBits.ParamDestroyedInCallee;
3917 }
3918
3919 void setParamDestroyedInCallee(bool V) {
3920 RecordDeclBits.ParamDestroyedInCallee = V;
3921 }
3922
3923 /// Determines whether this declaration represents the
3924 /// injected class name.
3925 ///
3926 /// The injected class name in C++ is the name of the class that
3927 /// appears inside the class itself. For example:
3928 ///
3929 /// \code
3930 /// struct C {
3931 /// // C is implicitly declared here as a synonym for the class name.
3932 /// };
3933 ///
3934 /// C::C c; // same as "C c;"
3935 /// \endcode
3936 bool isInjectedClassName() const;
3937
3938 /// Determine whether this record is a class describing a lambda
3939 /// function object.
3940 bool isLambda() const;
3941
3942 /// Determine whether this record is a record for captured variables in
3943 /// CapturedStmt construct.
3944 bool isCapturedRecord() const;
3945
3946 /// Mark the record as a record for captured variables in CapturedStmt
3947 /// construct.
3948 void setCapturedRecord();
3949
3950 /// Returns the RecordDecl that actually defines
3951 /// this struct/union/class. When determining whether or not a
3952 /// struct/union/class is completely defined, one should use this
3953 /// method as opposed to 'isCompleteDefinition'.
3954 /// 'isCompleteDefinition' indicates whether or not a specific
3955 /// RecordDecl is a completed definition, not whether or not the
3956 /// record type is defined. This method returns NULL if there is
3957 /// no RecordDecl that defines the struct/union/tag.
3958 RecordDecl *getDefinition() const {
3959 return cast_or_null<RecordDecl>(TagDecl::getDefinition());
3960 }
3961
3962 // Iterator access to field members. The field iterator only visits
3963 // the non-static data members of this class, ignoring any static
3964 // data members, functions, constructors, destructors, etc.
3965 using field_iterator = specific_decl_iterator<FieldDecl>;
3966 using field_range = llvm::iterator_range<specific_decl_iterator<FieldDecl>>;
3967
3968 field_range fields() const { return field_range(field_begin(), field_end()); }
3969 field_iterator field_begin() const;
3970
3971 field_iterator field_end() const {
3972 return field_iterator(decl_iterator());
3973 }
3974
3975 // Whether there are any fields (non-static data members) in this record.
3976 bool field_empty() const {
3977 return field_begin() == field_end();
3978 }
3979
3980 /// Note that the definition of this type is now complete.
3981 virtual void completeDefinition();
3982
3983 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3984 static bool classofKind(Kind K) {
3985 return K >= firstRecord && K <= lastRecord;
3986 }
3987
3988 /// Get whether or not this is an ms_struct which can
3989 /// be turned on with an attribute, pragma, or -mms-bitfields
3990 /// commandline option.
3991 bool isMsStruct(const ASTContext &C) const;
3992
3993 /// Whether we are allowed to insert extra padding between fields.
3994 /// These padding are added to help AddressSanitizer detect
3995 /// intra-object-overflow bugs.
3996 bool mayInsertExtraPadding(bool EmitRemark = false) const;
3997
3998 /// Finds the first data member which has a name.
3999 /// nullptr is returned if no named data member exists.
4000 const FieldDecl *findFirstNamedDataMember() const;
4001
4002private:
4003 /// Deserialize just the fields.
4004 void LoadFieldsFromExternalStorage() const;
4005};
4006
4007class FileScopeAsmDecl : public Decl {
4008 StringLiteral *AsmString;
4009 SourceLocation RParenLoc;
4010
4011 FileScopeAsmDecl(DeclContext *DC, StringLiteral *asmstring,
4012 SourceLocation StartL, SourceLocation EndL)
4013 : Decl(FileScopeAsm, DC, StartL), AsmString(asmstring), RParenLoc(EndL) {}
4014
4015 virtual void anchor();
4016
4017public:
4018 static FileScopeAsmDecl *Create(ASTContext &C, DeclContext *DC,
4019 StringLiteral *Str, SourceLocation AsmLoc,
4020 SourceLocation RParenLoc);
4021
4022 static FileScopeAsmDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4023
4024 SourceLocation getAsmLoc() const { return getLocation(); }
4025 SourceLocation getRParenLoc() const { return RParenLoc; }
4026 void setRParenLoc(SourceLocation L) { RParenLoc = L; }
4027 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
4028 return SourceRange(getAsmLoc(), getRParenLoc());
4029 }
4030
4031 const StringLiteral *getAsmString() const { return AsmString; }
4032 StringLiteral *getAsmString() { return AsmString; }
4033 void setAsmString(StringLiteral *Asm) { AsmString = Asm; }
4034
4035 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4036 static bool classofKind(Kind K) { return K == FileScopeAsm; }
4037};
4038
4039/// Represents a block literal declaration, which is like an
4040/// unnamed FunctionDecl. For example:
4041/// ^{ statement-body } or ^(int arg1, float arg2){ statement-body }
4042class BlockDecl : public Decl, public DeclContext {
4043 // This class stores some data in DeclContext::BlockDeclBits
4044 // to save some space. Use the provided accessors to access it.
4045public:
4046 /// A class which contains all the information about a particular
4047 /// captured value.
4048 class Capture {
4049 enum {
4050 flag_isByRef = 0x1,
4051 flag_isNested = 0x2
4052 };
4053
4054 /// The variable being captured.
4055 llvm::PointerIntPair<VarDecl*, 2> VariableAndFlags;
4056
4057 /// The copy expression, expressed in terms of a DeclRef (or
4058 /// BlockDeclRef) to the captured variable. Only required if the
4059 /// variable has a C++ class type.
4060 Expr *CopyExpr;
4061
4062 public:
4063 Capture(VarDecl *variable, bool byRef, bool nested, Expr *copy)
4064 : VariableAndFlags(variable,
4065 (byRef ? flag_isByRef : 0) | (nested ? flag_isNested : 0)),
4066 CopyExpr(copy) {}
4067
4068 /// The variable being captured.
4069 VarDecl *getVariable() const { return VariableAndFlags.getPointer(); }
4070
4071 /// Whether this is a "by ref" capture, i.e. a capture of a __block
4072 /// variable.
4073 bool isByRef() const { return VariableAndFlags.getInt() & flag_isByRef; }
4074
4075 bool isEscapingByref() const {
4076 return getVariable()->isEscapingByref();
4077 }
4078
4079 bool isNonEscapingByref() const {
4080 return getVariable()->isNonEscapingByref();
4081 }
4082
4083 /// Whether this is a nested capture, i.e. the variable captured
4084 /// is not from outside the immediately enclosing function/block.
4085 bool isNested() const { return VariableAndFlags.getInt() & flag_isNested; }
4086
4087 bool hasCopyExpr() const { return CopyExpr != nullptr; }
4088 Expr *getCopyExpr() const { return CopyExpr; }
4089 void setCopyExpr(Expr *e) { CopyExpr = e; }
4090 };
4091
4092private:
4093 /// A new[]'d array of pointers to ParmVarDecls for the formal
4094 /// parameters of this function. This is null if a prototype or if there are
4095 /// no formals.
4096 ParmVarDecl **ParamInfo = nullptr;
4097 unsigned NumParams = 0;
4098
4099 Stmt *Body = nullptr;
4100 TypeSourceInfo *SignatureAsWritten = nullptr;
4101
4102 const Capture *Captures = nullptr;
4103 unsigned NumCaptures = 0;
4104
4105 unsigned ManglingNumber = 0;
4106 Decl *ManglingContextDecl = nullptr;
4107
4108protected:
4109 BlockDecl(DeclContext *DC, SourceLocation CaretLoc);
4110
4111public:
4112 static BlockDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L);
4113 static BlockDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4114
4115 SourceLocation getCaretLocation() const { return getLocation(); }
4116
4117 bool isVariadic() const { return BlockDeclBits.IsVariadic; }
4118 void setIsVariadic(bool value) { BlockDeclBits.IsVariadic = value; }
4119
4120 CompoundStmt *getCompoundBody() const { return (CompoundStmt*) Body; }
4121 Stmt *getBody() const override { return (Stmt*) Body; }
4122 void setBody(CompoundStmt *B) { Body = (Stmt*) B; }
4123
4124 void setSignatureAsWritten(TypeSourceInfo *Sig) { SignatureAsWritten = Sig; }
4125 TypeSourceInfo *getSignatureAsWritten() const { return SignatureAsWritten; }
4126
4127 // ArrayRef access to formal parameters.
4128 ArrayRef<ParmVarDecl *> parameters() const {
4129 return {ParamInfo, getNumParams()};
4130 }
4131 MutableArrayRef<ParmVarDecl *> parameters() {
4132 return {ParamInfo, getNumParams()};
4133 }
4134
4135 // Iterator access to formal parameters.
4136 using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
4137 using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
4138
4139 bool param_empty() const { return parameters().empty(); }
4140 param_iterator param_begin() { return parameters().begin(); }
4141 param_iterator param_end() { return parameters().end(); }
4142 param_const_iterator param_begin() const { return parameters().begin(); }
4143 param_const_iterator param_end() const { return parameters().end(); }
4144 size_t param_size() const { return parameters().size(); }
4145
4146 unsigned getNumParams() const { return NumParams; }
4147
4148 const ParmVarDecl *getParamDecl(unsigned i) const {
4149 assert(i < getNumParams() && "Illegal param #")((i < getNumParams() && "Illegal param #") ? static_cast
<void> (0) : __assert_fail ("i < getNumParams() && \"Illegal param #\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 4149, __PRETTY_FUNCTION__))
;
4150 return ParamInfo[i];
4151 }
4152 ParmVarDecl *getParamDecl(unsigned i) {
4153 assert(i < getNumParams() && "Illegal param #")((i < getNumParams() && "Illegal param #") ? static_cast
<void> (0) : __assert_fail ("i < getNumParams() && \"Illegal param #\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 4153, __PRETTY_FUNCTION__))
;
4154 return ParamInfo[i];
4155 }
4156
4157 void setParams(ArrayRef<ParmVarDecl *> NewParamInfo);
4158
4159 /// True if this block (or its nested blocks) captures
4160 /// anything of local storage from its enclosing scopes.
4161 bool hasCaptures() const { return NumCaptures || capturesCXXThis(); }
4162
4163 /// Returns the number of captured variables.
4164 /// Does not include an entry for 'this'.
4165 unsigned getNumCaptures() const { return NumCaptures; }
4166
4167 using capture_const_iterator = ArrayRef<Capture>::const_iterator;
4168
4169 ArrayRef<Capture> captures() const { return {Captures, NumCaptures}; }
4170
4171 capture_const_iterator capture_begin() const { return captures().begin(); }
4172 capture_const_iterator capture_end() const { return captures().end(); }
4173
4174 bool capturesCXXThis() const { return BlockDeclBits.CapturesCXXThis; }
4175 void setCapturesCXXThis(bool B = true) { BlockDeclBits.CapturesCXXThis = B; }
4176
4177 bool blockMissingReturnType() const {
4178 return BlockDeclBits.BlockMissingReturnType;
4179 }
4180
4181 void setBlockMissingReturnType(bool val = true) {
4182 BlockDeclBits.BlockMissingReturnType = val;
4183 }
4184
4185 bool isConversionFromLambda() const {
4186 return BlockDeclBits.IsConversionFromLambda;
4187 }
4188
4189 void setIsConversionFromLambda(bool val = true) {
4190 BlockDeclBits.IsConversionFromLambda = val;
4191 }
4192
4193 bool doesNotEscape() const { return BlockDeclBits.DoesNotEscape; }
4194 void setDoesNotEscape(bool B = true) { BlockDeclBits.DoesNotEscape = B; }
4195
4196 bool canAvoidCopyToHeap() const {
4197 return BlockDeclBits.CanAvoidCopyToHeap;
4198 }
4199 void setCanAvoidCopyToHeap(bool B = true) {
4200 BlockDeclBits.CanAvoidCopyToHeap = B;
4201 }
4202
4203 bool capturesVariable(const VarDecl *var) const;
4204
4205 void setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4206 bool CapturesCXXThis);
4207
4208 unsigned getBlockManglingNumber() const { return ManglingNumber; }
4209
4210 Decl *getBlockManglingContextDecl() const { return ManglingContextDecl; }
4211
4212 void setBlockMangling(unsigned Number, Decl *Ctx) {
4213 ManglingNumber = Number;
4214 ManglingContextDecl = Ctx;
4215 }
4216
4217 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
4218
4219 // Implement isa/cast/dyncast/etc.
4220 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4221 static bool classofKind(Kind K) { return K == Block; }
4222 static DeclContext *castToDeclContext(const BlockDecl *D) {
4223 return static_cast<DeclContext *>(const_cast<BlockDecl*>(D));
4224 }
4225 static BlockDecl *castFromDeclContext(const DeclContext *DC) {
4226 return static_cast<BlockDecl *>(const_cast<DeclContext*>(DC));
4227 }
4228};
4229
4230/// Represents the body of a CapturedStmt, and serves as its DeclContext.
4231class CapturedDecl final
4232 : public Decl,
4233 public DeclContext,
4234 private llvm::TrailingObjects<CapturedDecl, ImplicitParamDecl *> {
4235protected:
4236 size_t numTrailingObjects(OverloadToken<ImplicitParamDecl>) {
4237 return NumParams;
4238 }
4239
4240private:
4241 /// The number of parameters to the outlined function.
4242 unsigned NumParams;
4243
4244 /// The position of context parameter in list of parameters.
4245 unsigned ContextParam;
4246
4247 /// The body of the outlined function.
4248 llvm::PointerIntPair<Stmt *, 1, bool> BodyAndNothrow;
4249
4250 explicit CapturedDecl(DeclContext *DC, unsigned NumParams);
4251
4252 ImplicitParamDecl *const *getParams() const {
4253 return getTrailingObjects<ImplicitParamDecl *>();
4254 }
4255
4256 ImplicitParamDecl **getParams() {
4257 return getTrailingObjects<ImplicitParamDecl *>();
4258 }
4259
4260public:
4261 friend class ASTDeclReader;
4262 friend class ASTDeclWriter;
4263 friend TrailingObjects;
4264
4265 static CapturedDecl *Create(ASTContext &C, DeclContext *DC,
4266 unsigned NumParams);
4267 static CapturedDecl *CreateDeserialized(ASTContext &C, unsigned ID,
4268 unsigned NumParams);
4269
4270 Stmt *getBody() const override;
4271 void setBody(Stmt *B);
4272
4273 bool isNothrow() const;
4274 void setNothrow(bool Nothrow = true);
4275
4276 unsigned getNumParams() const { return NumParams; }
4277
4278 ImplicitParamDecl *getParam(unsigned i) const {
4279 assert(i < NumParams)((i < NumParams) ? static_cast<void> (0) : __assert_fail
("i < NumParams", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 4279, __PRETTY_FUNCTION__))
;
4280 return getParams()[i];
4281 }
4282 void setParam(unsigned i, ImplicitParamDecl *P) {
4283 assert(i < NumParams)((i < NumParams) ? static_cast<void> (0) : __assert_fail
("i < NumParams", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 4283, __PRETTY_FUNCTION__))
;
4284 getParams()[i] = P;
4285 }
4286
4287 // ArrayRef interface to parameters.
4288 ArrayRef<ImplicitParamDecl *> parameters() const {
4289 return {getParams(), getNumParams()};
4290 }
4291 MutableArrayRef<ImplicitParamDecl *> parameters() {
4292 return {getParams(), getNumParams()};
4293 }
4294
4295 /// Retrieve the parameter containing captured variables.
4296 ImplicitParamDecl *getContextParam() const {
4297 assert(ContextParam < NumParams)((ContextParam < NumParams) ? static_cast<void> (0) :
__assert_fail ("ContextParam < NumParams", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 4297, __PRETTY_FUNCTION__))
;
4298 return getParam(ContextParam);
4299 }
4300 void setContextParam(unsigned i, ImplicitParamDecl *P) {
4301 assert(i < NumParams)((i < NumParams) ? static_cast<void> (0) : __assert_fail
("i < NumParams", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 4301, __PRETTY_FUNCTION__))
;
4302 ContextParam = i;
4303 setParam(i, P);
4304 }
4305 unsigned getContextParamPosition() const { return ContextParam; }
4306
4307 using param_iterator = ImplicitParamDecl *const *;
4308 using param_range = llvm::iterator_range<param_iterator>;
4309
4310 /// Retrieve an iterator pointing to the first parameter decl.
4311 param_iterator param_begin() const { return getParams(); }
4312 /// Retrieve an iterator one past the last parameter decl.
4313 param_iterator param_end() const { return getParams() + NumParams; }
4314
4315 // Implement isa/cast/dyncast/etc.
4316 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4317 static bool classofKind(Kind K) { return K == Captured; }
4318 static DeclContext *castToDeclContext(const CapturedDecl *D) {
4319 return static_cast<DeclContext *>(const_cast<CapturedDecl *>(D));
4320 }
4321 static CapturedDecl *castFromDeclContext(const DeclContext *DC) {
4322 return static_cast<CapturedDecl *>(const_cast<DeclContext *>(DC));
4323 }
4324};
4325
4326/// Describes a module import declaration, which makes the contents
4327/// of the named module visible in the current translation unit.
4328///
4329/// An import declaration imports the named module (or submodule). For example:
4330/// \code
4331/// @import std.vector;
4332/// \endcode
4333///
4334/// Import declarations can also be implicitly generated from
4335/// \#include/\#import directives.
4336class ImportDecl final : public Decl,
4337 llvm::TrailingObjects<ImportDecl, SourceLocation> {
4338 friend class ASTContext;
4339 friend class ASTDeclReader;
4340 friend class ASTReader;
4341 friend TrailingObjects;
4342
4343 /// The imported module, along with a bit that indicates whether
4344 /// we have source-location information for each identifier in the module
4345 /// name.
4346 ///
4347 /// When the bit is false, we only have a single source location for the
4348 /// end of the import declaration.
4349 llvm::PointerIntPair<Module *, 1, bool> ImportedAndComplete;
4350
4351 /// The next import in the list of imports local to the translation
4352 /// unit being parsed (not loaded from an AST file).
4353 ImportDecl *NextLocalImport = nullptr;
4354
4355 ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
4356 ArrayRef<SourceLocation> IdentifierLocs);
4357
4358 ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
4359 SourceLocation EndLoc);
4360
4361 ImportDecl(EmptyShell Empty) : Decl(Import, Empty) {}
4362
4363public:
4364 /// Create a new module import declaration.
4365 static ImportDecl *Create(ASTContext &C, DeclContext *DC,
4366 SourceLocation StartLoc, Module *Imported,
4367 ArrayRef<SourceLocation> IdentifierLocs);
4368
4369 /// Create a new module import declaration for an implicitly-generated
4370 /// import.
4371 static ImportDecl *CreateImplicit(ASTContext &C, DeclContext *DC,
4372 SourceLocation StartLoc, Module *Imported,
4373 SourceLocation EndLoc);
4374
4375 /// Create a new, deserialized module import declaration.
4376 static ImportDecl *CreateDeserialized(ASTContext &C, unsigned ID,
4377 unsigned NumLocations);
4378
4379 /// Retrieve the module that was imported by the import declaration.
4380 Module *getImportedModule() const { return ImportedAndComplete.getPointer(); }
4381
4382 /// Retrieves the locations of each of the identifiers that make up
4383 /// the complete module name in the import declaration.
4384 ///
4385 /// This will return an empty array if the locations of the individual
4386 /// identifiers aren't available.
4387 ArrayRef<SourceLocation> getIdentifierLocs() const;
4388
4389 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
4390
4391 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4392 static bool classofKind(Kind K) { return K == Import; }
4393};
4394
4395/// Represents a C++ Modules TS module export declaration.
4396///
4397/// For example:
4398/// \code
4399/// export void foo();
4400/// \endcode
4401class ExportDecl final : public Decl, public DeclContext {
4402 virtual void anchor();
4403
4404private:
4405 friend class ASTDeclReader;
4406
4407 /// The source location for the right brace (if valid).
4408 SourceLocation RBraceLoc;
4409
4410 ExportDecl(DeclContext *DC, SourceLocation ExportLoc)
4411 : Decl(Export, DC, ExportLoc), DeclContext(Export),
4412 RBraceLoc(SourceLocation()) {}
4413
4414public:
4415 static ExportDecl *Create(ASTContext &C, DeclContext *DC,
4416 SourceLocation ExportLoc);
4417 static ExportDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4418
4419 SourceLocation getExportLoc() const { return getLocation(); }
4420 SourceLocation getRBraceLoc() const { return RBraceLoc; }
4421 void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
4422
4423 bool hasBraces() const { return RBraceLoc.isValid(); }
4424
4425 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
4426 if (hasBraces())
4427 return RBraceLoc;
4428 // No braces: get the end location of the (only) declaration in context
4429 // (if present).
4430 return decls_empty() ? getLocation() : decls_begin()->getEndLoc();
4431 }
4432
4433 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
4434 return SourceRange(getLocation(), getEndLoc());
4435 }
4436
4437 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4438 static bool classofKind(Kind K) { return K == Export; }
4439 static DeclContext *castToDeclContext(const ExportDecl *D) {
4440 return static_cast<DeclContext *>(const_cast<ExportDecl*>(D));
4441 }
4442 static ExportDecl *castFromDeclContext(const DeclContext *DC) {
4443 return static_cast<ExportDecl *>(const_cast<DeclContext*>(DC));
4444 }
4445};
4446
4447/// Represents an empty-declaration.
4448class EmptyDecl : public Decl {
4449 EmptyDecl(DeclContext *DC, SourceLocation L) : Decl(Empty, DC, L) {}
4450
4451 virtual void anchor();
4452
4453public:
4454 static EmptyDecl *Create(ASTContext &C, DeclContext *DC,
4455 SourceLocation L);
4456 static EmptyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4457
4458 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4459 static bool classofKind(Kind K) { return K == Empty; }
4460};
4461
4462/// Insertion operator for diagnostics. This allows sending NamedDecl's
4463/// into a diagnostic with <<.
4464inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
4465 const NamedDecl* ND) {
4466 DB.AddTaggedVal(reinterpret_cast<intptr_t>(ND),
4467 DiagnosticsEngine::ak_nameddecl);
4468 return DB;
4469}
4470inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
4471 const NamedDecl* ND) {
4472 PD.AddTaggedVal(reinterpret_cast<intptr_t>(ND),
4473 DiagnosticsEngine::ak_nameddecl);
4474 return PD;
4475}
4476
4477template<typename decl_type>
4478void Redeclarable<decl_type>::setPreviousDecl(decl_type *PrevDecl) {
4479 // Note: This routine is implemented here because we need both NamedDecl
4480 // and Redeclarable to be defined.
4481 assert(RedeclLink.isFirst() &&((RedeclLink.isFirst() && "setPreviousDecl on a decl already in a redeclaration chain"
) ? static_cast<void> (0) : __assert_fail ("RedeclLink.isFirst() && \"setPreviousDecl on a decl already in a redeclaration chain\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 4482, __PRETTY_FUNCTION__))
4482 "setPreviousDecl on a decl already in a redeclaration chain")((RedeclLink.isFirst() && "setPreviousDecl on a decl already in a redeclaration chain"
) ? static_cast<void> (0) : __assert_fail ("RedeclLink.isFirst() && \"setPreviousDecl on a decl already in a redeclaration chain\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 4482, __PRETTY_FUNCTION__))
;
4483
4484 if (PrevDecl) {
4485 // Point to previous. Make sure that this is actually the most recent
4486 // redeclaration, or we can build invalid chains. If the most recent
4487 // redeclaration is invalid, it won't be PrevDecl, but we want it anyway.
4488 First = PrevDecl->getFirstDecl();
4489 assert(First->RedeclLink.isFirst() && "Expected first")((First->RedeclLink.isFirst() && "Expected first")
? static_cast<void> (0) : __assert_fail ("First->RedeclLink.isFirst() && \"Expected first\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 4489, __PRETTY_FUNCTION__))
;
4490 decl_type *MostRecent = First->getNextRedeclaration();
4491 RedeclLink = PreviousDeclLink(cast<decl_type>(MostRecent));
4492
4493 // If the declaration was previously visible, a redeclaration of it remains
4494 // visible even if it wouldn't be visible by itself.
4495 static_cast<decl_type*>(this)->IdentifierNamespace |=
4496 MostRecent->getIdentifierNamespace() &
4497 (Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Type);
4498 } else {
4499 // Make this first.
4500 First = static_cast<decl_type*>(this);
4501 }
4502
4503 // First one will point to this one as latest.
4504 First->RedeclLink.setLatest(static_cast<decl_type*>(this));
4505
4506 assert(!isa<NamedDecl>(static_cast<decl_type*>(this)) ||((!isa<NamedDecl>(static_cast<decl_type*>(this)) ||
cast<NamedDecl>(static_cast<decl_type*>(this))->
isLinkageValid()) ? static_cast<void> (0) : __assert_fail
("!isa<NamedDecl>(static_cast<decl_type*>(this)) || cast<NamedDecl>(static_cast<decl_type*>(this))->isLinkageValid()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 4507, __PRETTY_FUNCTION__))
4507 cast<NamedDecl>(static_cast<decl_type*>(this))->isLinkageValid())((!isa<NamedDecl>(static_cast<decl_type*>(this)) ||
cast<NamedDecl>(static_cast<decl_type*>(this))->
isLinkageValid()) ? static_cast<void> (0) : __assert_fail
("!isa<NamedDecl>(static_cast<decl_type*>(this)) || cast<NamedDecl>(static_cast<decl_type*>(this))->isLinkageValid()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include/clang/AST/Decl.h"
, 4507, __PRETTY_FUNCTION__))
;
4508}
4509
4510// Inline function definitions.
4511
4512/// Check if the given decl is complete.
4513///
4514/// We use this function to break a cycle between the inline definitions in
4515/// Type.h and Decl.h.
4516inline bool IsEnumDeclComplete(EnumDecl *ED) {
4517 return ED->isComplete();
4518}
4519
4520/// Check if the given decl is scoped.
4521///
4522/// We use this function to break a cycle between the inline definitions in
4523/// Type.h and Decl.h.
4524inline bool IsEnumDeclScoped(EnumDecl *ED) {
4525 return ED->isScoped();
4526}
4527
4528} // namespace clang
4529
4530#endif // LLVM_CLANG_AST_DECL_H