Bug Summary

File:clang/lib/Sema/SemaDeclCXX.cpp
Warning:line 654, column 34
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaDeclCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20220116100644+5f782d25a742/build-llvm -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20220116100644+5f782d25a742/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20220116100644+5f782d25a742/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-14~++20220116100644+5f782d25a742/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-14~++20220116100644+5f782d25a742/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-14~++20220116100644+5f782d25a742/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-14~++20220116100644+5f782d25a742/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-14~++20220116100644+5f782d25a742/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20220116100644+5f782d25a742/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20220116100644+5f782d25a742/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20220116100644+5f782d25a742/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-01-16-232930-107970-1 -x c++ /build/llvm-toolchain-snapshot-14~++20220116100644+5f782d25a742/clang/lib/Sema/SemaDeclCXX.cpp
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for C++ declarations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTConsumer.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/ASTLambda.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/ComparisonCategories.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/AST/TypeOrdering.h"
27#include "clang/Basic/AttributeCommonInfo.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/Specifiers.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Lex/LiteralSupport.h"
32#include "clang/Lex/Preprocessor.h"
33#include "clang/Sema/CXXFieldCollector.h"
34#include "clang/Sema/DeclSpec.h"
35#include "clang/Sema/Initialization.h"
36#include "clang/Sema/Lookup.h"
37#include "clang/Sema/ParsedTemplate.h"
38#include "clang/Sema/Scope.h"
39#include "clang/Sema/ScopeInfo.h"
40#include "clang/Sema/SemaInternal.h"
41#include "clang/Sema/Template.h"
42#include "llvm/ADT/ScopeExit.h"
43#include "llvm/ADT/SmallString.h"
44#include "llvm/ADT/STLExtras.h"
45#include "llvm/ADT/StringExtras.h"
46#include <map>
47#include <set>
48
49using namespace clang;
50
51//===----------------------------------------------------------------------===//
52// CheckDefaultArgumentVisitor
53//===----------------------------------------------------------------------===//
54
55namespace {
56/// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
57/// the default argument of a parameter to determine whether it
58/// contains any ill-formed subexpressions. For example, this will
59/// diagnose the use of local variables or parameters within the
60/// default argument expression.
61class CheckDefaultArgumentVisitor
62 : public ConstStmtVisitor<CheckDefaultArgumentVisitor, bool> {
63 Sema &S;
64 const Expr *DefaultArg;
65
66public:
67 CheckDefaultArgumentVisitor(Sema &S, const Expr *DefaultArg)
68 : S(S), DefaultArg(DefaultArg) {}
69
70 bool VisitExpr(const Expr *Node);
71 bool VisitDeclRefExpr(const DeclRefExpr *DRE);
72 bool VisitCXXThisExpr(const CXXThisExpr *ThisE);
73 bool VisitLambdaExpr(const LambdaExpr *Lambda);
74 bool VisitPseudoObjectExpr(const PseudoObjectExpr *POE);
75};
76
77/// VisitExpr - Visit all of the children of this expression.
78bool CheckDefaultArgumentVisitor::VisitExpr(const Expr *Node) {
79 bool IsInvalid = false;
80 for (const Stmt *SubStmt : Node->children())
81 IsInvalid |= Visit(SubStmt);
82 return IsInvalid;
83}
84
85/// VisitDeclRefExpr - Visit a reference to a declaration, to
86/// determine whether this declaration can be used in the default
87/// argument expression.
88bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(const DeclRefExpr *DRE) {
89 const NamedDecl *Decl = DRE->getDecl();
90 if (const auto *Param = dyn_cast<ParmVarDecl>(Decl)) {
91 // C++ [dcl.fct.default]p9:
92 // [...] parameters of a function shall not be used in default
93 // argument expressions, even if they are not evaluated. [...]
94 //
95 // C++17 [dcl.fct.default]p9 (by CWG 2082):
96 // [...] A parameter shall not appear as a potentially-evaluated
97 // expression in a default argument. [...]
98 //
99 if (DRE->isNonOdrUse() != NOUR_Unevaluated)
100 return S.Diag(DRE->getBeginLoc(),
101 diag::err_param_default_argument_references_param)
102 << Param->getDeclName() << DefaultArg->getSourceRange();
103 } else if (const auto *VDecl = dyn_cast<VarDecl>(Decl)) {
104 // C++ [dcl.fct.default]p7:
105 // Local variables shall not be used in default argument
106 // expressions.
107 //
108 // C++17 [dcl.fct.default]p7 (by CWG 2082):
109 // A local variable shall not appear as a potentially-evaluated
110 // expression in a default argument.
111 //
112 // C++20 [dcl.fct.default]p7 (DR as part of P0588R1, see also CWG 2346):
113 // Note: A local variable cannot be odr-used (6.3) in a default argument.
114 //
115 if (VDecl->isLocalVarDecl() && !DRE->isNonOdrUse())
116 return S.Diag(DRE->getBeginLoc(),
117 diag::err_param_default_argument_references_local)
118 << VDecl->getDeclName() << DefaultArg->getSourceRange();
119 }
120
121 return false;
122}
123
124/// VisitCXXThisExpr - Visit a C++ "this" expression.
125bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(const CXXThisExpr *ThisE) {
126 // C++ [dcl.fct.default]p8:
127 // The keyword this shall not be used in a default argument of a
128 // member function.
129 return S.Diag(ThisE->getBeginLoc(),
130 diag::err_param_default_argument_references_this)
131 << ThisE->getSourceRange();
132}
133
134bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(
135 const PseudoObjectExpr *POE) {
136 bool Invalid = false;
137 for (const Expr *E : POE->semantics()) {
138 // Look through bindings.
139 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) {
140 E = OVE->getSourceExpr();
141 assert(E && "pseudo-object binding without source expression?")(static_cast <bool> (E && "pseudo-object binding without source expression?"
) ? void (0) : __assert_fail ("E && \"pseudo-object binding without source expression?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 141, __extension__ __PRETTY_FUNCTION__
))
;
142 }
143
144 Invalid |= Visit(E);
145 }
146 return Invalid;
147}
148
149bool CheckDefaultArgumentVisitor::VisitLambdaExpr(const LambdaExpr *Lambda) {
150 // C++11 [expr.lambda.prim]p13:
151 // A lambda-expression appearing in a default argument shall not
152 // implicitly or explicitly capture any entity.
153 if (Lambda->capture_begin() == Lambda->capture_end())
154 return false;
155
156 return S.Diag(Lambda->getBeginLoc(), diag::err_lambda_capture_default_arg);
157}
158} // namespace
159
160void
161Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
162 const CXXMethodDecl *Method) {
163 // If we have an MSAny spec already, don't bother.
164 if (!Method || ComputedEST == EST_MSAny)
165 return;
166
167 const FunctionProtoType *Proto
168 = Method->getType()->getAs<FunctionProtoType>();
169 Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
170 if (!Proto)
171 return;
172
173 ExceptionSpecificationType EST = Proto->getExceptionSpecType();
174
175 // If we have a throw-all spec at this point, ignore the function.
176 if (ComputedEST == EST_None)
177 return;
178
179 if (EST == EST_None && Method->hasAttr<NoThrowAttr>())
180 EST = EST_BasicNoexcept;
181
182 switch (EST) {
183 case EST_Unparsed:
184 case EST_Uninstantiated:
185 case EST_Unevaluated:
186 llvm_unreachable("should not see unresolved exception specs here")::llvm::llvm_unreachable_internal("should not see unresolved exception specs here"
, "clang/lib/Sema/SemaDeclCXX.cpp", 186)
;
187
188 // If this function can throw any exceptions, make a note of that.
189 case EST_MSAny:
190 case EST_None:
191 // FIXME: Whichever we see last of MSAny and None determines our result.
192 // We should make a consistent, order-independent choice here.
193 ClearExceptions();
194 ComputedEST = EST;
195 return;
196 case EST_NoexceptFalse:
197 ClearExceptions();
198 ComputedEST = EST_None;
199 return;
200 // FIXME: If the call to this decl is using any of its default arguments, we
201 // need to search them for potentially-throwing calls.
202 // If this function has a basic noexcept, it doesn't affect the outcome.
203 case EST_BasicNoexcept:
204 case EST_NoexceptTrue:
205 case EST_NoThrow:
206 return;
207 // If we're still at noexcept(true) and there's a throw() callee,
208 // change to that specification.
209 case EST_DynamicNone:
210 if (ComputedEST == EST_BasicNoexcept)
211 ComputedEST = EST_DynamicNone;
212 return;
213 case EST_DependentNoexcept:
214 llvm_unreachable(::llvm::llvm_unreachable_internal("should not generate implicit declarations for dependent cases"
, "clang/lib/Sema/SemaDeclCXX.cpp", 215)
215 "should not generate implicit declarations for dependent cases")::llvm::llvm_unreachable_internal("should not generate implicit declarations for dependent cases"
, "clang/lib/Sema/SemaDeclCXX.cpp", 215)
;
216 case EST_Dynamic:
217 break;
218 }
219 assert(EST == EST_Dynamic && "EST case not considered earlier.")(static_cast <bool> (EST == EST_Dynamic && "EST case not considered earlier."
) ? void (0) : __assert_fail ("EST == EST_Dynamic && \"EST case not considered earlier.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 219, __extension__ __PRETTY_FUNCTION__
))
;
220 assert(ComputedEST != EST_None &&(static_cast <bool> (ComputedEST != EST_None &&
"Shouldn't collect exceptions when throw-all is guaranteed."
) ? void (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 221, __extension__ __PRETTY_FUNCTION__
))
221 "Shouldn't collect exceptions when throw-all is guaranteed.")(static_cast <bool> (ComputedEST != EST_None &&
"Shouldn't collect exceptions when throw-all is guaranteed."
) ? void (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 221, __extension__ __PRETTY_FUNCTION__
))
;
222 ComputedEST = EST_Dynamic;
223 // Record the exceptions in this function's exception specification.
224 for (const auto &E : Proto->exceptions())
225 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
226 Exceptions.push_back(E);
227}
228
229void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) {
230 if (!S || ComputedEST == EST_MSAny)
231 return;
232
233 // FIXME:
234 //
235 // C++0x [except.spec]p14:
236 // [An] implicit exception-specification specifies the type-id T if and
237 // only if T is allowed by the exception-specification of a function directly
238 // invoked by f's implicit definition; f shall allow all exceptions if any
239 // function it directly invokes allows all exceptions, and f shall allow no
240 // exceptions if every function it directly invokes allows no exceptions.
241 //
242 // Note in particular that if an implicit exception-specification is generated
243 // for a function containing a throw-expression, that specification can still
244 // be noexcept(true).
245 //
246 // Note also that 'directly invoked' is not defined in the standard, and there
247 // is no indication that we should only consider potentially-evaluated calls.
248 //
249 // Ultimately we should implement the intent of the standard: the exception
250 // specification should be the set of exceptions which can be thrown by the
251 // implicit definition. For now, we assume that any non-nothrow expression can
252 // throw any exception.
253
254 if (Self->canThrow(S))
255 ComputedEST = EST_None;
256}
257
258ExprResult Sema::ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
259 SourceLocation EqualLoc) {
260 if (RequireCompleteType(Param->getLocation(), Param->getType(),
261 diag::err_typecheck_decl_incomplete_type))
262 return true;
263
264 // C++ [dcl.fct.default]p5
265 // A default argument expression is implicitly converted (clause
266 // 4) to the parameter type. The default argument expression has
267 // the same semantic constraints as the initializer expression in
268 // a declaration of a variable of the parameter type, using the
269 // copy-initialization semantics (8.5).
270 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
271 Param);
272 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
273 EqualLoc);
274 InitializationSequence InitSeq(*this, Entity, Kind, Arg);
275 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
276 if (Result.isInvalid())
277 return true;
278 Arg = Result.getAs<Expr>();
279
280 CheckCompletedExpr(Arg, EqualLoc);
281 Arg = MaybeCreateExprWithCleanups(Arg);
282
283 return Arg;
284}
285
286void Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
287 SourceLocation EqualLoc) {
288 // Add the default argument to the parameter
289 Param->setDefaultArg(Arg);
290
291 // We have already instantiated this parameter; provide each of the
292 // instantiations with the uninstantiated default argument.
293 UnparsedDefaultArgInstantiationsMap::iterator InstPos
294 = UnparsedDefaultArgInstantiations.find(Param);
295 if (InstPos != UnparsedDefaultArgInstantiations.end()) {
296 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
297 InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
298
299 // We're done tracking this parameter's instantiations.
300 UnparsedDefaultArgInstantiations.erase(InstPos);
301 }
302}
303
304/// ActOnParamDefaultArgument - Check whether the default argument
305/// provided for a function parameter is well-formed. If so, attach it
306/// to the parameter declaration.
307void
308Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
309 Expr *DefaultArg) {
310 if (!param || !DefaultArg)
311 return;
312
313 ParmVarDecl *Param = cast<ParmVarDecl>(param);
314 UnparsedDefaultArgLocs.erase(Param);
315
316 auto Fail = [&] {
317 Param->setInvalidDecl();
318 Param->setDefaultArg(new (Context) OpaqueValueExpr(
319 EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue));
320 };
321
322 // Default arguments are only permitted in C++
323 if (!getLangOpts().CPlusPlus) {
324 Diag(EqualLoc, diag::err_param_default_argument)
325 << DefaultArg->getSourceRange();
326 return Fail();
327 }
328
329 // Check for unexpanded parameter packs.
330 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
331 return Fail();
332 }
333
334 // C++11 [dcl.fct.default]p3
335 // A default argument expression [...] shall not be specified for a
336 // parameter pack.
337 if (Param->isParameterPack()) {
338 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
339 << DefaultArg->getSourceRange();
340 // Recover by discarding the default argument.
341 Param->setDefaultArg(nullptr);
342 return;
343 }
344
345 ExprResult Result = ConvertParamDefaultArgument(Param, DefaultArg, EqualLoc);
346 if (Result.isInvalid())
347 return Fail();
348
349 DefaultArg = Result.getAs<Expr>();
350
351 // Check that the default argument is well-formed
352 CheckDefaultArgumentVisitor DefaultArgChecker(*this, DefaultArg);
353 if (DefaultArgChecker.Visit(DefaultArg))
354 return Fail();
355
356 SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
357}
358
359/// ActOnParamUnparsedDefaultArgument - We've seen a default
360/// argument for a function parameter, but we can't parse it yet
361/// because we're inside a class definition. Note that this default
362/// argument will be parsed later.
363void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
364 SourceLocation EqualLoc,
365 SourceLocation ArgLoc) {
366 if (!param)
367 return;
368
369 ParmVarDecl *Param = cast<ParmVarDecl>(param);
370 Param->setUnparsedDefaultArg();
371 UnparsedDefaultArgLocs[Param] = ArgLoc;
372}
373
374/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
375/// the default argument for the parameter param failed.
376void Sema::ActOnParamDefaultArgumentError(Decl *param,
377 SourceLocation EqualLoc) {
378 if (!param)
379 return;
380
381 ParmVarDecl *Param = cast<ParmVarDecl>(param);
382 Param->setInvalidDecl();
383 UnparsedDefaultArgLocs.erase(Param);
384 Param->setDefaultArg(new (Context) OpaqueValueExpr(
385 EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue));
386}
387
388/// CheckExtraCXXDefaultArguments - Check for any extra default
389/// arguments in the declarator, which is not a function declaration
390/// or definition and therefore is not permitted to have default
391/// arguments. This routine should be invoked for every declarator
392/// that is not a function declaration or definition.
393void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
394 // C++ [dcl.fct.default]p3
395 // A default argument expression shall be specified only in the
396 // parameter-declaration-clause of a function declaration or in a
397 // template-parameter (14.1). It shall not be specified for a
398 // parameter pack. If it is specified in a
399 // parameter-declaration-clause, it shall not occur within a
400 // declarator or abstract-declarator of a parameter-declaration.
401 bool MightBeFunction = D.isFunctionDeclarationContext();
402 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
403 DeclaratorChunk &chunk = D.getTypeObject(i);
404 if (chunk.Kind == DeclaratorChunk::Function) {
405 if (MightBeFunction) {
406 // This is a function declaration. It can have default arguments, but
407 // keep looking in case its return type is a function type with default
408 // arguments.
409 MightBeFunction = false;
410 continue;
411 }
412 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
413 ++argIdx) {
414 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
415 if (Param->hasUnparsedDefaultArg()) {
416 std::unique_ptr<CachedTokens> Toks =
417 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens);
418 SourceRange SR;
419 if (Toks->size() > 1)
420 SR = SourceRange((*Toks)[1].getLocation(),
421 Toks->back().getLocation());
422 else
423 SR = UnparsedDefaultArgLocs[Param];
424 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
425 << SR;
426 } else if (Param->getDefaultArg()) {
427 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
428 << Param->getDefaultArg()->getSourceRange();
429 Param->setDefaultArg(nullptr);
430 }
431 }
432 } else if (chunk.Kind != DeclaratorChunk::Paren) {
433 MightBeFunction = false;
434 }
435 }
436}
437
438static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
439 return llvm::any_of(FD->parameters(), [](ParmVarDecl *P) {
440 return P->hasDefaultArg() && !P->hasInheritedDefaultArg();
441 });
442}
443
444/// MergeCXXFunctionDecl - Merge two declarations of the same C++
445/// function, once we already know that they have the same
446/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
447/// error, false otherwise.
448bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
449 Scope *S) {
450 bool Invalid = false;
451
452 // The declaration context corresponding to the scope is the semantic
453 // parent, unless this is a local function declaration, in which case
454 // it is that surrounding function.
455 DeclContext *ScopeDC = New->isLocalExternDecl()
1
Assuming the condition is false
2
'?' condition is false
456 ? New->getLexicalDeclContext()
457 : New->getDeclContext();
458
459 // Find the previous declaration for the purpose of default arguments.
460 FunctionDecl *PrevForDefaultArgs = Old;
461 for (/**/; PrevForDefaultArgs;
3
Assuming pointer value is null
4
Loop condition is false. Execution continues on line 509
462 // Don't bother looking back past the latest decl if this is a local
463 // extern declaration; nothing else could work.
464 PrevForDefaultArgs = New->isLocalExternDecl()
465 ? nullptr
466 : PrevForDefaultArgs->getPreviousDecl()) {
467 // Ignore hidden declarations.
468 if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
469 continue;
470
471 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
472 !New->isCXXClassMember()) {
473 // Ignore default arguments of old decl if they are not in
474 // the same scope and this is not an out-of-line definition of
475 // a member function.
476 continue;
477 }
478
479 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
480 // If only one of these is a local function declaration, then they are
481 // declared in different scopes, even though isDeclInScope may think
482 // they're in the same scope. (If both are local, the scope check is
483 // sufficient, and if neither is local, then they are in the same scope.)
484 continue;
485 }
486
487 // We found the right previous declaration.
488 break;
489 }
490
491 // C++ [dcl.fct.default]p4:
492 // For non-template functions, default arguments can be added in
493 // later declarations of a function in the same
494 // scope. Declarations in different scopes have completely
495 // distinct sets of default arguments. That is, declarations in
496 // inner scopes do not acquire default arguments from
497 // declarations in outer scopes, and vice versa. In a given
498 // function declaration, all parameters subsequent to a
499 // parameter with a default argument shall have default
500 // arguments supplied in this or previous declarations. A
501 // default argument shall not be redefined by a later
502 // declaration (not even to the same value).
503 //
504 // C++ [dcl.fct.default]p6:
505 // Except for member functions of class templates, the default arguments
506 // in a member function definition that appears outside of the class
507 // definition are added to the set of default arguments provided by the
508 // member function declaration in the class definition.
509 for (unsigned p = 0, NumParams = PrevForDefaultArgs
4.1
'PrevForDefaultArgs' is null
5
'?' condition is false
510 ? PrevForDefaultArgs->getNumParams() 511 : 0; 512 p < NumParams; ++p) { 513 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p); 514 ParmVarDecl *NewParam = New->getParamDecl(p); 515 516 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false; 517 bool NewParamHasDfl = NewParam->hasDefaultArg(); 518 519 if (OldParamHasDfl && NewParamHasDfl) { 520 unsigned DiagDefaultParamID = 521 diag::err_param_default_argument_redefinition; 522 523 // MSVC accepts that default parameters be redefined for member functions 524 // of template class. The new default parameter's value is ignored. 525 Invalid = true; 526 if (getLangOpts().MicrosoftExt) { 527 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New); 528 if (MD && MD->getParent()->getDescribedClassTemplate()) { 529 // Merge the old default argument into the new parameter. 530 NewParam->setHasInheritedDefaultArg(); 531 if (OldParam->hasUninstantiatedDefaultArg()) 532 NewParam->setUninstantiatedDefaultArg( 533 OldParam->getUninstantiatedDefaultArg()); 534 else 535 NewParam->setDefaultArg(OldParam->getInit()); 536 DiagDefaultParamID = diag::ext_param_default_argument_redefinition; 537 Invalid = false; 538 } 539 } 540 541 // FIXME: If we knew where the '=' was, we could easily provide a fix-it 542 // hint here. Alternatively, we could walk the type-source information 543 // for NewParam to find the last source location in the type... but it 544 // isn't worth the effort right now. This is the kind of test case that 545 // is hard to get right: 546 // int f(int); 547 // void g(int (*fp)(int) = f); 548 // void g(int (*fp)(int) = &f); 549 Diag(NewParam->getLocation(), DiagDefaultParamID) 550 << NewParam->getDefaultArgRange(); 551 552 // Look for the function declaration where the default argument was 553 // actually written, which may be a declaration prior to Old. 554 for (auto Older = PrevForDefaultArgs; 555 OldParam->hasInheritedDefaultArg(); /**/) { 556 Older = Older->getPreviousDecl(); 557 OldParam = Older->getParamDecl(p); 558 } 559 560 Diag(OldParam->getLocation(), diag::note_previous_definition) 561 << OldParam->getDefaultArgRange(); 562 } else if (OldParamHasDfl) { 563 // Merge the old default argument into the new parameter unless the new 564 // function is a friend declaration in a template class. In the latter 565 // case the default arguments will be inherited when the friend 566 // declaration will be instantiated. 567 if (New->getFriendObjectKind() == Decl::FOK_None || 568 !New->getLexicalDeclContext()->isDependentContext()) { 569 // It's important to use getInit() here; getDefaultArg() 570 // strips off any top-level ExprWithCleanups. 571 NewParam->setHasInheritedDefaultArg(); 572 if (OldParam->hasUnparsedDefaultArg()) 573 NewParam->setUnparsedDefaultArg(); 574 else if (OldParam->hasUninstantiatedDefaultArg()) 575 NewParam->setUninstantiatedDefaultArg( 576 OldParam->getUninstantiatedDefaultArg()); 577 else 578 NewParam->setDefaultArg(OldParam->getInit()); 579 } 580 } else if (NewParamHasDfl) { 581 if (New->getDescribedFunctionTemplate()) { 582 // Paragraph 4, quoted above, only applies to non-template functions. 583 Diag(NewParam->getLocation(), 584 diag::err_param_default_argument_template_redecl) 585 << NewParam->getDefaultArgRange(); 586 Diag(PrevForDefaultArgs->getLocation(), 587 diag::note_template_prev_declaration) 588 << false; 589 } else if (New->getTemplateSpecializationKind() 590 != TSK_ImplicitInstantiation && 591 New->getTemplateSpecializationKind() != TSK_Undeclared) { 592 // C++ [temp.expr.spec]p21: 593 // Default function arguments shall not be specified in a declaration 594 // or a definition for one of the following explicit specializations: 595 // - the explicit specialization of a function template; 596 // - the explicit specialization of a member function template; 597 // - the explicit specialization of a member function of a class 598 // template where the class template specialization to which the 599 // member function specialization belongs is implicitly 600 // instantiated. 601 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) 602 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) 603 << New->getDeclName() 604 << NewParam->getDefaultArgRange(); 605 } else if (New->getDeclContext()->isDependentContext()) { 606 // C++ [dcl.fct.default]p6 (DR217): 607 // Default arguments for a member function of a class template shall 608 // be specified on the initial declaration of the member function 609 // within the class template. 610 // 611 // Reading the tea leaves a bit in DR217 and its reference to DR205 612 // leads me to the conclusion that one cannot add default function 613 // arguments for an out-of-line definition of a member function of a 614 // dependent type. 615 int WhichKind = 2; 616 if (CXXRecordDecl *Record 617 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) { 618 if (Record->getDescribedClassTemplate()) 619 WhichKind = 0; 620 else if (isa<ClassTemplatePartialSpecializationDecl>(Record)) 621 WhichKind = 1; 622 else 623 WhichKind = 2; 624 } 625 626 Diag(NewParam->getLocation(), 627 diag::err_param_default_argument_member_template_redecl) 628 << WhichKind 629 << NewParam->getDefaultArgRange(); 630 } 631 } 632 } 633 634 // DR1344: If a default argument is added outside a class definition and that 635 // default argument makes the function a special member function, the program 636 // is ill-formed. This can only happen for constructors. 637 if (isa<CXXConstructorDecl>(New) &&
6
Assuming 'New' is not a 'CXXConstructorDecl'
638 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) { 639 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)), 640 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old)); 641 if (NewSM != OldSM) { 642 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments()); 643 assert(NewParam->hasDefaultArg())(static_cast <bool> (NewParam->hasDefaultArg()) ? void
(0) : __assert_fail ("NewParam->hasDefaultArg()", "clang/lib/Sema/SemaDeclCXX.cpp"
, 643, __extension__ __PRETTY_FUNCTION__))
; 644 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special) 645 << NewParam->getDefaultArgRange() << NewSM; 646 Diag(Old->getLocation(), diag::note_previous_declaration); 647 } 648 } 649 650 const FunctionDecl *Def; 651 // C++11 [dcl.constexpr]p1: If any declaration of a function or function 652 // template has a constexpr specifier then all its declarations shall 653 // contain the constexpr specifier. 654 if (New->getConstexprKind() != Old->getConstexprKind()) {
7
Called C++ object pointer is null
655 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch) 656 << New << static_cast<int>(New->getConstexprKind()) 657 << static_cast<int>(Old->getConstexprKind()); 658 Diag(Old->getLocation(), diag::note_previous_declaration); 659 Invalid = true; 660 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() && 661 Old->isDefined(Def) && 662 // If a friend function is inlined but does not have 'inline' 663 // specifier, it is a definition. Do not report attribute conflict 664 // in this case, redefinition will be diagnosed later. 665 (New->isInlineSpecified() || 666 New->getFriendObjectKind() == Decl::FOK_None)) { 667 // C++11 [dcl.fcn.spec]p4: 668 // If the definition of a function appears in a translation unit before its 669 // first declaration as inline, the program is ill-formed. 670 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; 671 Diag(Def->getLocation(), diag::note_previous_definition); 672 Invalid = true; 673 } 674 675 // C++17 [temp.deduct.guide]p3: 676 // Two deduction guide declarations in the same translation unit 677 // for the same class template shall not have equivalent 678 // parameter-declaration-clauses. 679 if (isa<CXXDeductionGuideDecl>(New) && 680 !New->isFunctionTemplateSpecialization() && isVisible(Old)) { 681 Diag(New->getLocation(), diag::err_deduction_guide_redeclared); 682 Diag(Old->getLocation(), diag::note_previous_declaration); 683 } 684 685 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default 686 // argument expression, that declaration shall be a definition and shall be 687 // the only declaration of the function or function template in the 688 // translation unit. 689 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared && 690 functionDeclHasDefaultArgument(Old)) { 691 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); 692 Diag(Old->getLocation(), diag::note_previous_declaration); 693 Invalid = true; 694 } 695 696 // C++11 [temp.friend]p4 (DR329): 697 // When a function is defined in a friend function declaration in a class 698 // template, the function is instantiated when the function is odr-used. 699 // The same restrictions on multiple declarations and definitions that 700 // apply to non-template function declarations and definitions also apply 701 // to these implicit definitions. 702 const FunctionDecl *OldDefinition = nullptr; 703 if (New->isThisDeclarationInstantiatedFromAFriendDefinition() && 704 Old->isDefined(OldDefinition, true)) 705 CheckForFunctionRedefinition(New, OldDefinition); 706 707 return Invalid; 708} 709 710NamedDecl * 711Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D, 712 MultiTemplateParamsArg TemplateParamLists) { 713 assert(D.isDecompositionDeclarator())(static_cast <bool> (D.isDecompositionDeclarator()) ? void
(0) : __assert_fail ("D.isDecompositionDeclarator()", "clang/lib/Sema/SemaDeclCXX.cpp"
, 713, __extension__ __PRETTY_FUNCTION__))
; 714 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); 715 716 // The syntax only allows a decomposition declarator as a simple-declaration, 717 // a for-range-declaration, or a condition in Clang, but we parse it in more 718 // cases than that. 719 if (!D.mayHaveDecompositionDeclarator()) { 720 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) 721 << Decomp.getSourceRange(); 722 return nullptr; 723 } 724 725 if (!TemplateParamLists.empty()) { 726 // FIXME: There's no rule against this, but there are also no rules that 727 // would actually make it usable, so we reject it for now. 728 Diag(TemplateParamLists.front()->getTemplateLoc(), 729 diag::err_decomp_decl_template); 730 return nullptr; 731 } 732 733 Diag(Decomp.getLSquareLoc(), 734 !getLangOpts().CPlusPlus17 735 ? diag::ext_decomp_decl 736 : D.getContext() == DeclaratorContext::Condition 737 ? diag::ext_decomp_decl_cond 738 : diag::warn_cxx14_compat_decomp_decl) 739 << Decomp.getSourceRange(); 740 741 // The semantic context is always just the current context. 742 DeclContext *const DC = CurContext; 743 744 // C++17 [dcl.dcl]/8: 745 // The decl-specifier-seq shall contain only the type-specifier auto 746 // and cv-qualifiers. 747 // C++2a [dcl.dcl]/8: 748 // If decl-specifier-seq contains any decl-specifier other than static, 749 // thread_local, auto, or cv-qualifiers, the program is ill-formed. 750 auto &DS = D.getDeclSpec(); 751 { 752 SmallVector<StringRef, 8> BadSpecifiers; 753 SmallVector<SourceLocation, 8> BadSpecifierLocs; 754 SmallVector<StringRef, 8> CPlusPlus20Specifiers; 755 SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs; 756 if (auto SCS = DS.getStorageClassSpec()) { 757 if (SCS == DeclSpec::SCS_static) { 758 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS)); 759 CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc()); 760 } else { 761 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS)); 762 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc()); 763 } 764 } 765 if (auto TSCS = DS.getThreadStorageClassSpec()) { 766 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS)); 767 CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc()); 768 } 769 if (DS.hasConstexprSpecifier()) { 770 BadSpecifiers.push_back( 771 DeclSpec::getSpecifierName(DS.getConstexprSpecifier())); 772 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc()); 773 } 774 if (DS.isInlineSpecified()) { 775 BadSpecifiers.push_back("inline"); 776 BadSpecifierLocs.push_back(DS.getInlineSpecLoc()); 777 } 778 if (!BadSpecifiers.empty()) { 779 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec); 780 Err << (int)BadSpecifiers.size() 781 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " "); 782 // Don't add FixItHints to remove the specifiers; we do still respect 783 // them when building the underlying variable. 784 for (auto Loc : BadSpecifierLocs) 785 Err << SourceRange(Loc, Loc); 786 } else if (!CPlusPlus20Specifiers.empty()) { 787 auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(), 788 getLangOpts().CPlusPlus20 789 ? diag::warn_cxx17_compat_decomp_decl_spec 790 : diag::ext_decomp_decl_spec); 791 Warn << (int)CPlusPlus20Specifiers.size() 792 << llvm::join(CPlusPlus20Specifiers.begin(), 793 CPlusPlus20Specifiers.end(), " "); 794 for (auto Loc : CPlusPlus20SpecifierLocs) 795 Warn << SourceRange(Loc, Loc); 796 } 797 // We can't recover from it being declared as a typedef. 798 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) 799 return nullptr; 800 } 801 802 // C++2a [dcl.struct.bind]p1: 803 // A cv that includes volatile is deprecated 804 if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) && 805 getLangOpts().CPlusPlus20) 806 Diag(DS.getVolatileSpecLoc(), 807 diag::warn_deprecated_volatile_structured_binding); 808 809 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 810 QualType R = TInfo->getType(); 811 812 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 813 UPPC_DeclarationType)) 814 D.setInvalidType(); 815 816 // The syntax only allows a single ref-qualifier prior to the decomposition 817 // declarator. No other declarator chunks are permitted. Also check the type 818 // specifier here. 819 if (DS.getTypeSpecType() != DeclSpec::TST_auto || 820 D.hasGroupingParens() || D.getNumTypeObjects() > 1 || 821 (D.getNumTypeObjects() == 1 && 822 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) { 823 Diag(Decomp.getLSquareLoc(), 824 (D.hasGroupingParens() || 825 (D.getNumTypeObjects() && 826 D.getTypeObject(0).Kind == DeclaratorChunk::Paren)) 827 ? diag::err_decomp_decl_parens 828 : diag::err_decomp_decl_type) 829 << R; 830 831 // In most cases, there's no actual problem with an explicitly-specified 832 // type, but a function type won't work here, and ActOnVariableDeclarator 833 // shouldn't be called for such a type. 834 if (R->isFunctionType()) 835 D.setInvalidType(); 836 } 837 838 // Build the BindingDecls. 839 SmallVector<BindingDecl*, 8> Bindings; 840 841 // Build the BindingDecls. 842 for (auto &B : D.getDecompositionDeclarator().bindings()) { 843 // Check for name conflicts. 844 DeclarationNameInfo NameInfo(B.Name, B.NameLoc); 845 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 846 ForVisibleRedeclaration); 847 LookupName(Previous, S, 848 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit()); 849 850 // It's not permitted to shadow a template parameter name. 851 if (Previous.isSingleResult() && 852 Previous.getFoundDecl()->isTemplateParameter()) { 853 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 854 Previous.getFoundDecl()); 855 Previous.clear(); 856 } 857 858 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name); 859 860 // Find the shadowed declaration before filtering for scope. 861 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty() 862 ? getShadowedDeclaration(BD, Previous) 863 : nullptr; 864 865 bool ConsiderLinkage = DC->isFunctionOrMethod() && 866 DS.getStorageClassSpec() == DeclSpec::SCS_extern; 867 FilterLookupForScope(Previous, DC, S, ConsiderLinkage, 868 /*AllowInlineNamespace*/false); 869 870 if (!Previous.empty()) { 871 auto *Old = Previous.getRepresentativeDecl(); 872 Diag(B.NameLoc, diag::err_redefinition) << B.Name; 873 Diag(Old->getLocation(), diag::note_previous_definition); 874 } else if (ShadowedDecl && !D.isRedeclaration()) { 875 CheckShadow(BD, ShadowedDecl, Previous); 876 } 877 PushOnScopeChains(BD, S, true); 878 Bindings.push_back(BD); 879 ParsingInitForAutoVars.insert(BD); 880 } 881 882 // There are no prior lookup results for the variable itself, because it 883 // is unnamed. 884 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr, 885 Decomp.getLSquareLoc()); 886 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 887 ForVisibleRedeclaration); 888 889 // Build the variable that holds the non-decomposed object. 890 bool AddToScope = true; 891 NamedDecl *New = 892 ActOnVariableDeclarator(S, D, DC, TInfo, Previous, 893 MultiTemplateParamsArg(), AddToScope, Bindings); 894 if (AddToScope) { 895 S->AddDecl(New); 896 CurContext->addHiddenDecl(New); 897 } 898 899 if (isInOpenMPDeclareTargetContext()) 900 checkDeclIsAllowedInOpenMPTarget(nullptr, New); 901 902 return New; 903} 904 905static bool checkSimpleDecomposition( 906 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src, 907 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType, 908 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) { 909 if ((int64_t)Bindings.size() != NumElems) { 910 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 911 << DecompType << (unsigned)Bindings.size() 912 << (unsigned)NumElems.getLimitedValue(UINT_MAX(2147483647 *2U +1U)) 913 << toString(NumElems, 10) << (NumElems < Bindings.size()); 914 return true; 915 } 916 917 unsigned I = 0; 918 for (auto *B : Bindings) { 919 SourceLocation Loc = B->getLocation(); 920 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 921 if (E.isInvalid()) 922 return true; 923 E = GetInit(Loc, E.get(), I++); 924 if (E.isInvalid()) 925 return true; 926 B->setBinding(ElemType, E.get()); 927 } 928 929 return false; 930} 931 932static bool checkArrayLikeDecomposition(Sema &S, 933 ArrayRef<BindingDecl *> Bindings, 934 ValueDecl *Src, QualType DecompType, 935 const llvm::APSInt &NumElems, 936 QualType ElemType) { 937 return checkSimpleDecomposition( 938 S, Bindings, Src, DecompType, NumElems, ElemType, 939 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { 940 ExprResult E = S.ActOnIntegerConstant(Loc, I); 941 if (E.isInvalid()) 942 return ExprError(); 943 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc); 944 }); 945} 946 947static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 948 ValueDecl *Src, QualType DecompType, 949 const ConstantArrayType *CAT) { 950 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType, 951 llvm::APSInt(CAT->getSize()), 952 CAT->getElementType()); 953} 954 955static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 956 ValueDecl *Src, QualType DecompType, 957 const VectorType *VT) { 958 return checkArrayLikeDecomposition( 959 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()), 960 S.Context.getQualifiedType(VT->getElementType(), 961 DecompType.getQualifiers())); 962} 963 964static bool checkComplexDecomposition(Sema &S, 965 ArrayRef<BindingDecl *> Bindings, 966 ValueDecl *Src, QualType DecompType, 967 const ComplexType *CT) { 968 return checkSimpleDecomposition( 969 S, Bindings, Src, DecompType, llvm::APSInt::get(2), 970 S.Context.getQualifiedType(CT->getElementType(), 971 DecompType.getQualifiers()), 972 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { 973 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base); 974 }); 975} 976 977static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy, 978 TemplateArgumentListInfo &Args, 979 const TemplateParameterList *Params) { 980 SmallString<128> SS; 981 llvm::raw_svector_ostream OS(SS); 982 bool First = true; 983 unsigned I = 0; 984 for (auto &Arg : Args.arguments()) { 985 if (!First) 986 OS << ", "; 987 Arg.getArgument().print(PrintingPolicy, OS, 988 TemplateParameterList::shouldIncludeTypeForArgument( 989 PrintingPolicy, Params, I)); 990 First = false; 991 I++; 992 } 993 return std::string(OS.str()); 994} 995 996static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup, 997 SourceLocation Loc, StringRef Trait, 998 TemplateArgumentListInfo &Args, 999 unsigned DiagID) { 1000 auto DiagnoseMissing = [&] { 1001 if (DiagID) 1002 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(), 1003 Args, /*Params*/ nullptr); 1004 return true; 1005 }; 1006 1007 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine. 1008 NamespaceDecl *Std = S.getStdNamespace(); 1009 if (!Std) 1010 return DiagnoseMissing(); 1011 1012 // Look up the trait itself, within namespace std. We can diagnose various 1013 // problems with this lookup even if we've been asked to not diagnose a 1014 // missing specialization, because this can only fail if the user has been 1015 // declaring their own names in namespace std or we don't support the 1016 // standard library implementation in use. 1017 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait), 1018 Loc, Sema::LookupOrdinaryName); 1019 if (!S.LookupQualifiedName(Result, Std)) 1020 return DiagnoseMissing(); 1021 if (Result.isAmbiguous()) 1022 return true; 1023 1024 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>(); 1025 if (!TraitTD) { 1026 Result.suppressDiagnostics(); 1027 NamedDecl *Found = *Result.begin(); 1028 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait; 1029 S.Diag(Found->getLocation(), diag::note_declared_at); 1030 return true; 1031 } 1032 1033 // Build the template-id. 1034 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args); 1035 if (TraitTy.isNull()) 1036 return true; 1037 if (!S.isCompleteType(Loc, TraitTy)) { 1038 if (DiagID) 1039 S.RequireCompleteType( 1040 Loc, TraitTy, DiagID, 1041 printTemplateArgs(S.Context.getPrintingPolicy(), Args, 1042 TraitTD->getTemplateParameters())); 1043 return true; 1044 } 1045 1046 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl(); 1047 assert(RD && "specialization of class template is not a class?")(static_cast <bool> (RD && "specialization of class template is not a class?"
) ? void (0) : __assert_fail ("RD && \"specialization of class template is not a class?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 1047, __extension__ __PRETTY_FUNCTION__
))
; 1048 1049 // Look up the member of the trait type. 1050 S.LookupQualifiedName(TraitMemberLookup, RD); 1051 return TraitMemberLookup.isAmbiguous(); 1052} 1053 1054static TemplateArgumentLoc 1055getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T, 1056 uint64_t I) { 1057 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T); 1058 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc); 1059} 1060 1061static TemplateArgumentLoc 1062getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) { 1063 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc); 1064} 1065 1066namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; } 1067 1068static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T, 1069 llvm::APSInt &Size) { 1070 EnterExpressionEvaluationContext ContextRAII( 1071 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1072 1073 DeclarationName Value = S.PP.getIdentifierInfo("value"); 1074 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName); 1075 1076 // Form template argument list for tuple_size<T>. 1077 TemplateArgumentListInfo Args(Loc, Loc); 1078 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); 1079 1080 // If there's no tuple_size specialization or the lookup of 'value' is empty, 1081 // it's not tuple-like. 1082 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) || 1083 R.empty()) 1084 return IsTupleLike::NotTupleLike; 1085 1086 // If we get this far, we've committed to the tuple interpretation, but 1087 // we can still fail if there actually isn't a usable ::value. 1088 1089 struct ICEDiagnoser : Sema::VerifyICEDiagnoser { 1090 LookupResult &R; 1091 TemplateArgumentListInfo &Args; 1092 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args) 1093 : R(R), Args(Args) {} 1094 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S, 1095 SourceLocation Loc) override { 1096 return S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant) 1097 << printTemplateArgs(S.Context.getPrintingPolicy(), Args, 1098 /*Params*/ nullptr); 1099 } 1100 } Diagnoser(R, Args); 1101 1102 ExprResult E = 1103 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false); 1104 if (E.isInvalid()) 1105 return IsTupleLike::Error; 1106 1107 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser); 1108 if (E.isInvalid()) 1109 return IsTupleLike::Error; 1110 1111 return IsTupleLike::TupleLike; 1112} 1113 1114/// \return std::tuple_element<I, T>::type. 1115static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc, 1116 unsigned I, QualType T) { 1117 // Form template argument list for tuple_element<I, T>. 1118 TemplateArgumentListInfo Args(Loc, Loc); 1119 Args.addArgument( 1120 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); 1121 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); 1122 1123 DeclarationName TypeDN = S.PP.getIdentifierInfo("type"); 1124 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName); 1125 if (lookupStdTypeTraitMember( 1126 S, R, Loc, "tuple_element", Args, 1127 diag::err_decomp_decl_std_tuple_element_not_specialized)) 1128 return QualType(); 1129 1130 auto *TD = R.getAsSingle<TypeDecl>(); 1131 if (!TD) { 1132 R.suppressDiagnostics(); 1133 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized) 1134 << printTemplateArgs(S.Context.getPrintingPolicy(), Args, 1135 /*Params*/ nullptr); 1136 if (!R.empty()) 1137 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at); 1138 return QualType(); 1139 } 1140 1141 return S.Context.getTypeDeclType(TD); 1142} 1143 1144namespace { 1145struct InitializingBinding { 1146 Sema &S; 1147 InitializingBinding(Sema &S, BindingDecl *BD) : S(S) { 1148 Sema::CodeSynthesisContext Ctx; 1149 Ctx.Kind = Sema::CodeSynthesisContext::InitializingStructuredBinding; 1150 Ctx.PointOfInstantiation = BD->getLocation(); 1151 Ctx.Entity = BD; 1152 S.pushCodeSynthesisContext(Ctx); 1153 } 1154 ~InitializingBinding() { 1155 S.popCodeSynthesisContext(); 1156 } 1157}; 1158} 1159 1160static bool checkTupleLikeDecomposition(Sema &S, 1161 ArrayRef<BindingDecl *> Bindings, 1162 VarDecl *Src, QualType DecompType, 1163 const llvm::APSInt &TupleSize) { 1164 if ((int64_t)Bindings.size() != TupleSize) { 1165 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 1166 << DecompType << (unsigned)Bindings.size() 1167 << (unsigned)TupleSize.getLimitedValue(UINT_MAX(2147483647 *2U +1U)) 1168 << toString(TupleSize, 10) << (TupleSize < Bindings.size()); 1169 return true; 1170 } 1171 1172 if (Bindings.empty()) 1173 return false; 1174 1175 DeclarationName GetDN = S.PP.getIdentifierInfo("get"); 1176 1177 // [dcl.decomp]p3: 1178 // The unqualified-id get is looked up in the scope of E by class member 1179 // access lookup ... 1180 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName); 1181 bool UseMemberGet = false; 1182 if (S.isCompleteType(Src->getLocation(), DecompType)) { 1183 if (auto *RD = DecompType->getAsCXXRecordDecl()) 1184 S.LookupQualifiedName(MemberGet, RD); 1185 if (MemberGet.isAmbiguous()) 1186 return true; 1187 // ... and if that finds at least one declaration that is a function 1188 // template whose first template parameter is a non-type parameter ... 1189 for (NamedDecl *D : MemberGet) { 1190 if (FunctionTemplateDecl *FTD = 1191 dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) { 1192 TemplateParameterList *TPL = FTD->getTemplateParameters(); 1193 if (TPL->size() != 0 && 1194 isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) { 1195 // ... the initializer is e.get<i>(). 1196 UseMemberGet = true; 1197 break; 1198 } 1199 } 1200 } 1201 } 1202 1203 unsigned I = 0; 1204 for (auto *B : Bindings) { 1205 InitializingBinding InitContext(S, B); 1206 SourceLocation Loc = B->getLocation(); 1207 1208 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 1209 if (E.isInvalid()) 1210 return true; 1211 1212 // e is an lvalue if the type of the entity is an lvalue reference and 1213 // an xvalue otherwise 1214 if (!Src->getType()->isLValueReferenceType()) 1215 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp, 1216 E.get(), nullptr, VK_XValue, 1217 FPOptionsOverride()); 1218 1219 TemplateArgumentListInfo Args(Loc, Loc); 1220 Args.addArgument( 1221 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); 1222 1223 if (UseMemberGet) { 1224 // if [lookup of member get] finds at least one declaration, the 1225 // initializer is e.get<i-1>(). 1226 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false, 1227 CXXScopeSpec(), SourceLocation(), nullptr, 1228 MemberGet, &Args, nullptr); 1229 if (E.isInvalid()) 1230 return true; 1231 1232 E = S.BuildCallExpr(nullptr, E.get(), Loc, None, Loc); 1233 } else { 1234 // Otherwise, the initializer is get<i-1>(e), where get is looked up 1235 // in the associated namespaces. 1236 Expr *Get = UnresolvedLookupExpr::Create( 1237 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(), 1238 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args, 1239 UnresolvedSetIterator(), UnresolvedSetIterator()); 1240 1241 Expr *Arg = E.get(); 1242 E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc); 1243 } 1244 if (E.isInvalid()) 1245 return true; 1246 Expr *Init = E.get(); 1247 1248 // Given the type T designated by std::tuple_element<i - 1, E>::type, 1249 QualType T = getTupleLikeElementType(S, Loc, I, DecompType); 1250 if (T.isNull()) 1251 return true; 1252 1253 // each vi is a variable of type "reference to T" initialized with the 1254 // initializer, where the reference is an lvalue reference if the 1255 // initializer is an lvalue and an rvalue reference otherwise 1256 QualType RefType = 1257 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName()); 1258 if (RefType.isNull()) 1259 return true; 1260 auto *RefVD = VarDecl::Create( 1261 S.Context, Src->getDeclContext(), Loc, Loc, 1262 B->getDeclName().getAsIdentifierInfo(), RefType, 1263 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass()); 1264 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext()); 1265 RefVD->setTSCSpec(Src->getTSCSpec()); 1266 RefVD->setImplicit(); 1267 if (Src->isInlineSpecified()) 1268 RefVD->setInlineSpecified(); 1269 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD); 1270 1271 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD); 1272 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc); 1273 InitializationSequence Seq(S, Entity, Kind, Init); 1274 E = Seq.Perform(S, Entity, Kind, Init); 1275 if (E.isInvalid()) 1276 return true; 1277 E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false); 1278 if (E.isInvalid()) 1279 return true; 1280 RefVD->setInit(E.get()); 1281 S.CheckCompleteVariableDeclaration(RefVD); 1282 1283 E = S.BuildDeclarationNameExpr(CXXScopeSpec(), 1284 DeclarationNameInfo(B->getDeclName(), Loc), 1285 RefVD); 1286 if (E.isInvalid()) 1287 return true; 1288 1289 B->setBinding(T, E.get()); 1290 I++; 1291 } 1292 1293 return false; 1294} 1295 1296/// Find the base class to decompose in a built-in decomposition of a class type. 1297/// This base class search is, unfortunately, not quite like any other that we 1298/// perform anywhere else in C++. 1299static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc, 1300 const CXXRecordDecl *RD, 1301 CXXCastPath &BasePath) { 1302 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier, 1303 CXXBasePath &Path) { 1304 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields(); 1305 }; 1306 1307 const CXXRecordDecl *ClassWithFields = nullptr; 1308 AccessSpecifier AS = AS_public; 1309 if (RD->hasDirectFields()) 1310 // [dcl.decomp]p4: 1311 // Otherwise, all of E's non-static data members shall be public direct 1312 // members of E ... 1313 ClassWithFields = RD; 1314 else { 1315 // ... or of ... 1316 CXXBasePaths Paths; 1317 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD)); 1318 if (!RD->lookupInBases(BaseHasFields, Paths)) { 1319 // If no classes have fields, just decompose RD itself. (This will work 1320 // if and only if zero bindings were provided.) 1321 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public); 1322 } 1323 1324 CXXBasePath *BestPath = nullptr; 1325 for (auto &P : Paths) { 1326 if (!BestPath) 1327 BestPath = &P; 1328 else if (!S.Context.hasSameType(P.back().Base->getType(), 1329 BestPath->back().Base->getType())) { 1330 // ... the same ... 1331 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) 1332 << false << RD << BestPath->back().Base->getType() 1333 << P.back().Base->getType(); 1334 return DeclAccessPair(); 1335 } else if (P.Access < BestPath->Access) { 1336 BestPath = &P; 1337 } 1338 } 1339 1340 // ... unambiguous ... 1341 QualType BaseType = BestPath->back().Base->getType(); 1342 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) { 1343 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base) 1344 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths); 1345 return DeclAccessPair(); 1346 } 1347 1348 // ... [accessible, implied by other rules] base class of E. 1349 S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD), 1350 *BestPath, diag::err_decomp_decl_inaccessible_base); 1351 AS = BestPath->Access; 1352 1353 ClassWithFields = BaseType->getAsCXXRecordDecl(); 1354 S.BuildBasePathArray(Paths, BasePath); 1355 } 1356 1357 // The above search did not check whether the selected class itself has base 1358 // classes with fields, so check that now. 1359 CXXBasePaths Paths; 1360 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) { 1361 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) 1362 << (ClassWithFields == RD) << RD << ClassWithFields 1363 << Paths.front().back().Base->getType(); 1364 return DeclAccessPair(); 1365 } 1366 1367 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS); 1368} 1369 1370static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 1371 ValueDecl *Src, QualType DecompType, 1372 const CXXRecordDecl *OrigRD) { 1373 if (S.RequireCompleteType(Src->getLocation(), DecompType, 1374 diag::err_incomplete_type)) 1375 return true; 1376 1377 CXXCastPath BasePath; 1378 DeclAccessPair BasePair = 1379 findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath); 1380 const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl()); 1381 if (!RD) 1382 return true; 1383 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD), 1384 DecompType.getQualifiers()); 1385 1386 auto DiagnoseBadNumberOfBindings = [&]() -> bool { 1387 unsigned NumFields = llvm::count_if( 1388 RD->fields(), [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); }); 1389 assert(Bindings.size() != NumFields)(static_cast <bool> (Bindings.size() != NumFields) ? void
(0) : __assert_fail ("Bindings.size() != NumFields", "clang/lib/Sema/SemaDeclCXX.cpp"
, 1389, __extension__ __PRETTY_FUNCTION__))
; 1390 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 1391 << DecompType << (unsigned)Bindings.size() << NumFields << NumFields 1392 << (NumFields < Bindings.size()); 1393 return true; 1394 }; 1395 1396 // all of E's non-static data members shall be [...] well-formed 1397 // when named as e.name in the context of the structured binding, 1398 // E shall not have an anonymous union member, ... 1399 unsigned I = 0; 1400 for (auto *FD : RD->fields()) { 1401 if (FD->isUnnamedBitfield()) 1402 continue; 1403 1404 // All the non-static data members are required to be nameable, so they 1405 // must all have names. 1406 if (!FD->getDeclName()) { 1407 if (RD->isLambda()) { 1408 S.Diag(Src->getLocation(), diag::err_decomp_decl_lambda); 1409 S.Diag(RD->getLocation(), diag::note_lambda_decl); 1410 return true; 1411 } 1412 1413 if (FD->isAnonymousStructOrUnion()) { 1414 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member) 1415 << DecompType << FD->getType()->isUnionType(); 1416 S.Diag(FD->getLocation(), diag::note_declared_at); 1417 return true; 1418 } 1419 1420 // FIXME: Are there any other ways we could have an anonymous member? 1421 } 1422 1423 // We have a real field to bind. 1424 if (I >= Bindings.size()) 1425 return DiagnoseBadNumberOfBindings(); 1426 auto *B = Bindings[I++]; 1427 SourceLocation Loc = B->getLocation(); 1428 1429 // The field must be accessible in the context of the structured binding. 1430 // We already checked that the base class is accessible. 1431 // FIXME: Add 'const' to AccessedEntity's classes so we can remove the 1432 // const_cast here. 1433 S.CheckStructuredBindingMemberAccess( 1434 Loc, const_cast<CXXRecordDecl *>(OrigRD), 1435 DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess( 1436 BasePair.getAccess(), FD->getAccess()))); 1437 1438 // Initialize the binding to Src.FD. 1439 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 1440 if (E.isInvalid()) 1441 return true; 1442 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase, 1443 VK_LValue, &BasePath); 1444 if (E.isInvalid()) 1445 return true; 1446 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc, 1447 CXXScopeSpec(), FD, 1448 DeclAccessPair::make(FD, FD->getAccess()), 1449 DeclarationNameInfo(FD->getDeclName(), Loc)); 1450 if (E.isInvalid()) 1451 return true; 1452 1453 // If the type of the member is T, the referenced type is cv T, where cv is 1454 // the cv-qualification of the decomposition expression. 1455 // 1456 // FIXME: We resolve a defect here: if the field is mutable, we do not add 1457 // 'const' to the type of the field. 1458 Qualifiers Q = DecompType.getQualifiers(); 1459 if (FD->isMutable()) 1460 Q.removeConst(); 1461 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get()); 1462 } 1463 1464 if (I != Bindings.size()) 1465 return DiagnoseBadNumberOfBindings(); 1466 1467 return false; 1468} 1469 1470void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) { 1471 QualType DecompType = DD->getType(); 1472 1473 // If the type of the decomposition is dependent, then so is the type of 1474 // each binding. 1475 if (DecompType->isDependentType()) { 1476 for (auto *B : DD->bindings()) 1477 B->setType(Context.DependentTy); 1478 return; 1479 } 1480 1481 DecompType = DecompType.getNonReferenceType(); 1482 ArrayRef<BindingDecl*> Bindings = DD->bindings(); 1483 1484 // C++1z [dcl.decomp]/2: 1485 // If E is an array type [...] 1486 // As an extension, we also support decomposition of built-in complex and 1487 // vector types. 1488 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) { 1489 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT)) 1490 DD->setInvalidDecl(); 1491 return; 1492 } 1493 if (auto *VT = DecompType->getAs<VectorType>()) { 1494 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT)) 1495 DD->setInvalidDecl(); 1496 return; 1497 } 1498 if (auto *CT = DecompType->getAs<ComplexType>()) { 1499 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT)) 1500 DD->setInvalidDecl(); 1501 return; 1502 } 1503 1504 // C++1z [dcl.decomp]/3: 1505 // if the expression std::tuple_size<E>::value is a well-formed integral 1506 // constant expression, [...] 1507 llvm::APSInt TupleSize(32); 1508 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) { 1509 case IsTupleLike::Error: 1510 DD->setInvalidDecl(); 1511 return; 1512 1513 case IsTupleLike::TupleLike: 1514 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize)) 1515 DD->setInvalidDecl(); 1516 return; 1517 1518 case IsTupleLike::NotTupleLike: 1519 break; 1520 } 1521 1522 // C++1z [dcl.dcl]/8: 1523 // [E shall be of array or non-union class type] 1524 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl(); 1525 if (!RD || RD->isUnion()) { 1526 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type) 1527 << DD << !RD << DecompType; 1528 DD->setInvalidDecl(); 1529 return; 1530 } 1531 1532 // C++1z [dcl.decomp]/4: 1533 // all of E's non-static data members shall be [...] direct members of 1534 // E or of the same unambiguous public base class of E, ... 1535 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD)) 1536 DD->setInvalidDecl(); 1537} 1538 1539/// Merge the exception specifications of two variable declarations. 1540/// 1541/// This is called when there's a redeclaration of a VarDecl. The function 1542/// checks if the redeclaration might have an exception specification and 1543/// validates compatibility and merges the specs if necessary. 1544void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) { 1545 // Shortcut if exceptions are disabled. 1546 if (!getLangOpts().CXXExceptions) 1547 return; 1548 1549 assert(Context.hasSameType(New->getType(), Old->getType()) &&(static_cast <bool> (Context.hasSameType(New->getType
(), Old->getType()) && "Should only be called if types are otherwise the same."
) ? void (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 1550, __extension__ __PRETTY_FUNCTION__
))
1550 "Should only be called if types are otherwise the same.")(static_cast <bool> (Context.hasSameType(New->getType
(), Old->getType()) && "Should only be called if types are otherwise the same."
) ? void (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 1550, __extension__ __PRETTY_FUNCTION__
))
; 1551 1552 QualType NewType = New->getType(); 1553 QualType OldType = Old->getType(); 1554 1555 // We're only interested in pointers and references to functions, as well 1556 // as pointers to member functions. 1557 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) { 1558 NewType = R->getPointeeType(); 1559 OldType = OldType->castAs<ReferenceType>()->getPointeeType(); 1560 } else if (const PointerType *P = NewType->getAs<PointerType>()) { 1561 NewType = P->getPointeeType(); 1562 OldType = OldType->castAs<PointerType>()->getPointeeType(); 1563 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) { 1564 NewType = M->getPointeeType(); 1565 OldType = OldType->castAs<MemberPointerType>()->getPointeeType(); 1566 } 1567 1568 if (!NewType->isFunctionProtoType()) 1569 return; 1570 1571 // There's lots of special cases for functions. For function pointers, system 1572 // libraries are hopefully not as broken so that we don't need these 1573 // workarounds. 1574 if (CheckEquivalentExceptionSpec( 1575 OldType->getAs<FunctionProtoType>(), Old->getLocation(), 1576 NewType->getAs<FunctionProtoType>(), New->getLocation())) { 1577 New->setInvalidDecl(); 1578 } 1579} 1580 1581/// CheckCXXDefaultArguments - Verify that the default arguments for a 1582/// function declaration are well-formed according to C++ 1583/// [dcl.fct.default]. 1584void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { 1585 unsigned NumParams = FD->getNumParams(); 1586 unsigned ParamIdx = 0; 1587 1588 // This checking doesn't make sense for explicit specializations; their 1589 // default arguments are determined by the declaration we're specializing, 1590 // not by FD. 1591 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 1592 return; 1593 if (auto *FTD = FD->getDescribedFunctionTemplate()) 1594 if (FTD->isMemberSpecialization()) 1595 return; 1596 1597 // Find first parameter with a default argument 1598 for (; ParamIdx < NumParams; ++ParamIdx) { 1599 ParmVarDecl *Param = FD->getParamDecl(ParamIdx); 1600 if (Param->hasDefaultArg()) 1601 break; 1602 } 1603 1604 // C++20 [dcl.fct.default]p4: 1605 // In a given function declaration, each parameter subsequent to a parameter 1606 // with a default argument shall have a default argument supplied in this or 1607 // a previous declaration, unless the parameter was expanded from a 1608 // parameter pack, or shall be a function parameter pack. 1609 for (; ParamIdx < NumParams; ++ParamIdx) { 1610 ParmVarDecl *Param = FD->getParamDecl(ParamIdx); 1611 if (!Param->hasDefaultArg() && !Param->isParameterPack() && 1612 !(CurrentInstantiationScope && 1613 CurrentInstantiationScope->isLocalPackExpansion(Param))) { 1614 if (Param->isInvalidDecl()) 1615 /* We already complained about this parameter. */; 1616 else if (Param->getIdentifier()) 1617 Diag(Param->getLocation(), 1618 diag::err_param_default_argument_missing_name) 1619 << Param->getIdentifier(); 1620 else 1621 Diag(Param->getLocation(), 1622 diag::err_param_default_argument_missing); 1623 } 1624 } 1625} 1626 1627/// Check that the given type is a literal type. Issue a diagnostic if not, 1628/// if Kind is Diagnose. 1629/// \return \c true if a problem has been found (and optionally diagnosed). 1630template <typename... Ts> 1631static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind, 1632 SourceLocation Loc, QualType T, unsigned DiagID, 1633 Ts &&...DiagArgs) { 1634 if (T->isDependentType()) 1635 return false; 1636 1637 switch (Kind) { 1638 case Sema::CheckConstexprKind::Diagnose: 1639 return SemaRef.RequireLiteralType(Loc, T, DiagID, 1640 std::forward<Ts>(DiagArgs)...); 1641 1642 case Sema::CheckConstexprKind::CheckValid: 1643 return !T->isLiteralType(SemaRef.Context); 1644 } 1645 1646 llvm_unreachable("unknown CheckConstexprKind")::llvm::llvm_unreachable_internal("unknown CheckConstexprKind"
, "clang/lib/Sema/SemaDeclCXX.cpp", 1646)
; 1647} 1648 1649/// Determine whether a destructor cannot be constexpr due to 1650static bool CheckConstexprDestructorSubobjects(Sema &SemaRef, 1651 const CXXDestructorDecl *DD, 1652 Sema::CheckConstexprKind Kind) { 1653 auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) { 1654 const CXXRecordDecl *RD = 1655 T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1656 if (!RD || RD->hasConstexprDestructor()) 1657 return true; 1658 1659 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1660 SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject) 1661 << static_cast<int>(DD->getConstexprKind()) << !FD 1662 << (FD ? FD->getDeclName() : DeclarationName()) << T; 1663 SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject) 1664 << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T; 1665 } 1666 return false; 1667 }; 1668 1669 const CXXRecordDecl *RD = DD->getParent(); 1670 for (const CXXBaseSpecifier &B : RD->bases()) 1671 if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr)) 1672 return false; 1673 for (const FieldDecl *FD : RD->fields()) 1674 if (!Check(FD->getLocation(), FD->getType(), FD)) 1675 return false; 1676 return true; 1677} 1678 1679/// Check whether a function's parameter types are all literal types. If so, 1680/// return true. If not, produce a suitable diagnostic and return false. 1681static bool CheckConstexprParameterTypes(Sema &SemaRef, 1682 const FunctionDecl *FD, 1683 Sema::CheckConstexprKind Kind) { 1684 unsigned ArgIndex = 0; 1685 const auto *FT = FD->getType()->castAs<FunctionProtoType>(); 1686 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(), 1687 e = FT->param_type_end(); 1688 i != e; ++i, ++ArgIndex) { 1689 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex); 1690 SourceLocation ParamLoc = PD->getLocation(); 1691 if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i, 1692 diag::err_constexpr_non_literal_param, ArgIndex + 1, 1693 PD->getSourceRange(), isa<CXXConstructorDecl>(FD), 1694 FD->isConsteval())) 1695 return false; 1696 } 1697 return true; 1698} 1699 1700/// Check whether a function's return type is a literal type. If so, return 1701/// true. If not, produce a suitable diagnostic and return false. 1702static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD, 1703 Sema::CheckConstexprKind Kind) { 1704 if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(), 1705 diag::err_constexpr_non_literal_return, 1706 FD->isConsteval())) 1707 return false; 1708 return true; 1709} 1710 1711/// Get diagnostic %select index for tag kind for 1712/// record diagnostic message. 1713/// WARNING: Indexes apply to particular diagnostics only! 1714/// 1715/// \returns diagnostic %select index. 1716static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) { 1717 switch (Tag) { 1718 case TTK_Struct: return 0; 1719 case TTK_Interface: return 1; 1720 case TTK_Class: return 2; 1721 default: llvm_unreachable("Invalid tag kind for record diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for record diagnostic!"
, "clang/lib/Sema/SemaDeclCXX.cpp", 1721)
; 1722 } 1723} 1724 1725static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, 1726 Stmt *Body, 1727 Sema::CheckConstexprKind Kind); 1728 1729// Check whether a function declaration satisfies the requirements of a 1730// constexpr function definition or a constexpr constructor definition. If so, 1731// return true. If not, produce appropriate diagnostics (unless asked not to by 1732// Kind) and return false. 1733// 1734// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360. 1735bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD, 1736 CheckConstexprKind Kind) { 1737 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 1738 if (MD && MD->isInstance()) { 1739 // C++11 [dcl.constexpr]p4: 1740 // The definition of a constexpr constructor shall satisfy the following 1741 // constraints: 1742 // - the class shall not have any virtual base classes; 1743 // 1744 // FIXME: This only applies to constructors and destructors, not arbitrary 1745 // member functions. 1746 const CXXRecordDecl *RD = MD->getParent(); 1747 if (RD->getNumVBases()) { 1748 if (Kind == CheckConstexprKind::CheckValid) 1749 return false; 1750 1751 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base) 1752 << isa<CXXConstructorDecl>(NewFD) 1753 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases(); 1754 for (const auto &I : RD->vbases()) 1755 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here) 1756 << I.getSourceRange(); 1757 return false; 1758 } 1759 } 1760 1761 if (!isa<CXXConstructorDecl>(NewFD)) { 1762 // C++11 [dcl.constexpr]p3: 1763 // The definition of a constexpr function shall satisfy the following 1764 // constraints: 1765 // - it shall not be virtual; (removed in C++20) 1766 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD); 1767 if (Method && Method->isVirtual()) { 1768 if (getLangOpts().CPlusPlus20) { 1769 if (Kind == CheckConstexprKind::Diagnose) 1770 Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual); 1771 } else { 1772 if (Kind == CheckConstexprKind::CheckValid) 1773 return false; 1774 1775 Method = Method->getCanonicalDecl(); 1776 Diag(Method->getLocation(), diag::err_constexpr_virtual); 1777 1778 // If it's not obvious why this function is virtual, find an overridden 1779 // function which uses the 'virtual' keyword. 1780 const CXXMethodDecl *WrittenVirtual = Method; 1781 while (!WrittenVirtual->isVirtualAsWritten()) 1782 WrittenVirtual = *WrittenVirtual->begin_overridden_methods(); 1783 if (WrittenVirtual != Method) 1784 Diag(WrittenVirtual->getLocation(), 1785 diag::note_overridden_virtual_function); 1786 return false; 1787 } 1788 } 1789 1790 // - its return type shall be a literal type; 1791 if (!CheckConstexprReturnType(*this, NewFD, Kind)) 1792 return false; 1793 } 1794 1795 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) { 1796 // A destructor can be constexpr only if the defaulted destructor could be; 1797 // we don't need to check the members and bases if we already know they all 1798 // have constexpr destructors. 1799 if (!Dtor->getParent()->defaultedDestructorIsConstexpr()) { 1800 if (Kind == CheckConstexprKind::CheckValid) 1801 return false; 1802 if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind)) 1803 return false; 1804 } 1805 } 1806 1807 // - each of its parameter types shall be a literal type; 1808 if (!CheckConstexprParameterTypes(*this, NewFD, Kind)) 1809 return false; 1810 1811 Stmt *Body = NewFD->getBody(); 1812 assert(Body &&(static_cast <bool> (Body && "CheckConstexprFunctionDefinition called on function with no body"
) ? void (0) : __assert_fail ("Body && \"CheckConstexprFunctionDefinition called on function with no body\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 1813, __extension__ __PRETTY_FUNCTION__
))
1813 "CheckConstexprFunctionDefinition called on function with no body")(static_cast <bool> (Body && "CheckConstexprFunctionDefinition called on function with no body"
) ? void (0) : __assert_fail ("Body && \"CheckConstexprFunctionDefinition called on function with no body\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 1813, __extension__ __PRETTY_FUNCTION__
))
; 1814 return CheckConstexprFunctionBody(*this, NewFD, Body, Kind); 1815} 1816 1817/// Check the given declaration statement is legal within a constexpr function 1818/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3. 1819/// 1820/// \return true if the body is OK (maybe only as an extension), false if we 1821/// have diagnosed a problem. 1822static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl, 1823 DeclStmt *DS, SourceLocation &Cxx1yLoc, 1824 Sema::CheckConstexprKind Kind) { 1825 // C++11 [dcl.constexpr]p3 and p4: 1826 // The definition of a constexpr function(p3) or constructor(p4) [...] shall 1827 // contain only 1828 for (const auto *DclIt : DS->decls()) { 1829 switch (DclIt->getKind()) { 1830 case Decl::StaticAssert: 1831 case Decl::Using: 1832 case Decl::UsingShadow: 1833 case Decl::UsingDirective: 1834 case Decl::UnresolvedUsingTypename: 1835 case Decl::UnresolvedUsingValue: 1836 case Decl::UsingEnum: 1837 // - static_assert-declarations 1838 // - using-declarations, 1839 // - using-directives, 1840 // - using-enum-declaration 1841 continue; 1842 1843 case Decl::Typedef: 1844 case Decl::TypeAlias: { 1845 // - typedef declarations and alias-declarations that do not define 1846 // classes or enumerations, 1847 const auto *TN = cast<TypedefNameDecl>(DclIt); 1848 if (TN->getUnderlyingType()->isVariablyModifiedType()) { 1849 // Don't allow variably-modified types in constexpr functions. 1850 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1851 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc(); 1852 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla) 1853 << TL.getSourceRange() << TL.getType() 1854 << isa<CXXConstructorDecl>(Dcl); 1855 } 1856 return false; 1857 } 1858 continue; 1859 } 1860 1861 case Decl::Enum: 1862 case Decl::CXXRecord: 1863 // C++1y allows types to be defined, not just declared. 1864 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) { 1865 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1866 SemaRef.Diag(DS->getBeginLoc(), 1867 SemaRef.getLangOpts().CPlusPlus14 1868 ? diag::warn_cxx11_compat_constexpr_type_definition 1869 : diag::ext_constexpr_type_definition) 1870 << isa<CXXConstructorDecl>(Dcl); 1871 } else if (!SemaRef.getLangOpts().CPlusPlus14) { 1872 return false; 1873 } 1874 } 1875 continue; 1876 1877 case Decl::EnumConstant: 1878 case Decl::IndirectField: 1879 case Decl::ParmVar: 1880 // These can only appear with other declarations which are banned in 1881 // C++11 and permitted in C++1y, so ignore them. 1882 continue; 1883 1884 case Decl::Var: 1885 case Decl::Decomposition: { 1886 // C++1y [dcl.constexpr]p3 allows anything except: 1887 // a definition of a variable of non-literal type or of static or 1888 // thread storage duration or [before C++2a] for which no 1889 // initialization is performed. 1890 const auto *VD = cast<VarDecl>(DclIt); 1891 if (VD->isThisDeclarationADefinition()) { 1892 if (VD->isStaticLocal()) { 1893 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1894 SemaRef.Diag(VD->getLocation(), 1895 diag::err_constexpr_local_var_static) 1896 << isa<CXXConstructorDecl>(Dcl) 1897 << (VD->getTLSKind() == VarDecl::TLS_Dynamic); 1898 } 1899 return false; 1900 } 1901 if (CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(), 1902 diag::err_constexpr_local_var_non_literal_type, 1903 isa<CXXConstructorDecl>(Dcl))) 1904 return false; 1905 if (!VD->getType()->isDependentType() && 1906 !VD->hasInit() && !VD->isCXXForRangeDecl()) { 1907 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1908 SemaRef.Diag( 1909 VD->getLocation(), 1910 SemaRef.getLangOpts().CPlusPlus20 1911 ? diag::warn_cxx17_compat_constexpr_local_var_no_init 1912 : diag::ext_constexpr_local_var_no_init) 1913 << isa<CXXConstructorDecl>(Dcl); 1914 } else if (!SemaRef.getLangOpts().CPlusPlus20) { 1915 return false; 1916 } 1917 continue; 1918 } 1919 } 1920 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1921 SemaRef.Diag(VD->getLocation(), 1922 SemaRef.getLangOpts().CPlusPlus14 1923 ? diag::warn_cxx11_compat_constexpr_local_var 1924 : diag::ext_constexpr_local_var) 1925 << isa<CXXConstructorDecl>(Dcl); 1926 } else if (!SemaRef.getLangOpts().CPlusPlus14) { 1927 return false; 1928 } 1929 continue; 1930 } 1931 1932 case Decl::NamespaceAlias: 1933 case Decl::Function: 1934 // These are disallowed in C++11 and permitted in C++1y. Allow them 1935 // everywhere as an extension. 1936 if (!Cxx1yLoc.isValid()) 1937 Cxx1yLoc = DS->getBeginLoc(); 1938 continue; 1939 1940 default: 1941 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1942 SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) 1943 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 1944 } 1945 return false; 1946 } 1947 } 1948 1949 return true; 1950} 1951 1952/// Check that the given field is initialized within a constexpr constructor. 1953/// 1954/// \param Dcl The constexpr constructor being checked. 1955/// \param Field The field being checked. This may be a member of an anonymous 1956/// struct or union nested within the class being checked. 1957/// \param Inits All declarations, including anonymous struct/union members and 1958/// indirect members, for which any initialization was provided. 1959/// \param Diagnosed Whether we've emitted the error message yet. Used to attach 1960/// multiple notes for different members to the same error. 1961/// \param Kind Whether we're diagnosing a constructor as written or determining 1962/// whether the formal requirements are satisfied. 1963/// \return \c false if we're checking for validity and the constructor does 1964/// not satisfy the requirements on a constexpr constructor. 1965static bool CheckConstexprCtorInitializer(Sema &SemaRef, 1966 const FunctionDecl *Dcl, 1967 FieldDecl *Field, 1968 llvm::SmallSet<Decl*, 16> &Inits, 1969 bool &Diagnosed, 1970 Sema::CheckConstexprKind Kind) { 1971 // In C++20 onwards, there's nothing to check for validity. 1972 if (Kind == Sema::CheckConstexprKind::CheckValid && 1973 SemaRef.getLangOpts().CPlusPlus20) 1974 return true; 1975 1976 if (Field->isInvalidDecl()) 1977 return true; 1978 1979 if (Field->isUnnamedBitfield()) 1980 return true; 1981 1982 // Anonymous unions with no variant members and empty anonymous structs do not 1983 // need to be explicitly initialized. FIXME: Anonymous structs that contain no 1984 // indirect fields don't need initializing. 1985 if (Field->isAnonymousStructOrUnion() && 1986 (Field->getType()->isUnionType() 1987 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers() 1988 : Field->getType()->getAsCXXRecordDecl()->isEmpty())) 1989 return true; 1990 1991 if (!Inits.count(Field)) { 1992 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1993 if (!Diagnosed) { 1994 SemaRef.Diag(Dcl->getLocation(), 1995 SemaRef.getLangOpts().CPlusPlus20 1996 ? diag::warn_cxx17_compat_constexpr_ctor_missing_init 1997 : diag::ext_constexpr_ctor_missing_init); 1998 Diagnosed = true; 1999 } 2000 SemaRef.Diag(Field->getLocation(), 2001 diag::note_constexpr_ctor_missing_init); 2002 } else if (!SemaRef.getLangOpts().CPlusPlus20) { 2003 return false; 2004 } 2005 } else if (Field->isAnonymousStructOrUnion()) { 2006 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl(); 2007 for (auto *I : RD->fields()) 2008 // If an anonymous union contains an anonymous struct of which any member 2009 // is initialized, all members must be initialized. 2010 if (!RD->isUnion() || Inits.count(I)) 2011 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, 2012 Kind)) 2013 return false; 2014 } 2015 return true; 2016} 2017 2018/// Check the provided statement is allowed in a constexpr function 2019/// definition. 2020static bool 2021CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S, 2022 SmallVectorImpl<SourceLocation> &ReturnStmts, 2023 SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc, 2024 Sema::CheckConstexprKind Kind) { 2025 // - its function-body shall be [...] a compound-statement that contains only 2026 switch (S->getStmtClass()) { 2027 case Stmt::NullStmtClass: 2028 // - null statements, 2029 return true; 2030 2031 case Stmt::DeclStmtClass: 2032 // - static_assert-declarations 2033 // - using-declarations, 2034 // - using-directives, 2035 // - typedef declarations and alias-declarations that do not define 2036 // classes or enumerations, 2037 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind)) 2038 return false; 2039 return true; 2040 2041 case Stmt::ReturnStmtClass: 2042 // - and exactly one return statement; 2043 if (isa<CXXConstructorDecl>(Dcl)) { 2044 // C++1y allows return statements in constexpr constructors. 2045 if (!Cxx1yLoc.isValid()) 2046 Cxx1yLoc = S->getBeginLoc(); 2047 return true; 2048 } 2049 2050 ReturnStmts.push_back(S->getBeginLoc()); 2051 return true; 2052 2053 case Stmt::AttributedStmtClass: 2054 // Attributes on a statement don't affect its formal kind and hence don't 2055 // affect its validity in a constexpr function. 2056 return CheckConstexprFunctionStmt(SemaRef, Dcl, 2057 cast<AttributedStmt>(S)->getSubStmt(), 2058 ReturnStmts, Cxx1yLoc, Cxx2aLoc, Kind); 2059 2060 case Stmt::CompoundStmtClass: { 2061 // C++1y allows compound-statements. 2062 if (!Cxx1yLoc.isValid()) 2063 Cxx1yLoc = S->getBeginLoc(); 2064 2065 CompoundStmt *CompStmt = cast<CompoundStmt>(S); 2066 for (auto *BodyIt : CompStmt->body()) { 2067 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts, 2068 Cxx1yLoc, Cxx2aLoc, Kind)) 2069 return false; 2070 } 2071 return true; 2072 } 2073 2074 case Stmt::IfStmtClass: { 2075 // C++1y allows if-statements. 2076 if (!Cxx1yLoc.isValid()) 2077 Cxx1yLoc = S->getBeginLoc(); 2078 2079 IfStmt *If = cast<IfStmt>(S); 2080 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts, 2081 Cxx1yLoc, Cxx2aLoc, Kind)) 2082 return false; 2083 if (If->getElse() && 2084 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts, 2085 Cxx1yLoc, Cxx2aLoc, Kind)) 2086 return false; 2087 return true; 2088 } 2089 2090 case Stmt::WhileStmtClass: 2091 case Stmt::DoStmtClass: 2092 case Stmt::ForStmtClass: 2093 case Stmt::CXXForRangeStmtClass: 2094 case Stmt::ContinueStmtClass: 2095 // C++1y allows all of these. We don't allow them as extensions in C++11, 2096 // because they don't make sense without variable mutation. 2097 if (!SemaRef.getLangOpts().CPlusPlus14) 2098 break; 2099 if (!Cxx1yLoc.isValid()) 2100 Cxx1yLoc = S->getBeginLoc(); 2101 for (Stmt *SubStmt : S->children()) 2102 if (SubStmt && 2103 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2104 Cxx1yLoc, Cxx2aLoc, Kind)) 2105 return false; 2106 return true; 2107 2108 case Stmt::SwitchStmtClass: 2109 case Stmt::CaseStmtClass: 2110 case Stmt::DefaultStmtClass: 2111 case Stmt::BreakStmtClass: 2112 // C++1y allows switch-statements, and since they don't need variable 2113 // mutation, we can reasonably allow them in C++11 as an extension. 2114 if (!Cxx1yLoc.isValid()) 2115 Cxx1yLoc = S->getBeginLoc(); 2116 for (Stmt *SubStmt : S->children()) 2117 if (SubStmt && 2118 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2119 Cxx1yLoc, Cxx2aLoc, Kind)) 2120 return false; 2121 return true; 2122 2123 case Stmt::GCCAsmStmtClass: 2124 case Stmt::MSAsmStmtClass: 2125 // C++2a allows inline assembly statements. 2126 case Stmt::CXXTryStmtClass: 2127 if (Cxx2aLoc.isInvalid()) 2128 Cxx2aLoc = S->getBeginLoc(); 2129 for (Stmt *SubStmt : S->children()) { 2130 if (SubStmt && 2131 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2132 Cxx1yLoc, Cxx2aLoc, Kind)) 2133 return false; 2134 } 2135 return true; 2136 2137 case Stmt::CXXCatchStmtClass: 2138 // Do not bother checking the language mode (already covered by the 2139 // try block check). 2140 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, 2141 cast<CXXCatchStmt>(S)->getHandlerBlock(), 2142 ReturnStmts, Cxx1yLoc, Cxx2aLoc, Kind)) 2143 return false; 2144 return true; 2145 2146 default: 2147 if (!isa<Expr>(S)) 2148 break; 2149 2150 // C++1y allows expression-statements. 2151 if (!Cxx1yLoc.isValid()) 2152 Cxx1yLoc = S->getBeginLoc(); 2153 return true; 2154 } 2155 2156 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2157 SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) 2158 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 2159 } 2160 return false; 2161} 2162 2163/// Check the body for the given constexpr function declaration only contains 2164/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4. 2165/// 2166/// \return true if the body is OK, false if we have found or diagnosed a 2167/// problem. 2168static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, 2169 Stmt *Body, 2170 Sema::CheckConstexprKind Kind) { 2171 SmallVector<SourceLocation, 4> ReturnStmts; 2172 2173 if (isa<CXXTryStmt>(Body)) { 2174 // C++11 [dcl.constexpr]p3: 2175 // The definition of a constexpr function shall satisfy the following 2176 // constraints: [...] 2177 // - its function-body shall be = delete, = default, or a 2178 // compound-statement 2179 // 2180 // C++11 [dcl.constexpr]p4: 2181 // In the definition of a constexpr constructor, [...] 2182 // - its function-body shall not be a function-try-block; 2183 // 2184 // This restriction is lifted in C++2a, as long as inner statements also 2185 // apply the general constexpr rules. 2186 switch (Kind) { 2187 case Sema::CheckConstexprKind::CheckValid: 2188 if (!SemaRef.getLangOpts().CPlusPlus20) 2189 return false; 2190 break; 2191 2192 case Sema::CheckConstexprKind::Diagnose: 2193 SemaRef.Diag(Body->getBeginLoc(), 2194 !SemaRef.getLangOpts().CPlusPlus20 2195 ? diag::ext_constexpr_function_try_block_cxx20 2196 : diag::warn_cxx17_compat_constexpr_function_try_block) 2197 << isa<CXXConstructorDecl>(Dcl); 2198 break; 2199 } 2200 } 2201 2202 // - its function-body shall be [...] a compound-statement that contains only 2203 // [... list of cases ...] 2204 // 2205 // Note that walking the children here is enough to properly check for 2206 // CompoundStmt and CXXTryStmt body. 2207 SourceLocation Cxx1yLoc, Cxx2aLoc; 2208 for (Stmt *SubStmt : Body->children()) { 2209 if (SubStmt && 2210 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2211 Cxx1yLoc, Cxx2aLoc, Kind)) 2212 return false; 2213 } 2214 2215 if (Kind == Sema::CheckConstexprKind::CheckValid) { 2216 // If this is only valid as an extension, report that we don't satisfy the 2217 // constraints of the current language. 2218 if ((Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus20) || 2219 (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17)) 2220 return false; 2221 } else if (Cxx2aLoc.isValid()) { 2222 SemaRef.Diag(Cxx2aLoc, 2223 SemaRef.getLangOpts().CPlusPlus20 2224 ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt 2225 : diag::ext_constexpr_body_invalid_stmt_cxx20) 2226 << isa<CXXConstructorDecl>(Dcl); 2227 } else if (Cxx1yLoc.isValid()) { 2228 SemaRef.Diag(Cxx1yLoc, 2229 SemaRef.getLangOpts().CPlusPlus14 2230 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt 2231 : diag::ext_constexpr_body_invalid_stmt) 2232 << isa<CXXConstructorDecl>(Dcl); 2233 } 2234 2235 if (const CXXConstructorDecl *Constructor 2236 = dyn_cast<CXXConstructorDecl>(Dcl)) { 2237 const CXXRecordDecl *RD = Constructor->getParent(); 2238 // DR1359: 2239 // - every non-variant non-static data member and base class sub-object 2240 // shall be initialized; 2241 // DR1460: 2242 // - if the class is a union having variant members, exactly one of them 2243 // shall be initialized; 2244 if (RD->isUnion()) { 2245 if (Constructor->getNumCtorInitializers() == 0 && 2246 RD->hasVariantMembers()) { 2247 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2248 SemaRef.Diag( 2249 Dcl->getLocation(), 2250 SemaRef.getLangOpts().CPlusPlus20 2251 ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init 2252 : diag::ext_constexpr_union_ctor_no_init); 2253 } else if (!SemaRef.getLangOpts().CPlusPlus20) { 2254 return false; 2255 } 2256 } 2257 } else if (!Constructor->isDependentContext() && 2258 !Constructor->isDelegatingConstructor()) { 2259 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases")(static_cast <bool> (RD->getNumVBases() == 0 &&
"constexpr ctor with virtual bases") ? void (0) : __assert_fail
("RD->getNumVBases() == 0 && \"constexpr ctor with virtual bases\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 2259, __extension__ __PRETTY_FUNCTION__
))
; 2260 2261 // Skip detailed checking if we have enough initializers, and we would 2262 // allow at most one initializer per member. 2263 bool AnyAnonStructUnionMembers = false; 2264 unsigned Fields = 0; 2265 for (CXXRecordDecl::field_iterator I = RD->field_begin(), 2266 E = RD->field_end(); I != E; ++I, ++Fields) { 2267 if (I->isAnonymousStructOrUnion()) { 2268 AnyAnonStructUnionMembers = true; 2269 break; 2270 } 2271 } 2272 // DR1460: 2273 // - if the class is a union-like class, but is not a union, for each of 2274 // its anonymous union members having variant members, exactly one of 2275 // them shall be initialized; 2276 if (AnyAnonStructUnionMembers || 2277 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) { 2278 // Check initialization of non-static data members. Base classes are 2279 // always initialized so do not need to be checked. Dependent bases 2280 // might not have initializers in the member initializer list. 2281 llvm::SmallSet<Decl*, 16> Inits; 2282 for (const auto *I: Constructor->inits()) { 2283 if (FieldDecl *FD = I->getMember()) 2284 Inits.insert(FD); 2285 else if (IndirectFieldDecl *ID = I->getIndirectMember()) 2286 Inits.insert(ID->chain_begin(), ID->chain_end()); 2287 } 2288 2289 bool Diagnosed = false; 2290 for (auto *I : RD->fields()) 2291 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, 2292 Kind)) 2293 return false; 2294 } 2295 } 2296 } else { 2297 if (ReturnStmts.empty()) { 2298 // C++1y doesn't require constexpr functions to contain a 'return' 2299 // statement. We still do, unless the return type might be void, because 2300 // otherwise if there's no return statement, the function cannot 2301 // be used in a core constant expression. 2302 bool OK = SemaRef.getLangOpts().CPlusPlus14 && 2303 (Dcl->getReturnType()->isVoidType() || 2304 Dcl->getReturnType()->isDependentType()); 2305 switch (Kind) { 2306 case Sema::CheckConstexprKind::Diagnose: 2307 SemaRef.Diag(Dcl->getLocation(), 2308 OK ? diag::warn_cxx11_compat_constexpr_body_no_return 2309 : diag::err_constexpr_body_no_return) 2310 << Dcl->isConsteval(); 2311 if (!OK) 2312 return false; 2313 break; 2314 2315 case Sema::CheckConstexprKind::CheckValid: 2316 // The formal requirements don't include this rule in C++14, even 2317 // though the "must be able to produce a constant expression" rules 2318 // still imply it in some cases. 2319 if (!SemaRef.getLangOpts().CPlusPlus14) 2320 return false; 2321 break; 2322 } 2323 } else if (ReturnStmts.size() > 1) { 2324 switch (Kind) { 2325 case Sema::CheckConstexprKind::Diagnose: 2326 SemaRef.Diag( 2327 ReturnStmts.back(), 2328 SemaRef.getLangOpts().CPlusPlus14 2329 ? diag::warn_cxx11_compat_constexpr_body_multiple_return 2330 : diag::ext_constexpr_body_multiple_return); 2331 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I) 2332 SemaRef.Diag(ReturnStmts[I], 2333 diag::note_constexpr_body_previous_return); 2334 break; 2335 2336 case Sema::CheckConstexprKind::CheckValid: 2337 if (!SemaRef.getLangOpts().CPlusPlus14) 2338 return false; 2339 break; 2340 } 2341 } 2342 } 2343 2344 // C++11 [dcl.constexpr]p5: 2345 // if no function argument values exist such that the function invocation 2346 // substitution would produce a constant expression, the program is 2347 // ill-formed; no diagnostic required. 2348 // C++11 [dcl.constexpr]p3: 2349 // - every constructor call and implicit conversion used in initializing the 2350 // return value shall be one of those allowed in a constant expression. 2351 // C++11 [dcl.constexpr]p4: 2352 // - every constructor involved in initializing non-static data members and 2353 // base class sub-objects shall be a constexpr constructor. 2354 // 2355 // Note that this rule is distinct from the "requirements for a constexpr 2356 // function", so is not checked in CheckValid mode. 2357 SmallVector<PartialDiagnosticAt, 8> Diags; 2358 if (Kind == Sema::CheckConstexprKind::Diagnose && 2359 !Expr::isPotentialConstantExpr(Dcl, Diags)) { 2360 SemaRef.Diag(Dcl->getLocation(), 2361 diag::ext_constexpr_function_never_constant_expr) 2362 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 2363 for (size_t I = 0, N = Diags.size(); I != N; ++I) 2364 SemaRef.Diag(Diags[I].first, Diags[I].second); 2365 // Don't return false here: we allow this for compatibility in 2366 // system headers. 2367 } 2368 2369 return true; 2370} 2371 2372/// Get the class that is directly named by the current context. This is the 2373/// class for which an unqualified-id in this scope could name a constructor 2374/// or destructor. 2375/// 2376/// If the scope specifier denotes a class, this will be that class. 2377/// If the scope specifier is empty, this will be the class whose 2378/// member-specification we are currently within. Otherwise, there 2379/// is no such class. 2380CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) { 2381 assert(getLangOpts().CPlusPlus && "No class names in C!")(static_cast <bool> (getLangOpts().CPlusPlus &&
"No class names in C!") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 2381, __extension__ __PRETTY_FUNCTION__
))
; 2382 2383 if (SS && SS->isInvalid()) 2384 return nullptr; 2385 2386 if (SS && SS->isNotEmpty()) { 2387 DeclContext *DC = computeDeclContext(*SS, true); 2388 return dyn_cast_or_null<CXXRecordDecl>(DC); 2389 } 2390 2391 return dyn_cast_or_null<CXXRecordDecl>(CurContext); 2392} 2393 2394/// isCurrentClassName - Determine whether the identifier II is the 2395/// name of the class type currently being defined. In the case of 2396/// nested classes, this will only return true if II is the name of 2397/// the innermost class. 2398bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S, 2399 const CXXScopeSpec *SS) { 2400 CXXRecordDecl *CurDecl = getCurrentClass(S, SS); 2401 return CurDecl && &II == CurDecl->getIdentifier(); 2402} 2403 2404/// Determine whether the identifier II is a typo for the name of 2405/// the class type currently being defined. If so, update it to the identifier 2406/// that should have been used. 2407bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) { 2408 assert(getLangOpts().CPlusPlus && "No class names in C!")(static_cast <bool> (getLangOpts().CPlusPlus &&
"No class names in C!") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 2408, __extension__ __PRETTY_FUNCTION__
))
; 2409 2410 if (!getLangOpts().SpellChecking) 2411 return false; 2412 2413 CXXRecordDecl *CurDecl; 2414 if (SS && SS->isSet() && !SS->isInvalid()) { 2415 DeclContext *DC = computeDeclContext(*SS, true); 2416 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC); 2417 } else 2418 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext); 2419 2420 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() && 2421 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName()) 2422 < II->getLength()) { 2423 II = CurDecl->getIdentifier(); 2424 return true; 2425 } 2426 2427 return false; 2428} 2429 2430/// Determine whether the given class is a base class of the given 2431/// class, including looking at dependent bases. 2432static bool findCircularInheritance(const CXXRecordDecl *Class, 2433 const CXXRecordDecl *Current) { 2434 SmallVector<const CXXRecordDecl*, 8> Queue; 2435 2436 Class = Class->getCanonicalDecl(); 2437 while (true) { 2438 for (const auto &I : Current->bases()) { 2439 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); 2440 if (!Base) 2441 continue; 2442 2443 Base = Base->getDefinition(); 2444 if (!Base) 2445 continue; 2446 2447 if (Base->getCanonicalDecl() == Class) 2448 return true; 2449 2450 Queue.push_back(Base); 2451 } 2452 2453 if (Queue.empty()) 2454 return false; 2455 2456 Current = Queue.pop_back_val(); 2457 } 2458 2459 return false; 2460} 2461 2462/// Check the validity of a C++ base class specifier. 2463/// 2464/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics 2465/// and returns NULL otherwise. 2466CXXBaseSpecifier * 2467Sema::CheckBaseSpecifier(CXXRecordDecl *Class, 2468 SourceRange SpecifierRange, 2469 bool Virtual, AccessSpecifier Access, 2470 TypeSourceInfo *TInfo, 2471 SourceLocation EllipsisLoc) { 2472 QualType BaseType = TInfo->getType(); 2473 if (BaseType->containsErrors()) { 2474 // Already emitted a diagnostic when parsing the error type. 2475 return nullptr; 2476 } 2477 // C++ [class.union]p1: 2478 // A union shall not have base classes. 2479 if (Class->isUnion()) { 2480 Diag(Class->getLocation(), diag::err_base_clause_on_union) 2481 << SpecifierRange; 2482 return nullptr; 2483 } 2484 2485 if (EllipsisLoc.isValid() && 2486 !TInfo->getType()->containsUnexpandedParameterPack()) { 2487 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 2488 << TInfo->getTypeLoc().getSourceRange(); 2489 EllipsisLoc = SourceLocation(); 2490 } 2491 2492 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc(); 2493 2494 if (BaseType->isDependentType()) { 2495 // Make sure that we don't have circular inheritance among our dependent 2496 // bases. For non-dependent bases, the check for completeness below handles 2497 // this. 2498 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) { 2499 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() || 2500 ((BaseDecl = BaseDecl->getDefinition()) && 2501 findCircularInheritance(Class, BaseDecl))) { 2502 Diag(BaseLoc, diag::err_circular_inheritance) 2503 << BaseType << Context.getTypeDeclType(Class); 2504 2505 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl()) 2506 Diag(BaseDecl->getLocation(), diag::note_previous_decl) 2507 << BaseType; 2508 2509 return nullptr; 2510 } 2511 } 2512 2513 // Make sure that we don't make an ill-formed AST where the type of the 2514 // Class is non-dependent and its attached base class specifier is an 2515 // dependent type, which violates invariants in many clang code paths (e.g. 2516 // constexpr evaluator). If this case happens (in errory-recovery mode), we 2517 // explicitly mark the Class decl invalid. The diagnostic was already 2518 // emitted. 2519 if (!Class->getTypeForDecl()->isDependentType()) 2520 Class->setInvalidDecl(); 2521 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, 2522 Class->getTagKind() == TTK_Class, 2523 Access, TInfo, EllipsisLoc); 2524 } 2525 2526 // Base specifiers must be record types. 2527 if (!BaseType->isRecordType()) { 2528 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; 2529 return nullptr; 2530 } 2531 2532 // C++ [class.union]p1: 2533 // A union shall not be used as a base class. 2534 if (BaseType->isUnionType()) { 2535 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; 2536 return nullptr; 2537 } 2538 2539 // For the MS ABI, propagate DLL attributes to base class templates. 2540 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2541 if (Attr *ClassAttr = getDLLAttr(Class)) { 2542 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>( 2543 BaseType->getAsCXXRecordDecl())) { 2544 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate, 2545 BaseLoc); 2546 } 2547 } 2548 } 2549 2550 // C++ [class.derived]p2: 2551 // The class-name in a base-specifier shall not be an incompletely 2552 // defined class. 2553 if (RequireCompleteType(BaseLoc, BaseType, 2554 diag::err_incomplete_base_class, SpecifierRange)) { 2555 Class->setInvalidDecl(); 2556 return nullptr; 2557 } 2558 2559 // If the base class is polymorphic or isn't empty, the new one is/isn't, too. 2560 RecordDecl *BaseDecl = BaseType->castAs<RecordType>()->getDecl(); 2561 assert(BaseDecl && "Record type has no declaration")(static_cast <bool> (BaseDecl && "Record type has no declaration"
) ? void (0) : __assert_fail ("BaseDecl && \"Record type has no declaration\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 2561, __extension__ __PRETTY_FUNCTION__
))
; 2562 BaseDecl = BaseDecl->getDefinition(); 2563 assert(BaseDecl && "Base type is not incomplete, but has no definition")(static_cast <bool> (BaseDecl && "Base type is not incomplete, but has no definition"
) ? void (0) : __assert_fail ("BaseDecl && \"Base type is not incomplete, but has no definition\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 2563, __extension__ __PRETTY_FUNCTION__
))
; 2564 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl); 2565 assert(CXXBaseDecl && "Base type is not a C++ type")(static_cast <bool> (CXXBaseDecl && "Base type is not a C++ type"
) ? void (0) : __assert_fail ("CXXBaseDecl && \"Base type is not a C++ type\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 2565, __extension__ __PRETTY_FUNCTION__
))
; 2566 2567 // Microsoft docs say: 2568 // "If a base-class has a code_seg attribute, derived classes must have the 2569 // same attribute." 2570 const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>(); 2571 const auto *DerivedCSA = Class->getAttr<CodeSegAttr>(); 2572 if ((DerivedCSA || BaseCSA) && 2573 (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) { 2574 Diag(Class->getLocation(), diag::err_mismatched_code_seg_base); 2575 Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here) 2576 << CXXBaseDecl; 2577 return nullptr; 2578 } 2579 2580 // A class which contains a flexible array member is not suitable for use as a 2581 // base class: 2582 // - If the layout determines that a base comes before another base, 2583 // the flexible array member would index into the subsequent base. 2584 // - If the layout determines that base comes before the derived class, 2585 // the flexible array member would index into the derived class. 2586 if (CXXBaseDecl->hasFlexibleArrayMember()) { 2587 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member) 2588 << CXXBaseDecl->getDeclName(); 2589 return nullptr; 2590 } 2591 2592 // C++ [class]p3: 2593 // If a class is marked final and it appears as a base-type-specifier in 2594 // base-clause, the program is ill-formed. 2595 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) { 2596 Diag(BaseLoc, diag::err_class_marked_final_used_as_base) 2597 << CXXBaseDecl->getDeclName() 2598 << FA->isSpelledAsSealed(); 2599 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at) 2600 << CXXBaseDecl->getDeclName() << FA->getRange(); 2601 return nullptr; 2602 } 2603 2604 if (BaseDecl->isInvalidDecl()) 2605 Class->setInvalidDecl(); 2606 2607 // Create the base specifier. 2608 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, 2609 Class->getTagKind() == TTK_Class, 2610 Access, TInfo, EllipsisLoc); 2611} 2612 2613/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is 2614/// one entry in the base class list of a class specifier, for 2615/// example: 2616/// class foo : public bar, virtual private baz { 2617/// 'public bar' and 'virtual private baz' are each base-specifiers. 2618BaseResult 2619Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, 2620 ParsedAttributes &Attributes, 2621 bool Virtual, AccessSpecifier Access, 2622 ParsedType basetype, SourceLocation BaseLoc, 2623 SourceLocation EllipsisLoc) { 2624 if (!classdecl) 2625 return true; 2626 2627 AdjustDeclIfTemplate(classdecl); 2628 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl); 2629 if (!Class) 2630 return true; 2631 2632 // We haven't yet attached the base specifiers. 2633 Class->setIsParsingBaseSpecifiers(); 2634 2635 // We do not support any C++11 attributes on base-specifiers yet. 2636 // Diagnose any attributes we see. 2637 for (const ParsedAttr &AL : Attributes) { 2638 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) 2639 continue; 2640 Diag(AL.getLoc(), AL.getKind() == ParsedAttr::UnknownAttribute 2641 ? (unsigned)diag::warn_unknown_attribute_ignored 2642 : (unsigned)diag::err_base_specifier_attribute) 2643 << AL << AL.getRange(); 2644 } 2645 2646 TypeSourceInfo *TInfo = nullptr; 2647 GetTypeFromParser(basetype, &TInfo); 2648 2649 if (EllipsisLoc.isInvalid() && 2650 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo, 2651 UPPC_BaseType)) 2652 return true; 2653 2654 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, 2655 Virtual, Access, TInfo, 2656 EllipsisLoc)) 2657 return BaseSpec; 2658 else 2659 Class->setInvalidDecl(); 2660 2661 return true; 2662} 2663 2664/// Use small set to collect indirect bases. As this is only used 2665/// locally, there's no need to abstract the small size parameter. 2666typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet; 2667 2668/// Recursively add the bases of Type. Don't add Type itself. 2669static void 2670NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set, 2671 const QualType &Type) 2672{ 2673 // Even though the incoming type is a base, it might not be 2674 // a class -- it could be a template parm, for instance. 2675 if (auto Rec = Type->getAs<RecordType>()) { 2676 auto Decl = Rec->getAsCXXRecordDecl(); 2677 2678 // Iterate over its bases. 2679 for (const auto &BaseSpec : Decl->bases()) { 2680 QualType Base = Context.getCanonicalType(BaseSpec.getType()) 2681 .getUnqualifiedType(); 2682 if (Set.insert(Base).second) 2683 // If we've not already seen it, recurse. 2684 NoteIndirectBases(Context, Set, Base); 2685 } 2686 } 2687} 2688 2689/// Performs the actual work of attaching the given base class 2690/// specifiers to a C++ class. 2691bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, 2692 MutableArrayRef<CXXBaseSpecifier *> Bases) { 2693 if (Bases.empty()) 2694 return false; 2695 2696 // Used to keep track of which base types we have already seen, so 2697 // that we can properly diagnose redundant direct base types. Note 2698 // that the key is always the unqualified canonical type of the base 2699 // class. 2700 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; 2701 2702 // Used to track indirect bases so we can see if a direct base is 2703 // ambiguous. 2704 IndirectBaseSet IndirectBaseTypes; 2705 2706 // Copy non-redundant base specifiers into permanent storage. 2707 unsigned NumGoodBases = 0; 2708 bool Invalid = false; 2709 for (unsigned idx = 0; idx < Bases.size(); ++idx) { 2710 QualType NewBaseType 2711 = Context.getCanonicalType(Bases[idx]->getType()); 2712 NewBaseType = NewBaseType.getLocalUnqualifiedType(); 2713 2714 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType]; 2715 if (KnownBase) { 2716 // C++ [class.mi]p3: 2717 // A class shall not be specified as a direct base class of a 2718 // derived class more than once. 2719 Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class) 2720 << KnownBase->getType() << Bases[idx]->getSourceRange(); 2721 2722 // Delete the duplicate base class specifier; we're going to 2723 // overwrite its pointer later. 2724 Context.Deallocate(Bases[idx]); 2725 2726 Invalid = true; 2727 } else { 2728 // Okay, add this new base class. 2729 KnownBase = Bases[idx]; 2730 Bases[NumGoodBases++] = Bases[idx]; 2731 2732 if (NewBaseType->isDependentType()) 2733 continue; 2734 // Note this base's direct & indirect bases, if there could be ambiguity. 2735 if (Bases.size() > 1) 2736 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType); 2737 2738 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) { 2739 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); 2740 if (Class->isInterface() && 2741 (!RD->isInterfaceLike() || 2742 KnownBase->getAccessSpecifier() != AS_public)) { 2743 // The Microsoft extension __interface does not permit bases that 2744 // are not themselves public interfaces. 2745 Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface) 2746 << getRecordDiagFromTagKind(RD->getTagKind()) << RD 2747 << RD->getSourceRange(); 2748 Invalid = true; 2749 } 2750 if (RD->hasAttr<WeakAttr>()) 2751 Class->addAttr(WeakAttr::CreateImplicit(Context)); 2752 } 2753 } 2754 } 2755 2756 // Attach the remaining base class specifiers to the derived class. 2757 Class->setBases(Bases.data(), NumGoodBases); 2758 2759 // Check that the only base classes that are duplicate are virtual. 2760 for (unsigned idx = 0; idx < NumGoodBases; ++idx) { 2761 // Check whether this direct base is inaccessible due to ambiguity. 2762 QualType BaseType = Bases[idx]->getType(); 2763 2764 // Skip all dependent types in templates being used as base specifiers. 2765 // Checks below assume that the base specifier is a CXXRecord. 2766 if (BaseType->isDependentType()) 2767 continue; 2768 2769 CanQualType CanonicalBase = Context.getCanonicalType(BaseType) 2770 .getUnqualifiedType(); 2771 2772 if (IndirectBaseTypes.count(CanonicalBase)) { 2773 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 2774 /*DetectVirtual=*/true); 2775 bool found 2776 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths); 2777 assert(found)(static_cast <bool> (found) ? void (0) : __assert_fail (
"found", "clang/lib/Sema/SemaDeclCXX.cpp", 2777, __extension__
__PRETTY_FUNCTION__))
; 2778 (void)found; 2779 2780 if (Paths.isAmbiguous(CanonicalBase)) 2781 Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class) 2782 << BaseType << getAmbiguousPathsDisplayString(Paths) 2783 << Bases[idx]->getSourceRange(); 2784 else 2785 assert(Bases[idx]->isVirtual())(static_cast <bool> (Bases[idx]->isVirtual()) ? void
(0) : __assert_fail ("Bases[idx]->isVirtual()", "clang/lib/Sema/SemaDeclCXX.cpp"
, 2785, __extension__ __PRETTY_FUNCTION__))
; 2786 } 2787 2788 // Delete the base class specifier, since its data has been copied 2789 // into the CXXRecordDecl. 2790 Context.Deallocate(Bases[idx]); 2791 } 2792 2793 return Invalid; 2794} 2795 2796/// ActOnBaseSpecifiers - Attach the given base specifiers to the 2797/// class, after checking whether there are any duplicate base 2798/// classes. 2799void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, 2800 MutableArrayRef<CXXBaseSpecifier *> Bases) { 2801 if (!ClassDecl || Bases.empty()) 2802 return; 2803 2804 AdjustDeclIfTemplate(ClassDecl); 2805 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases); 2806} 2807 2808/// Determine whether the type \p Derived is a C++ class that is 2809/// derived from the type \p Base. 2810bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) { 2811 if (!getLangOpts().CPlusPlus) 2812 return false; 2813 2814 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); 2815 if (!DerivedRD) 2816 return false; 2817 2818 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); 2819 if (!BaseRD) 2820 return false; 2821 2822 // If either the base or the derived type is invalid, don't try to 2823 // check whether one is derived from the other. 2824 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl()) 2825 return false; 2826 2827 // FIXME: In a modules build, do we need the entire path to be visible for us 2828 // to be able to use the inheritance relationship? 2829 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) 2830 return false; 2831 2832 return DerivedRD->isDerivedFrom(BaseRD); 2833} 2834 2835/// Determine whether the type \p Derived is a C++ class that is 2836/// derived from the type \p Base. 2837bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base, 2838 CXXBasePaths &Paths) { 2839 if (!getLangOpts().CPlusPlus) 2840 return false; 2841 2842 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); 2843 if (!DerivedRD) 2844 return false; 2845 2846 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); 2847 if (!BaseRD) 2848 return false; 2849 2850 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) 2851 return false; 2852 2853 return DerivedRD->isDerivedFrom(BaseRD, Paths); 2854} 2855 2856static void BuildBasePathArray(const CXXBasePath &Path, 2857 CXXCastPath &BasePathArray) { 2858 // We first go backward and check if we have a virtual base. 2859 // FIXME: It would be better if CXXBasePath had the base specifier for 2860 // the nearest virtual base. 2861 unsigned Start = 0; 2862 for (unsigned I = Path.size(); I != 0; --I) { 2863 if (Path[I - 1].Base->isVirtual()) { 2864 Start = I - 1; 2865 break; 2866 } 2867 } 2868 2869 // Now add all bases. 2870 for (unsigned I = Start, E = Path.size(); I != E; ++I) 2871 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base)); 2872} 2873 2874 2875void Sema::BuildBasePathArray(const CXXBasePaths &Paths, 2876 CXXCastPath &BasePathArray) { 2877 assert(BasePathArray.empty() && "Base path array must be empty!")(static_cast <bool> (BasePathArray.empty() && "Base path array must be empty!"
) ? void (0) : __assert_fail ("BasePathArray.empty() && \"Base path array must be empty!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 2877, __extension__ __PRETTY_FUNCTION__
))
; 2878 assert(Paths.isRecordingPaths() && "Must record paths!")(static_cast <bool> (Paths.isRecordingPaths() &&
"Must record paths!") ? void (0) : __assert_fail ("Paths.isRecordingPaths() && \"Must record paths!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 2878, __extension__ __PRETTY_FUNCTION__
))
; 2879 return ::BuildBasePathArray(Paths.front(), BasePathArray); 2880} 2881/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base 2882/// conversion (where Derived and Base are class types) is 2883/// well-formed, meaning that the conversion is unambiguous (and 2884/// that all of the base classes are accessible). Returns true 2885/// and emits a diagnostic if the code is ill-formed, returns false 2886/// otherwise. Loc is the location where this routine should point to 2887/// if there is an error, and Range is the source range to highlight 2888/// if there is an error. 2889/// 2890/// If either InaccessibleBaseID or AmbiguousBaseConvID are 0, then the 2891/// diagnostic for the respective type of error will be suppressed, but the 2892/// check for ill-formed code will still be performed. 2893bool 2894Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, 2895 unsigned InaccessibleBaseID, 2896 unsigned AmbiguousBaseConvID, 2897 SourceLocation Loc, SourceRange Range, 2898 DeclarationName Name, 2899 CXXCastPath *BasePath, 2900 bool IgnoreAccess) { 2901 // First, determine whether the path from Derived to Base is 2902 // ambiguous. This is slightly more expensive than checking whether 2903 // the Derived to Base conversion exists, because here we need to 2904 // explore multiple paths to determine if there is an ambiguity. 2905 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 2906 /*DetectVirtual=*/false); 2907 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths); 2908 if (!DerivationOkay) 2909 return true; 2910 2911 const CXXBasePath *Path = nullptr; 2912 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) 2913 Path = &Paths.front(); 2914 2915 // For MSVC compatibility, check if Derived directly inherits from Base. Clang 2916 // warns about this hierarchy under -Winaccessible-base, but MSVC allows the 2917 // user to access such bases. 2918 if (!Path && getLangOpts().MSVCCompat) { 2919 for (const CXXBasePath &PossiblePath : Paths) { 2920 if (PossiblePath.size() == 1) { 2921 Path = &PossiblePath; 2922 if (AmbiguousBaseConvID) 2923 Diag(Loc, diag::ext_ms_ambiguous_direct_base) 2924 << Base << Derived << Range; 2925 break; 2926 } 2927 } 2928 } 2929 2930 if (Path) { 2931 if (!IgnoreAccess) { 2932 // Check that the base class can be accessed. 2933 switch ( 2934 CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) { 2935 case AR_inaccessible: 2936 return true; 2937 case AR_accessible: 2938 case AR_dependent: 2939 case AR_delayed: 2940 break; 2941 } 2942 } 2943 2944 // Build a base path if necessary. 2945 if (BasePath) 2946 ::BuildBasePathArray(*Path, *BasePath); 2947 return false; 2948 } 2949 2950 if (AmbiguousBaseConvID) { 2951 // We know that the derived-to-base conversion is ambiguous, and 2952 // we're going to produce a diagnostic. Perform the derived-to-base 2953 // search just one more time to compute all of the possible paths so 2954 // that we can print them out. This is more expensive than any of 2955 // the previous derived-to-base checks we've done, but at this point 2956 // performance isn't as much of an issue. 2957 Paths.clear(); 2958 Paths.setRecordingPaths(true); 2959 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths); 2960 assert(StillOkay && "Can only be used with a derived-to-base conversion")(static_cast <bool> (StillOkay && "Can only be used with a derived-to-base conversion"
) ? void (0) : __assert_fail ("StillOkay && \"Can only be used with a derived-to-base conversion\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 2960, __extension__ __PRETTY_FUNCTION__
))
; 2961 (void)StillOkay; 2962 2963 // Build up a textual representation of the ambiguous paths, e.g., 2964 // D -> B -> A, that will be used to illustrate the ambiguous 2965 // conversions in the diagnostic. We only print one of the paths 2966 // to each base class subobject. 2967 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 2968 2969 Diag(Loc, AmbiguousBaseConvID) 2970 << Derived << Base << PathDisplayStr << Range << Name; 2971 } 2972 return true; 2973} 2974 2975bool 2976Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, 2977 SourceLocation Loc, SourceRange Range, 2978 CXXCastPath *BasePath, 2979 bool IgnoreAccess) { 2980 return CheckDerivedToBaseConversion( 2981 Derived, Base, diag::err_upcast_to_inaccessible_base, 2982 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(), 2983 BasePath, IgnoreAccess); 2984} 2985 2986 2987/// Builds a string representing ambiguous paths from a 2988/// specific derived class to different subobjects of the same base 2989/// class. 2990/// 2991/// This function builds a string that can be used in error messages 2992/// to show the different paths that one can take through the 2993/// inheritance hierarchy to go from the derived class to different 2994/// subobjects of a base class. The result looks something like this: 2995/// @code 2996/// struct D -> struct B -> struct A 2997/// struct D -> struct C -> struct A 2998/// @endcode 2999std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { 3000 std::string PathDisplayStr; 3001 std::set<unsigned> DisplayedPaths; 3002 for (CXXBasePaths::paths_iterator Path = Paths.begin(); 3003 Path != Paths.end(); ++Path) { 3004 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { 3005 // We haven't displayed a path to this particular base 3006 // class subobject yet. 3007 PathDisplayStr += "\n "; 3008 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); 3009 for (CXXBasePath::const_iterator Element = Path->begin(); 3010 Element != Path->end(); ++Element) 3011 PathDisplayStr += " -> " + Element->Base->getType().getAsString(); 3012 } 3013 } 3014 3015 return PathDisplayStr; 3016} 3017 3018//===----------------------------------------------------------------------===// 3019// C++ class member Handling 3020//===----------------------------------------------------------------------===// 3021 3022/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon. 3023bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc, 3024 SourceLocation ColonLoc, 3025 const ParsedAttributesView &Attrs) { 3026 assert(Access != AS_none && "Invalid kind for syntactic access specifier!")(static_cast <bool> (Access != AS_none && "Invalid kind for syntactic access specifier!"
) ? void (0) : __assert_fail ("Access != AS_none && \"Invalid kind for syntactic access specifier!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 3026, __extension__ __PRETTY_FUNCTION__
))
; 3027 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext, 3028 ASLoc, ColonLoc); 3029 CurContext->addHiddenDecl(ASDecl); 3030 return ProcessAccessDeclAttributeList(ASDecl, Attrs); 3031} 3032 3033/// CheckOverrideControl - Check C++11 override control semantics. 3034void Sema::CheckOverrideControl(NamedDecl *D) { 3035 if (D->isInvalidDecl()) 3036 return; 3037 3038 // We only care about "override" and "final" declarations. 3039 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>()) 3040 return; 3041 3042 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); 3043 3044 // We can't check dependent instance methods. 3045 if (MD && MD->isInstance() && 3046 (MD->getParent()->hasAnyDependentBases() || 3047 MD->getType()->isDependentType())) 3048 return; 3049 3050 if (MD && !MD->isVirtual()) { 3051 // If we have a non-virtual method, check if if hides a virtual method. 3052 // (In that case, it's most likely the method has the wrong type.) 3053 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 3054 FindHiddenVirtualMethods(MD, OverloadedMethods); 3055 3056 if (!OverloadedMethods.empty()) { 3057 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { 3058 Diag(OA->getLocation(), 3059 diag::override_keyword_hides_virtual_member_function) 3060 << "override" << (OverloadedMethods.size() > 1); 3061 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) { 3062 Diag(FA->getLocation(), 3063 diag::override_keyword_hides_virtual_member_function) 3064 << (FA->isSpelledAsSealed() ? "sealed" : "final") 3065 << (OverloadedMethods.size() > 1); 3066 } 3067 NoteHiddenVirtualMethods(MD, OverloadedMethods); 3068 MD->setInvalidDecl(); 3069 return; 3070 } 3071 // Fall through into the general case diagnostic. 3072 // FIXME: We might want to attempt typo correction here. 3073 } 3074 3075 if (!MD || !MD->isVirtual()) { 3076 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { 3077 Diag(OA->getLocation(), 3078 diag::override_keyword_only_allowed_on_virtual_member_functions) 3079 << "override" << FixItHint::CreateRemoval(OA->getLocation()); 3080 D->dropAttr<OverrideAttr>(); 3081 } 3082 if (FinalAttr *FA = D->getAttr<FinalAttr>()) { 3083 Diag(FA->getLocation(), 3084 diag::override_keyword_only_allowed_on_virtual_member_functions) 3085 << (FA->isSpelledAsSealed() ? "sealed" : "final") 3086 << FixItHint::CreateRemoval(FA->getLocation()); 3087 D->dropAttr<FinalAttr>(); 3088 } 3089 return; 3090 } 3091 3092 // C++11 [class.virtual]p5: 3093 // If a function is marked with the virt-specifier override and 3094 // does not override a member function of a base class, the program is 3095 // ill-formed. 3096 bool HasOverriddenMethods = MD->size_overridden_methods() != 0; 3097 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) 3098 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding) 3099 << MD->getDeclName(); 3100} 3101 3102void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent) { 3103 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>()) 3104 return; 3105 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); 3106 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>()) 3107 return; 3108 3109 SourceLocation Loc = MD->getLocation(); 3110 SourceLocation SpellingLoc = Loc; 3111 if (getSourceManager().isMacroArgExpansion(Loc)) 3112 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin(); 3113 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc); 3114 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc)) 3115 return; 3116 3117 if (MD->size_overridden_methods() > 0) { 3118 auto EmitDiag = [&](unsigned DiagInconsistent, unsigned DiagSuggest) { 3119 unsigned DiagID = 3120 Inconsistent && !Diags.isIgnored(DiagInconsistent, MD->getLocation()) 3121 ? DiagInconsistent 3122 : DiagSuggest; 3123 Diag(MD->getLocation(), DiagID) << MD->getDeclName(); 3124 const CXXMethodDecl *OMD = *MD->begin_overridden_methods(); 3125 Diag(OMD->getLocation(), diag::note_overridden_virtual_function); 3126 }; 3127 if (isa<CXXDestructorDecl>(MD)) 3128 EmitDiag( 3129 diag::warn_inconsistent_destructor_marked_not_override_overriding, 3130 diag::warn_suggest_destructor_marked_not_override_overriding); 3131 else 3132 EmitDiag(diag::warn_inconsistent_function_marked_not_override_overriding, 3133 diag::warn_suggest_function_marked_not_override_overriding); 3134 } 3135} 3136 3137/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member 3138/// function overrides a virtual member function marked 'final', according to 3139/// C++11 [class.virtual]p4. 3140bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New, 3141 const CXXMethodDecl *Old) { 3142 FinalAttr *FA = Old->getAttr<FinalAttr>(); 3143 if (!FA) 3144 return false; 3145 3146 Diag(New->getLocation(), diag::err_final_function_overridden) 3147 << New->getDeclName() 3148 << FA->isSpelledAsSealed(); 3149 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 3150 return true; 3151} 3152 3153static bool InitializationHasSideEffects(const FieldDecl &FD) { 3154 const Type *T = FD.getType()->getBaseElementTypeUnsafe(); 3155 // FIXME: Destruction of ObjC lifetime types has side-effects. 3156 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 3157 return !RD->isCompleteDefinition() || 3158 !RD->hasTrivialDefaultConstructor() || 3159 !RD->hasTrivialDestructor(); 3160 return false; 3161} 3162 3163static const ParsedAttr *getMSPropertyAttr(const ParsedAttributesView &list) { 3164 ParsedAttributesView::const_iterator Itr = 3165 llvm::find_if(list, [](const ParsedAttr &AL) { 3166 return AL.isDeclspecPropertyAttribute(); 3167 }); 3168 if (Itr != list.end()) 3169 return &*Itr; 3170 return nullptr; 3171} 3172 3173// Check if there is a field shadowing. 3174void Sema::CheckShadowInheritedFields(const SourceLocation &Loc, 3175 DeclarationName FieldName, 3176 const CXXRecordDecl *RD, 3177 bool DeclIsField) { 3178 if (Diags.isIgnored(diag::warn_shadow_field, Loc)) 3179 return; 3180 3181 // To record a shadowed field in a base 3182 std::map<CXXRecordDecl*, NamedDecl*> Bases; 3183 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier, 3184 CXXBasePath &Path) { 3185 const auto Base = Specifier->getType()->getAsCXXRecordDecl(); 3186 // Record an ambiguous path directly 3187 if (Bases.find(Base) != Bases.end()) 3188 return true; 3189 for (const auto Field : Base->lookup(FieldName)) { 3190 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) && 3191 Field->getAccess() != AS_private) { 3192 assert(Field->getAccess() != AS_none)(static_cast <bool> (Field->getAccess() != AS_none) ?
void (0) : __assert_fail ("Field->getAccess() != AS_none"
, "clang/lib/Sema/SemaDeclCXX.cpp", 3192, __extension__ __PRETTY_FUNCTION__
))
; 3193 assert(Bases.find(Base) == Bases.end())(static_cast <bool> (Bases.find(Base) == Bases.end()) ?
void (0) : __assert_fail ("Bases.find(Base) == Bases.end()",
"clang/lib/Sema/SemaDeclCXX.cpp", 3193, __extension__ __PRETTY_FUNCTION__
))
; 3194 Bases[Base] = Field; 3195 return true; 3196 } 3197 } 3198 return false; 3199 }; 3200 3201 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 3202 /*DetectVirtual=*/true); 3203 if (!RD->lookupInBases(FieldShadowed, Paths)) 3204 return; 3205 3206 for (const auto &P : Paths) { 3207 auto Base = P.back().Base->getType()->getAsCXXRecordDecl(); 3208 auto It = Bases.find(Base); 3209 // Skip duplicated bases 3210 if (It == Bases.end()) 3211 continue; 3212 auto BaseField = It->second; 3213 assert(BaseField->getAccess() != AS_private)(static_cast <bool> (BaseField->getAccess() != AS_private
) ? void (0) : __assert_fail ("BaseField->getAccess() != AS_private"
, "clang/lib/Sema/SemaDeclCXX.cpp", 3213, __extension__ __PRETTY_FUNCTION__
))
; 3214 if (AS_none != 3215 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) { 3216 Diag(Loc, diag::warn_shadow_field) 3217 << FieldName << RD << Base << DeclIsField; 3218 Diag(BaseField->getLocation(), diag::note_shadow_field); 3219 Bases.erase(It); 3220 } 3221 } 3222} 3223 3224/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member 3225/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the 3226/// bitfield width if there is one, 'InitExpr' specifies the initializer if 3227/// one has been parsed, and 'InitStyle' is set if an in-class initializer is 3228/// present (but parsing it has been deferred). 3229NamedDecl * 3230Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, 3231 MultiTemplateParamsArg TemplateParameterLists, 3232 Expr *BW, const VirtSpecifiers &VS, 3233 InClassInitStyle InitStyle) { 3234 const DeclSpec &DS = D.getDeclSpec(); 3235 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 3236 DeclarationName Name = NameInfo.getName(); 3237 SourceLocation Loc = NameInfo.getLoc(); 3238 3239 // For anonymous bitfields, the location should point to the type. 3240 if (Loc.isInvalid()) 3241 Loc = D.getBeginLoc(); 3242 3243 Expr *BitWidth = static_cast<Expr*>(BW); 3244 3245 assert(isa<CXXRecordDecl>(CurContext))(static_cast <bool> (isa<CXXRecordDecl>(CurContext
)) ? void (0) : __assert_fail ("isa<CXXRecordDecl>(CurContext)"
, "clang/lib/Sema/SemaDeclCXX.cpp", 3245, __extension__ __PRETTY_FUNCTION__
))
; 3246 assert(!DS.isFriendSpecified())(static_cast <bool> (!DS.isFriendSpecified()) ? void (0
) : __assert_fail ("!DS.isFriendSpecified()", "clang/lib/Sema/SemaDeclCXX.cpp"
, 3246, __extension__ __PRETTY_FUNCTION__))
; 3247 3248 bool isFunc = D.isDeclarationOfFunction(); 3249 const ParsedAttr *MSPropertyAttr = 3250 getMSPropertyAttr(D.getDeclSpec().getAttributes()); 3251 3252 if (cast<CXXRecordDecl>(CurContext)->isInterface()) { 3253 // The Microsoft extension __interface only permits public member functions 3254 // and prohibits constructors, destructors, operators, non-public member 3255 // functions, static methods and data members. 3256 unsigned InvalidDecl; 3257 bool ShowDeclName = true; 3258 if (!isFunc && 3259 (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr)) 3260 InvalidDecl = 0; 3261 else if (!isFunc) 3262 InvalidDecl = 1; 3263 else if (AS != AS_public) 3264 InvalidDecl = 2; 3265 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static) 3266 InvalidDecl = 3; 3267 else switch (Name.getNameKind()) { 3268 case DeclarationName::CXXConstructorName: 3269 InvalidDecl = 4; 3270 ShowDeclName = false; 3271 break; 3272 3273 case DeclarationName::CXXDestructorName: 3274 InvalidDecl = 5; 3275 ShowDeclName = false; 3276 break; 3277 3278 case DeclarationName::CXXOperatorName: 3279 case DeclarationName::CXXConversionFunctionName: 3280 InvalidDecl = 6; 3281 break; 3282 3283 default: 3284 InvalidDecl = 0; 3285 break; 3286 } 3287 3288 if (InvalidDecl) { 3289 if (ShowDeclName) 3290 Diag(Loc, diag::err_invalid_member_in_interface) 3291 << (InvalidDecl-1) << Name; 3292 else 3293 Diag(Loc, diag::err_invalid_member_in_interface) 3294 << (InvalidDecl-1) << ""; 3295 return nullptr; 3296 } 3297 } 3298 3299 // C++ 9.2p6: A member shall not be declared to have automatic storage 3300 // duration (auto, register) or with the extern storage-class-specifier. 3301 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class 3302 // data members and cannot be applied to names declared const or static, 3303 // and cannot be applied to reference members. 3304 switch (DS.getStorageClassSpec()) { 3305 case DeclSpec::SCS_unspecified: 3306 case DeclSpec::SCS_typedef: 3307 case DeclSpec::SCS_static: 3308 break; 3309 case DeclSpec::SCS_mutable: 3310 if (isFunc) { 3311 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); 3312 3313 // FIXME: It would be nicer if the keyword was ignored only for this 3314 // declarator. Otherwise we could get follow-up errors. 3315 D.getMutableDeclSpec().ClearStorageClassSpecs(); 3316 } 3317 break; 3318 default: 3319 Diag(DS.getStorageClassSpecLoc(), 3320 diag::err_storageclass_invalid_for_member); 3321 D.getMutableDeclSpec().ClearStorageClassSpecs(); 3322 break; 3323 } 3324 3325 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || 3326 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && 3327 !isFunc); 3328 3329 if (DS.hasConstexprSpecifier() && isInstField) { 3330 SemaDiagnosticBuilder B = 3331 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member); 3332 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc(); 3333 if (InitStyle == ICIS_NoInit) { 3334 B << 0 << 0; 3335 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) 3336 B << FixItHint::CreateRemoval(ConstexprLoc); 3337 else { 3338 B << FixItHint::CreateReplacement(ConstexprLoc, "const"); 3339 D.getMutableDeclSpec().ClearConstexprSpec(); 3340 const char *PrevSpec; 3341 unsigned DiagID; 3342 bool Failed = D.getMutableDeclSpec().SetTypeQual( 3343 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts()); 3344 (void)Failed; 3345 assert(!Failed && "Making a constexpr member const shouldn't fail")(static_cast <bool> (!Failed && "Making a constexpr member const shouldn't fail"
) ? void (0) : __assert_fail ("!Failed && \"Making a constexpr member const shouldn't fail\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 3345, __extension__ __PRETTY_FUNCTION__
))
; 3346 } 3347 } else { 3348 B << 1; 3349 const char *PrevSpec; 3350 unsigned DiagID; 3351 if (D.getMutableDeclSpec().SetStorageClassSpec( 3352 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID, 3353 Context.getPrintingPolicy())) { 3354 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&(static_cast <bool> (DS.getStorageClassSpec() == DeclSpec
::SCS_mutable && "This is the only DeclSpec that should fail to be applied"
) ? void (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 3355, __extension__ __PRETTY_FUNCTION__
))
3355 "This is the only DeclSpec that should fail to be applied")(static_cast <bool> (DS.getStorageClassSpec() == DeclSpec
::SCS_mutable && "This is the only DeclSpec that should fail to be applied"
) ? void (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 3355, __extension__ __PRETTY_FUNCTION__
))
; 3356 B << 1; 3357 } else { 3358 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static "); 3359 isInstField = false; 3360 } 3361 } 3362 } 3363 3364 NamedDecl *Member; 3365 if (isInstField) { 3366 CXXScopeSpec &SS = D.getCXXScopeSpec(); 3367 3368 // Data members must have identifiers for names. 3369 if (!Name.isIdentifier()) { 3370 Diag(Loc, diag::err_bad_variable_name) 3371 << Name; 3372 return nullptr; 3373 } 3374 3375 IdentifierInfo *II = Name.getAsIdentifierInfo(); 3376 3377 // Member field could not be with "template" keyword. 3378 // So TemplateParameterLists should be empty in this case. 3379 if (TemplateParameterLists.size()) { 3380 TemplateParameterList* TemplateParams = TemplateParameterLists[0]; 3381 if (TemplateParams->size()) { 3382 // There is no such thing as a member field template. 3383 Diag(D.getIdentifierLoc(), diag::err_template_member) 3384 << II 3385 << SourceRange(TemplateParams->getTemplateLoc(), 3386 TemplateParams->getRAngleLoc()); 3387 } else { 3388 // There is an extraneous 'template<>' for this member. 3389 Diag(TemplateParams->getTemplateLoc(), 3390 diag::err_template_member_noparams) 3391 << II 3392 << SourceRange(TemplateParams->getTemplateLoc(), 3393 TemplateParams->getRAngleLoc()); 3394 } 3395 return nullptr; 3396 } 3397 3398 if (SS.isSet() && !SS.isInvalid()) { 3399 // The user provided a superfluous scope specifier inside a class 3400 // definition: 3401 // 3402 // class X { 3403 // int X::member; 3404 // }; 3405 if (DeclContext *DC = computeDeclContext(SS, false)) 3406 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(), 3407 D.getName().getKind() == 3408 UnqualifiedIdKind::IK_TemplateId); 3409 else 3410 Diag(D.getIdentifierLoc(), diag::err_member_qualification) 3411 << Name << SS.getRange(); 3412 3413 SS.clear(); 3414 } 3415 3416 if (MSPropertyAttr) { 3417 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D, 3418 BitWidth, InitStyle, AS, *MSPropertyAttr); 3419 if (!Member) 3420 return nullptr; 3421 isInstField = false; 3422 } else { 3423 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, 3424 BitWidth, InitStyle, AS); 3425 if (!Member) 3426 return nullptr; 3427 } 3428 3429 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext)); 3430 } else { 3431 Member = HandleDeclarator(S, D, TemplateParameterLists); 3432 if (!Member) 3433 return nullptr; 3434 3435 // Non-instance-fields can't have a bitfield. 3436 if (BitWidth) { 3437 if (Member->isInvalidDecl()) { 3438 // don't emit another diagnostic. 3439 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) { 3440 // C++ 9.6p3: A bit-field shall not be a static member. 3441 // "static member 'A' cannot be a bit-field" 3442 Diag(Loc, diag::err_static_not_bitfield) 3443 << Name << BitWidth->getSourceRange(); 3444 } else if (isa<TypedefDecl>(Member)) { 3445 // "typedef member 'x' cannot be a bit-field" 3446 Diag(Loc, diag::err_typedef_not_bitfield) 3447 << Name << BitWidth->getSourceRange(); 3448 } else { 3449 // A function typedef ("typedef int f(); f a;"). 3450 // C++ 9.6p3: A bit-field shall have integral or enumeration type. 3451 Diag(Loc, diag::err_not_integral_type_bitfield) 3452 << Name << cast<ValueDecl>(Member)->getType() 3453 << BitWidth->getSourceRange(); 3454 } 3455 3456 BitWidth = nullptr; 3457 Member->setInvalidDecl(); 3458 } 3459 3460 NamedDecl *NonTemplateMember = Member; 3461 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member)) 3462 NonTemplateMember = FunTmpl->getTemplatedDecl(); 3463 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member)) 3464 NonTemplateMember = VarTmpl->getTemplatedDecl(); 3465 3466 Member->setAccess(AS); 3467 3468 // If we have declared a member function template or static data member 3469 // template, set the access of the templated declaration as well. 3470 if (NonTemplateMember != Member) 3471 NonTemplateMember->setAccess(AS); 3472 3473 // C++ [temp.deduct.guide]p3: 3474 // A deduction guide [...] for a member class template [shall be 3475 // declared] with the same access [as the template]. 3476 if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) { 3477 auto *TD = DG->getDeducedTemplate(); 3478 // Access specifiers are only meaningful if both the template and the 3479 // deduction guide are from the same scope. 3480 if (AS != TD->getAccess() && 3481 TD->getDeclContext()->getRedeclContext()->Equals( 3482 DG->getDeclContext()->getRedeclContext())) { 3483 Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access); 3484 Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access) 3485 << TD->getAccess(); 3486 const AccessSpecDecl *LastAccessSpec = nullptr; 3487 for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) { 3488 if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D)) 3489 LastAccessSpec = AccessSpec; 3490 } 3491 assert(LastAccessSpec && "differing access with no access specifier")(static_cast <bool> (LastAccessSpec && "differing access with no access specifier"
) ? void (0) : __assert_fail ("LastAccessSpec && \"differing access with no access specifier\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 3491, __extension__ __PRETTY_FUNCTION__
))
; 3492 Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access) 3493 << AS; 3494 } 3495 } 3496 } 3497 3498 if (VS.isOverrideSpecified()) 3499 Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc(), 3500 AttributeCommonInfo::AS_Keyword)); 3501 if (VS.isFinalSpecified()) 3502 Member->addAttr(FinalAttr::Create( 3503 Context, VS.getFinalLoc(), AttributeCommonInfo::AS_Keyword, 3504 static_cast<FinalAttr::Spelling>(VS.isFinalSpelledSealed()))); 3505 3506 if (VS.getLastLocation().isValid()) { 3507 // Update the end location of a method that has a virt-specifiers. 3508 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member)) 3509 MD->setRangeEnd(VS.getLastLocation()); 3510 } 3511 3512 CheckOverrideControl(Member); 3513 3514 assert((Name || isInstField) && "No identifier for non-field ?")(static_cast <bool> ((Name || isInstField) && "No identifier for non-field ?"
) ? void (0) : __assert_fail ("(Name || isInstField) && \"No identifier for non-field ?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 3514, __extension__ __PRETTY_FUNCTION__
))
; 3515 3516 if (isInstField) { 3517 FieldDecl *FD = cast<FieldDecl>(Member); 3518 FieldCollector->Add(FD); 3519 3520 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) { 3521 // Remember all explicit private FieldDecls that have a name, no side 3522 // effects and are not part of a dependent type declaration. 3523 if (!FD->isImplicit() && FD->getDeclName() && 3524 FD->getAccess() == AS_private && 3525 !FD->hasAttr<UnusedAttr>() && 3526 !FD->getParent()->isDependentContext() && 3527 !InitializationHasSideEffects(*FD)) 3528 UnusedPrivateFields.insert(FD); 3529 } 3530 } 3531 3532 return Member; 3533} 3534 3535namespace { 3536 class UninitializedFieldVisitor 3537 : public EvaluatedExprVisitor<UninitializedFieldVisitor> { 3538 Sema &S; 3539 // List of Decls to generate a warning on. Also remove Decls that become 3540 // initialized. 3541 llvm::SmallPtrSetImpl<ValueDecl*> &Decls; 3542 // List of base classes of the record. Classes are removed after their 3543 // initializers. 3544 llvm::SmallPtrSetImpl<QualType> &BaseClasses; 3545 // Vector of decls to be removed from the Decl set prior to visiting the 3546 // nodes. These Decls may have been initialized in the prior initializer. 3547 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove; 3548 // If non-null, add a note to the warning pointing back to the constructor. 3549 const CXXConstructorDecl *Constructor; 3550 // Variables to hold state when processing an initializer list. When 3551 // InitList is true, special case initialization of FieldDecls matching 3552 // InitListFieldDecl. 3553 bool InitList; 3554 FieldDecl *InitListFieldDecl; 3555 llvm::SmallVector<unsigned, 4> InitFieldIndex; 3556 3557 public: 3558 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited; 3559 UninitializedFieldVisitor(Sema &S, 3560 llvm::SmallPtrSetImpl<ValueDecl*> &Decls, 3561 llvm::SmallPtrSetImpl<QualType> &BaseClasses) 3562 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses), 3563 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {} 3564 3565 // Returns true if the use of ME is not an uninitialized use. 3566 bool IsInitListMemberExprInitialized(MemberExpr *ME, 3567 bool CheckReferenceOnly) { 3568 llvm::SmallVector<FieldDecl*, 4> Fields; 3569 bool ReferenceField = false; 3570 while (ME) { 3571 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 3572 if (!FD) 3573 return false; 3574 Fields.push_back(FD); 3575 if (FD->getType()->isReferenceType()) 3576 ReferenceField = true; 3577 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts()); 3578 } 3579 3580 // Binding a reference to an uninitialized field is not an 3581 // uninitialized use. 3582 if (CheckReferenceOnly && !ReferenceField) 3583 return true; 3584 3585 llvm::SmallVector<unsigned, 4> UsedFieldIndex; 3586 // Discard the first field since it is the field decl that is being 3587 // initialized. 3588 for (const FieldDecl *FD : llvm::drop_begin(llvm::reverse(Fields))) 3589 UsedFieldIndex.push_back(FD->getFieldIndex()); 3590 3591 for (auto UsedIter = UsedFieldIndex.begin(), 3592 UsedEnd = UsedFieldIndex.end(), 3593 OrigIter = InitFieldIndex.begin(), 3594 OrigEnd = InitFieldIndex.end(); 3595 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { 3596 if (*UsedIter < *OrigIter) 3597 return true; 3598 if (*UsedIter > *OrigIter) 3599 break; 3600 } 3601 3602 return false; 3603 } 3604 3605 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly, 3606 bool AddressOf) { 3607 if (isa<EnumConstantDecl>(ME->getMemberDecl())) 3608 return; 3609 3610 // FieldME is the inner-most MemberExpr that is not an anonymous struct 3611 // or union. 3612 MemberExpr *FieldME = ME; 3613 3614 bool AllPODFields = FieldME->getType().isPODType(S.Context); 3615 3616 Expr *Base = ME; 3617 while (MemberExpr *SubME = 3618 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) { 3619 3620 if (isa<VarDecl>(SubME->getMemberDecl())) 3621 return; 3622 3623 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl())) 3624 if (!FD->isAnonymousStructOrUnion()) 3625 FieldME = SubME; 3626 3627 if (!FieldME->getType().isPODType(S.Context)) 3628 AllPODFields = false; 3629 3630 Base = SubME->getBase(); 3631 } 3632 3633 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts())) { 3634 Visit(Base); 3635 return; 3636 } 3637 3638 if (AddressOf && AllPODFields) 3639 return; 3640 3641 ValueDecl* FoundVD = FieldME->getMemberDecl(); 3642 3643 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) { 3644 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) { 3645 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr()); 3646 } 3647 3648 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) { 3649 QualType T = BaseCast->getType(); 3650 if (T->isPointerType() && 3651 BaseClasses.count(T->getPointeeType())) { 3652 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit) 3653 << T->getPointeeType() << FoundVD; 3654 } 3655 } 3656 } 3657 3658 if (!Decls.count(FoundVD)) 3659 return; 3660 3661 const bool IsReference = FoundVD->getType()->isReferenceType(); 3662 3663 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) { 3664 // Special checking for initializer lists. 3665 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) { 3666 return; 3667 } 3668 } else { 3669 // Prevent double warnings on use of unbounded references. 3670 if (CheckReferenceOnly && !IsReference) 3671 return; 3672 } 3673 3674 unsigned diag = IsReference 3675 ? diag::warn_reference_field_is_uninit 3676 : diag::warn_field_is_uninit; 3677 S.Diag(FieldME->getExprLoc(), diag) << FoundVD; 3678 if (Constructor) 3679 S.Diag(Constructor->getLocation(), 3680 diag::note_uninit_in_this_constructor) 3681 << (Constructor->isDefaultConstructor() && Constructor->isImplicit()); 3682 3683 } 3684 3685 void HandleValue(Expr *E, bool AddressOf) { 3686 E = E->IgnoreParens(); 3687 3688 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 3689 HandleMemberExpr(ME, false /*CheckReferenceOnly*/, 3690 AddressOf /*AddressOf*/); 3691 return; 3692 } 3693 3694 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 3695 Visit(CO->getCond()); 3696 HandleValue(CO->getTrueExpr(), AddressOf); 3697 HandleValue(CO->getFalseExpr(), AddressOf); 3698 return; 3699 } 3700 3701 if (BinaryConditionalOperator *BCO = 3702 dyn_cast<BinaryConditionalOperator>(E)) { 3703 Visit(BCO->getCond()); 3704 HandleValue(BCO->getFalseExpr(), AddressOf); 3705 return; 3706 } 3707 3708 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { 3709 HandleValue(OVE->getSourceExpr(), AddressOf); 3710 return; 3711 } 3712 3713 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 3714 switch (BO->getOpcode()) { 3715 default: 3716 break; 3717 case(BO_PtrMemD): 3718 case(BO_PtrMemI): 3719 HandleValue(BO->getLHS(), AddressOf); 3720 Visit(BO->getRHS()); 3721 return; 3722 case(BO_Comma): 3723 Visit(BO->getLHS()); 3724 HandleValue(BO->getRHS(), AddressOf); 3725 return; 3726 } 3727 } 3728 3729 Visit(E); 3730 } 3731 3732 void CheckInitListExpr(InitListExpr *ILE) { 3733 InitFieldIndex.push_back(0); 3734 for (auto Child : ILE->children()) { 3735 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) { 3736 CheckInitListExpr(SubList); 3737 } else { 3738 Visit(Child); 3739 } 3740 ++InitFieldIndex.back(); 3741 } 3742 InitFieldIndex.pop_back(); 3743 } 3744 3745 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor, 3746 FieldDecl *Field, const Type *BaseClass) { 3747 // Remove Decls that may have been initialized in the previous 3748 // initializer. 3749 for (ValueDecl* VD : DeclsToRemove) 3750 Decls.erase(VD); 3751 DeclsToRemove.clear(); 3752 3753 Constructor = FieldConstructor; 3754 InitListExpr *ILE = dyn_cast<InitListExpr>(E); 3755 3756 if (ILE && Field) { 3757 InitList = true; 3758 InitListFieldDecl = Field; 3759 InitFieldIndex.clear(); 3760 CheckInitListExpr(ILE); 3761 } else { 3762 InitList = false; 3763 Visit(E); 3764 } 3765 3766 if (Field) 3767 Decls.erase(Field); 3768 if (BaseClass) 3769 BaseClasses.erase(BaseClass->getCanonicalTypeInternal()); 3770 } 3771 3772 void VisitMemberExpr(MemberExpr *ME) { 3773 // All uses of unbounded reference fields will warn. 3774 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/); 3775 } 3776 3777 void VisitImplicitCastExpr(ImplicitCastExpr *E) { 3778 if (E->getCastKind() == CK_LValueToRValue) { 3779 HandleValue(E->getSubExpr(), false /*AddressOf*/); 3780 return; 3781 } 3782 3783 Inherited::VisitImplicitCastExpr(E); 3784 } 3785 3786 void VisitCXXConstructExpr(CXXConstructExpr *E) { 3787 if (E->getConstructor()->isCopyConstructor()) { 3788 Expr *ArgExpr = E->getArg(0); 3789 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) 3790 if (ILE->getNumInits() == 1) 3791 ArgExpr = ILE->getInit(0); 3792 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 3793 if (ICE->getCastKind() == CK_NoOp) 3794 ArgExpr = ICE->getSubExpr(); 3795 HandleValue(ArgExpr, false /*AddressOf*/); 3796 return; 3797 } 3798 Inherited::VisitCXXConstructExpr(E); 3799 } 3800 3801 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3802 Expr *Callee = E->getCallee(); 3803 if (isa<MemberExpr>(Callee)) { 3804 HandleValue(Callee, false /*AddressOf*/); 3805 for (auto Arg : E->arguments()) 3806 Visit(Arg); 3807 return; 3808 } 3809 3810 Inherited::VisitCXXMemberCallExpr(E); 3811 } 3812 3813 void VisitCallExpr(CallExpr *E) { 3814 // Treat std::move as a use. 3815 if (E->isCallToStdMove()) { 3816 HandleValue(E->getArg(0), /*AddressOf=*/false); 3817 return; 3818 } 3819 3820 Inherited::VisitCallExpr(E); 3821 } 3822 3823 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { 3824 Expr *Callee = E->getCallee(); 3825 3826 if (isa<UnresolvedLookupExpr>(Callee)) 3827 return Inherited::VisitCXXOperatorCallExpr(E); 3828 3829 Visit(Callee); 3830 for (auto Arg : E->arguments()) 3831 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/); 3832 } 3833 3834 void VisitBinaryOperator(BinaryOperator *E) { 3835 // If a field assignment is detected, remove the field from the 3836 // uninitiailized field set. 3837 if (E->getOpcode() == BO_Assign) 3838 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS())) 3839 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) 3840 if (!FD->getType()->isReferenceType()) 3841 DeclsToRemove.push_back(FD); 3842 3843 if (E->isCompoundAssignmentOp()) { 3844 HandleValue(E->getLHS(), false /*AddressOf*/); 3845 Visit(E->getRHS()); 3846 return; 3847 } 3848 3849 Inherited::VisitBinaryOperator(E); 3850 } 3851 3852 void VisitUnaryOperator(UnaryOperator *E) { 3853 if (E->isIncrementDecrementOp()) { 3854 HandleValue(E->getSubExpr(), false /*AddressOf*/); 3855 return; 3856 } 3857 if (E->getOpcode() == UO_AddrOf) { 3858 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) { 3859 HandleValue(ME->getBase(), true /*AddressOf*/); 3860 return; 3861 } 3862 } 3863 3864 Inherited::VisitUnaryOperator(E); 3865 } 3866 }; 3867 3868 // Diagnose value-uses of fields to initialize themselves, e.g. 3869 // foo(foo) 3870 // where foo is not also a parameter to the constructor. 3871 // Also diagnose across field uninitialized use such as 3872 // x(y), y(x) 3873 // TODO: implement -Wuninitialized and fold this into that framework. 3874 static void DiagnoseUninitializedFields( 3875 Sema &SemaRef, const CXXConstructorDecl *Constructor) { 3876 3877 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit, 3878 Constructor->getLocation())) { 3879 return; 3880 } 3881 3882 if (Constructor->isInvalidDecl()) 3883 return; 3884 3885 const CXXRecordDecl *RD = Constructor->getParent(); 3886 3887 if (RD->isDependentContext()) 3888 return; 3889 3890 // Holds fields that are uninitialized. 3891 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields; 3892 3893 // At the beginning, all fields are uninitialized. 3894 for (auto *I : RD->decls()) { 3895 if (auto *FD = dyn_cast<FieldDecl>(I)) { 3896 UninitializedFields.insert(FD); 3897 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) { 3898 UninitializedFields.insert(IFD->getAnonField()); 3899 } 3900 } 3901 3902 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses; 3903 for (auto I : RD->bases()) 3904 UninitializedBaseClasses.insert(I.getType().getCanonicalType()); 3905 3906 if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) 3907 return; 3908 3909 UninitializedFieldVisitor UninitializedChecker(SemaRef, 3910 UninitializedFields, 3911 UninitializedBaseClasses); 3912 3913 for (const auto *FieldInit : Constructor->inits()) { 3914 if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) 3915 break; 3916 3917 Expr *InitExpr = FieldInit->getInit(); 3918 if (!InitExpr) 3919 continue; 3920 3921 if (CXXDefaultInitExpr *Default = 3922 dyn_cast<CXXDefaultInitExpr>(InitExpr)) { 3923 InitExpr = Default->getExpr(); 3924 if (!InitExpr) 3925 continue; 3926 // In class initializers will point to the constructor. 3927 UninitializedChecker.CheckInitializer(InitExpr, Constructor, 3928 FieldInit->getAnyMember(), 3929 FieldInit->getBaseClass()); 3930 } else { 3931 UninitializedChecker.CheckInitializer(InitExpr, nullptr, 3932 FieldInit->getAnyMember(), 3933 FieldInit->getBaseClass()); 3934 } 3935 } 3936 } 3937} // namespace 3938 3939/// Enter a new C++ default initializer scope. After calling this, the 3940/// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if 3941/// parsing or instantiating the initializer failed. 3942void Sema::ActOnStartCXXInClassMemberInitializer() { 3943 // Create a synthetic function scope to represent the call to the constructor 3944 // that notionally surrounds a use of this initializer. 3945 PushFunctionScope(); 3946} 3947 3948void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) { 3949 if (!D.isFunctionDeclarator()) 3950 return; 3951 auto &FTI = D.getFunctionTypeInfo(); 3952 if (!FTI.Params) 3953 return; 3954 for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params, 3955 FTI.NumParams)) { 3956 auto *ParamDecl = cast<NamedDecl>(Param.Param); 3957 if (ParamDecl->getDeclName()) 3958 PushOnScopeChains(ParamDecl, S, /*AddToContext=*/false); 3959 } 3960} 3961 3962ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) { 3963 return ActOnRequiresClause(ConstraintExpr); 3964} 3965 3966ExprResult Sema::ActOnRequiresClause(ExprResult ConstraintExpr) { 3967 if (ConstraintExpr.isInvalid()) 3968 return ExprError(); 3969 3970 ConstraintExpr = CorrectDelayedTyposInExpr(ConstraintExpr); 3971 if (ConstraintExpr.isInvalid()) 3972 return ExprError(); 3973 3974 if (DiagnoseUnexpandedParameterPack(ConstraintExpr.get(), 3975 UPPC_RequiresClause)) 3976 return ExprError(); 3977 3978 return ConstraintExpr; 3979} 3980 3981/// This is invoked after parsing an in-class initializer for a 3982/// non-static C++ class member, and after instantiating an in-class initializer 3983/// in a class template. Such actions are deferred until the class is complete. 3984void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D, 3985 SourceLocation InitLoc, 3986 Expr *InitExpr) { 3987 // Pop the notional constructor scope we created earlier. 3988 PopFunctionScopeInfo(nullptr, D); 3989 3990 FieldDecl *FD = dyn_cast<FieldDecl>(D); 3991 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&(static_cast <bool> ((isa<MSPropertyDecl>(D) || FD
->getInClassInitStyle() != ICIS_NoInit) && "must set init style when field is created"
) ? void (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 3992, __extension__ __PRETTY_FUNCTION__
))
3992 "must set init style when field is created")(static_cast <bool> ((isa<MSPropertyDecl>(D) || FD
->getInClassInitStyle() != ICIS_NoInit) && "must set init style when field is created"
) ? void (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 3992, __extension__ __PRETTY_FUNCTION__
))
; 3993 3994 if (!InitExpr) { 3995 D->setInvalidDecl(); 3996 if (FD) 3997 FD->removeInClassInitializer(); 3998 return; 3999 } 4000 4001 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) { 4002 FD->setInvalidDecl(); 4003 FD->removeInClassInitializer(); 4004 return; 4005 } 4006 4007 ExprResult Init = InitExpr; 4008 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) { 4009 InitializedEntity Entity = 4010 InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD); 4011 InitializationKind Kind = 4012 FD->getInClassInitStyle() == ICIS_ListInit 4013 ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(), 4014 InitExpr->getBeginLoc(), 4015 InitExpr->getEndLoc()) 4016 : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc); 4017 InitializationSequence Seq(*this, Entity, Kind, InitExpr); 4018 Init = Seq.Perform(*this, Entity, Kind, InitExpr); 4019 if (Init.isInvalid()) { 4020 FD->setInvalidDecl(); 4021 return; 4022 } 4023 } 4024 4025 // C++11 [class.base.init]p7: 4026 // The initialization of each base and member constitutes a 4027 // full-expression. 4028 Init = ActOnFinishFullExpr(Init.get(), InitLoc, /*DiscardedValue*/ false); 4029 if (Init.isInvalid()) { 4030 FD->setInvalidDecl(); 4031 return; 4032 } 4033 4034 InitExpr = Init.get(); 4035 4036 FD->setInClassInitializer(InitExpr); 4037} 4038 4039/// Find the direct and/or virtual base specifiers that 4040/// correspond to the given base type, for use in base initialization 4041/// within a constructor. 4042static bool FindBaseInitializer(Sema &SemaRef, 4043 CXXRecordDecl *ClassDecl, 4044 QualType BaseType, 4045 const CXXBaseSpecifier *&DirectBaseSpec, 4046 const CXXBaseSpecifier *&VirtualBaseSpec) { 4047 // First, check for a direct base class. 4048 DirectBaseSpec = nullptr; 4049 for (const auto &Base : ClassDecl->bases()) { 4050 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) { 4051 // We found a direct base of this type. That's what we're 4052 // initializing. 4053 DirectBaseSpec = &Base; 4054 break; 4055 } 4056 } 4057 4058 // Check for a virtual base class. 4059 // FIXME: We might be able to short-circuit this if we know in advance that 4060 // there are no virtual bases. 4061 VirtualBaseSpec = nullptr; 4062 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { 4063 // We haven't found a base yet; search the class hierarchy for a 4064 // virtual base class. 4065 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 4066 /*DetectVirtual=*/false); 4067 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(), 4068 SemaRef.Context.getTypeDeclType(ClassDecl), 4069 BaseType, Paths)) { 4070 for (CXXBasePaths::paths_iterator Path = Paths.begin(); 4071 Path != Paths.end(); ++Path) { 4072 if (Path->back().Base->isVirtual()) { 4073 VirtualBaseSpec = Path->back().Base; 4074 break; 4075 } 4076 } 4077 } 4078 } 4079 4080 return DirectBaseSpec || VirtualBaseSpec; 4081} 4082 4083/// Handle a C++ member initializer using braced-init-list syntax. 4084MemInitResult 4085Sema::ActOnMemInitializer(Decl *ConstructorD, 4086 Scope *S, 4087 CXXScopeSpec &SS, 4088 IdentifierInfo *MemberOrBase, 4089 ParsedType TemplateTypeTy, 4090 const DeclSpec &DS, 4091 SourceLocation IdLoc, 4092 Expr *InitList, 4093 SourceLocation EllipsisLoc) { 4094 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, 4095 DS, IdLoc, InitList, 4096 EllipsisLoc); 4097} 4098 4099/// Handle a C++ member initializer using parentheses syntax. 4100MemInitResult 4101Sema::ActOnMemInitializer(Decl *ConstructorD, 4102 Scope *S, 4103 CXXScopeSpec &SS, 4104 IdentifierInfo *MemberOrBase, 4105 ParsedType TemplateTypeTy, 4106 const DeclSpec &DS, 4107 SourceLocation IdLoc, 4108 SourceLocation LParenLoc, 4109 ArrayRef<Expr *> Args, 4110 SourceLocation RParenLoc, 4111 SourceLocation EllipsisLoc) { 4112 Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc); 4113 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, 4114 DS, IdLoc, List, EllipsisLoc); 4115} 4116 4117namespace { 4118 4119// Callback to only accept typo corrections that can be a valid C++ member 4120// initializer: either a non-static field member or a base class. 4121class MemInitializerValidatorCCC final : public CorrectionCandidateCallback { 4122public: 4123 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl) 4124 : ClassDecl(ClassDecl) {} 4125 4126 bool ValidateCandidate(const TypoCorrection &candidate) override { 4127 if (NamedDecl *ND = candidate.getCorrectionDecl()) { 4128 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND)) 4129 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl); 4130 return isa<TypeDecl>(ND); 4131 } 4132 return false; 4133 } 4134 4135 std::unique_ptr<CorrectionCandidateCallback> clone() override { 4136 return std::make_unique<MemInitializerValidatorCCC>(*this); 4137 } 4138 4139private: 4140 CXXRecordDecl *ClassDecl; 4141}; 4142 4143} 4144 4145ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl, 4146 CXXScopeSpec &SS, 4147 ParsedType TemplateTypeTy, 4148 IdentifierInfo *MemberOrBase) { 4149 if (SS.getScopeRep() || TemplateTypeTy) 4150 return nullptr; 4151 for (auto *D : ClassDecl->lookup(MemberOrBase)) 4152 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) 4153 return cast<ValueDecl>(D); 4154 return nullptr; 4155} 4156 4157/// Handle a C++ member initializer. 4158MemInitResult 4159Sema::BuildMemInitializer(Decl *ConstructorD, 4160 Scope *S, 4161 CXXScopeSpec &SS, 4162 IdentifierInfo *MemberOrBase, 4163 ParsedType TemplateTypeTy, 4164 const DeclSpec &DS, 4165 SourceLocation IdLoc, 4166 Expr *Init, 4167 SourceLocation EllipsisLoc) { 4168 ExprResult Res = CorrectDelayedTyposInExpr(Init, /*InitDecl=*/nullptr, 4169 /*RecoverUncorrectedTypos=*/true); 4170 if (!Res.isUsable()) 4171 return true; 4172 Init = Res.get(); 4173 4174 if (!ConstructorD) 4175 return true; 4176 4177 AdjustDeclIfTemplate(ConstructorD); 4178 4179 CXXConstructorDecl *Constructor 4180 = dyn_cast<CXXConstructorDecl>(ConstructorD); 4181 if (!Constructor) { 4182 // The user wrote a constructor initializer on a function that is 4183 // not a C++ constructor. Ignore the error for now, because we may 4184 // have more member initializers coming; we'll diagnose it just 4185 // once in ActOnMemInitializers. 4186 return true; 4187 } 4188 4189 CXXRecordDecl *ClassDecl = Constructor->getParent(); 4190 4191 // C++ [class.base.init]p2: 4192 // Names in a mem-initializer-id are looked up in the scope of the 4193 // constructor's class and, if not found in that scope, are looked 4194 // up in the scope containing the constructor's definition. 4195 // [Note: if the constructor's class contains a member with the 4196 // same name as a direct or virtual base class of the class, a 4197 // mem-initializer-id naming the member or base class and composed 4198 // of a single identifier refers to the class member. A 4199 // mem-initializer-id for the hidden base class may be specified 4200 // using a qualified name. ] 4201 4202 // Look for a member, first. 4203 if (ValueDecl *Member = tryLookupCtorInitMemberDecl( 4204 ClassDecl, SS, TemplateTypeTy, MemberOrBase)) { 4205 if (EllipsisLoc.isValid()) 4206 Diag(EllipsisLoc, diag::err_pack_expansion_member_init) 4207 << MemberOrBase 4208 << SourceRange(IdLoc, Init->getSourceRange().getEnd()); 4209 4210 return BuildMemberInitializer(Member, Init, IdLoc); 4211 } 4212 // It didn't name a member, so see if it names a class. 4213 QualType BaseType; 4214 TypeSourceInfo *TInfo = nullptr; 4215 4216 if (TemplateTypeTy) { 4217 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo); 4218 if (BaseType.isNull()) 4219 return true; 4220 } else if (DS.getTypeSpecType() == TST_decltype) { 4221 BaseType = BuildDecltypeType(DS.getRepAsExpr()); 4222 } else if (DS.getTypeSpecType() == TST_decltype_auto) { 4223 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 4224 return true; 4225 } else { 4226 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); 4227 LookupParsedName(R, S, &SS); 4228 4229 TypeDecl *TyD = R.getAsSingle<TypeDecl>(); 4230 if (!TyD) { 4231 if (R.isAmbiguous()) return true; 4232 4233 // We don't want access-control diagnostics here. 4234 R.suppressDiagnostics(); 4235 4236 if (SS.isSet() && isDependentScopeSpecifier(SS)) { 4237 bool NotUnknownSpecialization = false; 4238 DeclContext *DC = computeDeclContext(SS, false); 4239 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC)) 4240 NotUnknownSpecialization = !Record->hasAnyDependentBases(); 4241 4242 if (!NotUnknownSpecialization) { 4243 // When the scope specifier can refer to a member of an unknown 4244 // specialization, we take it as a type name. 4245 BaseType = CheckTypenameType(ETK_None, SourceLocation(), 4246 SS.getWithLocInContext(Context), 4247 *MemberOrBase, IdLoc); 4248 if (BaseType.isNull()) 4249 return true; 4250 4251 TInfo = Context.CreateTypeSourceInfo(BaseType); 4252 DependentNameTypeLoc TL = 4253 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>(); 4254 if (!TL.isNull()) { 4255 TL.setNameLoc(IdLoc); 4256 TL.setElaboratedKeywordLoc(SourceLocation()); 4257 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4258 } 4259 4260 R.clear(); 4261 R.setLookupName(MemberOrBase); 4262 } 4263 } 4264 4265 // If no results were found, try to correct typos. 4266 TypoCorrection Corr; 4267 MemInitializerValidatorCCC CCC(ClassDecl); 4268 if (R.empty() && BaseType.isNull() && 4269 (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, 4270 CCC, CTK_ErrorRecovery, ClassDecl))) { 4271 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) { 4272 // We have found a non-static data member with a similar 4273 // name to what was typed; complain and initialize that 4274 // member. 4275 diagnoseTypo(Corr, 4276 PDiag(diag::err_mem_init_not_member_or_class_suggest) 4277 << MemberOrBase << true); 4278 return BuildMemberInitializer(Member, Init, IdLoc); 4279 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) { 4280 const CXXBaseSpecifier *DirectBaseSpec; 4281 const CXXBaseSpecifier *VirtualBaseSpec; 4282 if (FindBaseInitializer(*this, ClassDecl, 4283 Context.getTypeDeclType(Type), 4284 DirectBaseSpec, VirtualBaseSpec)) { 4285 // We have found a direct or virtual base class with a 4286 // similar name to what was typed; complain and initialize 4287 // that base class. 4288 diagnoseTypo(Corr, 4289 PDiag(diag::err_mem_init_not_member_or_class_suggest) 4290 << MemberOrBase << false, 4291 PDiag() /*Suppress note, we provide our own.*/); 4292 4293 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec 4294 : VirtualBaseSpec; 4295 Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here) 4296 << BaseSpec->getType() << BaseSpec->getSourceRange(); 4297 4298 TyD = Type; 4299 } 4300 } 4301 } 4302 4303 if (!TyD && BaseType.isNull()) { 4304 Diag(IdLoc, diag::err_mem_init_not_member_or_class) 4305 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd()); 4306 return true; 4307 } 4308 } 4309 4310 if (BaseType.isNull()) { 4311 BaseType = Context.getTypeDeclType(TyD); 4312 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false); 4313 if (SS.isSet()) { 4314 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(), 4315 BaseType); 4316 TInfo = Context.CreateTypeSourceInfo(BaseType); 4317 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>(); 4318 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc); 4319 TL.setElaboratedKeywordLoc(SourceLocation()); 4320 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4321 } 4322 } 4323 } 4324 4325 if (!TInfo) 4326 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc); 4327 4328 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc); 4329} 4330 4331MemInitResult 4332Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init, 4333 SourceLocation IdLoc) { 4334 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member); 4335 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member); 4336 assert((DirectMember || IndirectMember) &&(static_cast <bool> ((DirectMember || IndirectMember) &&
"Member must be a FieldDecl or IndirectFieldDecl") ? void (0
) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 4337, __extension__ __PRETTY_FUNCTION__
))
4337 "Member must be a FieldDecl or IndirectFieldDecl")(static_cast <bool> ((DirectMember || IndirectMember) &&
"Member must be a FieldDecl or IndirectFieldDecl") ? void (0
) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 4337, __extension__ __PRETTY_FUNCTION__
))
; 4338 4339 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) 4340 return true; 4341 4342 if (Member->isInvalidDecl()) 4343 return true; 4344 4345 MultiExprArg Args; 4346 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4347 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4348 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { 4349 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 4350 } else { 4351 // Template instantiation doesn't reconstruct ParenListExprs for us. 4352 Args = Init; 4353 } 4354 4355 SourceRange InitRange = Init->getSourceRange(); 4356 4357 if (Member->getType()->isDependentType() || Init->isTypeDependent()) { 4358 // Can't check initialization for a member of dependent type or when 4359 // any of the arguments are type-dependent expressions. 4360 DiscardCleanupsInEvaluationContext(); 4361 } else { 4362 bool InitList = false; 4363 if (isa<InitListExpr>(Init)) { 4364 InitList = true; 4365 Args = Init; 4366 } 4367 4368 // Initialize the member. 4369 InitializedEntity MemberEntity = 4370 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr) 4371 : InitializedEntity::InitializeMember(IndirectMember, 4372 nullptr); 4373 InitializationKind Kind = 4374 InitList ? InitializationKind::CreateDirectList( 4375 IdLoc, Init->getBeginLoc(), Init->getEndLoc()) 4376 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(), 4377 InitRange.getEnd()); 4378 4379 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args); 4380 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, 4381 nullptr); 4382 if (!MemberInit.isInvalid()) { 4383 // C++11 [class.base.init]p7: 4384 // The initialization of each base and member constitutes a 4385 // full-expression. 4386 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(), 4387 /*DiscardedValue*/ false); 4388 } 4389 4390 if (MemberInit.isInvalid()) { 4391 // Args were sensible expressions but we couldn't initialize the member 4392 // from them. Preserve them in a RecoveryExpr instead. 4393 Init = CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), Args, 4394 Member->getType()) 4395 .get(); 4396 if (!Init) 4397 return true; 4398 } else { 4399 Init = MemberInit.get(); 4400 } 4401 } 4402 4403 if (DirectMember) { 4404 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc, 4405 InitRange.getBegin(), Init, 4406 InitRange.getEnd()); 4407 } else { 4408 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc, 4409 InitRange.getBegin(), Init, 4410 InitRange.getEnd()); 4411 } 4412} 4413 4414MemInitResult 4415Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init, 4416 CXXRecordDecl *ClassDecl) { 4417 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin(); 4418 if (!LangOpts.CPlusPlus11) 4419 return Diag(NameLoc, diag::err_delegating_ctor) 4420 << TInfo->getTypeLoc().getLocalSourceRange(); 4421 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor); 4422 4423 bool InitList = true; 4424 MultiExprArg Args = Init; 4425 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4426 InitList = false; 4427 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4428 } 4429 4430 SourceRange InitRange = Init->getSourceRange(); 4431 // Initialize the object. 4432 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation( 4433 QualType(ClassDecl->getTypeForDecl(), 0)); 4434 InitializationKind Kind = 4435 InitList ? InitializationKind::CreateDirectList( 4436 NameLoc, Init->getBeginLoc(), Init->getEndLoc()) 4437 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(), 4438 InitRange.getEnd()); 4439 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args); 4440 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind, 4441 Args, nullptr); 4442 if (!DelegationInit.isInvalid()) { 4443 assert((DelegationInit.get()->containsErrors() ||(static_cast <bool> ((DelegationInit.get()->containsErrors
() || cast<CXXConstructExpr>(DelegationInit.get())->
getConstructor()) && "Delegating constructor with no target?"
) ? void (0) : __assert_fail ("(DelegationInit.get()->containsErrors() || cast<CXXConstructExpr>(DelegationInit.get())->getConstructor()) && \"Delegating constructor with no target?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 4445, __extension__ __PRETTY_FUNCTION__
))
4444 cast<CXXConstructExpr>(DelegationInit.get())->getConstructor()) &&(static_cast <bool> ((DelegationInit.get()->containsErrors
() || cast<CXXConstructExpr>(DelegationInit.get())->
getConstructor()) && "Delegating constructor with no target?"
) ? void (0) : __assert_fail ("(DelegationInit.get()->containsErrors() || cast<CXXConstructExpr>(DelegationInit.get())->getConstructor()) && \"Delegating constructor with no target?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 4445, __extension__ __PRETTY_FUNCTION__
))
4445 "Delegating constructor with no target?")(static_cast <bool> ((DelegationInit.get()->containsErrors
() || cast<CXXConstructExpr>(DelegationInit.get())->
getConstructor()) && "Delegating constructor with no target?"
) ? void (0) : __assert_fail ("(DelegationInit.get()->containsErrors() || cast<CXXConstructExpr>(DelegationInit.get())->getConstructor()) && \"Delegating constructor with no target?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 4445, __extension__ __PRETTY_FUNCTION__
))
; 4446 4447 // C++11 [class.base.init]p7: 4448 // The initialization of each base and member constitutes a 4449 // full-expression. 4450 DelegationInit = ActOnFinishFullExpr( 4451 DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false); 4452 } 4453 4454 if (DelegationInit.isInvalid()) { 4455 DelegationInit = 4456 CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), Args, 4457 QualType(ClassDecl->getTypeForDecl(), 0)); 4458 if (DelegationInit.isInvalid()) 4459 return true; 4460 } else { 4461 // If we are in a dependent context, template instantiation will 4462 // perform this type-checking again. Just save the arguments that we 4463 // received in a ParenListExpr. 4464 // FIXME: This isn't quite ideal, since our ASTs don't capture all 4465 // of the information that we have about the base 4466 // initializer. However, deconstructing the ASTs is a dicey process, 4467 // and this approach is far more likely to get the corner cases right. 4468 if (CurContext->isDependentContext()) 4469 DelegationInit = Init; 4470 } 4471 4472 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(), 4473 DelegationInit.getAs<Expr>(), 4474 InitRange.getEnd()); 4475} 4476 4477MemInitResult 4478Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, 4479 Expr *Init, CXXRecordDecl *ClassDecl, 4480 SourceLocation EllipsisLoc) { 4481 SourceLocation BaseLoc 4482 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin(); 4483 4484 if (!BaseType->isDependentType() && !BaseType->isRecordType()) 4485 return Diag(BaseLoc, diag::err_base_init_does_not_name_class) 4486 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); 4487 4488 // C++ [class.base.init]p2: 4489 // [...] Unless the mem-initializer-id names a nonstatic data 4490 // member of the constructor's class or a direct or virtual base 4491 // of that class, the mem-initializer is ill-formed. A 4492 // mem-initializer-list can initialize a base class using any 4493 // name that denotes that base class type. 4494 4495 // We can store the initializers in "as-written" form and delay analysis until 4496 // instantiation if the constructor is dependent. But not for dependent 4497 // (broken) code in a non-template! SetCtorInitializers does not expect this. 4498 bool Dependent = CurContext->isDependentContext() && 4499 (BaseType->isDependentType() || Init->isTypeDependent()); 4500 4501 SourceRange InitRange = Init->getSourceRange(); 4502 if (EllipsisLoc.isValid()) { 4503 // This is a pack expansion. 4504 if (!BaseType->containsUnexpandedParameterPack()) { 4505 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 4506 << SourceRange(BaseLoc, InitRange.getEnd()); 4507 4508 EllipsisLoc = SourceLocation(); 4509 } 4510 } else { 4511 // Check for any unexpanded parameter packs. 4512 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer)) 4513 return true; 4514 4515 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) 4516 return true; 4517 } 4518 4519 // Check for direct and virtual base classes. 4520 const CXXBaseSpecifier *DirectBaseSpec = nullptr; 4521 const CXXBaseSpecifier *VirtualBaseSpec = nullptr; 4522 if (!Dependent) { 4523 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0), 4524 BaseType)) 4525 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl); 4526 4527 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec, 4528 VirtualBaseSpec); 4529 4530 // C++ [base.class.init]p2: 4531 // Unless the mem-initializer-id names a nonstatic data member of the 4532 // constructor's class or a direct or virtual base of that class, the 4533 // mem-initializer is ill-formed. 4534 if (!DirectBaseSpec && !VirtualBaseSpec) { 4535 // If the class has any dependent bases, then it's possible that 4536 // one of those types will resolve to the same type as 4537 // BaseType. Therefore, just treat this as a dependent base 4538 // class initialization. FIXME: Should we try to check the 4539 // initialization anyway? It seems odd. 4540 if (ClassDecl->hasAnyDependentBases()) 4541 Dependent = true; 4542 else 4543 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) 4544 << BaseType << Context.getTypeDeclType(ClassDecl) 4545 << BaseTInfo->getTypeLoc().getLocalSourceRange(); 4546 } 4547 } 4548 4549 if (Dependent) { 4550 DiscardCleanupsInEvaluationContext(); 4551 4552 return new (Context) CXXCtorInitializer(Context, BaseTInfo, 4553 /*IsVirtual=*/false, 4554 InitRange.getBegin(), Init, 4555 InitRange.getEnd(), EllipsisLoc); 4556 } 4557 4558 // C++ [base.class.init]p2: 4559 // If a mem-initializer-id is ambiguous because it designates both 4560 // a direct non-virtual base class and an inherited virtual base 4561 // class, the mem-initializer is ill-formed. 4562 if (DirectBaseSpec && VirtualBaseSpec) 4563 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) 4564 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); 4565 4566 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec; 4567 if (!BaseSpec) 4568 BaseSpec = VirtualBaseSpec; 4569 4570 // Initialize the base. 4571 bool InitList = true; 4572 MultiExprArg Args = Init; 4573 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4574 InitList = false; 4575 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4576 } 4577 4578 InitializedEntity BaseEntity = 4579 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec); 4580 InitializationKind Kind = 4581 InitList ? InitializationKind::CreateDirectList(BaseLoc) 4582 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(), 4583 InitRange.getEnd()); 4584 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args); 4585 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr); 4586 if (!BaseInit.isInvalid()) { 4587 // C++11 [class.base.init]p7: 4588 // The initialization of each base and member constitutes a 4589 // full-expression. 4590 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(), 4591 /*DiscardedValue*/ false); 4592 } 4593 4594 if (BaseInit.isInvalid()) { 4595 BaseInit = CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), 4596 Args, BaseType); 4597 if (BaseInit.isInvalid()) 4598 return true; 4599 } else { 4600 // If we are in a dependent context, template instantiation will 4601 // perform this type-checking again. Just save the arguments that we 4602 // received in a ParenListExpr. 4603 // FIXME: This isn't quite ideal, since our ASTs don't capture all 4604 // of the information that we have about the base 4605 // initializer. However, deconstructing the ASTs is a dicey process, 4606 // and this approach is far more likely to get the corner cases right. 4607 if (CurContext->isDependentContext()) 4608 BaseInit = Init; 4609 } 4610 4611 return new (Context) CXXCtorInitializer(Context, BaseTInfo, 4612 BaseSpec->isVirtual(), 4613 InitRange.getBegin(), 4614 BaseInit.getAs<Expr>(), 4615 InitRange.getEnd(), EllipsisLoc); 4616} 4617 4618// Create a static_cast\<T&&>(expr). 4619static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) { 4620 if (T.isNull()) T = E->getType(); 4621 QualType TargetType = SemaRef.BuildReferenceType( 4622 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName()); 4623 SourceLocation ExprLoc = E->getBeginLoc(); 4624 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo( 4625 TargetType, ExprLoc); 4626 4627 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E, 4628 SourceRange(ExprLoc, ExprLoc), 4629 E->getSourceRange()).get(); 4630} 4631 4632/// ImplicitInitializerKind - How an implicit base or member initializer should 4633/// initialize its base or member. 4634enum ImplicitInitializerKind { 4635 IIK_Default, 4636 IIK_Copy, 4637 IIK_Move, 4638 IIK_Inherit 4639}; 4640 4641static bool 4642BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, 4643 ImplicitInitializerKind ImplicitInitKind, 4644 CXXBaseSpecifier *BaseSpec, 4645 bool IsInheritedVirtualBase, 4646 CXXCtorInitializer *&CXXBaseInit) { 4647 InitializedEntity InitEntity 4648 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec, 4649 IsInheritedVirtualBase); 4650 4651 ExprResult BaseInit; 4652 4653 switch (ImplicitInitKind) { 4654 case IIK_Inherit: 4655 case IIK_Default: { 4656 InitializationKind InitKind 4657 = InitializationKind::CreateDefault(Constructor->getLocation()); 4658 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None); 4659 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None); 4660 break; 4661 } 4662 4663 case IIK_Move: 4664 case IIK_Copy: { 4665 bool Moving = ImplicitInitKind == IIK_Move; 4666 ParmVarDecl *Param = Constructor->getParamDecl(0); 4667 QualType ParamType = Param->getType().getNonReferenceType(); 4668 4669 Expr *CopyCtorArg = 4670 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), 4671 SourceLocation(), Param, false, 4672 Constructor->getLocation(), ParamType, 4673 VK_LValue, nullptr); 4674 4675 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg)); 4676 4677 // Cast to the base class to avoid ambiguities. 4678 QualType ArgTy = 4679 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(), 4680 ParamType.getQualifiers()); 4681 4682 if (Moving) { 4683 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg); 4684 } 4685 4686 CXXCastPath BasePath; 4687 BasePath.push_back(BaseSpec); 4688 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy, 4689 CK_UncheckedDerivedToBase, 4690 Moving ? VK_XValue : VK_LValue, 4691 &BasePath).get(); 4692 4693 InitializationKind InitKind 4694 = InitializationKind::CreateDirect(Constructor->getLocation(), 4695 SourceLocation(), SourceLocation()); 4696 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg); 4697 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg); 4698 break; 4699 } 4700 } 4701 4702 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit); 4703 if (BaseInit.isInvalid()) 4704 return true; 4705 4706 CXXBaseInit = 4707 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4708 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(), 4709 SourceLocation()), 4710 BaseSpec->isVirtual(), 4711 SourceLocation(), 4712 BaseInit.getAs<Expr>(), 4713 SourceLocation(), 4714 SourceLocation()); 4715 4716 return false; 4717} 4718 4719static bool RefersToRValueRef(Expr *MemRef) { 4720 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl(); 4721 return Referenced->getType()->isRValueReferenceType(); 4722} 4723 4724static bool 4725BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, 4726 ImplicitInitializerKind ImplicitInitKind, 4727 FieldDecl *Field, IndirectFieldDecl *Indirect, 4728 CXXCtorInitializer *&CXXMemberInit) { 4729 if (Field->isInvalidDecl()) 4730 return true; 4731 4732 SourceLocation Loc = Constructor->getLocation(); 4733 4734 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) { 4735 bool Moving = ImplicitInitKind == IIK_Move; 4736 ParmVarDecl *Param = Constructor->getParamDecl(0); 4737 QualType ParamType = Param->getType().getNonReferenceType(); 4738 4739 // Suppress copying zero-width bitfields. 4740 if (Field->isZeroLengthBitField(SemaRef.Context)) 4741 return false; 4742 4743 Expr *MemberExprBase = 4744 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), 4745 SourceLocation(), Param, false, 4746 Loc, ParamType, VK_LValue, nullptr); 4747 4748 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase)); 4749 4750 if (Moving) { 4751 MemberExprBase = CastForMoving(SemaRef, MemberExprBase); 4752 } 4753 4754 // Build a reference to this field within the parameter. 4755 CXXScopeSpec SS; 4756 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc, 4757 Sema::LookupMemberName); 4758 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect) 4759 : cast<ValueDecl>(Field), AS_public); 4760 MemberLookup.resolveKind(); 4761 ExprResult CtorArg 4762 = SemaRef.BuildMemberReferenceExpr(MemberExprBase, 4763 ParamType, Loc, 4764 /*IsArrow=*/false, 4765 SS, 4766 /*TemplateKWLoc=*/SourceLocation(), 4767 /*FirstQualifierInScope=*/nullptr, 4768 MemberLookup, 4769 /*TemplateArgs=*/nullptr, 4770 /*S*/nullptr); 4771 if (CtorArg.isInvalid()) 4772 return true; 4773 4774 // C++11 [class.copy]p15: 4775 // - if a member m has rvalue reference type T&&, it is direct-initialized 4776 // with static_cast<T&&>(x.m); 4777 if (RefersToRValueRef(CtorArg.get())) { 4778 CtorArg = CastForMoving(SemaRef, CtorArg.get()); 4779 } 4780 4781 InitializedEntity Entity = 4782 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, 4783 /*Implicit*/ true) 4784 : InitializedEntity::InitializeMember(Field, nullptr, 4785 /*Implicit*/ true); 4786 4787 // Direct-initialize to use the copy constructor. 4788 InitializationKind InitKind = 4789 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation()); 4790 4791 Expr *CtorArgE = CtorArg.getAs<Expr>(); 4792 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE); 4793 ExprResult MemberInit = 4794 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1)); 4795 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); 4796 if (MemberInit.isInvalid()) 4797 return true; 4798 4799 if (Indirect) 4800 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( 4801 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc); 4802 else 4803 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( 4804 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc); 4805 return false; 4806 } 4807 4808 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&(static_cast <bool> ((ImplicitInitKind == IIK_Default ||
ImplicitInitKind == IIK_Inherit) && "Unhandled implicit init kind!"
) ? void (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 4809, __extension__ __PRETTY_FUNCTION__
))
4809 "Unhandled implicit init kind!")(static_cast <bool> ((ImplicitInitKind == IIK_Default ||
ImplicitInitKind == IIK_Inherit) && "Unhandled implicit init kind!"
) ? void (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 4809, __extension__ __PRETTY_FUNCTION__
))
; 4810 4811 QualType FieldBaseElementType = 4812 SemaRef.Context.getBaseElementType(Field->getType()); 4813 4814 if (FieldBaseElementType->isRecordType()) { 4815 InitializedEntity InitEntity = 4816 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, 4817 /*Implicit*/ true) 4818 : InitializedEntity::InitializeMember(Field, nullptr, 4819 /*Implicit*/ true); 4820 InitializationKind InitKind = 4821 InitializationKind::CreateDefault(Loc); 4822 4823 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None); 4824 ExprResult MemberInit = 4825 InitSeq.Perform(SemaRef, InitEntity, InitKind, None); 4826 4827 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); 4828 if (MemberInit.isInvalid()) 4829 return true; 4830 4831 if (Indirect) 4832 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4833 Indirect, Loc, 4834 Loc, 4835 MemberInit.get(), 4836 Loc); 4837 else 4838 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4839 Field, Loc, Loc, 4840 MemberInit.get(), 4841 Loc); 4842 return false; 4843 } 4844 4845 if (!Field->getParent()->isUnion()) { 4846 if (FieldBaseElementType->isReferenceType()) { 4847 SemaRef.Diag(Constructor->getLocation(), 4848 diag::err_uninitialized_member_in_ctor) 4849 << (int)Constructor->isImplicit() 4850 << SemaRef.Context.getTagDeclType(Constructor->getParent()) 4851 << 0 << Field->getDeclName(); 4852 SemaRef.Diag(Field->getLocation(), diag::note_declared_at); 4853 return true; 4854 } 4855 4856 if (FieldBaseElementType.isConstQualified()) { 4857 SemaRef.Diag(Constructor->getLocation(), 4858 diag::err_uninitialized_member_in_ctor) 4859 << (int)Constructor->isImplicit() 4860 << SemaRef.Context.getTagDeclType(Constructor->getParent()) 4861 << 1 << Field->getDeclName(); 4862 SemaRef.Diag(Field->getLocation(), diag::note_declared_at); 4863 return true; 4864 } 4865 } 4866 4867 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) { 4868 // ARC and Weak: 4869 // Default-initialize Objective-C pointers to NULL. 4870 CXXMemberInit 4871 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field, 4872 Loc, Loc, 4873 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()), 4874 Loc); 4875 return false; 4876 } 4877 4878 // Nothing to initialize. 4879 CXXMemberInit = nullptr; 4880 return false; 4881} 4882 4883namespace { 4884struct BaseAndFieldInfo { 4885 Sema &S; 4886 CXXConstructorDecl *Ctor; 4887 bool AnyErrorsInInits; 4888 ImplicitInitializerKind IIK; 4889 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields; 4890 SmallVector<CXXCtorInitializer*, 8> AllToInit; 4891 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember; 4892 4893 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits) 4894 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) { 4895 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted(); 4896 if (Ctor->getInheritedConstructor()) 4897 IIK = IIK_Inherit; 4898 else if (Generated && Ctor->isCopyConstructor()) 4899 IIK = IIK_Copy; 4900 else if (Generated && Ctor->isMoveConstructor()) 4901 IIK = IIK_Move; 4902 else 4903 IIK = IIK_Default; 4904 } 4905 4906 bool isImplicitCopyOrMove() const { 4907 switch (IIK) { 4908 case IIK_Copy: 4909 case IIK_Move: 4910 return true; 4911 4912 case IIK_Default: 4913 case IIK_Inherit: 4914 return false; 4915 } 4916 4917 llvm_unreachable("Invalid ImplicitInitializerKind!")::llvm::llvm_unreachable_internal("Invalid ImplicitInitializerKind!"
, "clang/lib/Sema/SemaDeclCXX.cpp", 4917)
; 4918 } 4919 4920 bool addFieldInitializer(CXXCtorInitializer *Init) { 4921 AllToInit.push_back(Init); 4922 4923 // Check whether this initializer makes the field "used". 4924 if (Init->getInit()->HasSideEffects(S.Context)) 4925 S.UnusedPrivateFields.remove(Init->getAnyMember()); 4926 4927 return false; 4928 } 4929 4930 bool isInactiveUnionMember(FieldDecl *Field) { 4931 RecordDecl *Record = Field->getParent(); 4932 if (!Record->isUnion()) 4933 return false; 4934 4935 if (FieldDecl *Active = 4936 ActiveUnionMember.lookup(Record->getCanonicalDecl())) 4937 return Active != Field->getCanonicalDecl(); 4938 4939 // In an implicit copy or move constructor, ignore any in-class initializer. 4940 if (isImplicitCopyOrMove()) 4941 return true; 4942 4943 // If there's no explicit initialization, the field is active only if it 4944 // has an in-class initializer... 4945 if (Field->hasInClassInitializer()) 4946 return false; 4947 // ... or it's an anonymous struct or union whose class has an in-class 4948 // initializer. 4949 if (!Field->isAnonymousStructOrUnion()) 4950 return true; 4951 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl(); 4952 return !FieldRD->hasInClassInitializer(); 4953 } 4954 4955 /// Determine whether the given field is, or is within, a union member 4956 /// that is inactive (because there was an initializer given for a different 4957 /// member of the union, or because the union was not initialized at all). 4958 bool isWithinInactiveUnionMember(FieldDecl *Field, 4959 IndirectFieldDecl *Indirect) { 4960 if (!Indirect) 4961 return isInactiveUnionMember(Field); 4962 4963 for (auto *C : Indirect->chain()) { 4964 FieldDecl *Field = dyn_cast<FieldDecl>(C); 4965 if (Field && isInactiveUnionMember(Field)) 4966 return true; 4967 } 4968 return false; 4969 } 4970}; 4971} 4972 4973/// Determine whether the given type is an incomplete or zero-lenfgth 4974/// array type. 4975static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) { 4976 if (T->isIncompleteArrayType()) 4977 return true; 4978 4979 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) { 4980 if (!ArrayT->getSize()) 4981 return true; 4982 4983 T = ArrayT->getElementType(); 4984 } 4985 4986 return false; 4987} 4988 4989static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info, 4990 FieldDecl *Field, 4991 IndirectFieldDecl *Indirect = nullptr) { 4992 if (Field->isInvalidDecl()) 4993 return false; 4994 4995 // Overwhelmingly common case: we have a direct initializer for this field. 4996 if (CXXCtorInitializer *Init = 4997 Info.AllBaseFields.lookup(Field->getCanonicalDecl())) 4998 return Info.addFieldInitializer(Init); 4999 5000 // C++11 [class.base.init]p8: 5001 // if the entity is a non-static data member that has a 5002 // brace-or-equal-initializer and either 5003 // -- the constructor's class is a union and no other variant member of that 5004 // union is designated by a mem-initializer-id or 5005 // -- the constructor's class is not a union, and, if the entity is a member 5006 // of an anonymous union, no other member of that union is designated by 5007 // a mem-initializer-id, 5008 // the entity is initialized as specified in [dcl.init]. 5009 // 5010 // We also apply the same rules to handle anonymous structs within anonymous 5011 // unions. 5012 if (Info.isWithinInactiveUnionMember(Field, Indirect)) 5013 return false; 5014 5015 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) { 5016 ExprResult DIE = 5017 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field); 5018 if (DIE.isInvalid()) 5019 return true; 5020 5021 auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true); 5022 SemaRef.checkInitializerLifetime(Entity, DIE.get()); 5023 5024 CXXCtorInitializer *Init; 5025 if (Indirect) 5026 Init = new (SemaRef.Context) 5027 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(), 5028 SourceLocation(), DIE.get(), SourceLocation()); 5029 else 5030 Init = new (SemaRef.Context) 5031 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(), 5032 SourceLocation(), DIE.get(), SourceLocation()); 5033 return Info.addFieldInitializer(Init); 5034 } 5035 5036 // Don't initialize incomplete or zero-length arrays. 5037 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType())) 5038 return false; 5039 5040 // Don't try to build an implicit initializer if there were semantic 5041 // errors in any of the initializers (and therefore we might be 5042 // missing some that the user actually wrote). 5043 if (Info.AnyErrorsInInits) 5044 return false; 5045 5046 CXXCtorInitializer *Init = nullptr; 5047 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, 5048 Indirect, Init)) 5049 return true; 5050 5051 if (!Init) 5052 return false; 5053 5054 return Info.addFieldInitializer(Init); 5055} 5056 5057bool 5058Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor, 5059 CXXCtorInitializer *Initializer) { 5060 assert(Initializer->isDelegatingInitializer())(static_cast <bool> (Initializer->isDelegatingInitializer
()) ? void (0) : __assert_fail ("Initializer->isDelegatingInitializer()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 5060, __extension__ __PRETTY_FUNCTION__
))
; 5061 Constructor->setNumCtorInitializers(1); 5062 CXXCtorInitializer **initializer = 5063 new (Context) CXXCtorInitializer*[1]; 5064 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*)); 5065 Constructor->setCtorInitializers(initializer); 5066 5067 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) { 5068 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor); 5069 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation()); 5070 } 5071 5072 DelegatingCtorDecls.push_back(Constructor); 5073 5074 DiagnoseUninitializedFields(*this, Constructor); 5075 5076 return false; 5077} 5078 5079bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors, 5080 ArrayRef<CXXCtorInitializer *> Initializers) { 5081 if (Constructor->isDependentContext()) { 5082 // Just store the initializers as written, they will be checked during 5083 // instantiation. 5084 if (!Initializers.empty()) { 5085 Constructor->setNumCtorInitializers(Initializers.size()); 5086 CXXCtorInitializer **baseOrMemberInitializers = 5087 new (Context) CXXCtorInitializer*[Initializers.size()]; 5088 memcpy(baseOrMemberInitializers, Initializers.data(), 5089 Initializers.size() * sizeof(CXXCtorInitializer*)); 5090 Constructor->setCtorInitializers(baseOrMemberInitializers); 5091 } 5092 5093 // Let template instantiation know whether we had errors. 5094 if (AnyErrors) 5095 Constructor->setInvalidDecl(); 5096 5097 return false; 5098 } 5099 5100 BaseAndFieldInfo Info(*this, Constructor, AnyErrors); 5101 5102 // We need to build the initializer AST according to order of construction 5103 // and not what user specified in the Initializers list. 5104 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition(); 5105 if (!ClassDecl) 5106 return true; 5107 5108 bool HadError = false; 5109 5110 for (unsigned i = 0; i < Initializers.size(); i++) { 5111 CXXCtorInitializer *Member = Initializers[i]; 5112 5113 if (Member->isBaseInitializer()) 5114 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member; 5115 else { 5116 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member; 5117 5118 if (IndirectFieldDecl *F = Member->getIndirectMember()) { 5119 for (auto *C : F->chain()) { 5120 FieldDecl *FD = dyn_cast<FieldDecl>(C); 5121 if (FD && FD->getParent()->isUnion()) 5122 Info.ActiveUnionMember.insert(std::make_pair( 5123 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); 5124 } 5125 } else if (FieldDecl *FD = Member->getMember()) { 5126 if (FD->getParent()->isUnion()) 5127 Info.ActiveUnionMember.insert(std::make_pair( 5128 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); 5129 } 5130 } 5131 } 5132 5133 // Keep track of the direct virtual bases. 5134 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases; 5135 for (auto &I : ClassDecl->bases()) { 5136 if (I.isVirtual()) 5137 DirectVBases.insert(&I); 5138 } 5139 5140 // Push virtual bases before others. 5141 for (auto &VBase : ClassDecl->vbases()) { 5142 if (CXXCtorInitializer *Value 5143 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) { 5144 // [class.base.init]p7, per DR257: 5145 // A mem-initializer where the mem-initializer-id names a virtual base 5146 // class is ignored during execution of a constructor of any class that 5147 // is not the most derived class. 5148 if (ClassDecl->isAbstract()) { 5149 // FIXME: Provide a fixit to remove the base specifier. This requires 5150 // tracking the location of the associated comma for a base specifier. 5151 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored) 5152 << VBase.getType() << ClassDecl; 5153 DiagnoseAbstractType(ClassDecl); 5154 } 5155 5156 Info.AllToInit.push_back(Value); 5157 } else if (!AnyErrors && !ClassDecl->isAbstract()) { 5158 // [class.base.init]p8, per DR257: 5159 // If a given [...] base class is not named by a mem-initializer-id 5160 // [...] and the entity is not a virtual base class of an abstract 5161 // class, then [...] the entity is default-initialized. 5162 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase); 5163 CXXCtorInitializer *CXXBaseInit; 5164 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, 5165 &VBase, IsInheritedVirtualBase, 5166 CXXBaseInit)) { 5167 HadError = true; 5168 continue; 5169 } 5170 5171 Info.AllToInit.push_back(CXXBaseInit); 5172 } 5173 } 5174 5175 // Non-virtual bases. 5176 for (auto &Base : ClassDecl->bases()) { 5177 // Virtuals are in the virtual base list and already constructed. 5178 if (Base.isVirtual()) 5179 continue; 5180 5181 if (CXXCtorInitializer *Value 5182 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) { 5183 Info.AllToInit.push_back(Value); 5184 } else if (!AnyErrors) { 5185 CXXCtorInitializer *CXXBaseInit; 5186 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, 5187 &Base, /*IsInheritedVirtualBase=*/false, 5188 CXXBaseInit)) { 5189 HadError = true; 5190 continue; 5191 } 5192 5193 Info.AllToInit.push_back(CXXBaseInit); 5194 } 5195 } 5196 5197 // Fields. 5198 for (auto *Mem : ClassDecl->decls()) { 5199 if (auto *F = dyn_cast<FieldDecl>(Mem)) { 5200 // C++ [class.bit]p2: 5201 // A declaration for a bit-field that omits the identifier declares an 5202 // unnamed bit-field. Unnamed bit-fields are not members and cannot be 5203 // initialized. 5204 if (F->isUnnamedBitfield()) 5205 continue; 5206 5207 // If we're not generating the implicit copy/move constructor, then we'll 5208 // handle anonymous struct/union fields based on their individual 5209 // indirect fields. 5210 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove()) 5211 continue; 5212 5213 if (CollectFieldInitializer(*this, Info, F)) 5214 HadError = true; 5215 continue; 5216 } 5217 5218 // Beyond this point, we only consider default initialization. 5219 if (Info.isImplicitCopyOrMove()) 5220 continue; 5221 5222 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) { 5223 if (F->getType()->isIncompleteArrayType()) { 5224 assert(ClassDecl->hasFlexibleArrayMember() &&(static_cast <bool> (ClassDecl->hasFlexibleArrayMember
() && "Incomplete array type is not valid") ? void (0
) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 5225, __extension__ __PRETTY_FUNCTION__
))
5225 "Incomplete array type is not valid")(static_cast <bool> (ClassDecl->hasFlexibleArrayMember
() && "Incomplete array type is not valid") ? void (0
) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 5225, __extension__ __PRETTY_FUNCTION__
))
; 5226 continue; 5227 } 5228 5229 // Initialize each field of an anonymous struct individually. 5230 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F)) 5231 HadError = true; 5232 5233 continue; 5234 } 5235 } 5236 5237 unsigned NumInitializers = Info.AllToInit.size(); 5238 if (NumInitializers > 0) { 5239 Constructor->setNumCtorInitializers(NumInitializers); 5240 CXXCtorInitializer **baseOrMemberInitializers = 5241 new (Context) CXXCtorInitializer*[NumInitializers]; 5242 memcpy(baseOrMemberInitializers, Info.AllToInit.data(), 5243 NumInitializers * sizeof(CXXCtorInitializer*)); 5244 Constructor->setCtorInitializers(baseOrMemberInitializers); 5245 5246 // Constructors implicitly reference the base and member 5247 // destructors. 5248 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(), 5249 Constructor->getParent()); 5250 } 5251 5252 return HadError; 5253} 5254 5255static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) { 5256 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) { 5257 const RecordDecl *RD = RT->getDecl(); 5258 if (RD->isAnonymousStructOrUnion()) { 5259 for (auto *Field : RD->fields()) 5260 PopulateKeysForFields(Field, IdealInits); 5261 return; 5262 } 5263 } 5264 IdealInits.push_back(Field->getCanonicalDecl()); 5265} 5266 5267static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) { 5268 return Context.getCanonicalType(BaseType).getTypePtr(); 5269} 5270 5271static const void *GetKeyForMember(ASTContext &Context, 5272 CXXCtorInitializer *Member) { 5273 if (!Member->isAnyMemberInitializer()) 5274 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0)); 5275 5276 return Member->getAnyMember()->getCanonicalDecl(); 5277} 5278 5279static void AddInitializerToDiag(const Sema::SemaDiagnosticBuilder &Diag, 5280 const CXXCtorInitializer *Previous, 5281 const CXXCtorInitializer *Current) { 5282 if (Previous->isAnyMemberInitializer()) 5283 Diag << 0 << Previous->getAnyMember(); 5284 else 5285 Diag << 1 << Previous->getTypeSourceInfo()->getType(); 5286 5287 if (Current->isAnyMemberInitializer()) 5288 Diag << 0 << Current->getAnyMember(); 5289 else 5290 Diag << 1 << Current->getTypeSourceInfo()->getType(); 5291} 5292 5293static void DiagnoseBaseOrMemInitializerOrder( 5294 Sema &SemaRef, const CXXConstructorDecl *Constructor, 5295 ArrayRef<CXXCtorInitializer *> Inits) { 5296 if (Constructor->getDeclContext()->isDependentContext()) 5297 return; 5298 5299 // Don't check initializers order unless the warning is enabled at the 5300 // location of at least one initializer. 5301 bool ShouldCheckOrder = false; 5302 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { 5303 CXXCtorInitializer *Init = Inits[InitIndex]; 5304 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order, 5305 Init->getSourceLocation())) { 5306 ShouldCheckOrder = true; 5307 break; 5308 } 5309 } 5310 if (!ShouldCheckOrder) 5311 return; 5312 5313 // Build the list of bases and members in the order that they'll 5314 // actually be initialized. The explicit initializers should be in 5315 // this same order but may be missing things. 5316 SmallVector<const void*, 32> IdealInitKeys; 5317 5318 const CXXRecordDecl *ClassDecl = Constructor->getParent(); 5319 5320 // 1. Virtual bases. 5321 for (const auto &VBase : ClassDecl->vbases()) 5322 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType())); 5323 5324 // 2. Non-virtual bases. 5325 for (const auto &Base : ClassDecl->bases()) { 5326 if (Base.isVirtual()) 5327 continue; 5328 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType())); 5329 } 5330 5331 // 3. Direct fields. 5332 for (auto *Field : ClassDecl->fields()) { 5333 if (Field->isUnnamedBitfield()) 5334 continue; 5335 5336 PopulateKeysForFields(Field, IdealInitKeys); 5337 } 5338 5339 unsigned NumIdealInits = IdealInitKeys.size(); 5340 unsigned IdealIndex = 0; 5341 5342 // Track initializers that are in an incorrect order for either a warning or 5343 // note if multiple ones occur. 5344 SmallVector<unsigned> WarnIndexes; 5345 // Correlates the index of an initializer in the init-list to the index of 5346 // the field/base in the class. 5347 SmallVector<std::pair<unsigned, unsigned>, 32> CorrelatedInitOrder; 5348 5349 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { 5350 const void *InitKey = GetKeyForMember(SemaRef.Context, Inits[InitIndex]); 5351 5352 // Scan forward to try to find this initializer in the idealized 5353 // initializers list. 5354 for (; IdealIndex != NumIdealInits; ++IdealIndex) 5355 if (InitKey == IdealInitKeys[IdealIndex]) 5356 break; 5357 5358 // If we didn't find this initializer, it must be because we 5359 // scanned past it on a previous iteration. That can only 5360 // happen if we're out of order; emit a warning. 5361 if (IdealIndex == NumIdealInits && InitIndex) { 5362 WarnIndexes.push_back(InitIndex); 5363 5364 // Move back to the initializer's location in the ideal list. 5365 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex) 5366 if (InitKey == IdealInitKeys[IdealIndex]) 5367 break; 5368 5369 assert(IdealIndex < NumIdealInits &&(static_cast <bool> (IdealIndex < NumIdealInits &&
"initializer not found in initializer list") ? void (0) : __assert_fail
("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 5370, __extension__ __PRETTY_FUNCTION__
))
5370 "initializer not found in initializer list")(static_cast <bool> (IdealIndex < NumIdealInits &&
"initializer not found in initializer list") ? void (0) : __assert_fail
("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 5370, __extension__ __PRETTY_FUNCTION__
))
; 5371 } 5372 CorrelatedInitOrder.emplace_back(IdealIndex, InitIndex); 5373 } 5374 5375 if (WarnIndexes.empty()) 5376 return; 5377 5378 // Sort based on the ideal order, first in the pair. 5379 llvm::sort(CorrelatedInitOrder, 5380 [](auto &LHS, auto &RHS) { return LHS.first < RHS.first; }); 5381 5382 // Introduce a new scope as SemaDiagnosticBuilder needs to be destroyed to 5383 // emit the diagnostic before we can try adding notes. 5384 { 5385 Sema::SemaDiagnosticBuilder D = SemaRef.Diag( 5386 Inits[WarnIndexes.front() - 1]->getSourceLocation(), 5387 WarnIndexes.size() == 1 ? diag::warn_initializer_out_of_order 5388 : diag::warn_some_initializers_out_of_order); 5389 5390 for (unsigned I = 0; I < CorrelatedInitOrder.size(); ++I) { 5391 if (CorrelatedInitOrder[I].second == I) 5392 continue; 5393 // Ideally we would be using InsertFromRange here, but clang doesn't 5394 // appear to handle InsertFromRange correctly when the source range is 5395 // modified by another fix-it. 5396 D << FixItHint::CreateReplacement( 5397 Inits[I]->getSourceRange(), 5398 Lexer::getSourceText( 5399 CharSourceRange::getTokenRange( 5400 Inits[CorrelatedInitOrder[I].second]->getSourceRange()), 5401 SemaRef.getSourceManager(), SemaRef.getLangOpts())); 5402 } 5403 5404 // If there is only 1 item out of order, the warning expects the name and 5405 // type of each being added to it. 5406 if (WarnIndexes.size() == 1) { 5407 AddInitializerToDiag(D, Inits[WarnIndexes.front() - 1], 5408 Inits[WarnIndexes.front()]); 5409 return; 5410 } 5411 } 5412 // More than 1 item to warn, create notes letting the user know which ones 5413 // are bad. 5414 for (unsigned WarnIndex : WarnIndexes) { 5415 const clang::CXXCtorInitializer *PrevInit = Inits[WarnIndex - 1]; 5416 auto D = SemaRef.Diag(PrevInit->getSourceLocation(), 5417 diag::note_initializer_out_of_order); 5418 AddInitializerToDiag(D, PrevInit, Inits[WarnIndex]); 5419 D << PrevInit->getSourceRange(); 5420 } 5421} 5422 5423namespace { 5424bool CheckRedundantInit(Sema &S, 5425 CXXCtorInitializer *Init, 5426 CXXCtorInitializer *&PrevInit) { 5427 if (!PrevInit) { 5428 PrevInit = Init; 5429 return false; 5430 } 5431 5432 if (FieldDecl *Field = Init->getAnyMember()) 5433 S.Diag(Init->getSourceLocation(), 5434 diag::err_multiple_mem_initialization) 5435 << Field->getDeclName() 5436 << Init->getSourceRange(); 5437 else { 5438 const Type *BaseClass = Init->getBaseClass(); 5439 assert(BaseClass && "neither field nor base")(static_cast <bool> (BaseClass && "neither field nor base"
) ? void (0) : __assert_fail ("BaseClass && \"neither field nor base\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 5439, __extension__ __PRETTY_FUNCTION__
))
; 5440 S.Diag(Init->getSourceLocation(), 5441 diag::err_multiple_base_initialization) 5442 << QualType(BaseClass, 0) 5443 << Init->getSourceRange(); 5444 } 5445 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer) 5446 << 0 << PrevInit->getSourceRange(); 5447 5448 return true; 5449} 5450 5451typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry; 5452typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap; 5453 5454bool CheckRedundantUnionInit(Sema &S, 5455 CXXCtorInitializer *Init, 5456 RedundantUnionMap &Unions) { 5457 FieldDecl *Field = Init->getAnyMember(); 5458 RecordDecl *Parent = Field->getParent(); 5459 NamedDecl *Child = Field; 5460 5461 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) { 5462 if (Parent->isUnion()) { 5463 UnionEntry &En = Unions[Parent]; 5464 if (En.first && En.first != Child) { 5465 S.Diag(Init->getSourceLocation(), 5466 diag::err_multiple_mem_union_initialization) 5467 << Field->getDeclName() 5468 << Init->getSourceRange(); 5469 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer) 5470 << 0 << En.second->getSourceRange(); 5471 return true; 5472 } 5473 if (!En.first) { 5474 En.first = Child; 5475 En.second = Init; 5476 } 5477 if (!Parent->isAnonymousStructOrUnion()) 5478 return false; 5479 } 5480 5481 Child = Parent; 5482 Parent = cast<RecordDecl>(Parent->getDeclContext()); 5483 } 5484 5485 return false; 5486} 5487} // namespace 5488 5489/// ActOnMemInitializers - Handle the member initializers for a constructor. 5490void Sema::ActOnMemInitializers(Decl *ConstructorDecl, 5491 SourceLocation ColonLoc, 5492 ArrayRef<CXXCtorInitializer*> MemInits, 5493 bool AnyErrors) { 5494 if (!ConstructorDecl) 5495 return; 5496 5497 AdjustDeclIfTemplate(ConstructorDecl); 5498 5499 CXXConstructorDecl *Constructor 5500 = dyn_cast<CXXConstructorDecl>(ConstructorDecl); 5501 5502 if (!Constructor) { 5503 Diag(ColonLoc, diag::err_only_constructors_take_base_inits); 5504 return; 5505 } 5506 5507 // Mapping for the duplicate initializers check. 5508 // For member initializers, this is keyed with a FieldDecl*. 5509 // For base initializers, this is keyed with a Type*. 5510 llvm::DenseMap<const void *, CXXCtorInitializer *> Members; 5511 5512 // Mapping for the inconsistent anonymous-union initializers check. 5513 RedundantUnionMap MemberUnions; 5514 5515 bool HadError = false; 5516 for (unsigned i = 0; i < MemInits.size(); i++) { 5517 CXXCtorInitializer *Init = MemInits[i]; 5518 5519 // Set the source order index. 5520 Init->setSourceOrder(i); 5521 5522 if (Init->isAnyMemberInitializer()) { 5523 const void *Key = GetKeyForMember(Context, Init); 5524 if (CheckRedundantInit(*this, Init, Members[Key]) || 5525 CheckRedundantUnionInit(*this, Init, MemberUnions)) 5526 HadError = true; 5527 } else if (Init->isBaseInitializer()) { 5528 const void *Key = GetKeyForMember(Context, Init); 5529 if (CheckRedundantInit(*this, Init, Members[Key])) 5530 HadError = true; 5531 } else { 5532 assert(Init->isDelegatingInitializer())(static_cast <bool> (Init->isDelegatingInitializer()
) ? void (0) : __assert_fail ("Init->isDelegatingInitializer()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 5532, __extension__ __PRETTY_FUNCTION__
))
; 5533 // This must be the only initializer 5534 if (MemInits.size() != 1) { 5535 Diag(Init->getSourceLocation(), 5536 diag::err_delegating_initializer_alone) 5537 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange(); 5538 // We will treat this as being the only initializer. 5539 } 5540 SetDelegatingInitializer(Constructor, MemInits[i]); 5541 // Return immediately as the initializer is set. 5542 return; 5543 } 5544 } 5545 5546 if (HadError) 5547 return; 5548 5549 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits); 5550 5551 SetCtorInitializers(Constructor, AnyErrors, MemInits); 5552 5553 DiagnoseUninitializedFields(*this, Constructor); 5554} 5555 5556void 5557Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location, 5558 CXXRecordDecl *ClassDecl) { 5559 // Ignore dependent contexts. Also ignore unions, since their members never 5560 // have destructors implicitly called. 5561 if (ClassDecl->isDependentContext() || ClassDecl->isUnion()) 5562 return; 5563 5564 // FIXME: all the access-control diagnostics are positioned on the 5565 // field/base declaration. That's probably good; that said, the 5566 // user might reasonably want to know why the destructor is being 5567 // emitted, and we currently don't say. 5568 5569 // Non-static data members. 5570 for (auto *Field : ClassDecl->fields()) { 5571 if (Field->isInvalidDecl()) 5572 continue; 5573 5574 // Don't destroy incomplete or zero-length arrays. 5575 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType())) 5576 continue; 5577 5578 QualType FieldType = Context.getBaseElementType(Field->getType()); 5579 5580 const RecordType* RT = FieldType->getAs<RecordType>(); 5581 if (!RT) 5582 continue; 5583 5584 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5585 if (FieldClassDecl->isInvalidDecl()) 5586 continue; 5587 if (FieldClassDecl->hasIrrelevantDestructor()) 5588 continue; 5589 // The destructor for an implicit anonymous union member is never invoked. 5590 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 5591 continue; 5592 5593 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl); 5594 assert(Dtor && "No dtor found for FieldClassDecl!")(static_cast <bool> (Dtor && "No dtor found for FieldClassDecl!"
) ? void (0) : __assert_fail ("Dtor && \"No dtor found for FieldClassDecl!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 5594, __extension__ __PRETTY_FUNCTION__
))
; 5595 CheckDestructorAccess(Field->getLocation(), Dtor, 5596 PDiag(diag::err_access_dtor_field) 5597 << Field->getDeclName() 5598 << FieldType); 5599 5600 MarkFunctionReferenced(Location, Dtor); 5601 DiagnoseUseOfDecl(Dtor, Location); 5602 } 5603 5604 // We only potentially invoke the destructors of potentially constructed 5605 // subobjects. 5606 bool VisitVirtualBases = !ClassDecl->isAbstract(); 5607 5608 // If the destructor exists and has already been marked used in the MS ABI, 5609 // then virtual base destructors have already been checked and marked used. 5610 // Skip checking them again to avoid duplicate diagnostics. 5611 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5612 CXXDestructorDecl *Dtor = ClassDecl->getDestructor(); 5613 if (Dtor && Dtor->isUsed()) 5614 VisitVirtualBases = false; 5615 } 5616 5617 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases; 5618 5619 // Bases. 5620 for (const auto &Base : ClassDecl->bases()) { 5621 const RecordType *RT = Base.getType()->getAs<RecordType>(); 5622 if (!RT) 5623 continue; 5624 5625 // Remember direct virtual bases. 5626 if (Base.isVirtual()) { 5627 if (!VisitVirtualBases) 5628 continue; 5629 DirectVirtualBases.insert(RT); 5630 } 5631 5632 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5633 // If our base class is invalid, we probably can't get its dtor anyway. 5634 if (BaseClassDecl->isInvalidDecl()) 5635 continue; 5636 if (BaseClassDecl->hasIrrelevantDestructor()) 5637 continue; 5638 5639 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); 5640 assert(Dtor && "No dtor found for BaseClassDecl!")(static_cast <bool> (Dtor && "No dtor found for BaseClassDecl!"
) ? void (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 5640, __extension__ __PRETTY_FUNCTION__
))
; 5641 5642 // FIXME: caret should be on the start of the class name 5643 CheckDestructorAccess(Base.getBeginLoc(), Dtor, 5644 PDiag(diag::err_access_dtor_base) 5645 << Base.getType() << Base.getSourceRange(), 5646 Context.getTypeDeclType(ClassDecl)); 5647 5648 MarkFunctionReferenced(Location, Dtor); 5649 DiagnoseUseOfDecl(Dtor, Location); 5650 } 5651 5652 if (VisitVirtualBases) 5653 MarkVirtualBaseDestructorsReferenced(Location, ClassDecl, 5654 &DirectVirtualBases); 5655} 5656 5657void Sema::MarkVirtualBaseDestructorsReferenced( 5658 SourceLocation Location, CXXRecordDecl *ClassDecl, 5659 llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases) { 5660 // Virtual bases. 5661 for (const auto &VBase : ClassDecl->vbases()) { 5662 // Bases are always records in a well-formed non-dependent class. 5663 const RecordType *RT = VBase.getType()->castAs<RecordType>(); 5664 5665 // Ignore already visited direct virtual bases. 5666 if (DirectVirtualBases && DirectVirtualBases->count(RT)) 5667 continue; 5668 5669 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5670 // If our base class is invalid, we probably can't get its dtor anyway. 5671 if (BaseClassDecl->isInvalidDecl()) 5672 continue; 5673 if (BaseClassDecl->hasIrrelevantDestructor()) 5674 continue; 5675 5676 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); 5677 assert(Dtor && "No dtor found for BaseClassDecl!")(static_cast <bool> (Dtor && "No dtor found for BaseClassDecl!"
) ? void (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 5677, __extension__ __PRETTY_FUNCTION__
))
; 5678 if (CheckDestructorAccess( 5679 ClassDecl->getLocation(), Dtor, 5680 PDiag(diag::err_access_dtor_vbase) 5681 << Context.getTypeDeclType(ClassDecl) << VBase.getType(), 5682 Context.getTypeDeclType(ClassDecl)) == 5683 AR_accessible) { 5684 CheckDerivedToBaseConversion( 5685 Context.getTypeDeclType(ClassDecl), VBase.getType(), 5686 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(), 5687 SourceRange(), DeclarationName(), nullptr); 5688 } 5689 5690 MarkFunctionReferenced(Location, Dtor); 5691 DiagnoseUseOfDecl(Dtor, Location); 5692 } 5693} 5694 5695void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) { 5696 if (!CDtorDecl) 5697 return; 5698 5699 if (CXXConstructorDecl *Constructor 5700 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) { 5701 SetCtorInitializers(Constructor, /*AnyErrors=*/false); 5702 DiagnoseUninitializedFields(*this, Constructor); 5703 } 5704} 5705 5706bool Sema::isAbstractType(SourceLocation Loc, QualType T) { 5707 if (!getLangOpts().CPlusPlus) 5708 return false; 5709 5710 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl(); 5711 if (!RD) 5712 return false; 5713 5714 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a 5715 // class template specialization here, but doing so breaks a lot of code. 5716 5717 // We can't answer whether something is abstract until it has a 5718 // definition. If it's currently being defined, we'll walk back 5719 // over all the declarations when we have a full definition. 5720 const CXXRecordDecl *Def = RD->getDefinition(); 5721 if (!Def || Def->isBeingDefined()) 5722 return false; 5723 5724 return RD->isAbstract(); 5725} 5726 5727bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, 5728 TypeDiagnoser &Diagnoser) { 5729 if (!isAbstractType(Loc, T)) 5730 return false; 5731 5732 T = Context.getBaseElementType(T); 5733 Diagnoser.diagnose(*this, Loc, T); 5734 DiagnoseAbstractType(T->getAsCXXRecordDecl()); 5735 return true; 5736} 5737 5738void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) { 5739 // Check if we've already emitted the list of pure virtual functions 5740 // for this class. 5741 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) 5742 return; 5743 5744 // If the diagnostic is suppressed, don't emit the notes. We're only 5745 // going to emit them once, so try to attach them to a diagnostic we're 5746 // actually going to show. 5747 if (Diags.isLastDiagnosticIgnored()) 5748 return; 5749 5750 CXXFinalOverriderMap FinalOverriders; 5751 RD->getFinalOverriders(FinalOverriders); 5752 5753 // Keep a set of seen pure methods so we won't diagnose the same method 5754 // more than once. 5755 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods; 5756 5757 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 5758 MEnd = FinalOverriders.end(); 5759 M != MEnd; 5760 ++M) { 5761 for (OverridingMethods::iterator SO = M->second.begin(), 5762 SOEnd = M->second.end(); 5763 SO != SOEnd; ++SO) { 5764 // C++ [class.abstract]p4: 5765 // A class is abstract if it contains or inherits at least one 5766 // pure virtual function for which the final overrider is pure 5767 // virtual. 5768 5769 // 5770 if (SO->second.size() != 1) 5771 continue; 5772 5773 if (!SO->second.front().Method->isPure()) 5774 continue; 5775 5776 if (!SeenPureMethods.insert(SO->second.front().Method).second) 5777 continue; 5778 5779 Diag(SO->second.front().Method->getLocation(), 5780 diag::note_pure_virtual_function) 5781 << SO->second.front().Method->getDeclName() << RD->getDeclName(); 5782 } 5783 } 5784 5785 if (!PureVirtualClassDiagSet) 5786 PureVirtualClassDiagSet.reset(new RecordDeclSetTy); 5787 PureVirtualClassDiagSet->insert(RD); 5788} 5789 5790namespace { 5791struct AbstractUsageInfo { 5792 Sema &S; 5793 CXXRecordDecl *Record; 5794 CanQualType AbstractType; 5795 bool Invalid; 5796 5797 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record) 5798 : S(S), Record(Record), 5799 AbstractType(S.Context.getCanonicalType( 5800 S.Context.getTypeDeclType(Record))), 5801 Invalid(false) {} 5802 5803 void DiagnoseAbstractType() { 5804 if (Invalid) return; 5805 S.DiagnoseAbstractType(Record); 5806 Invalid = true; 5807 } 5808 5809 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel); 5810}; 5811 5812struct CheckAbstractUsage { 5813 AbstractUsageInfo &Info; 5814 const NamedDecl *Ctx; 5815 5816 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx) 5817 : Info(Info), Ctx(Ctx) {} 5818 5819 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 5820 switch (TL.getTypeLocClass()) { 5821#define ABSTRACT_TYPELOC(CLASS, PARENT) 5822#define TYPELOC(CLASS, PARENT) \ 5823 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break; 5824#include "clang/AST/TypeLocNodes.def" 5825 } 5826 } 5827 5828 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5829 Visit(TL.getReturnLoc(), Sema::AbstractReturnType); 5830 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) { 5831 if (!TL.getParam(I)) 5832 continue; 5833 5834 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo(); 5835 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType); 5836 } 5837 } 5838 5839 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5840 Visit(TL.getElementLoc(), Sema::AbstractArrayType); 5841 } 5842 5843 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5844 // Visit the type parameters from a permissive context. 5845 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { 5846 TemplateArgumentLoc TAL = TL.getArgLoc(I); 5847 if (TAL.getArgument().getKind() == TemplateArgument::Type) 5848 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo()) 5849 Visit(TSI->getTypeLoc(), Sema::AbstractNone); 5850 // TODO: other template argument types? 5851 } 5852 } 5853 5854 // Visit pointee types from a permissive context. 5855#define CheckPolymorphic(Type)void Check(Type TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getNextTypeLoc
(), Sema::AbstractNone); }
\
5856 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \ 5857 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \ 5858 } 5859 CheckPolymorphic(PointerTypeLoc)void Check(PointerTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5860 CheckPolymorphic(ReferenceTypeLoc)void Check(ReferenceTypeLoc TL, Sema::AbstractDiagSelID Sel) {
Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5861 CheckPolymorphic(MemberPointerTypeLoc)void Check(MemberPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5862 CheckPolymorphic(BlockPointerTypeLoc)void Check(BlockPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5863 CheckPolymorphic(AtomicTypeLoc)void Check(AtomicTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5864 5865 /// Handle all the types we haven't given a more specific 5866 /// implementation for above. 5867 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 5868 // Every other kind of type that we haven't called out already 5869 // that has an inner type is either (1) sugar or (2) contains that 5870 // inner type in some way as a subobject. 5871 if (TypeLoc Next = TL.getNextTypeLoc()) 5872 return Visit(Next, Sel); 5873 5874 // If there's no inner type and we're in a permissive context, 5875 // don't diagnose. 5876 if (Sel == Sema::AbstractNone) return; 5877 5878 // Check whether the type matches the abstract type. 5879 QualType T = TL.getType(); 5880 if (T->isArrayType()) { 5881 Sel = Sema::AbstractArrayType; 5882 T = Info.S.Context.getBaseElementType(T); 5883 } 5884 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType(); 5885 if (CT != Info.AbstractType) return; 5886 5887 // It matched; do some magic. 5888 // FIXME: These should be at most warnings. See P0929R2, CWG1640, CWG1646. 5889 if (Sel == Sema::AbstractArrayType) { 5890 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type) 5891 << T << TL.getSourceRange(); 5892 } else { 5893 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl) 5894 << Sel << T << TL.getSourceRange(); 5895 } 5896 Info.DiagnoseAbstractType(); 5897 } 5898}; 5899 5900void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL, 5901 Sema::AbstractDiagSelID Sel) { 5902 CheckAbstractUsage(*this, D).Visit(TL, Sel); 5903} 5904 5905} 5906 5907/// Check for invalid uses of an abstract type in a function declaration. 5908static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 5909 FunctionDecl *FD) { 5910 // No need to do the check on definitions, which require that 5911 // the return/param types be complete. 5912 if (FD->doesThisDeclarationHaveABody()) 5913 return; 5914 5915 // For safety's sake, just ignore it if we don't have type source 5916 // information. This should never happen for non-implicit methods, 5917 // but... 5918 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) 5919 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractNone); 5920} 5921 5922/// Check for invalid uses of an abstract type in a variable0 declaration. 5923static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 5924 VarDecl *VD) { 5925 // No need to do the check on definitions, which require that 5926 // the type is complete. 5927 if (VD->isThisDeclarationADefinition()) 5928 return; 5929 5930 Info.CheckType(VD, VD->getTypeSourceInfo()->getTypeLoc(), 5931 Sema::AbstractVariableType); 5932} 5933 5934/// Check for invalid uses of an abstract type within a class definition. 5935static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 5936 CXXRecordDecl *RD) { 5937 for (auto *D : RD->decls()) { 5938 if (D->isImplicit()) continue; 5939 5940 // Step through friends to the befriended declaration. 5941 if (auto *FD = dyn_cast<FriendDecl>(D)) { 5942 D = FD->getFriendDecl(); 5943 if (!D) continue; 5944 } 5945 5946 // Functions and function templates. 5947 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 5948 CheckAbstractClassUsage(Info, FD); 5949 } else if (auto *FTD = dyn_cast<FunctionTemplateDecl>(D)) { 5950 CheckAbstractClassUsage(Info, FTD->getTemplatedDecl()); 5951 5952 // Fields and static variables. 5953 } else if (auto *FD = dyn_cast<FieldDecl>(D)) { 5954 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) 5955 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType); 5956 } else if (auto *VD = dyn_cast<VarDecl>(D)) { 5957 CheckAbstractClassUsage(Info, VD); 5958 } else if (auto *VTD = dyn_cast<VarTemplateDecl>(D)) { 5959 CheckAbstractClassUsage(Info, VTD->getTemplatedDecl()); 5960 5961 // Nested classes and class templates. 5962 } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) { 5963 CheckAbstractClassUsage(Info, RD); 5964 } else if (auto *CTD = dyn_cast<ClassTemplateDecl>(D)) { 5965 CheckAbstractClassUsage(Info, CTD->getTemplatedDecl()); 5966 } 5967 } 5968} 5969 5970static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) { 5971 Attr *ClassAttr = getDLLAttr(Class); 5972 if (!ClassAttr) 5973 return; 5974 5975 assert(ClassAttr->getKind() == attr::DLLExport)(static_cast <bool> (ClassAttr->getKind() == attr::DLLExport
) ? void (0) : __assert_fail ("ClassAttr->getKind() == attr::DLLExport"
, "clang/lib/Sema/SemaDeclCXX.cpp", 5975, __extension__ __PRETTY_FUNCTION__
))
; 5976 5977 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); 5978 5979 if (TSK == TSK_ExplicitInstantiationDeclaration) 5980 // Don't go any further if this is just an explicit instantiation 5981 // declaration. 5982 return; 5983 5984 // Add a context note to explain how we got to any diagnostics produced below. 5985 struct MarkingClassDllexported { 5986 Sema &S; 5987 MarkingClassDllexported(Sema &S, CXXRecordDecl *Class, 5988 SourceLocation AttrLoc) 5989 : S(S) { 5990 Sema::CodeSynthesisContext Ctx; 5991 Ctx.Kind = Sema::CodeSynthesisContext::MarkingClassDllexported; 5992 Ctx.PointOfInstantiation = AttrLoc; 5993 Ctx.Entity = Class; 5994 S.pushCodeSynthesisContext(Ctx); 5995 } 5996 ~MarkingClassDllexported() { 5997 S.popCodeSynthesisContext(); 5998 } 5999 } MarkingDllexportedContext(S, Class, ClassAttr->getLocation()); 6000 6001 if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) 6002 S.MarkVTableUsed(Class->getLocation(), Class, true); 6003 6004 for (Decl *Member : Class->decls()) { 6005 // Skip members that were not marked exported. 6006 if (!Member->hasAttr<DLLExportAttr>()) 6007 continue; 6008 6009 // Defined static variables that are members of an exported base 6010 // class must be marked export too. 6011 auto *VD = dyn_cast<VarDecl>(Member); 6012 if (VD && VD->getStorageClass() == SC_Static && 6013 TSK == TSK_ImplicitInstantiation) 6014 S.MarkVariableReferenced(VD->getLocation(), VD); 6015 6016 auto *MD = dyn_cast<CXXMethodDecl>(Member); 6017 if (!MD) 6018 continue; 6019 6020 if (MD->isUserProvided()) { 6021 // Instantiate non-default class member functions ... 6022 6023 // .. except for certain kinds of template specializations. 6024 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited()) 6025 continue; 6026 6027 // If this is an MS ABI dllexport default constructor, instantiate any 6028 // default arguments. 6029 if (S.Context.getTargetInfo().getCXXABI().isMicrosoft()) { 6030 auto *CD = dyn_cast<CXXConstructorDecl>(MD); 6031 if (CD && CD->isDefaultConstructor() && TSK == TSK_Undeclared) { 6032 S.InstantiateDefaultCtorDefaultArgs(CD); 6033 } 6034