Bug Summary

File:build/source/clang/lib/Sema/SemaDeclCXX.cpp
Warning:line 111, column 25
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaDeclCXX.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-17/lib/clang/17 -I tools/clang/lib/Sema -I /build/source/clang/lib/Sema -I /build/source/clang/include -I tools/clang/include -I include -I /build/source/llvm/include -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-05-10-133810-16478-1 -x c++ /build/source/clang/lib/Sema/SemaDeclCXX.cpp
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for C++ declarations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTConsumer.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/ASTLambda.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/ComparisonCategories.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/RecursiveASTVisitor.h"
26#include "clang/AST/StmtVisitor.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/AST/TypeOrdering.h"
29#include "clang/Basic/AttributeCommonInfo.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Basic/Specifiers.h"
32#include "clang/Basic/TargetInfo.h"
33#include "clang/Lex/LiteralSupport.h"
34#include "clang/Lex/Preprocessor.h"
35#include "clang/Sema/CXXFieldCollector.h"
36#include "clang/Sema/DeclSpec.h"
37#include "clang/Sema/EnterExpressionEvaluationContext.h"
38#include "clang/Sema/Initialization.h"
39#include "clang/Sema/Lookup.h"
40#include "clang/Sema/ParsedTemplate.h"
41#include "clang/Sema/Scope.h"
42#include "clang/Sema/ScopeInfo.h"
43#include "clang/Sema/SemaInternal.h"
44#include "clang/Sema/Template.h"
45#include "llvm/ADT/STLExtras.h"
46#include "llvm/ADT/ScopeExit.h"
47#include "llvm/ADT/SmallString.h"
48#include "llvm/ADT/StringExtras.h"
49#include <map>
50#include <optional>
51#include <set>
52
53using namespace clang;
54
55//===----------------------------------------------------------------------===//
56// CheckDefaultArgumentVisitor
57//===----------------------------------------------------------------------===//
58
59namespace {
60/// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
61/// the default argument of a parameter to determine whether it
62/// contains any ill-formed subexpressions. For example, this will
63/// diagnose the use of local variables or parameters within the
64/// default argument expression.
65class CheckDefaultArgumentVisitor
66 : public ConstStmtVisitor<CheckDefaultArgumentVisitor, bool> {
67 Sema &S;
68 const Expr *DefaultArg;
69
70public:
71 CheckDefaultArgumentVisitor(Sema &S, const Expr *DefaultArg)
72 : S(S), DefaultArg(DefaultArg) {}
73
74 bool VisitExpr(const Expr *Node);
75 bool VisitDeclRefExpr(const DeclRefExpr *DRE);
76 bool VisitCXXThisExpr(const CXXThisExpr *ThisE);
77 bool VisitLambdaExpr(const LambdaExpr *Lambda);
78 bool VisitPseudoObjectExpr(const PseudoObjectExpr *POE);
79};
80
81/// VisitExpr - Visit all of the children of this expression.
82bool CheckDefaultArgumentVisitor::VisitExpr(const Expr *Node) {
83 bool IsInvalid = false;
84 for (const Stmt *SubStmt : Node->children())
85 IsInvalid |= Visit(SubStmt);
86 return IsInvalid;
87}
88
89/// VisitDeclRefExpr - Visit a reference to a declaration, to
90/// determine whether this declaration can be used in the default
91/// argument expression.
92bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(const DeclRefExpr *DRE) {
93 const ValueDecl *Decl = dyn_cast<ValueDecl>(DRE->getDecl());
1
Assuming the object is not a 'CastReturnType'
2
'Decl' initialized to a null pointer value
94
95 if (!isa<VarDecl, BindingDecl>(Decl))
3
Assuming 'Decl' is a 'class clang::BindingDecl &'
4
Taking false branch
96 return false;
97
98 if (const auto *Param = dyn_cast<ParmVarDecl>(Decl)) {
5
Assuming 'Param' is null
6
Taking false branch
99 // C++ [dcl.fct.default]p9:
100 // [...] parameters of a function shall not be used in default
101 // argument expressions, even if they are not evaluated. [...]
102 //
103 // C++17 [dcl.fct.default]p9 (by CWG 2082):
104 // [...] A parameter shall not appear as a potentially-evaluated
105 // expression in a default argument. [...]
106 //
107 if (DRE->isNonOdrUse() != NOUR_Unevaluated)
108 return S.Diag(DRE->getBeginLoc(),
109 diag::err_param_default_argument_references_param)
110 << Param->getDeclName() << DefaultArg->getSourceRange();
111 } else if (auto *VD = Decl->getPotentiallyDecomposedVarDecl()) {
7
Called C++ object pointer is null
112 // C++ [dcl.fct.default]p7:
113 // Local variables shall not be used in default argument
114 // expressions.
115 //
116 // C++17 [dcl.fct.default]p7 (by CWG 2082):
117 // A local variable shall not appear as a potentially-evaluated
118 // expression in a default argument.
119 //
120 // C++20 [dcl.fct.default]p7 (DR as part of P0588R1, see also CWG 2346):
121 // Note: A local variable cannot be odr-used (6.3) in a default
122 // argument.
123 //
124 if (VD->isLocalVarDecl() && !DRE->isNonOdrUse())
125 return S.Diag(DRE->getBeginLoc(),
126 diag::err_param_default_argument_references_local)
127 << Decl << DefaultArg->getSourceRange();
128 }
129 return false;
130}
131
132/// VisitCXXThisExpr - Visit a C++ "this" expression.
133bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(const CXXThisExpr *ThisE) {
134 // C++ [dcl.fct.default]p8:
135 // The keyword this shall not be used in a default argument of a
136 // member function.
137 return S.Diag(ThisE->getBeginLoc(),
138 diag::err_param_default_argument_references_this)
139 << ThisE->getSourceRange();
140}
141
142bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(
143 const PseudoObjectExpr *POE) {
144 bool Invalid = false;
145 for (const Expr *E : POE->semantics()) {
146 // Look through bindings.
147 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) {
148 E = OVE->getSourceExpr();
149 assert(E && "pseudo-object binding without source expression?")(static_cast <bool> (E && "pseudo-object binding without source expression?"
) ? void (0) : __assert_fail ("E && \"pseudo-object binding without source expression?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 149, __extension__ __PRETTY_FUNCTION__
))
;
150 }
151
152 Invalid |= Visit(E);
153 }
154 return Invalid;
155}
156
157bool CheckDefaultArgumentVisitor::VisitLambdaExpr(const LambdaExpr *Lambda) {
158 // [expr.prim.lambda.capture]p9
159 // a lambda-expression appearing in a default argument cannot implicitly or
160 // explicitly capture any local entity. Such a lambda-expression can still
161 // have an init-capture if any full-expression in its initializer satisfies
162 // the constraints of an expression appearing in a default argument.
163 bool Invalid = false;
164 for (const LambdaCapture &LC : Lambda->captures()) {
165 if (!Lambda->isInitCapture(&LC))
166 return S.Diag(LC.getLocation(), diag::err_lambda_capture_default_arg);
167 // Init captures are always VarDecl.
168 auto *D = cast<VarDecl>(LC.getCapturedVar());
169 Invalid |= Visit(D->getInit());
170 }
171 return Invalid;
172}
173} // namespace
174
175void
176Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
177 const CXXMethodDecl *Method) {
178 // If we have an MSAny spec already, don't bother.
179 if (!Method || ComputedEST == EST_MSAny)
180 return;
181
182 const FunctionProtoType *Proto
183 = Method->getType()->getAs<FunctionProtoType>();
184 Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
185 if (!Proto)
186 return;
187
188 ExceptionSpecificationType EST = Proto->getExceptionSpecType();
189
190 // If we have a throw-all spec at this point, ignore the function.
191 if (ComputedEST == EST_None)
192 return;
193
194 if (EST == EST_None && Method->hasAttr<NoThrowAttr>())
195 EST = EST_BasicNoexcept;
196
197 switch (EST) {
198 case EST_Unparsed:
199 case EST_Uninstantiated:
200 case EST_Unevaluated:
201 llvm_unreachable("should not see unresolved exception specs here")::llvm::llvm_unreachable_internal("should not see unresolved exception specs here"
, "clang/lib/Sema/SemaDeclCXX.cpp", 201)
;
202
203 // If this function can throw any exceptions, make a note of that.
204 case EST_MSAny:
205 case EST_None:
206 // FIXME: Whichever we see last of MSAny and None determines our result.
207 // We should make a consistent, order-independent choice here.
208 ClearExceptions();
209 ComputedEST = EST;
210 return;
211 case EST_NoexceptFalse:
212 ClearExceptions();
213 ComputedEST = EST_None;
214 return;
215 // FIXME: If the call to this decl is using any of its default arguments, we
216 // need to search them for potentially-throwing calls.
217 // If this function has a basic noexcept, it doesn't affect the outcome.
218 case EST_BasicNoexcept:
219 case EST_NoexceptTrue:
220 case EST_NoThrow:
221 return;
222 // If we're still at noexcept(true) and there's a throw() callee,
223 // change to that specification.
224 case EST_DynamicNone:
225 if (ComputedEST == EST_BasicNoexcept)
226 ComputedEST = EST_DynamicNone;
227 return;
228 case EST_DependentNoexcept:
229 llvm_unreachable(::llvm::llvm_unreachable_internal("should not generate implicit declarations for dependent cases"
, "clang/lib/Sema/SemaDeclCXX.cpp", 230)
230 "should not generate implicit declarations for dependent cases")::llvm::llvm_unreachable_internal("should not generate implicit declarations for dependent cases"
, "clang/lib/Sema/SemaDeclCXX.cpp", 230)
;
231 case EST_Dynamic:
232 break;
233 }
234 assert(EST == EST_Dynamic && "EST case not considered earlier.")(static_cast <bool> (EST == EST_Dynamic && "EST case not considered earlier."
) ? void (0) : __assert_fail ("EST == EST_Dynamic && \"EST case not considered earlier.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 234, __extension__ __PRETTY_FUNCTION__
))
;
235 assert(ComputedEST != EST_None &&(static_cast <bool> (ComputedEST != EST_None &&
"Shouldn't collect exceptions when throw-all is guaranteed."
) ? void (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 236, __extension__ __PRETTY_FUNCTION__
))
236 "Shouldn't collect exceptions when throw-all is guaranteed.")(static_cast <bool> (ComputedEST != EST_None &&
"Shouldn't collect exceptions when throw-all is guaranteed."
) ? void (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 236, __extension__ __PRETTY_FUNCTION__
))
;
237 ComputedEST = EST_Dynamic;
238 // Record the exceptions in this function's exception specification.
239 for (const auto &E : Proto->exceptions())
240 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
241 Exceptions.push_back(E);
242}
243
244void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) {
245 if (!S || ComputedEST == EST_MSAny)
246 return;
247
248 // FIXME:
249 //
250 // C++0x [except.spec]p14:
251 // [An] implicit exception-specification specifies the type-id T if and
252 // only if T is allowed by the exception-specification of a function directly
253 // invoked by f's implicit definition; f shall allow all exceptions if any
254 // function it directly invokes allows all exceptions, and f shall allow no
255 // exceptions if every function it directly invokes allows no exceptions.
256 //
257 // Note in particular that if an implicit exception-specification is generated
258 // for a function containing a throw-expression, that specification can still
259 // be noexcept(true).
260 //
261 // Note also that 'directly invoked' is not defined in the standard, and there
262 // is no indication that we should only consider potentially-evaluated calls.
263 //
264 // Ultimately we should implement the intent of the standard: the exception
265 // specification should be the set of exceptions which can be thrown by the
266 // implicit definition. For now, we assume that any non-nothrow expression can
267 // throw any exception.
268
269 if (Self->canThrow(S))
270 ComputedEST = EST_None;
271}
272
273ExprResult Sema::ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
274 SourceLocation EqualLoc) {
275 if (RequireCompleteType(Param->getLocation(), Param->getType(),
276 diag::err_typecheck_decl_incomplete_type))
277 return true;
278
279 // C++ [dcl.fct.default]p5
280 // A default argument expression is implicitly converted (clause
281 // 4) to the parameter type. The default argument expression has
282 // the same semantic constraints as the initializer expression in
283 // a declaration of a variable of the parameter type, using the
284 // copy-initialization semantics (8.5).
285 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
286 Param);
287 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
288 EqualLoc);
289 InitializationSequence InitSeq(*this, Entity, Kind, Arg);
290 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
291 if (Result.isInvalid())
292 return true;
293 Arg = Result.getAs<Expr>();
294
295 CheckCompletedExpr(Arg, EqualLoc);
296 Arg = MaybeCreateExprWithCleanups(Arg);
297
298 return Arg;
299}
300
301void Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
302 SourceLocation EqualLoc) {
303 // Add the default argument to the parameter
304 Param->setDefaultArg(Arg);
305
306 // We have already instantiated this parameter; provide each of the
307 // instantiations with the uninstantiated default argument.
308 UnparsedDefaultArgInstantiationsMap::iterator InstPos
309 = UnparsedDefaultArgInstantiations.find(Param);
310 if (InstPos != UnparsedDefaultArgInstantiations.end()) {
311 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
312 InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
313
314 // We're done tracking this parameter's instantiations.
315 UnparsedDefaultArgInstantiations.erase(InstPos);
316 }
317}
318
319/// ActOnParamDefaultArgument - Check whether the default argument
320/// provided for a function parameter is well-formed. If so, attach it
321/// to the parameter declaration.
322void
323Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
324 Expr *DefaultArg) {
325 if (!param || !DefaultArg)
326 return;
327
328 ParmVarDecl *Param = cast<ParmVarDecl>(param);
329 UnparsedDefaultArgLocs.erase(Param);
330
331 auto Fail = [&] {
332 Param->setInvalidDecl();
333 Param->setDefaultArg(new (Context) OpaqueValueExpr(
334 EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue));
335 };
336
337 // Default arguments are only permitted in C++
338 if (!getLangOpts().CPlusPlus) {
339 Diag(EqualLoc, diag::err_param_default_argument)
340 << DefaultArg->getSourceRange();
341 return Fail();
342 }
343
344 // Check for unexpanded parameter packs.
345 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
346 return Fail();
347 }
348
349 // C++11 [dcl.fct.default]p3
350 // A default argument expression [...] shall not be specified for a
351 // parameter pack.
352 if (Param->isParameterPack()) {
353 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
354 << DefaultArg->getSourceRange();
355 // Recover by discarding the default argument.
356 Param->setDefaultArg(nullptr);
357 return;
358 }
359
360 ExprResult Result = ConvertParamDefaultArgument(Param, DefaultArg, EqualLoc);
361 if (Result.isInvalid())
362 return Fail();
363
364 DefaultArg = Result.getAs<Expr>();
365
366 // Check that the default argument is well-formed
367 CheckDefaultArgumentVisitor DefaultArgChecker(*this, DefaultArg);
368 if (DefaultArgChecker.Visit(DefaultArg))
369 return Fail();
370
371 SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
372}
373
374/// ActOnParamUnparsedDefaultArgument - We've seen a default
375/// argument for a function parameter, but we can't parse it yet
376/// because we're inside a class definition. Note that this default
377/// argument will be parsed later.
378void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
379 SourceLocation EqualLoc,
380 SourceLocation ArgLoc) {
381 if (!param)
382 return;
383
384 ParmVarDecl *Param = cast<ParmVarDecl>(param);
385 Param->setUnparsedDefaultArg();
386 UnparsedDefaultArgLocs[Param] = ArgLoc;
387}
388
389/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
390/// the default argument for the parameter param failed.
391void Sema::ActOnParamDefaultArgumentError(Decl *param,
392 SourceLocation EqualLoc) {
393 if (!param)
394 return;
395
396 ParmVarDecl *Param = cast<ParmVarDecl>(param);
397 Param->setInvalidDecl();
398 UnparsedDefaultArgLocs.erase(Param);
399 Param->setDefaultArg(new (Context) OpaqueValueExpr(
400 EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue));
401}
402
403/// CheckExtraCXXDefaultArguments - Check for any extra default
404/// arguments in the declarator, which is not a function declaration
405/// or definition and therefore is not permitted to have default
406/// arguments. This routine should be invoked for every declarator
407/// that is not a function declaration or definition.
408void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
409 // C++ [dcl.fct.default]p3
410 // A default argument expression shall be specified only in the
411 // parameter-declaration-clause of a function declaration or in a
412 // template-parameter (14.1). It shall not be specified for a
413 // parameter pack. If it is specified in a
414 // parameter-declaration-clause, it shall not occur within a
415 // declarator or abstract-declarator of a parameter-declaration.
416 bool MightBeFunction = D.isFunctionDeclarationContext();
417 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
418 DeclaratorChunk &chunk = D.getTypeObject(i);
419 if (chunk.Kind == DeclaratorChunk::Function) {
420 if (MightBeFunction) {
421 // This is a function declaration. It can have default arguments, but
422 // keep looking in case its return type is a function type with default
423 // arguments.
424 MightBeFunction = false;
425 continue;
426 }
427 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
428 ++argIdx) {
429 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
430 if (Param->hasUnparsedDefaultArg()) {
431 std::unique_ptr<CachedTokens> Toks =
432 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens);
433 SourceRange SR;
434 if (Toks->size() > 1)
435 SR = SourceRange((*Toks)[1].getLocation(),
436 Toks->back().getLocation());
437 else
438 SR = UnparsedDefaultArgLocs[Param];
439 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
440 << SR;
441 } else if (Param->getDefaultArg()) {
442 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
443 << Param->getDefaultArg()->getSourceRange();
444 Param->setDefaultArg(nullptr);
445 }
446 }
447 } else if (chunk.Kind != DeclaratorChunk::Paren) {
448 MightBeFunction = false;
449 }
450 }
451}
452
453static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
454 return llvm::any_of(FD->parameters(), [](ParmVarDecl *P) {
455 return P->hasDefaultArg() && !P->hasInheritedDefaultArg();
456 });
457}
458
459/// MergeCXXFunctionDecl - Merge two declarations of the same C++
460/// function, once we already know that they have the same
461/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
462/// error, false otherwise.
463bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
464 Scope *S) {
465 bool Invalid = false;
466
467 // The declaration context corresponding to the scope is the semantic
468 // parent, unless this is a local function declaration, in which case
469 // it is that surrounding function.
470 DeclContext *ScopeDC = New->isLocalExternDecl()
471 ? New->getLexicalDeclContext()
472 : New->getDeclContext();
473
474 // Find the previous declaration for the purpose of default arguments.
475 FunctionDecl *PrevForDefaultArgs = Old;
476 for (/**/; PrevForDefaultArgs;
477 // Don't bother looking back past the latest decl if this is a local
478 // extern declaration; nothing else could work.
479 PrevForDefaultArgs = New->isLocalExternDecl()
480 ? nullptr
481 : PrevForDefaultArgs->getPreviousDecl()) {
482 // Ignore hidden declarations.
483 if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
484 continue;
485
486 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
487 !New->isCXXClassMember()) {
488 // Ignore default arguments of old decl if they are not in
489 // the same scope and this is not an out-of-line definition of
490 // a member function.
491 continue;
492 }
493
494 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
495 // If only one of these is a local function declaration, then they are
496 // declared in different scopes, even though isDeclInScope may think
497 // they're in the same scope. (If both are local, the scope check is
498 // sufficient, and if neither is local, then they are in the same scope.)
499 continue;
500 }
501
502 // We found the right previous declaration.
503 break;
504 }
505
506 // C++ [dcl.fct.default]p4:
507 // For non-template functions, default arguments can be added in
508 // later declarations of a function in the same
509 // scope. Declarations in different scopes have completely
510 // distinct sets of default arguments. That is, declarations in
511 // inner scopes do not acquire default arguments from
512 // declarations in outer scopes, and vice versa. In a given
513 // function declaration, all parameters subsequent to a
514 // parameter with a default argument shall have default
515 // arguments supplied in this or previous declarations. A
516 // default argument shall not be redefined by a later
517 // declaration (not even to the same value).
518 //
519 // C++ [dcl.fct.default]p6:
520 // Except for member functions of class templates, the default arguments
521 // in a member function definition that appears outside of the class
522 // definition are added to the set of default arguments provided by the
523 // member function declaration in the class definition.
524 for (unsigned p = 0, NumParams = PrevForDefaultArgs
525 ? PrevForDefaultArgs->getNumParams()
526 : 0;
527 p < NumParams; ++p) {
528 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p);
529 ParmVarDecl *NewParam = New->getParamDecl(p);
530
531 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false;
532 bool NewParamHasDfl = NewParam->hasDefaultArg();
533
534 if (OldParamHasDfl && NewParamHasDfl) {
535 unsigned DiagDefaultParamID =
536 diag::err_param_default_argument_redefinition;
537
538 // MSVC accepts that default parameters be redefined for member functions
539 // of template class. The new default parameter's value is ignored.
540 Invalid = true;
541 if (getLangOpts().MicrosoftExt) {
542 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New);
543 if (MD && MD->getParent()->getDescribedClassTemplate()) {
544 // Merge the old default argument into the new parameter.
545 NewParam->setHasInheritedDefaultArg();
546 if (OldParam->hasUninstantiatedDefaultArg())
547 NewParam->setUninstantiatedDefaultArg(
548 OldParam->getUninstantiatedDefaultArg());
549 else
550 NewParam->setDefaultArg(OldParam->getInit());
551 DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
552 Invalid = false;
553 }
554 }
555
556 // FIXME: If we knew where the '=' was, we could easily provide a fix-it
557 // hint here. Alternatively, we could walk the type-source information
558 // for NewParam to find the last source location in the type... but it
559 // isn't worth the effort right now. This is the kind of test case that
560 // is hard to get right:
561 // int f(int);
562 // void g(int (*fp)(int) = f);
563 // void g(int (*fp)(int) = &f);
564 Diag(NewParam->getLocation(), DiagDefaultParamID)
565 << NewParam->getDefaultArgRange();
566
567 // Look for the function declaration where the default argument was
568 // actually written, which may be a declaration prior to Old.
569 for (auto Older = PrevForDefaultArgs;
570 OldParam->hasInheritedDefaultArg(); /**/) {
571 Older = Older->getPreviousDecl();
572 OldParam = Older->getParamDecl(p);
573 }
574
575 Diag(OldParam->getLocation(), diag::note_previous_definition)
576 << OldParam->getDefaultArgRange();
577 } else if (OldParamHasDfl) {
578 // Merge the old default argument into the new parameter unless the new
579 // function is a friend declaration in a template class. In the latter
580 // case the default arguments will be inherited when the friend
581 // declaration will be instantiated.
582 if (New->getFriendObjectKind() == Decl::FOK_None ||
583 !New->getLexicalDeclContext()->isDependentContext()) {
584 // It's important to use getInit() here; getDefaultArg()
585 // strips off any top-level ExprWithCleanups.
586 NewParam->setHasInheritedDefaultArg();
587 if (OldParam->hasUnparsedDefaultArg())
588 NewParam->setUnparsedDefaultArg();
589 else if (OldParam->hasUninstantiatedDefaultArg())
590 NewParam->setUninstantiatedDefaultArg(
591 OldParam->getUninstantiatedDefaultArg());
592 else
593 NewParam->setDefaultArg(OldParam->getInit());
594 }
595 } else if (NewParamHasDfl) {
596 if (New->getDescribedFunctionTemplate()) {
597 // Paragraph 4, quoted above, only applies to non-template functions.
598 Diag(NewParam->getLocation(),
599 diag::err_param_default_argument_template_redecl)
600 << NewParam->getDefaultArgRange();
601 Diag(PrevForDefaultArgs->getLocation(),
602 diag::note_template_prev_declaration)
603 << false;
604 } else if (New->getTemplateSpecializationKind()
605 != TSK_ImplicitInstantiation &&
606 New->getTemplateSpecializationKind() != TSK_Undeclared) {
607 // C++ [temp.expr.spec]p21:
608 // Default function arguments shall not be specified in a declaration
609 // or a definition for one of the following explicit specializations:
610 // - the explicit specialization of a function template;
611 // - the explicit specialization of a member function template;
612 // - the explicit specialization of a member function of a class
613 // template where the class template specialization to which the
614 // member function specialization belongs is implicitly
615 // instantiated.
616 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
617 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
618 << New->getDeclName()
619 << NewParam->getDefaultArgRange();
620 } else if (New->getDeclContext()->isDependentContext()) {
621 // C++ [dcl.fct.default]p6 (DR217):
622 // Default arguments for a member function of a class template shall
623 // be specified on the initial declaration of the member function
624 // within the class template.
625 //
626 // Reading the tea leaves a bit in DR217 and its reference to DR205
627 // leads me to the conclusion that one cannot add default function
628 // arguments for an out-of-line definition of a member function of a
629 // dependent type.
630 int WhichKind = 2;
631 if (CXXRecordDecl *Record
632 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
633 if (Record->getDescribedClassTemplate())
634 WhichKind = 0;
635 else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
636 WhichKind = 1;
637 else
638 WhichKind = 2;
639 }
640
641 Diag(NewParam->getLocation(),
642 diag::err_param_default_argument_member_template_redecl)
643 << WhichKind
644 << NewParam->getDefaultArgRange();
645 }
646 }
647 }
648
649 // DR1344: If a default argument is added outside a class definition and that
650 // default argument makes the function a special member function, the program
651 // is ill-formed. This can only happen for constructors.
652 if (isa<CXXConstructorDecl>(New) &&
653 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
654 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
655 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
656 if (NewSM != OldSM) {
657 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
658 assert(NewParam->hasDefaultArg())(static_cast <bool> (NewParam->hasDefaultArg()) ? void
(0) : __assert_fail ("NewParam->hasDefaultArg()", "clang/lib/Sema/SemaDeclCXX.cpp"
, 658, __extension__ __PRETTY_FUNCTION__))
;
659 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
660 << NewParam->getDefaultArgRange() << NewSM;
661 Diag(Old->getLocation(), diag::note_previous_declaration);
662 }
663 }
664
665 const FunctionDecl *Def;
666 // C++11 [dcl.constexpr]p1: If any declaration of a function or function
667 // template has a constexpr specifier then all its declarations shall
668 // contain the constexpr specifier.
669 if (New->getConstexprKind() != Old->getConstexprKind()) {
670 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
671 << New << static_cast<int>(New->getConstexprKind())
672 << static_cast<int>(Old->getConstexprKind());
673 Diag(Old->getLocation(), diag::note_previous_declaration);
674 Invalid = true;
675 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
676 Old->isDefined(Def) &&
677 // If a friend function is inlined but does not have 'inline'
678 // specifier, it is a definition. Do not report attribute conflict
679 // in this case, redefinition will be diagnosed later.
680 (New->isInlineSpecified() ||
681 New->getFriendObjectKind() == Decl::FOK_None)) {
682 // C++11 [dcl.fcn.spec]p4:
683 // If the definition of a function appears in a translation unit before its
684 // first declaration as inline, the program is ill-formed.
685 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
686 Diag(Def->getLocation(), diag::note_previous_definition);
687 Invalid = true;
688 }
689
690 // C++17 [temp.deduct.guide]p3:
691 // Two deduction guide declarations in the same translation unit
692 // for the same class template shall not have equivalent
693 // parameter-declaration-clauses.
694 if (isa<CXXDeductionGuideDecl>(New) &&
695 !New->isFunctionTemplateSpecialization() && isVisible(Old)) {
696 Diag(New->getLocation(), diag::err_deduction_guide_redeclared);
697 Diag(Old->getLocation(), diag::note_previous_declaration);
698 }
699
700 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
701 // argument expression, that declaration shall be a definition and shall be
702 // the only declaration of the function or function template in the
703 // translation unit.
704 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
705 functionDeclHasDefaultArgument(Old)) {
706 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
707 Diag(Old->getLocation(), diag::note_previous_declaration);
708 Invalid = true;
709 }
710
711 // C++11 [temp.friend]p4 (DR329):
712 // When a function is defined in a friend function declaration in a class
713 // template, the function is instantiated when the function is odr-used.
714 // The same restrictions on multiple declarations and definitions that
715 // apply to non-template function declarations and definitions also apply
716 // to these implicit definitions.
717 const FunctionDecl *OldDefinition = nullptr;
718 if (New->isThisDeclarationInstantiatedFromAFriendDefinition() &&
719 Old->isDefined(OldDefinition, true))
720 CheckForFunctionRedefinition(New, OldDefinition);
721
722 return Invalid;
723}
724
725NamedDecl *
726Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D,
727 MultiTemplateParamsArg TemplateParamLists) {
728 assert(D.isDecompositionDeclarator())(static_cast <bool> (D.isDecompositionDeclarator()) ? void
(0) : __assert_fail ("D.isDecompositionDeclarator()", "clang/lib/Sema/SemaDeclCXX.cpp"
, 728, __extension__ __PRETTY_FUNCTION__))
;
729 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
730
731 // The syntax only allows a decomposition declarator as a simple-declaration,
732 // a for-range-declaration, or a condition in Clang, but we parse it in more
733 // cases than that.
734 if (!D.mayHaveDecompositionDeclarator()) {
735 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
736 << Decomp.getSourceRange();
737 return nullptr;
738 }
739
740 if (!TemplateParamLists.empty()) {
741 // FIXME: There's no rule against this, but there are also no rules that
742 // would actually make it usable, so we reject it for now.
743 Diag(TemplateParamLists.front()->getTemplateLoc(),
744 diag::err_decomp_decl_template);
745 return nullptr;
746 }
747
748 Diag(Decomp.getLSquareLoc(),
749 !getLangOpts().CPlusPlus17
750 ? diag::ext_decomp_decl
751 : D.getContext() == DeclaratorContext::Condition
752 ? diag::ext_decomp_decl_cond
753 : diag::warn_cxx14_compat_decomp_decl)
754 << Decomp.getSourceRange();
755
756 // The semantic context is always just the current context.
757 DeclContext *const DC = CurContext;
758
759 // C++17 [dcl.dcl]/8:
760 // The decl-specifier-seq shall contain only the type-specifier auto
761 // and cv-qualifiers.
762 // C++20 [dcl.dcl]/8:
763 // If decl-specifier-seq contains any decl-specifier other than static,
764 // thread_local, auto, or cv-qualifiers, the program is ill-formed.
765 // C++23 [dcl.pre]/6:
766 // Each decl-specifier in the decl-specifier-seq shall be static,
767 // thread_local, auto (9.2.9.6 [dcl.spec.auto]), or a cv-qualifier.
768 auto &DS = D.getDeclSpec();
769 {
770 // Note: While constrained-auto needs to be checked, we do so separately so
771 // we can emit a better diagnostic.
772 SmallVector<StringRef, 8> BadSpecifiers;
773 SmallVector<SourceLocation, 8> BadSpecifierLocs;
774 SmallVector<StringRef, 8> CPlusPlus20Specifiers;
775 SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs;
776 if (auto SCS = DS.getStorageClassSpec()) {
777 if (SCS == DeclSpec::SCS_static) {
778 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS));
779 CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc());
780 } else {
781 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS));
782 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc());
783 }
784 }
785 if (auto TSCS = DS.getThreadStorageClassSpec()) {
786 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS));
787 CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc());
788 }
789 if (DS.hasConstexprSpecifier()) {
790 BadSpecifiers.push_back(
791 DeclSpec::getSpecifierName(DS.getConstexprSpecifier()));
792 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc());
793 }
794 if (DS.isInlineSpecified()) {
795 BadSpecifiers.push_back("inline");
796 BadSpecifierLocs.push_back(DS.getInlineSpecLoc());
797 }
798
799 if (!BadSpecifiers.empty()) {
800 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec);
801 Err << (int)BadSpecifiers.size()
802 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " ");
803 // Don't add FixItHints to remove the specifiers; we do still respect
804 // them when building the underlying variable.
805 for (auto Loc : BadSpecifierLocs)
806 Err << SourceRange(Loc, Loc);
807 } else if (!CPlusPlus20Specifiers.empty()) {
808 auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(),
809 getLangOpts().CPlusPlus20
810 ? diag::warn_cxx17_compat_decomp_decl_spec
811 : diag::ext_decomp_decl_spec);
812 Warn << (int)CPlusPlus20Specifiers.size()
813 << llvm::join(CPlusPlus20Specifiers.begin(),
814 CPlusPlus20Specifiers.end(), " ");
815 for (auto Loc : CPlusPlus20SpecifierLocs)
816 Warn << SourceRange(Loc, Loc);
817 }
818 // We can't recover from it being declared as a typedef.
819 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
820 return nullptr;
821 }
822
823 // C++2a [dcl.struct.bind]p1:
824 // A cv that includes volatile is deprecated
825 if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) &&
826 getLangOpts().CPlusPlus20)
827 Diag(DS.getVolatileSpecLoc(),
828 diag::warn_deprecated_volatile_structured_binding);
829
830 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
831 QualType R = TInfo->getType();
832
833 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
834 UPPC_DeclarationType))
835 D.setInvalidType();
836
837 // The syntax only allows a single ref-qualifier prior to the decomposition
838 // declarator. No other declarator chunks are permitted. Also check the type
839 // specifier here.
840 if (DS.getTypeSpecType() != DeclSpec::TST_auto ||
841 D.hasGroupingParens() || D.getNumTypeObjects() > 1 ||
842 (D.getNumTypeObjects() == 1 &&
843 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) {
844 Diag(Decomp.getLSquareLoc(),
845 (D.hasGroupingParens() ||
846 (D.getNumTypeObjects() &&
847 D.getTypeObject(0).Kind == DeclaratorChunk::Paren))
848 ? diag::err_decomp_decl_parens
849 : diag::err_decomp_decl_type)
850 << R;
851
852 // In most cases, there's no actual problem with an explicitly-specified
853 // type, but a function type won't work here, and ActOnVariableDeclarator
854 // shouldn't be called for such a type.
855 if (R->isFunctionType())
856 D.setInvalidType();
857 }
858
859 // Constrained auto is prohibited by [decl.pre]p6, so check that here.
860 if (DS.isConstrainedAuto()) {
861 TemplateIdAnnotation *TemplRep = DS.getRepAsTemplateId();
862 assert(TemplRep->Kind == TNK_Concept_template &&(static_cast <bool> (TemplRep->Kind == TNK_Concept_template
&& "No other template kind should be possible for a constrained auto"
) ? void (0) : __assert_fail ("TemplRep->Kind == TNK_Concept_template && \"No other template kind should be possible for a constrained auto\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 863, __extension__ __PRETTY_FUNCTION__
))
863 "No other template kind should be possible for a constrained auto")(static_cast <bool> (TemplRep->Kind == TNK_Concept_template
&& "No other template kind should be possible for a constrained auto"
) ? void (0) : __assert_fail ("TemplRep->Kind == TNK_Concept_template && \"No other template kind should be possible for a constrained auto\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 863, __extension__ __PRETTY_FUNCTION__
))
;
864
865 SourceRange TemplRange{TemplRep->TemplateNameLoc,
866 TemplRep->RAngleLoc.isValid()
867 ? TemplRep->RAngleLoc
868 : TemplRep->TemplateNameLoc};
869 Diag(TemplRep->TemplateNameLoc, diag::err_decomp_decl_constraint)
870 << TemplRange << FixItHint::CreateRemoval(TemplRange);
871 }
872
873 // Build the BindingDecls.
874 SmallVector<BindingDecl*, 8> Bindings;
875
876 // Build the BindingDecls.
877 for (auto &B : D.getDecompositionDeclarator().bindings()) {
878 // Check for name conflicts.
879 DeclarationNameInfo NameInfo(B.Name, B.NameLoc);
880 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
881 ForVisibleRedeclaration);
882 LookupName(Previous, S,
883 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit());
884
885 // It's not permitted to shadow a template parameter name.
886 if (Previous.isSingleResult() &&
887 Previous.getFoundDecl()->isTemplateParameter()) {
888 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
889 Previous.getFoundDecl());
890 Previous.clear();
891 }
892
893 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name);
894
895 // Find the shadowed declaration before filtering for scope.
896 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
897 ? getShadowedDeclaration(BD, Previous)
898 : nullptr;
899
900 bool ConsiderLinkage = DC->isFunctionOrMethod() &&
901 DS.getStorageClassSpec() == DeclSpec::SCS_extern;
902 FilterLookupForScope(Previous, DC, S, ConsiderLinkage,
903 /*AllowInlineNamespace*/false);
904
905 if (!Previous.empty()) {
906 auto *Old = Previous.getRepresentativeDecl();
907 Diag(B.NameLoc, diag::err_redefinition) << B.Name;
908 Diag(Old->getLocation(), diag::note_previous_definition);
909 } else if (ShadowedDecl && !D.isRedeclaration()) {
910 CheckShadow(BD, ShadowedDecl, Previous);
911 }
912 PushOnScopeChains(BD, S, true);
913 Bindings.push_back(BD);
914 ParsingInitForAutoVars.insert(BD);
915 }
916
917 // There are no prior lookup results for the variable itself, because it
918 // is unnamed.
919 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr,
920 Decomp.getLSquareLoc());
921 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
922 ForVisibleRedeclaration);
923
924 // Build the variable that holds the non-decomposed object.
925 bool AddToScope = true;
926 NamedDecl *New =
927 ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
928 MultiTemplateParamsArg(), AddToScope, Bindings);
929 if (AddToScope) {
930 S->AddDecl(New);
931 CurContext->addHiddenDecl(New);
932 }
933
934 if (isInOpenMPDeclareTargetContext())
935 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
936
937 return New;
938}
939
940static bool checkSimpleDecomposition(
941 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src,
942 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType,
943 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) {
944 if ((int64_t)Bindings.size() != NumElems) {
945 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
946 << DecompType << (unsigned)Bindings.size()
947 << (unsigned)NumElems.getLimitedValue(UINT_MAX(2147483647 *2U +1U))
948 << toString(NumElems, 10) << (NumElems < Bindings.size());
949 return true;
950 }
951
952 unsigned I = 0;
953 for (auto *B : Bindings) {
954 SourceLocation Loc = B->getLocation();
955 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
956 if (E.isInvalid())
957 return true;
958 E = GetInit(Loc, E.get(), I++);
959 if (E.isInvalid())
960 return true;
961 B->setBinding(ElemType, E.get());
962 }
963
964 return false;
965}
966
967static bool checkArrayLikeDecomposition(Sema &S,
968 ArrayRef<BindingDecl *> Bindings,
969 ValueDecl *Src, QualType DecompType,
970 const llvm::APSInt &NumElems,
971 QualType ElemType) {
972 return checkSimpleDecomposition(
973 S, Bindings, Src, DecompType, NumElems, ElemType,
974 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
975 ExprResult E = S.ActOnIntegerConstant(Loc, I);
976 if (E.isInvalid())
977 return ExprError();
978 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc);
979 });
980}
981
982static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
983 ValueDecl *Src, QualType DecompType,
984 const ConstantArrayType *CAT) {
985 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType,
986 llvm::APSInt(CAT->getSize()),
987 CAT->getElementType());
988}
989
990static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
991 ValueDecl *Src, QualType DecompType,
992 const VectorType *VT) {
993 return checkArrayLikeDecomposition(
994 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()),
995 S.Context.getQualifiedType(VT->getElementType(),
996 DecompType.getQualifiers()));
997}
998
999static bool checkComplexDecomposition(Sema &S,
1000 ArrayRef<BindingDecl *> Bindings,
1001 ValueDecl *Src, QualType DecompType,
1002 const ComplexType *CT) {
1003 return checkSimpleDecomposition(
1004 S, Bindings, Src, DecompType, llvm::APSInt::get(2),
1005 S.Context.getQualifiedType(CT->getElementType(),
1006 DecompType.getQualifiers()),
1007 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
1008 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base);
1009 });
1010}
1011
1012static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy,
1013 TemplateArgumentListInfo &Args,
1014 const TemplateParameterList *Params) {
1015 SmallString<128> SS;
1016 llvm::raw_svector_ostream OS(SS);
1017 bool First = true;
1018 unsigned I = 0;
1019 for (auto &Arg : Args.arguments()) {
1020 if (!First)
1021 OS << ", ";
1022 Arg.getArgument().print(PrintingPolicy, OS,
1023 TemplateParameterList::shouldIncludeTypeForArgument(
1024 PrintingPolicy, Params, I));
1025 First = false;
1026 I++;
1027 }
1028 return std::string(OS.str());
1029}
1030
1031static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup,
1032 SourceLocation Loc, StringRef Trait,
1033 TemplateArgumentListInfo &Args,
1034 unsigned DiagID) {
1035 auto DiagnoseMissing = [&] {
1036 if (DiagID)
1037 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(),
1038 Args, /*Params*/ nullptr);
1039 return true;
1040 };
1041
1042 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine.
1043 NamespaceDecl *Std = S.getStdNamespace();
1044 if (!Std)
1045 return DiagnoseMissing();
1046
1047 // Look up the trait itself, within namespace std. We can diagnose various
1048 // problems with this lookup even if we've been asked to not diagnose a
1049 // missing specialization, because this can only fail if the user has been
1050 // declaring their own names in namespace std or we don't support the
1051 // standard library implementation in use.
1052 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait),
1053 Loc, Sema::LookupOrdinaryName);
1054 if (!S.LookupQualifiedName(Result, Std))
1055 return DiagnoseMissing();
1056 if (Result.isAmbiguous())
1057 return true;
1058
1059 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>();
1060 if (!TraitTD) {
1061 Result.suppressDiagnostics();
1062 NamedDecl *Found = *Result.begin();
1063 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait;
1064 S.Diag(Found->getLocation(), diag::note_declared_at);
1065 return true;
1066 }
1067
1068 // Build the template-id.
1069 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args);
1070 if (TraitTy.isNull())
1071 return true;
1072 if (!S.isCompleteType(Loc, TraitTy)) {
1073 if (DiagID)
1074 S.RequireCompleteType(
1075 Loc, TraitTy, DiagID,
1076 printTemplateArgs(S.Context.getPrintingPolicy(), Args,
1077 TraitTD->getTemplateParameters()));
1078 return true;
1079 }
1080
1081 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl();
1082 assert(RD && "specialization of class template is not a class?")(static_cast <bool> (RD && "specialization of class template is not a class?"
) ? void (0) : __assert_fail ("RD && \"specialization of class template is not a class?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 1082, __extension__ __PRETTY_FUNCTION__
))
;
1083
1084 // Look up the member of the trait type.
1085 S.LookupQualifiedName(TraitMemberLookup, RD);
1086 return TraitMemberLookup.isAmbiguous();
1087}
1088
1089static TemplateArgumentLoc
1090getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T,
1091 uint64_t I) {
1092 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T);
1093 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc);
1094}
1095
1096static TemplateArgumentLoc
1097getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) {
1098 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc);
1099}
1100
1101namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; }
1102
1103static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T,
1104 llvm::APSInt &Size) {
1105 EnterExpressionEvaluationContext ContextRAII(
1106 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1107
1108 DeclarationName Value = S.PP.getIdentifierInfo("value");
1109 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName);
1110
1111 // Form template argument list for tuple_size<T>.
1112 TemplateArgumentListInfo Args(Loc, Loc);
1113 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1114
1115 // If there's no tuple_size specialization or the lookup of 'value' is empty,
1116 // it's not tuple-like.
1117 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) ||
1118 R.empty())
1119 return IsTupleLike::NotTupleLike;
1120
1121 // If we get this far, we've committed to the tuple interpretation, but
1122 // we can still fail if there actually isn't a usable ::value.
1123
1124 struct ICEDiagnoser : Sema::VerifyICEDiagnoser {
1125 LookupResult &R;
1126 TemplateArgumentListInfo &Args;
1127 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args)
1128 : R(R), Args(Args) {}
1129 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
1130 SourceLocation Loc) override {
1131 return S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant)
1132 << printTemplateArgs(S.Context.getPrintingPolicy(), Args,
1133 /*Params*/ nullptr);
1134 }
1135 } Diagnoser(R, Args);
1136
1137 ExprResult E =
1138 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false);
1139 if (E.isInvalid())
1140 return IsTupleLike::Error;
1141
1142 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser);
1143 if (E.isInvalid())
1144 return IsTupleLike::Error;
1145
1146 return IsTupleLike::TupleLike;
1147}
1148
1149/// \return std::tuple_element<I, T>::type.
1150static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc,
1151 unsigned I, QualType T) {
1152 // Form template argument list for tuple_element<I, T>.
1153 TemplateArgumentListInfo Args(Loc, Loc);
1154 Args.addArgument(
1155 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1156 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1157
1158 DeclarationName TypeDN = S.PP.getIdentifierInfo("type");
1159 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName);
1160 if (lookupStdTypeTraitMember(
1161 S, R, Loc, "tuple_element", Args,
1162 diag::err_decomp_decl_std_tuple_element_not_specialized))
1163 return QualType();
1164
1165 auto *TD = R.getAsSingle<TypeDecl>();
1166 if (!TD) {
1167 R.suppressDiagnostics();
1168 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized)
1169 << printTemplateArgs(S.Context.getPrintingPolicy(), Args,
1170 /*Params*/ nullptr);
1171 if (!R.empty())
1172 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at);
1173 return QualType();
1174 }
1175
1176 return S.Context.getTypeDeclType(TD);
1177}
1178
1179namespace {
1180struct InitializingBinding {
1181 Sema &S;
1182 InitializingBinding(Sema &S, BindingDecl *BD) : S(S) {
1183 Sema::CodeSynthesisContext Ctx;
1184 Ctx.Kind = Sema::CodeSynthesisContext::InitializingStructuredBinding;
1185 Ctx.PointOfInstantiation = BD->getLocation();
1186 Ctx.Entity = BD;
1187 S.pushCodeSynthesisContext(Ctx);
1188 }
1189 ~InitializingBinding() {
1190 S.popCodeSynthesisContext();
1191 }
1192};
1193}
1194
1195static bool checkTupleLikeDecomposition(Sema &S,
1196 ArrayRef<BindingDecl *> Bindings,
1197 VarDecl *Src, QualType DecompType,
1198 const llvm::APSInt &TupleSize) {
1199 if ((int64_t)Bindings.size() != TupleSize) {
1200 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1201 << DecompType << (unsigned)Bindings.size()
1202 << (unsigned)TupleSize.getLimitedValue(UINT_MAX(2147483647 *2U +1U))
1203 << toString(TupleSize, 10) << (TupleSize < Bindings.size());
1204 return true;
1205 }
1206
1207 if (Bindings.empty())
1208 return false;
1209
1210 DeclarationName GetDN = S.PP.getIdentifierInfo("get");
1211
1212 // [dcl.decomp]p3:
1213 // The unqualified-id get is looked up in the scope of E by class member
1214 // access lookup ...
1215 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName);
1216 bool UseMemberGet = false;
1217 if (S.isCompleteType(Src->getLocation(), DecompType)) {
1218 if (auto *RD = DecompType->getAsCXXRecordDecl())
1219 S.LookupQualifiedName(MemberGet, RD);
1220 if (MemberGet.isAmbiguous())
1221 return true;
1222 // ... and if that finds at least one declaration that is a function
1223 // template whose first template parameter is a non-type parameter ...
1224 for (NamedDecl *D : MemberGet) {
1225 if (FunctionTemplateDecl *FTD =
1226 dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) {
1227 TemplateParameterList *TPL = FTD->getTemplateParameters();
1228 if (TPL->size() != 0 &&
1229 isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) {
1230 // ... the initializer is e.get<i>().
1231 UseMemberGet = true;
1232 break;
1233 }
1234 }
1235 }
1236 }
1237
1238 unsigned I = 0;
1239 for (auto *B : Bindings) {
1240 InitializingBinding InitContext(S, B);
1241 SourceLocation Loc = B->getLocation();
1242
1243 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1244 if (E.isInvalid())
1245 return true;
1246
1247 // e is an lvalue if the type of the entity is an lvalue reference and
1248 // an xvalue otherwise
1249 if (!Src->getType()->isLValueReferenceType())
1250 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp,
1251 E.get(), nullptr, VK_XValue,
1252 FPOptionsOverride());
1253
1254 TemplateArgumentListInfo Args(Loc, Loc);
1255 Args.addArgument(
1256 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1257
1258 if (UseMemberGet) {
1259 // if [lookup of member get] finds at least one declaration, the
1260 // initializer is e.get<i-1>().
1261 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false,
1262 CXXScopeSpec(), SourceLocation(), nullptr,
1263 MemberGet, &Args, nullptr);
1264 if (E.isInvalid())
1265 return true;
1266
1267 E = S.BuildCallExpr(nullptr, E.get(), Loc, std::nullopt, Loc);
1268 } else {
1269 // Otherwise, the initializer is get<i-1>(e), where get is looked up
1270 // in the associated namespaces.
1271 Expr *Get = UnresolvedLookupExpr::Create(
1272 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(),
1273 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args,
1274 UnresolvedSetIterator(), UnresolvedSetIterator());
1275
1276 Expr *Arg = E.get();
1277 E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc);
1278 }
1279 if (E.isInvalid())
1280 return true;
1281 Expr *Init = E.get();
1282
1283 // Given the type T designated by std::tuple_element<i - 1, E>::type,
1284 QualType T = getTupleLikeElementType(S, Loc, I, DecompType);
1285 if (T.isNull())
1286 return true;
1287
1288 // each vi is a variable of type "reference to T" initialized with the
1289 // initializer, where the reference is an lvalue reference if the
1290 // initializer is an lvalue and an rvalue reference otherwise
1291 QualType RefType =
1292 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName());
1293 if (RefType.isNull())
1294 return true;
1295 auto *RefVD = VarDecl::Create(
1296 S.Context, Src->getDeclContext(), Loc, Loc,
1297 B->getDeclName().getAsIdentifierInfo(), RefType,
1298 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass());
1299 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext());
1300 RefVD->setTSCSpec(Src->getTSCSpec());
1301 RefVD->setImplicit();
1302 if (Src->isInlineSpecified())
1303 RefVD->setInlineSpecified();
1304 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD);
1305
1306 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD);
1307 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc);
1308 InitializationSequence Seq(S, Entity, Kind, Init);
1309 E = Seq.Perform(S, Entity, Kind, Init);
1310 if (E.isInvalid())
1311 return true;
1312 E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false);
1313 if (E.isInvalid())
1314 return true;
1315 RefVD->setInit(E.get());
1316 S.CheckCompleteVariableDeclaration(RefVD);
1317
1318 E = S.BuildDeclarationNameExpr(CXXScopeSpec(),
1319 DeclarationNameInfo(B->getDeclName(), Loc),
1320 RefVD);
1321 if (E.isInvalid())
1322 return true;
1323
1324 B->setBinding(T, E.get());
1325 I++;
1326 }
1327
1328 return false;
1329}
1330
1331/// Find the base class to decompose in a built-in decomposition of a class type.
1332/// This base class search is, unfortunately, not quite like any other that we
1333/// perform anywhere else in C++.
1334static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc,
1335 const CXXRecordDecl *RD,
1336 CXXCastPath &BasePath) {
1337 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier,
1338 CXXBasePath &Path) {
1339 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields();
1340 };
1341
1342 const CXXRecordDecl *ClassWithFields = nullptr;
1343 AccessSpecifier AS = AS_public;
1344 if (RD->hasDirectFields())
1345 // [dcl.decomp]p4:
1346 // Otherwise, all of E's non-static data members shall be public direct
1347 // members of E ...
1348 ClassWithFields = RD;
1349 else {
1350 // ... or of ...
1351 CXXBasePaths Paths;
1352 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD));
1353 if (!RD->lookupInBases(BaseHasFields, Paths)) {
1354 // If no classes have fields, just decompose RD itself. (This will work
1355 // if and only if zero bindings were provided.)
1356 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public);
1357 }
1358
1359 CXXBasePath *BestPath = nullptr;
1360 for (auto &P : Paths) {
1361 if (!BestPath)
1362 BestPath = &P;
1363 else if (!S.Context.hasSameType(P.back().Base->getType(),
1364 BestPath->back().Base->getType())) {
1365 // ... the same ...
1366 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1367 << false << RD << BestPath->back().Base->getType()
1368 << P.back().Base->getType();
1369 return DeclAccessPair();
1370 } else if (P.Access < BestPath->Access) {
1371 BestPath = &P;
1372 }
1373 }
1374
1375 // ... unambiguous ...
1376 QualType BaseType = BestPath->back().Base->getType();
1377 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) {
1378 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base)
1379 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths);
1380 return DeclAccessPair();
1381 }
1382
1383 // ... [accessible, implied by other rules] base class of E.
1384 S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD),
1385 *BestPath, diag::err_decomp_decl_inaccessible_base);
1386 AS = BestPath->Access;
1387
1388 ClassWithFields = BaseType->getAsCXXRecordDecl();
1389 S.BuildBasePathArray(Paths, BasePath);
1390 }
1391
1392 // The above search did not check whether the selected class itself has base
1393 // classes with fields, so check that now.
1394 CXXBasePaths Paths;
1395 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) {
1396 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1397 << (ClassWithFields == RD) << RD << ClassWithFields
1398 << Paths.front().back().Base->getType();
1399 return DeclAccessPair();
1400 }
1401
1402 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS);
1403}
1404
1405static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
1406 ValueDecl *Src, QualType DecompType,
1407 const CXXRecordDecl *OrigRD) {
1408 if (S.RequireCompleteType(Src->getLocation(), DecompType,
1409 diag::err_incomplete_type))
1410 return true;
1411
1412 CXXCastPath BasePath;
1413 DeclAccessPair BasePair =
1414 findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath);
1415 const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl());
1416 if (!RD)
1417 return true;
1418 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD),
1419 DecompType.getQualifiers());
1420
1421 auto DiagnoseBadNumberOfBindings = [&]() -> bool {
1422 unsigned NumFields = llvm::count_if(
1423 RD->fields(), [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); });
1424 assert(Bindings.size() != NumFields)(static_cast <bool> (Bindings.size() != NumFields) ? void
(0) : __assert_fail ("Bindings.size() != NumFields", "clang/lib/Sema/SemaDeclCXX.cpp"
, 1424, __extension__ __PRETTY_FUNCTION__))
;
1425 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1426 << DecompType << (unsigned)Bindings.size() << NumFields << NumFields
1427 << (NumFields < Bindings.size());
1428 return true;
1429 };
1430
1431 // all of E's non-static data members shall be [...] well-formed
1432 // when named as e.name in the context of the structured binding,
1433 // E shall not have an anonymous union member, ...
1434 unsigned I = 0;
1435 for (auto *FD : RD->fields()) {
1436 if (FD->isUnnamedBitfield())
1437 continue;
1438
1439 // All the non-static data members are required to be nameable, so they
1440 // must all have names.
1441 if (!FD->getDeclName()) {
1442 if (RD->isLambda()) {
1443 S.Diag(Src->getLocation(), diag::err_decomp_decl_lambda);
1444 S.Diag(RD->getLocation(), diag::note_lambda_decl);
1445 return true;
1446 }
1447
1448 if (FD->isAnonymousStructOrUnion()) {
1449 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member)
1450 << DecompType << FD->getType()->isUnionType();
1451 S.Diag(FD->getLocation(), diag::note_declared_at);
1452 return true;
1453 }
1454
1455 // FIXME: Are there any other ways we could have an anonymous member?
1456 }
1457
1458 // We have a real field to bind.
1459 if (I >= Bindings.size())
1460 return DiagnoseBadNumberOfBindings();
1461 auto *B = Bindings[I++];
1462 SourceLocation Loc = B->getLocation();
1463
1464 // The field must be accessible in the context of the structured binding.
1465 // We already checked that the base class is accessible.
1466 // FIXME: Add 'const' to AccessedEntity's classes so we can remove the
1467 // const_cast here.
1468 S.CheckStructuredBindingMemberAccess(
1469 Loc, const_cast<CXXRecordDecl *>(OrigRD),
1470 DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess(
1471 BasePair.getAccess(), FD->getAccess())));
1472
1473 // Initialize the binding to Src.FD.
1474 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1475 if (E.isInvalid())
1476 return true;
1477 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase,
1478 VK_LValue, &BasePath);
1479 if (E.isInvalid())
1480 return true;
1481 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc,
1482 CXXScopeSpec(), FD,
1483 DeclAccessPair::make(FD, FD->getAccess()),
1484 DeclarationNameInfo(FD->getDeclName(), Loc));
1485 if (E.isInvalid())
1486 return true;
1487
1488 // If the type of the member is T, the referenced type is cv T, where cv is
1489 // the cv-qualification of the decomposition expression.
1490 //
1491 // FIXME: We resolve a defect here: if the field is mutable, we do not add
1492 // 'const' to the type of the field.
1493 Qualifiers Q = DecompType.getQualifiers();
1494 if (FD->isMutable())
1495 Q.removeConst();
1496 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get());
1497 }
1498
1499 if (I != Bindings.size())
1500 return DiagnoseBadNumberOfBindings();
1501
1502 return false;
1503}
1504
1505void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) {
1506 QualType DecompType = DD->getType();
1507
1508 // If the type of the decomposition is dependent, then so is the type of
1509 // each binding.
1510 if (DecompType->isDependentType()) {
1511 for (auto *B : DD->bindings())
1512 B->setType(Context.DependentTy);
1513 return;
1514 }
1515
1516 DecompType = DecompType.getNonReferenceType();
1517 ArrayRef<BindingDecl*> Bindings = DD->bindings();
1518
1519 // C++1z [dcl.decomp]/2:
1520 // If E is an array type [...]
1521 // As an extension, we also support decomposition of built-in complex and
1522 // vector types.
1523 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) {
1524 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT))
1525 DD->setInvalidDecl();
1526 return;
1527 }
1528 if (auto *VT = DecompType->getAs<VectorType>()) {
1529 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT))
1530 DD->setInvalidDecl();
1531 return;
1532 }
1533 if (auto *CT = DecompType->getAs<ComplexType>()) {
1534 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT))
1535 DD->setInvalidDecl();
1536 return;
1537 }
1538
1539 // C++1z [dcl.decomp]/3:
1540 // if the expression std::tuple_size<E>::value is a well-formed integral
1541 // constant expression, [...]
1542 llvm::APSInt TupleSize(32);
1543 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) {
1544 case IsTupleLike::Error:
1545 DD->setInvalidDecl();
1546 return;
1547
1548 case IsTupleLike::TupleLike:
1549 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize))
1550 DD->setInvalidDecl();
1551 return;
1552
1553 case IsTupleLike::NotTupleLike:
1554 break;
1555 }
1556
1557 // C++1z [dcl.dcl]/8:
1558 // [E shall be of array or non-union class type]
1559 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl();
1560 if (!RD || RD->isUnion()) {
1561 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type)
1562 << DD << !RD << DecompType;
1563 DD->setInvalidDecl();
1564 return;
1565 }
1566
1567 // C++1z [dcl.decomp]/4:
1568 // all of E's non-static data members shall be [...] direct members of
1569 // E or of the same unambiguous public base class of E, ...
1570 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD))
1571 DD->setInvalidDecl();
1572}
1573
1574/// Merge the exception specifications of two variable declarations.
1575///
1576/// This is called when there's a redeclaration of a VarDecl. The function
1577/// checks if the redeclaration might have an exception specification and
1578/// validates compatibility and merges the specs if necessary.
1579void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
1580 // Shortcut if exceptions are disabled.
1581 if (!getLangOpts().CXXExceptions)
1582 return;
1583
1584 assert(Context.hasSameType(New->getType(), Old->getType()) &&(static_cast <bool> (Context.hasSameType(New->getType
(), Old->getType()) && "Should only be called if types are otherwise the same."
) ? void (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 1585, __extension__ __PRETTY_FUNCTION__
))
1585 "Should only be called if types are otherwise the same.")(static_cast <bool> (Context.hasSameType(New->getType
(), Old->getType()) && "Should only be called if types are otherwise the same."
) ? void (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 1585, __extension__ __PRETTY_FUNCTION__
))
;
1586
1587 QualType NewType = New->getType();
1588 QualType OldType = Old->getType();
1589
1590 // We're only interested in pointers and references to functions, as well
1591 // as pointers to member functions.
1592 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
1593 NewType = R->getPointeeType();
1594 OldType = OldType->castAs<ReferenceType>()->getPointeeType();
1595 } else if (const PointerType *P = NewType->getAs<PointerType>()) {
1596 NewType = P->getPointeeType();
1597 OldType = OldType->castAs<PointerType>()->getPointeeType();
1598 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
1599 NewType = M->getPointeeType();
1600 OldType = OldType->castAs<MemberPointerType>()->getPointeeType();
1601 }
1602
1603 if (!NewType->isFunctionProtoType())
1604 return;
1605
1606 // There's lots of special cases for functions. For function pointers, system
1607 // libraries are hopefully not as broken so that we don't need these
1608 // workarounds.
1609 if (CheckEquivalentExceptionSpec(
1610 OldType->getAs<FunctionProtoType>(), Old->getLocation(),
1611 NewType->getAs<FunctionProtoType>(), New->getLocation())) {
1612 New->setInvalidDecl();
1613 }
1614}
1615
1616/// CheckCXXDefaultArguments - Verify that the default arguments for a
1617/// function declaration are well-formed according to C++
1618/// [dcl.fct.default].
1619void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
1620 unsigned NumParams = FD->getNumParams();
1621 unsigned ParamIdx = 0;
1622
1623 // This checking doesn't make sense for explicit specializations; their
1624 // default arguments are determined by the declaration we're specializing,
1625 // not by FD.
1626 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
1627 return;
1628 if (auto *FTD = FD->getDescribedFunctionTemplate())
1629 if (FTD->isMemberSpecialization())
1630 return;
1631
1632 // Find first parameter with a default argument
1633 for (; ParamIdx < NumParams; ++ParamIdx) {
1634 ParmVarDecl *Param = FD->getParamDecl(ParamIdx);
1635 if (Param->hasDefaultArg())
1636 break;
1637 }
1638
1639 // C++20 [dcl.fct.default]p4:
1640 // In a given function declaration, each parameter subsequent to a parameter
1641 // with a default argument shall have a default argument supplied in this or
1642 // a previous declaration, unless the parameter was expanded from a
1643 // parameter pack, or shall be a function parameter pack.
1644 for (; ParamIdx < NumParams; ++ParamIdx) {
1645 ParmVarDecl *Param = FD->getParamDecl(ParamIdx);
1646 if (!Param->hasDefaultArg() && !Param->isParameterPack() &&
1647 !(CurrentInstantiationScope &&
1648 CurrentInstantiationScope->isLocalPackExpansion(Param))) {
1649 if (Param->isInvalidDecl())
1650 /* We already complained about this parameter. */;
1651 else if (Param->getIdentifier())
1652 Diag(Param->getLocation(),
1653 diag::err_param_default_argument_missing_name)
1654 << Param->getIdentifier();
1655 else
1656 Diag(Param->getLocation(),
1657 diag::err_param_default_argument_missing);
1658 }
1659 }
1660}
1661
1662/// Check that the given type is a literal type. Issue a diagnostic if not,
1663/// if Kind is Diagnose.
1664/// \return \c true if a problem has been found (and optionally diagnosed).
1665template <typename... Ts>
1666static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind,
1667 SourceLocation Loc, QualType T, unsigned DiagID,
1668 Ts &&...DiagArgs) {
1669 if (T->isDependentType())
1670 return false;
1671
1672 switch (Kind) {
1673 case Sema::CheckConstexprKind::Diagnose:
1674 return SemaRef.RequireLiteralType(Loc, T, DiagID,
1675 std::forward<Ts>(DiagArgs)...);
1676
1677 case Sema::CheckConstexprKind::CheckValid:
1678 return !T->isLiteralType(SemaRef.Context);
1679 }
1680
1681 llvm_unreachable("unknown CheckConstexprKind")::llvm::llvm_unreachable_internal("unknown CheckConstexprKind"
, "clang/lib/Sema/SemaDeclCXX.cpp", 1681)
;
1682}
1683
1684/// Determine whether a destructor cannot be constexpr due to
1685static bool CheckConstexprDestructorSubobjects(Sema &SemaRef,
1686 const CXXDestructorDecl *DD,
1687 Sema::CheckConstexprKind Kind) {
1688 auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) {
1689 const CXXRecordDecl *RD =
1690 T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1691 if (!RD || RD->hasConstexprDestructor())
1692 return true;
1693
1694 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1695 SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject)
1696 << static_cast<int>(DD->getConstexprKind()) << !FD
1697 << (FD ? FD->getDeclName() : DeclarationName()) << T;
1698 SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject)
1699 << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T;
1700 }
1701 return false;
1702 };
1703
1704 const CXXRecordDecl *RD = DD->getParent();
1705 for (const CXXBaseSpecifier &B : RD->bases())
1706 if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr))
1707 return false;
1708 for (const FieldDecl *FD : RD->fields())
1709 if (!Check(FD->getLocation(), FD->getType(), FD))
1710 return false;
1711 return true;
1712}
1713
1714/// Check whether a function's parameter types are all literal types. If so,
1715/// return true. If not, produce a suitable diagnostic and return false.
1716static bool CheckConstexprParameterTypes(Sema &SemaRef,
1717 const FunctionDecl *FD,
1718 Sema::CheckConstexprKind Kind) {
1719 unsigned ArgIndex = 0;
1720 const auto *FT = FD->getType()->castAs<FunctionProtoType>();
1721 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
1722 e = FT->param_type_end();
1723 i != e; ++i, ++ArgIndex) {
1724 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
1725 assert(PD && "null in a parameter list")(static_cast <bool> (PD && "null in a parameter list"
) ? void (0) : __assert_fail ("PD && \"null in a parameter list\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 1725, __extension__ __PRETTY_FUNCTION__
))
;
1726 SourceLocation ParamLoc = PD->getLocation();
1727 if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i,
1728 diag::err_constexpr_non_literal_param, ArgIndex + 1,
1729 PD->getSourceRange(), isa<CXXConstructorDecl>(FD),
1730 FD->isConsteval()))
1731 return false;
1732 }
1733 return true;
1734}
1735
1736/// Check whether a function's return type is a literal type. If so, return
1737/// true. If not, produce a suitable diagnostic and return false.
1738static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD,
1739 Sema::CheckConstexprKind Kind) {
1740 if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(),
1741 diag::err_constexpr_non_literal_return,
1742 FD->isConsteval()))
1743 return false;
1744 return true;
1745}
1746
1747/// Get diagnostic %select index for tag kind for
1748/// record diagnostic message.
1749/// WARNING: Indexes apply to particular diagnostics only!
1750///
1751/// \returns diagnostic %select index.
1752static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
1753 switch (Tag) {
1754 case TTK_Struct: return 0;
1755 case TTK_Interface: return 1;
1756 case TTK_Class: return 2;
1757 default: llvm_unreachable("Invalid tag kind for record diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for record diagnostic!"
, "clang/lib/Sema/SemaDeclCXX.cpp", 1757)
;
1758 }
1759}
1760
1761static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
1762 Stmt *Body,
1763 Sema::CheckConstexprKind Kind);
1764
1765// Check whether a function declaration satisfies the requirements of a
1766// constexpr function definition or a constexpr constructor definition. If so,
1767// return true. If not, produce appropriate diagnostics (unless asked not to by
1768// Kind) and return false.
1769//
1770// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
1771bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD,
1772 CheckConstexprKind Kind) {
1773 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
1774 if (MD && MD->isInstance()) {
1775 // C++11 [dcl.constexpr]p4:
1776 // The definition of a constexpr constructor shall satisfy the following
1777 // constraints:
1778 // - the class shall not have any virtual base classes;
1779 //
1780 // FIXME: This only applies to constructors and destructors, not arbitrary
1781 // member functions.
1782 const CXXRecordDecl *RD = MD->getParent();
1783 if (RD->getNumVBases()) {
1784 if (Kind == CheckConstexprKind::CheckValid)
1785 return false;
1786
1787 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
1788 << isa<CXXConstructorDecl>(NewFD)
1789 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
1790 for (const auto &I : RD->vbases())
1791 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
1792 << I.getSourceRange();
1793 return false;
1794 }
1795 }
1796
1797 if (!isa<CXXConstructorDecl>(NewFD)) {
1798 // C++11 [dcl.constexpr]p3:
1799 // The definition of a constexpr function shall satisfy the following
1800 // constraints:
1801 // - it shall not be virtual; (removed in C++20)
1802 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
1803 if (Method && Method->isVirtual()) {
1804 if (getLangOpts().CPlusPlus20) {
1805 if (Kind == CheckConstexprKind::Diagnose)
1806 Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual);
1807 } else {
1808 if (Kind == CheckConstexprKind::CheckValid)
1809 return false;
1810
1811 Method = Method->getCanonicalDecl();
1812 Diag(Method->getLocation(), diag::err_constexpr_virtual);
1813
1814 // If it's not obvious why this function is virtual, find an overridden
1815 // function which uses the 'virtual' keyword.
1816 const CXXMethodDecl *WrittenVirtual = Method;
1817 while (!WrittenVirtual->isVirtualAsWritten())
1818 WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
1819 if (WrittenVirtual != Method)
1820 Diag(WrittenVirtual->getLocation(),
1821 diag::note_overridden_virtual_function);
1822 return false;
1823 }
1824 }
1825
1826 // - its return type shall be a literal type;
1827 if (!CheckConstexprReturnType(*this, NewFD, Kind))
1828 return false;
1829 }
1830
1831 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) {
1832 // A destructor can be constexpr only if the defaulted destructor could be;
1833 // we don't need to check the members and bases if we already know they all
1834 // have constexpr destructors.
1835 if (!Dtor->getParent()->defaultedDestructorIsConstexpr()) {
1836 if (Kind == CheckConstexprKind::CheckValid)
1837 return false;
1838 if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind))
1839 return false;
1840 }
1841 }
1842
1843 // - each of its parameter types shall be a literal type;
1844 if (!CheckConstexprParameterTypes(*this, NewFD, Kind))
1845 return false;
1846
1847 Stmt *Body = NewFD->getBody();
1848 assert(Body &&(static_cast <bool> (Body && "CheckConstexprFunctionDefinition called on function with no body"
) ? void (0) : __assert_fail ("Body && \"CheckConstexprFunctionDefinition called on function with no body\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 1849, __extension__ __PRETTY_FUNCTION__
))
1849 "CheckConstexprFunctionDefinition called on function with no body")(static_cast <bool> (Body && "CheckConstexprFunctionDefinition called on function with no body"
) ? void (0) : __assert_fail ("Body && \"CheckConstexprFunctionDefinition called on function with no body\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 1849, __extension__ __PRETTY_FUNCTION__
))
;
1850 return CheckConstexprFunctionBody(*this, NewFD, Body, Kind);
1851}
1852
1853/// Check the given declaration statement is legal within a constexpr function
1854/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
1855///
1856/// \return true if the body is OK (maybe only as an extension), false if we
1857/// have diagnosed a problem.
1858static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
1859 DeclStmt *DS, SourceLocation &Cxx1yLoc,
1860 Sema::CheckConstexprKind Kind) {
1861 // C++11 [dcl.constexpr]p3 and p4:
1862 // The definition of a constexpr function(p3) or constructor(p4) [...] shall
1863 // contain only
1864 for (const auto *DclIt : DS->decls()) {
1865 switch (DclIt->getKind()) {
1866 case Decl::StaticAssert:
1867 case Decl::Using:
1868 case Decl::UsingShadow:
1869 case Decl::UsingDirective:
1870 case Decl::UnresolvedUsingTypename:
1871 case Decl::UnresolvedUsingValue:
1872 case Decl::UsingEnum:
1873 // - static_assert-declarations
1874 // - using-declarations,
1875 // - using-directives,
1876 // - using-enum-declaration
1877 continue;
1878
1879 case Decl::Typedef:
1880 case Decl::TypeAlias: {
1881 // - typedef declarations and alias-declarations that do not define
1882 // classes or enumerations,
1883 const auto *TN = cast<TypedefNameDecl>(DclIt);
1884 if (TN->getUnderlyingType()->isVariablyModifiedType()) {
1885 // Don't allow variably-modified types in constexpr functions.
1886 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1887 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
1888 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
1889 << TL.getSourceRange() << TL.getType()
1890 << isa<CXXConstructorDecl>(Dcl);
1891 }
1892 return false;
1893 }
1894 continue;
1895 }
1896
1897 case Decl::Enum:
1898 case Decl::CXXRecord:
1899 // C++1y allows types to be defined, not just declared.
1900 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) {
1901 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1902 SemaRef.Diag(DS->getBeginLoc(),
1903 SemaRef.getLangOpts().CPlusPlus14
1904 ? diag::warn_cxx11_compat_constexpr_type_definition
1905 : diag::ext_constexpr_type_definition)
1906 << isa<CXXConstructorDecl>(Dcl);
1907 } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1908 return false;
1909 }
1910 }
1911 continue;
1912
1913 case Decl::EnumConstant:
1914 case Decl::IndirectField:
1915 case Decl::ParmVar:
1916 // These can only appear with other declarations which are banned in
1917 // C++11 and permitted in C++1y, so ignore them.
1918 continue;
1919
1920 case Decl::Var:
1921 case Decl::Decomposition: {
1922 // C++1y [dcl.constexpr]p3 allows anything except:
1923 // a definition of a variable of non-literal type or of static or
1924 // thread storage duration or [before C++2a] for which no
1925 // initialization is performed.
1926 const auto *VD = cast<VarDecl>(DclIt);
1927 if (VD->isThisDeclarationADefinition()) {
1928 if (VD->isStaticLocal()) {
1929 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1930 SemaRef.Diag(VD->getLocation(),
1931 SemaRef.getLangOpts().CPlusPlus23
1932 ? diag::warn_cxx20_compat_constexpr_var
1933 : diag::ext_constexpr_static_var)
1934 << isa<CXXConstructorDecl>(Dcl)
1935 << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
1936 } else if (!SemaRef.getLangOpts().CPlusPlus23) {
1937 return false;
1938 }
1939 }
1940 if (SemaRef.LangOpts.CPlusPlus23) {
1941 CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(),
1942 diag::warn_cxx20_compat_constexpr_var,
1943 isa<CXXConstructorDecl>(Dcl),
1944 /*variable of non-literal type*/ 2);
1945 } else if (CheckLiteralType(
1946 SemaRef, Kind, VD->getLocation(), VD->getType(),
1947 diag::err_constexpr_local_var_non_literal_type,
1948 isa<CXXConstructorDecl>(Dcl))) {
1949 return false;
1950 }
1951 if (!VD->getType()->isDependentType() &&
1952 !VD->hasInit() && !VD->isCXXForRangeDecl()) {
1953 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1954 SemaRef.Diag(
1955 VD->getLocation(),
1956 SemaRef.getLangOpts().CPlusPlus20
1957 ? diag::warn_cxx17_compat_constexpr_local_var_no_init
1958 : diag::ext_constexpr_local_var_no_init)
1959 << isa<CXXConstructorDecl>(Dcl);
1960 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
1961 return false;
1962 }
1963 continue;
1964 }
1965 }
1966 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1967 SemaRef.Diag(VD->getLocation(),
1968 SemaRef.getLangOpts().CPlusPlus14
1969 ? diag::warn_cxx11_compat_constexpr_local_var
1970 : diag::ext_constexpr_local_var)
1971 << isa<CXXConstructorDecl>(Dcl);
1972 } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1973 return false;
1974 }
1975 continue;
1976 }
1977
1978 case Decl::NamespaceAlias:
1979 case Decl::Function:
1980 // These are disallowed in C++11 and permitted in C++1y. Allow them
1981 // everywhere as an extension.
1982 if (!Cxx1yLoc.isValid())
1983 Cxx1yLoc = DS->getBeginLoc();
1984 continue;
1985
1986 default:
1987 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1988 SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
1989 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
1990 }
1991 return false;
1992 }
1993 }
1994
1995 return true;
1996}
1997
1998/// Check that the given field is initialized within a constexpr constructor.
1999///
2000/// \param Dcl The constexpr constructor being checked.
2001/// \param Field The field being checked. This may be a member of an anonymous
2002/// struct or union nested within the class being checked.
2003/// \param Inits All declarations, including anonymous struct/union members and
2004/// indirect members, for which any initialization was provided.
2005/// \param Diagnosed Whether we've emitted the error message yet. Used to attach
2006/// multiple notes for different members to the same error.
2007/// \param Kind Whether we're diagnosing a constructor as written or determining
2008/// whether the formal requirements are satisfied.
2009/// \return \c false if we're checking for validity and the constructor does
2010/// not satisfy the requirements on a constexpr constructor.
2011static bool CheckConstexprCtorInitializer(Sema &SemaRef,
2012 const FunctionDecl *Dcl,
2013 FieldDecl *Field,
2014 llvm::SmallSet<Decl*, 16> &Inits,
2015 bool &Diagnosed,
2016 Sema::CheckConstexprKind Kind) {
2017 // In C++20 onwards, there's nothing to check for validity.
2018 if (Kind == Sema::CheckConstexprKind::CheckValid &&
2019 SemaRef.getLangOpts().CPlusPlus20)
2020 return true;
2021
2022 if (Field->isInvalidDecl())
2023 return true;
2024
2025 if (Field->isUnnamedBitfield())
2026 return true;
2027
2028 // Anonymous unions with no variant members and empty anonymous structs do not
2029 // need to be explicitly initialized. FIXME: Anonymous structs that contain no
2030 // indirect fields don't need initializing.
2031 if (Field->isAnonymousStructOrUnion() &&
2032 (Field->getType()->isUnionType()
2033 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
2034 : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
2035 return true;
2036
2037 if (!Inits.count(Field)) {
2038 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2039 if (!Diagnosed) {
2040 SemaRef.Diag(Dcl->getLocation(),
2041 SemaRef.getLangOpts().CPlusPlus20
2042 ? diag::warn_cxx17_compat_constexpr_ctor_missing_init
2043 : diag::ext_constexpr_ctor_missing_init);
2044 Diagnosed = true;
2045 }
2046 SemaRef.Diag(Field->getLocation(),
2047 diag::note_constexpr_ctor_missing_init);
2048 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
2049 return false;
2050 }
2051 } else if (Field->isAnonymousStructOrUnion()) {
2052 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
2053 for (auto *I : RD->fields())
2054 // If an anonymous union contains an anonymous struct of which any member
2055 // is initialized, all members must be initialized.
2056 if (!RD->isUnion() || Inits.count(I))
2057 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
2058 Kind))
2059 return false;
2060 }
2061 return true;
2062}
2063
2064/// Check the provided statement is allowed in a constexpr function
2065/// definition.
2066static bool
2067CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
2068 SmallVectorImpl<SourceLocation> &ReturnStmts,
2069 SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc,
2070 SourceLocation &Cxx2bLoc,
2071 Sema::CheckConstexprKind Kind) {
2072 // - its function-body shall be [...] a compound-statement that contains only
2073 switch (S->getStmtClass()) {
2074 case Stmt::NullStmtClass:
2075 // - null statements,
2076 return true;
2077
2078 case Stmt::DeclStmtClass:
2079 // - static_assert-declarations
2080 // - using-declarations,
2081 // - using-directives,
2082 // - typedef declarations and alias-declarations that do not define
2083 // classes or enumerations,
2084 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind))
2085 return false;
2086 return true;
2087
2088 case Stmt::ReturnStmtClass:
2089 // - and exactly one return statement;
2090 if (isa<CXXConstructorDecl>(Dcl)) {
2091 // C++1y allows return statements in constexpr constructors.
2092 if (!Cxx1yLoc.isValid())
2093 Cxx1yLoc = S->getBeginLoc();
2094 return true;
2095 }
2096
2097 ReturnStmts.push_back(S->getBeginLoc());
2098 return true;
2099
2100 case Stmt::AttributedStmtClass:
2101 // Attributes on a statement don't affect its formal kind and hence don't
2102 // affect its validity in a constexpr function.
2103 return CheckConstexprFunctionStmt(
2104 SemaRef, Dcl, cast<AttributedStmt>(S)->getSubStmt(), ReturnStmts,
2105 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind);
2106
2107 case Stmt::CompoundStmtClass: {
2108 // C++1y allows compound-statements.
2109 if (!Cxx1yLoc.isValid())
2110 Cxx1yLoc = S->getBeginLoc();
2111
2112 CompoundStmt *CompStmt = cast<CompoundStmt>(S);
2113 for (auto *BodyIt : CompStmt->body()) {
2114 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
2115 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2116 return false;
2117 }
2118 return true;
2119 }
2120
2121 case Stmt::IfStmtClass: {
2122 // C++1y allows if-statements.
2123 if (!Cxx1yLoc.isValid())
2124 Cxx1yLoc = S->getBeginLoc();
2125
2126 IfStmt *If = cast<IfStmt>(S);
2127 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
2128 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2129 return false;
2130 if (If->getElse() &&
2131 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
2132 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2133 return false;
2134 return true;
2135 }
2136
2137 case Stmt::WhileStmtClass:
2138 case Stmt::DoStmtClass:
2139 case Stmt::ForStmtClass:
2140 case Stmt::CXXForRangeStmtClass:
2141 case Stmt::ContinueStmtClass:
2142 // C++1y allows all of these. We don't allow them as extensions in C++11,
2143 // because they don't make sense without variable mutation.
2144 if (!SemaRef.getLangOpts().CPlusPlus14)
2145 break;
2146 if (!Cxx1yLoc.isValid())
2147 Cxx1yLoc = S->getBeginLoc();
2148 for (Stmt *SubStmt : S->children()) {
2149 if (SubStmt &&
2150 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2151 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2152 return false;
2153 }
2154 return true;
2155
2156 case Stmt::SwitchStmtClass:
2157 case Stmt::CaseStmtClass:
2158 case Stmt::DefaultStmtClass:
2159 case Stmt::BreakStmtClass:
2160 // C++1y allows switch-statements, and since they don't need variable
2161 // mutation, we can reasonably allow them in C++11 as an extension.
2162 if (!Cxx1yLoc.isValid())
2163 Cxx1yLoc = S->getBeginLoc();
2164 for (Stmt *SubStmt : S->children()) {
2165 if (SubStmt &&
2166 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2167 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2168 return false;
2169 }
2170 return true;
2171
2172 case Stmt::LabelStmtClass:
2173 case Stmt::GotoStmtClass:
2174 if (Cxx2bLoc.isInvalid())
2175 Cxx2bLoc = S->getBeginLoc();
2176 for (Stmt *SubStmt : S->children()) {
2177 if (SubStmt &&
2178 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2179 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2180 return false;
2181 }
2182 return true;
2183
2184 case Stmt::GCCAsmStmtClass:
2185 case Stmt::MSAsmStmtClass:
2186 // C++2a allows inline assembly statements.
2187 case Stmt::CXXTryStmtClass:
2188 if (Cxx2aLoc.isInvalid())
2189 Cxx2aLoc = S->getBeginLoc();
2190 for (Stmt *SubStmt : S->children()) {
2191 if (SubStmt &&
2192 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2193 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2194 return false;
2195 }
2196 return true;
2197
2198 case Stmt::CXXCatchStmtClass:
2199 // Do not bother checking the language mode (already covered by the
2200 // try block check).
2201 if (!CheckConstexprFunctionStmt(
2202 SemaRef, Dcl, cast<CXXCatchStmt>(S)->getHandlerBlock(), ReturnStmts,
2203 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2204 return false;
2205 return true;
2206
2207 default:
2208 if (!isa<Expr>(S))
2209 break;
2210
2211 // C++1y allows expression-statements.
2212 if (!Cxx1yLoc.isValid())
2213 Cxx1yLoc = S->getBeginLoc();
2214 return true;
2215 }
2216
2217 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2218 SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
2219 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2220 }
2221 return false;
2222}
2223
2224/// Check the body for the given constexpr function declaration only contains
2225/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
2226///
2227/// \return true if the body is OK, false if we have found or diagnosed a
2228/// problem.
2229static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
2230 Stmt *Body,
2231 Sema::CheckConstexprKind Kind) {
2232 SmallVector<SourceLocation, 4> ReturnStmts;
2233
2234 if (isa<CXXTryStmt>(Body)) {
2235 // C++11 [dcl.constexpr]p3:
2236 // The definition of a constexpr function shall satisfy the following
2237 // constraints: [...]
2238 // - its function-body shall be = delete, = default, or a
2239 // compound-statement
2240 //
2241 // C++11 [dcl.constexpr]p4:
2242 // In the definition of a constexpr constructor, [...]
2243 // - its function-body shall not be a function-try-block;
2244 //
2245 // This restriction is lifted in C++2a, as long as inner statements also
2246 // apply the general constexpr rules.
2247 switch (Kind) {
2248 case Sema::CheckConstexprKind::CheckValid:
2249 if (!SemaRef.getLangOpts().CPlusPlus20)
2250 return false;
2251 break;
2252
2253 case Sema::CheckConstexprKind::Diagnose:
2254 SemaRef.Diag(Body->getBeginLoc(),
2255 !SemaRef.getLangOpts().CPlusPlus20
2256 ? diag::ext_constexpr_function_try_block_cxx20
2257 : diag::warn_cxx17_compat_constexpr_function_try_block)
2258 << isa<CXXConstructorDecl>(Dcl);
2259 break;
2260 }
2261 }
2262
2263 // - its function-body shall be [...] a compound-statement that contains only
2264 // [... list of cases ...]
2265 //
2266 // Note that walking the children here is enough to properly check for
2267 // CompoundStmt and CXXTryStmt body.
2268 SourceLocation Cxx1yLoc, Cxx2aLoc, Cxx2bLoc;
2269 for (Stmt *SubStmt : Body->children()) {
2270 if (SubStmt &&
2271 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2272 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2273 return false;
2274 }
2275
2276 if (Kind == Sema::CheckConstexprKind::CheckValid) {
2277 // If this is only valid as an extension, report that we don't satisfy the
2278 // constraints of the current language.
2279 if ((Cxx2bLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus23) ||
2280 (Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus20) ||
2281 (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17))
2282 return false;
2283 } else if (Cxx2bLoc.isValid()) {
2284 SemaRef.Diag(Cxx2bLoc,
2285 SemaRef.getLangOpts().CPlusPlus23
2286 ? diag::warn_cxx20_compat_constexpr_body_invalid_stmt
2287 : diag::ext_constexpr_body_invalid_stmt_cxx23)
2288 << isa<CXXConstructorDecl>(Dcl);
2289 } else if (Cxx2aLoc.isValid()) {
2290 SemaRef.Diag(Cxx2aLoc,
2291 SemaRef.getLangOpts().CPlusPlus20
2292 ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt
2293 : diag::ext_constexpr_body_invalid_stmt_cxx20)
2294 << isa<CXXConstructorDecl>(Dcl);
2295 } else if (Cxx1yLoc.isValid()) {
2296 SemaRef.Diag(Cxx1yLoc,
2297 SemaRef.getLangOpts().CPlusPlus14
2298 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
2299 : diag::ext_constexpr_body_invalid_stmt)
2300 << isa<CXXConstructorDecl>(Dcl);
2301 }
2302
2303 if (const CXXConstructorDecl *Constructor
2304 = dyn_cast<CXXConstructorDecl>(Dcl)) {
2305 const CXXRecordDecl *RD = Constructor->getParent();
2306 // DR1359:
2307 // - every non-variant non-static data member and base class sub-object
2308 // shall be initialized;
2309 // DR1460:
2310 // - if the class is a union having variant members, exactly one of them
2311 // shall be initialized;
2312 if (RD->isUnion()) {
2313 if (Constructor->getNumCtorInitializers() == 0 &&
2314 RD->hasVariantMembers()) {
2315 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2316 SemaRef.Diag(
2317 Dcl->getLocation(),
2318 SemaRef.getLangOpts().CPlusPlus20
2319 ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init
2320 : diag::ext_constexpr_union_ctor_no_init);
2321 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
2322 return false;
2323 }
2324 }
2325 } else if (!Constructor->isDependentContext() &&
2326 !Constructor->isDelegatingConstructor()) {
2327 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases")(static_cast <bool> (RD->getNumVBases() == 0 &&
"constexpr ctor with virtual bases") ? void (0) : __assert_fail
("RD->getNumVBases() == 0 && \"constexpr ctor with virtual bases\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 2327, __extension__ __PRETTY_FUNCTION__
))
;
2328
2329 // Skip detailed checking if we have enough initializers, and we would
2330 // allow at most one initializer per member.
2331 bool AnyAnonStructUnionMembers = false;
2332 unsigned Fields = 0;
2333 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
2334 E = RD->field_end(); I != E; ++I, ++Fields) {
2335 if (I->isAnonymousStructOrUnion()) {
2336 AnyAnonStructUnionMembers = true;
2337 break;
2338 }
2339 }
2340 // DR1460:
2341 // - if the class is a union-like class, but is not a union, for each of
2342 // its anonymous union members having variant members, exactly one of
2343 // them shall be initialized;
2344 if (AnyAnonStructUnionMembers ||
2345 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
2346 // Check initialization of non-static data members. Base classes are
2347 // always initialized so do not need to be checked. Dependent bases
2348 // might not have initializers in the member initializer list.
2349 llvm::SmallSet<Decl*, 16> Inits;
2350 for (const auto *I: Constructor->inits()) {
2351 if (FieldDecl *FD = I->getMember())
2352 Inits.insert(FD);
2353 else if (IndirectFieldDecl *ID = I->getIndirectMember())
2354 Inits.insert(ID->chain_begin(), ID->chain_end());
2355 }
2356
2357 bool Diagnosed = false;
2358 for (auto *I : RD->fields())
2359 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
2360 Kind))
2361 return false;
2362 }
2363 }
2364 } else {
2365 if (ReturnStmts.empty()) {
2366 // C++1y doesn't require constexpr functions to contain a 'return'
2367 // statement. We still do, unless the return type might be void, because
2368 // otherwise if there's no return statement, the function cannot
2369 // be used in a core constant expression.
2370 bool OK = SemaRef.getLangOpts().CPlusPlus14 &&
2371 (Dcl->getReturnType()->isVoidType() ||
2372 Dcl->getReturnType()->isDependentType());
2373 switch (Kind) {
2374 case Sema::CheckConstexprKind::Diagnose:
2375 SemaRef.Diag(Dcl->getLocation(),
2376 OK ? diag::warn_cxx11_compat_constexpr_body_no_return
2377 : diag::err_constexpr_body_no_return)
2378 << Dcl->isConsteval();
2379 if (!OK)
2380 return false;
2381 break;
2382
2383 case Sema::CheckConstexprKind::CheckValid:
2384 // The formal requirements don't include this rule in C++14, even
2385 // though the "must be able to produce a constant expression" rules
2386 // still imply it in some cases.
2387 if (!SemaRef.getLangOpts().CPlusPlus14)
2388 return false;
2389 break;
2390 }
2391 } else if (ReturnStmts.size() > 1) {
2392 switch (Kind) {
2393 case Sema::CheckConstexprKind::Diagnose:
2394 SemaRef.Diag(
2395 ReturnStmts.back(),
2396 SemaRef.getLangOpts().CPlusPlus14
2397 ? diag::warn_cxx11_compat_constexpr_body_multiple_return
2398 : diag::ext_constexpr_body_multiple_return);
2399 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
2400 SemaRef.Diag(ReturnStmts[I],
2401 diag::note_constexpr_body_previous_return);
2402 break;
2403
2404 case Sema::CheckConstexprKind::CheckValid:
2405 if (!SemaRef.getLangOpts().CPlusPlus14)
2406 return false;
2407 break;
2408 }
2409 }
2410 }
2411
2412 // C++11 [dcl.constexpr]p5:
2413 // if no function argument values exist such that the function invocation
2414 // substitution would produce a constant expression, the program is
2415 // ill-formed; no diagnostic required.
2416 // C++11 [dcl.constexpr]p3:
2417 // - every constructor call and implicit conversion used in initializing the
2418 // return value shall be one of those allowed in a constant expression.
2419 // C++11 [dcl.constexpr]p4:
2420 // - every constructor involved in initializing non-static data members and
2421 // base class sub-objects shall be a constexpr constructor.
2422 //
2423 // Note that this rule is distinct from the "requirements for a constexpr
2424 // function", so is not checked in CheckValid mode.
2425 SmallVector<PartialDiagnosticAt, 8> Diags;
2426 if (Kind == Sema::CheckConstexprKind::Diagnose &&
2427 !Expr::isPotentialConstantExpr(Dcl, Diags)) {
2428 SemaRef.Diag(Dcl->getLocation(),
2429 diag::ext_constexpr_function_never_constant_expr)
2430 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2431 for (size_t I = 0, N = Diags.size(); I != N; ++I)
2432 SemaRef.Diag(Diags[I].first, Diags[I].second);
2433 // Don't return false here: we allow this for compatibility in
2434 // system headers.
2435 }
2436
2437 return true;
2438}
2439
2440/// Get the class that is directly named by the current context. This is the
2441/// class for which an unqualified-id in this scope could name a constructor
2442/// or destructor.
2443///
2444/// If the scope specifier denotes a class, this will be that class.
2445/// If the scope specifier is empty, this will be the class whose
2446/// member-specification we are currently within. Otherwise, there
2447/// is no such class.
2448CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) {
2449 assert(getLangOpts().CPlusPlus && "No class names in C!")(static_cast <bool> (getLangOpts().CPlusPlus &&
"No class names in C!") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 2449, __extension__ __PRETTY_FUNCTION__
))
;
2450
2451 if (SS && SS->isInvalid())
2452 return nullptr;
2453
2454 if (SS && SS->isNotEmpty()) {
2455 DeclContext *DC = computeDeclContext(*SS, true);
2456 return dyn_cast_or_null<CXXRecordDecl>(DC);
2457 }
2458
2459 return dyn_cast_or_null<CXXRecordDecl>(CurContext);
2460}
2461
2462/// isCurrentClassName - Determine whether the identifier II is the
2463/// name of the class type currently being defined. In the case of
2464/// nested classes, this will only return true if II is the name of
2465/// the innermost class.
2466bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S,
2467 const CXXScopeSpec *SS) {
2468 CXXRecordDecl *CurDecl = getCurrentClass(S, SS);
2469 return CurDecl && &II == CurDecl->getIdentifier();
2470}
2471
2472/// Determine whether the identifier II is a typo for the name of
2473/// the class type currently being defined. If so, update it to the identifier
2474/// that should have been used.
2475bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
2476 assert(getLangOpts().CPlusPlus && "No class names in C!")(static_cast <bool> (getLangOpts().CPlusPlus &&
"No class names in C!") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 2476, __extension__ __PRETTY_FUNCTION__
))
;
2477
2478 if (!getLangOpts().SpellChecking)
2479 return false;
2480
2481 CXXRecordDecl *CurDecl;
2482 if (SS && SS->isSet() && !SS->isInvalid()) {
2483 DeclContext *DC = computeDeclContext(*SS, true);
2484 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2485 } else
2486 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2487
2488 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
2489 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
2490 < II->getLength()) {
2491 II = CurDecl->getIdentifier();
2492 return true;
2493 }
2494
2495 return false;
2496}
2497
2498/// Determine whether the given class is a base class of the given
2499/// class, including looking at dependent bases.
2500static bool findCircularInheritance(const CXXRecordDecl *Class,
2501 const CXXRecordDecl *Current) {
2502 SmallVector<const CXXRecordDecl*, 8> Queue;
2503
2504 Class = Class->getCanonicalDecl();
2505 while (true) {
2506 for (const auto &I : Current->bases()) {
2507 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
2508 if (!Base)
2509 continue;
2510
2511 Base = Base->getDefinition();
2512 if (!Base)
2513 continue;
2514
2515 if (Base->getCanonicalDecl() == Class)
2516 return true;
2517
2518 Queue.push_back(Base);
2519 }
2520
2521 if (Queue.empty())
2522 return false;
2523
2524 Current = Queue.pop_back_val();
2525 }
2526
2527 return false;
2528}
2529
2530/// Check the validity of a C++ base class specifier.
2531///
2532/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
2533/// and returns NULL otherwise.
2534CXXBaseSpecifier *
2535Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
2536 SourceRange SpecifierRange,
2537 bool Virtual, AccessSpecifier Access,
2538 TypeSourceInfo *TInfo,
2539 SourceLocation EllipsisLoc) {
2540 // In HLSL, unspecified class access is public rather than private.
2541 if (getLangOpts().HLSL && Class->getTagKind() == TTK_Class &&
2542 Access == AS_none)
2543 Access = AS_public;
2544
2545 QualType BaseType = TInfo->getType();
2546 if (BaseType->containsErrors()) {
2547 // Already emitted a diagnostic when parsing the error type.
2548 return nullptr;
2549 }
2550 // C++ [class.union]p1:
2551 // A union shall not have base classes.
2552 if (Class->isUnion()) {
2553 Diag(Class->getLocation(), diag::err_base_clause_on_union)
2554 << SpecifierRange;
2555 return nullptr;
2556 }
2557
2558 if (EllipsisLoc.isValid() &&
2559 !TInfo->getType()->containsUnexpandedParameterPack()) {
2560 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2561 << TInfo->getTypeLoc().getSourceRange();
2562 EllipsisLoc = SourceLocation();
2563 }
2564
2565 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
2566
2567 if (BaseType->isDependentType()) {
2568 // Make sure that we don't have circular inheritance among our dependent
2569 // bases. For non-dependent bases, the check for completeness below handles
2570 // this.
2571 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
2572 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
2573 ((BaseDecl = BaseDecl->getDefinition()) &&
2574 findCircularInheritance(Class, BaseDecl))) {
2575 Diag(BaseLoc, diag::err_circular_inheritance)
2576 << BaseType << Context.getTypeDeclType(Class);
2577
2578 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
2579 Diag(BaseDecl->getLocation(), diag::note_previous_decl)
2580 << BaseType;
2581
2582 return nullptr;
2583 }
2584 }
2585
2586 // Make sure that we don't make an ill-formed AST where the type of the
2587 // Class is non-dependent and its attached base class specifier is an
2588 // dependent type, which violates invariants in many clang code paths (e.g.
2589 // constexpr evaluator). If this case happens (in errory-recovery mode), we
2590 // explicitly mark the Class decl invalid. The diagnostic was already
2591 // emitted.
2592 if (!Class->getTypeForDecl()->isDependentType())
2593 Class->setInvalidDecl();
2594 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2595 Class->getTagKind() == TTK_Class,
2596 Access, TInfo, EllipsisLoc);
2597 }
2598
2599 // Base specifiers must be record types.
2600 if (!BaseType->isRecordType()) {
2601 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
2602 return nullptr;
2603 }
2604
2605 // C++ [class.union]p1:
2606 // A union shall not be used as a base class.
2607 if (BaseType->isUnionType()) {
2608 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
2609 return nullptr;
2610 }
2611
2612 // For the MS ABI, propagate DLL attributes to base class templates.
2613 if (Context.getTargetInfo().getCXXABI().isMicrosoft() ||
2614 Context.getTargetInfo().getTriple().isPS()) {
2615 if (Attr *ClassAttr = getDLLAttr(Class)) {
2616 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
2617 BaseType->getAsCXXRecordDecl())) {
2618 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate,
2619 BaseLoc);
2620 }
2621 }
2622 }
2623
2624 // C++ [class.derived]p2:
2625 // The class-name in a base-specifier shall not be an incompletely
2626 // defined class.
2627 if (RequireCompleteType(BaseLoc, BaseType,
2628 diag::err_incomplete_base_class, SpecifierRange)) {
2629 Class->setInvalidDecl();
2630 return nullptr;
2631 }
2632
2633 // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
2634 RecordDecl *BaseDecl = BaseType->castAs<RecordType>()->getDecl();
2635 assert(BaseDecl && "Record type has no declaration")(static_cast <bool> (BaseDecl && "Record type has no declaration"
) ? void (0) : __assert_fail ("BaseDecl && \"Record type has no declaration\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 2635, __extension__ __PRETTY_FUNCTION__
))
;
2636 BaseDecl = BaseDecl->getDefinition();
2637 assert(BaseDecl && "Base type is not incomplete, but has no definition")(static_cast <bool> (BaseDecl && "Base type is not incomplete, but has no definition"
) ? void (0) : __assert_fail ("BaseDecl && \"Base type is not incomplete, but has no definition\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 2637, __extension__ __PRETTY_FUNCTION__
))
;
2638 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
2639 assert(CXXBaseDecl && "Base type is not a C++ type")(static_cast <bool> (CXXBaseDecl && "Base type is not a C++ type"
) ? void (0) : __assert_fail ("CXXBaseDecl && \"Base type is not a C++ type\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 2639, __extension__ __PRETTY_FUNCTION__
))
;
2640
2641 // Microsoft docs say:
2642 // "If a base-class has a code_seg attribute, derived classes must have the
2643 // same attribute."
2644 const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>();
2645 const auto *DerivedCSA = Class->getAttr<CodeSegAttr>();
2646 if ((DerivedCSA || BaseCSA) &&
2647 (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) {
2648 Diag(Class->getLocation(), diag::err_mismatched_code_seg_base);
2649 Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here)
2650 << CXXBaseDecl;
2651 return nullptr;
2652 }
2653
2654 // A class which contains a flexible array member is not suitable for use as a
2655 // base class:
2656 // - If the layout determines that a base comes before another base,
2657 // the flexible array member would index into the subsequent base.
2658 // - If the layout determines that base comes before the derived class,
2659 // the flexible array member would index into the derived class.
2660 if (CXXBaseDecl->hasFlexibleArrayMember()) {
2661 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
2662 << CXXBaseDecl->getDeclName();
2663 return nullptr;
2664 }
2665
2666 // C++ [class]p3:
2667 // If a class is marked final and it appears as a base-type-specifier in
2668 // base-clause, the program is ill-formed.
2669 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
2670 Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
2671 << CXXBaseDecl->getDeclName()
2672 << FA->isSpelledAsSealed();
2673 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
2674 << CXXBaseDecl->getDeclName() << FA->getRange();
2675 return nullptr;
2676 }
2677
2678 if (BaseDecl->isInvalidDecl())
2679 Class->setInvalidDecl();
2680
2681 // Create the base specifier.
2682 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2683 Class->getTagKind() == TTK_Class,
2684 Access, TInfo, EllipsisLoc);
2685}
2686
2687/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
2688/// one entry in the base class list of a class specifier, for
2689/// example:
2690/// class foo : public bar, virtual private baz {
2691/// 'public bar' and 'virtual private baz' are each base-specifiers.
2692BaseResult Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
2693 const ParsedAttributesView &Attributes,
2694 bool Virtual, AccessSpecifier Access,
2695 ParsedType basetype, SourceLocation BaseLoc,
2696 SourceLocation EllipsisLoc) {
2697 if (!classdecl)
2698 return true;
2699
2700 AdjustDeclIfTemplate(classdecl);
2701 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
2702 if (!Class)
2703 return true;
2704
2705 // We haven't yet attached the base specifiers.
2706 Class->setIsParsingBaseSpecifiers();
2707
2708 // We do not support any C++11 attributes on base-specifiers yet.
2709 // Diagnose any attributes we see.
2710 for (const ParsedAttr &AL : Attributes) {
2711 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
2712 continue;
2713 Diag(AL.getLoc(), AL.getKind() == ParsedAttr::UnknownAttribute
2714 ? (unsigned)diag::warn_unknown_attribute_ignored
2715 : (unsigned)diag::err_base_specifier_attribute)
2716 << AL << AL.getRange();
2717 }
2718
2719 TypeSourceInfo *TInfo = nullptr;
2720 GetTypeFromParser(basetype, &TInfo);
2721
2722 if (EllipsisLoc.isInvalid() &&
2723 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
2724 UPPC_BaseType))
2725 return true;
2726
2727 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
2728 Virtual, Access, TInfo,
2729 EllipsisLoc))
2730 return BaseSpec;
2731 else
2732 Class->setInvalidDecl();
2733
2734 return true;
2735}
2736
2737/// Use small set to collect indirect bases. As this is only used
2738/// locally, there's no need to abstract the small size parameter.
2739typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
2740
2741/// Recursively add the bases of Type. Don't add Type itself.
2742static void
2743NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
2744 const QualType &Type)
2745{
2746 // Even though the incoming type is a base, it might not be
2747 // a class -- it could be a template parm, for instance.
2748 if (auto Rec = Type->getAs<RecordType>()) {
2749 auto Decl = Rec->getAsCXXRecordDecl();
2750
2751 // Iterate over its bases.
2752 for (const auto &BaseSpec : Decl->bases()) {
2753 QualType Base = Context.getCanonicalType(BaseSpec.getType())
2754 .getUnqualifiedType();
2755 if (Set.insert(Base).second)
2756 // If we've not already seen it, recurse.
2757 NoteIndirectBases(Context, Set, Base);
2758 }
2759 }
2760}
2761
2762/// Performs the actual work of attaching the given base class
2763/// specifiers to a C++ class.
2764bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class,
2765 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2766 if (Bases.empty())
2767 return false;
2768
2769 // Used to keep track of which base types we have already seen, so
2770 // that we can properly diagnose redundant direct base types. Note
2771 // that the key is always the unqualified canonical type of the base
2772 // class.
2773 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
2774
2775 // Used to track indirect bases so we can see if a direct base is
2776 // ambiguous.
2777 IndirectBaseSet IndirectBaseTypes;
2778
2779 // Copy non-redundant base specifiers into permanent storage.
2780 unsigned NumGoodBases = 0;
2781 bool Invalid = false;
2782 for (unsigned idx = 0; idx < Bases.size(); ++idx) {
2783 QualType NewBaseType
2784 = Context.getCanonicalType(Bases[idx]->getType());
2785 NewBaseType = NewBaseType.getLocalUnqualifiedType();
2786
2787 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
2788 if (KnownBase) {
2789 // C++ [class.mi]p3:
2790 // A class shall not be specified as a direct base class of a
2791 // derived class more than once.
2792 Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class)
2793 << KnownBase->getType() << Bases[idx]->getSourceRange();
2794
2795 // Delete the duplicate base class specifier; we're going to
2796 // overwrite its pointer later.
2797 Context.Deallocate(Bases[idx]);
2798
2799 Invalid = true;
2800 } else {
2801 // Okay, add this new base class.
2802 KnownBase = Bases[idx];
2803 Bases[NumGoodBases++] = Bases[idx];
2804
2805 if (NewBaseType->isDependentType())
2806 continue;
2807 // Note this base's direct & indirect bases, if there could be ambiguity.
2808 if (Bases.size() > 1)
2809 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
2810
2811 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
2812 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2813 if (Class->isInterface() &&
2814 (!RD->isInterfaceLike() ||
2815 KnownBase->getAccessSpecifier() != AS_public)) {
2816 // The Microsoft extension __interface does not permit bases that
2817 // are not themselves public interfaces.
2818 Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface)
2819 << getRecordDiagFromTagKind(RD->getTagKind()) << RD
2820 << RD->getSourceRange();
2821 Invalid = true;
2822 }
2823 if (RD->hasAttr<WeakAttr>())
2824 Class->addAttr(WeakAttr::CreateImplicit(Context));
2825 }
2826 }
2827 }
2828
2829 // Attach the remaining base class specifiers to the derived class.
2830 Class->setBases(Bases.data(), NumGoodBases);
2831
2832 // Check that the only base classes that are duplicate are virtual.
2833 for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
2834 // Check whether this direct base is inaccessible due to ambiguity.
2835 QualType BaseType = Bases[idx]->getType();
2836
2837 // Skip all dependent types in templates being used as base specifiers.
2838 // Checks below assume that the base specifier is a CXXRecord.
2839 if (BaseType->isDependentType())
2840 continue;
2841
2842 CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
2843 .getUnqualifiedType();
2844
2845 if (IndirectBaseTypes.count(CanonicalBase)) {
2846 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2847 /*DetectVirtual=*/true);
2848 bool found
2849 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
2850 assert(found)(static_cast <bool> (found) ? void (0) : __assert_fail (
"found", "clang/lib/Sema/SemaDeclCXX.cpp", 2850, __extension__
__PRETTY_FUNCTION__))
;
2851 (void)found;
2852
2853 if (Paths.isAmbiguous(CanonicalBase))
2854 Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class)
2855 << BaseType << getAmbiguousPathsDisplayString(Paths)
2856 << Bases[idx]->getSourceRange();
2857 else
2858 assert(Bases[idx]->isVirtual())(static_cast <bool> (Bases[idx]->isVirtual()) ? void
(0) : __assert_fail ("Bases[idx]->isVirtual()", "clang/lib/Sema/SemaDeclCXX.cpp"
, 2858, __extension__ __PRETTY_FUNCTION__))
;
2859 }
2860
2861 // Delete the base class specifier, since its data has been copied
2862 // into the CXXRecordDecl.
2863 Context.Deallocate(Bases[idx]);
2864 }
2865
2866 return Invalid;
2867}
2868
2869/// ActOnBaseSpecifiers - Attach the given base specifiers to the
2870/// class, after checking whether there are any duplicate base
2871/// classes.
2872void Sema::ActOnBaseSpecifiers(Decl *ClassDecl,
2873 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2874 if (!ClassDecl || Bases.empty())
2875 return;
2876
2877 AdjustDeclIfTemplate(ClassDecl);
2878 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases);
2879}
2880
2881/// Determine whether the type \p Derived is a C++ class that is
2882/// derived from the type \p Base.
2883bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) {
2884 if (!getLangOpts().CPlusPlus)
2885 return false;
2886
2887 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2888 if (!DerivedRD)
2889 return false;
2890
2891 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2892 if (!BaseRD)
2893 return false;
2894
2895 // If either the base or the derived type is invalid, don't try to
2896 // check whether one is derived from the other.
2897 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
2898 return false;
2899
2900 // FIXME: In a modules build, do we need the entire path to be visible for us
2901 // to be able to use the inheritance relationship?
2902 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2903 return false;
2904
2905 return DerivedRD->isDerivedFrom(BaseRD);
2906}
2907
2908/// Determine whether the type \p Derived is a C++ class that is
2909/// derived from the type \p Base.
2910bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
2911 CXXBasePaths &Paths) {
2912 if (!getLangOpts().CPlusPlus)
2913 return false;
2914
2915 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2916 if (!DerivedRD)
2917 return false;
2918
2919 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2920 if (!BaseRD)
2921 return false;
2922
2923 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2924 return false;
2925
2926 return DerivedRD->isDerivedFrom(BaseRD, Paths);
2927}
2928
2929static void BuildBasePathArray(const CXXBasePath &Path,
2930 CXXCastPath &BasePathArray) {
2931 // We first go backward and check if we have a virtual base.
2932 // FIXME: It would be better if CXXBasePath had the base specifier for
2933 // the nearest virtual base.
2934 unsigned Start = 0;
2935 for (unsigned I = Path.size(); I != 0; --I) {
2936 if (Path[I - 1].Base->isVirtual()) {
2937 Start = I - 1;
2938 break;
2939 }
2940 }
2941
2942 // Now add all bases.
2943 for (unsigned I = Start, E = Path.size(); I != E; ++I)
2944 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
2945}
2946
2947
2948void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
2949 CXXCastPath &BasePathArray) {
2950 assert(BasePathArray.empty() && "Base path array must be empty!")(static_cast <bool> (BasePathArray.empty() && "Base path array must be empty!"
) ? void (0) : __assert_fail ("BasePathArray.empty() && \"Base path array must be empty!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 2950, __extension__ __PRETTY_FUNCTION__
))
;
2951 assert(Paths.isRecordingPaths() && "Must record paths!")(static_cast <bool> (Paths.isRecordingPaths() &&
"Must record paths!") ? void (0) : __assert_fail ("Paths.isRecordingPaths() && \"Must record paths!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 2951, __extension__ __PRETTY_FUNCTION__
))
;
2952 return ::BuildBasePathArray(Paths.front(), BasePathArray);
2953}
2954/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
2955/// conversion (where Derived and Base are class types) is
2956/// well-formed, meaning that the conversion is unambiguous (and
2957/// that all of the base classes are accessible). Returns true
2958/// and emits a diagnostic if the code is ill-formed, returns false
2959/// otherwise. Loc is the location where this routine should point to
2960/// if there is an error, and Range is the source range to highlight
2961/// if there is an error.
2962///
2963/// If either InaccessibleBaseID or AmbiguousBaseConvID are 0, then the
2964/// diagnostic for the respective type of error will be suppressed, but the
2965/// check for ill-formed code will still be performed.
2966bool
2967Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2968 unsigned InaccessibleBaseID,
2969 unsigned AmbiguousBaseConvID,
2970 SourceLocation Loc, SourceRange Range,
2971 DeclarationName Name,
2972 CXXCastPath *BasePath,
2973 bool IgnoreAccess) {
2974 // First, determine whether the path from Derived to Base is
2975 // ambiguous. This is slightly more expensive than checking whether
2976 // the Derived to Base conversion exists, because here we need to
2977 // explore multiple paths to determine if there is an ambiguity.
2978 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2979 /*DetectVirtual=*/false);
2980 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2981 if (!DerivationOkay)
2982 return true;
2983
2984 const CXXBasePath *Path = nullptr;
2985 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType()))
2986 Path = &Paths.front();
2987
2988 // For MSVC compatibility, check if Derived directly inherits from Base. Clang
2989 // warns about this hierarchy under -Winaccessible-base, but MSVC allows the
2990 // user to access such bases.
2991 if (!Path && getLangOpts().MSVCCompat) {
2992 for (const CXXBasePath &PossiblePath : Paths) {
2993 if (PossiblePath.size() == 1) {
2994 Path = &PossiblePath;
2995 if (AmbiguousBaseConvID)
2996 Diag(Loc, diag::ext_ms_ambiguous_direct_base)
2997 << Base << Derived << Range;
2998 break;
2999 }
3000 }
3001 }
3002
3003 if (Path) {
3004 if (!IgnoreAccess) {
3005 // Check that the base class can be accessed.
3006 switch (
3007 CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) {
3008 case AR_inaccessible:
3009 return true;
3010 case AR_accessible:
3011 case AR_dependent:
3012 case AR_delayed:
3013 break;
3014 }
3015 }
3016
3017 // Build a base path if necessary.
3018 if (BasePath)
3019 ::BuildBasePathArray(*Path, *BasePath);
3020 return false;
3021 }
3022
3023 if (AmbiguousBaseConvID) {
3024 // We know that the derived-to-base conversion is ambiguous, and
3025 // we're going to produce a diagnostic. Perform the derived-to-base
3026 // search just one more time to compute all of the possible paths so
3027 // that we can print them out. This is more expensive than any of
3028 // the previous derived-to-base checks we've done, but at this point
3029 // performance isn't as much of an issue.
3030 Paths.clear();
3031 Paths.setRecordingPaths(true);
3032 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
3033 assert(StillOkay && "Can only be used with a derived-to-base conversion")(static_cast <bool> (StillOkay && "Can only be used with a derived-to-base conversion"
) ? void (0) : __assert_fail ("StillOkay && \"Can only be used with a derived-to-base conversion\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 3033, __extension__ __PRETTY_FUNCTION__
))
;
3034 (void)StillOkay;
3035
3036 // Build up a textual representation of the ambiguous paths, e.g.,
3037 // D -> B -> A, that will be used to illustrate the ambiguous
3038 // conversions in the diagnostic. We only print one of the paths
3039 // to each base class subobject.
3040 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
3041
3042 Diag(Loc, AmbiguousBaseConvID)
3043 << Derived << Base << PathDisplayStr << Range << Name;
3044 }
3045 return true;
3046}
3047
3048bool
3049Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
3050 SourceLocation Loc, SourceRange Range,
3051 CXXCastPath *BasePath,
3052 bool IgnoreAccess) {
3053 return CheckDerivedToBaseConversion(
3054 Derived, Base, diag::err_upcast_to_inaccessible_base,
3055 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(),
3056 BasePath, IgnoreAccess);
3057}
3058
3059
3060/// Builds a string representing ambiguous paths from a
3061/// specific derived class to different subobjects of the same base
3062/// class.
3063///
3064/// This function builds a string that can be used in error messages
3065/// to show the different paths that one can take through the
3066/// inheritance hierarchy to go from the derived class to different
3067/// subobjects of a base class. The result looks something like this:
3068/// @code
3069/// struct D -> struct B -> struct A
3070/// struct D -> struct C -> struct A
3071/// @endcode
3072std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
3073 std::string PathDisplayStr;
3074 std::set<unsigned> DisplayedPaths;
3075 for (CXXBasePaths::paths_iterator Path = Paths.begin();
3076 Path != Paths.end(); ++Path) {
3077 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
3078 // We haven't displayed a path to this particular base
3079 // class subobject yet.
3080 PathDisplayStr += "\n ";
3081 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
3082 for (CXXBasePath::const_iterator Element = Path->begin();
3083 Element != Path->end(); ++Element)
3084 PathDisplayStr += " -> " + Element->Base->getType().getAsString();
3085 }
3086 }
3087
3088 return PathDisplayStr;
3089}
3090
3091//===----------------------------------------------------------------------===//
3092// C++ class member Handling
3093//===----------------------------------------------------------------------===//
3094
3095/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
3096bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc,
3097 SourceLocation ColonLoc,
3098 const ParsedAttributesView &Attrs) {
3099 assert(Access != AS_none && "Invalid kind for syntactic access specifier!")(static_cast <bool> (Access != AS_none && "Invalid kind for syntactic access specifier!"
) ? void (0) : __assert_fail ("Access != AS_none && \"Invalid kind for syntactic access specifier!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 3099, __extension__ __PRETTY_FUNCTION__
))
;
3100 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
3101 ASLoc, ColonLoc);
3102 CurContext->addHiddenDecl(ASDecl);
3103 return ProcessAccessDeclAttributeList(ASDecl, Attrs);
3104}
3105
3106/// CheckOverrideControl - Check C++11 override control semantics.
3107void Sema::CheckOverrideControl(NamedDecl *D) {
3108 if (D->isInvalidDecl())
3109 return;
3110
3111 // We only care about "override" and "final" declarations.
3112 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
3113 return;
3114
3115 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
3116
3117 // We can't check dependent instance methods.
3118 if (MD && MD->isInstance() &&
3119 (MD->getParent()->hasAnyDependentBases() ||
3120 MD->getType()->isDependentType()))
3121 return;
3122
3123 if (MD && !MD->isVirtual()) {
3124 // If we have a non-virtual method, check if it hides a virtual method.
3125 // (In that case, it's most likely the method has the wrong type.)
3126 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
3127 FindHiddenVirtualMethods(MD, OverloadedMethods);
3128
3129 if (!OverloadedMethods.empty()) {
3130 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
3131 Diag(OA->getLocation(),
3132 diag::override_keyword_hides_virtual_member_function)
3133 << "override" << (OverloadedMethods.size() > 1);
3134 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
3135 Diag(FA->getLocation(),
3136 diag::override_keyword_hides_virtual_member_function)
3137 << (FA->isSpelledAsSealed() ? "sealed" : "final")
3138 << (OverloadedMethods.size() > 1);
3139 }
3140 NoteHiddenVirtualMethods(MD, OverloadedMethods);
3141 MD->setInvalidDecl();
3142 return;
3143 }
3144 // Fall through into the general case diagnostic.
3145 // FIXME: We might want to attempt typo correction here.
3146 }
3147
3148 if (!MD || !MD->isVirtual()) {
3149 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
3150 Diag(OA->getLocation(),
3151 diag::override_keyword_only_allowed_on_virtual_member_functions)
3152 << "override" << FixItHint::CreateRemoval(OA->getLocation());
3153 D->dropAttr<OverrideAttr>();
3154 }
3155 if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
3156 Diag(FA->getLocation(),
3157 diag::override_keyword_only_allowed_on_virtual_member_functions)
3158 << (FA->isSpelledAsSealed() ? "sealed" : "final")
3159 << FixItHint::CreateRemoval(FA->getLocation());
3160 D->dropAttr<FinalAttr>();
3161 }
3162 return;
3163 }
3164
3165 // C++11 [class.virtual]p5:
3166 // If a function is marked with the virt-specifier override and
3167 // does not override a member function of a base class, the program is
3168 // ill-formed.
3169 bool HasOverriddenMethods = MD->size_overridden_methods() != 0;
3170 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
3171 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
3172 << MD->getDeclName();
3173}
3174
3175void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent) {
3176 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
3177 return;
3178 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
3179 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>())
3180 return;
3181
3182 SourceLocation Loc = MD->getLocation();
3183 SourceLocation SpellingLoc = Loc;
3184 if (getSourceManager().isMacroArgExpansion(Loc))
3185 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin();
3186 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
3187 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
3188 return;
3189
3190 if (MD->size_overridden_methods() > 0) {
3191 auto EmitDiag = [&](unsigned DiagInconsistent, unsigned DiagSuggest) {
3192 unsigned DiagID =
3193 Inconsistent && !Diags.isIgnored(DiagInconsistent, MD->getLocation())
3194 ? DiagInconsistent
3195 : DiagSuggest;
3196 Diag(MD->getLocation(), DiagID) << MD->getDeclName();
3197 const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
3198 Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
3199 };
3200 if (isa<CXXDestructorDecl>(MD))
3201 EmitDiag(
3202 diag::warn_inconsistent_destructor_marked_not_override_overriding,
3203 diag::warn_suggest_destructor_marked_not_override_overriding);
3204 else
3205 EmitDiag(diag::warn_inconsistent_function_marked_not_override_overriding,
3206 diag::warn_suggest_function_marked_not_override_overriding);
3207 }
3208}
3209
3210/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
3211/// function overrides a virtual member function marked 'final', according to
3212/// C++11 [class.virtual]p4.
3213bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
3214 const CXXMethodDecl *Old) {
3215 FinalAttr *FA = Old->getAttr<FinalAttr>();
3216 if (!FA)
3217 return false;
3218
3219 Diag(New->getLocation(), diag::err_final_function_overridden)
3220 << New->getDeclName()
3221 << FA->isSpelledAsSealed();
3222 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3223 return true;
3224}
3225
3226static bool InitializationHasSideEffects(const FieldDecl &FD) {
3227 const Type *T = FD.getType()->getBaseElementTypeUnsafe();
3228 // FIXME: Destruction of ObjC lifetime types has side-effects.
3229 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3230 return !RD->isCompleteDefinition() ||
3231 !RD->hasTrivialDefaultConstructor() ||
3232 !RD->hasTrivialDestructor();
3233 return false;
3234}
3235
3236// Check if there is a field shadowing.
3237void Sema::CheckShadowInheritedFields(const SourceLocation &Loc,
3238 DeclarationName FieldName,
3239 const CXXRecordDecl *RD,
3240 bool DeclIsField) {
3241 if (Diags.isIgnored(diag::warn_shadow_field, Loc))
3242 return;
3243
3244 // To record a shadowed field in a base
3245 std::map<CXXRecordDecl*, NamedDecl*> Bases;
3246 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier,
3247 CXXBasePath &Path) {
3248 const auto Base = Specifier->getType()->getAsCXXRecordDecl();
3249 // Record an ambiguous path directly
3250 if (Bases.find(Base) != Bases.end())
3251 return true;
3252 for (const auto Field : Base->lookup(FieldName)) {
3253 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) &&
3254 Field->getAccess() != AS_private) {
3255 assert(Field->getAccess() != AS_none)(static_cast <bool> (Field->getAccess() != AS_none) ?
void (0) : __assert_fail ("Field->getAccess() != AS_none"
, "clang/lib/Sema/SemaDeclCXX.cpp", 3255, __extension__ __PRETTY_FUNCTION__
))
;
3256 assert(Bases.find(Base) == Bases.end())(static_cast <bool> (Bases.find(Base) == Bases.end()) ?
void (0) : __assert_fail ("Bases.find(Base) == Bases.end()",
"clang/lib/Sema/SemaDeclCXX.cpp", 3256, __extension__ __PRETTY_FUNCTION__
))
;
3257 Bases[Base] = Field;
3258 return true;
3259 }
3260 }
3261 return false;
3262 };
3263
3264 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3265 /*DetectVirtual=*/true);
3266 if (!RD->lookupInBases(FieldShadowed, Paths))
3267 return;
3268
3269 for (const auto &P : Paths) {
3270 auto Base = P.back().Base->getType()->getAsCXXRecordDecl();
3271 auto It = Bases.find(Base);
3272 // Skip duplicated bases
3273 if (It == Bases.end())
3274 continue;
3275 auto BaseField = It->second;
3276 assert(BaseField->getAccess() != AS_private)(static_cast <bool> (BaseField->getAccess() != AS_private
) ? void (0) : __assert_fail ("BaseField->getAccess() != AS_private"
, "clang/lib/Sema/SemaDeclCXX.cpp", 3276, __extension__ __PRETTY_FUNCTION__
))
;
3277 if (AS_none !=
3278 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) {
3279 Diag(Loc, diag::warn_shadow_field)
3280 << FieldName << RD << Base << DeclIsField;
3281 Diag(BaseField->getLocation(), diag::note_shadow_field);
3282 Bases.erase(It);
3283 }
3284 }
3285}
3286
3287/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
3288/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
3289/// bitfield width if there is one, 'InitExpr' specifies the initializer if
3290/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
3291/// present (but parsing it has been deferred).
3292NamedDecl *
3293Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
3294 MultiTemplateParamsArg TemplateParameterLists,
3295 Expr *BW, const VirtSpecifiers &VS,
3296 InClassInitStyle InitStyle) {
3297 const DeclSpec &DS = D.getDeclSpec();
3298 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3299 DeclarationName Name = NameInfo.getName();
3300 SourceLocation Loc = NameInfo.getLoc();
3301
3302 // For anonymous bitfields, the location should point to the type.
3303 if (Loc.isInvalid())
3304 Loc = D.getBeginLoc();
3305
3306 Expr *BitWidth = static_cast<Expr*>(BW);
3307
3308 assert(isa<CXXRecordDecl>(CurContext))(static_cast <bool> (isa<CXXRecordDecl>(CurContext
)) ? void (0) : __assert_fail ("isa<CXXRecordDecl>(CurContext)"
, "clang/lib/Sema/SemaDeclCXX.cpp", 3308, __extension__ __PRETTY_FUNCTION__
))
;
3309 assert(!DS.isFriendSpecified())(static_cast <bool> (!DS.isFriendSpecified()) ? void (0
) : __assert_fail ("!DS.isFriendSpecified()", "clang/lib/Sema/SemaDeclCXX.cpp"
, 3309, __extension__ __PRETTY_FUNCTION__))
;
3310
3311 bool isFunc = D.isDeclarationOfFunction();
3312 const ParsedAttr *MSPropertyAttr =
3313 D.getDeclSpec().getAttributes().getMSPropertyAttr();
3314
3315 if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
3316 // The Microsoft extension __interface only permits public member functions
3317 // and prohibits constructors, destructors, operators, non-public member
3318 // functions, static methods and data members.
3319 unsigned InvalidDecl;
3320 bool ShowDeclName = true;
3321 if (!isFunc &&
3322 (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr))
3323 InvalidDecl = 0;
3324 else if (!isFunc)
3325 InvalidDecl = 1;
3326 else if (AS != AS_public)
3327 InvalidDecl = 2;
3328 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
3329 InvalidDecl = 3;
3330 else switch (Name.getNameKind()) {
3331 case DeclarationName::CXXConstructorName:
3332 InvalidDecl = 4;
3333 ShowDeclName = false;
3334 break;
3335
3336 case DeclarationName::CXXDestructorName:
3337 InvalidDecl = 5;
3338 ShowDeclName = false;
3339 break;
3340
3341 case DeclarationName::CXXOperatorName:
3342 case DeclarationName::CXXConversionFunctionName:
3343 InvalidDecl = 6;
3344 break;
3345
3346 default:
3347 InvalidDecl = 0;
3348 break;
3349 }
3350
3351 if (InvalidDecl) {
3352 if (ShowDeclName)
3353 Diag(Loc, diag::err_invalid_member_in_interface)
3354 << (InvalidDecl-1) << Name;
3355 else
3356 Diag(Loc, diag::err_invalid_member_in_interface)
3357 << (InvalidDecl-1) << "";
3358 return nullptr;
3359 }
3360 }
3361
3362 // C++ 9.2p6: A member shall not be declared to have automatic storage
3363 // duration (auto, register) or with the extern storage-class-specifier.
3364 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
3365 // data members and cannot be applied to names declared const or static,
3366 // and cannot be applied to reference members.
3367 switch (DS.getStorageClassSpec()) {
3368 case DeclSpec::SCS_unspecified:
3369 case DeclSpec::SCS_typedef:
3370 case DeclSpec::SCS_static:
3371 break;
3372 case DeclSpec::SCS_mutable:
3373 if (isFunc) {
3374 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
3375
3376 // FIXME: It would be nicer if the keyword was ignored only for this
3377 // declarator. Otherwise we could get follow-up errors.
3378 D.getMutableDeclSpec().ClearStorageClassSpecs();
3379 }
3380 break;
3381 default:
3382 Diag(DS.getStorageClassSpecLoc(),
3383 diag::err_storageclass_invalid_for_member);
3384 D.getMutableDeclSpec().ClearStorageClassSpecs();
3385 break;
3386 }
3387
3388 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
3389 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
3390 !isFunc);
3391
3392 if (DS.hasConstexprSpecifier() && isInstField) {
3393 SemaDiagnosticBuilder B =
3394 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
3395 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
3396 if (InitStyle == ICIS_NoInit) {
3397 B << 0 << 0;
3398 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
3399 B << FixItHint::CreateRemoval(ConstexprLoc);
3400 else {
3401 B << FixItHint::CreateReplacement(ConstexprLoc, "const");
3402 D.getMutableDeclSpec().ClearConstexprSpec();
3403 const char *PrevSpec;
3404 unsigned DiagID;
3405 bool Failed = D.getMutableDeclSpec().SetTypeQual(
3406 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
3407 (void)Failed;
3408 assert(!Failed && "Making a constexpr member const shouldn't fail")(static_cast <bool> (!Failed && "Making a constexpr member const shouldn't fail"
) ? void (0) : __assert_fail ("!Failed && \"Making a constexpr member const shouldn't fail\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 3408, __extension__ __PRETTY_FUNCTION__
))
;
3409 }
3410 } else {
3411 B << 1;
3412 const char *PrevSpec;
3413 unsigned DiagID;
3414 if (D.getMutableDeclSpec().SetStorageClassSpec(
3415 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
3416 Context.getPrintingPolicy())) {
3417 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&(static_cast <bool> (DS.getStorageClassSpec() == DeclSpec
::SCS_mutable && "This is the only DeclSpec that should fail to be applied"
) ? void (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 3418, __extension__ __PRETTY_FUNCTION__
))
3418 "This is the only DeclSpec that should fail to be applied")(static_cast <bool> (DS.getStorageClassSpec() == DeclSpec
::SCS_mutable && "This is the only DeclSpec that should fail to be applied"
) ? void (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 3418, __extension__ __PRETTY_FUNCTION__
))
;
3419 B << 1;
3420 } else {
3421 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
3422 isInstField = false;
3423 }
3424 }
3425 }
3426
3427 NamedDecl *Member;
3428 if (isInstField) {
3429 CXXScopeSpec &SS = D.getCXXScopeSpec();
3430
3431 // Data members must have identifiers for names.
3432 if (!Name.isIdentifier()) {
3433 Diag(Loc, diag::err_bad_variable_name)
3434 << Name;
3435 return nullptr;
3436 }
3437
3438 IdentifierInfo *II = Name.getAsIdentifierInfo();
3439
3440 // Member field could not be with "template" keyword.
3441 // So TemplateParameterLists should be empty in this case.
3442 if (TemplateParameterLists.size()) {
3443 TemplateParameterList* TemplateParams = TemplateParameterLists[0];
3444 if (TemplateParams->size()) {
3445 // There is no such thing as a member field template.
3446 Diag(D.getIdentifierLoc(), diag::err_template_member)
3447 << II
3448 << SourceRange(TemplateParams->getTemplateLoc(),
3449 TemplateParams->getRAngleLoc());
3450 } else {
3451 // There is an extraneous 'template<>' for this member.
3452 Diag(TemplateParams->getTemplateLoc(),
3453 diag::err_template_member_noparams)
3454 << II
3455 << SourceRange(TemplateParams->getTemplateLoc(),
3456 TemplateParams->getRAngleLoc());
3457 }
3458 return nullptr;
3459 }
3460
3461 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
3462 Diag(D.getIdentifierLoc(), diag::err_member_with_template_arguments)
3463 << II
3464 << SourceRange(D.getName().TemplateId->LAngleLoc,
3465 D.getName().TemplateId->RAngleLoc)
3466 << D.getName().TemplateId->LAngleLoc;
3467 D.SetIdentifier(II, Loc);
3468 }
3469
3470 if (SS.isSet() && !SS.isInvalid()) {
3471 // The user provided a superfluous scope specifier inside a class
3472 // definition:
3473 //
3474 // class X {
3475 // int X::member;
3476 // };
3477 if (DeclContext *DC = computeDeclContext(SS, false))
3478 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(),
3479 D.getName().getKind() ==
3480 UnqualifiedIdKind::IK_TemplateId);
3481 else
3482 Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3483 << Name << SS.getRange();
3484
3485 SS.clear();
3486 }
3487
3488 if (MSPropertyAttr) {
3489 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3490 BitWidth, InitStyle, AS, *MSPropertyAttr);
3491 if (!Member)
3492 return nullptr;
3493 isInstField = false;
3494 } else {
3495 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3496 BitWidth, InitStyle, AS);
3497 if (!Member)
3498 return nullptr;
3499 }
3500
3501 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext));
3502 } else {
3503 Member = HandleDeclarator(S, D, TemplateParameterLists);
3504 if (!Member)
3505 return nullptr;
3506
3507 // Non-instance-fields can't have a bitfield.
3508 if (BitWidth) {
3509 if (Member->isInvalidDecl()) {
3510 // don't emit another diagnostic.
3511 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
3512 // C++ 9.6p3: A bit-field shall not be a static member.
3513 // "static member 'A' cannot be a bit-field"
3514 Diag(Loc, diag::err_static_not_bitfield)
3515 << Name << BitWidth->getSourceRange();
3516 } else if (isa<TypedefDecl>(Member)) {
3517 // "typedef member 'x' cannot be a bit-field"
3518 Diag(Loc, diag::err_typedef_not_bitfield)
3519 << Name << BitWidth->getSourceRange();
3520 } else {
3521 // A function typedef ("typedef int f(); f a;").
3522 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3523 Diag(Loc, diag::err_not_integral_type_bitfield)
3524 << Name << cast<ValueDecl>(Member)->getType()
3525 << BitWidth->getSourceRange();
3526 }
3527
3528 BitWidth = nullptr;
3529 Member->setInvalidDecl();
3530 }
3531
3532 NamedDecl *NonTemplateMember = Member;
3533 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
3534 NonTemplateMember = FunTmpl->getTemplatedDecl();
3535 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
3536 NonTemplateMember = VarTmpl->getTemplatedDecl();
3537
3538 Member->setAccess(AS);
3539
3540 // If we have declared a member function template or static data member
3541 // template, set the access of the templated declaration as well.
3542 if (NonTemplateMember != Member)
3543 NonTemplateMember->setAccess(AS);
3544
3545 // C++ [temp.deduct.guide]p3:
3546 // A deduction guide [...] for a member class template [shall be
3547 // declared] with the same access [as the template].
3548 if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) {
3549 auto *TD = DG->getDeducedTemplate();
3550 // Access specifiers are only meaningful if both the template and the
3551 // deduction guide are from the same scope.
3552 if (AS != TD->getAccess() &&
3553 TD->getDeclContext()->getRedeclContext()->Equals(
3554 DG->getDeclContext()->getRedeclContext())) {
3555 Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access);
3556 Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access)
3557 << TD->getAccess();
3558 const AccessSpecDecl *LastAccessSpec = nullptr;
3559 for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) {
3560 if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D))
3561 LastAccessSpec = AccessSpec;
3562 }
3563 assert(LastAccessSpec && "differing access with no access specifier")(static_cast <bool> (LastAccessSpec && "differing access with no access specifier"
) ? void (0) : __assert_fail ("LastAccessSpec && \"differing access with no access specifier\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 3563, __extension__ __PRETTY_FUNCTION__
))
;
3564 Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access)
3565 << AS;
3566 }
3567 }
3568 }
3569
3570 if (VS.isOverrideSpecified())
3571 Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc()));
3572 if (VS.isFinalSpecified())
3573 Member->addAttr(FinalAttr::Create(Context, VS.getFinalLoc(),
3574 VS.isFinalSpelledSealed()
3575 ? FinalAttr::Keyword_sealed
3576 : FinalAttr::Keyword_final));
3577
3578 if (VS.getLastLocation().isValid()) {
3579 // Update the end location of a method that has a virt-specifiers.
3580 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
3581 MD->setRangeEnd(VS.getLastLocation());
3582 }
3583
3584 CheckOverrideControl(Member);
3585
3586 assert((Name || isInstField) && "No identifier for non-field ?")(static_cast <bool> ((Name || isInstField) && "No identifier for non-field ?"
) ? void (0) : __assert_fail ("(Name || isInstField) && \"No identifier for non-field ?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 3586, __extension__ __PRETTY_FUNCTION__
))
;
3587
3588 if (isInstField) {
3589 FieldDecl *FD = cast<FieldDecl>(Member);
3590 FieldCollector->Add(FD);
3591
3592 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
3593 // Remember all explicit private FieldDecls that have a name, no side
3594 // effects and are not part of a dependent type declaration.
3595 if (!FD->isImplicit() && FD->getDeclName() &&
3596 FD->getAccess() == AS_private &&
3597 !FD->hasAttr<UnusedAttr>() &&
3598 !FD->getParent()->isDependentContext() &&
3599 !InitializationHasSideEffects(*FD))
3600 UnusedPrivateFields.insert(FD);
3601 }
3602 }
3603
3604 return Member;
3605}
3606
3607namespace {
3608 class UninitializedFieldVisitor
3609 : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
3610 Sema &S;
3611 // List of Decls to generate a warning on. Also remove Decls that become
3612 // initialized.
3613 llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
3614 // List of base classes of the record. Classes are removed after their
3615 // initializers.
3616 llvm::SmallPtrSetImpl<QualType> &BaseClasses;
3617 // Vector of decls to be removed from the Decl set prior to visiting the
3618 // nodes. These Decls may have been initialized in the prior initializer.
3619 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
3620 // If non-null, add a note to the warning pointing back to the constructor.
3621 const CXXConstructorDecl *Constructor;
3622 // Variables to hold state when processing an initializer list. When
3623 // InitList is true, special case initialization of FieldDecls matching
3624 // InitListFieldDecl.
3625 bool InitList;
3626 FieldDecl *InitListFieldDecl;
3627 llvm::SmallVector<unsigned, 4> InitFieldIndex;
3628
3629 public:
3630 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
3631 UninitializedFieldVisitor(Sema &S,
3632 llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
3633 llvm::SmallPtrSetImpl<QualType> &BaseClasses)
3634 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
3635 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
3636
3637 // Returns true if the use of ME is not an uninitialized use.
3638 bool IsInitListMemberExprInitialized(MemberExpr *ME,
3639 bool CheckReferenceOnly) {
3640 llvm::SmallVector<FieldDecl*, 4> Fields;
3641 bool ReferenceField = false;
3642 while (ME) {
3643 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
3644 if (!FD)
3645 return false;
3646 Fields.push_back(FD);
3647 if (FD->getType()->isReferenceType())
3648 ReferenceField = true;
3649 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
3650 }
3651
3652 // Binding a reference to an uninitialized field is not an
3653 // uninitialized use.
3654 if (CheckReferenceOnly && !ReferenceField)
3655 return true;
3656
3657 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
3658 // Discard the first field since it is the field decl that is being
3659 // initialized.
3660 for (const FieldDecl *FD : llvm::drop_begin(llvm::reverse(Fields)))
3661 UsedFieldIndex.push_back(FD->getFieldIndex());
3662
3663 for (auto UsedIter = UsedFieldIndex.begin(),
3664 UsedEnd = UsedFieldIndex.end(),
3665 OrigIter = InitFieldIndex.begin(),
3666 OrigEnd = InitFieldIndex.end();
3667 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
3668 if (*UsedIter < *OrigIter)
3669 return true;
3670 if (*UsedIter > *OrigIter)
3671 break;
3672 }
3673
3674 return false;
3675 }
3676
3677 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
3678 bool AddressOf) {
3679 if (isa<EnumConstantDecl>(ME->getMemberDecl()))
3680 return;
3681
3682 // FieldME is the inner-most MemberExpr that is not an anonymous struct
3683 // or union.
3684 MemberExpr *FieldME = ME;
3685
3686 bool AllPODFields = FieldME->getType().isPODType(S.Context);
3687
3688 Expr *Base = ME;
3689 while (MemberExpr *SubME =
3690 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
3691
3692 if (isa<VarDecl>(SubME->getMemberDecl()))
3693 return;
3694
3695 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
3696 if (!FD->isAnonymousStructOrUnion())
3697 FieldME = SubME;
3698
3699 if (!FieldME->getType().isPODType(S.Context))
3700 AllPODFields = false;
3701
3702 Base = SubME->getBase();
3703 }
3704
3705 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts())) {
3706 Visit(Base);
3707 return;
3708 }
3709
3710 if (AddressOf && AllPODFields)
3711 return;
3712
3713 ValueDecl* FoundVD = FieldME->getMemberDecl();
3714
3715 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
3716 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
3717 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
3718 }
3719
3720 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
3721 QualType T = BaseCast->getType();
3722 if (T->isPointerType() &&
3723 BaseClasses.count(T->getPointeeType())) {
3724 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
3725 << T->getPointeeType() << FoundVD;
3726 }
3727 }
3728 }
3729
3730 if (!Decls.count(FoundVD))
3731 return;
3732
3733 const bool IsReference = FoundVD->getType()->isReferenceType();
3734
3735 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
3736 // Special checking for initializer lists.
3737 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
3738 return;
3739 }
3740 } else {
3741 // Prevent double warnings on use of unbounded references.
3742 if (CheckReferenceOnly && !IsReference)
3743 return;
3744 }
3745
3746 unsigned diag = IsReference
3747 ? diag::warn_reference_field_is_uninit
3748 : diag::warn_field_is_uninit;
3749 S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
3750 if (Constructor)
3751 S.Diag(Constructor->getLocation(),
3752 diag::note_uninit_in_this_constructor)
3753 << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
3754
3755 }
3756
3757 void HandleValue(Expr *E, bool AddressOf) {
3758 E = E->IgnoreParens();
3759
3760 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3761 HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
3762 AddressOf /*AddressOf*/);
3763 return;
3764 }
3765
3766 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3767 Visit(CO->getCond());
3768 HandleValue(CO->getTrueExpr(), AddressOf);
3769 HandleValue(CO->getFalseExpr(), AddressOf);
3770 return;
3771 }
3772
3773 if (BinaryConditionalOperator *BCO =
3774 dyn_cast<BinaryConditionalOperator>(E)) {
3775 Visit(BCO->getCond());
3776 HandleValue(BCO->getFalseExpr(), AddressOf);
3777 return;
3778 }
3779
3780 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
3781 HandleValue(OVE->getSourceExpr(), AddressOf);
3782 return;
3783 }
3784
3785 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3786 switch (BO->getOpcode()) {
3787 default:
3788 break;
3789 case(BO_PtrMemD):
3790 case(BO_PtrMemI):
3791 HandleValue(BO->getLHS(), AddressOf);
3792 Visit(BO->getRHS());
3793 return;
3794 case(BO_Comma):
3795 Visit(BO->getLHS());
3796 HandleValue(BO->getRHS(), AddressOf);
3797 return;
3798 }
3799 }
3800
3801 Visit(E);
3802 }
3803
3804 void CheckInitListExpr(InitListExpr *ILE) {
3805 InitFieldIndex.push_back(0);
3806 for (auto *Child : ILE->children()) {
3807 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
3808 CheckInitListExpr(SubList);
3809 } else {
3810 Visit(Child);
3811 }
3812 ++InitFieldIndex.back();
3813 }
3814 InitFieldIndex.pop_back();
3815 }
3816
3817 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
3818 FieldDecl *Field, const Type *BaseClass) {
3819 // Remove Decls that may have been initialized in the previous
3820 // initializer.
3821 for (ValueDecl* VD : DeclsToRemove)
3822 Decls.erase(VD);
3823 DeclsToRemove.clear();
3824
3825 Constructor = FieldConstructor;
3826 InitListExpr *ILE = dyn_cast<InitListExpr>(E);
3827
3828 if (ILE && Field) {
3829 InitList = true;
3830 InitListFieldDecl = Field;
3831 InitFieldIndex.clear();
3832 CheckInitListExpr(ILE);
3833 } else {
3834 InitList = false;
3835 Visit(E);
3836 }
3837
3838 if (Field)
3839 Decls.erase(Field);
3840 if (BaseClass)
3841 BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
3842 }
3843
3844 void VisitMemberExpr(MemberExpr *ME) {
3845 // All uses of unbounded reference fields will warn.
3846 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
3847 }
3848
3849 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
3850 if (E->getCastKind() == CK_LValueToRValue) {
3851 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3852 return;
3853 }
3854
3855 Inherited::VisitImplicitCastExpr(E);
3856 }
3857
3858 void VisitCXXConstructExpr(CXXConstructExpr *E) {
3859 if (E->getConstructor()->isCopyConstructor()) {
3860 Expr *ArgExpr = E->getArg(0);
3861 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
3862 if (ILE->getNumInits() == 1)
3863 ArgExpr = ILE->getInit(0);
3864 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
3865 if (ICE->getCastKind() == CK_NoOp)
3866 ArgExpr = ICE->getSubExpr();
3867 HandleValue(ArgExpr, false /*AddressOf*/);
3868 return;
3869 }
3870 Inherited::VisitCXXConstructExpr(E);
3871 }
3872
3873 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3874 Expr *Callee = E->getCallee();
3875 if (isa<MemberExpr>(Callee)) {
3876 HandleValue(Callee, false /*AddressOf*/);
3877 for (auto *Arg : E->arguments())
3878 Visit(Arg);
3879 return;
3880 }
3881
3882 Inherited::VisitCXXMemberCallExpr(E);
3883 }
3884
3885 void VisitCallExpr(CallExpr *E) {
3886 // Treat std::move as a use.
3887 if (E->isCallToStdMove()) {
3888 HandleValue(E->getArg(0), /*AddressOf=*/false);
3889 return;
3890 }
3891
3892 Inherited::VisitCallExpr(E);
3893 }
3894
3895 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
3896 Expr *Callee = E->getCallee();
3897
3898 if (isa<UnresolvedLookupExpr>(Callee))
3899 return Inherited::VisitCXXOperatorCallExpr(E);
3900
3901 Visit(Callee);
3902 for (auto *Arg : E->arguments())
3903 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
3904 }
3905
3906 void VisitBinaryOperator(BinaryOperator *E) {
3907 // If a field assignment is detected, remove the field from the
3908 // uninitiailized field set.
3909 if (E->getOpcode() == BO_Assign)
3910 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
3911 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3912 if (!FD->getType()->isReferenceType())
3913 DeclsToRemove.push_back(FD);
3914
3915 if (E->isCompoundAssignmentOp()) {
3916 HandleValue(E->getLHS(), false /*AddressOf*/);
3917 Visit(E->getRHS());
3918 return;
3919 }
3920
3921 Inherited::VisitBinaryOperator(E);
3922 }
3923
3924 void VisitUnaryOperator(UnaryOperator *E) {
3925 if (E->isIncrementDecrementOp()) {
3926 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3927 return;
3928 }
3929 if (E->getOpcode() == UO_AddrOf) {
3930 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
3931 HandleValue(ME->getBase(), true /*AddressOf*/);
3932 return;
3933 }
3934 }
3935
3936 Inherited::VisitUnaryOperator(E);
3937 }
3938 };
3939
3940 // Diagnose value-uses of fields to initialize themselves, e.g.
3941 // foo(foo)
3942 // where foo is not also a parameter to the constructor.
3943 // Also diagnose across field uninitialized use such as
3944 // x(y), y(x)
3945 // TODO: implement -Wuninitialized and fold this into that framework.
3946 static void DiagnoseUninitializedFields(
3947 Sema &SemaRef, const CXXConstructorDecl *Constructor) {
3948
3949 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
3950 Constructor->getLocation())) {
3951 return;
3952 }
3953
3954 if (Constructor->isInvalidDecl())
3955 return;
3956
3957 const CXXRecordDecl *RD = Constructor->getParent();
3958
3959 if (RD->isDependentContext())
3960 return;
3961
3962 // Holds fields that are uninitialized.
3963 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
3964
3965 // At the beginning, all fields are uninitialized.
3966 for (auto *I : RD->decls()) {
3967 if (auto *FD = dyn_cast<FieldDecl>(I)) {
3968 UninitializedFields.insert(FD);
3969 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
3970 UninitializedFields.insert(IFD->getAnonField());
3971 }
3972 }
3973
3974 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
3975 for (const auto &I : RD->bases())
3976 UninitializedBaseClasses.insert(I.getType().getCanonicalType());
3977
3978 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3979 return;
3980
3981 UninitializedFieldVisitor UninitializedChecker(SemaRef,
3982 UninitializedFields,
3983 UninitializedBaseClasses);
3984
3985 for (const auto *FieldInit : Constructor->inits()) {
3986 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3987 break;
3988
3989 Expr *InitExpr = FieldInit->getInit();
3990 if (!InitExpr)
3991 continue;
3992
3993 if (CXXDefaultInitExpr *Default =
3994 dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
3995 InitExpr = Default->getExpr();
3996 if (!InitExpr)
3997 continue;
3998 // In class initializers will point to the constructor.
3999 UninitializedChecker.CheckInitializer(InitExpr, Constructor,
4000 FieldInit->getAnyMember(),
4001 FieldInit->getBaseClass());
4002 } else {
4003 UninitializedChecker.CheckInitializer(InitExpr, nullptr,
4004 FieldInit->getAnyMember(),
4005 FieldInit->getBaseClass());
4006 }
4007 }
4008 }
4009} // namespace
4010
4011/// Enter a new C++ default initializer scope. After calling this, the
4012/// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
4013/// parsing or instantiating the initializer failed.
4014void Sema::ActOnStartCXXInClassMemberInitializer() {
4015 // Create a synthetic function scope to represent the call to the constructor
4016 // that notionally surrounds a use of this initializer.
4017 PushFunctionScope();
4018}
4019
4020void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) {
4021 if (!D.isFunctionDeclarator())
4022 return;
4023 auto &FTI = D.getFunctionTypeInfo();
4024 if (!FTI.Params)
4025 return;
4026 for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params,
4027 FTI.NumParams)) {
4028 auto *ParamDecl = cast<NamedDecl>(Param.Param);
4029 if (ParamDecl->getDeclName())
4030 PushOnScopeChains(ParamDecl, S, /*AddToContext=*/false);
4031 }
4032}
4033
4034ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) {
4035 return ActOnRequiresClause(ConstraintExpr);
4036}
4037
4038ExprResult Sema::ActOnRequiresClause(ExprResult ConstraintExpr) {
4039 if (ConstraintExpr.isInvalid())
4040 return ExprError();
4041
4042 ConstraintExpr = CorrectDelayedTyposInExpr(ConstraintExpr);
4043 if (ConstraintExpr.isInvalid())
4044 return ExprError();
4045
4046 if (DiagnoseUnexpandedParameterPack(ConstraintExpr.get(),
4047 UPPC_RequiresClause))
4048 return ExprError();
4049
4050 return ConstraintExpr;
4051}
4052
4053ExprResult Sema::ConvertMemberDefaultInitExpression(FieldDecl *FD,
4054 Expr *InitExpr,
4055 SourceLocation InitLoc) {
4056 InitializedEntity Entity =
4057 InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD);
4058 InitializationKind Kind =
4059 FD->getInClassInitStyle() == ICIS_ListInit
4060 ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(),
4061 InitExpr->getBeginLoc(),
4062 InitExpr->getEndLoc())
4063 : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc);
4064 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
4065 return Seq.Perform(*this, Entity, Kind, InitExpr);
4066}
4067
4068/// This is invoked after parsing an in-class initializer for a
4069/// non-static C++ class member, and after instantiating an in-class initializer
4070/// in a class template. Such actions are deferred until the class is complete.
4071void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
4072 SourceLocation InitLoc,
4073 Expr *InitExpr) {
4074 // Pop the notional constructor scope we created earlier.
4075 PopFunctionScopeInfo(nullptr, D);
4076
4077 FieldDecl *FD = dyn_cast<FieldDecl>(D);
4078 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&(static_cast <bool> ((isa<MSPropertyDecl>(D) || FD
->getInClassInitStyle() != ICIS_NoInit) && "must set init style when field is created"
) ? void (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 4079, __extension__ __PRETTY_FUNCTION__
))
4079 "must set init style when field is created")(static_cast <bool> ((isa<MSPropertyDecl>(D) || FD
->getInClassInitStyle() != ICIS_NoInit) && "must set init style when field is created"
) ? void (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 4079, __extension__ __PRETTY_FUNCTION__
))
;
4080
4081 if (!InitExpr) {
4082 D->setInvalidDecl();
4083 if (FD)
4084 FD->removeInClassInitializer();
4085 return;
4086 }
4087
4088 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
4089 FD->setInvalidDecl();
4090 FD->removeInClassInitializer();
4091 return;
4092 }
4093
4094 ExprResult Init = CorrectDelayedTyposInExpr(InitExpr, /*InitDecl=*/nullptr,
4095 /*RecoverUncorrectedTypos=*/true);
4096 assert(Init.isUsable() && "Init should at least have a RecoveryExpr")(static_cast <bool> (Init.isUsable() && "Init should at least have a RecoveryExpr"
) ? void (0) : __assert_fail ("Init.isUsable() && \"Init should at least have a RecoveryExpr\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 4096, __extension__ __PRETTY_FUNCTION__
))
;
4097 if (!FD->getType()->isDependentType() && !Init.get()->isTypeDependent()) {
4098 Init = ConvertMemberDefaultInitExpression(FD, Init.get(), InitLoc);
4099 // C++11 [class.base.init]p7:
4100 // The initialization of each base and member constitutes a
4101 // full-expression.
4102 if (!Init.isInvalid())
4103 Init = ActOnFinishFullExpr(Init.get(), /*DiscarededValue=*/false);
4104 if (Init.isInvalid()) {
4105 FD->setInvalidDecl();
4106 return;
4107 }
4108 }
4109
4110 FD->setInClassInitializer(Init.get());
4111}
4112
4113/// Find the direct and/or virtual base specifiers that
4114/// correspond to the given base type, for use in base initialization
4115/// within a constructor.
4116static bool FindBaseInitializer(Sema &SemaRef,
4117 CXXRecordDecl *ClassDecl,
4118 QualType BaseType,
4119 const CXXBaseSpecifier *&DirectBaseSpec,
4120 const CXXBaseSpecifier *&VirtualBaseSpec) {
4121 // First, check for a direct base class.
4122 DirectBaseSpec = nullptr;
4123 for (const auto &Base : ClassDecl->bases()) {
4124 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
4125 // We found a direct base of this type. That's what we're
4126 // initializing.
4127 DirectBaseSpec = &Base;
4128 break;
4129 }
4130 }
4131
4132 // Check for a virtual base class.
4133 // FIXME: We might be able to short-circuit this if we know in advance that
4134 // there are no virtual bases.
4135 VirtualBaseSpec = nullptr;
4136 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
4137 // We haven't found a base yet; search the class hierarchy for a
4138 // virtual base class.
4139 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
4140 /*DetectVirtual=*/false);
4141 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(),
4142 SemaRef.Context.getTypeDeclType(ClassDecl),
4143 BaseType, Paths)) {
4144 for (CXXBasePaths::paths_iterator Path = Paths.begin();
4145 Path != Paths.end(); ++Path) {
4146 if (Path->back().Base->isVirtual()) {
4147 VirtualBaseSpec = Path->back().Base;
4148 break;
4149 }
4150 }
4151 }
4152 }
4153
4154 return DirectBaseSpec || VirtualBaseSpec;
4155}
4156
4157/// Handle a C++ member initializer using braced-init-list syntax.
4158MemInitResult
4159Sema::ActOnMemInitializer(Decl *ConstructorD,
4160 Scope *S,
4161 CXXScopeSpec &SS,
4162 IdentifierInfo *MemberOrBase,
4163 ParsedType TemplateTypeTy,
4164 const DeclSpec &DS,
4165 SourceLocation IdLoc,
4166 Expr *InitList,
4167 SourceLocation EllipsisLoc) {
4168 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4169 DS, IdLoc, InitList,
4170 EllipsisLoc);
4171}
4172
4173/// Handle a C++ member initializer using parentheses syntax.
4174MemInitResult
4175Sema::ActOnMemInitializer(Decl *ConstructorD,
4176 Scope *S,
4177 CXXScopeSpec &SS,
4178 IdentifierInfo *MemberOrBase,
4179 ParsedType TemplateTypeTy,
4180 const DeclSpec &DS,
4181 SourceLocation IdLoc,
4182 SourceLocation LParenLoc,
4183 ArrayRef<Expr *> Args,
4184 SourceLocation RParenLoc,
4185 SourceLocation EllipsisLoc) {
4186 Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc);
4187 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4188 DS, IdLoc, List, EllipsisLoc);
4189}
4190
4191namespace {
4192
4193// Callback to only accept typo corrections that can be a valid C++ member
4194// initializer: either a non-static field member or a base class.
4195class MemInitializerValidatorCCC final : public CorrectionCandidateCallback {
4196public:
4197 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
4198 : ClassDecl(ClassDecl) {}
4199
4200 bool ValidateCandidate(const TypoCorrection &candidate) override {
4201 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
4202 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
4203 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
4204 return isa<TypeDecl>(ND);
4205 }
4206 return false;
4207 }
4208
4209 std::unique_ptr<CorrectionCandidateCallback> clone() override {
4210 return std::make_unique<MemInitializerValidatorCCC>(*this);
4211 }
4212
4213private:
4214 CXXRecordDecl *ClassDecl;
4215};
4216
4217}
4218
4219ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl,
4220 CXXScopeSpec &SS,
4221 ParsedType TemplateTypeTy,
4222 IdentifierInfo *MemberOrBase) {
4223 if (SS.getScopeRep() || TemplateTypeTy)
4224 return nullptr;
4225 for (auto *D : ClassDecl->lookup(MemberOrBase))
4226 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D))
4227 return cast<ValueDecl>(D);
4228 return nullptr;
4229}
4230
4231/// Handle a C++ member initializer.
4232MemInitResult
4233Sema::BuildMemInitializer(Decl *ConstructorD,
4234 Scope *S,
4235 CXXScopeSpec &SS,
4236 IdentifierInfo *MemberOrBase,
4237 ParsedType TemplateTypeTy,
4238 const DeclSpec &DS,
4239 SourceLocation IdLoc,
4240 Expr *Init,
4241 SourceLocation EllipsisLoc) {
4242 ExprResult Res = CorrectDelayedTyposInExpr(Init, /*InitDecl=*/nullptr,
4243 /*RecoverUncorrectedTypos=*/true);
4244 if (!Res.isUsable())
4245 return true;
4246 Init = Res.get();
4247
4248 if (!ConstructorD)
4249 return true;
4250
4251 AdjustDeclIfTemplate(ConstructorD);
4252
4253 CXXConstructorDecl *Constructor
4254 = dyn_cast<CXXConstructorDecl>(ConstructorD);
4255 if (!Constructor) {
4256 // The user wrote a constructor initializer on a function that is
4257 // not a C++ constructor. Ignore the error for now, because we may
4258 // have more member initializers coming; we'll diagnose it just
4259 // once in ActOnMemInitializers.
4260 return true;
4261 }
4262
4263 CXXRecordDecl *ClassDecl = Constructor->getParent();
4264
4265 // C++ [class.base.init]p2:
4266 // Names in a mem-initializer-id are looked up in the scope of the
4267 // constructor's class and, if not found in that scope, are looked
4268 // up in the scope containing the constructor's definition.
4269 // [Note: if the constructor's class contains a member with the
4270 // same name as a direct or virtual base class of the class, a
4271 // mem-initializer-id naming the member or base class and composed
4272 // of a single identifier refers to the class member. A
4273 // mem-initializer-id for the hidden base class may be specified
4274 // using a qualified name. ]
4275
4276 // Look for a member, first.
4277 if (ValueDecl *Member = tryLookupCtorInitMemberDecl(
4278 ClassDecl, SS, TemplateTypeTy, MemberOrBase)) {
4279 if (EllipsisLoc.isValid())
4280 Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
4281 << MemberOrBase
4282 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
4283
4284 return BuildMemberInitializer(Member, Init, IdLoc);
4285 }
4286 // It didn't name a member, so see if it names a class.
4287 QualType BaseType;
4288 TypeSourceInfo *TInfo = nullptr;
4289
4290 if (TemplateTypeTy) {
4291 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
4292 if (BaseType.isNull())
4293 return true;
4294 } else if (DS.getTypeSpecType() == TST_decltype) {
4295 BaseType = BuildDecltypeType(DS.getRepAsExpr());
4296 } else if (DS.getTypeSpecType() == TST_decltype_auto) {
4297 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
4298 return true;
4299 } else {
4300 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
4301 LookupParsedName(R, S, &SS);
4302
4303 TypeDecl *TyD = R.getAsSingle<TypeDecl>();
4304 if (!TyD) {
4305 if (R.isAmbiguous()) return true;
4306
4307 // We don't want access-control diagnostics here.
4308 R.suppressDiagnostics();
4309
4310 if (SS.isSet() && isDependentScopeSpecifier(SS)) {
4311 bool NotUnknownSpecialization = false;
4312 DeclContext *DC = computeDeclContext(SS, false);
4313 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
4314 NotUnknownSpecialization = !Record->hasAnyDependentBases();
4315
4316 if (!NotUnknownSpecialization) {
4317 // When the scope specifier can refer to a member of an unknown
4318 // specialization, we take it as a type name.
4319 BaseType = CheckTypenameType(ETK_None, SourceLocation(),
4320 SS.getWithLocInContext(Context),
4321 *MemberOrBase, IdLoc);
4322 if (BaseType.isNull())
4323 return true;
4324
4325 TInfo = Context.CreateTypeSourceInfo(BaseType);
4326 DependentNameTypeLoc TL =
4327 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>();
4328 if (!TL.isNull()) {
4329 TL.setNameLoc(IdLoc);
4330 TL.setElaboratedKeywordLoc(SourceLocation());
4331 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4332 }
4333
4334 R.clear();
4335 R.setLookupName(MemberOrBase);
4336 }
4337 }
4338
4339 if (getLangOpts().MSVCCompat && !getLangOpts().CPlusPlus20) {
4340 if (auto UnqualifiedBase = R.getAsSingle<ClassTemplateDecl>()) {
4341 auto *TempSpec = cast<TemplateSpecializationType>(
4342 UnqualifiedBase->getInjectedClassNameSpecialization());
4343 TemplateName TN = TempSpec->getTemplateName();
4344 for (auto const &Base : ClassDecl->bases()) {
4345 auto BaseTemplate =
4346 Base.getType()->getAs<TemplateSpecializationType>();
4347 if (BaseTemplate && Context.hasSameTemplateName(
4348 BaseTemplate->getTemplateName(), TN)) {
4349 Diag(IdLoc, diag::ext_unqualified_base_class)
4350 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
4351 BaseType = Base.getType();
4352 break;
4353 }
4354 }
4355 }
4356 }
4357
4358 // If no results were found, try to correct typos.
4359 TypoCorrection Corr;
4360 MemInitializerValidatorCCC CCC(ClassDecl);
4361 if (R.empty() && BaseType.isNull() &&
4362 (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
4363 CCC, CTK_ErrorRecovery, ClassDecl))) {
4364 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
4365 // We have found a non-static data member with a similar
4366 // name to what was typed; complain and initialize that
4367 // member.
4368 diagnoseTypo(Corr,
4369 PDiag(diag::err_mem_init_not_member_or_class_suggest)
4370 << MemberOrBase << true);
4371 return BuildMemberInitializer(Member, Init, IdLoc);
4372 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
4373 const CXXBaseSpecifier *DirectBaseSpec;
4374 const CXXBaseSpecifier *VirtualBaseSpec;
4375 if (FindBaseInitializer(*this, ClassDecl,
4376 Context.getTypeDeclType(Type),
4377 DirectBaseSpec, VirtualBaseSpec)) {
4378 // We have found a direct or virtual base class with a
4379 // similar name to what was typed; complain and initialize
4380 // that base class.
4381 diagnoseTypo(Corr,
4382 PDiag(diag::err_mem_init_not_member_or_class_suggest)
4383 << MemberOrBase << false,
4384 PDiag() /*Suppress note, we provide our own.*/);
4385
4386 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
4387 : VirtualBaseSpec;
4388 Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here)
4389 << BaseSpec->getType() << BaseSpec->getSourceRange();
4390
4391 TyD = Type;
4392 }
4393 }
4394 }
4395
4396 if (!TyD && BaseType.isNull()) {
4397 Diag(IdLoc, diag::err_mem_init_not_member_or_class)
4398 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
4399 return true;
4400 }
4401 }
4402
4403 if (BaseType.isNull()) {
4404 BaseType = getElaboratedType(ETK_None, SS, Context.getTypeDeclType(TyD));
4405 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
4406 TInfo = Context.CreateTypeSourceInfo(BaseType);
4407 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>();
4408 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
4409 TL.setElaboratedKeywordLoc(SourceLocation());
4410 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4411 }
4412 }
4413
4414 if (!TInfo)
4415 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
4416
4417 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
4418}
4419
4420MemInitResult
4421Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
4422 SourceLocation IdLoc) {
4423 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
4424 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
4425 assert((DirectMember || IndirectMember) &&(static_cast <bool> ((DirectMember || IndirectMember) &&
"Member must be a FieldDecl or IndirectFieldDecl") ? void (0
) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 4426, __extension__ __PRETTY_FUNCTION__
))
4426 "Member must be a FieldDecl or IndirectFieldDecl")(static_cast <bool> ((DirectMember || IndirectMember) &&
"Member must be a FieldDecl or IndirectFieldDecl") ? void (0
) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 4426, __extension__ __PRETTY_FUNCTION__
))
;
4427
4428 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4429 return true;
4430
4431 if (Member->isInvalidDecl())
4432 return true;
4433
4434 MultiExprArg Args;
4435 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4436 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4437 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
4438 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
4439 } else {
4440 // Template instantiation doesn't reconstruct ParenListExprs for us.
4441 Args = Init;
4442 }
4443
4444 SourceRange InitRange = Init->getSourceRange();
4445
4446 if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
4447 // Can't check initialization for a member of dependent type or when
4448 // any of the arguments are type-dependent expressions.
4449 DiscardCleanupsInEvaluationContext();
4450 } else {
4451 bool InitList = false;
4452 if (isa<InitListExpr>(Init)) {
4453 InitList = true;
4454 Args = Init;
4455 }
4456
4457 // Initialize the member.
4458 InitializedEntity MemberEntity =
4459 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
4460 : InitializedEntity::InitializeMember(IndirectMember,
4461 nullptr);
4462 InitializationKind Kind =
4463 InitList ? InitializationKind::CreateDirectList(
4464 IdLoc, Init->getBeginLoc(), Init->getEndLoc())
4465 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
4466 InitRange.getEnd());
4467
4468 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
4469 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
4470 nullptr);
4471 if (!MemberInit.isInvalid()) {
4472 // C++11 [class.base.init]p7:
4473 // The initialization of each base and member constitutes a
4474 // full-expression.
4475 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(),
4476 /*DiscardedValue*/ false);
4477 }
4478
4479 if (MemberInit.isInvalid()) {
4480 // Args were sensible expressions but we couldn't initialize the member
4481 // from them. Preserve them in a RecoveryExpr instead.
4482 Init = CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), Args,
4483 Member->getType())
4484 .get();
4485 if (!Init)
4486 return true;
4487 } else {
4488 Init = MemberInit.get();
4489 }
4490 }
4491
4492 if (DirectMember) {
4493 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
4494 InitRange.getBegin(), Init,
4495 InitRange.getEnd());
4496 } else {
4497 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
4498 InitRange.getBegin(), Init,
4499 InitRange.getEnd());
4500 }
4501}
4502
4503MemInitResult
4504Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
4505 CXXRecordDecl *ClassDecl) {
4506 SourceLocation NameLoc = TInfo->getTypeLoc().getSourceRange().getBegin();
4507 if (!LangOpts.CPlusPlus11)
4508 return Diag(NameLoc, diag::err_delegating_ctor)
4509 << TInfo->getTypeLoc().getSourceRange();
4510 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
4511
4512 bool InitList = true;
4513 MultiExprArg Args = Init;
4514 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4515 InitList = false;
4516 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4517 }
4518
4519 SourceRange InitRange = Init->getSourceRange();
4520 // Initialize the object.
4521 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
4522 QualType(ClassDecl->getTypeForDecl(), 0));
4523 InitializationKind Kind =
4524 InitList ? InitializationKind::CreateDirectList(
4525 NameLoc, Init->getBeginLoc(), Init->getEndLoc())
4526 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
4527 InitRange.getEnd());
4528 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
4529 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
4530 Args, nullptr);
4531 if (!DelegationInit.isInvalid()) {
4532 assert((DelegationInit.get()->containsErrors() ||(static_cast <bool> ((DelegationInit.get()->containsErrors
() || cast<CXXConstructExpr>(DelegationInit.get())->
getConstructor()) && "Delegating constructor with no target?"
) ? void (0) : __assert_fail ("(DelegationInit.get()->containsErrors() || cast<CXXConstructExpr>(DelegationInit.get())->getConstructor()) && \"Delegating constructor with no target?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 4534, __extension__ __PRETTY_FUNCTION__
))
4533 cast<CXXConstructExpr>(DelegationInit.get())->getConstructor()) &&(static_cast <bool> ((DelegationInit.get()->containsErrors
() || cast<CXXConstructExpr>(DelegationInit.get())->
getConstructor()) && "Delegating constructor with no target?"
) ? void (0) : __assert_fail ("(DelegationInit.get()->containsErrors() || cast<CXXConstructExpr>(DelegationInit.get())->getConstructor()) && \"Delegating constructor with no target?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 4534, __extension__ __PRETTY_FUNCTION__
))
4534 "Delegating constructor with no target?")(static_cast <bool> ((DelegationInit.get()->containsErrors
() || cast<CXXConstructExpr>(DelegationInit.get())->
getConstructor()) && "Delegating constructor with no target?"
) ? void (0) : __assert_fail ("(DelegationInit.get()->containsErrors() || cast<CXXConstructExpr>(DelegationInit.get())->getConstructor()) && \"Delegating constructor with no target?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 4534, __extension__ __PRETTY_FUNCTION__
))
;
4535
4536 // C++11 [class.base.init]p7:
4537 // The initialization of each base and member constitutes a
4538 // full-expression.
4539 DelegationInit = ActOnFinishFullExpr(
4540 DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false);
4541 }
4542
4543 if (DelegationInit.isInvalid()) {
4544 DelegationInit =
4545 CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), Args,
4546 QualType(ClassDecl->getTypeForDecl(), 0));
4547 if (DelegationInit.isInvalid())
4548 return true;
4549 } else {
4550 // If we are in a dependent context, template instantiation will
4551 // perform this type-checking again. Just save the arguments that we
4552 // received in a ParenListExpr.
4553 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4554 // of the information that we have about the base
4555 // initializer. However, deconstructing the ASTs is a dicey process,
4556 // and this approach is far more likely to get the corner cases right.
4557 if (CurContext->isDependentContext())
4558 DelegationInit = Init;
4559 }
4560
4561 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
4562 DelegationInit.getAs<Expr>(),
4563 InitRange.getEnd());
4564}
4565
4566MemInitResult
4567Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
4568 Expr *Init, CXXRecordDecl *ClassDecl,
4569 SourceLocation EllipsisLoc) {
4570 SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getBeginLoc();
4571
4572 if (!BaseType->isDependentType() && !BaseType->isRecordType())
4573 return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
4574 << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
4575
4576 // C++ [class.base.init]p2:
4577 // [...] Unless the mem-initializer-id names a nonstatic data
4578 // member of the constructor's class or a direct or virtual base
4579 // of that class, the mem-initializer is ill-formed. A
4580 // mem-initializer-list can initialize a base class using any
4581 // name that denotes that base class type.
4582
4583 // We can store the initializers in "as-written" form and delay analysis until
4584 // instantiation if the constructor is dependent. But not for dependent
4585 // (broken) code in a non-template! SetCtorInitializers does not expect this.
4586 bool Dependent = CurContext->isDependentContext() &&
4587 (BaseType->isDependentType() || Init->isTypeDependent());
4588
4589 SourceRange InitRange = Init->getSourceRange();
4590 if (EllipsisLoc.isValid()) {
4591 // This is a pack expansion.
4592 if (!BaseType->containsUnexpandedParameterPack()) {
4593 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
4594 << SourceRange(BaseLoc, InitRange.getEnd());
4595
4596 EllipsisLoc = SourceLocation();
4597 }
4598 } else {
4599 // Check for any unexpanded parameter packs.
4600 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
4601 return true;
4602
4603 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4604 return true;
4605 }
4606
4607 // Check for direct and virtual base classes.
4608 const CXXBaseSpecifier *DirectBaseSpec = nullptr;
4609 const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
4610 if (!Dependent) {
4611 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
4612 BaseType))
4613 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
4614
4615 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
4616 VirtualBaseSpec);
4617
4618 // C++ [base.class.init]p2:
4619 // Unless the mem-initializer-id names a nonstatic data member of the
4620 // constructor's class or a direct or virtual base of that class, the
4621 // mem-initializer is ill-formed.
4622 if (!DirectBaseSpec && !VirtualBaseSpec) {
4623 // If the class has any dependent bases, then it's possible that
4624 // one of those types will resolve to the same type as
4625 // BaseType. Therefore, just treat this as a dependent base
4626 // class initialization. FIXME: Should we try to check the
4627 // initialization anyway? It seems odd.
4628 if (ClassDecl->hasAnyDependentBases())
4629 Dependent = true;
4630 else
4631 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
4632 << BaseType << Context.getTypeDeclType(ClassDecl)
4633 << BaseTInfo->getTypeLoc().getSourceRange();
4634 }
4635 }
4636
4637 if (Dependent) {
4638 DiscardCleanupsInEvaluationContext();
4639
4640 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4641 /*IsVirtual=*/false,
4642 InitRange.getBegin(), Init,
4643 InitRange.getEnd(), EllipsisLoc);
4644 }
4645
4646 // C++ [base.class.init]p2:
4647 // If a mem-initializer-id is ambiguous because it designates both
4648 // a direct non-virtual base class and an inherited virtual base
4649 // class, the mem-initializer is ill-formed.
4650 if (DirectBaseSpec && VirtualBaseSpec)
4651 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
4652 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4653
4654 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
4655 if (!BaseSpec)
4656 BaseSpec = VirtualBaseSpec;
4657
4658 // Initialize the base.
4659 bool InitList = true;
4660 MultiExprArg Args = Init;
4661 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4662 InitList = false;
4663 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4664 }
4665
4666 InitializedEntity BaseEntity =
4667 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
4668 InitializationKind Kind =
4669 InitList ? InitializationKind::CreateDirectList(BaseLoc)
4670 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
4671 InitRange.getEnd());
4672 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
4673 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
4674 if (!BaseInit.isInvalid()) {
4675 // C++11 [class.base.init]p7:
4676 // The initialization of each base and member constitutes a
4677 // full-expression.
4678 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(),
4679 /*DiscardedValue*/ false);
4680 }
4681
4682 if (BaseInit.isInvalid()) {
4683 BaseInit = CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(),
4684 Args, BaseType);
4685 if (BaseInit.isInvalid())
4686 return true;
4687 } else {
4688 // If we are in a dependent context, template instantiation will
4689 // perform this type-checking again. Just save the arguments that we
4690 // received in a ParenListExpr.
4691 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4692 // of the information that we have about the base
4693 // initializer. However, deconstructing the ASTs is a dicey process,
4694 // and this approach is far more likely to get the corner cases right.
4695 if (CurContext->isDependentContext())
4696 BaseInit = Init;
4697 }
4698
4699 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4700 BaseSpec->isVirtual(),
4701 InitRange.getBegin(),
4702 BaseInit.getAs<Expr>(),
4703 InitRange.getEnd(), EllipsisLoc);
4704}
4705
4706// Create a static_cast\<T&&>(expr).
4707static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
4708 QualType TargetType =
4709 SemaRef.BuildReferenceType(E->getType(), /*SpelledAsLValue*/ false,
4710 SourceLocation(), DeclarationName());
4711 SourceLocation ExprLoc = E->getBeginLoc();
4712 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
4713 TargetType, ExprLoc);
4714
4715 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
4716 SourceRange(ExprLoc, ExprLoc),
4717 E->getSourceRange()).get();
4718}
4719
4720/// ImplicitInitializerKind - How an implicit base or member initializer should
4721/// initialize its base or member.
4722enum ImplicitInitializerKind {
4723 IIK_Default,
4724 IIK_Copy,
4725 IIK_Move,
4726 IIK_Inherit
4727};
4728
4729static bool
4730BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4731 ImplicitInitializerKind ImplicitInitKind,
4732 CXXBaseSpecifier *BaseSpec,
4733 bool IsInheritedVirtualBase,
4734 CXXCtorInitializer *&CXXBaseInit) {
4735 InitializedEntity InitEntity
4736 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
4737 IsInheritedVirtualBase);
4738
4739 ExprResult BaseInit;
4740
4741 switch (ImplicitInitKind) {
4742 case IIK_Inherit:
4743 case IIK_Default: {
4744 InitializationKind InitKind
4745 = InitializationKind::CreateDefault(Constructor->getLocation());
4746 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, std::nullopt);
4747 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, std::nullopt);
4748 break;
4749 }
4750
4751 case IIK_Move:
4752 case IIK_Copy: {
4753 bool Moving = ImplicitInitKind == IIK_Move;
4754 ParmVarDecl *Param = Constructor->getParamDecl(0);
4755 QualType ParamType = Param->getType().getNonReferenceType();
4756
4757 Expr *CopyCtorArg =
4758 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4759 SourceLocation(), Param, false,
4760 Constructor->getLocation(), ParamType,
4761 VK_LValue, nullptr);
4762
4763 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
4764
4765 // Cast to the base class to avoid ambiguities.
4766 QualType ArgTy =
4767 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
4768 ParamType.getQualifiers());
4769
4770 if (Moving) {
4771 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
4772 }
4773
4774 CXXCastPath BasePath;
4775 BasePath.push_back(BaseSpec);
4776 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
4777 CK_UncheckedDerivedToBase,
4778 Moving ? VK_XValue : VK_LValue,
4779 &BasePath).get();
4780
4781 InitializationKind InitKind
4782 = InitializationKind::CreateDirect(Constructor->getLocation(),
4783 SourceLocation(), SourceLocation());
4784 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
4785 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
4786 break;
4787 }
4788 }
4789
4790 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
4791 if (BaseInit.isInvalid())
4792 return true;
4793
4794 CXXBaseInit =
4795 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4796 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
4797 SourceLocation()),
4798 BaseSpec->isVirtual(),
4799 SourceLocation(),
4800 BaseInit.getAs<Expr>(),
4801 SourceLocation(),
4802 SourceLocation());
4803
4804 return false;
4805}
4806
4807static bool RefersToRValueRef(Expr *MemRef) {
4808 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
4809 return Referenced->getType()->isRValueReferenceType();
4810}
4811
4812static bool
4813BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4814 ImplicitInitializerKind ImplicitInitKind,
4815 FieldDecl *Field, IndirectFieldDecl *Indirect,
4816 CXXCtorInitializer *&CXXMemberInit) {
4817 if (Field->isInvalidDecl())
4818 return true;
4819
4820 SourceLocation Loc = Constructor->getLocation();
4821
4822 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
4823 bool Moving = ImplicitInitKind == IIK_Move;
4824 ParmVarDecl *Param = Constructor->getParamDecl(0);
4825 QualType ParamType = Param->getType().getNonReferenceType();
4826
4827 // Suppress copying zero-width bitfields.
4828 if (Field->isZeroLengthBitField(SemaRef.Context))
4829 return false;
4830
4831 Expr *MemberExprBase =
4832 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4833 SourceLocation(), Param, false,
4834 Loc, ParamType, VK_LValue, nullptr);
4835
4836 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
4837
4838 if (Moving) {
4839 MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
4840 }
4841
4842 // Build a reference to this field within the parameter.
4843 CXXScopeSpec SS;
4844 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
4845 Sema::LookupMemberName);
4846 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
4847 : cast<ValueDecl>(Field), AS_public);
4848 MemberLookup.resolveKind();
4849 ExprResult CtorArg
4850 = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
4851 ParamType, Loc,
4852 /*IsArrow=*/false,
4853 SS,
4854 /*TemplateKWLoc=*/SourceLocation(),
4855 /*FirstQualifierInScope=*/nullptr,
4856 MemberLookup,
4857 /*TemplateArgs=*/nullptr,
4858 /*S*/nullptr);
4859 if (CtorArg.isInvalid())
4860 return true;
4861
4862 // C++11 [class.copy]p15:
4863 // - if a member m has rvalue reference type T&&, it is direct-initialized
4864 // with static_cast<T&&>(x.m);
4865 if (RefersToRValueRef(CtorArg.get())) {
4866 CtorArg = CastForMoving(SemaRef, CtorArg.get());
4867 }
4868
4869 InitializedEntity Entity =
4870 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4871 /*Implicit*/ true)
4872 : InitializedEntity::InitializeMember(Field, nullptr,
4873 /*Implicit*/ true);
4874
4875 // Direct-initialize to use the copy constructor.
4876 InitializationKind InitKind =
4877 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
4878
4879 Expr *CtorArgE = CtorArg.getAs<Expr>();
4880 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE);
4881 ExprResult MemberInit =
4882 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1));
4883 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4884 if (MemberInit.isInvalid())
4885 return true;
4886
4887 if (Indirect)
4888 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4889 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4890 else
4891 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4892 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4893 return false;
4894 }
4895
4896 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&(static_cast <bool> ((ImplicitInitKind == IIK_Default ||
ImplicitInitKind == IIK_Inherit) && "Unhandled implicit init kind!"
) ? void (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 4897, __extension__ __PRETTY_FUNCTION__
))
4897 "Unhandled implicit init kind!")(static_cast <bool> ((ImplicitInitKind == IIK_Default ||
ImplicitInitKind == IIK_Inherit) && "Unhandled implicit init kind!"
) ? void (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 4897, __extension__ __PRETTY_FUNCTION__
))
;
4898
4899 QualType FieldBaseElementType =
4900 SemaRef.Context.getBaseElementType(Field->getType());
4901
4902 if (FieldBaseElementType->isRecordType()) {
4903 InitializedEntity InitEntity =
4904 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4905 /*Implicit*/ true)
4906 : InitializedEntity::InitializeMember(Field, nullptr,
4907 /*Implicit*/ true);
4908 InitializationKind InitKind =
4909 InitializationKind::CreateDefault(Loc);
4910
4911 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, std::nullopt);
4912 ExprResult MemberInit =
4913 InitSeq.Perform(SemaRef, InitEntity, InitKind, std::nullopt);
4914
4915 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4916 if (MemberInit.isInvalid())
4917 return true;
4918
4919 if (Indirect)
4920 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4921 Indirect, Loc,
4922 Loc,
4923 MemberInit.get(),
4924 Loc);
4925 else
4926 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4927 Field, Loc, Loc,
4928 MemberInit.get(),
4929 Loc);
4930 return false;
4931 }
4932
4933 if (!Field->getParent()->isUnion()) {
4934 if (FieldBaseElementType->isReferenceType()) {
4935 SemaRef.Diag(Constructor->getLocation(),
4936 diag::err_uninitialized_member_in_ctor)
4937 << (int)Constructor->isImplicit()
4938 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4939 << 0 << Field->getDeclName();
4940 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4941 return true;
4942 }
4943
4944 if (FieldBaseElementType.isConstQualified()) {
4945 SemaRef.Diag(Constructor->getLocation(),
4946 diag::err_uninitialized_member_in_ctor)
4947 << (int)Constructor->isImplicit()
4948 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4949 << 1 << Field->getDeclName();
4950 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4951 return true;
4952 }
4953 }
4954
4955 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) {
4956 // ARC and Weak:
4957 // Default-initialize Objective-C pointers to NULL.
4958 CXXMemberInit
4959 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
4960 Loc, Loc,
4961 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
4962 Loc);
4963 return false;
4964 }
4965
4966 // Nothing to initialize.
4967 CXXMemberInit = nullptr;
4968 return false;
4969}
4970
4971namespace {
4972struct BaseAndFieldInfo {
4973 Sema &S;
4974 CXXConstructorDecl *Ctor;
4975 bool AnyErrorsInInits;
4976 ImplicitInitializerKind IIK;
4977 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
4978 SmallVector<CXXCtorInitializer*, 8> AllToInit;
4979 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
4980
4981 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
4982 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
4983 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
4984 if (Ctor->getInheritedConstructor())
4985 IIK = IIK_Inherit;
4986 else if (Generated && Ctor->isCopyConstructor())
4987 IIK = IIK_Copy;
4988 else if (Generated && Ctor->isMoveConstructor())
4989 IIK = IIK_Move;
4990 else
4991 IIK = IIK_Default;
4992 }
4993
4994 bool isImplicitCopyOrMove() const {
4995 switch (IIK) {
4996 case IIK_Copy:
4997 case IIK_Move:
4998 return true;
4999
5000 case IIK_Default:
5001 case IIK_Inherit:
5002 return false;
5003 }
5004
5005 llvm_unreachable("Invalid ImplicitInitializerKind!")::llvm::llvm_unreachable_internal("Invalid ImplicitInitializerKind!"
, "clang/lib/Sema/SemaDeclCXX.cpp", 5005)
;
5006 }
5007
5008 bool addFieldInitializer(CXXCtorInitializer *Init) {
5009 AllToInit.push_back(Init);
5010
5011 // Check whether this initializer makes the field "used".
5012 if (Init->getInit()->HasSideEffects(S.Context))
5013 S.UnusedPrivateFields.remove(Init->getAnyMember());
5014
5015 return false;
5016 }
5017
5018 bool isInactiveUnionMember(FieldDecl *Field) {
5019 RecordDecl *Record = Field->getParent();
5020 if (!Record->isUnion())
5021 return false;
5022
5023 if (FieldDecl *Active =
5024 ActiveUnionMember.lookup(Record->getCanonicalDecl()))
5025 return Active != Field->getCanonicalDecl();
5026
5027 // In an implicit copy or move constructor, ignore any in-class initializer.
5028 if (isImplicitCopyOrMove())
5029 return true;
5030
5031 // If there's no explicit initialization, the field is active only if it
5032 // has an in-class initializer...
5033 if (Field->hasInClassInitializer())
5034 return false;
5035 // ... or it's an anonymous struct or union whose class has an in-class
5036 // initializer.
5037 if (!Field->isAnonymousStructOrUnion())
5038 return true;
5039 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
5040 return !FieldRD->hasInClassInitializer();
5041 }
5042
5043 /// Determine whether the given field is, or is within, a union member
5044 /// that is inactive (because there was an initializer given for a different
5045 /// member of the union, or because the union was not initialized at all).
5046 bool isWithinInactiveUnionMember(FieldDecl *Field,
5047 IndirectFieldDecl *Indirect) {
5048 if (!Indirect)
5049 return isInactiveUnionMember(Field);
5050
5051 for (auto *C : Indirect->chain()) {
5052 FieldDecl *Field = dyn_cast<FieldDecl>(C);
5053 if (Field && isInactiveUnionMember(Field))
5054 return true;
5055 }
5056 return false;
5057 }
5058};
5059}
5060
5061/// Determine whether the given type is an incomplete or zero-lenfgth
5062/// array type.
5063static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
5064 if (T->isIncompleteArrayType())
5065 return true;
5066
5067 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
5068 if (!ArrayT->getSize())
5069 return true;
5070
5071 T = ArrayT->getElementType();
5072 }
5073
5074 return false;
5075}
5076
5077static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
5078 FieldDecl *Field,
5079 IndirectFieldDecl *Indirect = nullptr) {
5080 if (Field->isInvalidDecl())
5081 return false;
5082
5083 // Overwhelmingly common case: we have a direct initializer for this field.
5084 if (CXXCtorInitializer *Init =
5085 Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
5086 return Info.addFieldInitializer(Init);
5087
5088 // C++11 [class.base.init]p8:
5089 // if the entity is a non-static data member that has a
5090 // brace-or-equal-initializer and either
5091 // -- the constructor's class is a union and no other variant member of that
5092 // union is designated by a mem-initializer-id or
5093 // -- the constructor's class is not a union, and, if the entity is a member
5094 // of an anonymous union, no other member of that union is designated by
5095 // a mem-initializer-id,
5096 // the entity is initialized as specified in [dcl.init].
5097 //
5098 // We also apply the same rules to handle anonymous structs within anonymous
5099 // unions.
5100 if (Info.isWithinInactiveUnionMember(Field, Indirect))
5101 return false;
5102
5103 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
5104 ExprResult DIE =
5105 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
5106 if (DIE.isInvalid())
5107 return true;
5108
5109 auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true);
5110 SemaRef.checkInitializerLifetime(Entity, DIE.get());
5111
5112 CXXCtorInitializer *Init;
5113 if (Indirect)
5114 Init = new (SemaRef.Context)
5115 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
5116 SourceLocation(), DIE.get(), SourceLocation());
5117 else
5118 Init = new (SemaRef.Context)
5119 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
5120 SourceLocation(), DIE.get(), SourceLocation());
5121 return Info.addFieldInitializer(Init);
5122 }
5123
5124 // Don't initialize incomplete or zero-length arrays.
5125 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
5126 return false;
5127
5128 // Don't try to build an implicit initializer if there were semantic
5129 // errors in any of the initializers (and therefore we might be
5130 // missing some that the user actually wrote).
5131 if (Info.AnyErrorsInInits)
5132 return false;
5133
5134 CXXCtorInitializer *Init = nullptr;
5135 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
5136 Indirect, Init))
5137 return true;
5138
5139 if (!Init)
5140 return false;
5141
5142 return Info.addFieldInitializer(Init);
5143}
5144
5145bool
5146Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
5147 CXXCtorInitializer *Initializer) {
5148 assert(Initializer->isDelegatingInitializer())(static_cast <bool> (Initializer->isDelegatingInitializer
()) ? void (0) : __assert_fail ("Initializer->isDelegatingInitializer()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 5148, __extension__ __PRETTY_FUNCTION__
))
;
5149 Constructor->setNumCtorInitializers(1);
5150 CXXCtorInitializer **initializer =
5151 new (Context) CXXCtorInitializer*[1];
5152 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
5153 Constructor->setCtorInitializers(initializer);
5154
5155 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
5156 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
5157 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
5158 }
5159
5160 DelegatingCtorDecls.push_back(Constructor);
5161
5162 DiagnoseUninitializedFields(*this, Constructor);
5163
5164 return false;
5165}
5166
5167bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
5168 ArrayRef<CXXCtorInitializer *> Initializers) {
5169 if (Constructor->isDependentContext()) {
5170 // Just store the initializers as written, they will be checked during
5171 // instantiation.
5172 if (!Initializers.empty()) {
5173 Constructor->setNumCtorInitializers(Initializers.size());
5174 CXXCtorInitializer **baseOrMemberInitializers =
5175 new (Context) CXXCtorInitializer*[Initializers.size()];
5176 memcpy(baseOrMemberInitializers, Initializers.data(),
5177 Initializers.size() * sizeof(CXXCtorInitializer*));
5178 Constructor->setCtorInitializers(baseOrMemberInitializers);
5179 }
5180
5181 // Let template instantiation know whether we had errors.
5182 if (AnyErrors)
5183 Constructor->setInvalidDecl();
5184
5185 return false;
5186 }
5187
5188 BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
5189
5190 // We need to build the initializer AST according to order of construction
5191 // and not what user specified in the Initializers list.
5192 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
5193 if (!ClassDecl)
5194 return true;
5195
5196 bool HadError = false;
5197
5198 for (unsigned i = 0; i < Initializers.size(); i++) {
5199 CXXCtorInitializer *Member = Initializers[i];
5200
5201 if (Member->isBaseInitializer())
5202 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
5203 else {
5204 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
5205
5206 if (IndirectFieldDecl *F = Member->getIndirectMember()) {
5207 for (auto *C : F->chain()) {
5208 FieldDecl *FD = dyn_cast<FieldDecl>(C);
5209 if (FD && FD->getParent()->isUnion())
5210 Info.ActiveUnionMember.insert(std::make_pair(
5211 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5212 }
5213 } else if (FieldDecl *FD = Member->getMember()) {
5214 if (FD->getParent()->isUnion())
5215 Info.ActiveUnionMember.insert(std::make_pair(
5216 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5217 }
5218 }
5219 }
5220
5221 // Keep track of the direct virtual bases.
5222 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
5223 for (auto &I : ClassDecl->bases()) {
5224 if (I.isVirtual())
5225 DirectVBases.insert(&I);
5226 }
5227
5228 // Push virtual bases before others.
5229 for (auto &VBase : ClassDecl->vbases()) {
5230 if (CXXCtorInitializer *Value
5231 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
5232 // [class.base.init]p7, per DR257:
5233 // A mem-initializer where the mem-initializer-id names a virtual base
5234 // class is ignored during execution of a constructor of any class that
5235 // is not the most derived class.
5236 if (ClassDecl->isAbstract()) {
5237 // FIXME: Provide a fixit to remove the base specifier. This requires
5238 // tracking the location of the associated comma for a base specifier.
5239 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
5240 << VBase.getType() << ClassDecl;
5241 DiagnoseAbstractType(ClassDecl);
5242 }
5243
5244 Info.AllToInit.push_back(Value);
5245 } else if (!AnyErrors && !ClassDecl->isAbstract()) {
5246 // [class.base.init]p8, per DR257:
5247 // If a given [...] base class is not named by a mem-initializer-id
5248 // [...] and the entity is not a virtual base class of an abstract
5249 // class, then [...] the entity is default-initialized.
5250 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
5251 CXXCtorInitializer *CXXBaseInit;
5252 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5253 &VBase, IsInheritedVirtualBase,
5254 CXXBaseInit)) {
5255 HadError = true;
5256 continue;
5257 }
5258
5259 Info.AllToInit.push_back(CXXBaseInit);
5260 }
5261 }
5262
5263 // Non-virtual bases.
5264 for (auto &Base : ClassDecl->bases()) {
5265 // Virtuals are in the virtual base list and already constructed.
5266 if (Base.isVirtual())
5267 continue;
5268
5269 if (CXXCtorInitializer *Value
5270 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
5271 Info.AllToInit.push_back(Value);
5272 } else if (!AnyErrors) {
5273 CXXCtorInitializer *CXXBaseInit;
5274 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5275 &Base, /*IsInheritedVirtualBase=*/false,
5276 CXXBaseInit)) {
5277 HadError = true;
5278 continue;
5279 }
5280
5281 Info.AllToInit.push_back(CXXBaseInit);
5282 }
5283 }
5284
5285 // Fields.
5286 for (auto *Mem : ClassDecl->decls()) {
5287 if (auto *F = dyn_cast<FieldDecl>(Mem)) {
5288 // C++ [class.bit]p2:
5289 // A declaration for a bit-field that omits the identifier declares an
5290 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
5291 // initialized.
5292 if (F->isUnnamedBitfield())
5293 continue;
5294
5295 // If we're not generating the implicit copy/move constructor, then we'll
5296 // handle anonymous struct/union fields based on their individual
5297 // indirect fields.
5298 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
5299 continue;
5300
5301 if (CollectFieldInitializer(*this, Info, F))
5302 HadError = true;
5303 continue;
5304 }
5305
5306 // Beyond this point, we only consider default initialization.
5307 if (Info.isImplicitCopyOrMove())
5308 continue;
5309
5310 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
5311 if (F->getType()->isIncompleteArrayType()) {
5312 assert(ClassDecl->hasFlexibleArrayMember() &&(static_cast <bool> (ClassDecl->hasFlexibleArrayMember
() && "Incomplete array type is not valid") ? void (0
) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 5313, __extension__ __PRETTY_FUNCTION__
))
5313 "Incomplete array type is not valid")(static_cast <bool> (ClassDecl->hasFlexibleArrayMember
() && "Incomplete array type is not valid") ? void (0
) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 5313, __extension__ __PRETTY_FUNCTION__
))
;
5314 continue;
5315 }
5316
5317 // Initialize each field of an anonymous struct individually.
5318 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
5319 HadError = true;
5320
5321 continue;
5322 }
5323 }
5324
5325 unsigned NumInitializers = Info.AllToInit.size();
5326 if (NumInitializers > 0) {
5327 Constructor->setNumCtorInitializers(NumInitializers);
5328 CXXCtorInitializer **baseOrMemberInitializers =
5329 new (Context) CXXCtorInitializer*[NumInitializers];
5330 memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
5331 NumInitializers * sizeof(CXXCtorInitializer*));
5332 Constructor->setCtorInitializers(baseOrMemberInitializers);
5333
5334 // Constructors implicitly reference the base and member
5335 // destructors.
5336 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
5337 Constructor->getParent());
5338 }
5339
5340 return HadError;
5341}
5342
5343static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
5344 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
5345 const RecordDecl *RD = RT->getDecl();
5346 if (RD->isAnonymousStructOrUnion()) {
5347 for (auto *Field : RD->fields())
5348 PopulateKeysForFields(Field, IdealInits);
5349 return;
5350 }
5351 }
5352 IdealInits.push_back(Field->getCanonicalDecl());
5353}
5354
5355static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
5356 return Context.getCanonicalType(BaseType).getTypePtr();
5357}
5358
5359static const void *GetKeyForMember(ASTContext &Context,
5360 CXXCtorInitializer *Member) {
5361 if (!Member->isAnyMemberInitializer())
5362 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
5363
5364 return Member->getAnyMember()->getCanonicalDecl();
5365}
5366
5367static void AddInitializerToDiag(const Sema::SemaDiagnosticBuilder &Diag,
5368 const CXXCtorInitializer *Previous,
5369 const CXXCtorInitializer *Current) {
5370 if (Previous->isAnyMemberInitializer())
5371 Diag << 0 << Previous->getAnyMember();
5372 else
5373 Diag << 1 << Previous->getTypeSourceInfo()->getType();
5374
5375 if (Current->isAnyMemberInitializer())
5376 Diag << 0 << Current->getAnyMember();
5377 else
5378 Diag << 1 << Current->getTypeSourceInfo()->getType();
5379}
5380
5381static void DiagnoseBaseOrMemInitializerOrder(
5382 Sema &SemaRef, const CXXConstructorDecl *Constructor,
5383 ArrayRef<CXXCtorInitializer *> Inits) {
5384 if (Constructor->getDeclContext()->isDependentContext())
5385 return;
5386
5387 // Don't check initializers order unless the warning is enabled at the
5388 // location of at least one initializer.
5389 bool ShouldCheckOrder = false;
5390 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5391 CXXCtorInitializer *Init = Inits[InitIndex];
5392 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
5393 Init->getSourceLocation())) {
5394 ShouldCheckOrder = true;
5395 break;
5396 }
5397 }
5398 if (!ShouldCheckOrder)
5399 return;
5400
5401 // Build the list of bases and members in the order that they'll
5402 // actually be initialized. The explicit initializers should be in
5403 // this same order but may be missing things.
5404 SmallVector<const void*, 32> IdealInitKeys;
5405
5406 const CXXRecordDecl *ClassDecl = Constructor->getParent();
5407
5408 // 1. Virtual bases.
5409 for (const auto &VBase : ClassDecl->vbases())
5410 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
5411
5412 // 2. Non-virtual bases.
5413 for (const auto &Base : ClassDecl->bases()) {
5414 if (Base.isVirtual())
5415 continue;
5416 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
5417 }
5418
5419 // 3. Direct fields.
5420 for (auto *Field : ClassDecl->fields()) {
5421 if (Field->isUnnamedBitfield())
5422 continue;
5423
5424 PopulateKeysForFields(Field, IdealInitKeys);
5425 }
5426
5427 unsigned NumIdealInits = IdealInitKeys.size();
5428 unsigned IdealIndex = 0;
5429
5430 // Track initializers that are in an incorrect order for either a warning or
5431 // note if multiple ones occur.
5432 SmallVector<unsigned> WarnIndexes;
5433 // Correlates the index of an initializer in the init-list to the index of
5434 // the field/base in the class.
5435 SmallVector<std::pair<unsigned, unsigned>, 32> CorrelatedInitOrder;
5436
5437 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5438 const void *InitKey = GetKeyForMember(SemaRef.Context, Inits[InitIndex]);
5439
5440 // Scan forward to try to find this initializer in the idealized
5441 // initializers list.
5442 for (; IdealIndex != NumIdealInits; ++IdealIndex)
5443 if (InitKey == IdealInitKeys[IdealIndex])
5444 break;
5445
5446 // If we didn't find this initializer, it must be because we
5447 // scanned past it on a previous iteration. That can only
5448 // happen if we're out of order; emit a warning.
5449 if (IdealIndex == NumIdealInits && InitIndex) {
5450 WarnIndexes.push_back(InitIndex);
5451
5452 // Move back to the initializer's location in the ideal list.
5453 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
5454 if (InitKey == IdealInitKeys[IdealIndex])
5455 break;
5456
5457 assert(IdealIndex < NumIdealInits &&(static_cast <bool> (IdealIndex < NumIdealInits &&
"initializer not found in initializer list") ? void (0) : __assert_fail
("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 5458, __extension__ __PRETTY_FUNCTION__
))
5458 "initializer not found in initializer list")(static_cast <bool> (IdealIndex < NumIdealInits &&
"initializer not found in initializer list") ? void (0) : __assert_fail
("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 5458, __extension__ __PRETTY_FUNCTION__
))
;
5459 }
5460 CorrelatedInitOrder.emplace_back(IdealIndex, InitIndex);
5461 }
5462
5463 if (WarnIndexes.empty())
5464 return;
5465
5466 // Sort based on the ideal order, first in the pair.
5467 llvm::sort(CorrelatedInitOrder, llvm::less_first());
5468
5469 // Introduce a new scope as SemaDiagnosticBuilder needs to be destroyed to
5470 // emit the diagnostic before we can try adding notes.
5471 {
5472 Sema::SemaDiagnosticBuilder D = SemaRef.Diag(
5473 Inits[WarnIndexes.front() - 1]->getSourceLocation(),
5474 WarnIndexes.size() == 1 ? diag::warn_initializer_out_of_order
5475 : diag::warn_some_initializers_out_of_order);
5476
5477 for (unsigned I = 0; I < CorrelatedInitOrder.size(); ++I) {
5478 if (CorrelatedInitOrder[I].second == I)
5479 continue;
5480 // Ideally we would be using InsertFromRange here, but clang doesn't
5481 // appear to handle InsertFromRange correctly when the source range is
5482 // modified by another fix-it.
5483 D << FixItHint::CreateReplacement(
5484 Inits[I]->getSourceRange(),
5485 Lexer::getSourceText(
5486 CharSourceRange::getTokenRange(
5487 Inits[CorrelatedInitOrder[I].second]->getSourceRange()),
5488 SemaRef.getSourceManager(), SemaRef.getLangOpts()));
5489 }
5490
5491 // If there is only 1 item out of order, the warning expects the name and
5492 // type of each being added to it.
5493 if (WarnIndexes.size() == 1) {
5494 AddInitializerToDiag(D, Inits[WarnIndexes.front() - 1],
5495 Inits[WarnIndexes.front()]);
5496 return;
5497 }
5498 }
5499 // More than 1 item to warn, create notes letting the user know which ones
5500 // are bad.
5501 for (unsigned WarnIndex : WarnIndexes) {
5502 const clang::CXXCtorInitializer *PrevInit = Inits[WarnIndex - 1];
5503 auto D = SemaRef.Diag(PrevInit->getSourceLocation(),
5504 diag::note_initializer_out_of_order);
5505 AddInitializerToDiag(D, PrevInit, Inits[WarnIndex]);
5506 D << PrevInit->getSourceRange();
5507 }
5508}
5509
5510namespace {
5511bool CheckRedundantInit(Sema &S,
5512 CXXCtorInitializer *Init,
5513 CXXCtorInitializer *&PrevInit) {
5514 if (!PrevInit) {
5515 PrevInit = Init;
5516 return false;
5517 }
5518
5519 if (FieldDecl *Field = Init->getAnyMember())
5520 S.Diag(Init->getSourceLocation(),
5521 diag::err_multiple_mem_initialization)
5522 << Field->getDeclName()
5523 << Init->getSourceRange();
5524 else {
5525 const Type *BaseClass = Init->getBaseClass();
5526 assert(BaseClass && "neither field nor base")(static_cast <bool> (BaseClass && "neither field nor base"
) ? void (0) : __assert_fail ("BaseClass && \"neither field nor base\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 5526, __extension__ __PRETTY_FUNCTION__
))
;
5527 S.Diag(Init->getSourceLocation(),
5528 diag::err_multiple_base_initialization)
5529 << QualType(BaseClass, 0)
5530 << Init->getSourceRange();
5531 }
5532 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
5533 << 0 << PrevInit->getSourceRange();
5534
5535 return true;
5536}
5537
5538typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
5539typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
5540
5541bool CheckRedundantUnionInit(Sema &S,
5542 CXXCtorInitializer *Init,
5543 RedundantUnionMap &Unions) {
5544 FieldDecl *Field = Init->getAnyMember();
5545 RecordDecl *Parent = Field->getParent();
5546 NamedDecl *Child = Field;
5547
5548 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
5549 if (Parent->isUnion()) {
5550 UnionEntry &En = Unions[Parent];
5551 if (En.first && En.first != Child) {
5552 S.Diag(Init->getSourceLocation(),
5553 diag::err_multiple_mem_union_initialization)
5554 << Field->getDeclName()
5555 << Init->getSourceRange();
5556 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
5557 << 0 << En.second->getSourceRange();
5558 return true;
5559 }
5560 if (!En.first) {
5561 En.first = Child;
5562 En.second = Init;
5563 }
5564 if (!Parent->isAnonymousStructOrUnion())
5565 return false;
5566 }
5567
5568 Child = Parent;
5569 Parent = cast<RecordDecl>(Parent->getDeclContext());
5570 }
5571
5572 return false;
5573}
5574} // namespace
5575
5576/// ActOnMemInitializers - Handle the member initializers for a constructor.
5577void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
5578 SourceLocation ColonLoc,
5579 ArrayRef<CXXCtorInitializer*> MemInits,
5580 bool AnyErrors) {
5581 if (!ConstructorDecl)
5582 return;
5583
5584 AdjustDeclIfTemplate(ConstructorDecl);
5585
5586 CXXConstructorDecl *Constructor
5587 = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
5588
5589 if (!Constructor) {
5590 Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
5591 return;
5592 }
5593
5594 // Mapping for the duplicate initializers check.
5595 // For member initializers, this is keyed with a FieldDecl*.
5596 // For base initializers, this is keyed with a Type*.
5597 llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
5598
5599 // Mapping for the inconsistent anonymous-union initializers check.
5600 RedundantUnionMap MemberUnions;
5601
5602 bool HadError = false;
5603 for (unsigned i = 0; i < MemInits.size(); i++) {
5604 CXXCtorInitializer *Init = MemInits[i];
5605
5606 // Set the source order index.
5607 Init->setSourceOrder(i);
5608
5609 if (Init->isAnyMemberInitializer()) {
5610 const void *Key = GetKeyForMember(Context, Init);
5611 if (CheckRedundantInit(*this, Init, Members[Key]) ||
5612 CheckRedundantUnionInit(*this, Init, MemberUnions))
5613 HadError = true;
5614 } else if (Init->isBaseInitializer()) {
5615 const void *Key = GetKeyForMember(Context, Init);
5616 if (CheckRedundantInit(*this, Init, Members[Key]))
5617 HadError = true;
5618 } else {
5619 assert(Init->isDelegatingInitializer())(static_cast <bool> (Init->isDelegatingInitializer()
) ? void (0) : __assert_fail ("Init->isDelegatingInitializer()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 5619, __extension__ __PRETTY_FUNCTION__
))
;
5620 // This must be the only initializer
5621 if (MemInits.size() != 1) {
5622 Diag(Init->getSourceLocation(),
5623 diag::err_delegating_initializer_alone)
5624 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
5625 // We will treat this as being the only initializer.
5626 }
5627 SetDelegatingInitializer(Constructor, MemInits[i]);
5628 // Return immediately as the initializer is set.
5629 return;
5630 }
5631 }
5632
5633 if (HadError)
5634 return;
5635
5636 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
5637
5638 SetCtorInitializers(Constructor, AnyErrors, MemInits);
5639
5640 DiagnoseUninitializedFields(*this, Constructor);
5641}
5642
5643void
5644Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
5645 CXXRecordDecl *ClassDecl) {
5646 // Ignore dependent contexts. Also ignore unions, since their members never
5647 // have destructors implicitly called.
5648 if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
5649 return;
5650
5651 // FIXME: all the access-control diagnostics are positioned on the
5652 // field/base declaration. That's probably good; that said, the
5653 // user might reasonably want to know why the destructor is being
5654 // emitted, and we currently don't say.
5655
5656 // Non-static data members.
5657 for (auto *Field : ClassDecl->fields()) {
5658 if (Field->isInvalidDecl())
5659 continue;
5660
5661 // Don't destroy incomplete or zero-length arrays.
5662 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
5663 continue;
5664
5665 QualType FieldType = Context.getBaseElementType(Field->getType());
5666
5667 const RecordType* RT = FieldType->getAs<RecordType>();
5668 if (!RT)
5669 continue;
5670
5671 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5672 if (FieldClassDecl->isInvalidDecl())
5673 continue;
5674 if (FieldClassDecl->hasIrrelevantDestructor())
5675 continue;
5676 // The destructor for an implicit anonymous union member is never invoked.
5677 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
5678 continue;
5679
5680 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
5681 // Dtor might still be missing, e.g because it's invalid.
5682 if (!Dtor)
5683 continue;
5684 CheckDestructorAccess(Field->getLocation(), Dtor,
5685 PDiag(diag::err_access_dtor_field)
5686 << Field->getDeclName()
5687 << FieldType);
5688
5689 MarkFunctionReferenced(Location, Dtor);
5690 DiagnoseUseOfDecl(Dtor, Location);
5691 }
5692
5693 // We only potentially invoke the destructors of potentially constructed
5694 // subobjects.
5695 bool VisitVirtualBases = !ClassDecl->isAbstract();
5696
5697 // If the destructor exists and has already been marked used in the MS ABI,
5698 // then virtual base destructors have already been checked and marked used.
5699 // Skip checking them again to avoid duplicate diagnostics.
5700 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5701 CXXDestructorDecl *Dtor = ClassDecl->getDestructor();
5702 if (Dtor && Dtor->isUsed())
5703 VisitVirtualBases = false;
5704 }
5705
5706 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
5707
5708 // Bases.
5709 for (const auto &Base : ClassDecl->bases()) {
5710 const RecordType *RT = Base.getType()->getAs<RecordType>();
5711 if (!RT)
5712 continue;
5713
5714 // Remember direct virtual bases.
5715 if (Base.isVirtual()) {
5716 if (!VisitVirtualBases)
5717 continue;
5718 DirectVirtualBases.insert(RT);
5719 }
5720
5721 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5722 // If our base class is invalid, we probably can't get its dtor anyway.
5723 if (BaseClassDecl->isInvalidDecl())
5724 continue;
5725 if (BaseClassDecl->hasIrrelevantDestructor())
5726 continue;
5727
5728 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5729 // Dtor might still be missing, e.g because it's invalid.
5730 if (!Dtor)
5731 continue;
5732
5733 // FIXME: caret should be on the start of the class name
5734 CheckDestructorAccess(Base.getBeginLoc(), Dtor,
5735 PDiag(diag::err_access_dtor_base)
5736 << Base.getType() << Base.getSourceRange(),
5737 Context.getTypeDeclType(ClassDecl));
5738
5739 MarkFunctionReferenced(Location, Dtor);
5740 DiagnoseUseOfDecl(Dtor, Location);
5741 }
5742
5743 if (VisitVirtualBases)
5744 MarkVirtualBaseDestructorsReferenced(Location, ClassDecl,
5745 &DirectVirtualBases);
5746}
5747
5748void Sema::MarkVirtualBaseDestructorsReferenced(
5749 SourceLocation Location, CXXRecordDecl *ClassDecl,
5750 llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases) {
5751 // Virtual bases.
5752 for (const auto &VBase : ClassDecl->vbases()) {
5753 // Bases are always records in a well-formed non-dependent class.
5754 const RecordType *RT = VBase.getType()->castAs<RecordType>();
5755
5756 // Ignore already visited direct virtual bases.
5757 if (DirectVirtualBases && DirectVirtualBases->count(RT))
5758 continue;
5759
5760 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5761 // If our base class is invalid, we probably can't get its dtor anyway.
5762 if (BaseClassDecl->isInvalidDecl())
5763 continue;
5764 if (BaseClassDecl->hasIrrelevantDestructor())
5765 continue;
5766
5767 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5768 // Dtor might still be missing, e.g because it's invalid.
5769 if (!Dtor)
5770 continue;
5771 if (CheckDestructorAccess(
5772 ClassDecl->getLocation(), Dtor,
5773 PDiag(diag::err_access_dtor_vbase)
5774 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
5775 Context.getTypeDeclType(ClassDecl)) ==
5776 AR_accessible) {
5777 CheckDerivedToBaseConversion(
5778 Context.getTypeDeclType(ClassDecl), VBase.getType(),
5779 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
5780 SourceRange(), DeclarationName(), nullptr);
5781 }
5782
5783 MarkFunctionReferenced(Location, Dtor);
5784 DiagnoseUseOfDecl(Dtor, Location);
5785 }
5786}
5787
5788void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
5789 if (!CDtorDecl)
5790 return;
5791
5792 if (CXXConstructorDecl *Constructor
5793 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
5794 SetCtorInitializers(Constructor, /*AnyErrors=*/false);
5795 DiagnoseUninitializedFields(*this, Constructor);
5796 }
5797}
5798
5799bool Sema::isAbstractType(SourceLocation Loc, QualType T) {
5800 if (!getLangOpts().CPlusPlus)
5801 return false;
5802
5803 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl();
5804 if (!RD)
5805 return false;
5806
5807 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a
5808 // class template specialization here, but doing so breaks a lot of code.
5809
5810 // We can't answer whether something is abstract until it has a
5811 // definition. If it's currently being defined, we'll walk back
5812 // over all the declarations when we have a full definition.
5813 const CXXRecordDecl *Def = RD->getDefinition();
5814 if (!Def || Def->isBeingDefined())
5815 return false;
5816
5817 return RD->isAbstract();
5818}
5819
5820bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
5821 TypeDiagnoser &Diagnoser) {
5822 if (!isAbstractType(Loc, T))
5823 return false;
5824
5825 T = Context.getBaseElementType(T);
5826 Diagnoser.diagnose(*this, Loc, T);
5827 DiagnoseAbstractType(T->getAsCXXRecordDecl());
5828 return true;
5829}
5830
5831void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
5832 // Check if we've already emitted the list of pure virtual functions
5833 // for this class.
5834 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
5835 return;
5836
5837 // If the diagnostic is suppressed, don't emit the notes. We're only
5838 // going to emit them once, so try to attach them to a diagnostic we're
5839 // actually going to show.
5840 if (Diags.isLastDiagnosticIgnored())
5841 return;
5842
5843 CXXFinalOverriderMap FinalOverriders;
5844 RD->getFinalOverriders(FinalOverriders);
5845
5846 // Keep a set of seen pure methods so we won't diagnose the same method
5847 // more than once.
5848 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
5849
5850 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
5851 MEnd = FinalOverriders.end();
5852 M != MEnd;
5853 ++M) {
5854 for (OverridingMethods::iterator SO = M->second.begin(),
5855 SOEnd = M->second.end();
5856 SO != SOEnd; ++SO) {
5857 // C++ [class.abstract]p4:
5858 // A class is abstract if it contains or inherits at least one
5859 // pure virtual function for which the final overrider is pure
5860 // virtual.
5861
5862 //
5863 if (SO->second.size() != 1)
5864 continue;
5865
5866 if (!SO->second.front().Method->isPure())
5867 continue;
5868
5869 if (!SeenPureMethods.insert(SO->second.front().Method).second)
5870 continue;
5871
5872 Diag(SO->second.front().Method->getLocation(),
5873 diag::note_pure_virtual_function)
5874 << SO->second.front().Method->getDeclName() << RD->getDeclName();
5875 }
5876 }
5877
5878 if (!PureVirtualClassDiagSet)
5879 PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
5880 PureVirtualClassDiagSet->insert(RD);
5881}
5882
5883namespace {
5884struct AbstractUsageInfo {
5885 Sema &S;
5886 CXXRecordDecl *Record;
5887 CanQualType AbstractType;
5888 bool Invalid;
5889
5890 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
5891 : S(S), Record(Record),
5892 AbstractType(S.Context.getCanonicalType(
5893 S.Context.getTypeDeclType(Record))),
5894 Invalid(false) {}
5895
5896 void DiagnoseAbstractType() {
5897 if (Invalid) return;
5898 S.DiagnoseAbstractType(Record);
5899 Invalid = true;
5900 }
5901
5902 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
5903};
5904
5905struct CheckAbstractUsage {
5906 AbstractUsageInfo &Info;
5907 const NamedDecl *Ctx;
5908
5909 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
5910 : Info(Info), Ctx(Ctx) {}
5911
5912 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5913 switch (TL.getTypeLocClass()) {
5914#define ABSTRACT_TYPELOC(CLASS, PARENT)
5915#define TYPELOC(CLASS, PARENT) \
5916 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
5917#include "clang/AST/TypeLocNodes.def"
5918 }
5919 }
5920
5921 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5922 Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
5923 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
5924 if (!TL.getParam(I))
5925 continue;
5926
5927 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
5928 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
5929 }
5930 }
5931
5932 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5933 Visit(TL.getElementLoc(), Sema::AbstractArrayType);
5934 }
5935
5936 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5937 // Visit the type parameters from a permissive context.
5938 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
5939 TemplateArgumentLoc TAL = TL.getArgLoc(I);
5940 if (TAL.getArgument().getKind() == TemplateArgument::Type)
5941 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
5942 Visit(TSI->getTypeLoc(), Sema::AbstractNone);
5943 // TODO: other template argument types?
5944 }
5945 }
5946
5947 // Visit pointee types from a permissive context.
5948#define CheckPolymorphic(Type)void Check(Type TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getNextTypeLoc
(), Sema::AbstractNone); }
\
5949 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
5950 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
5951 }
5952 CheckPolymorphic(PointerTypeLoc)void Check(PointerTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5953 CheckPolymorphic(ReferenceTypeLoc)void Check(ReferenceTypeLoc TL, Sema::AbstractDiagSelID Sel) {
Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5954 CheckPolymorphic(MemberPointerTypeLoc)void Check(MemberPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5955 CheckPolymorphic(BlockPointerTypeLoc)void Check(BlockPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5956 CheckPolymorphic(AtomicTypeLoc)void Check(AtomicTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5957
5958 /// Handle all the types we haven't given a more specific
5959 /// implementation for above.
5960 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5961 // Every other kind of type that we haven't called out already
5962 // that has an inner type is either (1) sugar or (2) contains that
5963 // inner type in some way as a subobject.
5964 if (TypeLoc Next = TL.getNextTypeLoc())
5965 return Visit(Next, Sel);
5966
5967 // If there's no inner type and we're in a permissive context,
5968 // don't diagnose.
5969 if (Sel == Sema::AbstractNone) return;
5970
5971 // Check whether the type matches the abstract type.
5972 QualType T = TL.getType();
5973 if (T->isArrayType()) {
5974 Sel = Sema::AbstractArrayType;
5975 T = Info.S.Context.getBaseElementType(T);
5976 }
5977 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
5978 if (CT != Info.AbstractType) return;
5979
5980 // It matched; do some magic.
5981 // FIXME: These should be at most warnings. See P0929R2, CWG1640, CWG1646.
5982 if (Sel == Sema::AbstractArrayType) {
5983 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
5984 << T << TL.getSourceRange();
5985 } else {
5986 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
5987 << Sel << T << TL.getSourceRange();
5988 }
5989 Info.DiagnoseAbstractType();
5990 }
5991};
5992
5993void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
5994 Sema::AbstractDiagSelID Sel) {
5995 CheckAbstractUsage(*this, D).Visit(TL, Sel);
5996}
5997
5998}
5999
6000/// Check for invalid uses of an abstract type in a function declaration.
6001static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
6002 FunctionDecl *FD) {
6003 // No need to do the check on definitions, which require that
6004 // the return/param types be complete.
6005 if (FD->doesThisDeclarationHaveABody())
6006 return;
6007
6008 // For safety's sake, just ignore it if we don't have type source
6009 // information. This should never happen for non-implicit methods,
6010 // but...
6011 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
6012 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractNone);
6013}
6014
6015/// Check for invalid uses of an abstract type in a variable0 declaration.
6016static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
6017 VarDecl *VD) {
6018 // No need to do the check on definitions, which require that
6019 // the type is complete.
6020 if (VD->isThisDeclarationADefinition())
6021 return;
6022
6023 Info.CheckType(VD, VD->getTypeSourceInfo()->getTypeLoc(),
6024 Sema::AbstractVariableType);
6025}
6026
6027/// Check for invalid uses of an abstract type within a class definition.
6028static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
6029 CXXRecordDecl *RD) {
6030 for (auto *D : RD->decls()) {
6031 if (D->isImplicit()) continue;
6032
6033 // Step through friends to the befriended declaration.
6034 if (auto *FD = dyn_cast<FriendDecl>(D)) {
6035 D = FD->getFriendDecl();
6036 if (!D) continue;
6037 }
6038
6039 // Functions and function templates.
6040 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
6041 CheckAbstractClassUsage(Info, FD);
6042 } else if (auto *FTD = dyn_cast<FunctionTemplateDecl>(D)) {
6043 CheckAbstractClassUsage(Info, FTD->getTemplatedDecl());
6044
6045 // Fields and static variables.
6046 } else if (auto *FD = dyn_cast<FieldDecl>(D)) {
6047 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
6048 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
6049 } else if (auto *VD = dyn_cast<VarDecl>(D)) {
6050 CheckAbstractClassUsage(Info, VD);
6051 } else if (auto *VTD = dyn_cast<VarTemplateDecl>(D)) {
6052 CheckAbstractClassUsage(Info, VTD->getTemplatedDecl());
6053
6054 // Nested classes and class templates.
6055 } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
6056 CheckAbstractClassUsage(Info, RD);
6057 } else if (auto *CTD = dyn_cast<ClassTemplateDecl>(D)) {
6058 CheckAbstractClassUsage(Info, CTD->getTemplatedDecl());
6059 }
6060 }
6061}
6062
6063static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) {
6064 Attr *ClassAttr = getDLLAttr(Class);
6065 if (!ClassAttr)
6066 return;
6067
6068 assert(ClassAttr->getKind() == attr::DLLExport)(static_cast <bool> (ClassAttr->getKind() == attr::DLLExport
) ? void (0) : __assert_fail ("ClassAttr->getKind() == attr::DLLExport"
, "clang/lib/Sema/SemaDeclCXX.cpp", 6068, __extension__ __PRETTY_FUNCTION__
))
;
6069
6070 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
6071
6072 if (TSK == TSK_ExplicitInstantiationDeclaration)
6073 // Don't go any further if this is just an explicit instantiation
6074 // declaration.
6075 return;
6076
6077 // Add a context note to explain how we got to any diagnostics produced below.
6078 struct MarkingClassDllexported {
6079 Sema &S;
6080 MarkingClassDllexported(Sema &S, CXXRecordDecl *Class,
6081 SourceLocation AttrLoc)
6082 : S(S) {
6083 Sema::CodeSynthesisContext Ctx;
6084 Ctx.Kind = Sema::CodeSynthesisContext::MarkingClassDllexported;
6085 Ctx.PointOfInstantiation = AttrLoc;
6086 Ctx.Entity = Class;
6087 S.pushCodeSynthesisContext(Ctx);
6088 }
6089 ~MarkingClassDllexported() {
6090 S.popCodeSynthesisContext();
6091 }
6092 } MarkingDllexportedContext(S, Class, ClassAttr->getLocation());
6093
6094 if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
6095 S.MarkVTableUsed(Class->getLocation(), Class, true);
6096
6097 for (Decl *Member : Class->decls()) {
6098 // Skip members that were not marked exported.
6099 if (!Member->hasAttr<DLLExportAttr>())
6100 continue;
6101
6102 // Defined static variables that are members of an exported base
6103 // class must be marked export too.
6104 auto *VD = dyn_cast<VarDecl>(Member);
6105 if (VD && VD->getStorageClass() == SC_Static &&
6106 TSK == TSK_ImplicitInstantiation)
6107 S.MarkVariableReferenced(VD->getLocation(), VD);
6108
6109 auto *MD = dyn_cast<CXXMethodDecl>(Member);
6110 if (!MD)
6111 continue;
6112
6113 if (MD->isUserProvided()) {
6114 // Instantiate non-default class member functions ...
6115
6116 // .. except for certain kinds of template specializations.
6117 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
6118 continue;
6119
6120 // If this is an MS ABI dllexport default constructor, instantiate any
6121 // default arguments.
6122 if (S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
6123 auto *CD = dyn_cast<CXXConstructorDecl>(MD);
6124 if (CD && CD->isDefaultConstructor() && TSK == TSK_Undeclared) {
6125 S.InstantiateDefaultCtorDefaultArgs(CD);
6126 }
6127 }
6128
6129 S.MarkFunctionReferenced(Class->getLocation(), MD);
6130
6131 // The function will be passed to the consumer when its definition is
6132 // encountered.
6133 } else if (MD->isExplicitlyDefaulted()) {
6134 // Synthesize and instantiate explicitly defaulted methods.
6135 S.MarkFunctionReferenced(Class->getLocation(), MD);
6136
6137 if (TSK != TSK_ExplicitInstantiationDefinition) {
6138 // Except for explicit instantiation defs, we will not see the
6139 // definition again later, so pass it to the consumer now.
6140 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
6141 }
6142 } else if (!MD->isTrivial() ||
6143 MD->isCopyAssignmentOperator() ||
6144 MD->isMoveAssignmentOperator()) {
6145 // Synthesize and instantiate non-trivial implicit methods, and the copy
6146 // and move assignment operators. The latter are exported even if they
6147 // are trivial, because the address of an operator can be taken and
6148 // should compare equal across libraries.
6149 S.MarkFunctionReferenced(Class->getLocation(), MD);
6150
6151 // There is no later point when we will see the definition of this
6152 // function, so pass it to the consumer now.
6153 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
6154 }
6155 }
6156}
6157
6158static void checkForMultipleExportedDefaultConstructors(Sema &S,
6159 CXXRecordDecl *Class) {
6160 // Only the MS ABI has default constructor closures, so we don't need to do
6161 // this semantic checking anywhere else.
6162 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft())
6163 return;
6164
6165 CXXConstructorDecl *LastExportedDefaultCtor = nullptr;
6166 for (Decl *Member : Class->decls()) {
6167 // Look for exported default constructors.
6168 auto *CD = dyn_cast<CXXConstructorDecl>(Member);
6169 if (!CD || !CD->isDefaultConstructor())
6170 continue;
6171 auto *Attr = CD->getAttr<DLLExportAttr>();
6172 if (!Attr)
6173 continue;
6174
6175 // If the class is non-dependent, mark the default arguments as ODR-used so
6176 // that we can properly codegen the constructor closure.
6177 if (!Class->isDependentContext()) {
6178 for (ParmVarDecl *PD : CD->parameters()) {
6179 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD);
6180 S.DiscardCleanupsInEvaluationContext();
6181 }
6182 }
6183
6184 if (LastExportedDefaultCtor) {
6185 S.Diag(LastExportedDefaultCtor->getLocation(),
6186 diag::err_attribute_dll_ambiguous_default_ctor)
6187 << Class;
6188 S.Diag(CD->getLocation(), diag::note_entity_declared_at)
6189 << CD->getDeclName();
6190 return;
6191 }
6192 LastExportedDefaultCtor = CD;
6193 }
6194}
6195
6196static void checkCUDADeviceBuiltinSurfaceClassTemplate(Sema &S,
6197 CXXRecordDecl *Class) {
6198 bool ErrorReported = false;
6199 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S,
6200 ClassTemplateDecl *TD) {
6201 if (ErrorReported)
6202 return;
6203 S.Diag(TD->getLocation(),
6204 diag::err_cuda_device_builtin_surftex_cls_template)
6205 << /*surface*/ 0 << TD;
6206 ErrorReported = true;
6207 };
6208
6209 ClassTemplateDecl *TD = Class->getDescribedClassTemplate();
6210 if (!TD) {
6211 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class);
6212 if (!SD) {
6213 S.Diag(Class->getLocation(),
6214 diag::err_cuda_device_builtin_surftex_ref_decl)
6215 << /*surface*/ 0 << Class;
6216 S.Diag(Class->getLocation(),
6217 diag::note_cuda_device_builtin_surftex_should_be_template_class)
6218 << Class;
6219 return;
6220 }
6221 TD = SD->getSpecializedTemplate();
6222 }
6223
6224 TemplateParameterList *Params = TD->getTemplateParameters();
6225 unsigned N = Params->size();
6226
6227 if (N != 2) {
6228 reportIllegalClassTemplate(S, TD);
6229 S.Diag(TD->getLocation(),
6230 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args)
6231 << TD << 2;
6232 }
6233 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6234 reportIllegalClassTemplate(S, TD);
6235 S.Diag(TD->getLocation(),
6236 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6237 << TD << /*1st*/ 0 << /*type*/ 0;
6238 }
6239 if (N > 1) {
6240 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1));
6241 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) {
6242 reportIllegalClassTemplate(S, TD);
6243 S.Diag(TD->getLocation(),
6244 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6245 << TD << /*2nd*/ 1 << /*integer*/ 1;
6246 }
6247 }
6248}
6249
6250static void checkCUDADeviceBuiltinTextureClassTemplate(Sema &S,
6251 CXXRecordDecl *Class) {
6252 bool ErrorReported = false;
6253 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S,
6254 ClassTemplateDecl *TD) {
6255 if (ErrorReported)
6256 return;
6257 S.Diag(TD->getLocation(),
6258 diag::err_cuda_device_builtin_surftex_cls_template)
6259 << /*texture*/ 1 << TD;
6260 ErrorReported = true;
6261 };
6262
6263 ClassTemplateDecl *TD = Class->getDescribedClassTemplate();
6264 if (!TD) {
6265 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class);
6266 if (!SD) {
6267 S.Diag(Class->getLocation(),
6268 diag::err_cuda_device_builtin_surftex_ref_decl)
6269 << /*texture*/ 1 << Class;
6270 S.Diag(Class->getLocation(),
6271 diag::note_cuda_device_builtin_surftex_should_be_template_class)
6272 << Class;
6273 return;
6274 }
6275 TD = SD->getSpecializedTemplate();
6276 }
6277
6278 TemplateParameterList *Params = TD->getTemplateParameters();
6279 unsigned N = Params->size();
6280
6281 if (N != 3) {
6282 reportIllegalClassTemplate(S, TD);
6283 S.Diag(TD->getLocation(),
6284 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args)
6285 << TD << 3;
6286 }
6287 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6288 reportIllegalClassTemplate(S, TD);
6289 S.Diag(TD->getLocation(),
6290 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6291 << TD << /*1st*/ 0 << /*type*/ 0;
6292 }
6293 if (N > 1) {
6294 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1));
6295 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) {
6296 reportIllegalClassTemplate(S, TD);
6297 S.Diag(TD->getLocation(),
6298 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6299 << TD << /*2nd*/ 1 << /*integer*/ 1;
6300 }
6301 }
6302 if (N > 2) {
6303 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(2));
6304 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) {
6305 reportIllegalClassTemplate(S, TD);
6306 S.Diag(TD->getLocation(),
6307 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6308 << TD << /*3rd*/ 2 << /*integer*/ 1;
6309 }
6310 }
6311}
6312
6313void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) {
6314 // Mark any compiler-generated routines with the implicit code_seg attribute.
6315 for (auto *Method : Class->methods()) {
6316 if (Method->isUserProvided())
6317 continue;
6318 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
6319 Method->addAttr(A);
6320 }
6321}
6322
6323/// Check class-level dllimport/dllexport attribute.
6324void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) {
6325 Attr *ClassAttr = getDLLAttr(Class);
6326
6327 // MSVC inherits DLL attributes to partial class template specializations.
6328 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && !ClassAttr) {
6329 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) {
6330 if (Attr *TemplateAttr =
6331 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) {
6332 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext()));
6333 A->setInherited(true);
6334 ClassAttr = A;
6335 }
6336 }
6337 }
6338
6339 if (!ClassAttr)
6340 return;
6341
6342 // MSVC allows imported or exported template classes that have UniqueExternal
6343 // linkage. This occurs when the template class has been instantiated with
6344 // a template parameter which itself has internal linkage.
6345 // We drop the attribute to avoid exporting or importing any members.
6346 if ((Context.getTargetInfo().getCXXABI().isMicrosoft() ||
6347 Context.getTargetInfo().getTriple().isPS()) &&
6348 (!Class->isExternallyVisible() && Class->hasExternalFormalLinkage())) {
6349 Class->dropAttr<DLLExportAttr>();
6350 Class->dropAttr<DLLImportAttr>();
6351 return;
6352 }
6353
6354 if (!Class->isExternallyVisible()) {
6355 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern)
6356 << Class << ClassAttr;
6357 return;
6358 }
6359
6360 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
6361 !ClassAttr->isInherited()) {
6362 // Diagnose dll attributes on members of class with dll attribute.
6363 for (Decl *Member : Class->decls()) {
6364 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member))
6365 continue;
6366 InheritableAttr *MemberAttr = getDLLAttr(Member);
6367 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl())
6368 continue;
6369
6370 Diag(MemberAttr->getLocation(),
6371 diag::err_attribute_dll_member_of_dll_class)
6372 << MemberAttr << ClassAttr;
6373 Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
6374 Member->setInvalidDecl();
6375 }
6376 }
6377
6378 if (Class->getDescribedClassTemplate())
6379 // Don't inherit dll attribute until the template is instantiated.
6380 return;
6381
6382 // The class is either imported or exported.
6383 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
6384
6385 // Check if this was a dllimport attribute propagated from a derived class to
6386 // a base class template specialization. We don't apply these attributes to
6387 // static data members.
6388 const bool PropagatedImport =
6389 !ClassExported &&
6390 cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate();
6391
6392 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
6393
6394 // Ignore explicit dllexport on explicit class template instantiation
6395 // declarations, except in MinGW mode.
6396 if (ClassExported && !ClassAttr->isInherited() &&
6397 TSK == TSK_ExplicitInstantiationDeclaration &&
6398 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
6399 Class->dropAttr<DLLExportAttr>();
6400 return;
6401 }
6402
6403 // Force declaration of implicit members so they can inherit the attribute.
6404 ForceDeclarationOfImplicitMembers(Class);
6405
6406 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
6407 // seem to be true in practice?
6408
6409 for (Decl *Member : Class->decls()) {
6410 VarDecl *VD = dyn_cast<VarDecl>(Member);
6411 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
6412
6413 // Only methods and static fields inherit the attributes.
6414 if (!VD && !MD)
6415 continue;
6416
6417 if (MD) {
6418 // Don't process deleted methods.
6419 if (MD->isDeleted())
6420 continue;
6421
6422 if (MD->isInlined()) {
6423 // MinGW does not import or export inline methods. But do it for
6424 // template instantiations.
6425 if (!Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
6426 TSK != TSK_ExplicitInstantiationDeclaration &&
6427 TSK != TSK_ExplicitInstantiationDefinition)
6428 continue;
6429
6430 // MSVC versions before 2015 don't export the move assignment operators
6431 // and move constructor, so don't attempt to import/export them if
6432 // we have a definition.
6433 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD);
6434 if ((MD->isMoveAssignmentOperator() ||
6435 (Ctor && Ctor->isMoveConstructor())) &&
6436 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015))
6437 continue;
6438
6439 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign
6440 // operator is exported anyway.
6441 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
6442 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial())
6443 continue;
6444 }
6445 }
6446
6447 // Don't apply dllimport attributes to static data members of class template
6448 // instantiations when the attribute is propagated from a derived class.
6449 if (VD && PropagatedImport)
6450 continue;
6451
6452 if (!cast<NamedDecl>(Member)->isExternallyVisible())
6453 continue;
6454
6455 if (!getDLLAttr(Member)) {
6456 InheritableAttr *NewAttr = nullptr;
6457
6458 // Do not export/import inline function when -fno-dllexport-inlines is
6459 // passed. But add attribute for later local static var check.
6460 if (!getLangOpts().DllExportInlines && MD && MD->isInlined() &&
6461 TSK != TSK_ExplicitInstantiationDeclaration &&
6462 TSK != TSK_ExplicitInstantiationDefinition) {
6463 if (ClassExported) {
6464 NewAttr = ::new (getASTContext())
6465 DLLExportStaticLocalAttr(getASTContext(), *ClassAttr);
6466 } else {
6467 NewAttr = ::new (getASTContext())
6468 DLLImportStaticLocalAttr(getASTContext(), *ClassAttr);
6469 }
6470 } else {
6471 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6472 }
6473
6474 NewAttr->setInherited(true);
6475 Member->addAttr(NewAttr);
6476
6477 if (MD) {
6478 // Propagate DLLAttr to friend re-declarations of MD that have already
6479 // been constructed.
6480 for (FunctionDecl *FD = MD->getMostRecentDecl(); FD;
6481 FD = FD->getPreviousDecl()) {
6482 if (FD->getFriendObjectKind() == Decl::FOK_None)
6483 continue;
6484 assert(!getDLLAttr(FD) &&(static_cast <bool> (!getDLLAttr(FD) && "friend re-decl should not already have a DLLAttr"
) ? void (0) : __assert_fail ("!getDLLAttr(FD) && \"friend re-decl should not already have a DLLAttr\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 6485, __extension__ __PRETTY_FUNCTION__
))
6485 "friend re-decl should not already have a DLLAttr")(static_cast <bool> (!getDLLAttr(FD) && "friend re-decl should not already have a DLLAttr"
) ? void (0) : __assert_fail ("!getDLLAttr(FD) && \"friend re-decl should not already have a DLLAttr\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 6485, __extension__ __PRETTY_FUNCTION__
))
;
6486 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6487 NewAttr->setInherited(true);
6488 FD->addAttr(NewAttr);
6489 }
6490 }
6491 }
6492 }
6493
6494 if (ClassExported)
6495 DelayedDllExportClasses.push_back(Class);
6496}
6497
6498/// Perform propagation of DLL attributes from a derived class to a
6499/// templated base class for MS compatibility.
6500void Sema::propagateDLLAttrToBaseClassTemplate(
6501 CXXRecordDecl *Class, Attr *ClassAttr,
6502 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
6503 if (getDLLAttr(
6504 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
6505 // If the base class template has a DLL attribute, don't try to change it.
6506 return;
6507 }
6508
6509 auto TSK = BaseTemplateSpec->getSpecializationKind();
6510 if (!getDLLAttr(BaseTemplateSpec) &&
6511 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration ||
6512 TSK == TSK_ImplicitInstantiation)) {
6513 // The template hasn't been instantiated yet (or it has, but only as an
6514 // explicit instantiation declaration or implicit instantiation, which means
6515 // we haven't codegenned any members yet), so propagate the attribute.
6516 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6517 NewAttr->setInherited(true);
6518 BaseTemplateSpec->addAttr(NewAttr);
6519
6520 // If this was an import, mark that we propagated it from a derived class to
6521 // a base class template specialization.
6522 if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr))
6523 ImportAttr->setPropagatedToBaseTemplate();
6524
6525 // If the template is already instantiated, checkDLLAttributeRedeclaration()
6526 // needs to be run again to work see the new attribute. Otherwise this will
6527 // get run whenever the template is instantiated.
6528 if (TSK != TSK_Undeclared)
6529 checkClassLevelDLLAttribute(BaseTemplateSpec);
6530
6531 return;
6532 }
6533
6534 if (getDLLAttr(BaseTemplateSpec)) {
6535 // The template has already been specialized or instantiated with an
6536 // attribute, explicitly or through propagation. We should not try to change
6537 // it.
6538 return;
6539 }
6540
6541 // The template was previously instantiated or explicitly specialized without
6542 // a dll attribute, It's too late for us to add an attribute, so warn that
6543 // this is unsupported.
6544 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
6545 << BaseTemplateSpec->isExplicitSpecialization();
6546 Diag(ClassAttr->getLocation(), diag::note_attribute);
6547 if (BaseTemplateSpec->isExplicitSpecialization()) {
6548 Diag(BaseTemplateSpec->getLocation(),
6549 diag::note_template_class_explicit_specialization_was_here)
6550 << BaseTemplateSpec;
6551 } else {
6552 Diag(BaseTemplateSpec->getPointOfInstantiation(),
6553 diag::note_template_class_instantiation_was_here)
6554 << BaseTemplateSpec;
6555 }
6556}
6557
6558/// Determine the kind of defaulting that would be done for a given function.
6559///
6560/// If the function is both a default constructor and a copy / move constructor
6561/// (due to having a default argument for the first parameter), this picks
6562/// CXXDefaultConstructor.
6563///
6564/// FIXME: Check that case is properly handled by all callers.
6565Sema::DefaultedFunctionKind
6566Sema::getDefaultedFunctionKind(const FunctionDecl *FD) {
6567 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
6568 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(FD)) {
6569 if (Ctor->isDefaultConstructor())
6570 return Sema::CXXDefaultConstructor;
6571
6572 if (Ctor->isCopyConstructor())
6573 return Sema::CXXCopyConstructor;
6574
6575 if (Ctor->isMoveConstructor())
6576 return Sema::CXXMoveConstructor;
6577 }
6578
6579 if (MD->isCopyAssignmentOperator())
6580 return Sema::CXXCopyAssignment;
6581
6582 if (MD->isMoveAssignmentOperator())
6583 return Sema::CXXMoveAssignment;
6584
6585 if (isa<CXXDestructorDecl>(FD))
6586 return Sema::CXXDestructor;
6587 }
6588
6589 switch (FD->getDeclName().getCXXOverloadedOperator()) {
6590 case OO_EqualEqual:
6591 return DefaultedComparisonKind::Equal;
6592
6593 case OO_ExclaimEqual:
6594 return DefaultedComparisonKind::NotEqual;
6595
6596 case OO_Spaceship:
6597 // No point allowing this if <=> doesn't exist in the current language mode.
6598 if (!getLangOpts().CPlusPlus20)
6599 break;
6600 return DefaultedComparisonKind::ThreeWay;
6601
6602 case OO_Less:
6603 case OO_LessEqual:
6604 case OO_Greater:
6605 case OO_GreaterEqual:
6606 // No point allowing this if <=> doesn't exist in the current language mode.
6607 if (!getLangOpts().CPlusPlus20)
6608 break;
6609 return DefaultedComparisonKind::Relational;
6610
6611 default:
6612 break;
6613 }
6614
6615 // Not defaultable.
6616 return DefaultedFunctionKind();
6617}
6618
6619static void DefineDefaultedFunction(Sema &S, FunctionDecl *FD,
6620 SourceLocation DefaultLoc) {
6621 Sema::DefaultedFunctionKind DFK = S.getDefaultedFunctionKind(FD);
6622 if (DFK.isComparison())
6623 return S.DefineDefaultedComparison(DefaultLoc, FD, DFK.asComparison());
6624
6625 switch (DFK.asSpecialMember()) {
6626 case Sema::CXXDefaultConstructor:
6627 S.DefineImplicitDefaultConstructor(DefaultLoc,
6628 cast<CXXConstructorDecl>(FD));
6629 break;
6630 case Sema::CXXCopyConstructor:
6631 S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD));
6632 break;
6633 case Sema::CXXCopyAssignment:
6634 S.DefineImplicitCopyAssignment(DefaultLoc, cast<CXXMethodDecl>(FD));
6635 break;
6636 case Sema::CXXDestructor:
6637 S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(FD));
6638 break;
6639 case Sema::CXXMoveConstructor:
6640 S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD));
6641 break;
6642 case Sema::CXXMoveAssignment:
6643 S.DefineImplicitMoveAssignment(DefaultLoc, cast<CXXMethodDecl>(FD));
6644 break;
6645 case Sema::CXXInvalid:
6646 llvm_unreachable("Invalid special member.")::llvm::llvm_unreachable_internal("Invalid special member.", "clang/lib/Sema/SemaDeclCXX.cpp"
, 6646)
;
6647 }
6648}
6649
6650/// Determine whether a type is permitted to be passed or returned in
6651/// registers, per C++ [class.temporary]p3.
6652static bool canPassInRegisters(Sema &S, CXXRecordDecl *D,
6653 TargetInfo::CallingConvKind CCK) {
6654 if (D->isDependentType() || D->isInvalidDecl())
6655 return false;
6656
6657 // Clang <= 4 used the pre-C++11 rule, which ignores move operations.
6658 // The PS4 platform ABI follows the behavior of Clang 3.2.
6659 if (CCK == TargetInfo::CCK_ClangABI4OrPS4)
6660 return !D->hasNonTrivialDestructorForCall() &&
6661 !D->hasNonTrivialCopyConstructorForCall();
6662
6663 if (CCK == TargetInfo::CCK_MicrosoftWin64) {
6664 bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false;
6665 bool DtorIsTrivialForCall = false;
6666
6667 // If a class has at least one eligible, trivial copy constructor, it
6668 // is passed according to the C ABI. Otherwise, it is passed indirectly.
6669 //
6670 // Note: This permits classes with non-trivial copy or move ctors to be
6671 // passed in registers, so long as they *also* have a trivial copy ctor,
6672 // which is non-conforming.
6673 if (D->needsImplicitCopyConstructor()) {
6674 if (!D->defaultedCopyConstructorIsDeleted()) {
6675 if (D->hasTrivialCopyConstructor())
6676 CopyCtorIsTrivial = true;
6677 if (D->hasTrivialCopyConstructorForCall())
6678 CopyCtorIsTrivialForCall = true;
6679 }
6680 } else {
6681 for (const CXXConstructorDecl *CD : D->ctors()) {
6682 if (CD->isCopyConstructor() && !CD->isDeleted() &&
6683 !CD->isIneligibleOrNotSelected()) {
6684 if (CD->isTrivial())
6685 CopyCtorIsTrivial = true;
6686 if (CD->isTrivialForCall())
6687 CopyCtorIsTrivialForCall = true;
6688 }
6689 }
6690 }
6691
6692 if (D->needsImplicitDestructor()) {
6693 if (!D->defaultedDestructorIsDeleted() &&
6694 D->hasTrivialDestructorForCall())
6695 DtorIsTrivialForCall = true;
6696 } else if (const auto *DD = D->getDestructor()) {
6697 if (!DD->isDeleted() && DD->isTrivialForCall())
6698 DtorIsTrivialForCall = true;
6699 }
6700
6701 // If the copy ctor and dtor are both trivial-for-calls, pass direct.
6702 if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall)
6703 return true;
6704
6705 // If a class has a destructor, we'd really like to pass it indirectly
6706 // because it allows us to elide copies. Unfortunately, MSVC makes that
6707 // impossible for small types, which it will pass in a single register or
6708 // stack slot. Most objects with dtors are large-ish, so handle that early.
6709 // We can't call out all large objects as being indirect because there are
6710 // multiple x64 calling conventions and the C++ ABI code shouldn't dictate
6711 // how we pass large POD types.
6712
6713 // Note: This permits small classes with nontrivial destructors to be
6714 // passed in registers, which is non-conforming.
6715 bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
6716 uint64_t TypeSize = isAArch64 ? 128 : 64;
6717
6718 if (CopyCtorIsTrivial &&
6719 S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize)
6720 return true;
6721 return false;
6722 }
6723
6724 // Per C++ [class.temporary]p3, the relevant condition is:
6725 // each copy constructor, move constructor, and destructor of X is
6726 // either trivial or deleted, and X has at least one non-deleted copy
6727 // or move constructor
6728 bool HasNonDeletedCopyOrMove = false;
6729
6730 if (D->needsImplicitCopyConstructor() &&
6731 !D->defaultedCopyConstructorIsDeleted()) {
6732 if (!D->hasTrivialCopyConstructorForCall())
6733 return false;
6734 HasNonDeletedCopyOrMove = true;
6735 }
6736
6737 if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() &&
6738 !D->defaultedMoveConstructorIsDeleted()) {
6739 if (!D->hasTrivialMoveConstructorForCall())
6740 return false;
6741 HasNonDeletedCopyOrMove = true;
6742 }
6743
6744 if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() &&
6745 !D->hasTrivialDestructorForCall())
6746 return false;
6747
6748 for (const CXXMethodDecl *MD : D->methods()) {
6749 if (MD->isDeleted() || MD->isIneligibleOrNotSelected())
6750 continue;
6751
6752 auto *CD = dyn_cast<CXXConstructorDecl>(MD);
6753 if (CD && CD->isCopyOrMoveConstructor())
6754 HasNonDeletedCopyOrMove = true;
6755 else if (!isa<CXXDestructorDecl>(MD))
6756 continue;
6757
6758 if (!MD->isTrivialForCall())
6759 return false;
6760 }
6761
6762 return HasNonDeletedCopyOrMove;
6763}
6764
6765/// Report an error regarding overriding, along with any relevant
6766/// overridden methods.
6767///
6768/// \param DiagID the primary error to report.
6769/// \param MD the overriding method.
6770static bool
6771ReportOverrides(Sema &S, unsigned DiagID, const CXXMethodDecl *MD,
6772 llvm::function_ref<bool(const CXXMethodDecl *)> Report) {
6773 bool IssuedDiagnostic = false;
6774 for (const CXXMethodDecl *O : MD->overridden_methods()) {
6775 if (Report(O)) {
6776 if (!IssuedDiagnostic) {
6777 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
6778 IssuedDiagnostic = true;
6779 }
6780 S.Diag(O->getLocation(), diag::note_overridden_virtual_function);
6781 }
6782 }
6783 return IssuedDiagnostic;
6784}
6785
6786/// Perform semantic checks on a class definition that has been
6787/// completing, introducing implicitly-declared members, checking for
6788/// abstract types, etc.
6789///
6790/// \param S The scope in which the class was parsed. Null if we didn't just
6791/// parse a class definition.
6792/// \param Record The completed class.
6793void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
6794 if (!Record)
6795 return;
6796
6797 if (Record->isAbstract() && !Record->isInvalidDecl()) {
6798 AbstractUsageInfo Info(*this, Record);
6799 CheckAbstractClassUsage(Info, Record);
6800 }
6801
6802 // If this is not an aggregate type and has no user-declared constructor,
6803 // complain about any non-static data members of reference or const scalar
6804 // type, since they will never get initializers.
6805 if (!Record->isInvalidDecl() && !Record->isDependentType() &&
6806 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
6807 !Record->isLambda()) {
6808 bool Complained = false;
6809 for (const auto *F : Record->fields()) {
6810 if (F->hasInClassInitializer() || F->isUnnamedBitfield())
6811 continue;
6812
6813 if (F->getType()->isReferenceType() ||
6814 (F->getType().isConstQualified() && F->getType()->isScalarType())) {
6815 if (!Complained) {
6816 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
6817 << Record->getTagKind() << Record;
6818 Complained = true;
6819 }
6820
6821 Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
6822 << F->getType()->isReferenceType()
6823 << F->getDeclName();
6824 }
6825 }
6826 }
6827
6828 if (Record->getIdentifier()) {
6829 // C++ [class.mem]p13:
6830 // If T is the name of a class, then each of the following shall have a
6831 // name different from T:
6832 // - every member of every anonymous union that is a member of class T.
6833 //
6834 // C++ [class.mem]p14:
6835 // In addition, if class T has a user-declared constructor (12.1), every
6836 // non-static data member of class T shall have a name different from T.
6837 DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
6838 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6839 ++I) {
6840 NamedDecl *D = (*I)->getUnderlyingDecl();
6841 if (((isa<FieldDecl>(D) || isa<UnresolvedUsingValueDecl>(D)) &&
6842 Record->hasUserDeclaredConstructor()) ||
6843 isa<IndirectFieldDecl>(D)) {
6844 Diag((*I)->getLocation(), diag::err_member_name_of_class)
6845 << D->getDeclName();
6846 break;
6847 }
6848 }
6849 }
6850
6851 // Warn if the class has virtual methods but non-virtual public destructor.
6852 if (Record->isPolymorphic() && !Record->isDependentType()) {
6853 CXXDestructorDecl *dtor = Record->getDestructor();
6854 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
6855 !Record->hasAttr<FinalAttr>())
6856 Diag(dtor ? dtor->getLocation() : Record->getLocation(),
6857 diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
6858 }
6859
6860 if (Record->isAbstract()) {
6861 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
6862 Diag(Record->getLocation(), diag::warn_abstract_final_class)
6863 << FA->isSpelledAsSealed();
6864 DiagnoseAbstractType(Record);
6865 }
6866 }
6867
6868 // Warn if the class has a final destructor but is not itself marked final.
6869 if (!Record->hasAttr<FinalAttr>()) {
6870 if (const CXXDestructorDecl *dtor = Record->getDestructor()) {
6871 if (const FinalAttr *FA = dtor->getAttr<FinalAttr>()) {
6872 Diag(FA->getLocation(), diag::warn_final_dtor_non_final_class)
6873 << FA->isSpelledAsSealed()
6874 << FixItHint::CreateInsertion(
6875 getLocForEndOfToken(Record->getLocation()),
6876 (FA->isSpelledAsSealed() ? " sealed" : " final"));
6877 Diag(Record->getLocation(),
6878 diag::note_final_dtor_non_final_class_silence)
6879 << Context.getRecordType(Record) << FA->isSpelledAsSealed();
6880 }
6881 }
6882 }
6883
6884 // See if trivial_abi has to be dropped.
6885 if (Record->hasAttr<TrivialABIAttr>())
6886 checkIllFormedTrivialABIStruct(*Record);
6887
6888 // Set HasTrivialSpecialMemberForCall if the record has attribute
6889 // "trivial_abi".
6890 bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>();
6891
6892 if (HasTrivialABI)
6893 Record->setHasTrivialSpecialMemberForCall();
6894
6895 // Explicitly-defaulted secondary comparison functions (!=, <, <=, >, >=).
6896 // We check these last because they can depend on the properties of the
6897 // primary comparison functions (==, <=>).
6898 llvm::SmallVector<FunctionDecl*, 5> DefaultedSecondaryComparisons;
6899
6900 // Perform checks that can't be done until we know all the properties of a
6901 // member function (whether it's defaulted, deleted, virtual, overriding,
6902 // ...).
6903 auto CheckCompletedMemberFunction = [&](CXXMethodDecl *MD) {
6904 // A static function cannot override anything.
6905 if (MD->getStorageClass() == SC_Static) {
6906 if (ReportOverrides(*this, diag::err_static_overrides_virtual, MD,
6907 [](const CXXMethodDecl *) { return true; }))
6908 return;
6909 }
6910
6911 // A deleted function cannot override a non-deleted function and vice
6912 // versa.
6913 if (ReportOverrides(*this,
6914 MD->isDeleted() ? diag::err_deleted_override
6915 : diag::err_non_deleted_override,
6916 MD, [&](const CXXMethodDecl *V) {
6917 return MD->isDeleted() != V->isDeleted();
6918 })) {
6919 if (MD->isDefaulted() && MD->isDeleted())
6920 // Explain why this defaulted function was deleted.
6921 DiagnoseDeletedDefaultedFunction(MD);
6922 return;
6923 }
6924
6925 // A consteval function cannot override a non-consteval function and vice
6926 // versa.
6927 if (ReportOverrides(*this,
6928 MD->isConsteval() ? diag::err_consteval_override
6929 : diag::err_non_consteval_override,
6930 MD, [&](const CXXMethodDecl *V) {
6931 return MD->isConsteval() != V->isConsteval();
6932 })) {
6933 if (MD->isDefaulted() && MD->isDeleted())
6934 // Explain why this defaulted function was deleted.
6935 DiagnoseDeletedDefaultedFunction(MD);
6936 return;
6937 }
6938 };
6939
6940 auto CheckForDefaultedFunction = [&](FunctionDecl *FD) -> bool {
6941 if (!FD || FD->isInvalidDecl() || !FD->isExplicitlyDefaulted())
6942 return false;
6943
6944 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD);
6945 if (DFK.asComparison() == DefaultedComparisonKind::NotEqual ||
6946 DFK.asComparison() == DefaultedComparisonKind::Relational) {
6947 DefaultedSecondaryComparisons.push_back(FD);
6948 return true;
6949 }
6950
6951 CheckExplicitlyDefaultedFunction(S, FD);
6952 return false;
6953 };
6954
6955 auto CompleteMemberFunction = [&](CXXMethodDecl *M) {
6956 // Check whether the explicitly-defaulted members are valid.
6957 bool Incomplete = CheckForDefaultedFunction(M);
6958
6959 // Skip the rest of the checks for a member of a dependent class.
6960 if (Record->isDependentType())
6961 return;
6962
6963 // For an explicitly defaulted or deleted special member, we defer
6964 // determining triviality until the class is complete. That time is now!
6965 CXXSpecialMember CSM = getSpecialMember(M);
6966 if (!M->isImplicit() && !M->isUserProvided()) {
6967 if (CSM != CXXInvalid) {
6968 M->setTrivial(SpecialMemberIsTrivial(M, CSM));
6969 // Inform the class that we've finished declaring this member.
6970 Record->finishedDefaultedOrDeletedMember(M);
6971 M->setTrivialForCall(
6972 HasTrivialABI ||
6973 SpecialMemberIsTrivial(M, CSM, TAH_ConsiderTrivialABI));
6974 Record->setTrivialForCallFlags(M);
6975 }
6976 }
6977
6978 // Set triviality for the purpose of calls if this is a user-provided
6979 // copy/move constructor or destructor.
6980 if ((CSM == CXXCopyConstructor || CSM == CXXMoveConstructor ||
6981 CSM == CXXDestructor) && M->isUserProvided()) {
6982 M->setTrivialForCall(HasTrivialABI);
6983 Record->setTrivialForCallFlags(M);
6984 }
6985
6986 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() &&
6987 M->hasAttr<DLLExportAttr>()) {
6988 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
6989 M->isTrivial() &&
6990 (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor ||
6991 CSM == CXXDestructor))
6992 M->dropAttr<DLLExportAttr>();
6993
6994 if (M->hasAttr<DLLExportAttr>()) {
6995 // Define after any fields with in-class initializers have been parsed.
6996 DelayedDllExportMemberFunctions.push_back(M);
6997 }
6998 }
6999
7000 // Define defaulted constexpr virtual functions that override a base class
7001 // function right away.
7002 // FIXME: We can defer doing this until the vtable is marked as used.
7003 if (CSM != CXXInvalid && !M->isDeleted() && M->isDefaulted() &&
7004 M->isConstexpr() && M->size_overridden_methods())
7005 DefineDefaultedFunction(*this, M, M->getLocation());
7006
7007 if (!Incomplete)
7008 CheckCompletedMemberFunction(M);
7009 };
7010
7011 // Check the destructor before any other member function. We need to
7012 // determine whether it's trivial in order to determine whether the claas
7013 // type is a literal type, which is a prerequisite for determining whether
7014 // other special member functions are valid and whether they're implicitly
7015 // 'constexpr'.
7016 if (CXXDestructorDecl *Dtor = Record->getDestructor())
7017 CompleteMemberFunction(Dtor);
7018
7019 bool HasMethodWithOverrideControl = false,
7020 HasOverridingMethodWithoutOverrideControl = false;
7021 for (auto *D : Record->decls()) {
7022 if (auto *M = dyn_cast<CXXMethodDecl>(D)) {
7023 // FIXME: We could do this check for dependent types with non-dependent
7024 // bases.
7025 if (!Record->isDependentType()) {
7026 // See if a method overloads virtual methods in a base
7027 // class without overriding any.
7028 if (!M->isStatic())
7029 DiagnoseHiddenVirtualMethods(M);
7030 if (M->hasAttr<OverrideAttr>())
7031 HasMethodWithOverrideControl = true;
7032 else if (M->size_overridden_methods() > 0)
7033 HasOverridingMethodWithoutOverrideControl = true;
7034 }
7035
7036 if (!isa<CXXDestructorDecl>(M))
7037 CompleteMemberFunction(M);
7038 } else if (auto *F = dyn_cast<FriendDecl>(D)) {
7039 CheckForDefaultedFunction(
7040 dyn_cast_or_null<FunctionDecl>(F->getFriendDecl()));
7041 }
7042 }
7043
7044 if (HasOverridingMethodWithoutOverrideControl) {
7045 bool HasInconsistentOverrideControl = HasMethodWithOverrideControl;
7046 for (auto *M : Record->methods())
7047 DiagnoseAbsenceOfOverrideControl(M, HasInconsistentOverrideControl);
7048 }
7049
7050 // Check the defaulted secondary comparisons after any other member functions.
7051 for (FunctionDecl *FD : DefaultedSecondaryComparisons) {
7052 CheckExplicitlyDefaultedFunction(S, FD);
7053
7054 // If this is a member function, we deferred checking it until now.
7055 if (auto *MD = dyn_cast<CXXMethodDecl>(FD))
7056 CheckCompletedMemberFunction(MD);
7057 }
7058
7059 // ms_struct is a request to use the same ABI rules as MSVC. Check
7060 // whether this class uses any C++ features that are implemented
7061 // completely differently in MSVC, and if so, emit a diagnostic.
7062 // That diagnostic defaults to an error, but we allow projects to
7063 // map it down to a warning (or ignore it). It's a fairly common
7064 // practice among users of the ms_struct pragma to mass-annotate
7065 // headers, sweeping up a bunch of types that the project doesn't
7066 // really rely on MSVC-compatible layout for. We must therefore
7067 // support "ms_struct except for C++ stuff" as a secondary ABI.
7068 // Don't emit this diagnostic if the feature was enabled as a
7069 // language option (as opposed to via a pragma or attribute), as
7070 // the option -mms-bitfields otherwise essentially makes it impossible
7071 // to build C++ code, unless this diagnostic is turned off.
7072 if (Record->isMsStruct(Context) && !Context.getLangOpts().MSBitfields &&
7073 (Record->isPolymorphic() || Record->getNumBases())) {
7074 Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
7075 }
7076
7077 checkClassLevelDLLAttribute(Record);
7078 checkClassLevelCodeSegAttribute(Record);
7079
7080 bool ClangABICompat4 =
7081 Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4;
7082 TargetInfo::CallingConvKind CCK =
7083 Context.getTargetInfo().getCallingConvKind(ClangABICompat4);
7084 bool CanPass = canPassInRegisters(*this, Record, CCK);
7085
7086 // Do not change ArgPassingRestrictions if it has already been set to
7087 // APK_CanNeverPassInRegs.
7088 if (Record->getArgPassingRestrictions() != RecordDecl::APK_CanNeverPassInRegs)
7089 Record->setArgPassingRestrictions(CanPass
7090 ? RecordDecl::APK_CanPassInRegs
7091 : RecordDecl::APK_CannotPassInRegs);
7092
7093 // If canPassInRegisters returns true despite the record having a non-trivial
7094 // destructor, the record is destructed in the callee. This happens only when
7095 // the record or one of its subobjects has a field annotated with trivial_abi
7096 // or a field qualified with ObjC __strong/__weak.
7097 if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee())
7098 Record->setParamDestroyedInCallee(true);
7099 else if (Record->hasNonTrivialDestructor())
7100 Record->setParamDestroyedInCallee(CanPass);
7101
7102 if (getLangOpts().ForceEmitVTables) {
7103 // If we want to emit all the vtables, we need to mark it as used. This
7104 // is especially required for cases like vtable assumption loads.
7105 MarkVTableUsed(Record->getInnerLocStart(), Record);
7106 }
7107
7108 if (getLangOpts().CUDA) {
7109 if (Record->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>())
7110 checkCUDADeviceBuiltinSurfaceClassTemplate(*this, Record);
7111 else if (Record->hasAttr<CUDADeviceBuiltinTextureTypeAttr>())
7112 checkCUDADeviceBuiltinTextureClassTemplate(*this, Record);
7113 }
7114}
7115
7116/// Look up the special member function that would be called by a special
7117/// member function for a subobject of class type.
7118///
7119/// \param Class The class type of the subobject.
7120/// \param CSM The kind of special member function.
7121/// \param FieldQuals If the subobject is a field, its cv-qualifiers.
7122/// \param ConstRHS True if this is a copy operation with a const object
7123/// on its RHS, that is, if the argument to the outer special member
7124/// function is 'const' and this is not a field marked 'mutable'.
7125static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember(
7126 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
7127 unsigned FieldQuals, bool ConstRHS) {
7128 unsigned LHSQuals = 0;
7129 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
7130 LHSQuals = FieldQuals;
7131
7132 unsigned RHSQuals = FieldQuals;
7133 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
7134 RHSQuals = 0;
7135 else if (ConstRHS)
7136 RHSQuals |= Qualifiers::Const;
7137
7138 return S.LookupSpecialMember(Class, CSM,
7139 RHSQuals & Qualifiers::Const,
7140 RHSQuals & Qualifiers::Volatile,
7141 false,
7142 LHSQuals & Qualifiers::Const,
7143 LHSQuals & Qualifiers::Volatile);
7144}
7145
7146class Sema::InheritedConstructorInfo {
7147 Sema &S;
7148 SourceLocation UseLoc;
7149
7150 /// A mapping from the base classes through which the constructor was
7151 /// inherited to the using shadow declaration in that base class (or a null
7152 /// pointer if the constructor was declared in that base class).
7153 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *>
7154 InheritedFromBases;
7155
7156public:
7157 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc,
7158 ConstructorUsingShadowDecl *Shadow)
7159 : S(S), UseLoc(UseLoc) {
7160 bool DiagnosedMultipleConstructedBases = false;
7161 CXXRecordDecl *ConstructedBase = nullptr;
7162 BaseUsingDecl *ConstructedBaseIntroducer = nullptr;
7163
7164 // Find the set of such base class subobjects and check that there's a
7165 // unique constructed subobject.
7166 for (auto *D : Shadow->redecls()) {
7167 auto *DShadow = cast<ConstructorUsingShadowDecl>(D);
7168 auto *DNominatedBase = DShadow->getNominatedBaseClass();
7169 auto *DConstructedBase = DShadow->getConstructedBaseClass();
7170
7171 InheritedFromBases.insert(
7172 std::make_pair(DNominatedBase->getCanonicalDecl(),
7173 DShadow->getNominatedBaseClassShadowDecl()));
7174 if (DShadow->constructsVirtualBase())
7175 InheritedFromBases.insert(
7176 std::make_pair(DConstructedBase->getCanonicalDecl(),
7177 DShadow->getConstructedBaseClassShadowDecl()));
7178 else
7179 assert(DNominatedBase == DConstructedBase)(static_cast <bool> (DNominatedBase == DConstructedBase
) ? void (0) : __assert_fail ("DNominatedBase == DConstructedBase"
, "clang/lib/Sema/SemaDeclCXX.cpp", 7179, __extension__ __PRETTY_FUNCTION__
))
;
7180
7181 // [class.inhctor.init]p2:
7182 // If the constructor was inherited from multiple base class subobjects
7183 // of type B, the program is ill-formed.
7184 if (!ConstructedBase) {
7185 ConstructedBase = DConstructedBase;
7186 ConstructedBaseIntroducer = D->getIntroducer();
7187 } else if (ConstructedBase != DConstructedBase &&
7188 !Shadow->isInvalidDecl()) {
7189 if (!DiagnosedMultipleConstructedBases) {
7190 S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor)
7191 << Shadow->getTargetDecl();
7192 S.Diag(ConstructedBaseIntroducer->getLocation(),
7193 diag::note_ambiguous_inherited_constructor_using)
7194 << ConstructedBase;
7195 DiagnosedMultipleConstructedBases = true;
7196 }
7197 S.Diag(D->getIntroducer()->getLocation(),
7198 diag::note_ambiguous_inherited_constructor_using)
7199 << DConstructedBase;
7200 }
7201 }
7202
7203 if (DiagnosedMultipleConstructedBases)
7204 Shadow->setInvalidDecl();
7205 }
7206
7207 /// Find the constructor to use for inherited construction of a base class,
7208 /// and whether that base class constructor inherits the constructor from a
7209 /// virtual base class (in which case it won't actually invoke it).
7210 std::pair<CXXConstructorDecl *, bool>
7211 findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const {
7212 auto It = InheritedFromBases.find(Base->getCanonicalDecl());
7213 if (It == InheritedFromBases.end())
7214 return std::make_pair(nullptr, false);
7215
7216 // This is an intermediary class.
7217 if (It->second)
7218 return std::make_pair(
7219 S.findInheritingConstructor(UseLoc, Ctor, It->second),
7220 It->second->constructsVirtualBase());
7221
7222 // This is the base class from which the constructor was inherited.
7223 return std::make_pair(Ctor, false);
7224 }
7225};
7226
7227/// Is the special member function which would be selected to perform the
7228/// specified operation on the specified class type a constexpr constructor?
7229static bool
7230specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
7231 Sema::CXXSpecialMember CSM, unsigned Quals,
7232 bool ConstRHS,
7233 CXXConstructorDecl *InheritedCtor = nullptr,
7234 Sema::InheritedConstructorInfo *Inherited = nullptr) {
7235 // Suppress duplicate constraint checking here, in case a constraint check
7236 // caused us to decide to do this. Any truely recursive checks will get
7237 // caught during these checks anyway.
7238 Sema::SatisfactionStackResetRAII SSRAII{S};
7239
7240 // If we're inheriting a constructor, see if we need to call it for this base
7241 // class.
7242 if (InheritedCtor) {
7243 assert(CSM == Sema::CXXDefaultConstructor)(static_cast <bool> (CSM == Sema::CXXDefaultConstructor
) ? void (0) : __assert_fail ("CSM == Sema::CXXDefaultConstructor"
, "clang/lib/Sema/SemaDeclCXX.cpp", 7243, __extension__ __PRETTY_FUNCTION__
))
;
7244 auto BaseCtor =
7245 Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first;
7246 if (BaseCtor)
7247 return BaseCtor->isConstexpr();
7248 }
7249
7250 if (CSM == Sema::CXXDefaultConstructor)
7251 return ClassDecl->hasConstexprDefaultConstructor();
7252 if (CSM == Sema::CXXDestructor)
7253 return ClassDecl->hasConstexprDestructor();
7254
7255 Sema::SpecialMemberOverloadResult SMOR =
7256 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS);
7257 if (!SMOR.getMethod())
7258 // A constructor we wouldn't select can't be "involved in initializing"
7259 // anything.
7260 return true;
7261 return SMOR.getMethod()->isConstexpr();
7262}
7263
7264/// Determine whether the specified special member function would be constexpr
7265/// if it were implicitly defined.
7266static bool defaultedSpecialMemberIsConstexpr(
7267 Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM,
7268 bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr,
7269 Sema::InheritedConstructorInfo *Inherited = nullptr) {
7270 if (!S.getLangOpts().CPlusPlus11)
7271 return false;
7272
7273 // C++11 [dcl.constexpr]p4:
7274 // In the definition of a constexpr constructor [...]
7275 bool Ctor = true;
7276 switch (CSM) {
7277 case Sema::CXXDefaultConstructor:
7278 if (Inherited)
7279 break;
7280 // Since default constructor lookup is essentially trivial (and cannot
7281 // involve, for instance, template instantiation), we compute whether a
7282 // defaulted default constructor is constexpr directly within CXXRecordDecl.
7283 //
7284 // This is important for performance; we need to know whether the default
7285 // constructor is constexpr to determine whether the type is a literal type.
7286 return ClassDecl->defaultedDefaultConstructorIsConstexpr();
7287
7288 case Sema::CXXCopyConstructor:
7289 case Sema::CXXMoveConstructor:
7290 // For copy or move constructors, we need to perform overload resolution.
7291 break;
7292
7293 case Sema::CXXCopyAssignment:
7294 case Sema::CXXMoveAssignment:
7295 if (!S.getLangOpts().CPlusPlus14)
7296 return false;
7297 // In C++1y, we need to perform overload resolution.
7298 Ctor = false;
7299 break;
7300
7301 case Sema::CXXDestructor:
7302 return ClassDecl->defaultedDestructorIsConstexpr();
7303
7304 case Sema::CXXInvalid:
7305 return false;
7306 }
7307
7308 // -- if the class is a non-empty union, or for each non-empty anonymous
7309 // union member of a non-union class, exactly one non-static data member
7310 // shall be initialized; [DR1359]
7311 //
7312 // If we squint, this is guaranteed, since exactly one non-static data member
7313 // will be initialized (if the constructor isn't deleted), we just don't know
7314 // which one.
7315 if (Ctor && ClassDecl->isUnion())
7316 return CSM == Sema::CXXDefaultConstructor
7317 ? ClassDecl->hasInClassInitializer() ||
7318 !ClassDecl->hasVariantMembers()
7319 : true;
7320
7321 // -- the class shall not have any virtual base classes;
7322 if (Ctor && ClassDecl->getNumVBases())
7323 return false;
7324
7325 // C++1y [class.copy]p26:
7326 // -- [the class] is a literal type, and
7327 if (!Ctor && !ClassDecl->isLiteral())
7328 return false;
7329
7330 // -- every constructor involved in initializing [...] base class
7331 // sub-objects shall be a constexpr constructor;
7332 // -- the assignment operator selected to copy/move each direct base
7333 // class is a constexpr function, and
7334 for (const auto &B : ClassDecl->bases()) {
7335 const RecordType *BaseType = B.getType()->getAs<RecordType>();
7336 if (!BaseType)
7337 continue;
7338 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7339 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg,
7340 InheritedCtor, Inherited))
7341 return false;
7342 }
7343
7344 // -- every constructor involved in initializing non-static data members
7345 // [...] shall be a constexpr constructor;
7346 // -- every non-static data member and base class sub-object shall be
7347 // initialized
7348 // -- for each non-static data member of X that is of class type (or array
7349 // thereof), the assignment operator selected to copy/move that member is
7350 // a constexpr function
7351 for (const auto *F : ClassDecl->fields()) {
7352 if (F->isInvalidDecl())
7353 continue;
7354 if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer())
7355 continue;
7356 QualType BaseType = S.Context.getBaseElementType(F->getType());
7357 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
7358 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7359 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
7360 BaseType.getCVRQualifiers(),
7361 ConstArg && !F->isMutable()))
7362 return false;
7363 } else if (CSM == Sema::CXXDefaultConstructor) {
7364 return false;
7365 }
7366 }
7367
7368 // All OK, it's constexpr!
7369 return true;
7370}
7371
7372namespace {
7373/// RAII object to register a defaulted function as having its exception
7374/// specification computed.
7375struct ComputingExceptionSpec {
7376 Sema &S;
7377
7378 ComputingExceptionSpec(Sema &S, FunctionDecl *FD, SourceLocation Loc)
7379 : S(S) {
7380 Sema::CodeSynthesisContext Ctx;
7381 Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation;
7382 Ctx.PointOfInstantiation = Loc;
7383 Ctx.Entity = FD;
7384 S.pushCodeSynthesisContext(Ctx);
7385 }
7386 ~ComputingExceptionSpec() {
7387 S.popCodeSynthesisContext();
7388 }
7389};
7390}
7391
7392static Sema::ImplicitExceptionSpecification
7393ComputeDefaultedSpecialMemberExceptionSpec(
7394 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
7395 Sema::InheritedConstructorInfo *ICI);
7396
7397static Sema::ImplicitExceptionSpecification
7398ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc,
7399 FunctionDecl *FD,
7400 Sema::DefaultedComparisonKind DCK);
7401
7402static Sema::ImplicitExceptionSpecification
7403computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, FunctionDecl *FD) {
7404 auto DFK = S.getDefaultedFunctionKind(FD);
7405 if (DFK.isSpecialMember())
7406 return ComputeDefaultedSpecialMemberExceptionSpec(
7407 S, Loc, cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), nullptr);
7408 if (DFK.isComparison())
7409 return ComputeDefaultedComparisonExceptionSpec(S, Loc, FD,
7410 DFK.asComparison());
7411
7412 auto *CD = cast<CXXConstructorDecl>(FD);
7413 assert(CD->getInheritedConstructor() &&(static_cast <bool> (CD->getInheritedConstructor() &&
"only defaulted functions and inherited constructors have implicit "
"exception specs") ? void (0) : __assert_fail ("CD->getInheritedConstructor() && \"only defaulted functions and inherited constructors have implicit \" \"exception specs\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7415, __extension__ __PRETTY_FUNCTION__
))
7414 "only defaulted functions and inherited constructors have implicit "(static_cast <bool> (CD->getInheritedConstructor() &&
"only defaulted functions and inherited constructors have implicit "
"exception specs") ? void (0) : __assert_fail ("CD->getInheritedConstructor() && \"only defaulted functions and inherited constructors have implicit \" \"exception specs\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7415, __extension__ __PRETTY_FUNCTION__
))
7415 "exception specs")(static_cast <bool> (CD->getInheritedConstructor() &&
"only defaulted functions and inherited constructors have implicit "
"exception specs") ? void (0) : __assert_fail ("CD->getInheritedConstructor() && \"only defaulted functions and inherited constructors have implicit \" \"exception specs\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7415, __extension__ __PRETTY_FUNCTION__
))
;
7416 Sema::InheritedConstructorInfo ICI(
7417 S, Loc, CD->getInheritedConstructor().getShadowDecl());
7418 return ComputeDefaultedSpecialMemberExceptionSpec(
7419 S, Loc, CD, Sema::CXXDefaultConstructor, &ICI);
7420}
7421
7422static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
7423 CXXMethodDecl *MD) {
7424 FunctionProtoType::ExtProtoInfo EPI;
7425
7426 // Build an exception specification pointing back at this member.
7427 EPI.ExceptionSpec.Type = EST_Unevaluated;
7428 EPI.ExceptionSpec.SourceDecl = MD;
7429
7430 // Set the calling convention to the default for C++ instance methods.
7431 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
7432 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
7433 /*IsCXXMethod=*/true));
7434 return EPI;
7435}
7436
7437void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD) {
7438 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
7439 if (FPT->getExceptionSpecType() != EST_Unevaluated)
7440 return;
7441
7442 // Evaluate the exception specification.
7443 auto IES = computeImplicitExceptionSpec(*this, Loc, FD);
7444 auto ESI = IES.getExceptionSpec();
7445
7446 // Update the type of the special member to use it.
7447 UpdateExceptionSpec(FD, ESI);
7448}
7449
7450void Sema::CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *FD) {
7451 assert(FD->isExplicitlyDefaulted() && "not explicitly-defaulted")(static_cast <bool> (FD->isExplicitlyDefaulted() &&
"not explicitly-defaulted") ? void (0) : __assert_fail ("FD->isExplicitlyDefaulted() && \"not explicitly-defaulted\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7451, __extension__ __PRETTY_FUNCTION__
))
;
7452
7453 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD);
7454 if (!DefKind) {
7455 assert(FD->getDeclContext()->isDependentContext())(static_cast <bool> (FD->getDeclContext()->isDependentContext
()) ? void (0) : __assert_fail ("FD->getDeclContext()->isDependentContext()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 7455, __extension__ __PRETTY_FUNCTION__
))
;
7456 return;
7457 }
7458
7459 if (DefKind.isComparison())
7460 UnusedPrivateFields.clear();
7461
7462 if (DefKind.isSpecialMember()
7463 ? CheckExplicitlyDefaultedSpecialMember(cast<CXXMethodDecl>(FD),
7464 DefKind.asSpecialMember(),
7465 FD->getDefaultLoc())
7466 : CheckExplicitlyDefaultedComparison(S, FD, DefKind.asComparison()))
7467 FD->setInvalidDecl();
7468}
7469
7470bool Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD,
7471 CXXSpecialMember CSM,
7472 SourceLocation DefaultLoc) {
7473 CXXRecordDecl *RD = MD->getParent();
7474
7475 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&(static_cast <bool> (MD->isExplicitlyDefaulted() &&
CSM != CXXInvalid && "not an explicitly-defaulted special member"
) ? void (0) : __assert_fail ("MD->isExplicitlyDefaulted() && CSM != CXXInvalid && \"not an explicitly-defaulted special member\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7476, __extension__ __PRETTY_FUNCTION__
))
7476 "not an explicitly-defaulted special member")(static_cast <bool> (MD->isExplicitlyDefaulted() &&
CSM != CXXInvalid && "not an explicitly-defaulted special member"
) ? void (0) : __assert_fail ("MD->isExplicitlyDefaulted() && CSM != CXXInvalid && \"not an explicitly-defaulted special member\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7476, __extension__ __PRETTY_FUNCTION__
))
;
7477
7478 // Defer all checking for special members of a dependent type.
7479 if (RD->isDependentType())
7480 return false;
7481
7482 // Whether this was the first-declared instance of the constructor.
7483 // This affects whether we implicitly add an exception spec and constexpr.
7484 bool First = MD == MD->getCanonicalDecl();
7485
7486 bool HadError = false;
7487
7488 // C++11 [dcl.fct.def.default]p1:
7489 // A function that is explicitly defaulted shall
7490 // -- be a special member function [...] (checked elsewhere),
7491 // -- have the same type (except for ref-qualifiers, and except that a
7492 // copy operation can take a non-const reference) as an implicit
7493 // declaration, and
7494 // -- not have default arguments.
7495 // C++2a changes the second bullet to instead delete the function if it's
7496 // defaulted on its first declaration, unless it's "an assignment operator,
7497 // and its return type differs or its parameter type is not a reference".
7498 bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus20 && First;
7499 bool ShouldDeleteForTypeMismatch = false;
7500 unsigned ExpectedParams = 1;
7501 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
7502 ExpectedParams = 0;
7503 if (MD->getNumParams() != ExpectedParams) {
7504 // This checks for default arguments: a copy or move constructor with a
7505 // default argument is classified as a default constructor, and assignment
7506 // operations and destructors can't have default arguments.
7507 Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
7508 << CSM << MD->getSourceRange();
7509 HadError = true;
7510 } else if (MD->isVariadic()) {
7511 if (DeleteOnTypeMismatch)
7512 ShouldDeleteForTypeMismatch = true;
7513 else {
7514 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
7515 << CSM << MD->getSourceRange();
7516 HadError = true;
7517 }
7518 }
7519
7520 const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
7521
7522 bool CanHaveConstParam = false;
7523 if (CSM == CXXCopyConstructor)
7524 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
7525 else if (CSM == CXXCopyAssignment)
7526 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
7527
7528 QualType ReturnType = Context.VoidTy;
7529 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
7530 // Check for return type matching.
7531 ReturnType = Type->getReturnType();
7532
7533 QualType DeclType = Context.getTypeDeclType(RD);
7534 DeclType = Context.getElaboratedType(ETK_None, nullptr, DeclType, nullptr);
7535 DeclType = Context.getAddrSpaceQualType(DeclType, MD->getMethodQualifiers().getAddressSpace());
7536 QualType ExpectedReturnType = Context.getLValueReferenceType(DeclType);
7537
7538 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
7539 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
7540 << (CSM == CXXMoveAssignment) << ExpectedReturnType;
7541 HadError = true;
7542 }
7543
7544 // A defaulted special member cannot have cv-qualifiers.
7545 if (Type->getMethodQuals().hasConst() || Type->getMethodQuals().hasVolatile()) {
7546 if (DeleteOnTypeMismatch)
7547 ShouldDeleteForTypeMismatch = true;
7548 else {
7549 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
7550 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14;
7551 HadError = true;
7552 }
7553 }
7554 }
7555
7556 // Check for parameter type matching.
7557 QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType();
7558 bool HasConstParam = false;
7559 if (ExpectedParams && ArgType->isReferenceType()) {
7560 // Argument must be reference to possibly-const T.
7561 QualType ReferentType = ArgType->getPointeeType();
7562 HasConstParam = ReferentType.isConstQualified();
7563
7564 if (ReferentType.isVolatileQualified()) {
7565 if (DeleteOnTypeMismatch)
7566 ShouldDeleteForTypeMismatch = true;
7567 else {
7568 Diag(MD->getLocation(),
7569 diag::err_defaulted_special_member_volatile_param) << CSM;
7570 HadError = true;
7571 }
7572 }
7573
7574 if (HasConstParam && !CanHaveConstParam) {
7575 if (DeleteOnTypeMismatch)
7576 ShouldDeleteForTypeMismatch = true;
7577 else if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
7578 Diag(MD->getLocation(),
7579 diag::err_defaulted_special_member_copy_const_param)
7580 << (CSM == CXXCopyAssignment);
7581 // FIXME: Explain why this special member can't be const.
7582 HadError = true;
7583 } else {
7584 Diag(MD->getLocation(),
7585 diag::err_defaulted_special_member_move_const_param)
7586 << (CSM == CXXMoveAssignment);
7587 HadError = true;
7588 }
7589 }
7590 } else if (ExpectedParams) {
7591 // A copy assignment operator can take its argument by value, but a
7592 // defaulted one cannot.
7593 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument")(static_cast <bool> (CSM == CXXCopyAssignment &&
"unexpected non-ref argument") ? void (0) : __assert_fail ("CSM == CXXCopyAssignment && \"unexpected non-ref argument\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7593, __extension__ __PRETTY_FUNCTION__
))
;
7594 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
7595 HadError = true;
7596 }
7597
7598 // C++11 [dcl.fct.def.default]p2:
7599 // An explicitly-defaulted function may be declared constexpr only if it
7600 // would have been implicitly declared as constexpr,
7601 // Do not apply this rule to members of class templates, since core issue 1358
7602 // makes such functions always instantiate to constexpr functions. For
7603 // functions which cannot be constexpr (for non-constructors in C++11 and for
7604 // destructors in C++14 and C++17), this is checked elsewhere.
7605 //
7606 // FIXME: This should not apply if the member is deleted.
7607 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
7608 HasConstParam);
7609
7610 // C++14 [dcl.constexpr]p6 (CWG DR647/CWG DR1358):
7611 // If the instantiated template specialization of a constexpr function
7612 // template or member function of a class template would fail to satisfy
7613 // the requirements for a constexpr function or constexpr constructor, that
7614 // specialization is still a constexpr function or constexpr constructor,
7615 // even though a call to such a function cannot appear in a constant
7616 // expression.
7617 if (MD->isTemplateInstantiation() && MD->isConstexpr())
7618 Constexpr = true;
7619
7620 if ((getLangOpts().CPlusPlus20 ||
7621 (getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD)
7622 : isa<CXXConstructorDecl>(MD))) &&
7623 MD->isConstexpr() && !Constexpr &&
7624 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
7625 Diag(MD->getBeginLoc(), MD->isConsteval()
7626 ? diag::err_incorrect_defaulted_consteval
7627 : diag::err_incorrect_defaulted_constexpr)
7628 << CSM;
7629 // FIXME: Explain why the special member can't be constexpr.
7630 HadError = true;
7631 }
7632
7633 if (First) {
7634 // C++2a [dcl.fct.def.default]p3:
7635 // If a function is explicitly defaulted on its first declaration, it is
7636 // implicitly considered to be constexpr if the implicit declaration
7637 // would be.
7638 MD->setConstexprKind(Constexpr ? (MD->isConsteval()
7639 ? ConstexprSpecKind::Consteval
7640 : ConstexprSpecKind::Constexpr)
7641 : ConstexprSpecKind::Unspecified);
7642
7643 if (!Type->hasExceptionSpec()) {
7644 // C++2a [except.spec]p3:
7645 // If a declaration of a function does not have a noexcept-specifier
7646 // [and] is defaulted on its first declaration, [...] the exception
7647 // specification is as specified below
7648 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
7649 EPI.ExceptionSpec.Type = EST_Unevaluated;
7650 EPI.ExceptionSpec.SourceDecl = MD;
7651 MD->setType(Context.getFunctionType(
7652 ReturnType, llvm::ArrayRef(&ArgType, ExpectedParams), EPI));
7653 }
7654 }
7655
7656 if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) {
7657 if (First) {
7658 SetDeclDeleted(MD, MD->getLocation());
7659 if (!inTemplateInstantiation() && !HadError) {
7660 Diag(MD->getLocation(), diag::warn_defaulted_method_deleted) << CSM;
7661 if (ShouldDeleteForTypeMismatch) {
7662 Diag(MD->getLocation(), diag::note_deleted_type_mismatch) << CSM;
7663 } else if (ShouldDeleteSpecialMember(MD, CSM, nullptr,
7664 /*Diagnose*/ true) &&
7665 DefaultLoc.isValid()) {
7666 Diag(DefaultLoc, diag::note_replace_equals_default_to_delete)
7667 << FixItHint::CreateReplacement(DefaultLoc, "delete");
7668 }
7669 }
7670 if (ShouldDeleteForTypeMismatch && !HadError) {
7671 Diag(MD->getLocation(),
7672 diag::warn_cxx17_compat_defaulted_method_type_mismatch) << CSM;
7673 }
7674 } else {
7675 // C++11 [dcl.fct.def.default]p4:
7676 // [For a] user-provided explicitly-defaulted function [...] if such a
7677 // function is implicitly defined as deleted, the program is ill-formed.
7678 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
7679 assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl")(static_cast <bool> (!ShouldDeleteForTypeMismatch &&
"deleted non-first decl") ? void (0) : __assert_fail ("!ShouldDeleteForTypeMismatch && \"deleted non-first decl\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7679, __extension__ __PRETTY_FUNCTION__
))
;
7680 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
7681 HadError = true;
7682 }
7683 }
7684
7685 return HadError;
7686}
7687
7688namespace {
7689/// Helper class for building and checking a defaulted comparison.
7690///
7691/// Defaulted functions are built in two phases:
7692///
7693/// * First, the set of operations that the function will perform are
7694/// identified, and some of them are checked. If any of the checked
7695/// operations is invalid in certain ways, the comparison function is
7696/// defined as deleted and no body is built.
7697/// * Then, if the function is not defined as deleted, the body is built.
7698///
7699/// This is accomplished by performing two visitation steps over the eventual
7700/// body of the function.
7701template<typename Derived, typename ResultList, typename Result,
7702 typename Subobject>
7703class DefaultedComparisonVisitor {
7704public:
7705 using DefaultedComparisonKind = Sema::DefaultedComparisonKind;
7706
7707 DefaultedComparisonVisitor(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
7708 DefaultedComparisonKind DCK)
7709 : S(S), RD(RD), FD(FD), DCK(DCK) {
7710 if (auto *Info = FD->getDefaultedFunctionInfo()) {
7711 // FIXME: Change CreateOverloadedBinOp to take an ArrayRef instead of an
7712 // UnresolvedSet to avoid this copy.
7713 Fns.assign(Info->getUnqualifiedLookups().begin(),
7714 Info->getUnqualifiedLookups().end());
7715 }
7716 }
7717
7718 ResultList visit() {
7719 // The type of an lvalue naming a parameter of this function.
7720 QualType ParamLvalType =
7721 FD->getParamDecl(0)->getType().getNonReferenceType();
7722
7723 ResultList Results;
7724
7725 switch (DCK) {
7726 case DefaultedComparisonKind::None:
7727 llvm_unreachable("not a defaulted comparison")::llvm::llvm_unreachable_internal("not a defaulted comparison"
, "clang/lib/Sema/SemaDeclCXX.cpp", 7727)
;
7728
7729 case DefaultedComparisonKind::Equal:
7730 case DefaultedComparisonKind::ThreeWay:
7731 getDerived().visitSubobjects(Results, RD, ParamLvalType.getQualifiers());
7732 return Results;
7733
7734 case DefaultedComparisonKind::NotEqual:
7735 case DefaultedComparisonKind::Relational:
7736 Results.add(getDerived().visitExpandedSubobject(
7737 ParamLvalType, getDerived().getCompleteObject()));
7738 return Results;
7739 }
7740 llvm_unreachable("")::llvm::llvm_unreachable_internal("", "clang/lib/Sema/SemaDeclCXX.cpp"
, 7740)
;
7741 }
7742
7743protected:
7744 Derived &getDerived() { return static_cast<Derived&>(*this); }
7745
7746 /// Visit the expanded list of subobjects of the given type, as specified in
7747 /// C++2a [class.compare.default].
7748 ///
7749 /// \return \c true if the ResultList object said we're done, \c false if not.
7750 bool visitSubobjects(ResultList &Results, CXXRecordDecl *Record,
7751 Qualifiers Quals) {
7752 // C++2a [class.compare.default]p4:
7753 // The direct base class subobjects of C
7754 for (CXXBaseSpecifier &Base : Record->bases())
7755 if (Results.add(getDerived().visitSubobject(
7756 S.Context.getQualifiedType(Base.getType(), Quals),
7757 getDerived().getBase(&Base))))
7758 return true;
7759
7760 // followed by the non-static data members of C
7761 for (FieldDecl *Field : Record->fields()) {
7762 // C++23 [class.bit]p2:
7763 // Unnamed bit-fields are not members ...
7764 if (Field->isUnnamedBitfield())
7765 continue;
7766 // Recursively expand anonymous structs.
7767 if (Field->isAnonymousStructOrUnion()) {
7768 if (visitSubobjects(Results, Field->getType()->getAsCXXRecordDecl(),
7769 Quals))
7770 return true;
7771 continue;
7772 }
7773
7774 // Figure out the type of an lvalue denoting this field.
7775 Qualifiers FieldQuals = Quals;
7776 if (Field->isMutable())
7777 FieldQuals.removeConst();
7778 QualType FieldType =
7779 S.Context.getQualifiedType(Field->getType(), FieldQuals);
7780
7781 if (Results.add(getDerived().visitSubobject(
7782 FieldType, getDerived().getField(Field))))
7783 return true;
7784 }
7785
7786 // form a list of subobjects.
7787 return false;
7788 }
7789
7790 Result visitSubobject(QualType Type, Subobject Subobj) {
7791 // In that list, any subobject of array type is recursively expanded
7792 const ArrayType *AT = S.Context.getAsArrayType(Type);
7793 if (auto *CAT = dyn_cast_or_null<ConstantArrayType>(AT))
7794 return getDerived().visitSubobjectArray(CAT->getElementType(),
7795 CAT->getSize(), Subobj);
7796 return getDerived().visitExpandedSubobject(Type, Subobj);
7797 }
7798
7799 Result visitSubobjectArray(QualType Type, const llvm::APInt &Size,
7800 Subobject Subobj) {
7801 return getDerived().visitSubobject(Type, Subobj);
7802 }
7803
7804protected:
7805 Sema &S;
7806 CXXRecordDecl *RD;
7807 FunctionDecl *FD;
7808 DefaultedComparisonKind DCK;
7809 UnresolvedSet<16> Fns;
7810};
7811
7812/// Information about a defaulted comparison, as determined by
7813/// DefaultedComparisonAnalyzer.
7814struct DefaultedComparisonInfo {
7815 bool Deleted = false;
7816 bool Constexpr = true;
7817 ComparisonCategoryType Category = ComparisonCategoryType::StrongOrdering;
7818
7819 static DefaultedComparisonInfo deleted() {
7820 DefaultedComparisonInfo Deleted;
7821 Deleted.Deleted = true;
7822 return Deleted;
7823 }
7824
7825 bool add(const DefaultedComparisonInfo &R) {
7826 Deleted |= R.Deleted;
7827 Constexpr &= R.Constexpr;
7828 Category = commonComparisonType(Category, R.Category);
7829 return Deleted;
7830 }
7831};
7832
7833/// An element in the expanded list of subobjects of a defaulted comparison, as
7834/// specified in C++2a [class.compare.default]p4.
7835struct DefaultedComparisonSubobject {
7836 enum { CompleteObject, Member, Base } Kind;
7837 NamedDecl *Decl;
7838 SourceLocation Loc;
7839};
7840
7841/// A visitor over the notional body of a defaulted comparison that determines
7842/// whether that body would be deleted or constexpr.
7843class DefaultedComparisonAnalyzer
7844 : public DefaultedComparisonVisitor<DefaultedComparisonAnalyzer,
7845 DefaultedComparisonInfo,
7846 DefaultedComparisonInfo,
7847 DefaultedComparisonSubobject> {
7848public:
7849 enum DiagnosticKind { NoDiagnostics, ExplainDeleted, ExplainConstexpr };
7850
7851private:
7852 DiagnosticKind Diagnose;
7853
7854public:
7855 using Base = DefaultedComparisonVisitor;
7856 using Result = DefaultedComparisonInfo;
7857 using Subobject = DefaultedComparisonSubobject;
7858
7859 friend Base;
7860
7861 DefaultedComparisonAnalyzer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
7862 DefaultedComparisonKind DCK,
7863 DiagnosticKind Diagnose = NoDiagnostics)
7864 : Base(S, RD, FD, DCK), Diagnose(Diagnose) {}
7865
7866 Result visit() {
7867 if ((DCK == DefaultedComparisonKind::Equal ||
7868 DCK == DefaultedComparisonKind::ThreeWay) &&
7869 RD->hasVariantMembers()) {
7870 // C++2a [class.compare.default]p2 [P2002R0]:
7871 // A defaulted comparison operator function for class C is defined as
7872 // deleted if [...] C has variant members.
7873 if (Diagnose == ExplainDeleted) {
7874 S.Diag(FD->getLocation(), diag::note_defaulted_comparison_union)
7875 << FD << RD->isUnion() << RD;
7876 }
7877 return Result::deleted();
7878 }
7879
7880 return Base::visit();
7881 }
7882
7883private:
7884 Subobject getCompleteObject() {
7885 return Subobject{Subobject::CompleteObject, RD, FD->getLocation()};
7886 }
7887
7888 Subobject getBase(CXXBaseSpecifier *Base) {
7889 return Subobject{Subobject::Base, Base->getType()->getAsCXXRecordDecl(),
7890 Base->getBaseTypeLoc()};
7891 }
7892
7893 Subobject getField(FieldDecl *Field) {
7894 return Subobject{Subobject::Member, Field, Field->getLocation()};
7895 }
7896
7897 Result visitExpandedSubobject(QualType Type, Subobject Subobj) {
7898 // C++2a [class.compare.default]p2 [P2002R0]:
7899 // A defaulted <=> or == operator function for class C is defined as
7900 // deleted if any non-static data member of C is of reference type
7901 if (Type->isReferenceType()) {
7902 if (Diagnose == ExplainDeleted) {
7903 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_reference_member)
7904 << FD << RD;
7905 }
7906 return Result::deleted();
7907 }
7908
7909 // [...] Let xi be an lvalue denoting the ith element [...]
7910 OpaqueValueExpr Xi(FD->getLocation(), Type, VK_LValue);
7911 Expr *Args[] = {&Xi, &Xi};
7912
7913 // All operators start by trying to apply that same operator recursively.
7914 OverloadedOperatorKind OO = FD->getOverloadedOperator();
7915 assert(OO != OO_None && "not an overloaded operator!")(static_cast <bool> (OO != OO_None && "not an overloaded operator!"
) ? void (0) : __assert_fail ("OO != OO_None && \"not an overloaded operator!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7915, __extension__ __PRETTY_FUNCTION__
))
;
7916 return visitBinaryOperator(OO, Args, Subobj);
7917 }
7918
7919 Result
7920 visitBinaryOperator(OverloadedOperatorKind OO, ArrayRef<Expr *> Args,
7921 Subobject Subobj,
7922 OverloadCandidateSet *SpaceshipCandidates = nullptr) {
7923 // Note that there is no need to consider rewritten candidates here if
7924 // we've already found there is no viable 'operator<=>' candidate (and are
7925 // considering synthesizing a '<=>' from '==' and '<').
7926 OverloadCandidateSet CandidateSet(
7927 FD->getLocation(), OverloadCandidateSet::CSK_Operator,
7928 OverloadCandidateSet::OperatorRewriteInfo(
7929 OO, FD->getLocation(),
7930 /*AllowRewrittenCandidates=*/!SpaceshipCandidates));
7931
7932 /// C++2a [class.compare.default]p1 [P2002R0]:
7933 /// [...] the defaulted function itself is never a candidate for overload
7934 /// resolution [...]
7935 CandidateSet.exclude(FD);
7936
7937 if (Args[0]->getType()->isOverloadableType())
7938 S.LookupOverloadedBinOp(CandidateSet, OO, Fns, Args);
7939 else
7940 // FIXME: We determine whether this is a valid expression by checking to
7941 // see if there's a viable builtin operator candidate for it. That isn't
7942 // really what the rules ask us to do, but should give the right results.
7943 S.AddBuiltinOperatorCandidates(OO, FD->getLocation(), Args, CandidateSet);
7944
7945 Result R;
7946
7947 OverloadCandidateSet::iterator Best;
7948 switch (CandidateSet.BestViableFunction(S, FD->getLocation(), Best)) {
7949 case OR_Success: {
7950 // C++2a [class.compare.secondary]p2 [P2002R0]:
7951 // The operator function [...] is defined as deleted if [...] the
7952 // candidate selected by overload resolution is not a rewritten
7953 // candidate.
7954 if ((DCK == DefaultedComparisonKind::NotEqual ||
7955 DCK == DefaultedComparisonKind::Relational) &&
7956 !Best->RewriteKind) {
7957 if (Diagnose == ExplainDeleted) {
7958 if (Best->Function) {
7959 S.Diag(Best->Function->getLocation(),
7960 diag::note_defaulted_comparison_not_rewritten_callee)
7961 << FD;
7962 } else {
7963 assert(Best->Conversions.size() == 2 &&(static_cast <bool> (Best->Conversions.size() == 2 &&
Best->Conversions[0].isUserDefined() && "non-user-defined conversion from class to built-in "
"comparison") ? void (0) : __assert_fail ("Best->Conversions.size() == 2 && Best->Conversions[0].isUserDefined() && \"non-user-defined conversion from class to built-in \" \"comparison\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7966, __extension__ __PRETTY_FUNCTION__
))
7964 Best->Conversions[0].isUserDefined() &&(static_cast <bool> (Best->Conversions.size() == 2 &&
Best->Conversions[0].isUserDefined() && "non-user-defined conversion from class to built-in "
"comparison") ? void (0) : __assert_fail ("Best->Conversions.size() == 2 && Best->Conversions[0].isUserDefined() && \"non-user-defined conversion from class to built-in \" \"comparison\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7966, __extension__ __PRETTY_FUNCTION__
))
7965 "non-user-defined conversion from class to built-in "(static_cast <bool> (Best->Conversions.size() == 2 &&
Best->Conversions[0].isUserDefined() && "non-user-defined conversion from class to built-in "
"comparison") ? void (0) : __assert_fail ("Best->Conversions.size() == 2 && Best->Conversions[0].isUserDefined() && \"non-user-defined conversion from class to built-in \" \"comparison\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7966, __extension__ __PRETTY_FUNCTION__
))
7966 "comparison")(static_cast <bool> (Best->Conversions.size() == 2 &&
Best->Conversions[0].isUserDefined() && "non-user-defined conversion from class to built-in "
"comparison") ? void (0) : __assert_fail ("Best->Conversions.size() == 2 && Best->Conversions[0].isUserDefined() && \"non-user-defined conversion from class to built-in \" \"comparison\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7966, __extension__ __PRETTY_FUNCTION__
))
;
7967 S.Diag(Best->Conversions[0]
7968 .UserDefined.FoundConversionFunction.getDecl()
7969 ->getLocation(),
7970 diag::note_defaulted_comparison_not_rewritten_conversion)
7971 << FD;
7972 }
7973 }
7974 return Result::deleted();
7975 }
7976
7977 // Throughout C++2a [class.compare]: if overload resolution does not
7978 // result in a usable function, the candidate function is defined as
7979 // deleted. This requires that we selected an accessible function.
7980 //
7981 // Note that this only considers the access of the function when named
7982 // within the type of the subobject, and not the access path for any
7983 // derived-to-base conversion.
7984 CXXRecordDecl *ArgClass = Args[0]->getType()->getAsCXXRecordDecl();
7985 if (ArgClass && Best->FoundDecl.getDecl() &&
7986 Best->FoundDecl.getDecl()->isCXXClassMember()) {
7987 QualType ObjectType = Subobj.Kind == Subobject::Member
7988 ? Args[0]->getType()
7989 : S.Context.getRecordType(RD);
7990 if (!S.isMemberAccessibleForDeletion(
7991 ArgClass, Best->FoundDecl, ObjectType, Subobj.Loc,
7992 Diagnose == ExplainDeleted
7993 ? S.PDiag(diag::note_defaulted_comparison_inaccessible)
7994 << FD << Subobj.Kind << Subobj.Decl
7995 : S.PDiag()))
7996 return Result::deleted();
7997 }
7998
7999 bool NeedsDeducing =
8000 OO == OO_Spaceship && FD->getReturnType()->isUndeducedAutoType();
8001
8002 if (FunctionDecl *BestFD = Best->Function) {
8003 // C++2a [class.compare.default]p3 [P2002R0]:
8004 // A defaulted comparison function is constexpr-compatible if
8005 // [...] no overlod resolution performed [...] results in a
8006 // non-constexpr function.
8007 assert(!BestFD->isDeleted() && "wrong overload resolution result")(static_cast <bool> (!BestFD->isDeleted() &&
"wrong overload resolution result") ? void (0) : __assert_fail
("!BestFD->isDeleted() && \"wrong overload resolution result\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8007, __extension__ __PRETTY_FUNCTION__
))
;
8008 // If it's not constexpr, explain why not.
8009 if (Diagnose == ExplainConstexpr && !BestFD->isConstexpr()) {
8010 if (Subobj.Kind != Subobject::CompleteObject)
8011 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_not_constexpr)
8012 << Subobj.Kind << Subobj.Decl;
8013 S.Diag(BestFD->getLocation(),
8014 diag::note_defaulted_comparison_not_constexpr_here);
8015 // Bail out after explaining; we don't want any more notes.
8016 return Result::deleted();
8017 }
8018 R.Constexpr &= BestFD->isConstexpr();
8019
8020 if (NeedsDeducing) {
8021 // If any callee has an undeduced return type, deduce it now.
8022 // FIXME: It's not clear how a failure here should be handled. For
8023 // now, we produce an eager diagnostic, because that is forward
8024 // compatible with most (all?) other reasonable options.
8025 if (BestFD->getReturnType()->isUndeducedType() &&
8026 S.DeduceReturnType(BestFD, FD->getLocation(),
8027 /*Diagnose=*/false)) {
8028 // Don't produce a duplicate error when asked to explain why the
8029 // comparison is deleted: we diagnosed that when initially checking
8030 // the defaulted operator.
8031 if (Diagnose == NoDiagnostics) {
8032 S.Diag(
8033 FD->getLocation(),
8034 diag::err_defaulted_comparison_cannot_deduce_undeduced_auto)
8035 << Subobj.Kind << Subobj.Decl;
8036 S.Diag(
8037 Subobj.Loc,
8038 diag::note_defaulted_comparison_cannot_deduce_undeduced_auto)
8039 << Subobj.Kind << Subobj.Decl;
8040 S.Diag(BestFD->getLocation(),
8041 diag::note_defaulted_comparison_cannot_deduce_callee)
8042 << Subobj.Kind << Subobj.Decl;
8043 }
8044 return Result::deleted();
8045 }
8046 auto *Info = S.Context.CompCategories.lookupInfoForType(
8047 BestFD->getCallResultType());
8048 if (!Info) {
8049 if (Diagnose == ExplainDeleted) {
8050 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_cannot_deduce)
8051 << Subobj.Kind << Subobj.Decl
8052 << BestFD->getCallResultType().withoutLocalFastQualifiers();
8053 S.Diag(BestFD->getLocation(),
8054 diag::note_defaulted_comparison_cannot_deduce_callee)
8055 << Subobj.Kind << Subobj.Decl;
8056 }
8057 return Result::deleted();
8058 }
8059 R.Category = Info->Kind;
8060 }
8061 } else {
8062 QualType T = Best->BuiltinParamTypes[0];
8063 assert(T == Best->BuiltinParamTypes[1] &&(static_cast <bool> (T == Best->BuiltinParamTypes[1]
&& "builtin comparison for different types?") ? void
(0) : __assert_fail ("T == Best->BuiltinParamTypes[1] && \"builtin comparison for different types?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8064, __extension__ __PRETTY_FUNCTION__
))
8064 "builtin comparison for different types?")(static_cast <bool> (T == Best->BuiltinParamTypes[1]
&& "builtin comparison for different types?") ? void
(0) : __assert_fail ("T == Best->BuiltinParamTypes[1] && \"builtin comparison for different types?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8064, __extension__ __PRETTY_FUNCTION__
))
;
8065 assert(Best->BuiltinParamTypes[2].isNull() &&(static_cast <bool> (Best->BuiltinParamTypes[2].isNull
() && "invalid builtin comparison") ? void (0) : __assert_fail
("Best->BuiltinParamTypes[2].isNull() && \"invalid builtin comparison\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8066, __extension__ __PRETTY_FUNCTION__
))
8066 "invalid builtin comparison")(static_cast <bool> (Best->BuiltinParamTypes[2].isNull
() && "invalid builtin comparison") ? void (0) : __assert_fail
("Best->BuiltinParamTypes[2].isNull() && \"invalid builtin comparison\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8066, __extension__ __PRETTY_FUNCTION__
))
;
8067
8068 if (NeedsDeducing) {
8069 std::optional<ComparisonCategoryType> Cat =
8070 getComparisonCategoryForBuiltinCmp(T);
8071 assert(Cat && "no category for builtin comparison?")(static_cast <bool> (Cat && "no category for builtin comparison?"
) ? void (0) : __assert_fail ("Cat && \"no category for builtin comparison?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8071, __extension__ __PRETTY_FUNCTION__
))
;
8072 R.Category = *Cat;
8073 }
8074 }
8075
8076 // Note that we might be rewriting to a different operator. That call is
8077 // not considered until we come to actually build the comparison function.
8078 break;
8079 }
8080
8081 case OR_Ambiguous:
8082 if (Diagnose == ExplainDeleted) {
8083 unsigned Kind = 0;
8084 if (FD->getOverloadedOperator() == OO_Spaceship && OO != OO_Spaceship)
8085 Kind = OO == OO_EqualEqual ? 1 : 2;
8086 CandidateSet.NoteCandidates(
8087 PartialDiagnosticAt(
8088 Subobj.Loc, S.PDiag(diag::note_defaulted_comparison_ambiguous)
8089 << FD << Kind << Subobj.Kind << Subobj.Decl),
8090 S, OCD_AmbiguousCandidates, Args);
8091 }
8092 R = Result::deleted();
8093 break;
8094
8095 case OR_Deleted:
8096 if (Diagnose == ExplainDeleted) {
8097 if ((DCK == DefaultedComparisonKind::NotEqual ||
8098 DCK == DefaultedComparisonKind::Relational) &&
8099 !Best->RewriteKind) {
8100 S.Diag(Best->Function->getLocation(),
8101 diag::note_defaulted_comparison_not_rewritten_callee)
8102 << FD;
8103 } else {
8104 S.Diag(Subobj.Loc,
8105 diag::note_defaulted_comparison_calls_deleted)
8106 << FD << Subobj.Kind << Subobj.Decl;
8107 S.NoteDeletedFunction(Best->Function);
8108 }
8109 }
8110 R = Result::deleted();
8111 break;
8112
8113 case OR_No_Viable_Function:
8114 // If there's no usable candidate, we're done unless we can rewrite a
8115 // '<=>' in terms of '==' and '<'.
8116 if (OO == OO_Spaceship &&
8117 S.Context.CompCategories.lookupInfoForType(FD->getReturnType())) {
8118 // For any kind of comparison category return type, we need a usable
8119 // '==' and a usable '<'.
8120 if (!R.add(visitBinaryOperator(OO_EqualEqual, Args, Subobj,
8121 &CandidateSet)))
8122 R.add(visitBinaryOperator(OO_Less, Args, Subobj, &CandidateSet));
8123 break;
8124 }
8125
8126 if (Diagnose == ExplainDeleted) {
8127 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_no_viable_function)
8128 << FD << (OO == OO_ExclaimEqual) << Subobj.Kind << Subobj.Decl;
8129
8130 // For a three-way comparison, list both the candidates for the
8131 // original operator and the candidates for the synthesized operator.
8132 if (SpaceshipCandidates) {
8133 SpaceshipCandidates->NoteCandidates(
8134 S, Args,
8135 SpaceshipCandidates->CompleteCandidates(S, OCD_AllCandidates,
8136 Args, FD->getLocation()));
8137 S.Diag(Subobj.Loc,
8138 diag::note_defaulted_comparison_no_viable_function_synthesized)
8139 << (OO == OO_EqualEqual ? 0 : 1);
8140 }
8141
8142 CandidateSet.NoteCandidates(
8143 S, Args,
8144 CandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args,
8145 FD->getLocation()));
8146 }
8147 R = Result::deleted();
8148 break;
8149 }
8150
8151 return R;
8152 }
8153};
8154
8155/// A list of statements.
8156struct StmtListResult {
8157 bool IsInvalid = false;
8158 llvm::SmallVector<Stmt*, 16> Stmts;
8159
8160 bool add(const StmtResult &S) {
8161 IsInvalid |= S.isInvalid();
8162 if (IsInvalid)
8163 return true;
8164 Stmts.push_back(S.get());
8165 return false;
8166 }
8167};
8168
8169/// A visitor over the notional body of a defaulted comparison that synthesizes
8170/// the actual body.
8171class DefaultedComparisonSynthesizer
8172 : public DefaultedComparisonVisitor<DefaultedComparisonSynthesizer,
8173 StmtListResult, StmtResult,
8174 std::pair<ExprResult, ExprResult>> {
8175 SourceLocation Loc;
8176 unsigned ArrayDepth = 0;
8177
8178public:
8179 using Base = DefaultedComparisonVisitor;
8180 using ExprPair = std::pair<ExprResult, ExprResult>;
8181
8182 friend Base;
8183
8184 DefaultedComparisonSynthesizer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
8185 DefaultedComparisonKind DCK,
8186 SourceLocation BodyLoc)
8187 : Base(S, RD, FD, DCK), Loc(BodyLoc) {}
8188
8189 /// Build a suitable function body for this defaulted comparison operator.
8190 StmtResult build() {
8191 Sema::CompoundScopeRAII CompoundScope(S);
8192
8193 StmtListResult Stmts = visit();
8194 if (Stmts.IsInvalid)
8195 return StmtError();
8196
8197 ExprResult RetVal;
8198 switch (DCK) {
8199 case DefaultedComparisonKind::None:
8200 llvm_unreachable("not a defaulted comparison")::llvm::llvm_unreachable_internal("not a defaulted comparison"
, "clang/lib/Sema/SemaDeclCXX.cpp", 8200)
;
8201
8202 case DefaultedComparisonKind::Equal: {
8203 // C++2a [class.eq]p3:
8204 // [...] compar[e] the corresponding elements [...] until the first
8205 // index i where xi == yi yields [...] false. If no such index exists,
8206 // V is true. Otherwise, V is false.
8207 //
8208 // Join the comparisons with '&&'s and return the result. Use a right
8209 // fold (traversing the conditions right-to-left), because that
8210 // short-circuits more naturally.
8211 auto OldStmts = std::move(Stmts.Stmts);
8212 Stmts.Stmts.clear();
8213 ExprResult CmpSoFar;
8214 // Finish a particular comparison chain.
8215 auto FinishCmp = [&] {
8216 if (Expr *Prior = CmpSoFar.get()) {
8217 // Convert the last expression to 'return ...;'
8218 if (RetVal.isUnset() && Stmts.Stmts.empty())
8219 RetVal = CmpSoFar;
8220 // Convert any prior comparison to 'if (!(...)) return false;'
8221 else if (Stmts.add(buildIfNotCondReturnFalse(Prior)))
8222 return true;
8223 CmpSoFar = ExprResult();
8224 }
8225 return false;
8226 };
8227 for (Stmt *EAsStmt : llvm::reverse(OldStmts)) {
8228 Expr *E = dyn_cast<Expr>(EAsStmt);
8229 if (!E) {
8230 // Found an array comparison.
8231 if (FinishCmp() || Stmts.add(EAsStmt))
8232 return StmtError();
8233 continue;
8234 }
8235
8236 if (CmpSoFar.isUnset()) {
8237 CmpSoFar = E;
8238 continue;
8239 }
8240 CmpSoFar = S.CreateBuiltinBinOp(Loc, BO_LAnd, E, CmpSoFar.get());
8241 if (CmpSoFar.isInvalid())
8242 return StmtError();
8243 }
8244 if (FinishCmp())
8245 return StmtError();
8246 std::reverse(Stmts.Stmts.begin(), Stmts.Stmts.end());
8247 // If no such index exists, V is true.
8248 if (RetVal.isUnset())
8249 RetVal = S.ActOnCXXBoolLiteral(Loc, tok::kw_true);
8250 break;
8251 }
8252
8253 case DefaultedComparisonKind::ThreeWay: {
8254 // Per C++2a [class.spaceship]p3, as a fallback add:
8255 // return static_cast<R>(std::strong_ordering::equal);
8256 QualType StrongOrdering = S.CheckComparisonCategoryType(
8257 ComparisonCategoryType::StrongOrdering, Loc,
8258 Sema::ComparisonCategoryUsage::DefaultedOperator);
8259 if (StrongOrdering.isNull())
8260 return StmtError();
8261 VarDecl *EqualVD = S.Context.CompCategories.getInfoForType(StrongOrdering)
8262 .getValueInfo(ComparisonCategoryResult::Equal)
8263 ->VD;
8264 RetVal = getDecl(EqualVD);
8265 if (RetVal.isInvalid())
8266 return StmtError();
8267 RetVal = buildStaticCastToR(RetVal.get());
8268 break;
8269 }
8270
8271 case DefaultedComparisonKind::NotEqual:
8272 case DefaultedComparisonKind::Relational:
8273 RetVal = cast<Expr>(Stmts.Stmts.pop_back_val());
8274 break;
8275 }
8276
8277 // Build the final return statement.
8278 if (RetVal.isInvalid())
8279 return StmtError();
8280 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, RetVal.get());
8281 if (ReturnStmt.isInvalid())
8282 return StmtError();
8283 Stmts.Stmts.push_back(ReturnStmt.get());
8284
8285 return S.ActOnCompoundStmt(Loc, Loc, Stmts.Stmts, /*IsStmtExpr=*/false);
8286 }
8287
8288private:
8289 ExprResult getDecl(ValueDecl *VD) {
8290 return S.BuildDeclarationNameExpr(
8291 CXXScopeSpec(), DeclarationNameInfo(VD->getDeclName(), Loc), VD);
8292 }
8293
8294 ExprResult getParam(unsigned I) {
8295 ParmVarDecl *PD = FD->getParamDecl(I);
8296 return getDecl(PD);
8297 }
8298
8299 ExprPair getCompleteObject() {
8300 unsigned Param = 0;
8301 ExprResult LHS;
8302 if (isa<CXXMethodDecl>(FD)) {
8303 // LHS is '*this'.
8304 LHS = S.ActOnCXXThis(Loc);
8305 if (!LHS.isInvalid())
8306 LHS = S.CreateBuiltinUnaryOp(Loc, UO_Deref, LHS.get());
8307 } else {
8308 LHS = getParam(Param++);
8309 }
8310 ExprResult RHS = getParam(Param++);
8311 assert(Param == FD->getNumParams())(static_cast <bool> (Param == FD->getNumParams()) ? void
(0) : __assert_fail ("Param == FD->getNumParams()", "clang/lib/Sema/SemaDeclCXX.cpp"
, 8311, __extension__ __PRETTY_FUNCTION__))
;
8312 return {LHS, RHS};
8313 }
8314
8315 ExprPair getBase(CXXBaseSpecifier *Base) {
8316 ExprPair Obj = getCompleteObject();
8317 if (Obj.first.isInvalid() || Obj.second.isInvalid())
8318 return {ExprError(), ExprError()};
8319 CXXCastPath Path = {Base};
8320 return {S.ImpCastExprToType(Obj.first.get(), Base->getType(),
8321 CK_DerivedToBase, VK_LValue, &Path),
8322 S.ImpCastExprToType(Obj.second.get(), Base->getType(),
8323 CK_DerivedToBase, VK_LValue, &Path)};
8324 }
8325
8326 ExprPair getField(FieldDecl *Field) {
8327 ExprPair Obj = getCompleteObject();
8328 if (Obj.first.isInvalid() || Obj.second.isInvalid())
8329 return {ExprError(), ExprError()};
8330
8331 DeclAccessPair Found = DeclAccessPair::make(Field, Field->getAccess());
8332 DeclarationNameInfo NameInfo(Field->getDeclName(), Loc);
8333 return {S.BuildFieldReferenceExpr(Obj.first.get(), /*IsArrow=*/false, Loc,
8334 CXXScopeSpec(), Field, Found, NameInfo),
8335 S.BuildFieldReferenceExpr(Obj.second.get(), /*IsArrow=*/false, Loc,
8336 CXXScopeSpec(), Field, Found, NameInfo)};
8337 }
8338
8339 // FIXME: When expanding a subobject, register a note in the code synthesis
8340 // stack to say which subobject we're comparing.
8341
8342 StmtResult buildIfNotCondReturnFalse(ExprResult Cond) {
8343 if (Cond.isInvalid())
8344 return StmtError();
8345
8346 ExprResult NotCond = S.CreateBuiltinUnaryOp(Loc, UO_LNot, Cond.get());
8347 if (NotCond.isInvalid())
8348 return StmtError();
8349
8350 ExprResult False = S.ActOnCXXBoolLiteral(Loc, tok::kw_false);
8351 assert(!False.isInvalid() && "should never fail")(static_cast <bool> (!False.isInvalid() && "should never fail"
) ? void (0) : __assert_fail ("!False.isInvalid() && \"should never fail\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8351, __extension__ __PRETTY_FUNCTION__
))
;
8352 StmtResult ReturnFalse = S.BuildReturnStmt(Loc, False.get());
8353 if (ReturnFalse.isInvalid())
8354 return StmtError();
8355
8356 return S.ActOnIfStmt(Loc, IfStatementKind::Ordinary, Loc, nullptr,
8357 S.ActOnCondition(nullptr, Loc, NotCond.get(),
8358 Sema::ConditionKind::Boolean),
8359 Loc, ReturnFalse.get(), SourceLocation(), nullptr);
8360 }
8361
8362 StmtResult visitSubobjectArray(QualType Type, llvm::APInt Size,
8363 ExprPair Subobj) {
8364 QualType SizeType = S.Context.getSizeType();
8365 Size = Size.zextOrTrunc(S.Context.getTypeSize(SizeType));
8366
8367 // Build 'size_t i$n = 0'.
8368 IdentifierInfo *IterationVarName = nullptr;
8369 {
8370 SmallString<8> Str;
8371 llvm::raw_svector_ostream OS(Str);
8372 OS << "i" << ArrayDepth;
8373 IterationVarName = &S.Context.Idents.get(OS.str());
8374 }
8375 VarDecl *IterationVar = VarDecl::Create(
8376 S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType,
8377 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None);
8378 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
8379 IterationVar->setInit(
8380 IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
8381 Stmt *Init = new (S.Context) DeclStmt(DeclGroupRef(IterationVar), Loc, Loc);
8382
8383 auto IterRef = [&] {
8384 ExprResult Ref = S.BuildDeclarationNameExpr(
8385 CXXScopeSpec(), DeclarationNameInfo(IterationVarName, Loc),
8386 IterationVar);
8387 assert(!Ref.isInvalid() && "can't reference our own variable?")(static_cast <bool> (!Ref.isInvalid() && "can't reference our own variable?"
) ? void (0) : __assert_fail ("!Ref.isInvalid() && \"can't reference our own variable?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8387, __extension__ __PRETTY_FUNCTION__
))
;
8388 return Ref.get();
8389 };
8390
8391 // Build 'i$n != Size'.
8392 ExprResult Cond = S.CreateBuiltinBinOp(
8393 Loc, BO_NE, IterRef(),
8394 IntegerLiteral::Create(S.Context, Size, SizeType, Loc));
8395 assert(!Cond.isInvalid() && "should never fail")(static_cast <bool> (!Cond.isInvalid() && "should never fail"
) ? void (0) : __assert_fail ("!Cond.isInvalid() && \"should never fail\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8395, __extension__ __PRETTY_FUNCTION__
))
;
8396
8397 // Build '++i$n'.
8398 ExprResult Inc = S.CreateBuiltinUnaryOp(Loc, UO_PreInc, IterRef());
8399 assert(!Inc.isInvalid() && "should never fail")(static_cast <bool> (!Inc.isInvalid() && "should never fail"
) ? void (0) : __assert_fail ("!Inc.isInvalid() && \"should never fail\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8399, __extension__ __PRETTY_FUNCTION__
))
;
8400
8401 // Build 'a[i$n]' and 'b[i$n]'.
8402 auto Index = [&](ExprResult E) {
8403 if (E.isInvalid())
8404 return ExprError();
8405 return S.CreateBuiltinArraySubscriptExpr(E.get(), Loc, IterRef(), Loc);
8406 };
8407 Subobj.first = Index(Subobj.first);
8408 Subobj.second = Index(Subobj.second);
8409
8410 // Compare the array elements.
8411 ++ArrayDepth;
8412 StmtResult Substmt = visitSubobject(Type, Subobj);
8413 --ArrayDepth;
8414
8415 if (Substmt.isInvalid())
8416 return StmtError();
8417
8418 // For the inner level of an 'operator==', build 'if (!cmp) return false;'.
8419 // For outer levels or for an 'operator<=>' we already have a suitable
8420 // statement that returns as necessary.
8421 if (Expr *ElemCmp = dyn_cast<Expr>(Substmt.get())) {
8422 assert(DCK == DefaultedComparisonKind::Equal &&(static_cast <bool> (DCK == DefaultedComparisonKind::Equal
&& "should have non-expression statement") ? void (0
) : __assert_fail ("DCK == DefaultedComparisonKind::Equal && \"should have non-expression statement\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8423, __extension__ __PRETTY_FUNCTION__
))
8423 "should have non-expression statement")(static_cast <bool> (DCK == DefaultedComparisonKind::Equal
&& "should have non-expression statement") ? void (0
) : __assert_fail ("DCK == DefaultedComparisonKind::Equal && \"should have non-expression statement\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8423, __extension__ __PRETTY_FUNCTION__
))
;
8424 Substmt = buildIfNotCondReturnFalse(ElemCmp);
8425 if (Substmt.isInvalid())
8426 return StmtError();
8427 }
8428
8429 // Build 'for (...) ...'
8430 return S.ActOnForStmt(Loc, Loc, Init,
8431 S.ActOnCondition(nullptr, Loc, Cond.get(),
8432 Sema::ConditionKind::Boolean),
8433 S.MakeFullDiscardedValueExpr(Inc.get()), Loc,
8434 Substmt.get());
8435 }
8436
8437 StmtResult visitExpandedSubobject(QualType Type, ExprPair Obj) {
8438 if (Obj.first.isInvalid() || Obj.second.isInvalid())
8439 return StmtError();
8440
8441 OverloadedOperatorKind OO = FD->getOverloadedOperator();
8442 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(OO);
8443 ExprResult Op;
8444 if (Type->isOverloadableType())
8445 Op = S.CreateOverloadedBinOp(Loc, Opc, Fns, Obj.first.get(),
8446 Obj.second.get(), /*PerformADL=*/true,
8447 /*AllowRewrittenCandidates=*/true, FD);
8448 else
8449 Op = S.CreateBuiltinBinOp(Loc, Opc, Obj.first.get(), Obj.second.get());
8450 if (Op.isInvalid())
8451 return StmtError();
8452
8453 switch (DCK) {
8454 case DefaultedComparisonKind::None:
8455 llvm_unreachable("not a defaulted comparison")::llvm::llvm_unreachable_internal("not a defaulted comparison"
, "clang/lib/Sema/SemaDeclCXX.cpp", 8455)
;
8456
8457 case DefaultedComparisonKind::Equal:
8458 // Per C++2a [class.eq]p2, each comparison is individually contextually
8459 // converted to bool.
8460 Op = S.PerformContextuallyConvertToBool(Op.get());
8461 if (Op.isInvalid())
8462 return StmtError();
8463 return Op.get();
8464
8465 case DefaultedComparisonKind::ThreeWay: {
8466 // Per C++2a [class.spaceship]p3, form:
8467 // if (R cmp = static_cast<R>(op); cmp != 0)
8468 // return cmp;
8469 QualType R = FD->getReturnType();
8470 Op = buildStaticCastToR(Op.get());
8471 if (Op.isInvalid())
8472 return StmtError();
8473
8474 // R cmp = ...;
8475 IdentifierInfo *Name = &S.Context.Idents.get("cmp");
8476 VarDecl *VD =
8477 VarDecl::Create(S.Context, S.CurContext, Loc, Loc, Name, R,
8478 S.Context.getTrivialTypeSourceInfo(R, Loc), SC_None);
8479 S.AddInitializerToDecl(VD, Op.get(), /*DirectInit=*/false);
8480 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(VD), Loc, Loc);
8481
8482 // cmp != 0
8483 ExprResult VDRef = getDecl(VD);
8484 if (VDRef.isInvalid())
8485 return StmtError();
8486 llvm::APInt ZeroVal(S.Context.getIntWidth(S.Context.IntTy), 0);
8487 Expr *Zero =
8488 IntegerLiteral::Create(S.Context, ZeroVal, S.Context.IntTy, Loc);
8489 ExprResult Comp;
8490 if (VDRef.get()->getType()->isOverloadableType())
8491 Comp = S.CreateOverloadedBinOp(Loc, BO_NE, Fns, VDRef.get(), Zero, true,
8492 true, FD);
8493 else
8494 Comp = S.CreateBuiltinBinOp(Loc, BO_NE, VDRef.get(), Zero);
8495 if (Comp.isInvalid())
8496 return StmtError();
8497 Sema::ConditionResult Cond = S.ActOnCondition(
8498 nullptr, Loc, Comp.get(), Sema::ConditionKind::Boolean);
8499 if (Cond.isInvalid())
8500 return StmtError();
8501
8502 // return cmp;
8503 VDRef = getDecl(VD);
8504 if (VDRef.isInvalid())
8505 return StmtError();
8506 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, VDRef.get());
8507 if (ReturnStmt.isInvalid())
8508 return StmtError();
8509
8510 // if (...)
8511 return S.ActOnIfStmt(Loc, IfStatementKind::Ordinary, Loc, InitStmt, Cond,
8512 Loc, ReturnStmt.get(),
8513 /*ElseLoc=*/SourceLocation(), /*Else=*/nullptr);
8514 }
8515
8516 case DefaultedComparisonKind::NotEqual:
8517 case DefaultedComparisonKind::Relational:
8518 // C++2a [class.compare.secondary]p2:
8519 // Otherwise, the operator function yields x @ y.
8520 return Op.get();
8521 }
8522 llvm_unreachable("")::llvm::llvm_unreachable_internal("", "clang/lib/Sema/SemaDeclCXX.cpp"
, 8522)
;
8523 }
8524
8525 /// Build "static_cast<R>(E)".
8526 ExprResult buildStaticCastToR(Expr *E) {
8527 QualType R = FD->getReturnType();
8528 assert(!R->isUndeducedType() && "type should have been deduced already")(static_cast <bool> (!R->isUndeducedType() &&
"type should have been deduced already") ? void (0) : __assert_fail
("!R->isUndeducedType() && \"type should have been deduced already\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8528, __extension__ __PRETTY_FUNCTION__
))
;
8529
8530 // Don't bother forming a no-op cast in the common case.
8531 if (E->isPRValue() && S.Context.hasSameType(E->getType(), R))
8532 return E;
8533 return S.BuildCXXNamedCast(Loc, tok::kw_static_cast,
8534 S.Context.getTrivialTypeSourceInfo(R, Loc), E,
8535 SourceRange(Loc, Loc), SourceRange(Loc, Loc));
8536 }
8537};
8538}
8539
8540/// Perform the unqualified lookups that might be needed to form a defaulted
8541/// comparison function for the given operator.
8542static void lookupOperatorsForDefaultedComparison(Sema &Self, Scope *S,
8543 UnresolvedSetImpl &Operators,
8544 OverloadedOperatorKind Op) {
8545 auto Lookup = [&](OverloadedOperatorKind OO) {
8546 Self.LookupOverloadedOperatorName(OO, S, Operators);
8547 };
8548
8549 // Every defaulted operator looks up itself.
8550 Lookup(Op);
8551 // ... and the rewritten form of itself, if any.
8552 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(Op))
8553 Lookup(ExtraOp);
8554
8555 // For 'operator<=>', we also form a 'cmp != 0' expression, and might
8556 // synthesize a three-way comparison from '<' and '=='. In a dependent
8557 // context, we also need to look up '==' in case we implicitly declare a
8558 // defaulted 'operator=='.
8559 if (Op == OO_Spaceship) {
8560 Lookup(OO_ExclaimEqual);
8561 Lookup(OO_Less);
8562 Lookup(OO_EqualEqual);
8563 }
8564}
8565
8566bool Sema::CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *FD,
8567 DefaultedComparisonKind DCK) {
8568 assert(DCK != DefaultedComparisonKind::None && "not a defaulted comparison")(static_cast <bool> (DCK != DefaultedComparisonKind::None
&& "not a defaulted comparison") ? void (0) : __assert_fail
("DCK != DefaultedComparisonKind::None && \"not a defaulted comparison\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8568, __extension__ __PRETTY_FUNCTION__
))
;
8569
8570 // Perform any unqualified lookups we're going to need to default this
8571 // function.
8572 if (S) {
8573 UnresolvedSet<32> Operators;
8574 lookupOperatorsForDefaultedComparison(*this, S, Operators,
8575 FD->getOverloadedOperator());
8576 FD->setDefaultedFunctionInfo(FunctionDecl::DefaultedFunctionInfo::Create(
8577 Context, Operators.pairs()));
8578 }
8579
8580 // C++2a [class.compare.default]p1:
8581 // A defaulted comparison operator function for some class C shall be a
8582 // non-template function declared in the member-specification of C that is
8583 // -- a non-static const member of C having one parameter of type
8584 // const C&, or
8585 // -- a friend of C having two parameters of type const C& or two
8586 // parameters of type C.
8587
8588 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext());
8589 bool IsMethod = isa<CXXMethodDecl>(FD);
8590 if (IsMethod) {
8591 auto *MD = cast<CXXMethodDecl>(FD);
8592 assert(!MD->isStatic() && "comparison function cannot be a static member")(static_cast <bool> (!MD->isStatic() && "comparison function cannot be a static member"
) ? void (0) : __assert_fail ("!MD->isStatic() && \"comparison function cannot be a static member\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8592, __extension__ __PRETTY_FUNCTION__
))
;
8593
8594 // If we're out-of-class, this is the class we're comparing.
8595 if (!RD)
8596 RD = MD->getParent();
8597
8598 if (!MD->isConst()) {
8599 SourceLocation InsertLoc;
8600 if (FunctionTypeLoc Loc = MD->getFunctionTypeLoc())
8601 InsertLoc = getLocForEndOfToken(Loc.getRParenLoc());
8602 // Don't diagnose an implicit 'operator=='; we will have diagnosed the
8603 // corresponding defaulted 'operator<=>' already.
8604 if (!MD->isImplicit()) {
8605 Diag(MD->getLocation(), diag::err_defaulted_comparison_non_const)
8606 << (int)DCK << FixItHint::CreateInsertion(InsertLoc, " const");
8607 }
8608
8609 // Add the 'const' to the type to recover.
8610 const auto *FPT = MD->getType()->castAs<FunctionProtoType>();
8611 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8612 EPI.TypeQuals.addConst();
8613 MD->setType(Context.getFunctionType(FPT->getReturnType(),
8614 FPT->getParamTypes(), EPI));
8615 }
8616 }
8617
8618 if (FD->getNumParams() != (IsMethod ? 1 : 2)) {
8619 // Let's not worry about using a variadic template pack here -- who would do
8620 // such a thing?
8621 Diag(FD->getLocation(), diag::err_defaulted_comparison_num_args)
8622 << int(IsMethod) << int(DCK);
8623 return true;
8624 }
8625
8626 const ParmVarDecl *KnownParm = nullptr;
8627 for (const ParmVarDecl *Param : FD->parameters()) {
8628 QualType ParmTy = Param->getType();
8629 if (ParmTy->isDependentType())
8630 continue;
8631 if (!KnownParm) {
8632 auto CTy = ParmTy;
8633 // Is it `T const &`?
8634 bool Ok = !IsMethod;
8635 QualType ExpectedTy;
8636 if (RD)
8637 ExpectedTy = Context.getRecordType(RD);
8638 if (auto *Ref = CTy->getAs<ReferenceType>()) {
8639 CTy = Ref->getPointeeType();
8640 if (RD)
8641 ExpectedTy.addConst();
8642 Ok = true;
8643 }
8644
8645 // Is T a class?
8646 if (!Ok) {
8647 } else if (RD) {
8648 if (!RD->isDependentType() && !Context.hasSameType(CTy, ExpectedTy))
8649 Ok = false;
8650 } else if (auto *CRD = CTy->getAsRecordDecl()) {
8651 RD = cast<CXXRecordDecl>(CRD);
8652 } else {
8653 Ok = false;
8654 }
8655
8656 if (Ok) {
8657 KnownParm = Param;
8658 } else {
8659 // Don't diagnose an implicit 'operator=='; we will have diagnosed the
8660 // corresponding defaulted 'operator<=>' already.
8661 if (!FD->isImplicit()) {
8662 if (RD) {
8663 QualType PlainTy = Context.getRecordType(RD);
8664 QualType RefTy =
8665 Context.getLValueReferenceType(PlainTy.withConst());
8666 Diag(FD->getLocation(), diag::err_defaulted_comparison_param)
8667 << int(DCK) << ParmTy << RefTy << int(!IsMethod) << PlainTy
8668 << Param->getSourceRange();
8669 } else {
8670 assert(!IsMethod && "should know expected type for method")(static_cast <bool> (!IsMethod && "should know expected type for method"
) ? void (0) : __assert_fail ("!IsMethod && \"should know expected type for method\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8670, __extension__ __PRETTY_FUNCTION__
))
;
8671 Diag(FD->getLocation(),
8672 diag::err_defaulted_comparison_param_unknown)
8673 << int(DCK) << ParmTy << Param->getSourceRange();
8674 }
8675 }
8676 return true;
8677 }
8678 } else if (!Context.hasSameType(KnownParm->getType(), ParmTy)) {
8679 Diag(FD->getLocation(), diag::err_defaulted_comparison_param_mismatch)
8680 << int(DCK) << KnownParm->getType() << KnownParm->getSourceRange()
8681 << ParmTy << Param->getSourceRange();
8682 return true;
8683 }
8684 }
8685
8686 assert(RD && "must have determined class")(static_cast <bool> (RD && "must have determined class"
) ? void (0) : __assert_fail ("RD && \"must have determined class\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8686, __extension__ __PRETTY_FUNCTION__
))
;
8687 if (IsMethod) {
8688 } else if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
8689 // In-class, must be a friend decl.
8690 assert(FD->getFriendObjectKind() && "expected a friend declaration")(static_cast <bool> (FD->getFriendObjectKind() &&
"expected a friend declaration") ? void (0) : __assert_fail (
"FD->getFriendObjectKind() && \"expected a friend declaration\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8690, __extension__ __PRETTY_FUNCTION__
))
;
8691 } else {
8692 // Out of class, require the defaulted comparison to be a friend (of a
8693 // complete type).
8694 if (RequireCompleteType(FD->getLocation(), Context.getRecordType(RD),
8695 diag::err_defaulted_comparison_not_friend, int(DCK),
8696 int(1)))
8697 return true;
8698
8699 if (llvm::none_of(RD->friends(), [&](const FriendDecl *F) {
8700 return FD->getCanonicalDecl() ==
8701 F->getFriendDecl()->getCanonicalDecl();
8702 })) {
8703 Diag(FD->getLocation(), diag::err_defaulted_comparison_not_friend)
8704 << int(DCK) << int(0) << RD;
8705 Diag(RD->getCanonicalDecl()->getLocation(), diag::note_declared_at);
8706 return true;
8707 }
8708 }
8709
8710 // C++2a [class.eq]p1, [class.rel]p1:
8711 // A [defaulted comparison other than <=>] shall have a declared return
8712 // type bool.
8713 if (DCK != DefaultedComparisonKind::ThreeWay &&
8714 !FD->getDeclaredReturnType()->isDependentType() &&
8715 !Context.hasSameType(FD->getDeclaredReturnType(), Context.BoolTy)) {
8716 Diag(FD->getLocation(), diag::err_defaulted_comparison_return_type_not_bool)
8717 << (int)DCK << FD->getDeclaredReturnType() << Context.BoolTy
8718 << FD->getReturnTypeSourceRange();
8719 return true;
8720 }
8721 // C++2a [class.spaceship]p2 [P2002R0]:
8722 // Let R be the declared return type [...]. If R is auto, [...]. Otherwise,
8723 // R shall not contain a placeholder type.
8724 if (QualType RT = FD->getDeclaredReturnType();
8725 DCK == DefaultedComparisonKind::ThreeWay &&
8726 RT->getContainedDeducedType() &&
8727 (!Context.hasSameType(RT, Context.getAutoDeductType()) ||
8728 RT->getContainedAutoType()->isConstrained())) {
8729 Diag(FD->getLocation(),
8730 diag::err_defaulted_comparison_deduced_return_type_not_auto)
8731 << (int)DCK << FD->getDeclaredReturnType() << Context.AutoDeductTy
8732 << FD->getReturnTypeSourceRange();
8733 return true;
8734 }
8735
8736 // For a defaulted function in a dependent class, defer all remaining checks
8737 // until instantiation.
8738 if (RD->isDependentType())
8739 return false;
8740
8741 // Determine whether the function should be defined as deleted.
8742 DefaultedComparisonInfo Info =
8743 DefaultedComparisonAnalyzer(*this, RD, FD, DCK).visit();
8744
8745 bool First = FD == FD->getCanonicalDecl();
8746
8747 if (!First) {
8748 if (Info.Deleted) {
8749 // C++11 [dcl.fct.def.default]p4:
8750 // [For a] user-provided explicitly-defaulted function [...] if such a
8751 // function is implicitly defined as deleted, the program is ill-formed.
8752 //
8753 // This is really just a consequence of the general rule that you can
8754 // only delete a function on its first declaration.
8755 Diag(FD->getLocation(), diag::err_non_first_default_compare_deletes)
8756 << FD->isImplicit() << (int)DCK;
8757 DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
8758 DefaultedComparisonAnalyzer::ExplainDeleted)
8759 .visit();
8760 return true;
8761 }
8762 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
8763 // C++20 [class.compare.default]p1:
8764 // [...] A definition of a comparison operator as defaulted that appears
8765 // in a class shall be the first declaration of that function.
8766 Diag(FD->getLocation(), diag::err_non_first_default_compare_in_class)
8767 << (int)DCK;
8768 Diag(FD->getCanonicalDecl()->getLocation(),
8769 diag::note_previous_declaration);
8770 return true;
8771 }
8772 }
8773
8774 // If we want to delete the function, then do so; there's nothing else to
8775 // check in that case.
8776 if (Info.Deleted) {
8777 SetDeclDeleted(FD, FD->getLocation());
8778 if (!inTemplateInstantiation() && !FD->isImplicit()) {
8779 Diag(FD->getLocation(), diag::warn_defaulted_comparison_deleted)
8780 << (int)DCK;
8781 DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
8782 DefaultedComparisonAnalyzer::ExplainDeleted)
8783 .visit();
8784 if (FD->getDefaultLoc().isValid())
8785 Diag(FD->getDefaultLoc(), diag::note_replace_equals_default_to_delete)
8786 << FixItHint::CreateReplacement(FD->getDefaultLoc(), "delete");
8787 }
8788 return false;
8789 }
8790
8791 // C++2a [class.spaceship]p2:
8792 // The return type is deduced as the common comparison type of R0, R1, ...
8793 if (DCK == DefaultedComparisonKind::ThreeWay &&
8794 FD->getDeclaredReturnType()->isUndeducedAutoType()) {
8795 SourceLocation RetLoc = FD->getReturnTypeSourceRange().getBegin();
8796 if (RetLoc.isInvalid())
8797 RetLoc = FD->getBeginLoc();
8798 // FIXME: Should we really care whether we have the complete type and the
8799 // 'enumerator' constants here? A forward declaration seems sufficient.
8800 QualType Cat = CheckComparisonCategoryType(
8801 Info.Category, RetLoc, ComparisonCategoryUsage::DefaultedOperator);
8802 if (Cat.isNull())
8803 return true;
8804 Context.adjustDeducedFunctionResultType(
8805 FD, SubstAutoType(FD->getDeclaredReturnType(), Cat));
8806 }
8807
8808 // C++2a [dcl.fct.def.default]p3 [P2002R0]:
8809 // An explicitly-defaulted function that is not defined as deleted may be
8810 // declared constexpr or consteval only if it is constexpr-compatible.
8811 // C++2a [class.compare.default]p3 [P2002R0]:
8812 // A defaulted comparison function is constexpr-compatible if it satisfies
8813 // the requirements for a constexpr function [...]
8814 // The only relevant requirements are that the parameter and return types are
8815 // literal types. The remaining conditions are checked by the analyzer.
8816 //
8817 // We support P2448R2 in language modes earlier than C++23 as an extension.
8818 // The concept of constexpr-compatible was removed.
8819 // C++23 [dcl.fct.def.default]p3 [P2448R2]
8820 // A function explicitly defaulted on its first declaration is implicitly
8821 // inline, and is implicitly constexpr if it is constexpr-suitable.
8822 // C++23 [dcl.constexpr]p3
8823 // A function is constexpr-suitable if
8824 // - it is not a coroutine, and
8825 // - if the function is a constructor or destructor, its class does not
8826 // have any virtual base classes.
8827 if (FD->isConstexpr()) {
8828 if (CheckConstexprReturnType(*this, FD, CheckConstexprKind::Diagnose) &&
8829 CheckConstexprParameterTypes(*this, FD, CheckConstexprKind::Diagnose) &&
8830 !Info.Constexpr) {
8831 Diag(FD->getBeginLoc(),
8832 getLangOpts().CPlusPlus23
8833 ? diag::warn_cxx23_compat_defaulted_comparison_constexpr_mismatch
8834 : diag::ext_defaulted_comparison_constexpr_mismatch)
8835 << FD->isImplicit() << (int)DCK << FD->isConsteval();
8836 DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
8837 DefaultedComparisonAnalyzer::ExplainConstexpr)
8838 .visit();
8839 }
8840 }
8841
8842 // C++2a [dcl.fct.def.default]p3 [P2002R0]:
8843 // If a constexpr-compatible function is explicitly defaulted on its first
8844 // declaration, it is implicitly considered to be constexpr.
8845 // FIXME: Only applying this to the first declaration seems problematic, as
8846 // simple reorderings can affect the meaning of the program.
8847 if (First && !FD->isConstexpr() && Info.Constexpr)
8848 FD->setConstexprKind(ConstexprSpecKind::Constexpr);
8849
8850 // C++2a [except.spec]p3:
8851 // If a declaration of a function does not have a noexcept-specifier
8852 // [and] is defaulted on its first declaration, [...] the exception
8853 // specification is as specified below
8854 if (FD->getExceptionSpecType() == EST_None) {
8855 auto *FPT = FD->getType()->castAs<FunctionProtoType>();
8856 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8857 EPI.ExceptionSpec.Type = EST_Unevaluated;
8858 EPI.ExceptionSpec.SourceDecl = FD;
8859 FD->setType(Context.getFunctionType(FPT->getReturnType(),
8860 FPT->getParamTypes(), EPI));
8861 }
8862
8863 return false;
8864}
8865
8866void Sema::DeclareImplicitEqualityComparison(CXXRecordDecl *RD,
8867 FunctionDecl *Spaceship) {
8868 Sema::CodeSynthesisContext Ctx;
8869 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringImplicitEqualityComparison;
8870 Ctx.PointOfInstantiation = Spaceship->getEndLoc();
8871 Ctx.Entity = Spaceship;
8872 pushCodeSynthesisContext(Ctx);
8873
8874 if (FunctionDecl *EqualEqual = SubstSpaceshipAsEqualEqual(RD, Spaceship))
8875 EqualEqual->setImplicit();
8876
8877 popCodeSynthesisContext();
8878}
8879
8880void Sema::DefineDefaultedComparison(SourceLocation UseLoc, FunctionDecl *FD,
8881 DefaultedComparisonKind DCK) {
8882 assert(FD->isDefaulted() && !FD->isDeleted() &&(static_cast <bool> (FD->isDefaulted() && !FD
->isDeleted() && !FD->doesThisDeclarationHaveABody
()) ? void (0) : __assert_fail ("FD->isDefaulted() && !FD->isDeleted() && !FD->doesThisDeclarationHaveABody()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 8883, __extension__ __PRETTY_FUNCTION__
))
8883 !FD->doesThisDeclarationHaveABody())(static_cast <bool> (FD->isDefaulted() && !FD
->isDeleted() && !FD->doesThisDeclarationHaveABody
()) ? void (0) : __assert_fail ("FD->isDefaulted() && !FD->isDeleted() && !FD->doesThisDeclarationHaveABody()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 8883, __extension__ __PRETTY_FUNCTION__
))
;
8884 if (FD->willHaveBody() || FD->isInvalidDecl())
8885 return;
8886
8887 SynthesizedFunctionScope Scope(*this, FD);
8888
8889 // Add a context note for diagnostics produced after this point.
8890 Scope.addContextNote(UseLoc);
8891
8892 {
8893 // Build and set up the function body.
8894 // The first parameter has type maybe-ref-to maybe-const T, use that to get
8895 // the type of the class being compared.
8896 auto PT = FD->getParamDecl(0)->getType();
8897 CXXRecordDecl *RD = PT.getNonReferenceType()->getAsCXXRecordDecl();
8898 SourceLocation BodyLoc =
8899 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation();
8900 StmtResult Body =
8901 DefaultedComparisonSynthesizer(*this, RD, FD, DCK, BodyLoc).build();
8902 if (Body.isInvalid()) {
8903 FD->setInvalidDecl();
8904 return;
8905 }
8906 FD->setBody(Body.get());
8907 FD->markUsed(Context);
8908 }
8909
8910 // The exception specification is needed because we are defining the
8911 // function. Note that this will reuse the body we just built.
8912 ResolveExceptionSpec(UseLoc, FD->getType()->castAs<FunctionProtoType>());
8913
8914 if (ASTMutationListener *L = getASTMutationListener())
8915 L->CompletedImplicitDefinition(FD);
8916}
8917
8918static Sema::ImplicitExceptionSpecification
8919ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc,
8920 FunctionDecl *FD,
8921 Sema::DefaultedComparisonKind DCK) {
8922 ComputingExceptionSpec CES(S, FD, Loc);
8923 Sema::ImplicitExceptionSpecification ExceptSpec(S);
8924
8925 if (FD->isInvalidDecl())
8926 return ExceptSpec;
8927
8928 // The common case is that we just defined the comparison function. In that
8929 // case, just look at whether the body can throw.
8930 if (FD->hasBody()) {
8931 ExceptSpec.CalledStmt(FD->getBody());
8932 } else {
8933 // Otherwise, build a body so we can check it. This should ideally only
8934 // happen when we're not actually marking the function referenced. (This is
8935 // only really important for efficiency: we don't want to build and throw
8936 // away bodies for comparison functions more than we strictly need to.)
8937
8938 // Pretend to synthesize the function body in an unevaluated context.
8939 // Note that we can't actually just go ahead and define the function here:
8940 // we are not permitted to mark its callees as referenced.
8941 Sema::SynthesizedFunctionScope Scope(S, FD);
8942 EnterExpressionEvaluationContext Context(
8943 S, Sema::ExpressionEvaluationContext::Unevaluated);
8944
8945 CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent());
8946 SourceLocation BodyLoc =
8947 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation();
8948 StmtResult Body =
8949 DefaultedComparisonSynthesizer(S, RD, FD, DCK, BodyLoc).build();
8950 if (!Body.isInvalid())
8951 ExceptSpec.CalledStmt(Body.get());
8952
8953 // FIXME: Can we hold onto this body and just transform it to potentially
8954 // evaluated when we're asked to define the function rather than rebuilding
8955 // it? Either that, or we should only build the bits of the body that we
8956 // need (the expressions, not the statements).
8957 }
8958
8959 return ExceptSpec;
8960}
8961
8962void Sema::CheckDelayedMemberExceptionSpecs() {
8963 decltype(DelayedOverridingExceptionSpecChecks) Overriding;
8964 decltype(DelayedEquivalentExceptionSpecChecks) Equivalent;
8965
8966 std::swap(Overriding, DelayedOverridingExceptionSpecChecks);
8967 std::swap(Equivalent, DelayedEquivalentExceptionSpecChecks);
8968
8969 // Perform any deferred checking of exception specifications for virtual
8970 // destructors.
8971 for (auto &Check : Overriding)
8972 CheckOverridingFunctionExceptionSpec(Check.first, Check.second);
8973
8974 // Perform any deferred checking of exception specifications for befriended
8975 // special members.
8976 for (auto &Check : Equivalent)
8977 CheckEquivalentExceptionSpec(Check.second, Check.first);
8978}
8979
8980namespace {
8981/// CRTP base class for visiting operations performed by a special member
8982/// function (or inherited constructor).
8983template<typename Derived>
8984struct SpecialMemberVisitor {
8985 Sema &S;
8986 CXXMethodDecl *MD;
8987 Sema::CXXSpecialMember CSM;
8988 Sema::InheritedConstructorInfo *ICI;
8989
8990 // Properties of the special member, computed for convenience.
8991 bool IsConstructor = false, IsAssignment = false, ConstArg = false;
8992
8993 SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
8994 Sema::InheritedConstructorInfo *ICI)
8995 : S(S), MD(MD), CSM(CSM), ICI(ICI) {
8996 switch (CSM) {
8997 case Sema::CXXDefaultConstructor:
8998 case Sema::CXXCopyConstructor:
8999 case Sema::CXXMoveConstructor:
9000 IsConstructor = true;
9001 break;
9002 case Sema::CXXCopyAssignment:
9003 case Sema::CXXMoveAssignment:
9004 IsAssignment = true;
9005 break;
9006 case Sema::CXXDestructor:
9007 break;
9008 case Sema::CXXInvalid:
9009 llvm_unreachable("invalid special member kind")::llvm::llvm_unreachable_internal("invalid special member kind"
, "clang/lib/Sema/SemaDeclCXX.cpp", 9009)
;
9010 }
9011
9012 if (MD->getNumParams()) {
9013 if (const ReferenceType *RT =
9014 MD->getParamDecl(0)->getType()->getAs<ReferenceType>())
9015 ConstArg = RT->getPointeeType().isConstQualified();
9016 }
9017 }
9018
9019 Derived &getDerived() { return static_cast<Derived&>(*this); }
9020
9021 /// Is this a "move" special member?
9022 bool isMove() const {
9023 return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment;
9024 }
9025
9026 /// Look up the corresponding special member in the given class.
9027 Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class,
9028 unsigned Quals, bool IsMutable) {
9029 return lookupCallFromSpecialMember(S, Class, CSM, Quals,
9030 ConstArg && !IsMutable);
9031 }
9032
9033 /// Look up the constructor for the specified base class to see if it's
9034 /// overridden due to this being an inherited constructor.
9035 Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) {
9036 if (!ICI)
9037 return {};
9038 assert(CSM == Sema::CXXDefaultConstructor)(static_cast <bool> (CSM == Sema::CXXDefaultConstructor
) ? void (0) : __assert_fail ("CSM == Sema::CXXDefaultConstructor"
, "clang/lib/Sema/SemaDeclCXX.cpp", 9038, __extension__ __PRETTY_FUNCTION__
))
;
9039 auto *BaseCtor =
9040 cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor();
9041 if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first)
9042 return MD;
9043 return {};
9044 }
9045
9046 /// A base or member subobject.
9047 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
9048
9049 /// Get the location to use for a subobject in diagnostics.
9050 static SourceLocation getSubobjectLoc(Subobject Subobj) {
9051 // FIXME: For an indirect virtual base, the direct base leading to
9052 // the indirect virtual base would be a more useful choice.
9053 if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>())
9054 return B->getBaseTypeLoc();
9055 else
9056 return Subobj.get<FieldDecl*>()->getLocation();
9057 }
9058
9059 enum BasesToVisit {
9060 /// Visit all non-virtual (direct) bases.
9061 VisitNonVirtualBases,
9062 /// Visit all direct bases, virtual or not.
9063 VisitDirectBases,
9064 /// Visit all non-virtual bases, and all virtual bases if the class
9065 /// is not abstract.
9066 VisitPotentiallyConstructedBases,
9067 /// Visit all direct or virtual bases.
9068 VisitAllBases
9069 };
9070
9071 // Visit the bases and members of the class.
9072 bool visit(BasesToVisit Bases) {
9073 CXXRecordDecl *RD = MD->getParent();
9074
9075 if (Bases == VisitPotentiallyConstructedBases)
9076 Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases;
9077
9078 for (auto &B : RD->bases())
9079 if ((Bases == VisitDirectBases || !B.isVirtual()) &&
9080 getDerived().visitBase(&B))
9081 return true;
9082
9083 if (Bases == VisitAllBases)
9084 for (auto &B : RD->vbases())
9085 if (getDerived().visitBase(&B))
9086 return true;
9087
9088 for (auto *F : RD->fields())
9089 if (!F->isInvalidDecl() && !F->isUnnamedBitfield() &&
9090 getDerived().visitField(F))
9091 return true;
9092
9093 return false;
9094 }
9095};
9096}
9097
9098namespace {
9099struct SpecialMemberDeletionInfo
9100 : SpecialMemberVisitor<SpecialMemberDeletionInfo> {
9101 bool Diagnose;
9102
9103 SourceLocation Loc;
9104
9105 bool AllFieldsAreConst;
9106
9107 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
9108 Sema::CXXSpecialMember CSM,
9109 Sema::InheritedConstructorInfo *ICI, bool Diagnose)
9110 : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose),
9111 Loc(MD->getLocation()), AllFieldsAreConst(true) {}
9112
9113 bool inUnion() const { return MD->getParent()->isUnion(); }
9114
9115 Sema::CXXSpecialMember getEffectiveCSM() {
9116 return ICI ? Sema::CXXInvalid : CSM;
9117 }
9118
9119 bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType);
9120
9121 bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); }
9122 bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); }
9123
9124 bool shouldDeleteForBase(CXXBaseSpecifier *Base);
9125 bool shouldDeleteForField(FieldDecl *FD);
9126 bool shouldDeleteForAllConstMembers();
9127
9128 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
9129 unsigned Quals);
9130 bool shouldDeleteForSubobjectCall(Subobject Subobj,
9131 Sema::SpecialMemberOverloadResult SMOR,
9132 bool IsDtorCallInCtor);
9133
9134 bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
9135};
9136}
9137
9138/// Is the given special member inaccessible when used on the given
9139/// sub-object.
9140bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
9141 CXXMethodDecl *target) {
9142 /// If we're operating on a base class, the object type is the
9143 /// type of this special member.
9144 QualType objectTy;
9145 AccessSpecifier access = target->getAccess();
9146 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
9147 objectTy = S.Context.getTypeDeclType(MD->getParent());
9148 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
9149
9150 // If we're operating on a field, the object type is the type of the field.
9151 } else {
9152 objectTy = S.Context.getTypeDeclType(target->getParent());
9153 }
9154
9155 return S.isMemberAccessibleForDeletion(
9156 target->getParent(), DeclAccessPair::make(target, access), objectTy);
9157}
9158
9159/// Check whether we should delete a special member due to the implicit
9160/// definition containing a call to a special member of a subobject.
9161bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
9162 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR,
9163 bool IsDtorCallInCtor) {
9164 CXXMethodDecl *Decl = SMOR.getMethod();
9165 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
9166
9167 int DiagKind = -1;
9168
9169 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
9170 DiagKind = !Decl ? 0 : 1;
9171 else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
9172 DiagKind = 2;
9173 else if (!isAccessible(Subobj, Decl))
9174 DiagKind = 3;
9175 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
9176 !Decl->isTrivial()) {
9177 // A member of a union must have a trivial corresponding special member.
9178 // As a weird special case, a destructor call from a union's constructor
9179 // must be accessible and non-deleted, but need not be trivial. Such a
9180 // destructor is never actually called, but is semantically checked as
9181 // if it were.
9182 if (CSM == Sema::CXXDefaultConstructor) {
9183 // [class.default.ctor]p2:
9184 // A defaulted default constructor for class X is defined as deleted if
9185 // - X is a union that has a variant member with a non-trivial default
9186 // constructor and no variant member of X has a default member
9187 // initializer
9188 const auto *RD = cast<CXXRecordDecl>(Field->getParent());
9189 if (!RD->hasInClassInitializer())
9190 DiagKind = 4;
9191 } else {
9192 DiagKind = 4;
9193 }
9194 }
9195
9196 if (DiagKind == -1)
9197 return false;
9198
9199 if (Diagnose) {
9200 if (Field) {
9201 S.Diag(Field->getLocation(),
9202 diag::note_deleted_special_member_class_subobject)
9203 << getEffectiveCSM() << MD->getParent() << /*IsField*/true
9204 << Field << DiagKind << IsDtorCallInCtor << /*IsObjCPtr*/false;
9205 } else {
9206 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
9207 S.Diag(Base->getBeginLoc(),
9208 diag::note_deleted_special_member_class_subobject)
9209 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false
9210 << Base->getType() << DiagKind << IsDtorCallInCtor
9211 << /*IsObjCPtr*/false;
9212 }
9213
9214 if (DiagKind == 1)
9215 S.NoteDeletedFunction(Decl);
9216 // FIXME: Explain inaccessibility if DiagKind == 3.
9217 }
9218
9219 return true;
9220}
9221
9222/// Check whether we should delete a special member function due to having a
9223/// direct or virtual base class or non-static data member of class type M.
9224bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
9225 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
9226 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
9227 bool IsMutable = Field && Field->isMutable();
9228
9229 // C++11 [class.ctor]p5:
9230 // -- any direct or virtual base class, or non-static data member with no
9231 // brace-or-equal-initializer, has class type M (or array thereof) and
9232 // either M has no default constructor or overload resolution as applied
9233 // to M's default constructor results in an ambiguity or in a function
9234 // that is deleted or inaccessible
9235 // C++11 [class.copy]p11, C++11 [class.copy]p23:
9236 // -- a direct or virtual base class B that cannot be copied/moved because
9237 // overload resolution, as applied to B's corresponding special member,
9238 // results in an ambiguity or a function that is deleted or inaccessible
9239 // from the defaulted special member
9240 // C++11 [class.dtor]p5:
9241 // -- any direct or virtual base class [...] has a type with a destructor
9242 // that is deleted or inaccessible
9243 if (!(CSM == Sema::CXXDefaultConstructor &&
9244 Field && Field->hasInClassInitializer()) &&
9245 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable),
9246 false))
9247 return true;
9248
9249 // C++11 [class.ctor]p5, C++11 [class.copy]p11:
9250 // -- any direct or virtual base class or non-static data member has a
9251 // type with a destructor that is deleted or inaccessible
9252 if (IsConstructor) {
9253 Sema::SpecialMemberOverloadResult SMOR =
9254 S.LookupSpecialMember(Class, Sema::CXXDestructor,
9255 false, false, false, false, false);
9256 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
9257 return true;
9258 }
9259
9260 return false;
9261}
9262
9263bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember(
9264 FieldDecl *FD, QualType FieldType) {
9265 // The defaulted special functions are defined as deleted if this is a variant
9266 // member with a non-trivial ownership type, e.g., ObjC __strong or __weak
9267 // type under ARC.
9268 if (!FieldType.hasNonTrivialObjCLifetime())
9269 return false;
9270
9271 // Don't make the defaulted default constructor defined as deleted if the
9272 // member has an in-class initializer.
9273 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer())
9274 return false;
9275
9276 if (Diagnose) {
9277 auto *ParentClass = cast<CXXRecordDecl>(FD->getParent());
9278 S.Diag(FD->getLocation(),
9279 diag::note_deleted_special_member_class_subobject)
9280 << getEffectiveCSM() << ParentClass << /*IsField*/true
9281 << FD << 4 << /*IsDtorCallInCtor*/false << /*IsObjCPtr*/true;
9282 }
9283
9284 return true;
9285}
9286
9287/// Check whether we should delete a special member function due to the class
9288/// having a particular direct or virtual base class.
9289bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
9290 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
9291 // If program is correct, BaseClass cannot be null, but if it is, the error
9292 // must be reported elsewhere.
9293 if (!BaseClass)
9294 return false;
9295 // If we have an inheriting constructor, check whether we're calling an
9296 // inherited constructor instead of a default constructor.
9297 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
9298 if (auto *BaseCtor = SMOR.getMethod()) {
9299 // Note that we do not check access along this path; other than that,
9300 // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false);
9301 // FIXME: Check that the base has a usable destructor! Sink this into
9302 // shouldDeleteForClassSubobject.
9303 if (BaseCtor->isDeleted() && Diagnose) {
9304 S.Diag(Base->getBeginLoc(),
9305 diag::note_deleted_special_member_class_subobject)
9306 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false
9307 << Base->getType() << /*Deleted*/ 1 << /*IsDtorCallInCtor*/ false
9308 << /*IsObjCPtr*/false;
9309 S.NoteDeletedFunction(BaseCtor);
9310 }
9311 return BaseCtor->isDeleted();
9312 }
9313 return shouldDeleteForClassSubobject(BaseClass, Base, 0);
9314}
9315
9316/// Check whether we should delete a special member function due to the class
9317/// having a particular non-static data member.
9318bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
9319 QualType FieldType = S.Context.getBaseElementType(FD->getType());
9320 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
9321
9322 if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType))
9323 return true;
9324
9325 if (CSM == Sema::CXXDefaultConstructor) {
9326 // For a default constructor, all references must be initialized in-class
9327 // and, if a union, it must have a non-const member.
9328 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
9329 if (Diagnose)
9330 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
9331 << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0;
9332 return true;
9333 }
9334 // C++11 [class.ctor]p5 (modified by DR2394): any non-variant non-static
9335 // data member of const-qualified type (or array thereof) with no
9336 // brace-or-equal-initializer is not const-default-constructible.
9337 if (!inUnion() && FieldType.isConstQualified() &&
9338 !FD->hasInClassInitializer() &&
9339 (!FieldRecord || !FieldRecord->allowConstDefaultInit())) {
9340 if (Diagnose)
9341 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
9342 << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1;
9343 return true;
9344 }
9345
9346 if (inUnion() && !FieldType.isConstQualified())
9347 AllFieldsAreConst = false;
9348 } else if (CSM == Sema::CXXCopyConstructor) {
9349 // For a copy constructor, data members must not be of rvalue reference
9350 // type.
9351 if (FieldType->isRValueReferenceType()) {
9352 if (Diagnose)
9353 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
9354 << MD->getParent() << FD << FieldType;
9355 return true;
9356 }
9357 } else if (IsAssignment) {
9358 // For an assignment operator, data members must not be of reference type.
9359 if (FieldType->isReferenceType()) {
9360 if (Diagnose)
9361 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
9362 << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0;
9363 return true;
9364 }
9365 if (!FieldRecord && FieldType.isConstQualified()) {
9366 // C++11 [class.copy]p23:
9367 // -- a non-static data member of const non-class type (or array thereof)
9368 if (Diagnose)
9369 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
9370 << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1;
9371 return true;
9372 }
9373 }
9374
9375 if (FieldRecord) {
9376 // Some additional restrictions exist on the variant members.
9377 if (!inUnion() && FieldRecord->isUnion() &&
9378 FieldRecord->isAnonymousStructOrUnion()) {
9379 bool AllVariantFieldsAreConst = true;
9380
9381 // FIXME: Handle anonymous unions declared within anonymous unions.
9382 for (auto *UI : FieldRecord->fields()) {
9383 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
9384
9385 if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType))
9386 return true;
9387
9388 if (!UnionFieldType.isConstQualified())
9389 AllVariantFieldsAreConst = false;
9390
9391 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
9392 if (UnionFieldRecord &&
9393 shouldDeleteForClassSubobject(UnionFieldRecord, UI,
9394 UnionFieldType.getCVRQualifiers()))
9395 return true;
9396 }
9397
9398 // At least one member in each anonymous union must be non-const
9399 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
9400 !FieldRecord->field_empty()) {
9401 if (Diagnose)
9402 S.Diag(FieldRecord->getLocation(),
9403 diag::note_deleted_default_ctor_all_const)
9404 << !!ICI << MD->getParent() << /*anonymous union*/1;
9405 return true;
9406 }
9407
9408 // Don't check the implicit member of the anonymous union type.
9409 // This is technically non-conformant but supported, and we have a
9410 // diagnostic for this elsewhere.
9411 return false;
9412 }
9413
9414 if (shouldDeleteForClassSubobject(FieldRecord, FD,
9415 FieldType.getCVRQualifiers()))
9416 return true;
9417 }
9418
9419 return false;
9420}
9421
9422/// C++11 [class.ctor] p5:
9423/// A defaulted default constructor for a class X is defined as deleted if
9424/// X is a union and all of its variant members are of const-qualified type.
9425bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
9426 // This is a silly definition, because it gives an empty union a deleted
9427 // default constructor. Don't do that.
9428 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) {
9429 bool AnyFields = false;
9430 for (auto *F : MD->getParent()->fields())
9431 if ((AnyFields = !F->isUnnamedBitfield()))
9432 break;
9433 if (!AnyFields)
9434 return false;
9435 if (Diagnose)
9436 S.Diag(MD->getParent()->getLocation(),
9437 diag::note_deleted_default_ctor_all_const)
9438 << !!ICI << MD->getParent() << /*not anonymous union*/0;
9439 return true;
9440 }
9441 return false;
9442}
9443
9444/// Determine whether a defaulted special member function should be defined as
9445/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
9446/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
9447bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
9448 InheritedConstructorInfo *ICI,
9449 bool Diagnose) {
9450 if (MD->isInvalidDecl())
9451 return false;
9452 CXXRecordDecl *RD = MD->getParent();
9453 assert(!RD->isDependentType() && "do deletion after instantiation")(static_cast <bool> (!RD->isDependentType() &&
"do deletion after instantiation") ? void (0) : __assert_fail
("!RD->isDependentType() && \"do deletion after instantiation\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 9453, __extension__ __PRETTY_FUNCTION__
))
;
9454 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
9455 return false;
9456
9457 // C++11 [expr.lambda.prim]p19:
9458 // The closure type associated with a lambda-expression has a
9459 // deleted (8.4.3) default constructor and a deleted copy
9460 // assignment operator.
9461 // C++2a adds back these operators if the lambda has no lambda-capture.
9462 if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() &&
9463 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
9464 if (Diagnose)
9465 Diag(RD->getLocation(), diag::note_lambda_decl);
9466 return true;
9467 }
9468
9469 // For an anonymous struct or union, the copy and assignment special members
9470 // will never be used, so skip the check. For an anonymous union declared at
9471 // namespace scope, the constructor and destructor are used.
9472 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
9473 RD->isAnonymousStructOrUnion())
9474 return false;
9475
9476 // C++11 [class.copy]p7, p18:
9477 // If the class definition declares a move constructor or move assignment
9478 // operator, an implicitly declared copy constructor or copy assignment
9479 // operator is defined as deleted.
9480 if (MD->isImplicit() &&
9481 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
9482 CXXMethodDecl *UserDeclaredMove = nullptr;
9483
9484 // In Microsoft mode up to MSVC 2013, a user-declared move only causes the
9485 // deletion of the corresponding copy operation, not both copy operations.
9486 // MSVC 2015 has adopted the standards conforming behavior.
9487 bool DeletesOnlyMatchingCopy =
9488 getLangOpts().MSVCCompat &&
9489 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015);
9490
9491 if (RD->hasUserDeclaredMoveConstructor() &&
9492 (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) {
9493 if (!Diagnose) return true;
9494
9495 // Find any user-declared move constructor.
9496 for (auto *I : RD->ctors()) {
9497 if (I->isMoveConstructor()) {
9498 UserDeclaredMove = I;
9499 break;
9500 }
9501 }
9502 assert(UserDeclaredMove)(static_cast <bool> (UserDeclaredMove) ? void (0) : __assert_fail
("UserDeclaredMove", "clang/lib/Sema/SemaDeclCXX.cpp", 9502,
__extension__ __PRETTY_FUNCTION__))
;
9503 } else if (RD->hasUserDeclaredMoveAssignment() &&
9504 (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) {
9505 if (!Diagnose) return true;
9506
9507 // Find any user-declared move assignment operator.
9508 for (auto *I : RD->methods()) {
9509 if (I->isMoveAssignmentOperator()) {
9510 UserDeclaredMove = I;
9511 break;
9512 }
9513 }
9514 assert(UserDeclaredMove)(static_cast <bool> (UserDeclaredMove) ? void (0) : __assert_fail
("UserDeclaredMove", "clang/lib/Sema/SemaDeclCXX.cpp", 9514,
__extension__ __PRETTY_FUNCTION__))
;
9515 }
9516
9517 if (UserDeclaredMove) {
9518 Diag(UserDeclaredMove->getLocation(),
9519 diag::note_deleted_copy_user_declared_move)
9520 << (CSM == CXXCopyAssignment) << RD
9521 << UserDeclaredMove->isMoveAssignmentOperator();
9522 return true;
9523 }
9524 }
9525
9526 // Do access control from the special member function
9527 ContextRAII MethodContext(*this, MD);
9528
9529 // C++11 [class.dtor]p5:
9530 // -- for a virtual destructor, lookup of the non-array deallocation function
9531 // results in an ambiguity or in a function that is deleted or inaccessible
9532 if (CSM == CXXDestructor && MD->isVirtual()) {
9533 FunctionDecl *OperatorDelete = nullptr;
9534 DeclarationName Name =
9535 Context.DeclarationNames.getCXXOperatorName(OO_Delete);
9536 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
9537 OperatorDelete, /*Diagnose*/false)) {
9538 if (Diagnose)
9539 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
9540 return true;
9541 }
9542 }
9543
9544 SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose);
9545
9546 // Per DR1611, do not consider virtual bases of constructors of abstract
9547 // classes, since we are not going to construct them.
9548 // Per DR1658, do not consider virtual bases of destructors of abstract
9549 // classes either.
9550 // Per DR2180, for assignment operators we only assign (and thus only
9551 // consider) direct bases.
9552 if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases
9553 : SMI.VisitPotentiallyConstructedBases))
9554 return true;
9555
9556 if (SMI.shouldDeleteForAllConstMembers())
9557 return true;
9558
9559 if (getLangOpts().CUDA) {
9560 // We should delete the special member in CUDA mode if target inference
9561 // failed.
9562 // For inherited constructors (non-null ICI), CSM may be passed so that MD
9563 // is treated as certain special member, which may not reflect what special
9564 // member MD really is. However inferCUDATargetForImplicitSpecialMember
9565 // expects CSM to match MD, therefore recalculate CSM.
9566 assert(ICI || CSM == getSpecialMember(MD))(static_cast <bool> (ICI || CSM == getSpecialMember(MD)
) ? void (0) : __assert_fail ("ICI || CSM == getSpecialMember(MD)"
, "clang/lib/Sema/SemaDeclCXX.cpp", 9566, __extension__ __PRETTY_FUNCTION__
))
;
9567 auto RealCSM = CSM;
9568 if (ICI)
9569 RealCSM = getSpecialMember(MD);
9570
9571 return inferCUDATargetForImplicitSpecialMember(RD, RealCSM, MD,
9572 SMI.ConstArg, Diagnose);
9573 }
9574
9575 return false;
9576}
9577
9578void Sema::DiagnoseDeletedDefaultedFunction(FunctionDecl *FD) {
9579 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD);
9580 assert(DFK && "not a defaultable function")(static_cast <bool> (DFK && "not a defaultable function"
) ? void (0) : __assert_fail ("DFK && \"not a defaultable function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 9580, __extension__ __PRETTY_FUNCTION__
))
;
9581 assert(FD->isDefaulted() && FD->isDeleted() && "not defaulted and deleted")(static_cast <bool> (FD->isDefaulted() && FD
->isDeleted() && "not defaulted and deleted") ? void
(0) : __assert_fail ("FD->isDefaulted() && FD->isDeleted() && \"not defaulted and deleted\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 9581, __extension__ __PRETTY_FUNCTION__
))
;
9582
9583 if (DFK.isSpecialMember()) {
9584 ShouldDeleteSpecialMember(cast<CXXMethodDecl>(FD), DFK.asSpecialMember(),
9585 nullptr, /*Diagnose=*/true);
9586 } else {
9587 DefaultedComparisonAnalyzer(
9588 *this, cast<CXXRecordDecl>(FD->getLexicalDeclContext()), FD,
9589 DFK.asComparison(), DefaultedComparisonAnalyzer::ExplainDeleted)
9590 .visit();
9591 }
9592}
9593
9594/// Perform lookup for a special member of the specified kind, and determine
9595/// whether it is trivial. If the triviality can be determined without the
9596/// lookup, skip it. This is intended for use when determining whether a
9597/// special member of a containing object is trivial, and thus does not ever
9598/// perform overload resolution for default constructors.
9599///
9600/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
9601/// member that was most likely to be intended to be trivial, if any.
9602///
9603/// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to
9604/// determine whether the special member is trivial.
9605static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
9606 Sema::CXXSpecialMember CSM, unsigned Quals,
9607 bool ConstRHS,
9608 Sema::TrivialABIHandling TAH,
9609 CXXMethodDecl **Selected) {
9610 if (Selected)
9611 *Selected = nullptr;
9612
9613 switch (CSM) {
9614 case Sema::CXXInvalid:
9615 llvm_unreachable("not a special member")::llvm::llvm_unreachable_internal("not a special member", "clang/lib/Sema/SemaDeclCXX.cpp"
, 9615)
;
9616
9617 case Sema::CXXDefaultConstructor:
9618 // C++11 [class.ctor]p5:
9619 // A default constructor is trivial if:
9620 // - all the [direct subobjects] have trivial default constructors
9621 //
9622 // Note, no overload resolution is performed in this case.
9623 if (RD->hasTrivialDefaultConstructor())
9624 return true;
9625
9626 if (Selected) {
9627 // If there's a default constructor which could have been trivial, dig it
9628 // out. Otherwise, if there's any user-provided default constructor, point
9629 // to that as an example of why there's not a trivial one.
9630 CXXConstructorDecl *DefCtor = nullptr;
9631 if (RD->needsImplicitDefaultConstructor())
9632 S.DeclareImplicitDefaultConstructor(RD);
9633 for (auto *CI : RD->ctors()) {
9634 if (!CI->isDefaultConstructor())
9635 continue;
9636 DefCtor = CI;
9637 if (!DefCtor->isUserProvided())
9638 break;
9639 }
9640
9641 *Selected = DefCtor;
9642 }
9643
9644 return false;
9645
9646 case Sema::CXXDestructor:
9647 // C++11 [class.dtor]p5:
9648 // A destructor is trivial if:
9649 // - all the direct [subobjects] have trivial destructors
9650 if (RD->hasTrivialDestructor() ||
9651 (TAH == Sema::TAH_ConsiderTrivialABI &&
9652 RD->hasTrivialDestructorForCall()))
9653 return true;
9654
9655 if (Selected) {
9656 if (RD->needsImplicitDestructor())
9657 S.DeclareImplicitDestructor(RD);
9658 *Selected = RD->getDestructor();
9659 }
9660
9661 return false;
9662
9663 case Sema::CXXCopyConstructor:
9664 // C++11 [class.copy]p12:
9665 // A copy constructor is trivial if:
9666 // - the constructor selected to copy each direct [subobject] is trivial
9667 if (RD->hasTrivialCopyConstructor() ||
9668 (TAH == Sema::TAH_ConsiderTrivialABI &&
9669 RD->hasTrivialCopyConstructorForCall())) {
9670 if (Quals == Qualifiers::Const)
9671 // We must either select the trivial copy constructor or reach an
9672 // ambiguity; no need to actually perform overload resolution.
9673 return true;
9674 } else if (!Selected) {
9675 return false;
9676 }
9677 // In C++98, we are not supposed to perform overload resolution here, but we
9678 // treat that as a language defect, as suggested on cxx-abi-dev, to treat
9679 // cases like B as having a non-trivial copy constructor:
9680 // struct A { template<typename T> A(T&); };
9681 // struct B { mutable A a; };
9682 goto NeedOverloadResolution;
9683
9684 case Sema::CXXCopyAssignment:
9685 // C++11 [class.copy]p25:
9686 // A copy assignment operator is trivial if:
9687 // - the assignment operator selected to copy each direct [subobject] is
9688 // trivial
9689 if (RD->hasTrivialCopyAssignment()) {
9690 if (Quals == Qualifiers::Const)
9691 return true;
9692 } else if (!Selected) {
9693 return false;
9694 }
9695 // In C++98, we are not supposed to perform overload resolution here, but we
9696 // treat that as a language defect.
9697 goto NeedOverloadResolution;
9698
9699 case Sema::CXXMoveConstructor:
9700 case Sema::CXXMoveAssignment:
9701 NeedOverloadResolution:
9702 Sema::SpecialMemberOverloadResult SMOR =
9703 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS);
9704
9705 // The standard doesn't describe how to behave if the lookup is ambiguous.
9706 // We treat it as not making the member non-trivial, just like the standard
9707 // mandates for the default constructor. This should rarely matter, because
9708 // the member will also be deleted.
9709 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
9710 return true;
9711
9712 if (!SMOR.getMethod()) {
9713 assert(SMOR.getKind() ==(static_cast <bool> (SMOR.getKind() == Sema::SpecialMemberOverloadResult
::NoMemberOrDeleted) ? void (0) : __assert_fail ("SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted"
, "clang/lib/Sema/SemaDeclCXX.cpp", 9714, __extension__ __PRETTY_FUNCTION__
))
9714 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)(static_cast <bool> (SMOR.getKind() == Sema::SpecialMemberOverloadResult
::NoMemberOrDeleted) ? void (0) : __assert_fail ("SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted"
, "clang/lib/Sema/SemaDeclCXX.cpp", 9714, __extension__ __PRETTY_FUNCTION__
))
;
9715 return false;
9716 }
9717
9718 // We deliberately don't check if we found a deleted special member. We're
9719 // not supposed to!
9720 if (Selected)
9721 *Selected = SMOR.getMethod();
9722
9723 if (TAH == Sema::TAH_ConsiderTrivialABI &&
9724 (CSM == Sema::CXXCopyConstructor || CSM == Sema::CXXMoveConstructor))
9725 return SMOR.getMethod()->isTrivialForCall();
9726 return SMOR.getMethod()->isTrivial();
9727 }
9728
9729 llvm_unreachable("unknown special method kind")::llvm::llvm_unreachable_internal("unknown special method kind"
, "clang/lib/Sema/SemaDeclCXX.cpp", 9729)
;
9730}
9731
9732static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
9733 for (auto *CI : RD->ctors())
9734 if (!CI->isImplicit())
9735 return CI;
9736
9737 // Look for constructor templates.
9738 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
9739 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
9740 if (CXXConstructorDecl *CD =
9741 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
9742 return CD;
9743 }
9744
9745 return nullptr;
9746}
9747
9748/// The kind of subobject we are checking for triviality. The values of this
9749/// enumeration are used in diagnostics.
9750enum TrivialSubobjectKind {
9751 /// The subobject is a base class.
9752 TSK_BaseClass,
9753 /// The subobject is a non-static data member.
9754 TSK_Field,
9755 /// The object is actually the complete object.
9756 TSK_CompleteObject
9757};
9758
9759/// Check whether the special member selected for a given type would be trivial.
9760static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
9761 QualType SubType, bool ConstRHS,
9762 Sema::CXXSpecialMember CSM,
9763 TrivialSubobjectKind Kind,
9764 Sema::TrivialABIHandling TAH, bool Diagnose) {
9765 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
9766 if (!SubRD)
9767 return true;
9768
9769 CXXMethodDecl *Selected;
9770 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
9771 ConstRHS, TAH, Diagnose ? &Selected : nullptr))
9772 return true;
9773
9774 if (Diagnose) {
9775 if (ConstRHS)
9776 SubType.addConst();
9777
9778 if (!Selected && CSM == Sema::CXXDefaultConstructor) {
9779 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
9780 << Kind << SubType.getUnqualifiedType();
9781 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
9782 S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
9783 } else if (!Selected)
9784 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
9785 << Kind << SubType.getUnqualifiedType() << CSM << SubType;
9786 else if (Selected->isUserProvided()) {
9787 if (Kind == TSK_CompleteObject)
9788 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
9789 << Kind << SubType.getUnqualifiedType() << CSM;
9790 else {
9791 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
9792 << Kind << SubType.getUnqualifiedType() << CSM;
9793 S.Diag(Selected->getLocation(), diag::note_declared_at);
9794 }
9795 } else {
9796 if (Kind != TSK_CompleteObject)
9797 S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
9798 << Kind << SubType.getUnqualifiedType() << CSM;
9799
9800 // Explain why the defaulted or deleted special member isn't trivial.
9801 S.SpecialMemberIsTrivial(Selected, CSM, Sema::TAH_IgnoreTrivialABI,
9802 Diagnose);
9803 }
9804 }
9805
9806 return false;
9807}
9808
9809/// Check whether the members of a class type allow a special member to be
9810/// trivial.
9811static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
9812 Sema::CXXSpecialMember CSM,
9813 bool ConstArg,
9814 Sema::TrivialABIHandling TAH,
9815 bool Diagnose) {
9816 for (const auto *FI : RD->fields()) {
9817 if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
9818 continue;
9819
9820 QualType FieldType = S.Context.getBaseElementType(FI->getType());
9821
9822 // Pretend anonymous struct or union members are members of this class.
9823 if (FI->isAnonymousStructOrUnion()) {
9824 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
9825 CSM, ConstArg, TAH, Diagnose))
9826 return false;
9827 continue;
9828 }
9829
9830 // C++11 [class.ctor]p5:
9831 // A default constructor is trivial if [...]
9832 // -- no non-static data member of its class has a
9833 // brace-or-equal-initializer
9834 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
9835 if (Diagnose)
9836 S.Diag(FI->getLocation(), diag::note_nontrivial_default_member_init)
9837 << FI;
9838 return false;
9839 }
9840
9841 // Objective C ARC 4.3.5:
9842 // [...] nontrivally ownership-qualified types are [...] not trivially
9843 // default constructible, copy constructible, move constructible, copy
9844 // assignable, move assignable, or destructible [...]
9845 if (FieldType.hasNonTrivialObjCLifetime()) {
9846 if (Diagnose)
9847 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
9848 << RD << FieldType.getObjCLifetime();
9849 return false;
9850 }
9851
9852 bool ConstRHS = ConstArg && !FI->isMutable();
9853 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
9854 CSM, TSK_Field, TAH, Diagnose))
9855 return false;
9856 }
9857
9858 return true;
9859}
9860
9861/// Diagnose why the specified class does not have a trivial special member of
9862/// the given kind.
9863void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
9864 QualType Ty = Context.getRecordType(RD);
9865
9866 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment);
9867 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
9868 TSK_CompleteObject, TAH_IgnoreTrivialABI,
9869 /*Diagnose*/true);
9870}
9871
9872/// Determine whether a defaulted or deleted special member function is trivial,
9873/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
9874/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
9875bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
9876 TrivialABIHandling TAH, bool Diagnose) {
9877 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough")(static_cast <bool> (!MD->isUserProvided() &&
CSM != CXXInvalid && "not special enough") ? void (0
) : __assert_fail ("!MD->isUserProvided() && CSM != CXXInvalid && \"not special enough\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 9877, __extension__ __PRETTY_FUNCTION__
))
;
9878
9879 CXXRecordDecl *RD = MD->getParent();
9880
9881 bool ConstArg = false;
9882
9883 // C++11 [class.copy]p12, p25: [DR1593]
9884 // A [special member] is trivial if [...] its parameter-type-list is
9885 // equivalent to the parameter-type-list of an implicit declaration [...]
9886 switch (CSM) {
9887 case CXXDefaultConstructor:
9888 case CXXDestructor:
9889 // Trivial default constructors and destructors cannot have parameters.
9890 break;
9891
9892 case CXXCopyConstructor:
9893 case CXXCopyAssignment: {
9894 const ParmVarDecl *Param0 = MD->getParamDecl(0);
9895 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
9896
9897 // When ClangABICompat14 is true, CXX copy constructors will only be trivial
9898 // if they are not user-provided and their parameter-type-list is equivalent
9899 // to the parameter-type-list of an implicit declaration. This maintains the
9900 // behavior before dr2171 was implemented.
9901 //
9902 // Otherwise, if ClangABICompat14 is false, All copy constructors can be
9903 // trivial, if they are not user-provided, regardless of the qualifiers on
9904 // the reference type.
9905 const bool ClangABICompat14 = Context.getLangOpts().getClangABICompat() <=
9906 LangOptions::ClangABI::Ver14;
9907 if (!RT ||
9908 ((RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) &&
9909 ClangABICompat14)) {
9910 if (Diagnose)
9911 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
9912 << Param0->getSourceRange() << Param0->getType()
9913 << Context.getLValueReferenceType(
9914 Context.getRecordType(RD).withConst());
9915 return false;
9916 }
9917
9918 ConstArg = RT->getPointeeType().isConstQualified();
9919 break;
9920 }
9921
9922 case CXXMoveConstructor:
9923 case CXXMoveAssignment: {
9924 // Trivial move operations always have non-cv-qualified parameters.
9925 const ParmVarDecl *Param0 = MD->getParamDecl(0);
9926 const RValueReferenceType *RT =
9927 Param0->getType()->getAs<RValueReferenceType>();
9928 if (!RT || RT->getPointeeType().getCVRQualifiers()) {
9929 if (Diagnose)
9930 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
9931 << Param0->getSourceRange() << Param0->getType()
9932 << Context.getRValueReferenceType(Context.getRecordType(RD));
9933 return false;
9934 }
9935 break;
9936 }
9937
9938 case CXXInvalid:
9939 llvm_unreachable("not a special member")::llvm::llvm_unreachable_internal("not a special member", "clang/lib/Sema/SemaDeclCXX.cpp"
, 9939)
;
9940 }
9941
9942 if (MD->getMinRequiredArguments() < MD->getNumParams()) {
9943 if (Diagnose)
9944 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
9945 diag::note_nontrivial_default_arg)
9946 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
9947 return false;
9948 }
9949 if (MD->isVariadic()) {
9950 if (Diagnose)
9951 Diag(MD->getLocation(), diag::note_nontrivial_variadic);
9952 return false;
9953 }
9954
9955 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
9956 // A copy/move [constructor or assignment operator] is trivial if
9957 // -- the [member] selected to copy/move each direct base class subobject
9958 // is trivial
9959 //
9960 // C++11 [class.copy]p12, C++11 [class.copy]p25:
9961 // A [default constructor or destructor] is trivial if
9962 // -- all the direct base classes have trivial [default constructors or
9963 // destructors]
9964 for (const auto &BI : RD->bases())
9965 if (!checkTrivialSubobjectCall(*this, BI.getBeginLoc(), BI.getType(),
9966 ConstArg, CSM, TSK_BaseClass, TAH, Diagnose))
9967 return false;
9968
9969 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
9970 // A copy/move [constructor or assignment operator] for a class X is
9971 // trivial if
9972 // -- for each non-static data member of X that is of class type (or array
9973 // thereof), the constructor selected to copy/move that member is
9974 // trivial
9975 //
9976 // C++11 [class.copy]p12, C++11 [class.copy]p25:
9977 // A [default constructor or destructor] is trivial if
9978 // -- for all of the non-static data members of its class that are of class
9979 // type (or array thereof), each such class has a trivial [default
9980 // constructor or destructor]
9981 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, TAH, Diagnose))
9982 return false;
9983
9984 // C++11 [class.dtor]p5:
9985 // A destructor is trivial if [...]
9986 // -- the destructor is not virtual
9987 if (CSM == CXXDestructor && MD->isVirtual()) {
9988 if (Diagnose)
9989 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
9990 return false;
9991 }
9992
9993 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
9994 // A [special member] for class X is trivial if [...]
9995 // -- class X has no virtual functions and no virtual base classes
9996 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
9997 if (!Diagnose)
9998 return false;
9999
10000 if (RD->getNumVBases()) {
10001 // Check for virtual bases. We already know that the corresponding
10002 // member in all bases is trivial, so vbases must all be direct.
10003 CXXBaseSpecifier &BS = *RD->vbases_begin();
10004 assert(BS.isVirtual())(static_cast <bool> (BS.isVirtual()) ? void (0) : __assert_fail
("BS.isVirtual()", "clang/lib/Sema/SemaDeclCXX.cpp", 10004, __extension__
__PRETTY_FUNCTION__))
;
10005 Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1;
10006 return false;
10007 }
10008
10009 // Must have a virtual method.
10010 for (const auto *MI : RD->methods()) {
10011 if (MI->isVirtual()) {
10012 SourceLocation MLoc = MI->getBeginLoc();
10013 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
10014 return false;
10015 }
10016 }
10017
10018 llvm_unreachable("dynamic class with no vbases and no virtual functions")::llvm::llvm_unreachable_internal("dynamic class with no vbases and no virtual functions"
, "clang/lib/Sema/SemaDeclCXX.cpp", 10018)
;
10019 }
10020
10021 // Looks like it's trivial!
10022 return true;
10023}
10024
10025namespace {
10026struct FindHiddenVirtualMethod {
10027 Sema *S;
10028 CXXMethodDecl *Method;
10029 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
10030 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
10031
10032private:
10033 /// Check whether any most overridden method from MD in Methods
10034 static bool CheckMostOverridenMethods(
10035 const CXXMethodDecl *MD,
10036 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) {
10037 if (MD->size_overridden_methods() == 0)
10038 return Methods.count(MD->getCanonicalDecl());
10039 for (const CXXMethodDecl *O : MD->overridden_methods())
10040 if (CheckMostOverridenMethods(O, Methods))
10041 return true;
10042 return false;
10043 }
10044
10045public:
10046 /// Member lookup function that determines whether a given C++
10047 /// method overloads virtual methods in a base class without overriding any,
10048 /// to be used with CXXRecordDecl::lookupInBases().
10049 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
10050 RecordDecl *BaseRecord =
10051 Specifier->getType()->castAs<RecordType>()->getDecl();
10052
10053 DeclarationName Name = Method->getDeclName();
10054 assert(Name.getNameKind() == DeclarationName::Identifier)(static_cast <bool> (Name.getNameKind() == DeclarationName
::Identifier) ? void (0) : __assert_fail ("Name.getNameKind() == DeclarationName::Identifier"
, "clang/lib/Sema/SemaDeclCXX.cpp", 10054, __extension__ __PRETTY_FUNCTION__
))
;
10055
10056 bool foundSameNameMethod = false;
10057 SmallVector<CXXMethodDecl *, 8> overloadedMethods;
10058 for (Path.Decls = BaseRecord->lookup(Name).begin();
10059 Path.Decls != DeclContext::lookup_iterator(); ++Path.Decls) {
10060 NamedDecl *D = *Path.Decls;
10061 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
10062 MD = MD->getCanonicalDecl();
10063 foundSameNameMethod = true;
10064 // Interested only in hidden virtual methods.
10065 if (!MD->isVirtual())
10066 continue;
10067 // If the method we are checking overrides a method from its base
10068 // don't warn about the other overloaded methods. Clang deviates from
10069 // GCC by only diagnosing overloads of inherited virtual functions that
10070 // do not override any other virtual functions in the base. GCC's
10071 // -Woverloaded-virtual diagnoses any derived function hiding a virtual
10072 // function from a base class. These cases may be better served by a
10073 // warning (not specific to virtual functions) on call sites when the
10074 // call would select a different function from the base class, were it
10075 // visible.
10076 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example.
10077 if (!S->IsOverload(Method, MD, false))
10078 return true;
10079 // Collect the overload only if its hidden.
10080 if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods))
10081 overloadedMethods.push_back(MD);
10082 }
10083 }
10084
10085 if (foundSameNameMethod)
10086 OverloadedMethods.append(overloadedMethods.begin(),
10087 overloadedMethods.end());
10088 return foundSameNameMethod;
10089 }
10090};
10091} // end anonymous namespace
10092
10093/// Add the most overridden methods from MD to Methods
10094static void AddMostOverridenMethods(const CXXMethodDecl *MD,
10095 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
10096 if (MD->size_overridden_methods() == 0)
10097 Methods.insert(MD->getCanonicalDecl());
10098 else
10099 for (const CXXMethodDecl *O : MD->overridden_methods())
10100 AddMostOverridenMethods(O, Methods);
10101}
10102
10103/// Check if a method overloads virtual methods in a base class without
10104/// overriding any.
10105void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
10106 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
10107 if (!MD->getDeclName().isIdentifier())
10108 return;
10109
10110 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
10111 /*bool RecordPaths=*/false,
10112 /*bool DetectVirtual=*/false);
10113 FindHiddenVirtualMethod FHVM;
10114 FHVM.Method = MD;
10115 FHVM.S = this;
10116
10117 // Keep the base methods that were overridden or introduced in the subclass
10118 // by 'using' in a set. A base method not in this set is hidden.
10119 CXXRecordDecl *DC = MD->getParent();
10120 DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
10121 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
10122 NamedDecl *ND = *I;
10123 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
10124 ND = shad->getTargetDecl();
10125 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
10126 AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods);
10127 }
10128
10129 if (DC->lookupInBases(FHVM, Paths))
10130 OverloadedMethods = FHVM.OverloadedMethods;
10131}
10132
10133void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
10134 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
10135 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
10136 CXXMethodDecl *overloadedMD = OverloadedMethods[i];
10137 PartialDiagnostic PD = PDiag(
10138 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
10139 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
10140 Diag(overloadedMD->getLocation(), PD);
10141 }
10142}
10143
10144/// Diagnose methods which overload virtual methods in a base class
10145/// without overriding any.
10146void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
10147 if (MD->isInvalidDecl())
10148 return;
10149
10150 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
10151 return;
10152
10153 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
10154 FindHiddenVirtualMethods(MD, OverloadedMethods);
10155 if (!OverloadedMethods.empty()) {
10156 Diag(MD->getLocation(), diag::warn_overloaded_virtual)
10157 << MD << (OverloadedMethods.size() > 1);
10158
10159 NoteHiddenVirtualMethods(MD, OverloadedMethods);
10160 }
10161}
10162
10163void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) {
10164 auto PrintDiagAndRemoveAttr = [&](unsigned N) {
10165 // No diagnostics if this is a template instantiation.
10166 if (!isTemplateInstantiation(RD.getTemplateSpecializationKind())) {
10167 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(),
10168 diag::ext_cannot_use_trivial_abi) << &RD;
10169 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(),
10170 diag::note_cannot_use_trivial_abi_reason) << &RD << N;
10171 }
10172 RD.dropAttr<TrivialABIAttr>();
10173 };
10174
10175 // Ill-formed if the copy and move constructors are deleted.
10176 auto HasNonDeletedCopyOrMoveConstructor = [&]() {
10177 // If the type is dependent, then assume it might have
10178 // implicit copy or move ctor because we won't know yet at this point.
10179 if (RD.isDependentType())
10180 return true;
10181 if (RD.needsImplicitCopyConstructor() &&
10182 !RD.defaultedCopyConstructorIsDeleted())
10183 return true;
10184 if (RD.needsImplicitMoveConstructor() &&
10185 !RD.defaultedMoveConstructorIsDeleted())
10186 return true;
10187 for (const CXXConstructorDecl *CD : RD.ctors())
10188 if (CD->isCopyOrMoveConstructor() && !CD->isDeleted())
10189 return true;
10190 return false;
10191 };
10192
10193 if (!HasNonDeletedCopyOrMoveConstructor()) {
10194 PrintDiagAndRemoveAttr(0);
10195 return;
10196 }
10197
10198 // Ill-formed if the struct has virtual functions.
10199 if (RD.isPolymorphic()) {
10200 PrintDiagAndRemoveAttr(1);
10201 return;
10202 }
10203
10204 for (const auto &B : RD.bases()) {
10205 // Ill-formed if the base class is non-trivial for the purpose of calls or a
10206 // virtual base.
10207 if (!B.getType()->isDependentType() &&
10208 !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) {
10209 PrintDiagAndRemoveAttr(2);
10210 return;
10211 }
10212
10213 if (B.isVirtual()) {
10214 PrintDiagAndRemoveAttr(3);
10215 return;
10216 }
10217 }
10218
10219 for (const auto *FD : RD.fields()) {
10220 // Ill-formed if the field is an ObjectiveC pointer or of a type that is
10221 // non-trivial for the purpose of calls.
10222 QualType FT = FD->getType();
10223 if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) {
10224 PrintDiagAndRemoveAttr(4);
10225 return;
10226 }
10227
10228 if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>())
10229 if (!RT->isDependentType() &&
10230 !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) {
10231 PrintDiagAndRemoveAttr(5);
10232 return;
10233 }
10234 }
10235}
10236
10237void Sema::ActOnFinishCXXMemberSpecification(
10238 Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac,
10239 SourceLocation RBrac, const ParsedAttributesView &AttrList) {
10240 if (!TagDecl)
10241 return;
10242
10243 AdjustDeclIfTemplate(TagDecl);
10244
10245 for (const ParsedAttr &AL : AttrList) {
10246 if (AL.getKind() != ParsedAttr::AT_Visibility)
10247 continue;
10248 AL.setInvalid();
10249 Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) << AL;
10250 }
10251
10252 ActOnFields(S, RLoc, TagDecl,
10253 llvm::ArrayRef(
10254 // strict aliasing violation!
10255 reinterpret_cast<Decl **>(FieldCollector->getCurFields()),
10256 FieldCollector->getCurNumFields()),
10257 LBrac, RBrac, AttrList);
10258
10259 CheckCompletedCXXClass(S, cast<CXXRecordDecl>(TagDecl));
10260}
10261
10262/// Find the equality comparison functions that should be implicitly declared
10263/// in a given class definition, per C++2a [class.compare.default]p3.
10264static void findImplicitlyDeclaredEqualityComparisons(
10265 ASTContext &Ctx, CXXRecordDecl *RD,
10266 llvm::SmallVectorImpl<FunctionDecl *> &Spaceships) {
10267 DeclarationName EqEq = Ctx.DeclarationNames.getCXXOperatorName(OO_EqualEqual);
10268 if (!RD->lookup(EqEq).empty())
10269 // Member operator== explicitly declared: no implicit operator==s.
10270 return;
10271
10272 // Traverse friends looking for an '==' or a '<=>'.
10273 for (FriendDecl *Friend : RD->friends()) {
10274 FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Friend->getFriendDecl());
10275 if (!FD) continue;
10276
10277 if (FD->getOverloadedOperator() == OO_EqualEqual) {
10278 // Friend operator== explicitly declared: no implicit operator==s.
10279 Spaceships.clear();
10280 return;
10281 }
10282
10283 if (FD->getOverloadedOperator() == OO_Spaceship &&
10284 FD->isExplicitlyDefaulted())
10285 Spaceships.push_back(FD);
10286 }
10287
10288 // Look for members named 'operator<=>'.
10289 DeclarationName Cmp = Ctx.DeclarationNames.getCXXOperatorName(OO_Spaceship);
10290 for (NamedDecl *ND : RD->lookup(Cmp)) {
10291 // Note that we could find a non-function here (either a function template
10292 // or a using-declaration). Neither case results in an implicit
10293 // 'operator=='.
10294 if (auto *FD = dyn_cast<FunctionDecl>(ND))
10295 if (FD->isExplicitlyDefaulted())
10296 Spaceships.push_back(FD);
10297 }
10298}
10299
10300/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
10301/// special functions, such as the default constructor, copy
10302/// constructor, or destructor, to the given C++ class (C++
10303/// [special]p1). This routine can only be executed just before the
10304/// definition of the class is complete.
10305void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
10306 // Don't add implicit special members to templated classes.
10307 // FIXME: This means unqualified lookups for 'operator=' within a class
10308 // template don't work properly.
10309 if (!ClassDecl->isDependentType()) {
10310 if (ClassDecl->needsImplicitDefaultConstructor()) {
10311 ++getASTContext().NumImplicitDefaultConstructors;
10312
10313 if (ClassDecl->hasInheritedConstructor())
10314 DeclareImplicitDefaultConstructor(ClassDecl);
10315 }
10316
10317 if (ClassDecl->needsImplicitCopyConstructor()) {
10318 ++getASTContext().NumImplicitCopyConstructors;
10319
10320 // If the properties or semantics of the copy constructor couldn't be
10321 // determined while the class was being declared, force a declaration
10322 // of it now.
10323 if (ClassDecl->needsOverloadResolutionForCopyConstructor() ||
10324 ClassDecl->hasInheritedConstructor())
10325 DeclareImplicitCopyConstructor(ClassDecl);
10326 // For the MS ABI we need to know whether the copy ctor is deleted. A
10327 // prerequisite for deleting the implicit copy ctor is that the class has
10328 // a move ctor or move assignment that is either user-declared or whose
10329 // semantics are inherited from a subobject. FIXME: We should provide a
10330 // more direct way for CodeGen to ask whether the constructor was deleted.
10331 else if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
10332 (ClassDecl->hasUserDeclaredMoveConstructor() ||
10333 ClassDecl->needsOverloadResolutionForMoveConstructor() ||
10334 ClassDecl->hasUserDeclaredMoveAssignment() ||
10335 ClassDecl->needsOverloadResolutionForMoveAssignment()))
10336 DeclareImplicitCopyConstructor(ClassDecl);
10337 }
10338
10339 if (getLangOpts().CPlusPlus11 &&
10340 ClassDecl->needsImplicitMoveConstructor()) {
10341 ++getASTContext().NumImplicitMoveConstructors;
10342
10343 if (ClassDecl->needsOverloadResolutionForMoveConstructor() ||
10344 ClassDecl->hasInheritedConstructor())
10345 DeclareImplicitMoveConstructor(ClassDecl);
10346 }
10347
10348 if (ClassDecl->needsImplicitCopyAssignment()) {
10349 ++getASTContext().NumImplicitCopyAssignmentOperators;
10350
10351 // If we have a dynamic class, then the copy assignment operator may be
10352 // virtual, so we have to declare it immediately. This ensures that, e.g.,
10353 // it shows up in the right place in the vtable and that we diagnose
10354 // problems with the implicit exception specification.
10355 if (ClassDecl->isDynamicClass() ||
10356 ClassDecl->needsOverloadResolutionForCopyAssignment() ||
10357 ClassDecl->hasInheritedAssignment())
10358 DeclareImplicitCopyAssignment(ClassDecl);
10359 }
10360
10361 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
10362 ++getASTContext().NumImplicitMoveAssignmentOperators;
10363
10364 // Likewise for the move assignment operator.
10365 if (ClassDecl->isDynamicClass() ||
10366 ClassDecl->needsOverloadResolutionForMoveAssignment() ||
10367 ClassDecl->hasInheritedAssignment())
10368 DeclareImplicitMoveAssignment(ClassDecl);
10369 }
10370
10371 if (ClassDecl->needsImplicitDestructor()) {
10372 ++getASTContext().NumImplicitDestructors;
10373
10374 // If we have a dynamic class, then the destructor may be virtual, so we
10375 // have to declare the destructor immediately. This ensures that, e.g., it
10376 // shows up in the right place in the vtable and that we diagnose problems
10377 // with the implicit exception specification.
10378 if (ClassDecl->isDynamicClass() ||
10379 ClassDecl->needsOverloadResolutionForDestructor())
10380 DeclareImplicitDestructor(ClassDecl);
10381 }
10382 }
10383
10384 // C++2a [class.compare.default]p3:
10385 // If the member-specification does not explicitly declare any member or
10386 // friend named operator==, an == operator function is declared implicitly
10387 // for each defaulted three-way comparison operator function defined in
10388 // the member-specification
10389 // FIXME: Consider doing this lazily.
10390 // We do this during the initial parse for a class template, not during
10391 // instantiation, so that we can handle unqualified lookups for 'operator=='
10392 // when parsing the template.
10393 if (getLangOpts().CPlusPlus20 && !inTemplateInstantiation()) {
10394 llvm::SmallVector<FunctionDecl *, 4> DefaultedSpaceships;
10395 findImplicitlyDeclaredEqualityComparisons(Context, ClassDecl,
10396 DefaultedSpaceships);
10397 for (auto *FD : DefaultedSpaceships)
10398 DeclareImplicitEqualityComparison(ClassDecl, FD);
10399 }
10400}
10401
10402unsigned
10403Sema::ActOnReenterTemplateScope(Decl *D,
10404 llvm::function_ref<Scope *()> EnterScope) {
10405 if (!D)
10406 return 0;
10407 AdjustDeclIfTemplate(D);
10408
10409 // In order to get name lookup right, reenter template scopes in order from
10410 // outermost to innermost.
10411 SmallVector<TemplateParameterList *, 4> ParameterLists;
10412 DeclContext *LookupDC = dyn_cast<DeclContext>(D);
10413
10414 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
10415 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
10416 ParameterLists.push_back(DD->getTemplateParameterList(i));
10417
10418 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
10419 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
10420 ParameterLists.push_back(FTD->getTemplateParameters());
10421 } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
10422 LookupDC = VD->getDeclContext();
10423
10424 if (VarTemplateDecl *VTD = VD->getDescribedVarTemplate())
10425 ParameterLists.push_back(VTD->getTemplateParameters());
10426 else if (auto *PSD = dyn_cast<VarTemplatePartialSpecializationDecl>(D))
10427 ParameterLists.push_back(PSD->getTemplateParameters());
10428 }
10429 } else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
10430 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
10431 ParameterLists.push_back(TD->getTemplateParameterList(i));
10432
10433 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
10434 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
10435 ParameterLists.push_back(CTD->getTemplateParameters());
10436 else if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
10437 ParameterLists.push_back(PSD->getTemplateParameters());
10438 }
10439 }
10440 // FIXME: Alias declarations and concepts.
10441
10442 unsigned Count = 0;
10443 Scope *InnermostTemplateScope = nullptr;
10444 for (TemplateParameterList *Params : ParameterLists) {
10445 // Ignore explicit specializations; they don't contribute to the template
10446 // depth.
10447 if (Params->size() == 0)
10448 continue;
10449
10450 InnermostTemplateScope = EnterScope();
10451 for (NamedDecl *Param : *Params) {
10452 if (Param->getDeclName()) {
10453 InnermostTemplateScope->AddDecl(Param);
10454 IdResolver.AddDecl(Param);
10455 }
10456 }
10457 ++Count;
10458 }
10459
10460 // Associate the new template scopes with the corresponding entities.
10461 if (InnermostTemplateScope) {
10462 assert(LookupDC && "no enclosing DeclContext for template lookup")(static_cast <bool> (LookupDC && "no enclosing DeclContext for template lookup"
) ? void (0) : __assert_fail ("LookupDC && \"no enclosing DeclContext for template lookup\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 10462, __extension__ __PRETTY_FUNCTION__
))
;
10463 EnterTemplatedContext(InnermostTemplateScope, LookupDC);
10464 }
10465
10466 return Count;
10467}
10468
10469void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
10470 if (!RecordD) return;
10471 AdjustDeclIfTemplate(RecordD);
10472 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
10473 PushDeclContext(S, Record);
10474}
10475
10476void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
10477 if (!RecordD) return;
10478 PopDeclContext();
10479}
10480
10481/// This is used to implement the constant expression evaluation part of the
10482/// attribute enable_if extension. There is nothing in standard C++ which would
10483/// require reentering parameters.
10484void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
10485 if (!Param)
10486 return;
10487
10488 S->AddDecl(Param);
10489 if (Param->getDeclName())
10490 IdResolver.AddDecl(Param);
10491}
10492
10493/// ActOnStartDelayedCXXMethodDeclaration - We have completed
10494/// parsing a top-level (non-nested) C++ class, and we are now
10495/// parsing those parts of the given Method declaration that could
10496/// not be parsed earlier (C++ [class.mem]p2), such as default
10497/// arguments. This action should enter the scope of the given
10498/// Method declaration as if we had just parsed the qualified method
10499/// name. However, it should not bring the parameters into scope;
10500/// that will be performed by ActOnDelayedCXXMethodParameter.
10501void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
10502}
10503
10504/// ActOnDelayedCXXMethodParameter - We've already started a delayed
10505/// C++ method declaration. We're (re-)introducing the given
10506/// function parameter into scope for use in parsing later parts of
10507/// the method declaration. For example, we could see an
10508/// ActOnParamDefaultArgument event for this parameter.
10509void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
10510 if (!ParamD)
10511 return;
10512
10513 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
10514
10515 S->AddDecl(Param);
10516 if (Param->getDeclName())
10517 IdResolver.AddDecl(Param);
10518}
10519
10520/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
10521/// processing the delayed method declaration for Method. The method
10522/// declaration is now considered finished. There may be a separate
10523/// ActOnStartOfFunctionDef action later (not necessarily
10524/// immediately!) for this method, if it was also defined inside the
10525/// class body.
10526void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
10527 if (!MethodD)
10528 return;
10529
10530 AdjustDeclIfTemplate(MethodD);
10531
10532 FunctionDecl *Method = cast<FunctionDecl>(MethodD);
10533
10534 // Now that we have our default arguments, check the constructor
10535 // again. It could produce additional diagnostics or affect whether
10536 // the class has implicitly-declared destructors, among other
10537 // things.
10538 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
10539 CheckConstructor(Constructor);
10540
10541 // Check the default arguments, which we may have added.
10542 if (!Method->isInvalidDecl())
10543 CheckCXXDefaultArguments(Method);
10544}
10545
10546// Emit the given diagnostic for each non-address-space qualifier.
10547// Common part of CheckConstructorDeclarator and CheckDestructorDeclarator.
10548static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) {
10549 const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10550 if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) {
10551 bool DiagOccured = false;
10552 FTI.MethodQualifiers->forEachQualifier(
10553 [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName,
10554 SourceLocation SL) {
10555 // This diagnostic should be emitted on any qualifier except an addr
10556 // space qualifier. However, forEachQualifier currently doesn't visit
10557 // addr space qualifiers, so there's no way to write this condition
10558 // right now; we just diagnose on everything.
10559 S.Diag(SL, DiagID) << QualName << SourceRange(SL);
10560 DiagOccured = true;
10561 });
10562 if (DiagOccured)
10563 D.setInvalidType();
10564 }
10565}
10566
10567/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
10568/// the well-formedness of the constructor declarator @p D with type @p
10569/// R. If there are any errors in the declarator, this routine will
10570/// emit diagnostics and set the invalid bit to true. In any case, the type
10571/// will be updated to reflect a well-formed type for the constructor and
10572/// returned.
10573QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
10574 StorageClass &SC) {
10575 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
10576
10577 // C++ [class.ctor]p3:
10578 // A constructor shall not be virtual (10.3) or static (9.4). A
10579 // constructor can be invoked for a const, volatile or const
10580 // volatile object. A constructor shall not be declared const,
10581 // volatile, or const volatile (9.3.2).
10582 if (isVirtual) {
10583 if (!D.isInvalidType())
10584 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
10585 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
10586 << SourceRange(D.getIdentifierLoc());
10587 D.setInvalidType();
10588 }
10589 if (SC == SC_Static) {
10590 if (!D.isInvalidType())
10591 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
10592 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
10593 << SourceRange(D.getIdentifierLoc());
10594 D.setInvalidType();
10595 SC = SC_None;
10596 }
10597
10598 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
10599 diagnoseIgnoredQualifiers(
10600 diag::err_constructor_return_type, TypeQuals, SourceLocation(),
10601 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
10602 D.getDeclSpec().getRestrictSpecLoc(),
10603 D.getDeclSpec().getAtomicSpecLoc());
10604 D.setInvalidType();
10605 }
10606
10607 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor);
10608
10609 // C++0x [class.ctor]p4:
10610 // A constructor shall not be declared with a ref-qualifier.
10611 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10612 if (FTI.hasRefQualifier()) {
10613 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
10614 << FTI.RefQualifierIsLValueRef
10615 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
10616 D.setInvalidType();
10617 }
10618
10619 // Rebuild the function type "R" without any type qualifiers (in
10620 // case any of the errors above fired) and with "void" as the
10621 // return type, since constructors don't have return types.
10622 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>();
10623 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
10624 return R;
10625
10626 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
10627 EPI.TypeQuals = Qualifiers();
10628 EPI.RefQualifier = RQ_None;
10629
10630 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI);
10631}
10632
10633/// CheckConstructor - Checks a fully-formed constructor for
10634/// well-formedness, issuing any diagnostics required. Returns true if
10635/// the constructor declarator is invalid.
10636void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
10637 CXXRecordDecl *ClassDecl
10638 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
10639 if (!ClassDecl)
10640 return Constructor->setInvalidDecl();
10641
10642 // C++ [class.copy]p3:
10643 // A declaration of a constructor for a class X is ill-formed if
10644 // its first parameter is of type (optionally cv-qualified) X and
10645 // either there are no other parameters or else all other
10646 // parameters have default arguments.
10647 if (!Constructor->isInvalidDecl() &&
10648 Constructor->hasOneParamOrDefaultArgs() &&
10649 Constructor->getTemplateSpecializationKind() !=
10650 TSK_ImplicitInstantiation) {
10651 QualType ParamType = Constructor->getParamDecl(0)->getType();
10652 QualType ClassTy = Context.getTagDeclType(ClassDecl);
10653 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
10654 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
10655 const char *ConstRef
10656 = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
10657 : " const &";
10658 Diag(ParamLoc, diag::err_constructor_byvalue_arg)
10659 << FixItHint::CreateInsertion(ParamLoc, ConstRef);
10660
10661 // FIXME: Rather that making the constructor invalid, we should endeavor
10662 // to fix the type.
10663 Constructor->setInvalidDecl();
10664 }
10665 }
10666}
10667
10668/// CheckDestructor - Checks a fully-formed destructor definition for
10669/// well-formedness, issuing any diagnostics required. Returns true
10670/// on error.
10671bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
10672 CXXRecordDecl *RD = Destructor->getParent();
10673
10674 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
10675 SourceLocation Loc;
10676
10677 if (!Destructor->isImplicit())
10678 Loc = Destructor->getLocation();
10679 else
10680 Loc = RD->getLocation();
10681
10682 // If we have a virtual destructor, look up the deallocation function
10683 if (FunctionDecl *OperatorDelete =
10684 FindDeallocationFunctionForDestructor(Loc, RD)) {
10685 Expr *ThisArg = nullptr;
10686
10687 // If the notional 'delete this' expression requires a non-trivial
10688 // conversion from 'this' to the type of a destroying operator delete's
10689 // first parameter, perform that conversion now.
10690 if (OperatorDelete->isDestroyingOperatorDelete()) {
10691 QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
10692 if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) {
10693 // C++ [class.dtor]p13:
10694 // ... as if for the expression 'delete this' appearing in a
10695 // non-virtual destructor of the destructor's class.
10696 ContextRAII SwitchContext(*this, Destructor);
10697 ExprResult This =
10698 ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation());
10699 assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?")(static_cast <bool> (!This.isInvalid() && "couldn't form 'this' expr in dtor?"
) ? void (0) : __assert_fail ("!This.isInvalid() && \"couldn't form 'this' expr in dtor?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 10699, __extension__ __PRETTY_FUNCTION__
))
;
10700 This = PerformImplicitConversion(This.get(), ParamType, AA_Passing);
10701 if (This.isInvalid()) {
10702 // FIXME: Register this as a context note so that it comes out
10703 // in the right order.
10704 Diag(Loc, diag::note_implicit_delete_this_in_destructor_here);
10705 return true;
10706 }
10707 ThisArg = This.get();
10708 }
10709 }
10710
10711 DiagnoseUseOfDecl(OperatorDelete, Loc);
10712 MarkFunctionReferenced(Loc, OperatorDelete);
10713 Destructor->setOperatorDelete(OperatorDelete, ThisArg);
10714 }
10715 }
10716
10717 return false;
10718}
10719
10720/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
10721/// the well-formednes of the destructor declarator @p D with type @p
10722/// R. If there are any errors in the declarator, this routine will
10723/// emit diagnostics and set the declarator to invalid. Even if this happens,
10724/// will be updated to reflect a well-formed type for the destructor and
10725/// returned.
10726QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
10727 StorageClass& SC) {
10728 // C++ [class.dtor]p1:
10729 // [...] A typedef-name that names a class is a class-name
10730 // (7.1.3); however, a typedef-name that names a class shall not
10731 // be used as the identifier in the declarator for a destructor
10732 // declaration.
10733 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
10734 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
10735 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name)
10736 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
10737 else if (const TemplateSpecializationType *TST =
10738 DeclaratorType->getAs<TemplateSpecializationType>())
10739 if (TST->isTypeAlias())
10740 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name)
10741 << DeclaratorType << 1;
10742
10743 // C++ [class.dtor]p2:
10744 // A destructor is used to destroy objects of its class type. A
10745 // destructor takes no parameters, and no return type can be
10746 // specified for it (not even void). The address of a destructor
10747 // shall not be taken. A destructor shall not be static. A
10748 // destructor can be invoked for a const, volatile or const
10749 // volatile object. A destructor shall not be declared const,
10750 // volatile or const volatile (9.3.2).
10751 if (SC == SC_Static) {
10752 if (!D.isInvalidType())
10753 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
10754 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
10755 << SourceRange(D.getIdentifierLoc())
10756 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
10757
10758 SC = SC_None;
10759 }
10760 if (!D.isInvalidType()) {
10761 // Destructors don't have return types, but the parser will
10762 // happily parse something like:
10763 //
10764 // class X {
10765 // float ~X();
10766 // };
10767 //
10768 // The return type will be eliminated later.
10769 if (D.getDeclSpec().hasTypeSpecifier())
10770 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
10771 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
10772 << SourceRange(D.getIdentifierLoc());
10773 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
10774 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
10775 SourceLocation(),
10776 D.getDeclSpec().getConstSpecLoc(),
10777 D.getDeclSpec().getVolatileSpecLoc(),
10778 D.getDeclSpec().getRestrictSpecLoc(),
10779 D.getDeclSpec().getAtomicSpecLoc());
10780 D.setInvalidType();
10781 }
10782 }
10783
10784 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor);
10785
10786 // C++0x [class.dtor]p2:
10787 // A destructor shall not be declared with a ref-qualifier.
10788 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10789 if (FTI.hasRefQualifier()) {
10790 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
10791 << FTI.RefQualifierIsLValueRef
10792 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
10793 D.setInvalidType();
10794 }
10795
10796 // Make sure we don't have any parameters.
10797 if (FTIHasNonVoidParameters(FTI)) {
10798 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
10799
10800 // Delete the parameters.
10801 FTI.freeParams();
10802 D.setInvalidType();
10803 }
10804
10805 // Make sure the destructor isn't variadic.
10806 if (FTI.isVariadic) {
10807 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
10808 D.setInvalidType();
10809 }
10810
10811 // Rebuild the function type "R" without any type qualifiers or
10812 // parameters (in case any of the errors above fired) and with
10813 // "void" as the return type, since destructors don't have return
10814 // types.
10815 if (!D.isInvalidType())
10816 return R;
10817
10818 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>();
10819 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
10820 EPI.Variadic = false;
10821 EPI.TypeQuals = Qualifiers();
10822 EPI.RefQualifier = RQ_None;
10823 return Context.getFunctionType(Context.VoidTy, std::nullopt, EPI);
10824}
10825
10826static void extendLeft(SourceRange &R, SourceRange Before) {
10827 if (Before.isInvalid())
10828 return;
10829 R.setBegin(Before.getBegin());
10830 if (R.getEnd().isInvalid())
10831 R.setEnd(Before.getEnd());
10832}
10833
10834static void extendRight(SourceRange &R, SourceRange After) {
10835 if (After.isInvalid())
10836 return;
10837 if (R.getBegin().isInvalid())
10838 R.setBegin(After.getBegin());
10839 R.setEnd(After.getEnd());
10840}
10841
10842/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
10843/// well-formednes of the conversion function declarator @p D with
10844/// type @p R. If there are any errors in the declarator, this routine
10845/// will emit diagnostics and return true. Otherwise, it will return
10846/// false. Either way, the type @p R will be updated to reflect a
10847/// well-formed type for the conversion operator.
10848void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
10849 StorageClass& SC) {
10850 // C++ [class.conv.fct]p1:
10851 // Neither parameter types nor return type can be specified. The
10852 // type of a conversion function (8.3.5) is "function taking no
10853 // parameter returning conversion-type-id."
10854 if (SC == SC_Static) {
10855 if (!D.isInvalidType())
10856 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
10857 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
10858 << D.getName().getSourceRange();
10859 D.setInvalidType();
10860 SC = SC_None;
10861 }
10862
10863 TypeSourceInfo *ConvTSI = nullptr;
10864 QualType ConvType =
10865 GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI);
10866
10867 const DeclSpec &DS = D.getDeclSpec();
10868 if (DS.hasTypeSpecifier() && !D.isInvalidType()) {
10869 // Conversion functions don't have return types, but the parser will
10870 // happily parse something like:
10871 //
10872 // class X {
10873 // float operator bool();
10874 // };
10875 //
10876 // The return type will be changed later anyway.
10877 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
10878 << SourceRange(DS.getTypeSpecTypeLoc())
10879 << SourceRange(D.getIdentifierLoc());
10880 D.setInvalidType();
10881 } else if (DS.getTypeQualifiers() && !D.isInvalidType()) {
10882 // It's also plausible that the user writes type qualifiers in the wrong
10883 // place, such as:
10884 // struct S { const operator int(); };
10885 // FIXME: we could provide a fixit to move the qualifiers onto the
10886 // conversion type.
10887 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
10888 << SourceRange(D.getIdentifierLoc()) << 0;
10889 D.setInvalidType();
10890 }
10891
10892 const auto *Proto = R->castAs<FunctionProtoType>();
10893
10894 // Make sure we don't have any parameters.
10895 if (Proto->getNumParams() > 0) {
10896 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
10897
10898 // Delete the parameters.
10899 D.getFunctionTypeInfo().freeParams();
10900 D.setInvalidType();
10901 } else if (Proto->isVariadic()) {
10902 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
10903 D.setInvalidType();
10904 }
10905
10906 // Diagnose "&operator bool()" and other such nonsense. This
10907 // is actually a gcc extension which we don't support.
10908 if (Proto->getReturnType() != ConvType) {
10909 bool NeedsTypedef = false;
10910 SourceRange Before, After;
10911
10912 // Walk the chunks and extract information on them for our diagnostic.
10913 bool PastFunctionChunk = false;
10914 for (auto &Chunk : D.type_objects()) {
10915 switch (Chunk.Kind) {
10916 case DeclaratorChunk::Function:
10917 if (!PastFunctionChunk) {
10918 if (Chunk.Fun.HasTrailingReturnType) {
10919 TypeSourceInfo *TRT = nullptr;
10920 GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT);
10921 if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange());
10922 }
10923 PastFunctionChunk = true;
10924 break;
10925 }
10926 [[fallthrough]];
10927 case DeclaratorChunk::Array:
10928 NeedsTypedef = true;
10929 extendRight(After, Chunk.getSourceRange());
10930 break;
10931
10932 case DeclaratorChunk::Pointer:
10933 case DeclaratorChunk::BlockPointer:
10934 case DeclaratorChunk::Reference:
10935 case DeclaratorChunk::MemberPointer:
10936 case DeclaratorChunk::Pipe:
10937 extendLeft(Before, Chunk.getSourceRange());
10938 break;
10939
10940 case DeclaratorChunk::Paren:
10941 extendLeft(Before, Chunk.Loc);
10942 extendRight(After, Chunk.EndLoc);
10943 break;
10944 }
10945 }
10946
10947 SourceLocation Loc = Before.isValid() ? Before.getBegin() :
10948 After.isValid() ? After.getBegin() :
10949 D.getIdentifierLoc();
10950 auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl);
10951 DB << Before << After;
10952
10953 if (!NeedsTypedef) {
10954 DB << /*don't need a typedef*/0;
10955
10956 // If we can provide a correct fix-it hint, do so.
10957 if (After.isInvalid() && ConvTSI) {
10958 SourceLocation InsertLoc =
10959 getLocForEndOfToken(ConvTSI->getTypeLoc().getEndLoc());
10960 DB << FixItHint::CreateInsertion(InsertLoc, " ")
10961 << FixItHint::CreateInsertionFromRange(
10962 InsertLoc, CharSourceRange::getTokenRange(Before))
10963 << FixItHint::CreateRemoval(Before);
10964 }
10965 } else if (!Proto->getReturnType()->isDependentType()) {
10966 DB << /*typedef*/1 << Proto->getReturnType();
10967 } else if (getLangOpts().CPlusPlus11) {
10968 DB << /*alias template*/2 << Proto->getReturnType();
10969 } else {
10970 DB << /*might not be fixable*/3;
10971 }
10972
10973 // Recover by incorporating the other type chunks into the result type.
10974 // Note, this does *not* change the name of the function. This is compatible
10975 // with the GCC extension:
10976 // struct S { &operator int(); } s;
10977 // int &r = s.operator int(); // ok in GCC
10978 // S::operator int&() {} // error in GCC, function name is 'operator int'.
10979 ConvType = Proto->getReturnType();
10980 }
10981
10982 // C++ [class.conv.fct]p4:
10983 // The conversion-type-id shall not represent a function type nor
10984 // an array type.
10985 if (ConvType->isArrayType()) {
10986 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
10987 ConvType = Context.getPointerType(ConvType);
10988 D.setInvalidType();
10989 } else if (ConvType->isFunctionType()) {
10990 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
10991 ConvType = Context.getPointerType(ConvType);
10992 D.setInvalidType();
10993 }
10994
10995 // Rebuild the function type "R" without any parameters (in case any
10996 // of the errors above fired) and with the conversion type as the
10997 // return type.
10998 if (D.isInvalidType())
10999 R = Context.getFunctionType(ConvType, std::nullopt,
11000 Proto->getExtProtoInfo());
11001
11002 // C++0x explicit conversion operators.
11003 if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus20)
11004 Diag(DS.getExplicitSpecLoc(),
11005 getLangOpts().CPlusPlus11
11006 ? diag::warn_cxx98_compat_explicit_conversion_functions
11007 : diag::ext_explicit_conversion_functions)
11008 << SourceRange(DS.getExplicitSpecRange());
11009}
11010
11011/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
11012/// the declaration of the given C++ conversion function. This routine
11013/// is responsible for recording the conversion function in the C++
11014/// class, if possible.
11015Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
11016 assert(Conversion && "Expected to receive a conversion function declaration")(static_cast <bool> (Conversion && "Expected to receive a conversion function declaration"
) ? void (0) : __assert_fail ("Conversion && \"Expected to receive a conversion function declaration\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11016, __extension__ __PRETTY_FUNCTION__
))
;
11017
11018 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
11019
11020 // Make sure we aren't redeclaring the conversion function.
11021 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
11022 // C++ [class.conv.fct]p1:
11023 // [...] A conversion function is never used to convert a
11024 // (possibly cv-qualified) object to the (possibly cv-qualified)
11025 // same object type (or a reference to it), to a (possibly
11026 // cv-qualified) base class of that type (or a reference to it),
11027 // or to (possibly cv-qualified) void.
11028 QualType ClassType
11029 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
11030 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
11031 ConvType = ConvTypeRef->getPointeeType();
11032 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
11033 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
11034 /* Suppress diagnostics for instantiations. */;
11035 else if (Conversion->size_overridden_methods() != 0)
11036 /* Suppress diagnostics for overriding virtual function in a base class. */;
11037 else if (ConvType->isRecordType()) {
11038 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
11039 if (ConvType == ClassType)
11040 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
11041 << ClassType;
11042 else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType))
11043 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
11044 << ClassType << ConvType;
11045 } else if (ConvType->isVoidType()) {
11046 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
11047 << ClassType << ConvType;
11048 }
11049
11050 if (FunctionTemplateDecl *ConversionTemplate
11051 = Conversion->getDescribedFunctionTemplate())
11052 return ConversionTemplate;
11053
11054 return Conversion;
11055}
11056
11057namespace {
11058/// Utility class to accumulate and print a diagnostic listing the invalid
11059/// specifier(s) on a declaration.
11060struct BadSpecifierDiagnoser {
11061 BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID)
11062 : S(S), Diagnostic(S.Diag(Loc, DiagID)) {}
11063 ~BadSpecifierDiagnoser() {
11064 Diagnostic << Specifiers;
11065 }
11066
11067 template<typename T> void check(SourceLocation SpecLoc, T Spec) {
11068 return check(SpecLoc, DeclSpec::getSpecifierName(Spec));
11069 }
11070 void check(SourceLocation SpecLoc, DeclSpec::TST Spec) {
11071 return check(SpecLoc,
11072 DeclSpec::getSpecifierName(Spec, S.getPrintingPolicy()));
11073 }
11074 void check(SourceLocation SpecLoc, const char *Spec) {
11075 if (SpecLoc.isInvalid()) return;
11076 Diagnostic << SourceRange(SpecLoc, SpecLoc);
11077 if (!Specifiers.empty()) Specifiers += " ";
11078 Specifiers += Spec;
11079 }
11080
11081 Sema &S;
11082 Sema::SemaDiagnosticBuilder Diagnostic;
11083 std::string Specifiers;
11084};
11085}
11086
11087/// Check the validity of a declarator that we parsed for a deduction-guide.
11088/// These aren't actually declarators in the grammar, so we need to check that
11089/// the user didn't specify any pieces that are not part of the deduction-guide
11090/// grammar.
11091void Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R,
11092 StorageClass &SC) {
11093 TemplateName GuidedTemplate = D.getName().TemplateName.get().get();
11094 TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl();
11095 assert(GuidedTemplateDecl && "missing template decl for deduction guide")(static_cast <bool> (GuidedTemplateDecl && "missing template decl for deduction guide"
) ? void (0) : __assert_fail ("GuidedTemplateDecl && \"missing template decl for deduction guide\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11095, __extension__ __PRETTY_FUNCTION__
))
;
11096
11097 // C++ [temp.deduct.guide]p3:
11098 // A deduction-gide shall be declared in the same scope as the
11099 // corresponding class template.
11100 if (!CurContext->getRedeclContext()->Equals(
11101 GuidedTemplateDecl->getDeclContext()->getRedeclContext())) {
11102 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope)
11103 << GuidedTemplateDecl;
11104 Diag(GuidedTemplateDecl->getLocation(), diag::note_template_decl_here);
11105 }
11106
11107 auto &DS = D.getMutableDeclSpec();
11108 // We leave 'friend' and 'virtual' to be rejected in the normal way.
11109 if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() ||
11110 DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() ||
11111 DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) {
11112 BadSpecifierDiagnoser Diagnoser(
11113 *this, D.getIdentifierLoc(),
11114 diag::err_deduction_guide_invalid_specifier);
11115
11116 Diagnoser.check(DS.getStorageClassSpecLoc(), DS.getStorageClassSpec());
11117 DS.ClearStorageClassSpecs();
11118 SC = SC_None;
11119
11120 // 'explicit' is permitted.
11121 Diagnoser.check(DS.getInlineSpecLoc(), "inline");
11122 Diagnoser.check(DS.getNoreturnSpecLoc(), "_Noreturn");
11123 Diagnoser.check(DS.getConstexprSpecLoc(), "constexpr");
11124 DS.ClearConstexprSpec();
11125
11126 Diagnoser.check(DS.getConstSpecLoc(), "const");
11127 Diagnoser.check(DS.getRestrictSpecLoc(), "__restrict");
11128 Diagnoser.check(DS.getVolatileSpecLoc(), "volatile");
11129 Diagnoser.check(DS.getAtomicSpecLoc(), "_Atomic");
11130 Diagnoser.check(DS.getUnalignedSpecLoc(), "__unaligned");
11131 DS.ClearTypeQualifiers();
11132
11133 Diagnoser.check(DS.getTypeSpecComplexLoc(), DS.getTypeSpecComplex());
11134 Diagnoser.check(DS.getTypeSpecSignLoc(), DS.getTypeSpecSign());
11135 Diagnoser.check(DS.getTypeSpecWidthLoc(), DS.getTypeSpecWidth());
11136 Diagnoser.check(DS.getTypeSpecTypeLoc(), DS.getTypeSpecType());
11137 DS.ClearTypeSpecType();
11138 }
11139
11140 if (D.isInvalidType())
11141 return;
11142
11143 // Check the declarator is simple enough.
11144 bool FoundFunction = false;
11145 for (const DeclaratorChunk &Chunk : llvm::reverse(D.type_objects())) {
11146 if (Chunk.Kind == DeclaratorChunk::Paren)
11147 continue;
11148 if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) {
11149 Diag(D.getDeclSpec().getBeginLoc(),
11150 diag::err_deduction_guide_with_complex_decl)
11151 << D.getSourceRange();
11152 break;
11153 }
11154 if (!Chunk.Fun.hasTrailingReturnType()) {
11155 Diag(D.getName().getBeginLoc(),
11156 diag::err_deduction_guide_no_trailing_return_type);
11157 break;
11158 }
11159
11160 // Check that the return type is written as a specialization of
11161 // the template specified as the deduction-guide's name.
11162 // The template name may not be qualified. [temp.deduct.guide]
11163 ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType();
11164 TypeSourceInfo *TSI = nullptr;
11165 QualType RetTy = GetTypeFromParser(TrailingReturnType, &TSI);
11166 assert(TSI && "deduction guide has valid type but invalid return type?")(static_cast <bool> (TSI && "deduction guide has valid type but invalid return type?"
) ? void (0) : __assert_fail ("TSI && \"deduction guide has valid type but invalid return type?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11166, __extension__ __PRETTY_FUNCTION__
))
;
11167 bool AcceptableReturnType = false;
11168 bool MightInstantiateToSpecialization = false;
11169 if (auto RetTST =
11170 TSI->getTypeLoc().getAsAdjusted<TemplateSpecializationTypeLoc>()) {
11171 TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName();
11172 bool TemplateMatches =
11173 Context.hasSameTemplateName(SpecifiedName, GuidedTemplate);
11174 auto TKind = SpecifiedName.getKind();
11175 // A Using TemplateName can't actually be valid (either it's qualified, or
11176 // we're in the wrong scope). But we have diagnosed these problems
11177 // already.
11178 bool SimplyWritten = TKind == TemplateName::Template ||
11179 TKind == TemplateName::UsingTemplate;
11180 if (SimplyWritten && TemplateMatches)
11181 AcceptableReturnType = true;
11182 else {
11183 // This could still instantiate to the right type, unless we know it
11184 // names the wrong class template.
11185 auto *TD = SpecifiedName.getAsTemplateDecl();
11186 MightInstantiateToSpecialization = !(TD && isa<ClassTemplateDecl>(TD) &&
11187 !TemplateMatches);
11188 }
11189 } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) {
11190 MightInstantiateToSpecialization = true;
11191 }
11192
11193 if (!AcceptableReturnType) {
11194 Diag(TSI->getTypeLoc().getBeginLoc(),
11195 diag::err_deduction_guide_bad_trailing_return_type)
11196 << GuidedTemplate << TSI->getType()
11197 << MightInstantiateToSpecialization
11198 << TSI->getTypeLoc().getSourceRange();
11199 }
11200
11201 // Keep going to check that we don't have any inner declarator pieces (we
11202 // could still have a function returning a pointer to a function).
11203 FoundFunction = true;
11204 }
11205
11206 if (D.isFunctionDefinition())
11207 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function);
11208}
11209
11210//===----------------------------------------------------------------------===//
11211// Namespace Handling
11212//===----------------------------------------------------------------------===//
11213
11214/// Diagnose a mismatch in 'inline' qualifiers when a namespace is
11215/// reopened.
11216static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
11217 SourceLocation Loc,
11218 IdentifierInfo *II, bool *IsInline,
11219 NamespaceDecl *PrevNS) {
11220 assert(*IsInline != PrevNS->isInline())(static_cast <bool> (*IsInline != PrevNS->isInline()
) ? void (0) : __assert_fail ("*IsInline != PrevNS->isInline()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 11220, __extension__ __PRETTY_FUNCTION__
))
;
11221
11222 // 'inline' must appear on the original definition, but not necessarily
11223 // on all extension definitions, so the note should point to the first
11224 // definition to avoid confusion.
11225 PrevNS = PrevNS->getFirstDecl();
11226
11227 if (PrevNS->isInline())
11228 // The user probably just forgot the 'inline', so suggest that it
11229 // be added back.
11230 S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
11231 << FixItHint::CreateInsertion(KeywordLoc, "inline ");
11232 else
11233 S.Diag(Loc, diag::err_inline_namespace_mismatch);
11234
11235 S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
11236 *IsInline = PrevNS->isInline();
11237}
11238
11239/// ActOnStartNamespaceDef - This is called at the start of a namespace
11240/// definition.
11241Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
11242 SourceLocation InlineLoc,
11243 SourceLocation NamespaceLoc,
11244 SourceLocation IdentLoc, IdentifierInfo *II,
11245 SourceLocation LBrace,
11246 const ParsedAttributesView &AttrList,
11247 UsingDirectiveDecl *&UD, bool IsNested) {
11248 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
11249 // For anonymous namespace, take the location of the left brace.
11250 SourceLocation Loc = II ? IdentLoc : LBrace;
11251 bool IsInline = InlineLoc.isValid();
11252 bool IsInvalid = false;
11253 bool IsStd = false;
11254 bool AddToKnown = false;
11255 Scope *DeclRegionScope = NamespcScope->getParent();
11256
11257 NamespaceDecl *PrevNS = nullptr;
11258 if (II) {
11259 // C++ [namespace.def]p2:
11260 // The identifier in an original-namespace-definition shall not
11261 // have been previously defined in the declarative region in
11262 // which the original-namespace-definition appears. The
11263 // identifier in an original-namespace-definition is the name of
11264 // the namespace. Subsequently in that declarative region, it is
11265 // treated as an original-namespace-name.
11266 //
11267 // Since namespace names are unique in their scope, and we don't
11268 // look through using directives, just look for any ordinary names
11269 // as if by qualified name lookup.
11270 LookupResult R(*this, II, IdentLoc, LookupOrdinaryName,
11271 ForExternalRedeclaration);
11272 LookupQualifiedName(R, CurContext->getRedeclContext());
11273 NamedDecl *PrevDecl =
11274 R.isSingleResult() ? R.getRepresentativeDecl() : nullptr;
11275 PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
11276
11277 if (PrevNS) {
11278 // This is an extended namespace definition.
11279 if (IsInline != PrevNS->isInline())
11280 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
11281 &IsInline, PrevNS);
11282 } else if (PrevDecl) {
11283 // This is an invalid name redefinition.
11284 Diag(Loc, diag::err_redefinition_different_kind)
11285 << II;
11286 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
11287 IsInvalid = true;
11288 // Continue on to push Namespc as current DeclContext and return it.
11289 } else if (II->isStr("std") &&
11290 CurContext->getRedeclContext()->isTranslationUnit()) {
11291 // This is the first "real" definition of the namespace "std", so update
11292 // our cache of the "std" namespace to point at this definition.
11293 PrevNS = getStdNamespace();
11294 IsStd = true;
11295 AddToKnown = !IsInline;
11296 } else {
11297 // We've seen this namespace for the first time.
11298 AddToKnown = !IsInline;
11299 }
11300 } else {
11301 // Anonymous namespaces.
11302
11303 // Determine whether the parent already has an anonymous namespace.
11304 DeclContext *Parent = CurContext->getRedeclContext();
11305 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
11306 PrevNS = TU->getAnonymousNamespace();
11307 } else {
11308 NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
11309 PrevNS = ND->getAnonymousNamespace();
11310 }
11311
11312 if (PrevNS && IsInline != PrevNS->isInline())
11313 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
11314 &IsInline, PrevNS);
11315 }
11316
11317 NamespaceDecl *Namespc = NamespaceDecl::Create(
11318 Context, CurContext, IsInline, StartLoc, Loc, II, PrevNS, IsNested);
11319 if (IsInvalid)
11320 Namespc->setInvalidDecl();
11321
11322 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
11323 AddPragmaAttributes(DeclRegionScope, Namespc);
11324
11325 // FIXME: Should we be merging attributes?
11326 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
11327 PushNamespaceVisibilityAttr(Attr, Loc);
11328
11329 if (IsStd)
11330 StdNamespace = Namespc;
11331 if (AddToKnown)
11332 KnownNamespaces[Namespc] = false;
11333
11334 if (II) {
11335 PushOnScopeChains(Namespc, DeclRegionScope);
11336 } else {
11337 // Link the anonymous namespace into its parent.
11338 DeclContext *Parent = CurContext->getRedeclContext();
11339 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
11340 TU->setAnonymousNamespace(Namespc);
11341 } else {
11342 cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
11343 }
11344
11345 CurContext->addDecl(Namespc);
11346
11347 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition
11348 // behaves as if it were replaced by
11349 // namespace unique { /* empty body */ }
11350 // using namespace unique;
11351 // namespace unique { namespace-body }
11352 // where all occurrences of 'unique' in a translation unit are
11353 // replaced by the same identifier and this identifier differs
11354 // from all other identifiers in the entire program.
11355
11356 // We just create the namespace with an empty name and then add an
11357 // implicit using declaration, just like the standard suggests.
11358 //
11359 // CodeGen enforces the "universally unique" aspect by giving all
11360 // declarations semantically contained within an anonymous
11361 // namespace internal linkage.
11362
11363 if (!PrevNS) {
11364 UD = UsingDirectiveDecl::Create(Context, Parent,
11365 /* 'using' */ LBrace,
11366 /* 'namespace' */ SourceLocation(),
11367 /* qualifier */ NestedNameSpecifierLoc(),
11368 /* identifier */ SourceLocation(),
11369 Namespc,
11370 /* Ancestor */ Parent);
11371 UD->setImplicit();
11372 Parent->addDecl(UD);
11373 }
11374 }
11375
11376 ActOnDocumentableDecl(Namespc);
11377
11378 // Although we could have an invalid decl (i.e. the namespace name is a
11379 // redefinition), push it as current DeclContext and try to continue parsing.
11380 // FIXME: We should be able to push Namespc here, so that the each DeclContext
11381 // for the namespace has the declarations that showed up in that particular
11382 // namespace definition.
11383 PushDeclContext(NamespcScope, Namespc);
11384 return Namespc;
11385}
11386
11387/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
11388/// is a namespace alias, returns the namespace it points to.
11389static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
11390 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
11391 return AD->getNamespace();
11392 return dyn_cast_or_null<NamespaceDecl>(D);
11393}
11394
11395/// ActOnFinishNamespaceDef - This callback is called after a namespace is
11396/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
11397void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
11398 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
11399 assert(Namespc && "Invalid parameter, expected NamespaceDecl")(static_cast <bool> (Namespc && "Invalid parameter, expected NamespaceDecl"
) ? void (0) : __assert_fail ("Namespc && \"Invalid parameter, expected NamespaceDecl\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11399, __extension__ __PRETTY_FUNCTION__
))
;
11400 Namespc->setRBraceLoc(RBrace);
11401 PopDeclContext();
11402 if (Namespc->hasAttr<VisibilityAttr>())
11403 PopPragmaVisibility(true, RBrace);
11404 // If this namespace contains an export-declaration, export it now.
11405 if (DeferredExportedNamespaces.erase(Namespc))
11406 Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported);
11407}
11408
11409CXXRecordDecl *Sema::getStdBadAlloc() const {
11410 return cast_or_null<CXXRecordDecl>(
11411 StdBadAlloc.get(Context.getExternalSource()));
11412}
11413
11414EnumDecl *Sema::getStdAlignValT() const {
11415 return cast_or_null<EnumDecl>(StdAlignValT.get(Context.getExternalSource()));
11416}
11417
11418NamespaceDecl *Sema::getStdNamespace() const {
11419 return cast_or_null<NamespaceDecl>(
11420 StdNamespace.get(Context.getExternalSource()));
11421}
11422namespace {
11423
11424enum UnsupportedSTLSelect {
11425 USS_InvalidMember,
11426 USS_MissingMember,
11427 USS_NonTrivial,
11428 USS_Other
11429};
11430
11431struct InvalidSTLDiagnoser {
11432 Sema &S;
11433 SourceLocation Loc;
11434 QualType TyForDiags;
11435
11436 QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "",
11437 const VarDecl *VD = nullptr) {
11438 {
11439 auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported)
11440 << TyForDiags << ((int)Sel);
11441 if (Sel == USS_InvalidMember || Sel == USS_MissingMember) {
11442 assert(!Name.empty())(static_cast <bool> (!Name.empty()) ? void (0) : __assert_fail
("!Name.empty()", "clang/lib/Sema/SemaDeclCXX.cpp", 11442, __extension__
__PRETTY_FUNCTION__))
;
11443 D << Name;
11444 }
11445 }
11446 if (Sel == USS_InvalidMember) {
11447 S.Diag(VD->getLocation(), diag::note_var_declared_here)
11448 << VD << VD->getSourceRange();
11449 }
11450 return QualType();
11451 }
11452};
11453} // namespace
11454
11455QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind,
11456 SourceLocation Loc,
11457 ComparisonCategoryUsage Usage) {
11458 assert(getLangOpts().CPlusPlus &&(static_cast <bool> (getLangOpts().CPlusPlus &&
"Looking for comparison category type outside of C++.") ? void
(0) : __assert_fail ("getLangOpts().CPlusPlus && \"Looking for comparison category type outside of C++.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11459, __extension__ __PRETTY_FUNCTION__
))
11459 "Looking for comparison category type outside of C++.")(static_cast <bool> (getLangOpts().CPlusPlus &&
"Looking for comparison category type outside of C++.") ? void
(0) : __assert_fail ("getLangOpts().CPlusPlus && \"Looking for comparison category type outside of C++.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11459, __extension__ __PRETTY_FUNCTION__
))
;
11460
11461 // Use an elaborated type for diagnostics which has a name containing the
11462 // prepended 'std' namespace but not any inline namespace names.
11463 auto TyForDiags = [&](ComparisonCategoryInfo *Info) {
11464 auto *NNS =
11465 NestedNameSpecifier::Create(Context, nullptr, getStdNamespace());
11466 return Context.getElaboratedType(ETK_None, NNS, Info->getType());
11467 };
11468
11469 // Check if we've already successfully checked the comparison category type
11470 // before. If so, skip checking it again.
11471 ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind);
11472 if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)]) {
11473 // The only thing we need to check is that the type has a reachable
11474 // definition in the current context.
11475 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type))
11476 return QualType();
11477
11478 return Info->getType();
11479 }
11480
11481 // If lookup failed
11482 if (!Info) {
11483 std::string NameForDiags = "std::";
11484 NameForDiags += ComparisonCategories::getCategoryString(Kind);
11485 Diag(Loc, diag::err_implied_comparison_category_type_not_found)
11486 << NameForDiags << (int)Usage;
11487 return QualType();
11488 }
11489
11490 assert(Info->Kind == Kind)(static_cast <bool> (Info->Kind == Kind) ? void (0) :
__assert_fail ("Info->Kind == Kind", "clang/lib/Sema/SemaDeclCXX.cpp"
, 11490, __extension__ __PRETTY_FUNCTION__))
;
11491 assert(Info->Record)(static_cast <bool> (Info->Record) ? void (0) : __assert_fail
("Info->Record", "clang/lib/Sema/SemaDeclCXX.cpp", 11491,
__extension__ __PRETTY_FUNCTION__))
;
11492
11493 // Update the Record decl in case we encountered a forward declaration on our
11494 // first pass. FIXME: This is a bit of a hack.
11495 if (Info->Record->hasDefinition())
11496 Info->Record = Info->Record->getDefinition();
11497
11498 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type))
11499 return QualType();
11500
11501 InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags(Info)};
11502
11503 if (!Info->Record->isTriviallyCopyable())
11504 return UnsupportedSTLError(USS_NonTrivial);
11505
11506 for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) {
11507 CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl();
11508 // Tolerate empty base classes.
11509 if (Base->isEmpty())
11510 continue;
11511 // Reject STL implementations which have at least one non-empty base.
11512 return UnsupportedSTLError();
11513 }
11514
11515 // Check that the STL has implemented the types using a single integer field.
11516 // This expectation allows better codegen for builtin operators. We require:
11517 // (1) The class has exactly one field.
11518 // (2) The field is an integral or enumeration type.
11519 auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end();
11520 if (std::distance(FIt, FEnd) != 1 ||
11521 !FIt->getType()->isIntegralOrEnumerationType()) {
11522 return UnsupportedSTLError();
11523 }
11524
11525 // Build each of the require values and store them in Info.
11526 for (ComparisonCategoryResult CCR :
11527 ComparisonCategories::getPossibleResultsForType(Kind)) {
11528 StringRef MemName = ComparisonCategories::getResultString(CCR);
11529 ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(CCR);
11530
11531 if (!ValInfo)
11532 return UnsupportedSTLError(USS_MissingMember, MemName);
11533
11534 VarDecl *VD = ValInfo->VD;
11535 assert(VD && "should not be null!")(static_cast <bool> (VD && "should not be null!"
) ? void (0) : __assert_fail ("VD && \"should not be null!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11535, __extension__ __PRETTY_FUNCTION__
))
;
11536
11537 // Attempt to diagnose reasons why the STL definition of this type
11538 // might be foobar, including it failing to be a constant expression.
11539 // TODO Handle more ways the lookup or result can be invalid.
11540 if (!VD->isStaticDataMember() ||
11541 !VD->isUsableInConstantExpressions(Context))
11542 return UnsupportedSTLError(USS_InvalidMember, MemName, VD);
11543
11544 // Attempt to evaluate the var decl as a constant expression and extract
11545 // the value of its first field as a ICE. If this fails, the STL
11546 // implementation is not supported.
11547 if (!ValInfo->hasValidIntValue())
11548 return UnsupportedSTLError();
11549
11550 MarkVariableReferenced(Loc, VD);
11551 }
11552
11553 // We've successfully built the required types and expressions. Update
11554 // the cache and return the newly cached value.
11555 FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true;
11556 return Info->getType();
11557}
11558
11559/// Retrieve the special "std" namespace, which may require us to
11560/// implicitly define the namespace.
11561NamespaceDecl *Sema::getOrCreateStdNamespace() {
11562 if (!StdNamespace) {
11563 // The "std" namespace has not yet been defined, so build one implicitly.
11564 StdNamespace = NamespaceDecl::Create(
11565 Context, Context.getTranslationUnitDecl(),
11566 /*Inline=*/false, SourceLocation(), SourceLocation(),
11567 &PP.getIdentifierTable().get("std"),
11568 /*PrevDecl=*/nullptr, /*Nested=*/false);
11569 getStdNamespace()->setImplicit(true);
11570 // We want the created NamespaceDecl to be available for redeclaration
11571 // lookups, but not for regular name lookups.
11572 Context.getTranslationUnitDecl()->addDecl(getStdNamespace());
11573 getStdNamespace()->clearIdentifierNamespace();
11574 }
11575
11576 return getStdNamespace();
11577}
11578
11579bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
11580 assert(getLangOpts().CPlusPlus &&(static_cast <bool> (getLangOpts().CPlusPlus &&
"Looking for std::initializer_list outside of C++.") ? void (
0) : __assert_fail ("getLangOpts().CPlusPlus && \"Looking for std::initializer_list outside of C++.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11581, __extension__ __PRETTY_FUNCTION__
))
11581 "Looking for std::initializer_list outside of C++.")(static_cast <bool> (getLangOpts().CPlusPlus &&
"Looking for std::initializer_list outside of C++.") ? void (
0) : __assert_fail ("getLangOpts().CPlusPlus && \"Looking for std::initializer_list outside of C++.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11581, __extension__ __PRETTY_FUNCTION__
))
;
11582
11583 // We're looking for implicit instantiations of
11584 // template <typename E> class std::initializer_list.
11585
11586 if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
11587 return false;
11588
11589 ClassTemplateDecl *Template = nullptr;
11590 const TemplateArgument *Arguments = nullptr;
11591
11592 if (const RecordType *RT = Ty->getAs<RecordType>()) {
11593
11594 ClassTemplateSpecializationDecl *Specialization =
11595 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
11596 if (!Specialization)
11597 return false;
11598
11599 Template = Specialization->getSpecializedTemplate();
11600 Arguments = Specialization->getTemplateArgs().data();
11601 } else if (const TemplateSpecializationType *TST =
11602 Ty->getAs<TemplateSpecializationType>()) {
11603 Template = dyn_cast_or_null<ClassTemplateDecl>(
11604 TST->getTemplateName().getAsTemplateDecl());
11605 Arguments = TST->template_arguments().begin();
11606 }
11607 if (!Template)
11608 return false;
11609
11610 if (!StdInitializerList) {
11611 // Haven't recognized std::initializer_list yet, maybe this is it.
11612 CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
11613 if (TemplateClass->getIdentifier() !=
11614 &PP.getIdentifierTable().get("initializer_list") ||
11615 !getStdNamespace()->InEnclosingNamespaceSetOf(
11616 TemplateClass->getDeclContext()))
11617 return false;
11618 // This is a template called std::initializer_list, but is it the right
11619 // template?
11620 TemplateParameterList *Params = Template->getTemplateParameters();
11621 if (Params->getMinRequiredArguments() != 1)
11622 return false;
11623 if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
11624 return false;
11625
11626 // It's the right template.
11627 StdInitializerList = Template;
11628 }
11629
11630 if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl())
11631 return false;
11632
11633 // This is an instance of std::initializer_list. Find the argument type.
11634 if (Element)
11635 *Element = Arguments[0].getAsType();
11636 return true;
11637}
11638
11639static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
11640 NamespaceDecl *Std = S.getStdNamespace();
11641 if (!Std) {
11642 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
11643 return nullptr;
11644 }
11645
11646 LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
11647 Loc, Sema::LookupOrdinaryName);
11648 if (!S.LookupQualifiedName(Result, Std)) {
11649 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
11650 return nullptr;
11651 }
11652 ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
11653 if (!Template) {
11654 Result.suppressDiagnostics();
11655 // We found something weird. Complain about the first thing we found.
11656 NamedDecl *Found = *Result.begin();
11657 S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
11658 return nullptr;
11659 }
11660
11661 // We found some template called std::initializer_list. Now verify that it's
11662 // correct.
11663 TemplateParameterList *Params = Template->getTemplateParameters();
11664 if (Params->getMinRequiredArguments() != 1 ||
11665 !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
11666 S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
11667 return nullptr;
11668 }
11669
11670 return Template;
11671}
11672
11673QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
11674 if (!StdInitializerList) {
11675 StdInitializerList = LookupStdInitializerList(*this, Loc);
11676 if (!StdInitializerList)
11677 return QualType();
11678 }
11679
11680 TemplateArgumentListInfo Args(Loc, Loc);
11681 Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
11682 Context.getTrivialTypeSourceInfo(Element,
11683 Loc)));
11684 return Context.getElaboratedType(
11685 ElaboratedTypeKeyword::ETK_None,
11686 NestedNameSpecifier::Create(Context, nullptr, getStdNamespace()),
11687 CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
11688}
11689
11690bool Sema::isInitListConstructor(const FunctionDecl *Ctor) {
11691 // C++ [dcl.init.list]p2:
11692 // A constructor is an initializer-list constructor if its first parameter
11693 // is of type std::initializer_list<E> or reference to possibly cv-qualified
11694 // std::initializer_list<E> for some type E, and either there are no other
11695 // parameters or else all other parameters have default arguments.
11696 if (!Ctor->hasOneParamOrDefaultArgs())
11697 return false;
11698
11699 QualType ArgType = Ctor->getParamDecl(0)->getType();
11700 if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
11701 ArgType = RT->getPointeeType().getUnqualifiedType();
11702
11703 return isStdInitializerList(ArgType, nullptr);
11704}
11705
11706/// Determine whether a using statement is in a context where it will be
11707/// apply in all contexts.
11708static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
11709 switch (CurContext->getDeclKind()) {
11710 case Decl::TranslationUnit:
11711 return true;
11712 case Decl::LinkageSpec:
11713 return IsUsingDirectiveInToplevelContext(CurContext->getParent());
11714 default:
11715 return false;
11716 }
11717}
11718
11719namespace {
11720
11721// Callback to only accept typo corrections that are namespaces.
11722class NamespaceValidatorCCC final : public CorrectionCandidateCallback {
11723public:
11724 bool ValidateCandidate(const TypoCorrection &candidate) override {
11725 if (NamedDecl *ND = candidate.getCorrectionDecl())
11726 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
11727 return false;
11728 }
11729
11730 std::unique_ptr<CorrectionCandidateCallback> clone() override {
11731 return std::make_unique<NamespaceValidatorCCC>(*this);
11732 }
11733};
11734
11735}
11736
11737static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
11738 CXXScopeSpec &SS,
11739 SourceLocation IdentLoc,
11740 IdentifierInfo *Ident) {
11741 R.clear();
11742 NamespaceValidatorCCC CCC{};
11743 if (TypoCorrection Corrected =
11744 S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS, CCC,
11745 Sema::CTK_ErrorRecovery)) {
11746 if (DeclContext *DC = S.computeDeclContext(SS, false)) {
11747 std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
11748 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
11749 Ident->getName().equals(CorrectedStr);
11750 S.diagnoseTypo(Corrected,
11751 S.PDiag(diag::err_using_directive_member_suggest)
11752 << Ident << DC << DroppedSpecifier << SS.getRange(),
11753 S.PDiag(diag::note_namespace_defined_here));
11754 } else {
11755 S.diagnoseTypo(Corrected,
11756 S.PDiag(diag::err_using_directive_suggest) << Ident,
11757 S.PDiag(diag::note_namespace_defined_here));
11758 }
11759 R.addDecl(Corrected.getFoundDecl());
11760 return true;
11761 }
11762 return false;
11763}
11764
11765Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc,
11766 SourceLocation NamespcLoc, CXXScopeSpec &SS,
11767 SourceLocation IdentLoc,
11768 IdentifierInfo *NamespcName,
11769 const ParsedAttributesView &AttrList) {
11770 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.")(static_cast <bool> (!SS.isInvalid() && "Invalid CXXScopeSpec."
) ? void (0) : __assert_fail ("!SS.isInvalid() && \"Invalid CXXScopeSpec.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11770, __extension__ __PRETTY_FUNCTION__
))
;
11771 assert(NamespcName && "Invalid NamespcName.")(static_cast <bool> (NamespcName && "Invalid NamespcName."
) ? void (0) : __assert_fail ("NamespcName && \"Invalid NamespcName.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11771, __extension__ __PRETTY_FUNCTION__
))
;
11772 assert(IdentLoc.isValid() && "Invalid NamespceName location.")(static_cast <bool> (IdentLoc.isValid() && "Invalid NamespceName location."
) ? void (0) : __assert_fail ("IdentLoc.isValid() && \"Invalid NamespceName location.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11772, __extension__ __PRETTY_FUNCTION__
))
;
11773
11774 // This can only happen along a recovery path.
11775 while (S->isTemplateParamScope())
11776 S = S->getParent();
11777 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.")(static_cast <bool> (S->getFlags() & Scope::DeclScope
&& "Invalid Scope.") ? void (0) : __assert_fail ("S->getFlags() & Scope::DeclScope && \"Invalid Scope.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11777, __extension__ __PRETTY_FUNCTION__
))
;
11778
11779 UsingDirectiveDecl *UDir = nullptr;
11780 NestedNameSpecifier *Qualifier = nullptr;
11781 if (SS.isSet())
11782 Qualifier = SS.getScopeRep();
11783
11784 // Lookup namespace name.
11785 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
11786 LookupParsedName(R, S, &SS);
11787 if (R.isAmbiguous())
11788 return nullptr;
11789
11790 if (R.empty()) {
11791 R.clear();
11792 // Allow "using namespace std;" or "using namespace ::std;" even if
11793 // "std" hasn't been defined yet, for GCC compatibility.
11794 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
11795 NamespcName->isStr("std")) {
11796 Diag(IdentLoc, diag::ext_using_undefined_std);
11797 R.addDecl(getOrCreateStdNamespace());
11798 R.resolveKind();
11799 }
11800 // Otherwise, attempt typo correction.
11801 else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
11802 }
11803
11804 if (!R.empty()) {
11805 NamedDecl *Named = R.getRepresentativeDecl();
11806 NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>();
11807 assert(NS && "expected namespace decl")(static_cast <bool> (NS && "expected namespace decl"
) ? void (0) : __assert_fail ("NS && \"expected namespace decl\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11807, __extension__ __PRETTY_FUNCTION__
))
;
11808
11809 // The use of a nested name specifier may trigger deprecation warnings.
11810 DiagnoseUseOfDecl(Named, IdentLoc);
11811
11812 // C++ [namespace.udir]p1:
11813 // A using-directive specifies that the names in the nominated
11814 // namespace can be used in the scope in which the
11815 // using-directive appears after the using-directive. During
11816 // unqualified name lookup (3.4.1), the names appear as if they
11817 // were declared in the nearest enclosing namespace which
11818 // contains both the using-directive and the nominated
11819 // namespace. [Note: in this context, "contains" means "contains
11820 // directly or indirectly". ]
11821
11822 // Find enclosing context containing both using-directive and
11823 // nominated namespace.
11824 DeclContext *CommonAncestor = NS;
11825 while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
11826 CommonAncestor = CommonAncestor->getParent();
11827
11828 UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
11829 SS.getWithLocInContext(Context),
11830 IdentLoc, Named, CommonAncestor);
11831
11832 if (IsUsingDirectiveInToplevelContext(CurContext) &&
11833 !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
11834 Diag(IdentLoc, diag::warn_using_directive_in_header);
11835 }
11836
11837 PushUsingDirective(S, UDir);
11838 } else {
11839 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
11840 }
11841
11842 if (UDir)
11843 ProcessDeclAttributeList(S, UDir, AttrList);
11844
11845 return UDir;
11846}
11847
11848void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
11849 // If the scope has an associated entity and the using directive is at
11850 // namespace or translation unit scope, add the UsingDirectiveDecl into
11851 // its lookup structure so qualified name lookup can find it.
11852 DeclContext *Ctx = S->getEntity();
11853 if (Ctx && !Ctx->isFunctionOrMethod())
11854 Ctx->addDecl(UDir);
11855 else
11856 // Otherwise, it is at block scope. The using-directives will affect lookup
11857 // only to the end of the scope.
11858 S->PushUsingDirective(UDir);
11859}
11860
11861Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS,
11862 SourceLocation UsingLoc,
11863 SourceLocation TypenameLoc, CXXScopeSpec &SS,
11864 UnqualifiedId &Name,
11865 SourceLocation EllipsisLoc,
11866 const ParsedAttributesView &AttrList) {
11867 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.")(static_cast <bool> (S->getFlags() & Scope::DeclScope
&& "Invalid Scope.") ? void (0) : __assert_fail ("S->getFlags() & Scope::DeclScope && \"Invalid Scope.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11867, __extension__ __PRETTY_FUNCTION__
))
;
11868
11869 if (SS.isEmpty()) {
11870 Diag(Name.getBeginLoc(), diag::err_using_requires_qualname);
11871 return nullptr;
11872 }
11873
11874 switch (Name.getKind()) {
11875 case UnqualifiedIdKind::IK_ImplicitSelfParam:
11876 case UnqualifiedIdKind::IK_Identifier:
11877 case UnqualifiedIdKind::IK_OperatorFunctionId:
11878 case UnqualifiedIdKind::IK_LiteralOperatorId:
11879 case UnqualifiedIdKind::IK_ConversionFunctionId:
11880 break;
11881
11882 case UnqualifiedIdKind::IK_ConstructorName:
11883 case UnqualifiedIdKind::IK_ConstructorTemplateId:
11884 // C++11 inheriting constructors.
11885 Diag(Name.getBeginLoc(),
11886 getLangOpts().CPlusPlus11
11887 ? diag::warn_cxx98_compat_using_decl_constructor
11888 : diag::err_using_decl_constructor)
11889 << SS.getRange();
11890
11891 if (getLangOpts().CPlusPlus11) break;
11892
11893 return nullptr;
11894
11895 case UnqualifiedIdKind::IK_DestructorName:
11896 Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange();
11897 return nullptr;
11898
11899 case UnqualifiedIdKind::IK_TemplateId:
11900 Diag(Name.getBeginLoc(), diag::err_using_decl_template_id)
11901 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
11902 return nullptr;
11903
11904 case UnqualifiedIdKind::IK_DeductionGuideName:
11905 llvm_unreachable("cannot parse qualified deduction guide name")::llvm::llvm_unreachable_internal("cannot parse qualified deduction guide name"
, "clang/lib/Sema/SemaDeclCXX.cpp", 11905)
;
11906 }
11907
11908 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
11909 DeclarationName TargetName = TargetNameInfo.getName();
11910 if (!TargetName)
11911 return nullptr;
11912
11913 // Warn about access declarations.
11914 if (UsingLoc.isInvalid()) {
11915 Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11
11916 ? diag::err_access_decl
11917 : diag::warn_access_decl_deprecated)
11918 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
11919 }
11920
11921 if (EllipsisLoc.isInvalid()) {
11922 if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
11923 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
11924 return nullptr;
11925 } else {
11926 if (!SS.getScopeRep()->containsUnexpandedParameterPack() &&
11927 !TargetNameInfo.containsUnexpandedParameterPack()) {
11928 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
11929 << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc());
11930 EllipsisLoc = SourceLocation();
11931 }
11932 }
11933
11934 NamedDecl *UD =
11935 BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc,
11936 SS, TargetNameInfo, EllipsisLoc, AttrList,
11937 /*IsInstantiation*/ false,
11938 AttrList.hasAttribute(ParsedAttr::AT_UsingIfExists));
11939 if (UD)
11940 PushOnScopeChains(UD, S, /*AddToContext*/ false);
11941
11942 return UD;
11943}
11944
11945Decl *Sema::ActOnUsingEnumDeclaration(Scope *S, AccessSpecifier AS,
11946 SourceLocation UsingLoc,
11947 SourceLocation EnumLoc,
11948 SourceLocation IdentLoc,
11949 IdentifierInfo &II, CXXScopeSpec *SS) {
11950 assert(!SS->isInvalid() && "ScopeSpec is invalid")(static_cast <bool> (!SS->isInvalid() && "ScopeSpec is invalid"
) ? void (0) : __assert_fail ("!SS->isInvalid() && \"ScopeSpec is invalid\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11950, __extension__ __PRETTY_FUNCTION__
))
;
11951 TypeSourceInfo *TSI = nullptr;
11952 QualType EnumTy = GetTypeFromParser(
11953 getTypeName(II, IdentLoc, S, SS, /*isClassName=*/false,
11954 /*HasTrailingDot=*/false,
11955 /*ObjectType=*/nullptr, /*IsCtorOrDtorName=*/false,
11956 /*WantNontrivialTypeSourceInfo=*/true),
11957 &TSI);
11958 if (EnumTy.isNull()) {
11959 Diag(IdentLoc, SS && isDependentScopeSpecifier(*SS)
11960 ? diag::err_using_enum_is_dependent
11961 : diag::err_unknown_typename)
11962 << II.getName()
11963 << SourceRange(SS ? SS->getBeginLoc() : IdentLoc, IdentLoc);
11964 return nullptr;
11965 }
11966
11967 auto *Enum = dyn_cast_if_present<EnumDecl>(EnumTy->getAsTagDecl());
11968 if (!Enum) {
11969 Diag(IdentLoc, diag::err_using_enum_not_enum) << EnumTy;
11970 return nullptr;
11971 }
11972
11973 if (auto *Def = Enum->getDefinition())
11974 Enum = Def;
11975
11976 if (TSI == nullptr)
11977 TSI = Context.getTrivialTypeSourceInfo(EnumTy, IdentLoc);
11978
11979 auto *UD =
11980 BuildUsingEnumDeclaration(S, AS, UsingLoc, EnumLoc, IdentLoc, TSI, Enum);
11981
11982 if (UD)
11983 PushOnScopeChains(UD, S, /*AddToContext*/ false);
11984
11985 return UD;
11986}
11987
11988/// Determine whether a using declaration considers the given
11989/// declarations as "equivalent", e.g., if they are redeclarations of
11990/// the same entity or are both typedefs of the same type.
11991static bool
11992IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) {
11993 if (D1->getCanonicalDecl() == D2->getCanonicalDecl())
11994 return true;
11995
11996 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
11997 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2))
11998 return Context.hasSameType(TD1->getUnderlyingType(),
11999 TD2->getUnderlyingType());
12000
12001 // Two using_if_exists using-declarations are equivalent if both are
12002 // unresolved.
12003 if (isa<UnresolvedUsingIfExistsDecl>(D1) &&
12004 isa<UnresolvedUsingIfExistsDecl>(D2))
12005 return true;
12006
12007 return false;
12008}
12009
12010
12011/// Determines whether to create a using shadow decl for a particular
12012/// decl, given the set of decls existing prior to this using lookup.
12013bool Sema::CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Orig,
12014 const LookupResult &Previous,
12015 UsingShadowDecl *&PrevShadow) {
12016 // Diagnose finding a decl which is not from a base class of the
12017 // current class. We do this now because there are cases where this
12018 // function will silently decide not to build a shadow decl, which
12019 // will pre-empt further diagnostics.
12020 //
12021 // We don't need to do this in C++11 because we do the check once on
12022 // the qualifier.
12023 //
12024 // FIXME: diagnose the following if we care enough:
12025 // struct A { int foo; };
12026 // struct B : A { using A::foo; };
12027 // template <class T> struct C : A {};
12028 // template <class T> struct D : C<T> { using B::foo; } // <---
12029 // This is invalid (during instantiation) in C++03 because B::foo
12030 // resolves to the using decl in B, which is not a base class of D<T>.
12031 // We can't diagnose it immediately because C<T> is an unknown
12032 // specialization. The UsingShadowDecl in D<T> then points directly
12033 // to A::foo, which will look well-formed when we instantiate.
12034 // The right solution is to not collapse the shadow-decl chain.
12035 if (!getLangOpts().CPlusPlus11 && CurContext->isRecord())
12036 if (auto *Using = dyn_cast<UsingDecl>(BUD)) {
12037 DeclContext *OrigDC = Orig->getDeclContext();
12038
12039 // Handle enums and anonymous structs.
12040 if (isa<EnumDecl>(OrigDC))
12041 OrigDC = OrigDC->getParent();
12042 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
12043 while (OrigRec->isAnonymousStructOrUnion())
12044 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
12045
12046 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
12047 if (OrigDC == CurContext) {
12048 Diag(Using->getLocation(),
12049 diag::err_using_decl_nested_name_specifier_is_current_class)
12050 << Using->getQualifierLoc().getSourceRange();
12051 Diag(Orig->getLocation(), diag::note_using_decl_target);
12052 Using->setInvalidDecl();
12053 return true;
12054 }
12055
12056 Diag(Using->getQualifierLoc().getBeginLoc(),
12057 diag::err_using_decl_nested_name_specifier_is_not_base_class)
12058 << Using->getQualifier() << cast<CXXRecordDecl>(CurContext)
12059 << Using->getQualifierLoc().getSourceRange();
12060 Diag(Orig->getLocation(), diag::note_using_decl_target);
12061 Using->setInvalidDecl();
12062 return true;
12063 }
12064 }
12065
12066 if (Previous.empty()) return false;
12067
12068 NamedDecl *Target = Orig;
12069 if (isa<UsingShadowDecl>(Target))
12070 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
12071
12072 // If the target happens to be one of the previous declarations, we
12073 // don't have a conflict.
12074 //
12075 // FIXME: but we might be increasing its access, in which case we
12076 // should redeclare it.
12077 NamedDecl *NonTag = nullptr, *Tag = nullptr;
12078 bool FoundEquivalentDecl = false;
12079 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
12080 I != E; ++I) {
12081 NamedDecl *D = (*I)->getUnderlyingDecl();
12082 // We can have UsingDecls in our Previous results because we use the same
12083 // LookupResult for checking whether the UsingDecl itself is a valid
12084 // redeclaration.
12085 if (isa<UsingDecl>(D) || isa<UsingPackDecl>(D) || isa<UsingEnumDecl>(D))
12086 continue;
12087
12088 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
12089 // C++ [class.mem]p19:
12090 // If T is the name of a class, then [every named member other than
12091 // a non-static data member] shall have a name different from T
12092 if (RD->isInjectedClassName() && !isa<FieldDecl>(Target) &&
12093 !isa<IndirectFieldDecl>(Target) &&
12094 !isa<UnresolvedUsingValueDecl>(Target) &&
12095 DiagnoseClassNameShadow(
12096 CurContext,
12097 DeclarationNameInfo(BUD->getDeclName(), BUD->getLocation())))
12098 return true;
12099 }
12100
12101 if (IsEquivalentForUsingDecl(Context, D, Target)) {
12102 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I))
12103 PrevShadow = Shadow;
12104 FoundEquivalentDecl = true;
12105 } else if (isEquivalentInternalLinkageDeclaration(D, Target)) {
12106 // We don't conflict with an existing using shadow decl of an equivalent
12107 // declaration, but we're not a redeclaration of it.
12108 FoundEquivalentDecl = true;
12109 }
12110
12111 if (isVisible(D))
12112 (isa<TagDecl>(D) ? Tag : NonTag) = D;
12113 }
12114
12115 if (FoundEquivalentDecl)
12116 return false;
12117
12118 // Always emit a diagnostic for a mismatch between an unresolved
12119 // using_if_exists and a resolved using declaration in either direction.
12120 if (isa<UnresolvedUsingIfExistsDecl>(Target) !=
12121 (isa_and_nonnull<UnresolvedUsingIfExistsDecl>(NonTag))) {
12122 if (!NonTag && !Tag)
12123 return false;
12124 Diag(BUD->getLocation(), diag::err_using_decl_conflict);
12125 Diag(Target->getLocation(), diag::note_using_decl_target);
12126 Diag((NonTag ? NonTag : Tag)->getLocation(),
12127 diag::note_using_decl_conflict);
12128 BUD->setInvalidDecl();
12129 return true;
12130 }
12131
12132 if (FunctionDecl *FD = Target->getAsFunction()) {
12133 NamedDecl *OldDecl = nullptr;
12134 switch (CheckOverload(nullptr, FD, Previous, OldDecl,
12135 /*IsForUsingDecl*/ true)) {
12136 case Ovl_Overload:
12137 return false;
12138
12139 case Ovl_NonFunction:
12140 Diag(BUD->getLocation(), diag::err_using_decl_conflict);
12141 break;
12142
12143 // We found a decl with the exact signature.
12144 case Ovl_Match:
12145 // If we're in a record, we want to hide the target, so we
12146 // return true (without a diagnostic) to tell the caller not to
12147 // build a shadow decl.
12148 if (CurContext->isRecord())
12149 return true;
12150
12151 // If we're not in a record, this is an error.
12152 Diag(BUD->getLocation(), diag::err_using_decl_conflict);
12153 break;
12154 }
12155
12156 Diag(Target->getLocation(), diag::note_using_decl_target);
12157 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
12158 BUD->setInvalidDecl();
12159 return true;
12160 }
12161
12162 // Target is not a function.
12163
12164 if (isa<TagDecl>(Target)) {
12165 // No conflict between a tag and a non-tag.
12166 if (!Tag) return false;
12167
12168 Diag(BUD->getLocation(), diag::err_using_decl_conflict);
12169 Diag(Target->getLocation(), diag::note_using_decl_target);
12170 Diag(Tag->getLocation(), diag::note_using_decl_conflict);
12171 BUD->setInvalidDecl();
12172 return true;
12173 }
12174
12175 // No conflict between a tag and a non-tag.
12176 if (!NonTag) return false;
12177
12178 Diag(BUD->getLocation(), diag::err_using_decl_conflict);
12179 Diag(Target->getLocation(), diag::note_using_decl_target);
12180 Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
12181 BUD->setInvalidDecl();
12182 return true;
12183}
12184
12185/// Determine whether a direct base class is a virtual base class.
12186static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) {
12187 if (!Derived->getNumVBases())
12188 return false;
12189 for (auto &B : Derived->bases())
12190 if (B.getType()->getAsCXXRecordDecl() == Base)
12191 return B.isVirtual();
12192 llvm_unreachable("not a direct base class")::llvm::llvm_unreachable_internal("not a direct base class", "clang/lib/Sema/SemaDeclCXX.cpp"
, 12192)
;
12193}
12194
12195/// Builds a shadow declaration corresponding to a 'using' declaration.
12196UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD,
12197 NamedDecl *Orig,
12198 UsingShadowDecl *PrevDecl) {
12199 // If we resolved to another shadow declaration, just coalesce them.
12200 NamedDecl *Target = Orig;
12201 if (isa<UsingShadowDecl>(Target)) {
12202 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
12203 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration")(static_cast <bool> (!isa<UsingShadowDecl>(Target
) && "nested shadow declaration") ? void (0) : __assert_fail
("!isa<UsingShadowDecl>(Target) && \"nested shadow declaration\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 12203, __extension__ __PRETTY_FUNCTION__
))
;
12204 }
12205
12206 NamedDecl *NonTemplateTarget = Target;
12207 if (auto *TargetTD = dyn_cast<TemplateDecl>(Target))
12208 NonTemplateTarget = TargetTD->getTemplatedDecl();
12209
12210 UsingShadowDecl *Shadow;
12211 if (NonTemplateTarget && isa<CXXConstructorDecl>(NonTemplateTarget)) {
12212 UsingDecl *Using = cast<UsingDecl>(BUD);
12213 bool IsVirtualBase =
12214 isVirtualDirectBase(cast<CXXRecordDecl>(CurContext),
12215 Using->getQualifier()->getAsRecordDecl());
12216 Shadow = ConstructorUsingShadowDecl::Create(
12217 Context, CurContext, Using->getLocation(), Using, Orig, IsVirtualBase);
12218 } else {
12219 Shadow = UsingShadowDecl::Create(Context, CurContext, BUD->getLocation(),
12220 Target->getDeclName(), BUD, Target);
12221 }
12222 BUD->addShadowDecl(Shadow);
12223
12224 Shadow->setAccess(BUD->getAccess());
12225 if (Orig->isInvalidDecl() || BUD->isInvalidDecl())
12226 Shadow->setInvalidDecl();
12227
12228 Shadow->setPreviousDecl(PrevDecl);
12229
12230 if (S)
12231 PushOnScopeChains(Shadow, S);
12232 else
12233 CurContext->addDecl(Shadow);
12234
12235
12236 return Shadow;
12237}
12238
12239/// Hides a using shadow declaration. This is required by the current
12240/// using-decl implementation when a resolvable using declaration in a
12241/// class is followed by a declaration which would hide or override
12242/// one or more of the using decl's targets; for example:
12243///
12244/// struct Base { void foo(int); };
12245/// struct Derived : Base {
12246/// using Base::foo;
12247/// void foo(int);
12248/// };
12249///
12250/// The governing language is C++03 [namespace.udecl]p12:
12251///
12252/// When a using-declaration brings names from a base class into a
12253/// derived class scope, member functions in the derived class
12254/// override and/or hide member functions with the same name and
12255/// parameter types in a base class (rather than conflicting).
12256///
12257/// There are two ways to implement this:
12258/// (1) optimistically create shadow decls when they're not hidden
12259/// by existing declarations, or
12260/// (2) don't create any shadow decls (or at least don't make them
12261/// visible) until we've fully parsed/instantiated the class.
12262/// The problem with (1) is that we might have to retroactively remove
12263/// a shadow decl, which requires several O(n) operations because the
12264/// decl structures are (very reasonably) not designed for removal.
12265/// (2) avoids this but is very fiddly and phase-dependent.
12266void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
12267 if (Shadow->getDeclName().getNameKind() ==
12268 DeclarationName::CXXConversionFunctionName)
12269 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
12270
12271 // Remove it from the DeclContext...
12272 Shadow->getDeclContext()->removeDecl(Shadow);
12273
12274 // ...and the scope, if applicable...
12275 if (S) {
12276 S->RemoveDecl(Shadow);
12277 IdResolver.RemoveDecl(Shadow);
12278 }
12279
12280 // ...and the using decl.
12281 Shadow->getIntroducer()->removeShadowDecl(Shadow);
12282
12283 // TODO: complain somehow if Shadow was used. It shouldn't
12284 // be possible for this to happen, because...?
12285}
12286
12287/// Find the base specifier for a base class with the given type.
12288static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived,
12289 QualType DesiredBase,
12290 bool &AnyDependentBases) {
12291 // Check whether the named type is a direct base class.
12292 CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified()
12293 .getUnqualifiedType();
12294 for (auto &Base : Derived->bases()) {
12295 CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified();
12296 if (CanonicalDesiredBase == BaseType)
12297 return &Base;
12298 if (BaseType->isDependentType())
12299 AnyDependentBases = true;
12300 }
12301 return nullptr;
12302}
12303
12304namespace {
12305class UsingValidatorCCC final : public CorrectionCandidateCallback {
12306public:
12307 UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation,
12308 NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf)
12309 : HasTypenameKeyword(HasTypenameKeyword),
12310 IsInstantiation(IsInstantiation), OldNNS(NNS),
12311 RequireMemberOf(RequireMemberOf) {}
12312
12313 bool ValidateCandidate(const TypoCorrection &Candidate) override {
12314 NamedDecl *ND = Candidate.getCorrectionDecl();
12315
12316 // Keywords are not valid here.
12317 if (!ND || isa<NamespaceDecl>(ND))
12318 return false;
12319
12320 // Completely unqualified names are invalid for a 'using' declaration.
12321 if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
12322 return false;
12323
12324 // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would
12325 // reject.
12326
12327 if (RequireMemberOf) {
12328 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
12329 if (FoundRecord && FoundRecord->isInjectedClassName()) {
12330 // No-one ever wants a using-declaration to name an injected-class-name
12331 // of a base class, unless they're declaring an inheriting constructor.
12332 ASTContext &Ctx = ND->getASTContext();
12333 if (!Ctx.getLangOpts().CPlusPlus11)
12334 return false;
12335 QualType FoundType = Ctx.getRecordType(FoundRecord);
12336
12337 // Check that the injected-class-name is named as a member of its own
12338 // type; we don't want to suggest 'using Derived::Base;', since that
12339 // means something else.
12340 NestedNameSpecifier *Specifier =
12341 Candidate.WillReplaceSpecifier()
12342 ? Candidate.getCorrectionSpecifier()
12343 : OldNNS;
12344 if (!Specifier->getAsType() ||
12345 !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType))
12346 return false;
12347
12348 // Check that this inheriting constructor declaration actually names a
12349 // direct base class of the current class.
12350 bool AnyDependentBases = false;
12351 if (!findDirectBaseWithType(RequireMemberOf,
12352 Ctx.getRecordType(FoundRecord),
12353 AnyDependentBases) &&
12354 !AnyDependentBases)
12355 return false;
12356 } else {
12357 auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext());
12358 if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD))
12359 return false;
12360
12361 // FIXME: Check that the base class member is accessible?
12362 }
12363 } else {
12364 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
12365 if (FoundRecord && FoundRecord->isInjectedClassName())
12366 return false;
12367 }
12368
12369 if (isa<TypeDecl>(ND))
12370 return HasTypenameKeyword || !IsInstantiation;
12371
12372 return !HasTypenameKeyword;
12373 }
12374
12375 std::unique_ptr<CorrectionCandidateCallback> clone() override {
12376 return std::make_unique<UsingValidatorCCC>(*this);
12377 }
12378
12379private:
12380 bool HasTypenameKeyword;
12381 bool IsInstantiation;
12382 NestedNameSpecifier *OldNNS;
12383 CXXRecordDecl *RequireMemberOf;
12384};
12385} // end anonymous namespace
12386
12387/// Remove decls we can't actually see from a lookup being used to declare
12388/// shadow using decls.
12389///
12390/// \param S - The scope of the potential shadow decl
12391/// \param Previous - The lookup of a potential shadow decl's name.
12392void Sema::FilterUsingLookup(Scope *S, LookupResult &Previous) {
12393 // It is really dumb that we have to do this.
12394 LookupResult::Filter F = Previous.makeFilter();
12395 while (F.hasNext()) {
12396 NamedDecl *D = F.next();
12397 if (!isDeclInScope(D, CurContext, S))
12398 F.erase();
12399 // If we found a local extern declaration that's not ordinarily visible,
12400 // and this declaration is being added to a non-block scope, ignore it.
12401 // We're only checking for scope conflicts here, not also for violations
12402 // of the linkage rules.
12403 else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() &&
12404 !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary))
12405 F.erase();
12406 }
12407 F.done();
12408}
12409
12410/// Builds a using declaration.
12411///
12412/// \param IsInstantiation - Whether this call arises from an
12413/// instantiation of an unresolved using declaration. We treat
12414/// the lookup differently for these declarations.
12415NamedDecl *Sema::BuildUsingDeclaration(
12416 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc,
12417 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS,
12418 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc,
12419 const ParsedAttributesView &AttrList, bool IsInstantiation,
12420 bool IsUsingIfExists) {
12421 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.")(static_cast <bool> (!SS.isInvalid() && "Invalid CXXScopeSpec."
) ? void (0) : __assert_fail ("!SS.isInvalid() && \"Invalid CXXScopeSpec.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 12421, __extension__ __PRETTY_FUNCTION__
))
;
12422 SourceLocation IdentLoc = NameInfo.getLoc();
12423 assert(IdentLoc.isValid() && "Invalid TargetName location.")(static_cast <bool> (IdentLoc.isValid() && "Invalid TargetName location."
) ? void (0) : __assert_fail ("IdentLoc.isValid() && \"Invalid TargetName location.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 12423, __extension__ __PRETTY_FUNCTION__
))
;
12424
12425 // FIXME: We ignore attributes for now.
12426
12427 // For an inheriting constructor declaration, the name of the using
12428 // declaration is the name of a constructor in this class, not in the
12429 // base class.
12430 DeclarationNameInfo UsingName = NameInfo;
12431 if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName)
12432 if (auto *RD = dyn_cast<CXXRecordDecl>(CurContext))
12433 UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
12434 Context.getCanonicalType(Context.getRecordType(RD))));
12435
12436 // Do the redeclaration lookup in the current scope.
12437 LookupResult Previous(*this, UsingName, LookupUsingDeclName,
12438 ForVisibleRedeclaration);
12439 Previous.setHideTags(false);
12440 if (S) {
12441 LookupName(Previous, S);
12442
12443 FilterUsingLookup(S, Previous);
12444 } else {
12445 assert(IsInstantiation && "no scope in non-instantiation")(static_cast <bool> (IsInstantiation && "no scope in non-instantiation"
) ? void (0) : __assert_fail ("IsInstantiation && \"no scope in non-instantiation\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 12445, __extension__ __PRETTY_FUNCTION__
))
;
12446 if (CurContext->isRecord())
12447 LookupQualifiedName(Previous, CurContext);
12448 else {
12449 // No redeclaration check is needed here; in non-member contexts we
12450 // diagnosed all possible conflicts with other using-declarations when
12451 // building the template:
12452 //
12453 // For a dependent non-type using declaration, the only valid case is
12454 // if we instantiate to a single enumerator. We check for conflicts
12455 // between shadow declarations we introduce, and we check in the template
12456 // definition for conflicts between a non-type using declaration and any
12457 // other declaration, which together covers all cases.
12458 //
12459 // A dependent typename using declaration will never successfully
12460 // instantiate, since it will always name a class member, so we reject
12461 // that in the template definition.
12462 }
12463 }
12464
12465 // Check for invalid redeclarations.
12466 if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
12467 SS, IdentLoc, Previous))
12468 return nullptr;
12469
12470 // 'using_if_exists' doesn't make sense on an inherited constructor.
12471 if (IsUsingIfExists && UsingName.getName().getNameKind() ==
12472 DeclarationName::CXXConstructorName) {
12473 Diag(UsingLoc, diag::err_using_if_exists_on_ctor);
12474 return nullptr;
12475 }
12476
12477 DeclContext *LookupContext = computeDeclContext(SS);
12478 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
12479 if (!LookupContext || EllipsisLoc.isValid()) {
12480 NamedDecl *D;
12481 // Dependent scope, or an unexpanded pack
12482 if (!LookupContext && CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword,
12483 SS, NameInfo, IdentLoc))
12484 return nullptr;
12485
12486 if (HasTypenameKeyword) {
12487 // FIXME: not all declaration name kinds are legal here
12488 D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
12489 UsingLoc, TypenameLoc,
12490 QualifierLoc,
12491 IdentLoc, NameInfo.getName(),
12492 EllipsisLoc);
12493 } else {
12494 D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
12495 QualifierLoc, NameInfo, EllipsisLoc);
12496 }
12497 D->setAccess(AS);
12498 CurContext->addDecl(D);
12499 ProcessDeclAttributeList(S, D, AttrList);
12500 return D;
12501 }
12502
12503 auto Build = [&](bool Invalid) {
12504 UsingDecl *UD =
12505 UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
12506 UsingName, HasTypenameKeyword);
12507 UD->setAccess(AS);
12508 CurContext->addDecl(UD);
12509 ProcessDeclAttributeList(S, UD, AttrList);
12510 UD->setInvalidDecl(Invalid);
12511 return UD;
12512 };
12513 auto BuildInvalid = [&]{ return Build(true); };
12514 auto BuildValid = [&]{ return Build(false); };
12515
12516 if (RequireCompleteDeclContext(SS, LookupContext))
12517 return BuildInvalid();
12518
12519 // Look up the target name.
12520 LookupResult R(*this, NameInfo, LookupOrdinaryName);
12521
12522 // Unlike most lookups, we don't always want to hide tag
12523 // declarations: tag names are visible through the using declaration
12524 // even if hidden by ordinary names, *except* in a dependent context
12525 // where they may be used by two-phase lookup.
12526 if (!IsInstantiation)
12527 R.setHideTags(false);
12528
12529 // For the purposes of this lookup, we have a base object type
12530 // equal to that of the current context.
12531 if (CurContext->isRecord()) {
12532 R.setBaseObjectType(
12533 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
12534 }
12535
12536 LookupQualifiedName(R, LookupContext);
12537
12538 // Validate the context, now we have a lookup
12539 if (CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo,
12540 IdentLoc, &R))
12541 return nullptr;
12542
12543 if (R.empty() && IsUsingIfExists)
12544 R.addDecl(UnresolvedUsingIfExistsDecl::Create(Context, CurContext, UsingLoc,
12545 UsingName.getName()),
12546 AS_public);
12547
12548 // Try to correct typos if possible. If constructor name lookup finds no
12549 // results, that means the named class has no explicit constructors, and we
12550 // suppressed declaring implicit ones (probably because it's dependent or
12551 // invalid).
12552 if (R.empty() &&
12553 NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) {
12554 // HACK 2017-01-08: Work around an issue with libstdc++'s detection of
12555 // ::gets. Sometimes it believes that glibc provides a ::gets in cases where
12556 // it does not. The issue was fixed in libstdc++ 6.3 (2016-12-21) and later.
12557 auto *II = NameInfo.getName().getAsIdentifierInfo();
12558 if (getLangOpts().CPlusPlus14 && II && II->isStr("gets") &&
12559 CurContext->isStdNamespace() &&
12560 isa<TranslationUnitDecl>(LookupContext) &&
12561 getSourceManager().isInSystemHeader(UsingLoc))
12562 return nullptr;
12563 UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(),
12564 dyn_cast<CXXRecordDecl>(CurContext));
12565 if (TypoCorrection Corrected =
12566 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
12567 CTK_ErrorRecovery)) {
12568 // We reject candidates where DroppedSpecifier == true, hence the
12569 // literal '0' below.
12570 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
12571 << NameInfo.getName() << LookupContext << 0
12572 << SS.getRange());
12573
12574 // If we picked a correction with no attached Decl we can't do anything
12575 // useful with it, bail out.
12576 NamedDecl *ND = Corrected.getCorrectionDecl();
12577 if (!ND)
12578 return BuildInvalid();
12579
12580 // If we corrected to an inheriting constructor, handle it as one.
12581 auto *RD = dyn_cast<CXXRecordDecl>(ND);
12582 if (RD && RD->isInjectedClassName()) {
12583 // The parent of the injected class name is the class itself.
12584 RD = cast<CXXRecordDecl>(RD->getParent());
12585
12586 // Fix up the information we'll use to build the using declaration.
12587 if (Corrected.WillReplaceSpecifier()) {
12588 NestedNameSpecifierLocBuilder Builder;
12589 Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
12590 QualifierLoc.getSourceRange());
12591 QualifierLoc = Builder.getWithLocInContext(Context);
12592 }
12593
12594 // In this case, the name we introduce is the name of a derived class
12595 // constructor.
12596 auto *CurClass = cast<CXXRecordDecl>(CurContext);
12597 UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
12598 Context.getCanonicalType(Context.getRecordType(CurClass))));
12599 UsingName.setNamedTypeInfo(nullptr);
12600 for (auto *Ctor : LookupConstructors(RD))
12601 R.addDecl(Ctor);
12602 R.resolveKind();
12603 } else {
12604 // FIXME: Pick up all the declarations if we found an overloaded
12605 // function.
12606 UsingName.setName(ND->getDeclName());
12607 R.addDecl(ND);
12608 }
12609 } else {
12610 Diag(IdentLoc, diag::err_no_member)
12611 << NameInfo.getName() << LookupContext << SS.getRange();
12612 return BuildInvalid();
12613 }
12614 }
12615
12616 if (R.isAmbiguous())
12617 return BuildInvalid();
12618
12619 if (HasTypenameKeyword) {
12620 // If we asked for a typename and got a non-type decl, error out.
12621 if (!R.getAsSingle<TypeDecl>() &&
12622 !R.getAsSingle<UnresolvedUsingIfExistsDecl>()) {
12623 Diag(IdentLoc, diag::err_using_typename_non_type);
12624 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
12625 Diag((*I)->getUnderlyingDecl()->getLocation(),
12626 diag::note_using_decl_target);
12627 return BuildInvalid();
12628 }
12629 } else {
12630 // If we asked for a non-typename and we got a type, error out,
12631 // but only if this is an instantiation of an unresolved using
12632 // decl. Otherwise just silently find the type name.
12633 if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
12634 Diag(IdentLoc, diag::err_using_dependent_value_is_type);
12635 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
12636 return BuildInvalid();
12637 }
12638 }
12639
12640 // C++14 [namespace.udecl]p6:
12641 // A using-declaration shall not name a namespace.
12642 if (R.getAsSingle<NamespaceDecl>()) {
12643 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
12644 << SS.getRange();
12645 return BuildInvalid();
12646 }
12647
12648 UsingDecl *UD = BuildValid();
12649
12650 // Some additional rules apply to inheriting constructors.
12651 if (UsingName.getName().getNameKind() ==
12652 DeclarationName::CXXConstructorName) {
12653 // Suppress access diagnostics; the access check is instead performed at the
12654 // point of use for an inheriting constructor.
12655 R.suppressDiagnostics();
12656 if (CheckInheritingConstructorUsingDecl(UD))
12657 return UD;
12658 }
12659
12660 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
12661 UsingShadowDecl *PrevDecl = nullptr;
12662 if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl))
12663 BuildUsingShadowDecl(S, UD, *I, PrevDecl);
12664 }
12665
12666 return UD;
12667}
12668
12669NamedDecl *Sema::BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS,
12670 SourceLocation UsingLoc,
12671 SourceLocation EnumLoc,
12672 SourceLocation NameLoc,
12673 TypeSourceInfo *EnumType,
12674 EnumDecl *ED) {
12675 bool Invalid = false;
12676
12677 if (CurContext->getRedeclContext()->isRecord()) {
12678 /// In class scope, check if this is a duplicate, for better a diagnostic.
12679 DeclarationNameInfo UsingEnumName(ED->getDeclName(), NameLoc);
12680 LookupResult Previous(*this, UsingEnumName, LookupUsingDeclName,
12681 ForVisibleRedeclaration);
12682
12683 LookupName(Previous, S);
12684
12685 for (NamedDecl *D : Previous)
12686 if (UsingEnumDecl *UED = dyn_cast<UsingEnumDecl>(D))
12687 if (UED->getEnumDecl() == ED) {
12688 Diag(UsingLoc, diag::err_using_enum_decl_redeclaration)
12689 << SourceRange(EnumLoc, NameLoc);
12690 Diag(D->getLocation(), diag::note_using_enum_decl) << 1;
12691 Invalid = true;
12692 break;
12693 }
12694 }
12695
12696 if (RequireCompleteEnumDecl(ED, NameLoc))
12697 Invalid = true;
12698
12699 UsingEnumDecl *UD = UsingEnumDecl::Create(Context, CurContext, UsingLoc,
12700 EnumLoc, NameLoc, EnumType);
12701 UD->setAccess(AS);
12702 CurContext->addDecl(UD);
12703
12704 if (Invalid) {
12705 UD->setInvalidDecl();
12706 return UD;
12707 }
12708
12709 // Create the shadow decls for each enumerator
12710 for (EnumConstantDecl *EC : ED->enumerators()) {
12711 UsingShadowDecl *PrevDecl = nullptr;
12712 DeclarationNameInfo DNI(EC->getDeclName(), EC->getLocation());
12713 LookupResult Previous(*this, DNI, LookupOrdinaryName,
12714 ForVisibleRedeclaration);
12715 LookupName(Previous, S);
12716 FilterUsingLookup(S, Previous);
12717
12718 if (!CheckUsingShadowDecl(UD, EC, Previous, PrevDecl))
12719 BuildUsingShadowDecl(S, UD, EC, PrevDecl);
12720 }
12721
12722 return UD;
12723}
12724
12725NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom,
12726 ArrayRef<NamedDecl *> Expansions) {
12727 assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) ||(static_cast <bool> (isa<UnresolvedUsingValueDecl>
(InstantiatedFrom) || isa<UnresolvedUsingTypenameDecl>(
InstantiatedFrom) || isa<UsingPackDecl>(InstantiatedFrom
)) ? void (0) : __assert_fail ("isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || isa<UsingPackDecl>(InstantiatedFrom)"
, "clang/lib/Sema/SemaDeclCXX.cpp", 12729, __extension__ __PRETTY_FUNCTION__
))
12728 isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) ||(static_cast <bool> (isa<UnresolvedUsingValueDecl>
(InstantiatedFrom) || isa<UnresolvedUsingTypenameDecl>(
InstantiatedFrom) || isa<UsingPackDecl>(InstantiatedFrom
)) ? void (0) : __assert_fail ("isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || isa<UsingPackDecl>(InstantiatedFrom)"
, "clang/lib/Sema/SemaDeclCXX.cpp", 12729, __extension__ __PRETTY_FUNCTION__
))
12729 isa<UsingPackDecl>(InstantiatedFrom))(static_cast <bool> (isa<UnresolvedUsingValueDecl>
(InstantiatedFrom) || isa<UnresolvedUsingTypenameDecl>(
InstantiatedFrom) || isa<UsingPackDecl>(InstantiatedFrom
)) ? void (0) : __assert_fail ("isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || isa<UsingPackDecl>(InstantiatedFrom)"
, "clang/lib/Sema/SemaDeclCXX.cpp", 12729, __extension__ __PRETTY_FUNCTION__
))
;
12730
12731 auto *UPD =
12732 UsingPackDecl::Create(Context, CurContext, InstantiatedFrom, Expansions);
12733 UPD->setAccess(InstantiatedFrom->getAccess());
12734 CurContext->addDecl(UPD);
12735 return UPD;
12736}
12737
12738/// Additional checks for a using declaration referring to a constructor name.
12739bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
12740 assert(!UD->hasTypename() && "expecting a constructor name")(static_cast <bool> (!UD->hasTypename() && "expecting a constructor name"
) ? void (0) : __assert_fail ("!UD->hasTypename() && \"expecting a constructor name\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 12740, __extension__ __PRETTY_FUNCTION__
))
;
12741
12742 const Type *SourceType = UD->getQualifier()->getAsType();
12743 assert(SourceType &&(static_cast <bool> (SourceType && "Using decl naming constructor doesn't have type in scope spec."
) ? void (0) : __assert_fail ("SourceType && \"Using decl naming constructor doesn't have type in scope spec.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 12744, __extension__ __PRETTY_FUNCTION__
))
12744 "Using decl naming constructor doesn't have type in scope spec.")(static_cast <bool> (SourceType && "Using decl naming constructor doesn't have type in scope spec."
) ? void (0) : __assert_fail ("SourceType && \"Using decl naming constructor doesn't have type in scope spec.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 12744, __extension__ __PRETTY_FUNCTION__
))
;
12745 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
12746
12747 // Check whether the named type is a direct base class.
12748 bool AnyDependentBases = false;
12749 auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0),
12750 AnyDependentBases);
12751 if (!Base && !AnyDependentBases) {
12752 Diag(UD->getUsingLoc(),
12753 diag::err_using_decl_constructor_not_in_direct_base)
12754 << UD->getNameInfo().getSourceRange()
12755 << QualType(SourceType, 0) << TargetClass;
12756 UD->setInvalidDecl();
12757 return true;
12758 }
12759
12760 if (Base)
12761 Base->setInheritConstructors();
12762
12763 return false;
12764}
12765
12766/// Checks that the given using declaration is not an invalid
12767/// redeclaration. Note that this is checking only for the using decl
12768/// itself, not for any ill-formedness among the UsingShadowDecls.
12769bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
12770 bool HasTypenameKeyword,
12771 const CXXScopeSpec &SS,
12772 SourceLocation NameLoc,
12773 const LookupResult &Prev) {
12774 NestedNameSpecifier *Qual = SS.getScopeRep();
12775
12776 // C++03 [namespace.udecl]p8:
12777 // C++0x [namespace.udecl]p10:
12778 // A using-declaration is a declaration and can therefore be used
12779 // repeatedly where (and only where) multiple declarations are
12780 // allowed.
12781 //
12782 // That's in non-member contexts.
12783 if (!CurContext->getRedeclContext()->isRecord()) {
12784 // A dependent qualifier outside a class can only ever resolve to an
12785 // enumeration type. Therefore it conflicts with any other non-type
12786 // declaration in the same scope.
12787 // FIXME: How should we check for dependent type-type conflicts at block
12788 // scope?
12789 if (Qual->isDependent() && !HasTypenameKeyword) {
12790 for (auto *D : Prev) {
12791 if (!isa<TypeDecl>(D) && !isa<UsingDecl>(D) && !isa<UsingPackDecl>(D)) {
12792 bool OldCouldBeEnumerator =
12793 isa<UnresolvedUsingValueDecl>(D) || isa<EnumConstantDecl>(D);
12794 Diag(NameLoc,
12795 OldCouldBeEnumerator ? diag::err_redefinition
12796 : diag::err_redefinition_different_kind)
12797 << Prev.getLookupName();
12798 Diag(D->getLocation(), diag::note_previous_definition);
12799 return true;
12800 }
12801 }
12802 }
12803 return false;
12804 }
12805
12806 const NestedNameSpecifier *CNNS =
12807 Context.getCanonicalNestedNameSpecifier(Qual);
12808 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
12809 NamedDecl *D = *I;
12810
12811 bool DTypename;
12812 NestedNameSpecifier *DQual;
12813 if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
12814 DTypename = UD->hasTypename();
12815 DQual = UD->getQualifier();
12816 } else if (UnresolvedUsingValueDecl *UD
12817 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
12818 DTypename = false;
12819 DQual = UD->getQualifier();
12820 } else if (UnresolvedUsingTypenameDecl *UD
12821 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
12822 DTypename = true;
12823 DQual = UD->getQualifier();
12824 } else continue;
12825
12826 // using decls differ if one says 'typename' and the other doesn't.
12827 // FIXME: non-dependent using decls?
12828 if (HasTypenameKeyword != DTypename) continue;
12829
12830 // using decls differ if they name different scopes (but note that
12831 // template instantiation can cause this check to trigger when it
12832 // didn't before instantiation).
12833 if (CNNS != Context.getCanonicalNestedNameSpecifier(DQual))
12834 continue;
12835
12836 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
12837 Diag(D->getLocation(), diag::note_using_decl) << 1;
12838 return true;
12839 }
12840
12841 return false;
12842}
12843
12844/// Checks that the given nested-name qualifier used in a using decl
12845/// in the current context is appropriately related to the current
12846/// scope. If an error is found, diagnoses it and returns true.
12847/// R is nullptr, if the caller has not (yet) done a lookup, otherwise it's the
12848/// result of that lookup. UD is likewise nullptr, except when we have an
12849/// already-populated UsingDecl whose shadow decls contain the same information
12850/// (i.e. we're instantiating a UsingDecl with non-dependent scope).
12851bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename,
12852 const CXXScopeSpec &SS,
12853 const DeclarationNameInfo &NameInfo,
12854 SourceLocation NameLoc,
12855 const LookupResult *R, const UsingDecl *UD) {
12856 DeclContext *NamedContext = computeDeclContext(SS);
12857 assert(bool(NamedContext) == (R || UD) && !(R && UD) &&(static_cast <bool> (bool(NamedContext) == (R || UD) &&
!(R && UD) && "resolvable context must have exactly one set of decls"
) ? void (0) : __assert_fail ("bool(NamedContext) == (R || UD) && !(R && UD) && \"resolvable context must have exactly one set of decls\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 12858, __extension__ __PRETTY_FUNCTION__
))
12858 "resolvable context must have exactly one set of decls")(static_cast <bool> (bool(NamedContext) == (R || UD) &&
!(R && UD) && "resolvable context must have exactly one set of decls"
) ? void (0) : __assert_fail ("bool(NamedContext) == (R || UD) && !(R && UD) && \"resolvable context must have exactly one set of decls\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 12858, __extension__ __PRETTY_FUNCTION__
))
;
12859
12860 // C++ 20 permits using an enumerator that does not have a class-hierarchy
12861 // relationship.
12862 bool Cxx20Enumerator = false;
12863 if (NamedContext) {
12864 EnumConstantDecl *EC = nullptr;
12865 if (R)
12866 EC = R->getAsSingle<EnumConstantDecl>();
12867 else if (UD && UD->shadow_size() == 1)
12868 EC = dyn_cast<EnumConstantDecl>(UD->shadow_begin()->getTargetDecl());
12869 if (EC)
12870 Cxx20Enumerator = getLangOpts().CPlusPlus20;
12871
12872 if (auto *ED = dyn_cast<EnumDecl>(NamedContext)) {
12873 // C++14 [namespace.udecl]p7:
12874 // A using-declaration shall not name a scoped enumerator.
12875 // C++20 p1099 permits enumerators.
12876 if (EC && R && ED->isScoped())
12877 Diag(SS.getBeginLoc(),
12878 getLangOpts().CPlusPlus20
12879 ? diag::warn_cxx17_compat_using_decl_scoped_enumerator
12880 : diag::ext_using_decl_scoped_enumerator)
12881 << SS.getRange();
12882
12883 // We want to consider the scope of the enumerator
12884 NamedContext = ED->getDeclContext();
12885 }
12886 }
12887
12888 if (!CurContext->isRecord()) {
12889 // C++03 [namespace.udecl]p3:
12890 // C++0x [namespace.udecl]p8:
12891 // A using-declaration for a class member shall be a member-declaration.
12892 // C++20 [namespace.udecl]p7
12893 // ... other than an enumerator ...
12894
12895 // If we weren't able to compute a valid scope, it might validly be a
12896 // dependent class or enumeration scope. If we have a 'typename' keyword,
12897 // the scope must resolve to a class type.
12898 if (NamedContext ? !NamedContext->getRedeclContext()->isRecord()
12899 : !HasTypename)
12900 return false; // OK
12901
12902 Diag(NameLoc,
12903 Cxx20Enumerator
12904 ? diag::warn_cxx17_compat_using_decl_class_member_enumerator
12905 : diag::err_using_decl_can_not_refer_to_class_member)
12906 << SS.getRange();
12907
12908 if (Cxx20Enumerator)
12909 return false; // OK
12910
12911 auto *RD = NamedContext
12912 ? cast<CXXRecordDecl>(NamedContext->getRedeclContext())
12913 : nullptr;
12914 if (RD && !RequireCompleteDeclContext(const_cast<CXXScopeSpec &>(SS), RD)) {
12915 // See if there's a helpful fixit
12916
12917 if (!R) {
12918 // We will have already diagnosed the problem on the template
12919 // definition, Maybe we should do so again?
12920 } else if (R->getAsSingle<TypeDecl>()) {
12921 if (getLangOpts().CPlusPlus11) {
12922 // Convert 'using X::Y;' to 'using Y = X::Y;'.
12923 Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround)
12924 << 0 // alias declaration
12925 << FixItHint::CreateInsertion(SS.getBeginLoc(),
12926 NameInfo.getName().getAsString() +
12927 " = ");
12928 } else {
12929 // Convert 'using X::Y;' to 'typedef X::Y Y;'.
12930 SourceLocation InsertLoc = getLocForEndOfToken(NameInfo.getEndLoc());
12931 Diag(InsertLoc, diag::note_using_decl_class_member_workaround)
12932 << 1 // typedef declaration
12933 << FixItHint::CreateReplacement(UsingLoc, "typedef")
12934 << FixItHint::CreateInsertion(
12935 InsertLoc, " " + NameInfo.getName().getAsString());
12936 }
12937 } else if (R->getAsSingle<VarDecl>()) {
12938 // Don't provide a fixit outside C++11 mode; we don't want to suggest
12939 // repeating the type of the static data member here.
12940 FixItHint FixIt;
12941 if (getLangOpts().CPlusPlus11) {
12942 // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
12943 FixIt = FixItHint::CreateReplacement(
12944 UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = ");
12945 }
12946
12947 Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
12948 << 2 // reference declaration
12949 << FixIt;
12950 } else if (R->getAsSingle<EnumConstantDecl>()) {
12951 // Don't provide a fixit outside C++11 mode; we don't want to suggest
12952 // repeating the type of the enumeration here, and we can't do so if
12953 // the type is anonymous.
12954 FixItHint FixIt;
12955 if (getLangOpts().CPlusPlus11) {
12956 // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
12957 FixIt = FixItHint::CreateReplacement(
12958 UsingLoc,
12959 "constexpr auto " + NameInfo.getName().getAsString() + " = ");
12960 }
12961
12962 Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
12963 << (getLangOpts().CPlusPlus11 ? 4 : 3) // const[expr] variable
12964 << FixIt;
12965 }
12966 }
12967
12968 return true; // Fail
12969 }
12970
12971 // If the named context is dependent, we can't decide much.
12972 if (!NamedContext) {
12973 // FIXME: in C++0x, we can diagnose if we can prove that the
12974 // nested-name-specifier does not refer to a base class, which is
12975 // still possible in some cases.
12976
12977 // Otherwise we have to conservatively report that things might be
12978 // okay.
12979 return false;
12980 }
12981
12982 // The current scope is a record.
12983 if (!NamedContext->isRecord()) {
12984 // Ideally this would point at the last name in the specifier,
12985 // but we don't have that level of source info.
12986 Diag(SS.getBeginLoc(),
12987 Cxx20Enumerator
12988 ? diag::warn_cxx17_compat_using_decl_non_member_enumerator
12989 : diag::err_using_decl_nested_name_specifier_is_not_class)
12990 << SS.getScopeRep() << SS.getRange();
12991
12992 if (Cxx20Enumerator)
12993 return false; // OK
12994
12995 return true;
12996 }
12997
12998 if (!NamedContext->isDependentContext() &&
12999 RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
13000 return true;
13001
13002 if (getLangOpts().CPlusPlus11) {
13003 // C++11 [namespace.udecl]p3:
13004 // In a using-declaration used as a member-declaration, the
13005 // nested-name-specifier shall name a base class of the class
13006 // being defined.
13007
13008 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
13009 cast<CXXRecordDecl>(NamedContext))) {
13010
13011 if (Cxx20Enumerator) {
13012 Diag(NameLoc, diag::warn_cxx17_compat_using_decl_non_member_enumerator)
13013 << SS.getRange();
13014 return false;
13015 }
13016
13017 if (CurContext == NamedContext) {
13018 Diag(SS.getBeginLoc(),
13019 diag::err_using_decl_nested_name_specifier_is_current_class)
13020 << SS.getRange();
13021 return !getLangOpts().CPlusPlus20;
13022 }
13023
13024 if (!cast<CXXRecordDecl>(NamedContext)->isInvalidDecl()) {
13025 Diag(SS.getBeginLoc(),
13026 diag::err_using_decl_nested_name_specifier_is_not_base_class)
13027 << SS.getScopeRep() << cast<CXXRecordDecl>(CurContext)
13028 << SS.getRange();
13029 }
13030 return true;
13031 }
13032
13033 return false;
13034 }
13035
13036 // C++03 [namespace.udecl]p4:
13037 // A using-declaration used as a member-declaration shall refer
13038 // to a member of a base class of the class being defined [etc.].
13039
13040 // Salient point: SS doesn't have to name a base class as long as
13041 // lookup only finds members from base classes. Therefore we can
13042 // diagnose here only if we can prove that can't happen,
13043 // i.e. if the class hierarchies provably don't intersect.
13044
13045 // TODO: it would be nice if "definitely valid" results were cached
13046 // in the UsingDecl and UsingShadowDecl so that these checks didn't
13047 // need to be repeated.
13048
13049 llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases;
13050 auto Collect = [&Bases](const CXXRecordDecl *Base) {
13051 Bases.insert(Base);
13052 return true;
13053 };
13054
13055 // Collect all bases. Return false if we find a dependent base.
13056 if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect))
13057 return false;
13058
13059 // Returns true if the base is dependent or is one of the accumulated base
13060 // classes.
13061 auto IsNotBase = [&Bases](const CXXRecordDecl *Base) {
13062 return !Bases.count(Base);
13063 };
13064
13065 // Return false if the class has a dependent base or if it or one
13066 // of its bases is present in the base set of the current context.
13067 if (Bases.count(cast<CXXRecordDecl>(NamedContext)) ||
13068 !cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase))
13069 return false;
13070
13071 Diag(SS.getRange().getBegin(),
13072 diag::err_using_decl_nested_name_specifier_is_not_base_class)
13073 << SS.getScopeRep()
13074 << cast<CXXRecordDecl>(CurContext)
13075 << SS.getRange();
13076
13077 return true;
13078}
13079
13080Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS,
13081 MultiTemplateParamsArg TemplateParamLists,
13082 SourceLocation UsingLoc, UnqualifiedId &Name,
13083 const ParsedAttributesView &AttrList,
13084 TypeResult Type, Decl *DeclFromDeclSpec) {
13085 // Skip up to the relevant declaration scope.
13086 while (S->isTemplateParamScope())
13087 S = S->getParent();
13088 assert((S->getFlags() & Scope::DeclScope) &&(static_cast <bool> ((S->getFlags() & Scope::DeclScope
) && "got alias-declaration outside of declaration scope"
) ? void (0) : __assert_fail ("(S->getFlags() & Scope::DeclScope) && \"got alias-declaration outside of declaration scope\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13089, __extension__ __PRETTY_FUNCTION__
))
13089 "got alias-declaration outside of declaration scope")(static_cast <bool> ((S->getFlags() & Scope::DeclScope
) && "got alias-declaration outside of declaration scope"
) ? void (0) : __assert_fail ("(S->getFlags() & Scope::DeclScope) && \"got alias-declaration outside of declaration scope\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13089, __extension__ __PRETTY_FUNCTION__
))
;
13090
13091 if (Type.isInvalid())
13092 return nullptr;
13093
13094 bool Invalid = false;
13095 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
13096 TypeSourceInfo *TInfo = nullptr;
13097 GetTypeFromParser(Type.get(), &TInfo);
13098
13099 if (DiagnoseClassNameShadow(CurContext, NameInfo))
13100 return nullptr;
13101
13102 if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
13103 UPPC_DeclarationType)) {
13104 Invalid = true;
13105 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
13106 TInfo->getTypeLoc().getBeginLoc());
13107 }
13108
13109 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
13110 TemplateParamLists.size()
13111 ? forRedeclarationInCurContext()
13112 : ForVisibleRedeclaration);
13113 LookupName(Previous, S);
13114
13115 // Warn about shadowing the name of a template parameter.
13116 if (Previous.isSingleResult() &&
13117 Previous.getFoundDecl()->isTemplateParameter()) {
13118 DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
13119 Previous.clear();
13120 }
13121
13122 assert(Name.getKind() == UnqualifiedIdKind::IK_Identifier &&(static_cast <bool> (Name.getKind() == UnqualifiedIdKind
::IK_Identifier && "name in alias declaration must be an identifier"
) ? void (0) : __assert_fail ("Name.getKind() == UnqualifiedIdKind::IK_Identifier && \"name in alias declaration must be an identifier\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13123, __extension__ __PRETTY_FUNCTION__
))
13123 "name in alias declaration must be an identifier")(static_cast <bool> (Name.getKind() == UnqualifiedIdKind
::IK_Identifier && "name in alias declaration must be an identifier"
) ? void (0) : __assert_fail ("Name.getKind() == UnqualifiedIdKind::IK_Identifier && \"name in alias declaration must be an identifier\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13123, __extension__ __PRETTY_FUNCTION__
))
;
13124 TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
13125 Name.StartLocation,
13126 Name.Identifier, TInfo);
13127
13128 NewTD->setAccess(AS);
13129
13130 if (Invalid)
13131 NewTD->setInvalidDecl();
13132
13133 ProcessDeclAttributeList(S, NewTD, AttrList);
13134 AddPragmaAttributes(S, NewTD);
13135
13136 CheckTypedefForVariablyModifiedType(S, NewTD);
13137 Invalid |= NewTD->isInvalidDecl();
13138
13139 bool Redeclaration = false;
13140
13141 NamedDecl *NewND;
13142 if (TemplateParamLists.size()) {
13143 TypeAliasTemplateDecl *OldDecl = nullptr;
13144 TemplateParameterList *OldTemplateParams = nullptr;
13145
13146 if (TemplateParamLists.size() != 1) {
13147 Diag(UsingLoc, diag::err_alias_template_extra_headers)
13148 << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
13149 TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
13150 }
13151 TemplateParameterList *TemplateParams = TemplateParamLists[0];
13152
13153 // Check that we can declare a template here.
13154 if (CheckTemplateDeclScope(S, TemplateParams))
13155 return nullptr;
13156
13157 // Only consider previous declarations in the same scope.
13158 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
13159 /*ExplicitInstantiationOrSpecialization*/false);
13160 if (!Previous.empty()) {
13161 Redeclaration = true;
13162
13163 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
13164 if (!OldDecl && !Invalid) {
13165 Diag(UsingLoc, diag::err_redefinition_different_kind)
13166 << Name.Identifier;
13167
13168 NamedDecl *OldD = Previous.getRepresentativeDecl();
13169 if (OldD->getLocation().isValid())
13170 Diag(OldD->getLocation(), diag::note_previous_definition);
13171
13172 Invalid = true;
13173 }
13174
13175 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
13176 if (TemplateParameterListsAreEqual(TemplateParams,
13177 OldDecl->getTemplateParameters(),
13178 /*Complain=*/true,
13179 TPL_TemplateMatch))
13180 OldTemplateParams =
13181 OldDecl->getMostRecentDecl()->getTemplateParameters();
13182 else
13183 Invalid = true;
13184
13185 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
13186 if (!Invalid &&
13187 !Context.hasSameType(OldTD->getUnderlyingType(),
13188 NewTD->getUnderlyingType())) {
13189 // FIXME: The C++0x standard does not clearly say this is ill-formed,
13190 // but we can't reasonably accept it.
13191 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
13192 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
13193 if (OldTD->getLocation().isValid())
13194 Diag(OldTD->getLocation(), diag::note_previous_definition);
13195 Invalid = true;
13196 }
13197 }
13198 }
13199
13200 // Merge any previous default template arguments into our parameters,
13201 // and check the parameter list.
13202 if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
13203 TPC_TypeAliasTemplate))
13204 return nullptr;
13205
13206 TypeAliasTemplateDecl *NewDecl =
13207 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
13208 Name.Identifier, TemplateParams,
13209 NewTD);
13210 NewTD->setDescribedAliasTemplate(NewDecl);
13211
13212 NewDecl->setAccess(AS);
13213
13214 if (Invalid)
13215 NewDecl->setInvalidDecl();
13216 else if (OldDecl) {
13217 NewDecl->setPreviousDecl(OldDecl);
13218 CheckRedeclarationInModule(NewDecl, OldDecl);
13219 }
13220
13221 NewND = NewDecl;
13222 } else {
13223 if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) {
13224 setTagNameForLinkagePurposes(TD, NewTD);
13225 handleTagNumbering(TD, S);
13226 }
13227 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
13228 NewND = NewTD;
13229 }
13230
13231 PushOnScopeChains(NewND, S);
13232 ActOnDocumentableDecl(NewND);
13233 return NewND;
13234}
13235
13236Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc,
13237 SourceLocation AliasLoc,
13238 IdentifierInfo *Alias, CXXScopeSpec &SS,
13239 SourceLocation IdentLoc,
13240 IdentifierInfo *Ident) {
13241
13242 // Lookup the namespace name.
13243 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
13244 LookupParsedName(R, S, &SS);
13245
13246 if (R.isAmbiguous())
13247 return nullptr;
13248
13249 if (R.empty()) {
13250 if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
13251 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
13252 return nullptr;
13253 }
13254 }
13255 assert(!R.isAmbiguous() && !R.empty())(static_cast <bool> (!R.isAmbiguous() && !R.empty
()) ? void (0) : __assert_fail ("!R.isAmbiguous() && !R.empty()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 13255, __extension__ __PRETTY_FUNCTION__
))
;
13256 NamedDecl *ND = R.getRepresentativeDecl();
13257
13258 // Check if we have a previous declaration with the same name.
13259 LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName,
13260 ForVisibleRedeclaration);
13261 LookupName(PrevR, S);
13262
13263 // Check we're not shadowing a template parameter.
13264 if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) {
13265 DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl());
13266 PrevR.clear();
13267 }
13268
13269 // Filter out any other lookup result from an enclosing scope.
13270 FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false,
13271 /*AllowInlineNamespace*/false);
13272
13273 // Find the previous declaration and check that we can redeclare it.
13274 NamespaceAliasDecl *Prev = nullptr;
13275 if (PrevR.isSingleResult()) {
13276 NamedDecl *PrevDecl = PrevR.getRepresentativeDecl();
13277 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
13278 // We already have an alias with the same name that points to the same
13279 // namespace; check that it matches.
13280 if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) {
13281 Prev = AD;
13282 } else if (isVisible(PrevDecl)) {
13283 Diag(AliasLoc, diag::err_redefinition_different_namespace_alias)
13284 << Alias;
13285 Diag(AD->getLocation(), diag::note_previous_namespace_alias)
13286 << AD->getNamespace();
13287 return nullptr;
13288 }
13289 } else if (isVisible(PrevDecl)) {
13290 unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl())
13291 ? diag::err_redefinition
13292 : diag::err_redefinition_different_kind;
13293 Diag(AliasLoc, DiagID) << Alias;
13294 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
13295 return nullptr;
13296 }
13297 }
13298
13299 // The use of a nested name specifier may trigger deprecation warnings.
13300 DiagnoseUseOfDecl(ND, IdentLoc);
13301
13302 NamespaceAliasDecl *AliasDecl =
13303 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
13304 Alias, SS.getWithLocInContext(Context),
13305 IdentLoc, ND);
13306 if (Prev)
13307 AliasDecl->setPreviousDecl(Prev);
13308
13309 PushOnScopeChains(AliasDecl, S);
13310 return AliasDecl;
13311}
13312
13313namespace {
13314struct SpecialMemberExceptionSpecInfo
13315 : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> {
13316 SourceLocation Loc;
13317 Sema::ImplicitExceptionSpecification ExceptSpec;
13318
13319 SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD,
13320 Sema::CXXSpecialMember CSM,
13321 Sema::InheritedConstructorInfo *ICI,
13322 SourceLocation Loc)
13323 : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {}
13324
13325 bool visitBase(CXXBaseSpecifier *Base);
13326 bool visitField(FieldDecl *FD);
13327
13328 void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
13329 unsigned Quals);
13330
13331 void visitSubobjectCall(Subobject Subobj,
13332 Sema::SpecialMemberOverloadResult SMOR);
13333};
13334}
13335
13336bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) {
13337 auto *RT = Base->getType()->getAs<RecordType>();
13338 if (!RT)
13339 return false;
13340
13341 auto *BaseClass = cast<CXXRecordDecl>(RT->getDecl());
13342 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
13343 if (auto *BaseCtor = SMOR.getMethod()) {
13344 visitSubobjectCall(Base, BaseCtor);
13345 return false;
13346 }
13347
13348 visitClassSubobject(BaseClass, Base, 0);
13349 return false;
13350}
13351
13352bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) {
13353 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) {
13354 Expr *E = FD->getInClassInitializer();
13355 if (!E)
13356 // FIXME: It's a little wasteful to build and throw away a
13357 // CXXDefaultInitExpr here.
13358 // FIXME: We should have a single context note pointing at Loc, and
13359 // this location should be MD->getLocation() instead, since that's
13360 // the location where we actually use the default init expression.
13361 E = S.BuildCXXDefaultInitExpr(Loc, FD).get();
13362 if (E)
13363 ExceptSpec.CalledExpr(E);
13364 } else if (auto *RT = S.Context.getBaseElementType(FD->getType())
13365 ->getAs<RecordType>()) {
13366 visitClassSubobject(cast<CXXRecordDecl>(RT->getDecl()), FD,
13367 FD->getType().getCVRQualifiers());
13368 }
13369 return false;
13370}
13371
13372void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class,
13373 Subobject Subobj,
13374 unsigned Quals) {
13375 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
13376 bool IsMutable = Field && Field->isMutable();
13377 visitSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable));
13378}
13379
13380void SpecialMemberExceptionSpecInfo::visitSubobjectCall(
13381 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) {
13382 // Note, if lookup fails, it doesn't matter what exception specification we
13383 // choose because the special member will be deleted.
13384 if (CXXMethodDecl *MD = SMOR.getMethod())
13385 ExceptSpec.CalledDecl(getSubobjectLoc(Subobj), MD);
13386}
13387
13388bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) {
13389 llvm::APSInt Result;
13390 ExprResult Converted = CheckConvertedConstantExpression(
13391 ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEK_ExplicitBool);
13392 ExplicitSpec.setExpr(Converted.get());
13393 if (Converted.isUsable() && !Converted.get()->isValueDependent()) {
13394 ExplicitSpec.setKind(Result.getBoolValue()
13395 ? ExplicitSpecKind::ResolvedTrue
13396 : ExplicitSpecKind::ResolvedFalse);
13397 return true;
13398 }
13399 ExplicitSpec.setKind(ExplicitSpecKind::Unresolved);
13400 return false;
13401}
13402
13403ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) {
13404 ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved);
13405 if (!ExplicitExpr->isTypeDependent())
13406 tryResolveExplicitSpecifier(ES);
13407 return ES;
13408}
13409
13410static Sema::ImplicitExceptionSpecification
13411ComputeDefaultedSpecialMemberExceptionSpec(
13412 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
13413 Sema::InheritedConstructorInfo *ICI) {
13414 ComputingExceptionSpec CES(S, MD, Loc);
13415
13416 CXXRecordDecl *ClassDecl = MD->getParent();
13417
13418 // C++ [except.spec]p14:
13419 // An implicitly declared special member function (Clause 12) shall have an
13420 // exception-specification. [...]
13421 SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation());
13422 if (ClassDecl->isInvalidDecl())
13423 return Info.ExceptSpec;
13424
13425 // FIXME: If this diagnostic fires, we're probably missing a check for
13426 // attempting to resolve an exception specification before it's known
13427 // at a higher level.
13428 if (S.RequireCompleteType(MD->getLocation(),
13429 S.Context.getRecordType(ClassDecl),
13430 diag::err_exception_spec_incomplete_type))
13431 return Info.ExceptSpec;
13432
13433 // C++1z [except.spec]p7:
13434 // [Look for exceptions thrown by] a constructor selected [...] to
13435 // initialize a potentially constructed subobject,
13436 // C++1z [except.spec]p8:
13437 // The exception specification for an implicitly-declared destructor, or a
13438 // destructor without a noexcept-specifier, is potentially-throwing if and
13439 // only if any of the destructors for any of its potentially constructed
13440 // subojects is potentially throwing.
13441 // FIXME: We respect the first rule but ignore the "potentially constructed"
13442 // in the second rule to resolve a core issue (no number yet) that would have
13443 // us reject:
13444 // struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; };
13445 // struct B : A {};
13446 // struct C : B { void f(); };
13447 // ... due to giving B::~B() a non-throwing exception specification.
13448 Info.visit(Info.IsConstructor ? Info.VisitPotentiallyConstructedBases
13449 : Info.VisitAllBases);
13450
13451 return Info.ExceptSpec;
13452}
13453
13454namespace {
13455/// RAII object to register a special member as being currently declared.
13456struct DeclaringSpecialMember {
13457 Sema &S;
13458 Sema::SpecialMemberDecl D;
13459 Sema::ContextRAII SavedContext;
13460 bool WasAlreadyBeingDeclared;
13461
13462 DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
13463 : S(S), D(RD, CSM), SavedContext(S, RD) {
13464 WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second;
13465 if (WasAlreadyBeingDeclared)
13466 // This almost never happens, but if it does, ensure that our cache
13467 // doesn't contain a stale result.
13468 S.SpecialMemberCache.clear();
13469 else {
13470 // Register a note to be produced if we encounter an error while
13471 // declaring the special member.
13472 Sema::CodeSynthesisContext Ctx;
13473 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember;
13474 // FIXME: We don't have a location to use here. Using the class's
13475 // location maintains the fiction that we declare all special members
13476 // with the class, but (1) it's not clear that lying about that helps our
13477 // users understand what's going on, and (2) there may be outer contexts
13478 // on the stack (some of which are relevant) and printing them exposes
13479 // our lies.
13480 Ctx.PointOfInstantiation = RD->getLocation();
13481 Ctx.Entity = RD;
13482 Ctx.SpecialMember = CSM;
13483 S.pushCodeSynthesisContext(Ctx);
13484 }
13485 }
13486 ~DeclaringSpecialMember() {
13487 if (!WasAlreadyBeingDeclared) {
13488 S.SpecialMembersBeingDeclared.erase(D);
13489 S.popCodeSynthesisContext();
13490 }
13491 }
13492
13493 /// Are we already trying to declare this special member?
13494 bool isAlreadyBeingDeclared() const {
13495 return WasAlreadyBeingDeclared;
13496 }
13497};
13498}
13499
13500void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) {
13501 // Look up any existing declarations, but don't trigger declaration of all
13502 // implicit special members with this name.
13503 DeclarationName Name = FD->getDeclName();
13504 LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName,
13505 ForExternalRedeclaration);
13506 for (auto *D : FD->getParent()->lookup(Name))
13507 if (auto *Acceptable = R.getAcceptableDecl(D))
13508 R.addDecl(Acceptable);
13509 R.resolveKind();
13510 R.suppressDiagnostics();
13511
13512 CheckFunctionDeclaration(S, FD, R, /*IsMemberSpecialization*/ false,
13513 FD->isThisDeclarationADefinition());
13514}
13515
13516void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem,
13517 QualType ResultTy,
13518 ArrayRef<QualType> Args) {
13519 // Build an exception specification pointing back at this constructor.
13520 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, SpecialMem);
13521
13522 LangAS AS = getDefaultCXXMethodAddrSpace();
13523 if (AS != LangAS::Default) {
13524 EPI.TypeQuals.addAddressSpace(AS);
13525 }
13526
13527 auto QT = Context.getFunctionType(ResultTy, Args, EPI);
13528 SpecialMem->setType(QT);
13529
13530 // During template instantiation of implicit special member functions we need
13531 // a reliable TypeSourceInfo for the function prototype in order to allow
13532 // functions to be substituted.
13533 if (inTemplateInstantiation() &&
13534 cast<CXXRecordDecl>(SpecialMem->getParent())->isLambda()) {
13535 TypeSourceInfo *TSI =
13536 Context.getTrivialTypeSourceInfo(SpecialMem->getType());
13537 SpecialMem->setTypeSourceInfo(TSI);
13538 }
13539}
13540
13541CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
13542 CXXRecordDecl *ClassDecl) {
13543 // C++ [class.ctor]p5:
13544 // A default constructor for a class X is a constructor of class X
13545 // that can be called without an argument. If there is no
13546 // user-declared constructor for class X, a default constructor is
13547 // implicitly declared. An implicitly-declared default constructor
13548 // is an inline public member of its class.
13549 assert(ClassDecl->needsImplicitDefaultConstructor() &&(static_cast <bool> (ClassDecl->needsImplicitDefaultConstructor
() && "Should not build implicit default constructor!"
) ? void (0) : __assert_fail ("ClassDecl->needsImplicitDefaultConstructor() && \"Should not build implicit default constructor!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13550, __extension__ __PRETTY_FUNCTION__
))
13550 "Should not build implicit default constructor!")(static_cast <bool> (ClassDecl->needsImplicitDefaultConstructor
() && "Should not build implicit default constructor!"
) ? void (0) : __assert_fail ("ClassDecl->needsImplicitDefaultConstructor() && \"Should not build implicit default constructor!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13550, __extension__ __PRETTY_FUNCTION__
))
;
13551
13552 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
13553 if (DSM.isAlreadyBeingDeclared())
13554 return nullptr;
13555
13556 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
13557 CXXDefaultConstructor,
13558 false);
13559
13560 // Create the actual constructor declaration.
13561 CanQualType ClassType
13562 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
13563 SourceLocation ClassLoc = ClassDecl->getLocation();
13564 DeclarationName Name
13565 = Context.DeclarationNames.getCXXConstructorName(ClassType);
13566 DeclarationNameInfo NameInfo(Name, ClassLoc);
13567 CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
13568 Context, ClassDecl, ClassLoc, NameInfo, /*Type*/ QualType(),
13569 /*TInfo=*/nullptr, ExplicitSpecifier(),
13570 getCurFPFeatures().isFPConstrained(),
13571 /*isInline=*/true, /*isImplicitlyDeclared=*/true,
13572 Constexpr ? ConstexprSpecKind::Constexpr
13573 : ConstexprSpecKind::Unspecified);
13574 DefaultCon->setAccess(AS_public);
13575 DefaultCon->setDefaulted();
13576
13577 setupImplicitSpecialMemberType(DefaultCon, Context.VoidTy, std::nullopt);
13578
13579 if (getLangOpts().CUDA)
13580 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor,
13581 DefaultCon,
13582 /* ConstRHS */ false,
13583 /* Diagnose */ false);
13584
13585 // We don't need to use SpecialMemberIsTrivial here; triviality for default
13586 // constructors is easy to compute.
13587 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
13588
13589 // Note that we have declared this constructor.
13590 ++getASTContext().NumImplicitDefaultConstructorsDeclared;
13591
13592 Scope *S = getScopeForContext(ClassDecl);
13593 CheckImplicitSpecialMemberDeclaration(S, DefaultCon);
13594
13595 if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
13596 SetDeclDeleted(DefaultCon, ClassLoc);
13597
13598 if (S)
13599 PushOnScopeChains(DefaultCon, S, false);
13600 ClassDecl->addDecl(DefaultCon);
13601
13602 return DefaultCon;
13603}
13604
13605void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
13606 CXXConstructorDecl *Constructor) {
13607 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&(static_cast <bool> ((Constructor->isDefaulted() &&
Constructor->isDefaultConstructor() && !Constructor
->doesThisDeclarationHaveABody() && !Constructor->
isDeleted()) && "DefineImplicitDefaultConstructor - call it for implicit default ctor"
) ? void (0) : __assert_fail ("(Constructor->isDefaulted() && Constructor->isDefaultConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()) && \"DefineImplicitDefaultConstructor - call it for implicit default ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13610, __extension__ __PRETTY_FUNCTION__
))
13608 !Constructor->doesThisDeclarationHaveABody() &&(static_cast <bool> ((Constructor->isDefaulted() &&
Constructor->isDefaultConstructor() && !Constructor
->doesThisDeclarationHaveABody() && !Constructor->
isDeleted()) && "DefineImplicitDefaultConstructor - call it for implicit default ctor"
) ? void (0) : __assert_fail ("(Constructor->isDefaulted() && Constructor->isDefaultConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()) && \"DefineImplicitDefaultConstructor - call it for implicit default ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13610, __extension__ __PRETTY_FUNCTION__
))
13609 !Constructor->isDeleted()) &&(static_cast <bool> ((Constructor->isDefaulted() &&
Constructor->isDefaultConstructor() && !Constructor
->doesThisDeclarationHaveABody() && !Constructor->
isDeleted()) && "DefineImplicitDefaultConstructor - call it for implicit default ctor"
) ? void (0) : __assert_fail ("(Constructor->isDefaulted() && Constructor->isDefaultConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()) && \"DefineImplicitDefaultConstructor - call it for implicit default ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13610, __extension__ __PRETTY_FUNCTION__
))
13610 "DefineImplicitDefaultConstructor - call it for implicit default ctor")(static_cast <bool> ((Constructor->isDefaulted() &&
Constructor->isDefaultConstructor() && !Constructor
->doesThisDeclarationHaveABody() && !Constructor->
isDeleted()) && "DefineImplicitDefaultConstructor - call it for implicit default ctor"
) ? void (0) : __assert_fail ("(Constructor->isDefaulted() && Constructor->isDefaultConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()) && \"DefineImplicitDefaultConstructor - call it for implicit default ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13610, __extension__ __PRETTY_FUNCTION__
))
;
13611 if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
13612 return;
13613
13614 CXXRecordDecl *ClassDecl = Constructor->getParent();
13615 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor")(static_cast <bool> (ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"
) ? void (0) : __assert_fail ("ClassDecl && \"DefineImplicitDefaultConstructor - invalid constructor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13615, __extension__ __PRETTY_FUNCTION__
))
;
13616
13617 SynthesizedFunctionScope Scope(*this, Constructor);
13618
13619 // The exception specification is needed because we are defining the
13620 // function.
13621 ResolveExceptionSpec(CurrentLocation,
13622 Constructor->getType()->castAs<FunctionProtoType>());
13623 MarkVTableUsed(CurrentLocation, ClassDecl);
13624
13625 // Add a context note for diagnostics produced after this point.
13626 Scope.addContextNote(CurrentLocation);
13627
13628 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) {
13629 Constructor->setInvalidDecl();
13630 return;
13631 }
13632
13633 SourceLocation Loc = Constructor->getEndLoc().isValid()
13634 ? Constructor->getEndLoc()
13635 : Constructor->getLocation();
13636 Constructor->setBody(new (Context) CompoundStmt(Loc));
13637 Constructor->markUsed(Context);
13638
13639 if (ASTMutationListener *L = getASTMutationListener()) {
13640 L->CompletedImplicitDefinition(Constructor);
13641 }
13642
13643 DiagnoseUninitializedFields(*this, Constructor);
13644}
13645
13646void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
13647 // Perform any delayed checks on exception specifications.
13648 CheckDelayedMemberExceptionSpecs();
13649}
13650
13651/// Find or create the fake constructor we synthesize to model constructing an
13652/// object of a derived class via a constructor of a base class.
13653CXXConstructorDecl *
13654Sema::findInheritingConstructor(SourceLocation Loc,
13655 CXXConstructorDecl *BaseCtor,
13656 ConstructorUsingShadowDecl *Shadow) {
13657 CXXRecordDecl *Derived = Shadow->getParent();
13658 SourceLocation UsingLoc = Shadow->getLocation();
13659
13660 // FIXME: Add a new kind of DeclarationName for an inherited constructor.
13661 // For now we use the name of the base class constructor as a member of the
13662 // derived class to indicate a (fake) inherited constructor name.
13663 DeclarationName Name = BaseCtor->getDeclName();
13664
13665 // Check to see if we already have a fake constructor for this inherited
13666 // constructor call.
13667 for (NamedDecl *Ctor : Derived->lookup(Name))
13668 if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor)
13669 ->getInheritedConstructor()
13670 .getConstructor(),
13671 BaseCtor))
13672 return cast<CXXConstructorDecl>(Ctor);
13673
13674 DeclarationNameInfo NameInfo(Name, UsingLoc);
13675 TypeSourceInfo *TInfo =
13676 Context.getTrivialTypeSourceInfo(BaseCtor->getType(), UsingLoc);
13677 FunctionProtoTypeLoc ProtoLoc =
13678 TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
13679
13680 // Check the inherited constructor is valid and find the list of base classes
13681 // from which it was inherited.
13682 InheritedConstructorInfo ICI(*this, Loc, Shadow);
13683
13684 bool Constexpr =
13685 BaseCtor->isConstexpr() &&
13686 defaultedSpecialMemberIsConstexpr(*this, Derived, CXXDefaultConstructor,
13687 false, BaseCtor, &ICI);
13688
13689 CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
13690 Context, Derived, UsingLoc, NameInfo, TInfo->getType(), TInfo,
13691 BaseCtor->getExplicitSpecifier(), getCurFPFeatures().isFPConstrained(),
13692 /*isInline=*/true,
13693 /*isImplicitlyDeclared=*/true,
13694 Constexpr ? BaseCtor->getConstexprKind() : ConstexprSpecKind::Unspecified,
13695 InheritedConstructor(Shadow, BaseCtor),
13696 BaseCtor->getTrailingRequiresClause());
13697 if (Shadow->isInvalidDecl())
13698 DerivedCtor->setInvalidDecl();
13699
13700 // Build an unevaluated exception specification for this fake constructor.
13701 const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>();
13702 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
13703 EPI.ExceptionSpec.Type = EST_Unevaluated;
13704 EPI.ExceptionSpec.SourceDecl = DerivedCtor;
13705 DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(),
13706 FPT->getParamTypes(), EPI));
13707
13708 // Build the parameter declarations.
13709 SmallVector<ParmVarDecl *, 16> ParamDecls;
13710 for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) {
13711 TypeSourceInfo *TInfo =
13712 Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc);
13713 ParmVarDecl *PD = ParmVarDecl::Create(
13714 Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr,
13715 FPT->getParamType(I), TInfo, SC_None, /*DefArg=*/nullptr);
13716 PD->setScopeInfo(0, I);
13717 PD->setImplicit();
13718 // Ensure attributes are propagated onto parameters (this matters for
13719 // format, pass_object_size, ...).
13720 mergeDeclAttributes(PD, BaseCtor->getParamDecl(I));
13721 ParamDecls.push_back(PD);
13722 ProtoLoc.setParam(I, PD);
13723 }
13724
13725 // Set up the new constructor.
13726 assert(!BaseCtor->isDeleted() && "should not use deleted constructor")(static_cast <bool> (!BaseCtor->isDeleted() &&
"should not use deleted constructor") ? void (0) : __assert_fail
("!BaseCtor->isDeleted() && \"should not use deleted constructor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13726, __extension__ __PRETTY_FUNCTION__
))
;
13727 DerivedCtor->setAccess(BaseCtor->getAccess());
13728 DerivedCtor->setParams(ParamDecls);
13729 Derived->addDecl(DerivedCtor);
13730
13731 if (ShouldDeleteSpecialMember(DerivedCtor, CXXDefaultConstructor, &ICI))
13732 SetDeclDeleted(DerivedCtor, UsingLoc);
13733
13734 return DerivedCtor;
13735}
13736
13737void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) {
13738 InheritedConstructorInfo ICI(*this, Ctor->getLocation(),
13739 Ctor->getInheritedConstructor().getShadowDecl());
13740 ShouldDeleteSpecialMember(Ctor, CXXDefaultConstructor, &ICI,
13741 /*Diagnose*/true);
13742}
13743
13744void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
13745 CXXConstructorDecl *Constructor) {
13746 CXXRecordDecl *ClassDecl = Constructor->getParent();
13747 assert(Constructor->getInheritedConstructor() &&(static_cast <bool> (Constructor->getInheritedConstructor
() && !Constructor->doesThisDeclarationHaveABody()
&& !Constructor->isDeleted()) ? void (0) : __assert_fail
("Constructor->getInheritedConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 13749, __extension__ __PRETTY_FUNCTION__
))
13748 !Constructor->doesThisDeclarationHaveABody() &&(static_cast <bool> (Constructor->getInheritedConstructor
() && !Constructor->doesThisDeclarationHaveABody()
&& !Constructor->isDeleted()) ? void (0) : __assert_fail
("Constructor->getInheritedConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 13749, __extension__ __PRETTY_FUNCTION__
))
13749 !Constructor->isDeleted())(static_cast <bool> (Constructor->getInheritedConstructor
() && !Constructor->doesThisDeclarationHaveABody()
&& !Constructor->isDeleted()) ? void (0) : __assert_fail
("Constructor->getInheritedConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 13749, __extension__ __PRETTY_FUNCTION__
))
;
13750 if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
13751 return;
13752
13753 // Initializations are performed "as if by a defaulted default constructor",
13754 // so enter the appropriate scope.
13755 SynthesizedFunctionScope Scope(*this, Constructor);
13756
13757 // The exception specification is needed because we are defining the
13758 // function.
13759 ResolveExceptionSpec(CurrentLocation,
13760 Constructor->getType()->castAs<FunctionProtoType>());
13761 MarkVTableUsed(CurrentLocation, ClassDecl);
13762
13763 // Add a context note for diagnostics produced after this point.
13764 Scope.addContextNote(CurrentLocation);
13765
13766 ConstructorUsingShadowDecl *Shadow =
13767 Constructor->getInheritedConstructor().getShadowDecl();
13768 CXXConstructorDecl *InheritedCtor =
13769 Constructor->getInheritedConstructor().getConstructor();
13770
13771 // [class.inhctor.init]p1:
13772 // initialization proceeds as if a defaulted default constructor is used to
13773 // initialize the D object and each base class subobject from which the
13774 // constructor was inherited
13775
13776 InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow);
13777 CXXRecordDecl *RD = Shadow->getParent();
13778 SourceLocation InitLoc = Shadow->getLocation();
13779
13780 // Build explicit initializers for all base classes from which the
13781 // constructor was inherited.
13782 SmallVector<CXXCtorInitializer*, 8> Inits;
13783 for (bool VBase : {false, true}) {
13784 for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) {
13785 if (B.isVirtual() != VBase)
13786 continue;
13787
13788 auto *BaseRD = B.getType()->getAsCXXRecordDecl();
13789 if (!BaseRD)
13790 continue;
13791
13792 auto BaseCtor = ICI.findConstructorForBase(BaseRD, InheritedCtor);
13793 if (!BaseCtor.first)
13794 continue;
13795
13796 MarkFunctionReferenced(CurrentLocation, BaseCtor.first);
13797 ExprResult Init = new (Context) CXXInheritedCtorInitExpr(
13798 InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second);
13799
13800 auto *TInfo = Context.getTrivialTypeSourceInfo(B.getType(), InitLoc);
13801 Inits.push_back(new (Context) CXXCtorInitializer(
13802 Context, TInfo, VBase, InitLoc, Init.get(), InitLoc,
13803 SourceLocation()));
13804 }
13805 }
13806
13807 // We now proceed as if for a defaulted default constructor, with the relevant
13808 // initializers replaced.
13809
13810 if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Inits)) {
13811 Constructor->setInvalidDecl();
13812 return;
13813 }
13814
13815 Constructor->setBody(new (Context) CompoundStmt(InitLoc));
13816 Constructor->markUsed(Context);
13817
13818 if (ASTMutationListener *L = getASTMutationListener()) {
13819 L->CompletedImplicitDefinition(Constructor);
13820 }
13821
13822 DiagnoseUninitializedFields(*this, Constructor);
13823}
13824
13825CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
13826 // C++ [class.dtor]p2:
13827 // If a class has no user-declared destructor, a destructor is
13828 // declared implicitly. An implicitly-declared destructor is an
13829 // inline public member of its class.
13830 assert(ClassDecl->needsImplicitDestructor())(static_cast <bool> (ClassDecl->needsImplicitDestructor
()) ? void (0) : __assert_fail ("ClassDecl->needsImplicitDestructor()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 13830, __extension__ __PRETTY_FUNCTION__
))
;
13831
13832 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
13833 if (DSM.isAlreadyBeingDeclared())
13834 return nullptr;
13835
13836 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
13837 CXXDestructor,
13838 false);
13839
13840 // Create the actual destructor declaration.
13841 CanQualType ClassType
13842 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
13843 SourceLocation ClassLoc = ClassDecl->getLocation();
13844 DeclarationName Name
13845 = Context.DeclarationNames.getCXXDestructorName(ClassType);
13846 DeclarationNameInfo NameInfo(Name, ClassLoc);
13847 CXXDestructorDecl *Destructor = CXXDestructorDecl::Create(
13848 Context, ClassDecl, ClassLoc, NameInfo, QualType(), nullptr,
13849 getCurFPFeatures().isFPConstrained(),
13850 /*isInline=*/true,
13851 /*isImplicitlyDeclared=*/true,
13852 Constexpr ? ConstexprSpecKind::Constexpr
13853 : ConstexprSpecKind::Unspecified);
13854 Destructor->setAccess(AS_public);
13855 Destructor->setDefaulted();
13856
13857 setupImplicitSpecialMemberType(Destructor, Context.VoidTy, std::nullopt);
13858
13859 if (getLangOpts().CUDA)
13860 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor,
13861 Destructor,
13862 /* ConstRHS */ false,
13863 /* Diagnose */ false);
13864
13865 // We don't need to use SpecialMemberIsTrivial here; triviality for
13866 // destructors is easy to compute.
13867 Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
13868 Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() ||
13869 ClassDecl->hasTrivialDestructorForCall());
13870
13871 // Note that we have declared this destructor.
13872 ++getASTContext().NumImplicitDestructorsDeclared;
13873
13874 Scope *S = getScopeForContext(ClassDecl);
13875 CheckImplicitSpecialMemberDeclaration(S, Destructor);
13876
13877 // We can't check whether an implicit destructor is deleted before we complete
13878 // the definition of the class, because its validity depends on the alignment
13879 // of the class. We'll check this from ActOnFields once the class is complete.
13880 if (ClassDecl->isCompleteDefinition() &&
13881 ShouldDeleteSpecialMember(Destructor, CXXDestructor))
13882 SetDeclDeleted(Destructor, ClassLoc);
13883
13884 // Introduce this destructor into its scope.
13885 if (S)
13886 PushOnScopeChains(Destructor, S, false);
13887 ClassDecl->addDecl(Destructor);
13888
13889 return Destructor;
13890}
13891
13892void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
13893 CXXDestructorDecl *Destructor) {
13894 assert((Destructor->isDefaulted() &&(static_cast <bool> ((Destructor->isDefaulted() &&
!Destructor->doesThisDeclarationHaveABody() && !Destructor
->isDeleted()) && "DefineImplicitDestructor - call it for implicit default dtor"
) ? void (0) : __assert_fail ("(Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody() && !Destructor->isDeleted()) && \"DefineImplicitDestructor - call it for implicit default dtor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13897, __extension__ __PRETTY_FUNCTION__
))
13895 !Destructor->doesThisDeclarationHaveABody() &&(static_cast <bool> ((Destructor->isDefaulted() &&
!Destructor->doesThisDeclarationHaveABody() && !Destructor
->isDeleted()) && "DefineImplicitDestructor - call it for implicit default dtor"
) ? void (0) : __assert_fail ("(Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody() && !Destructor->isDeleted()) && \"DefineImplicitDestructor - call it for implicit default dtor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13897, __extension__ __PRETTY_FUNCTION__
))
13896 !Destructor->isDeleted()) &&(static_cast <bool> ((Destructor->isDefaulted() &&
!Destructor->doesThisDeclarationHaveABody() && !Destructor
->isDeleted()) && "DefineImplicitDestructor - call it for implicit default dtor"
) ? void (0) : __assert_fail ("(Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody() && !Destructor->isDeleted()) && \"DefineImplicitDestructor - call it for implicit default dtor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13897, __extension__ __PRETTY_FUNCTION__
))
13897 "DefineImplicitDestructor - call it for implicit default dtor")(static_cast <bool> ((Destructor->isDefaulted() &&
!Destructor->doesThisDeclarationHaveABody() && !Destructor
->isDeleted()) && "DefineImplicitDestructor - call it for implicit default dtor"
) ? void (0) : __assert_fail ("(Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody() && !Destructor->isDeleted()) && \"DefineImplicitDestructor - call it for implicit default dtor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13897, __extension__ __PRETTY_FUNCTION__
))
;
13898 if (Destructor->willHaveBody() || Destructor->isInvalidDecl())
13899 return;
13900
13901 CXXRecordDecl *ClassDecl = Destructor->getParent();
13902 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor")(static_cast <bool> (ClassDecl && "DefineImplicitDestructor - invalid destructor"
) ? void (0) : __assert_fail ("ClassDecl && \"DefineImplicitDestructor - invalid destructor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13902, __extension__ __PRETTY_FUNCTION__
))
;
13903
13904 SynthesizedFunctionScope Scope(*this, Destructor);
13905
13906 // The exception specification is needed because we are defining the
13907 // function.
13908 ResolveExceptionSpec(CurrentLocation,
13909 Destructor->getType()->castAs<FunctionProtoType>());
13910 MarkVTableUsed(CurrentLocation, ClassDecl);
13911
13912 // Add a context note for diagnostics produced after this point.
13913 Scope.addContextNote(CurrentLocation);
13914
13915 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
13916 Destructor->getParent());
13917
13918 if (CheckDestructor(Destructor)) {
13919 Destructor->setInvalidDecl();
13920 return;
13921 }
13922
13923 SourceLocation Loc = Destructor->getEndLoc().isValid()
13924 ? Destructor->getEndLoc()
13925 : Destructor->getLocation();
13926 Destructor->setBody(new (Context) CompoundStmt(Loc));
13927 Destructor->markUsed(Context);
13928
13929 if (ASTMutationListener *L = getASTMutationListener()) {
13930 L->CompletedImplicitDefinition(Destructor);
13931 }
13932}
13933
13934void Sema::CheckCompleteDestructorVariant(SourceLocation CurrentLocation,
13935 CXXDestructorDecl *Destructor) {
13936 if (Destructor->isInvalidDecl())
13937 return;
13938
13939 CXXRecordDecl *ClassDecl = Destructor->getParent();
13940 assert(Context.getTargetInfo().getCXXABI().isMicrosoft() &&(static_cast <bool> (Context.getTargetInfo().getCXXABI(
).isMicrosoft() && "implicit complete dtors unneeded outside MS ABI"
) ? void (0) : __assert_fail ("Context.getTargetInfo().getCXXABI().isMicrosoft() && \"implicit complete dtors unneeded outside MS ABI\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13941, __extension__ __PRETTY_FUNCTION__
))
13941 "implicit complete dtors unneeded outside MS ABI")(static_cast <bool> (Context.getTargetInfo().getCXXABI(
).isMicrosoft() && "implicit complete dtors unneeded outside MS ABI"
) ? void (0) : __assert_fail ("Context.getTargetInfo().getCXXABI().isMicrosoft() && \"implicit complete dtors unneeded outside MS ABI\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13941, __extension__ __PRETTY_FUNCTION__
))
;
13942 assert(ClassDecl->getNumVBases() > 0 &&(static_cast <bool> (ClassDecl->getNumVBases() > 0
&& "complete dtor only exists for classes with vbases"
) ? void (0) : __assert_fail ("ClassDecl->getNumVBases() > 0 && \"complete dtor only exists for classes with vbases\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13943, __extension__ __PRETTY_FUNCTION__
))
13943 "complete dtor only exists for classes with vbases")(static_cast <bool> (ClassDecl->getNumVBases() > 0
&& "complete dtor only exists for classes with vbases"
) ? void (0) : __assert_fail ("ClassDecl->getNumVBases() > 0 && \"complete dtor only exists for classes with vbases\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13943, __extension__ __PRETTY_FUNCTION__
))
;
13944
13945 SynthesizedFunctionScope Scope(*this, Destructor);
13946
13947 // Add a context note for diagnostics produced after this point.
13948 Scope.addContextNote(CurrentLocation);
13949
13950 MarkVirtualBaseDestructorsReferenced(Destructor->getLocation(), ClassDecl);
13951}
13952
13953/// Perform any semantic analysis which needs to be delayed until all
13954/// pending class member declarations have been parsed.
13955void Sema::ActOnFinishCXXMemberDecls() {
13956 // If the context is an invalid C++ class, just suppress these checks.
13957 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
13958 if (Record->isInvalidDecl()) {
13959 DelayedOverridingExceptionSpecChecks.clear();
13960 DelayedEquivalentExceptionSpecChecks.clear();
13961 return;
13962 }
13963 checkForMultipleExportedDefaultConstructors(*this, Record);
13964 }
13965}
13966
13967void Sema::ActOnFinishCXXNonNestedClass() {
13968 referenceDLLExportedClassMethods();
13969
13970 if (!DelayedDllExportMemberFunctions.empty()) {
13971 SmallVector<CXXMethodDecl*, 4> WorkList;
13972 std::swap(DelayedDllExportMemberFunctions, WorkList);
13973 for (CXXMethodDecl *M : WorkList) {
13974 DefineDefaultedFunction(*this, M, M->getLocation());
13975
13976 // Pass the method to the consumer to get emitted. This is not necessary
13977 // for explicit instantiation definitions, as they will get emitted
13978 // anyway.
13979 if (M->getParent()->getTemplateSpecializationKind() !=
13980 TSK_ExplicitInstantiationDefinition)
13981 ActOnFinishInlineFunctionDef(M);
13982 }
13983 }
13984}
13985
13986void Sema::referenceDLLExportedClassMethods() {
13987 if (!DelayedDllExportClasses.empty()) {
13988 // Calling ReferenceDllExportedMembers might cause the current function to
13989 // be called again, so use a local copy of DelayedDllExportClasses.
13990 SmallVector<CXXRecordDecl *, 4> WorkList;
13991 std::swap(DelayedDllExportClasses, WorkList);
13992 for (CXXRecordDecl *Class : WorkList)
13993 ReferenceDllExportedMembers(*this, Class);
13994 }
13995}
13996
13997void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) {
13998 assert(getLangOpts().CPlusPlus11 &&(static_cast <bool> (getLangOpts().CPlusPlus11 &&
"adjusting dtor exception specs was introduced in c++11") ? void
(0) : __assert_fail ("getLangOpts().CPlusPlus11 && \"adjusting dtor exception specs was introduced in c++11\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13999, __extension__ __PRETTY_FUNCTION__
))
13999 "adjusting dtor exception specs was introduced in c++11")(static_cast <bool> (getLangOpts().CPlusPlus11 &&
"adjusting dtor exception specs was introduced in c++11") ? void
(0) : __assert_fail ("getLangOpts().CPlusPlus11 && \"adjusting dtor exception specs was introduced in c++11\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13999, __extension__ __PRETTY_FUNCTION__
))
;
14000
14001 if (Destructor->isDependentContext())
14002 return;
14003
14004 // C++11 [class.dtor]p3:
14005 // A declaration of a destructor that does not have an exception-
14006 // specification is implicitly considered to have the same exception-
14007 // specification as an implicit declaration.
14008 const auto *DtorType = Destructor->getType()->castAs<FunctionProtoType>();
14009 if (DtorType->hasExceptionSpec())
14010 return;
14011
14012 // Replace the destructor's type, building off the existing one. Fortunately,
14013 // the only thing of interest in the destructor type is its extended info.
14014 // The return and arguments are fixed.
14015 FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
14016 EPI.ExceptionSpec.Type = EST_Unevaluated;
14017 EPI.ExceptionSpec.SourceDecl = Destructor;
14018 Destructor->setType(
14019 Context.getFunctionType(Context.VoidTy, std::nullopt, EPI));
14020
14021 // FIXME: If the destructor has a body that could throw, and the newly created
14022 // spec doesn't allow exceptions, we should emit a warning, because this
14023 // change in behavior can break conforming C++03 programs at runtime.
14024 // However, we don't have a body or an exception specification yet, so it
14025 // needs to be done somewhere else.
14026}
14027
14028namespace {
14029/// An abstract base class for all helper classes used in building the
14030// copy/move operators. These classes serve as factory functions and help us
14031// avoid using the same Expr* in the AST twice.
14032class ExprBuilder {
14033 ExprBuilder(const ExprBuilder&) = delete;
14034 ExprBuilder &operator=(const ExprBuilder&) = delete;
14035
14036protected:
14037 static Expr *assertNotNull(Expr *E) {
14038 assert(E && "Expression construction must not fail.")(static_cast <bool> (E && "Expression construction must not fail."
) ? void (0) : __assert_fail ("E && \"Expression construction must not fail.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14038, __extension__ __PRETTY_FUNCTION__
))
;
14039 return E;
14040 }
14041
14042public:
14043 ExprBuilder() {}
14044 virtual ~ExprBuilder() {}
14045
14046 virtual Expr *build(Sema &S, SourceLocation Loc) const = 0;
14047};
14048
14049class RefBuilder: public ExprBuilder {
14050 VarDecl *Var;
14051 QualType VarType;
14052
14053public:
14054 Expr *build(Sema &S, SourceLocation Loc) const override {
14055 return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc));
14056 }
14057
14058 RefBuilder(VarDecl *Var, QualType VarType)
14059 : Var(Var), VarType(VarType) {}
14060};
14061
14062class ThisBuilder: public ExprBuilder {
14063public:
14064 Expr *build(Sema &S, SourceLocation Loc) const override {
14065 return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>());
14066 }
14067};
14068
14069class CastBuilder: public ExprBuilder {
14070 const ExprBuilder &Builder;
14071 QualType Type;
14072 ExprValueKind Kind;
14073 const CXXCastPath &Path;
14074
14075public:
14076 Expr *build(Sema &S, SourceLocation Loc) const override {
14077 return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type,
14078 CK_UncheckedDerivedToBase, Kind,
14079 &Path).get());
14080 }
14081
14082 CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind,
14083 const CXXCastPath &Path)
14084 : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {}
14085};
14086
14087class DerefBuilder: public ExprBuilder {
14088 const ExprBuilder &Builder;
14089
14090public:
14091 Expr *build(Sema &S, SourceLocation Loc) const override {
14092 return assertNotNull(
14093 S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get());
14094 }
14095
14096 DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
14097};
14098
14099class MemberBuilder: public ExprBuilder {
14100 const ExprBuilder &Builder;
14101 QualType Type;
14102 CXXScopeSpec SS;
14103 bool IsArrow;
14104 LookupResult &MemberLookup;
14105
14106public:
14107 Expr *build(Sema &S, SourceLocation Loc) const override {
14108 return assertNotNull(S.BuildMemberReferenceExpr(
14109 Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(),
14110 nullptr, MemberLookup, nullptr, nullptr).get());
14111 }
14112
14113 MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow,
14114 LookupResult &MemberLookup)
14115 : Builder(Builder), Type(Type), IsArrow(IsArrow),
14116 MemberLookup(MemberLookup) {}
14117};
14118
14119class MoveCastBuilder: public ExprBuilder {
14120 const ExprBuilder &Builder;
14121
14122public:
14123 Expr *build(Sema &S, SourceLocation Loc) const override {
14124 return assertNotNull(CastForMoving(S, Builder.build(S, Loc)));
14125 }
14126
14127 MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
14128};
14129
14130class LvalueConvBuilder: public ExprBuilder {
14131 const ExprBuilder &Builder;
14132
14133public:
14134 Expr *build(Sema &S, SourceLocation Loc) const override {
14135 return assertNotNull(
14136 S.DefaultLvalueConversion(Builder.build(S, Loc)).get());
14137 }
14138
14139 LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
14140};
14141
14142class SubscriptBuilder: public ExprBuilder {
14143 const ExprBuilder &Base;
14144 const ExprBuilder &Index;
14145
14146public:
14147 Expr *build(Sema &S, SourceLocation Loc) const override {
14148 return assertNotNull(S.CreateBuiltinArraySubscriptExpr(
14149 Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get());
14150 }
14151
14152 SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index)
14153 : Base(Base), Index(Index) {}
14154};
14155
14156} // end anonymous namespace
14157
14158/// When generating a defaulted copy or move assignment operator, if a field
14159/// should be copied with __builtin_memcpy rather than via explicit assignments,
14160/// do so. This optimization only applies for arrays of scalars, and for arrays
14161/// of class type where the selected copy/move-assignment operator is trivial.
14162static StmtResult
14163buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
14164 const ExprBuilder &ToB, const ExprBuilder &FromB) {
14165 // Compute the size of the memory buffer to be copied.
14166 QualType SizeType = S.Context.getSizeType();
14167 llvm::APInt Size(S.Context.getTypeSize(SizeType),
14168 S.Context.getTypeSizeInChars(T).getQuantity());
14169
14170 // Take the address of the field references for "from" and "to". We
14171 // directly construct UnaryOperators here because semantic analysis
14172 // does not permit us to take the address of an xvalue.
14173 Expr *From = FromB.build(S, Loc);
14174 From = UnaryOperator::Create(
14175 S.Context, From, UO_AddrOf, S.Context.getPointerType(From->getType()),
14176 VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides());
14177 Expr *To = ToB.build(S, Loc);
14178 To = UnaryOperator::Create(
14179 S.Context, To, UO_AddrOf, S.Context.getPointerType(To->getType()),
14180 VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides());
14181
14182 const Type *E = T->getBaseElementTypeUnsafe();
14183 bool NeedsCollectableMemCpy =
14184 E->isRecordType() &&
14185 E->castAs<RecordType>()->getDecl()->hasObjectMember();
14186
14187 // Create a reference to the __builtin_objc_memmove_collectable function
14188 StringRef MemCpyName = NeedsCollectableMemCpy ?
14189 "__builtin_objc_memmove_collectable" :
14190 "__builtin_memcpy";
14191 LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
14192 Sema::LookupOrdinaryName);
14193 S.LookupName(R, S.TUScope, true);
14194
14195 FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
14196 if (!MemCpy)
14197 // Something went horribly wrong earlier, and we will have complained
14198 // about it.
14199 return StmtError();
14200
14201 ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
14202 VK_PRValue, Loc, nullptr);
14203 assert(MemCpyRef.isUsable() && "Builtin reference cannot fail")(static_cast <bool> (MemCpyRef.isUsable() && "Builtin reference cannot fail"
) ? void (0) : __assert_fail ("MemCpyRef.isUsable() && \"Builtin reference cannot fail\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14203, __extension__ __PRETTY_FUNCTION__
))
;
14204
14205 Expr *CallArgs[] = {
14206 To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
14207 };
14208 ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(),
14209 Loc, CallArgs, Loc);
14210
14211 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!")(static_cast <bool> (!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!"
) ? void (0) : __assert_fail ("!Call.isInvalid() && \"Call to __builtin_memcpy cannot fail!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14211, __extension__ __PRETTY_FUNCTION__
))
;
14212 return Call.getAs<Stmt>();
14213}
14214
14215/// Builds a statement that copies/moves the given entity from \p From to
14216/// \c To.
14217///
14218/// This routine is used to copy/move the members of a class with an
14219/// implicitly-declared copy/move assignment operator. When the entities being
14220/// copied are arrays, this routine builds for loops to copy them.
14221///
14222/// \param S The Sema object used for type-checking.
14223///
14224/// \param Loc The location where the implicit copy/move is being generated.
14225///
14226/// \param T The type of the expressions being copied/moved. Both expressions
14227/// must have this type.
14228///
14229/// \param To The expression we are copying/moving to.
14230///
14231/// \param From The expression we are copying/moving from.
14232///
14233/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
14234/// Otherwise, it's a non-static member subobject.
14235///
14236/// \param Copying Whether we're copying or moving.
14237///
14238/// \param Depth Internal parameter recording the depth of the recursion.
14239///
14240/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
14241/// if a memcpy should be used instead.
14242static StmtResult
14243buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
14244 const ExprBuilder &To, const ExprBuilder &From,
14245 bool CopyingBaseSubobject, bool Copying,
14246 unsigned Depth = 0) {
14247 // C++11 [class.copy]p28:
14248 // Each subobject is assigned in the manner appropriate to its type:
14249 //
14250 // - if the subobject is of class type, as if by a call to operator= with
14251 // the subobject as the object expression and the corresponding
14252 // subobject of x as a single function argument (as if by explicit
14253 // qualification; that is, ignoring any possible virtual overriding
14254 // functions in more derived classes);
14255 //
14256 // C++03 [class.copy]p13:
14257 // - if the subobject is of class type, the copy assignment operator for
14258 // the class is used (as if by explicit qualification; that is,
14259 // ignoring any possible virtual overriding functions in more derived
14260 // classes);
14261 if (const RecordType *RecordTy = T->getAs<RecordType>()) {
14262 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
14263
14264 // Look for operator=.
14265 DeclarationName Name
14266 = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
14267 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
14268 S.LookupQualifiedName(OpLookup, ClassDecl, false);
14269
14270 // Prior to C++11, filter out any result that isn't a copy/move-assignment
14271 // operator.
14272 if (!S.getLangOpts().CPlusPlus11) {
14273 LookupResult::Filter F = OpLookup.makeFilter();
14274 while (F.hasNext()) {
14275 NamedDecl *D = F.next();
14276 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
14277 if (Method->isCopyAssignmentOperator() ||
14278 (!Copying && Method->isMoveAssignmentOperator()))
14279 continue;
14280
14281 F.erase();
14282 }
14283 F.done();
14284 }
14285
14286 // Suppress the protected check (C++ [class.protected]) for each of the
14287 // assignment operators we found. This strange dance is required when
14288 // we're assigning via a base classes's copy-assignment operator. To
14289 // ensure that we're getting the right base class subobject (without
14290 // ambiguities), we need to cast "this" to that subobject type; to
14291 // ensure that we don't go through the virtual call mechanism, we need
14292 // to qualify the operator= name with the base class (see below). However,
14293 // this means that if the base class has a protected copy assignment
14294 // operator, the protected member access check will fail. So, we
14295 // rewrite "protected" access to "public" access in this case, since we
14296 // know by construction that we're calling from a derived class.
14297 if (CopyingBaseSubobject) {
14298 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
14299 L != LEnd; ++L) {
14300 if (L.getAccess() == AS_protected)
14301 L.setAccess(AS_public);
14302 }
14303 }
14304
14305 // Create the nested-name-specifier that will be used to qualify the
14306 // reference to operator=; this is required to suppress the virtual
14307 // call mechanism.
14308 CXXScopeSpec SS;
14309 const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
14310 SS.MakeTrivial(S.Context,
14311 NestedNameSpecifier::Create(S.Context, nullptr, false,
14312 CanonicalT),
14313 Loc);
14314
14315 // Create the reference to operator=.
14316 ExprResult OpEqualRef
14317 = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*IsArrow=*/false,
14318 SS, /*TemplateKWLoc=*/SourceLocation(),
14319 /*FirstQualifierInScope=*/nullptr,
14320 OpLookup,
14321 /*TemplateArgs=*/nullptr, /*S*/nullptr,
14322 /*SuppressQualifierCheck=*/true);
14323 if (OpEqualRef.isInvalid())
14324 return StmtError();
14325
14326 // Build the call to the assignment operator.
14327
14328 Expr *FromInst = From.build(S, Loc);
14329 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr,
14330 OpEqualRef.getAs<Expr>(),
14331 Loc, FromInst, Loc);
14332 if (Call.isInvalid())
14333 return StmtError();
14334
14335 // If we built a call to a trivial 'operator=' while copying an array,
14336 // bail out. We'll replace the whole shebang with a memcpy.
14337 CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
14338 if (CE && CE->getMethodDecl()->isTrivial() && Depth)
14339 return StmtResult((Stmt*)nullptr);
14340
14341 // Convert to an expression-statement, and clean up any produced
14342 // temporaries.
14343 return S.ActOnExprStmt(Call);
14344 }
14345
14346 // - if the subobject is of scalar type, the built-in assignment
14347 // operator is used.
14348 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
14349 if (!ArrayTy) {
14350 ExprResult Assignment = S.CreateBuiltinBinOp(
14351 Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc));
14352 if (Assignment.isInvalid())
14353 return StmtError();
14354 return S.ActOnExprStmt(Assignment);
14355 }
14356
14357 // - if the subobject is an array, each element is assigned, in the
14358 // manner appropriate to the element type;
14359
14360 // Construct a loop over the array bounds, e.g.,
14361 //
14362 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
14363 //
14364 // that will copy each of the array elements.
14365 QualType SizeType = S.Context.getSizeType();
14366
14367 // Create the iteration variable.
14368 IdentifierInfo *IterationVarName = nullptr;
14369 {
14370 SmallString<8> Str;
14371 llvm::raw_svector_ostream OS(Str);
14372 OS << "__i" << Depth;
14373 IterationVarName = &S.Context.Idents.get(OS.str());
14374 }
14375 VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
14376 IterationVarName, SizeType,
14377 S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
14378 SC_None);
14379
14380 // Initialize the iteration variable to zero.
14381 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
14382 IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
14383
14384 // Creates a reference to the iteration variable.
14385 RefBuilder IterationVarRef(IterationVar, SizeType);
14386 LvalueConvBuilder IterationVarRefRVal(IterationVarRef);
14387
14388 // Create the DeclStmt that holds the iteration variable.
14389 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
14390
14391 // Subscript the "from" and "to" expressions with the iteration variable.
14392 SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal);
14393 MoveCastBuilder FromIndexMove(FromIndexCopy);
14394 const ExprBuilder *FromIndex;
14395 if (Copying)
14396 FromIndex = &FromIndexCopy;
14397 else
14398 FromIndex = &FromIndexMove;
14399
14400 SubscriptBuilder ToIndex(To, IterationVarRefRVal);
14401
14402 // Build the copy/move for an individual element of the array.
14403 StmtResult Copy =
14404 buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
14405 ToIndex, *FromIndex, CopyingBaseSubobject,
14406 Copying, Depth + 1);
14407 // Bail out if copying fails or if we determined that we should use memcpy.
14408 if (Copy.isInvalid() || !Copy.get())
14409 return Copy;
14410
14411 // Create the comparison against the array bound.
14412 llvm::APInt Upper
14413 = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
14414 Expr *Comparison = BinaryOperator::Create(
14415 S.Context, IterationVarRefRVal.build(S, Loc),
14416 IntegerLiteral::Create(S.Context, Upper, SizeType, Loc), BO_NE,
14417 S.Context.BoolTy, VK_PRValue, OK_Ordinary, Loc,
14418 S.CurFPFeatureOverrides());
14419
14420 // Create the pre-increment of the iteration variable. We can determine
14421 // whether the increment will overflow based on the value of the array
14422 // bound.
14423 Expr *Increment = UnaryOperator::Create(
14424 S.Context, IterationVarRef.build(S, Loc), UO_PreInc, SizeType, VK_LValue,
14425 OK_Ordinary, Loc, Upper.isMaxValue(), S.CurFPFeatureOverrides());
14426
14427 // Construct the loop that copies all elements of this array.
14428 return S.ActOnForStmt(
14429 Loc, Loc, InitStmt,
14430 S.ActOnCondition(nullptr, Loc, Comparison, Sema::ConditionKind::Boolean),
14431 S.MakeFullDiscardedValueExpr(Increment), Loc, Copy.get());
14432}
14433
14434static StmtResult
14435buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
14436 const ExprBuilder &To, const ExprBuilder &From,
14437 bool CopyingBaseSubobject, bool Copying) {
14438 // Maybe we should use a memcpy?
14439 if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
14440 T.isTriviallyCopyableType(S.Context))
14441 return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
14442
14443 StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
14444 CopyingBaseSubobject,
14445 Copying, 0));
14446
14447 // If we ended up picking a trivial assignment operator for an array of a
14448 // non-trivially-copyable class type, just emit a memcpy.
14449 if (!Result.isInvalid() && !Result.get())
14450 return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
14451
14452 return Result;
14453}
14454
14455CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
14456 // Note: The following rules are largely analoguous to the copy
14457 // constructor rules. Note that virtual bases are not taken into account
14458 // for determining the argument type of the operator. Note also that
14459 // operators taking an object instead of a reference are allowed.
14460 assert(ClassDecl->needsImplicitCopyAssignment())(static_cast <bool> (ClassDecl->needsImplicitCopyAssignment
()) ? void (0) : __assert_fail ("ClassDecl->needsImplicitCopyAssignment()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 14460, __extension__ __PRETTY_FUNCTION__
))
;
14461
14462 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
14463 if (DSM.isAlreadyBeingDeclared())
14464 return nullptr;
14465
14466 QualType ArgType = Context.getTypeDeclType(ClassDecl);
14467 ArgType = Context.getElaboratedType(ETK_None, nullptr, ArgType, nullptr);
14468 LangAS AS = getDefaultCXXMethodAddrSpace();
14469 if (AS != LangAS::Default)
14470 ArgType = Context.getAddrSpaceQualType(ArgType, AS);
14471 QualType RetType = Context.getLValueReferenceType(ArgType);
14472 bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
14473 if (Const)
14474 ArgType = ArgType.withConst();
14475
14476 ArgType = Context.getLValueReferenceType(ArgType);
14477
14478 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
14479 CXXCopyAssignment,
14480 Const);
14481
14482 // An implicitly-declared copy assignment operator is an inline public
14483 // member of its class.
14484 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
14485 SourceLocation ClassLoc = ClassDecl->getLocation();
14486 DeclarationNameInfo NameInfo(Name, ClassLoc);
14487 CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create(
14488 Context, ClassDecl, ClassLoc, NameInfo, QualType(),
14489 /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
14490 getCurFPFeatures().isFPConstrained(),
14491 /*isInline=*/true,
14492 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified,
14493 SourceLocation());
14494 CopyAssignment->setAccess(AS_public);
14495 CopyAssignment->setDefaulted();
14496 CopyAssignment->setImplicit();
14497
14498 setupImplicitSpecialMemberType(CopyAssignment, RetType, ArgType);
14499
14500 if (getLangOpts().CUDA)
14501 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment,
14502 CopyAssignment,
14503 /* ConstRHS */ Const,
14504 /* Diagnose */ false);
14505
14506 // Add the parameter to the operator.
14507 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
14508 ClassLoc, ClassLoc,
14509 /*Id=*/nullptr, ArgType,
14510 /*TInfo=*/nullptr, SC_None,
14511 nullptr);
14512 CopyAssignment->setParams(FromParam);
14513
14514 CopyAssignment->setTrivial(
14515 ClassDecl->needsOverloadResolutionForCopyAssignment()
14516 ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
14517 : ClassDecl->hasTrivialCopyAssignment());
14518
14519 // Note that we have added this copy-assignment operator.
14520 ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared;
14521
14522 Scope *S = getScopeForContext(ClassDecl);
14523 CheckImplicitSpecialMemberDeclaration(S, CopyAssignment);
14524
14525 if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment)) {
14526 ClassDecl->setImplicitCopyAssignmentIsDeleted();
14527 SetDeclDeleted(CopyAssignment, ClassLoc);
14528 }
14529
14530 if (S)
14531 PushOnScopeChains(CopyAssignment, S, false);
14532 ClassDecl->addDecl(CopyAssignment);
14533
14534 return CopyAssignment;
14535}
14536
14537/// Diagnose an implicit copy operation for a class which is odr-used, but
14538/// which is deprecated because the class has a user-declared copy constructor,
14539/// copy assignment operator, or destructor.
14540static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) {
14541 assert(CopyOp->isImplicit())(static_cast <bool> (CopyOp->isImplicit()) ? void (0
) : __assert_fail ("CopyOp->isImplicit()", "clang/lib/Sema/SemaDeclCXX.cpp"
, 14541, __extension__ __PRETTY_FUNCTION__))
;
14542
14543 CXXRecordDecl *RD = CopyOp->getParent();
14544 CXXMethodDecl *UserDeclaredOperation = nullptr;
14545
14546 if (RD->hasUserDeclaredDestructor()) {
14547 UserDeclaredOperation = RD->getDestructor();
14548 } else if (!isa<CXXConstructorDecl>(CopyOp) &&
14549 RD->hasUserDeclaredCopyConstructor()) {
14550 // Find any user-declared copy constructor.
14551 for (auto *I : RD->ctors()) {
14552 if (I->isCopyConstructor()) {
14553 UserDeclaredOperation = I;
14554 break;
14555 }
14556 }
14557 assert(UserDeclaredOperation)(static_cast <bool> (UserDeclaredOperation) ? void (0) :
__assert_fail ("UserDeclaredOperation", "clang/lib/Sema/SemaDeclCXX.cpp"
, 14557, __extension__ __PRETTY_FUNCTION__))
;
14558 } else if (isa<CXXConstructorDecl>(CopyOp) &&
14559 RD->hasUserDeclaredCopyAssignment()) {
14560 // Find any user-declared move assignment operator.
14561 for (auto *I : RD->methods()) {
14562 if (I->isCopyAssignmentOperator()) {
14563 UserDeclaredOperation = I;
14564 break;
14565 }
14566 }
14567 assert(UserDeclaredOperation)(static_cast <bool> (UserDeclaredOperation) ? void (0) :
__assert_fail ("UserDeclaredOperation", "clang/lib/Sema/SemaDeclCXX.cpp"
, 14567, __extension__ __PRETTY_FUNCTION__))
;
14568 }
14569
14570 if (UserDeclaredOperation) {
14571 bool UDOIsUserProvided = UserDeclaredOperation->isUserProvided();
14572 bool UDOIsDestructor = isa<CXXDestructorDecl>(UserDeclaredOperation);
14573 bool IsCopyAssignment = !isa<CXXConstructorDecl>(CopyOp);
14574 unsigned DiagID =
14575 (UDOIsUserProvided && UDOIsDestructor)
14576 ? diag::warn_deprecated_copy_with_user_provided_dtor
14577 : (UDOIsUserProvided && !UDOIsDestructor)
14578 ? diag::warn_deprecated_copy_with_user_provided_copy
14579 : (!UDOIsUserProvided && UDOIsDestructor)
14580 ? diag::warn_deprecated_copy_with_dtor
14581 : diag::warn_deprecated_copy;
14582 S.Diag(UserDeclaredOperation->getLocation(), DiagID)
14583 << RD << IsCopyAssignment;
14584 }
14585}
14586
14587void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
14588 CXXMethodDecl *CopyAssignOperator) {
14589 assert((CopyAssignOperator->isDefaulted() &&(static_cast <bool> ((CopyAssignOperator->isDefaulted
() && CopyAssignOperator->isOverloadedOperator() &&
CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
!CopyAssignOperator->doesThisDeclarationHaveABody() &&
!CopyAssignOperator->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? void (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14594, __extension__ __PRETTY_FUNCTION__
))
14590 CopyAssignOperator->isOverloadedOperator() &&(static_cast <bool> ((CopyAssignOperator->isDefaulted
() && CopyAssignOperator->isOverloadedOperator() &&
CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
!CopyAssignOperator->doesThisDeclarationHaveABody() &&
!CopyAssignOperator->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? void (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14594, __extension__ __PRETTY_FUNCTION__
))
14591 CopyAssignOperator->getOverloadedOperator() == OO_Equal &&(static_cast <bool> ((CopyAssignOperator->isDefaulted
() && CopyAssignOperator->isOverloadedOperator() &&
CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
!CopyAssignOperator->doesThisDeclarationHaveABody() &&
!CopyAssignOperator->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? void (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14594, __extension__ __PRETTY_FUNCTION__
))
14592 !CopyAssignOperator->doesThisDeclarationHaveABody() &&(static_cast <bool> ((CopyAssignOperator->isDefaulted
() && CopyAssignOperator->isOverloadedOperator() &&
CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
!CopyAssignOperator->doesThisDeclarationHaveABody() &&
!CopyAssignOperator->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? void (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14594, __extension__ __PRETTY_FUNCTION__
))
14593 !CopyAssignOperator->isDeleted()) &&(static_cast <bool> ((CopyAssignOperator->isDefaulted
() && CopyAssignOperator->isOverloadedOperator() &&
CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
!CopyAssignOperator->doesThisDeclarationHaveABody() &&
!CopyAssignOperator->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? void (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14594, __extension__ __PRETTY_FUNCTION__
))
14594 "DefineImplicitCopyAssignment called for wrong function")(static_cast <bool> ((CopyAssignOperator->isDefaulted
() && CopyAssignOperator->isOverloadedOperator() &&
CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
!CopyAssignOperator->doesThisDeclarationHaveABody() &&
!CopyAssignOperator->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? void (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14594, __extension__ __PRETTY_FUNCTION__
))
;
14595 if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl())
14596 return;
14597
14598 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
14599 if (ClassDecl->isInvalidDecl()) {
14600 CopyAssignOperator->setInvalidDecl();
14601 return;
14602 }
14603
14604 SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
14605
14606 // The exception specification is needed because we are defining the
14607 // function.
14608 ResolveExceptionSpec(CurrentLocation,
14609 CopyAssignOperator->getType()->castAs<FunctionProtoType>());
14610
14611 // Add a context note for diagnostics produced after this point.
14612 Scope.addContextNote(CurrentLocation);
14613
14614 // C++11 [class.copy]p18:
14615 // The [definition of an implicitly declared copy assignment operator] is
14616 // deprecated if the class has a user-declared copy constructor or a
14617 // user-declared destructor.
14618 if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
14619 diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator);
14620
14621 // C++0x [class.copy]p30:
14622 // The implicitly-defined or explicitly-defaulted copy assignment operator
14623 // for a non-union class X performs memberwise copy assignment of its
14624 // subobjects. The direct base classes of X are assigned first, in the
14625 // order of their declaration in the base-specifier-list, and then the
14626 // immediate non-static data members of X are assigned, in the order in
14627 // which they were declared in the class definition.
14628
14629 // The statements that form the synthesized function body.
14630 SmallVector<Stmt*, 8> Statements;
14631
14632 // The parameter for the "other" object, which we are copying from.
14633 ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
14634 Qualifiers OtherQuals = Other->getType().getQualifiers();
14635 QualType OtherRefType = Other->getType();
14636 if (const LValueReferenceType *OtherRef
14637 = OtherRefType->getAs<LValueReferenceType>()) {
14638 OtherRefType = OtherRef->getPointeeType();
14639 OtherQuals = OtherRefType.getQualifiers();
14640 }
14641
14642 // Our location for everything implicitly-generated.
14643 SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid()
14644 ? CopyAssignOperator->getEndLoc()
14645 : CopyAssignOperator->getLocation();
14646
14647 // Builds a DeclRefExpr for the "other" object.
14648 RefBuilder OtherRef(Other, OtherRefType);
14649
14650 // Builds the "this" pointer.
14651 ThisBuilder This;
14652
14653 // Assign base classes.
14654 bool Invalid = false;
14655 for (auto &Base : ClassDecl->bases()) {
14656 // Form the assignment:
14657 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
14658 QualType BaseType = Base.getType().getUnqualifiedType();
14659 if (!BaseType->isRecordType()) {
14660 Invalid = true;
14661 continue;
14662 }
14663
14664 CXXCastPath BasePath;
14665 BasePath.push_back(&Base);
14666
14667 // Construct the "from" expression, which is an implicit cast to the
14668 // appropriately-qualified base type.
14669 CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals),
14670 VK_LValue, BasePath);
14671
14672 // Dereference "this".
14673 DerefBuilder DerefThis(This);
14674 CastBuilder To(DerefThis,
14675 Context.getQualifiedType(
14676 BaseType, CopyAssignOperator->getMethodQualifiers()),
14677 VK_LValue, BasePath);
14678
14679 // Build the copy.
14680 StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
14681 To, From,
14682 /*CopyingBaseSubobject=*/true,
14683 /*Copying=*/true);
14684 if (Copy.isInvalid()) {
14685 CopyAssignOperator->setInvalidDecl();
14686 return;
14687 }
14688
14689 // Success! Record the copy.
14690 Statements.push_back(Copy.getAs<Expr>());
14691 }
14692
14693 // Assign non-static members.
14694 for (auto *Field : ClassDecl->fields()) {
14695 // FIXME: We should form some kind of AST representation for the implied
14696 // memcpy in a union copy operation.
14697 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
14698 continue;
14699
14700 if (Field->isInvalidDecl()) {
14701 Invalid = true;
14702 continue;
14703 }
14704
14705 // Check for members of reference type; we can't copy those.
14706 if (Field->getType()->isReferenceType()) {
14707 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14708 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
14709 Diag(Field->getLocation(), diag::note_declared_at);
14710 Invalid = true;
14711 continue;
14712 }
14713
14714 // Check for members of const-qualified, non-class type.
14715 QualType BaseType = Context.getBaseElementType(Field->getType());
14716 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
14717 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14718 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
14719 Diag(Field->getLocation(), diag::note_declared_at);
14720 Invalid = true;
14721 continue;
14722 }
14723
14724 // Suppress assigning zero-width bitfields.
14725 if (Field->isZeroLengthBitField(Context))
14726 continue;
14727
14728 QualType FieldType = Field->getType().getNonReferenceType();
14729 if (FieldType->isIncompleteArrayType()) {
14730 assert(ClassDecl->hasFlexibleArrayMember() &&(static_cast <bool> (ClassDecl->hasFlexibleArrayMember
() && "Incomplete array type is not valid") ? void (0
) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14731, __extension__ __PRETTY_FUNCTION__
))
14731 "Incomplete array type is not valid")(static_cast <bool> (ClassDecl->hasFlexibleArrayMember
() && "Incomplete array type is not valid") ? void (0
) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14731, __extension__ __PRETTY_FUNCTION__
))
;
14732 continue;
14733 }
14734
14735 // Build references to the field in the object we're copying from and to.
14736 CXXScopeSpec SS; // Intentionally empty
14737 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
14738 LookupMemberName);
14739 MemberLookup.addDecl(Field);
14740 MemberLookup.resolveKind();
14741
14742 MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup);
14743
14744 MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/!LangOpts.HLSL,
14745 MemberLookup);
14746
14747 // Build the copy of this field.
14748 StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
14749 To, From,
14750 /*CopyingBaseSubobject=*/false,
14751 /*Copying=*/true);
14752 if (Copy.isInvalid()) {
14753 CopyAssignOperator->setInvalidDecl();
14754 return;
14755 }
14756
14757 // Success! Record the copy.
14758 Statements.push_back(Copy.getAs<Stmt>());
14759 }
14760
14761 if (!Invalid) {
14762 // Add a "return *this;"
14763 Expr *ThisExpr = nullptr;
14764 if (!LangOpts.HLSL) {
14765 ExprResult ThisObj =
14766 CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
14767 ThisExpr = ThisObj.get();
14768 } else {
14769 ThisExpr = This.build(*this, Loc);
14770 }
14771
14772 StmtResult Return = BuildReturnStmt(Loc, ThisExpr);
14773 if (Return.isInvalid())
14774 Invalid = true;
14775 else
14776 Statements.push_back(Return.getAs<Stmt>());
14777 }
14778
14779 if (Invalid) {
14780 CopyAssignOperator->setInvalidDecl();
14781 return;
14782 }
14783
14784 StmtResult Body;
14785 {
14786 CompoundScopeRAII CompoundScope(*this);
14787 Body = ActOnCompoundStmt(Loc, Loc, Statements,
14788 /*isStmtExpr=*/false);
14789 assert(!Body.isInvalid() && "Compound statement creation cannot fail")(static_cast <bool> (!Body.isInvalid() && "Compound statement creation cannot fail"
) ? void (0) : __assert_fail ("!Body.isInvalid() && \"Compound statement creation cannot fail\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14789, __extension__ __PRETTY_FUNCTION__
))
;
14790 }
14791 CopyAssignOperator->setBody(Body.getAs<Stmt>());
14792 CopyAssignOperator->markUsed(Context);
14793
14794 if (ASTMutationListener *L = getASTMutationListener()) {
14795 L->CompletedImplicitDefinition(CopyAssignOperator);
14796 }
14797}
14798
14799CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
14800 assert(ClassDecl->needsImplicitMoveAssignment())(static_cast <bool> (ClassDecl->needsImplicitMoveAssignment
()) ? void (0) : __assert_fail ("ClassDecl->needsImplicitMoveAssignment()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 14800, __extension__ __PRETTY_FUNCTION__
))
;
14801
14802 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
14803 if (DSM.isAlreadyBeingDeclared())
14804 return nullptr;
14805
14806 // Note: The following rules are largely analoguous to the move
14807 // constructor rules.
14808
14809 QualType ArgType = Context.getTypeDeclType(ClassDecl);
14810 ArgType = Context.getElaboratedType(ETK_None, nullptr, ArgType, nullptr);
14811 LangAS AS = getDefaultCXXMethodAddrSpace();
14812 if (AS != LangAS::Default)
14813 ArgType = Context.getAddrSpaceQualType(ArgType, AS);
14814 QualType RetType = Context.getLValueReferenceType(ArgType);
14815 ArgType = Context.getRValueReferenceType(ArgType);
14816
14817 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
14818 CXXMoveAssignment,
14819 false);
14820
14821 // An implicitly-declared move assignment operator is an inline public
14822 // member of its class.
14823 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
14824 SourceLocation ClassLoc = ClassDecl->getLocation();
14825 DeclarationNameInfo NameInfo(Name, ClassLoc);
14826 CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create(
14827 Context, ClassDecl, ClassLoc, NameInfo, QualType(),
14828 /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
14829 getCurFPFeatures().isFPConstrained(),
14830 /*isInline=*/true,
14831 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified,
14832 SourceLocation());
14833 MoveAssignment->setAccess(AS_public);
14834 MoveAssignment->setDefaulted();
14835 MoveAssignment->setImplicit();
14836
14837 setupImplicitSpecialMemberType(MoveAssignment, RetType, ArgType);
14838
14839 if (getLangOpts().CUDA)
14840 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment,
14841 MoveAssignment,
14842 /* ConstRHS */ false,
14843 /* Diagnose */ false);
14844
14845 // Add the parameter to the operator.
14846 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
14847 ClassLoc, ClassLoc,
14848 /*Id=*/nullptr, ArgType,
14849 /*TInfo=*/nullptr, SC_None,
14850 nullptr);
14851 MoveAssignment->setParams(FromParam);
14852
14853 MoveAssignment->setTrivial(
14854 ClassDecl->needsOverloadResolutionForMoveAssignment()
14855 ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
14856 : ClassDecl->hasTrivialMoveAssignment());
14857
14858 // Note that we have added this copy-assignment operator.
14859 ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared;
14860
14861 Scope *S = getScopeForContext(ClassDecl);
14862 CheckImplicitSpecialMemberDeclaration(S, MoveAssignment);
14863
14864 if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
14865 ClassDecl->setImplicitMoveAssignmentIsDeleted();
14866 SetDeclDeleted(MoveAssignment, ClassLoc);
14867 }
14868
14869 if (S)
14870 PushOnScopeChains(MoveAssignment, S, false);
14871 ClassDecl->addDecl(MoveAssignment);
14872
14873 return MoveAssignment;
14874}
14875
14876/// Check if we're implicitly defining a move assignment operator for a class
14877/// with virtual bases. Such a move assignment might move-assign the virtual
14878/// base multiple times.
14879static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class,
14880 SourceLocation CurrentLocation) {
14881 assert(!Class->isDependentContext() && "should not define dependent move")(static_cast <bool> (!Class->isDependentContext() &&
"should not define dependent move") ? void (0) : __assert_fail
("!Class->isDependentContext() && \"should not define dependent move\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14881, __extension__ __PRETTY_FUNCTION__
))
;
14882
14883 // Only a virtual base could get implicitly move-assigned multiple times.
14884 // Only a non-trivial move assignment can observe this. We only want to
14885 // diagnose if we implicitly define an assignment operator that assigns
14886 // two base classes, both of which move-assign the same virtual base.
14887 if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() ||
14888 Class->getNumBases() < 2)
14889 return;
14890
14891 llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist;
14892 typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap;
14893 VBaseMap VBases;
14894
14895 for (auto &BI : Class->bases()) {
14896 Worklist.push_back(&BI);
14897 while (!Worklist.empty()) {
14898 CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val();
14899 CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
14900
14901 // If the base has no non-trivial move assignment operators,
14902 // we don't care about moves from it.
14903 if (!Base->hasNonTrivialMoveAssignment())
14904 continue;
14905
14906 // If there's nothing virtual here, skip it.
14907 if (!BaseSpec->isVirtual() && !Base->getNumVBases())
14908 continue;
14909
14910 // If we're not actually going to call a move assignment for this base,
14911 // or the selected move assignment is trivial, skip it.
14912 Sema::SpecialMemberOverloadResult SMOR =
14913 S.LookupSpecialMember(Base, Sema::CXXMoveAssignment,
14914 /*ConstArg*/false, /*VolatileArg*/false,
14915 /*RValueThis*/true, /*ConstThis*/false,
14916 /*VolatileThis*/false);
14917 if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() ||
14918 !SMOR.getMethod()->isMoveAssignmentOperator())
14919 continue;
14920
14921 if (BaseSpec->isVirtual()) {
14922 // We're going to move-assign this virtual base, and its move
14923 // assignment operator is not trivial. If this can happen for
14924 // multiple distinct direct bases of Class, diagnose it. (If it
14925 // only happens in one base, we'll diagnose it when synthesizing
14926 // that base class's move assignment operator.)
14927 CXXBaseSpecifier *&Existing =
14928 VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI))
14929 .first->second;
14930 if (Existing && Existing != &BI) {
14931 S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times)
14932 << Class << Base;
14933 S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here)
14934 << (Base->getCanonicalDecl() ==
14935 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl())
14936 << Base << Existing->getType() << Existing->getSourceRange();
14937 S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here)
14938 << (Base->getCanonicalDecl() ==
14939 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl())
14940 << Base << BI.getType() << BaseSpec->getSourceRange();
14941
14942 // Only diagnose each vbase once.
14943 Existing = nullptr;
14944 }
14945 } else {
14946 // Only walk over bases that have defaulted move assignment operators.
14947 // We assume that any user-provided move assignment operator handles
14948 // the multiple-moves-of-vbase case itself somehow.
14949 if (!SMOR.getMethod()->isDefaulted())
14950 continue;
14951
14952 // We're going to move the base classes of Base. Add them to the list.
14953 llvm::append_range(Worklist, llvm::make_pointer_range(Base->bases()));
14954 }
14955 }
14956 }
14957}
14958
14959void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
14960 CXXMethodDecl *MoveAssignOperator) {
14961 assert((MoveAssignOperator->isDefaulted() &&(static_cast <bool> ((MoveAssignOperator->isDefaulted
() && MoveAssignOperator->isOverloadedOperator() &&
MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
!MoveAssignOperator->doesThisDeclarationHaveABody() &&
!MoveAssignOperator->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? void (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14966, __extension__ __PRETTY_FUNCTION__
))
14962 MoveAssignOperator->isOverloadedOperator() &&(static_cast <bool> ((MoveAssignOperator->isDefaulted
() && MoveAssignOperator->isOverloadedOperator() &&
MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
!MoveAssignOperator->doesThisDeclarationHaveABody() &&
!MoveAssignOperator->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? void (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14966, __extension__ __PRETTY_FUNCTION__
))
14963 MoveAssignOperator->getOverloadedOperator() == OO_Equal &&(static_cast <bool> ((MoveAssignOperator->isDefaulted
() && MoveAssignOperator->isOverloadedOperator() &&
MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
!MoveAssignOperator->doesThisDeclarationHaveABody() &&
!MoveAssignOperator->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? void (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14966, __extension__ __PRETTY_FUNCTION__
))
14964 !MoveAssignOperator->doesThisDeclarationHaveABody() &&(static_cast <bool> ((MoveAssignOperator->isDefaulted
() && MoveAssignOperator->isOverloadedOperator() &&
MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
!MoveAssignOperator->doesThisDeclarationHaveABody() &&
!MoveAssignOperator->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? void (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14966, __extension__ __PRETTY_FUNCTION__
))
14965 !MoveAssignOperator->isDeleted()) &&(static_cast <bool> ((MoveAssignOperator->isDefaulted
() && MoveAssignOperator->isOverloadedOperator() &&
MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
!MoveAssignOperator->doesThisDeclarationHaveABody() &&
!MoveAssignOperator->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? void (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14966, __extension__ __PRETTY_FUNCTION__
))
14966 "DefineImplicitMoveAssignment called for wrong function")(static_cast <bool> ((MoveAssignOperator->isDefaulted
() && MoveAssignOperator->isOverloadedOperator() &&
MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
!MoveAssignOperator->doesThisDeclarationHaveABody() &&
!MoveAssignOperator->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? void (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14966, __extension__ __PRETTY_FUNCTION__
))
;
14967 if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl())
14968 return;
14969
14970 CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
14971 if (ClassDecl->isInvalidDecl()) {
14972 MoveAssignOperator->setInvalidDecl();
14973 return;
14974 }
14975
14976 // C++0x [class.copy]p28:
14977 // The implicitly-defined or move assignment operator for a non-union class
14978 // X performs memberwise move assignment of its subobjects. The direct base
14979 // classes of X are assigned first, in the order of their declaration in the
14980 // base-specifier-list, and then the immediate non-static data members of X
14981 // are assigned, in the order in which they were declared in the class
14982 // definition.
14983
14984 // Issue a warning if our implicit move assignment operator will move
14985 // from a virtual base more than once.
14986 checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation);
14987
14988 SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
14989
14990 // The exception specification is needed because we are defining the
14991 // function.
14992 ResolveExceptionSpec(CurrentLocation,
14993 MoveAssignOperator->getType()->castAs<FunctionProtoType>());
14994
14995 // Add a context note for diagnostics produced after this point.
14996 Scope.addContextNote(CurrentLocation);
14997
14998 // The statements that form the synthesized function body.
14999 SmallVector<Stmt*, 8> Statements;
15000
15001 // The parameter for the "other" object, which we are move from.
15002 ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
15003 QualType OtherRefType =
15004 Other->getType()->castAs<RValueReferenceType>()->getPointeeType();
15005
15006 // Our location for everything implicitly-generated.
15007 SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid()
15008 ? MoveAssignOperator->getEndLoc()
15009 : MoveAssignOperator->getLocation();
15010
15011 // Builds a reference to the "other" object.
15012 RefBuilder OtherRef(Other, OtherRefType);
15013 // Cast to rvalue.
15014 MoveCastBuilder MoveOther(OtherRef);
15015
15016 // Builds the "this" pointer.
15017 ThisBuilder This;
15018
15019 // Assign base classes.
15020 bool Invalid = false;
15021 for (auto &Base : ClassDecl->bases()) {
15022 // C++11 [class.copy]p28:
15023 // It is unspecified whether subobjects representing virtual base classes
15024 // are assigned more than once by the implicitly-defined copy assignment
15025 // operator.
15026 // FIXME: Do not assign to a vbase that will be assigned by some other base
15027 // class. For a move-assignment, this can result in the vbase being moved
15028 // multiple times.
15029
15030 // Form the assignment:
15031 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
15032 QualType BaseType = Base.getType().getUnqualifiedType();
15033 if (!BaseType->isRecordType()) {
15034 Invalid = true;
15035 continue;
15036 }
15037
15038 CXXCastPath BasePath;
15039 BasePath.push_back(&Base);
15040
15041 // Construct the "from" expression, which is an implicit cast to the
15042 // appropriately-qualified base type.
15043 CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath);
15044
15045 // Dereference "this".
15046 DerefBuilder DerefThis(This);
15047
15048 // Implicitly cast "this" to the appropriately-qualified base type.
15049 CastBuilder To(DerefThis,
15050 Context.getQualifiedType(
15051 BaseType, MoveAssignOperator->getMethodQualifiers()),
15052 VK_LValue, BasePath);
15053
15054 // Build the move.
15055 StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
15056 To, From,
15057 /*CopyingBaseSubobject=*/true,
15058 /*Copying=*/false);
15059 if (Move.isInvalid()) {
15060 MoveAssignOperator->setInvalidDecl();
15061 return;
15062 }
15063
15064 // Success! Record the move.
15065 Statements.push_back(Move.getAs<Expr>());
15066 }
15067
15068 // Assign non-static members.
15069 for (auto *Field : ClassDecl->fields()) {
15070 // FIXME: We should form some kind of AST representation for the implied
15071 // memcpy in a union copy operation.
15072 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
15073 continue;
15074
15075 if (Field->isInvalidDecl()) {
15076 Invalid = true;
15077 continue;
15078 }
15079
15080 // Check for members of reference type; we can't move those.
15081 if (Field->getType()->isReferenceType()) {
15082 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
15083 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
15084 Diag(Field->getLocation(), diag::note_declared_at);
15085 Invalid = true;
15086 continue;
15087 }
15088
15089 // Check for members of const-qualified, non-class type.
15090 QualType BaseType = Context.getBaseElementType(Field->getType());
15091 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
15092 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
15093 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
15094 Diag(Field->getLocation(), diag::note_declared_at);
15095 Invalid = true;
15096 continue;
15097 }
15098
15099 // Suppress assigning zero-width bitfields.
15100 if (Field->isZeroLengthBitField(Context))
15101 continue;
15102
15103 QualType FieldType = Field->getType().getNonReferenceType();
15104 if (FieldType->isIncompleteArrayType()) {
15105 assert(ClassDecl->hasFlexibleArrayMember() &&(static_cast <bool> (ClassDecl->hasFlexibleArrayMember
() && "Incomplete array type is not valid") ? void (0
) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15106, __extension__ __PRETTY_FUNCTION__
))
15106 "Incomplete array type is not valid")(static_cast <bool> (ClassDecl->hasFlexibleArrayMember
() && "Incomplete array type is not valid") ? void (0
) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15106, __extension__ __PRETTY_FUNCTION__
))
;
15107 continue;
15108 }
15109
15110 // Build references to the field in the object we're copying from and to.
15111 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
15112 LookupMemberName);
15113 MemberLookup.addDecl(Field);
15114 MemberLookup.resolveKind();
15115 MemberBuilder From(MoveOther, OtherRefType,
15116 /*IsArrow=*/false, MemberLookup);
15117 MemberBuilder To(This, getCurrentThisType(),
15118 /*IsArrow=*/true, MemberLookup);
15119
15120 assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue(static_cast <bool> (!From.build(*this, Loc)->isLValue
() && "Member reference with rvalue base must be rvalue except for reference "
"members, which aren't allowed for move assignment.") ? void
(0) : __assert_fail ("!From.build(*this, Loc)->isLValue() && \"Member reference with rvalue base must be rvalue except for reference \" \"members, which aren't allowed for move assignment.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15122, __extension__ __PRETTY_FUNCTION__
))
15121 "Member reference with rvalue base must be rvalue except for reference "(static_cast <bool> (!From.build(*this, Loc)->isLValue
() && "Member reference with rvalue base must be rvalue except for reference "
"members, which aren't allowed for move assignment.") ? void
(0) : __assert_fail ("!From.build(*this, Loc)->isLValue() && \"Member reference with rvalue base must be rvalue except for reference \" \"members, which aren't allowed for move assignment.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15122, __extension__ __PRETTY_FUNCTION__
))
15122 "members, which aren't allowed for move assignment.")(static_cast <bool> (!From.build(*this, Loc)->isLValue
() && "Member reference with rvalue base must be rvalue except for reference "
"members, which aren't allowed for move assignment.") ? void
(0) : __assert_fail ("!From.build(*this, Loc)->isLValue() && \"Member reference with rvalue base must be rvalue except for reference \" \"members, which aren't allowed for move assignment.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15122, __extension__ __PRETTY_FUNCTION__
))
;
15123
15124 // Build the move of this field.
15125 StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
15126 To, From,
15127 /*CopyingBaseSubobject=*/false,
15128 /*Copying=*/false);
15129 if (Move.isInvalid()) {
15130 MoveAssignOperator->setInvalidDecl();
15131 return;
15132 }
15133
15134 // Success! Record the copy.
15135 Statements.push_back(Move.getAs<Stmt>());
15136 }
15137
15138 if (!Invalid) {
15139 // Add a "return *this;"
15140 ExprResult ThisObj =
15141 CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
15142
15143 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
15144 if (Return.isInvalid())
15145 Invalid = true;
15146 else
15147 Statements.push_back(Return.getAs<Stmt>());
15148 }
15149
15150 if (Invalid) {
15151 MoveAssignOperator->setInvalidDecl();
15152 return;
15153 }
15154
15155 StmtResult Body;
15156 {
15157 CompoundScopeRAII CompoundScope(*this);
15158 Body = ActOnCompoundStmt(Loc, Loc, Statements,
15159 /*isStmtExpr=*/false);
15160 assert(!Body.isInvalid() && "Compound statement creation cannot fail")(static_cast <bool> (!Body.isInvalid() && "Compound statement creation cannot fail"
) ? void (0) : __assert_fail ("!Body.isInvalid() && \"Compound statement creation cannot fail\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15160, __extension__ __PRETTY_FUNCTION__
))
;
15161 }
15162 MoveAssignOperator->setBody(Body.getAs<Stmt>());
15163 MoveAssignOperator->markUsed(Context);
15164
15165 if (ASTMutationListener *L = getASTMutationListener()) {
15166 L->CompletedImplicitDefinition(MoveAssignOperator);
15167 }
15168}
15169
15170CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
15171 CXXRecordDecl *ClassDecl) {
15172 // C++ [class.copy]p4:
15173 // If the class definition does not explicitly declare a copy
15174 // constructor, one is declared implicitly.
15175 assert(ClassDecl->needsImplicitCopyConstructor())(static_cast <bool> (ClassDecl->needsImplicitCopyConstructor
()) ? void (0) : __assert_fail ("ClassDecl->needsImplicitCopyConstructor()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 15175, __extension__ __PRETTY_FUNCTION__
))
;
15176
15177 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
15178 if (DSM.isAlreadyBeingDeclared())
15179 return nullptr;
15180
15181 QualType ClassType = Context.getTypeDeclType(ClassDecl);
15182 QualType ArgType = ClassType;
15183 ArgType = Context.getElaboratedType(ETK_None, nullptr, ArgType, nullptr);
15184 bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
15185 if (Const)
15186 ArgType = ArgType.withConst();
15187
15188 LangAS AS = getDefaultCXXMethodAddrSpace();
15189 if (AS != LangAS::Default)
15190 ArgType = Context.getAddrSpaceQualType(ArgType, AS);
15191
15192 ArgType = Context.getLValueReferenceType(ArgType);
15193
15194 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
15195 CXXCopyConstructor,
15196 Const);
15197
15198 DeclarationName Name
15199 = Context.DeclarationNames.getCXXConstructorName(
15200 Context.getCanonicalType(ClassType));
15201 SourceLocation ClassLoc = ClassDecl->getLocation();
15202 DeclarationNameInfo NameInfo(Name, ClassLoc);
15203
15204 // An implicitly-declared copy constructor is an inline public
15205 // member of its class.
15206 CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
15207 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
15208 ExplicitSpecifier(), getCurFPFeatures().isFPConstrained(),
15209 /*isInline=*/true,
15210 /*isImplicitlyDeclared=*/true,
15211 Constexpr ? ConstexprSpecKind::Constexpr
15212 : ConstexprSpecKind::Unspecified);
15213 CopyConstructor->setAccess(AS_public);
15214 CopyConstructor->setDefaulted();
15215
15216 setupImplicitSpecialMemberType(CopyConstructor, Context.VoidTy, ArgType);
15217
15218 if (getLangOpts().CUDA)
15219 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor,
15220 CopyConstructor,
15221 /* ConstRHS */ Const,
15222 /* Diagnose */ false);
15223
15224 // During template instantiation of special member functions we need a
15225 // reliable TypeSourceInfo for the parameter types in order to allow functions
15226 // to be substituted.
15227 TypeSourceInfo *TSI = nullptr;
15228 if (inTemplateInstantiation() && ClassDecl->isLambda())
15229 TSI = Context.getTrivialTypeSourceInfo(ArgType);
15230
15231 // Add the parameter to the constructor.
15232 ParmVarDecl *FromParam =
15233 ParmVarDecl::Create(Context, CopyConstructor, ClassLoc, ClassLoc,
15234 /*IdentifierInfo=*/nullptr, ArgType,
15235 /*TInfo=*/TSI, SC_None, nullptr);
15236 CopyConstructor->setParams(FromParam);
15237
15238 CopyConstructor->setTrivial(
15239 ClassDecl->needsOverloadResolutionForCopyConstructor()
15240 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
15241 : ClassDecl->hasTrivialCopyConstructor());
15242
15243 CopyConstructor->setTrivialForCall(
15244 ClassDecl->hasAttr<TrivialABIAttr>() ||
15245 (ClassDecl->needsOverloadResolutionForCopyConstructor()
15246 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor,
15247 TAH_ConsiderTrivialABI)
15248 : ClassDecl->hasTrivialCopyConstructorForCall()));
15249
15250 // Note that we have declared this constructor.
15251 ++getASTContext().NumImplicitCopyConstructorsDeclared;
15252
15253 Scope *S = getScopeForContext(ClassDecl);
15254 CheckImplicitSpecialMemberDeclaration(S, CopyConstructor);
15255
15256 if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor)) {
15257 ClassDecl->setImplicitCopyConstructorIsDeleted();
15258 SetDeclDeleted(CopyConstructor, ClassLoc);
15259 }
15260
15261 if (S)
15262 PushOnScopeChains(CopyConstructor, S, false);
15263 ClassDecl->addDecl(CopyConstructor);
15264
15265 return CopyConstructor;
15266}
15267
15268void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
15269 CXXConstructorDecl *CopyConstructor) {
15270 assert((CopyConstructor->isDefaulted() &&(static_cast <bool> ((CopyConstructor->isDefaulted()
&& CopyConstructor->isCopyConstructor() &&
!CopyConstructor->doesThisDeclarationHaveABody() &&
!CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? void (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15274, __extension__ __PRETTY_FUNCTION__
))
15271 CopyConstructor->isCopyConstructor() &&(static_cast <bool> ((CopyConstructor->isDefaulted()
&& CopyConstructor->isCopyConstructor() &&
!CopyConstructor->doesThisDeclarationHaveABody() &&
!CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? void (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15274, __extension__ __PRETTY_FUNCTION__
))
15272 !CopyConstructor->doesThisDeclarationHaveABody() &&(static_cast <bool> ((CopyConstructor->isDefaulted()
&& CopyConstructor->isCopyConstructor() &&
!CopyConstructor->doesThisDeclarationHaveABody() &&
!CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? void (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15274, __extension__ __PRETTY_FUNCTION__
))
15273 !CopyConstructor->isDeleted()) &&(static_cast <bool> ((CopyConstructor->isDefaulted()
&& CopyConstructor->isCopyConstructor() &&
!CopyConstructor->doesThisDeclarationHaveABody() &&
!CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? void (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15274, __extension__ __PRETTY_FUNCTION__
))
15274 "DefineImplicitCopyConstructor - call it for implicit copy ctor")(static_cast <bool> ((CopyConstructor->isDefaulted()
&& CopyConstructor->isCopyConstructor() &&
!CopyConstructor->doesThisDeclarationHaveABody() &&
!CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? void (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15274, __extension__ __PRETTY_FUNCTION__
))
;
15275 if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl())
15276 return;
15277
15278 CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
15279 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor")(static_cast <bool> (ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"
) ? void (0) : __assert_fail ("ClassDecl && \"DefineImplicitCopyConstructor - invalid constructor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15279, __extension__ __PRETTY_FUNCTION__
))
;
15280
15281 SynthesizedFunctionScope Scope(*this, CopyConstructor);
15282
15283 // The exception specification is needed because we are defining the
15284 // function.
15285 ResolveExceptionSpec(CurrentLocation,
15286 CopyConstructor->getType()->castAs<FunctionProtoType>());
15287 MarkVTableUsed(CurrentLocation, ClassDecl);
15288
15289 // Add a context note for diagnostics produced after this point.
15290 Scope.addContextNote(CurrentLocation);
15291
15292 // C++11 [class.copy]p7:
15293 // The [definition of an implicitly declared copy constructor] is
15294 // deprecated if the class has a user-declared copy assignment operator
15295 // or a user-declared destructor.
15296 if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
15297 diagnoseDeprecatedCopyOperation(*this, CopyConstructor);
15298
15299 if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false)) {
15300 CopyConstructor->setInvalidDecl();
15301 } else {
15302 SourceLocation Loc = CopyConstructor->getEndLoc().isValid()
15303 ? CopyConstructor->getEndLoc()
15304 : CopyConstructor->getLocation();
15305 Sema::CompoundScopeRAII CompoundScope(*this);
15306 CopyConstructor->setBody(
15307 ActOnCompoundStmt(Loc, Loc, std::nullopt, /*isStmtExpr=*/false)
15308 .getAs<Stmt>());
15309 CopyConstructor->markUsed(Context);
15310 }
15311
15312 if (ASTMutationListener *L = getASTMutationListener()) {
15313 L->CompletedImplicitDefinition(CopyConstructor);
15314 }
15315}
15316
15317CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
15318 CXXRecordDecl *ClassDecl) {
15319 assert(ClassDecl->needsImplicitMoveConstructor())(static_cast <bool> (ClassDecl->needsImplicitMoveConstructor
()) ? void (0) : __assert_fail ("ClassDecl->needsImplicitMoveConstructor()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 15319, __extension__ __PRETTY_FUNCTION__
))
;
15320
15321 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
15322 if (DSM.isAlreadyBeingDeclared())
15323 return nullptr;
15324
15325 QualType ClassType = Context.getTypeDeclType(ClassDecl);
15326
15327 QualType ArgType = ClassType;
15328 ArgType = Context.getElaboratedType(ETK_None, nullptr, ArgType, nullptr);
15329 LangAS AS = getDefaultCXXMethodAddrSpace();
15330 if (AS != LangAS::Default)
15331 ArgType = Context.getAddrSpaceQualType(ClassType, AS);
15332 ArgType = Context.getRValueReferenceType(ArgType);
15333
15334 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
15335 CXXMoveConstructor,
15336 false);
15337
15338 DeclarationName Name
15339 = Context.DeclarationNames.getCXXConstructorName(
15340 Context.getCanonicalType(ClassType));
15341 SourceLocation ClassLoc = ClassDecl->getLocation();
15342 DeclarationNameInfo NameInfo(Name, ClassLoc);
15343
15344 // C++11 [class.copy]p11:
15345 // An implicitly-declared copy/move constructor is an inline public
15346 // member of its class.
15347 CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
15348 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
15349 ExplicitSpecifier(), getCurFPFeatures().isFPConstrained(),
15350 /*isInline=*/true,
15351 /*isImplicitlyDeclared=*/true,
15352 Constexpr ? ConstexprSpecKind::Constexpr
15353 : ConstexprSpecKind::Unspecified);
15354 MoveConstructor->setAccess(AS_public);
15355 MoveConstructor->setDefaulted();
15356
15357 setupImplicitSpecialMemberType(MoveConstructor, Context.VoidTy, ArgType);
15358
15359 if (getLangOpts().CUDA)
15360 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor,
15361 MoveConstructor,
15362 /* ConstRHS */ false,
15363 /* Diagnose */ false);
15364
15365 // Add the parameter to the constructor.
15366 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
15367 ClassLoc, ClassLoc,
15368 /*IdentifierInfo=*/nullptr,
15369 ArgType, /*TInfo=*/nullptr,
15370 SC_None, nullptr);
15371 MoveConstructor->setParams(FromParam);
15372
15373 MoveConstructor->setTrivial(
15374 ClassDecl->needsOverloadResolutionForMoveConstructor()
15375 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
15376 : ClassDecl->hasTrivialMoveConstructor());
15377
15378 MoveConstructor->setTrivialForCall(
15379 ClassDecl->hasAttr<TrivialABIAttr>() ||
15380 (ClassDecl->needsOverloadResolutionForMoveConstructor()
15381 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor,
15382 TAH_ConsiderTrivialABI)
15383 : ClassDecl->hasTrivialMoveConstructorForCall()));
15384
15385 // Note that we have declared this constructor.
15386 ++getASTContext().NumImplicitMoveConstructorsDeclared;
15387
15388 Scope *S = getScopeForContext(ClassDecl);
15389 CheckImplicitSpecialMemberDeclaration(S, MoveConstructor);
15390
15391 if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
15392 ClassDecl->setImplicitMoveConstructorIsDeleted();
15393 SetDeclDeleted(MoveConstructor, ClassLoc);
15394 }
15395
15396 if (S)
15397 PushOnScopeChains(MoveConstructor, S, false);
15398 ClassDecl->addDecl(MoveConstructor);
15399
15400 return MoveConstructor;
15401}
15402
15403void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
15404 CXXConstructorDecl *MoveConstructor) {
15405 assert((MoveConstructor->isDefaulted() &&(static_cast <bool> ((MoveConstructor->isDefaulted()
&& MoveConstructor->isMoveConstructor() &&
!MoveConstructor->doesThisDeclarationHaveABody() &&
!MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? void (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15409, __extension__ __PRETTY_FUNCTION__
))
15406 MoveConstructor->isMoveConstructor() &&(static_cast <bool> ((MoveConstructor->isDefaulted()
&& MoveConstructor->isMoveConstructor() &&
!MoveConstructor->doesThisDeclarationHaveABody() &&
!MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? void (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15409, __extension__ __PRETTY_FUNCTION__
))
15407 !MoveConstructor->doesThisDeclarationHaveABody() &&(static_cast <bool> ((MoveConstructor->isDefaulted()
&& MoveConstructor->isMoveConstructor() &&
!MoveConstructor->doesThisDeclarationHaveABody() &&
!MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? void (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15409, __extension__ __PRETTY_FUNCTION__
))
15408 !MoveConstructor->isDeleted()) &&(static_cast <bool> ((MoveConstructor->isDefaulted()
&& MoveConstructor->isMoveConstructor() &&
!MoveConstructor->doesThisDeclarationHaveABody() &&
!MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? void (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15409, __extension__ __PRETTY_FUNCTION__
))
15409 "DefineImplicitMoveConstructor - call it for implicit move ctor")(static_cast <bool> ((MoveConstructor->isDefaulted()
&& MoveConstructor->isMoveConstructor() &&
!MoveConstructor->doesThisDeclarationHaveABody() &&
!MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? void (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15409, __extension__ __PRETTY_FUNCTION__
))
;
15410 if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl())
15411 return;
15412
15413 CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
15414 assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor")(static_cast <bool> (ClassDecl && "DefineImplicitMoveConstructor - invalid constructor"
) ? void (0) : __assert_fail ("ClassDecl && \"DefineImplicitMoveConstructor - invalid constructor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15414, __extension__ __PRETTY_FUNCTION__
))
;
15415
15416 SynthesizedFunctionScope Scope(*this, MoveConstructor);
15417
15418 // The exception specification is needed because we are defining the
15419 // function.
15420 ResolveExceptionSpec(CurrentLocation,
15421 MoveConstructor->getType()->castAs<FunctionProtoType>());
15422 MarkVTableUsed(CurrentLocation, ClassDecl);
15423
15424 // Add a context note for diagnostics produced after this point.
15425 Scope.addContextNote(CurrentLocation);
15426
15427 if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false)) {
15428 MoveConstructor->setInvalidDecl();
15429 } else {
15430 SourceLocation Loc = MoveConstructor->getEndLoc().isValid()
15431 ? MoveConstructor->getEndLoc()
15432 : MoveConstructor->getLocation();
15433 Sema::CompoundScopeRAII CompoundScope(*this);
15434 MoveConstructor->setBody(
15435 ActOnCompoundStmt(Loc, Loc, std::nullopt, /*isStmtExpr=*/false)
15436 .getAs<Stmt>());
15437 MoveConstructor->markUsed(Context);
15438 }
15439
15440 if (ASTMutationListener *L = getASTMutationListener()) {
15441 L->CompletedImplicitDefinition(MoveConstructor);
15442 }
15443}
15444
15445bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
15446 return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
15447}
15448
15449void Sema::DefineImplicitLambdaToFunctionPointerConversion(
15450 SourceLocation CurrentLocation,
15451 CXXConversionDecl *Conv) {
15452 SynthesizedFunctionScope Scope(*this, Conv);
15453 assert(!Conv->getReturnType()->isUndeducedType())(static_cast <bool> (!Conv->getReturnType()->isUndeducedType
()) ? void (0) : __assert_fail ("!Conv->getReturnType()->isUndeducedType()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 15453, __extension__ __PRETTY_FUNCTION__
))
;
15454
15455 QualType ConvRT = Conv->getType()->castAs<FunctionType>()->getReturnType();
15456 CallingConv CC =
15457 ConvRT->getPointeeType()->castAs<FunctionType>()->getCallConv();
15458
15459 CXXRecordDecl *Lambda = Conv->getParent();
15460 FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
15461 FunctionDecl *Invoker =
15462 CallOp->isStatic() ? CallOp : Lambda->getLambdaStaticInvoker(CC);
15463
15464 if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) {
15465 CallOp = InstantiateFunctionDeclaration(
15466 CallOp->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation);
15467 if (!CallOp)
15468 return;
15469
15470 if (CallOp != Invoker) {
15471 Invoker = InstantiateFunctionDeclaration(
15472 Invoker->getDescribedFunctionTemplate(), TemplateArgs,
15473 CurrentLocation);
15474 if (!Invoker)
15475 return;
15476 }
15477 }
15478
15479 if (CallOp->isInvalidDecl())
15480 return;
15481
15482 // Mark the call operator referenced (and add to pending instantiations
15483 // if necessary).
15484 // For both the conversion and static-invoker template specializations
15485 // we construct their body's in this function, so no need to add them
15486 // to the PendingInstantiations.
15487 MarkFunctionReferenced(CurrentLocation, CallOp);
15488
15489 if (Invoker != CallOp) {
15490 // Fill in the __invoke function with a dummy implementation. IR generation
15491 // will fill in the actual details. Update its type in case it contained
15492 // an 'auto'.
15493 Invoker->markUsed(Context);
15494 Invoker->setReferenced();
15495 Invoker->setType(Conv->getReturnType()->getPointeeType());
15496 Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation()));
15497 }
15498
15499 // Construct the body of the conversion function { return __invoke; }.
15500 Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(), VK_LValue,
15501 Conv->getLocation());
15502 assert(FunctionRef && "Can't refer to __invoke function?")(static_cast <bool> (FunctionRef && "Can't refer to __invoke function?"
) ? void (0) : __assert_fail ("FunctionRef && \"Can't refer to __invoke function?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15502, __extension__ __PRETTY_FUNCTION__
))
;
15503 Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get();
15504 Conv->setBody(CompoundStmt::Create(Context, Return, FPOptionsOverride(),
15505 Conv->getLocation(), Conv->getLocation()));
15506 Conv->markUsed(Context);
15507 Conv->setReferenced();
15508
15509 if (ASTMutationListener *L = getASTMutationListener()) {
15510 L->CompletedImplicitDefinition(Conv);
15511 if (Invoker != CallOp)
15512 L->CompletedImplicitDefinition(Invoker);
15513 }
15514}
15515
15516void Sema::DefineImplicitLambdaToBlockPointerConversion(
15517 SourceLocation CurrentLocation, CXXConversionDecl *Conv) {
15518 assert(!Conv->getParent()->isGenericLambda())(static_cast <bool> (!Conv->getParent()->isGenericLambda
()) ? void (0) : __assert_fail ("!Conv->getParent()->isGenericLambda()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 15518, __extension__ __PRETTY_FUNCTION__
))
;
15519
15520 SynthesizedFunctionScope Scope(*this, Conv);
15521
15522 // Copy-initialize the lambda object as needed to capture it.
15523 Expr *This = ActOnCXXThis(CurrentLocation).get();
15524 Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get();
15525
15526 ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
15527 Conv->getLocation(),
15528 Conv, DerefThis);
15529
15530 // If we're not under ARC, make sure we still get the _Block_copy/autorelease
15531 // behavior. Note that only the general conversion function does this
15532 // (since it's unusable otherwise); in the case where we inline the
15533 // block literal, it has block literal lifetime semantics.
15534 if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
15535 BuildBlock = ImplicitCastExpr::Create(
15536 Context, BuildBlock.get()->getType(), CK_CopyAndAutoreleaseBlockObject,
15537 BuildBlock.get(), nullptr, VK_PRValue, FPOptionsOverride());
15538
15539 if (BuildBlock.isInvalid()) {
15540 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
15541 Conv->setInvalidDecl();
15542 return;
15543 }
15544
15545 // Create the return statement that returns the block from the conversion
15546 // function.
15547 StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get());
15548 if (Return.isInvalid()) {
15549 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
15550 Conv->setInvalidDecl();
15551 return;
15552 }
15553
15554 // Set the body of the conversion function.
15555 Stmt *ReturnS = Return.get();
15556 Conv->setBody(CompoundStmt::Create(Context, ReturnS, FPOptionsOverride(),
15557 Conv->getLocation(), Conv->getLocation()));
15558 Conv->markUsed(Context);
15559
15560 // We're done; notify the mutation listener, if any.
15561 if (ASTMutationListener *L = getASTMutationListener()) {
15562 L->CompletedImplicitDefinition(Conv);
15563 }
15564}
15565
15566/// Determine whether the given list arguments contains exactly one
15567/// "real" (non-default) argument.
15568static bool hasOneRealArgument(MultiExprArg Args) {
15569 switch (Args.size()) {
15570 case 0:
15571 return false;
15572
15573 default:
15574 if (!Args[1]->isDefaultArgument())
15575 return false;
15576
15577 [[fallthrough]];
15578 case 1:
15579 return !Args[0]->isDefaultArgument();
15580 }
15581
15582 return false;
15583}
15584
15585ExprResult
15586Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
15587 NamedDecl *FoundDecl,
15588 CXXConstructorDecl *Constructor,
15589 MultiExprArg ExprArgs,
15590 bool HadMultipleCandidates,
15591 bool IsListInitialization,
15592 bool IsStdInitListInitialization,
15593 bool RequiresZeroInit,
15594 unsigned ConstructKind,
15595 SourceRange ParenRange) {
15596 bool Elidable = false;
15597
15598 // C++0x [class.copy]p34:
15599 // When certain criteria are met, an implementation is allowed to
15600 // omit the copy/move construction of a class object, even if the
15601 // copy/move constructor and/or destructor for the object have
15602 // side effects. [...]
15603 // - when a temporary class object that has not been bound to a
15604 // reference (12.2) would be copied/moved to a class object
15605 // with the same cv-unqualified type, the copy/move operation
15606 // can be omitted by constructing the temporary object
15607 // directly into the target of the omitted copy/move
15608 if (ConstructKind == CXXConstructExpr::CK_Complete && Constructor &&
15609 // FIXME: Converting constructors should also be accepted.
15610 // But to fix this, the logic that digs down into a CXXConstructExpr
15611 // to find the source object needs to handle it.
15612 // Right now it assumes the source object is passed directly as the
15613 // first argument.
15614 Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
15615 Expr *SubExpr = ExprArgs[0];
15616 // FIXME: Per above, this is also incorrect if we want to accept
15617 // converting constructors, as isTemporaryObject will
15618 // reject temporaries with different type from the
15619 // CXXRecord itself.
15620 Elidable = SubExpr->isTemporaryObject(
15621 Context, cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
15622 }
15623
15624 return BuildCXXConstructExpr(ConstructLoc, DeclInitType,
15625 FoundDecl, Constructor,
15626 Elidable, ExprArgs, HadMultipleCandidates,
15627 IsListInitialization,
15628 IsStdInitListInitialization, RequiresZeroInit,
15629 ConstructKind, ParenRange);
15630}
15631
15632ExprResult
15633Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
15634 NamedDecl *FoundDecl,
15635 CXXConstructorDecl *Constructor,
15636 bool Elidable,
15637 MultiExprArg ExprArgs,
15638 bool HadMultipleCandidates,
15639 bool IsListInitialization,
15640 bool IsStdInitListInitialization,
15641 bool RequiresZeroInit,
15642 unsigned ConstructKind,
15643 SourceRange ParenRange) {
15644 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) {
15645 Constructor = findInheritingConstructor(ConstructLoc, Constructor, Shadow);
15646 // The only way to get here is if we did overlaod resolution to find the
15647 // shadow decl, so we don't need to worry about re-checking the trailing
15648 // requires clause.
15649 if (DiagnoseUseOfOverloadedDecl(Constructor, ConstructLoc))
15650 return ExprError();
15651 }
15652
15653 return BuildCXXConstructExpr(
15654 ConstructLoc, DeclInitType, Constructor, Elidable, ExprArgs,
15655 HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization,
15656 RequiresZeroInit, ConstructKind, ParenRange);
15657}
15658
15659/// BuildCXXConstructExpr - Creates a complete call to a constructor,
15660/// including handling of its default argument expressions.
15661ExprResult
15662Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
15663 CXXConstructorDecl *Constructor,
15664 bool Elidable,
15665 MultiExprArg ExprArgs,
15666 bool HadMultipleCandidates,
15667 bool IsListInitialization,
15668 bool IsStdInitListInitialization,
15669 bool RequiresZeroInit,
15670 unsigned ConstructKind,
15671 SourceRange ParenRange) {
15672 assert(declaresSameEntity((static_cast <bool> (declaresSameEntity( Constructor->
getParent(), DeclInitType->getBaseElementTypeUnsafe()->
getAsCXXRecordDecl()) && "given constructor for wrong type"
) ? void (0) : __assert_fail ("declaresSameEntity( Constructor->getParent(), DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && \"given constructor for wrong type\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15675, __extension__ __PRETTY_FUNCTION__
))
15673 Constructor->getParent(),(static_cast <bool> (declaresSameEntity( Constructor->
getParent(), DeclInitType->getBaseElementTypeUnsafe()->
getAsCXXRecordDecl()) && "given constructor for wrong type"
) ? void (0) : __assert_fail ("declaresSameEntity( Constructor->getParent(), DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && \"given constructor for wrong type\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15675, __extension__ __PRETTY_FUNCTION__
))
15674 DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&(static_cast <bool> (declaresSameEntity( Constructor->
getParent(), DeclInitType->getBaseElementTypeUnsafe()->
getAsCXXRecordDecl()) && "given constructor for wrong type"
) ? void (0) : __assert_fail ("declaresSameEntity( Constructor->getParent(), DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && \"given constructor for wrong type\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15675, __extension__ __PRETTY_FUNCTION__
))
15675 "given constructor for wrong type")(static_cast <bool> (declaresSameEntity( Constructor->
getParent(), DeclInitType->getBaseElementTypeUnsafe()->
getAsCXXRecordDecl()) && "given constructor for wrong type"
) ? void (0) : __assert_fail ("declaresSameEntity( Constructor->getParent(), DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && \"given constructor for wrong type\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15675, __extension__ __PRETTY_FUNCTION__
))
;
15676 MarkFunctionReferenced(ConstructLoc, Constructor);
15677 if (getLangOpts().CUDA && !CheckCUDACall(ConstructLoc, Constructor))
15678 return ExprError();
15679
15680 return CheckForImmediateInvocation(
15681 CXXConstructExpr::Create(
15682 Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs,
15683 HadMultipleCandidates, IsListInitialization,
15684 IsStdInitListInitialization, RequiresZeroInit,
15685 static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
15686 ParenRange),
15687 Constructor);
15688}
15689
15690void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
15691 if (VD->isInvalidDecl()) return;
15692 // If initializing the variable failed, don't also diagnose problems with
15693 // the destructor, they're likely related.
15694 if (VD->getInit() && VD->getInit()->containsErrors())
15695 return;
15696
15697 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
15698 if (ClassDecl->isInvalidDecl()) return;
15699 if (ClassDecl->hasIrrelevantDestructor()) return;
15700 if (ClassDecl->isDependentContext()) return;
15701
15702 if (VD->isNoDestroy(getASTContext()))
15703 return;
15704
15705 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
15706
15707 // If this is an array, we'll require the destructor during initialization, so
15708 // we can skip over this. We still want to emit exit-time destructor warnings
15709 // though.
15710 if (!VD->getType()->isArrayType()) {
15711 MarkFunctionReferenced(VD->getLocation(), Destructor);
15712 CheckDestructorAccess(VD->getLocation(), Destructor,
15713 PDiag(diag::err_access_dtor_var)
15714 << VD->getDeclName() << VD->getType());
15715 DiagnoseUseOfDecl(Destructor, VD->getLocation());
15716 }
15717
15718 if (Destructor->isTrivial()) return;
15719
15720 // If the destructor is constexpr, check whether the variable has constant
15721 // destruction now.
15722 if (Destructor->isConstexpr()) {
15723 bool HasConstantInit = false;
15724 if (VD->getInit() && !VD->getInit()->isValueDependent())
15725 HasConstantInit = VD->evaluateValue();
15726 SmallVector<PartialDiagnosticAt, 8> Notes;
15727 if (!VD->evaluateDestruction(Notes) && VD->isConstexpr() &&
15728 HasConstantInit) {
15729 Diag(VD->getLocation(),
15730 diag::err_constexpr_var_requires_const_destruction) << VD;
15731 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
15732 Diag(Notes[I].first, Notes[I].second);
15733 }
15734 }
15735
15736 if (!VD->hasGlobalStorage() || !VD->needsDestruction(Context))
15737 return;
15738
15739 // Emit warning for non-trivial dtor in global scope (a real global,
15740 // class-static, function-static).
15741 Diag(VD->getLocation(), diag::warn_exit_time_destructor);
15742
15743 // TODO: this should be re-enabled for static locals by !CXAAtExit
15744 if (!VD->isStaticLocal())
15745 Diag(VD->getLocation(), diag::warn_global_destructor);
15746}
15747
15748/// Given a constructor and the set of arguments provided for the
15749/// constructor, convert the arguments and add any required default arguments
15750/// to form a proper call to this constructor.
15751///
15752/// \returns true if an error occurred, false otherwise.
15753bool Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
15754 QualType DeclInitType, MultiExprArg ArgsPtr,
15755 SourceLocation Loc,
15756 SmallVectorImpl<Expr *> &ConvertedArgs,
15757 bool AllowExplicit,
15758 bool IsListInitialization) {
15759 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
15760 unsigned NumArgs = ArgsPtr.size();
15761 Expr **Args = ArgsPtr.data();
15762
15763 const auto *Proto = Constructor->getType()->castAs<FunctionProtoType>();
15764 unsigned NumParams = Proto->getNumParams();
15765
15766 // If too few arguments are available, we'll fill in the rest with defaults.
15767 if (NumArgs < NumParams)
15768 ConvertedArgs.reserve(NumParams);
15769 else
15770 ConvertedArgs.reserve(NumArgs);
15771
15772 VariadicCallType CallType =
15773 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
15774 SmallVector<Expr *, 8> AllArgs;
15775 bool Invalid = GatherArgumentsForCall(
15776 Loc, Constructor, Proto, 0, llvm::ArrayRef(Args, NumArgs), AllArgs,
15777 CallType, AllowExplicit, IsListInitialization);
15778 ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
15779
15780 DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
15781
15782 CheckConstructorCall(Constructor, DeclInitType,
15783 llvm::ArrayRef(AllArgs.data(), AllArgs.size()), Proto,
15784 Loc);
15785
15786 return Invalid;
15787}
15788
15789static inline bool
15790CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
15791 const FunctionDecl *FnDecl) {
15792 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
15793 if (isa<NamespaceDecl>(DC)) {
15794 return SemaRef.Diag(FnDecl->getLocation(),
15795 diag::err_operator_new_delete_declared_in_namespace)
15796 << FnDecl->getDeclName();
15797 }
15798
15799 if (isa<TranslationUnitDecl>(DC) &&
15800 FnDecl->getStorageClass() == SC_Static) {
15801 return SemaRef.Diag(FnDecl->getLocation(),
15802 diag::err_operator_new_delete_declared_static)
15803 << FnDecl->getDeclName();
15804 }
15805
15806 return false;
15807}
15808
15809static CanQualType RemoveAddressSpaceFromPtr(Sema &SemaRef,
15810 const PointerType *PtrTy) {
15811 auto &Ctx = SemaRef.Context;
15812 Qualifiers PtrQuals = PtrTy->getPointeeType().getQualifiers();
15813 PtrQuals.removeAddressSpace();
15814 return Ctx.getPointerType(Ctx.getCanonicalType(Ctx.getQualifiedType(
15815 PtrTy->getPointeeType().getUnqualifiedType(), PtrQuals)));
15816}
15817
15818static inline bool
15819CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
15820 CanQualType ExpectedResultType,
15821 CanQualType ExpectedFirstParamType,
15822 unsigned DependentParamTypeDiag,
15823 unsigned InvalidParamTypeDiag) {
15824 QualType ResultType =
15825 FnDecl->getType()->castAs<FunctionType>()->getReturnType();
15826
15827 if (SemaRef.getLangOpts().OpenCLCPlusPlus) {
15828 // The operator is valid on any address space for OpenCL.
15829 // Drop address space from actual and expected result types.
15830 if (const auto *PtrTy = ResultType->getAs<PointerType>())
15831 ResultType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy);
15832
15833 if (auto ExpectedPtrTy = ExpectedResultType->getAs<PointerType>())
15834 ExpectedResultType = RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy);
15835 }
15836
15837 // Check that the result type is what we expect.
15838 if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) {
15839 // Reject even if the type is dependent; an operator delete function is
15840 // required to have a non-dependent result type.
15841 return SemaRef.Diag(
15842 FnDecl->getLocation(),
15843 ResultType->isDependentType()
15844 ? diag::err_operator_new_delete_dependent_result_type
15845 : diag::err_operator_new_delete_invalid_result_type)
15846 << FnDecl->getDeclName() << ExpectedResultType;
15847 }
15848
15849 // A function template must have at least 2 parameters.
15850 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
15851 return SemaRef.Diag(FnDecl->getLocation(),
15852 diag::err_operator_new_delete_template_too_few_parameters)
15853 << FnDecl->getDeclName();
15854
15855 // The function decl must have at least 1 parameter.
15856 if (FnDecl->getNumParams() == 0)
15857 return SemaRef.Diag(FnDecl->getLocation(),
15858 diag::err_operator_new_delete_too_few_parameters)
15859 << FnDecl->getDeclName();
15860
15861 QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
15862 if (SemaRef.getLangOpts().OpenCLCPlusPlus) {
15863 // The operator is valid on any address space for OpenCL.
15864 // Drop address space from actual and expected first parameter types.
15865 if (const auto *PtrTy =
15866 FnDecl->getParamDecl(0)->getType()->getAs<PointerType>())
15867 FirstParamType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy);
15868
15869 if (auto ExpectedPtrTy = ExpectedFirstParamType->getAs<PointerType>())
15870 ExpectedFirstParamType =
15871 RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy);
15872 }
15873
15874 // Check that the first parameter type is what we expect.
15875 if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
15876 ExpectedFirstParamType) {
15877 // The first parameter type is not allowed to be dependent. As a tentative
15878 // DR resolution, we allow a dependent parameter type if it is the right
15879 // type anyway, to allow destroying operator delete in class templates.
15880 return SemaRef.Diag(FnDecl->getLocation(), FirstParamType->isDependentType()
15881 ? DependentParamTypeDiag
15882 : InvalidParamTypeDiag)
15883 << FnDecl->getDeclName() << ExpectedFirstParamType;
15884 }
15885
15886 return false;
15887}
15888
15889static bool
15890CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
15891 // C++ [basic.stc.dynamic.allocation]p1:
15892 // A program is ill-formed if an allocation function is declared in a
15893 // namespace scope other than global scope or declared static in global
15894 // scope.
15895 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
15896 return true;
15897
15898 CanQualType SizeTy =
15899 SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
15900
15901 // C++ [basic.stc.dynamic.allocation]p1:
15902 // The return type shall be void*. The first parameter shall have type
15903 // std::size_t.
15904 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
15905 SizeTy,
15906 diag::err_operator_new_dependent_param_type,
15907 diag::err_operator_new_param_type))
15908 return true;
15909
15910 // C++ [basic.stc.dynamic.allocation]p1:
15911 // The first parameter shall not have an associated default argument.
15912 if (FnDecl->getParamDecl(0)->hasDefaultArg())
15913 return SemaRef.Diag(FnDecl->getLocation(),
15914 diag::err_operator_new_default_arg)
15915 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
15916
15917 return false;
15918}
15919
15920static bool
15921CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
15922 // C++ [basic.stc.dynamic.deallocation]p1:
15923 // A program is ill-formed if deallocation functions are declared in a
15924 // namespace scope other than global scope or declared static in global
15925 // scope.
15926 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
15927 return true;
15928
15929 auto *MD = dyn_cast<CXXMethodDecl>(FnDecl);
15930
15931 // C++ P0722:
15932 // Within a class C, the first parameter of a destroying operator delete
15933 // shall be of type C *. The first parameter of any other deallocation
15934 // function shall be of type void *.
15935 CanQualType ExpectedFirstParamType =
15936 MD && MD->isDestroyingOperatorDelete()
15937 ? SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType(
15938 SemaRef.Context.getRecordType(MD->getParent())))
15939 : SemaRef.Context.VoidPtrTy;
15940
15941 // C++ [basic.stc.dynamic.deallocation]p2:
15942 // Each deallocation function shall return void
15943 if (CheckOperatorNewDeleteTypes(
15944 SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType,
15945 diag::err_operator_delete_dependent_param_type,
15946 diag::err_operator_delete_param_type))
15947 return true;
15948
15949 // C++ P0722:
15950 // A destroying operator delete shall be a usual deallocation function.
15951 if (MD && !MD->getParent()->isDependentContext() &&
15952 MD->isDestroyingOperatorDelete() &&
15953 !SemaRef.isUsualDeallocationFunction(MD)) {
15954 SemaRef.Diag(MD->getLocation(),
15955 diag::err_destroying_operator_delete_not_usual);
15956 return true;
15957 }
15958
15959 return false;
15960}
15961
15962/// CheckOverloadedOperatorDeclaration - Check whether the declaration
15963/// of this overloaded operator is well-formed. If so, returns false;
15964/// otherwise, emits appropriate diagnostics and returns true.
15965bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
15966 assert(FnDecl && FnDecl->isOverloadedOperator() &&(static_cast <bool> (FnDecl && FnDecl->isOverloadedOperator
() && "Expected an overloaded operator declaration") ?
void (0) : __assert_fail ("FnDecl && FnDecl->isOverloadedOperator() && \"Expected an overloaded operator declaration\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15967, __extension__ __PRETTY_FUNCTION__
))
15967 "Expected an overloaded operator declaration")(static_cast <bool> (FnDecl && FnDecl->isOverloadedOperator
() && "Expected an overloaded operator declaration") ?
void (0) : __assert_fail ("FnDecl && FnDecl->isOverloadedOperator() && \"Expected an overloaded operator declaration\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15967, __extension__ __PRETTY_FUNCTION__
))
;
15968
15969 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
15970
15971 // C++ [over.oper]p5:
15972 // The allocation and deallocation functions, operator new,
15973 // operator new[], operator delete and operator delete[], are
15974 // described completely in 3.7.3. The attributes and restrictions
15975 // found in the rest of this subclause do not apply to them unless
15976 // explicitly stated in 3.7.3.
15977 if (Op == OO_Delete || Op == OO_Array_Delete)
15978 return CheckOperatorDeleteDeclaration(*this, FnDecl);
15979
15980 if (Op == OO_New || Op == OO_Array_New)
15981 return CheckOperatorNewDeclaration(*this, FnDecl);
15982
15983 // C++ [over.oper]p7:
15984 // An operator function shall either be a member function or
15985 // be a non-member function and have at least one parameter
15986 // whose type is a class, a reference to a class, an enumeration,
15987 // or a reference to an enumeration.
15988 // Note: Before C++23, a member function could not be static. The only member
15989 // function allowed to be static is the call operator function.
15990 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
15991 if (MethodDecl->isStatic()) {
15992 if (Op == OO_Call || Op == OO_Subscript)
15993 Diag(FnDecl->getLocation(),
15994 (LangOpts.CPlusPlus23
15995 ? diag::warn_cxx20_compat_operator_overload_static
15996 : diag::ext_operator_overload_static))
15997 << FnDecl;
15998 else
15999 return Diag(FnDecl->getLocation(), diag::err_operator_overload_static)
16000 << FnDecl;
16001 }
16002 } else {
16003 bool ClassOrEnumParam = false;
16004 for (auto *Param : FnDecl->parameters()) {
16005 QualType ParamType = Param->getType().getNonReferenceType();
16006 if (ParamType->isDependentType() || ParamType->isRecordType() ||
16007 ParamType->isEnumeralType()) {
16008 ClassOrEnumParam = true;
16009 break;
16010 }
16011 }
16012
16013 if (!ClassOrEnumParam)
16014 return Diag(FnDecl->getLocation(),
16015 diag::err_operator_overload_needs_class_or_enum)
16016 << FnDecl->getDeclName();
16017 }
16018
16019 // C++ [over.oper]p8:
16020 // An operator function cannot have default arguments (8.3.6),
16021 // except where explicitly stated below.
16022 //
16023 // Only the function-call operator (C++ [over.call]p1) and the subscript
16024 // operator (CWG2507) allow default arguments.
16025 if (Op != OO_Call) {
16026 ParmVarDecl *FirstDefaultedParam = nullptr;
16027 for (auto *Param : FnDecl->parameters()) {
16028 if (Param->hasDefaultArg()) {
16029 FirstDefaultedParam = Param;
16030 break;
16031 }
16032 }
16033 if (FirstDefaultedParam) {
16034 if (Op == OO_Subscript) {
16035 Diag(FnDecl->getLocation(), LangOpts.CPlusPlus23
16036 ? diag::ext_subscript_overload
16037 : diag::error_subscript_overload)
16038 << FnDecl->getDeclName() << 1
16039 << FirstDefaultedParam->getDefaultArgRange();
16040 } else {
16041 return Diag(FirstDefaultedParam->getLocation(),
16042 diag::err_operator_overload_default_arg)
16043 << FnDecl->getDeclName()
16044 << FirstDefaultedParam->getDefaultArgRange();
16045 }
16046 }
16047 }
16048
16049 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
16050 { false, false, false }
16051#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
16052 , { Unary, Binary, MemberOnly }
16053#include "clang/Basic/OperatorKinds.def"
16054 };
16055
16056 bool CanBeUnaryOperator = OperatorUses[Op][0];
16057 bool CanBeBinaryOperator = OperatorUses[Op][1];
16058 bool MustBeMemberOperator = OperatorUses[Op][2];
16059
16060 // C++ [over.oper]p8:
16061 // [...] Operator functions cannot have more or fewer parameters
16062 // than the number required for the corresponding operator, as
16063 // described in the rest of this subclause.
16064 unsigned NumParams = FnDecl->getNumParams()
16065 + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
16066 if (Op != OO_Call && Op != OO_Subscript &&
16067 ((NumParams == 1 && !CanBeUnaryOperator) ||
16068 (NumParams == 2 && !CanBeBinaryOperator) || (NumParams < 1) ||
16069 (NumParams > 2))) {
16070 // We have the wrong number of parameters.
16071 unsigned ErrorKind;
16072 if (CanBeUnaryOperator && CanBeBinaryOperator) {
16073 ErrorKind = 2; // 2 -> unary or binary.
16074 } else if (CanBeUnaryOperator) {
16075 ErrorKind = 0; // 0 -> unary
16076 } else {
16077 assert(CanBeBinaryOperator &&(static_cast <bool> (CanBeBinaryOperator && "All non-call overloaded operators are unary or binary!"
) ? void (0) : __assert_fail ("CanBeBinaryOperator && \"All non-call overloaded operators are unary or binary!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 16078, __extension__ __PRETTY_FUNCTION__
))
16078 "All non-call overloaded operators are unary or binary!")(static_cast <bool> (CanBeBinaryOperator && "All non-call overloaded operators are unary or binary!"
) ? void (0) : __assert_fail ("CanBeBinaryOperator && \"All non-call overloaded operators are unary or binary!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 16078, __extension__ __PRETTY_FUNCTION__
))
;
16079 ErrorKind = 1; // 1 -> binary
16080 }
16081 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
16082 << FnDecl->getDeclName() << NumParams << ErrorKind;
16083 }
16084
16085 if (Op == OO_Subscript && NumParams != 2) {
16086 Diag(FnDecl->getLocation(), LangOpts.CPlusPlus23
16087 ? diag::ext_subscript_overload
16088 : diag::error_subscript_overload)
16089 << FnDecl->getDeclName() << (NumParams == 1 ? 0 : 2);
16090 }
16091
16092 // Overloaded operators other than operator() and operator[] cannot be
16093 // variadic.
16094 if (Op != OO_Call &&
16095 FnDecl->getType()->castAs<FunctionProtoType>()->isVariadic()) {
16096 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
16097 << FnDecl->getDeclName();
16098 }
16099
16100 // Some operators must be member functions.
16101 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
16102 return Diag(FnDecl->getLocation(),
16103 diag::err_operator_overload_must_be_member)
16104 << FnDecl->getDeclName();
16105 }
16106
16107 // C++ [over.inc]p1:
16108 // The user-defined function called operator++ implements the
16109 // prefix and postfix ++ operator. If this function is a member
16110 // function with no parameters, or a non-member function with one
16111 // parameter of class or enumeration type, it defines the prefix
16112 // increment operator ++ for objects of that type. If the function
16113 // is a member function with one parameter (which shall be of type
16114 // int) or a non-member function with two parameters (the second
16115 // of which shall be of type int), it defines the postfix
16116 // increment operator ++ for objects of that type.
16117 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
16118 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
16119 QualType ParamType = LastParam->getType();
16120
16121 if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) &&
16122 !ParamType->isDependentType())
16123 return Diag(LastParam->getLocation(),
16124 diag::err_operator_overload_post_incdec_must_be_int)
16125 << LastParam->getType() << (Op == OO_MinusMinus);
16126 }
16127
16128 return false;
16129}
16130
16131static bool
16132checkLiteralOperatorTemplateParameterList(Sema &SemaRef,
16133 FunctionTemplateDecl *TpDecl) {
16134 TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters();
16135
16136 // Must have one or two template parameters.
16137 if (TemplateParams->size() == 1) {
16138 NonTypeTemplateParmDecl *PmDecl =
16139 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(0));
16140
16141 // The template parameter must be a char parameter pack.
16142 if (PmDecl && PmDecl->isTemplateParameterPack() &&
16143 SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy))
16144 return false;
16145
16146 // C++20 [over.literal]p5:
16147 // A string literal operator template is a literal operator template
16148 // whose template-parameter-list comprises a single non-type
16149 // template-parameter of class type.
16150 //
16151 // As a DR resolution, we also allow placeholders for deduced class
16152 // template specializations.
16153 if (SemaRef.getLangOpts().CPlusPlus20 && PmDecl &&
16154 !PmDecl->isTemplateParameterPack() &&
16155 (PmDecl->getType()->isRecordType() ||
16156 PmDecl->getType()->getAs<DeducedTemplateSpecializationType>()))
16157 return false;
16158 } else if (TemplateParams->size() == 2) {
16159 TemplateTypeParmDecl *PmType =
16160 dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(0));
16161 NonTypeTemplateParmDecl *PmArgs =
16162 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(1));
16163
16164 // The second template parameter must be a parameter pack with the
16165 // first template parameter as its type.
16166 if (PmType && PmArgs && !PmType->isTemplateParameterPack() &&
16167 PmArgs->isTemplateParameterPack()) {
16168 const TemplateTypeParmType *TArgs =
16169 PmArgs->getType()->getAs<TemplateTypeParmType>();
16170 if (TArgs && TArgs->getDepth() == PmType->getDepth() &&
16171 TArgs->getIndex() == PmType->getIndex()) {
16172 if (!SemaRef.inTemplateInstantiation())
16173 SemaRef.Diag(TpDecl->getLocation(),
16174 diag::ext_string_literal_operator_template);
16175 return false;
16176 }
16177 }
16178 }
16179
16180 SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(),
16181 diag::err_literal_operator_template)
16182 << TpDecl->getTemplateParameters()->getSourceRange();
16183 return true;
16184}
16185
16186/// CheckLiteralOperatorDeclaration - Check whether the declaration
16187/// of this literal operator function is well-formed. If so, returns
16188/// false; otherwise, emits appropriate diagnostics and returns true.
16189bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
16190 if (isa<CXXMethodDecl>(FnDecl)) {
16191 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
16192 << FnDecl->getDeclName();
16193 return true;
16194 }
16195
16196 if (FnDecl->isExternC()) {
16197 Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
16198 if (const LinkageSpecDecl *LSD =
16199 FnDecl->getDeclContext()->getExternCContext())
16200 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
16201 return true;
16202 }
16203
16204 // This might be the definition of a literal operator template.
16205 FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
16206
16207 // This might be a specialization of a literal operator template.
16208 if (!TpDecl)
16209 TpDecl = FnDecl->getPrimaryTemplate();
16210
16211 // template <char...> type operator "" name() and
16212 // template <class T, T...> type operator "" name() are the only valid
16213 // template signatures, and the only valid signatures with no parameters.
16214 //
16215 // C++20 also allows template <SomeClass T> type operator "" name().
16216 if (TpDecl) {
16217 if (FnDecl->param_size() != 0) {
16218 Diag(FnDecl->getLocation(),
16219 diag::err_literal_operator_template_with_params);
16220 return true;
16221 }
16222
16223 if (checkLiteralOperatorTemplateParameterList(*this, TpDecl))
16224 return true;
16225
16226 } else if (FnDecl->param_size() == 1) {
16227 const ParmVarDecl *Param = FnDecl->getParamDecl(0);
16228
16229 QualType ParamType = Param->getType().getUnqualifiedType();
16230
16231 // Only unsigned long long int, long double, any character type, and const
16232 // char * are allowed as the only parameters.
16233 if (ParamType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
16234 ParamType->isSpecificBuiltinType(BuiltinType::LongDouble) ||
16235 Context.hasSameType(ParamType, Context.CharTy) ||
16236 Context.hasSameType(ParamType, Context.WideCharTy) ||
16237 Context.hasSameType(ParamType, Context.Char8Ty) ||
16238 Context.hasSameType(ParamType, Context.Char16Ty) ||
16239 Context.hasSameType(ParamType, Context.Char32Ty)) {
16240 } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) {
16241 QualType InnerType = Ptr->getPointeeType();
16242
16243 // Pointer parameter must be a const char *.
16244 if (!(Context.hasSameType(InnerType.getUnqualifiedType(),
16245 Context.CharTy) &&
16246 InnerType.isConstQualified() && !InnerType.isVolatileQualified())) {
16247 Diag(Param->getSourceRange().getBegin(),
16248 diag::err_literal_operator_param)
16249 << ParamType << "'const char *'" << Param->getSourceRange();
16250 return true;
16251 }
16252
16253 } else if (ParamType->isRealFloatingType()) {
16254 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
16255 << ParamType << Context.LongDoubleTy << Param->getSourceRange();
16256 return true;
16257
16258 } else if (ParamType->isIntegerType()) {
16259 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
16260 << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange();
16261 return true;
16262
16263 } else {
16264 Diag(Param->getSourceRange().getBegin(),
16265 diag::err_literal_operator_invalid_param)
16266 << ParamType << Param->getSourceRange();
16267 return true;
16268 }
16269
16270 } else if (FnDecl->param_size() == 2) {
16271 FunctionDecl::param_iterator Param = FnDecl->param_begin();
16272
16273 // First, verify that the first parameter is correct.
16274
16275 QualType FirstParamType = (*Param)->getType().getUnqualifiedType();
16276
16277 // Two parameter function must have a pointer to const as a
16278 // first parameter; let's strip those qualifiers.
16279 const PointerType *PT = FirstParamType->getAs<PointerType>();
16280
16281 if (!PT) {
16282 Diag((*Param)->getSourceRange().getBegin(),
16283 diag::err_literal_operator_param)
16284 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
16285 return true;
16286 }
16287
16288 QualType PointeeType = PT->getPointeeType();
16289 // First parameter must be const
16290 if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) {
16291 Diag((*Param)->getSourceRange().getBegin(),
16292 diag::err_literal_operator_param)
16293 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
16294 return true;
16295 }
16296
16297 QualType InnerType = PointeeType.getUnqualifiedType();
16298 // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and
16299 // const char32_t* are allowed as the first parameter to a two-parameter
16300 // function
16301 if (!(Context.hasSameType(InnerType, Context.CharTy) ||
16302 Context.hasSameType(InnerType, Context.WideCharTy) ||
16303 Context.hasSameType(InnerType, Context.Char8Ty) ||
16304 Context.hasSameType(InnerType, Context.Char16Ty) ||
16305 Context.hasSameType(InnerType, Context.Char32Ty))) {
16306 Diag((*Param)->getSourceRange().getBegin(),
16307 diag::err_literal_operator_param)
16308 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
16309 return true;
16310 }
16311
16312 // Move on to the second and final parameter.
16313 ++Param;
16314
16315 // The second parameter must be a std::size_t.
16316 QualType SecondParamType = (*Param)->getType().getUnqualifiedType();
16317 if (!Context.hasSameType(SecondParamType, Context.getSizeType())) {
16318 Diag((*Param)->getSourceRange().getBegin(),
16319 diag::err_literal_operator_param)
16320 << SecondParamType << Context.getSizeType()
16321 << (*Param)->getSourceRange();
16322 return true;
16323 }
16324 } else {
16325 Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count);
16326 return true;
16327 }
16328
16329 // Parameters are good.
16330
16331 // A parameter-declaration-clause containing a default argument is not
16332 // equivalent to any of the permitted forms.
16333 for (auto *Param : FnDecl->parameters()) {
16334 if (Param->hasDefaultArg()) {
16335 Diag(Param->getDefaultArgRange().getBegin(),
16336 diag::err_literal_operator_default_argument)
16337 << Param->getDefaultArgRange();
16338 break;
16339 }
16340 }
16341
16342 StringRef LiteralName
16343 = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
16344 if (LiteralName[0] != '_' &&
16345 !getSourceManager().isInSystemHeader(FnDecl->getLocation())) {
16346 // C++11 [usrlit.suffix]p1:
16347 // Literal suffix identifiers that do not start with an underscore
16348 // are reserved for future standardization.
16349 Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
16350 << StringLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
16351 }
16352
16353 return false;
16354}
16355
16356/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
16357/// linkage specification, including the language and (if present)
16358/// the '{'. ExternLoc is the location of the 'extern', Lang is the
16359/// language string literal. LBraceLoc, if valid, provides the location of
16360/// the '{' brace. Otherwise, this linkage specification does not
16361/// have any braces.
16362Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
16363 Expr *LangStr,
16364 SourceLocation LBraceLoc) {
16365 StringLiteral *Lit = cast<StringLiteral>(LangStr);
16366 if (!Lit->isOrdinary()) {
16367 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii)
16368 << LangStr->getSourceRange();
16369 return nullptr;
16370 }
16371
16372 StringRef Lang = Lit->getString();
16373 LinkageSpecDecl::LanguageIDs Language;
16374 if (Lang == "C")
16375 Language = LinkageSpecDecl::lang_c;
16376 else if (Lang == "C++")
16377 Language = LinkageSpecDecl::lang_cxx;
16378 else {
16379 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown)
16380 << LangStr->getSourceRange();
16381 return nullptr;
16382 }
16383
16384 // FIXME: Add all the various semantics of linkage specifications
16385
16386 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc,
16387 LangStr->getExprLoc(), Language,
16388 LBraceLoc.isValid());
16389
16390 /// C++ [module.unit]p7.2.3
16391 /// - Otherwise, if the declaration
16392 /// - ...
16393 /// - ...
16394 /// - appears within a linkage-specification,
16395 /// it is attached to the global module.
16396 ///
16397 /// If the declaration is already in global module fragment, we don't
16398 /// need to attach it again.
16399 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview()) {
16400 Module *GlobalModule = PushImplicitGlobalModuleFragment(
16401 ExternLoc, /*IsExported=*/D->isInExportDeclContext());
16402 D->setLocalOwningModule(GlobalModule);
16403 }
16404
16405 CurContext->addDecl(D);
16406 PushDeclContext(S, D);
16407 return D;
16408}
16409
16410/// ActOnFinishLinkageSpecification - Complete the definition of
16411/// the C++ linkage specification LinkageSpec. If RBraceLoc is
16412/// valid, it's the position of the closing '}' brace in a linkage
16413/// specification that uses braces.
16414Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
16415 Decl *LinkageSpec,
16416 SourceLocation RBraceLoc) {
16417 if (RBraceLoc.isValid()) {
16418 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
16419 LSDecl->setRBraceLoc(RBraceLoc);
16420 }
16421
16422 // If the current module doesn't has Parent, it implies that the
16423 // LinkageSpec isn't in the module created by itself. So we don't
16424 // need to pop it.
16425 if (getLangOpts().CPlusPlusModules && getCurrentModule() &&
16426 getCurrentModule()->isImplicitGlobalModule() &&
16427 getCurrentModule()->Parent)
16428 PopImplicitGlobalModuleFragment();
16429
16430 PopDeclContext();
16431 return LinkageSpec;
16432}
16433
16434Decl *Sema::ActOnEmptyDeclaration(Scope *S,
16435 const ParsedAttributesView &AttrList,
16436 SourceLocation SemiLoc) {
16437 Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
16438 // Attribute declarations appertain to empty declaration so we handle
16439 // them here.
16440 ProcessDeclAttributeList(S, ED, AttrList);
16441
16442 CurContext->addDecl(ED);
16443 return ED;
16444}
16445
16446/// Perform semantic analysis for the variable declaration that
16447/// occurs within a C++ catch clause, returning the newly-created
16448/// variable.
16449VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
16450 TypeSourceInfo *TInfo,
16451 SourceLocation StartLoc,
16452 SourceLocation Loc,
16453 IdentifierInfo *Name) {
16454 bool Invalid = false;
16455 QualType ExDeclType = TInfo->getType();
16456
16457 // Arrays and functions decay.
16458 if (ExDeclType->isArrayType())
16459 ExDeclType = Context.getArrayDecayedType(ExDeclType);
16460 else if (ExDeclType->isFunctionType())
16461 ExDeclType = Context.getPointerType(ExDeclType);
16462
16463 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
16464 // The exception-declaration shall not denote a pointer or reference to an
16465 // incomplete type, other than [cv] void*.
16466 // N2844 forbids rvalue references.
16467 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
16468 Diag(Loc, diag::err_catch_rvalue_ref);
16469 Invalid = true;
16470 }
16471
16472 if (ExDeclType->isVariablyModifiedType()) {
16473 Diag(Loc, diag::err_catch_variably_modified) << ExDeclType;
16474 Invalid = true;
16475 }
16476
16477 QualType BaseType = ExDeclType;
16478 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
16479 unsigned DK = diag::err_catch_incomplete;
16480 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
16481 BaseType = Ptr->getPointeeType();
16482 Mode = 1;
16483 DK = diag::err_catch_incomplete_ptr;
16484 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
16485 // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
16486 BaseType = Ref->getPointeeType();
16487 Mode = 2;
16488 DK = diag::err_catch_incomplete_ref;
16489 }
16490 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
16491 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
16492 Invalid = true;
16493
16494 if (!Invalid && Mode != 1 && BaseType->isSizelessType()) {
16495 Diag(Loc, diag::err_catch_sizeless) << (Mode == 2 ? 1 : 0) << BaseType;
16496 Invalid = true;
16497 }
16498
16499 if (!Invalid && !ExDeclType->isDependentType() &&
16500 RequireNonAbstractType(Loc, ExDeclType,
16501 diag::err_abstract_type_in_decl,
16502 AbstractVariableType))
16503 Invalid = true;
16504
16505 // Only the non-fragile NeXT runtime currently supports C++ catches
16506 // of ObjC types, and no runtime supports catching ObjC types by value.
16507 if (!Invalid && getLangOpts().ObjC) {
16508 QualType T = ExDeclType;
16509 if (const ReferenceType *RT = T->getAs<ReferenceType>())
16510 T = RT->getPointeeType();
16511
16512 if (T->isObjCObjectType()) {
16513 Diag(Loc, diag::err_objc_object_catch);
16514 Invalid = true;
16515 } else if (T->isObjCObjectPointerType()) {
16516 // FIXME: should this be a test for macosx-fragile specifically?
16517 if (getLangOpts().ObjCRuntime.isFragile())
16518 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
16519 }
16520 }
16521
16522 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
16523 ExDeclType, TInfo, SC_None);
16524 ExDecl->setExceptionVariable(true);
16525
16526 // In ARC, infer 'retaining' for variables of retainable type.
16527 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
16528 Invalid = true;
16529
16530 if (!Invalid && !ExDeclType->isDependentType()) {
16531 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
16532 // Insulate this from anything else we might currently be parsing.
16533 EnterExpressionEvaluationContext scope(
16534 *this, ExpressionEvaluationContext::PotentiallyEvaluated);
16535
16536 // C++ [except.handle]p16:
16537 // The object declared in an exception-declaration or, if the
16538 // exception-declaration does not specify a name, a temporary (12.2) is
16539 // copy-initialized (8.5) from the exception object. [...]
16540 // The object is destroyed when the handler exits, after the destruction
16541 // of any automatic objects initialized within the handler.
16542 //
16543 // We just pretend to initialize the object with itself, then make sure
16544 // it can be destroyed later.
16545 QualType initType = Context.getExceptionObjectType(ExDeclType);
16546
16547 InitializedEntity entity =
16548 InitializedEntity::InitializeVariable(ExDecl);
16549 InitializationKind initKind =
16550 InitializationKind::CreateCopy(Loc, SourceLocation());
16551
16552 Expr *opaqueValue =
16553 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
16554 InitializationSequence sequence(*this, entity, initKind, opaqueValue);
16555 ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
16556 if (result.isInvalid())
16557 Invalid = true;
16558 else {
16559 // If the constructor used was non-trivial, set this as the
16560 // "initializer".
16561 CXXConstructExpr *construct = result.getAs<CXXConstructExpr>();
16562 if (!construct->getConstructor()->isTrivial()) {
16563 Expr *init = MaybeCreateExprWithCleanups(construct);
16564 ExDecl->setInit(init);
16565 }
16566
16567 // And make sure it's destructable.
16568 FinalizeVarWithDestructor(ExDecl, recordType);
16569 }
16570 }
16571 }
16572
16573 if (Invalid)
16574 ExDecl->setInvalidDecl();
16575
16576 return ExDecl;
16577}
16578
16579/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
16580/// handler.
16581Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
16582 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16583 bool Invalid = D.isInvalidType();
16584
16585 // Check for unexpanded parameter packs.
16586 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
16587 UPPC_ExceptionType)) {
16588 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
16589 D.getIdentifierLoc());
16590 Invalid = true;
16591 }
16592
16593 IdentifierInfo *II = D.getIdentifier();
16594 if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
16595 LookupOrdinaryName,
16596 ForVisibleRedeclaration)) {
16597 // The scope should be freshly made just for us. There is just no way
16598 // it contains any previous declaration, except for function parameters in
16599 // a function-try-block's catch statement.
16600 assert(!S->isDeclScope(PrevDecl))(static_cast <bool> (!S->isDeclScope(PrevDecl)) ? void
(0) : __assert_fail ("!S->isDeclScope(PrevDecl)", "clang/lib/Sema/SemaDeclCXX.cpp"
, 16600, __extension__ __PRETTY_FUNCTION__))
;
16601 if (isDeclInScope(PrevDecl, CurContext, S)) {
16602 Diag(D.getIdentifierLoc(), diag::err_redefinition)
16603 << D.getIdentifier();
16604 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
16605 Invalid = true;
16606 } else if (PrevDecl->isTemplateParameter())
16607 // Maybe we will complain about the shadowed template parameter.
16608 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
16609 }
16610
16611 if (D.getCXXScopeSpec().isSet() && !Invalid) {
16612 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
16613 << D.getCXXScopeSpec().getRange();
16614 Invalid = true;
16615 }
16616
16617 VarDecl *ExDecl = BuildExceptionDeclaration(
16618 S, TInfo, D.getBeginLoc(), D.getIdentifierLoc(), D.getIdentifier());
16619 if (Invalid)
16620 ExDecl->setInvalidDecl();
16621
16622 // Add the exception declaration into this scope.
16623 if (II)
16624 PushOnScopeChains(ExDecl, S);
16625 else
16626 CurContext->addDecl(ExDecl);
16627
16628 ProcessDeclAttributes(S, ExDecl, D);
16629 return ExDecl;
16630}
16631
16632Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
16633 Expr *AssertExpr,
16634 Expr *AssertMessageExpr,
16635 SourceLocation RParenLoc) {
16636 StringLiteral *AssertMessage =
16637 AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr;
16638
16639 if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
16640 return nullptr;
16641
16642 return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
16643 AssertMessage, RParenLoc, false);
16644}
16645
16646/// Convert \V to a string we can present to the user in a diagnostic
16647/// \T is the type of the expression that has been evaluated into \V
16648static bool ConvertAPValueToString(const APValue &V, QualType T,
16649 SmallVectorImpl<char> &Str) {
16650 if (!V.hasValue())
16651 return false;
16652
16653 switch (V.getKind()) {
16654 case APValue::ValueKind::Int:
16655 if (T->isBooleanType()) {
16656 // Bools are reduced to ints during evaluation, but for
16657 // diagnostic purposes we want to print them as
16658 // true or false.
16659 int64_t BoolValue = V.getInt().getExtValue();
16660 assert((BoolValue == 0 || BoolValue == 1) &&(static_cast <bool> ((BoolValue == 0 || BoolValue == 1)
&& "Bool type, but value is not 0 or 1") ? void (0) :
__assert_fail ("(BoolValue == 0 || BoolValue == 1) && \"Bool type, but value is not 0 or 1\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 16661, __extension__ __PRETTY_FUNCTION__
))
16661 "Bool type, but value is not 0 or 1")(static_cast <bool> ((BoolValue == 0 || BoolValue == 1)
&& "Bool type, but value is not 0 or 1") ? void (0) :
__assert_fail ("(BoolValue == 0 || BoolValue == 1) && \"Bool type, but value is not 0 or 1\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 16661, __extension__ __PRETTY_FUNCTION__
))
;
16662 llvm::raw_svector_ostream OS(Str);
16663 OS << (BoolValue ? "true" : "false");
16664 } else if (T->isCharType()) {
16665 // Same is true for chars.
16666 Str.push_back('\'');
16667 Str.push_back(V.getInt().getExtValue());
16668 Str.push_back('\'');
16669 } else
16670 V.getInt().toString(Str);
16671
16672 break;
16673
16674 case APValue::ValueKind::Float:
16675 V.getFloat().toString(Str);
16676 break;
16677
16678 case APValue::ValueKind::LValue:
16679 if (V.isNullPointer()) {
16680 llvm::raw_svector_ostream OS(Str);
16681 OS << "nullptr";
16682 } else
16683 return false;
16684 break;
16685
16686 case APValue::ValueKind::ComplexFloat: {
16687 llvm::raw_svector_ostream OS(Str);
16688 OS << '(';
16689 V.getComplexFloatReal().toString(Str);
16690 OS << " + ";
16691 V.getComplexFloatImag().toString(Str);
16692 OS << "i)";
16693 } break;
16694
16695 case APValue::ValueKind::ComplexInt: {
16696 llvm::raw_svector_ostream OS(Str);
16697 OS << '(';
16698 V.getComplexIntReal().toString(Str);
16699 OS << " + ";
16700 V.getComplexIntImag().toString(Str);
16701 OS << "i)";
16702 } break;
16703
16704 default:
16705 return false;
16706 }
16707
16708 return true;
16709}
16710
16711/// Some Expression types are not useful to print notes about,
16712/// e.g. literals and values that have already been expanded
16713/// before such as int-valued template parameters.
16714static bool UsefulToPrintExpr(const Expr *E) {
16715 E = E->IgnoreParenImpCasts();
16716 // Literals are pretty easy for humans to understand.
16717 if (isa<IntegerLiteral, FloatingLiteral, CharacterLiteral, CXXBoolLiteralExpr,
16718 CXXNullPtrLiteralExpr, FixedPointLiteral, ImaginaryLiteral>(E))
16719 return false;
16720
16721 // These have been substituted from template parameters
16722 // and appear as literals in the static assert error.
16723 if (isa<SubstNonTypeTemplateParmExpr>(E))
16724 return false;
16725
16726 // -5 is also simple to understand.
16727 if (const auto *UnaryOp = dyn_cast<UnaryOperator>(E))
16728 return UsefulToPrintExpr(UnaryOp->getSubExpr());
16729
16730 // Ignore nested binary operators. This could be a FIXME for improvements
16731 // to the diagnostics in the future.
16732 if (isa<BinaryOperator>(E))
16733 return false;
16734
16735 return true;
16736}
16737
16738/// Try to print more useful information about a failed static_assert
16739/// with expression \E
16740void Sema::DiagnoseStaticAssertDetails(const Expr *E) {
16741 if (const auto *Op = dyn_cast<BinaryOperator>(E);
16742 Op && Op->getOpcode() != BO_LOr) {
16743 const Expr *LHS = Op->getLHS()->IgnoreParenImpCasts();
16744 const Expr *RHS = Op->getRHS()->IgnoreParenImpCasts();
16745
16746 // Ignore comparisons of boolean expressions with a boolean literal.
16747 if ((isa<CXXBoolLiteralExpr>(LHS) && RHS->getType()->isBooleanType()) ||
16748 (isa<CXXBoolLiteralExpr>(RHS) && LHS->getType()->isBooleanType()))
16749 return;
16750
16751 // Don't print obvious expressions.
16752 if (!UsefulToPrintExpr(LHS) && !UsefulToPrintExpr(RHS))
16753 return;
16754
16755 struct {
16756 const clang::Expr *Cond;
16757 Expr::EvalResult Result;
16758 SmallString<12> ValueString;
16759 bool Print;
16760 } DiagSide[2] = {{LHS, Expr::EvalResult(), {}, false},
16761 {RHS, Expr::EvalResult(), {}, false}};
16762 for (unsigned I = 0; I < 2; I++) {
16763 const Expr *Side = DiagSide[I].Cond;
16764
16765 Side->EvaluateAsRValue(DiagSide[I].Result, Context, true);
16766
16767 DiagSide[I].Print = ConvertAPValueToString(
16768 DiagSide[I].Result.Val, Side->getType(), DiagSide[I].ValueString);
16769 }
16770 if (DiagSide[0].Print && DiagSide[1].Print) {
16771 Diag(Op->getExprLoc(), diag::note_expr_evaluates_to)
16772 << DiagSide[0].ValueString << Op->getOpcodeStr()
16773 << DiagSide[1].ValueString << Op->getSourceRange();
16774 }
16775 }
16776}
16777
16778Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
16779 Expr *AssertExpr,
16780 StringLiteral *AssertMessage,
16781 SourceLocation RParenLoc,
16782 bool Failed) {
16783 assert(AssertExpr != nullptr && "Expected non-null condition")(static_cast <bool> (AssertExpr != nullptr && "Expected non-null condition"
) ? void (0) : __assert_fail ("AssertExpr != nullptr && \"Expected non-null condition\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 16783, __extension__ __PRETTY_FUNCTION__
))
;
16784 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
16785 !Failed) {
16786 // In a static_assert-declaration, the constant-expression shall be a
16787 // constant expression that can be contextually converted to bool.
16788 ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
16789 if (Converted.isInvalid())
16790 Failed = true;
16791
16792 ExprResult FullAssertExpr =
16793 ActOnFinishFullExpr(Converted.get(), StaticAssertLoc,
16794 /*DiscardedValue*/ false,
16795 /*IsConstexpr*/ true);
16796 if (FullAssertExpr.isInvalid())
16797 Failed = true;
16798 else
16799 AssertExpr = FullAssertExpr.get();
16800
16801 llvm::APSInt Cond;
16802 Expr *BaseExpr = AssertExpr;
16803 AllowFoldKind FoldKind = NoFold;
16804
16805 if (!getLangOpts().CPlusPlus) {
16806 // In C mode, allow folding as an extension for better compatibility with
16807 // C++ in terms of expressions like static_assert("test") or
16808 // static_assert(nullptr).
16809 FoldKind = AllowFold;
16810 }
16811
16812 if (!Failed && VerifyIntegerConstantExpression(
16813 BaseExpr, &Cond,
16814 diag::err_static_assert_expression_is_not_constant,
16815 FoldKind).isInvalid())
16816 Failed = true;
16817
16818 // CWG2518
16819 // [dcl.pre]/p10 If [...] the expression is evaluated in the context of a
16820 // template definition, the declaration has no effect.
16821 bool InTemplateDefinition =
16822 getLangOpts().CPlusPlus && CurContext->isDependentContext();
16823
16824 if (!Failed && !Cond && !InTemplateDefinition) {
16825
16826 SmallString<256> MsgBuffer;
16827 llvm::raw_svector_ostream Msg(MsgBuffer);
16828 if (AssertMessage) {
16829 const auto *MsgStr = cast<StringLiteral>(AssertMessage);
16830 if (MsgStr->isOrdinary())
16831 Msg << MsgStr->getString();
16832 else
16833 MsgStr->printPretty(Msg, nullptr, getPrintingPolicy());
16834 }
16835
16836 Expr *InnerCond = nullptr;
16837 std::string InnerCondDescription;
16838 std::tie(InnerCond, InnerCondDescription) =
16839 findFailedBooleanCondition(Converted.get());
16840 if (InnerCond && isa<ConceptSpecializationExpr>(InnerCond)) {
16841 // Drill down into concept specialization expressions to see why they
16842 // weren't satisfied.
16843 Diag(AssertExpr->getBeginLoc(), diag::err_static_assert_failed)
16844 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
16845 ConstraintSatisfaction Satisfaction;
16846 if (!CheckConstraintSatisfaction(InnerCond, Satisfaction))
16847 DiagnoseUnsatisfiedConstraint(Satisfaction);
16848 } else if (InnerCond && !isa<CXXBoolLiteralExpr>(InnerCond)
16849 && !isa<IntegerLiteral>(InnerCond)) {
16850 Diag(InnerCond->getBeginLoc(),
16851 diag::err_static_assert_requirement_failed)
16852 << InnerCondDescription << !AssertMessage << Msg.str()
16853 << InnerCond->getSourceRange();
16854 DiagnoseStaticAssertDetails(InnerCond);
16855 } else {
16856 Diag(AssertExpr->getBeginLoc(), diag::err_static_assert_failed)
16857 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
16858 PrintContextStack();
16859 }
16860 Failed = true;
16861 }
16862 } else {
16863 ExprResult FullAssertExpr = ActOnFinishFullExpr(AssertExpr, StaticAssertLoc,
16864 /*DiscardedValue*/false,
16865 /*IsConstexpr*/true);
16866 if (FullAssertExpr.isInvalid())
16867 Failed = true;
16868 else
16869 AssertExpr = FullAssertExpr.get();
16870 }
16871
16872 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
16873 AssertExpr, AssertMessage, RParenLoc,
16874 Failed);
16875
16876 CurContext->addDecl(Decl);
16877 return Decl;
16878}
16879
16880/// Perform semantic analysis of the given friend type declaration.
16881///
16882/// \returns A friend declaration that.
16883FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
16884 SourceLocation FriendLoc,
16885 TypeSourceInfo *TSInfo) {
16886 assert(TSInfo && "NULL TypeSourceInfo for friend type declaration")(static_cast <bool> (TSInfo && "NULL TypeSourceInfo for friend type declaration"
) ? void (0) : __assert_fail ("TSInfo && \"NULL TypeSourceInfo for friend type declaration\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 16886, __extension__ __PRETTY_FUNCTION__
))
;
16887
16888 QualType T = TSInfo->getType();
16889 SourceRange TypeRange = TSInfo->getTypeLoc().getSourceRange();
16890
16891 // C++03 [class.friend]p2:
16892 // An elaborated-type-specifier shall be used in a friend declaration
16893 // for a class.*
16894 //
16895 // * The class-key of the elaborated-type-specifier is required.
16896 if (!CodeSynthesisContexts.empty()) {
16897 // Do not complain about the form of friend template types during any kind
16898 // of code synthesis. For template instantiation, we will have complained
16899 // when the template was defined.
16900 } else {
16901 if (!T->isElaboratedTypeSpecifier()) {
16902 // If we evaluated the type to a record type, suggest putting
16903 // a tag in front.
16904 if (const RecordType *RT = T->getAs<RecordType>()) {
16905 RecordDecl *RD = RT->getDecl();
16906
16907 SmallString<16> InsertionText(" ");
16908 InsertionText += RD->getKindName();
16909
16910 Diag(TypeRange.getBegin(),
16911 getLangOpts().CPlusPlus11 ?
16912 diag::warn_cxx98_compat_unelaborated_friend_type :
16913 diag::ext_unelaborated_friend_type)
16914 << (unsigned) RD->getTagKind()
16915 << T
16916 << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc),
16917 InsertionText);
16918 } else {
16919 Diag(FriendLoc,
16920 getLangOpts().CPlusPlus11 ?
16921 diag::warn_cxx98_compat_nonclass_type_friend :
16922 diag::ext_nonclass_type_friend)
16923 << T
16924 << TypeRange;
16925 }
16926 } else if (T->getAs<EnumType>()) {
16927 Diag(FriendLoc,
16928 getLangOpts().CPlusPlus11 ?
16929 diag::warn_cxx98_compat_enum_friend :
16930 diag::ext_enum_friend)
16931 << T
16932 << TypeRange;
16933 }
16934
16935 // C++11 [class.friend]p3:
16936 // A friend declaration that does not declare a function shall have one
16937 // of the following forms:
16938 // friend elaborated-type-specifier ;
16939 // friend simple-type-specifier ;
16940 // friend typename-specifier ;
16941 if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
16942 Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
16943 }
16944
16945 // If the type specifier in a friend declaration designates a (possibly
16946 // cv-qualified) class type, that class is declared as a friend; otherwise,
16947 // the friend declaration is ignored.
16948 return FriendDecl::Create(Context, CurContext,
16949 TSInfo->getTypeLoc().getBeginLoc(), TSInfo,
16950 FriendLoc);
16951}
16952
16953/// Handle a friend tag declaration where the scope specifier was
16954/// templated.
16955DeclResult Sema::ActOnTemplatedFriendTag(
16956 Scope *S, SourceLocation FriendLoc, unsigned TagSpec, SourceLocation TagLoc,
16957 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
16958 const ParsedAttributesView &Attr, MultiTemplateParamsArg TempParamLists) {
16959 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
16960
16961 bool IsMemberSpecialization = false;
16962 bool Invalid = false;
16963
16964 if (TemplateParameterList *TemplateParams =
16965 MatchTemplateParametersToScopeSpecifier(
16966 TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true,
16967 IsMemberSpecialization, Invalid)) {
16968 if (TemplateParams->size() > 0) {
16969 // This is a declaration of a class template.
16970 if (Invalid)
16971 return true;
16972
16973 return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name,
16974 NameLoc, Attr, TemplateParams, AS_public,
16975 /*ModulePrivateLoc=*/SourceLocation(),
16976 FriendLoc, TempParamLists.size() - 1,
16977 TempParamLists.data()).get();
16978 } else {
16979 // The "template<>" header is extraneous.
16980 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
16981 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
16982 IsMemberSpecialization = true;
16983 }
16984 }
16985
16986 if (Invalid) return true;
16987
16988 bool isAllExplicitSpecializations = true;
16989 for (unsigned I = TempParamLists.size(); I-- > 0; ) {
16990 if (TempParamLists[I]->size()) {
16991 isAllExplicitSpecializations = false;
16992 break;
16993 }
16994 }
16995
16996 // FIXME: don't ignore attributes.
16997
16998 // If it's explicit specializations all the way down, just forget
16999 // about the template header and build an appropriate non-templated
17000 // friend. TODO: for source fidelity, remember the headers.
17001 if (isAllExplicitSpecializations) {
17002 if (SS.isEmpty()) {
17003 bool Owned = false;
17004 bool IsDependent = false;
17005 return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc, Attr,
17006 AS_public,
17007 /*ModulePrivateLoc=*/SourceLocation(),
17008 MultiTemplateParamsArg(), Owned, IsDependent,
17009 /*ScopedEnumKWLoc=*/SourceLocation(),
17010 /*ScopedEnumUsesClassTag=*/false,
17011 /*UnderlyingType=*/TypeResult(),
17012 /*IsTypeSpecifier=*/false,
17013 /*IsTemplateParamOrArg=*/false, /*OOK=*/OOK_Outside);
17014 }
17015
17016 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
17017 ElaboratedTypeKeyword Keyword
17018 = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
17019 QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
17020 *Name, NameLoc);
17021 if (T.isNull())
17022 return true;
17023
17024 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
17025 if (isa<DependentNameType>(T)) {
17026 DependentNameTypeLoc TL =
17027 TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
17028 TL.setElaboratedKeywordLoc(TagLoc);
17029 TL.setQualifierLoc(QualifierLoc);
17030 TL.setNameLoc(NameLoc);
17031 } else {
17032 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
17033 TL.setElaboratedKeywordLoc(TagLoc);
17034 TL.setQualifierLoc(QualifierLoc);
17035 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
17036 }
17037
17038 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
17039 TSI, FriendLoc, TempParamLists);
17040 Friend->setAccess(AS_public);
17041 CurContext->addDecl(Friend);
17042 return Friend;
17043 }
17044
17045 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?")(static_cast <bool> (SS.isNotEmpty() && "valid templated tag with no SS and no direct?"
) ? void (0) : __assert_fail ("SS.isNotEmpty() && \"valid templated tag with no SS and no direct?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 17045, __extension__ __PRETTY_FUNCTION__
))
;
17046
17047
17048
17049 // Handle the case of a templated-scope friend class. e.g.
17050 // template <class T> class A<T>::B;
17051 // FIXME: we don't support these right now.
17052 Diag(NameLoc, diag::warn_template_qualified_friend_unsupported)
17053 << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext);
17054 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
17055 QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
17056 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
17057 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
17058 TL.setElaboratedKeywordLoc(TagLoc);
17059 TL.setQualifierLoc(SS.getWithLocInContext(Context));
17060 TL.setNameLoc(NameLoc);
17061
17062 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
17063 TSI, FriendLoc, TempParamLists);
17064 Friend->setAccess(AS_public);
17065 Friend->setUnsupportedFriend(true);
17066 CurContext->addDecl(Friend);
17067 return Friend;
17068}
17069
17070/// Handle a friend type declaration. This works in tandem with
17071/// ActOnTag.
17072///
17073/// Notes on friend class templates:
17074///
17075/// We generally treat friend class declarations as if they were
17076/// declaring a class. So, for example, the elaborated type specifier
17077/// in a friend declaration is required to obey the restrictions of a
17078/// class-head (i.e. no typedefs in the scope chain), template
17079/// parameters are required to match up with simple template-ids, &c.
17080/// However, unlike when declaring a template specialization, it's
17081/// okay to refer to a template specialization without an empty
17082/// template parameter declaration, e.g.
17083/// friend class A<T>::B<unsigned>;
17084/// We permit this as a special case; if there are any template
17085/// parameters present at all, require proper matching, i.e.
17086/// template <> template \<class T> friend class A<int>::B;
17087Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
17088 MultiTemplateParamsArg TempParams) {
17089 SourceLocation Loc = DS.getBeginLoc();
17090
17091 assert(DS.isFriendSpecified())(static_cast <bool> (DS.isFriendSpecified()) ? void (0)
: __assert_fail ("DS.isFriendSpecified()", "clang/lib/Sema/SemaDeclCXX.cpp"
, 17091, __extension__ __PRETTY_FUNCTION__))
;
17092 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified)(static_cast <bool> (DS.getStorageClassSpec() == DeclSpec
::SCS_unspecified) ? void (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_unspecified"
, "clang/lib/Sema/SemaDeclCXX.cpp", 17092, __extension__ __PRETTY_FUNCTION__
))
;
17093
17094 // C++ [class.friend]p3:
17095 // A friend declaration that does not declare a function shall have one of
17096 // the following forms:
17097 // friend elaborated-type-specifier ;
17098 // friend simple-type-specifier ;
17099 // friend typename-specifier ;
17100 //
17101 // Any declaration with a type qualifier does not have that form. (It's
17102 // legal to specify a qualified type as a friend, you just can't write the
17103 // keywords.)
17104 if (DS.getTypeQualifiers()) {
17105 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
17106 Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const";
17107 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
17108 Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile";
17109 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
17110 Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict";
17111 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
17112 Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic";
17113 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
17114 Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned";
17115 }
17116
17117 // Try to convert the decl specifier to a type. This works for
17118 // friend templates because ActOnTag never produces a ClassTemplateDecl
17119 // for a TUK_Friend.
17120 Declarator TheDeclarator(DS, ParsedAttributesView::none(),
17121 DeclaratorContext::Member);
17122 TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
17123 QualType T = TSI->getType();
17124 if (TheDeclarator.isInvalidType())
17125 return nullptr;
17126
17127 if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
17128 return nullptr;
17129
17130 // This is definitely an error in C++98. It's probably meant to
17131 // be forbidden in C++0x, too, but the specification is just
17132 // poorly written.
17133 //
17134 // The problem is with declarations like the following:
17135 // template <T> friend A<T>::foo;
17136 // where deciding whether a class C is a friend or not now hinges
17137 // on whether there exists an instantiation of A that causes
17138 // 'foo' to equal C. There are restrictions on class-heads
17139 // (which we declare (by fiat) elaborated friend declarations to
17140 // be) that makes this tractable.
17141 //
17142 // FIXME: handle "template <> friend class A<T>;", which
17143 // is possibly well-formed? Who even knows?
17144 if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
17145 Diag(Loc, diag::err_tagless_friend_type_template)
17146 << DS.getSourceRange();
17147 return nullptr;
17148 }
17149
17150 // C++98 [class.friend]p1: A friend of a class is a function
17151 // or class that is not a member of the class . . .
17152 // This is fixed in DR77, which just barely didn't make the C++03
17153 // deadline. It's also a very silly restriction that seriously
17154 // affects inner classes and which nobody else seems to implement;
17155 // thus we never diagnose it, not even in -pedantic.
17156 //
17157 // But note that we could warn about it: it's always useless to
17158 // friend one of your own members (it's not, however, worthless to
17159 // friend a member of an arbitrary specialization of your template).
17160
17161 Decl *D;
17162 if (!TempParams.empty())
17163 D = FriendTemplateDecl::Create(Context, CurContext, Loc,
17164 TempParams,
17165 TSI,
17166 DS.getFriendSpecLoc());
17167 else
17168 D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
17169
17170 if (!D)
17171 return nullptr;
17172
17173 D->setAccess(AS_public);
17174 CurContext->addDecl(D);
17175
17176 return D;
17177}
17178
17179NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
17180 MultiTemplateParamsArg TemplateParams) {
17181 const DeclSpec &DS = D.getDeclSpec();
17182
17183 assert(DS.isFriendSpecified())(static_cast <bool> (DS.isFriendSpecified()) ? void (0)
: __assert_fail ("DS.isFriendSpecified()", "clang/lib/Sema/SemaDeclCXX.cpp"
, 17183, __extension__ __PRETTY_FUNCTION__))
;
17184 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified)(static_cast <bool> (DS.getStorageClassSpec() == DeclSpec
::SCS_unspecified) ? void (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_unspecified"
, "clang/lib/Sema/SemaDeclCXX.cpp", 17184, __extension__ __PRETTY_FUNCTION__
))
;
17185
17186 SourceLocation Loc = D.getIdentifierLoc();
17187 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
17188
17189 // C++ [class.friend]p1
17190 // A friend of a class is a function or class....
17191 // Note that this sees through typedefs, which is intended.
17192 // It *doesn't* see through dependent types, which is correct
17193 // according to [temp.arg.type]p3:
17194 // If a declaration acquires a function type through a
17195 // type dependent on a template-parameter and this causes
17196 // a declaration that does not use the syntactic form of a
17197 // function declarator to have a function type, the program
17198 // is ill-formed.
17199 if (!TInfo->getType()->isFunctionType()) {
17200 Diag(Loc, diag::err_unexpected_friend);
17201
17202 // It might be worthwhile to try to recover by creating an
17203 // appropriate declaration.
17204 return nullptr;
17205 }
17206
17207 // C++ [namespace.memdef]p3
17208 // - If a friend declaration in a non-local class first declares a
17209 // class or function, the friend class or function is a member
17210 // of the innermost enclosing namespace.
17211 // - The name of the friend is not found by simple name lookup
17212 // until a matching declaration is provided in that namespace
17213 // scope (either before or after the class declaration granting
17214 // friendship).
17215 // - If a friend function is called, its name may be found by the
17216 // name lookup that considers functions from namespaces and
17217 // classes associated with the types of the function arguments.
17218 // - When looking for a prior declaration of a class or a function
17219 // declared as a friend, scopes outside the innermost enclosing
17220 // namespace scope are not considered.
17221
17222 CXXScopeSpec &SS = D.getCXXScopeSpec();
17223 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
17224 assert(NameInfo.getName())(static_cast <bool> (NameInfo.getName()) ? void (0) : __assert_fail
("NameInfo.getName()", "clang/lib/Sema/SemaDeclCXX.cpp", 17224
, __extension__ __PRETTY_FUNCTION__))
;
17225
17226 // Check for unexpanded parameter packs.
17227 if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
17228 DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
17229 DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
17230 return nullptr;
17231
17232 // The context we found the declaration in, or in which we should
17233 // create the declaration.
17234 DeclContext *DC;
17235 Scope *DCScope = S;
17236 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
17237 ForExternalRedeclaration);
17238
17239 // There are five cases here.
17240 // - There's no scope specifier and we're in a local class. Only look
17241 // for functions declared in the immediately-enclosing block scope.
17242 // We recover from invalid scope qualifiers as if they just weren't there.
17243 FunctionDecl *FunctionContainingLocalClass = nullptr;
17244 if ((SS.isInvalid() || !SS.isSet()) &&
17245 (FunctionContainingLocalClass =
17246 cast<CXXRecordDecl>(CurContext)->isLocalClass())) {
17247 // C++11 [class.friend]p11:
17248 // If a friend declaration appears in a local class and the name
17249 // specified is an unqualified name, a prior declaration is
17250 // looked up without considering scopes that are outside the
17251 // innermost enclosing non-class scope. For a friend function
17252 // declaration, if there is no prior declaration, the program is
17253 // ill-formed.
17254
17255 // Find the innermost enclosing non-class scope. This is the block
17256 // scope containing the local class definition (or for a nested class,
17257 // the outer local class).
17258 DCScope = S->getFnParent();
17259
17260 // Look up the function name in the scope.
17261 Previous.clear(LookupLocalFriendName);
17262 LookupName(Previous, S, /*AllowBuiltinCreation*/false);
17263
17264 if (!Previous.empty()) {
17265 // All possible previous declarations must have the same context:
17266 // either they were declared at block scope or they are members of
17267 // one of the enclosing local classes.
17268 DC = Previous.getRepresentativeDecl()->getDeclContext();
17269 } else {
17270 // This is ill-formed, but provide the context that we would have
17271 // declared the function in, if we were permitted to, for error recovery.
17272 DC = FunctionContainingLocalClass;
17273 }
17274 adjustContextForLocalExternDecl(DC);
17275
17276 // C++ [class.friend]p6:
17277 // A function can be defined in a friend declaration of a class if and
17278 // only if the class is a non-local class (9.8), the function name is
17279 // unqualified, and the function has namespace scope.
17280 if (D.isFunctionDefinition()) {
17281 Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
17282 }
17283
17284 // - There's no scope specifier, in which case we just go to the
17285 // appropriate scope and look for a function or function template
17286 // there as appropriate.
17287 } else if (SS.isInvalid() || !SS.isSet()) {
17288 // C++11 [namespace.memdef]p3:
17289 // If the name in a friend declaration is neither qualified nor
17290 // a template-id and the declaration is a function or an
17291 // elaborated-type-specifier, the lookup to determine whether
17292 // the entity has been previously declared shall not consider
17293 // any scopes outside the innermost enclosing namespace.
17294 bool isTemplateId =
17295 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId;
17296
17297 // Find the appropriate context according to the above.
17298 DC = CurContext;
17299
17300 // Skip class contexts. If someone can cite chapter and verse
17301 // for this behavior, that would be nice --- it's what GCC and
17302 // EDG do, and it seems like a reasonable intent, but the spec
17303 // really only says that checks for unqualified existing
17304 // declarations should stop at the nearest enclosing namespace,
17305 // not that they should only consider the nearest enclosing
17306 // namespace.
17307 while (DC->isRecord())
17308 DC = DC->getParent();
17309
17310 DeclContext *LookupDC = DC->getNonTransparentContext();
17311 while (true) {
17312 LookupQualifiedName(Previous, LookupDC);
17313
17314 if (!Previous.empty()) {
17315 DC = LookupDC;
17316 break;
17317 }
17318
17319 if (isTemplateId) {
17320 if (isa<TranslationUnitDecl>(LookupDC)) break;
17321 } else {
17322 if (LookupDC->isFileContext()) break;
17323 }
17324 LookupDC = LookupDC->getParent();
17325 }
17326
17327 DCScope = getScopeForDeclContext(S, DC);
17328
17329 // - There's a non-dependent scope specifier, in which case we
17330 // compute it and do a previous lookup there for a function
17331 // or function template.
17332 } else if (!SS.getScopeRep()->isDependent()) {
17333 DC = computeDeclContext(SS);
17334 if (!DC) return nullptr;
17335
17336 if (RequireCompleteDeclContext(SS, DC)) return nullptr;
17337
17338 LookupQualifiedName(Previous, DC);
17339
17340 // C++ [class.friend]p1: A friend of a class is a function or
17341 // class that is not a member of the class . . .
17342 if (DC->Equals(CurContext))
17343 Diag(DS.getFriendSpecLoc(),
17344 getLangOpts().CPlusPlus11 ?
17345 diag::warn_cxx98_compat_friend_is_member :
17346 diag::err_friend_is_member);
17347
17348 if (D.isFunctionDefinition()) {
17349 // C++ [class.friend]p6:
17350 // A function can be defined in a friend declaration of a class if and
17351 // only if the class is a non-local class (9.8), the function name is
17352 // unqualified, and the function has namespace scope.
17353 //
17354 // FIXME: We should only do this if the scope specifier names the
17355 // innermost enclosing namespace; otherwise the fixit changes the
17356 // meaning of the code.
17357 SemaDiagnosticBuilder DB
17358 = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
17359
17360 DB << SS.getScopeRep();
17361 if (DC->isFileContext())
17362 DB << FixItHint::CreateRemoval(SS.getRange());
17363 SS.clear();
17364 }
17365
17366 // - There's a scope specifier that does not match any template
17367 // parameter lists, in which case we use some arbitrary context,
17368 // create a method or method template, and wait for instantiation.
17369 // - There's a scope specifier that does match some template
17370 // parameter lists, which we don't handle right now.
17371 } else {
17372 if (D.isFunctionDefinition()) {
17373 // C++ [class.friend]p6:
17374 // A function can be defined in a friend declaration of a class if and
17375 // only if the class is a non-local class (9.8), the function name is
17376 // unqualified, and the function has namespace scope.
17377 Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
17378 << SS.getScopeRep();
17379 }
17380
17381 DC = CurContext;
17382 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?")(static_cast <bool> (isa<CXXRecordDecl>(DC) &&
"friend declaration not in class?") ? void (0) : __assert_fail
("isa<CXXRecordDecl>(DC) && \"friend declaration not in class?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 17382, __extension__ __PRETTY_FUNCTION__
))
;
17383 }
17384
17385 if (!DC->isRecord()) {
17386 int DiagArg = -1;
17387 switch (D.getName().getKind()) {
17388 case UnqualifiedIdKind::IK_ConstructorTemplateId:
17389 case UnqualifiedIdKind::IK_ConstructorName:
17390 DiagArg = 0;
17391 break;
17392 case UnqualifiedIdKind::IK_DestructorName:
17393 DiagArg = 1;
17394 break;
17395 case UnqualifiedIdKind::IK_ConversionFunctionId:
17396 DiagArg = 2;
17397 break;
17398 case UnqualifiedIdKind::IK_DeductionGuideName:
17399 DiagArg = 3;
17400 break;
17401 case UnqualifiedIdKind::IK_Identifier:
17402 case UnqualifiedIdKind::IK_ImplicitSelfParam:
17403 case UnqualifiedIdKind::IK_LiteralOperatorId:
17404 case UnqualifiedIdKind::IK_OperatorFunctionId:
17405 case UnqualifiedIdKind::IK_TemplateId:
17406 break;
17407 }
17408 // This implies that it has to be an operator or function.
17409 if (DiagArg >= 0) {
17410 Diag(Loc, diag::err_introducing_special_friend) << DiagArg;
17411 return nullptr;
17412 }
17413 }
17414
17415 // FIXME: This is an egregious hack to cope with cases where the scope stack
17416 // does not contain the declaration context, i.e., in an out-of-line
17417 // definition of a class.
17418 Scope FakeDCScope(S, Scope::DeclScope, Diags);
17419 if (!DCScope) {
17420 FakeDCScope.setEntity(DC);
17421 DCScope = &FakeDCScope;
17422 }
17423
17424 bool AddToScope = true;
17425 NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
17426 TemplateParams, AddToScope);
17427 if (!ND) return nullptr;
17428
17429 assert(ND->getLexicalDeclContext() == CurContext)(static_cast <bool> (ND->getLexicalDeclContext() == CurContext
) ? void (0) : __assert_fail ("ND->getLexicalDeclContext() == CurContext"
, "clang/lib/Sema/SemaDeclCXX.cpp", 17429, __extension__ __PRETTY_FUNCTION__
))
;
17430
17431 // If we performed typo correction, we might have added a scope specifier
17432 // and changed the decl context.
17433 DC = ND->getDeclContext();
17434
17435 // Add the function declaration to the appropriate lookup tables,
17436 // adjusting the redeclarations list as necessary. We don't
17437 // want to do this yet if the friending class is dependent.
17438 //
17439 // Also update the scope-based lookup if the target context's
17440 // lookup context is in lexical scope.
17441 if (!CurContext->isDependentContext()) {
17442 DC = DC->getRedeclContext();
17443 DC->makeDeclVisibleInContext(ND);
17444 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
17445 PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
17446 }
17447
17448 FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
17449 D.getIdentifierLoc(), ND,
17450 DS.getFriendSpecLoc());
17451 FrD->setAccess(AS_public);
17452 CurContext->addDecl(FrD);
17453
17454 if (ND->isInvalidDecl()) {
17455 FrD->setInvalidDecl();
17456 } else {
17457 if (DC->isRecord()) CheckFriendAccess(ND);
17458
17459 FunctionDecl *FD;
17460 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
17461 FD = FTD->getTemplatedDecl();
17462 else
17463 FD = cast<FunctionDecl>(ND);
17464
17465 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
17466 // default argument expression, that declaration shall be a definition
17467 // and shall be the only declaration of the function or function
17468 // template in the translation unit.
17469 if (functionDeclHasDefaultArgument(FD)) {
17470 // We can't look at FD->getPreviousDecl() because it may not have been set
17471 // if we're in a dependent context. If the function is known to be a
17472 // redeclaration, we will have narrowed Previous down to the right decl.
17473 if (D.isRedeclaration()) {
17474 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
17475 Diag(Previous.getRepresentativeDecl()->getLocation(),
17476 diag::note_previous_declaration);
17477 } else if (!D.isFunctionDefinition())
17478 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
17479 }
17480
17481 // Mark templated-scope function declarations as unsupported.
17482 if (FD->getNumTemplateParameterLists() && SS.isValid()) {
17483 Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported)
17484 << SS.getScopeRep() << SS.getRange()
17485 << cast<CXXRecordDecl>(CurContext);
17486 FrD->setUnsupportedFriend(true);
17487 }
17488 }
17489
17490 warnOnReservedIdentifier(ND);
17491
17492 return ND;
17493}
17494
17495void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
17496 AdjustDeclIfTemplate(Dcl);
17497
17498 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
17499 if (!Fn) {
17500 Diag(DelLoc, diag::err_deleted_non_function);
17501 return;
17502 }
17503
17504 // Deleted function does not have a body.
17505 Fn->setWillHaveBody(false);
17506
17507 if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
17508 // Don't consider the implicit declaration we generate for explicit
17509 // specializations. FIXME: Do not generate these implicit declarations.
17510 if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization ||
17511 Prev->getPreviousDecl()) &&
17512 !Prev->isDefined()) {
17513 Diag(DelLoc, diag::err_deleted_decl_not_first);
17514 Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(),
17515 Prev->isImplicit() ? diag::note_previous_implicit_declaration
17516 : diag::note_previous_declaration);
17517 // We can't recover from this; the declaration might have already
17518 // been used.
17519 Fn->setInvalidDecl();
17520 return;
17521 }
17522
17523 // To maintain the invariant that functions are only deleted on their first
17524 // declaration, mark the implicitly-instantiated declaration of the
17525 // explicitly-specialized function as deleted instead of marking the
17526 // instantiated redeclaration.
17527 Fn = Fn->getCanonicalDecl();
17528 }
17529
17530 // dllimport/dllexport cannot be deleted.
17531 if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) {
17532 Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr;
17533 Fn->setInvalidDecl();
17534 }
17535
17536 // C++11 [basic.start.main]p3:
17537 // A program that defines main as deleted [...] is ill-formed.
17538 if (Fn->isMain())
17539 Diag(DelLoc, diag::err_deleted_main);
17540
17541 // C++11 [dcl.fct.def.delete]p4:
17542 // A deleted function is implicitly inline.
17543 Fn->setImplicitlyInline();
17544 Fn->setDeletedAsWritten();
17545}
17546
17547void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
17548 if (!Dcl || Dcl->isInvalidDecl())
17549 return;
17550
17551 auto *FD = dyn_cast<FunctionDecl>(Dcl);
17552 if (!FD) {
17553 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Dcl)) {
17554 if (getDefaultedFunctionKind(FTD->getTemplatedDecl()).isComparison()) {
17555 Diag(DefaultLoc, diag::err_defaulted_comparison_template);
17556 return;
17557 }
17558 }
17559
17560 Diag(DefaultLoc, diag::err_default_special_members)
17561 << getLangOpts().CPlusPlus20;
17562 return;
17563 }
17564
17565 // Reject if this can't possibly be a defaultable function.
17566 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD);
17567 if (!DefKind &&
17568 // A dependent function that doesn't locally look defaultable can
17569 // still instantiate to a defaultable function if it's a constructor
17570 // or assignment operator.
17571 (!FD->isDependentContext() ||
17572 (!isa<CXXConstructorDecl>(FD) &&
17573 FD->getDeclName().getCXXOverloadedOperator() != OO_Equal))) {
17574 Diag(DefaultLoc, diag::err_default_special_members)
17575 << getLangOpts().CPlusPlus20;
17576 return;
17577 }
17578
17579 // Issue compatibility warning. We already warned if the operator is
17580 // 'operator<=>' when parsing the '<=>' token.
17581 if (DefKind.isComparison() &&
17582 DefKind.asComparison() != DefaultedComparisonKind::ThreeWay) {
17583 Diag(DefaultLoc, getLangOpts().CPlusPlus20
17584 ? diag::warn_cxx17_compat_defaulted_comparison
17585 : diag::ext_defaulted_comparison);
17586 }
17587
17588 FD->setDefaulted();
17589 FD->setExplicitlyDefaulted();
17590 FD->setDefaultLoc(DefaultLoc);
17591
17592 // Defer checking functions that are defaulted in a dependent context.
17593 if (FD->isDependentContext())
17594 return;
17595
17596 // Unset that we will have a body for this function. We might not,
17597 // if it turns out to be trivial, and we don't need this marking now
17598 // that we've marked it as defaulted.
17599 FD->setWillHaveBody(false);
17600
17601 if (DefKind.isComparison()) {
17602 // If this comparison's defaulting occurs within the definition of its
17603 // lexical class context, we have to do the checking when complete.
17604 if (auto const *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext()))
17605 if (!RD->isCompleteDefinition())
17606 return;
17607 }
17608
17609 // If this member fn was defaulted on its first declaration, we will have
17610 // already performed the checking in CheckCompletedCXXClass. Such a
17611 // declaration doesn't trigger an implicit definition.
17612 if (isa<CXXMethodDecl>(FD)) {
17613 const FunctionDecl *Primary = FD;
17614 if (const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
17615 // Ask the template instantiation pattern that actually had the
17616 // '= default' on it.
17617 Primary = Pattern;
17618 if (Primary->getCanonicalDecl()->isDefaulted())
17619 return;
17620 }
17621
17622 if (DefKind.isComparison()) {
17623 if (CheckExplicitlyDefaultedComparison(nullptr, FD, DefKind.asComparison()))
17624 FD->setInvalidDecl();
17625 else
17626 DefineDefaultedComparison(DefaultLoc, FD, DefKind.asComparison());
17627 } else {
17628 auto *MD = cast<CXXMethodDecl>(FD);
17629
17630 if (CheckExplicitlyDefaultedSpecialMember(MD, DefKind.asSpecialMember(),
17631 DefaultLoc))
17632 MD->setInvalidDecl();
17633 else
17634 DefineDefaultedFunction(*this, MD, DefaultLoc);
17635 }
17636}
17637
17638static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
17639 for (Stmt *SubStmt : S->children()) {
17640 if (!SubStmt)
17641 continue;
17642 if (isa<ReturnStmt>(SubStmt))
17643 Self.Diag(SubStmt->getBeginLoc(),
17644 diag::err_return_in_constructor_handler);
17645 if (!isa<Expr>(SubStmt))
17646 SearchForReturnInStmt(Self, SubStmt);
17647 }
17648}
17649
17650void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
17651 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
17652 CXXCatchStmt *Handler = TryBlock->getHandler(I);
17653 SearchForReturnInStmt(*this, Handler);
17654 }
17655}
17656
17657void Sema::SetFunctionBodyKind(Decl *D, SourceLocation Loc,
17658 FnBodyKind BodyKind) {
17659 switch (BodyKind) {
17660 case FnBodyKind::Delete:
17661 SetDeclDeleted(D, Loc);
17662 break;
17663 case FnBodyKind::Default:
17664 SetDeclDefaulted(D, Loc);
17665 break;
17666 case FnBodyKind::Other:
17667 llvm_unreachable(::llvm::llvm_unreachable_internal("Parsed function body should be '= delete;' or '= default;'"
, "clang/lib/Sema/SemaDeclCXX.cpp", 17668)
17668 "Parsed function body should be '= delete;' or '= default;'")::llvm::llvm_unreachable_internal("Parsed function body should be '= delete;' or '= default;'"
, "clang/lib/Sema/SemaDeclCXX.cpp", 17668)
;
17669 }
17670}
17671
17672bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
17673 const CXXMethodDecl *Old) {
17674 const auto *NewFT = New->getType()->castAs<FunctionProtoType>();
17675 const auto *OldFT = Old->getType()->castAs<FunctionProtoType>();
17676
17677 if (OldFT->hasExtParameterInfos()) {
17678 for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I)
17679 // A parameter of the overriding method should be annotated with noescape
17680 // if the corresponding parameter of the overridden method is annotated.
17681 if (OldFT->getExtParameterInfo(I).isNoEscape() &&
17682 !NewFT->getExtParameterInfo(I).isNoEscape()) {
17683 Diag(New->getParamDecl(I)->getLocation(),
17684 diag::warn_overriding_method_missing_noescape);
17685 Diag(Old->getParamDecl(I)->getLocation(),
17686 diag::note_overridden_marked_noescape);
17687 }
17688 }
17689
17690 // Virtual overrides must have the same code_seg.
17691 const auto *OldCSA = Old->getAttr<CodeSegAttr>();
17692 const auto *NewCSA = New->getAttr<CodeSegAttr>();
17693 if ((NewCSA || OldCSA) &&
17694 (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) {
17695 Diag(New->getLocation(), diag::err_mismatched_code_seg_override);
17696 Diag(Old->getLocation(), diag::note_previous_declaration);
17697 return true;
17698 }
17699
17700 CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
17701
17702 // If the calling conventions match, everything is fine
17703 if (NewCC == OldCC)
17704 return false;
17705
17706 // If the calling conventions mismatch because the new function is static,
17707 // suppress the calling convention mismatch error; the error about static
17708 // function override (err_static_overrides_virtual from
17709 // Sema::CheckFunctionDeclaration) is more clear.
17710 if (New->getStorageClass() == SC_Static)
17711 return false;
17712
17713 Diag(New->getLocation(),
17714 diag::err_conflicting_overriding_cc_attributes)
17715 << New->getDeclName() << New->getType() << Old->getType();
17716 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
17717 return true;
17718}
17719
17720bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
17721 const CXXMethodDecl *Old) {
17722 QualType NewTy = New->getType()->castAs<FunctionType>()->getReturnType();
17723 QualType OldTy = Old->getType()->castAs<FunctionType>()->getReturnType();
17724
17725 if (Context.hasSameType(NewTy, OldTy) ||
17726 NewTy->isDependentType() || OldTy->isDependentType())
17727 return false;
17728
17729 // Check if the return types are covariant
17730 QualType NewClassTy, OldClassTy;
17731
17732 /// Both types must be pointers or references to classes.
17733 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
17734 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
17735 NewClassTy = NewPT->getPointeeType();
17736 OldClassTy = OldPT->getPointeeType();
17737 }
17738 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
17739 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
17740 if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
17741 NewClassTy = NewRT->getPointeeType();
17742 OldClassTy = OldRT->getPointeeType();
17743 }
17744 }
17745 }
17746
17747 // The return types aren't either both pointers or references to a class type.
17748 if (NewClassTy.isNull()) {
17749 Diag(New->getLocation(),
17750 diag::err_different_return_type_for_overriding_virtual_function)
17751 << New->getDeclName() << NewTy << OldTy
17752 << New->getReturnTypeSourceRange();
17753 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17754 << Old->getReturnTypeSourceRange();
17755
17756 return true;
17757 }
17758
17759 if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
17760 // C++14 [class.virtual]p8:
17761 // If the class type in the covariant return type of D::f differs from
17762 // that of B::f, the class type in the return type of D::f shall be
17763 // complete at the point of declaration of D::f or shall be the class
17764 // type D.
17765 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
17766 if (!RT->isBeingDefined() &&
17767 RequireCompleteType(New->getLocation(), NewClassTy,
17768 diag::err_covariant_return_incomplete,
17769 New->getDeclName()))
17770 return true;
17771 }
17772
17773 // Check if the new class derives from the old class.
17774 if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) {
17775 Diag(New->getLocation(), diag::err_covariant_return_not_derived)
17776 << New->getDeclName() << NewTy << OldTy
17777 << New->getReturnTypeSourceRange();
17778 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17779 << Old->getReturnTypeSourceRange();
17780 return true;
17781 }
17782
17783 // Check if we the conversion from derived to base is valid.
17784 if (CheckDerivedToBaseConversion(
17785 NewClassTy, OldClassTy,
17786 diag::err_covariant_return_inaccessible_base,
17787 diag::err_covariant_return_ambiguous_derived_to_base_conv,
17788 New->getLocation(), New->getReturnTypeSourceRange(),
17789 New->getDeclName(), nullptr)) {
17790 // FIXME: this note won't trigger for delayed access control
17791 // diagnostics, and it's impossible to get an undelayed error
17792 // here from access control during the original parse because
17793 // the ParsingDeclSpec/ParsingDeclarator are still in scope.
17794 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17795 << Old->getReturnTypeSourceRange();
17796 return true;
17797 }
17798 }
17799
17800 // The qualifiers of the return types must be the same.
17801 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
17802 Diag(New->getLocation(),
17803 diag::err_covariant_return_type_different_qualifications)
17804 << New->getDeclName() << NewTy << OldTy
17805 << New->getReturnTypeSourceRange();
17806 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17807 << Old->getReturnTypeSourceRange();
17808 return true;
17809 }
17810
17811
17812 // The new class type must have the same or less qualifiers as the old type.
17813 if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
17814 Diag(New->getLocation(),
17815 diag::err_covariant_return_type_class_type_more_qualified)
17816 << New->getDeclName() << NewTy << OldTy
17817 << New->getReturnTypeSourceRange();
17818 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17819 << Old->getReturnTypeSourceRange();
17820 return true;
17821 }
17822
17823 return false;
17824}
17825
17826/// Mark the given method pure.
17827///
17828/// \param Method the method to be marked pure.
17829///
17830/// \param InitRange the source range that covers the "0" initializer.
17831bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
17832 SourceLocation EndLoc = InitRange.getEnd();
17833 if (EndLoc.isValid())
17834 Method->setRangeEnd(EndLoc);
17835
17836 if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
17837 Method->setPure();
17838 return false;
17839 }
17840
17841 if (!Method->isInvalidDecl())
17842 Diag(Method->getLocation(), diag::err_non_virtual_pure)
17843 << Method->getDeclName() << InitRange;
17844 return true;
17845}
17846
17847void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) {
17848 if (D->getFriendObjectKind())
17849 Diag(D->getLocation(), diag::err_pure_friend);
17850 else if (auto *M = dyn_cast<CXXMethodDecl>(D))
17851 CheckPureMethod(M, ZeroLoc);
17852 else
17853 Diag(D->getLocation(), diag::err_illegal_initializer);
17854}
17855
17856/// Determine whether the given declaration is a global variable or
17857/// static data member.
17858static bool isNonlocalVariable(const Decl *D) {
17859 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
17860 return Var->hasGlobalStorage();
17861
17862 return false;
17863}
17864
17865/// Invoked when we are about to parse an initializer for the declaration
17866/// 'Dcl'.
17867///
17868/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
17869/// static data member of class X, names should be looked up in the scope of
17870/// class X. If the declaration had a scope specifier, a scope will have
17871/// been created and passed in for this purpose. Otherwise, S will be null.
17872void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
17873 // If there is no declaration, there was an error parsing it.
17874 if (!D || D->isInvalidDecl())
17875 return;
17876
17877 // We will always have a nested name specifier here, but this declaration
17878 // might not be out of line if the specifier names the current namespace:
17879 // extern int n;
17880 // int ::n = 0;
17881 if (S && D->isOutOfLine())
17882 EnterDeclaratorContext(S, D->getDeclContext());
17883
17884 // If we are parsing the initializer for a static data member, push a
17885 // new expression evaluation context that is associated with this static
17886 // data member.
17887 if (isNonlocalVariable(D))
17888 PushExpressionEvaluationContext(
17889 ExpressionEvaluationContext::PotentiallyEvaluated, D);
17890}
17891
17892/// Invoked after we are finished parsing an initializer for the declaration D.
17893void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
17894 // If there is no declaration, there was an error parsing it.
17895 if (!D || D->isInvalidDecl())
17896 return;
17897
17898 if (isNonlocalVariable(D))
17899 PopExpressionEvaluationContext();
17900
17901 if (S && D->isOutOfLine())
17902 ExitDeclaratorContext(S);
17903}
17904
17905/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
17906/// C++ if/switch/while/for statement.
17907/// e.g: "if (int x = f()) {...}"
17908DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
17909 // C++ 6.4p2:
17910 // The declarator shall not specify a function or an array.
17911 // The type-specifier-seq shall not contain typedef and shall not declare a
17912 // new class or enumeration.
17913 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&(static_cast <bool> (D.getDeclSpec().getStorageClassSpec
() != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class of condition decl."
) ? void (0) : __assert_fail ("D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class of condition decl.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 17914, __extension__ __PRETTY_FUNCTION__
))
17914 "Parser allowed 'typedef' as storage class of condition decl.")(static_cast <bool> (D.getDeclSpec().getStorageClassSpec
() != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class of condition decl."
) ? void (0) : __assert_fail ("D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class of condition decl.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 17914, __extension__ __PRETTY_FUNCTION__
))
;
17915
17916 Decl *Dcl = ActOnDeclarator(S, D);
17917 if (!Dcl)
17918 return true;
17919
17920 if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
17921 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
17922 << D.getSourceRange();
17923 return true;
17924 }
17925
17926 return Dcl;
17927}
17928
17929void Sema::LoadExternalVTableUses() {
17930 if (!ExternalSource)
17931 return;
17932
17933 SmallVector<ExternalVTableUse, 4> VTables;
17934 ExternalSource->ReadUsedVTables(VTables);
17935 SmallVector<VTableUse, 4> NewUses;
17936 for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
17937 llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
17938 = VTablesUsed.find(VTables[I].Record);
17939 // Even if a definition wasn't required before, it may be required now.
17940 if (Pos != VTablesUsed.end()) {
17941 if (!Pos->second && VTables[I].DefinitionRequired)
17942 Pos->second = true;
17943 continue;
17944 }
17945
17946 VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
17947 NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
17948 }
17949
17950 VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
17951}
17952
17953void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
17954 bool DefinitionRequired) {
17955 // Ignore any vtable uses in unevaluated operands or for classes that do
17956 // not have a vtable.
17957 if (!Class->isDynamicClass() || Class->isDependentContext() ||
17958 CurContext->isDependentContext() || isUnevaluatedContext())
17959 return;
17960 // Do not mark as used if compiling for the device outside of the target
17961 // region.
17962 if (TUKind != TU_Prefix && LangOpts.OpenMP && LangOpts.OpenMPIsDevice &&
17963 !isInOpenMPDeclareTargetContext() &&
17964 !isInOpenMPTargetExecutionDirective()) {
17965 if (!DefinitionRequired)
17966 MarkVirtualMembersReferenced(Loc, Class);
17967 return;
17968 }
17969
17970 // Try to insert this class into the map.
17971 LoadExternalVTableUses();
17972 Class = Class->getCanonicalDecl();
17973 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
17974 Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
17975 if (!Pos.second) {
17976 // If we already had an entry, check to see if we are promoting this vtable
17977 // to require a definition. If so, we need to reappend to the VTableUses
17978 // list, since we may have already processed the first entry.
17979 if (DefinitionRequired && !Pos.first->second) {
17980 Pos.first->second = true;
17981 } else {
17982 // Otherwise, we can early exit.
17983 return;
17984 }
17985 } else {
17986 // The Microsoft ABI requires that we perform the destructor body
17987 // checks (i.e. operator delete() lookup) when the vtable is marked used, as
17988 // the deleting destructor is emitted with the vtable, not with the
17989 // destructor definition as in the Itanium ABI.
17990 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
17991 CXXDestructorDecl *DD = Class->getDestructor();
17992 if (DD && DD->isVirtual() && !DD->isDeleted()) {
17993 if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) {
17994 // If this is an out-of-line declaration, marking it referenced will
17995 // not do anything. Manually call CheckDestructor to look up operator
17996 // delete().
17997 ContextRAII SavedContext(*this, DD);
17998 CheckDestructor(DD);
17999 } else {
18000 MarkFunctionReferenced(Loc, Class->getDestructor());
18001 }
18002 }
18003 }
18004 }
18005
18006 // Local classes need to have their virtual members marked
18007 // immediately. For all other classes, we mark their virtual members
18008 // at the end of the translation unit.
18009 if (Class->isLocalClass())
18010 MarkVirtualMembersReferenced(Loc, Class->getDefinition());
18011 else
18012 VTableUses.push_back(std::make_pair(Class, Loc));
18013}
18014
18015bool Sema::DefineUsedVTables() {
18016 LoadExternalVTableUses();
18017 if (VTableUses.empty())
18018 return false;
18019
18020 // Note: The VTableUses vector could grow as a result of marking
18021 // the members of a class as "used", so we check the size each
18022 // time through the loop and prefer indices (which are stable) to
18023 // iterators (which are not).
18024 bool DefinedAnything = false;
18025 for (unsigned I = 0; I != VTableUses.size(); ++I) {
18026 CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
18027 if (!Class)
18028 continue;
18029 TemplateSpecializationKind ClassTSK =
18030 Class->getTemplateSpecializationKind();
18031
18032 SourceLocation Loc = VTableUses[I].second;
18033
18034 bool DefineVTable = true;
18035
18036 // If this class has a key function, but that key function is
18037 // defined in another translation unit, we don't need to emit the
18038 // vtable even though we're using it.
18039 const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
18040 if (KeyFunction && !KeyFunction->hasBody()) {
18041 // The key function is in another translation unit.
18042 DefineVTable = false;
18043 TemplateSpecializationKind TSK =
18044 KeyFunction->getTemplateSpecializationKind();
18045 assert(TSK != TSK_ExplicitInstantiationDefinition &&(static_cast <bool> (TSK != TSK_ExplicitInstantiationDefinition
&& TSK != TSK_ImplicitInstantiation && "Instantiations don't have key functions"
) ? void (0) : __assert_fail ("TSK != TSK_ExplicitInstantiationDefinition && TSK != TSK_ImplicitInstantiation && \"Instantiations don't have key functions\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 18047, __extension__ __PRETTY_FUNCTION__
))
18046 TSK != TSK_ImplicitInstantiation &&(static_cast <bool> (TSK != TSK_ExplicitInstantiationDefinition
&& TSK != TSK_ImplicitInstantiation && "Instantiations don't have key functions"
) ? void (0) : __assert_fail ("TSK != TSK_ExplicitInstantiationDefinition && TSK != TSK_ImplicitInstantiation && \"Instantiations don't have key functions\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 18047, __extension__ __PRETTY_FUNCTION__
))
18047 "Instantiations don't have key functions")(static_cast <bool> (TSK != TSK_ExplicitInstantiationDefinition
&& TSK != TSK_ImplicitInstantiation && "Instantiations don't have key functions"
) ? void (0) : __assert_fail ("TSK != TSK_ExplicitInstantiationDefinition && TSK != TSK_ImplicitInstantiation && \"Instantiations don't have key functions\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 18047, __extension__ __PRETTY_FUNCTION__
))
;
18048 (void)TSK;
18049 } else if (!KeyFunction) {
18050 // If we have a class with no key function that is the subject
18051 // of an explicit instantiation declaration, suppress the
18052 // vtable; it will live with the explicit instantiation
18053 // definition.
18054 bool IsExplicitInstantiationDeclaration =
18055 ClassTSK == TSK_ExplicitInstantiationDeclaration;
18056 for (auto *R : Class->redecls()) {
18057 TemplateSpecializationKind TSK
18058 = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind();
18059 if (TSK == TSK_ExplicitInstantiationDeclaration)
18060 IsExplicitInstantiationDeclaration = true;
18061 else if (TSK == TSK_ExplicitInstantiationDefinition) {
18062 IsExplicitInstantiationDeclaration = false;
18063 break;
18064 }
18065 }
18066
18067 if (IsExplicitInstantiationDeclaration)
18068 DefineVTable = false;
18069 }
18070
18071 // The exception specifications for all virtual members may be needed even
18072 // if we are not providing an authoritative form of the vtable in this TU.
18073 // We may choose to emit it available_externally anyway.
18074 if (!DefineVTable) {
18075 MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
18076 continue;
18077 }
18078
18079 // Mark all of the virtual members of this class as referenced, so
18080 // that we can build a vtable. Then, tell the AST consumer that a
18081 // vtable for this class is required.
18082 DefinedAnything = true;
18083 MarkVirtualMembersReferenced(Loc, Class);
18084 CXXRecordDecl *Canonical = Class->getCanonicalDecl();
18085 if (VTablesUsed[Canonical])
18086 Consumer.HandleVTable(Class);
18087
18088 // Warn if we're emitting a weak vtable. The vtable will be weak if there is
18089 // no key function or the key function is inlined. Don't warn in C++ ABIs
18090 // that lack key functions, since the user won't be able to make one.
18091 if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() &&
18092 Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation &&
18093 ClassTSK != TSK_ExplicitInstantiationDefinition) {
18094 const FunctionDecl *KeyFunctionDef = nullptr;
18095 if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) &&
18096 KeyFunctionDef->isInlined()))
18097 Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
18098 }
18099 }
18100 VTableUses.clear();
18101
18102 return DefinedAnything;
18103}
18104
18105void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
18106 const CXXRecordDecl *RD) {
18107 for (const auto *I : RD->methods())
18108 if (I->isVirtual() && !I->isPure())
18109 ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>());
18110}
18111
18112void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
18113 const CXXRecordDecl *RD,
18114 bool ConstexprOnly) {
18115 // Mark all functions which will appear in RD's vtable as used.
18116 CXXFinalOverriderMap FinalOverriders;
18117 RD->getFinalOverriders(FinalOverriders);
18118 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
18119 E = FinalOverriders.end();
18120 I != E; ++I) {
18121 for (OverridingMethods::const_iterator OI = I->second.begin(),
18122 OE = I->second.end();
18123 OI != OE; ++OI) {
18124 assert(OI->second.size() > 0 && "no final overrider")(static_cast <bool> (OI->second.size() > 0 &&
"no final overrider") ? void (0) : __assert_fail ("OI->second.size() > 0 && \"no final overrider\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 18124, __extension__ __PRETTY_FUNCTION__
))
;
18125 CXXMethodDecl *Overrider = OI->second.front().Method;
18126
18127 // C++ [basic.def.odr]p2:
18128 // [...] A virtual member function is used if it is not pure. [...]
18129 if (!Overrider->isPure() && (!ConstexprOnly || Overrider->isConstexpr()))
18130 MarkFunctionReferenced(Loc, Overrider);
18131 }
18132 }
18133
18134 // Only classes that have virtual bases need a VTT.
18135 if (RD->getNumVBases() == 0)
18136 return;
18137
18138 for (const auto &I : RD->bases()) {
18139 const auto *Base =
18140 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
18141 if (Base->getNumVBases() == 0)
18142 continue;
18143 MarkVirtualMembersReferenced(Loc, Base);
18144 }
18145}
18146
18147/// SetIvarInitializers - This routine builds initialization ASTs for the
18148/// Objective-C implementation whose ivars need be initialized.
18149void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
18150 if (!getLangOpts().CPlusPlus)
18151 return;
18152 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
18153 SmallVector<ObjCIvarDecl*, 8> ivars;
18154 CollectIvarsToConstructOrDestruct(OID, ivars);
18155 if (ivars.empty())
18156 return;
18157 SmallVector<CXXCtorInitializer*, 32> AllToInit;
18158 for (unsigned i = 0; i < ivars.size(); i++) {
18159 FieldDecl *Field = ivars[i];
18160 if (Field->isInvalidDecl())
18161 continue;
18162
18163 CXXCtorInitializer *Member;
18164 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
18165 InitializationKind InitKind =
18166 InitializationKind::CreateDefault(ObjCImplementation->getLocation());
18167
18168 InitializationSequence InitSeq(*this, InitEntity, InitKind, std::nullopt);
18169 ExprResult MemberInit =
18170 InitSeq.Perform(*this, InitEntity, InitKind, std::nullopt);
18171 MemberInit = MaybeCreateExprWithCleanups(MemberInit);
18172 // Note, MemberInit could actually come back empty if no initialization
18173 // is required (e.g., because it would call a trivial default constructor)
18174 if (!MemberInit.get() || MemberInit.isInvalid())
18175 continue;
18176
18177 Member =
18178 new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
18179 SourceLocation(),
18180 MemberInit.getAs<Expr>(),
18181 SourceLocation());
18182 AllToInit.push_back(Member);
18183
18184 // Be sure that the destructor is accessible and is marked as referenced.
18185 if (const RecordType *RecordTy =
18186 Context.getBaseElementType(Field->getType())
18187 ->getAs<RecordType>()) {
18188 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
18189 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
18190 MarkFunctionReferenced(Field->getLocation(), Destructor);
18191 CheckDestructorAccess(Field->getLocation(), Destructor,
18192 PDiag(diag::err_access_dtor_ivar)
18193 << Context.getBaseElementType(Field->getType()));
18194 }
18195 }
18196 }
18197 ObjCImplementation->setIvarInitializers(Context,
18198 AllToInit.data(), AllToInit.size());
18199 }
18200}
18201
18202static
18203void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
18204 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid,
18205 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid,
18206 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current,
18207 Sema &S) {
18208 if (Ctor->isInvalidDecl())
18209 return;
18210
18211 CXXConstructorDecl *Target = Ctor->getTargetConstructor();
18212
18213 // Target may not be determinable yet, for instance if this is a dependent
18214 // call in an uninstantiated template.
18215 if (Target) {
18216 const FunctionDecl *FNTarget = nullptr;
18217 (void)Target->hasBody(FNTarget);
18218 Target = const_cast<CXXConstructorDecl*>(
18219 cast_or_null<CXXConstructorDecl>(FNTarget));
18220 }
18221
18222 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
18223 // Avoid dereferencing a null pointer here.
18224 *TCanonical = Target? Target->getCanonicalDecl() : nullptr;
18225
18226 if (!Current.insert(Canonical).second)
18227 return;
18228
18229 // We know that beyond here, we aren't chaining into a cycle.
18230 if (!Target || !Target->isDelegatingConstructor() ||
18231 Target->isInvalidDecl() || Valid.count(TCanonical)) {
18232 Valid.insert(Current.begin(), Current.end());
18233 Current.clear();
18234 // We've hit a cycle.
18235 } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
18236 Current.count(TCanonical)) {
18237 // If we haven't diagnosed this cycle yet, do so now.
18238 if (!Invalid.count(TCanonical)) {
18239 S.Diag((*Ctor->init_begin())->getSourceLocation(),
18240 diag::warn_delegating_ctor_cycle)
18241 << Ctor;
18242
18243 // Don't add a note for a function delegating directly to itself.
18244 if (TCanonical != Canonical)
18245 S.Diag(Target->getLocation(), diag::note_it_delegates_to);
18246
18247 CXXConstructorDecl *C = Target;
18248 while (C->getCanonicalDecl() != Canonical) {
18249 const FunctionDecl *FNTarget = nullptr;
18250 (void)C->getTargetConstructor()->hasBody(FNTarget);
18251 assert(FNTarget && "Ctor cycle through bodiless function")(static_cast <bool> (FNTarget && "Ctor cycle through bodiless function"
) ? void (0) : __assert_fail ("FNTarget && \"Ctor cycle through bodiless function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 18251, __extension__ __PRETTY_FUNCTION__
))
;
18252
18253 C = const_cast<CXXConstructorDecl*>(
18254 cast<CXXConstructorDecl>(FNTarget));
18255 S.Diag(C->getLocation(), diag::note_which_delegates_to);
18256 }
18257 }
18258
18259 Invalid.insert(Current.begin(), Current.end());
18260 Current.clear();
18261 } else {
18262 DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
18263 }
18264}
18265
18266
18267void Sema::CheckDelegatingCtorCycles() {
18268 llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
18269
18270 for (DelegatingCtorDeclsType::iterator
18271 I = DelegatingCtorDecls.begin(ExternalSource.get()),
18272 E = DelegatingCtorDecls.end();
18273 I != E; ++I)
18274 DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
18275
18276 for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
18277 (*CI)->setInvalidDecl();
18278}
18279
18280namespace {
18281 /// AST visitor that finds references to the 'this' expression.
18282 class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
18283 Sema &S;
18284
18285 public:
18286 explicit FindCXXThisExpr(Sema &S) : S(S) { }
18287
18288 bool VisitCXXThisExpr(CXXThisExpr *E) {
18289 S.Diag(E->getLocation(), diag::err_this_static_member_func)
18290 << E->isImplicit();
18291 return false;
18292 }
18293 };
18294}
18295
18296bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
18297 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
18298 if (!TSInfo)
18299 return false;
18300
18301 TypeLoc TL = TSInfo->getTypeLoc();
18302 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
18303 if (!ProtoTL)
18304 return false;
18305
18306 // C++11 [expr.prim.general]p3:
18307 // [The expression this] shall not appear before the optional
18308 // cv-qualifier-seq and it shall not appear within the declaration of a
18309 // static member function (although its type and value category are defined
18310 // within a static member function as they are within a non-static member
18311 // function). [ Note: this is because declaration matching does not occur
18312 // until the complete declarator is known. - end note ]
18313 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
18314 FindCXXThisExpr Finder(*this);
18315
18316 // If the return type came after the cv-qualifier-seq, check it now.
18317 if (Proto->hasTrailingReturn() &&
18318 !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc()))
18319 return true;
18320
18321 // Check the exception specification.
18322 if (checkThisInStaticMemberFunctionExceptionSpec(Method))
18323 return true;
18324
18325 // Check the trailing requires clause
18326 if (Expr *E = Method->getTrailingRequiresClause())
18327 if (!Finder.TraverseStmt(E))
18328 return true;
18329
18330 return checkThisInStaticMemberFunctionAttributes(Method);
18331}
18332
18333bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
18334 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
18335 if (!TSInfo)
18336 return false;
18337
18338 TypeLoc TL = TSInfo->getTypeLoc();
18339 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
18340 if (!ProtoTL)
18341 return false;
18342
18343 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
18344 FindCXXThisExpr Finder(*this);
18345
18346 switch (Proto->getExceptionSpecType()) {
18347 case EST_Unparsed:
18348 case EST_Uninstantiated:
18349 case EST_Unevaluated:
18350 case EST_BasicNoexcept:
18351 case EST_NoThrow:
18352 case EST_DynamicNone:
18353 case EST_MSAny:
18354 case EST_None:
18355 break;
18356
18357 case EST_DependentNoexcept:
18358 case EST_NoexceptFalse:
18359 case EST_NoexceptTrue:
18360 if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
18361 return true;
18362 [[fallthrough]];
18363
18364 case EST_Dynamic:
18365 for (const auto &E : Proto->exceptions()) {
18366 if (!Finder.TraverseType(E))
18367 return true;
18368 }
18369 break;
18370 }
18371
18372 return false;
18373}
18374
18375bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
18376 FindCXXThisExpr Finder(*this);
18377
18378 // Check attributes.
18379 for (const auto *A : Method->attrs()) {
18380 // FIXME: This should be emitted by tblgen.
18381 Expr *Arg = nullptr;
18382 ArrayRef<Expr *> Args;
18383 if (const auto *G = dyn_cast<GuardedByAttr>(A))
18384 Arg = G->getArg();
18385 else if (const auto *G = dyn_cast<PtGuardedByAttr>(A))
18386 Arg = G->getArg();
18387 else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A))
18388 Args = llvm::ArrayRef(AA->args_begin(), AA->args_size());
18389 else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A))
18390 Args = llvm::ArrayRef(AB->args_begin(), AB->args_size());
18391 else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) {
18392 Arg = ETLF->getSuccessValue();
18393 Args = llvm::ArrayRef(ETLF->args_begin(), ETLF->args_size());
18394 } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) {
18395 Arg = STLF->getSuccessValue();
18396 Args = llvm::ArrayRef(STLF->args_begin(), STLF->args_size());
18397 } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A))
18398 Arg = LR->getArg();
18399 else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A))
18400 Args = llvm::ArrayRef(LE->args_begin(), LE->args_size());
18401 else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A))
18402 Args = llvm::ArrayRef(RC->args_begin(), RC->args_size());
18403 else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A))
18404 Args = llvm::ArrayRef(AC->args_begin(), AC->args_size());
18405 else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A))
18406 Args = llvm::ArrayRef(AC->args_begin(), AC->args_size());
18407 else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A))
18408 Args = llvm::ArrayRef(RC->args_begin(), RC->args_size());
18409
18410 if (Arg && !Finder.TraverseStmt(Arg))
18411 return true;
18412
18413 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
18414 if (!Finder.TraverseStmt(Args[I]))
18415 return true;
18416 }
18417 }
18418
18419 return false;
18420}
18421
18422void Sema::checkExceptionSpecification(
18423 bool IsTopLevel, ExceptionSpecificationType EST,
18424 ArrayRef<ParsedType> DynamicExceptions,
18425 ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr,
18426 SmallVectorImpl<QualType> &Exceptions,
18427 FunctionProtoType::ExceptionSpecInfo &ESI) {
18428 Exceptions.clear();
18429 ESI.Type = EST;
18430 if (EST == EST_Dynamic) {
18431 Exceptions.reserve(DynamicExceptions.size());
18432 for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
18433 // FIXME: Preserve type source info.
18434 QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
18435
18436 if (IsTopLevel) {
18437 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
18438 collectUnexpandedParameterPacks(ET, Unexpanded);
18439 if (!Unexpanded.empty()) {
18440 DiagnoseUnexpandedParameterPacks(
18441 DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType,
18442 Unexpanded);
18443 continue;
18444 }
18445 }
18446
18447 // Check that the type is valid for an exception spec, and
18448 // drop it if not.
18449 if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
18450 Exceptions.push_back(ET);
18451 }
18452 ESI.Exceptions = Exceptions;
18453 return;
18454 }
18455
18456 if (isComputedNoexcept(EST)) {
18457 assert((NoexceptExpr->isTypeDependent() ||(static_cast <bool> ((NoexceptExpr->isTypeDependent(
) || NoexceptExpr->getType()->getCanonicalTypeUnqualified
() == Context.BoolTy) && "Parser should have made sure that the expression is boolean"
) ? void (0) : __assert_fail ("(NoexceptExpr->isTypeDependent() || NoexceptExpr->getType()->getCanonicalTypeUnqualified() == Context.BoolTy) && \"Parser should have made sure that the expression is boolean\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 18460, __extension__ __PRETTY_FUNCTION__
))
18458 NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==(static_cast <bool> ((NoexceptExpr->isTypeDependent(
) || NoexceptExpr->getType()->getCanonicalTypeUnqualified
() == Context.BoolTy) && "Parser should have made sure that the expression is boolean"
) ? void (0) : __assert_fail ("(NoexceptExpr->isTypeDependent() || NoexceptExpr->getType()->getCanonicalTypeUnqualified() == Context.BoolTy) && \"Parser should have made sure that the expression is boolean\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 18460, __extension__ __PRETTY_FUNCTION__
))
18459 Context.BoolTy) &&(static_cast <bool> ((NoexceptExpr->isTypeDependent(
) || NoexceptExpr->getType()->getCanonicalTypeUnqualified
() == Context.BoolTy) && "Parser should have made sure that the expression is boolean"
) ? void (0) : __assert_fail ("(NoexceptExpr->isTypeDependent() || NoexceptExpr->getType()->getCanonicalTypeUnqualified() == Context.BoolTy) && \"Parser should have made sure that the expression is boolean\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 18460, __extension__ __PRETTY_FUNCTION__
))
18460 "Parser should have made sure that the expression is boolean")(static_cast <bool> ((NoexceptExpr->isTypeDependent(
) || NoexceptExpr->getType()->getCanonicalTypeUnqualified
() == Context.BoolTy) && "Parser should have made sure that the expression is boolean"
) ? void (0) : __assert_fail ("(NoexceptExpr->isTypeDependent() || NoexceptExpr->getType()->getCanonicalTypeUnqualified() == Context.BoolTy) && \"Parser should have made sure that the expression is boolean\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 18460, __extension__ __PRETTY_FUNCTION__
))
;
18461 if (IsTopLevel && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
18462 ESI.Type = EST_BasicNoexcept;
18463 return;
18464 }
18465
18466 ESI.NoexceptExpr = NoexceptExpr;
18467 return;
18468 }
18469}
18470
18471void Sema::actOnDelayedExceptionSpecification(Decl *MethodD,
18472 ExceptionSpecificationType EST,
18473 SourceRange SpecificationRange,
18474 ArrayRef<ParsedType> DynamicExceptions,
18475 ArrayRef<SourceRange> DynamicExceptionRanges,
18476 Expr *NoexceptExpr) {
18477 if (!MethodD)
18478 return;
18479
18480 // Dig out the method we're referring to.
18481 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD))
18482 MethodD = FunTmpl->getTemplatedDecl();
18483
18484 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD);
18485 if (!Method)
18486 return;
18487
18488 // Check the exception specification.
18489 llvm::SmallVector<QualType, 4> Exceptions;
18490 FunctionProtoType::ExceptionSpecInfo ESI;
18491 checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions,
18492 DynamicExceptionRanges, NoexceptExpr, Exceptions,
18493 ESI);
18494
18495 // Update the exception specification on the function type.
18496 Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true);
18497
18498 if (Method->isStatic())
18499 checkThisInStaticMemberFunctionExceptionSpec(Method);
18500
18501 if (Method->isVirtual()) {
18502 // Check overrides, which we previously had to delay.
18503 for (const CXXMethodDecl *O : Method->overridden_methods())
18504 CheckOverridingFunctionExceptionSpec(Method, O);
18505 }
18506}
18507
18508/// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
18509///
18510MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
18511 SourceLocation DeclStart, Declarator &D,
18512 Expr *BitWidth,
18513 InClassInitStyle InitStyle,
18514 AccessSpecifier AS,
18515 const ParsedAttr &MSPropertyAttr) {
18516 IdentifierInfo *II = D.getIdentifier();
18517 if (!II) {
18518 Diag(DeclStart, diag::err_anonymous_property);
18519 return nullptr;
18520 }
18521 SourceLocation Loc = D.getIdentifierLoc();
18522
18523 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
18524 QualType T = TInfo->getType();
18525 if (getLangOpts().CPlusPlus) {
18526 CheckExtraCXXDefaultArguments(D);
18527
18528 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
18529 UPPC_DataMemberType)) {
18530 D.setInvalidType();
18531 T = Context.IntTy;
18532 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
18533 }
18534 }
18535
18536 DiagnoseFunctionSpecifiers(D.getDeclSpec());
18537
18538 if (D.getDeclSpec().isInlineSpecified())
18539 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
18540 << getLangOpts().CPlusPlus17;
18541 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
18542 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
18543 diag::err_invalid_thread)
18544 << DeclSpec::getSpecifierName(TSCS);
18545
18546 // Check to see if this name was declared as a member previously
18547 NamedDecl *PrevDecl = nullptr;
18548 LookupResult Previous(*this, II, Loc, LookupMemberName,
18549 ForVisibleRedeclaration);
18550 LookupName(Previous, S);
18551 switch (Previous.getResultKind()) {
18552 case LookupResult::Found:
18553 case LookupResult::FoundUnresolvedValue:
18554 PrevDecl = Previous.getAsSingle<NamedDecl>();
18555 break;
18556
18557 case LookupResult::FoundOverloaded:
18558 PrevDecl = Previous.getRepresentativeDecl();
18559 break;
18560
18561 case LookupResult::NotFound:
18562 case LookupResult::NotFoundInCurrentInstantiation:
18563 case LookupResult::Ambiguous:
18564 break;
18565 }
18566
18567 if (PrevDecl && PrevDecl->isTemplateParameter()) {
18568 // Maybe we will complain about the shadowed template parameter.
18569 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
18570 // Just pretend that we didn't see the previous declaration.
18571 PrevDecl = nullptr;
18572 }
18573
18574 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
18575 PrevDecl = nullptr;
18576
18577 SourceLocation TSSL = D.getBeginLoc();
18578 MSPropertyDecl *NewPD =
18579 MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL,
18580 MSPropertyAttr.getPropertyDataGetter(),
18581 MSPropertyAttr.getPropertyDataSetter());
18582 ProcessDeclAttributes(TUScope, NewPD, D);
18583 NewPD->setAccess(AS);
18584
18585 if (NewPD->isInvalidDecl())
18586 Record->setInvalidDecl();
18587
18588 if (D.getDeclSpec().isModulePrivateSpecified())
18589 NewPD->setModulePrivate();
18590
18591 if (NewPD->isInvalidDecl() && PrevDecl) {
18592 // Don't introduce NewFD into scope; there's already something
18593 // with the same name in the same scope.
18594 } else if (II) {
18595 PushOnScopeChains(NewPD, S);
18596 } else
18597 Record->addDecl(NewPD);
18598
18599 return NewPD;
18600}
18601
18602void Sema::ActOnStartFunctionDeclarationDeclarator(
18603 Declarator &Declarator, unsigned TemplateParameterDepth) {
18604 auto &Info = InventedParameterInfos.emplace_back();
18605 TemplateParameterList *ExplicitParams = nullptr;
18606 ArrayRef<TemplateParameterList *> ExplicitLists =
18607 Declarator.getTemplateParameterLists();
18608 if (!ExplicitLists.empty()) {
18609 bool IsMemberSpecialization, IsInvalid;
18610 ExplicitParams = MatchTemplateParametersToScopeSpecifier(
18611 Declarator.getBeginLoc(), Declarator.getIdentifierLoc(),
18612 Declarator.getCXXScopeSpec(), /*TemplateId=*/nullptr,
18613 ExplicitLists, /*IsFriend=*/false, IsMemberSpecialization, IsInvalid,
18614 /*SuppressDiagnostic=*/true);
18615 }
18616 if (ExplicitParams) {
18617 Info.AutoTemplateParameterDepth = ExplicitParams->getDepth();
18618 llvm::append_range(Info.TemplateParams, *ExplicitParams);
18619 Info.NumExplicitTemplateParams = ExplicitParams->size();
18620 } else {
18621 Info.AutoTemplateParameterDepth = TemplateParameterDepth;
18622 Info.NumExplicitTemplateParams = 0;
18623 }
18624}
18625
18626void Sema::ActOnFinishFunctionDeclarationDeclarator(Declarator &Declarator) {
18627 auto &FSI = InventedParameterInfos.back();
18628 if (FSI.TemplateParams.size() > FSI.NumExplicitTemplateParams) {
18629 if (FSI.NumExplicitTemplateParams != 0) {
18630 TemplateParameterList *ExplicitParams =
18631 Declarator.getTemplateParameterLists().back();
18632 Declarator.setInventedTemplateParameterList(
18633 TemplateParameterList::Create(
18634 Context, ExplicitParams->getTemplateLoc(),
18635 ExplicitParams->getLAngleLoc(), FSI.TemplateParams,
18636 ExplicitParams->getRAngleLoc(),
18637 ExplicitParams->getRequiresClause()));
18638 } else {
18639 Declarator.setInventedTemplateParameterList(
18640 TemplateParameterList::Create(
18641 Context, SourceLocation(), SourceLocation(), FSI.TemplateParams,
18642 SourceLocation(), /*RequiresClause=*/nullptr));
18643 }
18644 }
18645 InventedParameterInfos.pop_back();
18646}