Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/Sema/SemaDeclCXX.cpp
Warning:line 1341, column 25
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaDeclCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/Sema -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-04-20-140412-16051-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/Sema/SemaDeclCXX.cpp
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for C++ declarations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTConsumer.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/ASTLambda.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/ComparisonCategories.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/AST/TypeOrdering.h"
27#include "clang/Basic/AttributeCommonInfo.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/Specifiers.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Lex/LiteralSupport.h"
32#include "clang/Lex/Preprocessor.h"
33#include "clang/Sema/CXXFieldCollector.h"
34#include "clang/Sema/DeclSpec.h"
35#include "clang/Sema/Initialization.h"
36#include "clang/Sema/Lookup.h"
37#include "clang/Sema/ParsedTemplate.h"
38#include "clang/Sema/Scope.h"
39#include "clang/Sema/ScopeInfo.h"
40#include "clang/Sema/SemaInternal.h"
41#include "clang/Sema/Template.h"
42#include "llvm/ADT/ScopeExit.h"
43#include "llvm/ADT/SmallString.h"
44#include "llvm/ADT/STLExtras.h"
45#include "llvm/ADT/StringExtras.h"
46#include <map>
47#include <set>
48
49using namespace clang;
50
51//===----------------------------------------------------------------------===//
52// CheckDefaultArgumentVisitor
53//===----------------------------------------------------------------------===//
54
55namespace {
56/// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
57/// the default argument of a parameter to determine whether it
58/// contains any ill-formed subexpressions. For example, this will
59/// diagnose the use of local variables or parameters within the
60/// default argument expression.
61class CheckDefaultArgumentVisitor
62 : public ConstStmtVisitor<CheckDefaultArgumentVisitor, bool> {
63 Sema &S;
64 const Expr *DefaultArg;
65
66public:
67 CheckDefaultArgumentVisitor(Sema &S, const Expr *DefaultArg)
68 : S(S), DefaultArg(DefaultArg) {}
69
70 bool VisitExpr(const Expr *Node);
71 bool VisitDeclRefExpr(const DeclRefExpr *DRE);
72 bool VisitCXXThisExpr(const CXXThisExpr *ThisE);
73 bool VisitLambdaExpr(const LambdaExpr *Lambda);
74 bool VisitPseudoObjectExpr(const PseudoObjectExpr *POE);
75};
76
77/// VisitExpr - Visit all of the children of this expression.
78bool CheckDefaultArgumentVisitor::VisitExpr(const Expr *Node) {
79 bool IsInvalid = false;
80 for (const Stmt *SubStmt : Node->children())
81 IsInvalid |= Visit(SubStmt);
82 return IsInvalid;
83}
84
85/// VisitDeclRefExpr - Visit a reference to a declaration, to
86/// determine whether this declaration can be used in the default
87/// argument expression.
88bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(const DeclRefExpr *DRE) {
89 const NamedDecl *Decl = DRE->getDecl();
90 if (const auto *Param = dyn_cast<ParmVarDecl>(Decl)) {
91 // C++ [dcl.fct.default]p9:
92 // [...] parameters of a function shall not be used in default
93 // argument expressions, even if they are not evaluated. [...]
94 //
95 // C++17 [dcl.fct.default]p9 (by CWG 2082):
96 // [...] A parameter shall not appear as a potentially-evaluated
97 // expression in a default argument. [...]
98 //
99 if (DRE->isNonOdrUse() != NOUR_Unevaluated)
100 return S.Diag(DRE->getBeginLoc(),
101 diag::err_param_default_argument_references_param)
102 << Param->getDeclName() << DefaultArg->getSourceRange();
103 } else if (const auto *VDecl = dyn_cast<VarDecl>(Decl)) {
104 // C++ [dcl.fct.default]p7:
105 // Local variables shall not be used in default argument
106 // expressions.
107 //
108 // C++17 [dcl.fct.default]p7 (by CWG 2082):
109 // A local variable shall not appear as a potentially-evaluated
110 // expression in a default argument.
111 //
112 // C++20 [dcl.fct.default]p7 (DR as part of P0588R1, see also CWG 2346):
113 // Note: A local variable cannot be odr-used (6.3) in a default argument.
114 //
115 if (VDecl->isLocalVarDecl() && !DRE->isNonOdrUse())
116 return S.Diag(DRE->getBeginLoc(),
117 diag::err_param_default_argument_references_local)
118 << VDecl->getDeclName() << DefaultArg->getSourceRange();
119 }
120
121 return false;
122}
123
124/// VisitCXXThisExpr - Visit a C++ "this" expression.
125bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(const CXXThisExpr *ThisE) {
126 // C++ [dcl.fct.default]p8:
127 // The keyword this shall not be used in a default argument of a
128 // member function.
129 return S.Diag(ThisE->getBeginLoc(),
130 diag::err_param_default_argument_references_this)
131 << ThisE->getSourceRange();
132}
133
134bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(
135 const PseudoObjectExpr *POE) {
136 bool Invalid = false;
137 for (const Expr *E : POE->semantics()) {
138 // Look through bindings.
139 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) {
140 E = OVE->getSourceExpr();
141 assert(E && "pseudo-object binding without source expression?")(static_cast <bool> (E && "pseudo-object binding without source expression?"
) ? void (0) : __assert_fail ("E && \"pseudo-object binding without source expression?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 141, __extension__ __PRETTY_FUNCTION__
))
;
142 }
143
144 Invalid |= Visit(E);
145 }
146 return Invalid;
147}
148
149bool CheckDefaultArgumentVisitor::VisitLambdaExpr(const LambdaExpr *Lambda) {
150 // C++11 [expr.lambda.prim]p13:
151 // A lambda-expression appearing in a default argument shall not
152 // implicitly or explicitly capture any entity.
153 if (Lambda->capture_begin() == Lambda->capture_end())
154 return false;
155
156 return S.Diag(Lambda->getBeginLoc(), diag::err_lambda_capture_default_arg);
157}
158} // namespace
159
160void
161Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
162 const CXXMethodDecl *Method) {
163 // If we have an MSAny spec already, don't bother.
164 if (!Method || ComputedEST == EST_MSAny)
165 return;
166
167 const FunctionProtoType *Proto
168 = Method->getType()->getAs<FunctionProtoType>();
169 Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
170 if (!Proto)
171 return;
172
173 ExceptionSpecificationType EST = Proto->getExceptionSpecType();
174
175 // If we have a throw-all spec at this point, ignore the function.
176 if (ComputedEST == EST_None)
177 return;
178
179 if (EST == EST_None && Method->hasAttr<NoThrowAttr>())
180 EST = EST_BasicNoexcept;
181
182 switch (EST) {
183 case EST_Unparsed:
184 case EST_Uninstantiated:
185 case EST_Unevaluated:
186 llvm_unreachable("should not see unresolved exception specs here")::llvm::llvm_unreachable_internal("should not see unresolved exception specs here"
, "clang/lib/Sema/SemaDeclCXX.cpp", 186)
;
187
188 // If this function can throw any exceptions, make a note of that.
189 case EST_MSAny:
190 case EST_None:
191 // FIXME: Whichever we see last of MSAny and None determines our result.
192 // We should make a consistent, order-independent choice here.
193 ClearExceptions();
194 ComputedEST = EST;
195 return;
196 case EST_NoexceptFalse:
197 ClearExceptions();
198 ComputedEST = EST_None;
199 return;
200 // FIXME: If the call to this decl is using any of its default arguments, we
201 // need to search them for potentially-throwing calls.
202 // If this function has a basic noexcept, it doesn't affect the outcome.
203 case EST_BasicNoexcept:
204 case EST_NoexceptTrue:
205 case EST_NoThrow:
206 return;
207 // If we're still at noexcept(true) and there's a throw() callee,
208 // change to that specification.
209 case EST_DynamicNone:
210 if (ComputedEST == EST_BasicNoexcept)
211 ComputedEST = EST_DynamicNone;
212 return;
213 case EST_DependentNoexcept:
214 llvm_unreachable(::llvm::llvm_unreachable_internal("should not generate implicit declarations for dependent cases"
, "clang/lib/Sema/SemaDeclCXX.cpp", 215)
215 "should not generate implicit declarations for dependent cases")::llvm::llvm_unreachable_internal("should not generate implicit declarations for dependent cases"
, "clang/lib/Sema/SemaDeclCXX.cpp", 215)
;
216 case EST_Dynamic:
217 break;
218 }
219 assert(EST == EST_Dynamic && "EST case not considered earlier.")(static_cast <bool> (EST == EST_Dynamic && "EST case not considered earlier."
) ? void (0) : __assert_fail ("EST == EST_Dynamic && \"EST case not considered earlier.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 219, __extension__ __PRETTY_FUNCTION__
))
;
220 assert(ComputedEST != EST_None &&(static_cast <bool> (ComputedEST != EST_None &&
"Shouldn't collect exceptions when throw-all is guaranteed."
) ? void (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 221, __extension__ __PRETTY_FUNCTION__
))
221 "Shouldn't collect exceptions when throw-all is guaranteed.")(static_cast <bool> (ComputedEST != EST_None &&
"Shouldn't collect exceptions when throw-all is guaranteed."
) ? void (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 221, __extension__ __PRETTY_FUNCTION__
))
;
222 ComputedEST = EST_Dynamic;
223 // Record the exceptions in this function's exception specification.
224 for (const auto &E : Proto->exceptions())
225 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
226 Exceptions.push_back(E);
227}
228
229void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) {
230 if (!S || ComputedEST == EST_MSAny)
231 return;
232
233 // FIXME:
234 //
235 // C++0x [except.spec]p14:
236 // [An] implicit exception-specification specifies the type-id T if and
237 // only if T is allowed by the exception-specification of a function directly
238 // invoked by f's implicit definition; f shall allow all exceptions if any
239 // function it directly invokes allows all exceptions, and f shall allow no
240 // exceptions if every function it directly invokes allows no exceptions.
241 //
242 // Note in particular that if an implicit exception-specification is generated
243 // for a function containing a throw-expression, that specification can still
244 // be noexcept(true).
245 //
246 // Note also that 'directly invoked' is not defined in the standard, and there
247 // is no indication that we should only consider potentially-evaluated calls.
248 //
249 // Ultimately we should implement the intent of the standard: the exception
250 // specification should be the set of exceptions which can be thrown by the
251 // implicit definition. For now, we assume that any non-nothrow expression can
252 // throw any exception.
253
254 if (Self->canThrow(S))
255 ComputedEST = EST_None;
256}
257
258ExprResult Sema::ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
259 SourceLocation EqualLoc) {
260 if (RequireCompleteType(Param->getLocation(), Param->getType(),
261 diag::err_typecheck_decl_incomplete_type))
262 return true;
263
264 // C++ [dcl.fct.default]p5
265 // A default argument expression is implicitly converted (clause
266 // 4) to the parameter type. The default argument expression has
267 // the same semantic constraints as the initializer expression in
268 // a declaration of a variable of the parameter type, using the
269 // copy-initialization semantics (8.5).
270 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
271 Param);
272 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
273 EqualLoc);
274 InitializationSequence InitSeq(*this, Entity, Kind, Arg);
275 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
276 if (Result.isInvalid())
277 return true;
278 Arg = Result.getAs<Expr>();
279
280 CheckCompletedExpr(Arg, EqualLoc);
281 Arg = MaybeCreateExprWithCleanups(Arg);
282
283 return Arg;
284}
285
286void Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
287 SourceLocation EqualLoc) {
288 // Add the default argument to the parameter
289 Param->setDefaultArg(Arg);
290
291 // We have already instantiated this parameter; provide each of the
292 // instantiations with the uninstantiated default argument.
293 UnparsedDefaultArgInstantiationsMap::iterator InstPos
294 = UnparsedDefaultArgInstantiations.find(Param);
295 if (InstPos != UnparsedDefaultArgInstantiations.end()) {
296 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
297 InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
298
299 // We're done tracking this parameter's instantiations.
300 UnparsedDefaultArgInstantiations.erase(InstPos);
301 }
302}
303
304/// ActOnParamDefaultArgument - Check whether the default argument
305/// provided for a function parameter is well-formed. If so, attach it
306/// to the parameter declaration.
307void
308Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
309 Expr *DefaultArg) {
310 if (!param || !DefaultArg)
311 return;
312
313 ParmVarDecl *Param = cast<ParmVarDecl>(param);
314 UnparsedDefaultArgLocs.erase(Param);
315
316 auto Fail = [&] {
317 Param->setInvalidDecl();
318 Param->setDefaultArg(new (Context) OpaqueValueExpr(
319 EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue));
320 };
321
322 // Default arguments are only permitted in C++
323 if (!getLangOpts().CPlusPlus) {
324 Diag(EqualLoc, diag::err_param_default_argument)
325 << DefaultArg->getSourceRange();
326 return Fail();
327 }
328
329 // Check for unexpanded parameter packs.
330 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
331 return Fail();
332 }
333
334 // C++11 [dcl.fct.default]p3
335 // A default argument expression [...] shall not be specified for a
336 // parameter pack.
337 if (Param->isParameterPack()) {
338 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
339 << DefaultArg->getSourceRange();
340 // Recover by discarding the default argument.
341 Param->setDefaultArg(nullptr);
342 return;
343 }
344
345 ExprResult Result = ConvertParamDefaultArgument(Param, DefaultArg, EqualLoc);
346 if (Result.isInvalid())
347 return Fail();
348
349 DefaultArg = Result.getAs<Expr>();
350
351 // Check that the default argument is well-formed
352 CheckDefaultArgumentVisitor DefaultArgChecker(*this, DefaultArg);
353 if (DefaultArgChecker.Visit(DefaultArg))
354 return Fail();
355
356 SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
357}
358
359/// ActOnParamUnparsedDefaultArgument - We've seen a default
360/// argument for a function parameter, but we can't parse it yet
361/// because we're inside a class definition. Note that this default
362/// argument will be parsed later.
363void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
364 SourceLocation EqualLoc,
365 SourceLocation ArgLoc) {
366 if (!param)
367 return;
368
369 ParmVarDecl *Param = cast<ParmVarDecl>(param);
370 Param->setUnparsedDefaultArg();
371 UnparsedDefaultArgLocs[Param] = ArgLoc;
372}
373
374/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
375/// the default argument for the parameter param failed.
376void Sema::ActOnParamDefaultArgumentError(Decl *param,
377 SourceLocation EqualLoc) {
378 if (!param)
379 return;
380
381 ParmVarDecl *Param = cast<ParmVarDecl>(param);
382 Param->setInvalidDecl();
383 UnparsedDefaultArgLocs.erase(Param);
384 Param->setDefaultArg(new (Context) OpaqueValueExpr(
385 EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue));
386}
387
388/// CheckExtraCXXDefaultArguments - Check for any extra default
389/// arguments in the declarator, which is not a function declaration
390/// or definition and therefore is not permitted to have default
391/// arguments. This routine should be invoked for every declarator
392/// that is not a function declaration or definition.
393void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
394 // C++ [dcl.fct.default]p3
395 // A default argument expression shall be specified only in the
396 // parameter-declaration-clause of a function declaration or in a
397 // template-parameter (14.1). It shall not be specified for a
398 // parameter pack. If it is specified in a
399 // parameter-declaration-clause, it shall not occur within a
400 // declarator or abstract-declarator of a parameter-declaration.
401 bool MightBeFunction = D.isFunctionDeclarationContext();
402 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
403 DeclaratorChunk &chunk = D.getTypeObject(i);
404 if (chunk.Kind == DeclaratorChunk::Function) {
405 if (MightBeFunction) {
406 // This is a function declaration. It can have default arguments, but
407 // keep looking in case its return type is a function type with default
408 // arguments.
409 MightBeFunction = false;
410 continue;
411 }
412 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
413 ++argIdx) {
414 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
415 if (Param->hasUnparsedDefaultArg()) {
416 std::unique_ptr<CachedTokens> Toks =
417 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens);
418 SourceRange SR;
419 if (Toks->size() > 1)
420 SR = SourceRange((*Toks)[1].getLocation(),
421 Toks->back().getLocation());
422 else
423 SR = UnparsedDefaultArgLocs[Param];
424 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
425 << SR;
426 } else if (Param->getDefaultArg()) {
427 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
428 << Param->getDefaultArg()->getSourceRange();
429 Param->setDefaultArg(nullptr);
430 }
431 }
432 } else if (chunk.Kind != DeclaratorChunk::Paren) {
433 MightBeFunction = false;
434 }
435 }
436}
437
438static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
439 return llvm::any_of(FD->parameters(), [](ParmVarDecl *P) {
440 return P->hasDefaultArg() && !P->hasInheritedDefaultArg();
441 });
442}
443
444/// MergeCXXFunctionDecl - Merge two declarations of the same C++
445/// function, once we already know that they have the same
446/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
447/// error, false otherwise.
448bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
449 Scope *S) {
450 bool Invalid = false;
451
452 // The declaration context corresponding to the scope is the semantic
453 // parent, unless this is a local function declaration, in which case
454 // it is that surrounding function.
455 DeclContext *ScopeDC = New->isLocalExternDecl()
456 ? New->getLexicalDeclContext()
457 : New->getDeclContext();
458
459 // Find the previous declaration for the purpose of default arguments.
460 FunctionDecl *PrevForDefaultArgs = Old;
461 for (/**/; PrevForDefaultArgs;
462 // Don't bother looking back past the latest decl if this is a local
463 // extern declaration; nothing else could work.
464 PrevForDefaultArgs = New->isLocalExternDecl()
465 ? nullptr
466 : PrevForDefaultArgs->getPreviousDecl()) {
467 // Ignore hidden declarations.
468 if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
469 continue;
470
471 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
472 !New->isCXXClassMember()) {
473 // Ignore default arguments of old decl if they are not in
474 // the same scope and this is not an out-of-line definition of
475 // a member function.
476 continue;
477 }
478
479 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
480 // If only one of these is a local function declaration, then they are
481 // declared in different scopes, even though isDeclInScope may think
482 // they're in the same scope. (If both are local, the scope check is
483 // sufficient, and if neither is local, then they are in the same scope.)
484 continue;
485 }
486
487 // We found the right previous declaration.
488 break;
489 }
490
491 // C++ [dcl.fct.default]p4:
492 // For non-template functions, default arguments can be added in
493 // later declarations of a function in the same
494 // scope. Declarations in different scopes have completely
495 // distinct sets of default arguments. That is, declarations in
496 // inner scopes do not acquire default arguments from
497 // declarations in outer scopes, and vice versa. In a given
498 // function declaration, all parameters subsequent to a
499 // parameter with a default argument shall have default
500 // arguments supplied in this or previous declarations. A
501 // default argument shall not be redefined by a later
502 // declaration (not even to the same value).
503 //
504 // C++ [dcl.fct.default]p6:
505 // Except for member functions of class templates, the default arguments
506 // in a member function definition that appears outside of the class
507 // definition are added to the set of default arguments provided by the
508 // member function declaration in the class definition.
509 for (unsigned p = 0, NumParams = PrevForDefaultArgs
510 ? PrevForDefaultArgs->getNumParams()
511 : 0;
512 p < NumParams; ++p) {
513 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p);
514 ParmVarDecl *NewParam = New->getParamDecl(p);
515
516 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false;
517 bool NewParamHasDfl = NewParam->hasDefaultArg();
518
519 if (OldParamHasDfl && NewParamHasDfl) {
520 unsigned DiagDefaultParamID =
521 diag::err_param_default_argument_redefinition;
522
523 // MSVC accepts that default parameters be redefined for member functions
524 // of template class. The new default parameter's value is ignored.
525 Invalid = true;
526 if (getLangOpts().MicrosoftExt) {
527 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New);
528 if (MD && MD->getParent()->getDescribedClassTemplate()) {
529 // Merge the old default argument into the new parameter.
530 NewParam->setHasInheritedDefaultArg();
531 if (OldParam->hasUninstantiatedDefaultArg())
532 NewParam->setUninstantiatedDefaultArg(
533 OldParam->getUninstantiatedDefaultArg());
534 else
535 NewParam->setDefaultArg(OldParam->getInit());
536 DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
537 Invalid = false;
538 }
539 }
540
541 // FIXME: If we knew where the '=' was, we could easily provide a fix-it
542 // hint here. Alternatively, we could walk the type-source information
543 // for NewParam to find the last source location in the type... but it
544 // isn't worth the effort right now. This is the kind of test case that
545 // is hard to get right:
546 // int f(int);
547 // void g(int (*fp)(int) = f);
548 // void g(int (*fp)(int) = &f);
549 Diag(NewParam->getLocation(), DiagDefaultParamID)
550 << NewParam->getDefaultArgRange();
551
552 // Look for the function declaration where the default argument was
553 // actually written, which may be a declaration prior to Old.
554 for (auto Older = PrevForDefaultArgs;
555 OldParam->hasInheritedDefaultArg(); /**/) {
556 Older = Older->getPreviousDecl();
557 OldParam = Older->getParamDecl(p);
558 }
559
560 Diag(OldParam->getLocation(), diag::note_previous_definition)
561 << OldParam->getDefaultArgRange();
562 } else if (OldParamHasDfl) {
563 // Merge the old default argument into the new parameter unless the new
564 // function is a friend declaration in a template class. In the latter
565 // case the default arguments will be inherited when the friend
566 // declaration will be instantiated.
567 if (New->getFriendObjectKind() == Decl::FOK_None ||
568 !New->getLexicalDeclContext()->isDependentContext()) {
569 // It's important to use getInit() here; getDefaultArg()
570 // strips off any top-level ExprWithCleanups.
571 NewParam->setHasInheritedDefaultArg();
572 if (OldParam->hasUnparsedDefaultArg())
573 NewParam->setUnparsedDefaultArg();
574 else if (OldParam->hasUninstantiatedDefaultArg())
575 NewParam->setUninstantiatedDefaultArg(
576 OldParam->getUninstantiatedDefaultArg());
577 else
578 NewParam->setDefaultArg(OldParam->getInit());
579 }
580 } else if (NewParamHasDfl) {
581 if (New->getDescribedFunctionTemplate()) {
582 // Paragraph 4, quoted above, only applies to non-template functions.
583 Diag(NewParam->getLocation(),
584 diag::err_param_default_argument_template_redecl)
585 << NewParam->getDefaultArgRange();
586 Diag(PrevForDefaultArgs->getLocation(),
587 diag::note_template_prev_declaration)
588 << false;
589 } else if (New->getTemplateSpecializationKind()
590 != TSK_ImplicitInstantiation &&
591 New->getTemplateSpecializationKind() != TSK_Undeclared) {
592 // C++ [temp.expr.spec]p21:
593 // Default function arguments shall not be specified in a declaration
594 // or a definition for one of the following explicit specializations:
595 // - the explicit specialization of a function template;
596 // - the explicit specialization of a member function template;
597 // - the explicit specialization of a member function of a class
598 // template where the class template specialization to which the
599 // member function specialization belongs is implicitly
600 // instantiated.
601 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
602 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
603 << New->getDeclName()
604 << NewParam->getDefaultArgRange();
605 } else if (New->getDeclContext()->isDependentContext()) {
606 // C++ [dcl.fct.default]p6 (DR217):
607 // Default arguments for a member function of a class template shall
608 // be specified on the initial declaration of the member function
609 // within the class template.
610 //
611 // Reading the tea leaves a bit in DR217 and its reference to DR205
612 // leads me to the conclusion that one cannot add default function
613 // arguments for an out-of-line definition of a member function of a
614 // dependent type.
615 int WhichKind = 2;
616 if (CXXRecordDecl *Record
617 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
618 if (Record->getDescribedClassTemplate())
619 WhichKind = 0;
620 else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
621 WhichKind = 1;
622 else
623 WhichKind = 2;
624 }
625
626 Diag(NewParam->getLocation(),
627 diag::err_param_default_argument_member_template_redecl)
628 << WhichKind
629 << NewParam->getDefaultArgRange();
630 }
631 }
632 }
633
634 // DR1344: If a default argument is added outside a class definition and that
635 // default argument makes the function a special member function, the program
636 // is ill-formed. This can only happen for constructors.
637 if (isa<CXXConstructorDecl>(New) &&
638 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
639 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
640 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
641 if (NewSM != OldSM) {
642 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
643 assert(NewParam->hasDefaultArg())(static_cast <bool> (NewParam->hasDefaultArg()) ? void
(0) : __assert_fail ("NewParam->hasDefaultArg()", "clang/lib/Sema/SemaDeclCXX.cpp"
, 643, __extension__ __PRETTY_FUNCTION__))
;
644 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
645 << NewParam->getDefaultArgRange() << NewSM;
646 Diag(Old->getLocation(), diag::note_previous_declaration);
647 }
648 }
649
650 const FunctionDecl *Def;
651 // C++11 [dcl.constexpr]p1: If any declaration of a function or function
652 // template has a constexpr specifier then all its declarations shall
653 // contain the constexpr specifier.
654 if (New->getConstexprKind() != Old->getConstexprKind()) {
655 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
656 << New << static_cast<int>(New->getConstexprKind())
657 << static_cast<int>(Old->getConstexprKind());
658 Diag(Old->getLocation(), diag::note_previous_declaration);
659 Invalid = true;
660 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
661 Old->isDefined(Def) &&
662 // If a friend function is inlined but does not have 'inline'
663 // specifier, it is a definition. Do not report attribute conflict
664 // in this case, redefinition will be diagnosed later.
665 (New->isInlineSpecified() ||
666 New->getFriendObjectKind() == Decl::FOK_None)) {
667 // C++11 [dcl.fcn.spec]p4:
668 // If the definition of a function appears in a translation unit before its
669 // first declaration as inline, the program is ill-formed.
670 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
671 Diag(Def->getLocation(), diag::note_previous_definition);
672 Invalid = true;
673 }
674
675 // C++17 [temp.deduct.guide]p3:
676 // Two deduction guide declarations in the same translation unit
677 // for the same class template shall not have equivalent
678 // parameter-declaration-clauses.
679 if (isa<CXXDeductionGuideDecl>(New) &&
680 !New->isFunctionTemplateSpecialization() && isVisible(Old)) {
681 Diag(New->getLocation(), diag::err_deduction_guide_redeclared);
682 Diag(Old->getLocation(), diag::note_previous_declaration);
683 }
684
685 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
686 // argument expression, that declaration shall be a definition and shall be
687 // the only declaration of the function or function template in the
688 // translation unit.
689 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
690 functionDeclHasDefaultArgument(Old)) {
691 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
692 Diag(Old->getLocation(), diag::note_previous_declaration);
693 Invalid = true;
694 }
695
696 // C++11 [temp.friend]p4 (DR329):
697 // When a function is defined in a friend function declaration in a class
698 // template, the function is instantiated when the function is odr-used.
699 // The same restrictions on multiple declarations and definitions that
700 // apply to non-template function declarations and definitions also apply
701 // to these implicit definitions.
702 const FunctionDecl *OldDefinition = nullptr;
703 if (New->isThisDeclarationInstantiatedFromAFriendDefinition() &&
704 Old->isDefined(OldDefinition, true))
705 CheckForFunctionRedefinition(New, OldDefinition);
706
707 return Invalid;
708}
709
710NamedDecl *
711Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D,
712 MultiTemplateParamsArg TemplateParamLists) {
713 assert(D.isDecompositionDeclarator())(static_cast <bool> (D.isDecompositionDeclarator()) ? void
(0) : __assert_fail ("D.isDecompositionDeclarator()", "clang/lib/Sema/SemaDeclCXX.cpp"
, 713, __extension__ __PRETTY_FUNCTION__))
;
714 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
715
716 // The syntax only allows a decomposition declarator as a simple-declaration,
717 // a for-range-declaration, or a condition in Clang, but we parse it in more
718 // cases than that.
719 if (!D.mayHaveDecompositionDeclarator()) {
720 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
721 << Decomp.getSourceRange();
722 return nullptr;
723 }
724
725 if (!TemplateParamLists.empty()) {
726 // FIXME: There's no rule against this, but there are also no rules that
727 // would actually make it usable, so we reject it for now.
728 Diag(TemplateParamLists.front()->getTemplateLoc(),
729 diag::err_decomp_decl_template);
730 return nullptr;
731 }
732
733 Diag(Decomp.getLSquareLoc(),
734 !getLangOpts().CPlusPlus17
735 ? diag::ext_decomp_decl
736 : D.getContext() == DeclaratorContext::Condition
737 ? diag::ext_decomp_decl_cond
738 : diag::warn_cxx14_compat_decomp_decl)
739 << Decomp.getSourceRange();
740
741 // The semantic context is always just the current context.
742 DeclContext *const DC = CurContext;
743
744 // C++17 [dcl.dcl]/8:
745 // The decl-specifier-seq shall contain only the type-specifier auto
746 // and cv-qualifiers.
747 // C++2a [dcl.dcl]/8:
748 // If decl-specifier-seq contains any decl-specifier other than static,
749 // thread_local, auto, or cv-qualifiers, the program is ill-formed.
750 auto &DS = D.getDeclSpec();
751 {
752 SmallVector<StringRef, 8> BadSpecifiers;
753 SmallVector<SourceLocation, 8> BadSpecifierLocs;
754 SmallVector<StringRef, 8> CPlusPlus20Specifiers;
755 SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs;
756 if (auto SCS = DS.getStorageClassSpec()) {
757 if (SCS == DeclSpec::SCS_static) {
758 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS));
759 CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc());
760 } else {
761 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS));
762 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc());
763 }
764 }
765 if (auto TSCS = DS.getThreadStorageClassSpec()) {
766 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS));
767 CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc());
768 }
769 if (DS.hasConstexprSpecifier()) {
770 BadSpecifiers.push_back(
771 DeclSpec::getSpecifierName(DS.getConstexprSpecifier()));
772 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc());
773 }
774 if (DS.isInlineSpecified()) {
775 BadSpecifiers.push_back("inline");
776 BadSpecifierLocs.push_back(DS.getInlineSpecLoc());
777 }
778 if (!BadSpecifiers.empty()) {
779 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec);
780 Err << (int)BadSpecifiers.size()
781 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " ");
782 // Don't add FixItHints to remove the specifiers; we do still respect
783 // them when building the underlying variable.
784 for (auto Loc : BadSpecifierLocs)
785 Err << SourceRange(Loc, Loc);
786 } else if (!CPlusPlus20Specifiers.empty()) {
787 auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(),
788 getLangOpts().CPlusPlus20
789 ? diag::warn_cxx17_compat_decomp_decl_spec
790 : diag::ext_decomp_decl_spec);
791 Warn << (int)CPlusPlus20Specifiers.size()
792 << llvm::join(CPlusPlus20Specifiers.begin(),
793 CPlusPlus20Specifiers.end(), " ");
794 for (auto Loc : CPlusPlus20SpecifierLocs)
795 Warn << SourceRange(Loc, Loc);
796 }
797 // We can't recover from it being declared as a typedef.
798 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
799 return nullptr;
800 }
801
802 // C++2a [dcl.struct.bind]p1:
803 // A cv that includes volatile is deprecated
804 if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) &&
805 getLangOpts().CPlusPlus20)
806 Diag(DS.getVolatileSpecLoc(),
807 diag::warn_deprecated_volatile_structured_binding);
808
809 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
810 QualType R = TInfo->getType();
811
812 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
813 UPPC_DeclarationType))
814 D.setInvalidType();
815
816 // The syntax only allows a single ref-qualifier prior to the decomposition
817 // declarator. No other declarator chunks are permitted. Also check the type
818 // specifier here.
819 if (DS.getTypeSpecType() != DeclSpec::TST_auto ||
820 D.hasGroupingParens() || D.getNumTypeObjects() > 1 ||
821 (D.getNumTypeObjects() == 1 &&
822 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) {
823 Diag(Decomp.getLSquareLoc(),
824 (D.hasGroupingParens() ||
825 (D.getNumTypeObjects() &&
826 D.getTypeObject(0).Kind == DeclaratorChunk::Paren))
827 ? diag::err_decomp_decl_parens
828 : diag::err_decomp_decl_type)
829 << R;
830
831 // In most cases, there's no actual problem with an explicitly-specified
832 // type, but a function type won't work here, and ActOnVariableDeclarator
833 // shouldn't be called for such a type.
834 if (R->isFunctionType())
835 D.setInvalidType();
836 }
837
838 // Build the BindingDecls.
839 SmallVector<BindingDecl*, 8> Bindings;
840
841 // Build the BindingDecls.
842 for (auto &B : D.getDecompositionDeclarator().bindings()) {
843 // Check for name conflicts.
844 DeclarationNameInfo NameInfo(B.Name, B.NameLoc);
845 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
846 ForVisibleRedeclaration);
847 LookupName(Previous, S,
848 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit());
849
850 // It's not permitted to shadow a template parameter name.
851 if (Previous.isSingleResult() &&
852 Previous.getFoundDecl()->isTemplateParameter()) {
853 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
854 Previous.getFoundDecl());
855 Previous.clear();
856 }
857
858 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name);
859
860 // Find the shadowed declaration before filtering for scope.
861 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
862 ? getShadowedDeclaration(BD, Previous)
863 : nullptr;
864
865 bool ConsiderLinkage = DC->isFunctionOrMethod() &&
866 DS.getStorageClassSpec() == DeclSpec::SCS_extern;
867 FilterLookupForScope(Previous, DC, S, ConsiderLinkage,
868 /*AllowInlineNamespace*/false);
869
870 if (!Previous.empty()) {
871 auto *Old = Previous.getRepresentativeDecl();
872 Diag(B.NameLoc, diag::err_redefinition) << B.Name;
873 Diag(Old->getLocation(), diag::note_previous_definition);
874 } else if (ShadowedDecl && !D.isRedeclaration()) {
875 CheckShadow(BD, ShadowedDecl, Previous);
876 }
877 PushOnScopeChains(BD, S, true);
878 Bindings.push_back(BD);
879 ParsingInitForAutoVars.insert(BD);
880 }
881
882 // There are no prior lookup results for the variable itself, because it
883 // is unnamed.
884 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr,
885 Decomp.getLSquareLoc());
886 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
887 ForVisibleRedeclaration);
888
889 // Build the variable that holds the non-decomposed object.
890 bool AddToScope = true;
891 NamedDecl *New =
892 ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
893 MultiTemplateParamsArg(), AddToScope, Bindings);
894 if (AddToScope) {
895 S->AddDecl(New);
896 CurContext->addHiddenDecl(New);
897 }
898
899 if (isInOpenMPDeclareTargetContext())
900 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
901
902 return New;
903}
904
905static bool checkSimpleDecomposition(
906 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src,
907 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType,
908 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) {
909 if ((int64_t)Bindings.size() != NumElems) {
910 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
911 << DecompType << (unsigned)Bindings.size()
912 << (unsigned)NumElems.getLimitedValue(UINT_MAX(2147483647 *2U +1U))
913 << toString(NumElems, 10) << (NumElems < Bindings.size());
914 return true;
915 }
916
917 unsigned I = 0;
918 for (auto *B : Bindings) {
919 SourceLocation Loc = B->getLocation();
920 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
921 if (E.isInvalid())
922 return true;
923 E = GetInit(Loc, E.get(), I++);
924 if (E.isInvalid())
925 return true;
926 B->setBinding(ElemType, E.get());
927 }
928
929 return false;
930}
931
932static bool checkArrayLikeDecomposition(Sema &S,
933 ArrayRef<BindingDecl *> Bindings,
934 ValueDecl *Src, QualType DecompType,
935 const llvm::APSInt &NumElems,
936 QualType ElemType) {
937 return checkSimpleDecomposition(
938 S, Bindings, Src, DecompType, NumElems, ElemType,
939 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
940 ExprResult E = S.ActOnIntegerConstant(Loc, I);
941 if (E.isInvalid())
942 return ExprError();
943 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc);
944 });
945}
946
947static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
948 ValueDecl *Src, QualType DecompType,
949 const ConstantArrayType *CAT) {
950 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType,
951 llvm::APSInt(CAT->getSize()),
952 CAT->getElementType());
953}
954
955static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
956 ValueDecl *Src, QualType DecompType,
957 const VectorType *VT) {
958 return checkArrayLikeDecomposition(
959 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()),
960 S.Context.getQualifiedType(VT->getElementType(),
961 DecompType.getQualifiers()));
962}
963
964static bool checkComplexDecomposition(Sema &S,
965 ArrayRef<BindingDecl *> Bindings,
966 ValueDecl *Src, QualType DecompType,
967 const ComplexType *CT) {
968 return checkSimpleDecomposition(
969 S, Bindings, Src, DecompType, llvm::APSInt::get(2),
970 S.Context.getQualifiedType(CT->getElementType(),
971 DecompType.getQualifiers()),
972 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
973 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base);
974 });
975}
976
977static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy,
978 TemplateArgumentListInfo &Args,
979 const TemplateParameterList *Params) {
980 SmallString<128> SS;
981 llvm::raw_svector_ostream OS(SS);
982 bool First = true;
983 unsigned I = 0;
984 for (auto &Arg : Args.arguments()) {
985 if (!First)
986 OS << ", ";
987 Arg.getArgument().print(PrintingPolicy, OS,
988 TemplateParameterList::shouldIncludeTypeForArgument(
989 PrintingPolicy, Params, I));
990 First = false;
991 I++;
992 }
993 return std::string(OS.str());
994}
995
996static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup,
997 SourceLocation Loc, StringRef Trait,
998 TemplateArgumentListInfo &Args,
999 unsigned DiagID) {
1000 auto DiagnoseMissing = [&] {
1001 if (DiagID)
1002 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(),
1003 Args, /*Params*/ nullptr);
1004 return true;
1005 };
1006
1007 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine.
1008 NamespaceDecl *Std = S.getStdNamespace();
1009 if (!Std)
1010 return DiagnoseMissing();
1011
1012 // Look up the trait itself, within namespace std. We can diagnose various
1013 // problems with this lookup even if we've been asked to not diagnose a
1014 // missing specialization, because this can only fail if the user has been
1015 // declaring their own names in namespace std or we don't support the
1016 // standard library implementation in use.
1017 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait),
1018 Loc, Sema::LookupOrdinaryName);
1019 if (!S.LookupQualifiedName(Result, Std))
1020 return DiagnoseMissing();
1021 if (Result.isAmbiguous())
1022 return true;
1023
1024 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>();
1025 if (!TraitTD) {
1026 Result.suppressDiagnostics();
1027 NamedDecl *Found = *Result.begin();
1028 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait;
1029 S.Diag(Found->getLocation(), diag::note_declared_at);
1030 return true;
1031 }
1032
1033 // Build the template-id.
1034 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args);
1035 if (TraitTy.isNull())
1036 return true;
1037 if (!S.isCompleteType(Loc, TraitTy)) {
1038 if (DiagID)
1039 S.RequireCompleteType(
1040 Loc, TraitTy, DiagID,
1041 printTemplateArgs(S.Context.getPrintingPolicy(), Args,
1042 TraitTD->getTemplateParameters()));
1043 return true;
1044 }
1045
1046 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl();
1047 assert(RD && "specialization of class template is not a class?")(static_cast <bool> (RD && "specialization of class template is not a class?"
) ? void (0) : __assert_fail ("RD && \"specialization of class template is not a class?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 1047, __extension__ __PRETTY_FUNCTION__
))
;
1048
1049 // Look up the member of the trait type.
1050 S.LookupQualifiedName(TraitMemberLookup, RD);
1051 return TraitMemberLookup.isAmbiguous();
1052}
1053
1054static TemplateArgumentLoc
1055getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T,
1056 uint64_t I) {
1057 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T);
1058 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc);
1059}
1060
1061static TemplateArgumentLoc
1062getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) {
1063 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc);
1064}
1065
1066namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; }
1067
1068static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T,
1069 llvm::APSInt &Size) {
1070 EnterExpressionEvaluationContext ContextRAII(
1071 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1072
1073 DeclarationName Value = S.PP.getIdentifierInfo("value");
1074 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName);
1075
1076 // Form template argument list for tuple_size<T>.
1077 TemplateArgumentListInfo Args(Loc, Loc);
1078 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1079
1080 // If there's no tuple_size specialization or the lookup of 'value' is empty,
1081 // it's not tuple-like.
1082 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) ||
1083 R.empty())
1084 return IsTupleLike::NotTupleLike;
1085
1086 // If we get this far, we've committed to the tuple interpretation, but
1087 // we can still fail if there actually isn't a usable ::value.
1088
1089 struct ICEDiagnoser : Sema::VerifyICEDiagnoser {
1090 LookupResult &R;
1091 TemplateArgumentListInfo &Args;
1092 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args)
1093 : R(R), Args(Args) {}
1094 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
1095 SourceLocation Loc) override {
1096 return S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant)
1097 << printTemplateArgs(S.Context.getPrintingPolicy(), Args,
1098 /*Params*/ nullptr);
1099 }
1100 } Diagnoser(R, Args);
1101
1102 ExprResult E =
1103 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false);
1104 if (E.isInvalid())
1105 return IsTupleLike::Error;
1106
1107 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser);
1108 if (E.isInvalid())
1109 return IsTupleLike::Error;
1110
1111 return IsTupleLike::TupleLike;
1112}
1113
1114/// \return std::tuple_element<I, T>::type.
1115static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc,
1116 unsigned I, QualType T) {
1117 // Form template argument list for tuple_element<I, T>.
1118 TemplateArgumentListInfo Args(Loc, Loc);
1119 Args.addArgument(
1120 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1121 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1122
1123 DeclarationName TypeDN = S.PP.getIdentifierInfo("type");
1124 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName);
1125 if (lookupStdTypeTraitMember(
1126 S, R, Loc, "tuple_element", Args,
1127 diag::err_decomp_decl_std_tuple_element_not_specialized))
1128 return QualType();
1129
1130 auto *TD = R.getAsSingle<TypeDecl>();
1131 if (!TD) {
1132 R.suppressDiagnostics();
1133 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized)
1134 << printTemplateArgs(S.Context.getPrintingPolicy(), Args,
1135 /*Params*/ nullptr);
1136 if (!R.empty())
1137 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at);
1138 return QualType();
1139 }
1140
1141 return S.Context.getTypeDeclType(TD);
1142}
1143
1144namespace {
1145struct InitializingBinding {
1146 Sema &S;
1147 InitializingBinding(Sema &S, BindingDecl *BD) : S(S) {
1148 Sema::CodeSynthesisContext Ctx;
1149 Ctx.Kind = Sema::CodeSynthesisContext::InitializingStructuredBinding;
1150 Ctx.PointOfInstantiation = BD->getLocation();
1151 Ctx.Entity = BD;
1152 S.pushCodeSynthesisContext(Ctx);
1153 }
1154 ~InitializingBinding() {
1155 S.popCodeSynthesisContext();
1156 }
1157};
1158}
1159
1160static bool checkTupleLikeDecomposition(Sema &S,
1161 ArrayRef<BindingDecl *> Bindings,
1162 VarDecl *Src, QualType DecompType,
1163 const llvm::APSInt &TupleSize) {
1164 if ((int64_t)Bindings.size() != TupleSize) {
1165 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1166 << DecompType << (unsigned)Bindings.size()
1167 << (unsigned)TupleSize.getLimitedValue(UINT_MAX(2147483647 *2U +1U))
1168 << toString(TupleSize, 10) << (TupleSize < Bindings.size());
1169 return true;
1170 }
1171
1172 if (Bindings.empty())
1173 return false;
1174
1175 DeclarationName GetDN = S.PP.getIdentifierInfo("get");
1176
1177 // [dcl.decomp]p3:
1178 // The unqualified-id get is looked up in the scope of E by class member
1179 // access lookup ...
1180 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName);
1181 bool UseMemberGet = false;
1182 if (S.isCompleteType(Src->getLocation(), DecompType)) {
1183 if (auto *RD = DecompType->getAsCXXRecordDecl())
1184 S.LookupQualifiedName(MemberGet, RD);
1185 if (MemberGet.isAmbiguous())
1186 return true;
1187 // ... and if that finds at least one declaration that is a function
1188 // template whose first template parameter is a non-type parameter ...
1189 for (NamedDecl *D : MemberGet) {
1190 if (FunctionTemplateDecl *FTD =
1191 dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) {
1192 TemplateParameterList *TPL = FTD->getTemplateParameters();
1193 if (TPL->size() != 0 &&
1194 isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) {
1195 // ... the initializer is e.get<i>().
1196 UseMemberGet = true;
1197 break;
1198 }
1199 }
1200 }
1201 }
1202
1203 unsigned I = 0;
1204 for (auto *B : Bindings) {
1205 InitializingBinding InitContext(S, B);
1206 SourceLocation Loc = B->getLocation();
1207
1208 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1209 if (E.isInvalid())
1210 return true;
1211
1212 // e is an lvalue if the type of the entity is an lvalue reference and
1213 // an xvalue otherwise
1214 if (!Src->getType()->isLValueReferenceType())
1215 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp,
1216 E.get(), nullptr, VK_XValue,
1217 FPOptionsOverride());
1218
1219 TemplateArgumentListInfo Args(Loc, Loc);
1220 Args.addArgument(
1221 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1222
1223 if (UseMemberGet) {
1224 // if [lookup of member get] finds at least one declaration, the
1225 // initializer is e.get<i-1>().
1226 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false,
1227 CXXScopeSpec(), SourceLocation(), nullptr,
1228 MemberGet, &Args, nullptr);
1229 if (E.isInvalid())
1230 return true;
1231
1232 E = S.BuildCallExpr(nullptr, E.get(), Loc, None, Loc);
1233 } else {
1234 // Otherwise, the initializer is get<i-1>(e), where get is looked up
1235 // in the associated namespaces.
1236 Expr *Get = UnresolvedLookupExpr::Create(
1237 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(),
1238 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args,
1239 UnresolvedSetIterator(), UnresolvedSetIterator());
1240
1241 Expr *Arg = E.get();
1242 E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc);
1243 }
1244 if (E.isInvalid())
1245 return true;
1246 Expr *Init = E.get();
1247
1248 // Given the type T designated by std::tuple_element<i - 1, E>::type,
1249 QualType T = getTupleLikeElementType(S, Loc, I, DecompType);
1250 if (T.isNull())
1251 return true;
1252
1253 // each vi is a variable of type "reference to T" initialized with the
1254 // initializer, where the reference is an lvalue reference if the
1255 // initializer is an lvalue and an rvalue reference otherwise
1256 QualType RefType =
1257 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName());
1258 if (RefType.isNull())
1259 return true;
1260 auto *RefVD = VarDecl::Create(
1261 S.Context, Src->getDeclContext(), Loc, Loc,
1262 B->getDeclName().getAsIdentifierInfo(), RefType,
1263 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass());
1264 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext());
1265 RefVD->setTSCSpec(Src->getTSCSpec());
1266 RefVD->setImplicit();
1267 if (Src->isInlineSpecified())
1268 RefVD->setInlineSpecified();
1269 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD);
1270
1271 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD);
1272 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc);
1273 InitializationSequence Seq(S, Entity, Kind, Init);
1274 E = Seq.Perform(S, Entity, Kind, Init);
1275 if (E.isInvalid())
1276 return true;
1277 E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false);
1278 if (E.isInvalid())
1279 return true;
1280 RefVD->setInit(E.get());
1281 S.CheckCompleteVariableDeclaration(RefVD);
1282
1283 E = S.BuildDeclarationNameExpr(CXXScopeSpec(),
1284 DeclarationNameInfo(B->getDeclName(), Loc),
1285 RefVD);
1286 if (E.isInvalid())
1287 return true;
1288
1289 B->setBinding(T, E.get());
1290 I++;
1291 }
1292
1293 return false;
1294}
1295
1296/// Find the base class to decompose in a built-in decomposition of a class type.
1297/// This base class search is, unfortunately, not quite like any other that we
1298/// perform anywhere else in C++.
1299static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc,
1300 const CXXRecordDecl *RD,
1301 CXXCastPath &BasePath) {
1302 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier,
1303 CXXBasePath &Path) {
1304 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields();
1305 };
1306
1307 const CXXRecordDecl *ClassWithFields = nullptr;
1308 AccessSpecifier AS = AS_public;
1309 if (RD->hasDirectFields())
16
Assuming the condition is false
17
Taking false branch
1310 // [dcl.decomp]p4:
1311 // Otherwise, all of E's non-static data members shall be public direct
1312 // members of E ...
1313 ClassWithFields = RD;
1314 else {
1315 // ... or of ...
1316 CXXBasePaths Paths;
1317 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD));
1318 if (!RD->lookupInBases(BaseHasFields, Paths)) {
18
Assuming the condition is false
19
Taking false branch
1319 // If no classes have fields, just decompose RD itself. (This will work
1320 // if and only if zero bindings were provided.)
1321 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public);
1322 }
1323
1324 CXXBasePath *BestPath = nullptr;
20
'BestPath' initialized to a null pointer value
1325 for (auto &P : Paths) {
1326 if (!BestPath)
1327 BestPath = &P;
1328 else if (!S.Context.hasSameType(P.back().Base->getType(),
1329 BestPath->back().Base->getType())) {
1330 // ... the same ...
1331 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1332 << false << RD << BestPath->back().Base->getType()
1333 << P.back().Base->getType();
1334 return DeclAccessPair();
1335 } else if (P.Access < BestPath->Access) {
1336 BestPath = &P;
1337 }
1338 }
1339
1340 // ... unambiguous ...
1341 QualType BaseType = BestPath->back().Base->getType();
21
Called C++ object pointer is null
1342 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) {
1343 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base)
1344 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths);
1345 return DeclAccessPair();
1346 }
1347
1348 // ... [accessible, implied by other rules] base class of E.
1349 S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD),
1350 *BestPath, diag::err_decomp_decl_inaccessible_base);
1351 AS = BestPath->Access;
1352
1353 ClassWithFields = BaseType->getAsCXXRecordDecl();
1354 S.BuildBasePathArray(Paths, BasePath);
1355 }
1356
1357 // The above search did not check whether the selected class itself has base
1358 // classes with fields, so check that now.
1359 CXXBasePaths Paths;
1360 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) {
1361 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1362 << (ClassWithFields == RD) << RD << ClassWithFields
1363 << Paths.front().back().Base->getType();
1364 return DeclAccessPair();
1365 }
1366
1367 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS);
1368}
1369
1370static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
1371 ValueDecl *Src, QualType DecompType,
1372 const CXXRecordDecl *OrigRD) {
1373 if (S.RequireCompleteType(Src->getLocation(), DecompType,
13
Assuming the condition is false
14
Taking false branch
1374 diag::err_incomplete_type))
1375 return true;
1376
1377 CXXCastPath BasePath;
1378 DeclAccessPair BasePair =
1379 findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath);
15
Calling 'findDecomposableBaseClass'
1380 const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl());
1381 if (!RD)
1382 return true;
1383 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD),
1384 DecompType.getQualifiers());
1385
1386 auto DiagnoseBadNumberOfBindings = [&]() -> bool {
1387 unsigned NumFields = llvm::count_if(
1388 RD->fields(), [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); });
1389 assert(Bindings.size() != NumFields)(static_cast <bool> (Bindings.size() != NumFields) ? void
(0) : __assert_fail ("Bindings.size() != NumFields", "clang/lib/Sema/SemaDeclCXX.cpp"
, 1389, __extension__ __PRETTY_FUNCTION__))
;
1390 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1391 << DecompType << (unsigned)Bindings.size() << NumFields << NumFields
1392 << (NumFields < Bindings.size());
1393 return true;
1394 };
1395
1396 // all of E's non-static data members shall be [...] well-formed
1397 // when named as e.name in the context of the structured binding,
1398 // E shall not have an anonymous union member, ...
1399 unsigned I = 0;
1400 for (auto *FD : RD->fields()) {
1401 if (FD->isUnnamedBitfield())
1402 continue;
1403
1404 // All the non-static data members are required to be nameable, so they
1405 // must all have names.
1406 if (!FD->getDeclName()) {
1407 if (RD->isLambda()) {
1408 S.Diag(Src->getLocation(), diag::err_decomp_decl_lambda);
1409 S.Diag(RD->getLocation(), diag::note_lambda_decl);
1410 return true;
1411 }
1412
1413 if (FD->isAnonymousStructOrUnion()) {
1414 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member)
1415 << DecompType << FD->getType()->isUnionType();
1416 S.Diag(FD->getLocation(), diag::note_declared_at);
1417 return true;
1418 }
1419
1420 // FIXME: Are there any other ways we could have an anonymous member?
1421 }
1422
1423 // We have a real field to bind.
1424 if (I >= Bindings.size())
1425 return DiagnoseBadNumberOfBindings();
1426 auto *B = Bindings[I++];
1427 SourceLocation Loc = B->getLocation();
1428
1429 // The field must be accessible in the context of the structured binding.
1430 // We already checked that the base class is accessible.
1431 // FIXME: Add 'const' to AccessedEntity's classes so we can remove the
1432 // const_cast here.
1433 S.CheckStructuredBindingMemberAccess(
1434 Loc, const_cast<CXXRecordDecl *>(OrigRD),
1435 DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess(
1436 BasePair.getAccess(), FD->getAccess())));
1437
1438 // Initialize the binding to Src.FD.
1439 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1440 if (E.isInvalid())
1441 return true;
1442 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase,
1443 VK_LValue, &BasePath);
1444 if (E.isInvalid())
1445 return true;
1446 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc,
1447 CXXScopeSpec(), FD,
1448 DeclAccessPair::make(FD, FD->getAccess()),
1449 DeclarationNameInfo(FD->getDeclName(), Loc));
1450 if (E.isInvalid())
1451 return true;
1452
1453 // If the type of the member is T, the referenced type is cv T, where cv is
1454 // the cv-qualification of the decomposition expression.
1455 //
1456 // FIXME: We resolve a defect here: if the field is mutable, we do not add
1457 // 'const' to the type of the field.
1458 Qualifiers Q = DecompType.getQualifiers();
1459 if (FD->isMutable())
1460 Q.removeConst();
1461 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get());
1462 }
1463
1464 if (I != Bindings.size())
1465 return DiagnoseBadNumberOfBindings();
1466
1467 return false;
1468}
1469
1470void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) {
1471 QualType DecompType = DD->getType();
1472
1473 // If the type of the decomposition is dependent, then so is the type of
1474 // each binding.
1475 if (DecompType->isDependentType()) {
1
Assuming the condition is false
2
Taking false branch
1476 for (auto *B : DD->bindings())
1477 B->setType(Context.DependentTy);
1478 return;
1479 }
1480
1481 DecompType = DecompType.getNonReferenceType();
1482 ArrayRef<BindingDecl*> Bindings = DD->bindings();
1483
1484 // C++1z [dcl.decomp]/2:
1485 // If E is an array type [...]
1486 // As an extension, we also support decomposition of built-in complex and
1487 // vector types.
1488 if (auto *CAT
2.1
'CAT' is null
= Context.getAsConstantArrayType(DecompType)) {
3
Taking false branch
1489 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT))
1490 DD->setInvalidDecl();
1491 return;
1492 }
1493 if (auto *VT
4.1
'VT' is null
= DecompType->getAs<VectorType>()) {
4
Assuming the object is not a 'VectorType'
5
Taking false branch
1494 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT))
1495 DD->setInvalidDecl();
1496 return;
1497 }
1498 if (auto *CT
6.1
'CT' is null
= DecompType->getAs<ComplexType>()) {
6
Assuming the object is not a 'ComplexType'
7
Taking false branch
1499 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT))
1500 DD->setInvalidDecl();
1501 return;
1502 }
1503
1504 // C++1z [dcl.decomp]/3:
1505 // if the expression std::tuple_size<E>::value is a well-formed integral
1506 // constant expression, [...]
1507 llvm::APSInt TupleSize(32);
1508 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) {
8
Control jumps to 'case NotTupleLike:' at line 1518
1509 case IsTupleLike::Error:
1510 DD->setInvalidDecl();
1511 return;
1512
1513 case IsTupleLike::TupleLike:
1514 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize))
1515 DD->setInvalidDecl();
1516 return;
1517
1518 case IsTupleLike::NotTupleLike:
1519 break;
9
Execution continues on line 1524
1520 }
1521
1522 // C++1z [dcl.dcl]/8:
1523 // [E shall be of array or non-union class type]
1524 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl();
1525 if (!RD || RD->isUnion()) {
10
Assuming 'RD' is non-null
11
Taking false branch
1526 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type)
1527 << DD << !RD << DecompType;
1528 DD->setInvalidDecl();
1529 return;
1530 }
1531
1532 // C++1z [dcl.decomp]/4:
1533 // all of E's non-static data members shall be [...] direct members of
1534 // E or of the same unambiguous public base class of E, ...
1535 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD))
12
Calling 'checkMemberDecomposition'
1536 DD->setInvalidDecl();
1537}
1538
1539/// Merge the exception specifications of two variable declarations.
1540///
1541/// This is called when there's a redeclaration of a VarDecl. The function
1542/// checks if the redeclaration might have an exception specification and
1543/// validates compatibility and merges the specs if necessary.
1544void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
1545 // Shortcut if exceptions are disabled.
1546 if (!getLangOpts().CXXExceptions)
1547 return;
1548
1549 assert(Context.hasSameType(New->getType(), Old->getType()) &&(static_cast <bool> (Context.hasSameType(New->getType
(), Old->getType()) && "Should only be called if types are otherwise the same."
) ? void (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 1550, __extension__ __PRETTY_FUNCTION__
))
1550 "Should only be called if types are otherwise the same.")(static_cast <bool> (Context.hasSameType(New->getType
(), Old->getType()) && "Should only be called if types are otherwise the same."
) ? void (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 1550, __extension__ __PRETTY_FUNCTION__
))
;
1551
1552 QualType NewType = New->getType();
1553 QualType OldType = Old->getType();
1554
1555 // We're only interested in pointers and references to functions, as well
1556 // as pointers to member functions.
1557 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
1558 NewType = R->getPointeeType();
1559 OldType = OldType->castAs<ReferenceType>()->getPointeeType();
1560 } else if (const PointerType *P = NewType->getAs<PointerType>()) {
1561 NewType = P->getPointeeType();
1562 OldType = OldType->castAs<PointerType>()->getPointeeType();
1563 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
1564 NewType = M->getPointeeType();
1565 OldType = OldType->castAs<MemberPointerType>()->getPointeeType();
1566 }
1567
1568 if (!NewType->isFunctionProtoType())
1569 return;
1570
1571 // There's lots of special cases for functions. For function pointers, system
1572 // libraries are hopefully not as broken so that we don't need these
1573 // workarounds.
1574 if (CheckEquivalentExceptionSpec(
1575 OldType->getAs<FunctionProtoType>(), Old->getLocation(),
1576 NewType->getAs<FunctionProtoType>(), New->getLocation())) {
1577 New->setInvalidDecl();
1578 }
1579}
1580
1581/// CheckCXXDefaultArguments - Verify that the default arguments for a
1582/// function declaration are well-formed according to C++
1583/// [dcl.fct.default].
1584void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
1585 unsigned NumParams = FD->getNumParams();
1586 unsigned ParamIdx = 0;
1587
1588 // This checking doesn't make sense for explicit specializations; their
1589 // default arguments are determined by the declaration we're specializing,
1590 // not by FD.
1591 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
1592 return;
1593 if (auto *FTD = FD->getDescribedFunctionTemplate())
1594 if (FTD->isMemberSpecialization())
1595 return;
1596
1597 // Find first parameter with a default argument
1598 for (; ParamIdx < NumParams; ++ParamIdx) {
1599 ParmVarDecl *Param = FD->getParamDecl(ParamIdx);
1600 if (Param->hasDefaultArg())
1601 break;
1602 }
1603
1604 // C++20 [dcl.fct.default]p4:
1605 // In a given function declaration, each parameter subsequent to a parameter
1606 // with a default argument shall have a default argument supplied in this or
1607 // a previous declaration, unless the parameter was expanded from a
1608 // parameter pack, or shall be a function parameter pack.
1609 for (; ParamIdx < NumParams; ++ParamIdx) {
1610 ParmVarDecl *Param = FD->getParamDecl(ParamIdx);
1611 if (!Param->hasDefaultArg() && !Param->isParameterPack() &&
1612 !(CurrentInstantiationScope &&
1613 CurrentInstantiationScope->isLocalPackExpansion(Param))) {
1614 if (Param->isInvalidDecl())
1615 /* We already complained about this parameter. */;
1616 else if (Param->getIdentifier())
1617 Diag(Param->getLocation(),
1618 diag::err_param_default_argument_missing_name)
1619 << Param->getIdentifier();
1620 else
1621 Diag(Param->getLocation(),
1622 diag::err_param_default_argument_missing);
1623 }
1624 }
1625}
1626
1627/// Check that the given type is a literal type. Issue a diagnostic if not,
1628/// if Kind is Diagnose.
1629/// \return \c true if a problem has been found (and optionally diagnosed).
1630template <typename... Ts>
1631static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind,
1632 SourceLocation Loc, QualType T, unsigned DiagID,
1633 Ts &&...DiagArgs) {
1634 if (T->isDependentType())
1635 return false;
1636
1637 switch (Kind) {
1638 case Sema::CheckConstexprKind::Diagnose:
1639 return SemaRef.RequireLiteralType(Loc, T, DiagID,
1640 std::forward<Ts>(DiagArgs)...);
1641
1642 case Sema::CheckConstexprKind::CheckValid:
1643 return !T->isLiteralType(SemaRef.Context);
1644 }
1645
1646 llvm_unreachable("unknown CheckConstexprKind")::llvm::llvm_unreachable_internal("unknown CheckConstexprKind"
, "clang/lib/Sema/SemaDeclCXX.cpp", 1646)
;
1647}
1648
1649/// Determine whether a destructor cannot be constexpr due to
1650static bool CheckConstexprDestructorSubobjects(Sema &SemaRef,
1651 const CXXDestructorDecl *DD,
1652 Sema::CheckConstexprKind Kind) {
1653 auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) {
1654 const CXXRecordDecl *RD =
1655 T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1656 if (!RD || RD->hasConstexprDestructor())
1657 return true;
1658
1659 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1660 SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject)
1661 << static_cast<int>(DD->getConstexprKind()) << !FD
1662 << (FD ? FD->getDeclName() : DeclarationName()) << T;
1663 SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject)
1664 << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T;
1665 }
1666 return false;
1667 };
1668
1669 const CXXRecordDecl *RD = DD->getParent();
1670 for (const CXXBaseSpecifier &B : RD->bases())
1671 if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr))
1672 return false;
1673 for (const FieldDecl *FD : RD->fields())
1674 if (!Check(FD->getLocation(), FD->getType(), FD))
1675 return false;
1676 return true;
1677}
1678
1679/// Check whether a function's parameter types are all literal types. If so,
1680/// return true. If not, produce a suitable diagnostic and return false.
1681static bool CheckConstexprParameterTypes(Sema &SemaRef,
1682 const FunctionDecl *FD,
1683 Sema::CheckConstexprKind Kind) {
1684 unsigned ArgIndex = 0;
1685 const auto *FT = FD->getType()->castAs<FunctionProtoType>();
1686 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
1687 e = FT->param_type_end();
1688 i != e; ++i, ++ArgIndex) {
1689 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
1690 SourceLocation ParamLoc = PD->getLocation();
1691 if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i,
1692 diag::err_constexpr_non_literal_param, ArgIndex + 1,
1693 PD->getSourceRange(), isa<CXXConstructorDecl>(FD),
1694 FD->isConsteval()))
1695 return false;
1696 }
1697 return true;
1698}
1699
1700/// Check whether a function's return type is a literal type. If so, return
1701/// true. If not, produce a suitable diagnostic and return false.
1702static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD,
1703 Sema::CheckConstexprKind Kind) {
1704 if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(),
1705 diag::err_constexpr_non_literal_return,
1706 FD->isConsteval()))
1707 return false;
1708 return true;
1709}
1710
1711/// Get diagnostic %select index for tag kind for
1712/// record diagnostic message.
1713/// WARNING: Indexes apply to particular diagnostics only!
1714///
1715/// \returns diagnostic %select index.
1716static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
1717 switch (Tag) {
1718 case TTK_Struct: return 0;
1719 case TTK_Interface: return 1;
1720 case TTK_Class: return 2;
1721 default: llvm_unreachable("Invalid tag kind for record diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for record diagnostic!"
, "clang/lib/Sema/SemaDeclCXX.cpp", 1721)
;
1722 }
1723}
1724
1725static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
1726 Stmt *Body,
1727 Sema::CheckConstexprKind Kind);
1728
1729// Check whether a function declaration satisfies the requirements of a
1730// constexpr function definition or a constexpr constructor definition. If so,
1731// return true. If not, produce appropriate diagnostics (unless asked not to by
1732// Kind) and return false.
1733//
1734// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
1735bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD,
1736 CheckConstexprKind Kind) {
1737 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
1738 if (MD && MD->isInstance()) {
1739 // C++11 [dcl.constexpr]p4:
1740 // The definition of a constexpr constructor shall satisfy the following
1741 // constraints:
1742 // - the class shall not have any virtual base classes;
1743 //
1744 // FIXME: This only applies to constructors and destructors, not arbitrary
1745 // member functions.
1746 const CXXRecordDecl *RD = MD->getParent();
1747 if (RD->getNumVBases()) {
1748 if (Kind == CheckConstexprKind::CheckValid)
1749 return false;
1750
1751 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
1752 << isa<CXXConstructorDecl>(NewFD)
1753 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
1754 for (const auto &I : RD->vbases())
1755 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
1756 << I.getSourceRange();
1757 return false;
1758 }
1759 }
1760
1761 if (!isa<CXXConstructorDecl>(NewFD)) {
1762 // C++11 [dcl.constexpr]p3:
1763 // The definition of a constexpr function shall satisfy the following
1764 // constraints:
1765 // - it shall not be virtual; (removed in C++20)
1766 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
1767 if (Method && Method->isVirtual()) {
1768 if (getLangOpts().CPlusPlus20) {
1769 if (Kind == CheckConstexprKind::Diagnose)
1770 Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual);
1771 } else {
1772 if (Kind == CheckConstexprKind::CheckValid)
1773 return false;
1774
1775 Method = Method->getCanonicalDecl();
1776 Diag(Method->getLocation(), diag::err_constexpr_virtual);
1777
1778 // If it's not obvious why this function is virtual, find an overridden
1779 // function which uses the 'virtual' keyword.
1780 const CXXMethodDecl *WrittenVirtual = Method;
1781 while (!WrittenVirtual->isVirtualAsWritten())
1782 WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
1783 if (WrittenVirtual != Method)
1784 Diag(WrittenVirtual->getLocation(),
1785 diag::note_overridden_virtual_function);
1786 return false;
1787 }
1788 }
1789
1790 // - its return type shall be a literal type;
1791 if (!CheckConstexprReturnType(*this, NewFD, Kind))
1792 return false;
1793 }
1794
1795 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) {
1796 // A destructor can be constexpr only if the defaulted destructor could be;
1797 // we don't need to check the members and bases if we already know they all
1798 // have constexpr destructors.
1799 if (!Dtor->getParent()->defaultedDestructorIsConstexpr()) {
1800 if (Kind == CheckConstexprKind::CheckValid)
1801 return false;
1802 if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind))
1803 return false;
1804 }
1805 }
1806
1807 // - each of its parameter types shall be a literal type;
1808 if (!CheckConstexprParameterTypes(*this, NewFD, Kind))
1809 return false;
1810
1811 Stmt *Body = NewFD->getBody();
1812 assert(Body &&(static_cast <bool> (Body && "CheckConstexprFunctionDefinition called on function with no body"
) ? void (0) : __assert_fail ("Body && \"CheckConstexprFunctionDefinition called on function with no body\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 1813, __extension__ __PRETTY_FUNCTION__
))
1813 "CheckConstexprFunctionDefinition called on function with no body")(static_cast <bool> (Body && "CheckConstexprFunctionDefinition called on function with no body"
) ? void (0) : __assert_fail ("Body && \"CheckConstexprFunctionDefinition called on function with no body\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 1813, __extension__ __PRETTY_FUNCTION__
))
;
1814 return CheckConstexprFunctionBody(*this, NewFD, Body, Kind);
1815}
1816
1817/// Check the given declaration statement is legal within a constexpr function
1818/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
1819///
1820/// \return true if the body is OK (maybe only as an extension), false if we
1821/// have diagnosed a problem.
1822static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
1823 DeclStmt *DS, SourceLocation &Cxx1yLoc,
1824 Sema::CheckConstexprKind Kind) {
1825 // C++11 [dcl.constexpr]p3 and p4:
1826 // The definition of a constexpr function(p3) or constructor(p4) [...] shall
1827 // contain only
1828 for (const auto *DclIt : DS->decls()) {
1829 switch (DclIt->getKind()) {
1830 case Decl::StaticAssert:
1831 case Decl::Using:
1832 case Decl::UsingShadow:
1833 case Decl::UsingDirective:
1834 case Decl::UnresolvedUsingTypename:
1835 case Decl::UnresolvedUsingValue:
1836 case Decl::UsingEnum:
1837 // - static_assert-declarations
1838 // - using-declarations,
1839 // - using-directives,
1840 // - using-enum-declaration
1841 continue;
1842
1843 case Decl::Typedef:
1844 case Decl::TypeAlias: {
1845 // - typedef declarations and alias-declarations that do not define
1846 // classes or enumerations,
1847 const auto *TN = cast<TypedefNameDecl>(DclIt);
1848 if (TN->getUnderlyingType()->isVariablyModifiedType()) {
1849 // Don't allow variably-modified types in constexpr functions.
1850 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1851 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
1852 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
1853 << TL.getSourceRange() << TL.getType()
1854 << isa<CXXConstructorDecl>(Dcl);
1855 }
1856 return false;
1857 }
1858 continue;
1859 }
1860
1861 case Decl::Enum:
1862 case Decl::CXXRecord:
1863 // C++1y allows types to be defined, not just declared.
1864 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) {
1865 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1866 SemaRef.Diag(DS->getBeginLoc(),
1867 SemaRef.getLangOpts().CPlusPlus14
1868 ? diag::warn_cxx11_compat_constexpr_type_definition
1869 : diag::ext_constexpr_type_definition)
1870 << isa<CXXConstructorDecl>(Dcl);
1871 } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1872 return false;
1873 }
1874 }
1875 continue;
1876
1877 case Decl::EnumConstant:
1878 case Decl::IndirectField:
1879 case Decl::ParmVar:
1880 // These can only appear with other declarations which are banned in
1881 // C++11 and permitted in C++1y, so ignore them.
1882 continue;
1883
1884 case Decl::Var:
1885 case Decl::Decomposition: {
1886 // C++1y [dcl.constexpr]p3 allows anything except:
1887 // a definition of a variable of non-literal type or of static or
1888 // thread storage duration or [before C++2a] for which no
1889 // initialization is performed.
1890 const auto *VD = cast<VarDecl>(DclIt);
1891 if (VD->isThisDeclarationADefinition()) {
1892 if (VD->isStaticLocal()) {
1893 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1894 SemaRef.Diag(VD->getLocation(),
1895 SemaRef.getLangOpts().CPlusPlus2b
1896 ? diag::warn_cxx20_compat_constexpr_var
1897 : diag::ext_constexpr_static_var)
1898 << isa<CXXConstructorDecl>(Dcl)
1899 << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
1900 } else if (!SemaRef.getLangOpts().CPlusPlus2b) {
1901 return false;
1902 }
1903 }
1904 if (SemaRef.LangOpts.CPlusPlus2b) {
1905 CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(),
1906 diag::warn_cxx20_compat_constexpr_var,
1907 isa<CXXConstructorDecl>(Dcl),
1908 /*variable of non-literal type*/ 2);
1909 } else if (CheckLiteralType(
1910 SemaRef, Kind, VD->getLocation(), VD->getType(),
1911 diag::err_constexpr_local_var_non_literal_type,
1912 isa<CXXConstructorDecl>(Dcl))) {
1913 return false;
1914 }
1915 if (!VD->getType()->isDependentType() &&
1916 !VD->hasInit() && !VD->isCXXForRangeDecl()) {
1917 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1918 SemaRef.Diag(
1919 VD->getLocation(),
1920 SemaRef.getLangOpts().CPlusPlus20
1921 ? diag::warn_cxx17_compat_constexpr_local_var_no_init
1922 : diag::ext_constexpr_local_var_no_init)
1923 << isa<CXXConstructorDecl>(Dcl);
1924 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
1925 return false;
1926 }
1927 continue;
1928 }
1929 }
1930 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1931 SemaRef.Diag(VD->getLocation(),
1932 SemaRef.getLangOpts().CPlusPlus14
1933 ? diag::warn_cxx11_compat_constexpr_local_var
1934 : diag::ext_constexpr_local_var)
1935 << isa<CXXConstructorDecl>(Dcl);
1936 } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1937 return false;
1938 }
1939 continue;
1940 }
1941
1942 case Decl::NamespaceAlias:
1943 case Decl::Function:
1944 // These are disallowed in C++11 and permitted in C++1y. Allow them
1945 // everywhere as an extension.
1946 if (!Cxx1yLoc.isValid())
1947 Cxx1yLoc = DS->getBeginLoc();
1948 continue;
1949
1950 default:
1951 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1952 SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
1953 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
1954 }
1955 return false;
1956 }
1957 }
1958
1959 return true;
1960}
1961
1962/// Check that the given field is initialized within a constexpr constructor.
1963///
1964/// \param Dcl The constexpr constructor being checked.
1965/// \param Field The field being checked. This may be a member of an anonymous
1966/// struct or union nested within the class being checked.
1967/// \param Inits All declarations, including anonymous struct/union members and
1968/// indirect members, for which any initialization was provided.
1969/// \param Diagnosed Whether we've emitted the error message yet. Used to attach
1970/// multiple notes for different members to the same error.
1971/// \param Kind Whether we're diagnosing a constructor as written or determining
1972/// whether the formal requirements are satisfied.
1973/// \return \c false if we're checking for validity and the constructor does
1974/// not satisfy the requirements on a constexpr constructor.
1975static bool CheckConstexprCtorInitializer(Sema &SemaRef,
1976 const FunctionDecl *Dcl,
1977 FieldDecl *Field,
1978 llvm::SmallSet<Decl*, 16> &Inits,
1979 bool &Diagnosed,
1980 Sema::CheckConstexprKind Kind) {
1981 // In C++20 onwards, there's nothing to check for validity.
1982 if (Kind == Sema::CheckConstexprKind::CheckValid &&
1983 SemaRef.getLangOpts().CPlusPlus20)
1984 return true;
1985
1986 if (Field->isInvalidDecl())
1987 return true;
1988
1989 if (Field->isUnnamedBitfield())
1990 return true;
1991
1992 // Anonymous unions with no variant members and empty anonymous structs do not
1993 // need to be explicitly initialized. FIXME: Anonymous structs that contain no
1994 // indirect fields don't need initializing.
1995 if (Field->isAnonymousStructOrUnion() &&
1996 (Field->getType()->isUnionType()
1997 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
1998 : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
1999 return true;
2000
2001 if (!Inits.count(Field)) {
2002 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2003 if (!Diagnosed) {
2004 SemaRef.Diag(Dcl->getLocation(),
2005 SemaRef.getLangOpts().CPlusPlus20
2006 ? diag::warn_cxx17_compat_constexpr_ctor_missing_init
2007 : diag::ext_constexpr_ctor_missing_init);
2008 Diagnosed = true;
2009 }
2010 SemaRef.Diag(Field->getLocation(),
2011 diag::note_constexpr_ctor_missing_init);
2012 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
2013 return false;
2014 }
2015 } else if (Field->isAnonymousStructOrUnion()) {
2016 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
2017 for (auto *I : RD->fields())
2018 // If an anonymous union contains an anonymous struct of which any member
2019 // is initialized, all members must be initialized.
2020 if (!RD->isUnion() || Inits.count(I))
2021 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
2022 Kind))
2023 return false;
2024 }
2025 return true;
2026}
2027
2028/// Check the provided statement is allowed in a constexpr function
2029/// definition.
2030static bool
2031CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
2032 SmallVectorImpl<SourceLocation> &ReturnStmts,
2033 SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc,
2034 SourceLocation &Cxx2bLoc,
2035 Sema::CheckConstexprKind Kind) {
2036 // - its function-body shall be [...] a compound-statement that contains only
2037 switch (S->getStmtClass()) {
2038 case Stmt::NullStmtClass:
2039 // - null statements,
2040 return true;
2041
2042 case Stmt::DeclStmtClass:
2043 // - static_assert-declarations
2044 // - using-declarations,
2045 // - using-directives,
2046 // - typedef declarations and alias-declarations that do not define
2047 // classes or enumerations,
2048 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind))
2049 return false;
2050 return true;
2051
2052 case Stmt::ReturnStmtClass:
2053 // - and exactly one return statement;
2054 if (isa<CXXConstructorDecl>(Dcl)) {
2055 // C++1y allows return statements in constexpr constructors.
2056 if (!Cxx1yLoc.isValid())
2057 Cxx1yLoc = S->getBeginLoc();
2058 return true;
2059 }
2060
2061 ReturnStmts.push_back(S->getBeginLoc());
2062 return true;
2063
2064 case Stmt::AttributedStmtClass:
2065 // Attributes on a statement don't affect its formal kind and hence don't
2066 // affect its validity in a constexpr function.
2067 return CheckConstexprFunctionStmt(
2068 SemaRef, Dcl, cast<AttributedStmt>(S)->getSubStmt(), ReturnStmts,
2069 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind);
2070
2071 case Stmt::CompoundStmtClass: {
2072 // C++1y allows compound-statements.
2073 if (!Cxx1yLoc.isValid())
2074 Cxx1yLoc = S->getBeginLoc();
2075
2076 CompoundStmt *CompStmt = cast<CompoundStmt>(S);
2077 for (auto *BodyIt : CompStmt->body()) {
2078 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
2079 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2080 return false;
2081 }
2082 return true;
2083 }
2084
2085 case Stmt::IfStmtClass: {
2086 // C++1y allows if-statements.
2087 if (!Cxx1yLoc.isValid())
2088 Cxx1yLoc = S->getBeginLoc();
2089
2090 IfStmt *If = cast<IfStmt>(S);
2091 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
2092 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2093 return false;
2094 if (If->getElse() &&
2095 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
2096 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2097 return false;
2098 return true;
2099 }
2100
2101 case Stmt::WhileStmtClass:
2102 case Stmt::DoStmtClass:
2103 case Stmt::ForStmtClass:
2104 case Stmt::CXXForRangeStmtClass:
2105 case Stmt::ContinueStmtClass:
2106 // C++1y allows all of these. We don't allow them as extensions in C++11,
2107 // because they don't make sense without variable mutation.
2108 if (!SemaRef.getLangOpts().CPlusPlus14)
2109 break;
2110 if (!Cxx1yLoc.isValid())
2111 Cxx1yLoc = S->getBeginLoc();
2112 for (Stmt *SubStmt : S->children()) {
2113 if (SubStmt &&
2114 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2115 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2116 return false;
2117 }
2118 return true;
2119
2120 case Stmt::SwitchStmtClass:
2121 case Stmt::CaseStmtClass:
2122 case Stmt::DefaultStmtClass:
2123 case Stmt::BreakStmtClass:
2124 // C++1y allows switch-statements, and since they don't need variable
2125 // mutation, we can reasonably allow them in C++11 as an extension.
2126 if (!Cxx1yLoc.isValid())
2127 Cxx1yLoc = S->getBeginLoc();
2128 for (Stmt *SubStmt : S->children()) {
2129 if (SubStmt &&
2130 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2131 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2132 return false;
2133 }
2134 return true;
2135
2136 case Stmt::LabelStmtClass:
2137 case Stmt::GotoStmtClass:
2138 if (Cxx2bLoc.isInvalid())
2139 Cxx2bLoc = S->getBeginLoc();
2140 for (Stmt *SubStmt : S->children()) {
2141 if (SubStmt &&
2142 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2143 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2144 return false;
2145 }
2146 return true;
2147
2148 case Stmt::GCCAsmStmtClass:
2149 case Stmt::MSAsmStmtClass:
2150 // C++2a allows inline assembly statements.
2151 case Stmt::CXXTryStmtClass:
2152 if (Cxx2aLoc.isInvalid())
2153 Cxx2aLoc = S->getBeginLoc();
2154 for (Stmt *SubStmt : S->children()) {
2155 if (SubStmt &&
2156 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2157 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2158 return false;
2159 }
2160 return true;
2161
2162 case Stmt::CXXCatchStmtClass:
2163 // Do not bother checking the language mode (already covered by the
2164 // try block check).
2165 if (!CheckConstexprFunctionStmt(
2166 SemaRef, Dcl, cast<CXXCatchStmt>(S)->getHandlerBlock(), ReturnStmts,
2167 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2168 return false;
2169 return true;
2170
2171 default:
2172 if (!isa<Expr>(S))
2173 break;
2174
2175 // C++1y allows expression-statements.
2176 if (!Cxx1yLoc.isValid())
2177 Cxx1yLoc = S->getBeginLoc();
2178 return true;
2179 }
2180
2181 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2182 SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
2183 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2184 }
2185 return false;
2186}
2187
2188/// Check the body for the given constexpr function declaration only contains
2189/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
2190///
2191/// \return true if the body is OK, false if we have found or diagnosed a
2192/// problem.
2193static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
2194 Stmt *Body,
2195 Sema::CheckConstexprKind Kind) {
2196 SmallVector<SourceLocation, 4> ReturnStmts;
2197
2198 if (isa<CXXTryStmt>(Body)) {
2199 // C++11 [dcl.constexpr]p3:
2200 // The definition of a constexpr function shall satisfy the following
2201 // constraints: [...]
2202 // - its function-body shall be = delete, = default, or a
2203 // compound-statement
2204 //
2205 // C++11 [dcl.constexpr]p4:
2206 // In the definition of a constexpr constructor, [...]
2207 // - its function-body shall not be a function-try-block;
2208 //
2209 // This restriction is lifted in C++2a, as long as inner statements also
2210 // apply the general constexpr rules.
2211 switch (Kind) {
2212 case Sema::CheckConstexprKind::CheckValid:
2213 if (!SemaRef.getLangOpts().CPlusPlus20)
2214 return false;
2215 break;
2216
2217 case Sema::CheckConstexprKind::Diagnose:
2218 SemaRef.Diag(Body->getBeginLoc(),
2219 !SemaRef.getLangOpts().CPlusPlus20
2220 ? diag::ext_constexpr_function_try_block_cxx20
2221 : diag::warn_cxx17_compat_constexpr_function_try_block)
2222 << isa<CXXConstructorDecl>(Dcl);
2223 break;
2224 }
2225 }
2226
2227 // - its function-body shall be [...] a compound-statement that contains only
2228 // [... list of cases ...]
2229 //
2230 // Note that walking the children here is enough to properly check for
2231 // CompoundStmt and CXXTryStmt body.
2232 SourceLocation Cxx1yLoc, Cxx2aLoc, Cxx2bLoc;
2233 for (Stmt *SubStmt : Body->children()) {
2234 if (SubStmt &&
2235 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2236 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2237 return false;
2238 }
2239
2240 if (Kind == Sema::CheckConstexprKind::CheckValid) {
2241 // If this is only valid as an extension, report that we don't satisfy the
2242 // constraints of the current language.
2243 if ((Cxx2bLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus2b) ||
2244 (Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus20) ||
2245 (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17))
2246 return false;
2247 } else if (Cxx2bLoc.isValid()) {
2248 SemaRef.Diag(Cxx2bLoc,
2249 SemaRef.getLangOpts().CPlusPlus2b
2250 ? diag::warn_cxx20_compat_constexpr_body_invalid_stmt
2251 : diag::ext_constexpr_body_invalid_stmt_cxx2b)
2252 << isa<CXXConstructorDecl>(Dcl);
2253 } else if (Cxx2aLoc.isValid()) {
2254 SemaRef.Diag(Cxx2aLoc,
2255 SemaRef.getLangOpts().CPlusPlus20
2256 ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt
2257 : diag::ext_constexpr_body_invalid_stmt_cxx20)
2258 << isa<CXXConstructorDecl>(Dcl);
2259 } else if (Cxx1yLoc.isValid()) {
2260 SemaRef.Diag(Cxx1yLoc,
2261 SemaRef.getLangOpts().CPlusPlus14
2262 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
2263 : diag::ext_constexpr_body_invalid_stmt)
2264 << isa<CXXConstructorDecl>(Dcl);
2265 }
2266
2267 if (const CXXConstructorDecl *Constructor
2268 = dyn_cast<CXXConstructorDecl>(Dcl)) {
2269 const CXXRecordDecl *RD = Constructor->getParent();
2270 // DR1359:
2271 // - every non-variant non-static data member and base class sub-object
2272 // shall be initialized;
2273 // DR1460:
2274 // - if the class is a union having variant members, exactly one of them
2275 // shall be initialized;
2276 if (RD->isUnion()) {
2277 if (Constructor->getNumCtorInitializers() == 0 &&
2278 RD->hasVariantMembers()) {
2279 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2280 SemaRef.Diag(
2281 Dcl->getLocation(),
2282 SemaRef.getLangOpts().CPlusPlus20
2283 ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init
2284 : diag::ext_constexpr_union_ctor_no_init);
2285 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
2286 return false;
2287 }
2288 }
2289 } else if (!Constructor->isDependentContext() &&
2290 !Constructor->isDelegatingConstructor()) {
2291 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases")(static_cast <bool> (RD->getNumVBases() == 0 &&
"constexpr ctor with virtual bases") ? void (0) : __assert_fail
("RD->getNumVBases() == 0 && \"constexpr ctor with virtual bases\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 2291, __extension__ __PRETTY_FUNCTION__
))
;
2292
2293 // Skip detailed checking if we have enough initializers, and we would
2294 // allow at most one initializer per member.
2295 bool AnyAnonStructUnionMembers = false;
2296 unsigned Fields = 0;
2297 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
2298 E = RD->field_end(); I != E; ++I, ++Fields) {
2299 if (I->isAnonymousStructOrUnion()) {
2300 AnyAnonStructUnionMembers = true;
2301 break;
2302 }
2303 }
2304 // DR1460:
2305 // - if the class is a union-like class, but is not a union, for each of
2306 // its anonymous union members having variant members, exactly one of
2307 // them shall be initialized;
2308 if (AnyAnonStructUnionMembers ||
2309 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
2310 // Check initialization of non-static data members. Base classes are
2311 // always initialized so do not need to be checked. Dependent bases
2312 // might not have initializers in the member initializer list.
2313 llvm::SmallSet<Decl*, 16> Inits;
2314 for (const auto *I: Constructor->inits()) {
2315 if (FieldDecl *FD = I->getMember())
2316 Inits.insert(FD);
2317 else if (IndirectFieldDecl *ID = I->getIndirectMember())
2318 Inits.insert(ID->chain_begin(), ID->chain_end());
2319 }
2320
2321 bool Diagnosed = false;
2322 for (auto *I : RD->fields())
2323 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
2324 Kind))
2325 return false;
2326 }
2327 }
2328 } else {
2329 if (ReturnStmts.empty()) {
2330 // C++1y doesn't require constexpr functions to contain a 'return'
2331 // statement. We still do, unless the return type might be void, because
2332 // otherwise if there's no return statement, the function cannot
2333 // be used in a core constant expression.
2334 bool OK = SemaRef.getLangOpts().CPlusPlus14 &&
2335 (Dcl->getReturnType()->isVoidType() ||
2336 Dcl->getReturnType()->isDependentType());
2337 switch (Kind) {
2338 case Sema::CheckConstexprKind::Diagnose:
2339 SemaRef.Diag(Dcl->getLocation(),
2340 OK ? diag::warn_cxx11_compat_constexpr_body_no_return
2341 : diag::err_constexpr_body_no_return)
2342 << Dcl->isConsteval();
2343 if (!OK)
2344 return false;
2345 break;
2346
2347 case Sema::CheckConstexprKind::CheckValid:
2348 // The formal requirements don't include this rule in C++14, even
2349 // though the "must be able to produce a constant expression" rules
2350 // still imply it in some cases.
2351 if (!SemaRef.getLangOpts().CPlusPlus14)
2352 return false;
2353 break;
2354 }
2355 } else if (ReturnStmts.size() > 1) {
2356 switch (Kind) {
2357 case Sema::CheckConstexprKind::Diagnose:
2358 SemaRef.Diag(
2359 ReturnStmts.back(),
2360 SemaRef.getLangOpts().CPlusPlus14
2361 ? diag::warn_cxx11_compat_constexpr_body_multiple_return
2362 : diag::ext_constexpr_body_multiple_return);
2363 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
2364 SemaRef.Diag(ReturnStmts[I],
2365 diag::note_constexpr_body_previous_return);
2366 break;
2367
2368 case Sema::CheckConstexprKind::CheckValid:
2369 if (!SemaRef.getLangOpts().CPlusPlus14)
2370 return false;
2371 break;
2372 }
2373 }
2374 }
2375
2376 // C++11 [dcl.constexpr]p5:
2377 // if no function argument values exist such that the function invocation
2378 // substitution would produce a constant expression, the program is
2379 // ill-formed; no diagnostic required.
2380 // C++11 [dcl.constexpr]p3:
2381 // - every constructor call and implicit conversion used in initializing the
2382 // return value shall be one of those allowed in a constant expression.
2383 // C++11 [dcl.constexpr]p4:
2384 // - every constructor involved in initializing non-static data members and
2385 // base class sub-objects shall be a constexpr constructor.
2386 //
2387 // Note that this rule is distinct from the "requirements for a constexpr
2388 // function", so is not checked in CheckValid mode.
2389 SmallVector<PartialDiagnosticAt, 8> Diags;
2390 if (Kind == Sema::CheckConstexprKind::Diagnose &&
2391 !Expr::isPotentialConstantExpr(Dcl, Diags)) {
2392 SemaRef.Diag(Dcl->getLocation(),
2393 diag::ext_constexpr_function_never_constant_expr)
2394 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2395 for (size_t I = 0, N = Diags.size(); I != N; ++I)
2396 SemaRef.Diag(Diags[I].first, Diags[I].second);
2397 // Don't return false here: we allow this for compatibility in
2398 // system headers.
2399 }
2400
2401 return true;
2402}
2403
2404/// Get the class that is directly named by the current context. This is the
2405/// class for which an unqualified-id in this scope could name a constructor
2406/// or destructor.
2407///
2408/// If the scope specifier denotes a class, this will be that class.
2409/// If the scope specifier is empty, this will be the class whose
2410/// member-specification we are currently within. Otherwise, there
2411/// is no such class.
2412CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) {
2413 assert(getLangOpts().CPlusPlus && "No class names in C!")(static_cast <bool> (getLangOpts().CPlusPlus &&
"No class names in C!") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 2413, __extension__ __PRETTY_FUNCTION__
))
;
2414
2415 if (SS && SS->isInvalid())
2416 return nullptr;
2417
2418 if (SS && SS->isNotEmpty()) {
2419 DeclContext *DC = computeDeclContext(*SS, true);
2420 return dyn_cast_or_null<CXXRecordDecl>(DC);
2421 }
2422
2423 return dyn_cast_or_null<CXXRecordDecl>(CurContext);
2424}
2425
2426/// isCurrentClassName - Determine whether the identifier II is the
2427/// name of the class type currently being defined. In the case of
2428/// nested classes, this will only return true if II is the name of
2429/// the innermost class.
2430bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S,
2431 const CXXScopeSpec *SS) {
2432 CXXRecordDecl *CurDecl = getCurrentClass(S, SS);
2433 return CurDecl && &II == CurDecl->getIdentifier();
2434}
2435
2436/// Determine whether the identifier II is a typo for the name of
2437/// the class type currently being defined. If so, update it to the identifier
2438/// that should have been used.
2439bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
2440 assert(getLangOpts().CPlusPlus && "No class names in C!")(static_cast <bool> (getLangOpts().CPlusPlus &&
"No class names in C!") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 2440, __extension__ __PRETTY_FUNCTION__
))
;
2441
2442 if (!getLangOpts().SpellChecking)
2443 return false;
2444
2445 CXXRecordDecl *CurDecl;
2446 if (SS && SS->isSet() && !SS->isInvalid()) {
2447 DeclContext *DC = computeDeclContext(*SS, true);
2448 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2449 } else
2450 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2451
2452 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
2453 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
2454 < II->getLength()) {
2455 II = CurDecl->getIdentifier();
2456 return true;
2457 }
2458
2459 return false;
2460}
2461
2462/// Determine whether the given class is a base class of the given
2463/// class, including looking at dependent bases.
2464static bool findCircularInheritance(const CXXRecordDecl *Class,
2465 const CXXRecordDecl *Current) {
2466 SmallVector<const CXXRecordDecl*, 8> Queue;
2467
2468 Class = Class->getCanonicalDecl();
2469 while (true) {
2470 for (const auto &I : Current->bases()) {
2471 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
2472 if (!Base)
2473 continue;
2474
2475 Base = Base->getDefinition();
2476 if (!Base)
2477 continue;
2478
2479 if (Base->getCanonicalDecl() == Class)
2480 return true;
2481
2482 Queue.push_back(Base);
2483 }
2484
2485 if (Queue.empty())
2486 return false;
2487
2488 Current = Queue.pop_back_val();
2489 }
2490
2491 return false;
2492}
2493
2494/// Check the validity of a C++ base class specifier.
2495///
2496/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
2497/// and returns NULL otherwise.
2498CXXBaseSpecifier *
2499Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
2500 SourceRange SpecifierRange,
2501 bool Virtual, AccessSpecifier Access,
2502 TypeSourceInfo *TInfo,
2503 SourceLocation EllipsisLoc) {
2504 QualType BaseType = TInfo->getType();
2505 if (BaseType->containsErrors()) {
2506 // Already emitted a diagnostic when parsing the error type.
2507 return nullptr;
2508 }
2509 // C++ [class.union]p1:
2510 // A union shall not have base classes.
2511 if (Class->isUnion()) {
2512 Diag(Class->getLocation(), diag::err_base_clause_on_union)
2513 << SpecifierRange;
2514 return nullptr;
2515 }
2516
2517 if (EllipsisLoc.isValid() &&
2518 !TInfo->getType()->containsUnexpandedParameterPack()) {
2519 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2520 << TInfo->getTypeLoc().getSourceRange();
2521 EllipsisLoc = SourceLocation();
2522 }
2523
2524 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
2525
2526 if (BaseType->isDependentType()) {
2527 // Make sure that we don't have circular inheritance among our dependent
2528 // bases. For non-dependent bases, the check for completeness below handles
2529 // this.
2530 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
2531 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
2532 ((BaseDecl = BaseDecl->getDefinition()) &&
2533 findCircularInheritance(Class, BaseDecl))) {
2534 Diag(BaseLoc, diag::err_circular_inheritance)
2535 << BaseType << Context.getTypeDeclType(Class);
2536
2537 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
2538 Diag(BaseDecl->getLocation(), diag::note_previous_decl)
2539 << BaseType;
2540
2541 return nullptr;
2542 }
2543 }
2544
2545 // Make sure that we don't make an ill-formed AST where the type of the
2546 // Class is non-dependent and its attached base class specifier is an
2547 // dependent type, which violates invariants in many clang code paths (e.g.
2548 // constexpr evaluator). If this case happens (in errory-recovery mode), we
2549 // explicitly mark the Class decl invalid. The diagnostic was already
2550 // emitted.
2551 if (!Class->getTypeForDecl()->isDependentType())
2552 Class->setInvalidDecl();
2553 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2554 Class->getTagKind() == TTK_Class,
2555 Access, TInfo, EllipsisLoc);
2556 }
2557
2558 // Base specifiers must be record types.
2559 if (!BaseType->isRecordType()) {
2560 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
2561 return nullptr;
2562 }
2563
2564 // C++ [class.union]p1:
2565 // A union shall not be used as a base class.
2566 if (BaseType->isUnionType()) {
2567 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
2568 return nullptr;
2569 }
2570
2571 // For the MS ABI, propagate DLL attributes to base class templates.
2572 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2573 if (Attr *ClassAttr = getDLLAttr(Class)) {
2574 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
2575 BaseType->getAsCXXRecordDecl())) {
2576 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate,
2577 BaseLoc);
2578 }
2579 }
2580 }
2581
2582 // C++ [class.derived]p2:
2583 // The class-name in a base-specifier shall not be an incompletely
2584 // defined class.
2585 if (RequireCompleteType(BaseLoc, BaseType,
2586 diag::err_incomplete_base_class, SpecifierRange)) {
2587 Class->setInvalidDecl();
2588 return nullptr;
2589 }
2590
2591 // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
2592 RecordDecl *BaseDecl = BaseType->castAs<RecordType>()->getDecl();
2593 assert(BaseDecl && "Record type has no declaration")(static_cast <bool> (BaseDecl && "Record type has no declaration"
) ? void (0) : __assert_fail ("BaseDecl && \"Record type has no declaration\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 2593, __extension__ __PRETTY_FUNCTION__
))
;
2594 BaseDecl = BaseDecl->getDefinition();
2595 assert(BaseDecl && "Base type is not incomplete, but has no definition")(static_cast <bool> (BaseDecl && "Base type is not incomplete, but has no definition"
) ? void (0) : __assert_fail ("BaseDecl && \"Base type is not incomplete, but has no definition\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 2595, __extension__ __PRETTY_FUNCTION__
))
;
2596 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
2597 assert(CXXBaseDecl && "Base type is not a C++ type")(static_cast <bool> (CXXBaseDecl && "Base type is not a C++ type"
) ? void (0) : __assert_fail ("CXXBaseDecl && \"Base type is not a C++ type\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 2597, __extension__ __PRETTY_FUNCTION__
))
;
2598
2599 // Microsoft docs say:
2600 // "If a base-class has a code_seg attribute, derived classes must have the
2601 // same attribute."
2602 const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>();
2603 const auto *DerivedCSA = Class->getAttr<CodeSegAttr>();
2604 if ((DerivedCSA || BaseCSA) &&
2605 (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) {
2606 Diag(Class->getLocation(), diag::err_mismatched_code_seg_base);
2607 Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here)
2608 << CXXBaseDecl;
2609 return nullptr;
2610 }
2611
2612 // A class which contains a flexible array member is not suitable for use as a
2613 // base class:
2614 // - If the layout determines that a base comes before another base,
2615 // the flexible array member would index into the subsequent base.
2616 // - If the layout determines that base comes before the derived class,
2617 // the flexible array member would index into the derived class.
2618 if (CXXBaseDecl->hasFlexibleArrayMember()) {
2619 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
2620 << CXXBaseDecl->getDeclName();
2621 return nullptr;
2622 }
2623
2624 // C++ [class]p3:
2625 // If a class is marked final and it appears as a base-type-specifier in
2626 // base-clause, the program is ill-formed.
2627 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
2628 Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
2629 << CXXBaseDecl->getDeclName()
2630 << FA->isSpelledAsSealed();
2631 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
2632 << CXXBaseDecl->getDeclName() << FA->getRange();
2633 return nullptr;
2634 }
2635
2636 if (BaseDecl->isInvalidDecl())
2637 Class->setInvalidDecl();
2638
2639 // Create the base specifier.
2640 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2641 Class->getTagKind() == TTK_Class,
2642 Access, TInfo, EllipsisLoc);
2643}
2644
2645/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
2646/// one entry in the base class list of a class specifier, for
2647/// example:
2648/// class foo : public bar, virtual private baz {
2649/// 'public bar' and 'virtual private baz' are each base-specifiers.
2650BaseResult Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
2651 const ParsedAttributesView &Attributes,
2652 bool Virtual, AccessSpecifier Access,
2653 ParsedType basetype, SourceLocation BaseLoc,
2654 SourceLocation EllipsisLoc) {
2655 if (!classdecl)
2656 return true;
2657
2658 AdjustDeclIfTemplate(classdecl);
2659 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
2660 if (!Class)
2661 return true;
2662
2663 // We haven't yet attached the base specifiers.
2664 Class->setIsParsingBaseSpecifiers();
2665
2666 // We do not support any C++11 attributes on base-specifiers yet.
2667 // Diagnose any attributes we see.
2668 for (const ParsedAttr &AL : Attributes) {
2669 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
2670 continue;
2671 Diag(AL.getLoc(), AL.getKind() == ParsedAttr::UnknownAttribute
2672 ? (unsigned)diag::warn_unknown_attribute_ignored
2673 : (unsigned)diag::err_base_specifier_attribute)
2674 << AL << AL.getRange();
2675 }
2676
2677 TypeSourceInfo *TInfo = nullptr;
2678 GetTypeFromParser(basetype, &TInfo);
2679
2680 if (EllipsisLoc.isInvalid() &&
2681 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
2682 UPPC_BaseType))
2683 return true;
2684
2685 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
2686 Virtual, Access, TInfo,
2687 EllipsisLoc))
2688 return BaseSpec;
2689 else
2690 Class->setInvalidDecl();
2691
2692 return true;
2693}
2694
2695/// Use small set to collect indirect bases. As this is only used
2696/// locally, there's no need to abstract the small size parameter.
2697typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
2698
2699/// Recursively add the bases of Type. Don't add Type itself.
2700static void
2701NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
2702 const QualType &Type)
2703{
2704 // Even though the incoming type is a base, it might not be
2705 // a class -- it could be a template parm, for instance.
2706 if (auto Rec = Type->getAs<RecordType>()) {
2707 auto Decl = Rec->getAsCXXRecordDecl();
2708
2709 // Iterate over its bases.
2710 for (const auto &BaseSpec : Decl->bases()) {
2711 QualType Base = Context.getCanonicalType(BaseSpec.getType())
2712 .getUnqualifiedType();
2713 if (Set.insert(Base).second)
2714 // If we've not already seen it, recurse.
2715 NoteIndirectBases(Context, Set, Base);
2716 }
2717 }
2718}
2719
2720/// Performs the actual work of attaching the given base class
2721/// specifiers to a C++ class.
2722bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class,
2723 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2724 if (Bases.empty())
2725 return false;
2726
2727 // Used to keep track of which base types we have already seen, so
2728 // that we can properly diagnose redundant direct base types. Note
2729 // that the key is always the unqualified canonical type of the base
2730 // class.
2731 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
2732
2733 // Used to track indirect bases so we can see if a direct base is
2734 // ambiguous.
2735 IndirectBaseSet IndirectBaseTypes;
2736
2737 // Copy non-redundant base specifiers into permanent storage.
2738 unsigned NumGoodBases = 0;
2739 bool Invalid = false;
2740 for (unsigned idx = 0; idx < Bases.size(); ++idx) {
2741 QualType NewBaseType
2742 = Context.getCanonicalType(Bases[idx]->getType());
2743 NewBaseType = NewBaseType.getLocalUnqualifiedType();
2744
2745 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
2746 if (KnownBase) {
2747 // C++ [class.mi]p3:
2748 // A class shall not be specified as a direct base class of a
2749 // derived class more than once.
2750 Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class)
2751 << KnownBase->getType() << Bases[idx]->getSourceRange();
2752
2753 // Delete the duplicate base class specifier; we're going to
2754 // overwrite its pointer later.
2755 Context.Deallocate(Bases[idx]);
2756
2757 Invalid = true;
2758 } else {
2759 // Okay, add this new base class.
2760 KnownBase = Bases[idx];
2761 Bases[NumGoodBases++] = Bases[idx];
2762
2763 if (NewBaseType->isDependentType())
2764 continue;
2765 // Note this base's direct & indirect bases, if there could be ambiguity.
2766 if (Bases.size() > 1)
2767 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
2768
2769 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
2770 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2771 if (Class->isInterface() &&
2772 (!RD->isInterfaceLike() ||
2773 KnownBase->getAccessSpecifier() != AS_public)) {
2774 // The Microsoft extension __interface does not permit bases that
2775 // are not themselves public interfaces.
2776 Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface)
2777 << getRecordDiagFromTagKind(RD->getTagKind()) << RD
2778 << RD->getSourceRange();
2779 Invalid = true;
2780 }
2781 if (RD->hasAttr<WeakAttr>())
2782 Class->addAttr(WeakAttr::CreateImplicit(Context));
2783 }
2784 }
2785 }
2786
2787 // Attach the remaining base class specifiers to the derived class.
2788 Class->setBases(Bases.data(), NumGoodBases);
2789
2790 // Check that the only base classes that are duplicate are virtual.
2791 for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
2792 // Check whether this direct base is inaccessible due to ambiguity.
2793 QualType BaseType = Bases[idx]->getType();
2794
2795 // Skip all dependent types in templates being used as base specifiers.
2796 // Checks below assume that the base specifier is a CXXRecord.
2797 if (BaseType->isDependentType())
2798 continue;
2799
2800 CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
2801 .getUnqualifiedType();
2802
2803 if (IndirectBaseTypes.count(CanonicalBase)) {
2804 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2805 /*DetectVirtual=*/true);
2806 bool found
2807 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
2808 assert(found)(static_cast <bool> (found) ? void (0) : __assert_fail (
"found", "clang/lib/Sema/SemaDeclCXX.cpp", 2808, __extension__
__PRETTY_FUNCTION__))
;
2809 (void)found;
2810
2811 if (Paths.isAmbiguous(CanonicalBase))
2812 Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class)
2813 << BaseType << getAmbiguousPathsDisplayString(Paths)
2814 << Bases[idx]->getSourceRange();
2815 else
2816 assert(Bases[idx]->isVirtual())(static_cast <bool> (Bases[idx]->isVirtual()) ? void
(0) : __assert_fail ("Bases[idx]->isVirtual()", "clang/lib/Sema/SemaDeclCXX.cpp"
, 2816, __extension__ __PRETTY_FUNCTION__))
;
2817 }
2818
2819 // Delete the base class specifier, since its data has been copied
2820 // into the CXXRecordDecl.
2821 Context.Deallocate(Bases[idx]);
2822 }
2823
2824 return Invalid;
2825}
2826
2827/// ActOnBaseSpecifiers - Attach the given base specifiers to the
2828/// class, after checking whether there are any duplicate base
2829/// classes.
2830void Sema::ActOnBaseSpecifiers(Decl *ClassDecl,
2831 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2832 if (!ClassDecl || Bases.empty())
2833 return;
2834
2835 AdjustDeclIfTemplate(ClassDecl);
2836 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases);
2837}
2838
2839/// Determine whether the type \p Derived is a C++ class that is
2840/// derived from the type \p Base.
2841bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) {
2842 if (!getLangOpts().CPlusPlus)
2843 return false;
2844
2845 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2846 if (!DerivedRD)
2847 return false;
2848
2849 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2850 if (!BaseRD)
2851 return false;
2852
2853 // If either the base or the derived type is invalid, don't try to
2854 // check whether one is derived from the other.
2855 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
2856 return false;
2857
2858 // FIXME: In a modules build, do we need the entire path to be visible for us
2859 // to be able to use the inheritance relationship?
2860 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2861 return false;
2862
2863 return DerivedRD->isDerivedFrom(BaseRD);
2864}
2865
2866/// Determine whether the type \p Derived is a C++ class that is
2867/// derived from the type \p Base.
2868bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
2869 CXXBasePaths &Paths) {
2870 if (!getLangOpts().CPlusPlus)
2871 return false;
2872
2873 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2874 if (!DerivedRD)
2875 return false;
2876
2877 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2878 if (!BaseRD)
2879 return false;
2880
2881 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2882 return false;
2883
2884 return DerivedRD->isDerivedFrom(BaseRD, Paths);
2885}
2886
2887static void BuildBasePathArray(const CXXBasePath &Path,
2888 CXXCastPath &BasePathArray) {
2889 // We first go backward and check if we have a virtual base.
2890 // FIXME: It would be better if CXXBasePath had the base specifier for
2891 // the nearest virtual base.
2892 unsigned Start = 0;
2893 for (unsigned I = Path.size(); I != 0; --I) {
2894 if (Path[I - 1].Base->isVirtual()) {
2895 Start = I - 1;
2896 break;
2897 }
2898 }
2899
2900 // Now add all bases.
2901 for (unsigned I = Start, E = Path.size(); I != E; ++I)
2902 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
2903}
2904
2905
2906void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
2907 CXXCastPath &BasePathArray) {
2908 assert(BasePathArray.empty() && "Base path array must be empty!")(static_cast <bool> (BasePathArray.empty() && "Base path array must be empty!"
) ? void (0) : __assert_fail ("BasePathArray.empty() && \"Base path array must be empty!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 2908, __extension__ __PRETTY_FUNCTION__
))
;
2909 assert(Paths.isRecordingPaths() && "Must record paths!")(static_cast <bool> (Paths.isRecordingPaths() &&
"Must record paths!") ? void (0) : __assert_fail ("Paths.isRecordingPaths() && \"Must record paths!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 2909, __extension__ __PRETTY_FUNCTION__
))
;
2910 return ::BuildBasePathArray(Paths.front(), BasePathArray);
2911}
2912/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
2913/// conversion (where Derived and Base are class types) is
2914/// well-formed, meaning that the conversion is unambiguous (and
2915/// that all of the base classes are accessible). Returns true
2916/// and emits a diagnostic if the code is ill-formed, returns false
2917/// otherwise. Loc is the location where this routine should point to
2918/// if there is an error, and Range is the source range to highlight
2919/// if there is an error.
2920///
2921/// If either InaccessibleBaseID or AmbiguousBaseConvID are 0, then the
2922/// diagnostic for the respective type of error will be suppressed, but the
2923/// check for ill-formed code will still be performed.
2924bool
2925Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2926 unsigned InaccessibleBaseID,
2927 unsigned AmbiguousBaseConvID,
2928 SourceLocation Loc, SourceRange Range,
2929 DeclarationName Name,
2930 CXXCastPath *BasePath,
2931 bool IgnoreAccess) {
2932 // First, determine whether the path from Derived to Base is
2933 // ambiguous. This is slightly more expensive than checking whether
2934 // the Derived to Base conversion exists, because here we need to
2935 // explore multiple paths to determine if there is an ambiguity.
2936 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2937 /*DetectVirtual=*/false);
2938 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2939 if (!DerivationOkay)
2940 return true;
2941
2942 const CXXBasePath *Path = nullptr;
2943 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType()))
2944 Path = &Paths.front();
2945
2946 // For MSVC compatibility, check if Derived directly inherits from Base. Clang
2947 // warns about this hierarchy under -Winaccessible-base, but MSVC allows the
2948 // user to access such bases.
2949 if (!Path && getLangOpts().MSVCCompat) {
2950 for (const CXXBasePath &PossiblePath : Paths) {
2951 if (PossiblePath.size() == 1) {
2952 Path = &PossiblePath;
2953 if (AmbiguousBaseConvID)
2954 Diag(Loc, diag::ext_ms_ambiguous_direct_base)
2955 << Base << Derived << Range;
2956 break;
2957 }
2958 }
2959 }
2960
2961 if (Path) {
2962 if (!IgnoreAccess) {
2963 // Check that the base class can be accessed.
2964 switch (
2965 CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) {
2966 case AR_inaccessible:
2967 return true;
2968 case AR_accessible:
2969 case AR_dependent:
2970 case AR_delayed:
2971 break;
2972 }
2973 }
2974
2975 // Build a base path if necessary.
2976 if (BasePath)
2977 ::BuildBasePathArray(*Path, *BasePath);
2978 return false;
2979 }
2980
2981 if (AmbiguousBaseConvID) {
2982 // We know that the derived-to-base conversion is ambiguous, and
2983 // we're going to produce a diagnostic. Perform the derived-to-base
2984 // search just one more time to compute all of the possible paths so
2985 // that we can print them out. This is more expensive than any of
2986 // the previous derived-to-base checks we've done, but at this point
2987 // performance isn't as much of an issue.
2988 Paths.clear();
2989 Paths.setRecordingPaths(true);
2990 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2991 assert(StillOkay && "Can only be used with a derived-to-base conversion")(static_cast <bool> (StillOkay && "Can only be used with a derived-to-base conversion"
) ? void (0) : __assert_fail ("StillOkay && \"Can only be used with a derived-to-base conversion\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 2991, __extension__ __PRETTY_FUNCTION__
))
;
2992 (void)StillOkay;
2993
2994 // Build up a textual representation of the ambiguous paths, e.g.,
2995 // D -> B -> A, that will be used to illustrate the ambiguous
2996 // conversions in the diagnostic. We only print one of the paths
2997 // to each base class subobject.
2998 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2999
3000 Diag(Loc, AmbiguousBaseConvID)
3001 << Derived << Base << PathDisplayStr << Range << Name;
3002 }
3003 return true;
3004}
3005
3006bool
3007Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
3008 SourceLocation Loc, SourceRange Range,
3009 CXXCastPath *BasePath,
3010 bool IgnoreAccess) {
3011 return CheckDerivedToBaseConversion(
3012 Derived, Base, diag::err_upcast_to_inaccessible_base,
3013 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(),
3014 BasePath, IgnoreAccess);
3015}
3016
3017
3018/// Builds a string representing ambiguous paths from a
3019/// specific derived class to different subobjects of the same base
3020/// class.
3021///
3022/// This function builds a string that can be used in error messages
3023/// to show the different paths that one can take through the
3024/// inheritance hierarchy to go from the derived class to different
3025/// subobjects of a base class. The result looks something like this:
3026/// @code
3027/// struct D -> struct B -> struct A
3028/// struct D -> struct C -> struct A
3029/// @endcode
3030std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
3031 std::string PathDisplayStr;
3032 std::set<unsigned> DisplayedPaths;
3033 for (CXXBasePaths::paths_iterator Path = Paths.begin();
3034 Path != Paths.end(); ++Path) {
3035 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
3036 // We haven't displayed a path to this particular base
3037 // class subobject yet.
3038 PathDisplayStr += "\n ";
3039 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
3040 for (CXXBasePath::const_iterator Element = Path->begin();
3041 Element != Path->end(); ++Element)
3042 PathDisplayStr += " -> " + Element->Base->getType().getAsString();
3043 }
3044 }
3045
3046 return PathDisplayStr;
3047}
3048
3049//===----------------------------------------------------------------------===//
3050// C++ class member Handling
3051//===----------------------------------------------------------------------===//
3052
3053/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
3054bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc,
3055 SourceLocation ColonLoc,
3056 const ParsedAttributesView &Attrs) {
3057 assert(Access != AS_none && "Invalid kind for syntactic access specifier!")(static_cast <bool> (Access != AS_none && "Invalid kind for syntactic access specifier!"
) ? void (0) : __assert_fail ("Access != AS_none && \"Invalid kind for syntactic access specifier!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 3057, __extension__ __PRETTY_FUNCTION__
))
;
3058 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
3059 ASLoc, ColonLoc);
3060 CurContext->addHiddenDecl(ASDecl);
3061 return ProcessAccessDeclAttributeList(ASDecl, Attrs);
3062}
3063
3064/// CheckOverrideControl - Check C++11 override control semantics.
3065void Sema::CheckOverrideControl(NamedDecl *D) {
3066 if (D->isInvalidDecl())
3067 return;
3068
3069 // We only care about "override" and "final" declarations.
3070 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
3071 return;
3072
3073 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
3074
3075 // We can't check dependent instance methods.
3076 if (MD && MD->isInstance() &&
3077 (MD->getParent()->hasAnyDependentBases() ||
3078 MD->getType()->isDependentType()))
3079 return;
3080
3081 if (MD && !MD->isVirtual()) {
3082 // If we have a non-virtual method, check if if hides a virtual method.
3083 // (In that case, it's most likely the method has the wrong type.)
3084 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
3085 FindHiddenVirtualMethods(MD, OverloadedMethods);
3086
3087 if (!OverloadedMethods.empty()) {
3088 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
3089 Diag(OA->getLocation(),
3090 diag::override_keyword_hides_virtual_member_function)
3091 << "override" << (OverloadedMethods.size() > 1);
3092 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
3093 Diag(FA->getLocation(),
3094 diag::override_keyword_hides_virtual_member_function)
3095 << (FA->isSpelledAsSealed() ? "sealed" : "final")
3096 << (OverloadedMethods.size() > 1);
3097 }
3098 NoteHiddenVirtualMethods(MD, OverloadedMethods);
3099 MD->setInvalidDecl();
3100 return;
3101 }
3102 // Fall through into the general case diagnostic.
3103 // FIXME: We might want to attempt typo correction here.
3104 }
3105
3106 if (!MD || !MD->isVirtual()) {
3107 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
3108 Diag(OA->getLocation(),
3109 diag::override_keyword_only_allowed_on_virtual_member_functions)
3110 << "override" << FixItHint::CreateRemoval(OA->getLocation());
3111 D->dropAttr<OverrideAttr>();
3112 }
3113 if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
3114 Diag(FA->getLocation(),
3115 diag::override_keyword_only_allowed_on_virtual_member_functions)
3116 << (FA->isSpelledAsSealed() ? "sealed" : "final")
3117 << FixItHint::CreateRemoval(FA->getLocation());
3118 D->dropAttr<FinalAttr>();
3119 }
3120 return;
3121 }
3122
3123 // C++11 [class.virtual]p5:
3124 // If a function is marked with the virt-specifier override and
3125 // does not override a member function of a base class, the program is
3126 // ill-formed.
3127 bool HasOverriddenMethods = MD->size_overridden_methods() != 0;
3128 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
3129 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
3130 << MD->getDeclName();
3131}
3132
3133void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent) {
3134 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
3135 return;
3136 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
3137 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>())
3138 return;
3139
3140 SourceLocation Loc = MD->getLocation();
3141 SourceLocation SpellingLoc = Loc;
3142 if (getSourceManager().isMacroArgExpansion(Loc))
3143 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin();
3144 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
3145 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
3146 return;
3147
3148 if (MD->size_overridden_methods() > 0) {
3149 auto EmitDiag = [&](unsigned DiagInconsistent, unsigned DiagSuggest) {
3150 unsigned DiagID =
3151 Inconsistent && !Diags.isIgnored(DiagInconsistent, MD->getLocation())
3152 ? DiagInconsistent
3153 : DiagSuggest;
3154 Diag(MD->getLocation(), DiagID) << MD->getDeclName();
3155 const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
3156 Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
3157 };
3158 if (isa<CXXDestructorDecl>(MD))
3159 EmitDiag(
3160 diag::warn_inconsistent_destructor_marked_not_override_overriding,
3161 diag::warn_suggest_destructor_marked_not_override_overriding);
3162 else
3163 EmitDiag(diag::warn_inconsistent_function_marked_not_override_overriding,
3164 diag::warn_suggest_function_marked_not_override_overriding);
3165 }
3166}
3167
3168/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
3169/// function overrides a virtual member function marked 'final', according to
3170/// C++11 [class.virtual]p4.
3171bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
3172 const CXXMethodDecl *Old) {
3173 FinalAttr *FA = Old->getAttr<FinalAttr>();
3174 if (!FA)
3175 return false;
3176
3177 Diag(New->getLocation(), diag::err_final_function_overridden)
3178 << New->getDeclName()
3179 << FA->isSpelledAsSealed();
3180 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3181 return true;
3182}
3183
3184static bool InitializationHasSideEffects(const FieldDecl &FD) {
3185 const Type *T = FD.getType()->getBaseElementTypeUnsafe();
3186 // FIXME: Destruction of ObjC lifetime types has side-effects.
3187 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3188 return !RD->isCompleteDefinition() ||
3189 !RD->hasTrivialDefaultConstructor() ||
3190 !RD->hasTrivialDestructor();
3191 return false;
3192}
3193
3194static const ParsedAttr *getMSPropertyAttr(const ParsedAttributesView &list) {
3195 ParsedAttributesView::const_iterator Itr =
3196 llvm::find_if(list, [](const ParsedAttr &AL) {
3197 return AL.isDeclspecPropertyAttribute();
3198 });
3199 if (Itr != list.end())
3200 return &*Itr;
3201 return nullptr;
3202}
3203
3204// Check if there is a field shadowing.
3205void Sema::CheckShadowInheritedFields(const SourceLocation &Loc,
3206 DeclarationName FieldName,
3207 const CXXRecordDecl *RD,
3208 bool DeclIsField) {
3209 if (Diags.isIgnored(diag::warn_shadow_field, Loc))
3210 return;
3211
3212 // To record a shadowed field in a base
3213 std::map<CXXRecordDecl*, NamedDecl*> Bases;
3214 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier,
3215 CXXBasePath &Path) {
3216 const auto Base = Specifier->getType()->getAsCXXRecordDecl();
3217 // Record an ambiguous path directly
3218 if (Bases.find(Base) != Bases.end())
3219 return true;
3220 for (const auto Field : Base->lookup(FieldName)) {
3221 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) &&
3222 Field->getAccess() != AS_private) {
3223 assert(Field->getAccess() != AS_none)(static_cast <bool> (Field->getAccess() != AS_none) ?
void (0) : __assert_fail ("Field->getAccess() != AS_none"
, "clang/lib/Sema/SemaDeclCXX.cpp", 3223, __extension__ __PRETTY_FUNCTION__
))
;
3224 assert(Bases.find(Base) == Bases.end())(static_cast <bool> (Bases.find(Base) == Bases.end()) ?
void (0) : __assert_fail ("Bases.find(Base) == Bases.end()",
"clang/lib/Sema/SemaDeclCXX.cpp", 3224, __extension__ __PRETTY_FUNCTION__
))
;
3225 Bases[Base] = Field;
3226 return true;
3227 }
3228 }
3229 return false;
3230 };
3231
3232 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3233 /*DetectVirtual=*/true);
3234 if (!RD->lookupInBases(FieldShadowed, Paths))
3235 return;
3236
3237 for (const auto &P : Paths) {
3238 auto Base = P.back().Base->getType()->getAsCXXRecordDecl();
3239 auto It = Bases.find(Base);
3240 // Skip duplicated bases
3241 if (It == Bases.end())
3242 continue;
3243 auto BaseField = It->second;
3244 assert(BaseField->getAccess() != AS_private)(static_cast <bool> (BaseField->getAccess() != AS_private
) ? void (0) : __assert_fail ("BaseField->getAccess() != AS_private"
, "clang/lib/Sema/SemaDeclCXX.cpp", 3244, __extension__ __PRETTY_FUNCTION__
))
;
3245 if (AS_none !=
3246 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) {
3247 Diag(Loc, diag::warn_shadow_field)
3248 << FieldName << RD << Base << DeclIsField;
3249 Diag(BaseField->getLocation(), diag::note_shadow_field);
3250 Bases.erase(It);
3251 }
3252 }
3253}
3254
3255/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
3256/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
3257/// bitfield width if there is one, 'InitExpr' specifies the initializer if
3258/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
3259/// present (but parsing it has been deferred).
3260NamedDecl *
3261Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
3262 MultiTemplateParamsArg TemplateParameterLists,
3263 Expr *BW, const VirtSpecifiers &VS,
3264 InClassInitStyle InitStyle) {
3265 const DeclSpec &DS = D.getDeclSpec();
3266 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3267 DeclarationName Name = NameInfo.getName();
3268 SourceLocation Loc = NameInfo.getLoc();
3269
3270 // For anonymous bitfields, the location should point to the type.
3271 if (Loc.isInvalid())
3272 Loc = D.getBeginLoc();
3273
3274 Expr *BitWidth = static_cast<Expr*>(BW);
3275
3276 assert(isa<CXXRecordDecl>(CurContext))(static_cast <bool> (isa<CXXRecordDecl>(CurContext
)) ? void (0) : __assert_fail ("isa<CXXRecordDecl>(CurContext)"
, "clang/lib/Sema/SemaDeclCXX.cpp", 3276, __extension__ __PRETTY_FUNCTION__
))
;
3277 assert(!DS.isFriendSpecified())(static_cast <bool> (!DS.isFriendSpecified()) ? void (0
) : __assert_fail ("!DS.isFriendSpecified()", "clang/lib/Sema/SemaDeclCXX.cpp"
, 3277, __extension__ __PRETTY_FUNCTION__))
;
3278
3279 bool isFunc = D.isDeclarationOfFunction();
3280 const ParsedAttr *MSPropertyAttr =
3281 getMSPropertyAttr(D.getDeclSpec().getAttributes());
3282
3283 if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
3284 // The Microsoft extension __interface only permits public member functions
3285 // and prohibits constructors, destructors, operators, non-public member
3286 // functions, static methods and data members.
3287 unsigned InvalidDecl;
3288 bool ShowDeclName = true;
3289 if (!isFunc &&
3290 (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr))
3291 InvalidDecl = 0;
3292 else if (!isFunc)
3293 InvalidDecl = 1;
3294 else if (AS != AS_public)
3295 InvalidDecl = 2;
3296 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
3297 InvalidDecl = 3;
3298 else switch (Name.getNameKind()) {
3299 case DeclarationName::CXXConstructorName:
3300 InvalidDecl = 4;
3301 ShowDeclName = false;
3302 break;
3303
3304 case DeclarationName::CXXDestructorName:
3305 InvalidDecl = 5;
3306 ShowDeclName = false;
3307 break;
3308
3309 case DeclarationName::CXXOperatorName:
3310 case DeclarationName::CXXConversionFunctionName:
3311 InvalidDecl = 6;
3312 break;
3313
3314 default:
3315 InvalidDecl = 0;
3316 break;
3317 }
3318
3319 if (InvalidDecl) {
3320 if (ShowDeclName)
3321 Diag(Loc, diag::err_invalid_member_in_interface)
3322 << (InvalidDecl-1) << Name;
3323 else
3324 Diag(Loc, diag::err_invalid_member_in_interface)
3325 << (InvalidDecl-1) << "";
3326 return nullptr;
3327 }
3328 }
3329
3330 // C++ 9.2p6: A member shall not be declared to have automatic storage
3331 // duration (auto, register) or with the extern storage-class-specifier.
3332 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
3333 // data members and cannot be applied to names declared const or static,
3334 // and cannot be applied to reference members.
3335 switch (DS.getStorageClassSpec()) {
3336 case DeclSpec::SCS_unspecified:
3337 case DeclSpec::SCS_typedef:
3338 case DeclSpec::SCS_static:
3339 break;
3340 case DeclSpec::SCS_mutable:
3341 if (isFunc) {
3342 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
3343
3344 // FIXME: It would be nicer if the keyword was ignored only for this
3345 // declarator. Otherwise we could get follow-up errors.
3346 D.getMutableDeclSpec().ClearStorageClassSpecs();
3347 }
3348 break;
3349 default:
3350 Diag(DS.getStorageClassSpecLoc(),
3351 diag::err_storageclass_invalid_for_member);
3352 D.getMutableDeclSpec().ClearStorageClassSpecs();
3353 break;
3354 }
3355
3356 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
3357 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
3358 !isFunc);
3359
3360 if (DS.hasConstexprSpecifier() && isInstField) {
3361 SemaDiagnosticBuilder B =
3362 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
3363 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
3364 if (InitStyle == ICIS_NoInit) {
3365 B << 0 << 0;
3366 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
3367 B << FixItHint::CreateRemoval(ConstexprLoc);
3368 else {
3369 B << FixItHint::CreateReplacement(ConstexprLoc, "const");
3370 D.getMutableDeclSpec().ClearConstexprSpec();
3371 const char *PrevSpec;
3372 unsigned DiagID;
3373 bool Failed = D.getMutableDeclSpec().SetTypeQual(
3374 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
3375 (void)Failed;
3376 assert(!Failed && "Making a constexpr member const shouldn't fail")(static_cast <bool> (!Failed && "Making a constexpr member const shouldn't fail"
) ? void (0) : __assert_fail ("!Failed && \"Making a constexpr member const shouldn't fail\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 3376, __extension__ __PRETTY_FUNCTION__
))
;
3377 }
3378 } else {
3379 B << 1;
3380 const char *PrevSpec;
3381 unsigned DiagID;
3382 if (D.getMutableDeclSpec().SetStorageClassSpec(
3383 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
3384 Context.getPrintingPolicy())) {
3385 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&(static_cast <bool> (DS.getStorageClassSpec() == DeclSpec
::SCS_mutable && "This is the only DeclSpec that should fail to be applied"
) ? void (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 3386, __extension__ __PRETTY_FUNCTION__
))
3386 "This is the only DeclSpec that should fail to be applied")(static_cast <bool> (DS.getStorageClassSpec() == DeclSpec
::SCS_mutable && "This is the only DeclSpec that should fail to be applied"
) ? void (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 3386, __extension__ __PRETTY_FUNCTION__
))
;
3387 B << 1;
3388 } else {
3389 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
3390 isInstField = false;
3391 }
3392 }
3393 }
3394
3395 NamedDecl *Member;
3396 if (isInstField) {
3397 CXXScopeSpec &SS = D.getCXXScopeSpec();
3398
3399 // Data members must have identifiers for names.
3400 if (!Name.isIdentifier()) {
3401 Diag(Loc, diag::err_bad_variable_name)
3402 << Name;
3403 return nullptr;
3404 }
3405
3406 IdentifierInfo *II = Name.getAsIdentifierInfo();
3407
3408 // Member field could not be with "template" keyword.
3409 // So TemplateParameterLists should be empty in this case.
3410 if (TemplateParameterLists.size()) {
3411 TemplateParameterList* TemplateParams = TemplateParameterLists[0];
3412 if (TemplateParams->size()) {
3413 // There is no such thing as a member field template.
3414 Diag(D.getIdentifierLoc(), diag::err_template_member)
3415 << II
3416 << SourceRange(TemplateParams->getTemplateLoc(),
3417 TemplateParams->getRAngleLoc());
3418 } else {
3419 // There is an extraneous 'template<>' for this member.
3420 Diag(TemplateParams->getTemplateLoc(),
3421 diag::err_template_member_noparams)
3422 << II
3423 << SourceRange(TemplateParams->getTemplateLoc(),
3424 TemplateParams->getRAngleLoc());
3425 }
3426 return nullptr;
3427 }
3428
3429 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
3430 Diag(D.getIdentifierLoc(), diag::err_member_with_template_arguments)
3431 << II
3432 << SourceRange(D.getName().TemplateId->LAngleLoc,
3433 D.getName().TemplateId->RAngleLoc)
3434 << D.getName().TemplateId->LAngleLoc;
3435 D.SetIdentifier(II, Loc);
3436 }
3437
3438 if (SS.isSet() && !SS.isInvalid()) {
3439 // The user provided a superfluous scope specifier inside a class
3440 // definition:
3441 //
3442 // class X {
3443 // int X::member;
3444 // };
3445 if (DeclContext *DC = computeDeclContext(SS, false))
3446 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(),
3447 D.getName().getKind() ==
3448 UnqualifiedIdKind::IK_TemplateId);
3449 else
3450 Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3451 << Name << SS.getRange();
3452
3453 SS.clear();
3454 }
3455
3456 if (MSPropertyAttr) {
3457 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3458 BitWidth, InitStyle, AS, *MSPropertyAttr);
3459 if (!Member)
3460 return nullptr;
3461 isInstField = false;
3462 } else {
3463 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3464 BitWidth, InitStyle, AS);
3465 if (!Member)
3466 return nullptr;
3467 }
3468
3469 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext));
3470 } else {
3471 Member = HandleDeclarator(S, D, TemplateParameterLists);
3472 if (!Member)
3473 return nullptr;
3474
3475 // Non-instance-fields can't have a bitfield.
3476 if (BitWidth) {
3477 if (Member->isInvalidDecl()) {
3478 // don't emit another diagnostic.
3479 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
3480 // C++ 9.6p3: A bit-field shall not be a static member.
3481 // "static member 'A' cannot be a bit-field"
3482 Diag(Loc, diag::err_static_not_bitfield)
3483 << Name << BitWidth->getSourceRange();
3484 } else if (isa<TypedefDecl>(Member)) {
3485 // "typedef member 'x' cannot be a bit-field"
3486 Diag(Loc, diag::err_typedef_not_bitfield)
3487 << Name << BitWidth->getSourceRange();
3488 } else {
3489 // A function typedef ("typedef int f(); f a;").
3490 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3491 Diag(Loc, diag::err_not_integral_type_bitfield)
3492 << Name << cast<ValueDecl>(Member)->getType()
3493 << BitWidth->getSourceRange();
3494 }
3495
3496 BitWidth = nullptr;
3497 Member->setInvalidDecl();
3498 }
3499
3500 NamedDecl *NonTemplateMember = Member;
3501 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
3502 NonTemplateMember = FunTmpl->getTemplatedDecl();
3503 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
3504 NonTemplateMember = VarTmpl->getTemplatedDecl();
3505
3506 Member->setAccess(AS);
3507
3508 // If we have declared a member function template or static data member
3509 // template, set the access of the templated declaration as well.
3510 if (NonTemplateMember != Member)
3511 NonTemplateMember->setAccess(AS);
3512
3513 // C++ [temp.deduct.guide]p3:
3514 // A deduction guide [...] for a member class template [shall be
3515 // declared] with the same access [as the template].
3516 if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) {
3517 auto *TD = DG->getDeducedTemplate();
3518 // Access specifiers are only meaningful if both the template and the
3519 // deduction guide are from the same scope.
3520 if (AS != TD->getAccess() &&
3521 TD->getDeclContext()->getRedeclContext()->Equals(
3522 DG->getDeclContext()->getRedeclContext())) {
3523 Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access);
3524 Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access)
3525 << TD->getAccess();
3526 const AccessSpecDecl *LastAccessSpec = nullptr;
3527 for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) {
3528 if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D))
3529 LastAccessSpec = AccessSpec;
3530 }
3531 assert(LastAccessSpec && "differing access with no access specifier")(static_cast <bool> (LastAccessSpec && "differing access with no access specifier"
) ? void (0) : __assert_fail ("LastAccessSpec && \"differing access with no access specifier\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 3531, __extension__ __PRETTY_FUNCTION__
))
;
3532 Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access)
3533 << AS;
3534 }
3535 }
3536 }
3537
3538 if (VS.isOverrideSpecified())
3539 Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc(),
3540 AttributeCommonInfo::AS_Keyword));
3541 if (VS.isFinalSpecified())
3542 Member->addAttr(FinalAttr::Create(
3543 Context, VS.getFinalLoc(), AttributeCommonInfo::AS_Keyword,
3544 static_cast<FinalAttr::Spelling>(VS.isFinalSpelledSealed())));
3545
3546 if (VS.getLastLocation().isValid()) {
3547 // Update the end location of a method that has a virt-specifiers.
3548 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
3549 MD->setRangeEnd(VS.getLastLocation());
3550 }
3551
3552 CheckOverrideControl(Member);
3553
3554 assert((Name || isInstField) && "No identifier for non-field ?")(static_cast <bool> ((Name || isInstField) && "No identifier for non-field ?"
) ? void (0) : __assert_fail ("(Name || isInstField) && \"No identifier for non-field ?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 3554, __extension__ __PRETTY_FUNCTION__
))
;
3555
3556 if (isInstField) {
3557 FieldDecl *FD = cast<FieldDecl>(Member);
3558 FieldCollector->Add(FD);
3559
3560 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
3561 // Remember all explicit private FieldDecls that have a name, no side
3562 // effects and are not part of a dependent type declaration.
3563 if (!FD->isImplicit() && FD->getDeclName() &&
3564 FD->getAccess() == AS_private &&
3565 !FD->hasAttr<UnusedAttr>() &&
3566 !FD->getParent()->isDependentContext() &&
3567 !InitializationHasSideEffects(*FD))
3568 UnusedPrivateFields.insert(FD);
3569 }
3570 }
3571
3572 return Member;
3573}
3574
3575namespace {
3576 class UninitializedFieldVisitor
3577 : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
3578 Sema &S;
3579 // List of Decls to generate a warning on. Also remove Decls that become
3580 // initialized.
3581 llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
3582 // List of base classes of the record. Classes are removed after their
3583 // initializers.
3584 llvm::SmallPtrSetImpl<QualType> &BaseClasses;
3585 // Vector of decls to be removed from the Decl set prior to visiting the
3586 // nodes. These Decls may have been initialized in the prior initializer.
3587 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
3588 // If non-null, add a note to the warning pointing back to the constructor.
3589 const CXXConstructorDecl *Constructor;
3590 // Variables to hold state when processing an initializer list. When
3591 // InitList is true, special case initialization of FieldDecls matching
3592 // InitListFieldDecl.
3593 bool InitList;
3594 FieldDecl *InitListFieldDecl;
3595 llvm::SmallVector<unsigned, 4> InitFieldIndex;
3596
3597 public:
3598 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
3599 UninitializedFieldVisitor(Sema &S,
3600 llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
3601 llvm::SmallPtrSetImpl<QualType> &BaseClasses)
3602 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
3603 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
3604
3605 // Returns true if the use of ME is not an uninitialized use.
3606 bool IsInitListMemberExprInitialized(MemberExpr *ME,
3607 bool CheckReferenceOnly) {
3608 llvm::SmallVector<FieldDecl*, 4> Fields;
3609 bool ReferenceField = false;
3610 while (ME) {
3611 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
3612 if (!FD)
3613 return false;
3614 Fields.push_back(FD);
3615 if (FD->getType()->isReferenceType())
3616 ReferenceField = true;
3617 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
3618 }
3619
3620 // Binding a reference to an uninitialized field is not an
3621 // uninitialized use.
3622 if (CheckReferenceOnly && !ReferenceField)
3623 return true;
3624
3625 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
3626 // Discard the first field since it is the field decl that is being
3627 // initialized.
3628 for (const FieldDecl *FD : llvm::drop_begin(llvm::reverse(Fields)))
3629 UsedFieldIndex.push_back(FD->getFieldIndex());
3630
3631 for (auto UsedIter = UsedFieldIndex.begin(),
3632 UsedEnd = UsedFieldIndex.end(),
3633 OrigIter = InitFieldIndex.begin(),
3634 OrigEnd = InitFieldIndex.end();
3635 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
3636 if (*UsedIter < *OrigIter)
3637 return true;
3638 if (*UsedIter > *OrigIter)
3639 break;
3640 }
3641
3642 return false;
3643 }
3644
3645 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
3646 bool AddressOf) {
3647 if (isa<EnumConstantDecl>(ME->getMemberDecl()))
3648 return;
3649
3650 // FieldME is the inner-most MemberExpr that is not an anonymous struct
3651 // or union.
3652 MemberExpr *FieldME = ME;
3653
3654 bool AllPODFields = FieldME->getType().isPODType(S.Context);
3655
3656 Expr *Base = ME;
3657 while (MemberExpr *SubME =
3658 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
3659
3660 if (isa<VarDecl>(SubME->getMemberDecl()))
3661 return;
3662
3663 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
3664 if (!FD->isAnonymousStructOrUnion())
3665 FieldME = SubME;
3666
3667 if (!FieldME->getType().isPODType(S.Context))
3668 AllPODFields = false;
3669
3670 Base = SubME->getBase();
3671 }
3672
3673 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts())) {
3674 Visit(Base);
3675 return;
3676 }
3677
3678 if (AddressOf && AllPODFields)
3679 return;
3680
3681 ValueDecl* FoundVD = FieldME->getMemberDecl();
3682
3683 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
3684 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
3685 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
3686 }
3687
3688 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
3689 QualType T = BaseCast->getType();
3690 if (T->isPointerType() &&
3691 BaseClasses.count(T->getPointeeType())) {
3692 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
3693 << T->getPointeeType() << FoundVD;
3694 }
3695 }
3696 }
3697
3698 if (!Decls.count(FoundVD))
3699 return;
3700
3701 const bool IsReference = FoundVD->getType()->isReferenceType();
3702
3703 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
3704 // Special checking for initializer lists.
3705 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
3706 return;
3707 }
3708 } else {
3709 // Prevent double warnings on use of unbounded references.
3710 if (CheckReferenceOnly && !IsReference)
3711 return;
3712 }
3713
3714 unsigned diag = IsReference
3715 ? diag::warn_reference_field_is_uninit
3716 : diag::warn_field_is_uninit;
3717 S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
3718 if (Constructor)
3719 S.Diag(Constructor->getLocation(),
3720 diag::note_uninit_in_this_constructor)
3721 << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
3722
3723 }
3724
3725 void HandleValue(Expr *E, bool AddressOf) {
3726 E = E->IgnoreParens();
3727
3728 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3729 HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
3730 AddressOf /*AddressOf*/);
3731 return;
3732 }
3733
3734 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3735 Visit(CO->getCond());
3736 HandleValue(CO->getTrueExpr(), AddressOf);
3737 HandleValue(CO->getFalseExpr(), AddressOf);
3738 return;
3739 }
3740
3741 if (BinaryConditionalOperator *BCO =
3742 dyn_cast<BinaryConditionalOperator>(E)) {
3743 Visit(BCO->getCond());
3744 HandleValue(BCO->getFalseExpr(), AddressOf);
3745 return;
3746 }
3747
3748 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
3749 HandleValue(OVE->getSourceExpr(), AddressOf);
3750 return;
3751 }
3752
3753 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3754 switch (BO->getOpcode()) {
3755 default:
3756 break;
3757 case(BO_PtrMemD):
3758 case(BO_PtrMemI):
3759 HandleValue(BO->getLHS(), AddressOf);
3760 Visit(BO->getRHS());
3761 return;
3762 case(BO_Comma):
3763 Visit(BO->getLHS());
3764 HandleValue(BO->getRHS(), AddressOf);
3765 return;
3766 }
3767 }
3768
3769 Visit(E);
3770 }
3771
3772 void CheckInitListExpr(InitListExpr *ILE) {
3773 InitFieldIndex.push_back(0);
3774 for (auto Child : ILE->children()) {
3775 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
3776 CheckInitListExpr(SubList);
3777 } else {
3778 Visit(Child);
3779 }
3780 ++InitFieldIndex.back();
3781 }
3782 InitFieldIndex.pop_back();
3783 }
3784
3785 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
3786 FieldDecl *Field, const Type *BaseClass) {
3787 // Remove Decls that may have been initialized in the previous
3788 // initializer.
3789 for (ValueDecl* VD : DeclsToRemove)
3790 Decls.erase(VD);
3791 DeclsToRemove.clear();
3792
3793 Constructor = FieldConstructor;
3794 InitListExpr *ILE = dyn_cast<InitListExpr>(E);
3795
3796 if (ILE && Field) {
3797 InitList = true;
3798 InitListFieldDecl = Field;
3799 InitFieldIndex.clear();
3800 CheckInitListExpr(ILE);
3801 } else {
3802 InitList = false;
3803 Visit(E);
3804 }
3805
3806 if (Field)
3807 Decls.erase(Field);
3808 if (BaseClass)
3809 BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
3810 }
3811
3812 void VisitMemberExpr(MemberExpr *ME) {
3813 // All uses of unbounded reference fields will warn.
3814 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
3815 }
3816
3817 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
3818 if (E->getCastKind() == CK_LValueToRValue) {
3819 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3820 return;
3821 }
3822
3823 Inherited::VisitImplicitCastExpr(E);
3824 }
3825
3826 void VisitCXXConstructExpr(CXXConstructExpr *E) {
3827 if (E->getConstructor()->isCopyConstructor()) {
3828 Expr *ArgExpr = E->getArg(0);
3829 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
3830 if (ILE->getNumInits() == 1)
3831 ArgExpr = ILE->getInit(0);
3832 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
3833 if (ICE->getCastKind() == CK_NoOp)
3834 ArgExpr = ICE->getSubExpr();
3835 HandleValue(ArgExpr, false /*AddressOf*/);
3836 return;
3837 }
3838 Inherited::VisitCXXConstructExpr(E);
3839 }
3840
3841 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3842 Expr *Callee = E->getCallee();
3843 if (isa<MemberExpr>(Callee)) {
3844 HandleValue(Callee, false /*AddressOf*/);
3845 for (auto Arg : E->arguments())
3846 Visit(Arg);
3847 return;
3848 }
3849
3850 Inherited::VisitCXXMemberCallExpr(E);
3851 }
3852
3853 void VisitCallExpr(CallExpr *E) {
3854 // Treat std::move as a use.
3855 if (E->isCallToStdMove()) {
3856 HandleValue(E->getArg(0), /*AddressOf=*/false);
3857 return;
3858 }
3859
3860 Inherited::VisitCallExpr(E);
3861 }
3862
3863 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
3864 Expr *Callee = E->getCallee();
3865
3866 if (isa<UnresolvedLookupExpr>(Callee))
3867 return Inherited::VisitCXXOperatorCallExpr(E);
3868
3869 Visit(Callee);
3870 for (auto Arg : E->arguments())
3871 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
3872 }
3873
3874 void VisitBinaryOperator(BinaryOperator *E) {
3875 // If a field assignment is detected, remove the field from the
3876 // uninitiailized field set.
3877 if (E->getOpcode() == BO_Assign)
3878 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
3879 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3880 if (!FD->getType()->isReferenceType())
3881 DeclsToRemove.push_back(FD);
3882
3883 if (E->isCompoundAssignmentOp()) {
3884 HandleValue(E->getLHS(), false /*AddressOf*/);
3885 Visit(E->getRHS());
3886 return;
3887 }
3888
3889 Inherited::VisitBinaryOperator(E);
3890 }
3891
3892 void VisitUnaryOperator(UnaryOperator *E) {
3893 if (E->isIncrementDecrementOp()) {
3894 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3895 return;
3896 }
3897 if (E->getOpcode() == UO_AddrOf) {
3898 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
3899 HandleValue(ME->getBase(), true /*AddressOf*/);
3900 return;
3901 }
3902 }
3903
3904 Inherited::VisitUnaryOperator(E);
3905 }
3906 };
3907
3908 // Diagnose value-uses of fields to initialize themselves, e.g.
3909 // foo(foo)
3910 // where foo is not also a parameter to the constructor.
3911 // Also diagnose across field uninitialized use such as
3912 // x(y), y(x)
3913 // TODO: implement -Wuninitialized and fold this into that framework.
3914 static void DiagnoseUninitializedFields(
3915 Sema &SemaRef, const CXXConstructorDecl *Constructor) {
3916
3917 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
3918 Constructor->getLocation())) {
3919 return;
3920 }
3921
3922 if (Constructor->isInvalidDecl())
3923 return;
3924
3925 const CXXRecordDecl *RD = Constructor->getParent();
3926
3927 if (RD->isDependentContext())
3928 return;
3929
3930 // Holds fields that are uninitialized.
3931 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
3932
3933 // At the beginning, all fields are uninitialized.
3934 for (auto *I : RD->decls()) {
3935 if (auto *FD = dyn_cast<FieldDecl>(I)) {
3936 UninitializedFields.insert(FD);
3937 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
3938 UninitializedFields.insert(IFD->getAnonField());
3939 }
3940 }
3941
3942 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
3943 for (auto I : RD->bases())
3944 UninitializedBaseClasses.insert(I.getType().getCanonicalType());
3945
3946 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3947 return;
3948
3949 UninitializedFieldVisitor UninitializedChecker(SemaRef,
3950 UninitializedFields,
3951 UninitializedBaseClasses);
3952
3953 for (const auto *FieldInit : Constructor->inits()) {
3954 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3955 break;
3956
3957 Expr *InitExpr = FieldInit->getInit();
3958 if (!InitExpr)
3959 continue;
3960
3961 if (CXXDefaultInitExpr *Default =
3962 dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
3963 InitExpr = Default->getExpr();
3964 if (!InitExpr)
3965 continue;
3966 // In class initializers will point to the constructor.
3967 UninitializedChecker.CheckInitializer(InitExpr, Constructor,
3968 FieldInit->getAnyMember(),
3969 FieldInit->getBaseClass());
3970 } else {
3971 UninitializedChecker.CheckInitializer(InitExpr, nullptr,
3972 FieldInit->getAnyMember(),
3973 FieldInit->getBaseClass());
3974 }
3975 }
3976 }
3977} // namespace
3978
3979/// Enter a new C++ default initializer scope. After calling this, the
3980/// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
3981/// parsing or instantiating the initializer failed.
3982void Sema::ActOnStartCXXInClassMemberInitializer() {
3983 // Create a synthetic function scope to represent the call to the constructor
3984 // that notionally surrounds a use of this initializer.
3985 PushFunctionScope();
3986}
3987
3988void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) {
3989 if (!D.isFunctionDeclarator())
3990 return;
3991 auto &FTI = D.getFunctionTypeInfo();
3992 if (!FTI.Params)
3993 return;
3994 for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params,
3995 FTI.NumParams)) {
3996 auto *ParamDecl = cast<NamedDecl>(Param.Param);
3997 if (ParamDecl->getDeclName())
3998 PushOnScopeChains(ParamDecl, S, /*AddToContext=*/false);
3999 }
4000}
4001
4002ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) {
4003 return ActOnRequiresClause(ConstraintExpr);
4004}
4005
4006ExprResult Sema::ActOnRequiresClause(ExprResult ConstraintExpr) {
4007 if (ConstraintExpr.isInvalid())
4008 return ExprError();
4009
4010 ConstraintExpr = CorrectDelayedTyposInExpr(ConstraintExpr);
4011 if (ConstraintExpr.isInvalid())
4012 return ExprError();
4013
4014 if (DiagnoseUnexpandedParameterPack(ConstraintExpr.get(),
4015 UPPC_RequiresClause))
4016 return ExprError();
4017
4018 return ConstraintExpr;
4019}
4020
4021/// This is invoked after parsing an in-class initializer for a
4022/// non-static C++ class member, and after instantiating an in-class initializer
4023/// in a class template. Such actions are deferred until the class is complete.
4024void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
4025 SourceLocation InitLoc,
4026 Expr *InitExpr) {
4027 // Pop the notional constructor scope we created earlier.
4028 PopFunctionScopeInfo(nullptr, D);
4029
4030 FieldDecl *FD = dyn_cast<FieldDecl>(D);
4031 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&(static_cast <bool> ((isa<MSPropertyDecl>(D) || FD
->getInClassInitStyle() != ICIS_NoInit) && "must set init style when field is created"
) ? void (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 4032, __extension__ __PRETTY_FUNCTION__
))
4032 "must set init style when field is created")(static_cast <bool> ((isa<MSPropertyDecl>(D) || FD
->getInClassInitStyle() != ICIS_NoInit) && "must set init style when field is created"
) ? void (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 4032, __extension__ __PRETTY_FUNCTION__
))
;
4033
4034 if (!InitExpr) {
4035 D->setInvalidDecl();
4036 if (FD)
4037 FD->removeInClassInitializer();
4038 return;
4039 }
4040
4041 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
4042 FD->setInvalidDecl();
4043 FD->removeInClassInitializer();
4044 return;
4045 }
4046
4047 ExprResult Init = InitExpr;
4048 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
4049 InitializedEntity Entity =
4050 InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD);
4051 InitializationKind Kind =
4052 FD->getInClassInitStyle() == ICIS_ListInit
4053 ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(),
4054 InitExpr->getBeginLoc(),
4055 InitExpr->getEndLoc())
4056 : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc);
4057 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
4058 Init = Seq.Perform(*this, Entity, Kind, InitExpr);
4059 if (Init.isInvalid()) {
4060 FD->setInvalidDecl();
4061 return;
4062 }
4063 }
4064
4065 // C++11 [class.base.init]p7:
4066 // The initialization of each base and member constitutes a
4067 // full-expression.
4068 Init = ActOnFinishFullExpr(Init.get(), InitLoc, /*DiscardedValue*/ false);
4069 if (Init.isInvalid()) {
4070 FD->setInvalidDecl();
4071 return;
4072 }
4073
4074 InitExpr = Init.get();
4075
4076 FD->setInClassInitializer(InitExpr);
4077}
4078
4079/// Find the direct and/or virtual base specifiers that
4080/// correspond to the given base type, for use in base initialization
4081/// within a constructor.
4082static bool FindBaseInitializer(Sema &SemaRef,
4083 CXXRecordDecl *ClassDecl,
4084 QualType BaseType,
4085 const CXXBaseSpecifier *&DirectBaseSpec,
4086 const CXXBaseSpecifier *&VirtualBaseSpec) {
4087 // First, check for a direct base class.
4088 DirectBaseSpec = nullptr;
4089 for (const auto &Base : ClassDecl->bases()) {
4090 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
4091 // We found a direct base of this type. That's what we're
4092 // initializing.
4093 DirectBaseSpec = &Base;
4094 break;
4095 }
4096 }
4097
4098 // Check for a virtual base class.
4099 // FIXME: We might be able to short-circuit this if we know in advance that
4100 // there are no virtual bases.
4101 VirtualBaseSpec = nullptr;
4102 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
4103 // We haven't found a base yet; search the class hierarchy for a
4104 // virtual base class.
4105 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
4106 /*DetectVirtual=*/false);
4107 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(),
4108 SemaRef.Context.getTypeDeclType(ClassDecl),
4109 BaseType, Paths)) {
4110 for (CXXBasePaths::paths_iterator Path = Paths.begin();
4111 Path != Paths.end(); ++Path) {
4112 if (Path->back().Base->isVirtual()) {
4113 VirtualBaseSpec = Path->back().Base;
4114 break;
4115 }
4116 }
4117 }
4118 }
4119
4120 return DirectBaseSpec || VirtualBaseSpec;
4121}
4122
4123/// Handle a C++ member initializer using braced-init-list syntax.
4124MemInitResult
4125Sema::ActOnMemInitializer(Decl *ConstructorD,
4126 Scope *S,
4127 CXXScopeSpec &SS,
4128 IdentifierInfo *MemberOrBase,
4129 ParsedType TemplateTypeTy,
4130 const DeclSpec &DS,
4131 SourceLocation IdLoc,
4132 Expr *InitList,
4133 SourceLocation EllipsisLoc) {
4134 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4135 DS, IdLoc, InitList,
4136 EllipsisLoc);
4137}
4138
4139/// Handle a C++ member initializer using parentheses syntax.
4140MemInitResult
4141Sema::ActOnMemInitializer(Decl *ConstructorD,
4142 Scope *S,
4143 CXXScopeSpec &SS,
4144 IdentifierInfo *MemberOrBase,
4145 ParsedType TemplateTypeTy,
4146 const DeclSpec &DS,
4147 SourceLocation IdLoc,
4148 SourceLocation LParenLoc,
4149 ArrayRef<Expr *> Args,
4150 SourceLocation RParenLoc,
4151 SourceLocation EllipsisLoc) {
4152 Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc);
4153 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4154 DS, IdLoc, List, EllipsisLoc);
4155}
4156
4157namespace {
4158
4159// Callback to only accept typo corrections that can be a valid C++ member
4160// initializer: either a non-static field member or a base class.
4161class MemInitializerValidatorCCC final : public CorrectionCandidateCallback {
4162public:
4163 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
4164 : ClassDecl(ClassDecl) {}
4165
4166 bool ValidateCandidate(const TypoCorrection &candidate) override {
4167 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
4168 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
4169 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
4170 return isa<TypeDecl>(ND);
4171 }
4172 return false;
4173 }
4174
4175 std::unique_ptr<CorrectionCandidateCallback> clone() override {
4176 return std::make_unique<MemInitializerValidatorCCC>(*this);
4177 }
4178
4179private:
4180 CXXRecordDecl *ClassDecl;
4181};
4182
4183}
4184
4185ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl,
4186 CXXScopeSpec &SS,
4187 ParsedType TemplateTypeTy,
4188 IdentifierInfo *MemberOrBase) {
4189 if (SS.getScopeRep() || TemplateTypeTy)
4190 return nullptr;
4191 for (auto *D : ClassDecl->lookup(MemberOrBase))
4192 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D))
4193 return cast<ValueDecl>(D);
4194 return nullptr;
4195}
4196
4197/// Handle a C++ member initializer.
4198MemInitResult
4199Sema::BuildMemInitializer(Decl *ConstructorD,
4200 Scope *S,
4201 CXXScopeSpec &SS,
4202 IdentifierInfo *MemberOrBase,
4203 ParsedType TemplateTypeTy,
4204 const DeclSpec &DS,
4205 SourceLocation IdLoc,
4206 Expr *Init,
4207 SourceLocation EllipsisLoc) {
4208 ExprResult Res = CorrectDelayedTyposInExpr(Init, /*InitDecl=*/nullptr,
4209 /*RecoverUncorrectedTypos=*/true);
4210 if (!Res.isUsable())
4211 return true;
4212 Init = Res.get();
4213
4214 if (!ConstructorD)
4215 return true;
4216
4217 AdjustDeclIfTemplate(ConstructorD);
4218
4219 CXXConstructorDecl *Constructor
4220 = dyn_cast<CXXConstructorDecl>(ConstructorD);
4221 if (!Constructor) {
4222 // The user wrote a constructor initializer on a function that is
4223 // not a C++ constructor. Ignore the error for now, because we may
4224 // have more member initializers coming; we'll diagnose it just
4225 // once in ActOnMemInitializers.
4226 return true;
4227 }
4228
4229 CXXRecordDecl *ClassDecl = Constructor->getParent();
4230
4231 // C++ [class.base.init]p2:
4232 // Names in a mem-initializer-id are looked up in the scope of the
4233 // constructor's class and, if not found in that scope, are looked
4234 // up in the scope containing the constructor's definition.
4235 // [Note: if the constructor's class contains a member with the
4236 // same name as a direct or virtual base class of the class, a
4237 // mem-initializer-id naming the member or base class and composed
4238 // of a single identifier refers to the class member. A
4239 // mem-initializer-id for the hidden base class may be specified
4240 // using a qualified name. ]
4241
4242 // Look for a member, first.
4243 if (ValueDecl *Member = tryLookupCtorInitMemberDecl(
4244 ClassDecl, SS, TemplateTypeTy, MemberOrBase)) {
4245 if (EllipsisLoc.isValid())
4246 Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
4247 << MemberOrBase
4248 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
4249
4250 return BuildMemberInitializer(Member, Init, IdLoc);
4251 }
4252 // It didn't name a member, so see if it names a class.
4253 QualType BaseType;
4254 TypeSourceInfo *TInfo = nullptr;
4255
4256 if (TemplateTypeTy) {
4257 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
4258 if (BaseType.isNull())
4259 return true;
4260 } else if (DS.getTypeSpecType() == TST_decltype) {
4261 BaseType = BuildDecltypeType(DS.getRepAsExpr());
4262 } else if (DS.getTypeSpecType() == TST_decltype_auto) {
4263 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
4264 return true;
4265 } else {
4266 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
4267 LookupParsedName(R, S, &SS);
4268
4269 TypeDecl *TyD = R.getAsSingle<TypeDecl>();
4270 if (!TyD) {
4271 if (R.isAmbiguous()) return true;
4272
4273 // We don't want access-control diagnostics here.
4274 R.suppressDiagnostics();
4275
4276 if (SS.isSet() && isDependentScopeSpecifier(SS)) {
4277 bool NotUnknownSpecialization = false;
4278 DeclContext *DC = computeDeclContext(SS, false);
4279 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
4280 NotUnknownSpecialization = !Record->hasAnyDependentBases();
4281
4282 if (!NotUnknownSpecialization) {
4283 // When the scope specifier can refer to a member of an unknown
4284 // specialization, we take it as a type name.
4285 BaseType = CheckTypenameType(ETK_None, SourceLocation(),
4286 SS.getWithLocInContext(Context),
4287 *MemberOrBase, IdLoc);
4288 if (BaseType.isNull())
4289 return true;
4290
4291 TInfo = Context.CreateTypeSourceInfo(BaseType);
4292 DependentNameTypeLoc TL =
4293 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>();
4294 if (!TL.isNull()) {
4295 TL.setNameLoc(IdLoc);
4296 TL.setElaboratedKeywordLoc(SourceLocation());
4297 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4298 }
4299
4300 R.clear();
4301 R.setLookupName(MemberOrBase);
4302 }
4303 }
4304
4305 // If no results were found, try to correct typos.
4306 TypoCorrection Corr;
4307 MemInitializerValidatorCCC CCC(ClassDecl);
4308 if (R.empty() && BaseType.isNull() &&
4309 (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
4310 CCC, CTK_ErrorRecovery, ClassDecl))) {
4311 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
4312 // We have found a non-static data member with a similar
4313 // name to what was typed; complain and initialize that
4314 // member.
4315 diagnoseTypo(Corr,
4316 PDiag(diag::err_mem_init_not_member_or_class_suggest)
4317 << MemberOrBase << true);
4318 return BuildMemberInitializer(Member, Init, IdLoc);
4319 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
4320 const CXXBaseSpecifier *DirectBaseSpec;
4321 const CXXBaseSpecifier *VirtualBaseSpec;
4322 if (FindBaseInitializer(*this, ClassDecl,
4323 Context.getTypeDeclType(Type),
4324 DirectBaseSpec, VirtualBaseSpec)) {
4325 // We have found a direct or virtual base class with a
4326 // similar name to what was typed; complain and initialize
4327 // that base class.
4328 diagnoseTypo(Corr,
4329 PDiag(diag::err_mem_init_not_member_or_class_suggest)
4330 << MemberOrBase << false,
4331 PDiag() /*Suppress note, we provide our own.*/);
4332
4333 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
4334 : VirtualBaseSpec;
4335 Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here)
4336 << BaseSpec->getType() << BaseSpec->getSourceRange();
4337
4338 TyD = Type;
4339 }
4340 }
4341 }
4342
4343 if (!TyD && BaseType.isNull()) {
4344 Diag(IdLoc, diag::err_mem_init_not_member_or_class)
4345 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
4346 return true;
4347 }
4348 }
4349
4350 if (BaseType.isNull()) {
4351 BaseType = Context.getTypeDeclType(TyD);
4352 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
4353 if (SS.isSet()) {
4354 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
4355 BaseType);
4356 TInfo = Context.CreateTypeSourceInfo(BaseType);
4357 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>();
4358 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
4359 TL.setElaboratedKeywordLoc(SourceLocation());
4360 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4361 }
4362 }
4363 }
4364
4365 if (!TInfo)
4366 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
4367
4368 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
4369}
4370
4371MemInitResult
4372Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
4373 SourceLocation IdLoc) {
4374 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
4375 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
4376 assert((DirectMember || IndirectMember) &&(static_cast <bool> ((DirectMember || IndirectMember) &&
"Member must be a FieldDecl or IndirectFieldDecl") ? void (0
) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 4377, __extension__ __PRETTY_FUNCTION__
))
4377 "Member must be a FieldDecl or IndirectFieldDecl")(static_cast <bool> ((DirectMember || IndirectMember) &&
"Member must be a FieldDecl or IndirectFieldDecl") ? void (0
) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 4377, __extension__ __PRETTY_FUNCTION__
))
;
4378
4379 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4380 return true;
4381
4382 if (Member->isInvalidDecl())
4383 return true;
4384
4385 MultiExprArg Args;
4386 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4387 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4388 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
4389 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
4390 } else {
4391 // Template instantiation doesn't reconstruct ParenListExprs for us.
4392 Args = Init;
4393 }
4394
4395 SourceRange InitRange = Init->getSourceRange();
4396
4397 if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
4398 // Can't check initialization for a member of dependent type or when
4399 // any of the arguments are type-dependent expressions.
4400 DiscardCleanupsInEvaluationContext();
4401 } else {
4402 bool InitList = false;
4403 if (isa<InitListExpr>(Init)) {
4404 InitList = true;
4405 Args = Init;
4406 }
4407
4408 // Initialize the member.
4409 InitializedEntity MemberEntity =
4410 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
4411 : InitializedEntity::InitializeMember(IndirectMember,
4412 nullptr);
4413 InitializationKind Kind =
4414 InitList ? InitializationKind::CreateDirectList(
4415 IdLoc, Init->getBeginLoc(), Init->getEndLoc())
4416 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
4417 InitRange.getEnd());
4418
4419 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
4420 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
4421 nullptr);
4422 if (!MemberInit.isInvalid()) {
4423 // C++11 [class.base.init]p7:
4424 // The initialization of each base and member constitutes a
4425 // full-expression.
4426 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(),
4427 /*DiscardedValue*/ false);
4428 }
4429
4430 if (MemberInit.isInvalid()) {
4431 // Args were sensible expressions but we couldn't initialize the member
4432 // from them. Preserve them in a RecoveryExpr instead.
4433 Init = CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), Args,
4434 Member->getType())
4435 .get();
4436 if (!Init)
4437 return true;
4438 } else {
4439 Init = MemberInit.get();
4440 }
4441 }
4442
4443 if (DirectMember) {
4444 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
4445 InitRange.getBegin(), Init,
4446 InitRange.getEnd());
4447 } else {
4448 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
4449 InitRange.getBegin(), Init,
4450 InitRange.getEnd());
4451 }
4452}
4453
4454MemInitResult
4455Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
4456 CXXRecordDecl *ClassDecl) {
4457 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
4458 if (!LangOpts.CPlusPlus11)
4459 return Diag(NameLoc, diag::err_delegating_ctor)
4460 << TInfo->getTypeLoc().getLocalSourceRange();
4461 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
4462
4463 bool InitList = true;
4464 MultiExprArg Args = Init;
4465 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4466 InitList = false;
4467 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4468 }
4469
4470 SourceRange InitRange = Init->getSourceRange();
4471 // Initialize the object.
4472 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
4473 QualType(ClassDecl->getTypeForDecl(), 0));
4474 InitializationKind Kind =
4475 InitList ? InitializationKind::CreateDirectList(
4476 NameLoc, Init->getBeginLoc(), Init->getEndLoc())
4477 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
4478 InitRange.getEnd());
4479 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
4480 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
4481 Args, nullptr);
4482 if (!DelegationInit.isInvalid()) {
4483 assert((DelegationInit.get()->containsErrors() ||(static_cast <bool> ((DelegationInit.get()->containsErrors
() || cast<CXXConstructExpr>(DelegationInit.get())->
getConstructor()) && "Delegating constructor with no target?"
) ? void (0) : __assert_fail ("(DelegationInit.get()->containsErrors() || cast<CXXConstructExpr>(DelegationInit.get())->getConstructor()) && \"Delegating constructor with no target?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 4485, __extension__ __PRETTY_FUNCTION__
))
4484 cast<CXXConstructExpr>(DelegationInit.get())->getConstructor()) &&(static_cast <bool> ((DelegationInit.get()->containsErrors
() || cast<CXXConstructExpr>(DelegationInit.get())->
getConstructor()) && "Delegating constructor with no target?"
) ? void (0) : __assert_fail ("(DelegationInit.get()->containsErrors() || cast<CXXConstructExpr>(DelegationInit.get())->getConstructor()) && \"Delegating constructor with no target?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 4485, __extension__ __PRETTY_FUNCTION__
))
4485 "Delegating constructor with no target?")(static_cast <bool> ((DelegationInit.get()->containsErrors
() || cast<CXXConstructExpr>(DelegationInit.get())->
getConstructor()) && "Delegating constructor with no target?"
) ? void (0) : __assert_fail ("(DelegationInit.get()->containsErrors() || cast<CXXConstructExpr>(DelegationInit.get())->getConstructor()) && \"Delegating constructor with no target?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 4485, __extension__ __PRETTY_FUNCTION__
))
;
4486
4487 // C++11 [class.base.init]p7:
4488 // The initialization of each base and member constitutes a
4489 // full-expression.
4490 DelegationInit = ActOnFinishFullExpr(
4491 DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false);
4492 }
4493
4494 if (DelegationInit.isInvalid()) {
4495 DelegationInit =
4496 CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), Args,
4497 QualType(ClassDecl->getTypeForDecl(), 0));
4498 if (DelegationInit.isInvalid())
4499 return true;
4500 } else {
4501 // If we are in a dependent context, template instantiation will
4502 // perform this type-checking again. Just save the arguments that we
4503 // received in a ParenListExpr.
4504 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4505 // of the information that we have about the base
4506 // initializer. However, deconstructing the ASTs is a dicey process,
4507 // and this approach is far more likely to get the corner cases right.
4508 if (CurContext->isDependentContext())
4509 DelegationInit = Init;
4510 }
4511
4512 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
4513 DelegationInit.getAs<Expr>(),
4514 InitRange.getEnd());
4515}
4516
4517MemInitResult
4518Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
4519 Expr *Init, CXXRecordDecl *ClassDecl,
4520 SourceLocation EllipsisLoc) {
4521 SourceLocation BaseLoc
4522 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
4523
4524 if (!BaseType->isDependentType() && !BaseType->isRecordType())
4525 return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
4526 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4527
4528 // C++ [class.base.init]p2:
4529 // [...] Unless the mem-initializer-id names a nonstatic data
4530 // member of the constructor's class or a direct or virtual base
4531 // of that class, the mem-initializer is ill-formed. A
4532 // mem-initializer-list can initialize a base class using any
4533 // name that denotes that base class type.
4534
4535 // We can store the initializers in "as-written" form and delay analysis until
4536 // instantiation if the constructor is dependent. But not for dependent
4537 // (broken) code in a non-template! SetCtorInitializers does not expect this.
4538 bool Dependent = CurContext->isDependentContext() &&
4539 (BaseType->isDependentType() || Init->isTypeDependent());
4540
4541 SourceRange InitRange = Init->getSourceRange();
4542 if (EllipsisLoc.isValid()) {
4543 // This is a pack expansion.
4544 if (!BaseType->containsUnexpandedParameterPack()) {
4545 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
4546 << SourceRange(BaseLoc, InitRange.getEnd());
4547
4548 EllipsisLoc = SourceLocation();
4549 }
4550 } else {
4551 // Check for any unexpanded parameter packs.
4552 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
4553 return true;
4554
4555 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4556 return true;
4557 }
4558
4559 // Check for direct and virtual base classes.
4560 const CXXBaseSpecifier *DirectBaseSpec = nullptr;
4561 const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
4562 if (!Dependent) {
4563 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
4564 BaseType))
4565 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
4566
4567 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
4568 VirtualBaseSpec);
4569
4570 // C++ [base.class.init]p2:
4571 // Unless the mem-initializer-id names a nonstatic data member of the
4572 // constructor's class or a direct or virtual base of that class, the
4573 // mem-initializer is ill-formed.
4574 if (!DirectBaseSpec && !VirtualBaseSpec) {
4575 // If the class has any dependent bases, then it's possible that
4576 // one of those types will resolve to the same type as
4577 // BaseType. Therefore, just treat this as a dependent base
4578 // class initialization. FIXME: Should we try to check the
4579 // initialization anyway? It seems odd.
4580 if (ClassDecl->hasAnyDependentBases())
4581 Dependent = true;
4582 else
4583 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
4584 << BaseType << Context.getTypeDeclType(ClassDecl)
4585 << BaseTInfo->getTypeLoc().getLocalSourceRange();
4586 }
4587 }
4588
4589 if (Dependent) {
4590 DiscardCleanupsInEvaluationContext();
4591
4592 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4593 /*IsVirtual=*/false,
4594 InitRange.getBegin(), Init,
4595 InitRange.getEnd(), EllipsisLoc);
4596 }
4597
4598 // C++ [base.class.init]p2:
4599 // If a mem-initializer-id is ambiguous because it designates both
4600 // a direct non-virtual base class and an inherited virtual base
4601 // class, the mem-initializer is ill-formed.
4602 if (DirectBaseSpec && VirtualBaseSpec)
4603 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
4604 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4605
4606 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
4607 if (!BaseSpec)
4608 BaseSpec = VirtualBaseSpec;
4609
4610 // Initialize the base.
4611 bool InitList = true;
4612 MultiExprArg Args = Init;
4613 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4614 InitList = false;
4615 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4616 }
4617
4618 InitializedEntity BaseEntity =
4619 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
4620 InitializationKind Kind =
4621 InitList ? InitializationKind::CreateDirectList(BaseLoc)
4622 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
4623 InitRange.getEnd());
4624 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
4625 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
4626 if (!BaseInit.isInvalid()) {
4627 // C++11 [class.base.init]p7:
4628 // The initialization of each base and member constitutes a
4629 // full-expression.
4630 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(),
4631 /*DiscardedValue*/ false);
4632 }
4633
4634 if (BaseInit.isInvalid()) {
4635 BaseInit = CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(),
4636 Args, BaseType);
4637 if (BaseInit.isInvalid())
4638 return true;
4639 } else {
4640 // If we are in a dependent context, template instantiation will
4641 // perform this type-checking again. Just save the arguments that we
4642 // received in a ParenListExpr.
4643 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4644 // of the information that we have about the base
4645 // initializer. However, deconstructing the ASTs is a dicey process,
4646 // and this approach is far more likely to get the corner cases right.
4647 if (CurContext->isDependentContext())
4648 BaseInit = Init;
4649 }
4650
4651 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4652 BaseSpec->isVirtual(),
4653 InitRange.getBegin(),
4654 BaseInit.getAs<Expr>(),
4655 InitRange.getEnd(), EllipsisLoc);
4656}
4657
4658// Create a static_cast\<T&&>(expr).
4659static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
4660 if (T.isNull()) T = E->getType();
4661 QualType TargetType = SemaRef.BuildReferenceType(
4662 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
4663 SourceLocation ExprLoc = E->getBeginLoc();
4664 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
4665 TargetType, ExprLoc);
4666
4667 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
4668 SourceRange(ExprLoc, ExprLoc),
4669 E->getSourceRange()).get();
4670}
4671
4672/// ImplicitInitializerKind - How an implicit base or member initializer should
4673/// initialize its base or member.
4674enum ImplicitInitializerKind {
4675 IIK_Default,
4676 IIK_Copy,
4677 IIK_Move,
4678 IIK_Inherit
4679};
4680
4681static bool
4682BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4683 ImplicitInitializerKind ImplicitInitKind,
4684 CXXBaseSpecifier *BaseSpec,
4685 bool IsInheritedVirtualBase,
4686 CXXCtorInitializer *&CXXBaseInit) {
4687 InitializedEntity InitEntity
4688 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
4689 IsInheritedVirtualBase);
4690
4691 ExprResult BaseInit;
4692
4693 switch (ImplicitInitKind) {
4694 case IIK_Inherit:
4695 case IIK_Default: {
4696 InitializationKind InitKind
4697 = InitializationKind::CreateDefault(Constructor->getLocation());
4698 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4699 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4700 break;
4701 }
4702
4703 case IIK_Move:
4704 case IIK_Copy: {
4705 bool Moving = ImplicitInitKind == IIK_Move;
4706 ParmVarDecl *Param = Constructor->getParamDecl(0);
4707 QualType ParamType = Param->getType().getNonReferenceType();
4708
4709 Expr *CopyCtorArg =
4710 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4711 SourceLocation(), Param, false,
4712 Constructor->getLocation(), ParamType,
4713 VK_LValue, nullptr);
4714
4715 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
4716
4717 // Cast to the base class to avoid ambiguities.
4718 QualType ArgTy =
4719 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
4720 ParamType.getQualifiers());
4721
4722 if (Moving) {
4723 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
4724 }
4725
4726 CXXCastPath BasePath;
4727 BasePath.push_back(BaseSpec);
4728 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
4729 CK_UncheckedDerivedToBase,
4730 Moving ? VK_XValue : VK_LValue,
4731 &BasePath).get();
4732
4733 InitializationKind InitKind
4734 = InitializationKind::CreateDirect(Constructor->getLocation(),
4735 SourceLocation(), SourceLocation());
4736 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
4737 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
4738 break;
4739 }
4740 }
4741
4742 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
4743 if (BaseInit.isInvalid())
4744 return true;
4745
4746 CXXBaseInit =
4747 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4748 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
4749 SourceLocation()),
4750 BaseSpec->isVirtual(),
4751 SourceLocation(),
4752 BaseInit.getAs<Expr>(),
4753 SourceLocation(),
4754 SourceLocation());
4755
4756 return false;
4757}
4758
4759static bool RefersToRValueRef(Expr *MemRef) {
4760 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
4761 return Referenced->getType()->isRValueReferenceType();
4762}
4763
4764static bool
4765BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4766 ImplicitInitializerKind ImplicitInitKind,
4767 FieldDecl *Field, IndirectFieldDecl *Indirect,
4768 CXXCtorInitializer *&CXXMemberInit) {
4769 if (Field->isInvalidDecl())
4770 return true;
4771
4772 SourceLocation Loc = Constructor->getLocation();
4773
4774 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
4775 bool Moving = ImplicitInitKind == IIK_Move;
4776 ParmVarDecl *Param = Constructor->getParamDecl(0);
4777 QualType ParamType = Param->getType().getNonReferenceType();
4778
4779 // Suppress copying zero-width bitfields.
4780 if (Field->isZeroLengthBitField(SemaRef.Context))
4781 return false;
4782
4783 Expr *MemberExprBase =
4784 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4785 SourceLocation(), Param, false,
4786 Loc, ParamType, VK_LValue, nullptr);
4787
4788 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
4789
4790 if (Moving) {
4791 MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
4792 }
4793
4794 // Build a reference to this field within the parameter.
4795 CXXScopeSpec SS;
4796 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
4797 Sema::LookupMemberName);
4798 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
4799 : cast<ValueDecl>(Field), AS_public);
4800 MemberLookup.resolveKind();
4801 ExprResult CtorArg
4802 = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
4803 ParamType, Loc,
4804 /*IsArrow=*/false,
4805 SS,
4806 /*TemplateKWLoc=*/SourceLocation(),
4807 /*FirstQualifierInScope=*/nullptr,
4808 MemberLookup,
4809 /*TemplateArgs=*/nullptr,
4810 /*S*/nullptr);
4811 if (CtorArg.isInvalid())
4812 return true;
4813
4814 // C++11 [class.copy]p15:
4815 // - if a member m has rvalue reference type T&&, it is direct-initialized
4816 // with static_cast<T&&>(x.m);
4817 if (RefersToRValueRef(CtorArg.get())) {
4818 CtorArg = CastForMoving(SemaRef, CtorArg.get());
4819 }
4820
4821 InitializedEntity Entity =
4822 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4823 /*Implicit*/ true)
4824 : InitializedEntity::InitializeMember(Field, nullptr,
4825 /*Implicit*/ true);
4826
4827 // Direct-initialize to use the copy constructor.
4828 InitializationKind InitKind =
4829 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
4830
4831 Expr *CtorArgE = CtorArg.getAs<Expr>();
4832 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE);
4833 ExprResult MemberInit =
4834 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1));
4835 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4836 if (MemberInit.isInvalid())
4837 return true;
4838
4839 if (Indirect)
4840 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4841 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4842 else
4843 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4844 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4845 return false;
4846 }
4847
4848 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&(static_cast <bool> ((ImplicitInitKind == IIK_Default ||
ImplicitInitKind == IIK_Inherit) && "Unhandled implicit init kind!"
) ? void (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 4849, __extension__ __PRETTY_FUNCTION__
))
4849 "Unhandled implicit init kind!")(static_cast <bool> ((ImplicitInitKind == IIK_Default ||
ImplicitInitKind == IIK_Inherit) && "Unhandled implicit init kind!"
) ? void (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 4849, __extension__ __PRETTY_FUNCTION__
))
;
4850
4851 QualType FieldBaseElementType =
4852 SemaRef.Context.getBaseElementType(Field->getType());
4853
4854 if (FieldBaseElementType->isRecordType()) {
4855 InitializedEntity InitEntity =
4856 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4857 /*Implicit*/ true)
4858 : InitializedEntity::InitializeMember(Field, nullptr,
4859 /*Implicit*/ true);
4860 InitializationKind InitKind =
4861 InitializationKind::CreateDefault(Loc);
4862
4863 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4864 ExprResult MemberInit =
4865 InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4866
4867 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4868 if (MemberInit.isInvalid())
4869 return true;
4870
4871 if (Indirect)
4872 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4873 Indirect, Loc,
4874 Loc,
4875 MemberInit.get(),
4876 Loc);
4877 else
4878 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4879 Field, Loc, Loc,
4880 MemberInit.get(),
4881 Loc);
4882 return false;
4883 }
4884
4885 if (!Field->getParent()->isUnion()) {
4886 if (FieldBaseElementType->isReferenceType()) {
4887 SemaRef.Diag(Constructor->getLocation(),
4888 diag::err_uninitialized_member_in_ctor)
4889 << (int)Constructor->isImplicit()
4890 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4891 << 0 << Field->getDeclName();
4892 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4893 return true;
4894 }
4895
4896 if (FieldBaseElementType.isConstQualified()) {
4897 SemaRef.Diag(Constructor->getLocation(),
4898 diag::err_uninitialized_member_in_ctor)
4899 << (int)Constructor->isImplicit()
4900 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4901 << 1 << Field->getDeclName();
4902 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4903 return true;
4904 }
4905 }
4906
4907 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) {
4908 // ARC and Weak:
4909 // Default-initialize Objective-C pointers to NULL.
4910 CXXMemberInit
4911 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
4912 Loc, Loc,
4913 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
4914 Loc);
4915 return false;
4916 }
4917
4918 // Nothing to initialize.
4919 CXXMemberInit = nullptr;
4920 return false;
4921}
4922
4923namespace {
4924struct BaseAndFieldInfo {
4925 Sema &S;
4926 CXXConstructorDecl *Ctor;
4927 bool AnyErrorsInInits;
4928 ImplicitInitializerKind IIK;
4929 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
4930 SmallVector<CXXCtorInitializer*, 8> AllToInit;
4931 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
4932
4933 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
4934 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
4935 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
4936 if (Ctor->getInheritedConstructor())
4937 IIK = IIK_Inherit;
4938 else if (Generated && Ctor->isCopyConstructor())
4939 IIK = IIK_Copy;
4940 else if (Generated && Ctor->isMoveConstructor())
4941 IIK = IIK_Move;
4942 else
4943 IIK = IIK_Default;
4944 }
4945
4946 bool isImplicitCopyOrMove() const {
4947 switch (IIK) {
4948 case IIK_Copy:
4949 case IIK_Move:
4950 return true;
4951
4952 case IIK_Default:
4953 case IIK_Inherit:
4954 return false;
4955 }
4956
4957 llvm_unreachable("Invalid ImplicitInitializerKind!")::llvm::llvm_unreachable_internal("Invalid ImplicitInitializerKind!"
, "clang/lib/Sema/SemaDeclCXX.cpp", 4957)
;
4958 }
4959
4960 bool addFieldInitializer(CXXCtorInitializer *Init) {
4961 AllToInit.push_back(Init);
4962
4963 // Check whether this initializer makes the field "used".
4964 if (Init->getInit()->HasSideEffects(S.Context))
4965 S.UnusedPrivateFields.remove(Init->getAnyMember());
4966
4967 return false;
4968 }
4969
4970 bool isInactiveUnionMember(FieldDecl *Field) {
4971 RecordDecl *Record = Field->getParent();
4972 if (!Record->isUnion())
4973 return false;
4974
4975 if (FieldDecl *Active =
4976 ActiveUnionMember.lookup(Record->getCanonicalDecl()))
4977 return Active != Field->getCanonicalDecl();
4978
4979 // In an implicit copy or move constructor, ignore any in-class initializer.
4980 if (isImplicitCopyOrMove())
4981 return true;
4982
4983 // If there's no explicit initialization, the field is active only if it
4984 // has an in-class initializer...
4985 if (Field->hasInClassInitializer())
4986 return false;
4987 // ... or it's an anonymous struct or union whose class has an in-class
4988 // initializer.
4989 if (!Field->isAnonymousStructOrUnion())
4990 return true;
4991 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
4992 return !FieldRD->hasInClassInitializer();
4993 }
4994
4995 /// Determine whether the given field is, or is within, a union member
4996 /// that is inactive (because there was an initializer given for a different
4997 /// member of the union, or because the union was not initialized at all).
4998 bool isWithinInactiveUnionMember(FieldDecl *Field,
4999 IndirectFieldDecl *Indirect) {
5000 if (!Indirect)
5001 return isInactiveUnionMember(Field);
5002
5003 for (auto *C : Indirect->chain()) {
5004 FieldDecl *Field = dyn_cast<FieldDecl>(C);
5005 if (Field && isInactiveUnionMember(Field))
5006 return true;
5007 }
5008 return false;
5009 }
5010};
5011}
5012
5013/// Determine whether the given type is an incomplete or zero-lenfgth
5014/// array type.
5015static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
5016 if (T->isIncompleteArrayType())
5017 return true;
5018
5019 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
5020 if (!ArrayT->getSize())
5021 return true;
5022
5023 T = ArrayT->getElementType();
5024 }
5025
5026 return false;
5027}
5028
5029static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
5030 FieldDecl *Field,
5031 IndirectFieldDecl *Indirect = nullptr) {
5032 if (Field->isInvalidDecl())
5033 return false;
5034
5035 // Overwhelmingly common case: we have a direct initializer for this field.
5036 if (CXXCtorInitializer *Init =
5037 Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
5038 return Info.addFieldInitializer(Init);
5039
5040 // C++11 [class.base.init]p8:
5041 // if the entity is a non-static data member that has a
5042 // brace-or-equal-initializer and either
5043 // -- the constructor's class is a union and no other variant member of that
5044 // union is designated by a mem-initializer-id or
5045 // -- the constructor's class is not a union, and, if the entity is a member
5046 // of an anonymous union, no other member of that union is designated by
5047 // a mem-initializer-id,
5048 // the entity is initialized as specified in [dcl.init].
5049 //
5050 // We also apply the same rules to handle anonymous structs within anonymous
5051 // unions.
5052 if (Info.isWithinInactiveUnionMember(Field, Indirect))
5053 return false;
5054
5055 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
5056 ExprResult DIE =
5057 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
5058 if (DIE.isInvalid())
5059 return true;
5060
5061 auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true);
5062 SemaRef.checkInitializerLifetime(Entity, DIE.get());
5063
5064 CXXCtorInitializer *Init;
5065 if (Indirect)
5066 Init = new (SemaRef.Context)
5067 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
5068 SourceLocation(), DIE.get(), SourceLocation());
5069 else
5070 Init = new (SemaRef.Context)
5071 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
5072 SourceLocation(), DIE.get(), SourceLocation());
5073 return Info.addFieldInitializer(Init);
5074 }
5075
5076 // Don't initialize incomplete or zero-length arrays.
5077 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
5078 return false;
5079
5080 // Don't try to build an implicit initializer if there were semantic
5081 // errors in any of the initializers (and therefore we might be
5082 // missing some that the user actually wrote).
5083 if (Info.AnyErrorsInInits)
5084 return false;
5085
5086 CXXCtorInitializer *Init = nullptr;
5087 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
5088 Indirect, Init))
5089 return true;
5090
5091 if (!Init)
5092 return false;
5093
5094 return Info.addFieldInitializer(Init);
5095}
5096
5097bool
5098Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
5099 CXXCtorInitializer *Initializer) {
5100 assert(Initializer->isDelegatingInitializer())(static_cast <bool> (Initializer->isDelegatingInitializer
()) ? void (0) : __assert_fail ("Initializer->isDelegatingInitializer()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 5100, __extension__ __PRETTY_FUNCTION__
))
;
5101 Constructor->setNumCtorInitializers(1);
5102 CXXCtorInitializer **initializer =
5103 new (Context) CXXCtorInitializer*[1];
5104 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
5105 Constructor->setCtorInitializers(initializer);
5106
5107 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
5108 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
5109 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
5110 }
5111
5112 DelegatingCtorDecls.push_back(Constructor);
5113
5114 DiagnoseUninitializedFields(*this, Constructor);
5115
5116 return false;
5117}
5118
5119bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
5120 ArrayRef<CXXCtorInitializer *> Initializers) {
5121 if (Constructor->isDependentContext()) {
5122 // Just store the initializers as written, they will be checked during
5123 // instantiation.
5124 if (!Initializers.empty()) {
5125 Constructor->setNumCtorInitializers(Initializers.size());
5126 CXXCtorInitializer **baseOrMemberInitializers =
5127 new (Context) CXXCtorInitializer*[Initializers.size()];
5128 memcpy(baseOrMemberInitializers, Initializers.data(),
5129 Initializers.size() * sizeof(CXXCtorInitializer*));
5130 Constructor->setCtorInitializers(baseOrMemberInitializers);
5131 }
5132
5133 // Let template instantiation know whether we had errors.
5134 if (AnyErrors)
5135 Constructor->setInvalidDecl();
5136
5137 return false;
5138 }
5139
5140 BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
5141
5142 // We need to build the initializer AST according to order of construction
5143 // and not what user specified in the Initializers list.
5144 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
5145 if (!ClassDecl)
5146 return true;
5147
5148 bool HadError = false;
5149
5150 for (unsigned i = 0; i < Initializers.size(); i++) {
5151 CXXCtorInitializer *Member = Initializers[i];
5152
5153 if (Member->isBaseInitializer())
5154 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
5155 else {
5156 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
5157
5158 if (IndirectFieldDecl *F = Member->getIndirectMember()) {
5159 for (auto *C : F->chain()) {
5160 FieldDecl *FD = dyn_cast<FieldDecl>(C);
5161 if (FD && FD->getParent()->isUnion())
5162 Info.ActiveUnionMember.insert(std::make_pair(
5163 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5164 }
5165 } else if (FieldDecl *FD = Member->getMember()) {
5166 if (FD->getParent()->isUnion())
5167 Info.ActiveUnionMember.insert(std::make_pair(
5168 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5169 }
5170 }
5171 }
5172
5173 // Keep track of the direct virtual bases.
5174 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
5175 for (auto &I : ClassDecl->bases()) {
5176 if (I.isVirtual())
5177 DirectVBases.insert(&I);
5178 }
5179
5180 // Push virtual bases before others.
5181 for (auto &VBase : ClassDecl->vbases()) {
5182 if (CXXCtorInitializer *Value
5183 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
5184 // [class.base.init]p7, per DR257:
5185 // A mem-initializer where the mem-initializer-id names a virtual base
5186 // class is ignored during execution of a constructor of any class that
5187 // is not the most derived class.
5188 if (ClassDecl->isAbstract()) {
5189 // FIXME: Provide a fixit to remove the base specifier. This requires
5190 // tracking the location of the associated comma for a base specifier.
5191 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
5192 << VBase.getType() << ClassDecl;
5193 DiagnoseAbstractType(ClassDecl);
5194 }
5195
5196 Info.AllToInit.push_back(Value);
5197 } else if (!AnyErrors && !ClassDecl->isAbstract()) {
5198 // [class.base.init]p8, per DR257:
5199 // If a given [...] base class is not named by a mem-initializer-id
5200 // [...] and the entity is not a virtual base class of an abstract
5201 // class, then [...] the entity is default-initialized.
5202 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
5203 CXXCtorInitializer *CXXBaseInit;
5204 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5205 &VBase, IsInheritedVirtualBase,
5206 CXXBaseInit)) {
5207 HadError = true;
5208 continue;
5209 }
5210
5211 Info.AllToInit.push_back(CXXBaseInit);
5212 }
5213 }
5214
5215 // Non-virtual bases.
5216 for (auto &Base : ClassDecl->bases()) {
5217 // Virtuals are in the virtual base list and already constructed.
5218 if (Base.isVirtual())
5219 continue;
5220
5221 if (CXXCtorInitializer *Value
5222 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
5223 Info.AllToInit.push_back(Value);
5224 } else if (!AnyErrors) {
5225 CXXCtorInitializer *CXXBaseInit;
5226 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5227 &Base, /*IsInheritedVirtualBase=*/false,
5228 CXXBaseInit)) {
5229 HadError = true;
5230 continue;
5231 }
5232
5233 Info.AllToInit.push_back(CXXBaseInit);
5234 }
5235 }
5236
5237 // Fields.
5238 for (auto *Mem : ClassDecl->decls()) {
5239 if (auto *F = dyn_cast<FieldDecl>(Mem)) {
5240 // C++ [class.bit]p2:
5241 // A declaration for a bit-field that omits the identifier declares an
5242 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
5243 // initialized.
5244 if (F->isUnnamedBitfield())
5245 continue;
5246
5247 // If we're not generating the implicit copy/move constructor, then we'll
5248 // handle anonymous struct/union fields based on their individual
5249 // indirect fields.
5250 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
5251 continue;
5252
5253 if (CollectFieldInitializer(*this, Info, F))
5254 HadError = true;
5255 continue;
5256 }
5257
5258 // Beyond this point, we only consider default initialization.
5259 if (Info.isImplicitCopyOrMove())
5260 continue;
5261
5262 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
5263 if (F->getType()->isIncompleteArrayType()) {
5264 assert(ClassDecl->hasFlexibleArrayMember() &&(static_cast <bool> (ClassDecl->hasFlexibleArrayMember
() && "Incomplete array type is not valid") ? void (0
) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 5265, __extension__ __PRETTY_FUNCTION__
))
5265 "Incomplete array type is not valid")(static_cast <bool> (ClassDecl->hasFlexibleArrayMember
() && "Incomplete array type is not valid") ? void (0
) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 5265, __extension__ __PRETTY_FUNCTION__
))
;
5266 continue;
5267 }
5268
5269 // Initialize each field of an anonymous struct individually.
5270 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
5271 HadError = true;
5272
5273 continue;
5274 }
5275 }
5276
5277 unsigned NumInitializers = Info.AllToInit.size();
5278 if (NumInitializers > 0) {
5279 Constructor->setNumCtorInitializers(NumInitializers);
5280 CXXCtorInitializer **baseOrMemberInitializers =
5281 new (Context) CXXCtorInitializer*[NumInitializers];
5282 memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
5283 NumInitializers * sizeof(CXXCtorInitializer*));
5284 Constructor->setCtorInitializers(baseOrMemberInitializers);
5285
5286 // Constructors implicitly reference the base and member
5287 // destructors.
5288 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
5289 Constructor->getParent());
5290 }
5291
5292 return HadError;
5293}
5294
5295static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
5296 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
5297 const RecordDecl *RD = RT->getDecl();
5298 if (RD->isAnonymousStructOrUnion()) {
5299 for (auto *Field : RD->fields())
5300 PopulateKeysForFields(Field, IdealInits);
5301 return;
5302 }
5303 }
5304 IdealInits.push_back(Field->getCanonicalDecl());
5305}
5306
5307static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
5308 return Context.getCanonicalType(BaseType).getTypePtr();
5309}
5310
5311static const void *GetKeyForMember(ASTContext &Context,
5312 CXXCtorInitializer *Member) {
5313 if (!Member->isAnyMemberInitializer())
5314 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
5315
5316 return Member->getAnyMember()->getCanonicalDecl();
5317}
5318
5319static void AddInitializerToDiag(const Sema::SemaDiagnosticBuilder &Diag,
5320 const CXXCtorInitializer *Previous,
5321 const CXXCtorInitializer *Current) {
5322 if (Previous->isAnyMemberInitializer())
5323 Diag << 0 << Previous->getAnyMember();
5324 else
5325 Diag << 1 << Previous->getTypeSourceInfo()->getType();
5326
5327 if (Current->isAnyMemberInitializer())
5328 Diag << 0 << Current->getAnyMember();
5329 else
5330 Diag << 1 << Current->getTypeSourceInfo()->getType();
5331}
5332
5333static void DiagnoseBaseOrMemInitializerOrder(
5334 Sema &SemaRef, const CXXConstructorDecl *Constructor,
5335 ArrayRef<CXXCtorInitializer *> Inits) {
5336 if (Constructor->getDeclContext()->isDependentContext())
5337 return;
5338
5339 // Don't check initializers order unless the warning is enabled at the
5340 // location of at least one initializer.
5341 bool ShouldCheckOrder = false;
5342 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5343 CXXCtorInitializer *Init = Inits[InitIndex];
5344 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
5345 Init->getSourceLocation())) {
5346 ShouldCheckOrder = true;
5347 break;
5348 }
5349 }
5350 if (!ShouldCheckOrder)
5351 return;
5352
5353 // Build the list of bases and members in the order that they'll
5354 // actually be initialized. The explicit initializers should be in
5355 // this same order but may be missing things.
5356 SmallVector<const void*, 32> IdealInitKeys;
5357
5358 const CXXRecordDecl *ClassDecl = Constructor->getParent();
5359
5360 // 1. Virtual bases.
5361 for (const auto &VBase : ClassDecl->vbases())
5362 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
5363
5364 // 2. Non-virtual bases.
5365 for (const auto &Base : ClassDecl->bases()) {
5366 if (Base.isVirtual())
5367 continue;
5368 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
5369 }
5370
5371 // 3. Direct fields.
5372 for (auto *Field : ClassDecl->fields()) {
5373 if (Field->isUnnamedBitfield())
5374 continue;
5375
5376 PopulateKeysForFields(Field, IdealInitKeys);
5377 }
5378
5379 unsigned NumIdealInits = IdealInitKeys.size();
5380 unsigned IdealIndex = 0;
5381
5382 // Track initializers that are in an incorrect order for either a warning or
5383 // note if multiple ones occur.
5384 SmallVector<unsigned> WarnIndexes;
5385 // Correlates the index of an initializer in the init-list to the index of
5386 // the field/base in the class.
5387 SmallVector<std::pair<unsigned, unsigned>, 32> CorrelatedInitOrder;
5388
5389 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5390 const void *InitKey = GetKeyForMember(SemaRef.Context, Inits[InitIndex]);
5391
5392 // Scan forward to try to find this initializer in the idealized
5393 // initializers list.
5394 for (; IdealIndex != NumIdealInits; ++IdealIndex)
5395 if (InitKey == IdealInitKeys[IdealIndex])
5396 break;
5397
5398 // If we didn't find this initializer, it must be because we
5399 // scanned past it on a previous iteration. That can only
5400 // happen if we're out of order; emit a warning.
5401 if (IdealIndex == NumIdealInits && InitIndex) {
5402 WarnIndexes.push_back(InitIndex);
5403
5404 // Move back to the initializer's location in the ideal list.
5405 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
5406 if (InitKey == IdealInitKeys[IdealIndex])
5407 break;
5408
5409 assert(IdealIndex < NumIdealInits &&(static_cast <bool> (IdealIndex < NumIdealInits &&
"initializer not found in initializer list") ? void (0) : __assert_fail
("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 5410, __extension__ __PRETTY_FUNCTION__
))
5410 "initializer not found in initializer list")(static_cast <bool> (IdealIndex < NumIdealInits &&
"initializer not found in initializer list") ? void (0) : __assert_fail
("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 5410, __extension__ __PRETTY_FUNCTION__
))
;
5411 }
5412 CorrelatedInitOrder.emplace_back(IdealIndex, InitIndex);
5413 }
5414
5415 if (WarnIndexes.empty())
5416 return;
5417
5418 // Sort based on the ideal order, first in the pair.
5419 llvm::sort(CorrelatedInitOrder,
5420 [](auto &LHS, auto &RHS) { return LHS.first < RHS.first; });
5421
5422 // Introduce a new scope as SemaDiagnosticBuilder needs to be destroyed to
5423 // emit the diagnostic before we can try adding notes.
5424 {
5425 Sema::SemaDiagnosticBuilder D = SemaRef.Diag(
5426 Inits[WarnIndexes.front() - 1]->getSourceLocation(),
5427 WarnIndexes.size() == 1 ? diag::warn_initializer_out_of_order
5428 : diag::warn_some_initializers_out_of_order);
5429
5430 for (unsigned I = 0; I < CorrelatedInitOrder.size(); ++I) {
5431 if (CorrelatedInitOrder[I].second == I)
5432 continue;
5433 // Ideally we would be using InsertFromRange here, but clang doesn't
5434 // appear to handle InsertFromRange correctly when the source range is
5435 // modified by another fix-it.
5436 D << FixItHint::CreateReplacement(
5437 Inits[I]->getSourceRange(),
5438 Lexer::getSourceText(
5439 CharSourceRange::getTokenRange(
5440 Inits[CorrelatedInitOrder[I].second]->getSourceRange()),
5441 SemaRef.getSourceManager(), SemaRef.getLangOpts()));
5442 }
5443
5444 // If there is only 1 item out of order, the warning expects the name and
5445 // type of each being added to it.
5446 if (WarnIndexes.size() == 1) {
5447 AddInitializerToDiag(D, Inits[WarnIndexes.front() - 1],
5448 Inits[WarnIndexes.front()]);
5449 return;
5450 }
5451 }
5452 // More than 1 item to warn, create notes letting the user know which ones
5453 // are bad.
5454 for (unsigned WarnIndex : WarnIndexes) {
5455 const clang::CXXCtorInitializer *PrevInit = Inits[WarnIndex - 1];
5456 auto D = SemaRef.Diag(PrevInit->getSourceLocation(),
5457 diag::note_initializer_out_of_order);
5458 AddInitializerToDiag(D, PrevInit, Inits[WarnIndex]);
5459 D << PrevInit->getSourceRange();
5460 }
5461}
5462
5463namespace {
5464bool CheckRedundantInit(Sema &S,
5465 CXXCtorInitializer *Init,
5466 CXXCtorInitializer *&PrevInit) {
5467 if (!PrevInit) {
5468 PrevInit = Init;
5469 return false;
5470 }
5471
5472 if (FieldDecl *Field = Init->getAnyMember())
5473 S.Diag(Init->getSourceLocation(),
5474 diag::err_multiple_mem_initialization)
5475 << Field->getDeclName()
5476 << Init->getSourceRange();
5477 else {
5478 const Type *BaseClass = Init->getBaseClass();
5479 assert(BaseClass && "neither field nor base")(static_cast <bool> (BaseClass && "neither field nor base"
) ? void (0) : __assert_fail ("BaseClass && \"neither field nor base\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 5479, __extension__ __PRETTY_FUNCTION__
))
;
5480 S.Diag(Init->getSourceLocation(),
5481 diag::err_multiple_base_initialization)
5482 << QualType(BaseClass, 0)
5483 << Init->getSourceRange();
5484 }
5485 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
5486 << 0 << PrevInit->getSourceRange();
5487
5488 return true;
5489}
5490
5491typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
5492typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
5493
5494bool CheckRedundantUnionInit(Sema &S,
5495 CXXCtorInitializer *Init,
5496 RedundantUnionMap &Unions) {
5497 FieldDecl *Field = Init->getAnyMember();
5498 RecordDecl *Parent = Field->getParent();
5499 NamedDecl *Child = Field;
5500
5501 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
5502 if (Parent->isUnion()) {
5503 UnionEntry &En = Unions[Parent];
5504 if (En.first && En.first != Child) {
5505 S.Diag(Init->getSourceLocation(),
5506 diag::err_multiple_mem_union_initialization)
5507 << Field->getDeclName()
5508 << Init->getSourceRange();
5509 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
5510 << 0 << En.second->getSourceRange();
5511 return true;
5512 }
5513 if (!En.first) {
5514 En.first = Child;
5515 En.second = Init;
5516 }
5517 if (!Parent->isAnonymousStructOrUnion())
5518 return false;
5519 }
5520
5521 Child = Parent;
5522 Parent = cast<RecordDecl>(Parent->getDeclContext());
5523 }
5524
5525 return false;
5526}
5527} // namespace
5528
5529/// ActOnMemInitializers - Handle the member initializers for a constructor.
5530void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
5531 SourceLocation ColonLoc,
5532 ArrayRef<CXXCtorInitializer*> MemInits,
5533 bool AnyErrors) {
5534 if (!ConstructorDecl)
5535 return;
5536
5537 AdjustDeclIfTemplate(ConstructorDecl);
5538
5539 CXXConstructorDecl *Constructor
5540 = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
5541
5542 if (!Constructor) {
5543 Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
5544 return;
5545 }
5546
5547 // Mapping for the duplicate initializers check.
5548 // For member initializers, this is keyed with a FieldDecl*.
5549 // For base initializers, this is keyed with a Type*.
5550 llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
5551
5552 // Mapping for the inconsistent anonymous-union initializers check.
5553 RedundantUnionMap MemberUnions;
5554
5555 bool HadError = false;
5556 for (unsigned i = 0; i < MemInits.size(); i++) {
5557 CXXCtorInitializer *Init = MemInits[i];
5558
5559 // Set the source order index.
5560 Init->setSourceOrder(i);
5561
5562 if (Init->isAnyMemberInitializer()) {
5563 const void *Key = GetKeyForMember(Context, Init);
5564 if (CheckRedundantInit(*this, Init, Members[Key]) ||
5565 CheckRedundantUnionInit(*this, Init, MemberUnions))
5566 HadError = true;
5567 } else if (Init->isBaseInitializer()) {
5568 const void *Key = GetKeyForMember(Context, Init);
5569 if (CheckRedundantInit(*this, Init, Members[Key]))
5570 HadError = true;
5571 } else {
5572 assert(Init->isDelegatingInitializer())(static_cast <bool> (Init->isDelegatingInitializer()
) ? void (0) : __assert_fail ("Init->isDelegatingInitializer()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 5572, __extension__ __PRETTY_FUNCTION__
))
;
5573 // This must be the only initializer
5574 if (MemInits.size() != 1) {
5575 Diag(Init->getSourceLocation(),
5576 diag::err_delegating_initializer_alone)
5577 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
5578 // We will treat this as being the only initializer.
5579 }
5580 SetDelegatingInitializer(Constructor, MemInits[i]);
5581 // Return immediately as the initializer is set.
5582 return;
5583 }
5584 }
5585
5586 if (HadError)
5587 return;
5588
5589 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
5590
5591 SetCtorInitializers(Constructor, AnyErrors, MemInits);
5592
5593 DiagnoseUninitializedFields(*this, Constructor);
5594}
5595
5596void
5597Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
5598 CXXRecordDecl *ClassDecl) {
5599 // Ignore dependent contexts. Also ignore unions, since their members never
5600 // have destructors implicitly called.
5601 if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
5602 return;
5603
5604 // FIXME: all the access-control diagnostics are positioned on the
5605 // field/base declaration. That's probably good; that said, the
5606 // user might reasonably want to know why the destructor is being
5607 // emitted, and we currently don't say.
5608
5609 // Non-static data members.
5610 for (auto *Field : ClassDecl->fields()) {
5611 if (Field->isInvalidDecl())
5612 continue;
5613
5614 // Don't destroy incomplete or zero-length arrays.
5615 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
5616 continue;
5617
5618 QualType FieldType = Context.getBaseElementType(Field->getType());
5619
5620 const RecordType* RT = FieldType->getAs<RecordType>();
5621 if (!RT)
5622 continue;
5623
5624 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5625 if (FieldClassDecl->isInvalidDecl())
5626 continue;
5627 if (FieldClassDecl->hasIrrelevantDestructor())
5628 continue;
5629 // The destructor for an implicit anonymous union member is never invoked.
5630 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
5631 continue;
5632
5633 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
5634 assert(Dtor && "No dtor found for FieldClassDecl!")(static_cast <bool> (Dtor && "No dtor found for FieldClassDecl!"
) ? void (0) : __assert_fail ("Dtor && \"No dtor found for FieldClassDecl!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 5634, __extension__ __PRETTY_FUNCTION__
))
;
5635 CheckDestructorAccess(Field->getLocation(), Dtor,
5636 PDiag(diag::err_access_dtor_field)
5637 << Field->getDeclName()
5638 << FieldType);
5639
5640 MarkFunctionReferenced(Location, Dtor);
5641 DiagnoseUseOfDecl(Dtor, Location);
5642 }
5643
5644 // We only potentially invoke the destructors of potentially constructed
5645 // subobjects.
5646 bool VisitVirtualBases = !ClassDecl->isAbstract();
5647
5648 // If the destructor exists and has already been marked used in the MS ABI,
5649 // then virtual base destructors have already been checked and marked used.
5650 // Skip checking them again to avoid duplicate diagnostics.
5651 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5652 CXXDestructorDecl *Dtor = ClassDecl->getDestructor();
5653 if (Dtor && Dtor->isUsed())
5654 VisitVirtualBases = false;
5655 }
5656
5657 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
5658
5659 // Bases.
5660 for (const auto &Base : ClassDecl->bases()) {
5661 const RecordType *RT = Base.getType()->getAs<RecordType>();
5662 if (!RT)
5663 continue;
5664
5665 // Remember direct virtual bases.
5666 if (Base.isVirtual()) {
5667 if (!VisitVirtualBases)
5668 continue;
5669 DirectVirtualBases.insert(RT);
5670 }
5671
5672 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5673 // If our base class is invalid, we probably can't get its dtor anyway.
5674 if (BaseClassDecl->isInvalidDecl())
5675 continue;
5676 if (BaseClassDecl->hasIrrelevantDestructor())
5677 continue;
5678
5679 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5680 assert(Dtor && "No dtor found for BaseClassDecl!")(static_cast <bool> (Dtor && "No dtor found for BaseClassDecl!"
) ? void (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 5680, __extension__ __PRETTY_FUNCTION__
))
;
5681
5682 // FIXME: caret should be on the start of the class name
5683 CheckDestructorAccess(Base.getBeginLoc(), Dtor,
5684 PDiag(diag::err_access_dtor_base)
5685 << Base.getType() << Base.getSourceRange(),
5686 Context.getTypeDeclType(ClassDecl));
5687
5688 MarkFunctionReferenced(Location, Dtor);
5689 DiagnoseUseOfDecl(Dtor, Location);
5690 }
5691
5692 if (VisitVirtualBases)
5693 MarkVirtualBaseDestructorsReferenced(Location, ClassDecl,
5694 &DirectVirtualBases);
5695}
5696
5697void Sema::MarkVirtualBaseDestructorsReferenced(
5698 SourceLocation Location, CXXRecordDecl *ClassDecl,
5699 llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases) {
5700 // Virtual bases.
5701 for (const auto &VBase : ClassDecl->vbases()) {
5702 // Bases are always records in a well-formed non-dependent class.
5703 const RecordType *RT = VBase.getType()->castAs<RecordType>();
5704
5705 // Ignore already visited direct virtual bases.
5706 if (DirectVirtualBases && DirectVirtualBases->count(RT))
5707 continue;
5708
5709 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5710 // If our base class is invalid, we probably can't get its dtor anyway.
5711 if (BaseClassDecl->isInvalidDecl())
5712 continue;
5713 if (BaseClassDecl->hasIrrelevantDestructor())
5714 continue;
5715
5716 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5717 assert(Dtor && "No dtor found for BaseClassDecl!")(static_cast <bool> (Dtor && "No dtor found for BaseClassDecl!"
) ? void (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 5717, __extension__ __PRETTY_FUNCTION__
))
;
5718 if (CheckDestructorAccess(
5719 ClassDecl->getLocation(), Dtor,
5720 PDiag(diag::err_access_dtor_vbase)
5721 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
5722 Context.getTypeDeclType(ClassDecl)) ==
5723 AR_accessible) {
5724 CheckDerivedToBaseConversion(
5725 Context.getTypeDeclType(ClassDecl), VBase.getType(),
5726 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
5727 SourceRange(), DeclarationName(), nullptr);
5728 }
5729
5730 MarkFunctionReferenced(Location, Dtor);
5731 DiagnoseUseOfDecl(Dtor, Location);
5732 }
5733}
5734
5735void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
5736 if (!CDtorDecl)
5737 return;
5738
5739 if (CXXConstructorDecl *Constructor
5740 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
5741 SetCtorInitializers(Constructor, /*AnyErrors=*/false);
5742 DiagnoseUninitializedFields(*this, Constructor);
5743 }
5744}
5745
5746bool Sema::isAbstractType(SourceLocation Loc, QualType T) {
5747 if (!getLangOpts().CPlusPlus)
5748 return false;
5749
5750 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl();
5751 if (!RD)
5752 return false;
5753
5754 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a
5755 // class template specialization here, but doing so breaks a lot of code.
5756
5757 // We can't answer whether something is abstract until it has a
5758 // definition. If it's currently being defined, we'll walk back
5759 // over all the declarations when we have a full definition.
5760 const CXXRecordDecl *Def = RD->getDefinition();
5761 if (!Def || Def->isBeingDefined())
5762 return false;
5763
5764 return RD->isAbstract();
5765}
5766
5767bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
5768 TypeDiagnoser &Diagnoser) {
5769 if (!isAbstractType(Loc, T))
5770 return false;
5771
5772 T = Context.getBaseElementType(T);
5773 Diagnoser.diagnose(*this, Loc, T);
5774 DiagnoseAbstractType(T->getAsCXXRecordDecl());
5775 return true;
5776}
5777
5778void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
5779 // Check if we've already emitted the list of pure virtual functions
5780 // for this class.
5781 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
5782 return;
5783
5784 // If the diagnostic is suppressed, don't emit the notes. We're only
5785 // going to emit them once, so try to attach them to a diagnostic we're
5786 // actually going to show.
5787 if (Diags.isLastDiagnosticIgnored())
5788 return;
5789
5790 CXXFinalOverriderMap FinalOverriders;
5791 RD->getFinalOverriders(FinalOverriders);
5792
5793 // Keep a set of seen pure methods so we won't diagnose the same method
5794 // more than once.
5795 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
5796
5797 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
5798 MEnd = FinalOverriders.end();
5799 M != MEnd;
5800 ++M) {
5801 for (OverridingMethods::iterator SO = M->second.begin(),
5802 SOEnd = M->second.end();
5803 SO != SOEnd; ++SO) {
5804 // C++ [class.abstract]p4:
5805 // A class is abstract if it contains or inherits at least one
5806 // pure virtual function for which the final overrider is pure
5807 // virtual.
5808
5809 //
5810 if (SO->second.size() != 1)
5811 continue;
5812
5813 if (!SO->second.front().Method->isPure())
5814 continue;
5815
5816 if (!SeenPureMethods.insert(SO->second.front().Method).second)
5817 continue;
5818
5819 Diag(SO->second.front().Method->getLocation(),
5820 diag::note_pure_virtual_function)
5821 << SO->second.front().Method->getDeclName() << RD->getDeclName();
5822 }
5823 }
5824
5825 if (!PureVirtualClassDiagSet)
5826 PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
5827 PureVirtualClassDiagSet->insert(RD);
5828}
5829
5830namespace {
5831struct AbstractUsageInfo {
5832 Sema &S;
5833 CXXRecordDecl *Record;
5834 CanQualType AbstractType;
5835 bool Invalid;
5836
5837 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
5838 : S(S), Record(Record),
5839 AbstractType(S.Context.getCanonicalType(
5840 S.Context.getTypeDeclType(Record))),
5841 Invalid(false) {}
5842
5843 void DiagnoseAbstractType() {
5844 if (Invalid) return;
5845 S.DiagnoseAbstractType(Record);
5846 Invalid = true;
5847 }
5848
5849 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
5850};
5851
5852struct CheckAbstractUsage {
5853 AbstractUsageInfo &Info;
5854 const NamedDecl *Ctx;
5855
5856 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
5857 : Info(Info), Ctx(Ctx) {}
5858
5859 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5860 switch (TL.getTypeLocClass()) {
5861#define ABSTRACT_TYPELOC(CLASS, PARENT)
5862#define TYPELOC(CLASS, PARENT) \
5863 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
5864#include "clang/AST/TypeLocNodes.def"
5865 }
5866 }
5867
5868 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5869 Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
5870 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
5871 if (!TL.getParam(I))
5872 continue;
5873
5874 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
5875 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
5876 }
5877 }
5878
5879 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5880 Visit(TL.getElementLoc(), Sema::AbstractArrayType);
5881 }
5882
5883 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5884 // Visit the type parameters from a permissive context.
5885 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
5886 TemplateArgumentLoc TAL = TL.getArgLoc(I);
5887 if (TAL.getArgument().getKind() == TemplateArgument::Type)
5888 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
5889 Visit(TSI->getTypeLoc(), Sema::AbstractNone);
5890 // TODO: other template argument types?
5891 }
5892 }
5893
5894 // Visit pointee types from a permissive context.
5895#define CheckPolymorphic(Type)void Check(Type TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getNextTypeLoc
(), Sema::AbstractNone); }
\
5896 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
5897 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
5898 }
5899 CheckPolymorphic(PointerTypeLoc)void Check(PointerTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5900 CheckPolymorphic(ReferenceTypeLoc)void Check(ReferenceTypeLoc TL, Sema::AbstractDiagSelID Sel) {
Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5901 CheckPolymorphic(MemberPointerTypeLoc)void Check(MemberPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5902 CheckPolymorphic(BlockPointerTypeLoc)void Check(BlockPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5903 CheckPolymorphic(AtomicTypeLoc)void Check(AtomicTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5904
5905 /// Handle all the types we haven't given a more specific
5906 /// implementation for above.
5907 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5908 // Every other kind of type that we haven't called out already
5909 // that has an inner type is either (1) sugar or (2) contains that
5910 // inner type in some way as a subobject.
5911 if (TypeLoc Next = TL.getNextTypeLoc())
5912 return Visit(Next, Sel);
5913
5914 // If there's no inner type and we're in a permissive context,
5915 // don't diagnose.
5916 if (Sel == Sema::AbstractNone) return;
5917
5918 // Check whether the type matches the abstract type.
5919 QualType T = TL.getType();
5920 if (T->isArrayType()) {
5921 Sel = Sema::AbstractArrayType;
5922 T = Info.S.Context.getBaseElementType(T);
5923 }
5924 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
5925 if (CT != Info.AbstractType) return;
5926
5927 // It matched; do some magic.
5928 // FIXME: These should be at most warnings. See P0929R2, CWG1640, CWG1646.
5929 if (Sel == Sema::AbstractArrayType) {
5930 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
5931 << T << TL.getSourceRange();
5932 } else {
5933 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
5934 << Sel << T << TL.getSourceRange();
5935 }
5936 Info.DiagnoseAbstractType();
5937 }
5938};
5939
5940void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
5941 Sema::AbstractDiagSelID Sel) {
5942 CheckAbstractUsage(*this, D).Visit(TL, Sel);
5943}
5944
5945}
5946
5947/// Check for invalid uses of an abstract type in a function declaration.
5948static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5949 FunctionDecl *FD) {
5950 // No need to do the check on definitions, which require that
5951 // the return/param types be complete.
5952 if (FD->doesThisDeclarationHaveABody())
5953 return;
5954
5955 // For safety's sake, just ignore it if we don't have type source
5956 // information. This should never happen for non-implicit methods,
5957 // but...
5958 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
5959 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractNone);
5960}
5961
5962/// Check for invalid uses of an abstract type in a variable0 declaration.
5963static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5964 VarDecl *VD) {
5965 // No need to do the check on definitions, which require that
5966 // the type is complete.
5967 if (VD->isThisDeclarationADefinition())
5968 return;
5969
5970 Info.CheckType(VD, VD->getTypeSourceInfo()->getTypeLoc(),
5971 Sema::AbstractVariableType);
5972}
5973
5974/// Check for invalid uses of an abstract type within a class definition.
5975static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5976 CXXRecordDecl *RD) {
5977 for (auto *D : RD->decls()) {
5978 if (D->isImplicit()) continue;
5979
5980 // Step through friends to the befriended declaration.
5981 if (auto *FD = dyn_cast<FriendDecl>(D)) {
5982 D = FD->getFriendDecl();
5983 if (!D) continue;
5984 }
5985
5986 // Functions and function templates.
5987 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
5988 CheckAbstractClassUsage(Info, FD);
5989 } else if (auto *FTD = dyn_cast<FunctionTemplateDecl>(D)) {
5990 CheckAbstractClassUsage(Info, FTD->getTemplatedDecl());
5991
5992 // Fields and static variables.
5993 } else if (auto *FD = dyn_cast<FieldDecl>(D)) {
5994 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
5995 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
5996 } else if (auto *VD = dyn_cast<VarDecl>(D)) {
5997 CheckAbstractClassUsage(Info, VD);
5998 } else if (auto *VTD = dyn_cast<VarTemplateDecl>(D)) {
5999 CheckAbstractClassUsage(Info, VTD->getTemplatedDecl());
6000
6001 // Nested classes and class templates.
6002 } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
6003 CheckAbstractClassUsage(Info, RD);
6004 } else if (auto *CTD = dyn_cast<ClassTemplateDecl>(D)) {
6005 CheckAbstractClassUsage(Info, CTD->getTemplatedDecl());
6006 }
6007 }
6008}
6009
6010static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) {
6011 Attr *ClassAttr = getDLLAttr(Class);
6012 if (!ClassAttr)
6013 return;
6014
6015 assert(ClassAttr->getKind() == attr::DLLExport)(static_cast <bool> (ClassAttr->getKind() == attr::DLLExport
) ? void (0) : __assert_fail ("ClassAttr->getKind() == attr::DLLExport"
, "clang/lib/Sema/SemaDeclCXX.cpp", 6015, __extension__ __PRETTY_FUNCTION__
))
;
6016
6017 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
6018
6019 if (TSK == TSK_ExplicitInstantiationDeclaration)
6020 // Don't go any further if this is just an explicit instantiation
6021 // declaration.
6022 return;
6023
6024 // Add a context note to explain how we got to any diagnostics produced below.
6025 struct MarkingClassDllexported {
6026 Sema &S;
6027 MarkingClassDllexported(Sema &S, CXXRecordDecl *Class,
6028 SourceLocation AttrLoc)
6029 : S(S) {
6030 Sema::CodeSynthesisContext Ctx;
6031 Ctx.Kind = Sema::CodeSynthesisContext::MarkingClassDllexported;
6032 Ctx.PointOfInstantiation = AttrLoc;
6033 Ctx.Entity = Class;
6034 S.pushCodeSynthesisContext(Ctx);
6035 }
6036 ~MarkingClassDllexported() {
6037 S.popCodeSynthesisContext();
6038 }
6039 } MarkingDllexportedContext(S, Class, ClassAttr->getLocation());
6040
6041 if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
6042 S.MarkVTableUsed(Class->getLocation(), Class, true);
6043
6044 for (Decl *Member : Class->decls()) {
6045 // Skip members that were not marked exported.
6046 if (!Member->hasAttr<DLLExportAttr>())
6047 continue;
6048
6049 // Defined static variables that are members of an exported base
6050 // class must be marked export too.
6051 auto *VD = dyn_cast<VarDecl>(Member);
6052 if (VD && VD->getStorageClass() == SC_Static &&
6053 TSK == TSK_ImplicitInstantiation)
6054 S.MarkVariableReferenced(VD->getLocation(), VD);
6055
6056 auto *MD = dyn_cast<CXXMethodDecl>(Member);
6057 if (!MD)
6058 continue;
6059
6060 if (MD->isUserProvided()) {
6061 // Instantiate non-default class member functions ...
6062
6063 // .. except for certain kinds of template specializations.
6064 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
6065 continue;
6066
6067 // If this is an MS ABI dllexport default constructor, instantiate any
6068 // default arguments.
6069 if (S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
6070 auto *CD = dyn_cast<CXXConstructorDecl>(MD);
6071 if (CD && CD->isDefaultConstructor() && TSK == TSK_Undeclared) {
6072 S.InstantiateDefaultCtorDefaultArgs(CD);
6073 }
6074 }
6075
6076 S.MarkFunctionReferenced(Class->getLocation(), MD);
6077
6078 // The function will be passed to the consumer when its definition is
6079 // encountered.
6080 } else if (MD->isExplicitlyDefaulted()) {
6081 // Synthesize and instantiate explicitly defaulted methods.
6082 S.MarkFunctionReferenced(Class->getLocation(), MD);
6083
6084 if (TSK != TSK_ExplicitInstantiationDefinition) {
6085 // Except for explicit instantiation defs, we will not see the
6086 // definition again later, so pass it to the consumer now.
6087 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
6088 }
6089 } else if (!MD->isTrivial() ||
6090 MD->isCopyAssignmentOperator() ||
6091 MD->isMoveAssignmentOperator()) {
6092 // Synthesize and instantiate non-trivial implicit methods, and the copy
6093 // and move assignment operators. The latter are exported even if they
6094 // are trivial, because the address of an operator can be taken and
6095 // should compare equal across libraries.
6096 S.MarkFunctionReferenced(Class->getLocation(), MD);
6097
6098 // There is no later point when we will see the definition of this
6099 // function, so pass it to the consumer now.
6100 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
6101 }
6102 }
6103}
6104
6105static void checkForMultipleExportedDefaultConstructors(Sema &S,
6106 CXXRecordDecl *Class) {
6107 // Only the MS ABI has default constructor closures, so we don't need to do
6108 // this semantic checking anywhere else.
6109 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft())
6110 return;
6111
6112 CXXConstructorDecl *LastExportedDefaultCtor = nullptr;
6113 for (Decl *Member : Class->decls()) {
6114 // Look for exported default constructors.
6115 auto *CD = dyn_cast<CXXConstructorDecl>(Member);
6116 if (!CD || !CD->isDefaultConstructor())
6117 continue;
6118 auto *Attr = CD->getAttr<DLLExportAttr>();
6119 if (!Attr)
6120 continue;
6121
6122 // If the class is non-dependent, mark the default arguments as ODR-used so
6123 // that we can properly codegen the constructor closure.
6124 if (!Class->isDependentContext()) {
6125 for (ParmVarDecl *PD : CD->parameters()) {
6126 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD);
6127 S.DiscardCleanupsInEvaluationContext();
6128 }
6129 }
6130
6131 if (LastExportedDefaultCtor) {
6132 S.Diag(LastExportedDefaultCtor->getLocation(),
6133 diag::err_attribute_dll_ambiguous_default_ctor)
6134 << Class;
6135 S.Diag(CD->getLocation(), diag::note_entity_declared_at)
6136 << CD->getDeclName();
6137 return;
6138 }
6139 LastExportedDefaultCtor = CD;
6140 }
6141}
6142
6143static void checkCUDADeviceBuiltinSurfaceClassTemplate(Sema &S,
6144 CXXRecordDecl *Class) {
6145 bool ErrorReported = false;
6146 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S,
6147 ClassTemplateDecl *TD) {
6148 if (ErrorReported)
6149 return;
6150 S.Diag(TD->getLocation(),
6151 diag::err_cuda_device_builtin_surftex_cls_template)
6152 << /*surface*/ 0 << TD;
6153 ErrorReported = true;
6154 };
6155
6156 ClassTemplateDecl *TD = Class->getDescribedClassTemplate();
6157 if (!TD) {
6158 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class);
6159 if (!SD) {
6160 S.Diag(Class->getLocation(),
6161 diag::err_cuda_device_builtin_surftex_ref_decl)
6162 << /*surface*/ 0 << Class;
6163 S.Diag(Class->getLocation(),
6164 diag::note_cuda_device_builtin_surftex_should_be_template_class)
6165 << Class;
6166 return;
6167 }
6168 TD = SD->getSpecializedTemplate();
6169 }
6170
6171 TemplateParameterList *Params = TD->getTemplateParameters();
6172 unsigned N = Params->size();
6173
6174 if (N != 2) {
6175 reportIllegalClassTemplate(S, TD);
6176 S.Diag(TD->getLocation(),
6177 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args)
6178 << TD << 2;
6179 }
6180 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6181 reportIllegalClassTemplate(S, TD);
6182 S.Diag(TD->getLocation(),
6183 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6184 << TD << /*1st*/ 0 << /*type*/ 0;
6185 }
6186 if (N > 1) {
6187 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1));
6188 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) {
6189 reportIllegalClassTemplate(S, TD);
6190 S.Diag(TD->getLocation(),
6191 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6192 << TD << /*2nd*/ 1 << /*integer*/ 1;
6193 }
6194 }
6195}
6196
6197static void checkCUDADeviceBuiltinTextureClassTemplate(Sema &S,
6198 CXXRecordDecl *Class) {
6199 bool ErrorReported = false;
6200 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S,
6201 ClassTemplateDecl *TD) {
6202 if (ErrorReported)
6203 return;
6204 S.Diag(TD->getLocation(),
6205 diag::err_cuda_device_builtin_surftex_cls_template)
6206 << /*texture*/ 1 << TD;
6207 ErrorReported = true;
6208 };
6209
6210 ClassTemplateDecl *TD = Class->getDescribedClassTemplate();
6211 if (!TD) {
6212 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class);
6213 if (!SD) {
6214 S.Diag(Class->getLocation(),
6215 diag::err_cuda_device_builtin_surftex_ref_decl)
6216 << /*texture*/ 1 << Class;
6217 S.Diag(Class->getLocation(),
6218 diag::note_cuda_device_builtin_surftex_should_be_template_class)
6219 << Class;
6220 return;
6221 }
6222 TD = SD->getSpecializedTemplate();
6223 }
6224
6225 TemplateParameterList *Params = TD->getTemplateParameters();
6226 unsigned N = Params->size();
6227
6228 if (N != 3) {
6229 reportIllegalClassTemplate(S, TD);
6230 S.Diag(TD->getLocation(),
6231 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args)
6232 << TD << 3;
6233 }
6234 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6235 reportIllegalClassTemplate(S, TD);
6236 S.Diag(TD->getLocation(),
6237 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6238 << TD << /*1st*/ 0 << /*type*/ 0;
6239 }
6240 if (N > 1) {
6241 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1));
6242 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) {
6243 reportIllegalClassTemplate(S, TD);
6244 S.Diag(TD->getLocation(),
6245 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6246 << TD << /*2nd*/ 1 << /*integer*/ 1;
6247 }
6248 }
6249 if (N > 2) {
6250 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(2));
6251 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) {
6252 reportIllegalClassTemplate(S, TD);
6253 S.Diag(TD->getLocation(),
6254 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6255 << TD << /*3rd*/ 2 << /*integer*/ 1;
6256 }
6257 }
6258}
6259
6260void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) {
6261 // Mark any compiler-generated routines with the implicit code_seg attribute.
6262 for (auto *Method : Class->methods()) {
6263 if (Method->isUserProvided())
6264 continue;
6265 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
6266 Method->addAttr(A);
6267 }
6268}
6269
6270/// Check class-level dllimport/dllexport attribute.
6271void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) {
6272 Attr *ClassAttr = getDLLAttr(Class);
6273
6274 // MSVC inherits DLL attributes to partial class template specializations.
6275 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && !ClassAttr) {
6276 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) {
6277 if (Attr *TemplateAttr =
6278 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) {
6279 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext()));
6280 A->setInherited(true);
6281 ClassAttr = A;
6282 }
6283 }
6284 }
6285
6286 if (!ClassAttr)
6287 return;
6288
6289 if (!Class->isExternallyVisible()) {
6290 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern)
6291 << Class << ClassAttr;
6292 return;
6293 }
6294
6295 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
6296 !ClassAttr->isInherited()) {
6297 // Diagnose dll attributes on members of class with dll attribute.
6298 for (Decl *Member : Class->decls()) {
6299 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member))
6300 continue;
6301 InheritableAttr *MemberAttr = getDLLAttr(Member);
6302 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl())
6303 continue;
6304
6305 Diag(MemberAttr->getLocation(),
6306 diag::err_attribute_dll_member_of_dll_class)
6307 << MemberAttr << ClassAttr;
6308 Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
6309 Member->setInvalidDecl();
6310 }
6311 }
6312
6313 if (Class->getDescribedClassTemplate())
6314 // Don't inherit dll attribute until the template is instantiated.
6315 return;
6316
6317 // The class is either imported or exported.
6318 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
6319
6320 // Check if this was a dllimport attribute propagated from a derived class to
6321 // a base class template specialization. We don't apply these attributes to
6322 // static data members.
6323 const bool PropagatedImport =
6324 !ClassExported &&
6325 cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate();
6326
6327 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
6328
6329 // Ignore explicit dllexport on explicit class template instantiation
6330 // declarations, except in MinGW mode.
6331 if (ClassExported && !ClassAttr->isInherited() &&
6332 TSK == TSK_ExplicitInstantiationDeclaration &&
6333 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
6334 Class->dropAttr<DLLExportAttr>();
6335 return;
6336 }
6337
6338 // Force declaration of implicit members so they can inherit the attribute.
6339 ForceDeclarationOfImplicitMembers(Class);
6340
6341 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
6342 // seem to be true in practice?
6343
6344 for (Decl *Member : Class->decls()) {
6345 VarDecl *VD = dyn_cast<VarDecl>(Member);
6346 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
6347
6348 // Only methods and static fields inherit the attributes.
6349 if (!VD && !MD)
6350 continue;
6351
6352 if (MD) {
6353 // Don't process deleted methods.
6354 if (MD->isDeleted())
6355 continue;
6356
6357 if (MD->isInlined()) {
6358 // MinGW does not import or export inline methods. But do it for
6359 // template instantiations.
6360 if (!Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
6361 TSK != TSK_ExplicitInstantiationDeclaration &&
6362 TSK != TSK_ExplicitInstantiationDefinition)
6363 continue;
6364
6365 // MSVC versions before 2015 don't export the move assignment operators
6366 // and move constructor, so don't attempt to import/export them if
6367 // we have a definition.
6368 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD);
6369 if ((MD->isMoveAssignmentOperator() ||
6370 (Ctor && Ctor->isMoveConstructor())) &&
6371 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015))
6372 continue;
6373
6374 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign
6375 // operator is exported anyway.
6376 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
6377 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial())
6378 continue;
6379 }
6380 }
6381
6382 // Don't apply dllimport attributes to static data members of class template
6383 // instantiations when the attribute is propagated from a derived class.
6384 if (VD && PropagatedImport)
6385 continue;
6386
6387 if (!cast<NamedDecl>(Member)->isExternallyVisible())
6388 continue;
6389
6390 if (!getDLLAttr(Member)) {
6391 InheritableAttr *NewAttr = nullptr;
6392
6393 // Do not export/import inline function when -fno-dllexport-inlines is
6394 // passed. But add attribute for later local static var check.
6395 if (!getLangOpts().DllExportInlines && MD && MD->isInlined() &&
6396 TSK != TSK_ExplicitInstantiationDeclaration &&
6397 TSK != TSK_ExplicitInstantiationDefinition) {
6398 if (ClassExported) {
6399 NewAttr = ::new (getASTContext())
6400 DLLExportStaticLocalAttr(getASTContext(), *ClassAttr);
6401 } else {
6402 NewAttr = ::new (getASTContext())
6403 DLLImportStaticLocalAttr(getASTContext(), *ClassAttr);
6404 }
6405 } else {
6406 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6407 }
6408
6409 NewAttr->setInherited(true);
6410 Member->addAttr(NewAttr);
6411
6412 if (MD) {
6413 // Propagate DLLAttr to friend re-declarations of MD that have already
6414 // been constructed.
6415 for (FunctionDecl *FD = MD->getMostRecentDecl(); FD;
6416 FD = FD->getPreviousDecl()) {
6417 if (FD->getFriendObjectKind() == Decl::FOK_None)
6418 continue;
6419 assert(!getDLLAttr(FD) &&(static_cast <bool> (!getDLLAttr(FD) && "friend re-decl should not already have a DLLAttr"
) ? void (0) : __assert_fail ("!getDLLAttr(FD) && \"friend re-decl should not already have a DLLAttr\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 6420, __extension__ __PRETTY_FUNCTION__
))
6420 "friend re-decl should not already have a DLLAttr")(static_cast <bool> (!getDLLAttr(FD) && "friend re-decl should not already have a DLLAttr"
) ? void (0) : __assert_fail ("!getDLLAttr(FD) && \"friend re-decl should not already have a DLLAttr\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 6420, __extension__ __PRETTY_FUNCTION__
))
;
6421 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6422 NewAttr->setInherited(true);
6423 FD->addAttr(NewAttr);
6424 }
6425 }
6426 }
6427 }
6428
6429 if (ClassExported)
6430 DelayedDllExportClasses.push_back(Class);
6431}
6432
6433/// Perform propagation of DLL attributes from a derived class to a
6434/// templated base class for MS compatibility.
6435void Sema::propagateDLLAttrToBaseClassTemplate(
6436 CXXRecordDecl *Class, Attr *ClassAttr,
6437 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
6438 if (getDLLAttr(
6439 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
6440 // If the base class template has a DLL attribute, don't try to change it.
6441 return;
6442 }
6443
6444 auto TSK = BaseTemplateSpec->getSpecializationKind();
6445 if (!getDLLAttr(BaseTemplateSpec) &&
6446 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration ||
6447 TSK == TSK_ImplicitInstantiation)) {
6448 // The template hasn't been instantiated yet (or it has, but only as an
6449 // explicit instantiation declaration or implicit instantiation, which means
6450 // we haven't codegenned any members yet), so propagate the attribute.
6451 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6452 NewAttr->setInherited(true);
6453 BaseTemplateSpec->addAttr(NewAttr);
6454
6455 // If this was an import, mark that we propagated it from a derived class to
6456 // a base class template specialization.
6457 if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr))
6458 ImportAttr->setPropagatedToBaseTemplate();
6459
6460 // If the template is already instantiated, checkDLLAttributeRedeclaration()
6461 // needs to be run again to work see the new attribute. Otherwise this will
6462 // get run whenever the template is instantiated.
6463 if (TSK != TSK_Undeclared)
6464 checkClassLevelDLLAttribute(BaseTemplateSpec);
6465
6466 return;
6467 }
6468
6469 if (getDLLAttr(BaseTemplateSpec)) {
6470 // The template has already been specialized or instantiated with an
6471 // attribute, explicitly or through propagation. We should not try to change
6472 // it.
6473 return;
6474 }
6475
6476 // The template was previously instantiated or explicitly specialized without
6477 // a dll attribute, It's too late for us to add an attribute, so warn that
6478 // this is unsupported.
6479 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
6480 << BaseTemplateSpec->isExplicitSpecialization();
6481 Diag(ClassAttr->getLocation(), diag::note_attribute);
6482 if (BaseTemplateSpec->isExplicitSpecialization()) {
6483 Diag(BaseTemplateSpec->getLocation(),
6484 diag::note_template_class_explicit_specialization_was_here)
6485 << BaseTemplateSpec;
6486 } else {
6487 Diag(BaseTemplateSpec->getPointOfInstantiation(),
6488 diag::note_template_class_instantiation_was_here)
6489 << BaseTemplateSpec;
6490 }
6491}
6492
6493/// Determine the kind of defaulting that would be done for a given function.
6494///
6495/// If the function is both a default constructor and a copy / move constructor
6496/// (due to having a default argument for the first parameter), this picks
6497/// CXXDefaultConstructor.
6498///
6499/// FIXME: Check that case is properly handled by all callers.
6500Sema::DefaultedFunctionKind
6501Sema::getDefaultedFunctionKind(const FunctionDecl *FD) {
6502 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
6503 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(FD)) {
6504 if (Ctor->isDefaultConstructor())
6505 return Sema::CXXDefaultConstructor;
6506
6507 if (Ctor->isCopyConstructor())
6508 return Sema::CXXCopyConstructor;
6509
6510 if (Ctor->isMoveConstructor())
6511 return Sema::CXXMoveConstructor;
6512 }
6513
6514 if (MD->isCopyAssignmentOperator())
6515 return Sema::CXXCopyAssignment;
6516
6517 if (MD->isMoveAssignmentOperator())
6518 return Sema::CXXMoveAssignment;
6519
6520 if (isa<CXXDestructorDecl>(FD))
6521 return Sema::CXXDestructor;
6522 }
6523
6524 switch (FD->getDeclName().getCXXOverloadedOperator()) {
6525 case OO_EqualEqual:
6526 return DefaultedComparisonKind::Equal;
6527
6528 case OO_ExclaimEqual:
6529 return DefaultedComparisonKind::NotEqual;
6530
6531 case OO_Spaceship:
6532 // No point allowing this if <=> doesn't exist in the current language mode.
6533 if (!getLangOpts().CPlusPlus20)
6534 break;
6535 return DefaultedComparisonKind::ThreeWay;
6536
6537 case OO_Less:
6538 case OO_LessEqual:
6539 case OO_Greater:
6540 case OO_GreaterEqual:
6541 // No point allowing this if <=> doesn't exist in the current language mode.
6542 if (!getLangOpts().CPlusPlus20)
6543 break;
6544 return DefaultedComparisonKind::Relational;
6545
6546 default:
6547 break;
6548 }
6549
6550 // Not defaultable.
6551 return DefaultedFunctionKind();
6552}
6553
6554static void DefineDefaultedFunction(Sema &S, FunctionDecl *FD,
6555 SourceLocation DefaultLoc) {
6556 Sema::DefaultedFunctionKind DFK = S.getDefaultedFunctionKind(FD);
6557 if (DFK.isComparison())
6558 return S.DefineDefaultedComparison(DefaultLoc, FD, DFK.asComparison());
6559
6560 switch (DFK.asSpecialMember()) {
6561 case Sema::CXXDefaultConstructor:
6562 S.DefineImplicitDefaultConstructor(DefaultLoc,
6563 cast<CXXConstructorDecl>(FD));
6564 break;
6565 case Sema::CXXCopyConstructor:
6566 S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD));
6567 break;
6568 case Sema::CXXCopyAssignment:
6569 S.DefineImplicitCopyAssignment(DefaultLoc, cast<CXXMethodDecl>(FD));
6570 break;
6571 case Sema::CXXDestructor:
6572 S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(FD));
6573 break;
6574 case Sema::CXXMoveConstructor:
6575 S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD));
6576 break;
6577 case Sema::CXXMoveAssignment:
6578 S.DefineImplicitMoveAssignment(DefaultLoc, cast<CXXMethodDecl>(FD));
6579 break;
6580 case Sema::CXXInvalid:
6581 llvm_unreachable("Invalid special member.")::llvm::llvm_unreachable_internal("Invalid special member.", "clang/lib/Sema/SemaDeclCXX.cpp"
, 6581)
;
6582 }
6583}
6584
6585/// Determine whether a type is permitted to be passed or returned in
6586/// registers, per C++ [class.temporary]p3.
6587static bool canPassInRegisters(Sema &S, CXXRecordDecl *D,
6588 TargetInfo::CallingConvKind CCK) {
6589 if (D->isDependentType() || D->isInvalidDecl())
6590 return false;
6591
6592 // Clang <= 4 used the pre-C++11 rule, which ignores move operations.
6593 // The PS4 platform ABI follows the behavior of Clang 3.2.
6594 if (CCK == TargetInfo::CCK_ClangABI4OrPS4)
6595 return !D->hasNonTrivialDestructorForCall() &&
6596 !D->hasNonTrivialCopyConstructorForCall();
6597
6598 if (CCK == TargetInfo::CCK_MicrosoftWin64) {
6599 bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false;
6600 bool DtorIsTrivialForCall = false;
6601
6602 // If a class has at least one non-deleted, trivial copy constructor, it
6603 // is passed according to the C ABI. Otherwise, it is passed indirectly.
6604 //
6605 // Note: This permits classes with non-trivial copy or move ctors to be
6606 // passed in registers, so long as they *also* have a trivial copy ctor,
6607 // which is non-conforming.
6608 if (D->needsImplicitCopyConstructor()) {
6609 if (!D->defaultedCopyConstructorIsDeleted()) {
6610 if (D->hasTrivialCopyConstructor())
6611 CopyCtorIsTrivial = true;
6612 if (D->hasTrivialCopyConstructorForCall())
6613 CopyCtorIsTrivialForCall = true;
6614 }
6615 } else {
6616 for (const CXXConstructorDecl *CD : D->ctors()) {
6617 if (CD->isCopyConstructor() && !CD->isDeleted()) {
6618 if (CD->isTrivial())
6619 CopyCtorIsTrivial = true;
6620 if (CD->isTrivialForCall())
6621 CopyCtorIsTrivialForCall = true;
6622 }
6623 }
6624 }
6625
6626 if (D->needsImplicitDestructor()) {
6627 if (!D->defaultedDestructorIsDeleted() &&
6628 D->hasTrivialDestructorForCall())
6629 DtorIsTrivialForCall = true;
6630 } else if (const auto *DD = D->getDestructor()) {
6631 if (!DD->isDeleted() && DD->isTrivialForCall())
6632 DtorIsTrivialForCall = true;
6633 }
6634
6635 // If the copy ctor and dtor are both trivial-for-calls, pass direct.
6636 if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall)
6637 return true;
6638
6639 // If a class has a destructor, we'd really like to pass it indirectly
6640 // because it allows us to elide copies. Unfortunately, MSVC makes that
6641 // impossible for small types, which it will pass in a single register or
6642 // stack slot. Most objects with dtors are large-ish, so handle that early.
6643 // We can't call out all large objects as being indirect because there are
6644 // multiple x64 calling conventions and the C++ ABI code shouldn't dictate
6645 // how we pass large POD types.
6646
6647 // Note: This permits small classes with nontrivial destructors to be
6648 // passed in registers, which is non-conforming.
6649 bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
6650 uint64_t TypeSize = isAArch64 ? 128 : 64;
6651
6652 if (CopyCtorIsTrivial &&
6653 S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize)
6654 return true;
6655 return false;
6656 }
6657
6658 // Per C++ [class.temporary]p3, the relevant condition is:
6659 // each copy constructor, move constructor, and destructor of X is
6660 // either trivial or deleted, and X has at least one non-deleted copy
6661 // or move constructor
6662 bool HasNonDeletedCopyOrMove = false;
6663
6664 if (D->needsImplicitCopyConstructor() &&
6665 !D->defaultedCopyConstructorIsDeleted()) {
6666 if (!D->hasTrivialCopyConstructorForCall())
6667 return false;
6668 HasNonDeletedCopyOrMove = true;
6669 }
6670
6671 if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() &&
6672 !D->defaultedMoveConstructorIsDeleted()) {
6673 if (!D->hasTrivialMoveConstructorForCall())
6674 return false;
6675 HasNonDeletedCopyOrMove = true;
6676 }
6677
6678 if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() &&
6679 !D->hasTrivialDestructorForCall())
6680 return false;
6681
6682 for (const CXXMethodDecl *MD : D->methods()) {
6683 if (MD->isDeleted())
6684 continue;
6685
6686 auto *CD = dyn_cast<CXXConstructorDecl>(MD);
6687 if (CD && CD->isCopyOrMoveConstructor())
6688 HasNonDeletedCopyOrMove = true;
6689 else if (!isa<CXXDestructorDecl>(MD))
6690 continue;
6691
6692 if (!MD->isTrivialForCall())
6693 return false;
6694 }
6695
6696 return HasNonDeletedCopyOrMove;
6697}
6698
6699/// Report an error regarding overriding, along with any relevant
6700/// overridden methods.
6701///
6702/// \param DiagID the primary error to report.
6703/// \param MD the overriding method.
6704static bool
6705ReportOverrides(Sema &S, unsigned DiagID, const CXXMethodDecl *MD,
6706 llvm::function_ref<bool(const CXXMethodDecl *)> Report) {
6707 bool IssuedDiagnostic = false;
6708 for (const CXXMethodDecl *O : MD->overridden_methods()) {
6709 if (Report(O)) {
6710 if (!IssuedDiagnostic) {
6711 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
6712 IssuedDiagnostic = true;
6713 }
6714 S.Diag(O->getLocation(), diag::note_overridden_virtual_function);
6715 }
6716 }
6717 return IssuedDiagnostic;
6718}
6719
6720/// Perform semantic checks on a class definition that has been
6721/// completing, introducing implicitly-declared members, checking for
6722/// abstract types, etc.
6723///
6724/// \param S The scope in which the class was parsed. Null if we didn't just
6725/// parse a class definition.
6726/// \param Record The completed class.
6727void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
6728 if (!Record)
6729 return;
6730
6731 if (Record->isAbstract() && !Record->isInvalidDecl()) {
6732 AbstractUsageInfo Info(*this, Record);
6733 CheckAbstractClassUsage(Info, Record);
6734 }
6735
6736 // If this is not an aggregate type and has no user-declared constructor,
6737 // complain about any non-static data members of reference or const scalar
6738 // type, since they will never get initializers.
6739 if (!Record->isInvalidDecl() && !Record->isDependentType() &&
6740 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
6741 !Record->isLambda()) {
6742 bool Complained = false;
6743 for (const auto *F : Record->fields()) {
6744 if (F->hasInClassInitializer() || F->isUnnamedBitfield())
6745 continue;
6746
6747 if (F->getType()->isReferenceType() ||
6748 (F->getType().isConstQualified() && F->getType()->isScalarType())) {
6749 if (!Complained) {
6750 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
6751 << Record->getTagKind() << Record;
6752 Complained = true;
6753 }
6754
6755 Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
6756 << F->getType()->isReferenceType()
6757 << F->getDeclName();
6758 }
6759 }
6760 }
6761
6762 if (Record->getIdentifier()) {
6763 // C++ [class.mem]p13:
6764 // If T is the name of a class, then each of the following shall have a
6765 // name different from T:
6766 // - every member of every anonymous union that is a member of class T.
6767 //
6768 // C++ [class.mem]p14:
6769 // In addition, if class T has a user-declared constructor (12.1), every
6770 // non-static data member of class T shall have a name different from T.
6771 DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
6772 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6773 ++I) {
6774 NamedDecl *D = (*I)->getUnderlyingDecl();
6775 if (((isa<FieldDecl>(D) || isa<UnresolvedUsingValueDecl>(D)) &&
6776 Record->hasUserDeclaredConstructor()) ||
6777 isa<IndirectFieldDecl>(D)) {
6778 Diag((*I)->getLocation(), diag::err_member_name_of_class)
6779 << D->getDeclName();
6780 break;
6781 }
6782 }
6783 }
6784
6785 // Warn if the class has virtual methods but non-virtual public destructor.
6786 if (Record->isPolymorphic() && !Record->isDependentType()) {
6787 CXXDestructorDecl *dtor = Record->getDestructor();
6788 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
6789 !Record->hasAttr<FinalAttr>())
6790 Diag(dtor ? dtor->getLocation() : Record->getLocation(),
6791 diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
6792 }
6793
6794 if (Record->isAbstract()) {
6795 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
6796 Diag(Record->getLocation(), diag::warn_abstract_final_class)
6797 << FA->isSpelledAsSealed();
6798 DiagnoseAbstractType(Record);
6799 }
6800 }
6801
6802 // Warn if the class has a final destructor but is not itself marked final.
6803 if (!Record->hasAttr<FinalAttr>()) {
6804 if (const CXXDestructorDecl *dtor = Record->getDestructor()) {
6805 if (const FinalAttr *FA = dtor->getAttr<FinalAttr>()) {
6806 Diag(FA->getLocation(), diag::warn_final_dtor_non_final_class)
6807 << FA->isSpelledAsSealed()
6808 << FixItHint::CreateInsertion(
6809 getLocForEndOfToken(Record->getLocation()),
6810 (FA->isSpelledAsSealed() ? " sealed" : " final"));
6811 Diag(Record->getLocation(),
6812 diag::note_final_dtor_non_final_class_silence)
6813 << Context.getRecordType(Record) << FA->isSpelledAsSealed();
6814 }
6815 }
6816 }
6817
6818 // See if trivial_abi has to be dropped.
6819 if (Record->hasAttr<TrivialABIAttr>())
6820 checkIllFormedTrivialABIStruct(*Record);
6821
6822 // Set HasTrivialSpecialMemberForCall if the record has attribute
6823 // "trivial_abi".
6824 bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>();
6825
6826 if (HasTrivialABI)
6827 Record->setHasTrivialSpecialMemberForCall();
6828
6829 // Explicitly-defaulted secondary comparison functions (!=, <, <=, >, >=).
6830 // We check these last because they can depend on the properties of the
6831 // primary comparison functions (==, <=>).
6832 llvm::SmallVector<FunctionDecl*, 5> DefaultedSecondaryComparisons;
6833
6834 // Perform checks that can't be done until we know all the properties of a
6835 // member function (whether it's defaulted, deleted, virtual, overriding,
6836 // ...).
6837 auto CheckCompletedMemberFunction = [&](CXXMethodDecl *MD) {
6838 // A static function cannot override anything.
6839 if (MD->getStorageClass() == SC_Static) {
6840 if (ReportOverrides(*this, diag::err_static_overrides_virtual, MD,
6841 [](const CXXMethodDecl *) { return true; }))
6842 return;
6843 }
6844
6845 // A deleted function cannot override a non-deleted function and vice
6846 // versa.
6847 if (ReportOverrides(*this,
6848 MD->isDeleted() ? diag::err_deleted_override
6849 : diag::err_non_deleted_override,
6850 MD, [&](const CXXMethodDecl *V) {
6851 return MD->isDeleted() != V->isDeleted();
6852 })) {
6853 if (MD->isDefaulted() && MD->isDeleted())
6854 // Explain why this defaulted function was deleted.
6855 DiagnoseDeletedDefaultedFunction(MD);
6856 return;
6857 }
6858
6859 // A consteval function cannot override a non-consteval function and vice
6860 // versa.
6861 if (ReportOverrides(*this,
6862 MD->isConsteval() ? diag::err_consteval_override
6863 : diag::err_non_consteval_override,
6864 MD, [&](const CXXMethodDecl *V) {
6865 return MD->isConsteval() != V->isConsteval();
6866 })) {
6867 if (MD->isDefaulted() && MD->isDeleted())
6868 // Explain why this defaulted function was deleted.
6869 DiagnoseDeletedDefaultedFunction(MD);
6870 return;
6871 }
6872 };
6873
6874 auto CheckForDefaultedFunction = [&](FunctionDecl *FD) -> bool {
6875 if (!FD || FD->isInvalidDecl() || !FD->isExplicitlyDefaulted())
6876 return false;
6877
6878 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD);
6879 if (DFK.asComparison() == DefaultedComparisonKind::NotEqual ||
6880 DFK.asComparison() == DefaultedComparisonKind::Relational) {
6881 DefaultedSecondaryComparisons.push_back(FD);
6882 return true;
6883 }
6884
6885 CheckExplicitlyDefaultedFunction(S, FD);
6886 return false;
6887 };
6888
6889 auto CompleteMemberFunction = [&](CXXMethodDecl *M) {
6890 // Check whether the explicitly-defaulted members are valid.
6891 bool Incomplete = CheckForDefaultedFunction(M);
6892
6893 // Skip the rest of the checks for a member of a dependent class.
6894 if (Record->isDependentType())
6895 return;
6896
6897 // For an explicitly defaulted or deleted special member, we defer
6898 // determining triviality until the class is complete. That time is now!
6899 CXXSpecialMember CSM = getSpecialMember(M);
6900 if (!M->isImplicit() && !M->isUserProvided()) {
6901 if (CSM != CXXInvalid) {
6902 M->setTrivial(SpecialMemberIsTrivial(M, CSM));
6903 // Inform the class that we've finished declaring this member.
6904 Record->finishedDefaultedOrDeletedMember(M);
6905 M->setTrivialForCall(
6906 HasTrivialABI ||
6907 SpecialMemberIsTrivial(M, CSM, TAH_ConsiderTrivialABI));
6908 Record->setTrivialForCallFlags(M);
6909 }
6910 }
6911
6912 // Set triviality for the purpose of calls if this is a user-provided
6913 // copy/move constructor or destructor.
6914 if ((CSM == CXXCopyConstructor || CSM == CXXMoveConstructor ||
6915 CSM == CXXDestructor) && M->isUserProvided()) {
6916 M->setTrivialForCall(HasTrivialABI);
6917 Record->setTrivialForCallFlags(M);
6918 }
6919
6920 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() &&
6921 M->hasAttr<DLLExportAttr>()) {
6922 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
6923 M->isTrivial() &&
6924 (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor ||
6925 CSM == CXXDestructor))
6926 M->dropAttr<DLLExportAttr>();
6927
6928 if (M->hasAttr<DLLExportAttr>()) {
6929 // Define after any fields with in-class initializers have been parsed.
6930 DelayedDllExportMemberFunctions.push_back(M);
6931 }
6932 }
6933
6934 // Define defaulted constexpr virtual functions that override a base class
6935 // function right away.
6936 // FIXME: We can defer doing this until the vtable is marked as used.
6937 if (M->isDefaulted() && M->isConstexpr() && M->size_overridden_methods())
6938 DefineDefaultedFunction(*this, M, M->getLocation());
6939
6940 if (!Incomplete)
6941 CheckCompletedMemberFunction(M);
6942 };
6943
6944 // Check the destructor before any other member function. We need to
6945 // determine whether it's trivial in order to determine whether the claas
6946 // type is a literal type, which is a prerequisite for determining whether
6947 // other special member functions are valid and whether they're implicitly
6948 // 'constexpr'.
6949 if (CXXDestructorDecl *Dtor = Record->getDestructor())
6950 CompleteMemberFunction(Dtor);
6951
6952 bool HasMethodWithOverrideControl = false,
6953 HasOverridingMethodWithoutOverrideControl = false;
6954 for (auto *D : Record->decls()) {
6955 if (auto *M = dyn_cast<CXXMethodDecl>(D)) {
6956 // FIXME: We could do this check for dependent types with non-dependent
6957 // bases.
6958 if (!Record->isDependentType()) {
6959 // See if a method overloads virtual methods in a base
6960 // class without overriding any.
6961 if (!M->isStatic())
6962 DiagnoseHiddenVirtualMethods(M);
6963 if (M->hasAttr<OverrideAttr>())
6964 HasMethodWithOverrideControl = true;
6965 else if (M->size_overridden_methods() > 0)
6966 HasOverridingMethodWithoutOverrideControl = true;
6967 }
6968
6969 if (!isa<CXXDestructorDecl>(M))
6970 CompleteMemberFunction(M);
6971 } else if (auto *F = dyn_cast<FriendDecl>(D)) {
6972 CheckForDefaultedFunction(
6973 dyn_cast_or_null<FunctionDecl>(F->getFriendDecl()));
6974 }
6975 }
6976
6977 if (HasOverridingMethodWithoutOverrideControl) {
6978 bool HasInconsistentOverrideControl = HasMethodWithOverrideControl;
6979 for (auto *M : Record->methods())
6980 DiagnoseAbsenceOfOverrideControl(M, HasInconsistentOverrideControl);
6981 }
6982
6983 // Check the defaulted secondary comparisons after any other member functions.
6984 for (FunctionDecl *FD : DefaultedSecondaryComparisons) {
6985 CheckExplicitlyDefaultedFunction(S, FD);
6986
6987 // If this is a member function, we deferred checking it until now.
6988 if (auto *MD = dyn_cast<CXXMethodDecl>(FD))
6989 CheckCompletedMemberFunction(MD);
6990 }
6991
6992 // ms_struct is a request to use the same ABI rules as MSVC. Check
6993 // whether this class uses any C++ features that are implemented
6994 // completely differently in MSVC, and if so, emit a diagnostic.
6995 // That diagnostic defaults to an error, but we allow projects to
6996 // map it down to a warning (or ignore it). It's a fairly common
6997 // practice among users of the ms_struct pragma to mass-annotate
6998 // headers, sweeping up a bunch of types that the project doesn't
6999 // really rely on MSVC-compatible layout for. We must therefore
7000 // support "ms_struct except for C++ stuff" as a secondary ABI.
7001 // Don't emit this diagnostic if the feature was enabled as a
7002 // language option (as opposed to via a pragma or attribute), as
7003 // the option -mms-bitfields otherwise essentially makes it impossible
7004 // to build C++ code, unless this diagnostic is turned off.
7005 if (Record->isMsStruct(Context) && !Context.getLangOpts().MSBitfields &&
7006 (Record->isPolymorphic() || Record->getNumBases())) {
7007 Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
7008 }
7009
7010 checkClassLevelDLLAttribute(Record);
7011 checkClassLevelCodeSegAttribute(Record);
7012
7013 bool ClangABICompat4 =
7014 Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4;
7015 TargetInfo::CallingConvKind CCK =
7016 Context.getTargetInfo().getCallingConvKind(ClangABICompat4);
7017 bool CanPass = canPassInRegisters(*this, Record, CCK);
7018
7019 // Do not change ArgPassingRestrictions if it has already been set to
7020 // APK_CanNeverPassInRegs.
7021 if (Record->getArgPassingRestrictions() != RecordDecl::APK_CanNeverPassInRegs)
7022 Record->setArgPassingRestrictions(CanPass
7023 ? RecordDecl::APK_CanPassInRegs
7024 : RecordDecl::APK_CannotPassInRegs);
7025
7026 // If canPassInRegisters returns true despite the record having a non-trivial
7027 // destructor, the record is destructed in the callee. This happens only when
7028 // the record or one of its subobjects has a field annotated with trivial_abi
7029 // or a field qualified with ObjC __strong/__weak.
7030 if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee())
7031 Record->setParamDestroyedInCallee(true);
7032 else if (Record->hasNonTrivialDestructor())
7033 Record->setParamDestroyedInCallee(CanPass);
7034
7035 if (getLangOpts().ForceEmitVTables) {
7036 // If we want to emit all the vtables, we need to mark it as used. This
7037 // is especially required for cases like vtable assumption loads.
7038 MarkVTableUsed(Record->getInnerLocStart(), Record);
7039 }
7040
7041 if (getLangOpts().CUDA) {
7042 if (Record->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>())
7043 checkCUDADeviceBuiltinSurfaceClassTemplate(*this, Record);
7044 else if (Record->hasAttr<CUDADeviceBuiltinTextureTypeAttr>())
7045 checkCUDADeviceBuiltinTextureClassTemplate(*this, Record);
7046 }
7047}
7048
7049/// Look up the special member function that would be called by a special
7050/// member function for a subobject of class type.
7051///
7052/// \param Class The class type of the subobject.
7053/// \param CSM The kind of special member function.
7054/// \param FieldQuals If the subobject is a field, its cv-qualifiers.
7055/// \param ConstRHS True if this is a copy operation with a const object
7056/// on its RHS, that is, if the argument to the outer special member
7057/// function is 'const' and this is not a field marked 'mutable'.
7058static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember(
7059 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
7060 unsigned FieldQuals, bool ConstRHS) {
7061 unsigned LHSQuals = 0;
7062 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
7063 LHSQuals = FieldQuals;
7064
7065 unsigned RHSQuals = FieldQuals;
7066 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
7067 RHSQuals = 0;
7068 else if (ConstRHS)
7069 RHSQuals |= Qualifiers::Const;
7070
7071 return S.LookupSpecialMember(Class, CSM,
7072 RHSQuals & Qualifiers::Const,
7073 RHSQuals & Qualifiers::Volatile,
7074 false,
7075 LHSQuals & Qualifiers::Const,
7076 LHSQuals & Qualifiers::Volatile);
7077}
7078
7079class Sema::InheritedConstructorInfo {
7080 Sema &S;
7081 SourceLocation UseLoc;
7082
7083 /// A mapping from the base classes through which the constructor was
7084 /// inherited to the using shadow declaration in that base class (or a null
7085 /// pointer if the constructor was declared in that base class).
7086 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *>
7087 InheritedFromBases;
7088
7089public:
7090 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc,
7091 ConstructorUsingShadowDecl *Shadow)
7092 : S(S), UseLoc(UseLoc) {
7093 bool DiagnosedMultipleConstructedBases = false;
7094 CXXRecordDecl *ConstructedBase = nullptr;
7095 BaseUsingDecl *ConstructedBaseIntroducer = nullptr;
7096
7097 // Find the set of such base class subobjects and check that there's a
7098 // unique constructed subobject.
7099 for (auto *D : Shadow->redecls()) {
7100 auto *DShadow = cast<ConstructorUsingShadowDecl>(D);
7101 auto *DNominatedBase = DShadow->getNominatedBaseClass();
7102 auto *DConstructedBase = DShadow->getConstructedBaseClass();
7103
7104 InheritedFromBases.insert(
7105 std::make_pair(DNominatedBase->getCanonicalDecl(),
7106 DShadow->getNominatedBaseClassShadowDecl()));
7107 if (DShadow->constructsVirtualBase())
7108 InheritedFromBases.insert(
7109 std::make_pair(DConstructedBase->getCanonicalDecl(),
7110 DShadow->getConstructedBaseClassShadowDecl()));
7111 else
7112 assert(DNominatedBase == DConstructedBase)(static_cast <bool> (DNominatedBase == DConstructedBase
) ? void (0) : __assert_fail ("DNominatedBase == DConstructedBase"
, "clang/lib/Sema/SemaDeclCXX.cpp", 7112, __extension__ __PRETTY_FUNCTION__
))
;
7113
7114 // [class.inhctor.init]p2:
7115 // If the constructor was inherited from multiple base class subobjects
7116 // of type B, the program is ill-formed.
7117 if (!ConstructedBase) {
7118 ConstructedBase = DConstructedBase;
7119 ConstructedBaseIntroducer = D->getIntroducer();
7120 } else if (ConstructedBase != DConstructedBase &&
7121 !Shadow->isInvalidDecl()) {
7122 if (!DiagnosedMultipleConstructedBases) {
7123 S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor)
7124 << Shadow->getTargetDecl();
7125 S.Diag(ConstructedBaseIntroducer->getLocation(),
7126 diag::note_ambiguous_inherited_constructor_using)
7127 << ConstructedBase;
7128 DiagnosedMultipleConstructedBases = true;
7129 }
7130 S.Diag(D->getIntroducer()->getLocation(),
7131 diag::note_ambiguous_inherited_constructor_using)
7132 << DConstructedBase;
7133 }
7134 }
7135
7136 if (DiagnosedMultipleConstructedBases)
7137 Shadow->setInvalidDecl();
7138 }
7139
7140 /// Find the constructor to use for inherited construction of a base class,
7141 /// and whether that base class constructor inherits the constructor from a
7142 /// virtual base class (in which case it won't actually invoke it).
7143 std::pair<CXXConstructorDecl *, bool>
7144 findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const {
7145 auto It = InheritedFromBases.find(Base->getCanonicalDecl());
7146 if (It == InheritedFromBases.end())
7147 return std::make_pair(nullptr, false);
7148
7149 // This is an intermediary class.
7150 if (It->second)
7151 return std::make_pair(
7152 S.findInheritingConstructor(UseLoc, Ctor, It->second),
7153 It->second->constructsVirtualBase());
7154
7155 // This is the base class from which the constructor was inherited.
7156 return std::make_pair(Ctor, false);
7157 }
7158};
7159
7160/// Is the special member function which would be selected to perform the
7161/// specified operation on the specified class type a constexpr constructor?
7162static bool
7163specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
7164 Sema::CXXSpecialMember CSM, unsigned Quals,
7165 bool ConstRHS,
7166 CXXConstructorDecl *InheritedCtor = nullptr,
7167 Sema::InheritedConstructorInfo *Inherited = nullptr) {
7168 // If we're inheriting a constructor, see if we need to call it for this base
7169 // class.
7170 if (InheritedCtor) {
7171 assert(CSM == Sema::CXXDefaultConstructor)(static_cast <bool> (CSM == Sema::CXXDefaultConstructor
) ? void (0) : __assert_fail ("CSM == Sema::CXXDefaultConstructor"
, "clang/lib/Sema/SemaDeclCXX.cpp", 7171, __extension__ __PRETTY_FUNCTION__
))
;
7172 auto BaseCtor =
7173 Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first;
7174 if (BaseCtor)
7175 return BaseCtor->isConstexpr();
7176 }
7177
7178 if (CSM == Sema::CXXDefaultConstructor)
7179 return ClassDecl->hasConstexprDefaultConstructor();
7180 if (CSM == Sema::CXXDestructor)
7181 return ClassDecl->hasConstexprDestructor();
7182
7183 Sema::SpecialMemberOverloadResult SMOR =
7184 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS);
7185 if (!SMOR.getMethod())
7186 // A constructor we wouldn't select can't be "involved in initializing"
7187 // anything.
7188 return true;
7189 return SMOR.getMethod()->isConstexpr();
7190}
7191
7192/// Determine whether the specified special member function would be constexpr
7193/// if it were implicitly defined.
7194static bool defaultedSpecialMemberIsConstexpr(
7195 Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM,
7196 bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr,
7197 Sema::InheritedConstructorInfo *Inherited = nullptr) {
7198 if (!S.getLangOpts().CPlusPlus11)
7199 return false;
7200
7201 // C++11 [dcl.constexpr]p4:
7202 // In the definition of a constexpr constructor [...]
7203 bool Ctor = true;
7204 switch (CSM) {
7205 case Sema::CXXDefaultConstructor:
7206 if (Inherited)
7207 break;
7208 // Since default constructor lookup is essentially trivial (and cannot
7209 // involve, for instance, template instantiation), we compute whether a
7210 // defaulted default constructor is constexpr directly within CXXRecordDecl.
7211 //
7212 // This is important for performance; we need to know whether the default
7213 // constructor is constexpr to determine whether the type is a literal type.
7214 return ClassDecl->defaultedDefaultConstructorIsConstexpr();
7215
7216 case Sema::CXXCopyConstructor:
7217 case Sema::CXXMoveConstructor:
7218 // For copy or move constructors, we need to perform overload resolution.
7219 break;
7220
7221 case Sema::CXXCopyAssignment:
7222 case Sema::CXXMoveAssignment:
7223 if (!S.getLangOpts().CPlusPlus14)
7224 return false;
7225 // In C++1y, we need to perform overload resolution.
7226 Ctor = false;
7227 break;
7228
7229 case Sema::CXXDestructor:
7230 return ClassDecl->defaultedDestructorIsConstexpr();
7231
7232 case Sema::CXXInvalid:
7233 return false;
7234 }
7235
7236 // -- if the class is a non-empty union, or for each non-empty anonymous
7237 // union member of a non-union class, exactly one non-static data member
7238 // shall be initialized; [DR1359]
7239 //
7240 // If we squint, this is guaranteed, since exactly one non-static data member
7241 // will be initialized (if the constructor isn't deleted), we just don't know
7242 // which one.
7243 if (Ctor && ClassDecl->isUnion())
7244 return CSM == Sema::CXXDefaultConstructor
7245 ? ClassDecl->hasInClassInitializer() ||
7246 !ClassDecl->hasVariantMembers()
7247 : true;
7248
7249 // -- the class shall not have any virtual base classes;
7250 if (Ctor && ClassDecl->getNumVBases())
7251 return false;
7252
7253 // C++1y [class.copy]p26:
7254 // -- [the class] is a literal type, and
7255 if (!Ctor && !ClassDecl->isLiteral())
7256 return false;
7257
7258 // -- every constructor involved in initializing [...] base class
7259 // sub-objects shall be a constexpr constructor;
7260 // -- the assignment operator selected to copy/move each direct base
7261 // class is a constexpr function, and
7262 for (const auto &B : ClassDecl->bases()) {
7263 const RecordType *BaseType = B.getType()->getAs<RecordType>();
7264 if (!BaseType) continue;
7265
7266 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7267 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg,
7268 InheritedCtor, Inherited))
7269 return false;
7270 }
7271
7272 // -- every constructor involved in initializing non-static data members
7273 // [...] shall be a constexpr constructor;
7274 // -- every non-static data member and base class sub-object shall be
7275 // initialized
7276 // -- for each non-static data member of X that is of class type (or array
7277 // thereof), the assignment operator selected to copy/move that member is
7278 // a constexpr function
7279 for (const auto *F : ClassDecl->fields()) {
7280 if (F->isInvalidDecl())
7281 continue;
7282 if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer())
7283 continue;
7284 QualType BaseType = S.Context.getBaseElementType(F->getType());
7285 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
7286 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7287 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
7288 BaseType.getCVRQualifiers(),
7289 ConstArg && !F->isMutable()))
7290 return false;
7291 } else if (CSM == Sema::CXXDefaultConstructor) {
7292 return false;
7293 }
7294 }
7295
7296 // All OK, it's constexpr!
7297 return true;
7298}
7299
7300namespace {
7301/// RAII object to register a defaulted function as having its exception
7302/// specification computed.
7303struct ComputingExceptionSpec {
7304 Sema &S;
7305
7306 ComputingExceptionSpec(Sema &S, FunctionDecl *FD, SourceLocation Loc)
7307 : S(S) {
7308 Sema::CodeSynthesisContext Ctx;
7309 Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation;
7310 Ctx.PointOfInstantiation = Loc;
7311 Ctx.Entity = FD;
7312 S.pushCodeSynthesisContext(Ctx);
7313 }
7314 ~ComputingExceptionSpec() {
7315 S.popCodeSynthesisContext();
7316 }
7317};
7318}
7319
7320static Sema::ImplicitExceptionSpecification
7321ComputeDefaultedSpecialMemberExceptionSpec(
7322 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
7323 Sema::InheritedConstructorInfo *ICI);
7324
7325static Sema::ImplicitExceptionSpecification
7326ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc,
7327 FunctionDecl *FD,
7328 Sema::DefaultedComparisonKind DCK);
7329
7330static Sema::ImplicitExceptionSpecification
7331computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, FunctionDecl *FD) {
7332 auto DFK = S.getDefaultedFunctionKind(FD);
7333 if (DFK.isSpecialMember())
7334 return ComputeDefaultedSpecialMemberExceptionSpec(
7335 S, Loc, cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), nullptr);
7336 if (DFK.isComparison())
7337 return ComputeDefaultedComparisonExceptionSpec(S, Loc, FD,
7338 DFK.asComparison());
7339
7340 auto *CD = cast<CXXConstructorDecl>(FD);
7341 assert(CD->getInheritedConstructor() &&(static_cast <bool> (CD->getInheritedConstructor() &&
"only defaulted functions and inherited constructors have implicit "
"exception specs") ? void (0) : __assert_fail ("CD->getInheritedConstructor() && \"only defaulted functions and inherited constructors have implicit \" \"exception specs\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7343, __extension__ __PRETTY_FUNCTION__
))
7342 "only defaulted functions and inherited constructors have implicit "(static_cast <bool> (CD->getInheritedConstructor() &&
"only defaulted functions and inherited constructors have implicit "
"exception specs") ? void (0) : __assert_fail ("CD->getInheritedConstructor() && \"only defaulted functions and inherited constructors have implicit \" \"exception specs\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7343, __extension__ __PRETTY_FUNCTION__
))
7343 "exception specs")(static_cast <bool> (CD->getInheritedConstructor() &&
"only defaulted functions and inherited constructors have implicit "
"exception specs") ? void (0) : __assert_fail ("CD->getInheritedConstructor() && \"only defaulted functions and inherited constructors have implicit \" \"exception specs\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7343, __extension__ __PRETTY_FUNCTION__
))
;
7344 Sema::InheritedConstructorInfo ICI(
7345 S, Loc, CD->getInheritedConstructor().getShadowDecl());
7346 return ComputeDefaultedSpecialMemberExceptionSpec(
7347 S, Loc, CD, Sema::CXXDefaultConstructor, &ICI);
7348}
7349
7350static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
7351 CXXMethodDecl *MD) {
7352 FunctionProtoType::ExtProtoInfo EPI;
7353
7354 // Build an exception specification pointing back at this member.
7355 EPI.ExceptionSpec.Type = EST_Unevaluated;
7356 EPI.ExceptionSpec.SourceDecl = MD;
7357
7358 // Set the calling convention to the default for C++ instance methods.
7359 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
7360 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
7361 /*IsCXXMethod=*/true));
7362 return EPI;
7363}
7364
7365void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD) {
7366 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
7367 if (FPT->getExceptionSpecType() != EST_Unevaluated)
7368 return;
7369
7370 // Evaluate the exception specification.
7371 auto IES = computeImplicitExceptionSpec(*this, Loc, FD);
7372 auto ESI = IES.getExceptionSpec();
7373
7374 // Update the type of the special member to use it.
7375 UpdateExceptionSpec(FD, ESI);
7376}
7377
7378void Sema::CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *FD) {
7379 assert(FD->isExplicitlyDefaulted() && "not explicitly-defaulted")(static_cast <bool> (FD->isExplicitlyDefaulted() &&
"not explicitly-defaulted") ? void (0) : __assert_fail ("FD->isExplicitlyDefaulted() && \"not explicitly-defaulted\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7379, __extension__ __PRETTY_FUNCTION__
))
;
7380
7381 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD);
7382 if (!DefKind) {
7383 assert(FD->getDeclContext()->isDependentContext())(static_cast <bool> (FD->getDeclContext()->isDependentContext
()) ? void (0) : __assert_fail ("FD->getDeclContext()->isDependentContext()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 7383, __extension__ __PRETTY_FUNCTION__
))
;
7384 return;
7385 }
7386
7387 if (DefKind.isComparison())
7388 UnusedPrivateFields.clear();
7389
7390 if (DefKind.isSpecialMember()
7391 ? CheckExplicitlyDefaultedSpecialMember(cast<CXXMethodDecl>(FD),
7392 DefKind.asSpecialMember())
7393 : CheckExplicitlyDefaultedComparison(S, FD, DefKind.asComparison()))
7394 FD->setInvalidDecl();
7395}
7396
7397bool Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD,
7398 CXXSpecialMember CSM) {
7399 CXXRecordDecl *RD = MD->getParent();
7400
7401 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&(static_cast <bool> (MD->isExplicitlyDefaulted() &&
CSM != CXXInvalid && "not an explicitly-defaulted special member"
) ? void (0) : __assert_fail ("MD->isExplicitlyDefaulted() && CSM != CXXInvalid && \"not an explicitly-defaulted special member\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7402, __extension__ __PRETTY_FUNCTION__
))
7402 "not an explicitly-defaulted special member")(static_cast <bool> (MD->isExplicitlyDefaulted() &&
CSM != CXXInvalid && "not an explicitly-defaulted special member"
) ? void (0) : __assert_fail ("MD->isExplicitlyDefaulted() && CSM != CXXInvalid && \"not an explicitly-defaulted special member\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7402, __extension__ __PRETTY_FUNCTION__
))
;
7403
7404 // Defer all checking for special members of a dependent type.
7405 if (RD->isDependentType())
7406 return false;
7407
7408 // Whether this was the first-declared instance of the constructor.
7409 // This affects whether we implicitly add an exception spec and constexpr.
7410 bool First = MD == MD->getCanonicalDecl();
7411
7412 bool HadError = false;
7413
7414 // C++11 [dcl.fct.def.default]p1:
7415 // A function that is explicitly defaulted shall
7416 // -- be a special member function [...] (checked elsewhere),
7417 // -- have the same type (except for ref-qualifiers, and except that a
7418 // copy operation can take a non-const reference) as an implicit
7419 // declaration, and
7420 // -- not have default arguments.
7421 // C++2a changes the second bullet to instead delete the function if it's
7422 // defaulted on its first declaration, unless it's "an assignment operator,
7423 // and its return type differs or its parameter type is not a reference".
7424 bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus20 && First;
7425 bool ShouldDeleteForTypeMismatch = false;
7426 unsigned ExpectedParams = 1;
7427 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
7428 ExpectedParams = 0;
7429 if (MD->getNumParams() != ExpectedParams) {
7430 // This checks for default arguments: a copy or move constructor with a
7431 // default argument is classified as a default constructor, and assignment
7432 // operations and destructors can't have default arguments.
7433 Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
7434 << CSM << MD->getSourceRange();
7435 HadError = true;
7436 } else if (MD->isVariadic()) {
7437 if (DeleteOnTypeMismatch)
7438 ShouldDeleteForTypeMismatch = true;
7439 else {
7440 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
7441 << CSM << MD->getSourceRange();
7442 HadError = true;
7443 }
7444 }
7445
7446 const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
7447
7448 bool CanHaveConstParam = false;
7449 if (CSM == CXXCopyConstructor)
7450 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
7451 else if (CSM == CXXCopyAssignment)
7452 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
7453
7454 QualType ReturnType = Context.VoidTy;
7455 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
7456 // Check for return type matching.
7457 ReturnType = Type->getReturnType();
7458
7459 QualType DeclType = Context.getTypeDeclType(RD);
7460 DeclType = Context.getAddrSpaceQualType(DeclType, MD->getMethodQualifiers().getAddressSpace());
7461 QualType ExpectedReturnType = Context.getLValueReferenceType(DeclType);
7462
7463 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
7464 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
7465 << (CSM == CXXMoveAssignment) << ExpectedReturnType;
7466 HadError = true;
7467 }
7468
7469 // A defaulted special member cannot have cv-qualifiers.
7470 if (Type->getMethodQuals().hasConst() || Type->getMethodQuals().hasVolatile()) {
7471 if (DeleteOnTypeMismatch)
7472 ShouldDeleteForTypeMismatch = true;
7473 else {
7474 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
7475 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14;
7476 HadError = true;
7477 }
7478 }
7479 }
7480
7481 // Check for parameter type matching.
7482 QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType();
7483 bool HasConstParam = false;
7484 if (ExpectedParams && ArgType->isReferenceType()) {
7485 // Argument must be reference to possibly-const T.
7486 QualType ReferentType = ArgType->getPointeeType();
7487 HasConstParam = ReferentType.isConstQualified();
7488
7489 if (ReferentType.isVolatileQualified()) {
7490 if (DeleteOnTypeMismatch)
7491 ShouldDeleteForTypeMismatch = true;
7492 else {
7493 Diag(MD->getLocation(),
7494 diag::err_defaulted_special_member_volatile_param) << CSM;
7495 HadError = true;
7496 }
7497 }
7498
7499 if (HasConstParam && !CanHaveConstParam) {
7500 if (DeleteOnTypeMismatch)
7501 ShouldDeleteForTypeMismatch = true;
7502 else if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
7503 Diag(MD->getLocation(),
7504 diag::err_defaulted_special_member_copy_const_param)
7505 << (CSM == CXXCopyAssignment);
7506 // FIXME: Explain why this special member can't be const.
7507 HadError = true;
7508 } else {
7509 Diag(MD->getLocation(),
7510 diag::err_defaulted_special_member_move_const_param)
7511 << (CSM == CXXMoveAssignment);
7512 HadError = true;
7513 }
7514 }
7515 } else if (ExpectedParams) {
7516 // A copy assignment operator can take its argument by value, but a
7517 // defaulted one cannot.
7518 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument")(static_cast <bool> (CSM == CXXCopyAssignment &&
"unexpected non-ref argument") ? void (0) : __assert_fail ("CSM == CXXCopyAssignment && \"unexpected non-ref argument\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7518, __extension__ __PRETTY_FUNCTION__
))
;
7519 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
7520 HadError = true;
7521 }
7522
7523 // C++11 [dcl.fct.def.default]p2:
7524 // An explicitly-defaulted function may be declared constexpr only if it
7525 // would have been implicitly declared as constexpr,
7526 // Do not apply this rule to members of class templates, since core issue 1358
7527 // makes such functions always instantiate to constexpr functions. For
7528 // functions which cannot be constexpr (for non-constructors in C++11 and for
7529 // destructors in C++14 and C++17), this is checked elsewhere.
7530 //
7531 // FIXME: This should not apply if the member is deleted.
7532 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
7533 HasConstParam);
7534 if ((getLangOpts().CPlusPlus20 ||
7535 (getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD)
7536 : isa<CXXConstructorDecl>(MD))) &&
7537 MD->isConstexpr() && !Constexpr &&
7538 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
7539 Diag(MD->getBeginLoc(), MD->isConsteval()
7540 ? diag::err_incorrect_defaulted_consteval
7541 : diag::err_incorrect_defaulted_constexpr)
7542 << CSM;
7543 // FIXME: Explain why the special member can't be constexpr.
7544 HadError = true;
7545 }
7546
7547 if (First) {
7548 // C++2a [dcl.fct.def.default]p3:
7549 // If a function is explicitly defaulted on its first declaration, it is
7550 // implicitly considered to be constexpr if the implicit declaration
7551 // would be.
7552 MD->setConstexprKind(Constexpr ? (MD->isConsteval()
7553 ? ConstexprSpecKind::Consteval
7554 : ConstexprSpecKind::Constexpr)
7555 : ConstexprSpecKind::Unspecified);
7556
7557 if (!Type->hasExceptionSpec()) {
7558 // C++2a [except.spec]p3:
7559 // If a declaration of a function does not have a noexcept-specifier
7560 // [and] is defaulted on its first declaration, [...] the exception
7561 // specification is as specified below
7562 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
7563 EPI.ExceptionSpec.Type = EST_Unevaluated;
7564 EPI.ExceptionSpec.SourceDecl = MD;
7565 MD->setType(Context.getFunctionType(ReturnType,
7566 llvm::makeArrayRef(&ArgType,
7567 ExpectedParams),
7568 EPI));
7569 }
7570 }
7571
7572 if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) {
7573 if (First) {
7574 SetDeclDeleted(MD, MD->getLocation());
7575 if (!inTemplateInstantiation() && !HadError) {
7576 Diag(MD->getLocation(), diag::warn_defaulted_method_deleted) << CSM;
7577 if (ShouldDeleteForTypeMismatch) {
7578 Diag(MD->getLocation(), diag::note_deleted_type_mismatch) << CSM;
7579 } else {
7580 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
7581 }
7582 }
7583 if (ShouldDeleteForTypeMismatch && !HadError) {
7584 Diag(MD->getLocation(),
7585 diag::warn_cxx17_compat_defaulted_method_type_mismatch) << CSM;
7586 }
7587 } else {
7588 // C++11 [dcl.fct.def.default]p4:
7589 // [For a] user-provided explicitly-defaulted function [...] if such a
7590 // function is implicitly defined as deleted, the program is ill-formed.
7591 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
7592 assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl")(static_cast <bool> (!ShouldDeleteForTypeMismatch &&
"deleted non-first decl") ? void (0) : __assert_fail ("!ShouldDeleteForTypeMismatch && \"deleted non-first decl\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7592, __extension__ __PRETTY_FUNCTION__
))
;
7593 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
7594 HadError = true;
7595 }
7596 }
7597
7598 return HadError;
7599}
7600
7601namespace {
7602/// Helper class for building and checking a defaulted comparison.
7603///
7604/// Defaulted functions are built in two phases:
7605///
7606/// * First, the set of operations that the function will perform are
7607/// identified, and some of them are checked. If any of the checked
7608/// operations is invalid in certain ways, the comparison function is
7609/// defined as deleted and no body is built.
7610/// * Then, if the function is not defined as deleted, the body is built.
7611///
7612/// This is accomplished by performing two visitation steps over the eventual
7613/// body of the function.
7614template<typename Derived, typename ResultList, typename Result,
7615 typename Subobject>
7616class DefaultedComparisonVisitor {
7617public:
7618 using DefaultedComparisonKind = Sema::DefaultedComparisonKind;
7619
7620 DefaultedComparisonVisitor(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
7621 DefaultedComparisonKind DCK)
7622 : S(S), RD(RD), FD(FD), DCK(DCK) {
7623 if (auto *Info = FD->getDefaultedFunctionInfo()) {
7624 // FIXME: Change CreateOverloadedBinOp to take an ArrayRef instead of an
7625 // UnresolvedSet to avoid this copy.
7626 Fns.assign(Info->getUnqualifiedLookups().begin(),
7627 Info->getUnqualifiedLookups().end());
7628 }
7629 }
7630
7631 ResultList visit() {
7632 // The type of an lvalue naming a parameter of this function.
7633 QualType ParamLvalType =
7634 FD->getParamDecl(0)->getType().getNonReferenceType();
7635
7636 ResultList Results;
7637
7638 switch (DCK) {
7639 case DefaultedComparisonKind::None:
7640 llvm_unreachable("not a defaulted comparison")::llvm::llvm_unreachable_internal("not a defaulted comparison"
, "clang/lib/Sema/SemaDeclCXX.cpp", 7640)
;
7641
7642 case DefaultedComparisonKind::Equal:
7643 case DefaultedComparisonKind::ThreeWay:
7644 getDerived().visitSubobjects(Results, RD, ParamLvalType.getQualifiers());
7645 return Results;
7646
7647 case DefaultedComparisonKind::NotEqual:
7648 case DefaultedComparisonKind::Relational:
7649 Results.add(getDerived().visitExpandedSubobject(
7650 ParamLvalType, getDerived().getCompleteObject()));
7651 return Results;
7652 }
7653 llvm_unreachable("")::llvm::llvm_unreachable_internal("", "clang/lib/Sema/SemaDeclCXX.cpp"
, 7653)
;
7654 }
7655
7656protected:
7657 Derived &getDerived() { return static_cast<Derived&>(*this); }
7658
7659 /// Visit the expanded list of subobjects of the given type, as specified in
7660 /// C++2a [class.compare.default].
7661 ///
7662 /// \return \c true if the ResultList object said we're done, \c false if not.
7663 bool visitSubobjects(ResultList &Results, CXXRecordDecl *Record,
7664 Qualifiers Quals) {
7665 // C++2a [class.compare.default]p4:
7666 // The direct base class subobjects of C
7667 for (CXXBaseSpecifier &Base : Record->bases())
7668 if (Results.add(getDerived().visitSubobject(
7669 S.Context.getQualifiedType(Base.getType(), Quals),
7670 getDerived().getBase(&Base))))
7671 return true;
7672
7673 // followed by the non-static data members of C
7674 for (FieldDecl *Field : Record->fields()) {
7675 // Recursively expand anonymous structs.
7676 if (Field->isAnonymousStructOrUnion()) {
7677 if (visitSubobjects(Results, Field->getType()->getAsCXXRecordDecl(),
7678 Quals))
7679 return true;
7680 continue;
7681 }
7682
7683 // Figure out the type of an lvalue denoting this field.
7684 Qualifiers FieldQuals = Quals;
7685 if (Field->isMutable())
7686 FieldQuals.removeConst();
7687 QualType FieldType =
7688 S.Context.getQualifiedType(Field->getType(), FieldQuals);
7689
7690 if (Results.add(getDerived().visitSubobject(
7691 FieldType, getDerived().getField(Field))))
7692 return true;
7693 }
7694
7695 // form a list of subobjects.
7696 return false;
7697 }
7698
7699 Result visitSubobject(QualType Type, Subobject Subobj) {
7700 // In that list, any subobject of array type is recursively expanded
7701 const ArrayType *AT = S.Context.getAsArrayType(Type);
7702 if (auto *CAT = dyn_cast_or_null<ConstantArrayType>(AT))
7703 return getDerived().visitSubobjectArray(CAT->getElementType(),
7704 CAT->getSize(), Subobj);
7705 return getDerived().visitExpandedSubobject(Type, Subobj);
7706 }
7707
7708 Result visitSubobjectArray(QualType Type, const llvm::APInt &Size,
7709 Subobject Subobj) {
7710 return getDerived().visitSubobject(Type, Subobj);
7711 }
7712
7713protected:
7714 Sema &S;
7715 CXXRecordDecl *RD;
7716 FunctionDecl *FD;
7717 DefaultedComparisonKind DCK;
7718 UnresolvedSet<16> Fns;
7719};
7720
7721/// Information about a defaulted comparison, as determined by
7722/// DefaultedComparisonAnalyzer.
7723struct DefaultedComparisonInfo {
7724 bool Deleted = false;
7725 bool Constexpr = true;
7726 ComparisonCategoryType Category = ComparisonCategoryType::StrongOrdering;
7727
7728 static DefaultedComparisonInfo deleted() {
7729 DefaultedComparisonInfo Deleted;
7730 Deleted.Deleted = true;
7731 return Deleted;
7732 }
7733
7734 bool add(const DefaultedComparisonInfo &R) {
7735 Deleted |= R.Deleted;
7736 Constexpr &= R.Constexpr;
7737 Category = commonComparisonType(Category, R.Category);
7738 return Deleted;
7739 }
7740};
7741
7742/// An element in the expanded list of subobjects of a defaulted comparison, as
7743/// specified in C++2a [class.compare.default]p4.
7744struct DefaultedComparisonSubobject {
7745 enum { CompleteObject, Member, Base } Kind;
7746 NamedDecl *Decl;
7747 SourceLocation Loc;
7748};
7749
7750/// A visitor over the notional body of a defaulted comparison that determines
7751/// whether that body would be deleted or constexpr.
7752class DefaultedComparisonAnalyzer
7753 : public DefaultedComparisonVisitor<DefaultedComparisonAnalyzer,
7754 DefaultedComparisonInfo,
7755 DefaultedComparisonInfo,
7756 DefaultedComparisonSubobject> {
7757public:
7758 enum DiagnosticKind { NoDiagnostics, ExplainDeleted, ExplainConstexpr };
7759
7760private:
7761 DiagnosticKind Diagnose;
7762
7763public:
7764 using Base = DefaultedComparisonVisitor;
7765 using Result = DefaultedComparisonInfo;
7766 using Subobject = DefaultedComparisonSubobject;
7767
7768 friend Base;
7769
7770 DefaultedComparisonAnalyzer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
7771 DefaultedComparisonKind DCK,
7772 DiagnosticKind Diagnose = NoDiagnostics)
7773 : Base(S, RD, FD, DCK), Diagnose(Diagnose) {}
7774
7775 Result visit() {
7776 if ((DCK == DefaultedComparisonKind::Equal ||
7777 DCK == DefaultedComparisonKind::ThreeWay) &&
7778 RD->hasVariantMembers()) {
7779 // C++2a [class.compare.default]p2 [P2002R0]:
7780 // A defaulted comparison operator function for class C is defined as
7781 // deleted if [...] C has variant members.
7782 if (Diagnose == ExplainDeleted) {
7783 S.Diag(FD->getLocation(), diag::note_defaulted_comparison_union)
7784 << FD << RD->isUnion() << RD;
7785 }
7786 return Result::deleted();
7787 }
7788
7789 return Base::visit();
7790 }
7791
7792private:
7793 Subobject getCompleteObject() {
7794 return Subobject{Subobject::CompleteObject, RD, FD->getLocation()};
7795 }
7796
7797 Subobject getBase(CXXBaseSpecifier *Base) {
7798 return Subobject{Subobject::Base, Base->getType()->getAsCXXRecordDecl(),
7799 Base->getBaseTypeLoc()};
7800 }
7801
7802 Subobject getField(FieldDecl *Field) {
7803 return Subobject{Subobject::Member, Field, Field->getLocation()};
7804 }
7805
7806 Result visitExpandedSubobject(QualType Type, Subobject Subobj) {
7807 // C++2a [class.compare.default]p2 [P2002R0]:
7808 // A defaulted <=> or == operator function for class C is defined as
7809 // deleted if any non-static data member of C is of reference type
7810 if (Type->isReferenceType()) {
7811 if (Diagnose == ExplainDeleted) {
7812 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_reference_member)
7813 << FD << RD;
7814 }
7815 return Result::deleted();
7816 }
7817
7818 // [...] Let xi be an lvalue denoting the ith element [...]
7819 OpaqueValueExpr Xi(FD->getLocation(), Type, VK_LValue);
7820 Expr *Args[] = {&Xi, &Xi};
7821
7822 // All operators start by trying to apply that same operator recursively.
7823 OverloadedOperatorKind OO = FD->getOverloadedOperator();
7824 assert(OO != OO_None && "not an overloaded operator!")(static_cast <bool> (OO != OO_None && "not an overloaded operator!"
) ? void (0) : __assert_fail ("OO != OO_None && \"not an overloaded operator!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7824, __extension__ __PRETTY_FUNCTION__
))
;
7825 return visitBinaryOperator(OO, Args, Subobj);
7826 }
7827
7828 Result
7829 visitBinaryOperator(OverloadedOperatorKind OO, ArrayRef<Expr *> Args,
7830 Subobject Subobj,
7831 OverloadCandidateSet *SpaceshipCandidates = nullptr) {
7832 // Note that there is no need to consider rewritten candidates here if
7833 // we've already found there is no viable 'operator<=>' candidate (and are
7834 // considering synthesizing a '<=>' from '==' and '<').
7835 OverloadCandidateSet CandidateSet(
7836 FD->getLocation(), OverloadCandidateSet::CSK_Operator,
7837 OverloadCandidateSet::OperatorRewriteInfo(
7838 OO, /*AllowRewrittenCandidates=*/!SpaceshipCandidates));
7839
7840 /// C++2a [class.compare.default]p1 [P2002R0]:
7841 /// [...] the defaulted function itself is never a candidate for overload
7842 /// resolution [...]
7843 CandidateSet.exclude(FD);
7844
7845 if (Args[0]->getType()->isOverloadableType())
7846 S.LookupOverloadedBinOp(CandidateSet, OO, Fns, Args);
7847 else
7848 // FIXME: We determine whether this is a valid expression by checking to
7849 // see if there's a viable builtin operator candidate for it. That isn't
7850 // really what the rules ask us to do, but should give the right results.
7851 S.AddBuiltinOperatorCandidates(OO, FD->getLocation(), Args, CandidateSet);
7852
7853 Result R;
7854
7855 OverloadCandidateSet::iterator Best;
7856 switch (CandidateSet.BestViableFunction(S, FD->getLocation(), Best)) {
7857 case OR_Success: {
7858 // C++2a [class.compare.secondary]p2 [P2002R0]:
7859 // The operator function [...] is defined as deleted if [...] the
7860 // candidate selected by overload resolution is not a rewritten
7861 // candidate.
7862 if ((DCK == DefaultedComparisonKind::NotEqual ||
7863 DCK == DefaultedComparisonKind::Relational) &&
7864 !Best->RewriteKind) {
7865 if (Diagnose == ExplainDeleted) {
7866 if (Best->Function) {
7867 S.Diag(Best->Function->getLocation(),
7868 diag::note_defaulted_comparison_not_rewritten_callee)
7869 << FD;
7870 } else {
7871 assert(Best->Conversions.size() == 2 &&(static_cast <bool> (Best->Conversions.size() == 2 &&
Best->Conversions[0].isUserDefined() && "non-user-defined conversion from class to built-in "
"comparison") ? void (0) : __assert_fail ("Best->Conversions.size() == 2 && Best->Conversions[0].isUserDefined() && \"non-user-defined conversion from class to built-in \" \"comparison\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7874, __extension__ __PRETTY_FUNCTION__
))
7872 Best->Conversions[0].isUserDefined() &&(static_cast <bool> (Best->Conversions.size() == 2 &&
Best->Conversions[0].isUserDefined() && "non-user-defined conversion from class to built-in "
"comparison") ? void (0) : __assert_fail ("Best->Conversions.size() == 2 && Best->Conversions[0].isUserDefined() && \"non-user-defined conversion from class to built-in \" \"comparison\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7874, __extension__ __PRETTY_FUNCTION__
))
7873 "non-user-defined conversion from class to built-in "(static_cast <bool> (Best->Conversions.size() == 2 &&
Best->Conversions[0].isUserDefined() && "non-user-defined conversion from class to built-in "
"comparison") ? void (0) : __assert_fail ("Best->Conversions.size() == 2 && Best->Conversions[0].isUserDefined() && \"non-user-defined conversion from class to built-in \" \"comparison\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7874, __extension__ __PRETTY_FUNCTION__
))
7874 "comparison")(static_cast <bool> (Best->Conversions.size() == 2 &&
Best->Conversions[0].isUserDefined() && "non-user-defined conversion from class to built-in "
"comparison") ? void (0) : __assert_fail ("Best->Conversions.size() == 2 && Best->Conversions[0].isUserDefined() && \"non-user-defined conversion from class to built-in \" \"comparison\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7874, __extension__ __PRETTY_FUNCTION__
))
;
7875 S.Diag(Best->Conversions[0]
7876 .UserDefined.FoundConversionFunction.getDecl()
7877 ->getLocation(),
7878 diag::note_defaulted_comparison_not_rewritten_conversion)
7879 << FD;
7880 }
7881 }
7882 return Result::deleted();
7883 }
7884
7885 // Throughout C++2a [class.compare]: if overload resolution does not
7886 // result in a usable function, the candidate function is defined as
7887 // deleted. This requires that we selected an accessible function.
7888 //
7889 // Note that this only considers the access of the function when named
7890 // within the type of the subobject, and not the access path for any
7891 // derived-to-base conversion.
7892 CXXRecordDecl *ArgClass = Args[0]->getType()->getAsCXXRecordDecl();
7893 if (ArgClass && Best->FoundDecl.getDecl() &&
7894 Best->FoundDecl.getDecl()->isCXXClassMember()) {
7895 QualType ObjectType = Subobj.Kind == Subobject::Member
7896 ? Args[0]->getType()
7897 : S.Context.getRecordType(RD);
7898 if (!S.isMemberAccessibleForDeletion(
7899 ArgClass, Best->FoundDecl, ObjectType, Subobj.Loc,
7900 Diagnose == ExplainDeleted
7901 ? S.PDiag(diag::note_defaulted_comparison_inaccessible)
7902 << FD << Subobj.Kind << Subobj.Decl
7903 : S.PDiag()))
7904 return Result::deleted();
7905 }
7906
7907 bool NeedsDeducing =
7908 OO == OO_Spaceship && FD->getReturnType()->isUndeducedAutoType();
7909
7910 if (FunctionDecl *BestFD = Best->Function) {
7911 // C++2a [class.compare.default]p3 [P2002R0]:
7912 // A defaulted comparison function is constexpr-compatible if
7913 // [...] no overlod resolution performed [...] results in a
7914 // non-constexpr function.
7915 assert(!BestFD->isDeleted() && "wrong overload resolution result")(static_cast <bool> (!BestFD->isDeleted() &&
"wrong overload resolution result") ? void (0) : __assert_fail
("!BestFD->isDeleted() && \"wrong overload resolution result\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7915, __extension__ __PRETTY_FUNCTION__
))
;
7916 // If it's not constexpr, explain why not.
7917 if (Diagnose == ExplainConstexpr && !BestFD->isConstexpr()) {
7918 if (Subobj.Kind != Subobject::CompleteObject)
7919 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_not_constexpr)
7920 << Subobj.Kind << Subobj.Decl;
7921 S.Diag(BestFD->getLocation(),
7922 diag::note_defaulted_comparison_not_constexpr_here);
7923 // Bail out after explaining; we don't want any more notes.
7924 return Result::deleted();
7925 }
7926 R.Constexpr &= BestFD->isConstexpr();
7927
7928 if (NeedsDeducing) {
7929 // If any callee has an undeduced return type, deduce it now.
7930 // FIXME: It's not clear how a failure here should be handled. For
7931 // now, we produce an eager diagnostic, because that is forward
7932 // compatible with most (all?) other reasonable options.
7933 if (BestFD->getReturnType()->isUndeducedType() &&
7934 S.DeduceReturnType(BestFD, FD->getLocation(),
7935 /*Diagnose=*/false)) {
7936 // Don't produce a duplicate error when asked to explain why the
7937 // comparison is deleted: we diagnosed that when initially checking
7938 // the defaulted operator.
7939 if (Diagnose == NoDiagnostics) {
7940 S.Diag(
7941 FD->getLocation(),
7942 diag::err_defaulted_comparison_cannot_deduce_undeduced_auto)
7943 << Subobj.Kind << Subobj.Decl;
7944 S.Diag(
7945 Subobj.Loc,
7946 diag::note_defaulted_comparison_cannot_deduce_undeduced_auto)
7947 << Subobj.Kind << Subobj.Decl;
7948 S.Diag(BestFD->getLocation(),
7949 diag::note_defaulted_comparison_cannot_deduce_callee)
7950 << Subobj.Kind << Subobj.Decl;
7951 }
7952 return Result::deleted();
7953 }
7954 auto *Info = S.Context.CompCategories.lookupInfoForType(
7955 BestFD->getCallResultType());
7956 if (!Info) {
7957 if (Diagnose == ExplainDeleted) {
7958 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_cannot_deduce)
7959 << Subobj.Kind << Subobj.Decl
7960 << BestFD->getCallResultType().withoutLocalFastQualifiers();
7961 S.Diag(BestFD->getLocation(),
7962 diag::note_defaulted_comparison_cannot_deduce_callee)
7963 << Subobj.Kind << Subobj.Decl;
7964 }
7965 return Result::deleted();
7966 }
7967 R.Category = Info->Kind;
7968 }
7969 } else {
7970 QualType T = Best->BuiltinParamTypes[0];
7971 assert(T == Best->BuiltinParamTypes[1] &&(static_cast <bool> (T == Best->BuiltinParamTypes[1]
&& "builtin comparison for different types?") ? void
(0) : __assert_fail ("T == Best->BuiltinParamTypes[1] && \"builtin comparison for different types?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7972, __extension__ __PRETTY_FUNCTION__
))
7972 "builtin comparison for different types?")(static_cast <bool> (T == Best->BuiltinParamTypes[1]
&& "builtin comparison for different types?") ? void
(0) : __assert_fail ("T == Best->BuiltinParamTypes[1] && \"builtin comparison for different types?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7972, __extension__ __PRETTY_FUNCTION__
))
;
7973 assert(Best->BuiltinParamTypes[2].isNull() &&(static_cast <bool> (Best->BuiltinParamTypes[2].isNull
() && "invalid builtin comparison") ? void (0) : __assert_fail
("Best->BuiltinParamTypes[2].isNull() && \"invalid builtin comparison\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7974, __extension__ __PRETTY_FUNCTION__
))
7974 "invalid builtin comparison")(static_cast <bool> (Best->BuiltinParamTypes[2].isNull
() && "invalid builtin comparison") ? void (0) : __assert_fail
("Best->BuiltinParamTypes[2].isNull() && \"invalid builtin comparison\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7974, __extension__ __PRETTY_FUNCTION__
))
;
7975
7976 if (NeedsDeducing) {
7977 Optional<ComparisonCategoryType> Cat =
7978 getComparisonCategoryForBuiltinCmp(T);
7979 assert(Cat && "no category for builtin comparison?")(static_cast <bool> (Cat && "no category for builtin comparison?"
) ? void (0) : __assert_fail ("Cat && \"no category for builtin comparison?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 7979, __extension__ __PRETTY_FUNCTION__
))
;
7980 R.Category = *Cat;
7981 }
7982 }
7983
7984 // Note that we might be rewriting to a different operator. That call is
7985 // not considered until we come to actually build the comparison function.
7986 break;
7987 }
7988
7989 case OR_Ambiguous:
7990 if (Diagnose == ExplainDeleted) {
7991 unsigned Kind = 0;
7992 if (FD->getOverloadedOperator() == OO_Spaceship && OO != OO_Spaceship)
7993 Kind = OO == OO_EqualEqual ? 1 : 2;
7994 CandidateSet.NoteCandidates(
7995 PartialDiagnosticAt(
7996 Subobj.Loc, S.PDiag(diag::note_defaulted_comparison_ambiguous)
7997 << FD << Kind << Subobj.Kind << Subobj.Decl),
7998 S, OCD_AmbiguousCandidates, Args);
7999 }
8000 R = Result::deleted();
8001 break;
8002
8003 case OR_Deleted:
8004 if (Diagnose == ExplainDeleted) {
8005 if ((DCK == DefaultedComparisonKind::NotEqual ||
8006 DCK == DefaultedComparisonKind::Relational) &&
8007 !Best->RewriteKind) {
8008 S.Diag(Best->Function->getLocation(),
8009 diag::note_defaulted_comparison_not_rewritten_callee)
8010 << FD;
8011 } else {
8012 S.Diag(Subobj.Loc,
8013 diag::note_defaulted_comparison_calls_deleted)
8014 << FD << Subobj.Kind << Subobj.Decl;
8015 S.NoteDeletedFunction(Best->Function);
8016 }
8017 }
8018 R = Result::deleted();
8019 break;
8020
8021 case OR_No_Viable_Function:
8022 // If there's no usable candidate, we're done unless we can rewrite a
8023 // '<=>' in terms of '==' and '<'.
8024 if (OO == OO_Spaceship &&
8025 S.Context.CompCategories.lookupInfoForType(FD->getReturnType())) {
8026 // For any kind of comparison category return type, we need a usable
8027 // '==' and a usable '<'.
8028 if (!R.add(visitBinaryOperator(OO_EqualEqual, Args, Subobj,
8029 &CandidateSet)))
8030 R.add(visitBinaryOperator(OO_Less, Args, Subobj, &CandidateSet));
8031 break;
8032 }
8033
8034 if (Diagnose == ExplainDeleted) {
8035 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_no_viable_function)
8036 << FD << (OO == OO_ExclaimEqual) << Subobj.Kind << Subobj.Decl;
8037
8038 // For a three-way comparison, list both the candidates for the
8039 // original operator and the candidates for the synthesized operator.
8040 if (SpaceshipCandidates) {
8041 SpaceshipCandidates->NoteCandidates(
8042 S, Args,
8043 SpaceshipCandidates->CompleteCandidates(S, OCD_AllCandidates,
8044 Args, FD->getLocation()));
8045 S.Diag(Subobj.Loc,
8046 diag::note_defaulted_comparison_no_viable_function_synthesized)
8047 << (OO == OO_EqualEqual ? 0 : 1);
8048 }
8049
8050 CandidateSet.NoteCandidates(
8051 S, Args,
8052 CandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args,
8053 FD->getLocation()));
8054 }
8055 R = Result::deleted();
8056 break;
8057 }
8058
8059 return R;
8060 }
8061};
8062
8063/// A list of statements.
8064struct StmtListResult {
8065 bool IsInvalid = false;
8066 llvm::SmallVector<Stmt*, 16> Stmts;
8067
8068 bool add(const StmtResult &S) {
8069 IsInvalid |= S.isInvalid();
8070 if (IsInvalid)
8071 return true;
8072 Stmts.push_back(S.get());
8073 return false;
8074 }
8075};
8076
8077/// A visitor over the notional body of a defaulted comparison that synthesizes
8078/// the actual body.
8079class DefaultedComparisonSynthesizer
8080 : public DefaultedComparisonVisitor<DefaultedComparisonSynthesizer,
8081 StmtListResult, StmtResult,
8082 std::pair<ExprResult, ExprResult>> {
8083 SourceLocation Loc;
8084 unsigned ArrayDepth = 0;
8085
8086public:
8087 using Base = DefaultedComparisonVisitor;
8088 using ExprPair = std::pair<ExprResult, ExprResult>;
8089
8090 friend Base;
8091
8092 DefaultedComparisonSynthesizer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
8093 DefaultedComparisonKind DCK,
8094 SourceLocation BodyLoc)
8095 : Base(S, RD, FD, DCK), Loc(BodyLoc) {}
8096
8097 /// Build a suitable function body for this defaulted comparison operator.
8098 StmtResult build() {
8099 Sema::CompoundScopeRAII CompoundScope(S);
8100
8101 StmtListResult Stmts = visit();
8102 if (Stmts.IsInvalid)
8103 return StmtError();
8104
8105 ExprResult RetVal;
8106 switch (DCK) {
8107 case DefaultedComparisonKind::None:
8108 llvm_unreachable("not a defaulted comparison")::llvm::llvm_unreachable_internal("not a defaulted comparison"
, "clang/lib/Sema/SemaDeclCXX.cpp", 8108)
;
8109
8110 case DefaultedComparisonKind::Equal: {
8111 // C++2a [class.eq]p3:
8112 // [...] compar[e] the corresponding elements [...] until the first
8113 // index i where xi == yi yields [...] false. If no such index exists,
8114 // V is true. Otherwise, V is false.
8115 //
8116 // Join the comparisons with '&&'s and return the result. Use a right
8117 // fold (traversing the conditions right-to-left), because that
8118 // short-circuits more naturally.
8119 auto OldStmts = std::move(Stmts.Stmts);
8120 Stmts.Stmts.clear();
8121 ExprResult CmpSoFar;
8122 // Finish a particular comparison chain.
8123 auto FinishCmp = [&] {
8124 if (Expr *Prior = CmpSoFar.get()) {
8125 // Convert the last expression to 'return ...;'
8126 if (RetVal.isUnset() && Stmts.Stmts.empty())
8127 RetVal = CmpSoFar;
8128 // Convert any prior comparison to 'if (!(...)) return false;'
8129 else if (Stmts.add(buildIfNotCondReturnFalse(Prior)))
8130 return true;
8131 CmpSoFar = ExprResult();
8132 }
8133 return false;
8134 };
8135 for (Stmt *EAsStmt : llvm::reverse(OldStmts)) {
8136 Expr *E = dyn_cast<Expr>(EAsStmt);
8137 if (!E) {
8138 // Found an array comparison.
8139 if (FinishCmp() || Stmts.add(EAsStmt))
8140 return StmtError();
8141 continue;
8142 }
8143
8144 if (CmpSoFar.isUnset()) {
8145 CmpSoFar = E;
8146 continue;
8147 }
8148 CmpSoFar = S.CreateBuiltinBinOp(Loc, BO_LAnd, E, CmpSoFar.get());
8149 if (CmpSoFar.isInvalid())
8150 return StmtError();
8151 }
8152 if (FinishCmp())
8153 return StmtError();
8154 std::reverse(Stmts.Stmts.begin(), Stmts.Stmts.end());
8155 // If no such index exists, V is true.
8156 if (RetVal.isUnset())
8157 RetVal = S.ActOnCXXBoolLiteral(Loc, tok::kw_true);
8158 break;
8159 }
8160
8161 case DefaultedComparisonKind::ThreeWay: {
8162 // Per C++2a [class.spaceship]p3, as a fallback add:
8163 // return static_cast<R>(std::strong_ordering::equal);
8164 QualType StrongOrdering = S.CheckComparisonCategoryType(
8165 ComparisonCategoryType::StrongOrdering, Loc,
8166 Sema::ComparisonCategoryUsage::DefaultedOperator);
8167 if (StrongOrdering.isNull())
8168 return StmtError();
8169 VarDecl *EqualVD = S.Context.CompCategories.getInfoForType(StrongOrdering)
8170 .getValueInfo(ComparisonCategoryResult::Equal)
8171 ->VD;
8172 RetVal = getDecl(EqualVD);
8173 if (RetVal.isInvalid())
8174 return StmtError();
8175 RetVal = buildStaticCastToR(RetVal.get());
8176 break;
8177 }
8178
8179 case DefaultedComparisonKind::NotEqual:
8180 case DefaultedComparisonKind::Relational:
8181 RetVal = cast<Expr>(Stmts.Stmts.pop_back_val());
8182 break;
8183 }
8184
8185 // Build the final return statement.
8186 if (RetVal.isInvalid())
8187 return StmtError();
8188 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, RetVal.get());
8189 if (ReturnStmt.isInvalid())
8190 return StmtError();
8191 Stmts.Stmts.push_back(ReturnStmt.get());
8192
8193 return S.ActOnCompoundStmt(Loc, Loc, Stmts.Stmts, /*IsStmtExpr=*/false);
8194 }
8195
8196private:
8197 ExprResult getDecl(ValueDecl *VD) {
8198 return S.BuildDeclarationNameExpr(
8199 CXXScopeSpec(), DeclarationNameInfo(VD->getDeclName(), Loc), VD);
8200 }
8201
8202 ExprResult getParam(unsigned I) {
8203 ParmVarDecl *PD = FD->getParamDecl(I);
8204 return getDecl(PD);
8205 }
8206
8207 ExprPair getCompleteObject() {
8208 unsigned Param = 0;
8209 ExprResult LHS;
8210 if (isa<CXXMethodDecl>(FD)) {
8211 // LHS is '*this'.
8212 LHS = S.ActOnCXXThis(Loc);
8213 if (!LHS.isInvalid())
8214 LHS = S.CreateBuiltinUnaryOp(Loc, UO_Deref, LHS.get());
8215 } else {
8216 LHS = getParam(Param++);
8217 }
8218 ExprResult RHS = getParam(Param++);
8219 assert(Param == FD->getNumParams())(static_cast <bool> (Param == FD->getNumParams()) ? void
(0) : __assert_fail ("Param == FD->getNumParams()", "clang/lib/Sema/SemaDeclCXX.cpp"
, 8219, __extension__ __PRETTY_FUNCTION__))
;
8220 return {LHS, RHS};
8221 }
8222
8223 ExprPair getBase(CXXBaseSpecifier *Base) {
8224 ExprPair Obj = getCompleteObject();
8225 if (Obj.first.isInvalid() || Obj.second.isInvalid())
8226 return {ExprError(), ExprError()};
8227 CXXCastPath Path = {Base};
8228 return {S.ImpCastExprToType(Obj.first.get(), Base->getType(),
8229 CK_DerivedToBase, VK_LValue, &Path),
8230 S.ImpCastExprToType(Obj.second.get(), Base->getType(),
8231 CK_DerivedToBase, VK_LValue, &Path)};
8232 }
8233
8234 ExprPair getField(FieldDecl *Field) {
8235 ExprPair Obj = getCompleteObject();
8236 if (Obj.first.isInvalid() || Obj.second.isInvalid())
8237 return {ExprError(), ExprError()};
8238
8239 DeclAccessPair Found = DeclAccessPair::make(Field, Field->getAccess());
8240 DeclarationNameInfo NameInfo(Field->getDeclName(), Loc);
8241 return {S.BuildFieldReferenceExpr(Obj.first.get(), /*IsArrow=*/false, Loc,
8242 CXXScopeSpec(), Field, Found, NameInfo),
8243 S.BuildFieldReferenceExpr(Obj.second.get(), /*IsArrow=*/false, Loc,
8244 CXXScopeSpec(), Field, Found, NameInfo)};
8245 }
8246
8247 // FIXME: When expanding a subobject, register a note in the code synthesis
8248 // stack to say which subobject we're comparing.
8249
8250 StmtResult buildIfNotCondReturnFalse(ExprResult Cond) {
8251 if (Cond.isInvalid())
8252 return StmtError();
8253
8254 ExprResult NotCond = S.CreateBuiltinUnaryOp(Loc, UO_LNot, Cond.get());
8255 if (NotCond.isInvalid())
8256 return StmtError();
8257
8258 ExprResult False = S.ActOnCXXBoolLiteral(Loc, tok::kw_false);
8259 assert(!False.isInvalid() && "should never fail")(static_cast <bool> (!False.isInvalid() && "should never fail"
) ? void (0) : __assert_fail ("!False.isInvalid() && \"should never fail\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8259, __extension__ __PRETTY_FUNCTION__
))
;
8260 StmtResult ReturnFalse = S.BuildReturnStmt(Loc, False.get());
8261 if (ReturnFalse.isInvalid())
8262 return StmtError();
8263
8264 return S.ActOnIfStmt(Loc, IfStatementKind::Ordinary, Loc, nullptr,
8265 S.ActOnCondition(nullptr, Loc, NotCond.get(),
8266 Sema::ConditionKind::Boolean),
8267 Loc, ReturnFalse.get(), SourceLocation(), nullptr);
8268 }
8269
8270 StmtResult visitSubobjectArray(QualType Type, llvm::APInt Size,
8271 ExprPair Subobj) {
8272 QualType SizeType = S.Context.getSizeType();
8273 Size = Size.zextOrTrunc(S.Context.getTypeSize(SizeType));
8274
8275 // Build 'size_t i$n = 0'.
8276 IdentifierInfo *IterationVarName = nullptr;
8277 {
8278 SmallString<8> Str;
8279 llvm::raw_svector_ostream OS(Str);
8280 OS << "i" << ArrayDepth;
8281 IterationVarName = &S.Context.Idents.get(OS.str());
8282 }
8283 VarDecl *IterationVar = VarDecl::Create(
8284 S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType,
8285 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None);
8286 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
8287 IterationVar->setInit(
8288 IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
8289 Stmt *Init = new (S.Context) DeclStmt(DeclGroupRef(IterationVar), Loc, Loc);
8290
8291 auto IterRef = [&] {
8292 ExprResult Ref = S.BuildDeclarationNameExpr(
8293 CXXScopeSpec(), DeclarationNameInfo(IterationVarName, Loc),
8294 IterationVar);
8295 assert(!Ref.isInvalid() && "can't reference our own variable?")(static_cast <bool> (!Ref.isInvalid() && "can't reference our own variable?"
) ? void (0) : __assert_fail ("!Ref.isInvalid() && \"can't reference our own variable?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8295, __extension__ __PRETTY_FUNCTION__
))
;
8296 return Ref.get();
8297 };
8298
8299 // Build 'i$n != Size'.
8300 ExprResult Cond = S.CreateBuiltinBinOp(
8301 Loc, BO_NE, IterRef(),
8302 IntegerLiteral::Create(S.Context, Size, SizeType, Loc));
8303 assert(!Cond.isInvalid() && "should never fail")(static_cast <bool> (!Cond.isInvalid() && "should never fail"
) ? void (0) : __assert_fail ("!Cond.isInvalid() && \"should never fail\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8303, __extension__ __PRETTY_FUNCTION__
))
;
8304
8305 // Build '++i$n'.
8306 ExprResult Inc = S.CreateBuiltinUnaryOp(Loc, UO_PreInc, IterRef());
8307 assert(!Inc.isInvalid() && "should never fail")(static_cast <bool> (!Inc.isInvalid() && "should never fail"
) ? void (0) : __assert_fail ("!Inc.isInvalid() && \"should never fail\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8307, __extension__ __PRETTY_FUNCTION__
))
;
8308
8309 // Build 'a[i$n]' and 'b[i$n]'.
8310 auto Index = [&](ExprResult E) {
8311 if (E.isInvalid())
8312 return ExprError();
8313 return S.CreateBuiltinArraySubscriptExpr(E.get(), Loc, IterRef(), Loc);
8314 };
8315 Subobj.first = Index(Subobj.first);
8316 Subobj.second = Index(Subobj.second);
8317
8318 // Compare the array elements.
8319 ++ArrayDepth;
8320 StmtResult Substmt = visitSubobject(Type, Subobj);
8321 --ArrayDepth;
8322
8323 if (Substmt.isInvalid())
8324 return StmtError();
8325
8326 // For the inner level of an 'operator==', build 'if (!cmp) return false;'.
8327 // For outer levels or for an 'operator<=>' we already have a suitable
8328 // statement that returns as necessary.
8329 if (Expr *ElemCmp = dyn_cast<Expr>(Substmt.get())) {
8330 assert(DCK == DefaultedComparisonKind::Equal &&(static_cast <bool> (DCK == DefaultedComparisonKind::Equal
&& "should have non-expression statement") ? void (0
) : __assert_fail ("DCK == DefaultedComparisonKind::Equal && \"should have non-expression statement\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8331, __extension__ __PRETTY_FUNCTION__
))
8331 "should have non-expression statement")(static_cast <bool> (DCK == DefaultedComparisonKind::Equal
&& "should have non-expression statement") ? void (0
) : __assert_fail ("DCK == DefaultedComparisonKind::Equal && \"should have non-expression statement\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8331, __extension__ __PRETTY_FUNCTION__
))
;
8332 Substmt = buildIfNotCondReturnFalse(ElemCmp);
8333 if (Substmt.isInvalid())
8334 return StmtError();
8335 }
8336
8337 // Build 'for (...) ...'
8338 return S.ActOnForStmt(Loc, Loc, Init,
8339 S.ActOnCondition(nullptr, Loc, Cond.get(),
8340 Sema::ConditionKind::Boolean),
8341 S.MakeFullDiscardedValueExpr(Inc.get()), Loc,
8342 Substmt.get());
8343 }
8344
8345 StmtResult visitExpandedSubobject(QualType Type, ExprPair Obj) {
8346 if (Obj.first.isInvalid() || Obj.second.isInvalid())
8347 return StmtError();
8348
8349 OverloadedOperatorKind OO = FD->getOverloadedOperator();
8350 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(OO);
8351 ExprResult Op;
8352 if (Type->isOverloadableType())
8353 Op = S.CreateOverloadedBinOp(Loc, Opc, Fns, Obj.first.get(),
8354 Obj.second.get(), /*PerformADL=*/true,
8355 /*AllowRewrittenCandidates=*/true, FD);
8356 else
8357 Op = S.CreateBuiltinBinOp(Loc, Opc, Obj.first.get(), Obj.second.get());
8358 if (Op.isInvalid())
8359 return StmtError();
8360
8361 switch (DCK) {
8362 case DefaultedComparisonKind::None:
8363 llvm_unreachable("not a defaulted comparison")::llvm::llvm_unreachable_internal("not a defaulted comparison"
, "clang/lib/Sema/SemaDeclCXX.cpp", 8363)
;
8364
8365 case DefaultedComparisonKind::Equal:
8366 // Per C++2a [class.eq]p2, each comparison is individually contextually
8367 // converted to bool.
8368 Op = S.PerformContextuallyConvertToBool(Op.get());
8369 if (Op.isInvalid())
8370 return StmtError();
8371 return Op.get();
8372
8373 case DefaultedComparisonKind::ThreeWay: {
8374 // Per C++2a [class.spaceship]p3, form:
8375 // if (R cmp = static_cast<R>(op); cmp != 0)
8376 // return cmp;
8377 QualType R = FD->getReturnType();
8378 Op = buildStaticCastToR(Op.get());
8379 if (Op.isInvalid())
8380 return StmtError();
8381
8382 // R cmp = ...;
8383 IdentifierInfo *Name = &S.Context.Idents.get("cmp");
8384 VarDecl *VD =
8385 VarDecl::Create(S.Context, S.CurContext, Loc, Loc, Name, R,
8386 S.Context.getTrivialTypeSourceInfo(R, Loc), SC_None);
8387 S.AddInitializerToDecl(VD, Op.get(), /*DirectInit=*/false);
8388 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(VD), Loc, Loc);
8389
8390 // cmp != 0
8391 ExprResult VDRef = getDecl(VD);
8392 if (VDRef.isInvalid())
8393 return StmtError();
8394 llvm::APInt ZeroVal(S.Context.getIntWidth(S.Context.IntTy), 0);
8395 Expr *Zero =
8396 IntegerLiteral::Create(S.Context, ZeroVal, S.Context.IntTy, Loc);
8397 ExprResult Comp;
8398 if (VDRef.get()->getType()->isOverloadableType())
8399 Comp = S.CreateOverloadedBinOp(Loc, BO_NE, Fns, VDRef.get(), Zero, true,
8400 true, FD);
8401 else
8402 Comp = S.CreateBuiltinBinOp(Loc, BO_NE, VDRef.get(), Zero);
8403 if (Comp.isInvalid())
8404 return StmtError();
8405 Sema::ConditionResult Cond = S.ActOnCondition(
8406 nullptr, Loc, Comp.get(), Sema::ConditionKind::Boolean);
8407 if (Cond.isInvalid())
8408 return StmtError();
8409
8410 // return cmp;
8411 VDRef = getDecl(VD);
8412 if (VDRef.isInvalid())
8413 return StmtError();
8414 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, VDRef.get());
8415 if (ReturnStmt.isInvalid())
8416 return StmtError();
8417
8418 // if (...)
8419 return S.ActOnIfStmt(Loc, IfStatementKind::Ordinary, Loc, InitStmt, Cond,
8420 Loc, ReturnStmt.get(),
8421 /*ElseLoc=*/SourceLocation(), /*Else=*/nullptr);
8422 }
8423
8424 case DefaultedComparisonKind::NotEqual:
8425 case DefaultedComparisonKind::Relational:
8426 // C++2a [class.compare.secondary]p2:
8427 // Otherwise, the operator function yields x @ y.
8428 return Op.get();
8429 }
8430 llvm_unreachable("")::llvm::llvm_unreachable_internal("", "clang/lib/Sema/SemaDeclCXX.cpp"
, 8430)
;
8431 }
8432
8433 /// Build "static_cast<R>(E)".
8434 ExprResult buildStaticCastToR(Expr *E) {
8435 QualType R = FD->getReturnType();
8436 assert(!R->isUndeducedType() && "type should have been deduced already")(static_cast <bool> (!R->isUndeducedType() &&
"type should have been deduced already") ? void (0) : __assert_fail
("!R->isUndeducedType() && \"type should have been deduced already\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8436, __extension__ __PRETTY_FUNCTION__
))
;
8437
8438 // Don't bother forming a no-op cast in the common case.
8439 if (E->isPRValue() && S.Context.hasSameType(E->getType(), R))
8440 return E;
8441 return S.BuildCXXNamedCast(Loc, tok::kw_static_cast,
8442 S.Context.getTrivialTypeSourceInfo(R, Loc), E,
8443 SourceRange(Loc, Loc), SourceRange(Loc, Loc));
8444 }
8445};
8446}
8447
8448/// Perform the unqualified lookups that might be needed to form a defaulted
8449/// comparison function for the given operator.
8450static void lookupOperatorsForDefaultedComparison(Sema &Self, Scope *S,
8451 UnresolvedSetImpl &Operators,
8452 OverloadedOperatorKind Op) {
8453 auto Lookup = [&](OverloadedOperatorKind OO) {
8454 Self.LookupOverloadedOperatorName(OO, S, Operators);
8455 };
8456
8457 // Every defaulted operator looks up itself.
8458 Lookup(Op);
8459 // ... and the rewritten form of itself, if any.
8460 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(Op))
8461 Lookup(ExtraOp);
8462
8463 // For 'operator<=>', we also form a 'cmp != 0' expression, and might
8464 // synthesize a three-way comparison from '<' and '=='. In a dependent
8465 // context, we also need to look up '==' in case we implicitly declare a
8466 // defaulted 'operator=='.
8467 if (Op == OO_Spaceship) {
8468 Lookup(OO_ExclaimEqual);
8469 Lookup(OO_Less);
8470 Lookup(OO_EqualEqual);
8471 }
8472}
8473
8474bool Sema::CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *FD,
8475 DefaultedComparisonKind DCK) {
8476 assert(DCK != DefaultedComparisonKind::None && "not a defaulted comparison")(static_cast <bool> (DCK != DefaultedComparisonKind::None
&& "not a defaulted comparison") ? void (0) : __assert_fail
("DCK != DefaultedComparisonKind::None && \"not a defaulted comparison\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8476, __extension__ __PRETTY_FUNCTION__
))
;
8477
8478 // Perform any unqualified lookups we're going to need to default this
8479 // function.
8480 if (S) {
8481 UnresolvedSet<32> Operators;
8482 lookupOperatorsForDefaultedComparison(*this, S, Operators,
8483 FD->getOverloadedOperator());
8484 FD->setDefaultedFunctionInfo(FunctionDecl::DefaultedFunctionInfo::Create(
8485 Context, Operators.pairs()));
8486 }
8487
8488 // C++2a [class.compare.default]p1:
8489 // A defaulted comparison operator function for some class C shall be a
8490 // non-template function declared in the member-specification of C that is
8491 // -- a non-static const member of C having one parameter of type
8492 // const C&, or
8493 // -- a friend of C having two parameters of type const C& or two
8494 // parameters of type C.
8495
8496 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext());
8497 bool IsMethod = isa<CXXMethodDecl>(FD);
8498 if (IsMethod) {
8499 auto *MD = cast<CXXMethodDecl>(FD);
8500 assert(!MD->isStatic() && "comparison function cannot be a static member")(static_cast <bool> (!MD->isStatic() && "comparison function cannot be a static member"
) ? void (0) : __assert_fail ("!MD->isStatic() && \"comparison function cannot be a static member\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8500, __extension__ __PRETTY_FUNCTION__
))
;
8501
8502 // If we're out-of-class, this is the class we're comparing.
8503 if (!RD)
8504 RD = MD->getParent();
8505
8506 if (!MD->isConst()) {
8507 SourceLocation InsertLoc;
8508 if (FunctionTypeLoc Loc = MD->getFunctionTypeLoc())
8509 InsertLoc = getLocForEndOfToken(Loc.getRParenLoc());
8510 // Don't diagnose an implicit 'operator=='; we will have diagnosed the
8511 // corresponding defaulted 'operator<=>' already.
8512 if (!MD->isImplicit()) {
8513 Diag(MD->getLocation(), diag::err_defaulted_comparison_non_const)
8514 << (int)DCK << FixItHint::CreateInsertion(InsertLoc, " const");
8515 }
8516
8517 // Add the 'const' to the type to recover.
8518 const auto *FPT = MD->getType()->castAs<FunctionProtoType>();
8519 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8520 EPI.TypeQuals.addConst();
8521 MD->setType(Context.getFunctionType(FPT->getReturnType(),
8522 FPT->getParamTypes(), EPI));
8523 }
8524 }
8525
8526 if (FD->getNumParams() != (IsMethod ? 1 : 2)) {
8527 // Let's not worry about using a variadic template pack here -- who would do
8528 // such a thing?
8529 Diag(FD->getLocation(), diag::err_defaulted_comparison_num_args)
8530 << int(IsMethod) << int(DCK);
8531 return true;
8532 }
8533
8534 const ParmVarDecl *KnownParm = nullptr;
8535 for (const ParmVarDecl *Param : FD->parameters()) {
8536 QualType ParmTy = Param->getType();
8537 if (ParmTy->isDependentType())
8538 continue;
8539 if (!KnownParm) {
8540 auto CTy = ParmTy;
8541 // Is it `T const &`?
8542 bool Ok = !IsMethod;
8543 QualType ExpectedTy;
8544 if (RD)
8545 ExpectedTy = Context.getRecordType(RD);
8546 if (auto *Ref = CTy->getAs<ReferenceType>()) {
8547 CTy = Ref->getPointeeType();
8548 if (RD)
8549 ExpectedTy.addConst();
8550 Ok = true;
8551 }
8552
8553 // Is T a class?
8554 if (!Ok) {
8555 } else if (RD) {
8556 if (!RD->isDependentType() && !Context.hasSameType(CTy, ExpectedTy))
8557 Ok = false;
8558 } else if (auto *CRD = CTy->getAsRecordDecl()) {
8559 RD = cast<CXXRecordDecl>(CRD);
8560 } else {
8561 Ok = false;
8562 }
8563
8564 if (Ok) {
8565 KnownParm = Param;
8566 } else {
8567 // Don't diagnose an implicit 'operator=='; we will have diagnosed the
8568 // corresponding defaulted 'operator<=>' already.
8569 if (!FD->isImplicit()) {
8570 if (RD) {
8571 QualType PlainTy = Context.getRecordType(RD);
8572 QualType RefTy =
8573 Context.getLValueReferenceType(PlainTy.withConst());
8574 Diag(FD->getLocation(), diag::err_defaulted_comparison_param)
8575 << int(DCK) << ParmTy << RefTy << int(!IsMethod) << PlainTy
8576 << Param->getSourceRange();
8577 } else {
8578 assert(!IsMethod && "should know expected type for method")(static_cast <bool> (!IsMethod && "should know expected type for method"
) ? void (0) : __assert_fail ("!IsMethod && \"should know expected type for method\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8578, __extension__ __PRETTY_FUNCTION__
))
;
8579 Diag(FD->getLocation(),
8580 diag::err_defaulted_comparison_param_unknown)
8581 << int(DCK) << ParmTy << Param->getSourceRange();
8582 }
8583 }
8584 return true;
8585 }
8586 } else if (!Context.hasSameType(KnownParm->getType(), ParmTy)) {
8587 Diag(FD->getLocation(), diag::err_defaulted_comparison_param_mismatch)
8588 << int(DCK) << KnownParm->getType() << KnownParm->getSourceRange()
8589 << ParmTy << Param->getSourceRange();
8590 return true;
8591 }
8592 }
8593
8594 assert(RD && "must have determined class")(static_cast <bool> (RD && "must have determined class"
) ? void (0) : __assert_fail ("RD && \"must have determined class\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8594, __extension__ __PRETTY_FUNCTION__
))
;
8595 if (IsMethod) {
8596 } else if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
8597 // In-class, must be a friend decl.
8598 assert(FD->getFriendObjectKind() && "expected a friend declaration")(static_cast <bool> (FD->getFriendObjectKind() &&
"expected a friend declaration") ? void (0) : __assert_fail (
"FD->getFriendObjectKind() && \"expected a friend declaration\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 8598, __extension__ __PRETTY_FUNCTION__
))
;
8599 } else {
8600 // Out of class, require the defaulted comparison to be a friend (of a
8601 // complete type).
8602 if (RequireCompleteType(FD->getLocation(), Context.getRecordType(RD),
8603 diag::err_defaulted_comparison_not_friend, int(DCK),
8604 int(1)))
8605 return true;
8606
8607 if (llvm::find_if(RD->friends(), [&](const FriendDecl *F) {
8608 return FD->getCanonicalDecl() ==
8609 F->getFriendDecl()->getCanonicalDecl();
8610 }) == RD->friends().end()) {
8611 Diag(FD->getLocation(), diag::err_defaulted_comparison_not_friend)
8612 << int(DCK) << int(0) << RD;
8613 Diag(RD->getCanonicalDecl()->getLocation(), diag::note_declared_at);
8614 return true;
8615 }
8616 }
8617
8618 // C++2a [class.eq]p1, [class.rel]p1:
8619 // A [defaulted comparison other than <=>] shall have a declared return
8620 // type bool.
8621 if (DCK != DefaultedComparisonKind::ThreeWay &&
8622 !FD->getDeclaredReturnType()->isDependentType() &&
8623 !Context.hasSameType(FD->getDeclaredReturnType(), Context.BoolTy)) {
8624 Diag(FD->getLocation(), diag::err_defaulted_comparison_return_type_not_bool)
8625 << (int)DCK << FD->getDeclaredReturnType() << Context.BoolTy
8626 << FD->getReturnTypeSourceRange();
8627 return true;
8628 }
8629 // C++2a [class.spaceship]p2 [P2002R0]:
8630 // Let R be the declared return type [...]. If R is auto, [...]. Otherwise,
8631 // R shall not contain a placeholder type.
8632 if (DCK == DefaultedComparisonKind::ThreeWay &&
8633 FD->getDeclaredReturnType()->getContainedDeducedType() &&
8634 !Context.hasSameType(FD->getDeclaredReturnType(),
8635 Context.getAutoDeductType())) {
8636 Diag(FD->getLocation(),
8637 diag::err_defaulted_comparison_deduced_return_type_not_auto)
8638 << (int)DCK << FD->getDeclaredReturnType() << Context.AutoDeductTy
8639 << FD->getReturnTypeSourceRange();
8640 return true;
8641 }
8642
8643 // For a defaulted function in a dependent class, defer all remaining checks
8644 // until instantiation.
8645 if (RD->isDependentType())
8646 return false;
8647
8648 // Determine whether the function should be defined as deleted.
8649 DefaultedComparisonInfo Info =
8650 DefaultedComparisonAnalyzer(*this, RD, FD, DCK).visit();
8651
8652 bool First = FD == FD->getCanonicalDecl();
8653
8654 // If we want to delete the function, then do so; there's nothing else to
8655 // check in that case.
8656 if (Info.Deleted) {
8657 if (!First) {
8658 // C++11 [dcl.fct.def.default]p4:
8659 // [For a] user-provided explicitly-defaulted function [...] if such a
8660 // function is implicitly defined as deleted, the program is ill-formed.
8661 //
8662 // This is really just a consequence of the general rule that you can
8663 // only delete a function on its first declaration.
8664 Diag(FD->getLocation(), diag::err_non_first_default_compare_deletes)
8665 << FD->isImplicit() << (int)DCK;
8666 DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
8667 DefaultedComparisonAnalyzer::ExplainDeleted)
8668 .visit();
8669 return true;
8670 }
8671
8672 SetDeclDeleted(FD, FD->getLocation());
8673 if (!inTemplateInstantiation() && !FD->isImplicit()) {
8674 Diag(FD->getLocation(), diag::warn_defaulted_comparison_deleted)
8675 << (int)DCK;
8676 DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
8677 DefaultedComparisonAnalyzer::ExplainDeleted)
8678 .visit();
8679 }
8680 return false;
8681 }
8682
8683 // C++2a [class.spaceship]p2:
8684 // The return type is deduced as the common comparison type of R0, R1, ...
8685 if (DCK == DefaultedComparisonKind::ThreeWay &&
8686 FD->getDeclaredReturnType()->isUndeducedAutoType()) {
8687 SourceLocation RetLoc = FD->getReturnTypeSourceRange().getBegin();
8688 if (RetLoc.isInvalid())
8689 RetLoc = FD->getBeginLoc();
8690 // FIXME: Should we really care whether we have the complete type and the
8691 // 'enumerator' constants here? A forward declaration seems sufficient.
8692 QualType Cat = CheckComparisonCategoryType(
8693 Info.Category, RetLoc, ComparisonCategoryUsage::DefaultedOperator);
8694 if (Cat.isNull())
8695 return true;
8696 Context.adjustDeducedFunctionResultType(
8697 FD, SubstAutoType(FD->getDeclaredReturnType(), Cat));
8698 }
8699
8700 // C++2a [dcl.fct.def.default]p3 [P2002R0]:
8701 // An explicitly-defaulted function that is not defined as deleted may be
8702 // declared constexpr or consteval only if it is constexpr-compatible.
8703 // C++2a [class.compare.default]p3 [P2002R0]:
8704 // A defaulted comparison function is constexpr-compatible if it satisfies
8705 // the requirements for a constexpr function [...]
8706 // The only relevant requirements are that the parameter and return types are
8707 // literal types. The remaining conditions are checked by the analyzer.
8708 if (FD->isConstexpr()) {
8709 if (CheckConstexprReturnType(*this, FD, CheckConstexprKind::Diagnose) &&
8710 CheckConstexprParameterTypes(*this, FD, CheckConstexprKind::Diagnose) &&
8711 !Info.Constexpr) {
8712 Diag(FD->getBeginLoc(),
8713 diag::err_incorrect_defaulted_comparison_constexpr)
8714 << FD->isImplicit() << (int)DCK << FD->isConsteval();
8715 DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
8716 DefaultedComparisonAnalyzer::ExplainConstexpr)
8717 .visit();
8718 }
8719 }
8720
8721 // C++2a [dcl.fct.def.default]p3 [P2002R0]:
8722 // If a constexpr-compatible function is explicitly defaulted on its first
8723 // declaration, it is implicitly considered to be constexpr.
8724 // FIXME: Only applying this to the first declaration seems problematic, as
8725 // simple reorderings can affect the meaning of the program.
8726 if (First && !FD->isConstexpr() && Info.Constexpr)
8727 FD->setConstexprKind(ConstexprSpecKind::Constexpr);
8728
8729 // C++2a [except.spec]p3:
8730 // If a declaration of a function does not have a noexcept-specifier
8731 // [and] is defaulted on its first declaration, [...] the exception
8732 // specification is as specified below
8733 if (FD->getExceptionSpecType() == EST_None) {
8734 auto *FPT = FD->getType()->castAs<FunctionProtoType>();
8735 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8736 EPI.ExceptionSpec.Type = EST_Unevaluated;
8737 EPI.ExceptionSpec.SourceDecl = FD;
8738 FD->setType(Context.getFunctionType(FPT->getReturnType(),
8739 FPT->getParamTypes(), EPI));
8740 }
8741
8742 return false;
8743}
8744
8745void Sema::DeclareImplicitEqualityComparison(CXXRecordDecl *RD,
8746 FunctionDecl *Spaceship) {
8747 Sema::CodeSynthesisContext Ctx;
8748 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringImplicitEqualityComparison;
8749 Ctx.PointOfInstantiation = Spaceship->getEndLoc();
8750 Ctx.Entity = Spaceship;
8751 pushCodeSynthesisContext(Ctx);
8752
8753 if (FunctionDecl *EqualEqual = SubstSpaceshipAsEqualEqual(RD, Spaceship))
8754 EqualEqual->setImplicit();
8755
8756 popCodeSynthesisContext();
8757}
8758
8759void Sema::DefineDefaultedComparison(SourceLocation UseLoc, FunctionDecl *FD,
8760 DefaultedComparisonKind DCK) {
8761 assert(FD->isDefaulted() && !FD->isDeleted() &&(static_cast <bool> (FD->isDefaulted() && !FD
->isDeleted() && !FD->doesThisDeclarationHaveABody
()) ? void (0) : __assert_fail ("FD->isDefaulted() && !FD->isDeleted() && !FD->doesThisDeclarationHaveABody()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 8762, __extension__ __PRETTY_FUNCTION__
))
8762 !FD->doesThisDeclarationHaveABody())(static_cast <bool> (FD->isDefaulted() && !FD
->isDeleted() && !FD->doesThisDeclarationHaveABody
()) ? void (0) : __assert_fail ("FD->isDefaulted() && !FD->isDeleted() && !FD->doesThisDeclarationHaveABody()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 8762, __extension__ __PRETTY_FUNCTION__
))
;
8763 if (FD->willHaveBody() || FD->isInvalidDecl())
8764 return;
8765
8766 SynthesizedFunctionScope Scope(*this, FD);
8767
8768 // Add a context note for diagnostics produced after this point.
8769 Scope.addContextNote(UseLoc);
8770
8771 {
8772 // Build and set up the function body.
8773 // The first parameter has type maybe-ref-to maybe-const T, use that to get
8774 // the type of the class being compared.
8775 auto PT = FD->getParamDecl(0)->getType();
8776 CXXRecordDecl *RD = PT.getNonReferenceType()->getAsCXXRecordDecl();
8777 SourceLocation BodyLoc =
8778 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation();
8779 StmtResult Body =
8780 DefaultedComparisonSynthesizer(*this, RD, FD, DCK, BodyLoc).build();
8781 if (Body.isInvalid()) {
8782 FD->setInvalidDecl();
8783 return;
8784 }
8785 FD->setBody(Body.get());
8786 FD->markUsed(Context);
8787 }
8788
8789 // The exception specification is needed because we are defining the
8790 // function. Note that this will reuse the body we just built.
8791 ResolveExceptionSpec(UseLoc, FD->getType()->castAs<FunctionProtoType>());
8792
8793 if (ASTMutationListener *L = getASTMutationListener())
8794 L->CompletedImplicitDefinition(FD);
8795}
8796
8797static Sema::ImplicitExceptionSpecification
8798ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc,
8799 FunctionDecl *FD,
8800 Sema::DefaultedComparisonKind DCK) {
8801 ComputingExceptionSpec CES(S, FD, Loc);
8802 Sema::ImplicitExceptionSpecification ExceptSpec(S);
8803
8804 if (FD->isInvalidDecl())
8805 return ExceptSpec;
8806
8807 // The common case is that we just defined the comparison function. In that
8808 // case, just look at whether the body can throw.
8809 if (FD->hasBody()) {
8810 ExceptSpec.CalledStmt(FD->getBody());
8811 } else {
8812 // Otherwise, build a body so we can check it. This should ideally only
8813 // happen when we're not actually marking the function referenced. (This is
8814 // only really important for efficiency: we don't want to build and throw
8815 // away bodies for comparison functions more than we strictly need to.)
8816
8817 // Pretend to synthesize the function body in an unevaluated context.
8818 // Note that we can't actually just go ahead and define the function here:
8819 // we are not permitted to mark its callees as referenced.
8820 Sema::SynthesizedFunctionScope Scope(S, FD);
8821 EnterExpressionEvaluationContext Context(
8822 S, Sema::ExpressionEvaluationContext::Unevaluated);
8823
8824 CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent());
8825 SourceLocation BodyLoc =
8826 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation();
8827 StmtResult Body =
8828 DefaultedComparisonSynthesizer(S, RD, FD, DCK, BodyLoc).build();
8829 if (!Body.isInvalid())
8830 ExceptSpec.CalledStmt(Body.get());
8831
8832 // FIXME: Can we hold onto this body and just transform it to potentially
8833 // evaluated when we're asked to define the function rather than rebuilding
8834 // it? Either that, or we should only build the bits of the body that we
8835 // need (the expressions, not the statements).
8836 }
8837
8838 return ExceptSpec;
8839}
8840
8841void Sema::CheckDelayedMemberExceptionSpecs() {
8842 decltype(DelayedOverridingExceptionSpecChecks) Overriding;
8843 decltype(DelayedEquivalentExceptionSpecChecks) Equivalent;
8844
8845 std::swap(Overriding, DelayedOverridingExceptionSpecChecks);
8846 std::swap(Equivalent, DelayedEquivalentExceptionSpecChecks);
8847
8848 // Perform any deferred checking of exception specifications for virtual
8849 // destructors.
8850 for (auto &Check : Overriding)
8851 CheckOverridingFunctionExceptionSpec(Check.first, Check.second);
8852
8853 // Perform any deferred checking of exception specifications for befriended
8854 // special members.
8855 for (auto &Check : Equivalent)
8856 CheckEquivalentExceptionSpec(Check.second, Check.first);
8857}
8858
8859namespace {
8860/// CRTP base class for visiting operations performed by a special member
8861/// function (or inherited constructor).
8862template<typename Derived>
8863struct SpecialMemberVisitor {
8864 Sema &S;
8865 CXXMethodDecl *MD;
8866 Sema::CXXSpecialMember CSM;
8867 Sema::InheritedConstructorInfo *ICI;
8868
8869 // Properties of the special member, computed for convenience.
8870 bool IsConstructor = false, IsAssignment = false, ConstArg = false;
8871
8872 SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
8873 Sema::InheritedConstructorInfo *ICI)
8874 : S(S), MD(MD), CSM(CSM), ICI(ICI) {
8875 switch (CSM) {
8876 case Sema::CXXDefaultConstructor:
8877 case Sema::CXXCopyConstructor:
8878 case Sema::CXXMoveConstructor:
8879 IsConstructor = true;
8880 break;
8881 case Sema::CXXCopyAssignment:
8882 case Sema::CXXMoveAssignment:
8883 IsAssignment = true;
8884 break;
8885 case Sema::CXXDestructor:
8886 break;
8887 case Sema::CXXInvalid:
8888 llvm_unreachable("invalid special member kind")::llvm::llvm_unreachable_internal("invalid special member kind"
, "clang/lib/Sema/SemaDeclCXX.cpp", 8888)
;
8889 }
8890
8891 if (MD->getNumParams()) {
8892 if (const ReferenceType *RT =
8893 MD->getParamDecl(0)->getType()->getAs<ReferenceType>())
8894 ConstArg = RT->getPointeeType().isConstQualified();
8895 }
8896 }
8897
8898 Derived &getDerived() { return static_cast<Derived&>(*this); }
8899
8900 /// Is this a "move" special member?
8901 bool isMove() const {
8902 return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment;
8903 }
8904
8905 /// Look up the corresponding special member in the given class.
8906 Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class,
8907 unsigned Quals, bool IsMutable) {
8908 return lookupCallFromSpecialMember(S, Class, CSM, Quals,
8909 ConstArg && !IsMutable);
8910 }
8911
8912 /// Look up the constructor for the specified base class to see if it's
8913 /// overridden due to this being an inherited constructor.
8914 Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) {
8915 if (!ICI)
8916 return {};
8917 assert(CSM == Sema::CXXDefaultConstructor)(static_cast <bool> (CSM == Sema::CXXDefaultConstructor
) ? void (0) : __assert_fail ("CSM == Sema::CXXDefaultConstructor"
, "clang/lib/Sema/SemaDeclCXX.cpp", 8917, __extension__ __PRETTY_FUNCTION__
))
;
8918 auto *BaseCtor =
8919 cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor();
8920 if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first)
8921 return MD;
8922 return {};
8923 }
8924
8925 /// A base or member subobject.
8926 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
8927
8928 /// Get the location to use for a subobject in diagnostics.
8929 static SourceLocation getSubobjectLoc(Subobject Subobj) {
8930 // FIXME: For an indirect virtual base, the direct base leading to
8931 // the indirect virtual base would be a more useful choice.
8932 if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>())
8933 return B->getBaseTypeLoc();
8934 else
8935 return Subobj.get<FieldDecl*>()->getLocation();
8936 }
8937
8938 enum BasesToVisit {
8939 /// Visit all non-virtual (direct) bases.
8940 VisitNonVirtualBases,
8941 /// Visit all direct bases, virtual or not.
8942 VisitDirectBases,
8943 /// Visit all non-virtual bases, and all virtual bases if the class
8944 /// is not abstract.
8945 VisitPotentiallyConstructedBases,
8946 /// Visit all direct or virtual bases.
8947 VisitAllBases
8948 };
8949
8950 // Visit the bases and members of the class.
8951 bool visit(BasesToVisit Bases) {
8952 CXXRecordDecl *RD = MD->getParent();
8953
8954 if (Bases == VisitPotentiallyConstructedBases)
8955 Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases;
8956
8957 for (auto &B : RD->bases())
8958 if ((Bases == VisitDirectBases || !B.isVirtual()) &&
8959 getDerived().visitBase(&B))
8960 return true;
8961
8962 if (Bases == VisitAllBases)
8963 for (auto &B : RD->vbases())
8964 if (getDerived().visitBase(&B))
8965 return true;
8966
8967 for (auto *F : RD->fields())
8968 if (!F->isInvalidDecl() && !F->isUnnamedBitfield() &&
8969 getDerived().visitField(F))
8970 return true;
8971
8972 return false;
8973 }
8974};
8975}
8976
8977namespace {
8978struct SpecialMemberDeletionInfo
8979 : SpecialMemberVisitor<SpecialMemberDeletionInfo> {
8980 bool Diagnose;
8981
8982 SourceLocation Loc;
8983
8984 bool AllFieldsAreConst;
8985
8986 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
8987 Sema::CXXSpecialMember CSM,
8988 Sema::InheritedConstructorInfo *ICI, bool Diagnose)
8989 : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose),
8990 Loc(MD->getLocation()), AllFieldsAreConst(true) {}
8991
8992 bool inUnion() const { return MD->getParent()->isUnion(); }
8993
8994 Sema::CXXSpecialMember getEffectiveCSM() {
8995 return ICI ? Sema::CXXInvalid : CSM;
8996 }
8997
8998 bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType);
8999
9000 bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); }
9001 bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); }
9002
9003 bool shouldDeleteForBase(CXXBaseSpecifier *Base);
9004 bool shouldDeleteForField(FieldDecl *FD);
9005 bool shouldDeleteForAllConstMembers();
9006
9007 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
9008 unsigned Quals);
9009 bool shouldDeleteForSubobjectCall(Subobject Subobj,
9010 Sema::SpecialMemberOverloadResult SMOR,
9011 bool IsDtorCallInCtor);
9012
9013 bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
9014};
9015}
9016
9017/// Is the given special member inaccessible when used on the given
9018/// sub-object.
9019bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
9020 CXXMethodDecl *target) {
9021 /// If we're operating on a base class, the object type is the
9022 /// type of this special member.
9023 QualType objectTy;
9024 AccessSpecifier access = target->getAccess();
9025 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
9026 objectTy = S.Context.getTypeDeclType(MD->getParent());
9027 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
9028
9029 // If we're operating on a field, the object type is the type of the field.
9030 } else {
9031 objectTy = S.Context.getTypeDeclType(target->getParent());
9032 }
9033
9034 return S.isMemberAccessibleForDeletion(
9035 target->getParent(), DeclAccessPair::make(target, access), objectTy);
9036}
9037
9038/// Check whether we should delete a special member due to the implicit
9039/// definition containing a call to a special member of a subobject.
9040bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
9041 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR,
9042 bool IsDtorCallInCtor) {
9043 CXXMethodDecl *Decl = SMOR.getMethod();
9044 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
9045
9046 int DiagKind = -1;
9047
9048 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
9049 DiagKind = !Decl ? 0 : 1;
9050 else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
9051 DiagKind = 2;
9052 else if (!isAccessible(Subobj, Decl))
9053 DiagKind = 3;
9054 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
9055 !Decl->isTrivial()) {
9056 // A member of a union must have a trivial corresponding special member.
9057 // As a weird special case, a destructor call from a union's constructor
9058 // must be accessible and non-deleted, but need not be trivial. Such a
9059 // destructor is never actually called, but is semantically checked as
9060 // if it were.
9061 DiagKind = 4;
9062 }
9063
9064 if (DiagKind == -1)
9065 return false;
9066
9067 if (Diagnose) {
9068 if (Field) {
9069 S.Diag(Field->getLocation(),
9070 diag::note_deleted_special_member_class_subobject)
9071 << getEffectiveCSM() << MD->getParent() << /*IsField*/true
9072 << Field << DiagKind << IsDtorCallInCtor << /*IsObjCPtr*/false;
9073 } else {
9074 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
9075 S.Diag(Base->getBeginLoc(),
9076 diag::note_deleted_special_member_class_subobject)
9077 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false
9078 << Base->getType() << DiagKind << IsDtorCallInCtor
9079 << /*IsObjCPtr*/false;
9080 }
9081
9082 if (DiagKind == 1)
9083 S.NoteDeletedFunction(Decl);
9084 // FIXME: Explain inaccessibility if DiagKind == 3.
9085 }
9086
9087 return true;
9088}
9089
9090/// Check whether we should delete a special member function due to having a
9091/// direct or virtual base class or non-static data member of class type M.
9092bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
9093 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
9094 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
9095 bool IsMutable = Field && Field->isMutable();
9096
9097 // C++11 [class.ctor]p5:
9098 // -- any direct or virtual base class, or non-static data member with no
9099 // brace-or-equal-initializer, has class type M (or array thereof) and
9100 // either M has no default constructor or overload resolution as applied
9101 // to M's default constructor results in an ambiguity or in a function
9102 // that is deleted or inaccessible
9103 // C++11 [class.copy]p11, C++11 [class.copy]p23:
9104 // -- a direct or virtual base class B that cannot be copied/moved because
9105 // overload resolution, as applied to B's corresponding special member,
9106 // results in an ambiguity or a function that is deleted or inaccessible
9107 // from the defaulted special member
9108 // C++11 [class.dtor]p5:
9109 // -- any direct or virtual base class [...] has a type with a destructor
9110 // that is deleted or inaccessible
9111 if (!(CSM == Sema::CXXDefaultConstructor &&
9112 Field && Field->hasInClassInitializer()) &&
9113 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable),
9114 false))
9115 return true;
9116
9117 // C++11 [class.ctor]p5, C++11 [class.copy]p11:
9118 // -- any direct or virtual base class or non-static data member has a
9119 // type with a destructor that is deleted or inaccessible
9120 if (IsConstructor) {
9121 Sema::SpecialMemberOverloadResult SMOR =
9122 S.LookupSpecialMember(Class, Sema::CXXDestructor,
9123 false, false, false, false, false);
9124 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
9125 return true;
9126 }
9127
9128 return false;
9129}
9130
9131bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember(
9132 FieldDecl *FD, QualType FieldType) {
9133 // The defaulted special functions are defined as deleted if this is a variant
9134 // member with a non-trivial ownership type, e.g., ObjC __strong or __weak
9135 // type under ARC.
9136 if (!FieldType.hasNonTrivialObjCLifetime())
9137 return false;
9138
9139 // Don't make the defaulted default constructor defined as deleted if the
9140 // member has an in-class initializer.
9141 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer())
9142 return false;
9143
9144 if (Diagnose) {
9145 auto *ParentClass = cast<CXXRecordDecl>(FD->getParent());
9146 S.Diag(FD->getLocation(),
9147 diag::note_deleted_special_member_class_subobject)
9148 << getEffectiveCSM() << ParentClass << /*IsField*/true
9149 << FD << 4 << /*IsDtorCallInCtor*/false << /*IsObjCPtr*/true;
9150 }
9151
9152 return true;
9153}
9154
9155/// Check whether we should delete a special member function due to the class
9156/// having a particular direct or virtual base class.
9157bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
9158 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
9159 // If program is correct, BaseClass cannot be null, but if it is, the error
9160 // must be reported elsewhere.
9161 if (!BaseClass)
9162 return false;
9163 // If we have an inheriting constructor, check whether we're calling an
9164 // inherited constructor instead of a default constructor.
9165 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
9166 if (auto *BaseCtor = SMOR.getMethod()) {
9167 // Note that we do not check access along this path; other than that,
9168 // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false);
9169 // FIXME: Check that the base has a usable destructor! Sink this into
9170 // shouldDeleteForClassSubobject.
9171 if (BaseCtor->isDeleted() && Diagnose) {
9172 S.Diag(Base->getBeginLoc(),
9173 diag::note_deleted_special_member_class_subobject)
9174 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false
9175 << Base->getType() << /*Deleted*/ 1 << /*IsDtorCallInCtor*/ false
9176 << /*IsObjCPtr*/false;
9177 S.NoteDeletedFunction(BaseCtor);
9178 }
9179 return BaseCtor->isDeleted();
9180 }
9181 return shouldDeleteForClassSubobject(BaseClass, Base, 0);
9182}
9183
9184/// Check whether we should delete a special member function due to the class
9185/// having a particular non-static data member.
9186bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
9187 QualType FieldType = S.Context.getBaseElementType(FD->getType());
9188 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
9189
9190 if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType))
9191 return true;
9192
9193 if (CSM == Sema::CXXDefaultConstructor) {
9194 // For a default constructor, all references must be initialized in-class
9195 // and, if a union, it must have a non-const member.
9196 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
9197 if (Diagnose)
9198 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
9199 << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0;
9200 return true;
9201 }
9202 // C++11 [class.ctor]p5: any non-variant non-static data member of
9203 // const-qualified type (or array thereof) with no
9204 // brace-or-equal-initializer does not have a user-provided default
9205 // constructor.
9206 if (!inUnion() && FieldType.isConstQualified() &&
9207 !FD->hasInClassInitializer() &&
9208 (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
9209 if (Diagnose)
9210 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
9211 << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1;
9212 return true;
9213 }
9214
9215 if (inUnion() && !FieldType.isConstQualified())
9216 AllFieldsAreConst = false;
9217 } else if (CSM == Sema::CXXCopyConstructor) {
9218 // For a copy constructor, data members must not be of rvalue reference
9219 // type.
9220 if (FieldType->isRValueReferenceType()) {
9221 if (Diagnose)
9222 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
9223 << MD->getParent() << FD << FieldType;
9224 return true;
9225 }
9226 } else if (IsAssignment) {
9227 // For an assignment operator, data members must not be of reference type.
9228 if (FieldType->isReferenceType()) {
9229 if (Diagnose)
9230 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
9231 << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0;
9232 return true;
9233 }
9234 if (!FieldRecord && FieldType.isConstQualified()) {
9235 // C++11 [class.copy]p23:
9236 // -- a non-static data member of const non-class type (or array thereof)
9237 if (Diagnose)
9238 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
9239 << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1;
9240 return true;
9241 }
9242 }
9243
9244 if (FieldRecord) {
9245 // Some additional restrictions exist on the variant members.
9246 if (!inUnion() && FieldRecord->isUnion() &&
9247 FieldRecord->isAnonymousStructOrUnion()) {
9248 bool AllVariantFieldsAreConst = true;
9249
9250 // FIXME: Handle anonymous unions declared within anonymous unions.
9251 for (auto *UI : FieldRecord->fields()) {
9252 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
9253
9254 if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType))
9255 return true;
9256
9257 if (!UnionFieldType.isConstQualified())
9258 AllVariantFieldsAreConst = false;
9259
9260 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
9261 if (UnionFieldRecord &&
9262 shouldDeleteForClassSubobject(UnionFieldRecord, UI,
9263 UnionFieldType.getCVRQualifiers()))
9264 return true;
9265 }
9266
9267 // At least one member in each anonymous union must be non-const
9268 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
9269 !FieldRecord->field_empty()) {
9270 if (Diagnose)
9271 S.Diag(FieldRecord->getLocation(),
9272 diag::note_deleted_default_ctor_all_const)
9273 << !!ICI << MD->getParent() << /*anonymous union*/1;
9274 return true;
9275 }
9276
9277 // Don't check the implicit member of the anonymous union type.
9278 // This is technically non-conformant but supported, and we have a
9279 // diagnostic for this elsewhere.
9280 return false;
9281 }
9282
9283 if (shouldDeleteForClassSubobject(FieldRecord, FD,
9284 FieldType.getCVRQualifiers()))
9285 return true;
9286 }
9287
9288 return false;
9289}
9290
9291/// C++11 [class.ctor] p5:
9292/// A defaulted default constructor for a class X is defined as deleted if
9293/// X is a union and all of its variant members are of const-qualified type.
9294bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
9295 // This is a silly definition, because it gives an empty union a deleted
9296 // default constructor. Don't do that.
9297 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) {
9298 bool AnyFields = false;
9299 for (auto *F : MD->getParent()->fields())
9300 if ((AnyFields = !F->isUnnamedBitfield()))
9301 break;
9302 if (!AnyFields)
9303 return false;
9304 if (Diagnose)
9305 S.Diag(MD->getParent()->getLocation(),
9306 diag::note_deleted_default_ctor_all_const)
9307 << !!ICI << MD->getParent() << /*not anonymous union*/0;
9308 return true;
9309 }
9310 return false;
9311}
9312
9313/// Determine whether a defaulted special member function should be defined as
9314/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
9315/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
9316bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
9317 InheritedConstructorInfo *ICI,
9318 bool Diagnose) {
9319 if (MD->isInvalidDecl())
9320 return false;
9321 CXXRecordDecl *RD = MD->getParent();
9322 assert(!RD->isDependentType() && "do deletion after instantiation")(static_cast <bool> (!RD->isDependentType() &&
"do deletion after instantiation") ? void (0) : __assert_fail
("!RD->isDependentType() && \"do deletion after instantiation\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 9322, __extension__ __PRETTY_FUNCTION__
))
;
9323 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
9324 return false;
9325
9326 // C++11 [expr.lambda.prim]p19:
9327 // The closure type associated with a lambda-expression has a
9328 // deleted (8.4.3) default constructor and a deleted copy
9329 // assignment operator.
9330 // C++2a adds back these operators if the lambda has no lambda-capture.
9331 if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() &&
9332 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
9333 if (Diagnose)
9334 Diag(RD->getLocation(), diag::note_lambda_decl);
9335 return true;
9336 }
9337
9338 // For an anonymous struct or union, the copy and assignment special members
9339 // will never be used, so skip the check. For an anonymous union declared at
9340 // namespace scope, the constructor and destructor are used.
9341 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
9342 RD->isAnonymousStructOrUnion())
9343 return false;
9344
9345 // C++11 [class.copy]p7, p18:
9346 // If the class definition declares a move constructor or move assignment
9347 // operator, an implicitly declared copy constructor or copy assignment
9348 // operator is defined as deleted.
9349 if (MD->isImplicit() &&
9350 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
9351 CXXMethodDecl *UserDeclaredMove = nullptr;
9352
9353 // In Microsoft mode up to MSVC 2013, a user-declared move only causes the
9354 // deletion of the corresponding copy operation, not both copy operations.
9355 // MSVC 2015 has adopted the standards conforming behavior.
9356 bool DeletesOnlyMatchingCopy =
9357 getLangOpts().MSVCCompat &&
9358 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015);
9359
9360 if (RD->hasUserDeclaredMoveConstructor() &&
9361 (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) {
9362 if (!Diagnose) return true;
9363
9364 // Find any user-declared move constructor.
9365 for (auto *I : RD->ctors()) {
9366 if (I->isMoveConstructor()) {
9367 UserDeclaredMove = I;
9368 break;
9369 }
9370 }
9371 assert(UserDeclaredMove)(static_cast <bool> (UserDeclaredMove) ? void (0) : __assert_fail
("UserDeclaredMove", "clang/lib/Sema/SemaDeclCXX.cpp", 9371,
__extension__ __PRETTY_FUNCTION__))
;
9372 } else if (RD->hasUserDeclaredMoveAssignment() &&
9373 (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) {
9374 if (!Diagnose) return true;
9375
9376 // Find any user-declared move assignment operator.
9377 for (auto *I : RD->methods()) {
9378 if (I->isMoveAssignmentOperator()) {
9379 UserDeclaredMove = I;
9380 break;
9381 }
9382 }
9383 assert(UserDeclaredMove)(static_cast <bool> (UserDeclaredMove) ? void (0) : __assert_fail
("UserDeclaredMove", "clang/lib/Sema/SemaDeclCXX.cpp", 9383,
__extension__ __PRETTY_FUNCTION__))
;
9384 }
9385
9386 if (UserDeclaredMove) {
9387 Diag(UserDeclaredMove->getLocation(),
9388 diag::note_deleted_copy_user_declared_move)
9389 << (CSM == CXXCopyAssignment) << RD
9390 << UserDeclaredMove->isMoveAssignmentOperator();
9391 return true;
9392 }
9393 }
9394
9395 // Do access control from the special member function
9396 ContextRAII MethodContext(*this, MD);
9397
9398 // C++11 [class.dtor]p5:
9399 // -- for a virtual destructor, lookup of the non-array deallocation function
9400 // results in an ambiguity or in a function that is deleted or inaccessible
9401 if (CSM == CXXDestructor && MD->isVirtual()) {
9402 FunctionDecl *OperatorDelete = nullptr;
9403 DeclarationName Name =
9404 Context.DeclarationNames.getCXXOperatorName(OO_Delete);
9405 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
9406 OperatorDelete, /*Diagnose*/false)) {
9407 if (Diagnose)
9408 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
9409 return true;
9410 }
9411 }
9412
9413 SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose);
9414
9415 // Per DR1611, do not consider virtual bases of constructors of abstract
9416 // classes, since we are not going to construct them.
9417 // Per DR1658, do not consider virtual bases of destructors of abstract
9418 // classes either.
9419 // Per DR2180, for assignment operators we only assign (and thus only
9420 // consider) direct bases.
9421 if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases
9422 : SMI.VisitPotentiallyConstructedBases))
9423 return true;
9424
9425 if (SMI.shouldDeleteForAllConstMembers())
9426 return true;
9427
9428 if (getLangOpts().CUDA) {
9429 // We should delete the special member in CUDA mode if target inference
9430 // failed.
9431 // For inherited constructors (non-null ICI), CSM may be passed so that MD
9432 // is treated as certain special member, which may not reflect what special
9433 // member MD really is. However inferCUDATargetForImplicitSpecialMember
9434 // expects CSM to match MD, therefore recalculate CSM.
9435 assert(ICI || CSM == getSpecialMember(MD))(static_cast <bool> (ICI || CSM == getSpecialMember(MD)
) ? void (0) : __assert_fail ("ICI || CSM == getSpecialMember(MD)"
, "clang/lib/Sema/SemaDeclCXX.cpp", 9435, __extension__ __PRETTY_FUNCTION__
))
;
9436 auto RealCSM = CSM;
9437 if (ICI)
9438 RealCSM = getSpecialMember(MD);
9439
9440 return inferCUDATargetForImplicitSpecialMember(RD, RealCSM, MD,
9441 SMI.ConstArg, Diagnose);
9442 }
9443
9444 return false;
9445}
9446
9447void Sema::DiagnoseDeletedDefaultedFunction(FunctionDecl *FD) {
9448 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD);
9449 assert(DFK && "not a defaultable function")(static_cast <bool> (DFK && "not a defaultable function"
) ? void (0) : __assert_fail ("DFK && \"not a defaultable function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 9449, __extension__ __PRETTY_FUNCTION__
))
;
9450 assert(FD->isDefaulted() && FD->isDeleted() && "not defaulted and deleted")(static_cast <bool> (FD->isDefaulted() && FD
->isDeleted() && "not defaulted and deleted") ? void
(0) : __assert_fail ("FD->isDefaulted() && FD->isDeleted() && \"not defaulted and deleted\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 9450, __extension__ __PRETTY_FUNCTION__
))
;
9451
9452 if (DFK.isSpecialMember()) {
9453 ShouldDeleteSpecialMember(cast<CXXMethodDecl>(FD), DFK.asSpecialMember(),
9454 nullptr, /*Diagnose=*/true);
9455 } else {
9456 DefaultedComparisonAnalyzer(
9457 *this, cast<CXXRecordDecl>(FD->getLexicalDeclContext()), FD,
9458 DFK.asComparison(), DefaultedComparisonAnalyzer::ExplainDeleted)
9459 .visit();
9460 }
9461}
9462
9463/// Perform lookup for a special member of the specified kind, and determine
9464/// whether it is trivial. If the triviality can be determined without the
9465/// lookup, skip it. This is intended for use when determining whether a
9466/// special member of a containing object is trivial, and thus does not ever
9467/// perform overload resolution for default constructors.
9468///
9469/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
9470/// member that was most likely to be intended to be trivial, if any.
9471///
9472/// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to
9473/// determine whether the special member is trivial.
9474static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
9475 Sema::CXXSpecialMember CSM, unsigned Quals,
9476 bool ConstRHS,
9477 Sema::TrivialABIHandling TAH,
9478 CXXMethodDecl **Selected) {
9479 if (Selected)
9480 *Selected = nullptr;
9481
9482 switch (CSM) {
9483 case Sema::CXXInvalid:
9484 llvm_unreachable("not a special member")::llvm::llvm_unreachable_internal("not a special member", "clang/lib/Sema/SemaDeclCXX.cpp"
, 9484)
;
9485
9486 case Sema::CXXDefaultConstructor:
9487 // C++11 [class.ctor]p5:
9488 // A default constructor is trivial if:
9489 // - all the [direct subobjects] have trivial default constructors
9490 //
9491 // Note, no overload resolution is performed in this case.
9492 if (RD->hasTrivialDefaultConstructor())
9493 return true;
9494
9495 if (Selected) {
9496 // If there's a default constructor which could have been trivial, dig it
9497 // out. Otherwise, if there's any user-provided default constructor, point
9498 // to that as an example of why there's not a trivial one.
9499 CXXConstructorDecl *DefCtor = nullptr;
9500 if (RD->needsImplicitDefaultConstructor())
9501 S.DeclareImplicitDefaultConstructor(RD);
9502 for (auto *CI : RD->ctors()) {
9503 if (!CI->isDefaultConstructor())
9504 continue;
9505 DefCtor = CI;
9506 if (!DefCtor->isUserProvided())
9507 break;
9508 }
9509
9510 *Selected = DefCtor;
9511 }
9512
9513 return false;
9514
9515 case Sema::CXXDestructor:
9516 // C++11 [class.dtor]p5:
9517 // A destructor is trivial if:
9518 // - all the direct [subobjects] have trivial destructors
9519 if (RD->hasTrivialDestructor() ||
9520 (TAH == Sema::TAH_ConsiderTrivialABI &&
9521 RD->hasTrivialDestructorForCall()))
9522 return true;
9523
9524 if (Selected) {
9525 if (RD->needsImplicitDestructor())
9526 S.DeclareImplicitDestructor(RD);
9527 *Selected = RD->getDestructor();
9528 }
9529
9530 return false;
9531
9532 case Sema::CXXCopyConstructor:
9533 // C++11 [class.copy]p12:
9534 // A copy constructor is trivial if:
9535 // - the constructor selected to copy each direct [subobject] is trivial
9536 if (RD->hasTrivialCopyConstructor() ||
9537 (TAH == Sema::TAH_ConsiderTrivialABI &&
9538 RD->hasTrivialCopyConstructorForCall())) {
9539 if (Quals == Qualifiers::Const)
9540 // We must either select the trivial copy constructor or reach an
9541 // ambiguity; no need to actually perform overload resolution.
9542 return true;
9543 } else if (!Selected) {
9544 return false;
9545 }
9546 // In C++98, we are not supposed to perform overload resolution here, but we
9547 // treat that as a language defect, as suggested on cxx-abi-dev, to treat
9548 // cases like B as having a non-trivial copy constructor:
9549 // struct A { template<typename T> A(T&); };
9550 // struct B { mutable A a; };
9551 goto NeedOverloadResolution;
9552
9553 case Sema::CXXCopyAssignment:
9554 // C++11 [class.copy]p25:
9555 // A copy assignment operator is trivial if:
9556 // - the assignment operator selected to copy each direct [subobject] is
9557 // trivial
9558 if (RD->hasTrivialCopyAssignment()) {
9559 if (Quals == Qualifiers::Const)
9560 return true;
9561 } else if (!Selected) {
9562 return false;
9563 }
9564 // In C++98, we are not supposed to perform overload resolution here, but we
9565 // treat that as a language defect.
9566 goto NeedOverloadResolution;
9567
9568 case Sema::CXXMoveConstructor:
9569 case Sema::CXXMoveAssignment:
9570 NeedOverloadResolution:
9571 Sema::SpecialMemberOverloadResult SMOR =
9572 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS);
9573
9574 // The standard doesn't describe how to behave if the lookup is ambiguous.
9575 // We treat it as not making the member non-trivial, just like the standard
9576 // mandates for the default constructor. This should rarely matter, because
9577 // the member will also be deleted.
9578 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
9579 return true;
9580
9581 if (!SMOR.getMethod()) {
9582 assert(SMOR.getKind() ==(static_cast <bool> (SMOR.getKind() == Sema::SpecialMemberOverloadResult
::NoMemberOrDeleted) ? void (0) : __assert_fail ("SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted"
, "clang/lib/Sema/SemaDeclCXX.cpp", 9583, __extension__ __PRETTY_FUNCTION__
))
9583 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)(static_cast <bool> (SMOR.getKind() == Sema::SpecialMemberOverloadResult
::NoMemberOrDeleted) ? void (0) : __assert_fail ("SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted"
, "clang/lib/Sema/SemaDeclCXX.cpp", 9583, __extension__ __PRETTY_FUNCTION__
))
;
9584 return false;
9585 }
9586
9587 // We deliberately don't check if we found a deleted special member. We're
9588 // not supposed to!
9589 if (Selected)
9590 *Selected = SMOR.getMethod();
9591
9592 if (TAH == Sema::TAH_ConsiderTrivialABI &&
9593 (CSM == Sema::CXXCopyConstructor || CSM == Sema::CXXMoveConstructor))
9594 return SMOR.getMethod()->isTrivialForCall();
9595 return SMOR.getMethod()->isTrivial();
9596 }
9597
9598 llvm_unreachable("unknown special method kind")::llvm::llvm_unreachable_internal("unknown special method kind"
, "clang/lib/Sema/SemaDeclCXX.cpp", 9598)
;
9599}
9600
9601static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
9602 for (auto *CI : RD->ctors())
9603 if (!CI->isImplicit())
9604 return CI;
9605
9606 // Look for constructor templates.
9607 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
9608 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
9609 if (CXXConstructorDecl *CD =
9610 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
9611 return CD;
9612 }
9613
9614 return nullptr;
9615}
9616
9617/// The kind of subobject we are checking for triviality. The values of this
9618/// enumeration are used in diagnostics.
9619enum TrivialSubobjectKind {
9620 /// The subobject is a base class.
9621 TSK_BaseClass,
9622 /// The subobject is a non-static data member.
9623 TSK_Field,
9624 /// The object is actually the complete object.
9625 TSK_CompleteObject
9626};
9627
9628/// Check whether the special member selected for a given type would be trivial.
9629static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
9630 QualType SubType, bool ConstRHS,
9631 Sema::CXXSpecialMember CSM,
9632 TrivialSubobjectKind Kind,
9633 Sema::TrivialABIHandling TAH, bool Diagnose) {
9634 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
9635 if (!SubRD)
9636 return true;
9637
9638 CXXMethodDecl *Selected;
9639 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
9640 ConstRHS, TAH, Diagnose ? &Selected : nullptr))
9641 return true;
9642
9643 if (Diagnose) {
9644 if (ConstRHS)
9645 SubType.addConst();
9646
9647 if (!Selected && CSM == Sema::CXXDefaultConstructor) {
9648 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
9649 << Kind << SubType.getUnqualifiedType();
9650 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
9651 S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
9652 } else if (!Selected)
9653 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
9654 << Kind << SubType.getUnqualifiedType() << CSM << SubType;
9655 else if (Selected->isUserProvided()) {
9656 if (Kind == TSK_CompleteObject)
9657 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
9658 << Kind << SubType.getUnqualifiedType() << CSM;
9659 else {
9660 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
9661 << Kind << SubType.getUnqualifiedType() << CSM;
9662 S.Diag(Selected->getLocation(), diag::note_declared_at);
9663 }
9664 } else {
9665 if (Kind != TSK_CompleteObject)
9666 S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
9667 << Kind << SubType.getUnqualifiedType() << CSM;
9668
9669 // Explain why the defaulted or deleted special member isn't trivial.
9670 S.SpecialMemberIsTrivial(Selected, CSM, Sema::TAH_IgnoreTrivialABI,
9671 Diagnose);
9672 }
9673 }
9674
9675 return false;
9676}
9677
9678/// Check whether the members of a class type allow a special member to be
9679/// trivial.
9680static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
9681 Sema::CXXSpecialMember CSM,
9682 bool ConstArg,
9683 Sema::TrivialABIHandling TAH,
9684 bool Diagnose) {
9685 for (const auto *FI : RD->fields()) {
9686 if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
9687 continue;
9688
9689 QualType FieldType = S.Context.getBaseElementType(FI->getType());
9690
9691 // Pretend anonymous struct or union members are members of this class.
9692 if (FI->isAnonymousStructOrUnion()) {
9693 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
9694 CSM, ConstArg, TAH, Diagnose))
9695 return false;
9696 continue;
9697 }
9698
9699 // C++11 [class.ctor]p5:
9700 // A default constructor is trivial if [...]
9701 // -- no non-static data member of its class has a
9702 // brace-or-equal-initializer
9703 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
9704 if (Diagnose)
9705 S.Diag(FI->getLocation(), diag::note_nontrivial_default_member_init)
9706 << FI;
9707 return false;
9708 }
9709
9710 // Objective C ARC 4.3.5:
9711 // [...] nontrivally ownership-qualified types are [...] not trivially
9712 // default constructible, copy constructible, move constructible, copy
9713 // assignable, move assignable, or destructible [...]
9714 if (FieldType.hasNonTrivialObjCLifetime()) {
9715 if (Diagnose)
9716 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
9717 << RD << FieldType.getObjCLifetime();
9718 return false;
9719 }
9720
9721 bool ConstRHS = ConstArg && !FI->isMutable();
9722 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
9723 CSM, TSK_Field, TAH, Diagnose))
9724 return false;
9725 }
9726
9727 return true;
9728}
9729
9730/// Diagnose why the specified class does not have a trivial special member of
9731/// the given kind.
9732void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
9733 QualType Ty = Context.getRecordType(RD);
9734
9735 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment);
9736 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
9737 TSK_CompleteObject, TAH_IgnoreTrivialABI,
9738 /*Diagnose*/true);
9739}
9740
9741/// Determine whether a defaulted or deleted special member function is trivial,
9742/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
9743/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
9744bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
9745 TrivialABIHandling TAH, bool Diagnose) {
9746 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough")(static_cast <bool> (!MD->isUserProvided() &&
CSM != CXXInvalid && "not special enough") ? void (0
) : __assert_fail ("!MD->isUserProvided() && CSM != CXXInvalid && \"not special enough\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 9746, __extension__ __PRETTY_FUNCTION__
))
;
9747
9748 CXXRecordDecl *RD = MD->getParent();
9749
9750 bool ConstArg = false;
9751
9752 // C++11 [class.copy]p12, p25: [DR1593]
9753 // A [special member] is trivial if [...] its parameter-type-list is
9754 // equivalent to the parameter-type-list of an implicit declaration [...]
9755 switch (CSM) {
9756 case CXXDefaultConstructor:
9757 case CXXDestructor:
9758 // Trivial default constructors and destructors cannot have parameters.
9759 break;
9760
9761 case CXXCopyConstructor:
9762 case CXXCopyAssignment: {
9763 // Trivial copy operations always have const, non-volatile parameter types.
9764 ConstArg = true;
9765 const ParmVarDecl *Param0 = MD->getParamDecl(0);
9766 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
9767 if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
9768 if (Diagnose)
9769 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
9770 << Param0->getSourceRange() << Param0->getType()
9771 << Context.getLValueReferenceType(
9772 Context.getRecordType(RD).withConst());
9773 return false;
9774 }
9775 break;
9776 }
9777
9778 case CXXMoveConstructor:
9779 case CXXMoveAssignment: {
9780 // Trivial move operations always have non-cv-qualified parameters.
9781 const ParmVarDecl *Param0 = MD->getParamDecl(0);
9782 const RValueReferenceType *RT =
9783 Param0->getType()->getAs<RValueReferenceType>();
9784 if (!RT || RT->getPointeeType().getCVRQualifiers()) {
9785 if (Diagnose)
9786 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
9787 << Param0->getSourceRange() << Param0->getType()
9788 << Context.getRValueReferenceType(Context.getRecordType(RD));
9789 return false;
9790 }
9791 break;
9792 }
9793
9794 case CXXInvalid:
9795 llvm_unreachable("not a special member")::llvm::llvm_unreachable_internal("not a special member", "clang/lib/Sema/SemaDeclCXX.cpp"
, 9795)
;
9796 }
9797
9798 if (MD->getMinRequiredArguments() < MD->getNumParams()) {
9799 if (Diagnose)
9800 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
9801 diag::note_nontrivial_default_arg)
9802 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
9803 return false;
9804 }
9805 if (MD->isVariadic()) {
9806 if (Diagnose)
9807 Diag(MD->getLocation(), diag::note_nontrivial_variadic);
9808 return false;
9809 }
9810
9811 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
9812 // A copy/move [constructor or assignment operator] is trivial if
9813 // -- the [member] selected to copy/move each direct base class subobject
9814 // is trivial
9815 //
9816 // C++11 [class.copy]p12, C++11 [class.copy]p25:
9817 // A [default constructor or destructor] is trivial if
9818 // -- all the direct base classes have trivial [default constructors or
9819 // destructors]
9820 for (const auto &BI : RD->bases())
9821 if (!checkTrivialSubobjectCall(*this, BI.getBeginLoc(), BI.getType(),
9822 ConstArg, CSM, TSK_BaseClass, TAH, Diagnose))
9823 return false;
9824
9825 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
9826 // A copy/move [constructor or assignment operator] for a class X is
9827 // trivial if
9828 // -- for each non-static data member of X that is of class type (or array
9829 // thereof), the constructor selected to copy/move that member is
9830 // trivial
9831 //
9832 // C++11 [class.copy]p12, C++11 [class.copy]p25:
9833 // A [default constructor or destructor] is trivial if
9834 // -- for all of the non-static data members of its class that are of class
9835 // type (or array thereof), each such class has a trivial [default
9836 // constructor or destructor]
9837 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, TAH, Diagnose))
9838 return false;
9839
9840 // C++11 [class.dtor]p5:
9841 // A destructor is trivial if [...]
9842 // -- the destructor is not virtual
9843 if (CSM == CXXDestructor && MD->isVirtual()) {
9844 if (Diagnose)
9845 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
9846 return false;
9847 }
9848
9849 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
9850 // A [special member] for class X is trivial if [...]
9851 // -- class X has no virtual functions and no virtual base classes
9852 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
9853 if (!Diagnose)
9854 return false;
9855
9856 if (RD->getNumVBases()) {
9857 // Check for virtual bases. We already know that the corresponding
9858 // member in all bases is trivial, so vbases must all be direct.
9859 CXXBaseSpecifier &BS = *RD->vbases_begin();
9860 assert(BS.isVirtual())(static_cast <bool> (BS.isVirtual()) ? void (0) : __assert_fail
("BS.isVirtual()", "clang/lib/Sema/SemaDeclCXX.cpp", 9860, __extension__
__PRETTY_FUNCTION__))
;
9861 Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1;
9862 return false;
9863 }
9864
9865 // Must have a virtual method.
9866 for (const auto *MI : RD->methods()) {
9867 if (MI->isVirtual()) {
9868 SourceLocation MLoc = MI->getBeginLoc();
9869 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
9870 return false;
9871 }
9872 }
9873
9874 llvm_unreachable("dynamic class with no vbases and no virtual functions")::llvm::llvm_unreachable_internal("dynamic class with no vbases and no virtual functions"
, "clang/lib/Sema/SemaDeclCXX.cpp", 9874)
;
9875 }
9876
9877 // Looks like it's trivial!
9878 return true;
9879}
9880
9881namespace {
9882struct FindHiddenVirtualMethod {
9883 Sema *S;
9884 CXXMethodDecl *Method;
9885 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
9886 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
9887
9888private:
9889 /// Check whether any most overridden method from MD in Methods
9890 static bool CheckMostOverridenMethods(
9891 const CXXMethodDecl *MD,
9892 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) {
9893 if (MD->size_overridden_methods() == 0)
9894 return Methods.count(MD->getCanonicalDecl());
9895 for (const CXXMethodDecl *O : MD->overridden_methods())
9896 if (CheckMostOverridenMethods(O, Methods))
9897 return true;
9898 return false;
9899 }
9900
9901public:
9902 /// Member lookup function that determines whether a given C++
9903 /// method overloads virtual methods in a base class without overriding any,
9904 /// to be used with CXXRecordDecl::lookupInBases().
9905 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
9906 RecordDecl *BaseRecord =
9907 Specifier->getType()->castAs<RecordType>()->getDecl();
9908
9909 DeclarationName Name = Method->getDeclName();
9910 assert(Name.getNameKind() == DeclarationName::Identifier)(static_cast <bool> (Name.getNameKind() == DeclarationName
::Identifier) ? void (0) : __assert_fail ("Name.getNameKind() == DeclarationName::Identifier"
, "clang/lib/Sema/SemaDeclCXX.cpp", 9910, __extension__ __PRETTY_FUNCTION__
))
;
9911
9912 bool foundSameNameMethod = false;
9913 SmallVector<CXXMethodDecl *, 8> overloadedMethods;
9914 for (Path.Decls = BaseRecord->lookup(Name).begin();
9915 Path.Decls != DeclContext::lookup_iterator(); ++Path.Decls) {
9916 NamedDecl *D = *Path.Decls;
9917 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
9918 MD = MD->getCanonicalDecl();
9919 foundSameNameMethod = true;
9920 // Interested only in hidden virtual methods.
9921 if (!MD->isVirtual())
9922 continue;
9923 // If the method we are checking overrides a method from its base
9924 // don't warn about the other overloaded methods. Clang deviates from
9925 // GCC by only diagnosing overloads of inherited virtual functions that
9926 // do not override any other virtual functions in the base. GCC's
9927 // -Woverloaded-virtual diagnoses any derived function hiding a virtual
9928 // function from a base class. These cases may be better served by a
9929 // warning (not specific to virtual functions) on call sites when the
9930 // call would select a different function from the base class, were it
9931 // visible.
9932 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example.
9933 if (!S->IsOverload(Method, MD, false))
9934 return true;
9935 // Collect the overload only if its hidden.
9936 if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods))
9937 overloadedMethods.push_back(MD);
9938 }
9939 }
9940
9941 if (foundSameNameMethod)
9942 OverloadedMethods.append(overloadedMethods.begin(),
9943 overloadedMethods.end());
9944 return foundSameNameMethod;
9945 }
9946};
9947} // end anonymous namespace
9948
9949/// Add the most overridden methods from MD to Methods
9950static void AddMostOverridenMethods(const CXXMethodDecl *MD,
9951 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
9952 if (MD->size_overridden_methods() == 0)
9953 Methods.insert(MD->getCanonicalDecl());
9954 else
9955 for (const CXXMethodDecl *O : MD->overridden_methods())
9956 AddMostOverridenMethods(O, Methods);
9957}
9958
9959/// Check if a method overloads virtual methods in a base class without
9960/// overriding any.
9961void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
9962 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
9963 if (!MD->getDeclName().isIdentifier())
9964 return;
9965
9966 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
9967 /*bool RecordPaths=*/false,
9968 /*bool DetectVirtual=*/false);
9969 FindHiddenVirtualMethod FHVM;
9970 FHVM.Method = MD;
9971 FHVM.S = this;
9972
9973 // Keep the base methods that were overridden or introduced in the subclass
9974 // by 'using' in a set. A base method not in this set is hidden.
9975 CXXRecordDecl *DC = MD->getParent();
9976 DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
9977 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
9978 NamedDecl *ND = *I;
9979 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
9980 ND = shad->getTargetDecl();
9981 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
9982 AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods);
9983 }
9984
9985 if (DC->lookupInBases(FHVM, Paths))
9986 OverloadedMethods = FHVM.OverloadedMethods;
9987}
9988
9989void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
9990 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
9991 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
9992 CXXMethodDecl *overloadedMD = OverloadedMethods[i];
9993 PartialDiagnostic PD = PDiag(
9994 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
9995 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
9996 Diag(overloadedMD->getLocation(), PD);
9997 }
9998}
9999
10000/// Diagnose methods which overload virtual methods in a base class
10001/// without overriding any.
10002void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
10003 if (MD->isInvalidDecl())
10004 return;
10005
10006 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
10007 return;
10008
10009 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
10010 FindHiddenVirtualMethods(MD, OverloadedMethods);
10011 if (!OverloadedMethods.empty()) {
10012 Diag(MD->getLocation(), diag::warn_overloaded_virtual)
10013 << MD << (OverloadedMethods.size() > 1);
10014
10015 NoteHiddenVirtualMethods(MD, OverloadedMethods);
10016 }
10017}
10018
10019void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) {
10020 auto PrintDiagAndRemoveAttr = [&](unsigned N) {
10021 // No diagnostics if this is a template instantiation.
10022 if (!isTemplateInstantiation(RD.getTemplateSpecializationKind())) {
10023 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(),
10024 diag::ext_cannot_use_trivial_abi) << &RD;
10025 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(),
10026 diag::note_cannot_use_trivial_abi_reason) << &RD << N;
10027 }
10028 RD.dropAttr<TrivialABIAttr>();
10029 };
10030
10031 // Ill-formed if the copy and move constructors are deleted.
10032 auto HasNonDeletedCopyOrMoveConstructor = [&]() {
10033 // If the type is dependent, then assume it might have
10034 // implicit copy or move ctor because we won't know yet at this point.
10035 if (RD.isDependentType())
10036 return true;
10037 if (RD.needsImplicitCopyConstructor() &&
10038 !RD.defaultedCopyConstructorIsDeleted())
10039 return true;
10040 if (RD.needsImplicitMoveConstructor() &&
10041 !RD.defaultedMoveConstructorIsDeleted())
10042 return true;
10043 for (const CXXConstructorDecl *CD : RD.ctors())
10044 if (CD->isCopyOrMoveConstructor() && !CD->isDeleted())
10045 return true;
10046 return false;
10047 };
10048
10049 if (!HasNonDeletedCopyOrMoveConstructor()) {
10050 PrintDiagAndRemoveAttr(0);
10051 return;
10052 }
10053
10054 // Ill-formed if the struct has virtual functions.
10055 if (RD.isPolymorphic()) {
10056 PrintDiagAndRemoveAttr(1);
10057 return;
10058 }
10059
10060 for (const auto &B : RD.bases()) {
10061 // Ill-formed if the base class is non-trivial for the purpose of calls or a
10062 // virtual base.
10063 if (!B.getType()->isDependentType() &&
10064 !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) {
10065 PrintDiagAndRemoveAttr(2);
10066 return;
10067 }
10068
10069 if (B.isVirtual()) {
10070 PrintDiagAndRemoveAttr(3);
10071 return;
10072 }
10073 }
10074
10075 for (const auto *FD : RD.fields()) {
10076 // Ill-formed if the field is an ObjectiveC pointer or of a type that is
10077 // non-trivial for the purpose of calls.
10078 QualType FT = FD->getType();
10079 if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) {
10080 PrintDiagAndRemoveAttr(4);
10081 return;
10082 }
10083
10084 if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>())
10085 if (!RT->isDependentType() &&
10086 !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) {
10087 PrintDiagAndRemoveAttr(5);
10088 return;
10089 }
10090 }
10091}
10092
10093void Sema::ActOnFinishCXXMemberSpecification(
10094 Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac,
10095 SourceLocation RBrac, const ParsedAttributesView &AttrList) {
10096 if (!TagDecl)
10097 return;
10098
10099 AdjustDeclIfTemplate(TagDecl);
10100
10101 for (const ParsedAttr &AL : AttrList) {
10102 if (AL.getKind() != ParsedAttr::AT_Visibility)
10103 continue;
10104 AL.setInvalid();
10105 Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) << AL;
10106 }
10107
10108 ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
10109 // strict aliasing violation!
10110 reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
10111 FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
10112
10113 CheckCompletedCXXClass(S, cast<CXXRecordDecl>(TagDecl));
10114}
10115
10116/// Find the equality comparison functions that should be implicitly declared
10117/// in a given class definition, per C++2a [class.compare.default]p3.
10118static void findImplicitlyDeclaredEqualityComparisons(
10119 ASTContext &Ctx, CXXRecordDecl *RD,
10120 llvm::SmallVectorImpl<FunctionDecl *> &Spaceships) {
10121 DeclarationName EqEq = Ctx.DeclarationNames.getCXXOperatorName(OO_EqualEqual);
10122 if (!RD->lookup(EqEq).empty())
10123 // Member operator== explicitly declared: no implicit operator==s.
10124 return;
10125
10126 // Traverse friends looking for an '==' or a '<=>'.
10127 for (FriendDecl *Friend : RD->friends()) {
10128 FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Friend->getFriendDecl());
10129 if (!FD) continue;
10130
10131 if (FD->getOverloadedOperator() == OO_EqualEqual) {
10132 // Friend operator== explicitly declared: no implicit operator==s.
10133 Spaceships.clear();
10134 return;
10135 }
10136
10137 if (FD->getOverloadedOperator() == OO_Spaceship &&
10138 FD->isExplicitlyDefaulted())
10139 Spaceships.push_back(FD);
10140 }
10141
10142 // Look for members named 'operator<=>'.
10143 DeclarationName Cmp = Ctx.DeclarationNames.getCXXOperatorName(OO_Spaceship);
10144 for (NamedDecl *ND : RD->lookup(Cmp)) {
10145 // Note that we could find a non-function here (either a function template
10146 // or a using-declaration). Neither case results in an implicit
10147 // 'operator=='.
10148 if (auto *FD = dyn_cast<FunctionDecl>(ND))
10149 if (FD->isExplicitlyDefaulted())
10150 Spaceships.push_back(FD);
10151 }
10152}
10153
10154/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
10155/// special functions, such as the default constructor, copy
10156/// constructor, or destructor, to the given C++ class (C++
10157/// [special]p1). This routine can only be executed just before the
10158/// definition of the class is complete.
10159void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
10160 // Don't add implicit special members to templated classes.
10161 // FIXME: This means unqualified lookups for 'operator=' within a class
10162 // template don't work properly.
10163 if (!ClassDecl->isDependentType()) {
10164 if (ClassDecl->needsImplicitDefaultConstructor()) {
10165 ++getASTContext().NumImplicitDefaultConstructors;
10166
10167 if (ClassDecl->hasInheritedConstructor())
10168 DeclareImplicitDefaultConstructor(ClassDecl);
10169 }
10170
10171 if (ClassDecl->needsImplicitCopyConstructor()) {
10172 ++getASTContext().NumImplicitCopyConstructors;
10173
10174 // If the properties or semantics of the copy constructor couldn't be
10175 // determined while the class was being declared, force a declaration
10176 // of it now.
10177 if (ClassDecl->needsOverloadResolutionForCopyConstructor() ||
10178 ClassDecl->hasInheritedConstructor())
10179 DeclareImplicitCopyConstructor(ClassDecl);
10180 // For the MS ABI we need to know whether the copy ctor is deleted. A
10181 // prerequisite for deleting the implicit copy ctor is that the class has
10182 // a move ctor or move assignment that is either user-declared or whose
10183 // semantics are inherited from a subobject. FIXME: We should provide a
10184 // more direct way for CodeGen to ask whether the constructor was deleted.
10185 else if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
10186 (ClassDecl->hasUserDeclaredMoveConstructor() ||
10187 ClassDecl->needsOverloadResolutionForMoveConstructor() ||
10188 ClassDecl->hasUserDeclaredMoveAssignment() ||
10189 ClassDecl->needsOverloadResolutionForMoveAssignment()))
10190 DeclareImplicitCopyConstructor(ClassDecl);
10191 }
10192
10193 if (getLangOpts().CPlusPlus11 &&
10194 ClassDecl->needsImplicitMoveConstructor()) {
10195 ++getASTContext().NumImplicitMoveConstructors;
10196
10197 if (ClassDecl->needsOverloadResolutionForMoveConstructor() ||
10198 ClassDecl->hasInheritedConstructor())
10199 DeclareImplicitMoveConstructor(ClassDecl);
10200 }
10201
10202 if (ClassDecl->needsImplicitCopyAssignment()) {
10203 ++getASTContext().NumImplicitCopyAssignmentOperators;
10204
10205 // If we have a dynamic class, then the copy assignment operator may be
10206 // virtual, so we have to declare it immediately. This ensures that, e.g.,
10207 // it shows up in the right place in the vtable and that we diagnose
10208 // problems with the implicit exception specification.
10209 if (ClassDecl->isDynamicClass() ||
10210 ClassDecl->needsOverloadResolutionForCopyAssignment() ||
10211 ClassDecl->hasInheritedAssignment())
10212 DeclareImplicitCopyAssignment(ClassDecl);
10213 }
10214
10215 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
10216 ++getASTContext().NumImplicitMoveAssignmentOperators;
10217
10218 // Likewise for the move assignment operator.
10219 if (ClassDecl->isDynamicClass() ||
10220 ClassDecl->needsOverloadResolutionForMoveAssignment() ||
10221 ClassDecl->hasInheritedAssignment())
10222 DeclareImplicitMoveAssignment(ClassDecl);
10223 }
10224
10225 if (ClassDecl->needsImplicitDestructor()) {
10226 ++getASTContext().NumImplicitDestructors;
10227
10228 // If we have a dynamic class, then the destructor may be virtual, so we
10229 // have to declare the destructor immediately. This ensures that, e.g., it
10230 // shows up in the right place in the vtable and that we diagnose problems
10231 // with the implicit exception specification.
10232 if (ClassDecl->isDynamicClass() ||
10233 ClassDecl->needsOverloadResolutionForDestructor())
10234 DeclareImplicitDestructor(ClassDecl);
10235 }
10236 }
10237
10238 // C++2a [class.compare.default]p3:
10239 // If the member-specification does not explicitly declare any member or
10240 // friend named operator==, an == operator function is declared implicitly
10241 // for each defaulted three-way comparison operator function defined in
10242 // the member-specification
10243 // FIXME: Consider doing this lazily.
10244 // We do this during the initial parse for a class template, not during
10245 // instantiation, so that we can handle unqualified lookups for 'operator=='
10246 // when parsing the template.
10247 if (getLangOpts().CPlusPlus20 && !inTemplateInstantiation()) {
10248 llvm::SmallVector<FunctionDecl *, 4> DefaultedSpaceships;
10249 findImplicitlyDeclaredEqualityComparisons(Context, ClassDecl,
10250 DefaultedSpaceships);
10251 for (auto *FD : DefaultedSpaceships)
10252 DeclareImplicitEqualityComparison(ClassDecl, FD);
10253 }
10254}
10255
10256unsigned
10257Sema::ActOnReenterTemplateScope(Decl *D,
10258 llvm::function_ref<Scope *()> EnterScope) {
10259 if (!D)
10260 return 0;
10261 AdjustDeclIfTemplate(D);
10262
10263 // In order to get name lookup right, reenter template scopes in order from
10264 // outermost to innermost.
10265 SmallVector<TemplateParameterList *, 4> ParameterLists;
10266 DeclContext *LookupDC = dyn_cast<DeclContext>(D);
10267
10268 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
10269 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
10270 ParameterLists.push_back(DD->getTemplateParameterList(i));
10271
10272 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
10273 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
10274 ParameterLists.push_back(FTD->getTemplateParameters());
10275 } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
10276 LookupDC = VD->getDeclContext();
10277
10278 if (VarTemplateDecl *VTD = VD->getDescribedVarTemplate())
10279 ParameterLists.push_back(VTD->getTemplateParameters());
10280 else if (auto *PSD = dyn_cast<VarTemplatePartialSpecializationDecl>(D))
10281 ParameterLists.push_back(PSD->getTemplateParameters());
10282 }
10283 } else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
10284 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
10285 ParameterLists.push_back(TD->getTemplateParameterList(i));
10286
10287 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
10288 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
10289 ParameterLists.push_back(CTD->getTemplateParameters());
10290 else if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
10291 ParameterLists.push_back(PSD->getTemplateParameters());
10292 }
10293 }
10294 // FIXME: Alias declarations and concepts.
10295
10296 unsigned Count = 0;
10297 Scope *InnermostTemplateScope = nullptr;
10298 for (TemplateParameterList *Params : ParameterLists) {
10299 // Ignore explicit specializations; they don't contribute to the template
10300 // depth.
10301 if (Params->size() == 0)
10302 continue;
10303
10304 InnermostTemplateScope = EnterScope();
10305 for (NamedDecl *Param : *Params) {
10306 if (Param->getDeclName()) {
10307 InnermostTemplateScope->AddDecl(Param);
10308 IdResolver.AddDecl(Param);
10309 }
10310 }
10311 ++Count;
10312 }
10313
10314 // Associate the new template scopes with the corresponding entities.
10315 if (InnermostTemplateScope) {
10316 assert(LookupDC && "no enclosing DeclContext for template lookup")(static_cast <bool> (LookupDC && "no enclosing DeclContext for template lookup"
) ? void (0) : __assert_fail ("LookupDC && \"no enclosing DeclContext for template lookup\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 10316, __extension__ __PRETTY_FUNCTION__
))
;
10317 EnterTemplatedContext(InnermostTemplateScope, LookupDC);
10318 }
10319
10320 return Count;
10321}
10322
10323void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
10324 if (!RecordD) return;
10325 AdjustDeclIfTemplate(RecordD);
10326 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
10327 PushDeclContext(S, Record);
10328}
10329
10330void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
10331 if (!RecordD) return;
10332 PopDeclContext();
10333}
10334
10335/// This is used to implement the constant expression evaluation part of the
10336/// attribute enable_if extension. There is nothing in standard C++ which would
10337/// require reentering parameters.
10338void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
10339 if (!Param)
10340 return;
10341
10342 S->AddDecl(Param);
10343 if (Param->getDeclName())
10344 IdResolver.AddDecl(Param);
10345}
10346
10347/// ActOnStartDelayedCXXMethodDeclaration - We have completed
10348/// parsing a top-level (non-nested) C++ class, and we are now
10349/// parsing those parts of the given Method declaration that could
10350/// not be parsed earlier (C++ [class.mem]p2), such as default
10351/// arguments. This action should enter the scope of the given
10352/// Method declaration as if we had just parsed the qualified method
10353/// name. However, it should not bring the parameters into scope;
10354/// that will be performed by ActOnDelayedCXXMethodParameter.
10355void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
10356}
10357
10358/// ActOnDelayedCXXMethodParameter - We've already started a delayed
10359/// C++ method declaration. We're (re-)introducing the given
10360/// function parameter into scope for use in parsing later parts of
10361/// the method declaration. For example, we could see an
10362/// ActOnParamDefaultArgument event for this parameter.
10363void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
10364 if (!ParamD)
10365 return;
10366
10367 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
10368
10369 S->AddDecl(Param);
10370 if (Param->getDeclName())
10371 IdResolver.AddDecl(Param);
10372}
10373
10374/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
10375/// processing the delayed method declaration for Method. The method
10376/// declaration is now considered finished. There may be a separate
10377/// ActOnStartOfFunctionDef action later (not necessarily
10378/// immediately!) for this method, if it was also defined inside the
10379/// class body.
10380void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
10381 if (!MethodD)
10382 return;
10383
10384 AdjustDeclIfTemplate(MethodD);
10385
10386 FunctionDecl *Method = cast<FunctionDecl>(MethodD);
10387
10388 // Now that we have our default arguments, check the constructor
10389 // again. It could produce additional diagnostics or affect whether
10390 // the class has implicitly-declared destructors, among other
10391 // things.
10392 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
10393 CheckConstructor(Constructor);
10394
10395 // Check the default arguments, which we may have added.
10396 if (!Method->isInvalidDecl())
10397 CheckCXXDefaultArguments(Method);
10398}
10399
10400// Emit the given diagnostic for each non-address-space qualifier.
10401// Common part of CheckConstructorDeclarator and CheckDestructorDeclarator.
10402static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) {
10403 const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10404 if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) {
10405 bool DiagOccured = false;
10406 FTI.MethodQualifiers->forEachQualifier(
10407 [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName,
10408 SourceLocation SL) {
10409 // This diagnostic should be emitted on any qualifier except an addr
10410 // space qualifier. However, forEachQualifier currently doesn't visit
10411 // addr space qualifiers, so there's no way to write this condition
10412 // right now; we just diagnose on everything.
10413 S.Diag(SL, DiagID) << QualName << SourceRange(SL);
10414 DiagOccured = true;
10415 });
10416 if (DiagOccured)
10417 D.setInvalidType();
10418 }
10419}
10420
10421/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
10422/// the well-formedness of the constructor declarator @p D with type @p
10423/// R. If there are any errors in the declarator, this routine will
10424/// emit diagnostics and set the invalid bit to true. In any case, the type
10425/// will be updated to reflect a well-formed type for the constructor and
10426/// returned.
10427QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
10428 StorageClass &SC) {
10429 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
10430
10431 // C++ [class.ctor]p3:
10432 // A constructor shall not be virtual (10.3) or static (9.4). A
10433 // constructor can be invoked for a const, volatile or const
10434 // volatile object. A constructor shall not be declared const,
10435 // volatile, or const volatile (9.3.2).
10436 if (isVirtual) {
10437 if (!D.isInvalidType())
10438 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
10439 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
10440 << SourceRange(D.getIdentifierLoc());
10441 D.setInvalidType();
10442 }
10443 if (SC == SC_Static) {
10444 if (!D.isInvalidType())
10445 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
10446 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
10447 << SourceRange(D.getIdentifierLoc());
10448 D.setInvalidType();
10449 SC = SC_None;
10450 }
10451
10452 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
10453 diagnoseIgnoredQualifiers(
10454 diag::err_constructor_return_type, TypeQuals, SourceLocation(),
10455 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
10456 D.getDeclSpec().getRestrictSpecLoc(),
10457 D.getDeclSpec().getAtomicSpecLoc());
10458 D.setInvalidType();
10459 }
10460
10461 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor);
10462
10463 // C++0x [class.ctor]p4:
10464 // A constructor shall not be declared with a ref-qualifier.
10465 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10466 if (FTI.hasRefQualifier()) {
10467 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
10468 << FTI.RefQualifierIsLValueRef
10469 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
10470 D.setInvalidType();
10471 }
10472
10473 // Rebuild the function type "R" without any type qualifiers (in
10474 // case any of the errors above fired) and with "void" as the
10475 // return type, since constructors don't have return types.
10476 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>();
10477 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
10478 return R;
10479
10480 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
10481 EPI.TypeQuals = Qualifiers();
10482 EPI.RefQualifier = RQ_None;
10483
10484 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI);
10485}
10486
10487/// CheckConstructor - Checks a fully-formed constructor for
10488/// well-formedness, issuing any diagnostics required. Returns true if
10489/// the constructor declarator is invalid.
10490void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
10491 CXXRecordDecl *ClassDecl
10492 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
10493 if (!ClassDecl)
10494 return Constructor->setInvalidDecl();
10495
10496 // C++ [class.copy]p3:
10497 // A declaration of a constructor for a class X is ill-formed if
10498 // its first parameter is of type (optionally cv-qualified) X and
10499 // either there are no other parameters or else all other
10500 // parameters have default arguments.
10501 if (!Constructor->isInvalidDecl() &&
10502 Constructor->hasOneParamOrDefaultArgs() &&
10503 Constructor->getTemplateSpecializationKind() !=
10504 TSK_ImplicitInstantiation) {
10505 QualType ParamType = Constructor->getParamDecl(0)->getType();
10506 QualType ClassTy = Context.getTagDeclType(ClassDecl);
10507 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
10508 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
10509 const char *ConstRef
10510 = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
10511 : " const &";
10512 Diag(ParamLoc, diag::err_constructor_byvalue_arg)
10513 << FixItHint::CreateInsertion(ParamLoc, ConstRef);
10514
10515 // FIXME: Rather that making the constructor invalid, we should endeavor
10516 // to fix the type.
10517 Constructor->setInvalidDecl();
10518 }
10519 }
10520}
10521
10522/// CheckDestructor - Checks a fully-formed destructor definition for
10523/// well-formedness, issuing any diagnostics required. Returns true
10524/// on error.
10525bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
10526 CXXRecordDecl *RD = Destructor->getParent();
10527
10528 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
10529 SourceLocation Loc;
10530
10531 if (!Destructor->isImplicit())
10532 Loc = Destructor->getLocation();
10533 else
10534 Loc = RD->getLocation();
10535
10536 // If we have a virtual destructor, look up the deallocation function
10537 if (FunctionDecl *OperatorDelete =
10538 FindDeallocationFunctionForDestructor(Loc, RD)) {
10539 Expr *ThisArg = nullptr;
10540
10541 // If the notional 'delete this' expression requires a non-trivial
10542 // conversion from 'this' to the type of a destroying operator delete's
10543 // first parameter, perform that conversion now.
10544 if (OperatorDelete->isDestroyingOperatorDelete()) {
10545 QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
10546 if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) {
10547 // C++ [class.dtor]p13:
10548 // ... as if for the expression 'delete this' appearing in a
10549 // non-virtual destructor of the destructor's class.
10550 ContextRAII SwitchContext(*this, Destructor);
10551 ExprResult This =
10552 ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation());
10553 assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?")(static_cast <bool> (!This.isInvalid() && "couldn't form 'this' expr in dtor?"
) ? void (0) : __assert_fail ("!This.isInvalid() && \"couldn't form 'this' expr in dtor?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 10553, __extension__ __PRETTY_FUNCTION__
))
;
10554 This = PerformImplicitConversion(This.get(), ParamType, AA_Passing);
10555 if (This.isInvalid()) {
10556 // FIXME: Register this as a context note so that it comes out
10557 // in the right order.
10558 Diag(Loc, diag::note_implicit_delete_this_in_destructor_here);
10559 return true;
10560 }
10561 ThisArg = This.get();
10562 }
10563 }
10564
10565 DiagnoseUseOfDecl(OperatorDelete, Loc);
10566 MarkFunctionReferenced(Loc, OperatorDelete);
10567 Destructor->setOperatorDelete(OperatorDelete, ThisArg);
10568 }
10569 }
10570
10571 return false;
10572}
10573
10574/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
10575/// the well-formednes of the destructor declarator @p D with type @p
10576/// R. If there are any errors in the declarator, this routine will
10577/// emit diagnostics and set the declarator to invalid. Even if this happens,
10578/// will be updated to reflect a well-formed type for the destructor and
10579/// returned.
10580QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
10581 StorageClass& SC) {
10582 // C++ [class.dtor]p1:
10583 // [...] A typedef-name that names a class is a class-name
10584 // (7.1.3); however, a typedef-name that names a class shall not
10585 // be used as the identifier in the declarator for a destructor
10586 // declaration.
10587 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
10588 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
10589 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name)
10590 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
10591 else if (const TemplateSpecializationType *TST =
10592 DeclaratorType->getAs<TemplateSpecializationType>())
10593 if (TST->isTypeAlias())
10594 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name)
10595 << DeclaratorType << 1;
10596
10597 // C++ [class.dtor]p2:
10598 // A destructor is used to destroy objects of its class type. A
10599 // destructor takes no parameters, and no return type can be
10600 // specified for it (not even void). The address of a destructor
10601 // shall not be taken. A destructor shall not be static. A
10602 // destructor can be invoked for a const, volatile or const
10603 // volatile object. A destructor shall not be declared const,
10604 // volatile or const volatile (9.3.2).
10605 if (SC == SC_Static) {
10606 if (!D.isInvalidType())
10607 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
10608 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
10609 << SourceRange(D.getIdentifierLoc())
10610 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
10611
10612 SC = SC_None;
10613 }
10614 if (!D.isInvalidType()) {
10615 // Destructors don't have return types, but the parser will
10616 // happily parse something like:
10617 //
10618 // class X {
10619 // float ~X();
10620 // };
10621 //
10622 // The return type will be eliminated later.
10623 if (D.getDeclSpec().hasTypeSpecifier())
10624 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
10625 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
10626 << SourceRange(D.getIdentifierLoc());
10627 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
10628 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
10629 SourceLocation(),
10630 D.getDeclSpec().getConstSpecLoc(),
10631 D.getDeclSpec().getVolatileSpecLoc(),
10632 D.getDeclSpec().getRestrictSpecLoc(),
10633 D.getDeclSpec().getAtomicSpecLoc());
10634 D.setInvalidType();
10635 }
10636 }
10637
10638 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor);
10639
10640 // C++0x [class.dtor]p2:
10641 // A destructor shall not be declared with a ref-qualifier.
10642 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10643 if (FTI.hasRefQualifier()) {
10644 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
10645 << FTI.RefQualifierIsLValueRef
10646 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
10647 D.setInvalidType();
10648 }
10649
10650 // Make sure we don't have any parameters.
10651 if (FTIHasNonVoidParameters(FTI)) {
10652 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
10653
10654 // Delete the parameters.
10655 FTI.freeParams();
10656 D.setInvalidType();
10657 }
10658
10659 // Make sure the destructor isn't variadic.
10660 if (FTI.isVariadic) {
10661 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
10662 D.setInvalidType();
10663 }
10664
10665 // Rebuild the function type "R" without any type qualifiers or
10666 // parameters (in case any of the errors above fired) and with
10667 // "void" as the return type, since destructors don't have return
10668 // types.
10669 if (!D.isInvalidType())
10670 return R;
10671
10672 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>();
10673 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
10674 EPI.Variadic = false;
10675 EPI.TypeQuals = Qualifiers();
10676 EPI.RefQualifier = RQ_None;
10677 return Context.getFunctionType(Context.VoidTy, None, EPI);
10678}
10679
10680static void extendLeft(SourceRange &R, SourceRange Before) {
10681 if (Before.isInvalid())
10682 return;
10683 R.setBegin(Before.getBegin());
10684 if (R.getEnd().isInvalid())
10685 R.setEnd(Before.getEnd());
10686}
10687
10688static void extendRight(SourceRange &R, SourceRange After) {
10689 if (After.isInvalid())
10690 return;
10691 if (R.getBegin().isInvalid())
10692 R.setBegin(After.getBegin());
10693 R.setEnd(After.getEnd());
10694}
10695
10696/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
10697/// well-formednes of the conversion function declarator @p D with
10698/// type @p R. If there are any errors in the declarator, this routine
10699/// will emit diagnostics and return true. Otherwise, it will return
10700/// false. Either way, the type @p R will be updated to reflect a
10701/// well-formed type for the conversion operator.
10702void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
10703 StorageClass& SC) {
10704 // C++ [class.conv.fct]p1:
10705 // Neither parameter types nor return type can be specified. The
10706 // type of a conversion function (8.3.5) is "function taking no
10707 // parameter returning conversion-type-id."
10708 if (SC == SC_Static) {
10709 if (!D.isInvalidType())
10710 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
10711 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
10712 << D.getName().getSourceRange();
10713 D.setInvalidType();
10714 SC = SC_None;
10715 }
10716
10717 TypeSourceInfo *ConvTSI = nullptr;
10718 QualType ConvType =
10719 GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI);
10720
10721 const DeclSpec &DS = D.getDeclSpec();
10722 if (DS.hasTypeSpecifier() && !D.isInvalidType()) {
10723 // Conversion functions don't have return types, but the parser will
10724 // happily parse something like:
10725 //
10726 // class X {
10727 // float operator bool();
10728 // };
10729 //
10730 // The return type will be changed later anyway.
10731 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
10732 << SourceRange(DS.getTypeSpecTypeLoc())
10733 << SourceRange(D.getIdentifierLoc());
10734 D.setInvalidType();
10735 } else if (DS.getTypeQualifiers() && !D.isInvalidType()) {
10736 // It's also plausible that the user writes type qualifiers in the wrong
10737 // place, such as:
10738 // struct S { const operator int(); };
10739 // FIXME: we could provide a fixit to move the qualifiers onto the
10740 // conversion type.
10741 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
10742 << SourceRange(D.getIdentifierLoc()) << 0;
10743 D.setInvalidType();
10744 }
10745
10746 const auto *Proto = R->castAs<FunctionProtoType>();
10747
10748 // Make sure we don't have any parameters.
10749 if (Proto->getNumParams() > 0) {
10750 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
10751
10752 // Delete the parameters.
10753 D.getFunctionTypeInfo().freeParams();
10754 D.setInvalidType();
10755 } else if (Proto->isVariadic()) {
10756 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
10757 D.setInvalidType();
10758 }
10759
10760 // Diagnose "&operator bool()" and other such nonsense. This
10761 // is actually a gcc extension which we don't support.
10762 if (Proto->getReturnType() != ConvType) {
10763 bool NeedsTypedef = false;
10764 SourceRange Before, After;
10765
10766 // Walk the chunks and extract information on them for our diagnostic.
10767 bool PastFunctionChunk = false;
10768 for (auto &Chunk : D.type_objects()) {
10769 switch (Chunk.Kind) {
10770 case DeclaratorChunk::Function:
10771 if (!PastFunctionChunk) {
10772 if (Chunk.Fun.HasTrailingReturnType) {
10773 TypeSourceInfo *TRT = nullptr;
10774 GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT);
10775 if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange());
10776 }
10777 PastFunctionChunk = true;
10778 break;
10779 }
10780 LLVM_FALLTHROUGH[[gnu::fallthrough]];
10781 case DeclaratorChunk::Array:
10782 NeedsTypedef = true;
10783 extendRight(After, Chunk.getSourceRange());
10784 break;
10785
10786 case DeclaratorChunk::Pointer:
10787 case DeclaratorChunk::BlockPointer:
10788 case DeclaratorChunk::Reference:
10789 case DeclaratorChunk::MemberPointer:
10790 case DeclaratorChunk::Pipe:
10791 extendLeft(Before, Chunk.getSourceRange());
10792 break;
10793
10794 case DeclaratorChunk::Paren:
10795 extendLeft(Before, Chunk.Loc);
10796 extendRight(After, Chunk.EndLoc);
10797 break;
10798 }
10799 }
10800
10801 SourceLocation Loc = Before.isValid() ? Before.getBegin() :
10802 After.isValid() ? After.getBegin() :
10803 D.getIdentifierLoc();
10804 auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl);
10805 DB << Before << After;
10806
10807 if (!NeedsTypedef) {
10808 DB << /*don't need a typedef*/0;
10809
10810 // If we can provide a correct fix-it hint, do so.
10811 if (After.isInvalid() && ConvTSI) {
10812 SourceLocation InsertLoc =
10813 getLocForEndOfToken(ConvTSI->getTypeLoc().getEndLoc());
10814 DB << FixItHint::CreateInsertion(InsertLoc, " ")
10815 << FixItHint::CreateInsertionFromRange(
10816 InsertLoc, CharSourceRange::getTokenRange(Before))
10817 << FixItHint::CreateRemoval(Before);
10818 }
10819 } else if (!Proto->getReturnType()->isDependentType()) {
10820 DB << /*typedef*/1 << Proto->getReturnType();
10821 } else if (getLangOpts().CPlusPlus11) {
10822 DB << /*alias template*/2 << Proto->getReturnType();
10823 } else {
10824 DB << /*might not be fixable*/3;
10825 }
10826
10827 // Recover by incorporating the other type chunks into the result type.
10828 // Note, this does *not* change the name of the function. This is compatible
10829 // with the GCC extension:
10830 // struct S { &operator int(); } s;
10831 // int &r = s.operator int(); // ok in GCC
10832 // S::operator int&() {} // error in GCC, function name is 'operator int'.
10833 ConvType = Proto->getReturnType();
10834 }
10835
10836 // C++ [class.conv.fct]p4:
10837 // The conversion-type-id shall not represent a function type nor
10838 // an array type.
10839 if (ConvType->isArrayType()) {
10840 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
10841 ConvType = Context.getPointerType(ConvType);
10842 D.setInvalidType();
10843 } else if (ConvType->isFunctionType()) {
10844 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
10845 ConvType = Context.getPointerType(ConvType);
10846 D.setInvalidType();
10847 }
10848
10849 // Rebuild the function type "R" without any parameters (in case any
10850 // of the errors above fired) and with the conversion type as the
10851 // return type.
10852 if (D.isInvalidType())
10853 R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
10854
10855 // C++0x explicit conversion operators.
10856 if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus20)
10857 Diag(DS.getExplicitSpecLoc(),
10858 getLangOpts().CPlusPlus11
10859 ? diag::warn_cxx98_compat_explicit_conversion_functions
10860 : diag::ext_explicit_conversion_functions)
10861 << SourceRange(DS.getExplicitSpecRange());
10862}
10863
10864/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
10865/// the declaration of the given C++ conversion function. This routine
10866/// is responsible for recording the conversion function in the C++
10867/// class, if possible.
10868Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
10869 assert(Conversion && "Expected to receive a conversion function declaration")(static_cast <bool> (Conversion && "Expected to receive a conversion function declaration"
) ? void (0) : __assert_fail ("Conversion && \"Expected to receive a conversion function declaration\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 10869, __extension__ __PRETTY_FUNCTION__
))
;
10870
10871 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
10872
10873 // Make sure we aren't redeclaring the conversion function.
10874 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
10875 // C++ [class.conv.fct]p1:
10876 // [...] A conversion function is never used to convert a
10877 // (possibly cv-qualified) object to the (possibly cv-qualified)
10878 // same object type (or a reference to it), to a (possibly
10879 // cv-qualified) base class of that type (or a reference to it),
10880 // or to (possibly cv-qualified) void.
10881 QualType ClassType
10882 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
10883 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
10884 ConvType = ConvTypeRef->getPointeeType();
10885 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
10886 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
10887 /* Suppress diagnostics for instantiations. */;
10888 else if (Conversion->size_overridden_methods() != 0)
10889 /* Suppress diagnostics for overriding virtual function in a base class. */;
10890 else if (ConvType->isRecordType()) {
10891 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
10892 if (ConvType == ClassType)
10893 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
10894 << ClassType;
10895 else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType))
10896 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
10897 << ClassType << ConvType;
10898 } else if (ConvType->isVoidType()) {
10899 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
10900 << ClassType << ConvType;
10901 }
10902
10903 if (FunctionTemplateDecl *ConversionTemplate
10904 = Conversion->getDescribedFunctionTemplate())
10905 return ConversionTemplate;
10906
10907 return Conversion;
10908}
10909
10910namespace {
10911/// Utility class to accumulate and print a diagnostic listing the invalid
10912/// specifier(s) on a declaration.
10913struct BadSpecifierDiagnoser {
10914 BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID)
10915 : S(S), Diagnostic(S.Diag(Loc, DiagID)) {}
10916 ~BadSpecifierDiagnoser() {
10917 Diagnostic << Specifiers;
10918 }
10919
10920 template<typename T> void check(SourceLocation SpecLoc, T Spec) {
10921 return check(SpecLoc, DeclSpec::getSpecifierName(Spec));
10922 }
10923 void check(SourceLocation SpecLoc, DeclSpec::TST Spec) {
10924 return check(SpecLoc,
10925 DeclSpec::getSpecifierName(Spec, S.getPrintingPolicy()));
10926 }
10927 void check(SourceLocation SpecLoc, const char *Spec) {
10928 if (SpecLoc.isInvalid()) return;
10929 Diagnostic << SourceRange(SpecLoc, SpecLoc);
10930 if (!Specifiers.empty()) Specifiers += " ";
10931 Specifiers += Spec;
10932 }
10933
10934 Sema &S;
10935 Sema::SemaDiagnosticBuilder Diagnostic;
10936 std::string Specifiers;
10937};
10938}
10939
10940/// Check the validity of a declarator that we parsed for a deduction-guide.
10941/// These aren't actually declarators in the grammar, so we need to check that
10942/// the user didn't specify any pieces that are not part of the deduction-guide
10943/// grammar.
10944void Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R,
10945 StorageClass &SC) {
10946 TemplateName GuidedTemplate = D.getName().TemplateName.get().get();
10947 TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl();
10948 assert(GuidedTemplateDecl && "missing template decl for deduction guide")(static_cast <bool> (GuidedTemplateDecl && "missing template decl for deduction guide"
) ? void (0) : __assert_fail ("GuidedTemplateDecl && \"missing template decl for deduction guide\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 10948, __extension__ __PRETTY_FUNCTION__
))
;
10949
10950 // C++ [temp.deduct.guide]p3:
10951 // A deduction-gide shall be declared in the same scope as the
10952 // corresponding class template.
10953 if (!CurContext->getRedeclContext()->Equals(
10954 GuidedTemplateDecl->getDeclContext()->getRedeclContext())) {
10955 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope)
10956 << GuidedTemplateDecl;
10957 Diag(GuidedTemplateDecl->getLocation(), diag::note_template_decl_here);
10958 }
10959
10960 auto &DS = D.getMutableDeclSpec();
10961 // We leave 'friend' and 'virtual' to be rejected in the normal way.
10962 if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() ||
10963 DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() ||
10964 DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) {
10965 BadSpecifierDiagnoser Diagnoser(
10966 *this, D.getIdentifierLoc(),
10967 diag::err_deduction_guide_invalid_specifier);
10968
10969 Diagnoser.check(DS.getStorageClassSpecLoc(), DS.getStorageClassSpec());
10970 DS.ClearStorageClassSpecs();
10971 SC = SC_None;
10972
10973 // 'explicit' is permitted.
10974 Diagnoser.check(DS.getInlineSpecLoc(), "inline");
10975 Diagnoser.check(DS.getNoreturnSpecLoc(), "_Noreturn");
10976 Diagnoser.check(DS.getConstexprSpecLoc(), "constexpr");
10977 DS.ClearConstexprSpec();
10978
10979 Diagnoser.check(DS.getConstSpecLoc(), "const");
10980 Diagnoser.check(DS.getRestrictSpecLoc(), "__restrict");
10981 Diagnoser.check(DS.getVolatileSpecLoc(), "volatile");
10982 Diagnoser.check(DS.getAtomicSpecLoc(), "_Atomic");
10983 Diagnoser.check(DS.getUnalignedSpecLoc(), "__unaligned");
10984 DS.ClearTypeQualifiers();
10985
10986 Diagnoser.check(DS.getTypeSpecComplexLoc(), DS.getTypeSpecComplex());
10987 Diagnoser.check(DS.getTypeSpecSignLoc(), DS.getTypeSpecSign());
10988 Diagnoser.check(DS.getTypeSpecWidthLoc(), DS.getTypeSpecWidth());
10989 Diagnoser.check(DS.getTypeSpecTypeLoc(), DS.getTypeSpecType());
10990 DS.ClearTypeSpecType();
10991 }
10992
10993 if (D.isInvalidType())
10994 return;
10995
10996 // Check the declarator is simple enough.
10997 bool FoundFunction = false;
10998 for (const DeclaratorChunk &Chunk : llvm::reverse(D.type_objects())) {
10999 if (Chunk.Kind == DeclaratorChunk::Paren)
11000 continue;
11001 if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) {
11002 Diag(D.getDeclSpec().getBeginLoc(),
11003 diag::err_deduction_guide_with_complex_decl)
11004 << D.getSourceRange();
11005 break;
11006 }
11007 if (!Chunk.Fun.hasTrailingReturnType()) {
11008 Diag(D.getName().getBeginLoc(),
11009 diag::err_deduction_guide_no_trailing_return_type);
11010 break;
11011 }
11012
11013 // Check that the return type is written as a specialization of
11014 // the template specified as the deduction-guide's name.
11015 ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType();
11016 TypeSourceInfo *TSI = nullptr;
11017 QualType RetTy = GetTypeFromParser(TrailingReturnType, &TSI);
11018 assert(TSI && "deduction guide has valid type but invalid return type?")(static_cast <bool> (TSI && "deduction guide has valid type but invalid return type?"
) ? void (0) : __assert_fail ("TSI && \"deduction guide has valid type but invalid return type?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11018, __extension__ __PRETTY_FUNCTION__
))
;
11019 bool AcceptableReturnType = false;
11020 bool MightInstantiateToSpecialization = false;
11021 if (auto RetTST =
11022 TSI->getTypeLoc().getAs<TemplateSpecializationTypeLoc>()) {
11023 TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName();
11024 bool TemplateMatches =
11025 Context.hasSameTemplateName(SpecifiedName, GuidedTemplate);
11026 // FIXME: We should consider other template kinds (using, qualified),
11027 // otherwise we will emit bogus diagnostics.
11028 if (SpecifiedName.getKind() == TemplateName::Template && TemplateMatches)
11029 AcceptableReturnType = true;
11030 else {
11031 // This could still instantiate to the right type, unless we know it
11032 // names the wrong class template.
11033 auto *TD = SpecifiedName.getAsTemplateDecl();
11034 MightInstantiateToSpecialization = !(TD && isa<ClassTemplateDecl>(TD) &&
11035 !TemplateMatches);
11036 }
11037 } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) {
11038 MightInstantiateToSpecialization = true;
11039 }
11040
11041 if (!AcceptableReturnType) {
11042 Diag(TSI->getTypeLoc().getBeginLoc(),
11043 diag::err_deduction_guide_bad_trailing_return_type)
11044 << GuidedTemplate << TSI->getType()
11045 << MightInstantiateToSpecialization
11046 << TSI->getTypeLoc().getSourceRange();
11047 }
11048
11049 // Keep going to check that we don't have any inner declarator pieces (we
11050 // could still have a function returning a pointer to a function).
11051 FoundFunction = true;
11052 }
11053
11054 if (D.isFunctionDefinition())
11055 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function);
11056}
11057
11058//===----------------------------------------------------------------------===//
11059// Namespace Handling
11060//===----------------------------------------------------------------------===//
11061
11062/// Diagnose a mismatch in 'inline' qualifiers when a namespace is
11063/// reopened.
11064static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
11065 SourceLocation Loc,
11066 IdentifierInfo *II, bool *IsInline,
11067 NamespaceDecl *PrevNS) {
11068 assert(*IsInline != PrevNS->isInline())(static_cast <bool> (*IsInline != PrevNS->isInline()
) ? void (0) : __assert_fail ("*IsInline != PrevNS->isInline()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 11068, __extension__ __PRETTY_FUNCTION__
))
;
11069
11070 // 'inline' must appear on the original definition, but not necessarily
11071 // on all extension definitions, so the note should point to the first
11072 // definition to avoid confusion.
11073 PrevNS = PrevNS->getFirstDecl();
11074
11075 if (PrevNS->isInline())
11076 // The user probably just forgot the 'inline', so suggest that it
11077 // be added back.
11078 S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
11079 << FixItHint::CreateInsertion(KeywordLoc, "inline ");
11080 else
11081 S.Diag(Loc, diag::err_inline_namespace_mismatch);
11082
11083 S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
11084 *IsInline = PrevNS->isInline();
11085}
11086
11087/// ActOnStartNamespaceDef - This is called at the start of a namespace
11088/// definition.
11089Decl *Sema::ActOnStartNamespaceDef(
11090 Scope *NamespcScope, SourceLocation InlineLoc, SourceLocation NamespaceLoc,
11091 SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation LBrace,
11092 const ParsedAttributesView &AttrList, UsingDirectiveDecl *&UD) {
11093 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
11094 // For anonymous namespace, take the location of the left brace.
11095 SourceLocation Loc = II ? IdentLoc : LBrace;
11096 bool IsInline = InlineLoc.isValid();
11097 bool IsInvalid = false;
11098 bool IsStd = false;
11099 bool AddToKnown = false;
11100 Scope *DeclRegionScope = NamespcScope->getParent();
11101
11102 NamespaceDecl *PrevNS = nullptr;
11103 if (II) {
11104 // C++ [namespace.def]p2:
11105 // The identifier in an original-namespace-definition shall not
11106 // have been previously defined in the declarative region in
11107 // which the original-namespace-definition appears. The
11108 // identifier in an original-namespace-definition is the name of
11109 // the namespace. Subsequently in that declarative region, it is
11110 // treated as an original-namespace-name.
11111 //
11112 // Since namespace names are unique in their scope, and we don't
11113 // look through using directives, just look for any ordinary names
11114 // as if by qualified name lookup.
11115 LookupResult R(*this, II, IdentLoc, LookupOrdinaryName,
11116 ForExternalRedeclaration);
11117 LookupQualifiedName(R, CurContext->getRedeclContext());
11118 NamedDecl *PrevDecl =
11119 R.isSingleResult() ? R.getRepresentativeDecl() : nullptr;
11120 PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
11121
11122 if (PrevNS) {
11123 // This is an extended namespace definition.
11124 if (IsInline != PrevNS->isInline())
11125 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
11126 &IsInline, PrevNS);
11127 } else if (PrevDecl) {
11128 // This is an invalid name redefinition.
11129 Diag(Loc, diag::err_redefinition_different_kind)
11130 << II;
11131 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
11132 IsInvalid = true;
11133 // Continue on to push Namespc as current DeclContext and return it.
11134 } else if (II->isStr("std") &&
11135 CurContext->getRedeclContext()->isTranslationUnit()) {
11136 // This is the first "real" definition of the namespace "std", so update
11137 // our cache of the "std" namespace to point at this definition.
11138 PrevNS = getStdNamespace();
11139 IsStd = true;
11140 AddToKnown = !IsInline;
11141 } else {
11142 // We've seen this namespace for the first time.
11143 AddToKnown = !IsInline;
11144 }
11145 } else {
11146 // Anonymous namespaces.
11147
11148 // Determine whether the parent already has an anonymous namespace.
11149 DeclContext *Parent = CurContext->getRedeclContext();
11150 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
11151 PrevNS = TU->getAnonymousNamespace();
11152 } else {
11153 NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
11154 PrevNS = ND->getAnonymousNamespace();
11155 }
11156
11157 if (PrevNS && IsInline != PrevNS->isInline())
11158 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
11159 &IsInline, PrevNS);
11160 }
11161
11162 NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
11163 StartLoc, Loc, II, PrevNS);
11164 if (IsInvalid)
11165 Namespc->setInvalidDecl();
11166
11167 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
11168 AddPragmaAttributes(DeclRegionScope, Namespc);
11169
11170 // FIXME: Should we be merging attributes?
11171 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
11172 PushNamespaceVisibilityAttr(Attr, Loc);
11173
11174 if (IsStd)
11175 StdNamespace = Namespc;
11176 if (AddToKnown)
11177 KnownNamespaces[Namespc] = false;
11178
11179 if (II) {
11180 PushOnScopeChains(Namespc, DeclRegionScope);
11181 } else {
11182 // Link the anonymous namespace into its parent.
11183 DeclContext *Parent = CurContext->getRedeclContext();
11184 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
11185 TU->setAnonymousNamespace(Namespc);
11186 } else {
11187 cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
11188 }
11189
11190 CurContext->addDecl(Namespc);
11191
11192 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition
11193 // behaves as if it were replaced by
11194 // namespace unique { /* empty body */ }
11195 // using namespace unique;
11196 // namespace unique { namespace-body }
11197 // where all occurrences of 'unique' in a translation unit are
11198 // replaced by the same identifier and this identifier differs
11199 // from all other identifiers in the entire program.
11200
11201 // We just create the namespace with an empty name and then add an
11202 // implicit using declaration, just like the standard suggests.
11203 //
11204 // CodeGen enforces the "universally unique" aspect by giving all
11205 // declarations semantically contained within an anonymous
11206 // namespace internal linkage.
11207
11208 if (!PrevNS) {
11209 UD = UsingDirectiveDecl::Create(Context, Parent,
11210 /* 'using' */ LBrace,
11211 /* 'namespace' */ SourceLocation(),
11212 /* qualifier */ NestedNameSpecifierLoc(),
11213 /* identifier */ SourceLocation(),
11214 Namespc,
11215 /* Ancestor */ Parent);
11216 UD->setImplicit();
11217 Parent->addDecl(UD);
11218 }
11219 }
11220
11221 ActOnDocumentableDecl(Namespc);
11222
11223 // Although we could have an invalid decl (i.e. the namespace name is a
11224 // redefinition), push it as current DeclContext and try to continue parsing.
11225 // FIXME: We should be able to push Namespc here, so that the each DeclContext
11226 // for the namespace has the declarations that showed up in that particular
11227 // namespace definition.
11228 PushDeclContext(NamespcScope, Namespc);
11229 return Namespc;
11230}
11231
11232/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
11233/// is a namespace alias, returns the namespace it points to.
11234static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
11235 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
11236 return AD->getNamespace();
11237 return dyn_cast_or_null<NamespaceDecl>(D);
11238}
11239
11240/// ActOnFinishNamespaceDef - This callback is called after a namespace is
11241/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
11242void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
11243 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
11244 assert(Namespc && "Invalid parameter, expected NamespaceDecl")(static_cast <bool> (Namespc && "Invalid parameter, expected NamespaceDecl"
) ? void (0) : __assert_fail ("Namespc && \"Invalid parameter, expected NamespaceDecl\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11244, __extension__ __PRETTY_FUNCTION__
))
;
11245 Namespc->setRBraceLoc(RBrace);
11246 PopDeclContext();
11247 if (Namespc->hasAttr<VisibilityAttr>())
11248 PopPragmaVisibility(true, RBrace);
11249 // If this namespace contains an export-declaration, export it now.
11250 if (DeferredExportedNamespaces.erase(Namespc))
11251 Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported);
11252}
11253
11254CXXRecordDecl *Sema::getStdBadAlloc() const {
11255 return cast_or_null<CXXRecordDecl>(
11256 StdBadAlloc.get(Context.getExternalSource()));
11257}
11258
11259EnumDecl *Sema::getStdAlignValT() const {
11260 return cast_or_null<EnumDecl>(StdAlignValT.get(Context.getExternalSource()));
11261}
11262
11263NamespaceDecl *Sema::getStdNamespace() const {
11264 return cast_or_null<NamespaceDecl>(
11265 StdNamespace.get(Context.getExternalSource()));
11266}
11267
11268NamespaceDecl *Sema::lookupStdExperimentalNamespace() {
11269 if (!StdExperimentalNamespaceCache) {
11270 if (auto Std = getStdNamespace()) {
11271 LookupResult Result(*this, &PP.getIdentifierTable().get("experimental"),
11272 SourceLocation(), LookupNamespaceName);
11273 if (!LookupQualifiedName(Result, Std) ||
11274 !(StdExperimentalNamespaceCache =
11275 Result.getAsSingle<NamespaceDecl>()))
11276 Result.suppressDiagnostics();
11277 }
11278 }
11279 return StdExperimentalNamespaceCache;
11280}
11281
11282namespace {
11283
11284enum UnsupportedSTLSelect {
11285 USS_InvalidMember,
11286 USS_MissingMember,
11287 USS_NonTrivial,
11288 USS_Other
11289};
11290
11291struct InvalidSTLDiagnoser {
11292 Sema &S;
11293 SourceLocation Loc;
11294 QualType TyForDiags;
11295
11296 QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "",
11297 const VarDecl *VD = nullptr) {
11298 {
11299 auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported)
11300 << TyForDiags << ((int)Sel);
11301 if (Sel == USS_InvalidMember || Sel == USS_MissingMember) {
11302 assert(!Name.empty())(static_cast <bool> (!Name.empty()) ? void (0) : __assert_fail
("!Name.empty()", "clang/lib/Sema/SemaDeclCXX.cpp", 11302, __extension__
__PRETTY_FUNCTION__))
;
11303 D << Name;
11304 }
11305 }
11306 if (Sel == USS_InvalidMember) {
11307 S.Diag(VD->getLocation(), diag::note_var_declared_here)
11308 << VD << VD->getSourceRange();
11309 }
11310 return QualType();
11311 }
11312};
11313} // namespace
11314
11315QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind,
11316 SourceLocation Loc,
11317 ComparisonCategoryUsage Usage) {
11318 assert(getLangOpts().CPlusPlus &&(static_cast <bool> (getLangOpts().CPlusPlus &&
"Looking for comparison category type outside of C++.") ? void
(0) : __assert_fail ("getLangOpts().CPlusPlus && \"Looking for comparison category type outside of C++.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11319, __extension__ __PRETTY_FUNCTION__
))
11319 "Looking for comparison category type outside of C++.")(static_cast <bool> (getLangOpts().CPlusPlus &&
"Looking for comparison category type outside of C++.") ? void
(0) : __assert_fail ("getLangOpts().CPlusPlus && \"Looking for comparison category type outside of C++.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11319, __extension__ __PRETTY_FUNCTION__
))
;
11320
11321 // Use an elaborated type for diagnostics which has a name containing the
11322 // prepended 'std' namespace but not any inline namespace names.
11323 auto TyForDiags = [&](ComparisonCategoryInfo *Info) {
11324 auto *NNS =
11325 NestedNameSpecifier::Create(Context, nullptr, getStdNamespace());
11326 return Context.getElaboratedType(ETK_None, NNS, Info->getType());
11327 };
11328
11329 // Check if we've already successfully checked the comparison category type
11330 // before. If so, skip checking it again.
11331 ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind);
11332 if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)]) {
11333 // The only thing we need to check is that the type has a reachable
11334 // definition in the current context.
11335 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type))
11336 return QualType();
11337
11338 return Info->getType();
11339 }
11340
11341 // If lookup failed
11342 if (!Info) {
11343 std::string NameForDiags = "std::";
11344 NameForDiags += ComparisonCategories::getCategoryString(Kind);
11345 Diag(Loc, diag::err_implied_comparison_category_type_not_found)
11346 << NameForDiags << (int)Usage;
11347 return QualType();
11348 }
11349
11350 assert(Info->Kind == Kind)(static_cast <bool> (Info->Kind == Kind) ? void (0) :
__assert_fail ("Info->Kind == Kind", "clang/lib/Sema/SemaDeclCXX.cpp"
, 11350, __extension__ __PRETTY_FUNCTION__))
;
11351 assert(Info->Record)(static_cast <bool> (Info->Record) ? void (0) : __assert_fail
("Info->Record", "clang/lib/Sema/SemaDeclCXX.cpp", 11351,
__extension__ __PRETTY_FUNCTION__))
;
11352
11353 // Update the Record decl in case we encountered a forward declaration on our
11354 // first pass. FIXME: This is a bit of a hack.
11355 if (Info->Record->hasDefinition())
11356 Info->Record = Info->Record->getDefinition();
11357
11358 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type))
11359 return QualType();
11360
11361 InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags(Info)};
11362
11363 if (!Info->Record->isTriviallyCopyable())
11364 return UnsupportedSTLError(USS_NonTrivial);
11365
11366 for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) {
11367 CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl();
11368 // Tolerate empty base classes.
11369 if (Base->isEmpty())
11370 continue;
11371 // Reject STL implementations which have at least one non-empty base.
11372 return UnsupportedSTLError();
11373 }
11374
11375 // Check that the STL has implemented the types using a single integer field.
11376 // This expectation allows better codegen for builtin operators. We require:
11377 // (1) The class has exactly one field.
11378 // (2) The field is an integral or enumeration type.
11379 auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end();
11380 if (std::distance(FIt, FEnd) != 1 ||
11381 !FIt->getType()->isIntegralOrEnumerationType()) {
11382 return UnsupportedSTLError();
11383 }
11384
11385 // Build each of the require values and store them in Info.
11386 for (ComparisonCategoryResult CCR :
11387 ComparisonCategories::getPossibleResultsForType(Kind)) {
11388 StringRef MemName = ComparisonCategories::getResultString(CCR);
11389 ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(CCR);
11390
11391 if (!ValInfo)
11392 return UnsupportedSTLError(USS_MissingMember, MemName);
11393
11394 VarDecl *VD = ValInfo->VD;
11395 assert(VD && "should not be null!")(static_cast <bool> (VD && "should not be null!"
) ? void (0) : __assert_fail ("VD && \"should not be null!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11395, __extension__ __PRETTY_FUNCTION__
))
;
11396
11397 // Attempt to diagnose reasons why the STL definition of this type
11398 // might be foobar, including it failing to be a constant expression.
11399 // TODO Handle more ways the lookup or result can be invalid.
11400 if (!VD->isStaticDataMember() ||
11401 !VD->isUsableInConstantExpressions(Context))
11402 return UnsupportedSTLError(USS_InvalidMember, MemName, VD);
11403
11404 // Attempt to evaluate the var decl as a constant expression and extract
11405 // the value of its first field as a ICE. If this fails, the STL
11406 // implementation is not supported.
11407 if (!ValInfo->hasValidIntValue())
11408 return UnsupportedSTLError();
11409
11410 MarkVariableReferenced(Loc, VD);
11411 }
11412
11413 // We've successfully built the required types and expressions. Update
11414 // the cache and return the newly cached value.
11415 FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true;
11416 return Info->getType();
11417}
11418
11419/// Retrieve the special "std" namespace, which may require us to
11420/// implicitly define the namespace.
11421NamespaceDecl *Sema::getOrCreateStdNamespace() {
11422 if (!StdNamespace) {
11423 // The "std" namespace has not yet been defined, so build one implicitly.
11424 StdNamespace = NamespaceDecl::Create(Context,
11425 Context.getTranslationUnitDecl(),
11426 /*Inline=*/false,
11427 SourceLocation(), SourceLocation(),
11428 &PP.getIdentifierTable().get("std"),
11429 /*PrevDecl=*/nullptr);
11430 getStdNamespace()->setImplicit(true);
11431 }
11432
11433 return getStdNamespace();
11434}
11435
11436bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
11437 assert(getLangOpts().CPlusPlus &&(static_cast <bool> (getLangOpts().CPlusPlus &&
"Looking for std::initializer_list outside of C++.") ? void (
0) : __assert_fail ("getLangOpts().CPlusPlus && \"Looking for std::initializer_list outside of C++.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11438, __extension__ __PRETTY_FUNCTION__
))
11438 "Looking for std::initializer_list outside of C++.")(static_cast <bool> (getLangOpts().CPlusPlus &&
"Looking for std::initializer_list outside of C++.") ? void (
0) : __assert_fail ("getLangOpts().CPlusPlus && \"Looking for std::initializer_list outside of C++.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11438, __extension__ __PRETTY_FUNCTION__
))
;
11439
11440 // We're looking for implicit instantiations of
11441 // template <typename E> class std::initializer_list.
11442
11443 if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
11444 return false;
11445
11446 ClassTemplateDecl *Template = nullptr;
11447 const TemplateArgument *Arguments = nullptr;
11448
11449 if (const RecordType *RT = Ty->getAs<RecordType>()) {
11450
11451 ClassTemplateSpecializationDecl *Specialization =
11452 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
11453 if (!Specialization)
11454 return false;
11455
11456 Template = Specialization->getSpecializedTemplate();
11457 Arguments = Specialization->getTemplateArgs().data();
11458 } else if (const TemplateSpecializationType *TST =
11459 Ty->getAs<TemplateSpecializationType>()) {
11460 Template = dyn_cast_or_null<ClassTemplateDecl>(
11461 TST->getTemplateName().getAsTemplateDecl());
11462 Arguments = TST->getArgs();
11463 }
11464 if (!Template)
11465 return false;
11466
11467 if (!StdInitializerList) {
11468 // Haven't recognized std::initializer_list yet, maybe this is it.
11469 CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
11470 if (TemplateClass->getIdentifier() !=
11471 &PP.getIdentifierTable().get("initializer_list") ||
11472 !getStdNamespace()->InEnclosingNamespaceSetOf(
11473 TemplateClass->getDeclContext()))
11474 return false;
11475 // This is a template called std::initializer_list, but is it the right
11476 // template?
11477 TemplateParameterList *Params = Template->getTemplateParameters();
11478 if (Params->getMinRequiredArguments() != 1)
11479 return false;
11480 if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
11481 return false;
11482
11483 // It's the right template.
11484 StdInitializerList = Template;
11485 }
11486
11487 if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl())
11488 return false;
11489
11490 // This is an instance of std::initializer_list. Find the argument type.
11491 if (Element)
11492 *Element = Arguments[0].getAsType();
11493 return true;
11494}
11495
11496static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
11497 NamespaceDecl *Std = S.getStdNamespace();
11498 if (!Std) {
11499 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
11500 return nullptr;
11501 }
11502
11503 LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
11504 Loc, Sema::LookupOrdinaryName);
11505 if (!S.LookupQualifiedName(Result, Std)) {
11506 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
11507 return nullptr;
11508 }
11509 ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
11510 if (!Template) {
11511 Result.suppressDiagnostics();
11512 // We found something weird. Complain about the first thing we found.
11513 NamedDecl *Found = *Result.begin();
11514 S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
11515 return nullptr;
11516 }
11517
11518 // We found some template called std::initializer_list. Now verify that it's
11519 // correct.
11520 TemplateParameterList *Params = Template->getTemplateParameters();
11521 if (Params->getMinRequiredArguments() != 1 ||
11522 !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
11523 S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
11524 return nullptr;
11525 }
11526
11527 return Template;
11528}
11529
11530QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
11531 if (!StdInitializerList) {
11532 StdInitializerList = LookupStdInitializerList(*this, Loc);
11533 if (!StdInitializerList)
11534 return QualType();
11535 }
11536
11537 TemplateArgumentListInfo Args(Loc, Loc);
11538 Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
11539 Context.getTrivialTypeSourceInfo(Element,
11540 Loc)));
11541 return Context.getCanonicalType(
11542 CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
11543}
11544
11545bool Sema::isInitListConstructor(const FunctionDecl *Ctor) {
11546 // C++ [dcl.init.list]p2:
11547 // A constructor is an initializer-list constructor if its first parameter
11548 // is of type std::initializer_list<E> or reference to possibly cv-qualified
11549 // std::initializer_list<E> for some type E, and either there are no other
11550 // parameters or else all other parameters have default arguments.
11551 if (!Ctor->hasOneParamOrDefaultArgs())
11552 return false;
11553
11554 QualType ArgType = Ctor->getParamDecl(0)->getType();
11555 if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
11556 ArgType = RT->getPointeeType().getUnqualifiedType();
11557
11558 return isStdInitializerList(ArgType, nullptr);
11559}
11560
11561/// Determine whether a using statement is in a context where it will be
11562/// apply in all contexts.
11563static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
11564 switch (CurContext->getDeclKind()) {
11565 case Decl::TranslationUnit:
11566 return true;
11567 case Decl::LinkageSpec:
11568 return IsUsingDirectiveInToplevelContext(CurContext->getParent());
11569 default:
11570 return false;
11571 }
11572}
11573
11574namespace {
11575
11576// Callback to only accept typo corrections that are namespaces.
11577class NamespaceValidatorCCC final : public CorrectionCandidateCallback {
11578public:
11579 bool ValidateCandidate(const TypoCorrection &candidate) override {
11580 if (NamedDecl *ND = candidate.getCorrectionDecl())
11581 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
11582 return false;
11583 }
11584
11585 std::unique_ptr<CorrectionCandidateCallback> clone() override {
11586 return std::make_unique<NamespaceValidatorCCC>(*this);
11587 }
11588};
11589
11590}
11591
11592static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
11593 CXXScopeSpec &SS,
11594 SourceLocation IdentLoc,
11595 IdentifierInfo *Ident) {
11596 R.clear();
11597 NamespaceValidatorCCC CCC{};
11598 if (TypoCorrection Corrected =
11599 S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS, CCC,
11600 Sema::CTK_ErrorRecovery)) {
11601 if (DeclContext *DC = S.computeDeclContext(SS, false)) {
11602 std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
11603 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
11604 Ident->getName().equals(CorrectedStr);
11605 S.diagnoseTypo(Corrected,
11606 S.PDiag(diag::err_using_directive_member_suggest)
11607 << Ident << DC << DroppedSpecifier << SS.getRange(),
11608 S.PDiag(diag::note_namespace_defined_here));
11609 } else {
11610 S.diagnoseTypo(Corrected,
11611 S.PDiag(diag::err_using_directive_suggest) << Ident,
11612 S.PDiag(diag::note_namespace_defined_here));
11613 }
11614 R.addDecl(Corrected.getFoundDecl());
11615 return true;
11616 }
11617 return false;
11618}
11619
11620Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc,
11621 SourceLocation NamespcLoc, CXXScopeSpec &SS,
11622 SourceLocation IdentLoc,
11623 IdentifierInfo *NamespcName,
11624 const ParsedAttributesView &AttrList) {
11625 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.")(static_cast <bool> (!SS.isInvalid() && "Invalid CXXScopeSpec."
) ? void (0) : __assert_fail ("!SS.isInvalid() && \"Invalid CXXScopeSpec.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11625, __extension__ __PRETTY_FUNCTION__
))
;
11626 assert(NamespcName && "Invalid NamespcName.")(static_cast <bool> (NamespcName && "Invalid NamespcName."
) ? void (0) : __assert_fail ("NamespcName && \"Invalid NamespcName.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11626, __extension__ __PRETTY_FUNCTION__
))
;
11627 assert(IdentLoc.isValid() && "Invalid NamespceName location.")(static_cast <bool> (IdentLoc.isValid() && "Invalid NamespceName location."
) ? void (0) : __assert_fail ("IdentLoc.isValid() && \"Invalid NamespceName location.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11627, __extension__ __PRETTY_FUNCTION__
))
;
11628
11629 // This can only happen along a recovery path.
11630 while (S->isTemplateParamScope())
11631 S = S->getParent();
11632 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.")(static_cast <bool> (S->getFlags() & Scope::DeclScope
&& "Invalid Scope.") ? void (0) : __assert_fail ("S->getFlags() & Scope::DeclScope && \"Invalid Scope.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11632, __extension__ __PRETTY_FUNCTION__
))
;
11633
11634 UsingDirectiveDecl *UDir = nullptr;
11635 NestedNameSpecifier *Qualifier = nullptr;
11636 if (SS.isSet())
11637 Qualifier = SS.getScopeRep();
11638
11639 // Lookup namespace name.
11640 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
11641 LookupParsedName(R, S, &SS);
11642 if (R.isAmbiguous())
11643 return nullptr;
11644
11645 if (R.empty()) {
11646 R.clear();
11647 // Allow "using namespace std;" or "using namespace ::std;" even if
11648 // "std" hasn't been defined yet, for GCC compatibility.
11649 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
11650 NamespcName->isStr("std")) {
11651 Diag(IdentLoc, diag::ext_using_undefined_std);
11652 R.addDecl(getOrCreateStdNamespace());
11653 R.resolveKind();
11654 }
11655 // Otherwise, attempt typo correction.
11656 else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
11657 }
11658
11659 if (!R.empty()) {
11660 NamedDecl *Named = R.getRepresentativeDecl();
11661 NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>();
11662 assert(NS && "expected namespace decl")(static_cast <bool> (NS && "expected namespace decl"
) ? void (0) : __assert_fail ("NS && \"expected namespace decl\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11662, __extension__ __PRETTY_FUNCTION__
))
;
11663
11664 // The use of a nested name specifier may trigger deprecation warnings.
11665 DiagnoseUseOfDecl(Named, IdentLoc);
11666
11667 // C++ [namespace.udir]p1:
11668 // A using-directive specifies that the names in the nominated
11669 // namespace can be used in the scope in which the
11670 // using-directive appears after the using-directive. During
11671 // unqualified name lookup (3.4.1), the names appear as if they
11672 // were declared in the nearest enclosing namespace which
11673 // contains both the using-directive and the nominated
11674 // namespace. [Note: in this context, "contains" means "contains
11675 // directly or indirectly". ]
11676
11677 // Find enclosing context containing both using-directive and
11678 // nominated namespace.
11679 DeclContext *CommonAncestor = NS;
11680 while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
11681 CommonAncestor = CommonAncestor->getParent();
11682
11683 UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
11684 SS.getWithLocInContext(Context),
11685 IdentLoc, Named, CommonAncestor);
11686
11687 if (IsUsingDirectiveInToplevelContext(CurContext) &&
11688 !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
11689 Diag(IdentLoc, diag::warn_using_directive_in_header);
11690 }
11691
11692 PushUsingDirective(S, UDir);
11693 } else {
11694 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
11695 }
11696
11697 if (UDir)
11698 ProcessDeclAttributeList(S, UDir, AttrList);
11699
11700 return UDir;
11701}
11702
11703void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
11704 // If the scope has an associated entity and the using directive is at
11705 // namespace or translation unit scope, add the UsingDirectiveDecl into
11706 // its lookup structure so qualified name lookup can find it.
11707 DeclContext *Ctx = S->getEntity();
11708 if (Ctx && !Ctx->isFunctionOrMethod())
11709 Ctx->addDecl(UDir);
11710 else
11711 // Otherwise, it is at block scope. The using-directives will affect lookup
11712 // only to the end of the scope.
11713 S->PushUsingDirective(UDir);
11714}
11715
11716Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS,
11717 SourceLocation UsingLoc,
11718 SourceLocation TypenameLoc, CXXScopeSpec &SS,
11719 UnqualifiedId &Name,
11720 SourceLocation EllipsisLoc,
11721 const ParsedAttributesView &AttrList) {
11722 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.")(static_cast <bool> (S->getFlags() & Scope::DeclScope
&& "Invalid Scope.") ? void (0) : __assert_fail ("S->getFlags() & Scope::DeclScope && \"Invalid Scope.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 11722, __extension__ __PRETTY_FUNCTION__
))
;
11723
11724 if (SS.isEmpty()) {
11725 Diag(Name.getBeginLoc(), diag::err_using_requires_qualname);
11726 return nullptr;
11727 }
11728
11729 switch (Name.getKind()) {
11730 case UnqualifiedIdKind::IK_ImplicitSelfParam:
11731 case UnqualifiedIdKind::IK_Identifier:
11732 case UnqualifiedIdKind::IK_OperatorFunctionId:
11733 case UnqualifiedIdKind::IK_LiteralOperatorId:
11734 case UnqualifiedIdKind::IK_ConversionFunctionId:
11735 break;
11736
11737 case UnqualifiedIdKind::IK_ConstructorName:
11738 case UnqualifiedIdKind::IK_ConstructorTemplateId:
11739 // C++11 inheriting constructors.
11740 Diag(Name.getBeginLoc(),
11741 getLangOpts().CPlusPlus11
11742 ? diag::warn_cxx98_compat_using_decl_constructor
11743 : diag::err_using_decl_constructor)
11744 << SS.getRange();
11745
11746 if (getLangOpts().CPlusPlus11) break;
11747
11748 return nullptr;
11749
11750 case UnqualifiedIdKind::IK_DestructorName:
11751 Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange();
11752 return nullptr;
11753
11754 case UnqualifiedIdKind::IK_TemplateId:
11755 Diag(Name.getBeginLoc(), diag::err_using_decl_template_id)
11756 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
11757 return nullptr;
11758
11759 case UnqualifiedIdKind::IK_DeductionGuideName:
11760 llvm_unreachable("cannot parse qualified deduction guide name")::llvm::llvm_unreachable_internal("cannot parse qualified deduction guide name"
, "clang/lib/Sema/SemaDeclCXX.cpp", 11760)
;
11761 }
11762
11763 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
11764 DeclarationName TargetName = TargetNameInfo.getName();
11765 if (!TargetName)
11766 return nullptr;
11767
11768 // Warn about access declarations.
11769 if (UsingLoc.isInvalid()) {
11770 Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11
11771 ? diag::err_access_decl
11772 : diag::warn_access_decl_deprecated)
11773 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
11774 }
11775
11776 if (EllipsisLoc.isInvalid()) {
11777 if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
11778 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
11779 return nullptr;
11780 } else {
11781 if (!SS.getScopeRep()->containsUnexpandedParameterPack() &&
11782 !TargetNameInfo.containsUnexpandedParameterPack()) {
11783 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
11784 << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc());
11785 EllipsisLoc = SourceLocation();
11786 }
11787 }
11788
11789 NamedDecl *UD =
11790 BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc,
11791 SS, TargetNameInfo, EllipsisLoc, AttrList,
11792 /*IsInstantiation*/ false,
11793 AttrList.hasAttribute(ParsedAttr::AT_UsingIfExists));
11794 if (UD)
11795 PushOnScopeChains(UD, S, /*AddToContext*/ false);
11796
11797 return UD;
11798}
11799
11800Decl *Sema::ActOnUsingEnumDeclaration(Scope *S, AccessSpecifier AS,
11801 SourceLocation UsingLoc,
11802 SourceLocation EnumLoc,
11803 const DeclSpec &DS) {
11804 switch (DS.getTypeSpecType()) {
11805 case DeclSpec::TST_error:
11806 // This will already have been diagnosed
11807 return nullptr;
11808
11809 case DeclSpec::TST_enum:
11810 break;
11811
11812 case DeclSpec::TST_typename:
11813 Diag(DS.getTypeSpecTypeLoc(), diag::err_using_enum_is_dependent);
11814 return nullptr;
11815
11816 default:
11817 llvm_unreachable("unexpected DeclSpec type")::llvm::llvm_unreachable_internal("unexpected DeclSpec type",
"clang/lib/Sema/SemaDeclCXX.cpp", 11817)
;
11818 }
11819
11820 // As with enum-decls, we ignore attributes for now.
11821 auto *Enum = cast<EnumDecl>(DS.getRepAsDecl());
11822 if (auto *Def = Enum->getDefinition())
11823 Enum = Def;
11824
11825 auto *UD = BuildUsingEnumDeclaration(S, AS, UsingLoc, EnumLoc,
11826 DS.getTypeSpecTypeNameLoc(), Enum);
11827 if (UD)
11828 PushOnScopeChains(UD, S, /*AddToContext*/ false);
11829
11830 return UD;
11831}
11832
11833/// Determine whether a using declaration considers the given
11834/// declarations as "equivalent", e.g., if they are redeclarations of
11835/// the same entity or are both typedefs of the same type.
11836static bool
11837IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) {
11838 if (D1->getCanonicalDecl() == D2->getCanonicalDecl())
11839 return true;
11840
11841 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
11842 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2))
11843 return Context.hasSameType(TD1->getUnderlyingType(),
11844 TD2->getUnderlyingType());
11845
11846 // Two using_if_exists using-declarations are equivalent if both are
11847 // unresolved.
11848 if (isa<UnresolvedUsingIfExistsDecl>(D1) &&
11849 isa<UnresolvedUsingIfExistsDecl>(D2))
11850 return true;
11851
11852 return false;
11853}
11854
11855
11856/// Determines whether to create a using shadow decl for a particular
11857/// decl, given the set of decls existing prior to this using lookup.
11858bool Sema::CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Orig,
11859 const LookupResult &Previous,
11860 UsingShadowDecl *&PrevShadow) {
11861 // Diagnose finding a decl which is not from a base class of the
11862 // current class. We do this now because there are cases where this
11863 // function will silently decide not to build a shadow decl, which
11864 // will pre-empt further diagnostics.
11865 //
11866 // We don't need to do this in C++11 because we do the check once on
11867 // the qualifier.
11868 //
11869 // FIXME: diagnose the following if we care enough:
11870 // struct A { int foo; };
11871 // struct B : A { using A::foo; };
11872 // template <class T> struct C : A {};
11873 // template <class T> struct D : C<T> { using B::foo; } // <---
11874 // This is invalid (during instantiation) in C++03 because B::foo
11875 // resolves to the using decl in B, which is not a base class of D<T>.
11876 // We can't diagnose it immediately because C<T> is an unknown
11877 // specialization. The UsingShadowDecl in D<T> then points directly
11878 // to A::foo, which will look well-formed when we instantiate.
11879 // The right solution is to not collapse the shadow-decl chain.
11880 if (!getLangOpts().CPlusPlus11 && CurContext->isRecord())
11881 if (auto *Using = dyn_cast<UsingDecl>(BUD)) {
11882 DeclContext *OrigDC = Orig->getDeclContext();
11883
11884 // Handle enums and anonymous structs.
11885 if (isa<EnumDecl>(OrigDC))
11886 OrigDC = OrigDC->getParent();
11887 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
11888 while (OrigRec->isAnonymousStructOrUnion())
11889 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
11890
11891 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
11892 if (OrigDC == CurContext) {
11893 Diag(Using->getLocation(),
11894 diag::err_using_decl_nested_name_specifier_is_current_class)
11895 << Using->getQualifierLoc().getSourceRange();
11896 Diag(Orig->getLocation(), diag::note_using_decl_target);
11897 Using->setInvalidDecl();
11898 return true;
11899 }
11900
11901 Diag(Using->getQualifierLoc().getBeginLoc(),
11902 diag::err_using_decl_nested_name_specifier_is_not_base_class)
11903 << Using->getQualifier() << cast<CXXRecordDecl>(CurContext)
11904 << Using->getQualifierLoc().getSourceRange();
11905 Diag(Orig->getLocation(), diag::note_using_decl_target);
11906 Using->setInvalidDecl();
11907 return true;
11908 }
11909 }
11910
11911 if (Previous.empty()) return false;
11912
11913 NamedDecl *Target = Orig;
11914 if (isa<UsingShadowDecl>(Target))
11915 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
11916
11917 // If the target happens to be one of the previous declarations, we
11918 // don't have a conflict.
11919 //
11920 // FIXME: but we might be increasing its access, in which case we
11921 // should redeclare it.
11922 NamedDecl *NonTag = nullptr, *Tag = nullptr;
11923 bool FoundEquivalentDecl = false;
11924 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
11925 I != E; ++I) {
11926 NamedDecl *D = (*I)->getUnderlyingDecl();
11927 // We can have UsingDecls in our Previous results because we use the same
11928 // LookupResult for checking whether the UsingDecl itself is a valid
11929 // redeclaration.
11930 if (isa<UsingDecl>(D) || isa<UsingPackDecl>(D) || isa<UsingEnumDecl>(D))
11931 continue;
11932
11933 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
11934 // C++ [class.mem]p19:
11935 // If T is the name of a class, then [every named member other than
11936 // a non-static data member] shall have a name different from T
11937 if (RD->isInjectedClassName() && !isa<FieldDecl>(Target) &&
11938 !isa<IndirectFieldDecl>(Target) &&
11939 !isa<UnresolvedUsingValueDecl>(Target) &&
11940 DiagnoseClassNameShadow(
11941 CurContext,
11942 DeclarationNameInfo(BUD->getDeclName(), BUD->getLocation())))
11943 return true;
11944 }
11945
11946 if (IsEquivalentForUsingDecl(Context, D, Target)) {
11947 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I))
11948 PrevShadow = Shadow;
11949 FoundEquivalentDecl = true;
11950 } else if (isEquivalentInternalLinkageDeclaration(D, Target)) {
11951 // We don't conflict with an existing using shadow decl of an equivalent
11952 // declaration, but we're not a redeclaration of it.
11953 FoundEquivalentDecl = true;
11954 }
11955
11956 if (isVisible(D))
11957 (isa<TagDecl>(D) ? Tag : NonTag) = D;
11958 }
11959
11960 if (FoundEquivalentDecl)
11961 return false;
11962
11963 // Always emit a diagnostic for a mismatch between an unresolved
11964 // using_if_exists and a resolved using declaration in either direction.
11965 if (isa<UnresolvedUsingIfExistsDecl>(Target) !=
11966 (isa_and_nonnull<UnresolvedUsingIfExistsDecl>(NonTag))) {
11967 if (!NonTag && !Tag)
11968 return false;
11969 Diag(BUD->getLocation(), diag::err_using_decl_conflict);
11970 Diag(Target->getLocation(), diag::note_using_decl_target);
11971 Diag((NonTag ? NonTag : Tag)->getLocation(),
11972 diag::note_using_decl_conflict);
11973 BUD->setInvalidDecl();
11974 return true;
11975 }
11976
11977 if (FunctionDecl *FD = Target->getAsFunction()) {
11978 NamedDecl *OldDecl = nullptr;
11979 switch (CheckOverload(nullptr, FD, Previous, OldDecl,
11980 /*IsForUsingDecl*/ true)) {
11981 case Ovl_Overload:
11982 return false;
11983
11984 case Ovl_NonFunction:
11985 Diag(BUD->getLocation(), diag::err_using_decl_conflict);
11986 break;
11987
11988 // We found a decl with the exact signature.
11989 case Ovl_Match:
11990 // If we're in a record, we want to hide the target, so we
11991 // return true (without a diagnostic) to tell the caller not to
11992 // build a shadow decl.
11993 if (CurContext->isRecord())
11994 return true;
11995
11996 // If we're not in a record, this is an error.
11997 Diag(BUD->getLocation(), diag::err_using_decl_conflict);
11998 break;
11999 }
12000
12001 Diag(Target->getLocation(), diag::note_using_decl_target);
12002 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
12003 BUD->setInvalidDecl();
12004 return true;
12005 }
12006
12007 // Target is not a function.
12008
12009 if (isa<TagDecl>(Target)) {
12010 // No conflict between a tag and a non-tag.
12011 if (!Tag) return false;
12012
12013 Diag(BUD->getLocation(), diag::err_using_decl_conflict);
12014 Diag(Target->getLocation(), diag::note_using_decl_target);
12015 Diag(Tag->getLocation(), diag::note_using_decl_conflict);
12016 BUD->setInvalidDecl();
12017 return true;
12018 }
12019
12020 // No conflict between a tag and a non-tag.
12021 if (!NonTag) return false;
12022
12023 Diag(BUD->getLocation(), diag::err_using_decl_conflict);
12024 Diag(Target->getLocation(), diag::note_using_decl_target);
12025 Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
12026 BUD->setInvalidDecl();
12027 return true;
12028}
12029
12030/// Determine whether a direct base class is a virtual base class.
12031static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) {
12032 if (!Derived->getNumVBases())
12033 return false;
12034 for (auto &B : Derived->bases())
12035 if (B.getType()->getAsCXXRecordDecl() == Base)
12036 return B.isVirtual();
12037 llvm_unreachable("not a direct base class")::llvm::llvm_unreachable_internal("not a direct base class", "clang/lib/Sema/SemaDeclCXX.cpp"
, 12037)
;
12038}
12039
12040/// Builds a shadow declaration corresponding to a 'using' declaration.
12041UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD,
12042 NamedDecl *Orig,
12043 UsingShadowDecl *PrevDecl) {
12044 // If we resolved to another shadow declaration, just coalesce them.
12045 NamedDecl *Target = Orig;
12046 if (isa<UsingShadowDecl>(Target)) {
12047 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
12048 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration")(static_cast <bool> (!isa<UsingShadowDecl>(Target
) && "nested shadow declaration") ? void (0) : __assert_fail
("!isa<UsingShadowDecl>(Target) && \"nested shadow declaration\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 12048, __extension__ __PRETTY_FUNCTION__
))
;
12049 }
12050
12051 NamedDecl *NonTemplateTarget = Target;
12052 if (auto *TargetTD = dyn_cast<TemplateDecl>(Target))
12053 NonTemplateTarget = TargetTD->getTemplatedDecl();
12054
12055 UsingShadowDecl *Shadow;
12056 if (NonTemplateTarget && isa<CXXConstructorDecl>(NonTemplateTarget)) {
12057 UsingDecl *Using = cast<UsingDecl>(BUD);
12058 bool IsVirtualBase =
12059 isVirtualDirectBase(cast<CXXRecordDecl>(CurContext),
12060 Using->getQualifier()->getAsRecordDecl());
12061 Shadow = ConstructorUsingShadowDecl::Create(
12062 Context, CurContext, Using->getLocation(), Using, Orig, IsVirtualBase);
12063 } else {
12064 Shadow = UsingShadowDecl::Create(Context, CurContext, BUD->getLocation(),
12065 Target->getDeclName(), BUD, Target);
12066 }
12067 BUD->addShadowDecl(Shadow);
12068
12069 Shadow->setAccess(BUD->getAccess());
12070 if (Orig->isInvalidDecl() || BUD->isInvalidDecl())
12071 Shadow->setInvalidDecl();
12072
12073 Shadow->setPreviousDecl(PrevDecl);
12074
12075 if (S)
12076 PushOnScopeChains(Shadow, S);
12077 else
12078 CurContext->addDecl(Shadow);
12079
12080
12081 return Shadow;
12082}
12083
12084/// Hides a using shadow declaration. This is required by the current
12085/// using-decl implementation when a resolvable using declaration in a
12086/// class is followed by a declaration which would hide or override
12087/// one or more of the using decl's targets; for example:
12088///
12089/// struct Base { void foo(int); };
12090/// struct Derived : Base {
12091/// using Base::foo;
12092/// void foo(int);
12093/// };
12094///
12095/// The governing language is C++03 [namespace.udecl]p12:
12096///
12097/// When a using-declaration brings names from a base class into a
12098/// derived class scope, member functions in the derived class
12099/// override and/or hide member functions with the same name and
12100/// parameter types in a base class (rather than conflicting).
12101///
12102/// There are two ways to implement this:
12103/// (1) optimistically create shadow decls when they're not hidden
12104/// by existing declarations, or
12105/// (2) don't create any shadow decls (or at least don't make them
12106/// visible) until we've fully parsed/instantiated the class.
12107/// The problem with (1) is that we might have to retroactively remove
12108/// a shadow decl, which requires several O(n) operations because the
12109/// decl structures are (very reasonably) not designed for removal.
12110/// (2) avoids this but is very fiddly and phase-dependent.
12111void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
12112 if (Shadow->getDeclName().getNameKind() ==
12113 DeclarationName::CXXConversionFunctionName)
12114 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
12115
12116 // Remove it from the DeclContext...
12117 Shadow->getDeclContext()->removeDecl(Shadow);
12118
12119 // ...and the scope, if applicable...
12120 if (S) {
12121 S->RemoveDecl(Shadow);
12122 IdResolver.RemoveDecl(Shadow);
12123 }
12124
12125 // ...and the using decl.
12126 Shadow->getIntroducer()->removeShadowDecl(Shadow);
12127
12128 // TODO: complain somehow if Shadow was used. It shouldn't
12129 // be possible for this to happen, because...?
12130}
12131
12132/// Find the base specifier for a base class with the given type.
12133static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived,
12134 QualType DesiredBase,
12135 bool &AnyDependentBases) {
12136 // Check whether the named type is a direct base class.
12137 CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified()
12138 .getUnqualifiedType();
12139 for (auto &Base : Derived->bases()) {
12140 CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified();
12141 if (CanonicalDesiredBase == BaseType)
12142 return &Base;
12143 if (BaseType->isDependentType())
12144 AnyDependentBases = true;
12145 }
12146 return nullptr;
12147}
12148
12149namespace {
12150class UsingValidatorCCC final : public CorrectionCandidateCallback {
12151public:
12152 UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation,
12153 NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf)
12154 : HasTypenameKeyword(HasTypenameKeyword),
12155 IsInstantiation(IsInstantiation), OldNNS(NNS),
12156 RequireMemberOf(RequireMemberOf) {}
12157
12158 bool ValidateCandidate(const TypoCorrection &Candidate) override {
12159 NamedDecl *ND = Candidate.getCorrectionDecl();
12160
12161 // Keywords are not valid here.
12162 if (!ND || isa<NamespaceDecl>(ND))
12163 return false;
12164
12165 // Completely unqualified names are invalid for a 'using' declaration.
12166 if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
12167 return false;
12168
12169 // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would
12170 // reject.
12171
12172 if (RequireMemberOf) {
12173 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
12174 if (FoundRecord && FoundRecord->isInjectedClassName()) {
12175 // No-one ever wants a using-declaration to name an injected-class-name
12176 // of a base class, unless they're declaring an inheriting constructor.
12177 ASTContext &Ctx = ND->getASTContext();
12178 if (!Ctx.getLangOpts().CPlusPlus11)
12179 return false;
12180 QualType FoundType = Ctx.getRecordType(FoundRecord);
12181
12182 // Check that the injected-class-name is named as a member of its own
12183 // type; we don't want to suggest 'using Derived::Base;', since that
12184 // means something else.
12185 NestedNameSpecifier *Specifier =
12186 Candidate.WillReplaceSpecifier()
12187 ? Candidate.getCorrectionSpecifier()
12188 : OldNNS;
12189 if (!Specifier->getAsType() ||
12190 !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType))
12191 return false;
12192
12193 // Check that this inheriting constructor declaration actually names a
12194 // direct base class of the current class.
12195 bool AnyDependentBases = false;
12196 if (!findDirectBaseWithType(RequireMemberOf,
12197 Ctx.getRecordType(FoundRecord),
12198 AnyDependentBases) &&
12199 !AnyDependentBases)
12200 return false;
12201 } else {
12202 auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext());
12203 if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD))
12204 return false;
12205
12206 // FIXME: Check that the base class member is accessible?
12207 }
12208 } else {
12209 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
12210 if (FoundRecord && FoundRecord->isInjectedClassName())
12211 return false;
12212 }
12213
12214 if (isa<TypeDecl>(ND))
12215 return HasTypenameKeyword || !IsInstantiation;
12216
12217 return !HasTypenameKeyword;
12218 }
12219
12220 std::unique_ptr<CorrectionCandidateCallback> clone() override {
12221 return std::make_unique<UsingValidatorCCC>(*this);
12222 }
12223
12224private:
12225 bool HasTypenameKeyword;
12226 bool IsInstantiation;
12227 NestedNameSpecifier *OldNNS;
12228 CXXRecordDecl *RequireMemberOf;
12229};
12230} // end anonymous namespace
12231
12232/// Remove decls we can't actually see from a lookup being used to declare
12233/// shadow using decls.
12234///
12235/// \param S - The scope of the potential shadow decl
12236/// \param Previous - The lookup of a potential shadow decl's name.
12237void Sema::FilterUsingLookup(Scope *S, LookupResult &Previous) {
12238 // It is really dumb that we have to do this.
12239 LookupResult::Filter F = Previous.makeFilter();
12240 while (F.hasNext()) {
12241 NamedDecl *D = F.next();
12242 if (!isDeclInScope(D, CurContext, S))
12243 F.erase();
12244 // If we found a local extern declaration that's not ordinarily visible,
12245 // and this declaration is being added to a non-block scope, ignore it.
12246 // We're only checking for scope conflicts here, not also for violations
12247 // of the linkage rules.
12248 else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() &&
12249 !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary))
12250 F.erase();
12251 }
12252 F.done();
12253}
12254
12255/// Builds a using declaration.
12256///
12257/// \param IsInstantiation - Whether this call arises from an
12258/// instantiation of an unresolved using declaration. We treat
12259/// the lookup differently for these declarations.
12260NamedDecl *Sema::BuildUsingDeclaration(
12261 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc,
12262 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS,
12263 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc,
12264 const ParsedAttributesView &AttrList, bool IsInstantiation,
12265 bool IsUsingIfExists) {
12266 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.")(static_cast <bool> (!SS.isInvalid() && "Invalid CXXScopeSpec."
) ? void (0) : __assert_fail ("!SS.isInvalid() && \"Invalid CXXScopeSpec.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 12266, __extension__ __PRETTY_FUNCTION__
))
;
12267 SourceLocation IdentLoc = NameInfo.getLoc();
12268 assert(IdentLoc.isValid() && "Invalid TargetName location.")(static_cast <bool> (IdentLoc.isValid() && "Invalid TargetName location."
) ? void (0) : __assert_fail ("IdentLoc.isValid() && \"Invalid TargetName location.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 12268, __extension__ __PRETTY_FUNCTION__
))
;
12269
12270 // FIXME: We ignore attributes for now.
12271
12272 // For an inheriting constructor declaration, the name of the using
12273 // declaration is the name of a constructor in this class, not in the
12274 // base class.
12275 DeclarationNameInfo UsingName = NameInfo;
12276 if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName)
12277 if (auto *RD = dyn_cast<CXXRecordDecl>(CurContext))
12278 UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
12279 Context.getCanonicalType(Context.getRecordType(RD))));
12280
12281 // Do the redeclaration lookup in the current scope.
12282 LookupResult Previous(*this, UsingName, LookupUsingDeclName,
12283 ForVisibleRedeclaration);
12284 Previous.setHideTags(false);
12285 if (S) {
12286 LookupName(Previous, S);
12287
12288 FilterUsingLookup(S, Previous);
12289 } else {
12290 assert(IsInstantiation && "no scope in non-instantiation")(static_cast <bool> (IsInstantiation && "no scope in non-instantiation"
) ? void (0) : __assert_fail ("IsInstantiation && \"no scope in non-instantiation\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 12290, __extension__ __PRETTY_FUNCTION__
))
;
12291 if (CurContext->isRecord())
12292 LookupQualifiedName(Previous, CurContext);
12293 else {
12294 // No redeclaration check is needed here; in non-member contexts we
12295 // diagnosed all possible conflicts with other using-declarations when
12296 // building the template:
12297 //
12298 // For a dependent non-type using declaration, the only valid case is
12299 // if we instantiate to a single enumerator. We check for conflicts
12300 // between shadow declarations we introduce, and we check in the template
12301 // definition for conflicts between a non-type using declaration and any
12302 // other declaration, which together covers all cases.
12303 //
12304 // A dependent typename using declaration will never successfully
12305 // instantiate, since it will always name a class member, so we reject
12306 // that in the template definition.
12307 }
12308 }
12309
12310 // Check for invalid redeclarations.
12311 if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
12312 SS, IdentLoc, Previous))
12313 return nullptr;
12314
12315 // 'using_if_exists' doesn't make sense on an inherited constructor.
12316 if (IsUsingIfExists && UsingName.getName().getNameKind() ==
12317 DeclarationName::CXXConstructorName) {
12318 Diag(UsingLoc, diag::err_using_if_exists_on_ctor);
12319 return nullptr;
12320 }
12321
12322 DeclContext *LookupContext = computeDeclContext(SS);
12323 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
12324 if (!LookupContext || EllipsisLoc.isValid()) {
12325 NamedDecl *D;
12326 // Dependent scope, or an unexpanded pack
12327 if (!LookupContext && CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword,
12328 SS, NameInfo, IdentLoc))
12329 return nullptr;
12330
12331 if (HasTypenameKeyword) {
12332 // FIXME: not all declaration name kinds are legal here
12333 D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
12334 UsingLoc, TypenameLoc,
12335 QualifierLoc,
12336 IdentLoc, NameInfo.getName(),
12337 EllipsisLoc);
12338 } else {
12339 D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
12340 QualifierLoc, NameInfo, EllipsisLoc);
12341 }
12342 D->setAccess(AS);
12343 CurContext->addDecl(D);
12344 ProcessDeclAttributeList(S, D, AttrList);
12345 return D;
12346 }
12347
12348 auto Build = [&](bool Invalid) {
12349 UsingDecl *UD =
12350 UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
12351 UsingName, HasTypenameKeyword);
12352 UD->setAccess(AS);
12353 CurContext->addDecl(UD);
12354 ProcessDeclAttributeList(S, UD, AttrList);
12355 UD->setInvalidDecl(Invalid);
12356 return UD;
12357 };
12358 auto BuildInvalid = [&]{ return Build(true); };
12359 auto BuildValid = [&]{ return Build(false); };
12360
12361 if (RequireCompleteDeclContext(SS, LookupContext))
12362 return BuildInvalid();
12363
12364 // Look up the target name.
12365 LookupResult R(*this, NameInfo, LookupOrdinaryName);
12366
12367 // Unlike most lookups, we don't always want to hide tag
12368 // declarations: tag names are visible through the using declaration
12369 // even if hidden by ordinary names, *except* in a dependent context
12370 // where they may be used by two-phase lookup.
12371 if (!IsInstantiation)
12372 R.setHideTags(false);
12373
12374 // For the purposes of this lookup, we have a base object type
12375 // equal to that of the current context.
12376 if (CurContext->isRecord()) {
12377 R.setBaseObjectType(
12378 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
12379 }
12380
12381 LookupQualifiedName(R, LookupContext);
12382
12383 // Validate the context, now we have a lookup
12384 if (CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo,
12385 IdentLoc, &R))
12386 return nullptr;
12387
12388 if (R.empty() && IsUsingIfExists)
12389 R.addDecl(UnresolvedUsingIfExistsDecl::Create(Context, CurContext, UsingLoc,
12390 UsingName.getName()),
12391 AS_public);
12392
12393 // Try to correct typos if possible. If constructor name lookup finds no
12394 // results, that means the named class has no explicit constructors, and we
12395 // suppressed declaring implicit ones (probably because it's dependent or
12396 // invalid).
12397 if (R.empty() &&
12398 NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) {
12399 // HACK 2017-01-08: Work around an issue with libstdc++'s detection of
12400 // ::gets. Sometimes it believes that glibc provides a ::gets in cases where
12401 // it does not. The issue was fixed in libstdc++ 6.3 (2016-12-21) and later.
12402 auto *II = NameInfo.getName().getAsIdentifierInfo();
12403 if (getLangOpts().CPlusPlus14 && II && II->isStr("gets") &&
12404 CurContext->isStdNamespace() &&
12405 isa<TranslationUnitDecl>(LookupContext) &&
12406 getSourceManager().isInSystemHeader(UsingLoc))
12407 return nullptr;
12408 UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(),
12409 dyn_cast<CXXRecordDecl>(CurContext));
12410 if (TypoCorrection Corrected =
12411 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
12412 CTK_ErrorRecovery)) {
12413 // We reject candidates where DroppedSpecifier == true, hence the
12414 // literal '0' below.
12415 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
12416 << NameInfo.getName() << LookupContext << 0
12417 << SS.getRange());
12418
12419 // If we picked a correction with no attached Decl we can't do anything
12420 // useful with it, bail out.
12421 NamedDecl *ND = Corrected.getCorrectionDecl();
12422 if (!ND)
12423 return BuildInvalid();
12424
12425 // If we corrected to an inheriting constructor, handle it as one.
12426 auto *RD = dyn_cast<CXXRecordDecl>(ND);
12427 if (RD && RD->isInjectedClassName()) {
12428 // The parent of the injected class name is the class itself.
12429 RD = cast<CXXRecordDecl>(RD->getParent());
12430
12431 // Fix up the information we'll use to build the using declaration.
12432 if (Corrected.WillReplaceSpecifier()) {
12433 NestedNameSpecifierLocBuilder Builder;
12434 Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
12435 QualifierLoc.getSourceRange());
12436 QualifierLoc = Builder.getWithLocInContext(Context);
12437 }
12438
12439 // In this case, the name we introduce is the name of a derived class
12440 // constructor.
12441 auto *CurClass = cast<CXXRecordDecl>(CurContext);
12442 UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
12443 Context.getCanonicalType(Context.getRecordType(CurClass))));
12444 UsingName.setNamedTypeInfo(nullptr);
12445 for (auto *Ctor : LookupConstructors(RD))
12446 R.addDecl(Ctor);
12447 R.resolveKind();
12448 } else {
12449 // FIXME: Pick up all the declarations if we found an overloaded
12450 // function.
12451 UsingName.setName(ND->getDeclName());
12452 R.addDecl(ND);
12453 }
12454 } else {
12455 Diag(IdentLoc, diag::err_no_member)
12456 << NameInfo.getName() << LookupContext << SS.getRange();
12457 return BuildInvalid();
12458 }
12459 }
12460
12461 if (R.isAmbiguous())
12462 return BuildInvalid();
12463
12464 if (HasTypenameKeyword) {
12465 // If we asked for a typename and got a non-type decl, error out.
12466 if (!R.getAsSingle<TypeDecl>() &&
12467 !R.getAsSingle<UnresolvedUsingIfExistsDecl>()) {
12468 Diag(IdentLoc, diag::err_using_typename_non_type);
12469 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
12470 Diag((*I)->getUnderlyingDecl()->getLocation(),
12471 diag::note_using_decl_target);
12472 return BuildInvalid();
12473 }
12474 } else {
12475 // If we asked for a non-typename and we got a type, error out,
12476 // but only if this is an instantiation of an unresolved using
12477 // decl. Otherwise just silently find the type name.
12478 if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
12479 Diag(IdentLoc, diag::err_using_dependent_value_is_type);
12480 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
12481 return BuildInvalid();
12482 }
12483 }
12484
12485 // C++14 [namespace.udecl]p6:
12486 // A using-declaration shall not name a namespace.
12487 if (R.getAsSingle<NamespaceDecl>()) {
12488 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
12489 << SS.getRange();
12490 return BuildInvalid();
12491 }
12492
12493 UsingDecl *UD = BuildValid();
12494
12495 // Some additional rules apply to inheriting constructors.
12496 if (UsingName.getName().getNameKind() ==
12497 DeclarationName::CXXConstructorName) {
12498 // Suppress access diagnostics; the access check is instead performed at the
12499 // point of use for an inheriting constructor.
12500 R.suppressDiagnostics();
12501 if (CheckInheritingConstructorUsingDecl(UD))
12502 return UD;
12503 }
12504
12505 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
12506 UsingShadowDecl *PrevDecl = nullptr;
12507 if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl))
12508 BuildUsingShadowDecl(S, UD, *I, PrevDecl);
12509 }
12510
12511 return UD;
12512}
12513
12514NamedDecl *Sema::BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS,
12515 SourceLocation UsingLoc,
12516 SourceLocation EnumLoc,
12517 SourceLocation NameLoc,
12518 EnumDecl *ED) {
12519 bool Invalid = false;
12520
12521 if (CurContext->getRedeclContext()->isRecord()) {
12522 /// In class scope, check if this is a duplicate, for better a diagnostic.
12523 DeclarationNameInfo UsingEnumName(ED->getDeclName(), NameLoc);
12524 LookupResult Previous(*this, UsingEnumName, LookupUsingDeclName,
12525 ForVisibleRedeclaration);
12526
12527 LookupName(Previous, S);
12528
12529 for (NamedDecl *D : Previous)
12530 if (UsingEnumDecl *UED = dyn_cast<UsingEnumDecl>(D))
12531 if (UED->getEnumDecl() == ED) {
12532 Diag(UsingLoc, diag::err_using_enum_decl_redeclaration)
12533 << SourceRange(EnumLoc, NameLoc);
12534 Diag(D->getLocation(), diag::note_using_enum_decl) << 1;
12535 Invalid = true;
12536 break;
12537 }
12538 }
12539
12540 if (RequireCompleteEnumDecl(ED, NameLoc))
12541 Invalid = true;
12542
12543 UsingEnumDecl *UD = UsingEnumDecl::Create(Context, CurContext, UsingLoc,
12544 EnumLoc, NameLoc, ED);
12545 UD->setAccess(AS);
12546 CurContext->addDecl(UD);
12547
12548 if (Invalid) {
12549 UD->setInvalidDecl();
12550 return UD;
12551 }
12552
12553 // Create the shadow decls for each enumerator
12554 for (EnumConstantDecl *EC : ED->enumerators()) {
12555 UsingShadowDecl *PrevDecl = nullptr;
12556 DeclarationNameInfo DNI(EC->getDeclName(), EC->getLocation());
12557 LookupResult Previous(*this, DNI, LookupOrdinaryName,
12558 ForVisibleRedeclaration);
12559 LookupName(Previous, S);
12560 FilterUsingLookup(S, Previous);
12561
12562 if (!CheckUsingShadowDecl(UD, EC, Previous, PrevDecl))
12563 BuildUsingShadowDecl(S, UD, EC, PrevDecl);
12564 }
12565
12566 return UD;
12567}
12568
12569NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom,
12570 ArrayRef<NamedDecl *> Expansions) {
12571 assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) ||(static_cast <bool> (isa<UnresolvedUsingValueDecl>
(InstantiatedFrom) || isa<UnresolvedUsingTypenameDecl>(
InstantiatedFrom) || isa<UsingPackDecl>(InstantiatedFrom
)) ? void (0) : __assert_fail ("isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || isa<UsingPackDecl>(InstantiatedFrom)"
, "clang/lib/Sema/SemaDeclCXX.cpp", 12573, __extension__ __PRETTY_FUNCTION__
))
12572 isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) ||(static_cast <bool> (isa<UnresolvedUsingValueDecl>
(InstantiatedFrom) || isa<UnresolvedUsingTypenameDecl>(
InstantiatedFrom) || isa<UsingPackDecl>(InstantiatedFrom
)) ? void (0) : __assert_fail ("isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || isa<UsingPackDecl>(InstantiatedFrom)"
, "clang/lib/Sema/SemaDeclCXX.cpp", 12573, __extension__ __PRETTY_FUNCTION__
))
12573 isa<UsingPackDecl>(InstantiatedFrom))(static_cast <bool> (isa<UnresolvedUsingValueDecl>
(InstantiatedFrom) || isa<UnresolvedUsingTypenameDecl>(
InstantiatedFrom) || isa<UsingPackDecl>(InstantiatedFrom
)) ? void (0) : __assert_fail ("isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || isa<UsingPackDecl>(InstantiatedFrom)"
, "clang/lib/Sema/SemaDeclCXX.cpp", 12573, __extension__ __PRETTY_FUNCTION__
))
;
12574
12575 auto *UPD =
12576 UsingPackDecl::Create(Context, CurContext, InstantiatedFrom, Expansions);
12577 UPD->setAccess(InstantiatedFrom->getAccess());
12578 CurContext->addDecl(UPD);
12579 return UPD;
12580}
12581
12582/// Additional checks for a using declaration referring to a constructor name.
12583bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
12584 assert(!UD->hasTypename() && "expecting a constructor name")(static_cast <bool> (!UD->hasTypename() && "expecting a constructor name"
) ? void (0) : __assert_fail ("!UD->hasTypename() && \"expecting a constructor name\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 12584, __extension__ __PRETTY_FUNCTION__
))
;
12585
12586 const Type *SourceType = UD->getQualifier()->getAsType();
12587 assert(SourceType &&(static_cast <bool> (SourceType && "Using decl naming constructor doesn't have type in scope spec."
) ? void (0) : __assert_fail ("SourceType && \"Using decl naming constructor doesn't have type in scope spec.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 12588, __extension__ __PRETTY_FUNCTION__
))
12588 "Using decl naming constructor doesn't have type in scope spec.")(static_cast <bool> (SourceType && "Using decl naming constructor doesn't have type in scope spec."
) ? void (0) : __assert_fail ("SourceType && \"Using decl naming constructor doesn't have type in scope spec.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 12588, __extension__ __PRETTY_FUNCTION__
))
;
12589 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
12590
12591 // Check whether the named type is a direct base class.
12592 bool AnyDependentBases = false;
12593 auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0),
12594 AnyDependentBases);
12595 if (!Base && !AnyDependentBases) {
12596 Diag(UD->getUsingLoc(),
12597 diag::err_using_decl_constructor_not_in_direct_base)
12598 << UD->getNameInfo().getSourceRange()
12599 << QualType(SourceType, 0) << TargetClass;
12600 UD->setInvalidDecl();
12601 return true;
12602 }
12603
12604 if (Base)
12605 Base->setInheritConstructors();
12606
12607 return false;
12608}
12609
12610/// Checks that the given using declaration is not an invalid
12611/// redeclaration. Note that this is checking only for the using decl
12612/// itself, not for any ill-formedness among the UsingShadowDecls.
12613bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
12614 bool HasTypenameKeyword,
12615 const CXXScopeSpec &SS,
12616 SourceLocation NameLoc,
12617 const LookupResult &Prev) {
12618 NestedNameSpecifier *Qual = SS.getScopeRep();
12619
12620 // C++03 [namespace.udecl]p8:
12621 // C++0x [namespace.udecl]p10:
12622 // A using-declaration is a declaration and can therefore be used
12623 // repeatedly where (and only where) multiple declarations are
12624 // allowed.
12625 //
12626 // That's in non-member contexts.
12627 if (!CurContext->getRedeclContext()->isRecord()) {
12628 // A dependent qualifier outside a class can only ever resolve to an
12629 // enumeration type. Therefore it conflicts with any other non-type
12630 // declaration in the same scope.
12631 // FIXME: How should we check for dependent type-type conflicts at block
12632 // scope?
12633 if (Qual->isDependent() && !HasTypenameKeyword) {
12634 for (auto *D : Prev) {
12635 if (!isa<TypeDecl>(D) && !isa<UsingDecl>(D) && !isa<UsingPackDecl>(D)) {
12636 bool OldCouldBeEnumerator =
12637 isa<UnresolvedUsingValueDecl>(D) || isa<EnumConstantDecl>(D);
12638 Diag(NameLoc,
12639 OldCouldBeEnumerator ? diag::err_redefinition
12640 : diag::err_redefinition_different_kind)
12641 << Prev.getLookupName();
12642 Diag(D->getLocation(), diag::note_previous_definition);
12643 return true;
12644 }
12645 }
12646 }
12647 return false;
12648 }
12649
12650 const NestedNameSpecifier *CNNS =
12651 Context.getCanonicalNestedNameSpecifier(Qual);
12652 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
12653 NamedDecl *D = *I;
12654
12655 bool DTypename;
12656 NestedNameSpecifier *DQual;
12657 if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
12658 DTypename = UD->hasTypename();
12659 DQual = UD->getQualifier();
12660 } else if (UnresolvedUsingValueDecl *UD
12661 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
12662 DTypename = false;
12663 DQual = UD->getQualifier();
12664 } else if (UnresolvedUsingTypenameDecl *UD
12665 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
12666 DTypename = true;
12667 DQual = UD->getQualifier();
12668 } else continue;
12669
12670 // using decls differ if one says 'typename' and the other doesn't.
12671 // FIXME: non-dependent using decls?
12672 if (HasTypenameKeyword != DTypename) continue;
12673
12674 // using decls differ if they name different scopes (but note that
12675 // template instantiation can cause this check to trigger when it
12676 // didn't before instantiation).
12677 if (CNNS != Context.getCanonicalNestedNameSpecifier(DQual))
12678 continue;
12679
12680 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
12681 Diag(D->getLocation(), diag::note_using_decl) << 1;
12682 return true;
12683 }
12684
12685 return false;
12686}
12687
12688/// Checks that the given nested-name qualifier used in a using decl
12689/// in the current context is appropriately related to the current
12690/// scope. If an error is found, diagnoses it and returns true.
12691/// R is nullptr, if the caller has not (yet) done a lookup, otherwise it's the
12692/// result of that lookup. UD is likewise nullptr, except when we have an
12693/// already-populated UsingDecl whose shadow decls contain the same information
12694/// (i.e. we're instantiating a UsingDecl with non-dependent scope).
12695bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename,
12696 const CXXScopeSpec &SS,
12697 const DeclarationNameInfo &NameInfo,
12698 SourceLocation NameLoc,
12699 const LookupResult *R, const UsingDecl *UD) {
12700 DeclContext *NamedContext = computeDeclContext(SS);
12701 assert(bool(NamedContext) == (R || UD) && !(R && UD) &&(static_cast <bool> (bool(NamedContext) == (R || UD) &&
!(R && UD) && "resolvable context must have exactly one set of decls"
) ? void (0) : __assert_fail ("bool(NamedContext) == (R || UD) && !(R && UD) && \"resolvable context must have exactly one set of decls\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 12702, __extension__ __PRETTY_FUNCTION__
))
12702 "resolvable context must have exactly one set of decls")(static_cast <bool> (bool(NamedContext) == (R || UD) &&
!(R && UD) && "resolvable context must have exactly one set of decls"
) ? void (0) : __assert_fail ("bool(NamedContext) == (R || UD) && !(R && UD) && \"resolvable context must have exactly one set of decls\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 12702, __extension__ __PRETTY_FUNCTION__
))
;
12703
12704 // C++ 20 permits using an enumerator that does not have a class-hierarchy
12705 // relationship.
12706 bool Cxx20Enumerator = false;
12707 if (NamedContext) {
12708 EnumConstantDecl *EC = nullptr;
12709 if (R)
12710 EC = R->getAsSingle<EnumConstantDecl>();
12711 else if (UD && UD->shadow_size() == 1)
12712 EC = dyn_cast<EnumConstantDecl>(UD->shadow_begin()->getTargetDecl());
12713 if (EC)
12714 Cxx20Enumerator = getLangOpts().CPlusPlus20;
12715
12716 if (auto *ED = dyn_cast<EnumDecl>(NamedContext)) {
12717 // C++14 [namespace.udecl]p7:
12718 // A using-declaration shall not name a scoped enumerator.
12719 // C++20 p1099 permits enumerators.
12720 if (EC && R && ED->isScoped())
12721 Diag(SS.getBeginLoc(),
12722 getLangOpts().CPlusPlus20
12723 ? diag::warn_cxx17_compat_using_decl_scoped_enumerator
12724 : diag::ext_using_decl_scoped_enumerator)
12725 << SS.getRange();
12726
12727 // We want to consider the scope of the enumerator
12728 NamedContext = ED->getDeclContext();
12729 }
12730 }
12731
12732 if (!CurContext->isRecord()) {
12733 // C++03 [namespace.udecl]p3:
12734 // C++0x [namespace.udecl]p8:
12735 // A using-declaration for a class member shall be a member-declaration.
12736 // C++20 [namespace.udecl]p7
12737 // ... other than an enumerator ...
12738
12739 // If we weren't able to compute a valid scope, it might validly be a
12740 // dependent class or enumeration scope. If we have a 'typename' keyword,
12741 // the scope must resolve to a class type.
12742 if (NamedContext ? !NamedContext->getRedeclContext()->isRecord()
12743 : !HasTypename)
12744 return false; // OK
12745
12746 Diag(NameLoc,
12747 Cxx20Enumerator
12748 ? diag::warn_cxx17_compat_using_decl_class_member_enumerator
12749 : diag::err_using_decl_can_not_refer_to_class_member)
12750 << SS.getRange();
12751
12752 if (Cxx20Enumerator)
12753 return false; // OK
12754
12755 auto *RD = NamedContext
12756 ? cast<CXXRecordDecl>(NamedContext->getRedeclContext())
12757 : nullptr;
12758 if (RD && !RequireCompleteDeclContext(const_cast<CXXScopeSpec &>(SS), RD)) {
12759 // See if there's a helpful fixit
12760
12761 if (!R) {
12762 // We will have already diagnosed the problem on the template
12763 // definition, Maybe we should do so again?
12764 } else if (R->getAsSingle<TypeDecl>()) {
12765 if (getLangOpts().CPlusPlus11) {
12766 // Convert 'using X::Y;' to 'using Y = X::Y;'.
12767 Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround)
12768 << 0 // alias declaration
12769 << FixItHint::CreateInsertion(SS.getBeginLoc(),
12770 NameInfo.getName().getAsString() +
12771 " = ");
12772 } else {
12773 // Convert 'using X::Y;' to 'typedef X::Y Y;'.
12774 SourceLocation InsertLoc = getLocForEndOfToken(NameInfo.getEndLoc());
12775 Diag(InsertLoc, diag::note_using_decl_class_member_workaround)
12776 << 1 // typedef declaration
12777 << FixItHint::CreateReplacement(UsingLoc, "typedef")
12778 << FixItHint::CreateInsertion(
12779 InsertLoc, " " + NameInfo.getName().getAsString());
12780 }
12781 } else if (R->getAsSingle<VarDecl>()) {
12782 // Don't provide a fixit outside C++11 mode; we don't want to suggest
12783 // repeating the type of the static data member here.
12784 FixItHint FixIt;
12785 if (getLangOpts().CPlusPlus11) {
12786 // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
12787 FixIt = FixItHint::CreateReplacement(
12788 UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = ");
12789 }
12790
12791 Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
12792 << 2 // reference declaration
12793 << FixIt;
12794 } else if (R->getAsSingle<EnumConstantDecl>()) {
12795 // Don't provide a fixit outside C++11 mode; we don't want to suggest
12796 // repeating the type of the enumeration here, and we can't do so if
12797 // the type is anonymous.
12798 FixItHint FixIt;
12799 if (getLangOpts().CPlusPlus11) {
12800 // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
12801 FixIt = FixItHint::CreateReplacement(
12802 UsingLoc,
12803 "constexpr auto " + NameInfo.getName().getAsString() + " = ");
12804 }
12805
12806 Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
12807 << (getLangOpts().CPlusPlus11 ? 4 : 3) // const[expr] variable
12808 << FixIt;
12809 }
12810 }
12811
12812 return true; // Fail
12813 }
12814
12815 // If the named context is dependent, we can't decide much.
12816 if (!NamedContext) {
12817 // FIXME: in C++0x, we can diagnose if we can prove that the
12818 // nested-name-specifier does not refer to a base class, which is
12819 // still possible in some cases.
12820
12821 // Otherwise we have to conservatively report that things might be
12822 // okay.
12823 return false;
12824 }
12825
12826 // The current scope is a record.
12827 if (!NamedContext->isRecord()) {
12828 // Ideally this would point at the last name in the specifier,
12829 // but we don't have that level of source info.
12830 Diag(SS.getBeginLoc(),
12831 Cxx20Enumerator
12832 ? diag::warn_cxx17_compat_using_decl_non_member_enumerator
12833 : diag::err_using_decl_nested_name_specifier_is_not_class)
12834 << SS.getScopeRep() << SS.getRange();
12835
12836 if (Cxx20Enumerator)
12837 return false; // OK
12838
12839 return true;
12840 }
12841
12842 if (!NamedContext->isDependentContext() &&
12843 RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
12844 return true;
12845
12846 if (getLangOpts().CPlusPlus11) {
12847 // C++11 [namespace.udecl]p3:
12848 // In a using-declaration used as a member-declaration, the
12849 // nested-name-specifier shall name a base class of the class
12850 // being defined.
12851
12852 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
12853 cast<CXXRecordDecl>(NamedContext))) {
12854
12855 if (Cxx20Enumerator) {
12856 Diag(NameLoc, diag::warn_cxx17_compat_using_decl_non_member_enumerator)
12857 << SS.getRange();
12858 return false;
12859 }
12860
12861 if (CurContext == NamedContext) {
12862 Diag(SS.getBeginLoc(),
12863 diag::err_using_decl_nested_name_specifier_is_current_class)
12864 << SS.getRange();
12865 return !getLangOpts().CPlusPlus20;
12866 }
12867
12868 if (!cast<CXXRecordDecl>(NamedContext)->isInvalidDecl()) {
12869 Diag(SS.getBeginLoc(),
12870 diag::err_using_decl_nested_name_specifier_is_not_base_class)
12871 << SS.getScopeRep() << cast<CXXRecordDecl>(CurContext)
12872 << SS.getRange();
12873 }
12874 return true;
12875 }
12876
12877 return false;
12878 }
12879
12880 // C++03 [namespace.udecl]p4:
12881 // A using-declaration used as a member-declaration shall refer
12882 // to a member of a base class of the class being defined [etc.].
12883
12884 // Salient point: SS doesn't have to name a base class as long as
12885 // lookup only finds members from base classes. Therefore we can
12886 // diagnose here only if we can prove that that can't happen,
12887 // i.e. if the class hierarchies provably don't intersect.
12888
12889 // TODO: it would be nice if "definitely valid" results were cached
12890 // in the UsingDecl and UsingShadowDecl so that these checks didn't
12891 // need to be repeated.
12892
12893 llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases;
12894 auto Collect = [&Bases](const CXXRecordDecl *Base) {
12895 Bases.insert(Base);
12896 return true;
12897 };
12898
12899 // Collect all bases. Return false if we find a dependent base.
12900 if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect))
12901 return false;
12902
12903 // Returns true if the base is dependent or is one of the accumulated base
12904 // classes.
12905 auto IsNotBase = [&Bases](const CXXRecordDecl *Base) {
12906 return !Bases.count(Base);
12907 };
12908
12909 // Return false if the class has a dependent base or if it or one
12910 // of its bases is present in the base set of the current context.
12911 if (Bases.count(cast<CXXRecordDecl>(NamedContext)) ||
12912 !cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase))
12913 return false;
12914
12915 Diag(SS.getRange().getBegin(),
12916 diag::err_using_decl_nested_name_specifier_is_not_base_class)
12917 << SS.getScopeRep()
12918 << cast<CXXRecordDecl>(CurContext)
12919 << SS.getRange();
12920
12921 return true;
12922}
12923
12924Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS,
12925 MultiTemplateParamsArg TemplateParamLists,
12926 SourceLocation UsingLoc, UnqualifiedId &Name,
12927 const ParsedAttributesView &AttrList,
12928 TypeResult Type, Decl *DeclFromDeclSpec) {
12929 // Skip up to the relevant declaration scope.
12930 while (S->isTemplateParamScope())
12931 S = S->getParent();
12932 assert((S->getFlags() & Scope::DeclScope) &&(static_cast <bool> ((S->getFlags() & Scope::DeclScope
) && "got alias-declaration outside of declaration scope"
) ? void (0) : __assert_fail ("(S->getFlags() & Scope::DeclScope) && \"got alias-declaration outside of declaration scope\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 12933, __extension__ __PRETTY_FUNCTION__
))
12933 "got alias-declaration outside of declaration scope")(static_cast <bool> ((S->getFlags() & Scope::DeclScope
) && "got alias-declaration outside of declaration scope"
) ? void (0) : __assert_fail ("(S->getFlags() & Scope::DeclScope) && \"got alias-declaration outside of declaration scope\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 12933, __extension__ __PRETTY_FUNCTION__
))
;
12934
12935 if (Type.isInvalid())
12936 return nullptr;
12937
12938 bool Invalid = false;
12939 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
12940 TypeSourceInfo *TInfo = nullptr;
12941 GetTypeFromParser(Type.get(), &TInfo);
12942
12943 if (DiagnoseClassNameShadow(CurContext, NameInfo))
12944 return nullptr;
12945
12946 if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
12947 UPPC_DeclarationType)) {
12948 Invalid = true;
12949 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
12950 TInfo->getTypeLoc().getBeginLoc());
12951 }
12952
12953 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
12954 TemplateParamLists.size()
12955 ? forRedeclarationInCurContext()
12956 : ForVisibleRedeclaration);
12957 LookupName(Previous, S);
12958
12959 // Warn about shadowing the name of a template parameter.
12960 if (Previous.isSingleResult() &&
12961 Previous.getFoundDecl()->isTemplateParameter()) {
12962 DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
12963 Previous.clear();
12964 }
12965
12966 assert(Name.Kind == UnqualifiedIdKind::IK_Identifier &&(static_cast <bool> (Name.Kind == UnqualifiedIdKind::IK_Identifier
&& "name in alias declaration must be an identifier"
) ? void (0) : __assert_fail ("Name.Kind == UnqualifiedIdKind::IK_Identifier && \"name in alias declaration must be an identifier\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 12967, __extension__ __PRETTY_FUNCTION__
))
12967 "name in alias declaration must be an identifier")(static_cast <bool> (Name.Kind == UnqualifiedIdKind::IK_Identifier
&& "name in alias declaration must be an identifier"
) ? void (0) : __assert_fail ("Name.Kind == UnqualifiedIdKind::IK_Identifier && \"name in alias declaration must be an identifier\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 12967, __extension__ __PRETTY_FUNCTION__
))
;
12968 TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
12969 Name.StartLocation,
12970 Name.Identifier, TInfo);
12971
12972 NewTD->setAccess(AS);
12973
12974 if (Invalid)
12975 NewTD->setInvalidDecl();
12976
12977 ProcessDeclAttributeList(S, NewTD, AttrList);
12978 AddPragmaAttributes(S, NewTD);
12979
12980 CheckTypedefForVariablyModifiedType(S, NewTD);
12981 Invalid |= NewTD->isInvalidDecl();
12982
12983 bool Redeclaration = false;
12984
12985 NamedDecl *NewND;
12986 if (TemplateParamLists.size()) {
12987 TypeAliasTemplateDecl *OldDecl = nullptr;
12988 TemplateParameterList *OldTemplateParams = nullptr;
12989
12990 if (TemplateParamLists.size() != 1) {
12991 Diag(UsingLoc, diag::err_alias_template_extra_headers)
12992 << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
12993 TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
12994 }
12995 TemplateParameterList *TemplateParams = TemplateParamLists[0];
12996
12997 // Check that we can declare a template here.
12998 if (CheckTemplateDeclScope(S, TemplateParams))
12999 return nullptr;
13000
13001 // Only consider previous declarations in the same scope.
13002 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
13003 /*ExplicitInstantiationOrSpecialization*/false);
13004 if (!Previous.empty()) {
13005 Redeclaration = true;
13006
13007 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
13008 if (!OldDecl && !Invalid) {
13009 Diag(UsingLoc, diag::err_redefinition_different_kind)
13010 << Name.Identifier;
13011
13012 NamedDecl *OldD = Previous.getRepresentativeDecl();
13013 if (OldD->getLocation().isValid())
13014 Diag(OldD->getLocation(), diag::note_previous_definition);
13015
13016 Invalid = true;
13017 }
13018
13019 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
13020 if (TemplateParameterListsAreEqual(TemplateParams,
13021 OldDecl->getTemplateParameters(),
13022 /*Complain=*/true,
13023 TPL_TemplateMatch))
13024 OldTemplateParams =
13025 OldDecl->getMostRecentDecl()->getTemplateParameters();
13026 else
13027 Invalid = true;
13028
13029 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
13030 if (!Invalid &&
13031 !Context.hasSameType(OldTD->getUnderlyingType(),
13032 NewTD->getUnderlyingType())) {
13033 // FIXME: The C++0x standard does not clearly say this is ill-formed,
13034 // but we can't reasonably accept it.
13035 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
13036 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
13037 if (OldTD->getLocation().isValid())
13038 Diag(OldTD->getLocation(), diag::note_previous_definition);
13039 Invalid = true;
13040 }
13041 }
13042 }
13043
13044 // Merge any previous default template arguments into our parameters,
13045 // and check the parameter list.
13046 if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
13047 TPC_TypeAliasTemplate))
13048 return nullptr;
13049
13050 TypeAliasTemplateDecl *NewDecl =
13051 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
13052 Name.Identifier, TemplateParams,
13053 NewTD);
13054 NewTD->setDescribedAliasTemplate(NewDecl);
13055
13056 NewDecl->setAccess(AS);
13057
13058 if (Invalid)
13059 NewDecl->setInvalidDecl();
13060 else if (OldDecl) {
13061 NewDecl->setPreviousDecl(OldDecl);
13062 CheckRedeclarationInModule(NewDecl, OldDecl);
13063 }
13064
13065 NewND = NewDecl;
13066 } else {
13067 if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) {
13068 setTagNameForLinkagePurposes(TD, NewTD);
13069 handleTagNumbering(TD, S);
13070 }
13071 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
13072 NewND = NewTD;
13073 }
13074
13075 PushOnScopeChains(NewND, S);
13076 ActOnDocumentableDecl(NewND);
13077 return NewND;
13078}
13079
13080Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc,
13081 SourceLocation AliasLoc,
13082 IdentifierInfo *Alias, CXXScopeSpec &SS,
13083 SourceLocation IdentLoc,
13084 IdentifierInfo *Ident) {
13085
13086 // Lookup the namespace name.
13087 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
13088 LookupParsedName(R, S, &SS);
13089
13090 if (R.isAmbiguous())
13091 return nullptr;
13092
13093 if (R.empty()) {
13094 if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
13095 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
13096 return nullptr;
13097 }
13098 }
13099 assert(!R.isAmbiguous() && !R.empty())(static_cast <bool> (!R.isAmbiguous() && !R.empty
()) ? void (0) : __assert_fail ("!R.isAmbiguous() && !R.empty()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 13099, __extension__ __PRETTY_FUNCTION__
))
;
13100 NamedDecl *ND = R.getRepresentativeDecl();
13101
13102 // Check if we have a previous declaration with the same name.
13103 LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName,
13104 ForVisibleRedeclaration);
13105 LookupName(PrevR, S);
13106
13107 // Check we're not shadowing a template parameter.
13108 if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) {
13109 DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl());
13110 PrevR.clear();
13111 }
13112
13113 // Filter out any other lookup result from an enclosing scope.
13114 FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false,
13115 /*AllowInlineNamespace*/false);
13116
13117 // Find the previous declaration and check that we can redeclare it.
13118 NamespaceAliasDecl *Prev = nullptr;
13119 if (PrevR.isSingleResult()) {
13120 NamedDecl *PrevDecl = PrevR.getRepresentativeDecl();
13121 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
13122 // We already have an alias with the same name that points to the same
13123 // namespace; check that it matches.
13124 if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) {
13125 Prev = AD;
13126 } else if (isVisible(PrevDecl)) {
13127 Diag(AliasLoc, diag::err_redefinition_different_namespace_alias)
13128 << Alias;
13129 Diag(AD->getLocation(), diag::note_previous_namespace_alias)
13130 << AD->getNamespace();
13131 return nullptr;
13132 }
13133 } else if (isVisible(PrevDecl)) {
13134 unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl())
13135 ? diag::err_redefinition
13136 : diag::err_redefinition_different_kind;
13137 Diag(AliasLoc, DiagID) << Alias;
13138 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
13139 return nullptr;
13140 }
13141 }
13142
13143 // The use of a nested name specifier may trigger deprecation warnings.
13144 DiagnoseUseOfDecl(ND, IdentLoc);
13145
13146 NamespaceAliasDecl *AliasDecl =
13147 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
13148 Alias, SS.getWithLocInContext(Context),
13149 IdentLoc, ND);
13150 if (Prev)
13151 AliasDecl->setPreviousDecl(Prev);
13152
13153 PushOnScopeChains(AliasDecl, S);
13154 return AliasDecl;
13155}
13156
13157namespace {
13158struct SpecialMemberExceptionSpecInfo
13159 : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> {
13160 SourceLocation Loc;
13161 Sema::ImplicitExceptionSpecification ExceptSpec;
13162
13163 SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD,
13164 Sema::CXXSpecialMember CSM,
13165 Sema::InheritedConstructorInfo *ICI,
13166 SourceLocation Loc)
13167 : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {}
13168
13169 bool visitBase(CXXBaseSpecifier *Base);
13170 bool visitField(FieldDecl *FD);
13171
13172 void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
13173 unsigned Quals);
13174
13175 void visitSubobjectCall(Subobject Subobj,
13176 Sema::SpecialMemberOverloadResult SMOR);
13177};
13178}
13179
13180bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) {
13181 auto *RT = Base->getType()->getAs<RecordType>();
13182 if (!RT)
13183 return false;
13184
13185 auto *BaseClass = cast<CXXRecordDecl>(RT->getDecl());
13186 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
13187 if (auto *BaseCtor = SMOR.getMethod()) {
13188 visitSubobjectCall(Base, BaseCtor);
13189 return false;
13190 }
13191
13192 visitClassSubobject(BaseClass, Base, 0);
13193 return false;
13194}
13195
13196bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) {
13197 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) {
13198 Expr *E = FD->getInClassInitializer();
13199 if (!E)
13200 // FIXME: It's a little wasteful to build and throw away a
13201 // CXXDefaultInitExpr here.
13202 // FIXME: We should have a single context note pointing at Loc, and
13203 // this location should be MD->getLocation() instead, since that's
13204 // the location where we actually use the default init expression.
13205 E = S.BuildCXXDefaultInitExpr(Loc, FD).get();
13206 if (E)
13207 ExceptSpec.CalledExpr(E);
13208 } else if (auto *RT = S.Context.getBaseElementType(FD->getType())
13209 ->getAs<RecordType>()) {
13210 visitClassSubobject(cast<CXXRecordDecl>(RT->getDecl()), FD,
13211 FD->getType().getCVRQualifiers());
13212 }
13213 return false;
13214}
13215
13216void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class,
13217 Subobject Subobj,
13218 unsigned Quals) {
13219 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
13220 bool IsMutable = Field && Field->isMutable();
13221 visitSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable));
13222}
13223
13224void SpecialMemberExceptionSpecInfo::visitSubobjectCall(
13225 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) {
13226 // Note, if lookup fails, it doesn't matter what exception specification we
13227 // choose because the special member will be deleted.
13228 if (CXXMethodDecl *MD = SMOR.getMethod())
13229 ExceptSpec.CalledDecl(getSubobjectLoc(Subobj), MD);
13230}
13231
13232bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) {
13233 llvm::APSInt Result;
13234 ExprResult Converted = CheckConvertedConstantExpression(
13235 ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEK_ExplicitBool);
13236 ExplicitSpec.setExpr(Converted.get());
13237 if (Converted.isUsable() && !Converted.get()->isValueDependent()) {
13238 ExplicitSpec.setKind(Result.getBoolValue()
13239 ? ExplicitSpecKind::ResolvedTrue
13240 : ExplicitSpecKind::ResolvedFalse);
13241 return true;
13242 }
13243 ExplicitSpec.setKind(ExplicitSpecKind::Unresolved);
13244 return false;
13245}
13246
13247ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) {
13248 ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved);
13249 if (!ExplicitExpr->isTypeDependent())
13250 tryResolveExplicitSpecifier(ES);
13251 return ES;
13252}
13253
13254static Sema::ImplicitExceptionSpecification
13255ComputeDefaultedSpecialMemberExceptionSpec(
13256 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
13257 Sema::InheritedConstructorInfo *ICI) {
13258 ComputingExceptionSpec CES(S, MD, Loc);
13259
13260 CXXRecordDecl *ClassDecl = MD->getParent();
13261
13262 // C++ [except.spec]p14:
13263 // An implicitly declared special member function (Clause 12) shall have an
13264 // exception-specification. [...]
13265 SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation());
13266 if (ClassDecl->isInvalidDecl())
13267 return Info.ExceptSpec;
13268
13269 // FIXME: If this diagnostic fires, we're probably missing a check for
13270 // attempting to resolve an exception specification before it's known
13271 // at a higher level.
13272 if (S.RequireCompleteType(MD->getLocation(),
13273 S.Context.getRecordType(ClassDecl),
13274 diag::err_exception_spec_incomplete_type))
13275 return Info.ExceptSpec;
13276
13277 // C++1z [except.spec]p7:
13278 // [Look for exceptions thrown by] a constructor selected [...] to
13279 // initialize a potentially constructed subobject,
13280 // C++1z [except.spec]p8:
13281 // The exception specification for an implicitly-declared destructor, or a
13282 // destructor without a noexcept-specifier, is potentially-throwing if and
13283 // only if any of the destructors for any of its potentially constructed
13284 // subojects is potentially throwing.
13285 // FIXME: We respect the first rule but ignore the "potentially constructed"
13286 // in the second rule to resolve a core issue (no number yet) that would have
13287 // us reject:
13288 // struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; };
13289 // struct B : A {};
13290 // struct C : B { void f(); };
13291 // ... due to giving B::~B() a non-throwing exception specification.
13292 Info.visit(Info.IsConstructor ? Info.VisitPotentiallyConstructedBases
13293 : Info.VisitAllBases);
13294
13295 return Info.ExceptSpec;
13296}
13297
13298namespace {
13299/// RAII object to register a special member as being currently declared.
13300struct DeclaringSpecialMember {
13301 Sema &S;
13302 Sema::SpecialMemberDecl D;
13303 Sema::ContextRAII SavedContext;
13304 bool WasAlreadyBeingDeclared;
13305
13306 DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
13307 : S(S), D(RD, CSM), SavedContext(S, RD) {
13308 WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second;
13309 if (WasAlreadyBeingDeclared)
13310 // This almost never happens, but if it does, ensure that our cache
13311 // doesn't contain a stale result.
13312 S.SpecialMemberCache.clear();
13313 else {
13314 // Register a note to be produced if we encounter an error while
13315 // declaring the special member.
13316 Sema::CodeSynthesisContext Ctx;
13317 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember;
13318 // FIXME: We don't have a location to use here. Using the class's
13319 // location maintains the fiction that we declare all special members
13320 // with the class, but (1) it's not clear that lying about that helps our
13321 // users understand what's going on, and (2) there may be outer contexts
13322 // on the stack (some of which are relevant) and printing them exposes
13323 // our lies.
13324 Ctx.PointOfInstantiation = RD->getLocation();
13325 Ctx.Entity = RD;
13326 Ctx.SpecialMember = CSM;
13327 S.pushCodeSynthesisContext(Ctx);
13328 }
13329 }
13330 ~DeclaringSpecialMember() {
13331 if (!WasAlreadyBeingDeclared) {
13332 S.SpecialMembersBeingDeclared.erase(D);
13333 S.popCodeSynthesisContext();
13334 }
13335 }
13336
13337 /// Are we already trying to declare this special member?
13338 bool isAlreadyBeingDeclared() const {
13339 return WasAlreadyBeingDeclared;
13340 }
13341};
13342}
13343
13344void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) {
13345 // Look up any existing declarations, but don't trigger declaration of all
13346 // implicit special members with this name.
13347 DeclarationName Name = FD->getDeclName();
13348 LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName,
13349 ForExternalRedeclaration);
13350 for (auto *D : FD->getParent()->lookup(Name))
13351 if (auto *Acceptable = R.getAcceptableDecl(D))
13352 R.addDecl(Acceptable);
13353 R.resolveKind();
13354 R.suppressDiagnostics();
13355
13356 CheckFunctionDeclaration(S, FD, R, /*IsMemberSpecialization*/ false,
13357 FD->isThisDeclarationADefinition());
13358}
13359
13360void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem,
13361 QualType ResultTy,
13362 ArrayRef<QualType> Args) {
13363 // Build an exception specification pointing back at this constructor.
13364 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, SpecialMem);
13365
13366 LangAS AS = getDefaultCXXMethodAddrSpace();
13367 if (AS != LangAS::Default) {
13368 EPI.TypeQuals.addAddressSpace(AS);
13369 }
13370
13371 auto QT = Context.getFunctionType(ResultTy, Args, EPI);
13372 SpecialMem->setType(QT);
13373
13374 // During template instantiation of implicit special member functions we need
13375 // a reliable TypeSourceInfo for the function prototype in order to allow
13376 // functions to be substituted.
13377 if (inTemplateInstantiation() &&
13378 cast<CXXRecordDecl>(SpecialMem->getParent())->isLambda()) {
13379 TypeSourceInfo *TSI =
13380 Context.getTrivialTypeSourceInfo(SpecialMem->getType());
13381 SpecialMem->setTypeSourceInfo(TSI);
13382 }
13383}
13384
13385CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
13386 CXXRecordDecl *ClassDecl) {
13387 // C++ [class.ctor]p5:
13388 // A default constructor for a class X is a constructor of class X
13389 // that can be called without an argument. If there is no
13390 // user-declared constructor for class X, a default constructor is
13391 // implicitly declared. An implicitly-declared default constructor
13392 // is an inline public member of its class.
13393 assert(ClassDecl->needsImplicitDefaultConstructor() &&(static_cast <bool> (ClassDecl->needsImplicitDefaultConstructor
() && "Should not build implicit default constructor!"
) ? void (0) : __assert_fail ("ClassDecl->needsImplicitDefaultConstructor() && \"Should not build implicit default constructor!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13394, __extension__ __PRETTY_FUNCTION__
))
13394 "Should not build implicit default constructor!")(static_cast <bool> (ClassDecl->needsImplicitDefaultConstructor
() && "Should not build implicit default constructor!"
) ? void (0) : __assert_fail ("ClassDecl->needsImplicitDefaultConstructor() && \"Should not build implicit default constructor!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13394, __extension__ __PRETTY_FUNCTION__
))
;
13395
13396 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
13397 if (DSM.isAlreadyBeingDeclared())
13398 return nullptr;
13399
13400 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
13401 CXXDefaultConstructor,
13402 false);
13403
13404 // Create the actual constructor declaration.
13405 CanQualType ClassType
13406 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
13407 SourceLocation ClassLoc = ClassDecl->getLocation();
13408 DeclarationName Name
13409 = Context.DeclarationNames.getCXXConstructorName(ClassType);
13410 DeclarationNameInfo NameInfo(Name, ClassLoc);
13411 CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
13412 Context, ClassDecl, ClassLoc, NameInfo, /*Type*/ QualType(),
13413 /*TInfo=*/nullptr, ExplicitSpecifier(),
13414 getCurFPFeatures().isFPConstrained(),
13415 /*isInline=*/true, /*isImplicitlyDeclared=*/true,
13416 Constexpr ? ConstexprSpecKind::Constexpr
13417 : ConstexprSpecKind::Unspecified);
13418 DefaultCon->setAccess(AS_public);
13419 DefaultCon->setDefaulted();
13420
13421 setupImplicitSpecialMemberType(DefaultCon, Context.VoidTy, None);
13422
13423 if (getLangOpts().CUDA)
13424 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor,
13425 DefaultCon,
13426 /* ConstRHS */ false,
13427 /* Diagnose */ false);
13428
13429 // We don't need to use SpecialMemberIsTrivial here; triviality for default
13430 // constructors is easy to compute.
13431 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
13432
13433 // Note that we have declared this constructor.
13434 ++getASTContext().NumImplicitDefaultConstructorsDeclared;
13435
13436 Scope *S = getScopeForContext(ClassDecl);
13437 CheckImplicitSpecialMemberDeclaration(S, DefaultCon);
13438
13439 if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
13440 SetDeclDeleted(DefaultCon, ClassLoc);
13441
13442 if (S)
13443 PushOnScopeChains(DefaultCon, S, false);
13444 ClassDecl->addDecl(DefaultCon);
13445
13446 return DefaultCon;
13447}
13448
13449void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
13450 CXXConstructorDecl *Constructor) {
13451 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&(static_cast <bool> ((Constructor->isDefaulted() &&
Constructor->isDefaultConstructor() && !Constructor
->doesThisDeclarationHaveABody() && !Constructor->
isDeleted()) && "DefineImplicitDefaultConstructor - call it for implicit default ctor"
) ? void (0) : __assert_fail ("(Constructor->isDefaulted() && Constructor->isDefaultConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()) && \"DefineImplicitDefaultConstructor - call it for implicit default ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13454, __extension__ __PRETTY_FUNCTION__
))
13452 !Constructor->doesThisDeclarationHaveABody() &&(static_cast <bool> ((Constructor->isDefaulted() &&
Constructor->isDefaultConstructor() && !Constructor
->doesThisDeclarationHaveABody() && !Constructor->
isDeleted()) && "DefineImplicitDefaultConstructor - call it for implicit default ctor"
) ? void (0) : __assert_fail ("(Constructor->isDefaulted() && Constructor->isDefaultConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()) && \"DefineImplicitDefaultConstructor - call it for implicit default ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13454, __extension__ __PRETTY_FUNCTION__
))
13453 !Constructor->isDeleted()) &&(static_cast <bool> ((Constructor->isDefaulted() &&
Constructor->isDefaultConstructor() && !Constructor
->doesThisDeclarationHaveABody() && !Constructor->
isDeleted()) && "DefineImplicitDefaultConstructor - call it for implicit default ctor"
) ? void (0) : __assert_fail ("(Constructor->isDefaulted() && Constructor->isDefaultConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()) && \"DefineImplicitDefaultConstructor - call it for implicit default ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13454, __extension__ __PRETTY_FUNCTION__
))
13454 "DefineImplicitDefaultConstructor - call it for implicit default ctor")(static_cast <bool> ((Constructor->isDefaulted() &&
Constructor->isDefaultConstructor() && !Constructor
->doesThisDeclarationHaveABody() && !Constructor->
isDeleted()) && "DefineImplicitDefaultConstructor - call it for implicit default ctor"
) ? void (0) : __assert_fail ("(Constructor->isDefaulted() && Constructor->isDefaultConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()) && \"DefineImplicitDefaultConstructor - call it for implicit default ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13454, __extension__ __PRETTY_FUNCTION__
))
;
13455 if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
13456 return;
13457
13458 CXXRecordDecl *ClassDecl = Constructor->getParent();
13459 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor")(static_cast <bool> (ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"
) ? void (0) : __assert_fail ("ClassDecl && \"DefineImplicitDefaultConstructor - invalid constructor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13459, __extension__ __PRETTY_FUNCTION__
))
;
13460
13461 SynthesizedFunctionScope Scope(*this, Constructor);
13462
13463 // The exception specification is needed because we are defining the
13464 // function.
13465 ResolveExceptionSpec(CurrentLocation,
13466 Constructor->getType()->castAs<FunctionProtoType>());
13467 MarkVTableUsed(CurrentLocation, ClassDecl);
13468
13469 // Add a context note for diagnostics produced after this point.
13470 Scope.addContextNote(CurrentLocation);
13471
13472 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) {
13473 Constructor->setInvalidDecl();
13474 return;
13475 }
13476
13477 SourceLocation Loc = Constructor->getEndLoc().isValid()
13478 ? Constructor->getEndLoc()
13479 : Constructor->getLocation();
13480 Constructor->setBody(new (Context) CompoundStmt(Loc));
13481 Constructor->markUsed(Context);
13482
13483 if (ASTMutationListener *L = getASTMutationListener()) {
13484 L->CompletedImplicitDefinition(Constructor);
13485 }
13486
13487 DiagnoseUninitializedFields(*this, Constructor);
13488}
13489
13490void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
13491 // Perform any delayed checks on exception specifications.
13492 CheckDelayedMemberExceptionSpecs();
13493}
13494
13495/// Find or create the fake constructor we synthesize to model constructing an
13496/// object of a derived class via a constructor of a base class.
13497CXXConstructorDecl *
13498Sema::findInheritingConstructor(SourceLocation Loc,
13499 CXXConstructorDecl *BaseCtor,
13500 ConstructorUsingShadowDecl *Shadow) {
13501 CXXRecordDecl *Derived = Shadow->getParent();
13502 SourceLocation UsingLoc = Shadow->getLocation();
13503
13504 // FIXME: Add a new kind of DeclarationName for an inherited constructor.
13505 // For now we use the name of the base class constructor as a member of the
13506 // derived class to indicate a (fake) inherited constructor name.
13507 DeclarationName Name = BaseCtor->getDeclName();
13508
13509 // Check to see if we already have a fake constructor for this inherited
13510 // constructor call.
13511 for (NamedDecl *Ctor : Derived->lookup(Name))
13512 if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor)
13513 ->getInheritedConstructor()
13514 .getConstructor(),
13515 BaseCtor))
13516 return cast<CXXConstructorDecl>(Ctor);
13517
13518 DeclarationNameInfo NameInfo(Name, UsingLoc);
13519 TypeSourceInfo *TInfo =
13520 Context.getTrivialTypeSourceInfo(BaseCtor->getType(), UsingLoc);
13521 FunctionProtoTypeLoc ProtoLoc =
13522 TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
13523
13524 // Check the inherited constructor is valid and find the list of base classes
13525 // from which it was inherited.
13526 InheritedConstructorInfo ICI(*this, Loc, Shadow);
13527
13528 bool Constexpr =
13529 BaseCtor->isConstexpr() &&
13530 defaultedSpecialMemberIsConstexpr(*this, Derived, CXXDefaultConstructor,
13531 false, BaseCtor, &ICI);
13532
13533 CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
13534 Context, Derived, UsingLoc, NameInfo, TInfo->getType(), TInfo,
13535 BaseCtor->getExplicitSpecifier(), getCurFPFeatures().isFPConstrained(),
13536 /*isInline=*/true,
13537 /*isImplicitlyDeclared=*/true,
13538 Constexpr ? BaseCtor->getConstexprKind() : ConstexprSpecKind::Unspecified,
13539 InheritedConstructor(Shadow, BaseCtor),
13540 BaseCtor->getTrailingRequiresClause());
13541 if (Shadow->isInvalidDecl())
13542 DerivedCtor->setInvalidDecl();
13543
13544 // Build an unevaluated exception specification for this fake constructor.
13545 const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>();
13546 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
13547 EPI.ExceptionSpec.Type = EST_Unevaluated;
13548 EPI.ExceptionSpec.SourceDecl = DerivedCtor;
13549 DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(),
13550 FPT->getParamTypes(), EPI));
13551
13552 // Build the parameter declarations.
13553 SmallVector<ParmVarDecl *, 16> ParamDecls;
13554 for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) {
13555 TypeSourceInfo *TInfo =
13556 Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc);
13557 ParmVarDecl *PD = ParmVarDecl::Create(
13558 Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr,
13559 FPT->getParamType(I), TInfo, SC_None, /*DefArg=*/nullptr);
13560 PD->setScopeInfo(0, I);
13561 PD->setImplicit();
13562 // Ensure attributes are propagated onto parameters (this matters for
13563 // format, pass_object_size, ...).
13564 mergeDeclAttributes(PD, BaseCtor->getParamDecl(I));
13565 ParamDecls.push_back(PD);
13566 ProtoLoc.setParam(I, PD);
13567 }
13568
13569 // Set up the new constructor.
13570 assert(!BaseCtor->isDeleted() && "should not use deleted constructor")(static_cast <bool> (!BaseCtor->isDeleted() &&
"should not use deleted constructor") ? void (0) : __assert_fail
("!BaseCtor->isDeleted() && \"should not use deleted constructor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13570, __extension__ __PRETTY_FUNCTION__
))
;
13571 DerivedCtor->setAccess(BaseCtor->getAccess());
13572 DerivedCtor->setParams(ParamDecls);
13573 Derived->addDecl(DerivedCtor);
13574
13575 if (ShouldDeleteSpecialMember(DerivedCtor, CXXDefaultConstructor, &ICI))
13576 SetDeclDeleted(DerivedCtor, UsingLoc);
13577
13578 return DerivedCtor;
13579}
13580
13581void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) {
13582 InheritedConstructorInfo ICI(*this, Ctor->getLocation(),
13583 Ctor->getInheritedConstructor().getShadowDecl());
13584 ShouldDeleteSpecialMember(Ctor, CXXDefaultConstructor, &ICI,
13585 /*Diagnose*/true);
13586}
13587
13588void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
13589 CXXConstructorDecl *Constructor) {
13590 CXXRecordDecl *ClassDecl = Constructor->getParent();
13591 assert(Constructor->getInheritedConstructor() &&(static_cast <bool> (Constructor->getInheritedConstructor
() && !Constructor->doesThisDeclarationHaveABody()
&& !Constructor->isDeleted()) ? void (0) : __assert_fail
("Constructor->getInheritedConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 13593, __extension__ __PRETTY_FUNCTION__
))
13592 !Constructor->doesThisDeclarationHaveABody() &&(static_cast <bool> (Constructor->getInheritedConstructor
() && !Constructor->doesThisDeclarationHaveABody()
&& !Constructor->isDeleted()) ? void (0) : __assert_fail
("Constructor->getInheritedConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 13593, __extension__ __PRETTY_FUNCTION__
))
13593 !Constructor->isDeleted())(static_cast <bool> (Constructor->getInheritedConstructor
() && !Constructor->doesThisDeclarationHaveABody()
&& !Constructor->isDeleted()) ? void (0) : __assert_fail
("Constructor->getInheritedConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 13593, __extension__ __PRETTY_FUNCTION__
))
;
13594 if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
13595 return;
13596
13597 // Initializations are performed "as if by a defaulted default constructor",
13598 // so enter the appropriate scope.
13599 SynthesizedFunctionScope Scope(*this, Constructor);
13600
13601 // The exception specification is needed because we are defining the
13602 // function.
13603 ResolveExceptionSpec(CurrentLocation,
13604 Constructor->getType()->castAs<FunctionProtoType>());
13605 MarkVTableUsed(CurrentLocation, ClassDecl);
13606
13607 // Add a context note for diagnostics produced after this point.
13608 Scope.addContextNote(CurrentLocation);
13609
13610 ConstructorUsingShadowDecl *Shadow =
13611 Constructor->getInheritedConstructor().getShadowDecl();
13612 CXXConstructorDecl *InheritedCtor =
13613 Constructor->getInheritedConstructor().getConstructor();
13614
13615 // [class.inhctor.init]p1:
13616 // initialization proceeds as if a defaulted default constructor is used to
13617 // initialize the D object and each base class subobject from which the
13618 // constructor was inherited
13619
13620 InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow);
13621 CXXRecordDecl *RD = Shadow->getParent();
13622 SourceLocation InitLoc = Shadow->getLocation();
13623
13624 // Build explicit initializers for all base classes from which the
13625 // constructor was inherited.
13626 SmallVector<CXXCtorInitializer*, 8> Inits;
13627 for (bool VBase : {false, true}) {
13628 for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) {
13629 if (B.isVirtual() != VBase)
13630 continue;
13631
13632 auto *BaseRD = B.getType()->getAsCXXRecordDecl();
13633 if (!BaseRD)
13634 continue;
13635
13636 auto BaseCtor = ICI.findConstructorForBase(BaseRD, InheritedCtor);
13637 if (!BaseCtor.first)
13638 continue;
13639
13640 MarkFunctionReferenced(CurrentLocation, BaseCtor.first);
13641 ExprResult Init = new (Context) CXXInheritedCtorInitExpr(
13642 InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second);
13643
13644 auto *TInfo = Context.getTrivialTypeSourceInfo(B.getType(), InitLoc);
13645 Inits.push_back(new (Context) CXXCtorInitializer(
13646 Context, TInfo, VBase, InitLoc, Init.get(), InitLoc,
13647 SourceLocation()));
13648 }
13649 }
13650
13651 // We now proceed as if for a defaulted default constructor, with the relevant
13652 // initializers replaced.
13653
13654 if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Inits)) {
13655 Constructor->setInvalidDecl();
13656 return;
13657 }
13658
13659 Constructor->setBody(new (Context) CompoundStmt(InitLoc));
13660 Constructor->markUsed(Context);
13661
13662 if (ASTMutationListener *L = getASTMutationListener()) {
13663 L->CompletedImplicitDefinition(Constructor);
13664 }
13665
13666 DiagnoseUninitializedFields(*this, Constructor);
13667}
13668
13669CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
13670 // C++ [class.dtor]p2:
13671 // If a class has no user-declared destructor, a destructor is
13672 // declared implicitly. An implicitly-declared destructor is an
13673 // inline public member of its class.
13674 assert(ClassDecl->needsImplicitDestructor())(static_cast <bool> (ClassDecl->needsImplicitDestructor
()) ? void (0) : __assert_fail ("ClassDecl->needsImplicitDestructor()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 13674, __extension__ __PRETTY_FUNCTION__
))
;
13675
13676 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
13677 if (DSM.isAlreadyBeingDeclared())
13678 return nullptr;
13679
13680 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
13681 CXXDestructor,
13682 false);
13683
13684 // Create the actual destructor declaration.
13685 CanQualType ClassType
13686 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
13687 SourceLocation ClassLoc = ClassDecl->getLocation();
13688 DeclarationName Name
13689 = Context.DeclarationNames.getCXXDestructorName(ClassType);
13690 DeclarationNameInfo NameInfo(Name, ClassLoc);
13691 CXXDestructorDecl *Destructor = CXXDestructorDecl::Create(
13692 Context, ClassDecl, ClassLoc, NameInfo, QualType(), nullptr,
13693 getCurFPFeatures().isFPConstrained(),
13694 /*isInline=*/true,
13695 /*isImplicitlyDeclared=*/true,
13696 Constexpr ? ConstexprSpecKind::Constexpr
13697 : ConstexprSpecKind::Unspecified);
13698 Destructor->setAccess(AS_public);
13699 Destructor->setDefaulted();
13700
13701 setupImplicitSpecialMemberType(Destructor, Context.VoidTy, None);
13702
13703 if (getLangOpts().CUDA)
13704 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor,
13705 Destructor,
13706 /* ConstRHS */ false,
13707 /* Diagnose */ false);
13708
13709 // We don't need to use SpecialMemberIsTrivial here; triviality for
13710 // destructors is easy to compute.
13711 Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
13712 Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() ||
13713 ClassDecl->hasTrivialDestructorForCall());
13714
13715 // Note that we have declared this destructor.
13716 ++getASTContext().NumImplicitDestructorsDeclared;
13717
13718 Scope *S = getScopeForContext(ClassDecl);
13719 CheckImplicitSpecialMemberDeclaration(S, Destructor);
13720
13721 // We can't check whether an implicit destructor is deleted before we complete
13722 // the definition of the class, because its validity depends on the alignment
13723 // of the class. We'll check this from ActOnFields once the class is complete.
13724 if (ClassDecl->isCompleteDefinition() &&
13725 ShouldDeleteSpecialMember(Destructor, CXXDestructor))
13726 SetDeclDeleted(Destructor, ClassLoc);
13727
13728 // Introduce this destructor into its scope.
13729 if (S)
13730 PushOnScopeChains(Destructor, S, false);
13731 ClassDecl->addDecl(Destructor);
13732
13733 return Destructor;
13734}
13735
13736void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
13737 CXXDestructorDecl *Destructor) {
13738 assert((Destructor->isDefaulted() &&(static_cast <bool> ((Destructor->isDefaulted() &&
!Destructor->doesThisDeclarationHaveABody() && !Destructor
->isDeleted()) && "DefineImplicitDestructor - call it for implicit default dtor"
) ? void (0) : __assert_fail ("(Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody() && !Destructor->isDeleted()) && \"DefineImplicitDestructor - call it for implicit default dtor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13741, __extension__ __PRETTY_FUNCTION__
))
13739 !Destructor->doesThisDeclarationHaveABody() &&(static_cast <bool> ((Destructor->isDefaulted() &&
!Destructor->doesThisDeclarationHaveABody() && !Destructor
->isDeleted()) && "DefineImplicitDestructor - call it for implicit default dtor"
) ? void (0) : __assert_fail ("(Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody() && !Destructor->isDeleted()) && \"DefineImplicitDestructor - call it for implicit default dtor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13741, __extension__ __PRETTY_FUNCTION__
))
13740 !Destructor->isDeleted()) &&(static_cast <bool> ((Destructor->isDefaulted() &&
!Destructor->doesThisDeclarationHaveABody() && !Destructor
->isDeleted()) && "DefineImplicitDestructor - call it for implicit default dtor"
) ? void (0) : __assert_fail ("(Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody() && !Destructor->isDeleted()) && \"DefineImplicitDestructor - call it for implicit default dtor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13741, __extension__ __PRETTY_FUNCTION__
))
13741 "DefineImplicitDestructor - call it for implicit default dtor")(static_cast <bool> ((Destructor->isDefaulted() &&
!Destructor->doesThisDeclarationHaveABody() && !Destructor
->isDeleted()) && "DefineImplicitDestructor - call it for implicit default dtor"
) ? void (0) : __assert_fail ("(Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody() && !Destructor->isDeleted()) && \"DefineImplicitDestructor - call it for implicit default dtor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13741, __extension__ __PRETTY_FUNCTION__
))
;
13742 if (Destructor->willHaveBody() || Destructor->isInvalidDecl())
13743 return;
13744
13745 CXXRecordDecl *ClassDecl = Destructor->getParent();
13746 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor")(static_cast <bool> (ClassDecl && "DefineImplicitDestructor - invalid destructor"
) ? void (0) : __assert_fail ("ClassDecl && \"DefineImplicitDestructor - invalid destructor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13746, __extension__ __PRETTY_FUNCTION__
))
;
13747
13748 SynthesizedFunctionScope Scope(*this, Destructor);
13749
13750 // The exception specification is needed because we are defining the
13751 // function.
13752 ResolveExceptionSpec(CurrentLocation,
13753 Destructor->getType()->castAs<FunctionProtoType>());
13754 MarkVTableUsed(CurrentLocation, ClassDecl);
13755
13756 // Add a context note for diagnostics produced after this point.
13757 Scope.addContextNote(CurrentLocation);
13758
13759 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
13760 Destructor->getParent());
13761
13762 if (CheckDestructor(Destructor)) {
13763 Destructor->setInvalidDecl();
13764 return;
13765 }
13766
13767 SourceLocation Loc = Destructor->getEndLoc().isValid()
13768 ? Destructor->getEndLoc()
13769 : Destructor->getLocation();
13770 Destructor->setBody(new (Context) CompoundStmt(Loc));
13771 Destructor->markUsed(Context);
13772
13773 if (ASTMutationListener *L = getASTMutationListener()) {
13774 L->CompletedImplicitDefinition(Destructor);
13775 }
13776}
13777
13778void Sema::CheckCompleteDestructorVariant(SourceLocation CurrentLocation,
13779 CXXDestructorDecl *Destructor) {
13780 if (Destructor->isInvalidDecl())
13781 return;
13782
13783 CXXRecordDecl *ClassDecl = Destructor->getParent();
13784 assert(Context.getTargetInfo().getCXXABI().isMicrosoft() &&(static_cast <bool> (Context.getTargetInfo().getCXXABI(
).isMicrosoft() && "implicit complete dtors unneeded outside MS ABI"
) ? void (0) : __assert_fail ("Context.getTargetInfo().getCXXABI().isMicrosoft() && \"implicit complete dtors unneeded outside MS ABI\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13785, __extension__ __PRETTY_FUNCTION__
))
13785 "implicit complete dtors unneeded outside MS ABI")(static_cast <bool> (Context.getTargetInfo().getCXXABI(
).isMicrosoft() && "implicit complete dtors unneeded outside MS ABI"
) ? void (0) : __assert_fail ("Context.getTargetInfo().getCXXABI().isMicrosoft() && \"implicit complete dtors unneeded outside MS ABI\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13785, __extension__ __PRETTY_FUNCTION__
))
;
13786 assert(ClassDecl->getNumVBases() > 0 &&(static_cast <bool> (ClassDecl->getNumVBases() > 0
&& "complete dtor only exists for classes with vbases"
) ? void (0) : __assert_fail ("ClassDecl->getNumVBases() > 0 && \"complete dtor only exists for classes with vbases\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13787, __extension__ __PRETTY_FUNCTION__
))
13787 "complete dtor only exists for classes with vbases")(static_cast <bool> (ClassDecl->getNumVBases() > 0
&& "complete dtor only exists for classes with vbases"
) ? void (0) : __assert_fail ("ClassDecl->getNumVBases() > 0 && \"complete dtor only exists for classes with vbases\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13787, __extension__ __PRETTY_FUNCTION__
))
;
13788
13789 SynthesizedFunctionScope Scope(*this, Destructor);
13790
13791 // Add a context note for diagnostics produced after this point.
13792 Scope.addContextNote(CurrentLocation);
13793
13794 MarkVirtualBaseDestructorsReferenced(Destructor->getLocation(), ClassDecl);
13795}
13796
13797/// Perform any semantic analysis which needs to be delayed until all
13798/// pending class member declarations have been parsed.
13799void Sema::ActOnFinishCXXMemberDecls() {
13800 // If the context is an invalid C++ class, just suppress these checks.
13801 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
13802 if (Record->isInvalidDecl()) {
13803 DelayedOverridingExceptionSpecChecks.clear();
13804 DelayedEquivalentExceptionSpecChecks.clear();
13805 return;
13806 }
13807 checkForMultipleExportedDefaultConstructors(*this, Record);
13808 }
13809}
13810
13811void Sema::ActOnFinishCXXNonNestedClass() {
13812 referenceDLLExportedClassMethods();
13813
13814 if (!DelayedDllExportMemberFunctions.empty()) {
13815 SmallVector<CXXMethodDecl*, 4> WorkList;
13816 std::swap(DelayedDllExportMemberFunctions, WorkList);
13817 for (CXXMethodDecl *M : WorkList) {
13818 DefineDefaultedFunction(*this, M, M->getLocation());
13819
13820 // Pass the method to the consumer to get emitted. This is not necessary
13821 // for explicit instantiation definitions, as they will get emitted
13822 // anyway.
13823 if (M->getParent()->getTemplateSpecializationKind() !=
13824 TSK_ExplicitInstantiationDefinition)
13825 ActOnFinishInlineFunctionDef(M);
13826 }
13827 }
13828}
13829
13830void Sema::referenceDLLExportedClassMethods() {
13831 if (!DelayedDllExportClasses.empty()) {
13832 // Calling ReferenceDllExportedMembers might cause the current function to
13833 // be called again, so use a local copy of DelayedDllExportClasses.
13834 SmallVector<CXXRecordDecl *, 4> WorkList;
13835 std::swap(DelayedDllExportClasses, WorkList);
13836 for (CXXRecordDecl *Class : WorkList)
13837 ReferenceDllExportedMembers(*this, Class);
13838 }
13839}
13840
13841void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) {
13842 assert(getLangOpts().CPlusPlus11 &&(static_cast <bool> (getLangOpts().CPlusPlus11 &&
"adjusting dtor exception specs was introduced in c++11") ? void
(0) : __assert_fail ("getLangOpts().CPlusPlus11 && \"adjusting dtor exception specs was introduced in c++11\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13843, __extension__ __PRETTY_FUNCTION__
))
13843 "adjusting dtor exception specs was introduced in c++11")(static_cast <bool> (getLangOpts().CPlusPlus11 &&
"adjusting dtor exception specs was introduced in c++11") ? void
(0) : __assert_fail ("getLangOpts().CPlusPlus11 && \"adjusting dtor exception specs was introduced in c++11\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13843, __extension__ __PRETTY_FUNCTION__
))
;
13844
13845 if (Destructor->isDependentContext())
13846 return;
13847
13848 // C++11 [class.dtor]p3:
13849 // A declaration of a destructor that does not have an exception-
13850 // specification is implicitly considered to have the same exception-
13851 // specification as an implicit declaration.
13852 const auto *DtorType = Destructor->getType()->castAs<FunctionProtoType>();
13853 if (DtorType->hasExceptionSpec())
13854 return;
13855
13856 // Replace the destructor's type, building off the existing one. Fortunately,
13857 // the only thing of interest in the destructor type is its extended info.
13858 // The return and arguments are fixed.
13859 FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
13860 EPI.ExceptionSpec.Type = EST_Unevaluated;
13861 EPI.ExceptionSpec.SourceDecl = Destructor;
13862 Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
13863
13864 // FIXME: If the destructor has a body that could throw, and the newly created
13865 // spec doesn't allow exceptions, we should emit a warning, because this
13866 // change in behavior can break conforming C++03 programs at runtime.
13867 // However, we don't have a body or an exception specification yet, so it
13868 // needs to be done somewhere else.
13869}
13870
13871namespace {
13872/// An abstract base class for all helper classes used in building the
13873// copy/move operators. These classes serve as factory functions and help us
13874// avoid using the same Expr* in the AST twice.
13875class ExprBuilder {
13876 ExprBuilder(const ExprBuilder&) = delete;
13877 ExprBuilder &operator=(const ExprBuilder&) = delete;
13878
13879protected:
13880 static Expr *assertNotNull(Expr *E) {
13881 assert(E && "Expression construction must not fail.")(static_cast <bool> (E && "Expression construction must not fail."
) ? void (0) : __assert_fail ("E && \"Expression construction must not fail.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 13881, __extension__ __PRETTY_FUNCTION__
))
;
13882 return E;
13883 }
13884
13885public:
13886 ExprBuilder() {}
13887 virtual ~ExprBuilder() {}
13888
13889 virtual Expr *build(Sema &S, SourceLocation Loc) const = 0;
13890};
13891
13892class RefBuilder: public ExprBuilder {
13893 VarDecl *Var;
13894 QualType VarType;
13895
13896public:
13897 Expr *build(Sema &S, SourceLocation Loc) const override {
13898 return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc));
13899 }
13900
13901 RefBuilder(VarDecl *Var, QualType VarType)
13902 : Var(Var), VarType(VarType) {}
13903};
13904
13905class ThisBuilder: public ExprBuilder {
13906public:
13907 Expr *build(Sema &S, SourceLocation Loc) const override {
13908 return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>());
13909 }
13910};
13911
13912class CastBuilder: public ExprBuilder {
13913 const ExprBuilder &Builder;
13914 QualType Type;
13915 ExprValueKind Kind;
13916 const CXXCastPath &Path;
13917
13918public:
13919 Expr *build(Sema &S, SourceLocation Loc) const override {
13920 return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type,
13921 CK_UncheckedDerivedToBase, Kind,
13922 &Path).get());
13923 }
13924
13925 CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind,
13926 const CXXCastPath &Path)
13927 : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {}
13928};
13929
13930class DerefBuilder: public ExprBuilder {
13931 const ExprBuilder &Builder;
13932
13933public:
13934 Expr *build(Sema &S, SourceLocation Loc) const override {
13935 return assertNotNull(
13936 S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get());
13937 }
13938
13939 DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
13940};
13941
13942class MemberBuilder: public ExprBuilder {
13943 const ExprBuilder &Builder;
13944 QualType Type;
13945 CXXScopeSpec SS;
13946 bool IsArrow;
13947 LookupResult &MemberLookup;
13948
13949public:
13950 Expr *build(Sema &S, SourceLocation Loc) const override {
13951 return assertNotNull(S.BuildMemberReferenceExpr(
13952 Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(),
13953 nullptr, MemberLookup, nullptr, nullptr).get());
13954 }
13955
13956 MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow,
13957 LookupResult &MemberLookup)
13958 : Builder(Builder), Type(Type), IsArrow(IsArrow),
13959 MemberLookup(MemberLookup) {}
13960};
13961
13962class MoveCastBuilder: public ExprBuilder {
13963 const ExprBuilder &Builder;
13964
13965public:
13966 Expr *build(Sema &S, SourceLocation Loc) const override {
13967 return assertNotNull(CastForMoving(S, Builder.build(S, Loc)));
13968 }
13969
13970 MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
13971};
13972
13973class LvalueConvBuilder: public ExprBuilder {
13974 const ExprBuilder &Builder;
13975
13976public:
13977 Expr *build(Sema &S, SourceLocation Loc) const override {
13978 return assertNotNull(
13979 S.DefaultLvalueConversion(Builder.build(S, Loc)).get());
13980 }
13981
13982 LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
13983};
13984
13985class SubscriptBuilder: public ExprBuilder {
13986 const ExprBuilder &Base;
13987 const ExprBuilder &Index;
13988
13989public:
13990 Expr *build(Sema &S, SourceLocation Loc) const override {
13991 return assertNotNull(S.CreateBuiltinArraySubscriptExpr(
13992 Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get());
13993 }
13994
13995 SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index)
13996 : Base(Base), Index(Index) {}
13997};
13998
13999} // end anonymous namespace
14000
14001/// When generating a defaulted copy or move assignment operator, if a field
14002/// should be copied with __builtin_memcpy rather than via explicit assignments,
14003/// do so. This optimization only applies for arrays of scalars, and for arrays
14004/// of class type where the selected copy/move-assignment operator is trivial.
14005static StmtResult
14006buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
14007 const ExprBuilder &ToB, const ExprBuilder &FromB) {
14008 // Compute the size of the memory buffer to be copied.
14009 QualType SizeType = S.Context.getSizeType();
14010 llvm::APInt Size(S.Context.getTypeSize(SizeType),
14011 S.Context.getTypeSizeInChars(T).getQuantity());
14012
14013 // Take the address of the field references for "from" and "to". We
14014 // directly construct UnaryOperators here because semantic analysis
14015 // does not permit us to take the address of an xvalue.
14016 Expr *From = FromB.build(S, Loc);
14017 From = UnaryOperator::Create(
14018 S.Context, From, UO_AddrOf, S.Context.getPointerType(From->getType()),
14019 VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides());
14020 Expr *To = ToB.build(S, Loc);
14021 To = UnaryOperator::Create(
14022 S.Context, To, UO_AddrOf, S.Context.getPointerType(To->getType()),
14023 VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides());
14024
14025 const Type *E = T->getBaseElementTypeUnsafe();
14026 bool NeedsCollectableMemCpy =
14027 E->isRecordType() &&
14028 E->castAs<RecordType>()->getDecl()->hasObjectMember();
14029
14030 // Create a reference to the __builtin_objc_memmove_collectable function
14031 StringRef MemCpyName = NeedsCollectableMemCpy ?
14032 "__builtin_objc_memmove_collectable" :
14033 "__builtin_memcpy";
14034 LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
14035 Sema::LookupOrdinaryName);
14036 S.LookupName(R, S.TUScope, true);
14037
14038 FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
14039 if (!MemCpy)
14040 // Something went horribly wrong earlier, and we will have complained
14041 // about it.
14042 return StmtError();
14043
14044 ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
14045 VK_PRValue, Loc, nullptr);
14046 assert(MemCpyRef.isUsable() && "Builtin reference cannot fail")(static_cast <bool> (MemCpyRef.isUsable() && "Builtin reference cannot fail"
) ? void (0) : __assert_fail ("MemCpyRef.isUsable() && \"Builtin reference cannot fail\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14046, __extension__ __PRETTY_FUNCTION__
))
;
14047
14048 Expr *CallArgs[] = {
14049 To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
14050 };
14051 ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(),
14052 Loc, CallArgs, Loc);
14053
14054 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!")(static_cast <bool> (!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!"
) ? void (0) : __assert_fail ("!Call.isInvalid() && \"Call to __builtin_memcpy cannot fail!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14054, __extension__ __PRETTY_FUNCTION__
))
;
14055 return Call.getAs<Stmt>();
14056}
14057
14058/// Builds a statement that copies/moves the given entity from \p From to
14059/// \c To.
14060///
14061/// This routine is used to copy/move the members of a class with an
14062/// implicitly-declared copy/move assignment operator. When the entities being
14063/// copied are arrays, this routine builds for loops to copy them.
14064///
14065/// \param S The Sema object used for type-checking.
14066///
14067/// \param Loc The location where the implicit copy/move is being generated.
14068///
14069/// \param T The type of the expressions being copied/moved. Both expressions
14070/// must have this type.
14071///
14072/// \param To The expression we are copying/moving to.
14073///
14074/// \param From The expression we are copying/moving from.
14075///
14076/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
14077/// Otherwise, it's a non-static member subobject.
14078///
14079/// \param Copying Whether we're copying or moving.
14080///
14081/// \param Depth Internal parameter recording the depth of the recursion.
14082///
14083/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
14084/// if a memcpy should be used instead.
14085static StmtResult
14086buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
14087 const ExprBuilder &To, const ExprBuilder &From,
14088 bool CopyingBaseSubobject, bool Copying,
14089 unsigned Depth = 0) {
14090 // C++11 [class.copy]p28:
14091 // Each subobject is assigned in the manner appropriate to its type:
14092 //
14093 // - if the subobject is of class type, as if by a call to operator= with
14094 // the subobject as the object expression and the corresponding
14095 // subobject of x as a single function argument (as if by explicit
14096 // qualification; that is, ignoring any possible virtual overriding
14097 // functions in more derived classes);
14098 //
14099 // C++03 [class.copy]p13:
14100 // - if the subobject is of class type, the copy assignment operator for
14101 // the class is used (as if by explicit qualification; that is,
14102 // ignoring any possible virtual overriding functions in more derived
14103 // classes);
14104 if (const RecordType *RecordTy = T->getAs<RecordType>()) {
14105 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
14106
14107 // Look for operator=.
14108 DeclarationName Name
14109 = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
14110 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
14111 S.LookupQualifiedName(OpLookup, ClassDecl, false);
14112
14113 // Prior to C++11, filter out any result that isn't a copy/move-assignment
14114 // operator.
14115 if (!S.getLangOpts().CPlusPlus11) {
14116 LookupResult::Filter F = OpLookup.makeFilter();
14117 while (F.hasNext()) {
14118 NamedDecl *D = F.next();
14119 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
14120 if (Method->isCopyAssignmentOperator() ||
14121 (!Copying && Method->isMoveAssignmentOperator()))
14122 continue;
14123
14124 F.erase();
14125 }
14126 F.done();
14127 }
14128
14129 // Suppress the protected check (C++ [class.protected]) for each of the
14130 // assignment operators we found. This strange dance is required when
14131 // we're assigning via a base classes's copy-assignment operator. To
14132 // ensure that we're getting the right base class subobject (without
14133 // ambiguities), we need to cast "this" to that subobject type; to
14134 // ensure that we don't go through the virtual call mechanism, we need
14135 // to qualify the operator= name with the base class (see below). However,
14136 // this means that if the base class has a protected copy assignment
14137 // operator, the protected member access check will fail. So, we
14138 // rewrite "protected" access to "public" access in this case, since we
14139 // know by construction that we're calling from a derived class.
14140 if (CopyingBaseSubobject) {
14141 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
14142 L != LEnd; ++L) {
14143 if (L.getAccess() == AS_protected)
14144 L.setAccess(AS_public);
14145 }
14146 }
14147
14148 // Create the nested-name-specifier that will be used to qualify the
14149 // reference to operator=; this is required to suppress the virtual
14150 // call mechanism.
14151 CXXScopeSpec SS;
14152 const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
14153 SS.MakeTrivial(S.Context,
14154 NestedNameSpecifier::Create(S.Context, nullptr, false,
14155 CanonicalT),
14156 Loc);
14157
14158 // Create the reference to operator=.
14159 ExprResult OpEqualRef
14160 = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*IsArrow=*/false,
14161 SS, /*TemplateKWLoc=*/SourceLocation(),
14162 /*FirstQualifierInScope=*/nullptr,
14163 OpLookup,
14164 /*TemplateArgs=*/nullptr, /*S*/nullptr,
14165 /*SuppressQualifierCheck=*/true);
14166 if (OpEqualRef.isInvalid())
14167 return StmtError();
14168
14169 // Build the call to the assignment operator.
14170
14171 Expr *FromInst = From.build(S, Loc);
14172 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr,
14173 OpEqualRef.getAs<Expr>(),
14174 Loc, FromInst, Loc);
14175 if (Call.isInvalid())
14176 return StmtError();
14177
14178 // If we built a call to a trivial 'operator=' while copying an array,
14179 // bail out. We'll replace the whole shebang with a memcpy.
14180 CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
14181 if (CE && CE->getMethodDecl()->isTrivial() && Depth)
14182 return StmtResult((Stmt*)nullptr);
14183
14184 // Convert to an expression-statement, and clean up any produced
14185 // temporaries.
14186 return S.ActOnExprStmt(Call);
14187 }
14188
14189 // - if the subobject is of scalar type, the built-in assignment
14190 // operator is used.
14191 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
14192 if (!ArrayTy) {
14193 ExprResult Assignment = S.CreateBuiltinBinOp(
14194 Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc));
14195 if (Assignment.isInvalid())
14196 return StmtError();
14197 return S.ActOnExprStmt(Assignment);
14198 }
14199
14200 // - if the subobject is an array, each element is assigned, in the
14201 // manner appropriate to the element type;
14202
14203 // Construct a loop over the array bounds, e.g.,
14204 //
14205 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
14206 //
14207 // that will copy each of the array elements.
14208 QualType SizeType = S.Context.getSizeType();
14209
14210 // Create the iteration variable.
14211 IdentifierInfo *IterationVarName = nullptr;
14212 {
14213 SmallString<8> Str;
14214 llvm::raw_svector_ostream OS(Str);
14215 OS << "__i" << Depth;
14216 IterationVarName = &S.Context.Idents.get(OS.str());
14217 }
14218 VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
14219 IterationVarName, SizeType,
14220 S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
14221 SC_None);
14222
14223 // Initialize the iteration variable to zero.
14224 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
14225 IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
14226
14227 // Creates a reference to the iteration variable.
14228 RefBuilder IterationVarRef(IterationVar, SizeType);
14229 LvalueConvBuilder IterationVarRefRVal(IterationVarRef);
14230
14231 // Create the DeclStmt that holds the iteration variable.
14232 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
14233
14234 // Subscript the "from" and "to" expressions with the iteration variable.
14235 SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal);
14236 MoveCastBuilder FromIndexMove(FromIndexCopy);
14237 const ExprBuilder *FromIndex;
14238 if (Copying)
14239 FromIndex = &FromIndexCopy;
14240 else
14241 FromIndex = &FromIndexMove;
14242
14243 SubscriptBuilder ToIndex(To, IterationVarRefRVal);
14244
14245 // Build the copy/move for an individual element of the array.
14246 StmtResult Copy =
14247 buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
14248 ToIndex, *FromIndex, CopyingBaseSubobject,
14249 Copying, Depth + 1);
14250 // Bail out if copying fails or if we determined that we should use memcpy.
14251 if (Copy.isInvalid() || !Copy.get())
14252 return Copy;
14253
14254 // Create the comparison against the array bound.
14255 llvm::APInt Upper
14256 = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
14257 Expr *Comparison = BinaryOperator::Create(
14258 S.Context, IterationVarRefRVal.build(S, Loc),
14259 IntegerLiteral::Create(S.Context, Upper, SizeType, Loc), BO_NE,
14260 S.Context.BoolTy, VK_PRValue, OK_Ordinary, Loc,
14261 S.CurFPFeatureOverrides());
14262
14263 // Create the pre-increment of the iteration variable. We can determine
14264 // whether the increment will overflow based on the value of the array
14265 // bound.
14266 Expr *Increment = UnaryOperator::Create(
14267 S.Context, IterationVarRef.build(S, Loc), UO_PreInc, SizeType, VK_LValue,
14268 OK_Ordinary, Loc, Upper.isMaxValue(), S.CurFPFeatureOverrides());
14269
14270 // Construct the loop that copies all elements of this array.
14271 return S.ActOnForStmt(
14272 Loc, Loc, InitStmt,
14273 S.ActOnCondition(nullptr, Loc, Comparison, Sema::ConditionKind::Boolean),
14274 S.MakeFullDiscardedValueExpr(Increment), Loc, Copy.get());
14275}
14276
14277static StmtResult
14278buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
14279 const ExprBuilder &To, const ExprBuilder &From,
14280 bool CopyingBaseSubobject, bool Copying) {
14281 // Maybe we should use a memcpy?
14282 if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
14283 T.isTriviallyCopyableType(S.Context))
14284 return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
14285
14286 StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
14287 CopyingBaseSubobject,
14288 Copying, 0));
14289
14290 // If we ended up picking a trivial assignment operator for an array of a
14291 // non-trivially-copyable class type, just emit a memcpy.
14292 if (!Result.isInvalid() && !Result.get())
14293 return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
14294
14295 return Result;
14296}
14297
14298CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
14299 // Note: The following rules are largely analoguous to the copy
14300 // constructor rules. Note that virtual bases are not taken into account
14301 // for determining the argument type of the operator. Note also that
14302 // operators taking an object instead of a reference are allowed.
14303 assert(ClassDecl->needsImplicitCopyAssignment())(static_cast <bool> (ClassDecl->needsImplicitCopyAssignment
()) ? void (0) : __assert_fail ("ClassDecl->needsImplicitCopyAssignment()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 14303, __extension__ __PRETTY_FUNCTION__
))
;
14304
14305 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
14306 if (DSM.isAlreadyBeingDeclared())
14307 return nullptr;
14308
14309 QualType ArgType = Context.getTypeDeclType(ClassDecl);
14310 LangAS AS = getDefaultCXXMethodAddrSpace();
14311 if (AS != LangAS::Default)
14312 ArgType = Context.getAddrSpaceQualType(ArgType, AS);
14313 QualType RetType = Context.getLValueReferenceType(ArgType);
14314 bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
14315 if (Const)
14316 ArgType = ArgType.withConst();
14317
14318 ArgType = Context.getLValueReferenceType(ArgType);
14319
14320 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
14321 CXXCopyAssignment,
14322 Const);
14323
14324 // An implicitly-declared copy assignment operator is an inline public
14325 // member of its class.
14326 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
14327 SourceLocation ClassLoc = ClassDecl->getLocation();
14328 DeclarationNameInfo NameInfo(Name, ClassLoc);
14329 CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create(
14330 Context, ClassDecl, ClassLoc, NameInfo, QualType(),
14331 /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
14332 getCurFPFeatures().isFPConstrained(),
14333 /*isInline=*/true,
14334 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified,
14335 SourceLocation());
14336 CopyAssignment->setAccess(AS_public);
14337 CopyAssignment->setDefaulted();
14338 CopyAssignment->setImplicit();
14339
14340 setupImplicitSpecialMemberType(CopyAssignment, RetType, ArgType);
14341
14342 if (getLangOpts().CUDA)
14343 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment,
14344 CopyAssignment,
14345 /* ConstRHS */ Const,
14346 /* Diagnose */ false);
14347
14348 // Add the parameter to the operator.
14349 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
14350 ClassLoc, ClassLoc,
14351 /*Id=*/nullptr, ArgType,
14352 /*TInfo=*/nullptr, SC_None,
14353 nullptr);
14354 CopyAssignment->setParams(FromParam);
14355
14356 CopyAssignment->setTrivial(
14357 ClassDecl->needsOverloadResolutionForCopyAssignment()
14358 ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
14359 : ClassDecl->hasTrivialCopyAssignment());
14360
14361 // Note that we have added this copy-assignment operator.
14362 ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared;
14363
14364 Scope *S = getScopeForContext(ClassDecl);
14365 CheckImplicitSpecialMemberDeclaration(S, CopyAssignment);
14366
14367 if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment)) {
14368 ClassDecl->setImplicitCopyAssignmentIsDeleted();
14369 SetDeclDeleted(CopyAssignment, ClassLoc);
14370 }
14371
14372 if (S)
14373 PushOnScopeChains(CopyAssignment, S, false);
14374 ClassDecl->addDecl(CopyAssignment);
14375
14376 return CopyAssignment;
14377}
14378
14379/// Diagnose an implicit copy operation for a class which is odr-used, but
14380/// which is deprecated because the class has a user-declared copy constructor,
14381/// copy assignment operator, or destructor.
14382static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) {
14383 assert(CopyOp->isImplicit())(static_cast <bool> (CopyOp->isImplicit()) ? void (0
) : __assert_fail ("CopyOp->isImplicit()", "clang/lib/Sema/SemaDeclCXX.cpp"
, 14383, __extension__ __PRETTY_FUNCTION__))
;
14384
14385 CXXRecordDecl *RD = CopyOp->getParent();
14386 CXXMethodDecl *UserDeclaredOperation = nullptr;
14387
14388 // In Microsoft mode, assignment operations don't affect constructors and
14389 // vice versa.
14390 if (RD->hasUserDeclaredDestructor()) {
14391 UserDeclaredOperation = RD->getDestructor();
14392 } else if (!isa<CXXConstructorDecl>(CopyOp) &&
14393 RD->hasUserDeclaredCopyConstructor() &&
14394 !S.getLangOpts().MSVCCompat) {
14395 // Find any user-declared copy constructor.
14396 for (auto *I : RD->ctors()) {
14397 if (I->isCopyConstructor()) {
14398 UserDeclaredOperation = I;
14399 break;
14400 }
14401 }
14402 assert(UserDeclaredOperation)(static_cast <bool> (UserDeclaredOperation) ? void (0) :
__assert_fail ("UserDeclaredOperation", "clang/lib/Sema/SemaDeclCXX.cpp"
, 14402, __extension__ __PRETTY_FUNCTION__))
;
14403 } else if (isa<CXXConstructorDecl>(CopyOp) &&
14404 RD->hasUserDeclaredCopyAssignment() &&
14405 !S.getLangOpts().MSVCCompat) {
14406 // Find any user-declared move assignment operator.
14407 for (auto *I : RD->methods()) {
14408 if (I->isCopyAssignmentOperator()) {
14409 UserDeclaredOperation = I;
14410 break;
14411 }
14412 }
14413 assert(UserDeclaredOperation)(static_cast <bool> (UserDeclaredOperation) ? void (0) :
__assert_fail ("UserDeclaredOperation", "clang/lib/Sema/SemaDeclCXX.cpp"
, 14413, __extension__ __PRETTY_FUNCTION__))
;
14414 }
14415
14416 if (UserDeclaredOperation) {
14417 bool UDOIsUserProvided = UserDeclaredOperation->isUserProvided();
14418 bool UDOIsDestructor = isa<CXXDestructorDecl>(UserDeclaredOperation);
14419 bool IsCopyAssignment = !isa<CXXConstructorDecl>(CopyOp);
14420 unsigned DiagID =
14421 (UDOIsUserProvided && UDOIsDestructor)
14422 ? diag::warn_deprecated_copy_with_user_provided_dtor
14423 : (UDOIsUserProvided && !UDOIsDestructor)
14424 ? diag::warn_deprecated_copy_with_user_provided_copy
14425 : (!UDOIsUserProvided && UDOIsDestructor)
14426 ? diag::warn_deprecated_copy_with_dtor
14427 : diag::warn_deprecated_copy;
14428 S.Diag(UserDeclaredOperation->getLocation(), DiagID)
14429 << RD << IsCopyAssignment;
14430 }
14431}
14432
14433void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
14434 CXXMethodDecl *CopyAssignOperator) {
14435 assert((CopyAssignOperator->isDefaulted() &&(static_cast <bool> ((CopyAssignOperator->isDefaulted
() && CopyAssignOperator->isOverloadedOperator() &&
CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
!CopyAssignOperator->doesThisDeclarationHaveABody() &&
!CopyAssignOperator->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? void (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14440, __extension__ __PRETTY_FUNCTION__
))
14436 CopyAssignOperator->isOverloadedOperator() &&(static_cast <bool> ((CopyAssignOperator->isDefaulted
() && CopyAssignOperator->isOverloadedOperator() &&
CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
!CopyAssignOperator->doesThisDeclarationHaveABody() &&
!CopyAssignOperator->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? void (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14440, __extension__ __PRETTY_FUNCTION__
))
14437 CopyAssignOperator->getOverloadedOperator() == OO_Equal &&(static_cast <bool> ((CopyAssignOperator->isDefaulted
() && CopyAssignOperator->isOverloadedOperator() &&
CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
!CopyAssignOperator->doesThisDeclarationHaveABody() &&
!CopyAssignOperator->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? void (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14440, __extension__ __PRETTY_FUNCTION__
))
14438 !CopyAssignOperator->doesThisDeclarationHaveABody() &&(static_cast <bool> ((CopyAssignOperator->isDefaulted
() && CopyAssignOperator->isOverloadedOperator() &&
CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
!CopyAssignOperator->doesThisDeclarationHaveABody() &&
!CopyAssignOperator->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? void (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14440, __extension__ __PRETTY_FUNCTION__
))
14439 !CopyAssignOperator->isDeleted()) &&(static_cast <bool> ((CopyAssignOperator->isDefaulted
() && CopyAssignOperator->isOverloadedOperator() &&
CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
!CopyAssignOperator->doesThisDeclarationHaveABody() &&
!CopyAssignOperator->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? void (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14440, __extension__ __PRETTY_FUNCTION__
))
14440 "DefineImplicitCopyAssignment called for wrong function")(static_cast <bool> ((CopyAssignOperator->isDefaulted
() && CopyAssignOperator->isOverloadedOperator() &&
CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
!CopyAssignOperator->doesThisDeclarationHaveABody() &&
!CopyAssignOperator->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? void (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14440, __extension__ __PRETTY_FUNCTION__
))
;
14441 if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl())
14442 return;
14443
14444 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
14445 if (ClassDecl->isInvalidDecl()) {
14446 CopyAssignOperator->setInvalidDecl();
14447 return;
14448 }
14449
14450 SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
14451
14452 // The exception specification is needed because we are defining the
14453 // function.
14454 ResolveExceptionSpec(CurrentLocation,
14455 CopyAssignOperator->getType()->castAs<FunctionProtoType>());
14456
14457 // Add a context note for diagnostics produced after this point.
14458 Scope.addContextNote(CurrentLocation);
14459
14460 // C++11 [class.copy]p18:
14461 // The [definition of an implicitly declared copy assignment operator] is
14462 // deprecated if the class has a user-declared copy constructor or a
14463 // user-declared destructor.
14464 if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
14465 diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator);
14466
14467 // C++0x [class.copy]p30:
14468 // The implicitly-defined or explicitly-defaulted copy assignment operator
14469 // for a non-union class X performs memberwise copy assignment of its
14470 // subobjects. The direct base classes of X are assigned first, in the
14471 // order of their declaration in the base-specifier-list, and then the
14472 // immediate non-static data members of X are assigned, in the order in
14473 // which they were declared in the class definition.
14474
14475 // The statements that form the synthesized function body.
14476 SmallVector<Stmt*, 8> Statements;
14477
14478 // The parameter for the "other" object, which we are copying from.
14479 ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
14480 Qualifiers OtherQuals = Other->getType().getQualifiers();
14481 QualType OtherRefType = Other->getType();
14482 if (const LValueReferenceType *OtherRef
14483 = OtherRefType->getAs<LValueReferenceType>()) {
14484 OtherRefType = OtherRef->getPointeeType();
14485 OtherQuals = OtherRefType.getQualifiers();
14486 }
14487
14488 // Our location for everything implicitly-generated.
14489 SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid()
14490 ? CopyAssignOperator->getEndLoc()
14491 : CopyAssignOperator->getLocation();
14492
14493 // Builds a DeclRefExpr for the "other" object.
14494 RefBuilder OtherRef(Other, OtherRefType);
14495
14496 // Builds the "this" pointer.
14497 ThisBuilder This;
14498
14499 // Assign base classes.
14500 bool Invalid = false;
14501 for (auto &Base : ClassDecl->bases()) {
14502 // Form the assignment:
14503 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
14504 QualType BaseType = Base.getType().getUnqualifiedType();
14505 if (!BaseType->isRecordType()) {
14506 Invalid = true;
14507 continue;
14508 }
14509
14510 CXXCastPath BasePath;
14511 BasePath.push_back(&Base);
14512
14513 // Construct the "from" expression, which is an implicit cast to the
14514 // appropriately-qualified base type.
14515 CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals),
14516 VK_LValue, BasePath);
14517
14518 // Dereference "this".
14519 DerefBuilder DerefThis(This);
14520 CastBuilder To(DerefThis,
14521 Context.getQualifiedType(
14522 BaseType, CopyAssignOperator->getMethodQualifiers()),
14523 VK_LValue, BasePath);
14524
14525 // Build the copy.
14526 StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
14527 To, From,
14528 /*CopyingBaseSubobject=*/true,
14529 /*Copying=*/true);
14530 if (Copy.isInvalid()) {
14531 CopyAssignOperator->setInvalidDecl();
14532 return;
14533 }
14534
14535 // Success! Record the copy.
14536 Statements.push_back(Copy.getAs<Expr>());
14537 }
14538
14539 // Assign non-static members.
14540 for (auto *Field : ClassDecl->fields()) {
14541 // FIXME: We should form some kind of AST representation for the implied
14542 // memcpy in a union copy operation.
14543 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
14544 continue;
14545
14546 if (Field->isInvalidDecl()) {
14547 Invalid = true;
14548 continue;
14549 }
14550
14551 // Check for members of reference type; we can't copy those.
14552 if (Field->getType()->isReferenceType()) {
14553 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14554 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
14555 Diag(Field->getLocation(), diag::note_declared_at);
14556 Invalid = true;
14557 continue;
14558 }
14559
14560 // Check for members of const-qualified, non-class type.
14561 QualType BaseType = Context.getBaseElementType(Field->getType());
14562 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
14563 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14564 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
14565 Diag(Field->getLocation(), diag::note_declared_at);
14566 Invalid = true;
14567 continue;
14568 }
14569
14570 // Suppress assigning zero-width bitfields.
14571 if (Field->isZeroLengthBitField(Context))
14572 continue;
14573
14574 QualType FieldType = Field->getType().getNonReferenceType();
14575 if (FieldType->isIncompleteArrayType()) {
14576 assert(ClassDecl->hasFlexibleArrayMember() &&(static_cast <bool> (ClassDecl->hasFlexibleArrayMember
() && "Incomplete array type is not valid") ? void (0
) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14577, __extension__ __PRETTY_FUNCTION__
))
14577 "Incomplete array type is not valid")(static_cast <bool> (ClassDecl->hasFlexibleArrayMember
() && "Incomplete array type is not valid") ? void (0
) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14577, __extension__ __PRETTY_FUNCTION__
))
;
14578 continue;
14579 }
14580
14581 // Build references to the field in the object we're copying from and to.
14582 CXXScopeSpec SS; // Intentionally empty
14583 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
14584 LookupMemberName);
14585 MemberLookup.addDecl(Field);
14586 MemberLookup.resolveKind();
14587
14588 MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup);
14589
14590 MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup);
14591
14592 // Build the copy of this field.
14593 StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
14594 To, From,
14595 /*CopyingBaseSubobject=*/false,
14596 /*Copying=*/true);
14597 if (Copy.isInvalid()) {
14598 CopyAssignOperator->setInvalidDecl();
14599 return;
14600 }
14601
14602 // Success! Record the copy.
14603 Statements.push_back(Copy.getAs<Stmt>());
14604 }
14605
14606 if (!Invalid) {
14607 // Add a "return *this;"
14608 ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
14609
14610 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
14611 if (Return.isInvalid())
14612 Invalid = true;
14613 else
14614 Statements.push_back(Return.getAs<Stmt>());
14615 }
14616
14617 if (Invalid) {
14618 CopyAssignOperator->setInvalidDecl();
14619 return;
14620 }
14621
14622 StmtResult Body;
14623 {
14624 CompoundScopeRAII CompoundScope(*this);
14625 Body = ActOnCompoundStmt(Loc, Loc, Statements,
14626 /*isStmtExpr=*/false);
14627 assert(!Body.isInvalid() && "Compound statement creation cannot fail")(static_cast <bool> (!Body.isInvalid() && "Compound statement creation cannot fail"
) ? void (0) : __assert_fail ("!Body.isInvalid() && \"Compound statement creation cannot fail\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14627, __extension__ __PRETTY_FUNCTION__
))
;
14628 }
14629 CopyAssignOperator->setBody(Body.getAs<Stmt>());
14630 CopyAssignOperator->markUsed(Context);
14631
14632 if (ASTMutationListener *L = getASTMutationListener()) {
14633 L->CompletedImplicitDefinition(CopyAssignOperator);
14634 }
14635}
14636
14637CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
14638 assert(ClassDecl->needsImplicitMoveAssignment())(static_cast <bool> (ClassDecl->needsImplicitMoveAssignment
()) ? void (0) : __assert_fail ("ClassDecl->needsImplicitMoveAssignment()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 14638, __extension__ __PRETTY_FUNCTION__
))
;
14639
14640 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
14641 if (DSM.isAlreadyBeingDeclared())
14642 return nullptr;
14643
14644 // Note: The following rules are largely analoguous to the move
14645 // constructor rules.
14646
14647 QualType ArgType = Context.getTypeDeclType(ClassDecl);
14648 LangAS AS = getDefaultCXXMethodAddrSpace();
14649 if (AS != LangAS::Default)
14650 ArgType = Context.getAddrSpaceQualType(ArgType, AS);
14651 QualType RetType = Context.getLValueReferenceType(ArgType);
14652 ArgType = Context.getRValueReferenceType(ArgType);
14653
14654 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
14655 CXXMoveAssignment,
14656 false);
14657
14658 // An implicitly-declared move assignment operator is an inline public
14659 // member of its class.
14660 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
14661 SourceLocation ClassLoc = ClassDecl->getLocation();
14662 DeclarationNameInfo NameInfo(Name, ClassLoc);
14663 CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create(
14664 Context, ClassDecl, ClassLoc, NameInfo, QualType(),
14665 /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
14666 getCurFPFeatures().isFPConstrained(),
14667 /*isInline=*/true,
14668 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified,
14669 SourceLocation());
14670 MoveAssignment->setAccess(AS_public);
14671 MoveAssignment->setDefaulted();
14672 MoveAssignment->setImplicit();
14673
14674 setupImplicitSpecialMemberType(MoveAssignment, RetType, ArgType);
14675
14676 if (getLangOpts().CUDA)
14677 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment,
14678 MoveAssignment,
14679 /* ConstRHS */ false,
14680 /* Diagnose */ false);
14681
14682 // Add the parameter to the operator.
14683 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
14684 ClassLoc, ClassLoc,
14685 /*Id=*/nullptr, ArgType,
14686 /*TInfo=*/nullptr, SC_None,
14687 nullptr);
14688 MoveAssignment->setParams(FromParam);
14689
14690 MoveAssignment->setTrivial(
14691 ClassDecl->needsOverloadResolutionForMoveAssignment()
14692 ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
14693 : ClassDecl->hasTrivialMoveAssignment());
14694
14695 // Note that we have added this copy-assignment operator.
14696 ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared;
14697
14698 Scope *S = getScopeForContext(ClassDecl);
14699 CheckImplicitSpecialMemberDeclaration(S, MoveAssignment);
14700
14701 if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
14702 ClassDecl->setImplicitMoveAssignmentIsDeleted();
14703 SetDeclDeleted(MoveAssignment, ClassLoc);
14704 }
14705
14706 if (S)
14707 PushOnScopeChains(MoveAssignment, S, false);
14708 ClassDecl->addDecl(MoveAssignment);
14709
14710 return MoveAssignment;
14711}
14712
14713/// Check if we're implicitly defining a move assignment operator for a class
14714/// with virtual bases. Such a move assignment might move-assign the virtual
14715/// base multiple times.
14716static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class,
14717 SourceLocation CurrentLocation) {
14718 assert(!Class->isDependentContext() && "should not define dependent move")(static_cast <bool> (!Class->isDependentContext() &&
"should not define dependent move") ? void (0) : __assert_fail
("!Class->isDependentContext() && \"should not define dependent move\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14718, __extension__ __PRETTY_FUNCTION__
))
;
14719
14720 // Only a virtual base could get implicitly move-assigned multiple times.
14721 // Only a non-trivial move assignment can observe this. We only want to
14722 // diagnose if we implicitly define an assignment operator that assigns
14723 // two base classes, both of which move-assign the same virtual base.
14724 if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() ||
14725 Class->getNumBases() < 2)
14726 return;
14727
14728 llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist;
14729 typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap;
14730 VBaseMap VBases;
14731
14732 for (auto &BI : Class->bases()) {
14733 Worklist.push_back(&BI);
14734 while (!Worklist.empty()) {
14735 CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val();
14736 CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
14737
14738 // If the base has no non-trivial move assignment operators,
14739 // we don't care about moves from it.
14740 if (!Base->hasNonTrivialMoveAssignment())
14741 continue;
14742
14743 // If there's nothing virtual here, skip it.
14744 if (!BaseSpec->isVirtual() && !Base->getNumVBases())
14745 continue;
14746
14747 // If we're not actually going to call a move assignment for this base,
14748 // or the selected move assignment is trivial, skip it.
14749 Sema::SpecialMemberOverloadResult SMOR =
14750 S.LookupSpecialMember(Base, Sema::CXXMoveAssignment,
14751 /*ConstArg*/false, /*VolatileArg*/false,
14752 /*RValueThis*/true, /*ConstThis*/false,
14753 /*VolatileThis*/false);
14754 if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() ||
14755 !SMOR.getMethod()->isMoveAssignmentOperator())
14756 continue;
14757
14758 if (BaseSpec->isVirtual()) {
14759 // We're going to move-assign this virtual base, and its move
14760 // assignment operator is not trivial. If this can happen for
14761 // multiple distinct direct bases of Class, diagnose it. (If it
14762 // only happens in one base, we'll diagnose it when synthesizing
14763 // that base class's move assignment operator.)
14764 CXXBaseSpecifier *&Existing =
14765 VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI))
14766 .first->second;
14767 if (Existing && Existing != &BI) {
14768 S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times)
14769 << Class << Base;
14770 S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here)
14771 << (Base->getCanonicalDecl() ==
14772 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl())
14773 << Base << Existing->getType() << Existing->getSourceRange();
14774 S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here)
14775 << (Base->getCanonicalDecl() ==
14776 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl())
14777 << Base << BI.getType() << BaseSpec->getSourceRange();
14778
14779 // Only diagnose each vbase once.
14780 Existing = nullptr;
14781 }
14782 } else {
14783 // Only walk over bases that have defaulted move assignment operators.
14784 // We assume that any user-provided move assignment operator handles
14785 // the multiple-moves-of-vbase case itself somehow.
14786 if (!SMOR.getMethod()->isDefaulted())
14787 continue;
14788
14789 // We're going to move the base classes of Base. Add them to the list.
14790 llvm::append_range(Worklist, llvm::make_pointer_range(Base->bases()));
14791 }
14792 }
14793 }
14794}
14795
14796void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
14797 CXXMethodDecl *MoveAssignOperator) {
14798 assert((MoveAssignOperator->isDefaulted() &&(static_cast <bool> ((MoveAssignOperator->isDefaulted
() && MoveAssignOperator->isOverloadedOperator() &&
MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
!MoveAssignOperator->doesThisDeclarationHaveABody() &&
!MoveAssignOperator->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? void (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14803, __extension__ __PRETTY_FUNCTION__
))
14799 MoveAssignOperator->isOverloadedOperator() &&(static_cast <bool> ((MoveAssignOperator->isDefaulted
() && MoveAssignOperator->isOverloadedOperator() &&
MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
!MoveAssignOperator->doesThisDeclarationHaveABody() &&
!MoveAssignOperator->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? void (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14803, __extension__ __PRETTY_FUNCTION__
))
14800 MoveAssignOperator->getOverloadedOperator() == OO_Equal &&(static_cast <bool> ((MoveAssignOperator->isDefaulted
() && MoveAssignOperator->isOverloadedOperator() &&
MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
!MoveAssignOperator->doesThisDeclarationHaveABody() &&
!MoveAssignOperator->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? void (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14803, __extension__ __PRETTY_FUNCTION__
))
14801 !MoveAssignOperator->doesThisDeclarationHaveABody() &&(static_cast <bool> ((MoveAssignOperator->isDefaulted
() && MoveAssignOperator->isOverloadedOperator() &&
MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
!MoveAssignOperator->doesThisDeclarationHaveABody() &&
!MoveAssignOperator->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? void (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14803, __extension__ __PRETTY_FUNCTION__
))
14802 !MoveAssignOperator->isDeleted()) &&(static_cast <bool> ((MoveAssignOperator->isDefaulted
() && MoveAssignOperator->isOverloadedOperator() &&
MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
!MoveAssignOperator->doesThisDeclarationHaveABody() &&
!MoveAssignOperator->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? void (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14803, __extension__ __PRETTY_FUNCTION__
))
14803 "DefineImplicitMoveAssignment called for wrong function")(static_cast <bool> ((MoveAssignOperator->isDefaulted
() && MoveAssignOperator->isOverloadedOperator() &&
MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
!MoveAssignOperator->doesThisDeclarationHaveABody() &&
!MoveAssignOperator->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? void (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14803, __extension__ __PRETTY_FUNCTION__
))
;
14804 if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl())
14805 return;
14806
14807 CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
14808 if (ClassDecl->isInvalidDecl()) {
14809 MoveAssignOperator->setInvalidDecl();
14810 return;
14811 }
14812
14813 // C++0x [class.copy]p28:
14814 // The implicitly-defined or move assignment operator for a non-union class
14815 // X performs memberwise move assignment of its subobjects. The direct base
14816 // classes of X are assigned first, in the order of their declaration in the
14817 // base-specifier-list, and then the immediate non-static data members of X
14818 // are assigned, in the order in which they were declared in the class
14819 // definition.
14820
14821 // Issue a warning if our implicit move assignment operator will move
14822 // from a virtual base more than once.
14823 checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation);
14824
14825 SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
14826
14827 // The exception specification is needed because we are defining the
14828 // function.
14829 ResolveExceptionSpec(CurrentLocation,
14830 MoveAssignOperator->getType()->castAs<FunctionProtoType>());
14831
14832 // Add a context note for diagnostics produced after this point.
14833 Scope.addContextNote(CurrentLocation);
14834
14835 // The statements that form the synthesized function body.
14836 SmallVector<Stmt*, 8> Statements;
14837
14838 // The parameter for the "other" object, which we are move from.
14839 ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
14840 QualType OtherRefType =
14841 Other->getType()->castAs<RValueReferenceType>()->getPointeeType();
14842
14843 // Our location for everything implicitly-generated.
14844 SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid()
14845 ? MoveAssignOperator->getEndLoc()
14846 : MoveAssignOperator->getLocation();
14847
14848 // Builds a reference to the "other" object.
14849 RefBuilder OtherRef(Other, OtherRefType);
14850 // Cast to rvalue.
14851 MoveCastBuilder MoveOther(OtherRef);
14852
14853 // Builds the "this" pointer.
14854 ThisBuilder This;
14855
14856 // Assign base classes.
14857 bool Invalid = false;
14858 for (auto &Base : ClassDecl->bases()) {
14859 // C++11 [class.copy]p28:
14860 // It is unspecified whether subobjects representing virtual base classes
14861 // are assigned more than once by the implicitly-defined copy assignment
14862 // operator.
14863 // FIXME: Do not assign to a vbase that will be assigned by some other base
14864 // class. For a move-assignment, this can result in the vbase being moved
14865 // multiple times.
14866
14867 // Form the assignment:
14868 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
14869 QualType BaseType = Base.getType().getUnqualifiedType();
14870 if (!BaseType->isRecordType()) {
14871 Invalid = true;
14872 continue;
14873 }
14874
14875 CXXCastPath BasePath;
14876 BasePath.push_back(&Base);
14877
14878 // Construct the "from" expression, which is an implicit cast to the
14879 // appropriately-qualified base type.
14880 CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath);
14881
14882 // Dereference "this".
14883 DerefBuilder DerefThis(This);
14884
14885 // Implicitly cast "this" to the appropriately-qualified base type.
14886 CastBuilder To(DerefThis,
14887 Context.getQualifiedType(
14888 BaseType, MoveAssignOperator->getMethodQualifiers()),
14889 VK_LValue, BasePath);
14890
14891 // Build the move.
14892 StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
14893 To, From,
14894 /*CopyingBaseSubobject=*/true,
14895 /*Copying=*/false);
14896 if (Move.isInvalid()) {
14897 MoveAssignOperator->setInvalidDecl();
14898 return;
14899 }
14900
14901 // Success! Record the move.
14902 Statements.push_back(Move.getAs<Expr>());
14903 }
14904
14905 // Assign non-static members.
14906 for (auto *Field : ClassDecl->fields()) {
14907 // FIXME: We should form some kind of AST representation for the implied
14908 // memcpy in a union copy operation.
14909 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
14910 continue;
14911
14912 if (Field->isInvalidDecl()) {
14913 Invalid = true;
14914 continue;
14915 }
14916
14917 // Check for members of reference type; we can't move those.
14918 if (Field->getType()->isReferenceType()) {
14919 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14920 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
14921 Diag(Field->getLocation(), diag::note_declared_at);
14922 Invalid = true;
14923 continue;
14924 }
14925
14926 // Check for members of const-qualified, non-class type.
14927 QualType BaseType = Context.getBaseElementType(Field->getType());
14928 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
14929 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14930 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
14931 Diag(Field->getLocation(), diag::note_declared_at);
14932 Invalid = true;
14933 continue;
14934 }
14935
14936 // Suppress assigning zero-width bitfields.
14937 if (Field->isZeroLengthBitField(Context))
14938 continue;
14939
14940 QualType FieldType = Field->getType().getNonReferenceType();
14941 if (FieldType->isIncompleteArrayType()) {
14942 assert(ClassDecl->hasFlexibleArrayMember() &&(static_cast <bool> (ClassDecl->hasFlexibleArrayMember
() && "Incomplete array type is not valid") ? void (0
) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14943, __extension__ __PRETTY_FUNCTION__
))
14943 "Incomplete array type is not valid")(static_cast <bool> (ClassDecl->hasFlexibleArrayMember
() && "Incomplete array type is not valid") ? void (0
) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14943, __extension__ __PRETTY_FUNCTION__
))
;
14944 continue;
14945 }
14946
14947 // Build references to the field in the object we're copying from and to.
14948 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
14949 LookupMemberName);
14950 MemberLookup.addDecl(Field);
14951 MemberLookup.resolveKind();
14952 MemberBuilder From(MoveOther, OtherRefType,
14953 /*IsArrow=*/false, MemberLookup);
14954 MemberBuilder To(This, getCurrentThisType(),
14955 /*IsArrow=*/true, MemberLookup);
14956
14957 assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue(static_cast <bool> (!From.build(*this, Loc)->isLValue
() && "Member reference with rvalue base must be rvalue except for reference "
"members, which aren't allowed for move assignment.") ? void
(0) : __assert_fail ("!From.build(*this, Loc)->isLValue() && \"Member reference with rvalue base must be rvalue except for reference \" \"members, which aren't allowed for move assignment.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14959, __extension__ __PRETTY_FUNCTION__
))
14958 "Member reference with rvalue base must be rvalue except for reference "(static_cast <bool> (!From.build(*this, Loc)->isLValue
() && "Member reference with rvalue base must be rvalue except for reference "
"members, which aren't allowed for move assignment.") ? void
(0) : __assert_fail ("!From.build(*this, Loc)->isLValue() && \"Member reference with rvalue base must be rvalue except for reference \" \"members, which aren't allowed for move assignment.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14959, __extension__ __PRETTY_FUNCTION__
))
14959 "members, which aren't allowed for move assignment.")(static_cast <bool> (!From.build(*this, Loc)->isLValue
() && "Member reference with rvalue base must be rvalue except for reference "
"members, which aren't allowed for move assignment.") ? void
(0) : __assert_fail ("!From.build(*this, Loc)->isLValue() && \"Member reference with rvalue base must be rvalue except for reference \" \"members, which aren't allowed for move assignment.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14959, __extension__ __PRETTY_FUNCTION__
))
;
14960
14961 // Build the move of this field.
14962 StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
14963 To, From,
14964 /*CopyingBaseSubobject=*/false,
14965 /*Copying=*/false);
14966 if (Move.isInvalid()) {
14967 MoveAssignOperator->setInvalidDecl();
14968 return;
14969 }
14970
14971 // Success! Record the copy.
14972 Statements.push_back(Move.getAs<Stmt>());
14973 }
14974
14975 if (!Invalid) {
14976 // Add a "return *this;"
14977 ExprResult ThisObj =
14978 CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
14979
14980 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
14981 if (Return.isInvalid())
14982 Invalid = true;
14983 else
14984 Statements.push_back(Return.getAs<Stmt>());
14985 }
14986
14987 if (Invalid) {
14988 MoveAssignOperator->setInvalidDecl();
14989 return;
14990 }
14991
14992 StmtResult Body;
14993 {
14994 CompoundScopeRAII CompoundScope(*this);
14995 Body = ActOnCompoundStmt(Loc, Loc, Statements,
14996 /*isStmtExpr=*/false);
14997 assert(!Body.isInvalid() && "Compound statement creation cannot fail")(static_cast <bool> (!Body.isInvalid() && "Compound statement creation cannot fail"
) ? void (0) : __assert_fail ("!Body.isInvalid() && \"Compound statement creation cannot fail\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 14997, __extension__ __PRETTY_FUNCTION__
))
;
14998 }
14999 MoveAssignOperator->setBody(Body.getAs<Stmt>());
15000 MoveAssignOperator->markUsed(Context);
15001
15002 if (ASTMutationListener *L = getASTMutationListener()) {
15003 L->CompletedImplicitDefinition(MoveAssignOperator);
15004 }
15005}
15006
15007CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
15008 CXXRecordDecl *ClassDecl) {
15009 // C++ [class.copy]p4:
15010 // If the class definition does not explicitly declare a copy
15011 // constructor, one is declared implicitly.
15012 assert(ClassDecl->needsImplicitCopyConstructor())(static_cast <bool> (ClassDecl->needsImplicitCopyConstructor
()) ? void (0) : __assert_fail ("ClassDecl->needsImplicitCopyConstructor()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 15012, __extension__ __PRETTY_FUNCTION__
))
;
15013
15014 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
15015 if (DSM.isAlreadyBeingDeclared())
15016 return nullptr;
15017
15018 QualType ClassType = Context.getTypeDeclType(ClassDecl);
15019 QualType ArgType = ClassType;
15020 bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
15021 if (Const)
15022 ArgType = ArgType.withConst();
15023
15024 LangAS AS = getDefaultCXXMethodAddrSpace();
15025 if (AS != LangAS::Default)
15026 ArgType = Context.getAddrSpaceQualType(ArgType, AS);
15027
15028 ArgType = Context.getLValueReferenceType(ArgType);
15029
15030 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
15031 CXXCopyConstructor,
15032 Const);
15033
15034 DeclarationName Name
15035 = Context.DeclarationNames.getCXXConstructorName(
15036 Context.getCanonicalType(ClassType));
15037 SourceLocation ClassLoc = ClassDecl->getLocation();
15038 DeclarationNameInfo NameInfo(Name, ClassLoc);
15039
15040 // An implicitly-declared copy constructor is an inline public
15041 // member of its class.
15042 CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
15043 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
15044 ExplicitSpecifier(), getCurFPFeatures().isFPConstrained(),
15045 /*isInline=*/true,
15046 /*isImplicitlyDeclared=*/true,
15047 Constexpr ? ConstexprSpecKind::Constexpr
15048 : ConstexprSpecKind::Unspecified);
15049 CopyConstructor->setAccess(AS_public);
15050 CopyConstructor->setDefaulted();
15051
15052 setupImplicitSpecialMemberType(CopyConstructor, Context.VoidTy, ArgType);
15053
15054 if (getLangOpts().CUDA)
15055 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor,
15056 CopyConstructor,
15057 /* ConstRHS */ Const,
15058 /* Diagnose */ false);
15059
15060 // During template instantiation of special member functions we need a
15061 // reliable TypeSourceInfo for the parameter types in order to allow functions
15062 // to be substituted.
15063 TypeSourceInfo *TSI = nullptr;
15064 if (inTemplateInstantiation() && ClassDecl->isLambda())
15065 TSI = Context.getTrivialTypeSourceInfo(ArgType);
15066
15067 // Add the parameter to the constructor.
15068 ParmVarDecl *FromParam =
15069 ParmVarDecl::Create(Context, CopyConstructor, ClassLoc, ClassLoc,
15070 /*IdentifierInfo=*/nullptr, ArgType,
15071 /*TInfo=*/TSI, SC_None, nullptr);
15072 CopyConstructor->setParams(FromParam);
15073
15074 CopyConstructor->setTrivial(
15075 ClassDecl->needsOverloadResolutionForCopyConstructor()
15076 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
15077 : ClassDecl->hasTrivialCopyConstructor());
15078
15079 CopyConstructor->setTrivialForCall(
15080 ClassDecl->hasAttr<TrivialABIAttr>() ||
15081 (ClassDecl->needsOverloadResolutionForCopyConstructor()
15082 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor,
15083 TAH_ConsiderTrivialABI)
15084 : ClassDecl->hasTrivialCopyConstructorForCall()));
15085
15086 // Note that we have declared this constructor.
15087 ++getASTContext().NumImplicitCopyConstructorsDeclared;
15088
15089 Scope *S = getScopeForContext(ClassDecl);
15090 CheckImplicitSpecialMemberDeclaration(S, CopyConstructor);
15091
15092 if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor)) {
15093 ClassDecl->setImplicitCopyConstructorIsDeleted();
15094 SetDeclDeleted(CopyConstructor, ClassLoc);
15095 }
15096
15097 if (S)
15098 PushOnScopeChains(CopyConstructor, S, false);
15099 ClassDecl->addDecl(CopyConstructor);
15100
15101 return CopyConstructor;
15102}
15103
15104void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
15105 CXXConstructorDecl *CopyConstructor) {
15106 assert((CopyConstructor->isDefaulted() &&(static_cast <bool> ((CopyConstructor->isDefaulted()
&& CopyConstructor->isCopyConstructor() &&
!CopyConstructor->doesThisDeclarationHaveABody() &&
!CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? void (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15110, __extension__ __PRETTY_FUNCTION__
))
15107 CopyConstructor->isCopyConstructor() &&(static_cast <bool> ((CopyConstructor->isDefaulted()
&& CopyConstructor->isCopyConstructor() &&
!CopyConstructor->doesThisDeclarationHaveABody() &&
!CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? void (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15110, __extension__ __PRETTY_FUNCTION__
))
15108 !CopyConstructor->doesThisDeclarationHaveABody() &&(static_cast <bool> ((CopyConstructor->isDefaulted()
&& CopyConstructor->isCopyConstructor() &&
!CopyConstructor->doesThisDeclarationHaveABody() &&
!CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? void (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15110, __extension__ __PRETTY_FUNCTION__
))
15109 !CopyConstructor->isDeleted()) &&(static_cast <bool> ((CopyConstructor->isDefaulted()
&& CopyConstructor->isCopyConstructor() &&
!CopyConstructor->doesThisDeclarationHaveABody() &&
!CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? void (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15110, __extension__ __PRETTY_FUNCTION__
))
15110 "DefineImplicitCopyConstructor - call it for implicit copy ctor")(static_cast <bool> ((CopyConstructor->isDefaulted()
&& CopyConstructor->isCopyConstructor() &&
!CopyConstructor->doesThisDeclarationHaveABody() &&
!CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? void (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15110, __extension__ __PRETTY_FUNCTION__
))
;
15111 if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl())
15112 return;
15113
15114 CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
15115 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor")(static_cast <bool> (ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"
) ? void (0) : __assert_fail ("ClassDecl && \"DefineImplicitCopyConstructor - invalid constructor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15115, __extension__ __PRETTY_FUNCTION__
))
;
15116
15117 SynthesizedFunctionScope Scope(*this, CopyConstructor);
15118
15119 // The exception specification is needed because we are defining the
15120 // function.
15121 ResolveExceptionSpec(CurrentLocation,
15122 CopyConstructor->getType()->castAs<FunctionProtoType>());
15123 MarkVTableUsed(CurrentLocation, ClassDecl);
15124
15125 // Add a context note for diagnostics produced after this point.
15126 Scope.addContextNote(CurrentLocation);
15127
15128 // C++11 [class.copy]p7:
15129 // The [definition of an implicitly declared copy constructor] is
15130 // deprecated if the class has a user-declared copy assignment operator
15131 // or a user-declared destructor.
15132 if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
15133 diagnoseDeprecatedCopyOperation(*this, CopyConstructor);
15134
15135 if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false)) {
15136 CopyConstructor->setInvalidDecl();
15137 } else {
15138 SourceLocation Loc = CopyConstructor->getEndLoc().isValid()
15139 ? CopyConstructor->getEndLoc()
15140 : CopyConstructor->getLocation();
15141 Sema::CompoundScopeRAII CompoundScope(*this);
15142 CopyConstructor->setBody(
15143 ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>());
15144 CopyConstructor->markUsed(Context);
15145 }
15146
15147 if (ASTMutationListener *L = getASTMutationListener()) {
15148 L->CompletedImplicitDefinition(CopyConstructor);
15149 }
15150}
15151
15152CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
15153 CXXRecordDecl *ClassDecl) {
15154 assert(ClassDecl->needsImplicitMoveConstructor())(static_cast <bool> (ClassDecl->needsImplicitMoveConstructor
()) ? void (0) : __assert_fail ("ClassDecl->needsImplicitMoveConstructor()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 15154, __extension__ __PRETTY_FUNCTION__
))
;
15155
15156 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
15157 if (DSM.isAlreadyBeingDeclared())
15158 return nullptr;
15159
15160 QualType ClassType = Context.getTypeDeclType(ClassDecl);
15161
15162 QualType ArgType = ClassType;
15163 LangAS AS = getDefaultCXXMethodAddrSpace();
15164 if (AS != LangAS::Default)
15165 ArgType = Context.getAddrSpaceQualType(ClassType, AS);
15166 ArgType = Context.getRValueReferenceType(ArgType);
15167
15168 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
15169 CXXMoveConstructor,
15170 false);
15171
15172 DeclarationName Name
15173 = Context.DeclarationNames.getCXXConstructorName(
15174 Context.getCanonicalType(ClassType));
15175 SourceLocation ClassLoc = ClassDecl->getLocation();
15176 DeclarationNameInfo NameInfo(Name, ClassLoc);
15177
15178 // C++11 [class.copy]p11:
15179 // An implicitly-declared copy/move constructor is an inline public
15180 // member of its class.
15181 CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
15182 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
15183 ExplicitSpecifier(), getCurFPFeatures().isFPConstrained(),
15184 /*isInline=*/true,
15185 /*isImplicitlyDeclared=*/true,
15186 Constexpr ? ConstexprSpecKind::Constexpr
15187 : ConstexprSpecKind::Unspecified);
15188 MoveConstructor->setAccess(AS_public);
15189 MoveConstructor->setDefaulted();
15190
15191 setupImplicitSpecialMemberType(MoveConstructor, Context.VoidTy, ArgType);
15192
15193 if (getLangOpts().CUDA)
15194 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor,
15195 MoveConstructor,
15196 /* ConstRHS */ false,
15197 /* Diagnose */ false);
15198
15199 // Add the parameter to the constructor.
15200 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
15201 ClassLoc, ClassLoc,
15202 /*IdentifierInfo=*/nullptr,
15203 ArgType, /*TInfo=*/nullptr,
15204 SC_None, nullptr);
15205 MoveConstructor->setParams(FromParam);
15206
15207 MoveConstructor->setTrivial(
15208 ClassDecl->needsOverloadResolutionForMoveConstructor()
15209 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
15210 : ClassDecl->hasTrivialMoveConstructor());
15211
15212 MoveConstructor->setTrivialForCall(
15213 ClassDecl->hasAttr<TrivialABIAttr>() ||
15214 (ClassDecl->needsOverloadResolutionForMoveConstructor()
15215 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor,
15216 TAH_ConsiderTrivialABI)
15217 : ClassDecl->hasTrivialMoveConstructorForCall()));
15218
15219 // Note that we have declared this constructor.
15220 ++getASTContext().NumImplicitMoveConstructorsDeclared;
15221
15222 Scope *S = getScopeForContext(ClassDecl);
15223 CheckImplicitSpecialMemberDeclaration(S, MoveConstructor);
15224
15225 if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
15226 ClassDecl->setImplicitMoveConstructorIsDeleted();
15227 SetDeclDeleted(MoveConstructor, ClassLoc);
15228 }
15229
15230 if (S)
15231 PushOnScopeChains(MoveConstructor, S, false);
15232 ClassDecl->addDecl(MoveConstructor);
15233
15234 return MoveConstructor;
15235}
15236
15237void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
15238 CXXConstructorDecl *MoveConstructor) {
15239 assert((MoveConstructor->isDefaulted() &&(static_cast <bool> ((MoveConstructor->isDefaulted()
&& MoveConstructor->isMoveConstructor() &&
!MoveConstructor->doesThisDeclarationHaveABody() &&
!MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? void (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15243, __extension__ __PRETTY_FUNCTION__
))
15240 MoveConstructor->isMoveConstructor() &&(static_cast <bool> ((MoveConstructor->isDefaulted()
&& MoveConstructor->isMoveConstructor() &&
!MoveConstructor->doesThisDeclarationHaveABody() &&
!MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? void (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15243, __extension__ __PRETTY_FUNCTION__
))
15241 !MoveConstructor->doesThisDeclarationHaveABody() &&(static_cast <bool> ((MoveConstructor->isDefaulted()
&& MoveConstructor->isMoveConstructor() &&
!MoveConstructor->doesThisDeclarationHaveABody() &&
!MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? void (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15243, __extension__ __PRETTY_FUNCTION__
))
15242 !MoveConstructor->isDeleted()) &&(static_cast <bool> ((MoveConstructor->isDefaulted()
&& MoveConstructor->isMoveConstructor() &&
!MoveConstructor->doesThisDeclarationHaveABody() &&
!MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? void (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15243, __extension__ __PRETTY_FUNCTION__
))
15243 "DefineImplicitMoveConstructor - call it for implicit move ctor")(static_cast <bool> ((MoveConstructor->isDefaulted()
&& MoveConstructor->isMoveConstructor() &&
!MoveConstructor->doesThisDeclarationHaveABody() &&
!MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? void (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15243, __extension__ __PRETTY_FUNCTION__
))
;
15244 if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl())
15245 return;
15246
15247 CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
15248 assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor")(static_cast <bool> (ClassDecl && "DefineImplicitMoveConstructor - invalid constructor"
) ? void (0) : __assert_fail ("ClassDecl && \"DefineImplicitMoveConstructor - invalid constructor\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15248, __extension__ __PRETTY_FUNCTION__
))
;
15249
15250 SynthesizedFunctionScope Scope(*this, MoveConstructor);
15251
15252 // The exception specification is needed because we are defining the
15253 // function.
15254 ResolveExceptionSpec(CurrentLocation,
15255 MoveConstructor->getType()->castAs<FunctionProtoType>());
15256 MarkVTableUsed(CurrentLocation, ClassDecl);
15257
15258 // Add a context note for diagnostics produced after this point.
15259 Scope.addContextNote(CurrentLocation);
15260
15261 if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false)) {
15262 MoveConstructor->setInvalidDecl();
15263 } else {
15264 SourceLocation Loc = MoveConstructor->getEndLoc().isValid()
15265 ? MoveConstructor->getEndLoc()
15266 : MoveConstructor->getLocation();
15267 Sema::CompoundScopeRAII CompoundScope(*this);
15268 MoveConstructor->setBody(ActOnCompoundStmt(
15269 Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>());
15270 MoveConstructor->markUsed(Context);
15271 }
15272
15273 if (ASTMutationListener *L = getASTMutationListener()) {
15274 L->CompletedImplicitDefinition(MoveConstructor);
15275 }
15276}
15277
15278bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
15279 return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
15280}
15281
15282void Sema::DefineImplicitLambdaToFunctionPointerConversion(
15283 SourceLocation CurrentLocation,
15284 CXXConversionDecl *Conv) {
15285 SynthesizedFunctionScope Scope(*this, Conv);
15286 assert(!Conv->getReturnType()->isUndeducedType())(static_cast <bool> (!Conv->getReturnType()->isUndeducedType
()) ? void (0) : __assert_fail ("!Conv->getReturnType()->isUndeducedType()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 15286, __extension__ __PRETTY_FUNCTION__
))
;
15287
15288 QualType ConvRT = Conv->getType()->castAs<FunctionType>()->getReturnType();
15289 CallingConv CC =
15290 ConvRT->getPointeeType()->castAs<FunctionType>()->getCallConv();
15291
15292 CXXRecordDecl *Lambda = Conv->getParent();
15293 FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
15294 FunctionDecl *Invoker = Lambda->getLambdaStaticInvoker(CC);
15295
15296 if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) {
15297 CallOp = InstantiateFunctionDeclaration(
15298 CallOp->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation);
15299 if (!CallOp)
15300 return;
15301
15302 Invoker = InstantiateFunctionDeclaration(
15303 Invoker->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation);
15304 if (!Invoker)
15305 return;
15306 }
15307
15308 if (CallOp->isInvalidDecl())
15309 return;
15310
15311 // Mark the call operator referenced (and add to pending instantiations
15312 // if necessary).
15313 // For both the conversion and static-invoker template specializations
15314 // we construct their body's in this function, so no need to add them
15315 // to the PendingInstantiations.
15316 MarkFunctionReferenced(CurrentLocation, CallOp);
15317
15318 // Fill in the __invoke function with a dummy implementation. IR generation
15319 // will fill in the actual details. Update its type in case it contained
15320 // an 'auto'.
15321 Invoker->markUsed(Context);
15322 Invoker->setReferenced();
15323 Invoker->setType(Conv->getReturnType()->getPointeeType());
15324 Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation()));
15325
15326 // Construct the body of the conversion function { return __invoke; }.
15327 Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(),
15328 VK_LValue, Conv->getLocation());
15329 assert(FunctionRef && "Can't refer to __invoke function?")(static_cast <bool> (FunctionRef && "Can't refer to __invoke function?"
) ? void (0) : __assert_fail ("FunctionRef && \"Can't refer to __invoke function?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15329, __extension__ __PRETTY_FUNCTION__
))
;
15330 Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get();
15331 Conv->setBody(CompoundStmt::Create(Context, Return, Conv->getLocation(),
15332 Conv->getLocation()));
15333 Conv->markUsed(Context);
15334 Conv->setReferenced();
15335
15336 if (ASTMutationListener *L = getASTMutationListener()) {
15337 L->CompletedImplicitDefinition(Conv);
15338 L->CompletedImplicitDefinition(Invoker);
15339 }
15340}
15341
15342
15343
15344void Sema::DefineImplicitLambdaToBlockPointerConversion(
15345 SourceLocation CurrentLocation,
15346 CXXConversionDecl *Conv)
15347{
15348 assert(!Conv->getParent()->isGenericLambda())(static_cast <bool> (!Conv->getParent()->isGenericLambda
()) ? void (0) : __assert_fail ("!Conv->getParent()->isGenericLambda()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 15348, __extension__ __PRETTY_FUNCTION__
))
;
15349
15350 SynthesizedFunctionScope Scope(*this, Conv);
15351
15352 // Copy-initialize the lambda object as needed to capture it.
15353 Expr *This = ActOnCXXThis(CurrentLocation).get();
15354 Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get();
15355
15356 ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
15357 Conv->getLocation(),
15358 Conv, DerefThis);
15359
15360 // If we're not under ARC, make sure we still get the _Block_copy/autorelease
15361 // behavior. Note that only the general conversion function does this
15362 // (since it's unusable otherwise); in the case where we inline the
15363 // block literal, it has block literal lifetime semantics.
15364 if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
15365 BuildBlock = ImplicitCastExpr::Create(
15366 Context, BuildBlock.get()->getType(), CK_CopyAndAutoreleaseBlockObject,
15367 BuildBlock.get(), nullptr, VK_PRValue, FPOptionsOverride());
15368
15369 if (BuildBlock.isInvalid()) {
15370 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
15371 Conv->setInvalidDecl();
15372 return;
15373 }
15374
15375 // Create the return statement that returns the block from the conversion
15376 // function.
15377 StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get());
15378 if (Return.isInvalid()) {
15379 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
15380 Conv->setInvalidDecl();
15381 return;
15382 }
15383
15384 // Set the body of the conversion function.
15385 Stmt *ReturnS = Return.get();
15386 Conv->setBody(CompoundStmt::Create(Context, ReturnS, Conv->getLocation(),
15387 Conv->getLocation()));
15388 Conv->markUsed(Context);
15389
15390 // We're done; notify the mutation listener, if any.
15391 if (ASTMutationListener *L = getASTMutationListener()) {
15392 L->CompletedImplicitDefinition(Conv);
15393 }
15394}
15395
15396/// Determine whether the given list arguments contains exactly one
15397/// "real" (non-default) argument.
15398static bool hasOneRealArgument(MultiExprArg Args) {
15399 switch (Args.size()) {
15400 case 0:
15401 return false;
15402
15403 default:
15404 if (!Args[1]->isDefaultArgument())
15405 return false;
15406
15407 LLVM_FALLTHROUGH[[gnu::fallthrough]];
15408 case 1:
15409 return !Args[0]->isDefaultArgument();
15410 }
15411
15412 return false;
15413}
15414
15415ExprResult
15416Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
15417 NamedDecl *FoundDecl,
15418 CXXConstructorDecl *Constructor,
15419 MultiExprArg ExprArgs,
15420 bool HadMultipleCandidates,
15421 bool IsListInitialization,
15422 bool IsStdInitListInitialization,
15423 bool RequiresZeroInit,
15424 unsigned ConstructKind,
15425 SourceRange ParenRange) {
15426 bool Elidable = false;
15427
15428 // C++0x [class.copy]p34:
15429 // When certain criteria are met, an implementation is allowed to
15430 // omit the copy/move construction of a class object, even if the
15431 // copy/move constructor and/or destructor for the object have
15432 // side effects. [...]
15433 // - when a temporary class object that has not been bound to a
15434 // reference (12.2) would be copied/moved to a class object
15435 // with the same cv-unqualified type, the copy/move operation
15436 // can be omitted by constructing the temporary object
15437 // directly into the target of the omitted copy/move
15438 if (ConstructKind == CXXConstructExpr::CK_Complete && Constructor &&
15439 // FIXME: Converting constructors should also be accepted.
15440 // But to fix this, the logic that digs down into a CXXConstructExpr
15441 // to find the source object needs to handle it.
15442 // Right now it assumes the source object is passed directly as the
15443 // first argument.
15444 Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
15445 Expr *SubExpr = ExprArgs[0];
15446 // FIXME: Per above, this is also incorrect if we want to accept
15447 // converting constructors, as isTemporaryObject will
15448 // reject temporaries with different type from the
15449 // CXXRecord itself.
15450 Elidable = SubExpr->isTemporaryObject(
15451 Context, cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
15452 }
15453
15454 return BuildCXXConstructExpr(ConstructLoc, DeclInitType,
15455 FoundDecl, Constructor,
15456 Elidable, ExprArgs, HadMultipleCandidates,
15457 IsListInitialization,
15458 IsStdInitListInitialization, RequiresZeroInit,
15459 ConstructKind, ParenRange);
15460}
15461
15462ExprResult
15463Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
15464 NamedDecl *FoundDecl,
15465 CXXConstructorDecl *Constructor,
15466 bool Elidable,
15467 MultiExprArg ExprArgs,
15468 bool HadMultipleCandidates,
15469 bool IsListInitialization,
15470 bool IsStdInitListInitialization,
15471 bool RequiresZeroInit,
15472 unsigned ConstructKind,
15473 SourceRange ParenRange) {
15474 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) {
15475 Constructor = findInheritingConstructor(ConstructLoc, Constructor, Shadow);
15476 if (DiagnoseUseOfDecl(Constructor, ConstructLoc))
15477 return ExprError();
15478 }
15479
15480 return BuildCXXConstructExpr(
15481 ConstructLoc, DeclInitType, Constructor, Elidable, ExprArgs,
15482 HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization,
15483 RequiresZeroInit, ConstructKind, ParenRange);
15484}
15485
15486/// BuildCXXConstructExpr - Creates a complete call to a constructor,
15487/// including handling of its default argument expressions.
15488ExprResult
15489Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
15490 CXXConstructorDecl *Constructor,
15491 bool Elidable,
15492 MultiExprArg ExprArgs,
15493 bool HadMultipleCandidates,
15494 bool IsListInitialization,
15495 bool IsStdInitListInitialization,
15496 bool RequiresZeroInit,
15497 unsigned ConstructKind,
15498 SourceRange ParenRange) {
15499 assert(declaresSameEntity((static_cast <bool> (declaresSameEntity( Constructor->
getParent(), DeclInitType->getBaseElementTypeUnsafe()->
getAsCXXRecordDecl()) && "given constructor for wrong type"
) ? void (0) : __assert_fail ("declaresSameEntity( Constructor->getParent(), DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && \"given constructor for wrong type\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15502, __extension__ __PRETTY_FUNCTION__
))
15500 Constructor->getParent(),(static_cast <bool> (declaresSameEntity( Constructor->
getParent(), DeclInitType->getBaseElementTypeUnsafe()->
getAsCXXRecordDecl()) && "given constructor for wrong type"
) ? void (0) : __assert_fail ("declaresSameEntity( Constructor->getParent(), DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && \"given constructor for wrong type\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15502, __extension__ __PRETTY_FUNCTION__
))
15501 DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&(static_cast <bool> (declaresSameEntity( Constructor->
getParent(), DeclInitType->getBaseElementTypeUnsafe()->
getAsCXXRecordDecl()) && "given constructor for wrong type"
) ? void (0) : __assert_fail ("declaresSameEntity( Constructor->getParent(), DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && \"given constructor for wrong type\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15502, __extension__ __PRETTY_FUNCTION__
))
15502 "given constructor for wrong type")(static_cast <bool> (declaresSameEntity( Constructor->
getParent(), DeclInitType->getBaseElementTypeUnsafe()->
getAsCXXRecordDecl()) && "given constructor for wrong type"
) ? void (0) : __assert_fail ("declaresSameEntity( Constructor->getParent(), DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && \"given constructor for wrong type\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15502, __extension__ __PRETTY_FUNCTION__
))
;
15503 MarkFunctionReferenced(ConstructLoc, Constructor);
15504 if (getLangOpts().CUDA && !CheckCUDACall(ConstructLoc, Constructor))
15505 return ExprError();
15506 if (getLangOpts().SYCLIsDevice &&
15507 !checkSYCLDeviceFunction(ConstructLoc, Constructor))
15508 return ExprError();
15509
15510 return CheckForImmediateInvocation(
15511 CXXConstructExpr::Create(
15512 Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs,
15513 HadMultipleCandidates, IsListInitialization,
15514 IsStdInitListInitialization, RequiresZeroInit,
15515 static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
15516 ParenRange),
15517 Constructor);
15518}
15519
15520ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
15521 assert(Field->hasInClassInitializer())(static_cast <bool> (Field->hasInClassInitializer())
? void (0) : __assert_fail ("Field->hasInClassInitializer()"
, "clang/lib/Sema/SemaDeclCXX.cpp", 15521, __extension__ __PRETTY_FUNCTION__
))
;
15522
15523 // If we already have the in-class initializer nothing needs to be done.
15524 if (Field->getInClassInitializer())
15525 return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext);
15526
15527 // If we might have already tried and failed to instantiate, don't try again.
15528 if (Field->isInvalidDecl())
15529 return ExprError();
15530
15531 // Maybe we haven't instantiated the in-class initializer. Go check the
15532 // pattern FieldDecl to see if it has one.
15533 CXXRecordDecl *ParentRD = cast<CXXRecordDecl>(Field->getParent());
15534
15535 if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
15536 CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
15537 DeclContext::lookup_result Lookup =
15538 ClassPattern->lookup(Field->getDeclName());
15539
15540 FieldDecl *Pattern = nullptr;
15541 for (auto L : Lookup) {
15542 if (isa<FieldDecl>(L)) {
15543 Pattern = cast<FieldDecl>(L);
15544 break;
15545 }
15546 }
15547 assert(Pattern && "We must have set the Pattern!")(static_cast <bool> (Pattern && "We must have set the Pattern!"
) ? void (0) : __assert_fail ("Pattern && \"We must have set the Pattern!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15547, __extension__ __PRETTY_FUNCTION__
))
;
15548
15549 if (!Pattern->hasInClassInitializer() ||
15550 InstantiateInClassInitializer(Loc, Field, Pattern,
15551 getTemplateInstantiationArgs(Field))) {
15552 // Don't diagnose this again.
15553 Field->setInvalidDecl();
15554 return ExprError();
15555 }
15556 return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext);
15557 }
15558
15559 // DR1351:
15560 // If the brace-or-equal-initializer of a non-static data member
15561 // invokes a defaulted default constructor of its class or of an
15562 // enclosing class in a potentially evaluated subexpression, the
15563 // program is ill-formed.
15564 //
15565 // This resolution is unworkable: the exception specification of the
15566 // default constructor can be needed in an unevaluated context, in
15567 // particular, in the operand of a noexcept-expression, and we can be
15568 // unable to compute an exception specification for an enclosed class.
15569 //
15570 // Any attempt to resolve the exception specification of a defaulted default
15571 // constructor before the initializer is lexically complete will ultimately
15572 // come here at which point we can diagnose it.
15573 RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
15574 Diag(Loc, diag::err_default_member_initializer_not_yet_parsed)
15575 << OutermostClass << Field;
15576 Diag(Field->getEndLoc(),
15577 diag::note_default_member_initializer_not_yet_parsed);
15578 // Recover by marking the field invalid, unless we're in a SFINAE context.
15579 if (!isSFINAEContext())
15580 Field->setInvalidDecl();
15581 return ExprError();
15582}
15583
15584void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
15585 if (VD->isInvalidDecl()) return;
15586 // If initializing the variable failed, don't also diagnose problems with
15587 // the destructor, they're likely related.
15588 if (VD->getInit() && VD->getInit()->containsErrors())
15589 return;
15590
15591 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
15592 if (ClassDecl->isInvalidDecl()) return;
15593 if (ClassDecl->hasIrrelevantDestructor()) return;
15594 if (ClassDecl->isDependentContext()) return;
15595
15596 if (VD->isNoDestroy(getASTContext()))
15597 return;
15598
15599 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
15600
15601 // If this is an array, we'll require the destructor during initialization, so
15602 // we can skip over this. We still want to emit exit-time destructor warnings
15603 // though.
15604 if (!VD->getType()->isArrayType()) {
15605 MarkFunctionReferenced(VD->getLocation(), Destructor);
15606 CheckDestructorAccess(VD->getLocation(), Destructor,
15607 PDiag(diag::err_access_dtor_var)
15608 << VD->getDeclName() << VD->getType());
15609 DiagnoseUseOfDecl(Destructor, VD->getLocation());
15610 }
15611
15612 if (Destructor->isTrivial()) return;
15613
15614 // If the destructor is constexpr, check whether the variable has constant
15615 // destruction now.
15616 if (Destructor->isConstexpr()) {
15617 bool HasConstantInit = false;
15618 if (VD->getInit() && !VD->getInit()->isValueDependent())
15619 HasConstantInit = VD->evaluateValue();
15620 SmallVector<PartialDiagnosticAt, 8> Notes;
15621 if (!VD->evaluateDestruction(Notes) && VD->isConstexpr() &&
15622 HasConstantInit) {
15623 Diag(VD->getLocation(),
15624 diag::err_constexpr_var_requires_const_destruction) << VD;
15625 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
15626 Diag(Notes[I].first, Notes[I].second);
15627 }
15628 }
15629
15630 if (!VD->hasGlobalStorage()) return;
15631
15632 // Emit warning for non-trivial dtor in global scope (a real global,
15633 // class-static, function-static).
15634 Diag(VD->getLocation(), diag::warn_exit_time_destructor);
15635
15636 // TODO: this should be re-enabled for static locals by !CXAAtExit
15637 if (!VD->isStaticLocal())
15638 Diag(VD->getLocation(), diag::warn_global_destructor);
15639}
15640
15641/// Given a constructor and the set of arguments provided for the
15642/// constructor, convert the arguments and add any required default arguments
15643/// to form a proper call to this constructor.
15644///
15645/// \returns true if an error occurred, false otherwise.
15646bool Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
15647 QualType DeclInitType, MultiExprArg ArgsPtr,
15648 SourceLocation Loc,
15649 SmallVectorImpl<Expr *> &ConvertedArgs,
15650 bool AllowExplicit,
15651 bool IsListInitialization) {
15652 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
15653 unsigned NumArgs = ArgsPtr.size();
15654 Expr **Args = ArgsPtr.data();
15655
15656 const auto *Proto = Constructor->getType()->castAs<FunctionProtoType>();
15657 unsigned NumParams = Proto->getNumParams();
15658
15659 // If too few arguments are available, we'll fill in the rest with defaults.
15660 if (NumArgs < NumParams)
15661 ConvertedArgs.reserve(NumParams);
15662 else
15663 ConvertedArgs.reserve(NumArgs);
15664
15665 VariadicCallType CallType =
15666 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
15667 SmallVector<Expr *, 8> AllArgs;
15668 bool Invalid = GatherArgumentsForCall(Loc, Constructor,
15669 Proto, 0,
15670 llvm::makeArrayRef(Args, NumArgs),
15671 AllArgs,
15672 CallType, AllowExplicit,
15673 IsListInitialization);
15674 ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
15675
15676 DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
15677
15678 CheckConstructorCall(Constructor, DeclInitType,
15679 llvm::makeArrayRef(AllArgs.data(), AllArgs.size()),
15680 Proto, Loc);
15681
15682 return Invalid;
15683}
15684
15685static inline bool
15686CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
15687 const FunctionDecl *FnDecl) {
15688 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
15689 if (isa<NamespaceDecl>(DC)) {
15690 return SemaRef.Diag(FnDecl->getLocation(),
15691 diag::err_operator_new_delete_declared_in_namespace)
15692 << FnDecl->getDeclName();
15693 }
15694
15695 if (isa<TranslationUnitDecl>(DC) &&
15696 FnDecl->getStorageClass() == SC_Static) {
15697 return SemaRef.Diag(FnDecl->getLocation(),
15698 diag::err_operator_new_delete_declared_static)
15699 << FnDecl->getDeclName();
15700 }
15701
15702 return false;
15703}
15704
15705static CanQualType RemoveAddressSpaceFromPtr(Sema &SemaRef,
15706 const PointerType *PtrTy) {
15707 auto &Ctx = SemaRef.Context;
15708 Qualifiers PtrQuals = PtrTy->getPointeeType().getQualifiers();
15709 PtrQuals.removeAddressSpace();
15710 return Ctx.getPointerType(Ctx.getCanonicalType(Ctx.getQualifiedType(
15711 PtrTy->getPointeeType().getUnqualifiedType(), PtrQuals)));
15712}
15713
15714static inline bool
15715CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
15716 CanQualType ExpectedResultType,
15717 CanQualType ExpectedFirstParamType,
15718 unsigned DependentParamTypeDiag,
15719 unsigned InvalidParamTypeDiag) {
15720 QualType ResultType =
15721 FnDecl->getType()->castAs<FunctionType>()->getReturnType();
15722
15723 if (SemaRef.getLangOpts().OpenCLCPlusPlus) {
15724 // The operator is valid on any address space for OpenCL.
15725 // Drop address space from actual and expected result types.
15726 if (const auto *PtrTy = ResultType->getAs<PointerType>())
15727 ResultType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy);
15728
15729 if (auto ExpectedPtrTy = ExpectedResultType->getAs<PointerType>())
15730 ExpectedResultType = RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy);
15731 }
15732
15733 // Check that the result type is what we expect.
15734 if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) {
15735 // Reject even if the type is dependent; an operator delete function is
15736 // required to have a non-dependent result type.
15737 return SemaRef.Diag(
15738 FnDecl->getLocation(),
15739 ResultType->isDependentType()
15740 ? diag::err_operator_new_delete_dependent_result_type
15741 : diag::err_operator_new_delete_invalid_result_type)
15742 << FnDecl->getDeclName() << ExpectedResultType;
15743 }
15744
15745 // A function template must have at least 2 parameters.
15746 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
15747 return SemaRef.Diag(FnDecl->getLocation(),
15748 diag::err_operator_new_delete_template_too_few_parameters)
15749 << FnDecl->getDeclName();
15750
15751 // The function decl must have at least 1 parameter.
15752 if (FnDecl->getNumParams() == 0)
15753 return SemaRef.Diag(FnDecl->getLocation(),
15754 diag::err_operator_new_delete_too_few_parameters)
15755 << FnDecl->getDeclName();
15756
15757 QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
15758 if (SemaRef.getLangOpts().OpenCLCPlusPlus) {
15759 // The operator is valid on any address space for OpenCL.
15760 // Drop address space from actual and expected first parameter types.
15761 if (const auto *PtrTy =
15762 FnDecl->getParamDecl(0)->getType()->getAs<PointerType>())
15763 FirstParamType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy);
15764
15765 if (auto ExpectedPtrTy = ExpectedFirstParamType->getAs<PointerType>())
15766 ExpectedFirstParamType =
15767 RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy);
15768 }
15769
15770 // Check that the first parameter type is what we expect.
15771 if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
15772 ExpectedFirstParamType) {
15773 // The first parameter type is not allowed to be dependent. As a tentative
15774 // DR resolution, we allow a dependent parameter type if it is the right
15775 // type anyway, to allow destroying operator delete in class templates.
15776 return SemaRef.Diag(FnDecl->getLocation(), FirstParamType->isDependentType()
15777 ? DependentParamTypeDiag
15778 : InvalidParamTypeDiag)
15779 << FnDecl->getDeclName() << ExpectedFirstParamType;
15780 }
15781
15782 return false;
15783}
15784
15785static bool
15786CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
15787 // C++ [basic.stc.dynamic.allocation]p1:
15788 // A program is ill-formed if an allocation function is declared in a
15789 // namespace scope other than global scope or declared static in global
15790 // scope.
15791 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
15792 return true;
15793
15794 CanQualType SizeTy =
15795 SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
15796
15797 // C++ [basic.stc.dynamic.allocation]p1:
15798 // The return type shall be void*. The first parameter shall have type
15799 // std::size_t.
15800 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
15801 SizeTy,
15802 diag::err_operator_new_dependent_param_type,
15803 diag::err_operator_new_param_type))
15804 return true;
15805
15806 // C++ [basic.stc.dynamic.allocation]p1:
15807 // The first parameter shall not have an associated default argument.
15808 if (FnDecl->getParamDecl(0)->hasDefaultArg())
15809 return SemaRef.Diag(FnDecl->getLocation(),
15810 diag::err_operator_new_default_arg)
15811 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
15812
15813 return false;
15814}
15815
15816static bool
15817CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
15818 // C++ [basic.stc.dynamic.deallocation]p1:
15819 // A program is ill-formed if deallocation functions are declared in a
15820 // namespace scope other than global scope or declared static in global
15821 // scope.
15822 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
15823 return true;
15824
15825 auto *MD = dyn_cast<CXXMethodDecl>(FnDecl);
15826
15827 // C++ P0722:
15828 // Within a class C, the first parameter of a destroying operator delete
15829 // shall be of type C *. The first parameter of any other deallocation
15830 // function shall be of type void *.
15831 CanQualType ExpectedFirstParamType =
15832 MD && MD->isDestroyingOperatorDelete()
15833 ? SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType(
15834 SemaRef.Context.getRecordType(MD->getParent())))
15835 : SemaRef.Context.VoidPtrTy;
15836
15837 // C++ [basic.stc.dynamic.deallocation]p2:
15838 // Each deallocation function shall return void
15839 if (CheckOperatorNewDeleteTypes(
15840 SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType,
15841 diag::err_operator_delete_dependent_param_type,
15842 diag::err_operator_delete_param_type))
15843 return true;
15844
15845 // C++ P0722:
15846 // A destroying operator delete shall be a usual deallocation function.
15847 if (MD && !MD->getParent()->isDependentContext() &&
15848 MD->isDestroyingOperatorDelete() &&
15849 !SemaRef.isUsualDeallocationFunction(MD)) {
15850 SemaRef.Diag(MD->getLocation(),
15851 diag::err_destroying_operator_delete_not_usual);
15852 return true;
15853 }
15854
15855 return false;
15856}
15857
15858/// CheckOverloadedOperatorDeclaration - Check whether the declaration
15859/// of this overloaded operator is well-formed. If so, returns false;
15860/// otherwise, emits appropriate diagnostics and returns true.
15861bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
15862 assert(FnDecl && FnDecl->isOverloadedOperator() &&(static_cast <bool> (FnDecl && FnDecl->isOverloadedOperator
() && "Expected an overloaded operator declaration") ?
void (0) : __assert_fail ("FnDecl && FnDecl->isOverloadedOperator() && \"Expected an overloaded operator declaration\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15863, __extension__ __PRETTY_FUNCTION__
))
15863 "Expected an overloaded operator declaration")(static_cast <bool> (FnDecl && FnDecl->isOverloadedOperator
() && "Expected an overloaded operator declaration") ?
void (0) : __assert_fail ("FnDecl && FnDecl->isOverloadedOperator() && \"Expected an overloaded operator declaration\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15863, __extension__ __PRETTY_FUNCTION__
))
;
15864
15865 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
15866
15867 // C++ [over.oper]p5:
15868 // The allocation and deallocation functions, operator new,
15869 // operator new[], operator delete and operator delete[], are
15870 // described completely in 3.7.3. The attributes and restrictions
15871 // found in the rest of this subclause do not apply to them unless
15872 // explicitly stated in 3.7.3.
15873 if (Op == OO_Delete || Op == OO_Array_Delete)
15874 return CheckOperatorDeleteDeclaration(*this, FnDecl);
15875
15876 if (Op == OO_New || Op == OO_Array_New)
15877 return CheckOperatorNewDeclaration(*this, FnDecl);
15878
15879 // C++ [over.oper]p6:
15880 // An operator function shall either be a non-static member
15881 // function or be a non-member function and have at least one
15882 // parameter whose type is a class, a reference to a class, an
15883 // enumeration, or a reference to an enumeration.
15884 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
15885 if (MethodDecl->isStatic())
15886 return Diag(FnDecl->getLocation(),
15887 diag::err_operator_overload_static) << FnDecl->getDeclName();
15888 } else {
15889 bool ClassOrEnumParam = false;
15890 for (auto Param : FnDecl->parameters()) {
15891 QualType ParamType = Param->getType().getNonReferenceType();
15892 if (ParamType->isDependentType() || ParamType->isRecordType() ||
15893 ParamType->isEnumeralType()) {
15894 ClassOrEnumParam = true;
15895 break;
15896 }
15897 }
15898
15899 if (!ClassOrEnumParam)
15900 return Diag(FnDecl->getLocation(),
15901 diag::err_operator_overload_needs_class_or_enum)
15902 << FnDecl->getDeclName();
15903 }
15904
15905 // C++ [over.oper]p8:
15906 // An operator function cannot have default arguments (8.3.6),
15907 // except where explicitly stated below.
15908 //
15909 // Only the function-call operator (C++ [over.call]p1) and the subscript
15910 // operator (CWG2507) allow default arguments.
15911 if (Op != OO_Call) {
15912 ParmVarDecl *FirstDefaultedParam = nullptr;
15913 for (auto Param : FnDecl->parameters()) {
15914 if (Param->hasDefaultArg()) {
15915 FirstDefaultedParam = Param;
15916 break;
15917 }
15918 }
15919 if (FirstDefaultedParam) {
15920 if (Op == OO_Subscript) {
15921 Diag(FnDecl->getLocation(), LangOpts.CPlusPlus2b
15922 ? diag::ext_subscript_overload
15923 : diag::error_subscript_overload)
15924 << FnDecl->getDeclName() << 1
15925 << FirstDefaultedParam->getDefaultArgRange();
15926 } else {
15927 return Diag(FirstDefaultedParam->getLocation(),
15928 diag::err_operator_overload_default_arg)
15929 << FnDecl->getDeclName()
15930 << FirstDefaultedParam->getDefaultArgRange();
15931 }
15932 }
15933 }
15934
15935 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
15936 { false, false, false }
15937#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
15938 , { Unary, Binary, MemberOnly }
15939#include "clang/Basic/OperatorKinds.def"
15940 };
15941
15942 bool CanBeUnaryOperator = OperatorUses[Op][0];
15943 bool CanBeBinaryOperator = OperatorUses[Op][1];
15944 bool MustBeMemberOperator = OperatorUses[Op][2];
15945
15946 // C++ [over.oper]p8:
15947 // [...] Operator functions cannot have more or fewer parameters
15948 // than the number required for the corresponding operator, as
15949 // described in the rest of this subclause.
15950 unsigned NumParams = FnDecl->getNumParams()
15951 + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
15952 if (Op != OO_Call && Op != OO_Subscript &&
15953 ((NumParams == 1 && !CanBeUnaryOperator) ||
15954 (NumParams == 2 && !CanBeBinaryOperator) || (NumParams < 1) ||
15955 (NumParams > 2))) {
15956 // We have the wrong number of parameters.
15957 unsigned ErrorKind;
15958 if (CanBeUnaryOperator && CanBeBinaryOperator) {
15959 ErrorKind = 2; // 2 -> unary or binary.
15960 } else if (CanBeUnaryOperator) {
15961 ErrorKind = 0; // 0 -> unary
15962 } else {
15963 assert(CanBeBinaryOperator &&(static_cast <bool> (CanBeBinaryOperator && "All non-call overloaded operators are unary or binary!"
) ? void (0) : __assert_fail ("CanBeBinaryOperator && \"All non-call overloaded operators are unary or binary!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15964, __extension__ __PRETTY_FUNCTION__
))
15964 "All non-call overloaded operators are unary or binary!")(static_cast <bool> (CanBeBinaryOperator && "All non-call overloaded operators are unary or binary!"
) ? void (0) : __assert_fail ("CanBeBinaryOperator && \"All non-call overloaded operators are unary or binary!\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 15964, __extension__ __PRETTY_FUNCTION__
))
;
15965 ErrorKind = 1; // 1 -> binary
15966 }
15967 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
15968 << FnDecl->getDeclName() << NumParams << ErrorKind;
15969 }
15970
15971 if (Op == OO_Subscript && NumParams != 2) {
15972 Diag(FnDecl->getLocation(), LangOpts.CPlusPlus2b
15973 ? diag::ext_subscript_overload
15974 : diag::error_subscript_overload)
15975 << FnDecl->getDeclName() << (NumParams == 1 ? 0 : 2);
15976 }
15977
15978 // Overloaded operators other than operator() and operator[] cannot be
15979 // variadic.
15980 if (Op != OO_Call &&
15981 FnDecl->getType()->castAs<FunctionProtoType>()->isVariadic()) {
15982 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
15983 << FnDecl->getDeclName();
15984 }
15985
15986 // Some operators must be non-static member functions.
15987 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
15988 return Diag(FnDecl->getLocation(),
15989 diag::err_operator_overload_must_be_member)
15990 << FnDecl->getDeclName();
15991 }
15992
15993 // C++ [over.inc]p1:
15994 // The user-defined function called operator++ implements the
15995 // prefix and postfix ++ operator. If this function is a member
15996 // function with no parameters, or a non-member function with one
15997 // parameter of class or enumeration type, it defines the prefix
15998 // increment operator ++ for objects of that type. If the function
15999 // is a member function with one parameter (which shall be of type
16000 // int) or a non-member function with two parameters (the second
16001 // of which shall be of type int), it defines the postfix
16002 // increment operator ++ for objects of that type.
16003 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
16004 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
16005 QualType ParamType = LastParam->getType();
16006
16007 if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) &&
16008 !ParamType->isDependentType())
16009 return Diag(LastParam->getLocation(),
16010 diag::err_operator_overload_post_incdec_must_be_int)
16011 << LastParam->getType() << (Op == OO_MinusMinus);
16012 }
16013
16014 return false;
16015}
16016
16017static bool
16018checkLiteralOperatorTemplateParameterList(Sema &SemaRef,
16019 FunctionTemplateDecl *TpDecl) {
16020 TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters();
16021
16022 // Must have one or two template parameters.
16023 if (TemplateParams->size() == 1) {
16024 NonTypeTemplateParmDecl *PmDecl =
16025 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(0));
16026
16027 // The template parameter must be a char parameter pack.
16028 if (PmDecl && PmDecl->isTemplateParameterPack() &&
16029 SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy))
16030 return false;
16031
16032 // C++20 [over.literal]p5:
16033 // A string literal operator template is a literal operator template
16034 // whose template-parameter-list comprises a single non-type
16035 // template-parameter of class type.
16036 //
16037 // As a DR resolution, we also allow placeholders for deduced class
16038 // template specializations.
16039 if (SemaRef.getLangOpts().CPlusPlus20 && PmDecl &&
16040 !PmDecl->isTemplateParameterPack() &&
16041 (PmDecl->getType()->isRecordType() ||
16042 PmDecl->getType()->getAs<DeducedTemplateSpecializationType>()))
16043 return false;
16044 } else if (TemplateParams->size() == 2) {
16045 TemplateTypeParmDecl *PmType =
16046 dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(0));
16047 NonTypeTemplateParmDecl *PmArgs =
16048 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(1));
16049
16050 // The second template parameter must be a parameter pack with the
16051 // first template parameter as its type.
16052 if (PmType && PmArgs && !PmType->isTemplateParameterPack() &&
16053 PmArgs->isTemplateParameterPack()) {
16054 const TemplateTypeParmType *TArgs =
16055 PmArgs->getType()->getAs<TemplateTypeParmType>();
16056 if (TArgs && TArgs->getDepth() == PmType->getDepth() &&
16057 TArgs->getIndex() == PmType->getIndex()) {
16058 if (!SemaRef.inTemplateInstantiation())
16059 SemaRef.Diag(TpDecl->getLocation(),
16060 diag::ext_string_literal_operator_template);
16061 return false;
16062 }
16063 }
16064 }
16065
16066 SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(),
16067 diag::err_literal_operator_template)
16068 << TpDecl->getTemplateParameters()->getSourceRange();
16069 return true;
16070}
16071
16072/// CheckLiteralOperatorDeclaration - Check whether the declaration
16073/// of this literal operator function is well-formed. If so, returns
16074/// false; otherwise, emits appropriate diagnostics and returns true.
16075bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
16076 if (isa<CXXMethodDecl>(FnDecl)) {
16077 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
16078 << FnDecl->getDeclName();
16079 return true;
16080 }
16081
16082 if (FnDecl->isExternC()) {
16083 Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
16084 if (const LinkageSpecDecl *LSD =
16085 FnDecl->getDeclContext()->getExternCContext())
16086 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
16087 return true;
16088 }
16089
16090 // This might be the definition of a literal operator template.
16091 FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
16092
16093 // This might be a specialization of a literal operator template.
16094 if (!TpDecl)
16095 TpDecl = FnDecl->getPrimaryTemplate();
16096
16097 // template <char...> type operator "" name() and
16098 // template <class T, T...> type operator "" name() are the only valid
16099 // template signatures, and the only valid signatures with no parameters.
16100 //
16101 // C++20 also allows template <SomeClass T> type operator "" name().
16102 if (TpDecl) {
16103 if (FnDecl->param_size() != 0) {
16104 Diag(FnDecl->getLocation(),
16105 diag::err_literal_operator_template_with_params);
16106 return true;
16107 }
16108
16109 if (checkLiteralOperatorTemplateParameterList(*this, TpDecl))
16110 return true;
16111
16112 } else if (FnDecl->param_size() == 1) {
16113 const ParmVarDecl *Param = FnDecl->getParamDecl(0);
16114
16115 QualType ParamType = Param->getType().getUnqualifiedType();
16116
16117 // Only unsigned long long int, long double, any character type, and const
16118 // char * are allowed as the only parameters.
16119 if (ParamType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
16120 ParamType->isSpecificBuiltinType(BuiltinType::LongDouble) ||
16121 Context.hasSameType(ParamType, Context.CharTy) ||
16122 Context.hasSameType(ParamType, Context.WideCharTy) ||
16123 Context.hasSameType(ParamType, Context.Char8Ty) ||
16124 Context.hasSameType(ParamType, Context.Char16Ty) ||
16125 Context.hasSameType(ParamType, Context.Char32Ty)) {
16126 } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) {
16127 QualType InnerType = Ptr->getPointeeType();
16128
16129 // Pointer parameter must be a const char *.
16130 if (!(Context.hasSameType(InnerType.getUnqualifiedType(),
16131 Context.CharTy) &&
16132 InnerType.isConstQualified() && !InnerType.isVolatileQualified())) {
16133 Diag(Param->getSourceRange().getBegin(),
16134 diag::err_literal_operator_param)
16135 << ParamType << "'const char *'" << Param->getSourceRange();
16136 return true;
16137 }
16138
16139 } else if (ParamType->isRealFloatingType()) {
16140 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
16141 << ParamType << Context.LongDoubleTy << Param->getSourceRange();
16142 return true;
16143
16144 } else if (ParamType->isIntegerType()) {
16145 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
16146 << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange();
16147 return true;
16148
16149 } else {
16150 Diag(Param->getSourceRange().getBegin(),
16151 diag::err_literal_operator_invalid_param)
16152 << ParamType << Param->getSourceRange();
16153 return true;
16154 }
16155
16156 } else if (FnDecl->param_size() == 2) {
16157 FunctionDecl::param_iterator Param = FnDecl->param_begin();
16158
16159 // First, verify that the first parameter is correct.
16160
16161 QualType FirstParamType = (*Param)->getType().getUnqualifiedType();
16162
16163 // Two parameter function must have a pointer to const as a
16164 // first parameter; let's strip those qualifiers.
16165 const PointerType *PT = FirstParamType->getAs<PointerType>();
16166
16167 if (!PT) {
16168 Diag((*Param)->getSourceRange().getBegin(),
16169 diag::err_literal_operator_param)
16170 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
16171 return true;
16172 }
16173
16174 QualType PointeeType = PT->getPointeeType();
16175 // First parameter must be const
16176 if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) {
16177 Diag((*Param)->getSourceRange().getBegin(),
16178 diag::err_literal_operator_param)
16179 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
16180 return true;
16181 }
16182
16183 QualType InnerType = PointeeType.getUnqualifiedType();
16184 // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and
16185 // const char32_t* are allowed as the first parameter to a two-parameter
16186 // function
16187 if (!(Context.hasSameType(InnerType, Context.CharTy) ||
16188 Context.hasSameType(InnerType, Context.WideCharTy) ||
16189 Context.hasSameType(InnerType, Context.Char8Ty) ||
16190 Context.hasSameType(InnerType, Context.Char16Ty) ||
16191 Context.hasSameType(InnerType, Context.Char32Ty))) {
16192 Diag((*Param)->getSourceRange().getBegin(),
16193 diag::err_literal_operator_param)
16194 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
16195 return true;
16196 }
16197
16198 // Move on to the second and final parameter.
16199 ++Param;
16200
16201 // The second parameter must be a std::size_t.
16202 QualType SecondParamType = (*Param)->getType().getUnqualifiedType();
16203 if (!Context.hasSameType(SecondParamType, Context.getSizeType())) {
16204 Diag((*Param)->getSourceRange().getBegin(),
16205 diag::err_literal_operator_param)
16206 << SecondParamType << Context.getSizeType()
16207 << (*Param)->getSourceRange();
16208 return true;
16209 }
16210 } else {
16211 Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count);
16212 return true;
16213 }
16214
16215 // Parameters are good.
16216
16217 // A parameter-declaration-clause containing a default argument is not
16218 // equivalent to any of the permitted forms.
16219 for (auto Param : FnDecl->parameters()) {
16220 if (Param->hasDefaultArg()) {
16221 Diag(Param->getDefaultArgRange().getBegin(),
16222 diag::err_literal_operator_default_argument)
16223 << Param->getDefaultArgRange();
16224 break;
16225 }
16226 }
16227
16228 StringRef LiteralName
16229 = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
16230 if (LiteralName[0] != '_' &&
16231 !getSourceManager().isInSystemHeader(FnDecl->getLocation())) {
16232 // C++11 [usrlit.suffix]p1:
16233 // Literal suffix identifiers that do not start with an underscore
16234 // are reserved for future standardization.
16235 Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
16236 << StringLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
16237 }
16238
16239 return false;
16240}
16241
16242/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
16243/// linkage specification, including the language and (if present)
16244/// the '{'. ExternLoc is the location of the 'extern', Lang is the
16245/// language string literal. LBraceLoc, if valid, provides the location of
16246/// the '{' brace. Otherwise, this linkage specification does not
16247/// have any braces.
16248Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
16249 Expr *LangStr,
16250 SourceLocation LBraceLoc) {
16251 StringLiteral *Lit = cast<StringLiteral>(LangStr);
16252 if (!Lit->isAscii()) {
16253 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii)
16254 << LangStr->getSourceRange();
16255 return nullptr;
16256 }
16257
16258 StringRef Lang = Lit->getString();
16259 LinkageSpecDecl::LanguageIDs Language;
16260 if (Lang == "C")
16261 Language = LinkageSpecDecl::lang_c;
16262 else if (Lang == "C++")
16263 Language = LinkageSpecDecl::lang_cxx;
16264 else {
16265 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown)
16266 << LangStr->getSourceRange();
16267 return nullptr;
16268 }
16269
16270 // FIXME: Add all the various semantics of linkage specifications
16271
16272 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc,
16273 LangStr->getExprLoc(), Language,
16274 LBraceLoc.isValid());
16275
16276 /// C++ [module.unit]p7.2.3
16277 /// - Otherwise, if the declaration
16278 /// - ...
16279 /// - ...
16280 /// - appears within a linkage-specification,
16281 /// it is attached to the global module.
16282 ///
16283 /// If the declaration is already in global module fragment, we don't
16284 /// need to attach it again.
16285 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview()) {
16286 Module *GlobalModule =
16287 PushGlobalModuleFragment(ExternLoc, /*IsImplicit=*/true);
16288 D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate);
16289 D->setLocalOwningModule(GlobalModule);
16290 }
16291
16292 CurContext->addDecl(D);
16293 PushDeclContext(S, D);
16294 return D;
16295}
16296
16297/// ActOnFinishLinkageSpecification - Complete the definition of
16298/// the C++ linkage specification LinkageSpec. If RBraceLoc is
16299/// valid, it's the position of the closing '}' brace in a linkage
16300/// specification that uses braces.
16301Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
16302 Decl *LinkageSpec,
16303 SourceLocation RBraceLoc) {
16304 if (RBraceLoc.isValid()) {
16305 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
16306 LSDecl->setRBraceLoc(RBraceLoc);
16307 }
16308
16309 // If the current module doesn't has Parent, it implies that the
16310 // LinkageSpec isn't in the module created by itself. So we don't
16311 // need to pop it.
16312 if (getLangOpts().CPlusPlusModules && getCurrentModule() &&
16313 getCurrentModule()->isGlobalModule() && getCurrentModule()->Parent)
16314 PopGlobalModuleFragment();
16315
16316 PopDeclContext();
16317 return LinkageSpec;
16318}
16319
16320Decl *Sema::ActOnEmptyDeclaration(Scope *S,
16321 const ParsedAttributesView &AttrList,
16322 SourceLocation SemiLoc) {
16323 Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
16324 // Attribute declarations appertain to empty declaration so we handle
16325 // them here.
16326 ProcessDeclAttributeList(S, ED, AttrList);
16327
16328 CurContext->addDecl(ED);
16329 return ED;
16330}
16331
16332/// Perform semantic analysis for the variable declaration that
16333/// occurs within a C++ catch clause, returning the newly-created
16334/// variable.
16335VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
16336 TypeSourceInfo *TInfo,
16337 SourceLocation StartLoc,
16338 SourceLocation Loc,
16339 IdentifierInfo *Name) {
16340 bool Invalid = false;
16341 QualType ExDeclType = TInfo->getType();
16342
16343 // Arrays and functions decay.
16344 if (ExDeclType->isArrayType())
16345 ExDeclType = Context.getArrayDecayedType(ExDeclType);
16346 else if (ExDeclType->isFunctionType())
16347 ExDeclType = Context.getPointerType(ExDeclType);
16348
16349 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
16350 // The exception-declaration shall not denote a pointer or reference to an
16351 // incomplete type, other than [cv] void*.
16352 // N2844 forbids rvalue references.
16353 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
16354 Diag(Loc, diag::err_catch_rvalue_ref);
16355 Invalid = true;
16356 }
16357
16358 if (ExDeclType->isVariablyModifiedType()) {
16359 Diag(Loc, diag::err_catch_variably_modified) << ExDeclType;
16360 Invalid = true;
16361 }
16362
16363 QualType BaseType = ExDeclType;
16364 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
16365 unsigned DK = diag::err_catch_incomplete;
16366 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
16367 BaseType = Ptr->getPointeeType();
16368 Mode = 1;
16369 DK = diag::err_catch_incomplete_ptr;
16370 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
16371 // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
16372 BaseType = Ref->getPointeeType();
16373 Mode = 2;
16374 DK = diag::err_catch_incomplete_ref;
16375 }
16376 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
16377 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
16378 Invalid = true;
16379
16380 if (!Invalid && Mode != 1 && BaseType->isSizelessType()) {
16381 Diag(Loc, diag::err_catch_sizeless) << (Mode == 2 ? 1 : 0) << BaseType;
16382 Invalid = true;
16383 }
16384
16385 if (!Invalid && !ExDeclType->isDependentType() &&
16386 RequireNonAbstractType(Loc, ExDeclType,
16387 diag::err_abstract_type_in_decl,
16388 AbstractVariableType))
16389 Invalid = true;
16390
16391 // Only the non-fragile NeXT runtime currently supports C++ catches
16392 // of ObjC types, and no runtime supports catching ObjC types by value.
16393 if (!Invalid && getLangOpts().ObjC) {
16394 QualType T = ExDeclType;
16395 if (const ReferenceType *RT = T->getAs<ReferenceType>())
16396 T = RT->getPointeeType();
16397
16398 if (T->isObjCObjectType()) {
16399 Diag(Loc, diag::err_objc_object_catch);
16400 Invalid = true;
16401 } else if (T->isObjCObjectPointerType()) {
16402 // FIXME: should this be a test for macosx-fragile specifically?
16403 if (getLangOpts().ObjCRuntime.isFragile())
16404 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
16405 }
16406 }
16407
16408 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
16409 ExDeclType, TInfo, SC_None);
16410 ExDecl->setExceptionVariable(true);
16411
16412 // In ARC, infer 'retaining' for variables of retainable type.
16413 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
16414 Invalid = true;
16415
16416 if (!Invalid && !ExDeclType->isDependentType()) {
16417 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
16418 // Insulate this from anything else we might currently be parsing.
16419 EnterExpressionEvaluationContext scope(
16420 *this, ExpressionEvaluationContext::PotentiallyEvaluated);
16421
16422 // C++ [except.handle]p16:
16423 // The object declared in an exception-declaration or, if the
16424 // exception-declaration does not specify a name, a temporary (12.2) is
16425 // copy-initialized (8.5) from the exception object. [...]
16426 // The object is destroyed when the handler exits, after the destruction
16427 // of any automatic objects initialized within the handler.
16428 //
16429 // We just pretend to initialize the object with itself, then make sure
16430 // it can be destroyed later.
16431 QualType initType = Context.getExceptionObjectType(ExDeclType);
16432
16433 InitializedEntity entity =
16434 InitializedEntity::InitializeVariable(ExDecl);
16435 InitializationKind initKind =
16436 InitializationKind::CreateCopy(Loc, SourceLocation());
16437
16438 Expr *opaqueValue =
16439 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
16440 InitializationSequence sequence(*this, entity, initKind, opaqueValue);
16441 ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
16442 if (result.isInvalid())
16443 Invalid = true;
16444 else {
16445 // If the constructor used was non-trivial, set this as the
16446 // "initializer".
16447 CXXConstructExpr *construct = result.getAs<CXXConstructExpr>();
16448 if (!construct->getConstructor()->isTrivial()) {
16449 Expr *init = MaybeCreateExprWithCleanups(construct);
16450 ExDecl->setInit(init);
16451 }
16452
16453 // And make sure it's destructable.
16454 FinalizeVarWithDestructor(ExDecl, recordType);
16455 }
16456 }
16457 }
16458
16459 if (Invalid)
16460 ExDecl->setInvalidDecl();
16461
16462 return ExDecl;
16463}
16464
16465/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
16466/// handler.
16467Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
16468 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16469 bool Invalid = D.isInvalidType();
16470
16471 // Check for unexpanded parameter packs.
16472 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
16473 UPPC_ExceptionType)) {
16474 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
16475 D.getIdentifierLoc());
16476 Invalid = true;
16477 }
16478
16479 IdentifierInfo *II = D.getIdentifier();
16480 if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
16481 LookupOrdinaryName,
16482 ForVisibleRedeclaration)) {
16483 // The scope should be freshly made just for us. There is just no way
16484 // it contains any previous declaration, except for function parameters in
16485 // a function-try-block's catch statement.
16486 assert(!S->isDeclScope(PrevDecl))(static_cast <bool> (!S->isDeclScope(PrevDecl)) ? void
(0) : __assert_fail ("!S->isDeclScope(PrevDecl)", "clang/lib/Sema/SemaDeclCXX.cpp"
, 16486, __extension__ __PRETTY_FUNCTION__))
;
16487 if (isDeclInScope(PrevDecl, CurContext, S)) {
16488 Diag(D.getIdentifierLoc(), diag::err_redefinition)
16489 << D.getIdentifier();
16490 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
16491 Invalid = true;
16492 } else if (PrevDecl->isTemplateParameter())
16493 // Maybe we will complain about the shadowed template parameter.
16494 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
16495 }
16496
16497 if (D.getCXXScopeSpec().isSet() && !Invalid) {
16498 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
16499 << D.getCXXScopeSpec().getRange();
16500 Invalid = true;
16501 }
16502
16503 VarDecl *ExDecl = BuildExceptionDeclaration(
16504 S, TInfo, D.getBeginLoc(), D.getIdentifierLoc(), D.getIdentifier());
16505 if (Invalid)
16506 ExDecl->setInvalidDecl();
16507
16508 // Add the exception declaration into this scope.
16509 if (II)
16510 PushOnScopeChains(ExDecl, S);
16511 else
16512 CurContext->addDecl(ExDecl);
16513
16514 ProcessDeclAttributes(S, ExDecl, D);
16515 return ExDecl;
16516}
16517
16518Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
16519 Expr *AssertExpr,
16520 Expr *AssertMessageExpr,
16521 SourceLocation RParenLoc) {
16522 StringLiteral *AssertMessage =
16523 AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr;
16524
16525 if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
16526 return nullptr;
16527
16528 return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
16529 AssertMessage, RParenLoc, false);
16530}
16531
16532Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
16533 Expr *AssertExpr,
16534 StringLiteral *AssertMessage,
16535 SourceLocation RParenLoc,
16536 bool Failed) {
16537 assert(AssertExpr != nullptr && "Expected non-null condition")(static_cast <bool> (AssertExpr != nullptr && "Expected non-null condition"
) ? void (0) : __assert_fail ("AssertExpr != nullptr && \"Expected non-null condition\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 16537, __extension__ __PRETTY_FUNCTION__
))
;
16538 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
16539 !Failed) {
16540 // In a static_assert-declaration, the constant-expression shall be a
16541 // constant expression that can be contextually converted to bool.
16542 ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
16543 if (Converted.isInvalid())
16544 Failed = true;
16545
16546 ExprResult FullAssertExpr =
16547 ActOnFinishFullExpr(Converted.get(), StaticAssertLoc,
16548 /*DiscardedValue*/ false,
16549 /*IsConstexpr*/ true);
16550 if (FullAssertExpr.isInvalid())
16551 Failed = true;
16552 else
16553 AssertExpr = FullAssertExpr.get();
16554
16555 llvm::APSInt Cond;
16556 if (!Failed && VerifyIntegerConstantExpression(
16557 AssertExpr, &Cond,
16558 diag::err_static_assert_expression_is_not_constant)
16559 .isInvalid())
16560 Failed = true;
16561
16562 if (!Failed && !Cond) {
16563 SmallString<256> MsgBuffer;
16564 llvm::raw_svector_ostream Msg(MsgBuffer);
16565 if (AssertMessage)
16566 AssertMessage->printPretty(Msg, nullptr, getPrintingPolicy());
16567
16568 Expr *InnerCond = nullptr;
16569 std::string InnerCondDescription;
16570 std::tie(InnerCond, InnerCondDescription) =
16571 findFailedBooleanCondition(Converted.get());
16572 if (InnerCond && isa<ConceptSpecializationExpr>(InnerCond)) {
16573 // Drill down into concept specialization expressions to see why they
16574 // weren't satisfied.
16575 Diag(StaticAssertLoc, diag::err_static_assert_failed)
16576 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
16577 ConstraintSatisfaction Satisfaction;
16578 if (!CheckConstraintSatisfaction(InnerCond, Satisfaction))
16579 DiagnoseUnsatisfiedConstraint(Satisfaction);
16580 } else if (InnerCond && !isa<CXXBoolLiteralExpr>(InnerCond)
16581 && !isa<IntegerLiteral>(InnerCond)) {
16582 Diag(StaticAssertLoc, diag::err_static_assert_requirement_failed)
16583 << InnerCondDescription << !AssertMessage
16584 << Msg.str() << InnerCond->getSourceRange();
16585 } else {
16586 Diag(StaticAssertLoc, diag::err_static_assert_failed)
16587 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
16588 }
16589 Failed = true;
16590 }
16591 } else {
16592 ExprResult FullAssertExpr = ActOnFinishFullExpr(AssertExpr, StaticAssertLoc,
16593 /*DiscardedValue*/false,
16594 /*IsConstexpr*/true);
16595 if (FullAssertExpr.isInvalid())
16596 Failed = true;
16597 else
16598 AssertExpr = FullAssertExpr.get();
16599 }
16600
16601 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
16602 AssertExpr, AssertMessage, RParenLoc,
16603 Failed);
16604
16605 CurContext->addDecl(Decl);
16606 return Decl;
16607}
16608
16609/// Perform semantic analysis of the given friend type declaration.
16610///
16611/// \returns A friend declaration that.
16612FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
16613 SourceLocation FriendLoc,
16614 TypeSourceInfo *TSInfo) {
16615 assert(TSInfo && "NULL TypeSourceInfo for friend type declaration")(static_cast <bool> (TSInfo && "NULL TypeSourceInfo for friend type declaration"
) ? void (0) : __assert_fail ("TSInfo && \"NULL TypeSourceInfo for friend type declaration\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 16615, __extension__ __PRETTY_FUNCTION__
))
;
16616
16617 QualType T = TSInfo->getType();
16618 SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
16619
16620 // C++03 [class.friend]p2:
16621 // An elaborated-type-specifier shall be used in a friend declaration
16622 // for a class.*
16623 //
16624 // * The class-key of the elaborated-type-specifier is required.
16625 if (!CodeSynthesisContexts.empty()) {
16626 // Do not complain about the form of friend template types during any kind
16627 // of code synthesis. For template instantiation, we will have complained
16628 // when the template was defined.
16629 } else {
16630 if (!T->isElaboratedTypeSpecifier()) {
16631 // If we evaluated the type to a record type, suggest putting
16632 // a tag in front.
16633 if (const RecordType *RT = T->getAs<RecordType>()) {
16634 RecordDecl *RD = RT->getDecl();
16635
16636 SmallString<16> InsertionText(" ");
16637 InsertionText += RD->getKindName();
16638
16639 Diag(TypeRange.getBegin(),
16640 getLangOpts().CPlusPlus11 ?
16641 diag::warn_cxx98_compat_unelaborated_friend_type :
16642 diag::ext_unelaborated_friend_type)
16643 << (unsigned) RD->getTagKind()
16644 << T
16645 << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc),
16646 InsertionText);
16647 } else {
16648 Diag(FriendLoc,
16649 getLangOpts().CPlusPlus11 ?
16650 diag::warn_cxx98_compat_nonclass_type_friend :
16651 diag::ext_nonclass_type_friend)
16652 << T
16653 << TypeRange;
16654 }
16655 } else if (T->getAs<EnumType>()) {
16656 Diag(FriendLoc,
16657 getLangOpts().CPlusPlus11 ?
16658 diag::warn_cxx98_compat_enum_friend :
16659 diag::ext_enum_friend)
16660 << T
16661 << TypeRange;
16662 }
16663
16664 // C++11 [class.friend]p3:
16665 // A friend declaration that does not declare a function shall have one
16666 // of the following forms:
16667 // friend elaborated-type-specifier ;
16668 // friend simple-type-specifier ;
16669 // friend typename-specifier ;
16670 if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
16671 Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
16672 }
16673
16674 // If the type specifier in a friend declaration designates a (possibly
16675 // cv-qualified) class type, that class is declared as a friend; otherwise,
16676 // the friend declaration is ignored.
16677 return FriendDecl::Create(Context, CurContext,
16678 TSInfo->getTypeLoc().getBeginLoc(), TSInfo,
16679 FriendLoc);
16680}
16681
16682/// Handle a friend tag declaration where the scope specifier was
16683/// templated.
16684Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
16685 unsigned TagSpec, SourceLocation TagLoc,
16686 CXXScopeSpec &SS, IdentifierInfo *Name,
16687 SourceLocation NameLoc,
16688 const ParsedAttributesView &Attr,
16689 MultiTemplateParamsArg TempParamLists) {
16690 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
16691
16692 bool IsMemberSpecialization = false;
16693 bool Invalid = false;
16694
16695 if (TemplateParameterList *TemplateParams =
16696 MatchTemplateParametersToScopeSpecifier(
16697 TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true,
16698 IsMemberSpecialization, Invalid)) {
16699 if (TemplateParams->size() > 0) {
16700 // This is a declaration of a class template.
16701 if (Invalid)
16702 return nullptr;
16703
16704 return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name,
16705 NameLoc, Attr, TemplateParams, AS_public,
16706 /*ModulePrivateLoc=*/SourceLocation(),
16707 FriendLoc, TempParamLists.size() - 1,
16708 TempParamLists.data()).get();
16709 } else {
16710 // The "template<>" header is extraneous.
16711 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
16712 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
16713 IsMemberSpecialization = true;
16714 }
16715 }
16716
16717 if (Invalid) return nullptr;
16718
16719 bool isAllExplicitSpecializations = true;
16720 for (unsigned I = TempParamLists.size(); I-- > 0; ) {
16721 if (TempParamLists[I]->size()) {
16722 isAllExplicitSpecializations = false;
16723 break;
16724 }
16725 }
16726
16727 // FIXME: don't ignore attributes.
16728
16729 // If it's explicit specializations all the way down, just forget
16730 // about the template header and build an appropriate non-templated
16731 // friend. TODO: for source fidelity, remember the headers.
16732 if (isAllExplicitSpecializations) {
16733 if (SS.isEmpty()) {
16734 bool Owned = false;
16735 bool IsDependent = false;
16736 return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
16737 Attr, AS_public,
16738 /*ModulePrivateLoc=*/SourceLocation(),
16739 MultiTemplateParamsArg(), Owned, IsDependent,
16740 /*ScopedEnumKWLoc=*/SourceLocation(),
16741 /*ScopedEnumUsesClassTag=*/false,
16742 /*UnderlyingType=*/TypeResult(),
16743 /*IsTypeSpecifier=*/false,
16744 /*IsTemplateParamOrArg=*/false);
16745 }
16746
16747 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
16748 ElaboratedTypeKeyword Keyword
16749 = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
16750 QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
16751 *Name, NameLoc);
16752 if (T.isNull())
16753 return nullptr;
16754
16755 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
16756 if (isa<DependentNameType>(T)) {
16757 DependentNameTypeLoc TL =
16758 TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
16759 TL.setElaboratedKeywordLoc(TagLoc);
16760 TL.setQualifierLoc(QualifierLoc);
16761 TL.setNameLoc(NameLoc);
16762 } else {
16763 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
16764 TL.setElaboratedKeywordLoc(TagLoc);
16765 TL.setQualifierLoc(QualifierLoc);
16766 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
16767 }
16768
16769 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
16770 TSI, FriendLoc, TempParamLists);
16771 Friend->setAccess(AS_public);
16772 CurContext->addDecl(Friend);
16773 return Friend;
16774 }
16775
16776 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?")(static_cast <bool> (SS.isNotEmpty() && "valid templated tag with no SS and no direct?"
) ? void (0) : __assert_fail ("SS.isNotEmpty() && \"valid templated tag with no SS and no direct?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 16776, __extension__ __PRETTY_FUNCTION__
))
;
16777
16778
16779
16780 // Handle the case of a templated-scope friend class. e.g.
16781 // template <class T> class A<T>::B;
16782 // FIXME: we don't support these right now.
16783 Diag(NameLoc, diag::warn_template_qualified_friend_unsupported)
16784 << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext);
16785 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
16786 QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
16787 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
16788 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
16789 TL.setElaboratedKeywordLoc(TagLoc);
16790 TL.setQualifierLoc(SS.getWithLocInContext(Context));
16791 TL.setNameLoc(NameLoc);
16792
16793 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
16794 TSI, FriendLoc, TempParamLists);
16795 Friend->setAccess(AS_public);
16796 Friend->setUnsupportedFriend(true);
16797 CurContext->addDecl(Friend);
16798 return Friend;
16799}
16800
16801/// Handle a friend type declaration. This works in tandem with
16802/// ActOnTag.
16803///
16804/// Notes on friend class templates:
16805///
16806/// We generally treat friend class declarations as if they were
16807/// declaring a class. So, for example, the elaborated type specifier
16808/// in a friend declaration is required to obey the restrictions of a
16809/// class-head (i.e. no typedefs in the scope chain), template
16810/// parameters are required to match up with simple template-ids, &c.
16811/// However, unlike when declaring a template specialization, it's
16812/// okay to refer to a template specialization without an empty
16813/// template parameter declaration, e.g.
16814/// friend class A<T>::B<unsigned>;
16815/// We permit this as a special case; if there are any template
16816/// parameters present at all, require proper matching, i.e.
16817/// template <> template \<class T> friend class A<int>::B;
16818Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
16819 MultiTemplateParamsArg TempParams) {
16820 SourceLocation Loc = DS.getBeginLoc();
16821
16822 assert(DS.isFriendSpecified())(static_cast <bool> (DS.isFriendSpecified()) ? void (0)
: __assert_fail ("DS.isFriendSpecified()", "clang/lib/Sema/SemaDeclCXX.cpp"
, 16822, __extension__ __PRETTY_FUNCTION__))
;
16823 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified)(static_cast <bool> (DS.getStorageClassSpec() == DeclSpec
::SCS_unspecified) ? void (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_unspecified"
, "clang/lib/Sema/SemaDeclCXX.cpp", 16823, __extension__ __PRETTY_FUNCTION__
))
;
16824
16825 // C++ [class.friend]p3:
16826 // A friend declaration that does not declare a function shall have one of
16827 // the following forms:
16828 // friend elaborated-type-specifier ;
16829 // friend simple-type-specifier ;
16830 // friend typename-specifier ;
16831 //
16832 // Any declaration with a type qualifier does not have that form. (It's
16833 // legal to specify a qualified type as a friend, you just can't write the
16834 // keywords.)
16835 if (DS.getTypeQualifiers()) {
16836 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
16837 Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const";
16838 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
16839 Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile";
16840 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
16841 Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict";
16842 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
16843 Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic";
16844 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
16845 Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned";
16846 }
16847
16848 // Try to convert the decl specifier to a type. This works for
16849 // friend templates because ActOnTag never produces a ClassTemplateDecl
16850 // for a TUK_Friend.
16851 Declarator TheDeclarator(DS, DeclaratorContext::Member);
16852 TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
16853 QualType T = TSI->getType();
16854 if (TheDeclarator.isInvalidType())
16855 return nullptr;
16856
16857 if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
16858 return nullptr;
16859
16860 // This is definitely an error in C++98. It's probably meant to
16861 // be forbidden in C++0x, too, but the specification is just
16862 // poorly written.
16863 //
16864 // The problem is with declarations like the following:
16865 // template <T> friend A<T>::foo;
16866 // where deciding whether a class C is a friend or not now hinges
16867 // on whether there exists an instantiation of A that causes
16868 // 'foo' to equal C. There are restrictions on class-heads
16869 // (which we declare (by fiat) elaborated friend declarations to
16870 // be) that makes this tractable.
16871 //
16872 // FIXME: handle "template <> friend class A<T>;", which
16873 // is possibly well-formed? Who even knows?
16874 if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
16875 Diag(Loc, diag::err_tagless_friend_type_template)
16876 << DS.getSourceRange();
16877 return nullptr;
16878 }
16879
16880 // C++98 [class.friend]p1: A friend of a class is a function
16881 // or class that is not a member of the class . . .
16882 // This is fixed in DR77, which just barely didn't make the C++03
16883 // deadline. It's also a very silly restriction that seriously
16884 // affects inner classes and which nobody else seems to implement;
16885 // thus we never diagnose it, not even in -pedantic.
16886 //
16887 // But note that we could warn about it: it's always useless to
16888 // friend one of your own members (it's not, however, worthless to
16889 // friend a member of an arbitrary specialization of your template).
16890
16891 Decl *D;
16892 if (!TempParams.empty())
16893 D = FriendTemplateDecl::Create(Context, CurContext, Loc,
16894 TempParams,
16895 TSI,
16896 DS.getFriendSpecLoc());
16897 else
16898 D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
16899
16900 if (!D)
16901 return nullptr;
16902
16903 D->setAccess(AS_public);
16904 CurContext->addDecl(D);
16905
16906 return D;
16907}
16908
16909NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
16910 MultiTemplateParamsArg TemplateParams) {
16911 const DeclSpec &DS = D.getDeclSpec();
16912
16913 assert(DS.isFriendSpecified())(static_cast <bool> (DS.isFriendSpecified()) ? void (0)
: __assert_fail ("DS.isFriendSpecified()", "clang/lib/Sema/SemaDeclCXX.cpp"
, 16913, __extension__ __PRETTY_FUNCTION__))
;
16914 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified)(static_cast <bool> (DS.getStorageClassSpec() == DeclSpec
::SCS_unspecified) ? void (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_unspecified"
, "clang/lib/Sema/SemaDeclCXX.cpp", 16914, __extension__ __PRETTY_FUNCTION__
))
;
16915
16916 SourceLocation Loc = D.getIdentifierLoc();
16917 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16918
16919 // C++ [class.friend]p1
16920 // A friend of a class is a function or class....
16921 // Note that this sees through typedefs, which is intended.
16922 // It *doesn't* see through dependent types, which is correct
16923 // according to [temp.arg.type]p3:
16924 // If a declaration acquires a function type through a
16925 // type dependent on a template-parameter and this causes
16926 // a declaration that does not use the syntactic form of a
16927 // function declarator to have a function type, the program
16928 // is ill-formed.
16929 if (!TInfo->getType()->isFunctionType()) {
16930 Diag(Loc, diag::err_unexpected_friend);
16931
16932 // It might be worthwhile to try to recover by creating an
16933 // appropriate declaration.
16934 return nullptr;
16935 }
16936
16937 // C++ [namespace.memdef]p3
16938 // - If a friend declaration in a non-local class first declares a
16939 // class or function, the friend class or function is a member
16940 // of the innermost enclosing namespace.
16941 // - The name of the friend is not found by simple name lookup
16942 // until a matching declaration is provided in that namespace
16943 // scope (either before or after the class declaration granting
16944 // friendship).
16945 // - If a friend function is called, its name may be found by the
16946 // name lookup that considers functions from namespaces and
16947 // classes associated with the types of the function arguments.
16948 // - When looking for a prior declaration of a class or a function
16949 // declared as a friend, scopes outside the innermost enclosing
16950 // namespace scope are not considered.
16951
16952 CXXScopeSpec &SS = D.getCXXScopeSpec();
16953 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
16954 assert(NameInfo.getName())(static_cast <bool> (NameInfo.getName()) ? void (0) : __assert_fail
("NameInfo.getName()", "clang/lib/Sema/SemaDeclCXX.cpp", 16954
, __extension__ __PRETTY_FUNCTION__))
;
16955
16956 // Check for unexpanded parameter packs.
16957 if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
16958 DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
16959 DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
16960 return nullptr;
16961
16962 // The context we found the declaration in, or in which we should
16963 // create the declaration.
16964 DeclContext *DC;
16965 Scope *DCScope = S;
16966 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
16967 ForExternalRedeclaration);
16968
16969 // There are five cases here.
16970 // - There's no scope specifier and we're in a local class. Only look
16971 // for functions declared in the immediately-enclosing block scope.
16972 // We recover from invalid scope qualifiers as if they just weren't there.
16973 FunctionDecl *FunctionContainingLocalClass = nullptr;
16974 if ((SS.isInvalid() || !SS.isSet()) &&
16975 (FunctionContainingLocalClass =
16976 cast<CXXRecordDecl>(CurContext)->isLocalClass())) {
16977 // C++11 [class.friend]p11:
16978 // If a friend declaration appears in a local class and the name
16979 // specified is an unqualified name, a prior declaration is
16980 // looked up without considering scopes that are outside the
16981 // innermost enclosing non-class scope. For a friend function
16982 // declaration, if there is no prior declaration, the program is
16983 // ill-formed.
16984
16985 // Find the innermost enclosing non-class scope. This is the block
16986 // scope containing the local class definition (or for a nested class,
16987 // the outer local class).
16988 DCScope = S->getFnParent();
16989
16990 // Look up the function name in the scope.
16991 Previous.clear(LookupLocalFriendName);
16992 LookupName(Previous, S, /*AllowBuiltinCreation*/false);
16993
16994 if (!Previous.empty()) {
16995 // All possible previous declarations must have the same context:
16996 // either they were declared at block scope or they are members of
16997 // one of the enclosing local classes.
16998 DC = Previous.getRepresentativeDecl()->getDeclContext();
16999 } else {
17000 // This is ill-formed, but provide the context that we would have
17001 // declared the function in, if we were permitted to, for error recovery.
17002 DC = FunctionContainingLocalClass;
17003 }
17004 adjustContextForLocalExternDecl(DC);
17005
17006 // C++ [class.friend]p6:
17007 // A function can be defined in a friend declaration of a class if and
17008 // only if the class is a non-local class (9.8), the function name is
17009 // unqualified, and the function has namespace scope.
17010 if (D.isFunctionDefinition()) {
17011 Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
17012 }
17013
17014 // - There's no scope specifier, in which case we just go to the
17015 // appropriate scope and look for a function or function template
17016 // there as appropriate.
17017 } else if (SS.isInvalid() || !SS.isSet()) {
17018 // C++11 [namespace.memdef]p3:
17019 // If the name in a friend declaration is neither qualified nor
17020 // a template-id and the declaration is a function or an
17021 // elaborated-type-specifier, the lookup to determine whether
17022 // the entity has been previously declared shall not consider
17023 // any scopes outside the innermost enclosing namespace.
17024 bool isTemplateId =
17025 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId;
17026
17027 // Find the appropriate context according to the above.
17028 DC = CurContext;
17029
17030 // Skip class contexts. If someone can cite chapter and verse
17031 // for this behavior, that would be nice --- it's what GCC and
17032 // EDG do, and it seems like a reasonable intent, but the spec
17033 // really only says that checks for unqualified existing
17034 // declarations should stop at the nearest enclosing namespace,
17035 // not that they should only consider the nearest enclosing
17036 // namespace.
17037 while (DC->isRecord())
17038 DC = DC->getParent();
17039
17040 DeclContext *LookupDC = DC->getNonTransparentContext();
17041 while (true) {
17042 LookupQualifiedName(Previous, LookupDC);
17043
17044 if (!Previous.empty()) {
17045 DC = LookupDC;
17046 break;
17047 }
17048
17049 if (isTemplateId) {
17050 if (isa<TranslationUnitDecl>(LookupDC)) break;
17051 } else {
17052 if (LookupDC->isFileContext()) break;
17053 }
17054 LookupDC = LookupDC->getParent();
17055 }
17056
17057 DCScope = getScopeForDeclContext(S, DC);
17058
17059 // - There's a non-dependent scope specifier, in which case we
17060 // compute it and do a previous lookup there for a function
17061 // or function template.
17062 } else if (!SS.getScopeRep()->isDependent()) {
17063 DC = computeDeclContext(SS);
17064 if (!DC) return nullptr;
17065
17066 if (RequireCompleteDeclContext(SS, DC)) return nullptr;
17067
17068 LookupQualifiedName(Previous, DC);
17069
17070 // C++ [class.friend]p1: A friend of a class is a function or
17071 // class that is not a member of the class . . .
17072 if (DC->Equals(CurContext))
17073 Diag(DS.getFriendSpecLoc(),
17074 getLangOpts().CPlusPlus11 ?
17075 diag::warn_cxx98_compat_friend_is_member :
17076 diag::err_friend_is_member);
17077
17078 if (D.isFunctionDefinition()) {
17079 // C++ [class.friend]p6:
17080 // A function can be defined in a friend declaration of a class if and
17081 // only if the class is a non-local class (9.8), the function name is
17082 // unqualified, and the function has namespace scope.
17083 //
17084 // FIXME: We should only do this if the scope specifier names the
17085 // innermost enclosing namespace; otherwise the fixit changes the
17086 // meaning of the code.
17087 SemaDiagnosticBuilder DB
17088 = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
17089
17090 DB << SS.getScopeRep();
17091 if (DC->isFileContext())
17092 DB << FixItHint::CreateRemoval(SS.getRange());
17093 SS.clear();
17094 }
17095
17096 // - There's a scope specifier that does not match any template
17097 // parameter lists, in which case we use some arbitrary context,
17098 // create a method or method template, and wait for instantiation.
17099 // - There's a scope specifier that does match some template
17100 // parameter lists, which we don't handle right now.
17101 } else {
17102 if (D.isFunctionDefinition()) {
17103 // C++ [class.friend]p6:
17104 // A function can be defined in a friend declaration of a class if and
17105 // only if the class is a non-local class (9.8), the function name is
17106 // unqualified, and the function has namespace scope.
17107 Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
17108 << SS.getScopeRep();
17109 }
17110
17111 DC = CurContext;
17112 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?")(static_cast <bool> (isa<CXXRecordDecl>(DC) &&
"friend declaration not in class?") ? void (0) : __assert_fail
("isa<CXXRecordDecl>(DC) && \"friend declaration not in class?\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 17112, __extension__ __PRETTY_FUNCTION__
))
;
17113 }
17114
17115 if (!DC->isRecord()) {
17116 int DiagArg = -1;
17117 switch (D.getName().getKind()) {
17118 case UnqualifiedIdKind::IK_ConstructorTemplateId:
17119 case UnqualifiedIdKind::IK_ConstructorName:
17120 DiagArg = 0;
17121 break;
17122 case UnqualifiedIdKind::IK_DestructorName:
17123 DiagArg = 1;
17124 break;
17125 case UnqualifiedIdKind::IK_ConversionFunctionId:
17126 DiagArg = 2;
17127 break;
17128 case UnqualifiedIdKind::IK_DeductionGuideName:
17129 DiagArg = 3;
17130 break;
17131 case UnqualifiedIdKind::IK_Identifier:
17132 case UnqualifiedIdKind::IK_ImplicitSelfParam:
17133 case UnqualifiedIdKind::IK_LiteralOperatorId:
17134 case UnqualifiedIdKind::IK_OperatorFunctionId:
17135 case UnqualifiedIdKind::IK_TemplateId:
17136 break;
17137 }
17138 // This implies that it has to be an operator or function.
17139 if (DiagArg >= 0) {
17140 Diag(Loc, diag::err_introducing_special_friend) << DiagArg;
17141 return nullptr;
17142 }
17143 }
17144
17145 // FIXME: This is an egregious hack to cope with cases where the scope stack
17146 // does not contain the declaration context, i.e., in an out-of-line
17147 // definition of a class.
17148 Scope FakeDCScope(S, Scope::DeclScope, Diags);
17149 if (!DCScope) {
17150 FakeDCScope.setEntity(DC);
17151 DCScope = &FakeDCScope;
17152 }
17153
17154 bool AddToScope = true;
17155 NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
17156 TemplateParams, AddToScope);
17157 if (!ND) return nullptr;
17158
17159 assert(ND->getLexicalDeclContext() == CurContext)(static_cast <bool> (ND->getLexicalDeclContext() == CurContext
) ? void (0) : __assert_fail ("ND->getLexicalDeclContext() == CurContext"
, "clang/lib/Sema/SemaDeclCXX.cpp", 17159, __extension__ __PRETTY_FUNCTION__
))
;
17160
17161 // If we performed typo correction, we might have added a scope specifier
17162 // and changed the decl context.
17163 DC = ND->getDeclContext();
17164
17165 // Add the function declaration to the appropriate lookup tables,
17166 // adjusting the redeclarations list as necessary. We don't
17167 // want to do this yet if the friending class is dependent.
17168 //
17169 // Also update the scope-based lookup if the target context's
17170 // lookup context is in lexical scope.
17171 if (!CurContext->isDependentContext()) {
17172 DC = DC->getRedeclContext();
17173 DC->makeDeclVisibleInContext(ND);
17174 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
17175 PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
17176 }
17177
17178 FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
17179 D.getIdentifierLoc(), ND,
17180 DS.getFriendSpecLoc());
17181 FrD->setAccess(AS_public);
17182 CurContext->addDecl(FrD);
17183
17184 if (ND->isInvalidDecl()) {
17185 FrD->setInvalidDecl();
17186 } else {
17187 if (DC->isRecord()) CheckFriendAccess(ND);
17188
17189 FunctionDecl *FD;
17190 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
17191 FD = FTD->getTemplatedDecl();
17192 else
17193 FD = cast<FunctionDecl>(ND);
17194
17195 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
17196 // default argument expression, that declaration shall be a definition
17197 // and shall be the only declaration of the function or function
17198 // template in the translation unit.
17199 if (functionDeclHasDefaultArgument(FD)) {
17200 // We can't look at FD->getPreviousDecl() because it may not have been set
17201 // if we're in a dependent context. If the function is known to be a
17202 // redeclaration, we will have narrowed Previous down to the right decl.
17203 if (D.isRedeclaration()) {
17204 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
17205 Diag(Previous.getRepresentativeDecl()->getLocation(),
17206 diag::note_previous_declaration);
17207 } else if (!D.isFunctionDefinition())
17208 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
17209 }
17210
17211 // Mark templated-scope function declarations as unsupported.
17212 if (FD->getNumTemplateParameterLists() && SS.isValid()) {
17213 Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported)
17214 << SS.getScopeRep() << SS.getRange()
17215 << cast<CXXRecordDecl>(CurContext);
17216 FrD->setUnsupportedFriend(true);
17217 }
17218 }
17219
17220 warnOnReservedIdentifier(ND);
17221
17222 return ND;
17223}
17224
17225void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
17226 AdjustDeclIfTemplate(Dcl);
17227
17228 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
17229 if (!Fn) {
17230 Diag(DelLoc, diag::err_deleted_non_function);
17231 return;
17232 }
17233
17234 // Deleted function does not have a body.
17235 Fn->setWillHaveBody(false);
17236
17237 if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
17238 // Don't consider the implicit declaration we generate for explicit
17239 // specializations. FIXME: Do not generate these implicit declarations.
17240 if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization ||
17241 Prev->getPreviousDecl()) &&
17242 !Prev->isDefined()) {
17243 Diag(DelLoc, diag::err_deleted_decl_not_first);
17244 Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(),
17245 Prev->isImplicit() ? diag::note_previous_implicit_declaration
17246 : diag::note_previous_declaration);
17247 // We can't recover from this; the declaration might have already
17248 // been used.
17249 Fn->setInvalidDecl();
17250 return;
17251 }
17252
17253 // To maintain the invariant that functions are only deleted on their first
17254 // declaration, mark the implicitly-instantiated declaration of the
17255 // explicitly-specialized function as deleted instead of marking the
17256 // instantiated redeclaration.
17257 Fn = Fn->getCanonicalDecl();
17258 }
17259
17260 // dllimport/dllexport cannot be deleted.
17261 if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) {
17262 Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr;
17263 Fn->setInvalidDecl();
17264 }
17265
17266 // C++11 [basic.start.main]p3:
17267 // A program that defines main as deleted [...] is ill-formed.
17268 if (Fn->isMain())
17269 Diag(DelLoc, diag::err_deleted_main);
17270
17271 // C++11 [dcl.fct.def.delete]p4:
17272 // A deleted function is implicitly inline.
17273 Fn->setImplicitlyInline();
17274 Fn->setDeletedAsWritten();
17275}
17276
17277void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
17278 if (!Dcl || Dcl->isInvalidDecl())
17279 return;
17280
17281 auto *FD = dyn_cast<FunctionDecl>(Dcl);
17282 if (!FD) {
17283 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Dcl)) {
17284 if (getDefaultedFunctionKind(FTD->getTemplatedDecl()).isComparison()) {
17285 Diag(DefaultLoc, diag::err_defaulted_comparison_template);
17286 return;
17287 }
17288 }
17289
17290 Diag(DefaultLoc, diag::err_default_special_members)
17291 << getLangOpts().CPlusPlus20;
17292 return;
17293 }
17294
17295 // Reject if this can't possibly be a defaultable function.
17296 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD);
17297 if (!DefKind &&
17298 // A dependent function that doesn't locally look defaultable can
17299 // still instantiate to a defaultable function if it's a constructor
17300 // or assignment operator.
17301 (!FD->isDependentContext() ||
17302 (!isa<CXXConstructorDecl>(FD) &&
17303 FD->getDeclName().getCXXOverloadedOperator() != OO_Equal))) {
17304 Diag(DefaultLoc, diag::err_default_special_members)
17305 << getLangOpts().CPlusPlus20;
17306 return;
17307 }
17308
17309 // Issue compatibility warning. We already warned if the operator is
17310 // 'operator<=>' when parsing the '<=>' token.
17311 if (DefKind.isComparison() &&
17312 DefKind.asComparison() != DefaultedComparisonKind::ThreeWay) {
17313 Diag(DefaultLoc, getLangOpts().CPlusPlus20
17314 ? diag::warn_cxx17_compat_defaulted_comparison
17315 : diag::ext_defaulted_comparison);
17316 }
17317
17318 FD->setDefaulted();
17319 FD->setExplicitlyDefaulted();
17320
17321 // Defer checking functions that are defaulted in a dependent context.
17322 if (FD->isDependentContext())
17323 return;
17324
17325 // Unset that we will have a body for this function. We might not,
17326 // if it turns out to be trivial, and we don't need this marking now
17327 // that we've marked it as defaulted.
17328 FD->setWillHaveBody(false);
17329
17330 if (DefKind.isComparison()) {
17331 // If this comparison's defaulting occurs within the definition of its
17332 // lexical class context, we have to do the checking when complete.
17333 if (auto const *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext()))
17334 if (!RD->isCompleteDefinition())
17335 return;
17336 }
17337
17338 // If this member fn was defaulted on its first declaration, we will have
17339 // already performed the checking in CheckCompletedCXXClass. Such a
17340 // declaration doesn't trigger an implicit definition.
17341 if (isa<CXXMethodDecl>(FD)) {
17342 const FunctionDecl *Primary = FD;
17343 if (const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
17344 // Ask the template instantiation pattern that actually had the
17345 // '= default' on it.
17346 Primary = Pattern;
17347 if (Primary->getCanonicalDecl()->isDefaulted())
17348 return;
17349 }
17350
17351 if (DefKind.isComparison()) {
17352 if (CheckExplicitlyDefaultedComparison(nullptr, FD, DefKind.asComparison()))
17353 FD->setInvalidDecl();
17354 else
17355 DefineDefaultedComparison(DefaultLoc, FD, DefKind.asComparison());
17356 } else {
17357 auto *MD = cast<CXXMethodDecl>(FD);
17358
17359 if (CheckExplicitlyDefaultedSpecialMember(MD, DefKind.asSpecialMember()))
17360 MD->setInvalidDecl();
17361 else
17362 DefineDefaultedFunction(*this, MD, DefaultLoc);
17363 }
17364}
17365
17366static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
17367 for (Stmt *SubStmt : S->children()) {
17368 if (!SubStmt)
17369 continue;
17370 if (isa<ReturnStmt>(SubStmt))
17371 Self.Diag(SubStmt->getBeginLoc(),
17372 diag::err_return_in_constructor_handler);
17373 if (!isa<Expr>(SubStmt))
17374 SearchForReturnInStmt(Self, SubStmt);
17375 }
17376}
17377
17378void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
17379 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
17380 CXXCatchStmt *Handler = TryBlock->getHandler(I);
17381 SearchForReturnInStmt(*this, Handler);
17382 }
17383}
17384
17385void Sema::SetFunctionBodyKind(Decl *D, SourceLocation Loc,
17386 FnBodyKind BodyKind) {
17387 switch (BodyKind) {
17388 case FnBodyKind::Delete:
17389 SetDeclDeleted(D, Loc);
17390 break;
17391 case FnBodyKind::Default:
17392 SetDeclDefaulted(D, Loc);
17393 break;
17394 case FnBodyKind::Other:
17395 llvm_unreachable(::llvm::llvm_unreachable_internal("Parsed function body should be '= delete;' or '= default;'"
, "clang/lib/Sema/SemaDeclCXX.cpp", 17396)
17396 "Parsed function body should be '= delete;' or '= default;'")::llvm::llvm_unreachable_internal("Parsed function body should be '= delete;' or '= default;'"
, "clang/lib/Sema/SemaDeclCXX.cpp", 17396)
;
17397 }
17398}
17399
17400bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
17401 const CXXMethodDecl *Old) {
17402 const auto *NewFT = New->getType()->castAs<FunctionProtoType>();
17403 const auto *OldFT = Old->getType()->castAs<FunctionProtoType>();
17404
17405 if (OldFT->hasExtParameterInfos()) {
17406 for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I)
17407 // A parameter of the overriding method should be annotated with noescape
17408 // if the corresponding parameter of the overridden method is annotated.
17409 if (OldFT->getExtParameterInfo(I).isNoEscape() &&
17410 !NewFT->getExtParameterInfo(I).isNoEscape()) {
17411 Diag(New->getParamDecl(I)->getLocation(),
17412 diag::warn_overriding_method_missing_noescape);
17413 Diag(Old->getParamDecl(I)->getLocation(),
17414 diag::note_overridden_marked_noescape);
17415 }
17416 }
17417
17418 // Virtual overrides must have the same code_seg.
17419 const auto *OldCSA = Old->getAttr<CodeSegAttr>();
17420 const auto *NewCSA = New->getAttr<CodeSegAttr>();
17421 if ((NewCSA || OldCSA) &&
17422 (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) {
17423 Diag(New->getLocation(), diag::err_mismatched_code_seg_override);
17424 Diag(Old->getLocation(), diag::note_previous_declaration);
17425 return true;
17426 }
17427
17428 CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
17429
17430 // If the calling conventions match, everything is fine
17431 if (NewCC == OldCC)
17432 return false;
17433
17434 // If the calling conventions mismatch because the new function is static,
17435 // suppress the calling convention mismatch error; the error about static
17436 // function override (err_static_overrides_virtual from
17437 // Sema::CheckFunctionDeclaration) is more clear.
17438 if (New->getStorageClass() == SC_Static)
17439 return false;
17440
17441 Diag(New->getLocation(),
17442 diag::err_conflicting_overriding_cc_attributes)
17443 << New->getDeclName() << New->getType() << Old->getType();
17444 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
17445 return true;
17446}
17447
17448bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
17449 const CXXMethodDecl *Old) {
17450 QualType NewTy = New->getType()->castAs<FunctionType>()->getReturnType();
17451 QualType OldTy = Old->getType()->castAs<FunctionType>()->getReturnType();
17452
17453 if (Context.hasSameType(NewTy, OldTy) ||
17454 NewTy->isDependentType() || OldTy->isDependentType())
17455 return false;
17456
17457 // Check if the return types are covariant
17458 QualType NewClassTy, OldClassTy;
17459
17460 /// Both types must be pointers or references to classes.
17461 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
17462 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
17463 NewClassTy = NewPT->getPointeeType();
17464 OldClassTy = OldPT->getPointeeType();
17465 }
17466 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
17467 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
17468 if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
17469 NewClassTy = NewRT->getPointeeType();
17470 OldClassTy = OldRT->getPointeeType();
17471 }
17472 }
17473 }
17474
17475 // The return types aren't either both pointers or references to a class type.
17476 if (NewClassTy.isNull()) {
17477 Diag(New->getLocation(),
17478 diag::err_different_return_type_for_overriding_virtual_function)
17479 << New->getDeclName() << NewTy << OldTy
17480 << New->getReturnTypeSourceRange();
17481 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17482 << Old->getReturnTypeSourceRange();
17483
17484 return true;
17485 }
17486
17487 if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
17488 // C++14 [class.virtual]p8:
17489 // If the class type in the covariant return type of D::f differs from
17490 // that of B::f, the class type in the return type of D::f shall be
17491 // complete at the point of declaration of D::f or shall be the class
17492 // type D.
17493 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
17494 if (!RT->isBeingDefined() &&
17495 RequireCompleteType(New->getLocation(), NewClassTy,
17496 diag::err_covariant_return_incomplete,
17497 New->getDeclName()))
17498 return true;
17499 }
17500
17501 // Check if the new class derives from the old class.
17502 if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) {
17503 Diag(New->getLocation(), diag::err_covariant_return_not_derived)
17504 << New->getDeclName() << NewTy << OldTy
17505 << New->getReturnTypeSourceRange();
17506 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17507 << Old->getReturnTypeSourceRange();
17508 return true;
17509 }
17510
17511 // Check if we the conversion from derived to base is valid.
17512 if (CheckDerivedToBaseConversion(
17513 NewClassTy, OldClassTy,
17514 diag::err_covariant_return_inaccessible_base,
17515 diag::err_covariant_return_ambiguous_derived_to_base_conv,
17516 New->getLocation(), New->getReturnTypeSourceRange(),
17517 New->getDeclName(), nullptr)) {
17518 // FIXME: this note won't trigger for delayed access control
17519 // diagnostics, and it's impossible to get an undelayed error
17520 // here from access control during the original parse because
17521 // the ParsingDeclSpec/ParsingDeclarator are still in scope.
17522 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17523 << Old->getReturnTypeSourceRange();
17524 return true;
17525 }
17526 }
17527
17528 // The qualifiers of the return types must be the same.
17529 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
17530 Diag(New->getLocation(),
17531 diag::err_covariant_return_type_different_qualifications)
17532 << New->getDeclName() << NewTy << OldTy
17533 << New->getReturnTypeSourceRange();
17534 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17535 << Old->getReturnTypeSourceRange();
17536 return true;
17537 }
17538
17539
17540 // The new class type must have the same or less qualifiers as the old type.
17541 if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
17542 Diag(New->getLocation(),
17543 diag::err_covariant_return_type_class_type_more_qualified)
17544 << New->getDeclName() << NewTy << OldTy
17545 << New->getReturnTypeSourceRange();
17546 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17547 << Old->getReturnTypeSourceRange();
17548 return true;
17549 }
17550
17551 return false;
17552}
17553
17554/// Mark the given method pure.
17555///
17556/// \param Method the method to be marked pure.
17557///
17558/// \param InitRange the source range that covers the "0" initializer.
17559bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
17560 SourceLocation EndLoc = InitRange.getEnd();
17561 if (EndLoc.isValid())
17562 Method->setRangeEnd(EndLoc);
17563
17564 if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
17565 Method->setPure();
17566 return false;
17567 }
17568
17569 if (!Method->isInvalidDecl())
17570 Diag(Method->getLocation(), diag::err_non_virtual_pure)
17571 << Method->getDeclName() << InitRange;
17572 return true;
17573}
17574
17575void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) {
17576 if (D->getFriendObjectKind())
17577 Diag(D->getLocation(), diag::err_pure_friend);
17578 else if (auto *M = dyn_cast<CXXMethodDecl>(D))
17579 CheckPureMethod(M, ZeroLoc);
17580 else
17581 Diag(D->getLocation(), diag::err_illegal_initializer);
17582}
17583
17584/// Determine whether the given declaration is a global variable or
17585/// static data member.
17586static bool isNonlocalVariable(const Decl *D) {
17587 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
17588 return Var->hasGlobalStorage();
17589
17590 return false;
17591}
17592
17593/// Invoked when we are about to parse an initializer for the declaration
17594/// 'Dcl'.
17595///
17596/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
17597/// static data member of class X, names should be looked up in the scope of
17598/// class X. If the declaration had a scope specifier, a scope will have
17599/// been created and passed in for this purpose. Otherwise, S will be null.
17600void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
17601 // If there is no declaration, there was an error parsing it.
17602 if (!D || D->isInvalidDecl())
17603 return;
17604
17605 // We will always have a nested name specifier here, but this declaration
17606 // might not be out of line if the specifier names the current namespace:
17607 // extern int n;
17608 // int ::n = 0;
17609 if (S && D->isOutOfLine())
17610 EnterDeclaratorContext(S, D->getDeclContext());
17611
17612 // If we are parsing the initializer for a static data member, push a
17613 // new expression evaluation context that is associated with this static
17614 // data member.
17615 if (isNonlocalVariable(D))
17616 PushExpressionEvaluationContext(
17617 ExpressionEvaluationContext::PotentiallyEvaluated, D);
17618}
17619
17620/// Invoked after we are finished parsing an initializer for the declaration D.
17621void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
17622 // If there is no declaration, there was an error parsing it.
17623 if (!D || D->isInvalidDecl())
17624 return;
17625
17626 if (isNonlocalVariable(D))
17627 PopExpressionEvaluationContext();
17628
17629 if (S && D->isOutOfLine())
17630 ExitDeclaratorContext(S);
17631}
17632
17633/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
17634/// C++ if/switch/while/for statement.
17635/// e.g: "if (int x = f()) {...}"
17636DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
17637 // C++ 6.4p2:
17638 // The declarator shall not specify a function or an array.
17639 // The type-specifier-seq shall not contain typedef and shall not declare a
17640 // new class or enumeration.
17641 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&(static_cast <bool> (D.getDeclSpec().getStorageClassSpec
() != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class of condition decl."
) ? void (0) : __assert_fail ("D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class of condition decl.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 17642, __extension__ __PRETTY_FUNCTION__
))
17642 "Parser allowed 'typedef' as storage class of condition decl.")(static_cast <bool> (D.getDeclSpec().getStorageClassSpec
() != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class of condition decl."
) ? void (0) : __assert_fail ("D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class of condition decl.\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 17642, __extension__ __PRETTY_FUNCTION__
))
;
17643
17644 Decl *Dcl = ActOnDeclarator(S, D);
17645 if (!Dcl)
17646 return true;
17647
17648 if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
17649 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
17650 << D.getSourceRange();
17651 return true;
17652 }
17653
17654 return Dcl;
17655}
17656
17657void Sema::LoadExternalVTableUses() {
17658 if (!ExternalSource)
17659 return;
17660
17661 SmallVector<ExternalVTableUse, 4> VTables;
17662 ExternalSource->ReadUsedVTables(VTables);
17663 SmallVector<VTableUse, 4> NewUses;
17664 for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
17665 llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
17666 = VTablesUsed.find(VTables[I].Record);
17667 // Even if a definition wasn't required before, it may be required now.
17668 if (Pos != VTablesUsed.end()) {
17669 if (!Pos->second && VTables[I].DefinitionRequired)
17670 Pos->second = true;
17671 continue;
17672 }
17673
17674 VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
17675 NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
17676 }
17677
17678 VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
17679}
17680
17681void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
17682 bool DefinitionRequired) {
17683 // Ignore any vtable uses in unevaluated operands or for classes that do
17684 // not have a vtable.
17685 if (!Class->isDynamicClass() || Class->isDependentContext() ||
17686 CurContext->isDependentContext() || isUnevaluatedContext())
17687 return;
17688 // Do not mark as used if compiling for the device outside of the target
17689 // region.
17690 if (TUKind != TU_Prefix && LangOpts.OpenMP && LangOpts.OpenMPIsDevice &&
17691 !isInOpenMPDeclareTargetContext() &&
17692 !isInOpenMPTargetExecutionDirective()) {
17693 if (!DefinitionRequired)
17694 MarkVirtualMembersReferenced(Loc, Class);
17695 return;
17696 }
17697
17698 // Try to insert this class into the map.
17699 LoadExternalVTableUses();
17700 Class = Class->getCanonicalDecl();
17701 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
17702 Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
17703 if (!Pos.second) {
17704 // If we already had an entry, check to see if we are promoting this vtable
17705 // to require a definition. If so, we need to reappend to the VTableUses
17706 // list, since we may have already processed the first entry.
17707 if (DefinitionRequired && !Pos.first->second) {
17708 Pos.first->second = true;
17709 } else {
17710 // Otherwise, we can early exit.
17711 return;
17712 }
17713 } else {
17714 // The Microsoft ABI requires that we perform the destructor body
17715 // checks (i.e. operator delete() lookup) when the vtable is marked used, as
17716 // the deleting destructor is emitted with the vtable, not with the
17717 // destructor definition as in the Itanium ABI.
17718 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
17719 CXXDestructorDecl *DD = Class->getDestructor();
17720 if (DD && DD->isVirtual() && !DD->isDeleted()) {
17721 if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) {
17722 // If this is an out-of-line declaration, marking it referenced will
17723 // not do anything. Manually call CheckDestructor to look up operator
17724 // delete().
17725 ContextRAII SavedContext(*this, DD);
17726 CheckDestructor(DD);
17727 } else {
17728 MarkFunctionReferenced(Loc, Class->getDestructor());
17729 }
17730 }
17731 }
17732 }
17733
17734 // Local classes need to have their virtual members marked
17735 // immediately. For all other classes, we mark their virtual members
17736 // at the end of the translation unit.
17737 if (Class->isLocalClass())
17738 MarkVirtualMembersReferenced(Loc, Class);
17739 else
17740 VTableUses.push_back(std::make_pair(Class, Loc));
17741}
17742
17743bool Sema::DefineUsedVTables() {
17744 LoadExternalVTableUses();
17745 if (VTableUses.empty())
17746 return false;
17747
17748 // Note: The VTableUses vector could grow as a result of marking
17749 // the members of a class as "used", so we check the size each
17750 // time through the loop and prefer indices (which are stable) to
17751 // iterators (which are not).
17752 bool DefinedAnything = false;
17753 for (unsigned I = 0; I != VTableUses.size(); ++I) {
17754 CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
17755 if (!Class)
17756 continue;
17757 TemplateSpecializationKind ClassTSK =
17758 Class->getTemplateSpecializationKind();
17759
17760 SourceLocation Loc = VTableUses[I].second;
17761
17762 bool DefineVTable = true;
17763
17764 // If this class has a key function, but that key function is
17765 // defined in another translation unit, we don't need to emit the
17766 // vtable even though we're using it.
17767 const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
17768 if (KeyFunction && !KeyFunction->hasBody()) {
17769 // The key function is in another translation unit.
17770 DefineVTable = false;
17771 TemplateSpecializationKind TSK =
17772 KeyFunction->getTemplateSpecializationKind();
17773 assert(TSK != TSK_ExplicitInstantiationDefinition &&(static_cast <bool> (TSK != TSK_ExplicitInstantiationDefinition
&& TSK != TSK_ImplicitInstantiation && "Instantiations don't have key functions"
) ? void (0) : __assert_fail ("TSK != TSK_ExplicitInstantiationDefinition && TSK != TSK_ImplicitInstantiation && \"Instantiations don't have key functions\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 17775, __extension__ __PRETTY_FUNCTION__
))
17774 TSK != TSK_ImplicitInstantiation &&(static_cast <bool> (TSK != TSK_ExplicitInstantiationDefinition
&& TSK != TSK_ImplicitInstantiation && "Instantiations don't have key functions"
) ? void (0) : __assert_fail ("TSK != TSK_ExplicitInstantiationDefinition && TSK != TSK_ImplicitInstantiation && \"Instantiations don't have key functions\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 17775, __extension__ __PRETTY_FUNCTION__
))
17775 "Instantiations don't have key functions")(static_cast <bool> (TSK != TSK_ExplicitInstantiationDefinition
&& TSK != TSK_ImplicitInstantiation && "Instantiations don't have key functions"
) ? void (0) : __assert_fail ("TSK != TSK_ExplicitInstantiationDefinition && TSK != TSK_ImplicitInstantiation && \"Instantiations don't have key functions\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 17775, __extension__ __PRETTY_FUNCTION__
))
;
17776 (void)TSK;
17777 } else if (!KeyFunction) {
17778 // If we have a class with no key function that is the subject
17779 // of an explicit instantiation declaration, suppress the
17780 // vtable; it will live with the explicit instantiation
17781 // definition.
17782 bool IsExplicitInstantiationDeclaration =
17783 ClassTSK == TSK_ExplicitInstantiationDeclaration;
17784 for (auto R : Class->redecls()) {
17785 TemplateSpecializationKind TSK
17786 = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind();
17787 if (TSK == TSK_ExplicitInstantiationDeclaration)
17788 IsExplicitInstantiationDeclaration = true;
17789 else if (TSK == TSK_ExplicitInstantiationDefinition) {
17790 IsExplicitInstantiationDeclaration = false;
17791 break;
17792 }
17793 }
17794
17795 if (IsExplicitInstantiationDeclaration)
17796 DefineVTable = false;
17797 }
17798
17799 // The exception specifications for all virtual members may be needed even
17800 // if we are not providing an authoritative form of the vtable in this TU.
17801 // We may choose to emit it available_externally anyway.
17802 if (!DefineVTable) {
17803 MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
17804 continue;
17805 }
17806
17807 // Mark all of the virtual members of this class as referenced, so
17808 // that we can build a vtable. Then, tell the AST consumer that a
17809 // vtable for this class is required.
17810 DefinedAnything = true;
17811 MarkVirtualMembersReferenced(Loc, Class);
17812 CXXRecordDecl *Canonical = Class->getCanonicalDecl();
17813 if (VTablesUsed[Canonical])
17814 Consumer.HandleVTable(Class);
17815
17816 // Warn if we're emitting a weak vtable. The vtable will be weak if there is
17817 // no key function or the key function is inlined. Don't warn in C++ ABIs
17818 // that lack key functions, since the user won't be able to make one.
17819 if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() &&
17820 Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation &&
17821 ClassTSK != TSK_ExplicitInstantiationDefinition) {
17822 const FunctionDecl *KeyFunctionDef = nullptr;
17823 if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) &&
17824 KeyFunctionDef->isInlined()))
17825 Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
17826 }
17827 }
17828 VTableUses.clear();
17829
17830 return DefinedAnything;
17831}
17832
17833void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
17834 const CXXRecordDecl *RD) {
17835 for (const auto *I : RD->methods())
17836 if (I->isVirtual() && !I->isPure())
17837 ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>());
17838}
17839
17840void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
17841 const CXXRecordDecl *RD,
17842 bool ConstexprOnly) {
17843 // Mark all functions which will appear in RD's vtable as used.
17844 CXXFinalOverriderMap FinalOverriders;
17845 RD->getFinalOverriders(FinalOverriders);
17846 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
17847 E = FinalOverriders.end();
17848 I != E; ++I) {
17849 for (OverridingMethods::const_iterator OI = I->second.begin(),
17850 OE = I->second.end();
17851 OI != OE; ++OI) {
17852 assert(OI->second.size() > 0 && "no final overrider")(static_cast <bool> (OI->second.size() > 0 &&
"no final overrider") ? void (0) : __assert_fail ("OI->second.size() > 0 && \"no final overrider\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 17852, __extension__ __PRETTY_FUNCTION__
))
;
17853 CXXMethodDecl *Overrider = OI->second.front().Method;
17854
17855 // C++ [basic.def.odr]p2:
17856 // [...] A virtual member function is used if it is not pure. [...]
17857 if (!Overrider->isPure() && (!ConstexprOnly || Overrider->isConstexpr()))
17858 MarkFunctionReferenced(Loc, Overrider);
17859 }
17860 }
17861
17862 // Only classes that have virtual bases need a VTT.
17863 if (RD->getNumVBases() == 0)
17864 return;
17865
17866 for (const auto &I : RD->bases()) {
17867 const auto *Base =
17868 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
17869 if (Base->getNumVBases() == 0)
17870 continue;
17871 MarkVirtualMembersReferenced(Loc, Base);
17872 }
17873}
17874
17875/// SetIvarInitializers - This routine builds initialization ASTs for the
17876/// Objective-C implementation whose ivars need be initialized.
17877void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
17878 if (!getLangOpts().CPlusPlus)
17879 return;
17880 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
17881 SmallVector<ObjCIvarDecl*, 8> ivars;
17882 CollectIvarsToConstructOrDestruct(OID, ivars);
17883 if (ivars.empty())
17884 return;
17885 SmallVector<CXXCtorInitializer*, 32> AllToInit;
17886 for (unsigned i = 0; i < ivars.size(); i++) {
17887 FieldDecl *Field = ivars[i];
17888 if (Field->isInvalidDecl())
17889 continue;
17890
17891 CXXCtorInitializer *Member;
17892 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
17893 InitializationKind InitKind =
17894 InitializationKind::CreateDefault(ObjCImplementation->getLocation());
17895
17896 InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
17897 ExprResult MemberInit =
17898 InitSeq.Perform(*this, InitEntity, InitKind, None);
17899 MemberInit = MaybeCreateExprWithCleanups(MemberInit);
17900 // Note, MemberInit could actually come back empty if no initialization
17901 // is required (e.g., because it would call a trivial default constructor)
17902 if (!MemberInit.get() || MemberInit.isInvalid())
17903 continue;
17904
17905 Member =
17906 new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
17907 SourceLocation(),
17908 MemberInit.getAs<Expr>(),
17909 SourceLocation());
17910 AllToInit.push_back(Member);
17911
17912 // Be sure that the destructor is accessible and is marked as referenced.
17913 if (const RecordType *RecordTy =
17914 Context.getBaseElementType(Field->getType())
17915 ->getAs<RecordType>()) {
17916 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
17917 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
17918 MarkFunctionReferenced(Field->getLocation(), Destructor);
17919 CheckDestructorAccess(Field->getLocation(), Destructor,
17920 PDiag(diag::err_access_dtor_ivar)
17921 << Context.getBaseElementType(Field->getType()));
17922 }
17923 }
17924 }
17925 ObjCImplementation->setIvarInitializers(Context,
17926 AllToInit.data(), AllToInit.size());
17927 }
17928}
17929
17930static
17931void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
17932 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid,
17933 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid,
17934 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current,
17935 Sema &S) {
17936 if (Ctor->isInvalidDecl())
17937 return;
17938
17939 CXXConstructorDecl *Target = Ctor->getTargetConstructor();
17940
17941 // Target may not be determinable yet, for instance if this is a dependent
17942 // call in an uninstantiated template.
17943 if (Target) {
17944 const FunctionDecl *FNTarget = nullptr;
17945 (void)Target->hasBody(FNTarget);
17946 Target = const_cast<CXXConstructorDecl*>(
17947 cast_or_null<CXXConstructorDecl>(FNTarget));
17948 }
17949
17950 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
17951 // Avoid dereferencing a null pointer here.
17952 *TCanonical = Target? Target->getCanonicalDecl() : nullptr;
17953
17954 if (!Current.insert(Canonical).second)
17955 return;
17956
17957 // We know that beyond here, we aren't chaining into a cycle.
17958 if (!Target || !Target->isDelegatingConstructor() ||
17959 Target->isInvalidDecl() || Valid.count(TCanonical)) {
17960 Valid.insert(Current.begin(), Current.end());
17961 Current.clear();
17962 // We've hit a cycle.
17963 } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
17964 Current.count(TCanonical)) {
17965 // If we haven't diagnosed this cycle yet, do so now.
17966 if (!Invalid.count(TCanonical)) {
17967 S.Diag((*Ctor->init_begin())->getSourceLocation(),
17968 diag::warn_delegating_ctor_cycle)
17969 << Ctor;
17970
17971 // Don't add a note for a function delegating directly to itself.
17972 if (TCanonical != Canonical)
17973 S.Diag(Target->getLocation(), diag::note_it_delegates_to);
17974
17975 CXXConstructorDecl *C = Target;
17976 while (C->getCanonicalDecl() != Canonical) {
17977 const FunctionDecl *FNTarget = nullptr;
17978 (void)C->getTargetConstructor()->hasBody(FNTarget);
17979 assert(FNTarget && "Ctor cycle through bodiless function")(static_cast <bool> (FNTarget && "Ctor cycle through bodiless function"
) ? void (0) : __assert_fail ("FNTarget && \"Ctor cycle through bodiless function\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 17979, __extension__ __PRETTY_FUNCTION__
))
;
17980
17981 C = const_cast<CXXConstructorDecl*>(
17982 cast<CXXConstructorDecl>(FNTarget));
17983 S.Diag(C->getLocation(), diag::note_which_delegates_to);
17984 }
17985 }
17986
17987 Invalid.insert(Current.begin(), Current.end());
17988 Current.clear();
17989 } else {
17990 DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
17991 }
17992}
17993
17994
17995void Sema::CheckDelegatingCtorCycles() {
17996 llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
17997
17998 for (DelegatingCtorDeclsType::iterator
17999 I = DelegatingCtorDecls.begin(ExternalSource),
18000 E = DelegatingCtorDecls.end();
18001 I != E; ++I)
18002 DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
18003
18004 for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
18005 (*CI)->setInvalidDecl();
18006}
18007
18008namespace {
18009 /// AST visitor that finds references to the 'this' expression.
18010 class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
18011 Sema &S;
18012
18013 public:
18014 explicit FindCXXThisExpr(Sema &S) : S(S) { }
18015
18016 bool VisitCXXThisExpr(CXXThisExpr *E) {
18017 S.Diag(E->getLocation(), diag::err_this_static_member_func)
18018 << E->isImplicit();
18019 return false;
18020 }
18021 };
18022}
18023
18024bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
18025 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
18026 if (!TSInfo)
18027 return false;
18028
18029 TypeLoc TL = TSInfo->getTypeLoc();
18030 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
18031 if (!ProtoTL)
18032 return false;
18033
18034 // C++11 [expr.prim.general]p3:
18035 // [The expression this] shall not appear before the optional
18036 // cv-qualifier-seq and it shall not appear within the declaration of a
18037 // static member function (although its type and value category are defined
18038 // within a static member function as they are within a non-static member
18039 // function). [ Note: this is because declaration matching does not occur
18040 // until the complete declarator is known. - end note ]
18041 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
18042 FindCXXThisExpr Finder(*this);
18043
18044 // If the return type came after the cv-qualifier-seq, check it now.
18045 if (Proto->hasTrailingReturn() &&
18046 !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc()))
18047 return true;
18048
18049 // Check the exception specification.
18050 if (checkThisInStaticMemberFunctionExceptionSpec(Method))
18051 return true;
18052
18053 // Check the trailing requires clause
18054 if (Expr *E = Method->getTrailingRequiresClause())
18055 if (!Finder.TraverseStmt(E))
18056 return true;
18057
18058 return checkThisInStaticMemberFunctionAttributes(Method);
18059}
18060
18061bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
18062 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
18063 if (!TSInfo)
18064 return false;
18065
18066 TypeLoc TL = TSInfo->getTypeLoc();
18067 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
18068 if (!ProtoTL)
18069 return false;
18070
18071 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
18072 FindCXXThisExpr Finder(*this);
18073
18074 switch (Proto->getExceptionSpecType()) {
18075 case EST_Unparsed:
18076 case EST_Uninstantiated:
18077 case EST_Unevaluated:
18078 case EST_BasicNoexcept:
18079 case EST_NoThrow:
18080 case EST_DynamicNone:
18081 case EST_MSAny:
18082 case EST_None:
18083 break;
18084
18085 case EST_DependentNoexcept:
18086 case EST_NoexceptFalse:
18087 case EST_NoexceptTrue:
18088 if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
18089 return true;
18090 LLVM_FALLTHROUGH[[gnu::fallthrough]];
18091
18092 case EST_Dynamic:
18093 for (const auto &E : Proto->exceptions()) {
18094 if (!Finder.TraverseType(E))
18095 return true;
18096 }
18097 break;
18098 }
18099
18100 return false;
18101}
18102
18103bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
18104 FindCXXThisExpr Finder(*this);
18105
18106 // Check attributes.
18107 for (const auto *A : Method->attrs()) {
18108 // FIXME: This should be emitted by tblgen.
18109 Expr *Arg = nullptr;
18110 ArrayRef<Expr *> Args;
18111 if (const auto *G = dyn_cast<GuardedByAttr>(A))
18112 Arg = G->getArg();
18113 else if (const auto *G = dyn_cast<PtGuardedByAttr>(A))
18114 Arg = G->getArg();
18115 else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A))
18116 Args = llvm::makeArrayRef(AA->args_begin(), AA->args_size());
18117 else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A))
18118 Args = llvm::makeArrayRef(AB->args_begin(), AB->args_size());
18119 else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) {
18120 Arg = ETLF->getSuccessValue();
18121 Args = llvm::makeArrayRef(ETLF->args_begin(), ETLF->args_size());
18122 } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) {
18123 Arg = STLF->getSuccessValue();
18124 Args = llvm::makeArrayRef(STLF->args_begin(), STLF->args_size());
18125 } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A))
18126 Arg = LR->getArg();
18127 else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A))
18128 Args = llvm::makeArrayRef(LE->args_begin(), LE->args_size());
18129 else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A))
18130 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
18131 else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A))
18132 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
18133 else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A))
18134 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
18135 else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A))
18136 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
18137
18138 if (Arg && !Finder.TraverseStmt(Arg))
18139 return true;
18140
18141 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
18142 if (!Finder.TraverseStmt(Args[I]))
18143 return true;
18144 }
18145 }
18146
18147 return false;
18148}
18149
18150void Sema::checkExceptionSpecification(
18151 bool IsTopLevel, ExceptionSpecificationType EST,
18152 ArrayRef<ParsedType> DynamicExceptions,
18153 ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr,
18154 SmallVectorImpl<QualType> &Exceptions,
18155 FunctionProtoType::ExceptionSpecInfo &ESI) {
18156 Exceptions.clear();
18157 ESI.Type = EST;
18158 if (EST == EST_Dynamic) {
18159 Exceptions.reserve(DynamicExceptions.size());
18160 for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
18161 // FIXME: Preserve type source info.
18162 QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
18163
18164 if (IsTopLevel) {
18165 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
18166 collectUnexpandedParameterPacks(ET, Unexpanded);
18167 if (!Unexpanded.empty()) {
18168 DiagnoseUnexpandedParameterPacks(
18169 DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType,
18170 Unexpanded);
18171 continue;
18172 }
18173 }
18174
18175 // Check that the type is valid for an exception spec, and
18176 // drop it if not.
18177 if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
18178 Exceptions.push_back(ET);
18179 }
18180 ESI.Exceptions = Exceptions;
18181 return;
18182 }
18183
18184 if (isComputedNoexcept(EST)) {
18185 assert((NoexceptExpr->isTypeDependent() ||(static_cast <bool> ((NoexceptExpr->isTypeDependent(
) || NoexceptExpr->getType()->getCanonicalTypeUnqualified
() == Context.BoolTy) && "Parser should have made sure that the expression is boolean"
) ? void (0) : __assert_fail ("(NoexceptExpr->isTypeDependent() || NoexceptExpr->getType()->getCanonicalTypeUnqualified() == Context.BoolTy) && \"Parser should have made sure that the expression is boolean\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 18188, __extension__ __PRETTY_FUNCTION__
))
18186 NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==(static_cast <bool> ((NoexceptExpr->isTypeDependent(
) || NoexceptExpr->getType()->getCanonicalTypeUnqualified
() == Context.BoolTy) && "Parser should have made sure that the expression is boolean"
) ? void (0) : __assert_fail ("(NoexceptExpr->isTypeDependent() || NoexceptExpr->getType()->getCanonicalTypeUnqualified() == Context.BoolTy) && \"Parser should have made sure that the expression is boolean\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 18188, __extension__ __PRETTY_FUNCTION__
))
18187 Context.BoolTy) &&(static_cast <bool> ((NoexceptExpr->isTypeDependent(
) || NoexceptExpr->getType()->getCanonicalTypeUnqualified
() == Context.BoolTy) && "Parser should have made sure that the expression is boolean"
) ? void (0) : __assert_fail ("(NoexceptExpr->isTypeDependent() || NoexceptExpr->getType()->getCanonicalTypeUnqualified() == Context.BoolTy) && \"Parser should have made sure that the expression is boolean\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 18188, __extension__ __PRETTY_FUNCTION__
))
18188 "Parser should have made sure that the expression is boolean")(static_cast <bool> ((NoexceptExpr->isTypeDependent(
) || NoexceptExpr->getType()->getCanonicalTypeUnqualified
() == Context.BoolTy) && "Parser should have made sure that the expression is boolean"
) ? void (0) : __assert_fail ("(NoexceptExpr->isTypeDependent() || NoexceptExpr->getType()->getCanonicalTypeUnqualified() == Context.BoolTy) && \"Parser should have made sure that the expression is boolean\""
, "clang/lib/Sema/SemaDeclCXX.cpp", 18188, __extension__ __PRETTY_FUNCTION__
))
;
18189 if (IsTopLevel && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
18190 ESI.Type = EST_BasicNoexcept;
18191 return;
18192 }
18193
18194 ESI.NoexceptExpr = NoexceptExpr;
18195 return;
18196 }
18197}
18198
18199void Sema::actOnDelayedExceptionSpecification(Decl *MethodD,
18200 ExceptionSpecificationType EST,
18201 SourceRange SpecificationRange,
18202 ArrayRef<ParsedType> DynamicExceptions,
18203 ArrayRef<SourceRange> DynamicExceptionRanges,
18204 Expr *NoexceptExpr) {
18205 if (!MethodD)
18206 return;
18207
18208 // Dig out the method we're referring to.
18209 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD))
18210 MethodD = FunTmpl->getTemplatedDecl();
18211
18212 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD);
18213 if (!Method)
18214 return;
18215
18216 // Check the exception specification.
18217 llvm::SmallVector<QualType, 4> Exceptions;
18218 FunctionProtoType::ExceptionSpecInfo ESI;
18219 checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions,
18220 DynamicExceptionRanges, NoexceptExpr, Exceptions,
18221 ESI);
18222
18223 // Update the exception specification on the function type.
18224 Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true);
18225
18226 if (Method->isStatic())
18227 checkThisInStaticMemberFunctionExceptionSpec(Method);
18228
18229 if (Method->isVirtual()) {
18230 // Check overrides, which we previously had to delay.
18231 for (const CXXMethodDecl *O : Method->overridden_methods())
18232 CheckOverridingFunctionExceptionSpec(Method, O);
18233 }
18234}
18235
18236/// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
18237///
18238MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
18239 SourceLocation DeclStart, Declarator &D,
18240 Expr *BitWidth,
18241 InClassInitStyle InitStyle,
18242 AccessSpecifier AS,
18243 const ParsedAttr &MSPropertyAttr) {
18244 IdentifierInfo *II = D.getIdentifier();
18245 if (!II) {
18246 Diag(DeclStart, diag::err_anonymous_property);
18247 return nullptr;
18248 }
18249 SourceLocation Loc = D.getIdentifierLoc();
18250
18251 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
18252 QualType T = TInfo->getType();
18253 if (getLangOpts().CPlusPlus) {
18254 CheckExtraCXXDefaultArguments(D);
18255
18256 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
18257 UPPC_DataMemberType)) {
18258 D.setInvalidType();
18259 T = Context.IntTy;
18260 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
18261 }
18262 }
18263
18264 DiagnoseFunctionSpecifiers(D.getDeclSpec());
18265
18266 if (D.getDeclSpec().isInlineSpecified())
18267 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
18268 << getLangOpts().CPlusPlus17;
18269 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
18270 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
18271 diag::err_invalid_thread)
18272 << DeclSpec::getSpecifierName(TSCS);
18273
18274 // Check to see if this name was declared as a member previously
18275 NamedDecl *PrevDecl = nullptr;
18276 LookupResult Previous(*this, II, Loc, LookupMemberName,
18277 ForVisibleRedeclaration);
18278 LookupName(Previous, S);
18279 switch (Previous.getResultKind()) {
18280 case LookupResult::Found:
18281 case LookupResult::FoundUnresolvedValue:
18282 PrevDecl = Previous.getAsSingle<NamedDecl>();
18283 break;
18284
18285 case LookupResult::FoundOverloaded:
18286 PrevDecl = Previous.getRepresentativeDecl();
18287 break;
18288
18289 case LookupResult::NotFound:
18290 case LookupResult::NotFoundInCurrentInstantiation:
18291 case LookupResult::Ambiguous:
18292 break;
18293 }
18294
18295 if (PrevDecl && PrevDecl->isTemplateParameter()) {
18296 // Maybe we will complain about the shadowed template parameter.
18297 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
18298 // Just pretend that we didn't see the previous declaration.
18299 PrevDecl = nullptr;
18300 }
18301
18302 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
18303 PrevDecl = nullptr;
18304
18305 SourceLocation TSSL = D.getBeginLoc();
18306 MSPropertyDecl *NewPD =
18307 MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL,
18308 MSPropertyAttr.getPropertyDataGetter(),
18309 MSPropertyAttr.getPropertyDataSetter());
18310 ProcessDeclAttributes(TUScope, NewPD, D);
18311 NewPD->setAccess(AS);
18312
18313 if (NewPD->isInvalidDecl())
18314 Record->setInvalidDecl();
18315
18316 if (D.getDeclSpec().isModulePrivateSpecified())
18317 NewPD->setModulePrivate();
18318
18319 if (NewPD->isInvalidDecl() && PrevDecl) {
18320 // Don't introduce NewFD into scope; there's already something
18321 // with the same name in the same scope.
18322 } else if (II) {
18323 PushOnScopeChains(NewPD, S);
18324 } else
18325 Record->addDecl(NewPD);
18326
18327 return NewPD;
18328}
18329
18330void Sema::ActOnStartFunctionDeclarationDeclarator(
18331 Declarator &Declarator, unsigned TemplateParameterDepth) {
18332 auto &Info = InventedParameterInfos.emplace_back();
18333 TemplateParameterList *ExplicitParams = nullptr;
18334 ArrayRef<TemplateParameterList *> ExplicitLists =
18335 Declarator.getTemplateParameterLists();
18336 if (!ExplicitLists.empty()) {
18337 bool IsMemberSpecialization, IsInvalid;
18338 ExplicitParams = MatchTemplateParametersToScopeSpecifier(
18339 Declarator.getBeginLoc(), Declarator.getIdentifierLoc(),
18340 Declarator.getCXXScopeSpec(), /*TemplateId=*/nullptr,
18341 ExplicitLists, /*IsFriend=*/false, IsMemberSpecialization, IsInvalid,
18342 /*SuppressDiagnostic=*/true);
18343 }
18344 if (ExplicitParams) {
18345 Info.AutoTemplateParameterDepth = ExplicitParams->getDepth();
18346 llvm::append_range(Info.TemplateParams, *ExplicitParams);
18347 Info.NumExplicitTemplateParams = ExplicitParams->size();
18348 } else {
18349 Info.AutoTemplateParameterDepth = TemplateParameterDepth;
18350 Info.NumExplicitTemplateParams = 0;
18351 }
18352}
18353
18354void Sema::ActOnFinishFunctionDeclarationDeclarator(Declarator &Declarator) {
18355 auto &FSI = InventedParameterInfos.back();
18356 if (FSI.TemplateParams.size() > FSI.NumExplicitTemplateParams) {
18357 if (FSI.NumExplicitTemplateParams != 0) {
18358 TemplateParameterList *ExplicitParams =
18359 Declarator.getTemplateParameterLists().back();
18360 Declarator.setInventedTemplateParameterList(
18361 TemplateParameterList::Create(
18362 Context, ExplicitParams->getTemplateLoc(),
18363 ExplicitParams->getLAngleLoc(), FSI.TemplateParams,
18364 ExplicitParams->getRAngleLoc(),
18365 ExplicitParams->getRequiresClause()));
18366 } else {
18367 Declarator.setInventedTemplateParameterList(
18368 TemplateParameterList::Create(
18369 Context, SourceLocation(), SourceLocation(), FSI.TemplateParams,
18370 SourceLocation(), /*RequiresClause=*/nullptr));
18371 }
18372 }
18373 InventedParameterInfos.pop_back();
18374}