Bug Summary

File:tools/clang/lib/Sema/SemaDeclObjC.cpp
Warning:line 589, column 34
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaDeclObjC.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/include -I /build/llvm-toolchain-snapshot-10~svn374877/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~svn374877=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2019-10-15-233810-7101-1 -x c++ /build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp

/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp

1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for Objective C declarations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TypeLocBuilder.h"
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/AST/RecursiveASTVisitor.h"
21#include "clang/Basic/SourceManager.h"
22#include "clang/Sema/DeclSpec.h"
23#include "clang/Sema/Lookup.h"
24#include "clang/Sema/Scope.h"
25#include "clang/Sema/ScopeInfo.h"
26#include "clang/Sema/SemaInternal.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/DenseSet.h"
29
30using namespace clang;
31
32/// Check whether the given method, which must be in the 'init'
33/// family, is a valid member of that family.
34///
35/// \param receiverTypeIfCall - if null, check this as if declaring it;
36/// if non-null, check this as if making a call to it with the given
37/// receiver type
38///
39/// \return true to indicate that there was an error and appropriate
40/// actions were taken
41bool Sema::checkInitMethod(ObjCMethodDecl *method,
42 QualType receiverTypeIfCall) {
43 if (method->isInvalidDecl()) return true;
44
45 // This castAs is safe: methods that don't return an object
46 // pointer won't be inferred as inits and will reject an explicit
47 // objc_method_family(init).
48
49 // We ignore protocols here. Should we? What about Class?
50
51 const ObjCObjectType *result =
52 method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
53
54 if (result->isObjCId()) {
55 return false;
56 } else if (result->isObjCClass()) {
57 // fall through: always an error
58 } else {
59 ObjCInterfaceDecl *resultClass = result->getInterface();
60 assert(resultClass && "unexpected object type!")((resultClass && "unexpected object type!") ? static_cast
<void> (0) : __assert_fail ("resultClass && \"unexpected object type!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 60, __PRETTY_FUNCTION__))
;
61
62 // It's okay for the result type to still be a forward declaration
63 // if we're checking an interface declaration.
64 if (!resultClass->hasDefinition()) {
65 if (receiverTypeIfCall.isNull() &&
66 !isa<ObjCImplementationDecl>(method->getDeclContext()))
67 return false;
68
69 // Otherwise, we try to compare class types.
70 } else {
71 // If this method was declared in a protocol, we can't check
72 // anything unless we have a receiver type that's an interface.
73 const ObjCInterfaceDecl *receiverClass = nullptr;
74 if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
75 if (receiverTypeIfCall.isNull())
76 return false;
77
78 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
79 ->getInterfaceDecl();
80
81 // This can be null for calls to e.g. id<Foo>.
82 if (!receiverClass) return false;
83 } else {
84 receiverClass = method->getClassInterface();
85 assert(receiverClass && "method not associated with a class!")((receiverClass && "method not associated with a class!"
) ? static_cast<void> (0) : __assert_fail ("receiverClass && \"method not associated with a class!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 85, __PRETTY_FUNCTION__))
;
86 }
87
88 // If either class is a subclass of the other, it's fine.
89 if (receiverClass->isSuperClassOf(resultClass) ||
90 resultClass->isSuperClassOf(receiverClass))
91 return false;
92 }
93 }
94
95 SourceLocation loc = method->getLocation();
96
97 // If we're in a system header, and this is not a call, just make
98 // the method unusable.
99 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
100 method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
101 UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
102 return true;
103 }
104
105 // Otherwise, it's an error.
106 Diag(loc, diag::err_arc_init_method_unrelated_result_type);
107 method->setInvalidDecl();
108 return true;
109}
110
111/// Issue a warning if the parameter of the overridden method is non-escaping
112/// but the parameter of the overriding method is not.
113static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
114 Sema &S) {
115 if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) {
116 S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape);
117 S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape);
118 return false;
119 }
120
121 return true;
122}
123
124/// Produce additional diagnostics if a category conforms to a protocol that
125/// defines a method taking a non-escaping parameter.
126static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
127 const ObjCCategoryDecl *CD,
128 const ObjCProtocolDecl *PD, Sema &S) {
129 if (!diagnoseNoescape(NewD, OldD, S))
130 S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot)
131 << CD->IsClassExtension() << PD
132 << cast<ObjCMethodDecl>(NewD->getDeclContext());
133}
134
135void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
136 const ObjCMethodDecl *Overridden) {
137 if (Overridden->hasRelatedResultType() &&
138 !NewMethod->hasRelatedResultType()) {
139 // This can only happen when the method follows a naming convention that
140 // implies a related result type, and the original (overridden) method has
141 // a suitable return type, but the new (overriding) method does not have
142 // a suitable return type.
143 QualType ResultType = NewMethod->getReturnType();
144 SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
145
146 // Figure out which class this method is part of, if any.
147 ObjCInterfaceDecl *CurrentClass
148 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
149 if (!CurrentClass) {
150 DeclContext *DC = NewMethod->getDeclContext();
151 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
152 CurrentClass = Cat->getClassInterface();
153 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
154 CurrentClass = Impl->getClassInterface();
155 else if (ObjCCategoryImplDecl *CatImpl
156 = dyn_cast<ObjCCategoryImplDecl>(DC))
157 CurrentClass = CatImpl->getClassInterface();
158 }
159
160 if (CurrentClass) {
161 Diag(NewMethod->getLocation(),
162 diag::warn_related_result_type_compatibility_class)
163 << Context.getObjCInterfaceType(CurrentClass)
164 << ResultType
165 << ResultTypeRange;
166 } else {
167 Diag(NewMethod->getLocation(),
168 diag::warn_related_result_type_compatibility_protocol)
169 << ResultType
170 << ResultTypeRange;
171 }
172
173 if (ObjCMethodFamily Family = Overridden->getMethodFamily())
174 Diag(Overridden->getLocation(),
175 diag::note_related_result_type_family)
176 << /*overridden method*/ 0
177 << Family;
178 else
179 Diag(Overridden->getLocation(),
180 diag::note_related_result_type_overridden);
181 }
182
183 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
184 Overridden->hasAttr<NSReturnsRetainedAttr>())) {
185 Diag(NewMethod->getLocation(),
186 getLangOpts().ObjCAutoRefCount
187 ? diag::err_nsreturns_retained_attribute_mismatch
188 : diag::warn_nsreturns_retained_attribute_mismatch)
189 << 1;
190 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
191 }
192 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
193 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
194 Diag(NewMethod->getLocation(),
195 getLangOpts().ObjCAutoRefCount
196 ? diag::err_nsreturns_retained_attribute_mismatch
197 : diag::warn_nsreturns_retained_attribute_mismatch)
198 << 0;
199 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
200 }
201
202 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
203 oe = Overridden->param_end();
204 for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
205 ne = NewMethod->param_end();
206 ni != ne && oi != oe; ++ni, ++oi) {
207 const ParmVarDecl *oldDecl = (*oi);
208 ParmVarDecl *newDecl = (*ni);
209 if (newDecl->hasAttr<NSConsumedAttr>() !=
210 oldDecl->hasAttr<NSConsumedAttr>()) {
211 Diag(newDecl->getLocation(),
212 getLangOpts().ObjCAutoRefCount
213 ? diag::err_nsconsumed_attribute_mismatch
214 : diag::warn_nsconsumed_attribute_mismatch);
215 Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
216 }
217
218 diagnoseNoescape(newDecl, oldDecl, *this);
219 }
220}
221
222/// Check a method declaration for compatibility with the Objective-C
223/// ARC conventions.
224bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
225 ObjCMethodFamily family = method->getMethodFamily();
226 switch (family) {
227 case OMF_None:
228 case OMF_finalize:
229 case OMF_retain:
230 case OMF_release:
231 case OMF_autorelease:
232 case OMF_retainCount:
233 case OMF_self:
234 case OMF_initialize:
235 case OMF_performSelector:
236 return false;
237
238 case OMF_dealloc:
239 if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
240 SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
241 if (ResultTypeRange.isInvalid())
242 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
243 << method->getReturnType()
244 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
245 else
246 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
247 << method->getReturnType()
248 << FixItHint::CreateReplacement(ResultTypeRange, "void");
249 return true;
250 }
251 return false;
252
253 case OMF_init:
254 // If the method doesn't obey the init rules, don't bother annotating it.
255 if (checkInitMethod(method, QualType()))
256 return true;
257
258 method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
259
260 // Don't add a second copy of this attribute, but otherwise don't
261 // let it be suppressed.
262 if (method->hasAttr<NSReturnsRetainedAttr>())
263 return false;
264 break;
265
266 case OMF_alloc:
267 case OMF_copy:
268 case OMF_mutableCopy:
269 case OMF_new:
270 if (method->hasAttr<NSReturnsRetainedAttr>() ||
271 method->hasAttr<NSReturnsNotRetainedAttr>() ||
272 method->hasAttr<NSReturnsAutoreleasedAttr>())
273 return false;
274 break;
275 }
276
277 method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
278 return false;
279}
280
281static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND,
282 SourceLocation ImplLoc) {
283 if (!ND)
284 return;
285 bool IsCategory = false;
286 StringRef RealizedPlatform;
287 AvailabilityResult Availability = ND->getAvailability(
288 /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(),
289 &RealizedPlatform);
290 if (Availability != AR_Deprecated) {
291 if (isa<ObjCMethodDecl>(ND)) {
292 if (Availability != AR_Unavailable)
293 return;
294 if (RealizedPlatform.empty())
295 RealizedPlatform = S.Context.getTargetInfo().getPlatformName();
296 // Warn about implementing unavailable methods, unless the unavailable
297 // is for an app extension.
298 if (RealizedPlatform.endswith("_app_extension"))
299 return;
300 S.Diag(ImplLoc, diag::warn_unavailable_def);
301 S.Diag(ND->getLocation(), diag::note_method_declared_at)
302 << ND->getDeclName();
303 return;
304 }
305 if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) {
306 if (!CD->getClassInterface()->isDeprecated())
307 return;
308 ND = CD->getClassInterface();
309 IsCategory = true;
310 } else
311 return;
312 }
313 S.Diag(ImplLoc, diag::warn_deprecated_def)
314 << (isa<ObjCMethodDecl>(ND)
315 ? /*Method*/ 0
316 : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
317 : /*Class*/ 1);
318 if (isa<ObjCMethodDecl>(ND))
319 S.Diag(ND->getLocation(), diag::note_method_declared_at)
320 << ND->getDeclName();
321 else
322 S.Diag(ND->getLocation(), diag::note_previous_decl)
323 << (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
324}
325
326/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
327/// pool.
328void Sema::AddAnyMethodToGlobalPool(Decl *D) {
329 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
330
331 // If we don't have a valid method decl, simply return.
332 if (!MDecl)
333 return;
334 if (MDecl->isInstanceMethod())
335 AddInstanceMethodToGlobalPool(MDecl, true);
336 else
337 AddFactoryMethodToGlobalPool(MDecl, true);
338}
339
340/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
341/// has explicit ownership attribute; false otherwise.
342static bool
343HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
344 QualType T = Param->getType();
345
346 if (const PointerType *PT = T->getAs<PointerType>()) {
347 T = PT->getPointeeType();
348 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
349 T = RT->getPointeeType();
350 } else {
351 return true;
352 }
353
354 // If we have a lifetime qualifier, but it's local, we must have
355 // inferred it. So, it is implicit.
356 return !T.getLocalQualifiers().hasObjCLifetime();
357}
358
359/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
360/// and user declared, in the method definition's AST.
361void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
362 ImplicitlyRetainedSelfLocs.clear();
363 assert((getCurMethodDecl() == nullptr) && "Methodparsing confused")(((getCurMethodDecl() == nullptr) && "Methodparsing confused"
) ? static_cast<void> (0) : __assert_fail ("(getCurMethodDecl() == nullptr) && \"Methodparsing confused\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 363, __PRETTY_FUNCTION__))
;
364 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
365
366 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
367
368 // If we don't have a valid method decl, simply return.
369 if (!MDecl)
370 return;
371
372 QualType ResultType = MDecl->getReturnType();
373 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
374 !MDecl->isInvalidDecl() &&
375 RequireCompleteType(MDecl->getLocation(), ResultType,
376 diag::err_func_def_incomplete_result))
377 MDecl->setInvalidDecl();
378
379 // Allow all of Sema to see that we are entering a method definition.
380 PushDeclContext(FnBodyScope, MDecl);
381 PushFunctionScope();
382
383 // Create Decl objects for each parameter, entrring them in the scope for
384 // binding to their use.
385
386 // Insert the invisible arguments, self and _cmd!
387 MDecl->createImplicitParams(Context, MDecl->getClassInterface());
388
389 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
390 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
391
392 // The ObjC parser requires parameter names so there's no need to check.
393 CheckParmsForFunctionDef(MDecl->parameters(),
394 /*CheckParameterNames=*/false);
395
396 // Introduce all of the other parameters into this scope.
397 for (auto *Param : MDecl->parameters()) {
398 if (!Param->isInvalidDecl() &&
399 getLangOpts().ObjCAutoRefCount &&
400 !HasExplicitOwnershipAttr(*this, Param))
401 Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
402 Param->getType();
403
404 if (Param->getIdentifier())
405 PushOnScopeChains(Param, FnBodyScope);
406 }
407
408 // In ARC, disallow definition of retain/release/autorelease/retainCount
409 if (getLangOpts().ObjCAutoRefCount) {
410 switch (MDecl->getMethodFamily()) {
411 case OMF_retain:
412 case OMF_retainCount:
413 case OMF_release:
414 case OMF_autorelease:
415 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
416 << 0 << MDecl->getSelector();
417 break;
418
419 case OMF_None:
420 case OMF_dealloc:
421 case OMF_finalize:
422 case OMF_alloc:
423 case OMF_init:
424 case OMF_mutableCopy:
425 case OMF_copy:
426 case OMF_new:
427 case OMF_self:
428 case OMF_initialize:
429 case OMF_performSelector:
430 break;
431 }
432 }
433
434 // Warn on deprecated methods under -Wdeprecated-implementations,
435 // and prepare for warning on missing super calls.
436 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
437 ObjCMethodDecl *IMD =
438 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
439
440 if (IMD) {
441 ObjCImplDecl *ImplDeclOfMethodDef =
442 dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
443 ObjCContainerDecl *ContDeclOfMethodDecl =
444 dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
445 ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
446 if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
447 ImplDeclOfMethodDecl = OID->getImplementation();
448 else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
449 if (CD->IsClassExtension()) {
450 if (ObjCInterfaceDecl *OID = CD->getClassInterface())
451 ImplDeclOfMethodDecl = OID->getImplementation();
452 } else
453 ImplDeclOfMethodDecl = CD->getImplementation();
454 }
455 // No need to issue deprecated warning if deprecated mehod in class/category
456 // is being implemented in its own implementation (no overriding is involved).
457 if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
458 DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation());
459 }
460
461 if (MDecl->getMethodFamily() == OMF_init) {
462 if (MDecl->isDesignatedInitializerForTheInterface()) {
463 getCurFunction()->ObjCIsDesignatedInit = true;
464 getCurFunction()->ObjCWarnForNoDesignatedInitChain =
465 IC->getSuperClass() != nullptr;
466 } else if (IC->hasDesignatedInitializers()) {
467 getCurFunction()->ObjCIsSecondaryInit = true;
468 getCurFunction()->ObjCWarnForNoInitDelegation = true;
469 }
470 }
471
472 // If this is "dealloc" or "finalize", set some bit here.
473 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
474 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
475 // Only do this if the current class actually has a superclass.
476 if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
477 ObjCMethodFamily Family = MDecl->getMethodFamily();
478 if (Family == OMF_dealloc) {
479 if (!(getLangOpts().ObjCAutoRefCount ||
480 getLangOpts().getGC() == LangOptions::GCOnly))
481 getCurFunction()->ObjCShouldCallSuper = true;
482
483 } else if (Family == OMF_finalize) {
484 if (Context.getLangOpts().getGC() != LangOptions::NonGC)
485 getCurFunction()->ObjCShouldCallSuper = true;
486
487 } else {
488 const ObjCMethodDecl *SuperMethod =
489 SuperClass->lookupMethod(MDecl->getSelector(),
490 MDecl->isInstanceMethod());
491 getCurFunction()->ObjCShouldCallSuper =
492 (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
493 }
494 }
495 }
496}
497
498namespace {
499
500// Callback to only accept typo corrections that are Objective-C classes.
501// If an ObjCInterfaceDecl* is given to the constructor, then the validation
502// function will reject corrections to that class.
503class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback {
504 public:
505 ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
506 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
507 : CurrentIDecl(IDecl) {}
508
509 bool ValidateCandidate(const TypoCorrection &candidate) override {
510 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
511 return ID && !declaresSameEntity(ID, CurrentIDecl);
512 }
513
514 std::unique_ptr<CorrectionCandidateCallback> clone() override {
515 return std::make_unique<ObjCInterfaceValidatorCCC>(*this);
516 }
517
518 private:
519 ObjCInterfaceDecl *CurrentIDecl;
520};
521
522} // end anonymous namespace
523
524static void diagnoseUseOfProtocols(Sema &TheSema,
525 ObjCContainerDecl *CD,
526 ObjCProtocolDecl *const *ProtoRefs,
527 unsigned NumProtoRefs,
528 const SourceLocation *ProtoLocs) {
529 assert(ProtoRefs)((ProtoRefs) ? static_cast<void> (0) : __assert_fail ("ProtoRefs"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 529, __PRETTY_FUNCTION__))
;
530 // Diagnose availability in the context of the ObjC container.
531 Sema::ContextRAII SavedContext(TheSema, CD);
532 for (unsigned i = 0; i < NumProtoRefs; ++i) {
533 (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
534 /*UnknownObjCClass=*/nullptr,
535 /*ObjCPropertyAccess=*/false,
536 /*AvoidPartialAvailabilityChecks=*/true);
537 }
538}
539
540void Sema::
541ActOnSuperClassOfClassInterface(Scope *S,
542 SourceLocation AtInterfaceLoc,
543 ObjCInterfaceDecl *IDecl,
544 IdentifierInfo *ClassName,
545 SourceLocation ClassLoc,
546 IdentifierInfo *SuperName,
547 SourceLocation SuperLoc,
548 ArrayRef<ParsedType> SuperTypeArgs,
549 SourceRange SuperTypeArgsRange) {
550 // Check if a different kind of symbol declared in this scope.
551 NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
552 LookupOrdinaryName);
553
554 if (!PrevDecl) {
12
Assuming 'PrevDecl' is non-null
13
Taking false branch
555 // Try to correct for a typo in the superclass name without correcting
556 // to the class we're defining.
557 ObjCInterfaceValidatorCCC CCC(IDecl);
558 if (TypoCorrection Corrected = CorrectTypo(
559 DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName,
560 TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
561 diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
562 << SuperName << ClassName);
563 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
564 }
565 }
566
567 if (declaresSameEntity(PrevDecl, IDecl)) {
14
Calling 'declaresSameEntity'
20
Returning from 'declaresSameEntity'
21
Taking false branch
568 Diag(SuperLoc, diag::err_recursive_superclass)
569 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
570 IDecl->setEndOfDefinitionLoc(ClassLoc);
571 } else {
572 ObjCInterfaceDecl *SuperClassDecl =
573 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
22
Assuming 'PrevDecl' is not a 'ObjCInterfaceDecl'
574 QualType SuperClassType;
575
576 // Diagnose classes that inherit from deprecated classes.
577 if (SuperClassDecl
22.1
'SuperClassDecl' is null
22.1
'SuperClassDecl' is null
22.1
'SuperClassDecl' is null
) {
23
Taking false branch
578 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
579 SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
580 }
581
582 if (PrevDecl
23.1
'PrevDecl' is non-null
23.1
'PrevDecl' is non-null
23.1
'PrevDecl' is non-null
&& !SuperClassDecl
23.2
'SuperClassDecl' is null
23.2
'SuperClassDecl' is null
23.2
'SuperClassDecl' is null
) {
24
Taking true branch
583 // The previous declaration was not a class decl. Check if we have a
584 // typedef. If we do, get the underlying class type.
585 if (const TypedefNameDecl *TDecl
25.1
'TDecl' is non-null
25.1
'TDecl' is non-null
25.1
'TDecl' is non-null
=
26
Taking true branch
586 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
25
Assuming 'PrevDecl' is a 'TypedefNameDecl'
587 QualType T = TDecl->getUnderlyingType();
588 if (T->isObjCObjectType()) {
27
Calling 'Type::isObjCObjectType'
30
Returning from 'Type::isObjCObjectType'
31
Taking true branch
589 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
32
Assuming the object is not a 'ObjCObjectType'
33
Called C++ object pointer is null
590 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
591 SuperClassType = Context.getTypeDeclType(TDecl);
592
593 // This handles the following case:
594 // @interface NewI @end
595 // typedef NewI DeprI __attribute__((deprecated("blah")))
596 // @interface SI : DeprI /* warn here */ @end
597 (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
598 }
599 }
600 }
601
602 // This handles the following case:
603 //
604 // typedef int SuperClass;
605 // @interface MyClass : SuperClass {} @end
606 //
607 if (!SuperClassDecl) {
608 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
609 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
610 }
611 }
612
613 if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
614 if (!SuperClassDecl)
615 Diag(SuperLoc, diag::err_undef_superclass)
616 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
617 else if (RequireCompleteType(SuperLoc,
618 SuperClassType,
619 diag::err_forward_superclass,
620 SuperClassDecl->getDeclName(),
621 ClassName,
622 SourceRange(AtInterfaceLoc, ClassLoc))) {
623 SuperClassDecl = nullptr;
624 SuperClassType = QualType();
625 }
626 }
627
628 if (SuperClassType.isNull()) {
629 assert(!SuperClassDecl && "Failed to set SuperClassType?")((!SuperClassDecl && "Failed to set SuperClassType?")
? static_cast<void> (0) : __assert_fail ("!SuperClassDecl && \"Failed to set SuperClassType?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 629, __PRETTY_FUNCTION__))
;
630 return;
631 }
632
633 // Handle type arguments on the superclass.
634 TypeSourceInfo *SuperClassTInfo = nullptr;
635 if (!SuperTypeArgs.empty()) {
636 TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
637 S,
638 SuperLoc,
639 CreateParsedType(SuperClassType,
640 nullptr),
641 SuperTypeArgsRange.getBegin(),
642 SuperTypeArgs,
643 SuperTypeArgsRange.getEnd(),
644 SourceLocation(),
645 { },
646 { },
647 SourceLocation());
648 if (!fullSuperClassType.isUsable())
649 return;
650
651 SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
652 &SuperClassTInfo);
653 }
654
655 if (!SuperClassTInfo) {
656 SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
657 SuperLoc);
658 }
659
660 IDecl->setSuperClass(SuperClassTInfo);
661 IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc());
662 }
663}
664
665DeclResult Sema::actOnObjCTypeParam(Scope *S,
666 ObjCTypeParamVariance variance,
667 SourceLocation varianceLoc,
668 unsigned index,
669 IdentifierInfo *paramName,
670 SourceLocation paramLoc,
671 SourceLocation colonLoc,
672 ParsedType parsedTypeBound) {
673 // If there was an explicitly-provided type bound, check it.
674 TypeSourceInfo *typeBoundInfo = nullptr;
675 if (parsedTypeBound) {
676 // The type bound can be any Objective-C pointer type.
677 QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
678 if (typeBound->isObjCObjectPointerType()) {
679 // okay
680 } else if (typeBound->isObjCObjectType()) {
681 // The user forgot the * on an Objective-C pointer type, e.g.,
682 // "T : NSView".
683 SourceLocation starLoc = getLocForEndOfToken(
684 typeBoundInfo->getTypeLoc().getEndLoc());
685 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
686 diag::err_objc_type_param_bound_missing_pointer)
687 << typeBound << paramName
688 << FixItHint::CreateInsertion(starLoc, " *");
689
690 // Create a new type location builder so we can update the type
691 // location information we have.
692 TypeLocBuilder builder;
693 builder.pushFullCopy(typeBoundInfo->getTypeLoc());
694
695 // Create the Objective-C pointer type.
696 typeBound = Context.getObjCObjectPointerType(typeBound);
697 ObjCObjectPointerTypeLoc newT
698 = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
699 newT.setStarLoc(starLoc);
700
701 // Form the new type source information.
702 typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
703 } else {
704 // Not a valid type bound.
705 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
706 diag::err_objc_type_param_bound_nonobject)
707 << typeBound << paramName;
708
709 // Forget the bound; we'll default to id later.
710 typeBoundInfo = nullptr;
711 }
712
713 // Type bounds cannot have qualifiers (even indirectly) or explicit
714 // nullability.
715 if (typeBoundInfo) {
716 QualType typeBound = typeBoundInfo->getType();
717 TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
718 if (qual || typeBound.hasQualifiers()) {
719 bool diagnosed = false;
720 SourceRange rangeToRemove;
721 if (qual) {
722 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
723 rangeToRemove = attr.getLocalSourceRange();
724 if (attr.getTypePtr()->getImmediateNullability()) {
725 Diag(attr.getBeginLoc(),
726 diag::err_objc_type_param_bound_explicit_nullability)
727 << paramName << typeBound
728 << FixItHint::CreateRemoval(rangeToRemove);
729 diagnosed = true;
730 }
731 }
732 }
733
734 if (!diagnosed) {
735 Diag(qual ? qual.getBeginLoc()
736 : typeBoundInfo->getTypeLoc().getBeginLoc(),
737 diag::err_objc_type_param_bound_qualified)
738 << paramName << typeBound
739 << typeBound.getQualifiers().getAsString()
740 << FixItHint::CreateRemoval(rangeToRemove);
741 }
742
743 // If the type bound has qualifiers other than CVR, we need to strip
744 // them or we'll probably assert later when trying to apply new
745 // qualifiers.
746 Qualifiers quals = typeBound.getQualifiers();
747 quals.removeCVRQualifiers();
748 if (!quals.empty()) {
749 typeBoundInfo =
750 Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
751 }
752 }
753 }
754 }
755
756 // If there was no explicit type bound (or we removed it due to an error),
757 // use 'id' instead.
758 if (!typeBoundInfo) {
759 colonLoc = SourceLocation();
760 typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
761 }
762
763 // Create the type parameter.
764 return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
765 index, paramLoc, paramName, colonLoc,
766 typeBoundInfo);
767}
768
769ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S,
770 SourceLocation lAngleLoc,
771 ArrayRef<Decl *> typeParamsIn,
772 SourceLocation rAngleLoc) {
773 // We know that the array only contains Objective-C type parameters.
774 ArrayRef<ObjCTypeParamDecl *>
775 typeParams(
776 reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
777 typeParamsIn.size());
778
779 // Diagnose redeclarations of type parameters.
780 // We do this now because Objective-C type parameters aren't pushed into
781 // scope until later (after the instance variable block), but we want the
782 // diagnostics to occur right after we parse the type parameter list.
783 llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
784 for (auto typeParam : typeParams) {
785 auto known = knownParams.find(typeParam->getIdentifier());
786 if (known != knownParams.end()) {
787 Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
788 << typeParam->getIdentifier()
789 << SourceRange(known->second->getLocation());
790
791 typeParam->setInvalidDecl();
792 } else {
793 knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
794
795 // Push the type parameter into scope.
796 PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
797 }
798 }
799
800 // Create the parameter list.
801 return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
802}
803
804void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) {
805 for (auto typeParam : *typeParamList) {
806 if (!typeParam->isInvalidDecl()) {
807 S->RemoveDecl(typeParam);
808 IdResolver.RemoveDecl(typeParam);
809 }
810 }
811}
812
813namespace {
814 /// The context in which an Objective-C type parameter list occurs, for use
815 /// in diagnostics.
816 enum class TypeParamListContext {
817 ForwardDeclaration,
818 Definition,
819 Category,
820 Extension
821 };
822} // end anonymous namespace
823
824/// Check consistency between two Objective-C type parameter lists, e.g.,
825/// between a category/extension and an \@interface or between an \@class and an
826/// \@interface.
827static bool checkTypeParamListConsistency(Sema &S,
828 ObjCTypeParamList *prevTypeParams,
829 ObjCTypeParamList *newTypeParams,
830 TypeParamListContext newContext) {
831 // If the sizes don't match, complain about that.
832 if (prevTypeParams->size() != newTypeParams->size()) {
833 SourceLocation diagLoc;
834 if (newTypeParams->size() > prevTypeParams->size()) {
835 diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
836 } else {
837 diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getEndLoc());
838 }
839
840 S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
841 << static_cast<unsigned>(newContext)
842 << (newTypeParams->size() > prevTypeParams->size())
843 << prevTypeParams->size()
844 << newTypeParams->size();
845
846 return true;
847 }
848
849 // Match up the type parameters.
850 for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
851 ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
852 ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
853
854 // Check for consistency of the variance.
855 if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
856 if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
857 newContext != TypeParamListContext::Definition) {
858 // When the new type parameter is invariant and is not part
859 // of the definition, just propagate the variance.
860 newTypeParam->setVariance(prevTypeParam->getVariance());
861 } else if (prevTypeParam->getVariance()
862 == ObjCTypeParamVariance::Invariant &&
863 !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
864 cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
865 ->getDefinition() == prevTypeParam->getDeclContext())) {
866 // When the old parameter is invariant and was not part of the
867 // definition, just ignore the difference because it doesn't
868 // matter.
869 } else {
870 {
871 // Diagnose the conflict and update the second declaration.
872 SourceLocation diagLoc = newTypeParam->getVarianceLoc();
873 if (diagLoc.isInvalid())
874 diagLoc = newTypeParam->getBeginLoc();
875
876 auto diag = S.Diag(diagLoc,
877 diag::err_objc_type_param_variance_conflict)
878 << static_cast<unsigned>(newTypeParam->getVariance())
879 << newTypeParam->getDeclName()
880 << static_cast<unsigned>(prevTypeParam->getVariance())
881 << prevTypeParam->getDeclName();
882 switch (prevTypeParam->getVariance()) {
883 case ObjCTypeParamVariance::Invariant:
884 diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
885 break;
886
887 case ObjCTypeParamVariance::Covariant:
888 case ObjCTypeParamVariance::Contravariant: {
889 StringRef newVarianceStr
890 = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
891 ? "__covariant"
892 : "__contravariant";
893 if (newTypeParam->getVariance()
894 == ObjCTypeParamVariance::Invariant) {
895 diag << FixItHint::CreateInsertion(newTypeParam->getBeginLoc(),
896 (newVarianceStr + " ").str());
897 } else {
898 diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
899 newVarianceStr);
900 }
901 }
902 }
903 }
904
905 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
906 << prevTypeParam->getDeclName();
907
908 // Override the variance.
909 newTypeParam->setVariance(prevTypeParam->getVariance());
910 }
911 }
912
913 // If the bound types match, there's nothing to do.
914 if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
915 newTypeParam->getUnderlyingType()))
916 continue;
917
918 // If the new type parameter's bound was explicit, complain about it being
919 // different from the original.
920 if (newTypeParam->hasExplicitBound()) {
921 SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
922 ->getTypeLoc().getSourceRange();
923 S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
924 << newTypeParam->getUnderlyingType()
925 << newTypeParam->getDeclName()
926 << prevTypeParam->hasExplicitBound()
927 << prevTypeParam->getUnderlyingType()
928 << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
929 << prevTypeParam->getDeclName()
930 << FixItHint::CreateReplacement(
931 newBoundRange,
932 prevTypeParam->getUnderlyingType().getAsString(
933 S.Context.getPrintingPolicy()));
934
935 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
936 << prevTypeParam->getDeclName();
937
938 // Override the new type parameter's bound type with the previous type,
939 // so that it's consistent.
940 newTypeParam->setTypeSourceInfo(
941 S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
942 continue;
943 }
944
945 // The new type parameter got the implicit bound of 'id'. That's okay for
946 // categories and extensions (overwrite it later), but not for forward
947 // declarations and @interfaces, because those must be standalone.
948 if (newContext == TypeParamListContext::ForwardDeclaration ||
949 newContext == TypeParamListContext::Definition) {
950 // Diagnose this problem for forward declarations and definitions.
951 SourceLocation insertionLoc
952 = S.getLocForEndOfToken(newTypeParam->getLocation());
953 std::string newCode
954 = " : " + prevTypeParam->getUnderlyingType().getAsString(
955 S.Context.getPrintingPolicy());
956 S.Diag(newTypeParam->getLocation(),
957 diag::err_objc_type_param_bound_missing)
958 << prevTypeParam->getUnderlyingType()
959 << newTypeParam->getDeclName()
960 << (newContext == TypeParamListContext::ForwardDeclaration)
961 << FixItHint::CreateInsertion(insertionLoc, newCode);
962
963 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
964 << prevTypeParam->getDeclName();
965 }
966
967 // Update the new type parameter's bound to match the previous one.
968 newTypeParam->setTypeSourceInfo(
969 S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
970 }
971
972 return false;
973}
974
975Decl *Sema::ActOnStartClassInterface(
976 Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
977 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
978 IdentifierInfo *SuperName, SourceLocation SuperLoc,
979 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
980 Decl *const *ProtoRefs, unsigned NumProtoRefs,
981 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
982 const ParsedAttributesView &AttrList) {
983 assert(ClassName && "Missing class identifier")((ClassName && "Missing class identifier") ? static_cast
<void> (0) : __assert_fail ("ClassName && \"Missing class identifier\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 983, __PRETTY_FUNCTION__))
;
1
Assuming 'ClassName' is non-null
2
'?' condition is true
984
985 // Check for another declaration kind with the same name.
986 NamedDecl *PrevDecl =
987 LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
988 forRedeclarationInCurContext());
989
990 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
3
Assuming 'PrevDecl' is null
991 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
992 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
993 }
994
995 // Create a declaration to describe this @interface.
996 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
4
Assuming null pointer is passed into cast
997
998 if (PrevIDecl
4.1
'PrevIDecl' is null
4.1
'PrevIDecl' is null
4.1
'PrevIDecl' is null
&& PrevIDecl->getIdentifier() != ClassName) {
999 // A previous decl with a different name is because of
1000 // @compatibility_alias, for example:
1001 // \code
1002 // @class NewImage;
1003 // @compatibility_alias OldImage NewImage;
1004 // \endcode
1005 // A lookup for 'OldImage' will return the 'NewImage' decl.
1006 //
1007 // In such a case use the real declaration name, instead of the alias one,
1008 // otherwise we will break IdentifierResolver and redecls-chain invariants.
1009 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
1010 // has been aliased.
1011 ClassName = PrevIDecl->getIdentifier();
1012 }
1013
1014 // If there was a forward declaration with type parameters, check
1015 // for consistency.
1016 if (PrevIDecl
4.2
'PrevIDecl' is null
4.2
'PrevIDecl' is null
4.2
'PrevIDecl' is null
) {
5
Taking false branch
1017 if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
1018 if (typeParamList) {
1019 // Both have type parameter lists; check for consistency.
1020 if (checkTypeParamListConsistency(*this, prevTypeParamList,
1021 typeParamList,
1022 TypeParamListContext::Definition)) {
1023 typeParamList = nullptr;
1024 }
1025 } else {
1026 Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
1027 << ClassName;
1028 Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
1029 << ClassName;
1030
1031 // Clone the type parameter list.
1032 SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
1033 for (auto typeParam : *prevTypeParamList) {
1034 clonedTypeParams.push_back(
1035 ObjCTypeParamDecl::Create(
1036 Context,
1037 CurContext,
1038 typeParam->getVariance(),
1039 SourceLocation(),
1040 typeParam->getIndex(),
1041 SourceLocation(),
1042 typeParam->getIdentifier(),
1043 SourceLocation(),
1044 Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
1045 }
1046
1047 typeParamList = ObjCTypeParamList::create(Context,
1048 SourceLocation(),
1049 clonedTypeParams,
1050 SourceLocation());
1051 }
1052 }
1053 }
1054
1055 ObjCInterfaceDecl *IDecl
1056 = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
1057 typeParamList, PrevIDecl, ClassLoc);
1058 if (PrevIDecl
5.1
'PrevIDecl' is null
5.1
'PrevIDecl' is null
5.1
'PrevIDecl' is null
) {
6
Taking false branch
1059 // Class already seen. Was it a definition?
1060 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1061 Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
1062 << PrevIDecl->getDeclName();
1063 Diag(Def->getLocation(), diag::note_previous_definition);
1064 IDecl->setInvalidDecl();
1065 }
1066 }
1067
1068 ProcessDeclAttributeList(TUScope, IDecl, AttrList);
1069 AddPragmaAttributes(TUScope, IDecl);
1070 PushOnScopeChains(IDecl, TUScope);
1071
1072 // Start the definition of this class. If we're in a redefinition case, there
1073 // may already be a definition, so we'll end up adding to it.
1074 if (!IDecl->hasDefinition())
7
Assuming the condition is false
8
Taking false branch
1075 IDecl->startDefinition();
1076
1077 if (SuperName) {
9
Assuming 'SuperName' is non-null
10
Taking true branch
1078 // Diagnose availability in the context of the @interface.
1079 ContextRAII SavedContext(*this, IDecl);
1080
1081 ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
11
Calling 'Sema::ActOnSuperClassOfClassInterface'
1082 ClassName, ClassLoc,
1083 SuperName, SuperLoc, SuperTypeArgs,
1084 SuperTypeArgsRange);
1085 } else { // we have a root class.
1086 IDecl->setEndOfDefinitionLoc(ClassLoc);
1087 }
1088
1089 // Check then save referenced protocols.
1090 if (NumProtoRefs) {
1091 diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1092 NumProtoRefs, ProtoLocs);
1093 IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1094 ProtoLocs, Context);
1095 IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1096 }
1097
1098 CheckObjCDeclScope(IDecl);
1099 return ActOnObjCContainerStartDefinition(IDecl);
1100}
1101
1102/// ActOnTypedefedProtocols - this action finds protocol list as part of the
1103/// typedef'ed use for a qualified super class and adds them to the list
1104/// of the protocols.
1105void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
1106 SmallVectorImpl<SourceLocation> &ProtocolLocs,
1107 IdentifierInfo *SuperName,
1108 SourceLocation SuperLoc) {
1109 if (!SuperName)
1110 return;
1111 NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
1112 LookupOrdinaryName);
1113 if (!IDecl)
1114 return;
1115
1116 if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1117 QualType T = TDecl->getUnderlyingType();
1118 if (T->isObjCObjectType())
1119 if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1120 ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1121 // FIXME: Consider whether this should be an invalid loc since the loc
1122 // is not actually pointing to a protocol name reference but to the
1123 // typedef reference. Note that the base class name loc is also pointing
1124 // at the typedef.
1125 ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
1126 }
1127 }
1128}
1129
1130/// ActOnCompatibilityAlias - this action is called after complete parsing of
1131/// a \@compatibility_alias declaration. It sets up the alias relationships.
1132Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
1133 IdentifierInfo *AliasName,
1134 SourceLocation AliasLocation,
1135 IdentifierInfo *ClassName,
1136 SourceLocation ClassLocation) {
1137 // Look for previous declaration of alias name
1138 NamedDecl *ADecl =
1139 LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName,
1140 forRedeclarationInCurContext());
1141 if (ADecl) {
1142 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1143 Diag(ADecl->getLocation(), diag::note_previous_declaration);
1144 return nullptr;
1145 }
1146 // Check for class declaration
1147 NamedDecl *CDeclU =
1148 LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName,
1149 forRedeclarationInCurContext());
1150 if (const TypedefNameDecl *TDecl =
1151 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1152 QualType T = TDecl->getUnderlyingType();
1153 if (T->isObjCObjectType()) {
1154 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
1155 ClassName = IDecl->getIdentifier();
1156 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1157 LookupOrdinaryName,
1158 forRedeclarationInCurContext());
1159 }
1160 }
1161 }
1162 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1163 if (!CDecl) {
1164 Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1165 if (CDeclU)
1166 Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1167 return nullptr;
1168 }
1169
1170 // Everything checked out, instantiate a new alias declaration AST.
1171 ObjCCompatibleAliasDecl *AliasDecl =
1172 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
1173
1174 if (!CheckObjCDeclScope(AliasDecl))
1175 PushOnScopeChains(AliasDecl, TUScope);
1176
1177 return AliasDecl;
1178}
1179
1180bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
1181 IdentifierInfo *PName,
1182 SourceLocation &Ploc, SourceLocation PrevLoc,
1183 const ObjCList<ObjCProtocolDecl> &PList) {
1184
1185 bool res = false;
1186 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
1187 E = PList.end(); I != E; ++I) {
1188 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
1189 Ploc)) {
1190 if (PDecl->getIdentifier() == PName) {
1191 Diag(Ploc, diag::err_protocol_has_circular_dependency);
1192 Diag(PrevLoc, diag::note_previous_definition);
1193 res = true;
1194 }
1195
1196 if (!PDecl->hasDefinition())
1197 continue;
1198
1199 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
1200 PDecl->getLocation(), PDecl->getReferencedProtocols()))
1201 res = true;
1202 }
1203 }
1204 return res;
1205}
1206
1207Decl *Sema::ActOnStartProtocolInterface(
1208 SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
1209 SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs,
1210 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1211 const ParsedAttributesView &AttrList) {
1212 bool err = false;
1213 // FIXME: Deal with AttrList.
1214 assert(ProtocolName && "Missing protocol identifier")((ProtocolName && "Missing protocol identifier") ? static_cast
<void> (0) : __assert_fail ("ProtocolName && \"Missing protocol identifier\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1214, __PRETTY_FUNCTION__))
;
1215 ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
1216 forRedeclarationInCurContext());
1217 ObjCProtocolDecl *PDecl = nullptr;
1218 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1219 // If we already have a definition, complain.
1220 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1221 Diag(Def->getLocation(), diag::note_previous_definition);
1222
1223 // Create a new protocol that is completely distinct from previous
1224 // declarations, and do not make this protocol available for name lookup.
1225 // That way, we'll end up completely ignoring the duplicate.
1226 // FIXME: Can we turn this into an error?
1227 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1228 ProtocolLoc, AtProtoInterfaceLoc,
1229 /*PrevDecl=*/nullptr);
1230
1231 // If we are using modules, add the decl to the context in order to
1232 // serialize something meaningful.
1233 if (getLangOpts().Modules)
1234 PushOnScopeChains(PDecl, TUScope);
1235 PDecl->startDefinition();
1236 } else {
1237 if (PrevDecl) {
1238 // Check for circular dependencies among protocol declarations. This can
1239 // only happen if this protocol was forward-declared.
1240 ObjCList<ObjCProtocolDecl> PList;
1241 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1242 err = CheckForwardProtocolDeclarationForCircularDependency(
1243 ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1244 }
1245
1246 // Create the new declaration.
1247 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1248 ProtocolLoc, AtProtoInterfaceLoc,
1249 /*PrevDecl=*/PrevDecl);
1250
1251 PushOnScopeChains(PDecl, TUScope);
1252 PDecl->startDefinition();
1253 }
1254
1255 ProcessDeclAttributeList(TUScope, PDecl, AttrList);
1256 AddPragmaAttributes(TUScope, PDecl);
1257
1258 // Merge attributes from previous declarations.
1259 if (PrevDecl)
1260 mergeDeclAttributes(PDecl, PrevDecl);
1261
1262 if (!err && NumProtoRefs ) {
1263 /// Check then save referenced protocols.
1264 diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1265 NumProtoRefs, ProtoLocs);
1266 PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1267 ProtoLocs, Context);
1268 }
1269
1270 CheckObjCDeclScope(PDecl);
1271 return ActOnObjCContainerStartDefinition(PDecl);
1272}
1273
1274static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
1275 ObjCProtocolDecl *&UndefinedProtocol) {
1276 if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
1277 UndefinedProtocol = PDecl;
1278 return true;
1279 }
1280
1281 for (auto *PI : PDecl->protocols())
1282 if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1283 UndefinedProtocol = PI;
1284 return true;
1285 }
1286 return false;
1287}
1288
1289/// FindProtocolDeclaration - This routine looks up protocols and
1290/// issues an error if they are not declared. It returns list of
1291/// protocol declarations in its 'Protocols' argument.
1292void
1293Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
1294 ArrayRef<IdentifierLocPair> ProtocolId,
1295 SmallVectorImpl<Decl *> &Protocols) {
1296 for (const IdentifierLocPair &Pair : ProtocolId) {
1297 ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1298 if (!PDecl) {
1299 DeclFilterCCC<ObjCProtocolDecl> CCC{};
1300 TypoCorrection Corrected = CorrectTypo(
1301 DeclarationNameInfo(Pair.first, Pair.second), LookupObjCProtocolName,
1302 TUScope, nullptr, CCC, CTK_ErrorRecovery);
1303 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1304 diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
1305 << Pair.first);
1306 }
1307
1308 if (!PDecl) {
1309 Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1310 continue;
1311 }
1312 // If this is a forward protocol declaration, get its definition.
1313 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1314 PDecl = PDecl->getDefinition();
1315
1316 // For an objc container, delay protocol reference checking until after we
1317 // can set the objc decl as the availability context, otherwise check now.
1318 if (!ForObjCContainer) {
1319 (void)DiagnoseUseOfDecl(PDecl, Pair.second);
1320 }
1321
1322 // If this is a forward declaration and we are supposed to warn in this
1323 // case, do it.
1324 // FIXME: Recover nicely in the hidden case.
1325 ObjCProtocolDecl *UndefinedProtocol;
1326
1327 if (WarnOnDeclarations &&
1328 NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1329 Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1330 Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1331 << UndefinedProtocol;
1332 }
1333 Protocols.push_back(PDecl);
1334 }
1335}
1336
1337namespace {
1338// Callback to only accept typo corrections that are either
1339// Objective-C protocols or valid Objective-C type arguments.
1340class ObjCTypeArgOrProtocolValidatorCCC final
1341 : public CorrectionCandidateCallback {
1342 ASTContext &Context;
1343 Sema::LookupNameKind LookupKind;
1344 public:
1345 ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1346 Sema::LookupNameKind lookupKind)
1347 : Context(context), LookupKind(lookupKind) { }
1348
1349 bool ValidateCandidate(const TypoCorrection &candidate) override {
1350 // If we're allowed to find protocols and we have a protocol, accept it.
1351 if (LookupKind != Sema::LookupOrdinaryName) {
1352 if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1353 return true;
1354 }
1355
1356 // If we're allowed to find type names and we have one, accept it.
1357 if (LookupKind != Sema::LookupObjCProtocolName) {
1358 // If we have a type declaration, we might accept this result.
1359 if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1360 // If we found a tag declaration outside of C++, skip it. This
1361 // can happy because we look for any name when there is no
1362 // bias to protocol or type names.
1363 if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1364 return false;
1365
1366 // Make sure the type is something we would accept as a type
1367 // argument.
1368 auto type = Context.getTypeDeclType(typeDecl);
1369 if (type->isObjCObjectPointerType() ||
1370 type->isBlockPointerType() ||
1371 type->isDependentType() ||
1372 type->isObjCObjectType())
1373 return true;
1374
1375 return false;
1376 }
1377
1378 // If we have an Objective-C class type, accept it; there will
1379 // be another fix to add the '*'.
1380 if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1381 return true;
1382
1383 return false;
1384 }
1385
1386 return false;
1387 }
1388
1389 std::unique_ptr<CorrectionCandidateCallback> clone() override {
1390 return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(*this);
1391 }
1392};
1393} // end anonymous namespace
1394
1395void Sema::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
1396 SourceLocation ProtocolLoc,
1397 IdentifierInfo *TypeArgId,
1398 SourceLocation TypeArgLoc,
1399 bool SelectProtocolFirst) {
1400 Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1401 << SelectProtocolFirst << TypeArgId << ProtocolId
1402 << SourceRange(ProtocolLoc);
1403}
1404
1405void Sema::actOnObjCTypeArgsOrProtocolQualifiers(
1406 Scope *S,
1407 ParsedType baseType,
1408 SourceLocation lAngleLoc,
1409 ArrayRef<IdentifierInfo *> identifiers,
1410 ArrayRef<SourceLocation> identifierLocs,
1411 SourceLocation rAngleLoc,
1412 SourceLocation &typeArgsLAngleLoc,
1413 SmallVectorImpl<ParsedType> &typeArgs,
1414 SourceLocation &typeArgsRAngleLoc,
1415 SourceLocation &protocolLAngleLoc,
1416 SmallVectorImpl<Decl *> &protocols,
1417 SourceLocation &protocolRAngleLoc,
1418 bool warnOnIncompleteProtocols) {
1419 // Local function that updates the declaration specifiers with
1420 // protocol information.
1421 unsigned numProtocolsResolved = 0;
1422 auto resolvedAsProtocols = [&] {
1423 assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols")((numProtocolsResolved == identifiers.size() && "Unresolved protocols"
) ? static_cast<void> (0) : __assert_fail ("numProtocolsResolved == identifiers.size() && \"Unresolved protocols\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1423, __PRETTY_FUNCTION__))
;
1424
1425 // Determine whether the base type is a parameterized class, in
1426 // which case we want to warn about typos such as
1427 // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1428 ObjCInterfaceDecl *baseClass = nullptr;
1429 QualType base = GetTypeFromParser(baseType, nullptr);
1430 bool allAreTypeNames = false;
1431 SourceLocation firstClassNameLoc;
1432 if (!base.isNull()) {
1433 if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1434 baseClass = objcObjectType->getInterface();
1435 if (baseClass) {
1436 if (auto typeParams = baseClass->getTypeParamList()) {
1437 if (typeParams->size() == numProtocolsResolved) {
1438 // Note that we should be looking for type names, too.
1439 allAreTypeNames = true;
1440 }
1441 }
1442 }
1443 }
1444 }
1445
1446 for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1447 ObjCProtocolDecl *&proto
1448 = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1449 // For an objc container, delay protocol reference checking until after we
1450 // can set the objc decl as the availability context, otherwise check now.
1451 if (!warnOnIncompleteProtocols) {
1452 (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
1453 }
1454
1455 // If this is a forward protocol declaration, get its definition.
1456 if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1457 proto = proto->getDefinition();
1458
1459 // If this is a forward declaration and we are supposed to warn in this
1460 // case, do it.
1461 // FIXME: Recover nicely in the hidden case.
1462 ObjCProtocolDecl *forwardDecl = nullptr;
1463 if (warnOnIncompleteProtocols &&
1464 NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1465 Diag(identifierLocs[i], diag::warn_undef_protocolref)
1466 << proto->getDeclName();
1467 Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1468 << forwardDecl;
1469 }
1470
1471 // If everything this far has been a type name (and we care
1472 // about such things), check whether this name refers to a type
1473 // as well.
1474 if (allAreTypeNames) {
1475 if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1476 LookupOrdinaryName)) {
1477 if (isa<ObjCInterfaceDecl>(decl)) {
1478 if (firstClassNameLoc.isInvalid())
1479 firstClassNameLoc = identifierLocs[i];
1480 } else if (!isa<TypeDecl>(decl)) {
1481 // Not a type.
1482 allAreTypeNames = false;
1483 }
1484 } else {
1485 allAreTypeNames = false;
1486 }
1487 }
1488 }
1489
1490 // All of the protocols listed also have type names, and at least
1491 // one is an Objective-C class name. Check whether all of the
1492 // protocol conformances are declared by the base class itself, in
1493 // which case we warn.
1494 if (allAreTypeNames && firstClassNameLoc.isValid()) {
1495 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1496 Context.CollectInheritedProtocols(baseClass, knownProtocols);
1497 bool allProtocolsDeclared = true;
1498 for (auto proto : protocols) {
1499 if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1500 allProtocolsDeclared = false;
1501 break;
1502 }
1503 }
1504
1505 if (allProtocolsDeclared) {
1506 Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1507 << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1508 << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
1509 " *");
1510 }
1511 }
1512
1513 protocolLAngleLoc = lAngleLoc;
1514 protocolRAngleLoc = rAngleLoc;
1515 assert(protocols.size() == identifierLocs.size())((protocols.size() == identifierLocs.size()) ? static_cast<
void> (0) : __assert_fail ("protocols.size() == identifierLocs.size()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1515, __PRETTY_FUNCTION__))
;
1516 };
1517
1518 // Attempt to resolve all of the identifiers as protocols.
1519 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1520 ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1521 protocols.push_back(proto);
1522 if (proto)
1523 ++numProtocolsResolved;
1524 }
1525
1526 // If all of the names were protocols, these were protocol qualifiers.
1527 if (numProtocolsResolved == identifiers.size())
1528 return resolvedAsProtocols();
1529
1530 // Attempt to resolve all of the identifiers as type names or
1531 // Objective-C class names. The latter is technically ill-formed,
1532 // but is probably something like \c NSArray<NSView *> missing the
1533 // \c*.
1534 typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1535 SmallVector<TypeOrClassDecl, 4> typeDecls;
1536 unsigned numTypeDeclsResolved = 0;
1537 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1538 NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1539 LookupOrdinaryName);
1540 if (!decl) {
1541 typeDecls.push_back(TypeOrClassDecl());
1542 continue;
1543 }
1544
1545 if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1546 typeDecls.push_back(typeDecl);
1547 ++numTypeDeclsResolved;
1548 continue;
1549 }
1550
1551 if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1552 typeDecls.push_back(objcClass);
1553 ++numTypeDeclsResolved;
1554 continue;
1555 }
1556
1557 typeDecls.push_back(TypeOrClassDecl());
1558 }
1559
1560 AttributeFactory attrFactory;
1561
1562 // Local function that forms a reference to the given type or
1563 // Objective-C class declaration.
1564 auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1565 -> TypeResult {
1566 // Form declaration specifiers. They simply refer to the type.
1567 DeclSpec DS(attrFactory);
1568 const char* prevSpec; // unused
1569 unsigned diagID; // unused
1570 QualType type;
1571 if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1572 type = Context.getTypeDeclType(actualTypeDecl);
1573 else
1574 type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
1575 TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1576 ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
1577 DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1578 parsedType, Context.getPrintingPolicy());
1579 // Use the identifier location for the type source range.
1580 DS.SetRangeStart(loc);
1581 DS.SetRangeEnd(loc);
1582
1583 // Form the declarator.
1584 Declarator D(DS, DeclaratorContext::TypeNameContext);
1585
1586 // If we have a typedef of an Objective-C class type that is missing a '*',
1587 // add the '*'.
1588 if (type->getAs<ObjCInterfaceType>()) {
1589 SourceLocation starLoc = getLocForEndOfToken(loc);
1590 D.AddTypeInfo(DeclaratorChunk::getPointer(/*TypeQuals=*/0, starLoc,
1591 SourceLocation(),
1592 SourceLocation(),
1593 SourceLocation(),
1594 SourceLocation(),
1595 SourceLocation()),
1596 starLoc);
1597
1598 // Diagnose the missing '*'.
1599 Diag(loc, diag::err_objc_type_arg_missing_star)
1600 << type
1601 << FixItHint::CreateInsertion(starLoc, " *");
1602 }
1603
1604 // Convert this to a type.
1605 return ActOnTypeName(S, D);
1606 };
1607
1608 // Local function that updates the declaration specifiers with
1609 // type argument information.
1610 auto resolvedAsTypeDecls = [&] {
1611 // We did not resolve these as protocols.
1612 protocols.clear();
1613
1614 assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl")((numTypeDeclsResolved == identifiers.size() && "Unresolved type decl"
) ? static_cast<void> (0) : __assert_fail ("numTypeDeclsResolved == identifiers.size() && \"Unresolved type decl\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1614, __PRETTY_FUNCTION__))
;
1615 // Map type declarations to type arguments.
1616 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1617 // Map type reference to a type.
1618 TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1619 if (!type.isUsable()) {
1620 typeArgs.clear();
1621 return;
1622 }
1623
1624 typeArgs.push_back(type.get());
1625 }
1626
1627 typeArgsLAngleLoc = lAngleLoc;
1628 typeArgsRAngleLoc = rAngleLoc;
1629 };
1630
1631 // If all of the identifiers can be resolved as type names or
1632 // Objective-C class names, we have type arguments.
1633 if (numTypeDeclsResolved == identifiers.size())
1634 return resolvedAsTypeDecls();
1635
1636 // Error recovery: some names weren't found, or we have a mix of
1637 // type and protocol names. Go resolve all of the unresolved names
1638 // and complain if we can't find a consistent answer.
1639 LookupNameKind lookupKind = LookupAnyName;
1640 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1641 // If we already have a protocol or type. Check whether it is the
1642 // right thing.
1643 if (protocols[i] || typeDecls[i]) {
1644 // If we haven't figured out whether we want types or protocols
1645 // yet, try to figure it out from this name.
1646 if (lookupKind == LookupAnyName) {
1647 // If this name refers to both a protocol and a type (e.g., \c
1648 // NSObject), don't conclude anything yet.
1649 if (protocols[i] && typeDecls[i])
1650 continue;
1651
1652 // Otherwise, let this name decide whether we'll be correcting
1653 // toward types or protocols.
1654 lookupKind = protocols[i] ? LookupObjCProtocolName
1655 : LookupOrdinaryName;
1656 continue;
1657 }
1658
1659 // If we want protocols and we have a protocol, there's nothing
1660 // more to do.
1661 if (lookupKind == LookupObjCProtocolName && protocols[i])
1662 continue;
1663
1664 // If we want types and we have a type declaration, there's
1665 // nothing more to do.
1666 if (lookupKind == LookupOrdinaryName && typeDecls[i])
1667 continue;
1668
1669 // We have a conflict: some names refer to protocols and others
1670 // refer to types.
1671 DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
1672 identifiers[i], identifierLocs[i],
1673 protocols[i] != nullptr);
1674
1675 protocols.clear();
1676 typeArgs.clear();
1677 return;
1678 }
1679
1680 // Perform typo correction on the name.
1681 ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind);
1682 TypoCorrection corrected =
1683 CorrectTypo(DeclarationNameInfo(identifiers[i], identifierLocs[i]),
1684 lookupKind, S, nullptr, CCC, CTK_ErrorRecovery);
1685 if (corrected) {
1686 // Did we find a protocol?
1687 if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1688 diagnoseTypo(corrected,
1689 PDiag(diag::err_undeclared_protocol_suggest)
1690 << identifiers[i]);
1691 lookupKind = LookupObjCProtocolName;
1692 protocols[i] = proto;
1693 ++numProtocolsResolved;
1694 continue;
1695 }
1696
1697 // Did we find a type?
1698 if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1699 diagnoseTypo(corrected,
1700 PDiag(diag::err_unknown_typename_suggest)
1701 << identifiers[i]);
1702 lookupKind = LookupOrdinaryName;
1703 typeDecls[i] = typeDecl;
1704 ++numTypeDeclsResolved;
1705 continue;
1706 }
1707
1708 // Did we find an Objective-C class?
1709 if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1710 diagnoseTypo(corrected,
1711 PDiag(diag::err_unknown_type_or_class_name_suggest)
1712 << identifiers[i] << true);
1713 lookupKind = LookupOrdinaryName;
1714 typeDecls[i] = objcClass;
1715 ++numTypeDeclsResolved;
1716 continue;
1717 }
1718 }
1719
1720 // We couldn't find anything.
1721 Diag(identifierLocs[i],
1722 (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
1723 : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
1724 : diag::err_unknown_typename))
1725 << identifiers[i];
1726 protocols.clear();
1727 typeArgs.clear();
1728 return;
1729 }
1730
1731 // If all of the names were (corrected to) protocols, these were
1732 // protocol qualifiers.
1733 if (numProtocolsResolved == identifiers.size())
1734 return resolvedAsProtocols();
1735
1736 // Otherwise, all of the names were (corrected to) types.
1737 assert(numTypeDeclsResolved == identifiers.size() && "Not all types?")((numTypeDeclsResolved == identifiers.size() && "Not all types?"
) ? static_cast<void> (0) : __assert_fail ("numTypeDeclsResolved == identifiers.size() && \"Not all types?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1737, __PRETTY_FUNCTION__))
;
1738 return resolvedAsTypeDecls();
1739}
1740
1741/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1742/// a class method in its extension.
1743///
1744void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
1745 ObjCInterfaceDecl *ID) {
1746 if (!ID)
1747 return; // Possibly due to previous error
1748
1749 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1750 for (auto *MD : ID->methods())
1751 MethodMap[MD->getSelector()] = MD;
1752
1753 if (MethodMap.empty())
1754 return;
1755 for (const auto *Method : CAT->methods()) {
1756 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1757 if (PrevMethod &&
1758 (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1759 !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1760 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1761 << Method->getDeclName();
1762 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1763 }
1764 }
1765}
1766
1767/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1768Sema::DeclGroupPtrTy
1769Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
1770 ArrayRef<IdentifierLocPair> IdentList,
1771 const ParsedAttributesView &attrList) {
1772 SmallVector<Decl *, 8> DeclsInGroup;
1773 for (const IdentifierLocPair &IdentPair : IdentList) {
1774 IdentifierInfo *Ident = IdentPair.first;
1775 ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
1776 forRedeclarationInCurContext());
1777 ObjCProtocolDecl *PDecl
1778 = ObjCProtocolDecl::Create(Context, CurContext, Ident,
1779 IdentPair.second, AtProtocolLoc,
1780 PrevDecl);
1781
1782 PushOnScopeChains(PDecl, TUScope);
1783 CheckObjCDeclScope(PDecl);
1784
1785 ProcessDeclAttributeList(TUScope, PDecl, attrList);
1786 AddPragmaAttributes(TUScope, PDecl);
1787
1788 if (PrevDecl)
1789 mergeDeclAttributes(PDecl, PrevDecl);
1790
1791 DeclsInGroup.push_back(PDecl);
1792 }
1793
1794 return BuildDeclaratorGroup(DeclsInGroup);
1795}
1796
1797Decl *Sema::ActOnStartCategoryInterface(
1798 SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
1799 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
1800 IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
1801 Decl *const *ProtoRefs, unsigned NumProtoRefs,
1802 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1803 const ParsedAttributesView &AttrList) {
1804 ObjCCategoryDecl *CDecl;
1805 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1806
1807 /// Check that class of this category is already completely declared.
1808
1809 if (!IDecl
1810 || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1811 diag::err_category_forward_interface,
1812 CategoryName == nullptr)) {
1813 // Create an invalid ObjCCategoryDecl to serve as context for
1814 // the enclosing method declarations. We mark the decl invalid
1815 // to make it clear that this isn't a valid AST.
1816 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1817 ClassLoc, CategoryLoc, CategoryName,
1818 IDecl, typeParamList);
1819 CDecl->setInvalidDecl();
1820 CurContext->addDecl(CDecl);
1821
1822 if (!IDecl)
1823 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1824 return ActOnObjCContainerStartDefinition(CDecl);
1825 }
1826
1827 if (!CategoryName && IDecl->getImplementation()) {
1828 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1829 Diag(IDecl->getImplementation()->getLocation(),
1830 diag::note_implementation_declared);
1831 }
1832
1833 if (CategoryName) {
1834 /// Check for duplicate interface declaration for this category
1835 if (ObjCCategoryDecl *Previous
1836 = IDecl->FindCategoryDeclaration(CategoryName)) {
1837 // Class extensions can be declared multiple times, categories cannot.
1838 Diag(CategoryLoc, diag::warn_dup_category_def)
1839 << ClassName << CategoryName;
1840 Diag(Previous->getLocation(), diag::note_previous_definition);
1841 }
1842 }
1843
1844 // If we have a type parameter list, check it.
1845 if (typeParamList) {
1846 if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1847 if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
1848 CategoryName
1849 ? TypeParamListContext::Category
1850 : TypeParamListContext::Extension))
1851 typeParamList = nullptr;
1852 } else {
1853 Diag(typeParamList->getLAngleLoc(),
1854 diag::err_objc_parameterized_category_nonclass)
1855 << (CategoryName != nullptr)
1856 << ClassName
1857 << typeParamList->getSourceRange();
1858
1859 typeParamList = nullptr;
1860 }
1861 }
1862
1863 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1864 ClassLoc, CategoryLoc, CategoryName, IDecl,
1865 typeParamList);
1866 // FIXME: PushOnScopeChains?
1867 CurContext->addDecl(CDecl);
1868
1869 // Process the attributes before looking at protocols to ensure that the
1870 // availability attribute is attached to the category to provide availability
1871 // checking for protocol uses.
1872 ProcessDeclAttributeList(TUScope, CDecl, AttrList);
1873 AddPragmaAttributes(TUScope, CDecl);
1874
1875 if (NumProtoRefs) {
1876 diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1877 NumProtoRefs, ProtoLocs);
1878 CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1879 ProtoLocs, Context);
1880 // Protocols in the class extension belong to the class.
1881 if (CDecl->IsClassExtension())
1882 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1883 NumProtoRefs, Context);
1884 }
1885
1886 CheckObjCDeclScope(CDecl);
1887 return ActOnObjCContainerStartDefinition(CDecl);
1888}
1889
1890/// ActOnStartCategoryImplementation - Perform semantic checks on the
1891/// category implementation declaration and build an ObjCCategoryImplDecl
1892/// object.
1893Decl *Sema::ActOnStartCategoryImplementation(
1894 SourceLocation AtCatImplLoc,
1895 IdentifierInfo *ClassName, SourceLocation ClassLoc,
1896 IdentifierInfo *CatName, SourceLocation CatLoc,
1897 const ParsedAttributesView &Attrs) {
1898 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1899 ObjCCategoryDecl *CatIDecl = nullptr;
1900 if (IDecl && IDecl->hasDefinition()) {
1901 CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1902 if (!CatIDecl) {
1903 // Category @implementation with no corresponding @interface.
1904 // Create and install one.
1905 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
1906 ClassLoc, CatLoc,
1907 CatName, IDecl,
1908 /*typeParamList=*/nullptr);
1909 CatIDecl->setImplicit();
1910 }
1911 }
1912
1913 ObjCCategoryImplDecl *CDecl =
1914 ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
1915 ClassLoc, AtCatImplLoc, CatLoc);
1916 /// Check that class of this category is already completely declared.
1917 if (!IDecl) {
1918 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1919 CDecl->setInvalidDecl();
1920 } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1921 diag::err_undef_interface)) {
1922 CDecl->setInvalidDecl();
1923 }
1924
1925 ProcessDeclAttributeList(TUScope, CDecl, Attrs);
1926 AddPragmaAttributes(TUScope, CDecl);
1927
1928 // FIXME: PushOnScopeChains?
1929 CurContext->addDecl(CDecl);
1930
1931 // If the interface has the objc_runtime_visible attribute, we
1932 // cannot implement a category for it.
1933 if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1934 Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1935 << IDecl->getDeclName();
1936 }
1937
1938 /// Check that CatName, category name, is not used in another implementation.
1939 if (CatIDecl) {
1940 if (CatIDecl->getImplementation()) {
1941 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1942 << CatName;
1943 Diag(CatIDecl->getImplementation()->getLocation(),
1944 diag::note_previous_definition);
1945 CDecl->setInvalidDecl();
1946 } else {
1947 CatIDecl->setImplementation(CDecl);
1948 // Warn on implementating category of deprecated class under
1949 // -Wdeprecated-implementations flag.
1950 DiagnoseObjCImplementedDeprecations(*this, CatIDecl,
1951 CDecl->getLocation());
1952 }
1953 }
1954
1955 CheckObjCDeclScope(CDecl);
1956 return ActOnObjCContainerStartDefinition(CDecl);
1957}
1958
1959Decl *Sema::ActOnStartClassImplementation(
1960 SourceLocation AtClassImplLoc,
1961 IdentifierInfo *ClassName, SourceLocation ClassLoc,
1962 IdentifierInfo *SuperClassname,
1963 SourceLocation SuperClassLoc,
1964 const ParsedAttributesView &Attrs) {
1965 ObjCInterfaceDecl *IDecl = nullptr;
1966 // Check for another declaration kind with the same name.
1967 NamedDecl *PrevDecl
1968 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1969 forRedeclarationInCurContext());
1970 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1971 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1972 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1973 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1974 // FIXME: This will produce an error if the definition of the interface has
1975 // been imported from a module but is not visible.
1976 RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1977 diag::warn_undef_interface);
1978 } else {
1979 // We did not find anything with the name ClassName; try to correct for
1980 // typos in the class name.
1981 ObjCInterfaceValidatorCCC CCC{};
1982 TypoCorrection Corrected =
1983 CorrectTypo(DeclarationNameInfo(ClassName, ClassLoc),
1984 LookupOrdinaryName, TUScope, nullptr, CCC, CTK_NonError);
1985 if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1986 // Suggest the (potentially) correct interface name. Don't provide a
1987 // code-modification hint or use the typo name for recovery, because
1988 // this is just a warning. The program may actually be correct.
1989 diagnoseTypo(Corrected,
1990 PDiag(diag::warn_undef_interface_suggest) << ClassName,
1991 /*ErrorRecovery*/false);
1992 } else {
1993 Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1994 }
1995 }
1996
1997 // Check that super class name is valid class name
1998 ObjCInterfaceDecl *SDecl = nullptr;
1999 if (SuperClassname) {
2000 // Check if a different kind of symbol declared in this scope.
2001 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
2002 LookupOrdinaryName);
2003 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
2004 Diag(SuperClassLoc, diag::err_redefinition_different_kind)
2005 << SuperClassname;
2006 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2007 } else {
2008 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
2009 if (SDecl && !SDecl->hasDefinition())
2010 SDecl = nullptr;
2011 if (!SDecl)
2012 Diag(SuperClassLoc, diag::err_undef_superclass)
2013 << SuperClassname << ClassName;
2014 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
2015 // This implementation and its interface do not have the same
2016 // super class.
2017 Diag(SuperClassLoc, diag::err_conflicting_super_class)
2018 << SDecl->getDeclName();
2019 Diag(SDecl->getLocation(), diag::note_previous_definition);
2020 }
2021 }
2022 }
2023
2024 if (!IDecl) {
2025 // Legacy case of @implementation with no corresponding @interface.
2026 // Build, chain & install the interface decl into the identifier.
2027
2028 // FIXME: Do we support attributes on the @implementation? If so we should
2029 // copy them over.
2030 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
2031 ClassName, /*typeParamList=*/nullptr,
2032 /*PrevDecl=*/nullptr, ClassLoc,
2033 true);
2034 AddPragmaAttributes(TUScope, IDecl);
2035 IDecl->startDefinition();
2036 if (SDecl) {
2037 IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
2038 Context.getObjCInterfaceType(SDecl),
2039 SuperClassLoc));
2040 IDecl->setEndOfDefinitionLoc(SuperClassLoc);
2041 } else {
2042 IDecl->setEndOfDefinitionLoc(ClassLoc);
2043 }
2044
2045 PushOnScopeChains(IDecl, TUScope);
2046 } else {
2047 // Mark the interface as being completed, even if it was just as
2048 // @class ....;
2049 // declaration; the user cannot reopen it.
2050 if (!IDecl->hasDefinition())
2051 IDecl->startDefinition();
2052 }
2053
2054 ObjCImplementationDecl* IMPDecl =
2055 ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
2056 ClassLoc, AtClassImplLoc, SuperClassLoc);
2057
2058 ProcessDeclAttributeList(TUScope, IMPDecl, Attrs);
2059 AddPragmaAttributes(TUScope, IMPDecl);
2060
2061 if (CheckObjCDeclScope(IMPDecl))
2062 return ActOnObjCContainerStartDefinition(IMPDecl);
2063
2064 // Check that there is no duplicate implementation of this class.
2065 if (IDecl->getImplementation()) {
2066 // FIXME: Don't leak everything!
2067 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
2068 Diag(IDecl->getImplementation()->getLocation(),
2069 diag::note_previous_definition);
2070 IMPDecl->setInvalidDecl();
2071 } else { // add it to the list.
2072 IDecl->setImplementation(IMPDecl);
2073 PushOnScopeChains(IMPDecl, TUScope);
2074 // Warn on implementating deprecated class under
2075 // -Wdeprecated-implementations flag.
2076 DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation());
2077 }
2078
2079 // If the superclass has the objc_runtime_visible attribute, we
2080 // cannot implement a subclass of it.
2081 if (IDecl->getSuperClass() &&
2082 IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2083 Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
2084 << IDecl->getDeclName()
2085 << IDecl->getSuperClass()->getDeclName();
2086 }
2087
2088 return ActOnObjCContainerStartDefinition(IMPDecl);
2089}
2090
2091Sema::DeclGroupPtrTy
2092Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
2093 SmallVector<Decl *, 64> DeclsInGroup;
2094 DeclsInGroup.reserve(Decls.size() + 1);
2095
2096 for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2097 Decl *Dcl = Decls[i];
2098 if (!Dcl)
2099 continue;
2100 if (Dcl->getDeclContext()->isFileContext())
2101 Dcl->setTopLevelDeclInObjCContainer();
2102 DeclsInGroup.push_back(Dcl);
2103 }
2104
2105 DeclsInGroup.push_back(ObjCImpDecl);
2106
2107 return BuildDeclaratorGroup(DeclsInGroup);
2108}
2109
2110void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
2111 ObjCIvarDecl **ivars, unsigned numIvars,
2112 SourceLocation RBrace) {
2113 assert(ImpDecl && "missing implementation decl")((ImpDecl && "missing implementation decl") ? static_cast
<void> (0) : __assert_fail ("ImpDecl && \"missing implementation decl\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2113, __PRETTY_FUNCTION__))
;
2114 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2115 if (!IDecl)
2116 return;
2117 /// Check case of non-existing \@interface decl.
2118 /// (legacy objective-c \@implementation decl without an \@interface decl).
2119 /// Add implementations's ivar to the synthesize class's ivar list.
2120 if (IDecl->isImplicitInterfaceDecl()) {
2121 IDecl->setEndOfDefinitionLoc(RBrace);
2122 // Add ivar's to class's DeclContext.
2123 for (unsigned i = 0, e = numIvars; i != e; ++i) {
2124 ivars[i]->setLexicalDeclContext(ImpDecl);
2125 IDecl->makeDeclVisibleInContext(ivars[i]);
2126 ImpDecl->addDecl(ivars[i]);
2127 }
2128
2129 return;
2130 }
2131 // If implementation has empty ivar list, just return.
2132 if (numIvars == 0)
2133 return;
2134
2135 assert(ivars && "missing @implementation ivars")((ivars && "missing @implementation ivars") ? static_cast
<void> (0) : __assert_fail ("ivars && \"missing @implementation ivars\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2135, __PRETTY_FUNCTION__))
;
2136 if (LangOpts.ObjCRuntime.isNonFragile()) {
2137 if (ImpDecl->getSuperClass())
2138 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2139 for (unsigned i = 0; i < numIvars; i++) {
2140 ObjCIvarDecl* ImplIvar = ivars[i];
2141 if (const ObjCIvarDecl *ClsIvar =
2142 IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2143 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2144 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2145 continue;
2146 }
2147 // Check class extensions (unnamed categories) for duplicate ivars.
2148 for (const auto *CDecl : IDecl->visible_extensions()) {
2149 if (const ObjCIvarDecl *ClsExtIvar =
2150 CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2151 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2152 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2153 continue;
2154 }
2155 }
2156 // Instance ivar to Implementation's DeclContext.
2157 ImplIvar->setLexicalDeclContext(ImpDecl);
2158 IDecl->makeDeclVisibleInContext(ImplIvar);
2159 ImpDecl->addDecl(ImplIvar);
2160 }
2161 return;
2162 }
2163 // Check interface's Ivar list against those in the implementation.
2164 // names and types must match.
2165 //
2166 unsigned j = 0;
2167 ObjCInterfaceDecl::ivar_iterator
2168 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2169 for (; numIvars > 0 && IVI != IVE; ++IVI) {
2170 ObjCIvarDecl* ImplIvar = ivars[j++];
2171 ObjCIvarDecl* ClsIvar = *IVI;
2172 assert (ImplIvar && "missing implementation ivar")((ImplIvar && "missing implementation ivar") ? static_cast
<void> (0) : __assert_fail ("ImplIvar && \"missing implementation ivar\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2172, __PRETTY_FUNCTION__))
;
2173 assert (ClsIvar && "missing class ivar")((ClsIvar && "missing class ivar") ? static_cast<void
> (0) : __assert_fail ("ClsIvar && \"missing class ivar\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2173, __PRETTY_FUNCTION__))
;
2174
2175 // First, make sure the types match.
2176 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2177 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2178 << ImplIvar->getIdentifier()
2179 << ImplIvar->getType() << ClsIvar->getType();
2180 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2181 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2182 ImplIvar->getBitWidthValue(Context) !=
2183 ClsIvar->getBitWidthValue(Context)) {
2184 Diag(ImplIvar->getBitWidth()->getBeginLoc(),
2185 diag::err_conflicting_ivar_bitwidth)
2186 << ImplIvar->getIdentifier();
2187 Diag(ClsIvar->getBitWidth()->getBeginLoc(),
2188 diag::note_previous_definition);
2189 }
2190 // Make sure the names are identical.
2191 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2192 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2193 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2194 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2195 }
2196 --numIvars;
2197 }
2198
2199 if (numIvars > 0)
2200 Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2201 else if (IVI != IVE)
2202 Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2203}
2204
2205static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
2206 ObjCMethodDecl *method,
2207 bool &IncompleteImpl,
2208 unsigned DiagID,
2209 NamedDecl *NeededFor = nullptr) {
2210 // No point warning no definition of method which is 'unavailable'.
2211 if (method->getAvailability() == AR_Unavailable)
2212 return;
2213
2214 // FIXME: For now ignore 'IncompleteImpl'.
2215 // Previously we grouped all unimplemented methods under a single
2216 // warning, but some users strongly voiced that they would prefer
2217 // separate warnings. We will give that approach a try, as that
2218 // matches what we do with protocols.
2219 {
2220 const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
2221 B << method;
2222 if (NeededFor)
2223 B << NeededFor;
2224 }
2225
2226 // Issue a note to the original declaration.
2227 SourceLocation MethodLoc = method->getBeginLoc();
2228 if (MethodLoc.isValid())
2229 S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2230}
2231
2232/// Determines if type B can be substituted for type A. Returns true if we can
2233/// guarantee that anything that the user will do to an object of type A can
2234/// also be done to an object of type B. This is trivially true if the two
2235/// types are the same, or if B is a subclass of A. It becomes more complex
2236/// in cases where protocols are involved.
2237///
2238/// Object types in Objective-C describe the minimum requirements for an
2239/// object, rather than providing a complete description of a type. For
2240/// example, if A is a subclass of B, then B* may refer to an instance of A.
2241/// The principle of substitutability means that we may use an instance of A
2242/// anywhere that we may use an instance of B - it will implement all of the
2243/// ivars of B and all of the methods of B.
2244///
2245/// This substitutability is important when type checking methods, because
2246/// the implementation may have stricter type definitions than the interface.
2247/// The interface specifies minimum requirements, but the implementation may
2248/// have more accurate ones. For example, a method may privately accept
2249/// instances of B, but only publish that it accepts instances of A. Any
2250/// object passed to it will be type checked against B, and so will implicitly
2251/// by a valid A*. Similarly, a method may return a subclass of the class that
2252/// it is declared as returning.
2253///
2254/// This is most important when considering subclassing. A method in a
2255/// subclass must accept any object as an argument that its superclass's
2256/// implementation accepts. It may, however, accept a more general type
2257/// without breaking substitutability (i.e. you can still use the subclass
2258/// anywhere that you can use the superclass, but not vice versa). The
2259/// converse requirement applies to return types: the return type for a
2260/// subclass method must be a valid object of the kind that the superclass
2261/// advertises, but it may be specified more accurately. This avoids the need
2262/// for explicit down-casting by callers.
2263///
2264/// Note: This is a stricter requirement than for assignment.
2265static bool isObjCTypeSubstitutable(ASTContext &Context,
2266 const ObjCObjectPointerType *A,
2267 const ObjCObjectPointerType *B,
2268 bool rejectId) {
2269 // Reject a protocol-unqualified id.
2270 if (rejectId && B->isObjCIdType()) return false;
2271
2272 // If B is a qualified id, then A must also be a qualified id and it must
2273 // implement all of the protocols in B. It may not be a qualified class.
2274 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2275 // stricter definition so it is not substitutable for id<A>.
2276 if (B->isObjCQualifiedIdType()) {
2277 return A->isObjCQualifiedIdType() &&
2278 Context.ObjCQualifiedIdTypesAreCompatible(A, B, false);
2279 }
2280
2281 /*
2282 // id is a special type that bypasses type checking completely. We want a
2283 // warning when it is used in one place but not another.
2284 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2285
2286
2287 // If B is a qualified id, then A must also be a qualified id (which it isn't
2288 // if we've got this far)
2289 if (B->isObjCQualifiedIdType()) return false;
2290 */
2291
2292 // Now we know that A and B are (potentially-qualified) class types. The
2293 // normal rules for assignment apply.
2294 return Context.canAssignObjCInterfaces(A, B);
2295}
2296
2297static SourceRange getTypeRange(TypeSourceInfo *TSI) {
2298 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2299}
2300
2301/// Determine whether two set of Objective-C declaration qualifiers conflict.
2302static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
2303 Decl::ObjCDeclQualifier y) {
2304 return (x & ~Decl::OBJC_TQ_CSNullability) !=
2305 (y & ~Decl::OBJC_TQ_CSNullability);
2306}
2307
2308static bool CheckMethodOverrideReturn(Sema &S,
2309 ObjCMethodDecl *MethodImpl,
2310 ObjCMethodDecl *MethodDecl,
2311 bool IsProtocolMethodDecl,
2312 bool IsOverridingMode,
2313 bool Warn) {
2314 if (IsProtocolMethodDecl &&
2315 objcModifiersConflict(MethodDecl->getObjCDeclQualifier(),
2316 MethodImpl->getObjCDeclQualifier())) {
2317 if (Warn) {
2318 S.Diag(MethodImpl->getLocation(),
2319 (IsOverridingMode
2320 ? diag::warn_conflicting_overriding_ret_type_modifiers
2321 : diag::warn_conflicting_ret_type_modifiers))
2322 << MethodImpl->getDeclName()
2323 << MethodImpl->getReturnTypeSourceRange();
2324 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2325 << MethodDecl->getReturnTypeSourceRange();
2326 }
2327 else
2328 return false;
2329 }
2330 if (Warn && IsOverridingMode &&
2331 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2332 !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(),
2333 MethodDecl->getReturnType(),
2334 false)) {
2335 auto nullabilityMethodImpl =
2336 *MethodImpl->getReturnType()->getNullability(S.Context);
2337 auto nullabilityMethodDecl =
2338 *MethodDecl->getReturnType()->getNullability(S.Context);
2339 S.Diag(MethodImpl->getLocation(),
2340 diag::warn_conflicting_nullability_attr_overriding_ret_types)
2341 << DiagNullabilityKind(
2342 nullabilityMethodImpl,
2343 ((MethodImpl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2344 != 0))
2345 << DiagNullabilityKind(
2346 nullabilityMethodDecl,
2347 ((MethodDecl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2348 != 0));
2349 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2350 }
2351
2352 if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2353 MethodDecl->getReturnType()))
2354 return true;
2355 if (!Warn)
2356 return false;
2357
2358 unsigned DiagID =
2359 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2360 : diag::warn_conflicting_ret_types;
2361
2362 // Mismatches between ObjC pointers go into a different warning
2363 // category, and sometimes they're even completely whitelisted.
2364 if (const ObjCObjectPointerType *ImplPtrTy =
2365 MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2366 if (const ObjCObjectPointerType *IfacePtrTy =
2367 MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2368 // Allow non-matching return types as long as they don't violate
2369 // the principle of substitutability. Specifically, we permit
2370 // return types that are subclasses of the declared return type,
2371 // or that are more-qualified versions of the declared type.
2372 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2373 return false;
2374
2375 DiagID =
2376 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2377 : diag::warn_non_covariant_ret_types;
2378 }
2379 }
2380
2381 S.Diag(MethodImpl->getLocation(), DiagID)
2382 << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2383 << MethodImpl->getReturnType()
2384 << MethodImpl->getReturnTypeSourceRange();
2385 S.Diag(MethodDecl->getLocation(), IsOverridingMode
2386 ? diag::note_previous_declaration
2387 : diag::note_previous_definition)
2388 << MethodDecl->getReturnTypeSourceRange();
2389 return false;
2390}
2391
2392static bool CheckMethodOverrideParam(Sema &S,
2393 ObjCMethodDecl *MethodImpl,
2394 ObjCMethodDecl *MethodDecl,
2395 ParmVarDecl *ImplVar,
2396 ParmVarDecl *IfaceVar,
2397 bool IsProtocolMethodDecl,
2398 bool IsOverridingMode,
2399 bool Warn) {
2400 if (IsProtocolMethodDecl &&
2401 objcModifiersConflict(ImplVar->getObjCDeclQualifier(),
2402 IfaceVar->getObjCDeclQualifier())) {
2403 if (Warn) {
2404 if (IsOverridingMode)
2405 S.Diag(ImplVar->getLocation(),
2406 diag::warn_conflicting_overriding_param_modifiers)
2407 << getTypeRange(ImplVar->getTypeSourceInfo())
2408 << MethodImpl->getDeclName();
2409 else S.Diag(ImplVar->getLocation(),
2410 diag::warn_conflicting_param_modifiers)
2411 << getTypeRange(ImplVar->getTypeSourceInfo())
2412 << MethodImpl->getDeclName();
2413 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2414 << getTypeRange(IfaceVar->getTypeSourceInfo());
2415 }
2416 else
2417 return false;
2418 }
2419
2420 QualType ImplTy = ImplVar->getType();
2421 QualType IfaceTy = IfaceVar->getType();
2422 if (Warn && IsOverridingMode &&
2423 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2424 !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2425 S.Diag(ImplVar->getLocation(),
2426 diag::warn_conflicting_nullability_attr_overriding_param_types)
2427 << DiagNullabilityKind(
2428 *ImplTy->getNullability(S.Context),
2429 ((ImplVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2430 != 0))
2431 << DiagNullabilityKind(
2432 *IfaceTy->getNullability(S.Context),
2433 ((IfaceVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2434 != 0));
2435 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2436 }
2437 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2438 return true;
2439
2440 if (!Warn)
2441 return false;
2442 unsigned DiagID =
2443 IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2444 : diag::warn_conflicting_param_types;
2445
2446 // Mismatches between ObjC pointers go into a different warning
2447 // category, and sometimes they're even completely whitelisted.
2448 if (const ObjCObjectPointerType *ImplPtrTy =
2449 ImplTy->getAs<ObjCObjectPointerType>()) {
2450 if (const ObjCObjectPointerType *IfacePtrTy =
2451 IfaceTy->getAs<ObjCObjectPointerType>()) {
2452 // Allow non-matching argument types as long as they don't
2453 // violate the principle of substitutability. Specifically, the
2454 // implementation must accept any objects that the superclass
2455 // accepts, however it may also accept others.
2456 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2457 return false;
2458
2459 DiagID =
2460 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2461 : diag::warn_non_contravariant_param_types;
2462 }
2463 }
2464
2465 S.Diag(ImplVar->getLocation(), DiagID)
2466 << getTypeRange(ImplVar->getTypeSourceInfo())
2467 << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2468 S.Diag(IfaceVar->getLocation(),
2469 (IsOverridingMode ? diag::note_previous_declaration
2470 : diag::note_previous_definition))
2471 << getTypeRange(IfaceVar->getTypeSourceInfo());
2472 return false;
2473}
2474
2475/// In ARC, check whether the conventional meanings of the two methods
2476/// match. If they don't, it's a hard error.
2477static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
2478 ObjCMethodDecl *decl) {
2479 ObjCMethodFamily implFamily = impl->getMethodFamily();
2480 ObjCMethodFamily declFamily = decl->getMethodFamily();
2481 if (implFamily == declFamily) return false;
2482
2483 // Since conventions are sorted by selector, the only possibility is
2484 // that the types differ enough to cause one selector or the other
2485 // to fall out of the family.
2486 assert(implFamily == OMF_None || declFamily == OMF_None)((implFamily == OMF_None || declFamily == OMF_None) ? static_cast
<void> (0) : __assert_fail ("implFamily == OMF_None || declFamily == OMF_None"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2486, __PRETTY_FUNCTION__))
;
2487
2488 // No further diagnostics required on invalid declarations.
2489 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2490
2491 const ObjCMethodDecl *unmatched = impl;
2492 ObjCMethodFamily family = declFamily;
2493 unsigned errorID = diag::err_arc_lost_method_convention;
2494 unsigned noteID = diag::note_arc_lost_method_convention;
2495 if (declFamily == OMF_None) {
2496 unmatched = decl;
2497 family = implFamily;
2498 errorID = diag::err_arc_gained_method_convention;
2499 noteID = diag::note_arc_gained_method_convention;
2500 }
2501
2502 // Indexes into a %select clause in the diagnostic.
2503 enum FamilySelector {
2504 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2505 };
2506 FamilySelector familySelector = FamilySelector();
2507
2508 switch (family) {
2509 case OMF_None: llvm_unreachable("logic error, no method convention")::llvm::llvm_unreachable_internal("logic error, no method convention"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2509)
;
2510 case OMF_retain:
2511 case OMF_release:
2512 case OMF_autorelease:
2513 case OMF_dealloc:
2514 case OMF_finalize:
2515 case OMF_retainCount:
2516 case OMF_self:
2517 case OMF_initialize:
2518 case OMF_performSelector:
2519 // Mismatches for these methods don't change ownership
2520 // conventions, so we don't care.
2521 return false;
2522
2523 case OMF_init: familySelector = F_init; break;
2524 case OMF_alloc: familySelector = F_alloc; break;
2525 case OMF_copy: familySelector = F_copy; break;
2526 case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2527 case OMF_new: familySelector = F_new; break;
2528 }
2529
2530 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2531 ReasonSelector reasonSelector;
2532
2533 // The only reason these methods don't fall within their families is
2534 // due to unusual result types.
2535 if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2536 reasonSelector = R_UnrelatedReturn;
2537 } else {
2538 reasonSelector = R_NonObjectReturn;
2539 }
2540
2541 S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2542 S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2543
2544 return true;
2545}
2546
2547void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2548 ObjCMethodDecl *MethodDecl,
2549 bool IsProtocolMethodDecl) {
2550 if (getLangOpts().ObjCAutoRefCount &&
2551 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
2552 return;
2553
2554 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2555 IsProtocolMethodDecl, false,
2556 true);
2557
2558 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2559 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2560 EF = MethodDecl->param_end();
2561 IM != EM && IF != EF; ++IM, ++IF) {
2562 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
2563 IsProtocolMethodDecl, false, true);
2564 }
2565
2566 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2567 Diag(ImpMethodDecl->getLocation(),
2568 diag::warn_conflicting_variadic);
2569 Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2570 }
2571}
2572
2573void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
2574 ObjCMethodDecl *Overridden,
2575 bool IsProtocolMethodDecl) {
2576
2577 CheckMethodOverrideReturn(*this, Method, Overridden,
2578 IsProtocolMethodDecl, true,
2579 true);
2580
2581 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2582 IF = Overridden->param_begin(), EM = Method->param_end(),
2583 EF = Overridden->param_end();
2584 IM != EM && IF != EF; ++IM, ++IF) {
2585 CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
2586 IsProtocolMethodDecl, true, true);
2587 }
2588
2589 if (Method->isVariadic() != Overridden->isVariadic()) {
2590 Diag(Method->getLocation(),
2591 diag::warn_conflicting_overriding_variadic);
2592 Diag(Overridden->getLocation(), diag::note_previous_declaration);
2593 }
2594}
2595
2596/// WarnExactTypedMethods - This routine issues a warning if method
2597/// implementation declaration matches exactly that of its declaration.
2598void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2599 ObjCMethodDecl *MethodDecl,
2600 bool IsProtocolMethodDecl) {
2601 // don't issue warning when protocol method is optional because primary
2602 // class is not required to implement it and it is safe for protocol
2603 // to implement it.
2604 if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
2605 return;
2606 // don't issue warning when primary class's method is
2607 // depecated/unavailable.
2608 if (MethodDecl->hasAttr<UnavailableAttr>() ||
2609 MethodDecl->hasAttr<DeprecatedAttr>())
2610 return;
2611
2612 bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2613 IsProtocolMethodDecl, false, false);
2614 if (match)
2615 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2616 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2617 EF = MethodDecl->param_end();
2618 IM != EM && IF != EF; ++IM, ++IF) {
2619 match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
2620 *IM, *IF,
2621 IsProtocolMethodDecl, false, false);
2622 if (!match)
2623 break;
2624 }
2625 if (match)
2626 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2627 if (match)
2628 match = !(MethodDecl->isClassMethod() &&
2629 MethodDecl->getSelector() == GetNullarySelector("load", Context));
2630
2631 if (match) {
2632 Diag(ImpMethodDecl->getLocation(),
2633 diag::warn_category_method_impl_match);
2634 Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2635 << MethodDecl->getDeclName();
2636 }
2637}
2638
2639/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2640/// improve the efficiency of selector lookups and type checking by associating
2641/// with each protocol / interface / category the flattened instance tables. If
2642/// we used an immutable set to keep the table then it wouldn't add significant
2643/// memory cost and it would be handy for lookups.
2644
2645typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
2646typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2647
2648static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
2649 ProtocolNameSet &PNS) {
2650 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2651 PNS.insert(PDecl->getIdentifier());
2652 for (const auto *PI : PDecl->protocols())
2653 findProtocolsWithExplicitImpls(PI, PNS);
2654}
2655
2656/// Recursively populates a set with all conformed protocols in a class
2657/// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2658/// attribute.
2659static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
2660 ProtocolNameSet &PNS) {
2661 if (!Super)
2662 return;
2663
2664 for (const auto *I : Super->all_referenced_protocols())
2665 findProtocolsWithExplicitImpls(I, PNS);
2666
2667 findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
2668}
2669
2670/// CheckProtocolMethodDefs - This routine checks unimplemented methods
2671/// Declared in protocol, and those referenced by it.
2672static void CheckProtocolMethodDefs(Sema &S,
2673 SourceLocation ImpLoc,
2674 ObjCProtocolDecl *PDecl,
2675 bool& IncompleteImpl,
2676 const Sema::SelectorSet &InsMap,
2677 const Sema::SelectorSet &ClsMap,
2678 ObjCContainerDecl *CDecl,
2679 LazyProtocolNameSet &ProtocolsExplictImpl) {
2680 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2681 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2682 : dyn_cast<ObjCInterfaceDecl>(CDecl);
2683 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null")((IDecl && "CheckProtocolMethodDefs - IDecl is null")
? static_cast<void> (0) : __assert_fail ("IDecl && \"CheckProtocolMethodDefs - IDecl is null\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2683, __PRETTY_FUNCTION__))
;
2684
2685 ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2686 ObjCInterfaceDecl *NSIDecl = nullptr;
2687
2688 // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2689 // then we should check if any class in the super class hierarchy also
2690 // conforms to this protocol, either directly or via protocol inheritance.
2691 // If so, we can skip checking this protocol completely because we
2692 // know that a parent class already satisfies this protocol.
2693 //
2694 // Note: we could generalize this logic for all protocols, and merely
2695 // add the limit on looking at the super class chain for just
2696 // specially marked protocols. This may be a good optimization. This
2697 // change is restricted to 'objc_protocol_requires_explicit_implementation'
2698 // protocols for now for controlled evaluation.
2699 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2700 if (!ProtocolsExplictImpl) {
2701 ProtocolsExplictImpl.reset(new ProtocolNameSet);
2702 findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2703 }
2704 if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
2705 ProtocolsExplictImpl->end())
2706 return;
2707
2708 // If no super class conforms to the protocol, we should not search
2709 // for methods in the super class to implicitly satisfy the protocol.
2710 Super = nullptr;
2711 }
2712
2713 if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2714 // check to see if class implements forwardInvocation method and objects
2715 // of this class are derived from 'NSProxy' so that to forward requests
2716 // from one object to another.
2717 // Under such conditions, which means that every method possible is
2718 // implemented in the class, we should not issue "Method definition not
2719 // found" warnings.
2720 // FIXME: Use a general GetUnarySelector method for this.
2721 IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
2722 Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2723 if (InsMap.count(fISelector))
2724 // Is IDecl derived from 'NSProxy'? If so, no instance methods
2725 // need be implemented in the implementation.
2726 NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2727 }
2728
2729 // If this is a forward protocol declaration, get its definition.
2730 if (!PDecl->isThisDeclarationADefinition() &&
2731 PDecl->getDefinition())
2732 PDecl = PDecl->getDefinition();
2733
2734 // If a method lookup fails locally we still need to look and see if
2735 // the method was implemented by a base class or an inherited
2736 // protocol. This lookup is slow, but occurs rarely in correct code
2737 // and otherwise would terminate in a warning.
2738
2739 // check unimplemented instance methods.
2740 if (!NSIDecl)
2741 for (auto *method : PDecl->instance_methods()) {
2742 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2743 !method->isPropertyAccessor() &&
2744 !InsMap.count(method->getSelector()) &&
2745 (!Super || !Super->lookupMethod(method->getSelector(),
2746 true /* instance */,
2747 false /* shallowCategory */,
2748 true /* followsSuper */,
2749 nullptr /* category */))) {
2750 // If a method is not implemented in the category implementation but
2751 // has been declared in its primary class, superclass,
2752 // or in one of their protocols, no need to issue the warning.
2753 // This is because method will be implemented in the primary class
2754 // or one of its super class implementation.
2755
2756 // Ugly, but necessary. Method declared in protocol might have
2757 // have been synthesized due to a property declared in the class which
2758 // uses the protocol.
2759 if (ObjCMethodDecl *MethodInClass =
2760 IDecl->lookupMethod(method->getSelector(),
2761 true /* instance */,
2762 true /* shallowCategoryLookup */,
2763 false /* followSuper */))
2764 if (C || MethodInClass->isPropertyAccessor())
2765 continue;
2766 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2767 if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2768 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
2769 PDecl);
2770 }
2771 }
2772 }
2773 // check unimplemented class methods
2774 for (auto *method : PDecl->class_methods()) {
2775 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2776 !ClsMap.count(method->getSelector()) &&
2777 (!Super || !Super->lookupMethod(method->getSelector(),
2778 false /* class method */,
2779 false /* shallowCategoryLookup */,
2780 true /* followSuper */,
2781 nullptr /* category */))) {
2782 // See above comment for instance method lookups.
2783 if (C && IDecl->lookupMethod(method->getSelector(),
2784 false /* class */,
2785 true /* shallowCategoryLookup */,
2786 false /* followSuper */))
2787 continue;
2788
2789 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2790 if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2791 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
2792 }
2793 }
2794 }
2795 // Check on this protocols's referenced protocols, recursively.
2796 for (auto *PI : PDecl->protocols())
2797 CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
2798 CDecl, ProtocolsExplictImpl);
2799}
2800
2801/// MatchAllMethodDeclarations - Check methods declared in interface
2802/// or protocol against those declared in their implementations.
2803///
2804void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
2805 const SelectorSet &ClsMap,
2806 SelectorSet &InsMapSeen,
2807 SelectorSet &ClsMapSeen,
2808 ObjCImplDecl* IMPDecl,
2809 ObjCContainerDecl* CDecl,
2810 bool &IncompleteImpl,
2811 bool ImmediateClass,
2812 bool WarnCategoryMethodImpl) {
2813 // Check and see if instance methods in class interface have been
2814 // implemented in the implementation class. If so, their types match.
2815 for (auto *I : CDecl->instance_methods()) {
2816 if (!InsMapSeen.insert(I->getSelector()).second)
2817 continue;
2818 if (!I->isPropertyAccessor() &&
2819 !InsMap.count(I->getSelector())) {
2820 if (ImmediateClass)
2821 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2822 diag::warn_undef_method_impl);
2823 continue;
2824 } else {
2825 ObjCMethodDecl *ImpMethodDecl =
2826 IMPDecl->getInstanceMethod(I->getSelector());
2827 assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&((CDecl->getInstanceMethod(I->getSelector(), true ) &&
"Expected to find the method through lookup as well") ? static_cast
<void> (0) : __assert_fail ("CDecl->getInstanceMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2828, __PRETTY_FUNCTION__))
2828 "Expected to find the method through lookup as well")((CDecl->getInstanceMethod(I->getSelector(), true ) &&
"Expected to find the method through lookup as well") ? static_cast
<void> (0) : __assert_fail ("CDecl->getInstanceMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2828, __PRETTY_FUNCTION__))
;
2829 // ImpMethodDecl may be null as in a @dynamic property.
2830 if (ImpMethodDecl) {
2831 if (!WarnCategoryMethodImpl)
2832 WarnConflictingTypedMethods(ImpMethodDecl, I,
2833 isa<ObjCProtocolDecl>(CDecl));
2834 else if (!I->isPropertyAccessor())
2835 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2836 }
2837 }
2838 }
2839
2840 // Check and see if class methods in class interface have been
2841 // implemented in the implementation class. If so, their types match.
2842 for (auto *I : CDecl->class_methods()) {
2843 if (!ClsMapSeen.insert(I->getSelector()).second)
2844 continue;
2845 if (!I->isPropertyAccessor() &&
2846 !ClsMap.count(I->getSelector())) {
2847 if (ImmediateClass)
2848 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2849 diag::warn_undef_method_impl);
2850 } else {
2851 ObjCMethodDecl *ImpMethodDecl =
2852 IMPDecl->getClassMethod(I->getSelector());
2853 assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&((CDecl->getClassMethod(I->getSelector(), true ) &&
"Expected to find the method through lookup as well") ? static_cast
<void> (0) : __assert_fail ("CDecl->getClassMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2854, __PRETTY_FUNCTION__))
2854 "Expected to find the method through lookup as well")((CDecl->getClassMethod(I->getSelector(), true ) &&
"Expected to find the method through lookup as well") ? static_cast
<void> (0) : __assert_fail ("CDecl->getClassMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2854, __PRETTY_FUNCTION__))
;
2855 // ImpMethodDecl may be null as in a @dynamic property.
2856 if (ImpMethodDecl) {
2857 if (!WarnCategoryMethodImpl)
2858 WarnConflictingTypedMethods(ImpMethodDecl, I,
2859 isa<ObjCProtocolDecl>(CDecl));
2860 else if (!I->isPropertyAccessor())
2861 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2862 }
2863 }
2864 }
2865
2866 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2867 // Also, check for methods declared in protocols inherited by
2868 // this protocol.
2869 for (auto *PI : PD->protocols())
2870 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2871 IMPDecl, PI, IncompleteImpl, false,
2872 WarnCategoryMethodImpl);
2873 }
2874
2875 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2876 // when checking that methods in implementation match their declaration,
2877 // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2878 // extension; as well as those in categories.
2879 if (!WarnCategoryMethodImpl) {
2880 for (auto *Cat : I->visible_categories())
2881 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2882 IMPDecl, Cat, IncompleteImpl,
2883 ImmediateClass && Cat->IsClassExtension(),
2884 WarnCategoryMethodImpl);
2885 } else {
2886 // Also methods in class extensions need be looked at next.
2887 for (auto *Ext : I->visible_extensions())
2888 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2889 IMPDecl, Ext, IncompleteImpl, false,
2890 WarnCategoryMethodImpl);
2891 }
2892
2893 // Check for any implementation of a methods declared in protocol.
2894 for (auto *PI : I->all_referenced_protocols())
2895 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2896 IMPDecl, PI, IncompleteImpl, false,
2897 WarnCategoryMethodImpl);
2898
2899 // FIXME. For now, we are not checking for exact match of methods
2900 // in category implementation and its primary class's super class.
2901 if (!WarnCategoryMethodImpl && I->getSuperClass())
2902 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2903 IMPDecl,
2904 I->getSuperClass(), IncompleteImpl, false);
2905 }
2906}
2907
2908/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2909/// category matches with those implemented in its primary class and
2910/// warns each time an exact match is found.
2911void Sema::CheckCategoryVsClassMethodMatches(
2912 ObjCCategoryImplDecl *CatIMPDecl) {
2913 // Get category's primary class.
2914 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2915 if (!CatDecl)
2916 return;
2917 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2918 if (!IDecl)
2919 return;
2920 ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2921 SelectorSet InsMap, ClsMap;
2922
2923 for (const auto *I : CatIMPDecl->instance_methods()) {
2924 Selector Sel = I->getSelector();
2925 // When checking for methods implemented in the category, skip over
2926 // those declared in category class's super class. This is because
2927 // the super class must implement the method.
2928 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2929 continue;
2930 InsMap.insert(Sel);
2931 }
2932
2933 for (const auto *I : CatIMPDecl->class_methods()) {
2934 Selector Sel = I->getSelector();
2935 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2936 continue;
2937 ClsMap.insert(Sel);
2938 }
2939 if (InsMap.empty() && ClsMap.empty())
2940 return;
2941
2942 SelectorSet InsMapSeen, ClsMapSeen;
2943 bool IncompleteImpl = false;
2944 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2945 CatIMPDecl, IDecl,
2946 IncompleteImpl, false,
2947 true /*WarnCategoryMethodImpl*/);
2948}
2949
2950void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
2951 ObjCContainerDecl* CDecl,
2952 bool IncompleteImpl) {
2953 SelectorSet InsMap;
2954 // Check and see if instance methods in class interface have been
2955 // implemented in the implementation class.
2956 for (const auto *I : IMPDecl->instance_methods())
2957 InsMap.insert(I->getSelector());
2958
2959 // Add the selectors for getters/setters of @dynamic properties.
2960 for (const auto *PImpl : IMPDecl->property_impls()) {
2961 // We only care about @dynamic implementations.
2962 if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2963 continue;
2964
2965 const auto *P = PImpl->getPropertyDecl();
2966 if (!P) continue;
2967
2968 InsMap.insert(P->getGetterName());
2969 if (!P->getSetterName().isNull())
2970 InsMap.insert(P->getSetterName());
2971 }
2972
2973 // Check and see if properties declared in the interface have either 1)
2974 // an implementation or 2) there is a @synthesize/@dynamic implementation
2975 // of the property in the @implementation.
2976 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2977 bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
2978 LangOpts.ObjCRuntime.isNonFragile() &&
2979 !IDecl->isObjCRequiresPropertyDefs();
2980 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
2981 }
2982
2983 // Diagnose null-resettable synthesized setters.
2984 diagnoseNullResettableSynthesizedSetters(IMPDecl);
2985
2986 SelectorSet ClsMap;
2987 for (const auto *I : IMPDecl->class_methods())
2988 ClsMap.insert(I->getSelector());
2989
2990 // Check for type conflict of methods declared in a class/protocol and
2991 // its implementation; if any.
2992 SelectorSet InsMapSeen, ClsMapSeen;
2993 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2994 IMPDecl, CDecl,
2995 IncompleteImpl, true);
2996
2997 // check all methods implemented in category against those declared
2998 // in its primary class.
2999 if (ObjCCategoryImplDecl *CatDecl =
3000 dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
3001 CheckCategoryVsClassMethodMatches(CatDecl);
3002
3003 // Check the protocol list for unimplemented methods in the @implementation
3004 // class.
3005 // Check and see if class methods in class interface have been
3006 // implemented in the implementation class.
3007
3008 LazyProtocolNameSet ExplicitImplProtocols;
3009
3010 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
3011 for (auto *PI : I->all_referenced_protocols())
3012 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
3013 InsMap, ClsMap, I, ExplicitImplProtocols);
3014 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
3015 // For extended class, unimplemented methods in its protocols will
3016 // be reported in the primary class.
3017 if (!C->IsClassExtension()) {
3018 for (auto *P : C->protocols())
3019 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
3020 IncompleteImpl, InsMap, ClsMap, CDecl,
3021 ExplicitImplProtocols);
3022 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
3023 /*SynthesizeProperties=*/false);
3024 }
3025 } else
3026 llvm_unreachable("invalid ObjCContainerDecl type.")::llvm::llvm_unreachable_internal("invalid ObjCContainerDecl type."
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3026)
;
3027}
3028
3029Sema::DeclGroupPtrTy
3030Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
3031 IdentifierInfo **IdentList,
3032 SourceLocation *IdentLocs,
3033 ArrayRef<ObjCTypeParamList *> TypeParamLists,
3034 unsigned NumElts) {
3035 SmallVector<Decl *, 8> DeclsInGroup;
3036 for (unsigned i = 0; i != NumElts; ++i) {
3037 // Check for another declaration kind with the same name.
3038 NamedDecl *PrevDecl
3039 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
3040 LookupOrdinaryName, forRedeclarationInCurContext());
3041 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
3042 // GCC apparently allows the following idiom:
3043 //
3044 // typedef NSObject < XCElementTogglerP > XCElementToggler;
3045 // @class XCElementToggler;
3046 //
3047 // Here we have chosen to ignore the forward class declaration
3048 // with a warning. Since this is the implied behavior.
3049 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
3050 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3051 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
3052 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3053 } else {
3054 // a forward class declaration matching a typedef name of a class refers
3055 // to the underlying class. Just ignore the forward class with a warning
3056 // as this will force the intended behavior which is to lookup the
3057 // typedef name.
3058 if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
3059 Diag(AtClassLoc, diag::warn_forward_class_redefinition)
3060 << IdentList[i];
3061 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3062 continue;
3063 }
3064 }
3065 }
3066
3067 // Create a declaration to describe this forward declaration.
3068 ObjCInterfaceDecl *PrevIDecl
3069 = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
3070
3071 IdentifierInfo *ClassName = IdentList[i];
3072 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3073 // A previous decl with a different name is because of
3074 // @compatibility_alias, for example:
3075 // \code
3076 // @class NewImage;
3077 // @compatibility_alias OldImage NewImage;
3078 // \endcode
3079 // A lookup for 'OldImage' will return the 'NewImage' decl.
3080 //
3081 // In such a case use the real declaration name, instead of the alias one,
3082 // otherwise we will break IdentifierResolver and redecls-chain invariants.
3083 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3084 // has been aliased.
3085 ClassName = PrevIDecl->getIdentifier();
3086 }
3087
3088 // If this forward declaration has type parameters, compare them with the
3089 // type parameters of the previous declaration.
3090 ObjCTypeParamList *TypeParams = TypeParamLists[i];
3091 if (PrevIDecl && TypeParams) {
3092 if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3093 // Check for consistency with the previous declaration.
3094 if (checkTypeParamListConsistency(
3095 *this, PrevTypeParams, TypeParams,
3096 TypeParamListContext::ForwardDeclaration)) {
3097 TypeParams = nullptr;
3098 }
3099 } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3100 // The @interface does not have type parameters. Complain.
3101 Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3102 << ClassName
3103 << TypeParams->getSourceRange();
3104 Diag(Def->getLocation(), diag::note_defined_here)
3105 << ClassName;
3106
3107 TypeParams = nullptr;
3108 }
3109 }
3110
3111 ObjCInterfaceDecl *IDecl
3112 = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
3113 ClassName, TypeParams, PrevIDecl,
3114 IdentLocs[i]);
3115 IDecl->setAtEndRange(IdentLocs[i]);
3116
3117 PushOnScopeChains(IDecl, TUScope);
3118 CheckObjCDeclScope(IDecl);
3119 DeclsInGroup.push_back(IDecl);
3120 }
3121
3122 return BuildDeclaratorGroup(DeclsInGroup);
3123}
3124
3125static bool tryMatchRecordTypes(ASTContext &Context,
3126 Sema::MethodMatchStrategy strategy,
3127 const Type *left, const Type *right);
3128
3129static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
3130 QualType leftQT, QualType rightQT) {
3131 const Type *left =
3132 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
3133 const Type *right =
3134 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3135
3136 if (left == right) return true;
3137
3138 // If we're doing a strict match, the types have to match exactly.
3139 if (strategy == Sema::MMS_strict) return false;
3140
3141 if (left->isIncompleteType() || right->isIncompleteType()) return false;
3142
3143 // Otherwise, use this absurdly complicated algorithm to try to
3144 // validate the basic, low-level compatibility of the two types.
3145
3146 // As a minimum, require the sizes and alignments to match.
3147 TypeInfo LeftTI = Context.getTypeInfo(left);
3148 TypeInfo RightTI = Context.getTypeInfo(right);
3149 if (LeftTI.Width != RightTI.Width)
3150 return false;
3151
3152 if (LeftTI.Align != RightTI.Align)
3153 return false;
3154
3155 // Consider all the kinds of non-dependent canonical types:
3156 // - functions and arrays aren't possible as return and parameter types
3157
3158 // - vector types of equal size can be arbitrarily mixed
3159 if (isa<VectorType>(left)) return isa<VectorType>(right);
3160 if (isa<VectorType>(right)) return false;
3161
3162 // - references should only match references of identical type
3163 // - structs, unions, and Objective-C objects must match more-or-less
3164 // exactly
3165 // - everything else should be a scalar
3166 if (!left->isScalarType() || !right->isScalarType())
3167 return tryMatchRecordTypes(Context, strategy, left, right);
3168
3169 // Make scalars agree in kind, except count bools as chars, and group
3170 // all non-member pointers together.
3171 Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3172 Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3173 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3174 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3175 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3176 leftSK = Type::STK_ObjCObjectPointer;
3177 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3178 rightSK = Type::STK_ObjCObjectPointer;
3179
3180 // Note that data member pointers and function member pointers don't
3181 // intermix because of the size differences.
3182
3183 return (leftSK == rightSK);
3184}
3185
3186static bool tryMatchRecordTypes(ASTContext &Context,
3187 Sema::MethodMatchStrategy strategy,
3188 const Type *lt, const Type *rt) {
3189 assert(lt && rt && lt != rt)((lt && rt && lt != rt) ? static_cast<void
> (0) : __assert_fail ("lt && rt && lt != rt"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3189, __PRETTY_FUNCTION__))
;
3190
3191 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3192 RecordDecl *left = cast<RecordType>(lt)->getDecl();
3193 RecordDecl *right = cast<RecordType>(rt)->getDecl();
3194
3195 // Require union-hood to match.
3196 if (left->isUnion() != right->isUnion()) return false;
3197
3198 // Require an exact match if either is non-POD.
3199 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3200 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3201 return false;
3202
3203 // Require size and alignment to match.
3204 TypeInfo LeftTI = Context.getTypeInfo(lt);
3205 TypeInfo RightTI = Context.getTypeInfo(rt);
3206 if (LeftTI.Width != RightTI.Width)
3207 return false;
3208
3209 if (LeftTI.Align != RightTI.Align)
3210 return false;
3211
3212 // Require fields to match.
3213 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3214 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3215 for (; li != le && ri != re; ++li, ++ri) {
3216 if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3217 return false;
3218 }
3219 return (li == le && ri == re);
3220}
3221
3222/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3223/// returns true, or false, accordingly.
3224/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
3225bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
3226 const ObjCMethodDecl *right,
3227 MethodMatchStrategy strategy) {
3228 if (!matchTypes(Context, strategy, left->getReturnType(),
3229 right->getReturnType()))
3230 return false;
3231
3232 // If either is hidden, it is not considered to match.
3233 if (left->isHidden() || right->isHidden())
3234 return false;
3235
3236 if (getLangOpts().ObjCAutoRefCount &&
3237 (left->hasAttr<NSReturnsRetainedAttr>()
3238 != right->hasAttr<NSReturnsRetainedAttr>() ||
3239 left->hasAttr<NSConsumesSelfAttr>()
3240 != right->hasAttr<NSConsumesSelfAttr>()))
3241 return false;
3242
3243 ObjCMethodDecl::param_const_iterator
3244 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3245 re = right->param_end();
3246
3247 for (; li != le && ri != re; ++li, ++ri) {
3248 assert(ri != right->param_end() && "Param mismatch")((ri != right->param_end() && "Param mismatch") ? static_cast
<void> (0) : __assert_fail ("ri != right->param_end() && \"Param mismatch\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3248, __PRETTY_FUNCTION__))
;
3249 const ParmVarDecl *lparm = *li, *rparm = *ri;
3250
3251 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3252 return false;
3253
3254 if (getLangOpts().ObjCAutoRefCount &&
3255 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3256 return false;
3257 }
3258 return true;
3259}
3260
3261static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method,
3262 ObjCMethodDecl *MethodInList) {
3263 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3264 auto *MethodInListProtocol =
3265 dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3266 // If this method belongs to a protocol but the method in list does not, or
3267 // vice versa, we say the context is not the same.
3268 if ((MethodProtocol && !MethodInListProtocol) ||
3269 (!MethodProtocol && MethodInListProtocol))
3270 return false;
3271
3272 if (MethodProtocol && MethodInListProtocol)
3273 return true;
3274
3275 ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3276 ObjCInterfaceDecl *MethodInListInterface =
3277 MethodInList->getClassInterface();
3278 return MethodInterface == MethodInListInterface;
3279}
3280
3281void Sema::addMethodToGlobalList(ObjCMethodList *List,
3282 ObjCMethodDecl *Method) {
3283 // Record at the head of the list whether there were 0, 1, or >= 2 methods
3284 // inside categories.
3285 if (ObjCCategoryDecl *CD =
3286 dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3287 if (!CD->IsClassExtension() && List->getBits() < 2)
3288 List->setBits(List->getBits() + 1);
3289
3290 // If the list is empty, make it a singleton list.
3291 if (List->getMethod() == nullptr) {
3292 List->setMethod(Method);
3293 List->setNext(nullptr);
3294 return;
3295 }
3296
3297 // We've seen a method with this name, see if we have already seen this type
3298 // signature.
3299 ObjCMethodList *Previous = List;
3300 ObjCMethodList *ListWithSameDeclaration = nullptr;
3301 for (; List; Previous = List, List = List->getNext()) {
3302 // If we are building a module, keep all of the methods.
3303 if (getLangOpts().isCompilingModule())
3304 continue;
3305
3306 bool SameDeclaration = MatchTwoMethodDeclarations(Method,
3307 List->getMethod());
3308 // Looking for method with a type bound requires the correct context exists.
3309 // We need to insert a method into the list if the context is different.
3310 // If the method's declaration matches the list
3311 // a> the method belongs to a different context: we need to insert it, in
3312 // order to emit the availability message, we need to prioritize over
3313 // availability among the methods with the same declaration.
3314 // b> the method belongs to the same context: there is no need to insert a
3315 // new entry.
3316 // If the method's declaration does not match the list, we insert it to the
3317 // end.
3318 if (!SameDeclaration ||
3319 !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
3320 // Even if two method types do not match, we would like to say
3321 // there is more than one declaration so unavailability/deprecated
3322 // warning is not too noisy.
3323 if (!Method->isDefined())
3324 List->setHasMoreThanOneDecl(true);
3325
3326 // For methods with the same declaration, the one that is deprecated
3327 // should be put in the front for better diagnostics.
3328 if (Method->isDeprecated() && SameDeclaration &&
3329 !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3330 ListWithSameDeclaration = List;
3331
3332 if (Method->isUnavailable() && SameDeclaration &&
3333 !ListWithSameDeclaration &&
3334 List->getMethod()->getAvailability() < AR_Deprecated)
3335 ListWithSameDeclaration = List;
3336 continue;
3337 }
3338
3339 ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3340
3341 // Propagate the 'defined' bit.
3342 if (Method->isDefined())
3343 PrevObjCMethod->setDefined(true);
3344 else {
3345 // Objective-C doesn't allow an @interface for a class after its
3346 // @implementation. So if Method is not defined and there already is
3347 // an entry for this type signature, Method has to be for a different
3348 // class than PrevObjCMethod.
3349 List->setHasMoreThanOneDecl(true);
3350 }
3351
3352 // If a method is deprecated, push it in the global pool.
3353 // This is used for better diagnostics.
3354 if (Method->isDeprecated()) {
3355 if (!PrevObjCMethod->isDeprecated())
3356 List->setMethod(Method);
3357 }
3358 // If the new method is unavailable, push it into global pool
3359 // unless previous one is deprecated.
3360 if (Method->isUnavailable()) {
3361 if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3362 List->setMethod(Method);
3363 }
3364
3365 return;
3366 }
3367
3368 // We have a new signature for an existing method - add it.
3369 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3370 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
3371
3372 // We insert it right before ListWithSameDeclaration.
3373 if (ListWithSameDeclaration) {
3374 auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3375 // FIXME: should we clear the other bits in ListWithSameDeclaration?
3376 ListWithSameDeclaration->setMethod(Method);
3377 ListWithSameDeclaration->setNext(List);
3378 return;
3379 }
3380
3381 Previous->setNext(new (Mem) ObjCMethodList(Method));
3382}
3383
3384/// Read the contents of the method pool for a given selector from
3385/// external storage.
3386void Sema::ReadMethodPool(Selector Sel) {
3387 assert(ExternalSource && "We need an external AST source")((ExternalSource && "We need an external AST source")
? static_cast<void> (0) : __assert_fail ("ExternalSource && \"We need an external AST source\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3387, __PRETTY_FUNCTION__))
;
3388 ExternalSource->ReadMethodPool(Sel);
3389}
3390
3391void Sema::updateOutOfDateSelector(Selector Sel) {
3392 if (!ExternalSource)
3393 return;
3394 ExternalSource->updateOutOfDateSelector(Sel);
3395}
3396
3397void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3398 bool instance) {
3399 // Ignore methods of invalid containers.
3400 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3401 return;
3402
3403 if (ExternalSource)
3404 ReadMethodPool(Method->getSelector());
3405
3406 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
3407 if (Pos == MethodPool.end())
3408 Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
3409 GlobalMethods())).first;
3410
3411 Method->setDefined(impl);
3412
3413 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3414 addMethodToGlobalList(&Entry, Method);
3415}
3416
3417/// Determines if this is an "acceptable" loose mismatch in the global
3418/// method pool. This exists mostly as a hack to get around certain
3419/// global mismatches which we can't afford to make warnings / errors.
3420/// Really, what we want is a way to take a method out of the global
3421/// method pool.
3422static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
3423 ObjCMethodDecl *other) {
3424 if (!chosen->isInstanceMethod())
3425 return false;
3426
3427 Selector sel = chosen->getSelector();
3428 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3429 return false;
3430
3431 // Don't complain about mismatches for -length if the method we
3432 // chose has an integral result type.
3433 return (chosen->getReturnType()->isIntegerType());
3434}
3435
3436/// Return true if the given method is wthin the type bound.
3437static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method,
3438 const ObjCObjectType *TypeBound) {
3439 if (!TypeBound)
3440 return true;
3441
3442 if (TypeBound->isObjCId())
3443 // FIXME: should we handle the case of bounding to id<A, B> differently?
3444 return true;
3445
3446 auto *BoundInterface = TypeBound->getInterface();
3447 assert(BoundInterface && "unexpected object type!")((BoundInterface && "unexpected object type!") ? static_cast
<void> (0) : __assert_fail ("BoundInterface && \"unexpected object type!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3447, __PRETTY_FUNCTION__))
;
3448
3449 // Check if the Method belongs to a protocol. We should allow any method
3450 // defined in any protocol, because any subclass could adopt the protocol.
3451 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3452 if (MethodProtocol) {
3453 return true;
3454 }
3455
3456 // If the Method belongs to a class, check if it belongs to the class
3457 // hierarchy of the class bound.
3458 if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3459 // We allow methods declared within classes that are part of the hierarchy
3460 // of the class bound (superclass of, subclass of, or the same as the class
3461 // bound).
3462 return MethodInterface == BoundInterface ||
3463 MethodInterface->isSuperClassOf(BoundInterface) ||
3464 BoundInterface->isSuperClassOf(MethodInterface);
3465 }
3466 llvm_unreachable("unknown method context")::llvm::llvm_unreachable_internal("unknown method context", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3466)
;
3467}
3468
3469/// We first select the type of the method: Instance or Factory, then collect
3470/// all methods with that type.
3471bool Sema::CollectMultipleMethodsInGlobalPool(
3472 Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods,
3473 bool InstanceFirst, bool CheckTheOther,
3474 const ObjCObjectType *TypeBound) {
3475 if (ExternalSource)
3476 ReadMethodPool(Sel);
3477
3478 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3479 if (Pos == MethodPool.end())
3480 return false;
3481
3482 // Gather the non-hidden methods.
3483 ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3484 Pos->second.second;
3485 for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3486 if (M->getMethod() && !M->getMethod()->isHidden()) {
3487 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3488 Methods.push_back(M->getMethod());
3489 }
3490
3491 // Return if we find any method with the desired kind.
3492 if (!Methods.empty())
3493 return Methods.size() > 1;
3494
3495 if (!CheckTheOther)
3496 return false;
3497
3498 // Gather the other kind.
3499 ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3500 Pos->second.first;
3501 for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3502 if (M->getMethod() && !M->getMethod()->isHidden()) {
3503 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3504 Methods.push_back(M->getMethod());
3505 }
3506
3507 return Methods.size() > 1;
3508}
3509
3510bool Sema::AreMultipleMethodsInGlobalPool(
3511 Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3512 bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3513 // Diagnose finding more than one method in global pool.
3514 SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3515 FilteredMethods.push_back(BestMethod);
3516
3517 for (auto *M : Methods)
3518 if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3519 FilteredMethods.push_back(M);
3520
3521 if (FilteredMethods.size() > 1)
3522 DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
3523 receiverIdOrClass);
3524
3525 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3526 // Test for no method in the pool which should not trigger any warning by
3527 // caller.
3528 if (Pos == MethodPool.end())
3529 return true;
3530 ObjCMethodList &MethList =
3531 BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3532 return MethList.hasMoreThanOneDecl();
3533}
3534
3535ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3536 bool receiverIdOrClass,
3537 bool instance) {
3538 if (ExternalSource)
3539 ReadMethodPool(Sel);
3540
3541 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3542 if (Pos == MethodPool.end())
3543 return nullptr;
3544
3545 // Gather the non-hidden methods.
3546 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3547 SmallVector<ObjCMethodDecl *, 4> Methods;
3548 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3549 if (M->getMethod() && !M->getMethod()->isHidden())
3550 return M->getMethod();
3551 }
3552 return nullptr;
3553}
3554
3555void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
3556 Selector Sel, SourceRange R,
3557 bool receiverIdOrClass) {
3558 // We found multiple methods, so we may have to complain.
3559 bool issueDiagnostic = false, issueError = false;
3560
3561 // We support a warning which complains about *any* difference in
3562 // method signature.
3563 bool strictSelectorMatch =
3564 receiverIdOrClass &&
3565 !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
3566 if (strictSelectorMatch) {
3567 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3568 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3569 issueDiagnostic = true;
3570 break;
3571 }
3572 }
3573 }
3574
3575 // If we didn't see any strict differences, we won't see any loose
3576 // differences. In ARC, however, we also need to check for loose
3577 // mismatches, because most of them are errors.
3578 if (!strictSelectorMatch ||
3579 (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3580 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3581 // This checks if the methods differ in type mismatch.
3582 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3583 !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3584 issueDiagnostic = true;
3585 if (getLangOpts().ObjCAutoRefCount)
3586 issueError = true;
3587 break;
3588 }
3589 }
3590
3591 if (issueDiagnostic) {
3592 if (issueError)
3593 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3594 else if (strictSelectorMatch)
3595 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3596 else
3597 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3598
3599 Diag(Methods[0]->getBeginLoc(),
3600 issueError ? diag::note_possibility : diag::note_using)
3601 << Methods[0]->getSourceRange();
3602 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3603 Diag(Methods[I]->getBeginLoc(), diag::note_also_found)
3604 << Methods[I]->getSourceRange();
3605 }
3606 }
3607}
3608
3609ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
3610 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3611 if (Pos == MethodPool.end())
3612 return nullptr;
3613
3614 GlobalMethods &Methods = Pos->second;
3615 for (const ObjCMethodList *Method = &Methods.first; Method;
3616 Method = Method->getNext())
3617 if (Method->getMethod() &&
3618 (Method->getMethod()->isDefined() ||
3619 Method->getMethod()->isPropertyAccessor()))
3620 return Method->getMethod();
3621
3622 for (const ObjCMethodList *Method = &Methods.second; Method;
3623 Method = Method->getNext())
3624 if (Method->getMethod() &&
3625 (Method->getMethod()->isDefined() ||
3626 Method->getMethod()->isPropertyAccessor()))
3627 return Method->getMethod();
3628 return nullptr;
3629}
3630
3631static void
3632HelperSelectorsForTypoCorrection(
3633 SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
3634 StringRef Typo, const ObjCMethodDecl * Method) {
3635 const unsigned MaxEditDistance = 1;
3636 unsigned BestEditDistance = MaxEditDistance + 1;
3637 std::string MethodName = Method->getSelector().getAsString();
3638
3639 unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3640 if (MinPossibleEditDistance > 0 &&
3641 Typo.size() / MinPossibleEditDistance < 1)
3642 return;
3643 unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3644 if (EditDistance > MaxEditDistance)
3645 return;
3646 if (EditDistance == BestEditDistance)
3647 BestMethod.push_back(Method);
3648 else if (EditDistance < BestEditDistance) {
3649 BestMethod.clear();
3650 BestMethod.push_back(Method);
3651 }
3652}
3653
3654static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
3655 QualType ObjectType) {
3656 if (ObjectType.isNull())
3657 return true;
3658 if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
3659 return true;
3660 return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
3661 nullptr;
3662}
3663
3664const ObjCMethodDecl *
3665Sema::SelectorsForTypoCorrection(Selector Sel,
3666 QualType ObjectType) {
3667 unsigned NumArgs = Sel.getNumArgs();
3668 SmallVector<const ObjCMethodDecl *, 8> Methods;
3669 bool ObjectIsId = true, ObjectIsClass = true;
3670 if (ObjectType.isNull())
3671 ObjectIsId = ObjectIsClass = false;
3672 else if (!ObjectType->isObjCObjectPointerType())
3673 return nullptr;
3674 else if (const ObjCObjectPointerType *ObjCPtr =
3675 ObjectType->getAsObjCInterfacePointerType()) {
3676 ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3677 ObjectIsId = ObjectIsClass = false;
3678 }
3679 else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3680 ObjectIsClass = false;
3681 else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3682 ObjectIsId = false;
3683 else
3684 return nullptr;
3685
3686 for (GlobalMethodPool::iterator b = MethodPool.begin(),
3687 e = MethodPool.end(); b != e; b++) {
3688 // instance methods
3689 for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3690 if (M->getMethod() &&
3691 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3692 (M->getMethod()->getSelector() != Sel)) {
3693 if (ObjectIsId)
3694 Methods.push_back(M->getMethod());
3695 else if (!ObjectIsClass &&
3696 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3697 ObjectType))
3698 Methods.push_back(M->getMethod());
3699 }
3700 // class methods
3701 for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3702 if (M->getMethod() &&
3703 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3704 (M->getMethod()->getSelector() != Sel)) {
3705 if (ObjectIsClass)
3706 Methods.push_back(M->getMethod());
3707 else if (!ObjectIsId &&
3708 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3709 ObjectType))
3710 Methods.push_back(M->getMethod());
3711 }
3712 }
3713
3714 SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
3715 for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3716 HelperSelectorsForTypoCorrection(SelectedMethods,
3717 Sel.getAsString(), Methods[i]);
3718 }
3719 return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3720}
3721
3722/// DiagnoseDuplicateIvars -
3723/// Check for duplicate ivars in the entire class at the start of
3724/// \@implementation. This becomes necesssary because class extension can
3725/// add ivars to a class in random order which will not be known until
3726/// class's \@implementation is seen.
3727void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
3728 ObjCInterfaceDecl *SID) {
3729 for (auto *Ivar : ID->ivars()) {
3730 if (Ivar->isInvalidDecl())
3731 continue;
3732 if (IdentifierInfo *II = Ivar->getIdentifier()) {
3733 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3734 if (prevIvar) {
3735 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3736 Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3737 Ivar->setInvalidDecl();
3738 }
3739 }
3740 }
3741}
3742
3743/// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
3744static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
3745 if (S.getLangOpts().ObjCWeak) return;
3746
3747 for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3748 ivar; ivar = ivar->getNextIvar()) {
3749 if (ivar->isInvalidDecl()) continue;
3750 if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3751 if (S.getLangOpts().ObjCWeakRuntime) {
3752 S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3753 } else {
3754 S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3755 }
3756 }
3757 }
3758}
3759
3760/// Diagnose attempts to use flexible array member with retainable object type.
3761static void DiagnoseRetainableFlexibleArrayMember(Sema &S,
3762 ObjCInterfaceDecl *ID) {
3763 if (!S.getLangOpts().ObjCAutoRefCount)
3764 return;
3765
3766 for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3767 ivar = ivar->getNextIvar()) {
3768 if (ivar->isInvalidDecl())
3769 continue;
3770 QualType IvarTy = ivar->getType();
3771 if (IvarTy->isIncompleteArrayType() &&
3772 (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) &&
3773 IvarTy->isObjCLifetimeType()) {
3774 S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
3775 ivar->setInvalidDecl();
3776 }
3777 }
3778}
3779
3780Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
3781 switch (CurContext->getDeclKind()) {
3782 case Decl::ObjCInterface:
3783 return Sema::OCK_Interface;
3784 case Decl::ObjCProtocol:
3785 return Sema::OCK_Protocol;
3786 case Decl::ObjCCategory:
3787 if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
3788 return Sema::OCK_ClassExtension;
3789 return Sema::OCK_Category;
3790 case Decl::ObjCImplementation:
3791 return Sema::OCK_Implementation;
3792 case Decl::ObjCCategoryImpl:
3793 return Sema::OCK_CategoryImplementation;
3794
3795 default:
3796 return Sema::OCK_None;
3797 }
3798}
3799
3800static bool IsVariableSizedType(QualType T) {
3801 if (T->isIncompleteArrayType())
3802 return true;
3803 const auto *RecordTy = T->getAs<RecordType>();
3804 return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
3805}
3806
3807static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) {
3808 ObjCInterfaceDecl *IntfDecl = nullptr;
3809 ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3810 ObjCInterfaceDecl::ivar_iterator(), ObjCInterfaceDecl::ivar_iterator());
3811 if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) {
3812 Ivars = IntfDecl->ivars();
3813 } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) {
3814 IntfDecl = ImplDecl->getClassInterface();
3815 Ivars = ImplDecl->ivars();
3816 } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) {
3817 if (CategoryDecl->IsClassExtension()) {
3818 IntfDecl = CategoryDecl->getClassInterface();
3819 Ivars = CategoryDecl->ivars();
3820 }
3821 }
3822
3823 // Check if variable sized ivar is in interface and visible to subclasses.
3824 if (!isa<ObjCInterfaceDecl>(OCD)) {
3825 for (auto ivar : Ivars) {
3826 if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
3827 S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
3828 << ivar->getDeclName() << ivar->getType();
3829 }
3830 }
3831 }
3832
3833 // Subsequent checks require interface decl.
3834 if (!IntfDecl)
3835 return;
3836
3837 // Check if variable sized ivar is followed by another ivar.
3838 for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3839 ivar = ivar->getNextIvar()) {
3840 if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3841 continue;
3842 QualType IvarTy = ivar->getType();
3843 bool IsInvalidIvar = false;
3844 if (IvarTy->isIncompleteArrayType()) {
3845 S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
3846 << ivar->getDeclName() << IvarTy
3847 << TTK_Class; // Use "class" for Obj-C.
3848 IsInvalidIvar = true;
3849 } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
3850 if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
3851 S.Diag(ivar->getLocation(),
3852 diag::err_objc_variable_sized_type_not_at_end)
3853 << ivar->getDeclName() << IvarTy;
3854 IsInvalidIvar = true;
3855 }
3856 }
3857 if (IsInvalidIvar) {
3858 S.Diag(ivar->getNextIvar()->getLocation(),
3859 diag::note_next_ivar_declaration)
3860 << ivar->getNextIvar()->getSynthesize();
3861 ivar->setInvalidDecl();
3862 }
3863 }
3864
3865 // Check if ObjC container adds ivars after variable sized ivar in superclass.
3866 // Perform the check only if OCD is the first container to declare ivars to
3867 // avoid multiple warnings for the same ivar.
3868 ObjCIvarDecl *FirstIvar =
3869 (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3870 if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3871 const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3872 while (SuperClass && SuperClass->ivar_empty())
3873 SuperClass = SuperClass->getSuperClass();
3874 if (SuperClass) {
3875 auto IvarIter = SuperClass->ivar_begin();
3876 std::advance(IvarIter, SuperClass->ivar_size() - 1);
3877 const ObjCIvarDecl *LastIvar = *IvarIter;
3878 if (IsVariableSizedType(LastIvar->getType())) {
3879 S.Diag(FirstIvar->getLocation(),
3880 diag::warn_superclass_variable_sized_type_not_at_end)
3881 << FirstIvar->getDeclName() << LastIvar->getDeclName()
3882 << LastIvar->getType() << SuperClass->getDeclName();
3883 S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
3884 << LastIvar->getDeclName();
3885 }
3886 }
3887 }
3888}
3889
3890// Note: For class/category implementations, allMethods is always null.
3891Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
3892 ArrayRef<DeclGroupPtrTy> allTUVars) {
3893 if (getObjCContainerKind() == Sema::OCK_None)
3894 return nullptr;
3895
3896 assert(AtEnd.isValid() && "Invalid location for '@end'")((AtEnd.isValid() && "Invalid location for '@end'") ?
static_cast<void> (0) : __assert_fail ("AtEnd.isValid() && \"Invalid location for '@end'\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3896, __PRETTY_FUNCTION__))
;
3897
3898 auto *OCD = cast<ObjCContainerDecl>(CurContext);
3899 Decl *ClassDecl = OCD;
3900
3901 bool isInterfaceDeclKind =
3902 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3903 || isa<ObjCProtocolDecl>(ClassDecl);
3904 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3905
3906 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
3907 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
3908 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
3909
3910 for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
3911 ObjCMethodDecl *Method =
3912 cast_or_null<ObjCMethodDecl>(allMethods[i]);
3913
3914 if (!Method) continue; // Already issued a diagnostic.
3915 if (Method->isInstanceMethod()) {
3916 /// Check for instance method of the same name with incompatible types
3917 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
3918 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3919 : false;
3920 if ((isInterfaceDeclKind && PrevMethod && !match)
3921 || (checkIdenticalMethods && match)) {
3922 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3923 << Method->getDeclName();
3924 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3925 Method->setInvalidDecl();
3926 } else {
3927 if (PrevMethod) {
3928 Method->setAsRedeclaration(PrevMethod);
3929 if (!Context.getSourceManager().isInSystemHeader(
3930 Method->getLocation()))
3931 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3932 << Method->getDeclName();
3933 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3934 }
3935 InsMap[Method->getSelector()] = Method;
3936 /// The following allows us to typecheck messages to "id".
3937 AddInstanceMethodToGlobalPool(Method);
3938 }
3939 } else {
3940 /// Check for class method of the same name with incompatible types
3941 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
3942 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3943 : false;
3944 if ((isInterfaceDeclKind && PrevMethod && !match)
3945 || (checkIdenticalMethods && match)) {
3946 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3947 << Method->getDeclName();
3948 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3949 Method->setInvalidDecl();
3950 } else {
3951 if (PrevMethod) {
3952 Method->setAsRedeclaration(PrevMethod);
3953 if (!Context.getSourceManager().isInSystemHeader(
3954 Method->getLocation()))
3955 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3956 << Method->getDeclName();
3957 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3958 }
3959 ClsMap[Method->getSelector()] = Method;
3960 AddFactoryMethodToGlobalPool(Method);
3961 }
3962 }
3963 }
3964 if (isa<ObjCInterfaceDecl>(ClassDecl)) {
3965 // Nothing to do here.
3966 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
3967 // Categories are used to extend the class by declaring new methods.
3968 // By the same token, they are also used to add new properties. No
3969 // need to compare the added property to those in the class.
3970
3971 if (C->IsClassExtension()) {
3972 ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
3973 DiagnoseClassExtensionDupMethods(C, CCPrimary);
3974 }
3975 }
3976 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
3977 if (CDecl->getIdentifier())
3978 // ProcessPropertyDecl is responsible for diagnosing conflicts with any
3979 // user-defined setter/getter. It also synthesizes setter/getter methods
3980 // and adds them to the DeclContext and global method pools.
3981 for (auto *I : CDecl->properties())
3982 ProcessPropertyDecl(I);
3983 CDecl->setAtEndRange(AtEnd);
3984 }
3985 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
3986 IC->setAtEndRange(AtEnd);
3987 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
3988 // Any property declared in a class extension might have user
3989 // declared setter or getter in current class extension or one
3990 // of the other class extensions. Mark them as synthesized as
3991 // property will be synthesized when property with same name is
3992 // seen in the @implementation.
3993 for (const auto *Ext : IDecl->visible_extensions()) {
3994 for (const auto *Property : Ext->instance_properties()) {
3995 // Skip over properties declared @dynamic
3996 if (const ObjCPropertyImplDecl *PIDecl
3997 = IC->FindPropertyImplDecl(Property->getIdentifier(),
3998 Property->getQueryKind()))
3999 if (PIDecl->getPropertyImplementation()
4000 == ObjCPropertyImplDecl::Dynamic)
4001 continue;
4002
4003 for (const auto *Ext : IDecl->visible_extensions()) {
4004 if (ObjCMethodDecl *GetterMethod
4005 = Ext->getInstanceMethod(Property->getGetterName()))
4006 GetterMethod->setPropertyAccessor(true);
4007 if (!Property->isReadOnly())
4008 if (ObjCMethodDecl *SetterMethod
4009 = Ext->getInstanceMethod(Property->getSetterName()))
4010 SetterMethod->setPropertyAccessor(true);
4011 }
4012 }
4013 }
4014 ImplMethodsVsClassMethods(S, IC, IDecl);
4015 AtomicPropertySetterGetterRules(IC, IDecl);
4016 DiagnoseOwningPropertyGetterSynthesis(IC);
4017 DiagnoseUnusedBackingIvarInAccessor(S, IC);
4018 if (IDecl->hasDesignatedInitializers())
4019 DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
4020 DiagnoseWeakIvars(*this, IC);
4021 DiagnoseRetainableFlexibleArrayMember(*this, IDecl);
4022
4023 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
4024 if (IDecl->getSuperClass() == nullptr) {
4025 // This class has no superclass, so check that it has been marked with
4026 // __attribute((objc_root_class)).
4027 if (!HasRootClassAttr) {
4028 SourceLocation DeclLoc(IDecl->getLocation());
4029 SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
4030 Diag(DeclLoc, diag::warn_objc_root_class_missing)
4031 << IDecl->getIdentifier();
4032 // See if NSObject is in the current scope, and if it is, suggest
4033 // adding " : NSObject " to the class declaration.
4034 NamedDecl *IF = LookupSingleName(TUScope,
4035 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
4036 DeclLoc, LookupOrdinaryName);
4037 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
4038 if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4039 Diag(SuperClassLoc, diag::note_objc_needs_superclass)
4040 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
4041 } else {
4042 Diag(SuperClassLoc, diag::note_objc_needs_superclass);
4043 }
4044 }
4045 } else if (HasRootClassAttr) {
4046 // Complain that only root classes may have this attribute.
4047 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
4048 }
4049
4050 if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4051 // An interface can subclass another interface with a
4052 // objc_subclassing_restricted attribute when it has that attribute as
4053 // well (because of interfaces imported from Swift). Therefore we have
4054 // to check if we can subclass in the implementation as well.
4055 if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4056 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4057 Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
4058 Diag(Super->getLocation(), diag::note_class_declared);
4059 }
4060 }
4061
4062 if (IDecl->hasAttr<ObjCClassStubAttr>())
4063 Diag(IC->getLocation(), diag::err_implementation_of_class_stub);
4064
4065 if (LangOpts.ObjCRuntime.isNonFragile()) {
4066 while (IDecl->getSuperClass()) {
4067 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
4068 IDecl = IDecl->getSuperClass();
4069 }
4070 }
4071 }
4072 SetIvarInitializers(IC);
4073 } else if (ObjCCategoryImplDecl* CatImplClass =
4074 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
4075 CatImplClass->setAtEndRange(AtEnd);
4076
4077 // Find category interface decl and then check that all methods declared
4078 // in this interface are implemented in the category @implementation.
4079 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4080 if (ObjCCategoryDecl *Cat
4081 = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
4082 ImplMethodsVsClassMethods(S, CatImplClass, Cat);
4083 }
4084 }
4085 } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
4086 if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4087 if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4088 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4089 Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
4090 Diag(Super->getLocation(), diag::note_class_declared);
4091 }
4092 }
4093
4094 if (IntfDecl->hasAttr<ObjCClassStubAttr>() &&
4095 !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>())
4096 Diag(IntfDecl->getLocation(), diag::err_class_stub_subclassing_mismatch);
4097 }
4098 DiagnoseVariableSizedIvars(*this, OCD);
4099 if (isInterfaceDeclKind) {
4100 // Reject invalid vardecls.
4101 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4102 DeclGroupRef DG = allTUVars[i].get();
4103 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4104 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
4105 if (!VDecl->hasExternalStorage())
4106 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
4107 }
4108 }
4109 }
4110 ActOnObjCContainerFinishDefinition();
4111
4112 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4113 DeclGroupRef DG = allTUVars[i].get();
4114 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4115 (*I)->setTopLevelDeclInObjCContainer();
4116 Consumer.HandleTopLevelDeclInObjCContainer(DG);
4117 }
4118
4119 ActOnDocumentableDecl(ClassDecl);
4120 return ClassDecl;
4121}
4122
4123/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4124/// objective-c's type qualifier from the parser version of the same info.
4125static Decl::ObjCDeclQualifier
4126CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
4127 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4128}
4129
4130/// Check whether the declared result type of the given Objective-C
4131/// method declaration is compatible with the method's class.
4132///
4133static Sema::ResultTypeCompatibilityKind
4134CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
4135 ObjCInterfaceDecl *CurrentClass) {
4136 QualType ResultType = Method->getReturnType();
4137
4138 // If an Objective-C method inherits its related result type, then its
4139 // declared result type must be compatible with its own class type. The
4140 // declared result type is compatible if:
4141 if (const ObjCObjectPointerType *ResultObjectType
4142 = ResultType->getAs<ObjCObjectPointerType>()) {
4143 // - it is id or qualified id, or
4144 if (ResultObjectType->isObjCIdType() ||
4145 ResultObjectType->isObjCQualifiedIdType())
4146 return Sema::RTC_Compatible;
4147
4148 if (CurrentClass) {
4149 if (ObjCInterfaceDecl *ResultClass
4150 = ResultObjectType->getInterfaceDecl()) {
4151 // - it is the same as the method's class type, or
4152 if (declaresSameEntity(CurrentClass, ResultClass))
4153 return Sema::RTC_Compatible;
4154
4155 // - it is a superclass of the method's class type
4156 if (ResultClass->isSuperClassOf(CurrentClass))
4157 return Sema::RTC_Compatible;
4158 }
4159 } else {
4160 // Any Objective-C pointer type might be acceptable for a protocol
4161 // method; we just don't know.
4162 return Sema::RTC_Unknown;
4163 }
4164 }
4165
4166 return Sema::RTC_Incompatible;
4167}
4168
4169namespace {
4170/// A helper class for searching for methods which a particular method
4171/// overrides.
4172class OverrideSearch {
4173public:
4174 const ObjCMethodDecl *Method;
4175 llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden;
4176 bool Recursive;
4177
4178public:
4179 OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) {
4180 Selector selector = method->getSelector();
4181
4182 // Bypass this search if we've never seen an instance/class method
4183 // with this selector before.
4184 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
4185 if (it == S.MethodPool.end()) {
4186 if (!S.getExternalSource()) return;
4187 S.ReadMethodPool(selector);
4188
4189 it = S.MethodPool.find(selector);
4190 if (it == S.MethodPool.end())
4191 return;
4192 }
4193 const ObjCMethodList &list =
4194 method->isInstanceMethod() ? it->second.first : it->second.second;
4195 if (!list.getMethod()) return;
4196
4197 const ObjCContainerDecl *container
4198 = cast<ObjCContainerDecl>(method->getDeclContext());
4199
4200 // Prevent the search from reaching this container again. This is
4201 // important with categories, which override methods from the
4202 // interface and each other.
4203 if (const ObjCCategoryDecl *Category =
4204 dyn_cast<ObjCCategoryDecl>(container)) {
4205 searchFromContainer(container);
4206 if (const ObjCInterfaceDecl *Interface = Category->getClassInterface())
4207 searchFromContainer(Interface);
4208 } else {
4209 searchFromContainer(container);
4210 }
4211 }
4212
4213 typedef decltype(Overridden)::iterator iterator;
4214 iterator begin() const { return Overridden.begin(); }
4215 iterator end() const { return Overridden.end(); }
4216
4217private:
4218 void searchFromContainer(const ObjCContainerDecl *container) {
4219 if (container->isInvalidDecl()) return;
4220
4221 switch (container->getDeclKind()) {
4222#define OBJCCONTAINER(type, base) \
4223 case Decl::type: \
4224 searchFrom(cast<type##Decl>(container)); \
4225 break;
4226#define ABSTRACT_DECL(expansion)
4227#define DECL(type, base) \
4228 case Decl::type:
4229#include "clang/AST/DeclNodes.inc"
4230 llvm_unreachable("not an ObjC container!")::llvm::llvm_unreachable_internal("not an ObjC container!", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4230)
;
4231 }
4232 }
4233
4234 void searchFrom(const ObjCProtocolDecl *protocol) {
4235 if (!protocol->hasDefinition())
4236 return;
4237
4238 // A method in a protocol declaration overrides declarations from
4239 // referenced ("parent") protocols.
4240 search(protocol->getReferencedProtocols());
4241 }
4242
4243 void searchFrom(const ObjCCategoryDecl *category) {
4244 // A method in a category declaration overrides declarations from
4245 // the main class and from protocols the category references.
4246 // The main class is handled in the constructor.
4247 search(category->getReferencedProtocols());
4248 }
4249
4250 void searchFrom(const ObjCCategoryImplDecl *impl) {
4251 // A method in a category definition that has a category
4252 // declaration overrides declarations from the category
4253 // declaration.
4254 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4255 search(category);
4256 if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4257 search(Interface);
4258
4259 // Otherwise it overrides declarations from the class.
4260 } else if (const auto *Interface = impl->getClassInterface()) {
4261 search(Interface);
4262 }
4263 }
4264
4265 void searchFrom(const ObjCInterfaceDecl *iface) {
4266 // A method in a class declaration overrides declarations from
4267 if (!iface->hasDefinition())
4268 return;
4269
4270 // - categories,
4271 for (auto *Cat : iface->known_categories())
4272 search(Cat);
4273
4274 // - the super class, and
4275 if (ObjCInterfaceDecl *super = iface->getSuperClass())
4276 search(super);
4277
4278 // - any referenced protocols.
4279 search(iface->getReferencedProtocols());
4280 }
4281
4282 void searchFrom(const ObjCImplementationDecl *impl) {
4283 // A method in a class implementation overrides declarations from
4284 // the class interface.
4285 if (const auto *Interface = impl->getClassInterface())
4286 search(Interface);
4287 }
4288
4289 void search(const ObjCProtocolList &protocols) {
4290 for (const auto *Proto : protocols)
4291 search(Proto);
4292 }
4293
4294 void search(const ObjCContainerDecl *container) {
4295 // Check for a method in this container which matches this selector.
4296 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
4297 Method->isInstanceMethod(),
4298 /*AllowHidden=*/true);
4299
4300 // If we find one, record it and bail out.
4301 if (meth) {
4302 Overridden.insert(meth);
4303 return;
4304 }
4305
4306 // Otherwise, search for methods that a hypothetical method here
4307 // would have overridden.
4308
4309 // Note that we're now in a recursive case.
4310 Recursive = true;
4311
4312 searchFromContainer(container);
4313 }
4314};
4315} // end anonymous namespace
4316
4317void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
4318 ObjCInterfaceDecl *CurrentClass,
4319 ResultTypeCompatibilityKind RTC) {
4320 if (!ObjCMethod)
4321 return;
4322 // Search for overridden methods and merge information down from them.
4323 OverrideSearch overrides(*this, ObjCMethod);
4324 // Keep track if the method overrides any method in the class's base classes,
4325 // its protocols, or its categories' protocols; we will keep that info
4326 // in the ObjCMethodDecl.
4327 // For this info, a method in an implementation is not considered as
4328 // overriding the same method in the interface or its categories.
4329 bool hasOverriddenMethodsInBaseOrProtocol = false;
4330 for (ObjCMethodDecl *overridden : overrides) {
4331 if (!hasOverriddenMethodsInBaseOrProtocol) {
4332 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4333 CurrentClass != overridden->getClassInterface() ||
4334 overridden->isOverriding()) {
4335 hasOverriddenMethodsInBaseOrProtocol = true;
4336
4337 } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4338 // OverrideSearch will return as "overridden" the same method in the
4339 // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4340 // check whether a category of a base class introduced a method with the
4341 // same selector, after the interface method declaration.
4342 // To avoid unnecessary lookups in the majority of cases, we use the
4343 // extra info bits in GlobalMethodPool to check whether there were any
4344 // category methods with this selector.
4345 GlobalMethodPool::iterator It =
4346 MethodPool.find(ObjCMethod->getSelector());
4347 if (It != MethodPool.end()) {
4348 ObjCMethodList &List =
4349 ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4350 unsigned CategCount = List.getBits();
4351 if (CategCount > 0) {
4352 // If the method is in a category we'll do lookup if there were at
4353 // least 2 category methods recorded, otherwise only one will do.
4354 if (CategCount > 1 ||
4355 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4356 OverrideSearch overrides(*this, overridden);
4357 for (ObjCMethodDecl *SuperOverridden : overrides) {
4358 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4359 CurrentClass != SuperOverridden->getClassInterface()) {
4360 hasOverriddenMethodsInBaseOrProtocol = true;
4361 overridden->setOverriding(true);
4362 break;
4363 }
4364 }
4365 }
4366 }
4367 }
4368 }
4369 }
4370
4371 // Propagate down the 'related result type' bit from overridden methods.
4372 if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
4373 ObjCMethod->setRelatedResultType();
4374
4375 // Then merge the declarations.
4376 mergeObjCMethodDecls(ObjCMethod, overridden);
4377
4378 if (ObjCMethod->isImplicit() && overridden->isImplicit())
4379 continue; // Conflicting properties are detected elsewhere.
4380
4381 // Check for overriding methods
4382 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4383 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4384 CheckConflictingOverridingMethod(ObjCMethod, overridden,
4385 isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4386
4387 if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4388 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4389 !overridden->isImplicit() /* not meant for properties */) {
4390 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4391 E = ObjCMethod->param_end();
4392 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4393 PrevE = overridden->param_end();
4394 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4395 assert(PrevI != overridden->param_end() && "Param mismatch")((PrevI != overridden->param_end() && "Param mismatch"
) ? static_cast<void> (0) : __assert_fail ("PrevI != overridden->param_end() && \"Param mismatch\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4395, __PRETTY_FUNCTION__))
;
4396 QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4397 QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4398 // If type of argument of method in this class does not match its
4399 // respective argument type in the super class method, issue warning;
4400 if (!Context.typesAreCompatible(T1, T2)) {
4401 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4402 << T1 << T2;
4403 Diag(overridden->getLocation(), diag::note_previous_declaration);
4404 break;
4405 }
4406 }
4407 }
4408 }
4409
4410 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4411}
4412
4413/// Merge type nullability from for a redeclaration of the same entity,
4414/// producing the updated type of the redeclared entity.
4415static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
4416 QualType type,
4417 bool usesCSKeyword,
4418 SourceLocation prevLoc,
4419 QualType prevType,
4420 bool prevUsesCSKeyword) {
4421 // Determine the nullability of both types.
4422 auto nullability = type->getNullability(S.Context);
4423 auto prevNullability = prevType->getNullability(S.Context);
4424
4425 // Easy case: both have nullability.
4426 if (nullability.hasValue() == prevNullability.hasValue()) {
4427 // Neither has nullability; continue.
4428 if (!nullability)
4429 return type;
4430
4431 // The nullabilities are equivalent; do nothing.
4432 if (*nullability == *prevNullability)
4433 return type;
4434
4435 // Complain about mismatched nullability.
4436 S.Diag(loc, diag::err_nullability_conflicting)
4437 << DiagNullabilityKind(*nullability, usesCSKeyword)
4438 << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4439 return type;
4440 }
4441
4442 // If it's the redeclaration that has nullability, don't change anything.
4443 if (nullability)
4444 return type;
4445
4446 // Otherwise, provide the result with the same nullability.
4447 return S.Context.getAttributedType(
4448 AttributedType::getNullabilityAttrKind(*prevNullability),
4449 type, type);
4450}
4451
4452/// Merge information from the declaration of a method in the \@interface
4453/// (or a category/extension) into the corresponding method in the
4454/// @implementation (for a class or category).
4455static void mergeInterfaceMethodToImpl(Sema &S,
4456 ObjCMethodDecl *method,
4457 ObjCMethodDecl *prevMethod) {
4458 // Merge the objc_requires_super attribute.
4459 if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4460 !method->hasAttr<ObjCRequiresSuperAttr>()) {
4461 // merge the attribute into implementation.
4462 method->addAttr(
4463 ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4464 method->getLocation()));
4465 }
4466
4467 // Merge nullability of the result type.
4468 QualType newReturnType
4469 = mergeTypeNullabilityForRedecl(
4470 S, method->getReturnTypeSourceRange().getBegin(),
4471 method->getReturnType(),
4472 method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4473 prevMethod->getReturnTypeSourceRange().getBegin(),
4474 prevMethod->getReturnType(),
4475 prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4476 method->setReturnType(newReturnType);
4477
4478 // Handle each of the parameters.
4479 unsigned numParams = method->param_size();
4480 unsigned numPrevParams = prevMethod->param_size();
4481 for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4482 ParmVarDecl *param = method->param_begin()[i];
4483 ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4484
4485 // Merge nullability.
4486 QualType newParamType
4487 = mergeTypeNullabilityForRedecl(
4488 S, param->getLocation(), param->getType(),
4489 param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4490 prevParam->getLocation(), prevParam->getType(),
4491 prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4492 param->setType(newParamType);
4493 }
4494}
4495
4496/// Verify that the method parameters/return value have types that are supported
4497/// by the x86 target.
4498static void checkObjCMethodX86VectorTypes(Sema &SemaRef,
4499 const ObjCMethodDecl *Method) {
4500 assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==((SemaRef.getASTContext().getTargetInfo().getTriple().getArch
() == llvm::Triple::x86 && "x86-specific check invoked for a different target"
) ? static_cast<void> (0) : __assert_fail ("SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == llvm::Triple::x86 && \"x86-specific check invoked for a different target\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4502, __PRETTY_FUNCTION__))
4501 llvm::Triple::x86 &&((SemaRef.getASTContext().getTargetInfo().getTriple().getArch
() == llvm::Triple::x86 && "x86-specific check invoked for a different target"
) ? static_cast<void> (0) : __assert_fail ("SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == llvm::Triple::x86 && \"x86-specific check invoked for a different target\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4502, __PRETTY_FUNCTION__))
4502 "x86-specific check invoked for a different target")((SemaRef.getASTContext().getTargetInfo().getTriple().getArch
() == llvm::Triple::x86 && "x86-specific check invoked for a different target"
) ? static_cast<void> (0) : __assert_fail ("SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == llvm::Triple::x86 && \"x86-specific check invoked for a different target\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4502, __PRETTY_FUNCTION__))
;
4503 SourceLocation Loc;
4504 QualType T;
4505 for (const ParmVarDecl *P : Method->parameters()) {
4506 if (P->getType()->isVectorType()) {
4507 Loc = P->getBeginLoc();
4508 T = P->getType();
4509 break;
4510 }
4511 }
4512 if (Loc.isInvalid()) {
4513 if (Method->getReturnType()->isVectorType()) {
4514 Loc = Method->getReturnTypeSourceRange().getBegin();
4515 T = Method->getReturnType();
4516 } else
4517 return;
4518 }
4519
4520 // Vector parameters/return values are not supported by objc_msgSend on x86 in
4521 // iOS < 9 and macOS < 10.11.
4522 const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4523 VersionTuple AcceptedInVersion;
4524 if (Triple.getOS() == llvm::Triple::IOS)
4525 AcceptedInVersion = VersionTuple(/*Major=*/9);
4526 else if (Triple.isMacOSX())
4527 AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4528 else
4529 return;
4530 if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >=
4531 AcceptedInVersion)
4532 return;
4533 SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
4534 << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4535 : /*parameter*/ 0)
4536 << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4537}
4538
4539Decl *Sema::ActOnMethodDeclaration(
4540 Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc,
4541 tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4542 ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
4543 // optional arguments. The number of types/arguments is obtained
4544 // from the Sel.getNumArgs().
4545 ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
4546 unsigned CNumArgs, // c-style args
4547 const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind,
4548 bool isVariadic, bool MethodDefinition) {
4549 // Make sure we can establish a context for the method.
4550 if (!CurContext->isObjCContainer()) {
4551 Diag(MethodLoc, diag::err_missing_method_context);
4552 return nullptr;
4553 }
4554 Decl *ClassDecl = cast<ObjCContainerDecl>(CurContext);
4555 QualType resultDeclType;
4556
4557 bool HasRelatedResultType = false;
4558 TypeSourceInfo *ReturnTInfo = nullptr;
4559 if (ReturnType) {
4560 resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
4561
4562 if (CheckFunctionReturnType(resultDeclType, MethodLoc))
4563 return nullptr;
4564
4565 QualType bareResultType = resultDeclType;
4566 (void)AttributedType::stripOuterNullability(bareResultType);
4567 HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4568 } else { // get the type for "id".
4569 resultDeclType = Context.getObjCIdType();
4570 Diag(MethodLoc, diag::warn_missing_method_return_type)
4571 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4572 }
4573
4574 ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4575 Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
4576 MethodType == tok::minus, isVariadic,
4577 /*isPropertyAccessor=*/false,
4578 /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4579 MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
4580 : ObjCMethodDecl::Required,
4581 HasRelatedResultType);
4582
4583 SmallVector<ParmVarDecl*, 16> Params;
4584
4585 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
4586 QualType ArgType;
4587 TypeSourceInfo *DI;
4588
4589 if (!ArgInfo[i].Type) {
4590 ArgType = Context.getObjCIdType();
4591 DI = nullptr;
4592 } else {
4593 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
4594 }
4595
4596 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4597 LookupOrdinaryName, forRedeclarationInCurContext());
4598 LookupName(R, S);
4599 if (R.isSingleResult()) {
4600 NamedDecl *PrevDecl = R.getFoundDecl();
4601 if (S->isDeclScope(PrevDecl)) {
4602 Diag(ArgInfo[i].NameLoc,
4603 (MethodDefinition ? diag::warn_method_param_redefinition
4604 : diag::warn_method_param_declaration))
4605 << ArgInfo[i].Name;
4606 Diag(PrevDecl->getLocation(),
4607 diag::note_previous_declaration);
4608 }
4609 }
4610
4611 SourceLocation StartLoc = DI
4612 ? DI->getTypeLoc().getBeginLoc()
4613 : ArgInfo[i].NameLoc;
4614
4615 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
4616 ArgInfo[i].NameLoc, ArgInfo[i].Name,
4617 ArgType, DI, SC_None);
4618
4619 Param->setObjCMethodScopeInfo(i);
4620
4621 Param->setObjCDeclQualifier(
4622 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4623
4624 // Apply the attributes to the parameter.
4625 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
4626 AddPragmaAttributes(TUScope, Param);
4627
4628 if (Param->hasAttr<BlocksAttr>()) {
4629 Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4630 Param->setInvalidDecl();
4631 }
4632 S->AddDecl(Param);
4633 IdResolver.AddDecl(Param);
4634
4635 Params.push_back(Param);
4636 }
4637
4638 for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
4639 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4640 QualType ArgType = Param->getType();
4641 if (ArgType.isNull())
4642 ArgType = Context.getObjCIdType();
4643 else
4644 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4645 ArgType = Context.getAdjustedParameterType(ArgType);
4646
4647 Param->setDeclContext(ObjCMethod);
4648 Params.push_back(Param);
4649 }
4650
4651 ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4652 ObjCMethod->setObjCDeclQualifier(
4653 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
4654
4655 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
4656 AddPragmaAttributes(TUScope, ObjCMethod);
4657
4658 // Add the method now.
4659 const ObjCMethodDecl *PrevMethod = nullptr;
4660 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
4661 if (MethodType == tok::minus) {
4662 PrevMethod = ImpDecl->getInstanceMethod(Sel);
4663 ImpDecl->addInstanceMethod(ObjCMethod);
4664 } else {
4665 PrevMethod = ImpDecl->getClassMethod(Sel);
4666 ImpDecl->addClassMethod(ObjCMethod);
4667 }
4668
4669 // Merge information from the @interface declaration into the
4670 // @implementation.
4671 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4672 if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4673 ObjCMethod->isInstanceMethod())) {
4674 mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
4675
4676 // Warn about defining -dealloc in a category.
4677 if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4678 ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4679 Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4680 << ObjCMethod->getDeclName();
4681 }
4682 }
4683
4684 // Warn if a method declared in a protocol to which a category or
4685 // extension conforms is non-escaping and the implementation's method is
4686 // escaping.
4687 for (auto *C : IDecl->visible_categories())
4688 for (auto &P : C->protocols())
4689 if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(),
4690 ObjCMethod->isInstanceMethod())) {
4691 assert(ObjCMethod->parameters().size() ==((ObjCMethod->parameters().size() == IMD->parameters().
size() && "Methods have different number of parameters"
) ? static_cast<void> (0) : __assert_fail ("ObjCMethod->parameters().size() == IMD->parameters().size() && \"Methods have different number of parameters\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4693, __PRETTY_FUNCTION__))
4692 IMD->parameters().size() &&((ObjCMethod->parameters().size() == IMD->parameters().
size() && "Methods have different number of parameters"
) ? static_cast<void> (0) : __assert_fail ("ObjCMethod->parameters().size() == IMD->parameters().size() && \"Methods have different number of parameters\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4693, __PRETTY_FUNCTION__))
4693 "Methods have different number of parameters")((ObjCMethod->parameters().size() == IMD->parameters().
size() && "Methods have different number of parameters"
) ? static_cast<void> (0) : __assert_fail ("ObjCMethod->parameters().size() == IMD->parameters().size() && \"Methods have different number of parameters\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4693, __PRETTY_FUNCTION__))
;
4694 auto OI = IMD->param_begin(), OE = IMD->param_end();
4695 auto NI = ObjCMethod->param_begin();
4696 for (; OI != OE; ++OI, ++NI)
4697 diagnoseNoescape(*NI, *OI, C, P, *this);
4698 }
4699 }
4700 } else {
4701 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
4702 }
4703
4704 if (PrevMethod) {
4705 // You can never have two method definitions with the same name.
4706 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
4707 << ObjCMethod->getDeclName();
4708 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4709 ObjCMethod->setInvalidDecl();
4710 return ObjCMethod;
4711 }
4712
4713 // If this Objective-C method does not have a related result type, but we
4714 // are allowed to infer related result types, try to do so based on the
4715 // method family.
4716 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4717 if (!CurrentClass) {
4718 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
4719 CurrentClass = Cat->getClassInterface();
4720 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
4721 CurrentClass = Impl->getClassInterface();
4722 else if (ObjCCategoryImplDecl *CatImpl
4723 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
4724 CurrentClass = CatImpl->getClassInterface();
4725 }
4726
4727 ResultTypeCompatibilityKind RTC
4728 = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
4729
4730 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
4731
4732 bool ARCError = false;
4733 if (getLangOpts().ObjCAutoRefCount)
4734 ARCError = CheckARCMethodDecl(ObjCMethod);
4735
4736 // Infer the related result type when possible.
4737 if (!ARCError && RTC == Sema::RTC_Compatible &&
4738 !ObjCMethod->hasRelatedResultType() &&
4739 LangOpts.ObjCInferRelatedResultType) {
4740 bool InferRelatedResultType = false;
4741 switch (ObjCMethod->getMethodFamily()) {
4742 case OMF_None:
4743 case OMF_copy:
4744 case OMF_dealloc:
4745 case OMF_finalize:
4746 case OMF_mutableCopy:
4747 case OMF_release:
4748 case OMF_retainCount:
4749 case OMF_initialize:
4750 case OMF_performSelector:
4751 break;
4752
4753 case OMF_alloc:
4754 case OMF_new:
4755 InferRelatedResultType = ObjCMethod->isClassMethod();
4756 break;
4757
4758 case OMF_init:
4759 case OMF_autorelease:
4760 case OMF_retain:
4761 case OMF_self:
4762 InferRelatedResultType = ObjCMethod->isInstanceMethod();
4763 break;
4764 }
4765
4766 if (InferRelatedResultType &&
4767 !ObjCMethod->getReturnType()->isObjCIndependentClassType())
4768 ObjCMethod->setRelatedResultType();
4769 }
4770
4771 if (MethodDefinition &&
4772 Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
4773 checkObjCMethodX86VectorTypes(*this, ObjCMethod);
4774
4775 // + load method cannot have availability attributes. It get called on
4776 // startup, so it has to have the availability of the deployment target.
4777 if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) {
4778 if (ObjCMethod->isClassMethod() &&
4779 ObjCMethod->getSelector().getAsString() == "load") {
4780 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
4781 << 0;
4782 ObjCMethod->dropAttr<AvailabilityAttr>();
4783 }
4784 }
4785
4786 ActOnDocumentableDecl(ObjCMethod);
4787
4788 return ObjCMethod;
4789}
4790
4791bool Sema::CheckObjCDeclScope(Decl *D) {
4792 // Following is also an error. But it is caused by a missing @end
4793 // and diagnostic is issued elsewhere.
4794 if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
4795 return false;
4796
4797 // If we switched context to translation unit while we are still lexically in
4798 // an objc container, it means the parser missed emitting an error.
4799 if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
4800 return false;
4801
4802 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
4803 D->setInvalidDecl();
4804
4805 return true;
4806}
4807
4808/// Called whenever \@defs(ClassName) is encountered in the source. Inserts the
4809/// instance variables of ClassName into Decls.
4810void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
4811 IdentifierInfo *ClassName,
4812 SmallVectorImpl<Decl*> &Decls) {
4813 // Check that ClassName is a valid class
4814 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
4815 if (!Class) {
4816 Diag(DeclStart, diag::err_undef_interface) << ClassName;
4817 return;
4818 }
4819 if (LangOpts.ObjCRuntime.isNonFragile()) {
4820 Diag(DeclStart, diag::err_atdef_nonfragile_interface);
4821 return;
4822 }
4823
4824 // Collect the instance variables
4825 SmallVector<const ObjCIvarDecl*, 32> Ivars;
4826 Context.DeepCollectObjCIvars(Class, true, Ivars);
4827 // For each ivar, create a fresh ObjCAtDefsFieldDecl.
4828 for (unsigned i = 0; i < Ivars.size(); i++) {
4829 const FieldDecl* ID = Ivars[i];
4830 RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
4831 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
4832 /*FIXME: StartL=*/ID->getLocation(),
4833 ID->getLocation(),
4834 ID->getIdentifier(), ID->getType(),
4835 ID->getBitWidth());
4836 Decls.push_back(FD);
4837 }
4838
4839 // Introduce all of these fields into the appropriate scope.
4840 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
4841 D != Decls.end(); ++D) {
4842 FieldDecl *FD = cast<FieldDecl>(*D);
4843 if (getLangOpts().CPlusPlus)
4844 PushOnScopeChains(FD, S);
4845 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
4846 Record->addDecl(FD);
4847 }
4848}
4849
4850/// Build a type-check a new Objective-C exception variable declaration.
4851VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
4852 SourceLocation StartLoc,
4853 SourceLocation IdLoc,
4854 IdentifierInfo *Id,
4855 bool Invalid) {
4856 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4857 // duration shall not be qualified by an address-space qualifier."
4858 // Since all parameters have automatic store duration, they can not have
4859 // an address space.
4860 if (T.getAddressSpace() != LangAS::Default) {
4861 Diag(IdLoc, diag::err_arg_with_address_space);
4862 Invalid = true;
4863 }
4864
4865 // An @catch parameter must be an unqualified object pointer type;
4866 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
4867 if (Invalid) {
4868 // Don't do any further checking.
4869 } else if (T->isDependentType()) {
4870 // Okay: we don't know what this type will instantiate to.
4871 } else if (T->isObjCQualifiedIdType()) {
4872 Invalid = true;
4873 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
4874 } else if (T->isObjCIdType()) {
4875 // Okay: we don't know what this type will instantiate to.
4876 } else if (!T->isObjCObjectPointerType()) {
4877 Invalid = true;
4878 Diag(IdLoc, diag::err_catch_param_not_objc_type);
4879 } else if (!T->getAs<ObjCObjectPointerType>()->getInterfaceType()) {
4880 Invalid = true;
4881 Diag(IdLoc, diag::err_catch_param_not_objc_type);
4882 }
4883
4884 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
4885 T, TInfo, SC_None);
4886 New->setExceptionVariable(true);
4887
4888 // In ARC, infer 'retaining' for variables of retainable type.
4889 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
4890 Invalid = true;
4891
4892 if (Invalid)
4893 New->setInvalidDecl();
4894 return New;
4895}
4896
4897Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
4898 const DeclSpec &DS = D.getDeclSpec();
4899
4900 // We allow the "register" storage class on exception variables because
4901 // GCC did, but we drop it completely. Any other storage class is an error.
4902 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4903 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
4904 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
4905 } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4906 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
4907 << DeclSpec::getSpecifierName(SCS);
4908 }
4909 if (DS.isInlineSpecified())
4910 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4911 << getLangOpts().CPlusPlus17;
4912 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
4913 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
4914 diag::err_invalid_thread)
4915 << DeclSpec::getSpecifierName(TSCS);
4916 D.getMutableDeclSpec().ClearStorageClassSpecs();
4917
4918 DiagnoseFunctionSpecifiers(D.getDeclSpec());
4919
4920 // Check that there are no default arguments inside the type of this
4921 // exception object (C++ only).
4922 if (getLangOpts().CPlusPlus)
4923 CheckExtraCXXDefaultArguments(D);
4924
4925 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4926 QualType ExceptionType = TInfo->getType();
4927
4928 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
4929 D.getSourceRange().getBegin(),
4930 D.getIdentifierLoc(),
4931 D.getIdentifier(),
4932 D.isInvalidType());
4933
4934 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4935 if (D.getCXXScopeSpec().isSet()) {
4936 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
4937 << D.getCXXScopeSpec().getRange();
4938 New->setInvalidDecl();
4939 }
4940
4941 // Add the parameter declaration into this scope.
4942 S->AddDecl(New);
4943 if (D.getIdentifier())
4944 IdResolver.AddDecl(New);
4945
4946 ProcessDeclAttributes(S, New, D);
4947
4948 if (New->hasAttr<BlocksAttr>())
4949 Diag(New->getLocation(), diag::err_block_on_nonlocal);
4950 return New;
4951}
4952
4953/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
4954/// initialization.
4955void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
4956 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
4957 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
4958 Iv= Iv->getNextIvar()) {
4959 QualType QT = Context.getBaseElementType(Iv->getType());
4960 if (QT->isRecordType())
4961 Ivars.push_back(Iv);
4962 }
4963}
4964
4965void Sema::DiagnoseUseOfUnimplementedSelectors() {
4966 // Load referenced selectors from the external source.
4967 if (ExternalSource) {
4968 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
4969 ExternalSource->ReadReferencedSelectors(Sels);
4970 for (unsigned I = 0, N = Sels.size(); I != N; ++I)
4971 ReferencedSelectors[Sels[I].first] = Sels[I].second;
4972 }
4973
4974 // Warning will be issued only when selector table is
4975 // generated (which means there is at lease one implementation
4976 // in the TU). This is to match gcc's behavior.
4977 if (ReferencedSelectors.empty() ||
4978 !Context.AnyObjCImplementation())
4979 return;
4980 for (auto &SelectorAndLocation : ReferencedSelectors) {
4981 Selector Sel = SelectorAndLocation.first;
4982 SourceLocation Loc = SelectorAndLocation.second;
4983 if (!LookupImplementedMethodInGlobalPool(Sel))
4984 Diag(Loc, diag::warn_unimplemented_selector) << Sel;
4985 }
4986}
4987
4988ObjCIvarDecl *
4989Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
4990 const ObjCPropertyDecl *&PDecl) const {
4991 if (Method->isClassMethod())
4992 return nullptr;
4993 const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
4994 if (!IDecl)
4995 return nullptr;
4996 Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
4997 /*shallowCategoryLookup=*/false,
4998 /*followSuper=*/false);
4999 if (!Method || !Method->isPropertyAccessor())
5000 return nullptr;
5001 if ((PDecl = Method->findPropertyDecl()))
5002 if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
5003 // property backing ivar must belong to property's class
5004 // or be a private ivar in class's implementation.
5005 // FIXME. fix the const-ness issue.
5006 IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
5007 IV->getIdentifier());
5008 return IV;
5009 }
5010 return nullptr;
5011}
5012
5013namespace {
5014 /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
5015 /// accessor references the backing ivar.
5016 class UnusedBackingIvarChecker :
5017 public RecursiveASTVisitor<UnusedBackingIvarChecker> {
5018 public:
5019 Sema &S;
5020 const ObjCMethodDecl *Method;
5021 const ObjCIvarDecl *IvarD;
5022 bool AccessedIvar;
5023 bool InvokedSelfMethod;
5024
5025 UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
5026 const ObjCIvarDecl *IvarD)
5027 : S(S), Method(Method), IvarD(IvarD),
5028 AccessedIvar(false), InvokedSelfMethod(false) {
5029 assert(IvarD)((IvarD) ? static_cast<void> (0) : __assert_fail ("IvarD"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 5029, __PRETTY_FUNCTION__))
;
5030 }
5031
5032 bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
5033 if (E->getDecl() == IvarD) {
5034 AccessedIvar = true;
5035 return false;
5036 }
5037 return true;
5038 }
5039
5040 bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
5041 if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
5042 S.isSelfExpr(E->getInstanceReceiver(), Method)) {
5043 InvokedSelfMethod = true;
5044 }
5045 return true;
5046 }
5047 };
5048} // end anonymous namespace
5049
5050void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
5051 const ObjCImplementationDecl *ImplD) {
5052 if (S->hasUnrecoverableErrorOccurred())
5053 return;
5054
5055 for (const auto *CurMethod : ImplD->instance_methods()) {
5056 unsigned DIAG = diag::warn_unused_property_backing_ivar;
5057 SourceLocation Loc = CurMethod->getLocation();
5058 if (Diags.isIgnored(DIAG, Loc))
5059 continue;
5060
5061 const ObjCPropertyDecl *PDecl;
5062 const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
5063 if (!IV)
5064 continue;
5065
5066 UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
5067 Checker.TraverseStmt(CurMethod->getBody());
5068 if (Checker.AccessedIvar)
5069 continue;
5070
5071 // Do not issue this warning if backing ivar is used somewhere and accessor
5072 // implementation makes a self call. This is to prevent false positive in
5073 // cases where the ivar is accessed by another method that the accessor
5074 // delegates to.
5075 if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
5076 Diag(Loc, DIAG) << IV;
5077 Diag(PDecl->getLocation(), diag::note_property_declare);
5078 }
5079 }
5080}

/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h

1//===- DeclBase.h - Base Classes for representing declarations --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the Decl and DeclContext interfaces.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CLANG_AST_DECLBASE_H
14#define LLVM_CLANG_AST_DECLBASE_H
15
16#include "clang/AST/ASTDumperUtils.h"
17#include "clang/AST/AttrIterator.h"
18#include "clang/AST/DeclarationName.h"
19#include "clang/Basic/IdentifierTable.h"
20#include "clang/Basic/LLVM.h"
21#include "clang/Basic/SourceLocation.h"
22#include "clang/Basic/Specifiers.h"
23#include "llvm/ADT/ArrayRef.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/ADT/PointerUnion.h"
26#include "llvm/ADT/iterator.h"
27#include "llvm/ADT/iterator_range.h"
28#include "llvm/Support/Casting.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/PrettyStackTrace.h"
31#include "llvm/Support/VersionTuple.h"
32#include <algorithm>
33#include <cassert>
34#include <cstddef>
35#include <iterator>
36#include <string>
37#include <type_traits>
38#include <utility>
39
40namespace clang {
41
42class ASTContext;
43class ASTMutationListener;
44class Attr;
45class BlockDecl;
46class DeclContext;
47class ExternalSourceSymbolAttr;
48class FunctionDecl;
49class FunctionType;
50class IdentifierInfo;
51enum Linkage : unsigned char;
52class LinkageSpecDecl;
53class Module;
54class NamedDecl;
55class ObjCCategoryDecl;
56class ObjCCategoryImplDecl;
57class ObjCContainerDecl;
58class ObjCImplDecl;
59class ObjCImplementationDecl;
60class ObjCInterfaceDecl;
61class ObjCMethodDecl;
62class ObjCProtocolDecl;
63struct PrintingPolicy;
64class RecordDecl;
65class SourceManager;
66class Stmt;
67class StoredDeclsMap;
68class TemplateDecl;
69class TranslationUnitDecl;
70class UsingDirectiveDecl;
71
72/// Captures the result of checking the availability of a
73/// declaration.
74enum AvailabilityResult {
75 AR_Available = 0,
76 AR_NotYetIntroduced,
77 AR_Deprecated,
78 AR_Unavailable
79};
80
81/// Decl - This represents one declaration (or definition), e.g. a variable,
82/// typedef, function, struct, etc.
83///
84/// Note: There are objects tacked on before the *beginning* of Decl
85/// (and its subclasses) in its Decl::operator new(). Proper alignment
86/// of all subclasses (not requiring more than the alignment of Decl) is
87/// asserted in DeclBase.cpp.
88class alignas(8) Decl {
89public:
90 /// Lists the kind of concrete classes of Decl.
91 enum Kind {
92#define DECL(DERIVED, BASE) DERIVED,
93#define ABSTRACT_DECL(DECL)
94#define DECL_RANGE(BASE, START, END) \
95 first##BASE = START, last##BASE = END,
96#define LAST_DECL_RANGE(BASE, START, END) \
97 first##BASE = START, last##BASE = END
98#include "clang/AST/DeclNodes.inc"
99 };
100
101 /// A placeholder type used to construct an empty shell of a
102 /// decl-derived type that will be filled in later (e.g., by some
103 /// deserialization method).
104 struct EmptyShell {};
105
106 /// IdentifierNamespace - The different namespaces in which
107 /// declarations may appear. According to C99 6.2.3, there are
108 /// four namespaces, labels, tags, members and ordinary
109 /// identifiers. C++ describes lookup completely differently:
110 /// certain lookups merely "ignore" certain kinds of declarations,
111 /// usually based on whether the declaration is of a type, etc.
112 ///
113 /// These are meant as bitmasks, so that searches in
114 /// C++ can look into the "tag" namespace during ordinary lookup.
115 ///
116 /// Decl currently provides 15 bits of IDNS bits.
117 enum IdentifierNamespace {
118 /// Labels, declared with 'x:' and referenced with 'goto x'.
119 IDNS_Label = 0x0001,
120
121 /// Tags, declared with 'struct foo;' and referenced with
122 /// 'struct foo'. All tags are also types. This is what
123 /// elaborated-type-specifiers look for in C.
124 /// This also contains names that conflict with tags in the
125 /// same scope but that are otherwise ordinary names (non-type
126 /// template parameters and indirect field declarations).
127 IDNS_Tag = 0x0002,
128
129 /// Types, declared with 'struct foo', typedefs, etc.
130 /// This is what elaborated-type-specifiers look for in C++,
131 /// but note that it's ill-formed to find a non-tag.
132 IDNS_Type = 0x0004,
133
134 /// Members, declared with object declarations within tag
135 /// definitions. In C, these can only be found by "qualified"
136 /// lookup in member expressions. In C++, they're found by
137 /// normal lookup.
138 IDNS_Member = 0x0008,
139
140 /// Namespaces, declared with 'namespace foo {}'.
141 /// Lookup for nested-name-specifiers find these.
142 IDNS_Namespace = 0x0010,
143
144 /// Ordinary names. In C, everything that's not a label, tag,
145 /// member, or function-local extern ends up here.
146 IDNS_Ordinary = 0x0020,
147
148 /// Objective C \@protocol.
149 IDNS_ObjCProtocol = 0x0040,
150
151 /// This declaration is a friend function. A friend function
152 /// declaration is always in this namespace but may also be in
153 /// IDNS_Ordinary if it was previously declared.
154 IDNS_OrdinaryFriend = 0x0080,
155
156 /// This declaration is a friend class. A friend class
157 /// declaration is always in this namespace but may also be in
158 /// IDNS_Tag|IDNS_Type if it was previously declared.
159 IDNS_TagFriend = 0x0100,
160
161 /// This declaration is a using declaration. A using declaration
162 /// *introduces* a number of other declarations into the current
163 /// scope, and those declarations use the IDNS of their targets,
164 /// but the actual using declarations go in this namespace.
165 IDNS_Using = 0x0200,
166
167 /// This declaration is a C++ operator declared in a non-class
168 /// context. All such operators are also in IDNS_Ordinary.
169 /// C++ lexical operator lookup looks for these.
170 IDNS_NonMemberOperator = 0x0400,
171
172 /// This declaration is a function-local extern declaration of a
173 /// variable or function. This may also be IDNS_Ordinary if it
174 /// has been declared outside any function. These act mostly like
175 /// invisible friend declarations, but are also visible to unqualified
176 /// lookup within the scope of the declaring function.
177 IDNS_LocalExtern = 0x0800,
178
179 /// This declaration is an OpenMP user defined reduction construction.
180 IDNS_OMPReduction = 0x1000,
181
182 /// This declaration is an OpenMP user defined mapper.
183 IDNS_OMPMapper = 0x2000,
184 };
185
186 /// ObjCDeclQualifier - 'Qualifiers' written next to the return and
187 /// parameter types in method declarations. Other than remembering
188 /// them and mangling them into the method's signature string, these
189 /// are ignored by the compiler; they are consumed by certain
190 /// remote-messaging frameworks.
191 ///
192 /// in, inout, and out are mutually exclusive and apply only to
193 /// method parameters. bycopy and byref are mutually exclusive and
194 /// apply only to method parameters (?). oneway applies only to
195 /// results. All of these expect their corresponding parameter to
196 /// have a particular type. None of this is currently enforced by
197 /// clang.
198 ///
199 /// This should be kept in sync with ObjCDeclSpec::ObjCDeclQualifier.
200 enum ObjCDeclQualifier {
201 OBJC_TQ_None = 0x0,
202 OBJC_TQ_In = 0x1,
203 OBJC_TQ_Inout = 0x2,
204 OBJC_TQ_Out = 0x4,
205 OBJC_TQ_Bycopy = 0x8,
206 OBJC_TQ_Byref = 0x10,
207 OBJC_TQ_Oneway = 0x20,
208
209 /// The nullability qualifier is set when the nullability of the
210 /// result or parameter was expressed via a context-sensitive
211 /// keyword.
212 OBJC_TQ_CSNullability = 0x40
213 };
214
215 /// The kind of ownership a declaration has, for visibility purposes.
216 /// This enumeration is designed such that higher values represent higher
217 /// levels of name hiding.
218 enum class ModuleOwnershipKind : unsigned {
219 /// This declaration is not owned by a module.
220 Unowned,
221
222 /// This declaration has an owning module, but is globally visible
223 /// (typically because its owning module is visible and we know that
224 /// modules cannot later become hidden in this compilation).
225 /// After serialization and deserialization, this will be converted
226 /// to VisibleWhenImported.
227 Visible,
228
229 /// This declaration has an owning module, and is visible when that
230 /// module is imported.
231 VisibleWhenImported,
232
233 /// This declaration has an owning module, but is only visible to
234 /// lookups that occur within that module.
235 ModulePrivate
236 };
237
238protected:
239 /// The next declaration within the same lexical
240 /// DeclContext. These pointers form the linked list that is
241 /// traversed via DeclContext's decls_begin()/decls_end().
242 ///
243 /// The extra two bits are used for the ModuleOwnershipKind.
244 llvm::PointerIntPair<Decl *, 2, ModuleOwnershipKind> NextInContextAndBits;
245
246private:
247 friend class DeclContext;
248
249 struct MultipleDC {
250 DeclContext *SemanticDC;
251 DeclContext *LexicalDC;
252 };
253
254 /// DeclCtx - Holds either a DeclContext* or a MultipleDC*.
255 /// For declarations that don't contain C++ scope specifiers, it contains
256 /// the DeclContext where the Decl was declared.
257 /// For declarations with C++ scope specifiers, it contains a MultipleDC*
258 /// with the context where it semantically belongs (SemanticDC) and the
259 /// context where it was lexically declared (LexicalDC).
260 /// e.g.:
261 ///
262 /// namespace A {
263 /// void f(); // SemanticDC == LexicalDC == 'namespace A'
264 /// }
265 /// void A::f(); // SemanticDC == namespace 'A'
266 /// // LexicalDC == global namespace
267 llvm::PointerUnion<DeclContext*, MultipleDC*> DeclCtx;
268
269 bool isInSemaDC() const { return DeclCtx.is<DeclContext*>(); }
270 bool isOutOfSemaDC() const { return DeclCtx.is<MultipleDC*>(); }
271
272 MultipleDC *getMultipleDC() const {
273 return DeclCtx.get<MultipleDC*>();
274 }
275
276 DeclContext *getSemanticDC() const {
277 return DeclCtx.get<DeclContext*>();
278 }
279
280 /// Loc - The location of this decl.
281 SourceLocation Loc;
282
283 /// DeclKind - This indicates which class this is.
284 unsigned DeclKind : 7;
285
286 /// InvalidDecl - This indicates a semantic error occurred.
287 unsigned InvalidDecl : 1;
288
289 /// HasAttrs - This indicates whether the decl has attributes or not.
290 unsigned HasAttrs : 1;
291
292 /// Implicit - Whether this declaration was implicitly generated by
293 /// the implementation rather than explicitly written by the user.
294 unsigned Implicit : 1;
295
296 /// Whether this declaration was "used", meaning that a definition is
297 /// required.
298 unsigned Used : 1;
299
300 /// Whether this declaration was "referenced".
301 /// The difference with 'Used' is whether the reference appears in a
302 /// evaluated context or not, e.g. functions used in uninstantiated templates
303 /// are regarded as "referenced" but not "used".
304 unsigned Referenced : 1;
305
306 /// Whether this declaration is a top-level declaration (function,
307 /// global variable, etc.) that is lexically inside an objc container
308 /// definition.
309 unsigned TopLevelDeclInObjCContainer : 1;
310
311 /// Whether statistic collection is enabled.
312 static bool StatisticsEnabled;
313
314protected:
315 friend class ASTDeclReader;
316 friend class ASTDeclWriter;
317 friend class ASTNodeImporter;
318 friend class ASTReader;
319 friend class CXXClassMemberWrapper;
320 friend class LinkageComputer;
321 template<typename decl_type> friend class Redeclarable;
322
323 /// Access - Used by C++ decls for the access specifier.
324 // NOTE: VC++ treats enums as signed, avoid using the AccessSpecifier enum
325 unsigned Access : 2;
326
327 /// Whether this declaration was loaded from an AST file.
328 unsigned FromASTFile : 1;
329
330 /// IdentifierNamespace - This specifies what IDNS_* namespace this lives in.
331 unsigned IdentifierNamespace : 14;
332
333 /// If 0, we have not computed the linkage of this declaration.
334 /// Otherwise, it is the linkage + 1.
335 mutable unsigned CacheValidAndLinkage : 3;
336
337 /// Allocate memory for a deserialized declaration.
338 ///
339 /// This routine must be used to allocate memory for any declaration that is
340 /// deserialized from a module file.
341 ///
342 /// \param Size The size of the allocated object.
343 /// \param Ctx The context in which we will allocate memory.
344 /// \param ID The global ID of the deserialized declaration.
345 /// \param Extra The amount of extra space to allocate after the object.
346 void *operator new(std::size_t Size, const ASTContext &Ctx, unsigned ID,
347 std::size_t Extra = 0);
348
349 /// Allocate memory for a non-deserialized declaration.
350 void *operator new(std::size_t Size, const ASTContext &Ctx,
351 DeclContext *Parent, std::size_t Extra = 0);
352
353private:
354 bool AccessDeclContextSanity() const;
355
356 /// Get the module ownership kind to use for a local lexical child of \p DC,
357 /// which may be either a local or (rarely) an imported declaration.
358 static ModuleOwnershipKind getModuleOwnershipKindForChildOf(DeclContext *DC) {
359 if (DC) {
360 auto *D = cast<Decl>(DC);
361 auto MOK = D->getModuleOwnershipKind();
362 if (MOK != ModuleOwnershipKind::Unowned &&
363 (!D->isFromASTFile() || D->hasLocalOwningModuleStorage()))
364 return MOK;
365 // If D is not local and we have no local module storage, then we don't
366 // need to track module ownership at all.
367 }
368 return ModuleOwnershipKind::Unowned;
369 }
370
371public:
372 Decl() = delete;
373 Decl(const Decl&) = delete;
374 Decl(Decl &&) = delete;
375 Decl &operator=(const Decl&) = delete;
376 Decl &operator=(Decl&&) = delete;
377
378protected:
379 Decl(Kind DK, DeclContext *DC, SourceLocation L)
380 : NextInContextAndBits(nullptr, getModuleOwnershipKindForChildOf(DC)),
381 DeclCtx(DC), Loc(L), DeclKind(DK), InvalidDecl(false), HasAttrs(false),
382 Implicit(false), Used(false), Referenced(false),
383 TopLevelDeclInObjCContainer(false), Access(AS_none), FromASTFile(0),
384 IdentifierNamespace(getIdentifierNamespaceForKind(DK)),
385 CacheValidAndLinkage(0) {
386 if (StatisticsEnabled) add(DK);
387 }
388
389 Decl(Kind DK, EmptyShell Empty)
390 : DeclKind(DK), InvalidDecl(false), HasAttrs(false), Implicit(false),
391 Used(false), Referenced(false), TopLevelDeclInObjCContainer(false),
392 Access(AS_none), FromASTFile(0),
393 IdentifierNamespace(getIdentifierNamespaceForKind(DK)),
394 CacheValidAndLinkage(0) {
395 if (StatisticsEnabled) add(DK);
396 }
397
398 virtual ~Decl();
399
400 /// Update a potentially out-of-date declaration.
401 void updateOutOfDate(IdentifierInfo &II) const;
402
403 Linkage getCachedLinkage() const {
404 return Linkage(CacheValidAndLinkage - 1);
405 }
406
407 void setCachedLinkage(Linkage L) const {
408 CacheValidAndLinkage = L + 1;
409 }
410
411 bool hasCachedLinkage() const {
412 return CacheValidAndLinkage;
413 }
414
415public:
416 /// Source range that this declaration covers.
417 virtual SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) {
418 return SourceRange(getLocation(), getLocation());
419 }
420
421 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
422 return getSourceRange().getBegin();
423 }
424
425 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
426 return getSourceRange().getEnd();
427 }
428
429 SourceLocation getLocation() const { return Loc; }
430 void setLocation(SourceLocation L) { Loc = L; }
431
432 Kind getKind() const { return static_cast<Kind>(DeclKind); }
433 const char *getDeclKindName() const;
434
435 Decl *getNextDeclInContext() { return NextInContextAndBits.getPointer(); }
436 const Decl *getNextDeclInContext() const {return NextInContextAndBits.getPointer();}
437
438 DeclContext *getDeclContext() {
439 if (isInSemaDC())
440 return getSemanticDC();
441 return getMultipleDC()->SemanticDC;
442 }
443 const DeclContext *getDeclContext() const {
444 return const_cast<Decl*>(this)->getDeclContext();
445 }
446
447 /// Find the innermost non-closure ancestor of this declaration,
448 /// walking up through blocks, lambdas, etc. If that ancestor is
449 /// not a code context (!isFunctionOrMethod()), returns null.
450 ///
451 /// A declaration may be its own non-closure context.
452 Decl *getNonClosureContext();
453 const Decl *getNonClosureContext() const {
454 return const_cast<Decl*>(this)->getNonClosureContext();
455 }
456
457 TranslationUnitDecl *getTranslationUnitDecl();
458 const TranslationUnitDecl *getTranslationUnitDecl() const {
459 return const_cast<Decl*>(this)->getTranslationUnitDecl();
460 }
461
462 bool isInAnonymousNamespace() const;
463
464 bool isInStdNamespace() const;
465
466 ASTContext &getASTContext() const LLVM_READONLY__attribute__((__pure__));
467
468 void setAccess(AccessSpecifier AS) {
469 Access = AS;
470 assert(AccessDeclContextSanity())((AccessDeclContextSanity()) ? static_cast<void> (0) : __assert_fail
("AccessDeclContextSanity()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 470, __PRETTY_FUNCTION__))
;
471 }
472
473 AccessSpecifier getAccess() const {
474 assert(AccessDeclContextSanity())((AccessDeclContextSanity()) ? static_cast<void> (0) : __assert_fail
("AccessDeclContextSanity()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 474, __PRETTY_FUNCTION__))
;
475 return AccessSpecifier(Access);
476 }
477
478 /// Retrieve the access specifier for this declaration, even though
479 /// it may not yet have been properly set.
480 AccessSpecifier getAccessUnsafe() const {
481 return AccessSpecifier(Access);
482 }
483
484 bool hasAttrs() const { return HasAttrs; }
485
486 void setAttrs(const AttrVec& Attrs) {
487 return setAttrsImpl(Attrs, getASTContext());
488 }
489
490 AttrVec &getAttrs() {
491 return const_cast<AttrVec&>(const_cast<const Decl*>(this)->getAttrs());
492 }
493
494 const AttrVec &getAttrs() const;
495 void dropAttrs();
496 void addAttr(Attr *A);
497
498 using attr_iterator = AttrVec::const_iterator;
499 using attr_range = llvm::iterator_range<attr_iterator>;
500
501 attr_range attrs() const {
502 return attr_range(attr_begin(), attr_end());
503 }
504
505 attr_iterator attr_begin() const {
506 return hasAttrs() ? getAttrs().begin() : nullptr;
507 }
508 attr_iterator attr_end() const {
509 return hasAttrs() ? getAttrs().end() : nullptr;
510 }
511
512 template <typename T>
513 void dropAttr() {
514 if (!HasAttrs) return;
515
516 AttrVec &Vec = getAttrs();
517 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), isa<T, Attr*>), Vec.end());
518
519 if (Vec.empty())
520 HasAttrs = false;
521 }
522
523 template <typename T>
524 llvm::iterator_range<specific_attr_iterator<T>> specific_attrs() const {
525 return llvm::make_range(specific_attr_begin<T>(), specific_attr_end<T>());
526 }
527
528 template <typename T>
529 specific_attr_iterator<T> specific_attr_begin() const {
530 return specific_attr_iterator<T>(attr_begin());
531 }
532
533 template <typename T>
534 specific_attr_iterator<T> specific_attr_end() const {
535 return specific_attr_iterator<T>(attr_end());
536 }
537
538 template<typename T> T *getAttr() const {
539 return hasAttrs() ? getSpecificAttr<T>(getAttrs()) : nullptr;
540 }
541
542 template<typename T> bool hasAttr() const {
543 return hasAttrs() && hasSpecificAttr<T>(getAttrs());
544 }
545
546 /// getMaxAlignment - return the maximum alignment specified by attributes
547 /// on this decl, 0 if there are none.
548 unsigned getMaxAlignment() const;
549
550 /// setInvalidDecl - Indicates the Decl had a semantic error. This
551 /// allows for graceful error recovery.
552 void setInvalidDecl(bool Invalid = true);
553 bool isInvalidDecl() const { return (bool) InvalidDecl; }
554
555 /// isImplicit - Indicates whether the declaration was implicitly
556 /// generated by the implementation. If false, this declaration
557 /// was written explicitly in the source code.
558 bool isImplicit() const { return Implicit; }
559 void setImplicit(bool I = true) { Implicit = I; }
560
561 /// Whether *any* (re-)declaration of the entity was used, meaning that
562 /// a definition is required.
563 ///
564 /// \param CheckUsedAttr When true, also consider the "used" attribute
565 /// (in addition to the "used" bit set by \c setUsed()) when determining
566 /// whether the function is used.
567 bool isUsed(bool CheckUsedAttr = true) const;
568
569 /// Set whether the declaration is used, in the sense of odr-use.
570 ///
571 /// This should only be used immediately after creating a declaration.
572 /// It intentionally doesn't notify any listeners.
573 void setIsUsed() { getCanonicalDecl()->Used = true; }
574
575 /// Mark the declaration used, in the sense of odr-use.
576 ///
577 /// This notifies any mutation listeners in addition to setting a bit
578 /// indicating the declaration is used.
579 void markUsed(ASTContext &C);
580
581 /// Whether any declaration of this entity was referenced.
582 bool isReferenced() const;
583
584 /// Whether this declaration was referenced. This should not be relied
585 /// upon for anything other than debugging.
586 bool isThisDeclarationReferenced() const { return Referenced; }
587
588 void setReferenced(bool R = true) { Referenced = R; }
589
590 /// Whether this declaration is a top-level declaration (function,
591 /// global variable, etc.) that is lexically inside an objc container
592 /// definition.
593 bool isTopLevelDeclInObjCContainer() const {
594 return TopLevelDeclInObjCContainer;
595 }
596
597 void setTopLevelDeclInObjCContainer(bool V = true) {
598 TopLevelDeclInObjCContainer = V;
599 }
600
601 /// Looks on this and related declarations for an applicable
602 /// external source symbol attribute.
603 ExternalSourceSymbolAttr *getExternalSourceSymbolAttr() const;
604
605 /// Whether this declaration was marked as being private to the
606 /// module in which it was defined.
607 bool isModulePrivate() const {
608 return getModuleOwnershipKind() == ModuleOwnershipKind::ModulePrivate;
609 }
610
611 /// Return true if this declaration has an attribute which acts as
612 /// definition of the entity, such as 'alias' or 'ifunc'.
613 bool hasDefiningAttr() const;
614
615 /// Return this declaration's defining attribute if it has one.
616 const Attr *getDefiningAttr() const;
617
618protected:
619 /// Specify that this declaration was marked as being private
620 /// to the module in which it was defined.
621 void setModulePrivate() {
622 // The module-private specifier has no effect on unowned declarations.
623 // FIXME: We should track this in some way for source fidelity.
624 if (getModuleOwnershipKind() == ModuleOwnershipKind::Unowned)
625 return;
626 setModuleOwnershipKind(ModuleOwnershipKind::ModulePrivate);
627 }
628
629 /// Set the owning module ID.
630 void setOwningModuleID(unsigned ID) {
631 assert(isFromASTFile() && "Only works on a deserialized declaration")((isFromASTFile() && "Only works on a deserialized declaration"
) ? static_cast<void> (0) : __assert_fail ("isFromASTFile() && \"Only works on a deserialized declaration\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 631, __PRETTY_FUNCTION__))
;
632 *((unsigned*)this - 2) = ID;
633 }
634
635public:
636 /// Determine the availability of the given declaration.
637 ///
638 /// This routine will determine the most restrictive availability of
639 /// the given declaration (e.g., preferring 'unavailable' to
640 /// 'deprecated').
641 ///
642 /// \param Message If non-NULL and the result is not \c
643 /// AR_Available, will be set to a (possibly empty) message
644 /// describing why the declaration has not been introduced, is
645 /// deprecated, or is unavailable.
646 ///
647 /// \param EnclosingVersion The version to compare with. If empty, assume the
648 /// deployment target version.
649 ///
650 /// \param RealizedPlatform If non-NULL and the availability result is found
651 /// in an available attribute it will set to the platform which is written in
652 /// the available attribute.
653 AvailabilityResult
654 getAvailability(std::string *Message = nullptr,
655 VersionTuple EnclosingVersion = VersionTuple(),
656 StringRef *RealizedPlatform = nullptr) const;
657
658 /// Retrieve the version of the target platform in which this
659 /// declaration was introduced.
660 ///
661 /// \returns An empty version tuple if this declaration has no 'introduced'
662 /// availability attributes, or the version tuple that's specified in the
663 /// attribute otherwise.
664 VersionTuple getVersionIntroduced() const;
665
666 /// Determine whether this declaration is marked 'deprecated'.
667 ///
668 /// \param Message If non-NULL and the declaration is deprecated,
669 /// this will be set to the message describing why the declaration
670 /// was deprecated (which may be empty).
671 bool isDeprecated(std::string *Message = nullptr) const {
672 return getAvailability(Message) == AR_Deprecated;
673 }
674
675 /// Determine whether this declaration is marked 'unavailable'.
676 ///
677 /// \param Message If non-NULL and the declaration is unavailable,
678 /// this will be set to the message describing why the declaration
679 /// was made unavailable (which may be empty).
680 bool isUnavailable(std::string *Message = nullptr) const {
681 return getAvailability(Message) == AR_Unavailable;
682 }
683
684 /// Determine whether this is a weak-imported symbol.
685 ///
686 /// Weak-imported symbols are typically marked with the
687 /// 'weak_import' attribute, but may also be marked with an
688 /// 'availability' attribute where we're targing a platform prior to
689 /// the introduction of this feature.
690 bool isWeakImported() const;
691
692 /// Determines whether this symbol can be weak-imported,
693 /// e.g., whether it would be well-formed to add the weak_import
694 /// attribute.
695 ///
696 /// \param IsDefinition Set to \c true to indicate that this
697 /// declaration cannot be weak-imported because it has a definition.
698 bool canBeWeakImported(bool &IsDefinition) const;
699
700 /// Determine whether this declaration came from an AST file (such as
701 /// a precompiled header or module) rather than having been parsed.
702 bool isFromASTFile() const { return FromASTFile; }
703
704 /// Retrieve the global declaration ID associated with this
705 /// declaration, which specifies where this Decl was loaded from.
706 unsigned getGlobalID() const {
707 if (isFromASTFile())
708 return *((const unsigned*)this - 1);
709 return 0;
710 }
711
712 /// Retrieve the global ID of the module that owns this particular
713 /// declaration.
714 unsigned getOwningModuleID() const {
715 if (isFromASTFile())
716 return *((const unsigned*)this - 2);
717 return 0;
718 }
719
720private:
721 Module *getOwningModuleSlow() const;
722
723protected:
724 bool hasLocalOwningModuleStorage() const;
725
726public:
727 /// Get the imported owning module, if this decl is from an imported
728 /// (non-local) module.
729 Module *getImportedOwningModule() const {
730 if (!isFromASTFile() || !hasOwningModule())
731 return nullptr;
732
733 return getOwningModuleSlow();
734 }
735
736 /// Get the local owning module, if known. Returns nullptr if owner is
737 /// not yet known or declaration is not from a module.
738 Module *getLocalOwningModule() const {
739 if (isFromASTFile() || !hasOwningModule())
740 return nullptr;
741
742 assert(hasLocalOwningModuleStorage() &&((hasLocalOwningModuleStorage() && "owned local decl but no local module storage"
) ? static_cast<void> (0) : __assert_fail ("hasLocalOwningModuleStorage() && \"owned local decl but no local module storage\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 743, __PRETTY_FUNCTION__))
743 "owned local decl but no local module storage")((hasLocalOwningModuleStorage() && "owned local decl but no local module storage"
) ? static_cast<void> (0) : __assert_fail ("hasLocalOwningModuleStorage() && \"owned local decl but no local module storage\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 743, __PRETTY_FUNCTION__))
;
744 return reinterpret_cast<Module *const *>(this)[-1];
745 }
746 void setLocalOwningModule(Module *M) {
747 assert(!isFromASTFile() && hasOwningModule() &&((!isFromASTFile() && hasOwningModule() && hasLocalOwningModuleStorage
() && "should not have a cached owning module") ? static_cast
<void> (0) : __assert_fail ("!isFromASTFile() && hasOwningModule() && hasLocalOwningModuleStorage() && \"should not have a cached owning module\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 749, __PRETTY_FUNCTION__))
748 hasLocalOwningModuleStorage() &&((!isFromASTFile() && hasOwningModule() && hasLocalOwningModuleStorage
() && "should not have a cached owning module") ? static_cast
<void> (0) : __assert_fail ("!isFromASTFile() && hasOwningModule() && hasLocalOwningModuleStorage() && \"should not have a cached owning module\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 749, __PRETTY_FUNCTION__))
749 "should not have a cached owning module")((!isFromASTFile() && hasOwningModule() && hasLocalOwningModuleStorage
() && "should not have a cached owning module") ? static_cast
<void> (0) : __assert_fail ("!isFromASTFile() && hasOwningModule() && hasLocalOwningModuleStorage() && \"should not have a cached owning module\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 749, __PRETTY_FUNCTION__))
;
750 reinterpret_cast<Module **>(this)[-1] = M;
751 }
752
753 /// Is this declaration owned by some module?
754 bool hasOwningModule() const {
755 return getModuleOwnershipKind() != ModuleOwnershipKind::Unowned;
756 }
757
758 /// Get the module that owns this declaration (for visibility purposes).
759 Module *getOwningModule() const {
760 return isFromASTFile() ? getImportedOwningModule() : getLocalOwningModule();
761 }
762
763 /// Get the module that owns this declaration for linkage purposes.
764 /// There only ever is such a module under the C++ Modules TS.
765 ///
766 /// \param IgnoreLinkage Ignore the linkage of the entity; assume that
767 /// all declarations in a global module fragment are unowned.
768 Module *getOwningModuleForLinkage(bool IgnoreLinkage = false) const;
769
770 /// Determine whether this declaration might be hidden from name
771 /// lookup. Note that the declaration might be visible even if this returns
772 /// \c false, if the owning module is visible within the query context.
773 // FIXME: Rename this to make it clearer what it does.
774 bool isHidden() const {
775 return (int)getModuleOwnershipKind() > (int)ModuleOwnershipKind::Visible;
776 }
777
778 /// Set that this declaration is globally visible, even if it came from a
779 /// module that is not visible.
780 void setVisibleDespiteOwningModule() {
781 if (isHidden())
782 setModuleOwnershipKind(ModuleOwnershipKind::Visible);
783 }
784
785 /// Get the kind of module ownership for this declaration.
786 ModuleOwnershipKind getModuleOwnershipKind() const {
787 return NextInContextAndBits.getInt();
788 }
789
790 /// Set whether this declaration is hidden from name lookup.
791 void setModuleOwnershipKind(ModuleOwnershipKind MOK) {
792 assert(!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned &&((!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned &&
MOK != ModuleOwnershipKind::Unowned && !isFromASTFile
() && !hasLocalOwningModuleStorage()) && "no storage available for owning module for this declaration"
) ? static_cast<void> (0) : __assert_fail ("!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned && MOK != ModuleOwnershipKind::Unowned && !isFromASTFile() && !hasLocalOwningModuleStorage()) && \"no storage available for owning module for this declaration\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 795, __PRETTY_FUNCTION__))
793 MOK != ModuleOwnershipKind::Unowned && !isFromASTFile() &&((!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned &&
MOK != ModuleOwnershipKind::Unowned && !isFromASTFile
() && !hasLocalOwningModuleStorage()) && "no storage available for owning module for this declaration"
) ? static_cast<void> (0) : __assert_fail ("!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned && MOK != ModuleOwnershipKind::Unowned && !isFromASTFile() && !hasLocalOwningModuleStorage()) && \"no storage available for owning module for this declaration\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 795, __PRETTY_FUNCTION__))
794 !hasLocalOwningModuleStorage()) &&((!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned &&
MOK != ModuleOwnershipKind::Unowned && !isFromASTFile
() && !hasLocalOwningModuleStorage()) && "no storage available for owning module for this declaration"
) ? static_cast<void> (0) : __assert_fail ("!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned && MOK != ModuleOwnershipKind::Unowned && !isFromASTFile() && !hasLocalOwningModuleStorage()) && \"no storage available for owning module for this declaration\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 795, __PRETTY_FUNCTION__))
795 "no storage available for owning module for this declaration")((!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned &&
MOK != ModuleOwnershipKind::Unowned && !isFromASTFile
() && !hasLocalOwningModuleStorage()) && "no storage available for owning module for this declaration"
) ? static_cast<void> (0) : __assert_fail ("!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned && MOK != ModuleOwnershipKind::Unowned && !isFromASTFile() && !hasLocalOwningModuleStorage()) && \"no storage available for owning module for this declaration\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/DeclBase.h"
, 795, __PRETTY_FUNCTION__))
;
796 NextInContextAndBits.setInt(MOK);
797 }
798
799 unsigned getIdentifierNamespace() const {
800 return IdentifierNamespace;
801 }
802
803 bool isInIdentifierNamespace(unsigned NS) const {
804 return getIdentifierNamespace() & NS;
805 }
806
807 static unsigned getIdentifierNamespaceForKind(Kind DK);
808
809 bool hasTagIdentifierNamespace() const {
810 return isTagIdentifierNamespace(getIdentifierNamespace());
811 }
812
813 static bool isTagIdentifierNamespace(unsigned NS) {
814 // TagDecls have Tag and Type set and may also have TagFriend.
815 return (NS & ~IDNS_TagFriend) == (IDNS_Tag | IDNS_Type);
816 }
817
818 /// getLexicalDeclContext - The declaration context where this Decl was
819 /// lexically declared (LexicalDC). May be different from
820 /// getDeclContext() (SemanticDC).
821 /// e.g.:
822 ///
823 /// namespace A {
824 /// void f(); // SemanticDC == LexicalDC == 'namespace A'
825 /// }
826 /// void A::f(); // SemanticDC == namespace 'A'
827 /// // LexicalDC == global namespace
828 DeclContext *getLexicalDeclContext() {
829 if (isInSemaDC())
830 return getSemanticDC();
831 return getMultipleDC()->LexicalDC;
832 }
833 const DeclContext *getLexicalDeclContext() const {
834 return const_cast<Decl*>(this)->getLexicalDeclContext();
835 }
836
837 /// Determine whether this declaration is declared out of line (outside its
838 /// semantic context).
839 virtual bool isOutOfLine() const;
840
841 /// setDeclContext - Set both the semantic and lexical DeclContext
842 /// to DC.
843 void setDeclContext(DeclContext *DC);
844
845 void setLexicalDeclContext(DeclContext *DC);
846
847 /// Determine whether this declaration is a templated entity (whether it is
848 // within the scope of a template parameter).
849 bool isTemplated() const;
850
851 /// isDefinedOutsideFunctionOrMethod - This predicate returns true if this
852 /// scoped decl is defined outside the current function or method. This is
853 /// roughly global variables and functions, but also handles enums (which
854 /// could be defined inside or outside a function etc).
855 bool isDefinedOutsideFunctionOrMethod() const {
856 return getParentFunctionOrMethod() == nullptr;
857 }
858
859 /// Returns true if this declaration lexically is inside a function.
860 /// It recognizes non-defining declarations as well as members of local
861 /// classes:
862 /// \code
863 /// void foo() { void bar(); }
864 /// void foo2() { class ABC { void bar(); }; }
865 /// \endcode
866 bool isLexicallyWithinFunctionOrMethod() const;
867
868 /// If this decl is defined inside a function/method/block it returns
869 /// the corresponding DeclContext, otherwise it returns null.
870 const DeclContext *getParentFunctionOrMethod() const;
871 DeclContext *getParentFunctionOrMethod() {
872 return const_cast<DeclContext*>(
873 const_cast<const Decl*>(this)->getParentFunctionOrMethod());
874 }
875
876 /// Retrieves the "canonical" declaration of the given declaration.
877 virtual Decl *getCanonicalDecl() { return this; }
878 const Decl *getCanonicalDecl() const {
879 return const_cast<Decl*>(this)->getCanonicalDecl();
880 }
881
882 /// Whether this particular Decl is a canonical one.
883 bool isCanonicalDecl() const { return getCanonicalDecl() == this; }
884
885protected:
886 /// Returns the next redeclaration or itself if this is the only decl.
887 ///
888 /// Decl subclasses that can be redeclared should override this method so that
889 /// Decl::redecl_iterator can iterate over them.
890 virtual Decl *getNextRedeclarationImpl() { return this; }
891
892 /// Implementation of getPreviousDecl(), to be overridden by any
893 /// subclass that has a redeclaration chain.
894 virtual Decl *getPreviousDeclImpl() { return nullptr; }
895
896 /// Implementation of getMostRecentDecl(), to be overridden by any
897 /// subclass that has a redeclaration chain.
898 virtual Decl *getMostRecentDeclImpl() { return this; }
899
900public:
901 /// Iterates through all the redeclarations of the same decl.
902 class redecl_iterator {
903 /// Current - The current declaration.
904 Decl *Current = nullptr;
905 Decl *Starter;
906
907 public:
908 using value_type = Decl *;
909 using reference = const value_type &;
910 using pointer = const value_type *;
911 using iterator_category = std::forward_iterator_tag;
912 using difference_type = std::ptrdiff_t;
913
914 redecl_iterator() = default;
915 explicit redecl_iterator(Decl *C) : Current(C), Starter(C) {}
916
917 refe